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Abstract. Research on the area of secure multi-party computation
using a deck of playing cards, often called card-based cryptography,
started from the introduction of the “five-card trick” to compute the
logical AND function by den Boar in 1989. Since then, many proto-
cols to compute various functions have been developed. In this paper, we
propose a new card-based protocol that securely computes the n-variable
equality function using 2n cards. We also show that the same technique
can be applied to compute any doubly symmetric function f : {0, 1}n →
Z using 2n cards, and any symmetric function f : {0, 1}n → Z using
2n + 2 cards.

Keywords: Card-based cryptography · Secure multi-party
computation · Equality function · Symmetric function · Doubly
symmetric function

1 Introduction

During a two-candidate election, a group of n friends decides that they should
discuss about the election only if everyone in the group supports the same candi-
date. However, each person does not know other people’s preferences and wants
to hide his/her own preference from the others unless they all support the same
candidate in order to avoid awkwardness in the conversation. How can they know
whether their preferences all coincide without leaking any other information?

In terms of secure multi-party computation, this situation can be viewed as
a group of n players where the ith player has a bit ai of either 0 or 1. Define
the equality function E(a1, ..., an) = 1 if a1 = ... = an and E(a1, ..., an) =
0 otherwise. Our goal is to design a protocol that announces only the value
of E(a1, ..., an) without leaking any other information, such as the preference
of any player or the number of players who support each candidate (not even
probabilistic information).

Secure multi-party computation is one of the most actively studied research
areas in cryptography. It involves situations where multiple parties want to com-
pare their private information without revealing it. In particular, this paper
focuses on secure multi-party computation using a deck of playing cards, often
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called card-based cryptography. The benefit of card-based protocols is that they
provide solutions to real-world situations using only a small deck of cards, which
is portable and can be found in everyday life, and do not require computers.
Moreover, these straightforward protocols are easy to understand and verify the
correctness and security, even for non-experts.

1.1 Related Work

The first research on card-based cryptography started in 1989 with the “five-
card trick” introduced by den Boer [3] to compute the logical AND function on
two players’ bits a and b. This protocol uses three identical ♣ cards and two
identical ♥ cards.

Throughout this paper, a bit 0 is encoded by a commitment ♣♥ and a bit
1 by a commitment ♥♣. We give each player one ♣ card and one ♥ card,
and put another ♣ card face-down on a table. The first player then places his
commitment of a face-down to the left of the ♣ card, while the second player
places his commitment of b face-down to the right of it. Then, we swap the
fourth and the fifth cards from the left, resulting in the following four possible
sequences.

♣ ♥ ♣ ♣ ♥
⇓

♣ ♥ ♣ ♥ ♣

(a, b) = (0, 0)

♣ ♥ ♣ ♥ ♣
⇓

♣ ♥ ♣ ♣ ♥

(a, b) = (0, 1)

♥ ♣ ♣ ♣ ♥
⇓

♥ ♣ ♣ ♥ ♣

(a, b) = (1, 0)

♥ ♣ ♣ ♥ ♣
⇓

♥ ♣ ♣ ♣ ♥

(a, b) = (1, 1)

Observe that there are only two possible sequences in a cyclic rotation of the
deck, ♥♣♥♣♣ and ♥♥♣♣♣, with the latter showing up if and only if a = b = 1.
We can obscure the initial position of the cards by making a random cut to
shuffle the deck into a uniformly random cyclic permutation, i.e. a permutation
uniformly chosen at random from {id, π, π2, π3, π4} where π = (1 2 3 4 5), before
turning all cards face-up. Hence, we can determine whether a ∧ b = 1 from the
cycle.

Since the introduction of the five-card trick, several other protocols to
compute the AND function have been developed. These subsequent results
[1,2,4,5,7,8,10,13,16] aimed to either reduce the number of required cards or
improve properties of the protocol involving output format, running time, type
of shuffles, etc.

Apart from the AND function protocol, various kinds of protocols have been
developed as well, such as the XOR function protocol [2,8,9], the copy protocol
[8] (creating multiple copies of the commitment), the majority function protocol
[12] (deciding whether there are more 0s or 1s in the inputs), and the adder
protocol [6] (adding bits and storing the sum in binary representation). Nishida
et al. [11] proved that any n-variable Boolean function can be computed with
2n + 6 cards, and any such function that is symmetric can be computed with
2n + 2 cards.
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1.2 The Six-Card Trick

For the equality function, the case n = 2 is a negation of the XOR function,
which can be easily computed with four cards. For the case n = 3, Shinagawa
and Mizuki [14] developed the following protocol called the “six-card trick” to
compute the function E(a, b, c) on three players’ bits a, b, and c using six cards.

First, the players put the commitments of a, b, and c face-down on a table
in this order from left to right. Then, we rearrange the cards into a (2 4 6)
permutation, i.e. move the second leftmost card to the fourth leftmost position,
the fourth card to the sixth position, and the sixth card to the second position,
resulting in the following eight possible sequences.

♣ ♥ ♣ ♥ ♣ ♥
⇓

♣ ♥ ♣ ♥ ♣ ♥

(a, b, c) = (0, 0, 0)

♥ ♣ ♣ ♥ ♣ ♥
⇓

♥ ♥ ♣ ♣ ♣ ♥

(a, b, c) = (1, 0, 0)

♣ ♥ ♣ ♥ ♥ ♣
⇓

♣ ♣ ♣ ♥ ♥ ♥

(a, b, c) = (0, 0, 1)

♥ ♣ ♣ ♥ ♥ ♣
⇓

♥ ♣ ♣ ♣ ♥ ♥

(a, b, c) = (1, 0, 1)

♣ ♥ ♥ ♣ ♣ ♥
⇓

♣ ♥ ♥ ♥ ♣ ♣

(a, b, c) = (0, 1, 0)

♥ ♣ ♥ ♣ ♣ ♥
⇓

♥ ♥ ♥ ♣ ♣ ♣

(a, b, c) = (1, 1, 0)

♣ ♥ ♥ ♣ ♥ ♣
⇓

♣ ♣ ♥ ♥ ♥ ♣

(a, b, c) = (0, 1, 1)

♥ ♣ ♥ ♣ ♥ ♣
⇓

♥ ♣ ♥ ♣ ♥ ♣

(a, b, c) = (1, 1, 1)

Observe that there are only two possible sequences in a cyclic rotation of
the deck, ♣♣♣♥♥♥ and ♣♥♣♥♣♥, with the latter showing up if and only if
a = b = c, i.e. E(a, b, c) = 1. Again, we can obscure the initial position of the
cards by making a random cut before turning all cards face-up, hence we can
determine the value of E(a, b, c) from the cycle.

The six-card trick has a benefit that it uses only one random cut. However,
the technique used in this protocol heavily relies on the symmetric nature of the
special case n = 3, suggesting that there might not be an equivalent protocol
using 2n cards for a general n. In fact, in [14] they found by using a computer
that in the case n = 4, an eight-card protocol that uses only one random cut
does not exist.

1.3 Our Contribution

In this paper, we develop a card-based protocol that securely computes the n-
variable equality function using 2n cards. We also show that the same technique
can be applied to compute any doubly symmetric function (see the definition
in Sect. 4.1) f : {0, 1}n → Z using 2n cards, and any symmetric function f :
{0, 1}n → Z using 2n + 2 cards.

2 Basic Operations

First, we will introduce basic operations on a deck of cards that will be used in
our protocols.



28 S. Ruangwises and T. Itoh

2.1 Random Cut

Suppose we have a sequence of cards (x0, x1, ..., xk−1). A random cut is an oper-
ation to shuffle the deck into a uniformly random cyclic permutation, shifting
the sequence into (xr, xr+1, ..., xr+k−1), where r is a uniformly random integer
from {0, 1, ..., k − 1} and the indices are taken in mod k.

? ? ... ? ⇒ ? ? ... ?
x0 x1 xk−1 xr xr+1 xr+k−1

In real world, a random cut can be performed by applying a Hindu cut, which
is a basic shuffling operation commonly used in card games [17].

2.2 Random k-Section Cut

A random k-section cut is a generalization of a random bisection cut introduced
by Mizuki and Sone [8]. Suppose we have a sequence of km cards (x0, x1, ...,
xkm−1). We divide the cards into k blocks B0, ..., Bk−1, with each block Bi

consisting of m consecutive cards xim, xim+1, ..., x(i+1)m−1.

B0 B1 Bk−1

? ? ... ? ? ? ... ? ... ? ? ... ?
x0 x1 xm−1 xm xm+1 x2m−1 x(k−1)m x(k−1)m+1 xkm−1

Then, we shuffle the blocks into a uniformly random cyclic permutation,
shifting the order of them into (Br, Br+1, ..., Br+k−1), where r is a uniformly
random integer from {0, 1, ..., k − 1} and the indices are taken in mod k. This
operation shifts the sequence of cards into (xrm, xrm+1, ..., x(r+k)m−1), where
the indices are taken in mod km.

B0 Bk−1 Br Br+k−1

? ? ... ? ... ? ? ... ? ⇒ ? ? ... ? ... ? ? ... ?

In real world, a random k-section cut can be performed by putting each block
of cards into an envelope and applying a random cut on the pile of envelopes
before taking the cards out.

2.3 XOR with a Random Bit

Recall that we encode 0 and 1 by commitments ♣♥ and ♥♣, respectively.
Suppose we have a sequence of k bits (a1, a2, ..., ak) as an input, with each
ai encoded by a commitment (xi, yi). We want to securely perform the XOR
operation with the same random bit on every input bit, i.e. output the sequence
(a1 ⊕ r, a2 ⊕ r, ..., ak ⊕ r) where r ∈ {0, 1} is a uniformly random bit.
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We can achieve this by applying a random 2-section cut in a way similar
to the copy protocol of Mizuki and Sone [8]. First, arrange the cards as X =
(x1, x2, ..., xk, y1, y2, ..., yk) and apply a random 2-section cut on X. Then, for
each i = 1, 2, ..., k, take the ith and the (i + k)-th cards from X in this order as
the commitment of the ith output bit.

? ? , ? ? , ... , ? ?
x1 y1 x2 y2 xk yk

⇓
? ? ... ? ? ? ... ?
x1 x2 xk y1 y2 yk
⇑ ⇓

? ? ... ? ? ? ... ? or ? ? ... ? ? ? ... ?
x1 x2 xk y1 y2 yk y1 y2 yk x1 x2 xk

⇓ ⇓
? ? , ? ? , ... , ? ? or ? ? , ? ? , ... , ? ?
x1 y1 x2 y2 xk yk y1 x1 y2 x2 yk xk

Observe that after applying the random 2-section cut, the sequence X
will become either (x1, x2, ..., xk, y1, y2, ..., yk) or (y1, y2, ..., yk, x1, x2, ..., xk) with
equal probability. In the former case, the commitment of every ith output bit
will be (xi, yi), which is ai ⊕ 0; in the latter case, the commitment of every
ith output bit will be (yi, xi), which is ai ⊕ 1. Therefore, the correctness of the
operation is verified.

2.4 Adding Two Integers in Z/kZ

For k ≥ 3, we first introduce two schemes of encoding integers in Z/kZ, the
♣-scheme and the ♥-scheme. The ♣-scheme uses one ♣ card and k − 1 ♥ cards
arranged in a row. An integer i corresponds to an arrangement where the ♣ card
is the (i + 1)-th card from the left, e.g.. ♥♣♥ encodes 1 in Z/3Z. Conversely,
the ♥-scheme uses one♥ card and k − 1 ♣ cards arranged in a row. An integer i
corresponds to an arrangement where the ♥ card is the (i + 1)-th card from the
left, e.g. ♣♣♥♣ encodes 2 in Z/4Z.

Suppose we have integers a and b in Z/kZ, with a encoded in ♥-scheme by a
sequence of face-down cards X = (x0, x1, ..., xk−1), and b encoded in ♣-scheme
by a sequence of face-down cards Y = (y0, y1, ..., yk−1). We want to securely
compute the sum a + b (mod k) and have it encoded in ♥-scheme without using
any additional card.

The intuition of this protocol is that we transform a and b into a−r and b+r
for a random r ∈ Z/kZ, reveal b + r, and then shift the cards encoding a − r to
the right by b + r positions to make them encode (a − r) + (b + r) = a + b. This
technique was first used by Shinagawa et al. [15] in the context of using regular
k-gon cards to encode integers in Z/kZ.

First, take the cards from X and Y in the following order and place them on
a single row from left to right: the leftmost card of X, the rightmost card of Y ,
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the second leftmost card of X, the second rightmost card of Y , and so on. The
cards now form a new sequence Z = (x0, yk−1, x1, yk−2, ..., xk−1, y0).

x0 x1 xk−1

X: ? ? ... ? Y : ? ? ... ? ⇒ Z: ? ? ? ? ... ? ?
x0 x1 xk−1 y0 y1 yk−1 yk−1 yk−2 y0

Apply a random k-section cut on Z, transforming the sequence into (xr,
y−r+k−1, xr+1, y−r+k−2, ..., xr+k−1, y−r) for a uniformly random r ∈ Z/kZ,
where the indices are taken in mod k.

x0 x1 xk−1 xr xr+1 xr+k−1

Z: ? ? ? ? ... ? ? ⇒ Z: ? ? ? ? ... ? ?
yk−1 yk−2 y0 y−r+k−1 y−r+k−2 y−r

Take the cards in Z from left to right and place them at these positions
in X and Y in the following order: the leftmost position of X, the rightmost
position of Y , the second leftmost position of X, the second rightmost position
of Y , and so on. We now have sequences X = (xr, xr+1, ..., xr+k−1) and Y =
(y−r, y−r+1, ..., y−r+k−1), which encode a − r and b + r, respectively.

xr xr+1 xr+k−1

Z: ? ? ? ? ... ? ? ⇒ X : ? ? ... ? Y : ? ? ... ?
y−r+k−1 y−r+k−2 y−r xr xr+1 xr+k−1 y−r y−r+1 y−r+k−1

Turn all cards in Y face-up to reveal s = b+r. Note that this revelation does
not leak any information of b because b + r has an equal probability to be any
integer in Z/kZ no matter what b is. Then, we shift the cards in X to the right
by s positions, transforming X into (xr−s, xr−s+1, ..., xr−s+k−1).

X : ? ? ... ? ⇒ X : ? ? ... ?
xr xr+1 xr+k−1 xr−s xr−s+1 xr−s+k−1

Therefore, we now have a sequence X encoding a−r+s = (a−r)+(b+r) =
a + b in ♥-scheme as desired.

3 Our Main Protocol

We get back to our main problem. Observe that if we treat each input ai as
an integer, the value of E(a1, ..., an) depends only on the sum sn =

∑n
i=1 ai.

Therefore, we will first develop a protocol to compute that sum. The intuition
of this protocol is that for each k = 2, 3, ..., n, we inductively compute the sum
sk =

∑k
i=1 ai in Z/(k+1)Z. Note that since sk is at most k, its value in Z/(k+1)Z

does not change from its actual value.
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3.1 Summation of the First k Bits

We will show that if we have two additional cards, one ♣ and one ♥, we can
compute the sum sk for every k = 2, 3, ..., n by the following procedure.

First, swap the two cards in the commitment of a1 and place an additional ♣
card face-down to the right of them. The resulting sequence, called C1, encodes
a1 in Z/3Z in ♥-scheme.

Case a1 = 0: ♣ ♥
Case a1 = 1: ♥ ♣

a1: ? ? ⇒

♥ ♣
♣ ♥
? ? ⇒

♥ ♣ ♣
♣ ♥ ♣

C1: ? ? ♣

Then, put an additional ♥ card face-down to the right of the commitment of
a2. The resulting sequence, called C2, encodes a2 in Z/3Z in ♣-scheme.

Case a2 = 0: ♣ ♥
Case a2 = 1: ♥ ♣

a2: ? ? ⇒

♣ ♥ ♥
♥ ♣ ♥

C2: ? ? ♥

We then apply the addition protocol introduced in Sect. 2.4 to store the sum
s2 = a1 +a2 in Z/3Z encoded in ♥-scheme in C1. We also now have two ♥ cards
and one ♣ card from C2 after we turned them face-up. These cards are called
free cards and are available to be used later in the protocol.

C1 encoding s2:

free cards from C2:

? ? ?

♣ ♥ ♥

Inductively, for each k ≥ 3, after we finish computing sk−1, we now have
a sequence C1 of k face-down cards encoding sk−1 in Z/kZ in ♥-scheme. We
also have k − 1 free ♥ cards and one free ♣ card from Ck−1 after we turned
them face-up. Append the free ♣ card face-down to the right of C1, making the
sequence now encode sk−1 in Z/(k + 1)Z in ♥-scheme. Also, place the k − 1 free
♥ cards face-down to the right of the commitment of ak. The resulting sequence,
called Ck, encodes ak in Z/(k + 1)Z in ♣-scheme.

C1 encoding sk−1:

commitment of ak:

? ? ... ?

? ?

⇒

⇒

C1 encoding sk−1:

Ck encoding ak:

? ? ... ? ♣

? ? ♥ ... ♥

free cards from Ck−1: 1×♣ , (k−1)×♥

Then, apply the addition protocol to compute the sum sk−1+ak (mod k+1)
= sk (mod k + 1) = sk and have it encoded in ♥-scheme by C1 as desired.
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C1 encoding sk:

free cards from Ck:

? ? ... ?

1×♣ , k×♥

Therefore, starting with one additional ♣ card and one additional ♥ card,
we can compute the sum sk =

∑k
i=1 ai for every k = 2, 3, ..., n.

3.2 Putting Together

The summation protocol introduced in Sect. 3.1 requires two additional cards to
compute sk. However, we can compute the equality function without using any
additional card by the following procedure.

First, apply the random bit XOR protocol in Sect. 2.3 to transform the input
into (a1 ⊕ r, a2 ⊕ r, ..., an ⊕ r) for a random bit r ∈ {0, 1}. Then, turn the two
cards encoding the nth bit face-up to reveal an⊕r. Note that this revelation does
not leak any information of an because seeing ♣♥ and ♥♣ each has probability
1/2 no matter whether an is 0 or 1.

If the cards are ♣♥, i.e. an⊕r = 0, the equality function outputs 1 if and only
if ai ⊕ r = 0 for every i = 1, ..., n − 1, which is equivalent to

∑n−1
i=1 (ai ⊕ r) = 0.

Note that we now have one free ♣ card and one free ♥ card from the cards we just
turned face-up. With these two additional cards, we can apply the summation
protocol to compute

∑n−1
i=1 (ai ⊕ r) as desired. On the other hand, if the two

rightmost cards are ♥♣, i.e. an⊕r = 1, the equality function outputs 1 if and only
if ai ⊕r = 1 for every i = 1, ..., n−1, which is equivalent to

∑n−1
i=1 (ai ⊕r⊕1) = 0.

Therefore, we can swap the two cards encoding every bit so that each ith bit
becomes ai ⊕ r ⊕ 1 and then apply the same protocol.

Note that the final sum is encoded in ♥-scheme by a row of n cards, where
the equality function outputs 1 if and only if the sum is zero, i.e. the ♥ card
is at the leftmost position. However, we do not want to reveal any information
about the actual value of the sum except whether it is zero or not. Therefore,
we apply a final random cut on the sequence of n − 1 rightmost cards (all cards
in the row except the leftmost one) to make all the cases where the sum is not
zero indistinguishable. Finally, we turn all cards face-up and locate the position
of the ♥ card. If it is the leftmost card in the row, then output 1; otherwise
output 0.

We use one random 2-section cut in the random bit XOR operation, n − 2
random k-section cuts for computing the sum of n − 1 bits, and one random
cut in the final shuffle. Therefore, the total number of shuffles used in the whole
protocol is n.

4 Applications

4.1 Computing Other Symmetric Functions

A function f : {0, 1}n → Z is called symmetric if

f(a1, ..., an) = f(aσ1 , ..., aσn
)
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for any a1, ..., an and any permutation (σ1, ..., σn) of (1, ..., n). A symmetric func-
tion f is called doubly symmetric if

f(a1, ..., an) = f(1 − a1, ..., 1 − an)

for any a1, ..., an. For example, the equality function is doubly symmetric, while
the majority function is symmetric but not doubly symmetric. Another example
of a doubly symmetric function is f(a1, ..., an) = a1 ⊕ ... ⊕ an for an even n.

Observe that for any symmetric function f : {0, 1}n → Z, the value of
f(a1, ..., an) depends only on the sum

∑n
i=1 ai, hence f can be written as

f(a1, ..., an) = g

(
n∑

i=1

ai

)

for some function g : {0, ..., n} → Z. Also, if f is doubly symmetric, we have
g(a) = g(n − a) for any a ∈ {0, ..., n}.

Our protocol can also be applied to compute any doubly symmetric function.
Let f : {0, 1}n → Z be any doubly symmetric function and let g : {0, ..., n} → Z

be a function such that

f(a1, ..., an) = g

(
n∑

i=1

ai

)

.

First, we apply the random bit XOR protocol with a random bit r ∈ {0, 1} to
every input ai and then reveal an ⊕ r (without leaking any information of an

since an ⊕ r has an equal probability to be 0 and 1 no matter whether an is 0
or 1).

Since f is doubly symmetric, if an ⊕ r = 0, we have

f(a1, ..., an) = f(a1 ⊕ r, ..., an ⊕ r)

= g

(
n∑

i=1

(ai ⊕ r)

)

= g

(
n−1∑

i=1

(ai ⊕ r)

)

,

so we can apply the summation protocol to compute
∑n−1

i=1 (ai ⊕r). On the other
hand, if an ⊕ r = 1, we have an ⊕ r ⊕ 1 = 0, so

f(a1, ..., an) = f(a1 ⊕ r ⊕ 1, ..., an ⊕ r ⊕ 1)

= g

(
n∑

i=1

(ai ⊕ r ⊕ 1)

)

= g

(
n−1∑

i=1

(ai ⊕ r ⊕ 1)

)

,



34 S. Ruangwises and T. Itoh

hence we can swap the two cards encoding every bit and apply the same protocol
to compute

∑n−1
i=1 (ai ⊕ r ⊕ 1).

For each b ∈ Im f = Im g, let Pb = {a ∈ {0, 1, ..., n}|g(a) = b}. We now
have a row of n cards encoding the sum in ♥-scheme. Recall that in ♥-scheme,
an integer i corresponds to an arrangement where the (i + 1)-th card from the
left being ♥. Therefore, we can take from the row all the cards corresponding
to integers in Pb, i.e. the (i + 1)-th card from the left for every i ∈ Pb, apply a
random cut on them, and put them back into the row at their original positions
in order to make all the cases where the sum is in Pb indistinguishable. We need
to separately apply such random cut for every b ∈ Im f such that |Pb| > 1.
These random cuts ensure that turning the cards face-up does not reveal any
information about the sum except the output value of g. Finally, we turn all
cards face-up to reveal an integer s and output g(s). The number of required
cards is 2n, and the total number of shuffles is at most n − 1 + | Im f |.

For a function that is symmetric but not doubly symmetric, we can directly
apply the summation protocol to compute the sum sn =

∑n
i=1 ai, apply the

above random cut for every b ∈ Im f such that |Pb| > 1, and output g(sn),
although it requires two additional cards at the beginning. Therefore, the number
of required cards is 2n + 2, and the total number of shuffles is at most n − 1 +
| Im f |.

4.2 Optimality

There is a protocol developed by Mizuki et al. [6] that can compute the sum of
n input bits using only O(log n) cards, but their protocol restricts the order of
submission of the inputs so that the cards can be reused. Any protocol that the
inputs are submitted simultaneously requires at least 2n cards as we need two
cards for a commitment of each person’s bit, hence our protocol is the optimal
one for computing any doubly symmetric function.

For computing symmetric functions that are not doubly symmetric, the pro-
tocol of Nishida et al. [11] also uses 2n + 2 cards to compute any symmetric
function f : {0, 1}n → {0, 1}. Their protocol has a benefit that the output is in
committed-format, i.e. encoded in the same format as the input (♣♥ for 0 and
♥♣ for 1), so the output can be securely used as an input of another function.
However, our protocol uses fewer number of shuffles and also has a benefit that
the output is not restricted to be binary, hence supporting functions with more
than two possible outputs (an example of such function is the majority function
that supports the case of a tie for an even n, which has three possible outputs).

5 Future Work

For computing the equality function or any doubly symmetric function, our pro-
tocol is optimal in terms of number of cards as it matches the trivial lower bound
of 2n. However, there is still an open problem to find a committed-format pro-
tocol that uses 2n cards, or a non-committed-format one with the same number
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of cards but uses a fewer number of shuffles. For symmetric functions that are
not doubly symmetric, an open problem is to find a protocol that computes such
functions with less than 2n + 2 cards.

Another interesting future work is to prove the lower bound of the number
of cards or the number of shuffles required to compute such functions, either for
a committed-format protocol or for any protocol.
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(eds.) TPNC 2016. LNCS, vol. 10071, pp. 58–69. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49001-4 5

https://doi.org/10.1007/978-3-030-12146-4_8
https://doi.org/10.1007/978-3-319-26059-4_7
https://doi.org/10.1007/978-3-319-26059-4_7
https://doi.org/10.1007/978-3-319-49001-4_5
https://doi.org/10.1007/978-3-319-49001-4_5

	Securely Computing the n-Variable Equality Function with 2n Cards
	1 Introduction
	1.1 Related Work
	1.2 The Six-Card Trick
	1.3 Our Contribution

	2 Basic Operations
	2.1 Random Cut
	2.2 Random k-Section Cut
	2.3 XOR with a Random Bit
	2.4 Adding Two Integers in Z/kZ

	3 Our Main Protocol
	3.1 Summation of the First k Bits
	3.2 Putting Together

	4 Applications
	4.1 Computing Other Symmetric Functions
	4.2 Optimality

	5 Future Work
	References




