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Abstract. In this paper, we investigate the parameterized complexity of
d-restricted τ -synthesis (dRτS) parameterized by d for a range of Boolean
types of nets τ . We show that dRτS is W [1]-hard for 64 of 128 possible
Boolean types that allow places and transitions to be independent.
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1 Introduction

Boolean Petri nets are one of the most well-known and used families of Petri
nets, see [2, pp. 139–152] (and references therein). For Boolean nets, a place p
contains at most one token in every reachable marking. Thus, p is considered
as a Boolean condition which is true if p is marked and false otherwise. In a
Boolean Petri net, a place p and a transition t are related by one of the Boolean
interactions: no operation (nop), input (inp), output (out), unconditionally set
to true (set), unconditionally reset to false (res), inverting (swap), test if true
(used), and test if false (free). These interactions define in which way p and t
influence each other: The interaction inp (out) defines that p must be true (false)
before and false (true) after t’s firing; free (used) implies that t’s firing proves
that p is false (true); nop means that p and t do not affect each other at all; res
(set) implies that p may initially be both false or true but after t’s firing it is
false (true); swap means that t inverts p’s current Boolean value.

A set τ of Boolean interactions is called a type of net. Since we have eight
interactions to choose from, there are a total of 256 different types. A Boolean
Petri net N is of type τ (a τ -net) if it applies at most the interactions of τ . For
a type τ , the τ -synthesis problem consists in deciding whether a given directed
labelled graph A, also called transition system, is isomorphic to the reachability
graph of some τ -net N , and in constructing N if it exists.
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Badouel et al. [1] and Schmitt [4] investigated the computational complex-
ity of τ -synthesis for elementary net systems ({nop, inp, out}) and flip-flop nets
({nop, inp, out, swap}), respectively; while synthesis is NP-complete for the for-
mer, it is polynomial for the latter. In [5], the complexity of τ -synthesis restricted
to g-bounded inputs (every state of A has at most g incoming and g outgoing
arcs) has been completely characterized for the types that contain nop and,
thus, allow places and transitions to be independent. For 84 of these 128 types
it turned out that synthesis is NP-complete, even for small fixed g ≤ 3. As a
result, τ -synthesis parameterized by g is certainly not fixed parameter tractable
(FPT).

This paper addresses the computational complexity of a different instance of
τ -synthesis, namely d-restricted τ -synthesis (dRτS), imposing a limitation for
the synthesis output: The d-restricted synthesis targets to those τ -nets in which
every place must be in relation nop with all but d transitions of the net, while the
synthesis input is no longer confined. This formulation of the synthesis problem
is motivated at least twofold. On the one hand, in applications, places are usually
meant as resources while transitions are meant as agents. Hence such a restriction
ensures that a certain resource binds only few agents. On the other hand, dRτS
is of a particular interest from the theoretical point of view, since, parameterized
by d, it belongs to the complexity class XP [5, p. 25]. Consequently, the question
for the existence of FPT-algorithms arises.

In this paper, we enhance our understanding of dRτS from a parameterized
complexity point of view and show W [1]-hardness for the following types of nets:

1. {nop, inp, free}, {nop, inp, free, used}, {nop, out, used}, {nop, out, free, used},
2. τ = {nop, swap} ∪ ω such that ω ⊆ {inp, out, res, set, free, used} and ω ∩

{inp, out, free, used} �= ∅
Our proofs base on parameterized reductions of the well-known W [1]-complete
problems Regular Independent Set and Odd Set [3]. While all types of (2) have
been shown to be NP-complete [5], the types covered by (1) that does not con-
tain any of res, set have been shown to be polynomial [4,6]. However, since our
parameterized reductions are actually polynomial-time reductions, here we show
NP-completeness and W [1]-hardness for these types at the same time.

The paper is organized as follows. After introducing of the necessary defini-
tions in Sect. 2, the main contribution is presented in Sect. 3. Section 4 suggests
an outlook of the further research directions.

2 Preliminaries

We assume that the reader is familiar with the concepts relating to fixed-
parameter tractability. Due to space restrictions, some formal definitions and
some proofs are omitted. See [3] for the definitions of relevant notions in param-
eterized complexity theory.

Transition Systems. A (deterministic) transition system (TS, for short) A =
(S,E, δ) is a directed labeled graph with states S, events E and partial transition



228 R. Tredup and E. Erofeev

Fig. 1. All Interactions i of I. If a cell is empty, then i is undefined on the respective x.

Fig. 2. Left: τ = {nop, inp, free}. Right: τ̃ = {nop, swap, used, set}. The TS A1 has no
ESSP atoms. Hence, it has the τ -ESSP and τ̃ -ESSP. The only SSP atom of A1 is (s0, s1).
It is τ̃ -solvable by R1 = (sup1, sig1) with sup1(s0) = 0, sup1(s1) = 1, sig1(a) = swap.
Thus, A1 has the τ -admissible set R = {R1}, and the τ -net NR

A = ({R1}, {a}, M0, f)
with M0(R1) = sup1(R1) and f(R1, a) = sig1(R1) solves A1. The SSP atom (s0, s1)
is not τ -solvable, thus, neither is A1. TS A2 has ESSP atoms (b, r1) and (c, r0), which
are both τ̃ -unsolvable. The only SSP atom (r0, r1) in A2 can be solved by τ̃ -region
R2 = (sup2, sig2) with sup2(r0) = 0, sup2(r1) = 1, sig2(b) = set, sig2(c) = swap. Thus,
A2 has the τ̃ -SSP, but not the τ̃ -ESSP. None of the (E)SSP atoms of A2 can be solved
by any τ -region. Notice that the τ̃ -region R2 maps two events to a signature different
from nop. Thus, in case of d-restricted τ̃ -synthesis, R2 would be not valid for d = 1.

function δ : S ×E −→ S, where δ(s, e) = s′ is interpreted as s e s′. For s e s′

we say s is a source and s′ is a sink of e, respectively. An event e occurs at a
state s, denoted by s e , if δ(s, e) is defined. An initialized TS A = (S,E, δ, s0)
is a TS with a distinct state s0 ∈ S where every state s ∈ S is reachable from s0
by a directed labeled path.

Boolean Types of Nets [2]. The following notion of Boolean types of nets
allows to capture all Boolean Petri nets in one uniform way. A Boolean type
of net τ = ({0, 1}, Eτ , δτ ) is a TS such that Eτ is a subset of the Boolean
interactions: Eτ ⊆ I = {nop, inp, out, set, res, swap, used, free}. The interactions
i ∈ I are binary partial functions i : {0, 1} → {0, 1} as defined in Fig. 1. For all
x ∈ {0, 1} and all i ∈ Eτ the transition function of τ is defined by δτ (x, i) = i(x).
By definition, a Boolean type τ is completely determined by its event set Eτ .
Hence, in the following we identify τ with Eτ , cf. Fig. 2.

τ-Nets. Let τ ⊆ I. A Boolean Petri net N = (P, T,M0, f) of type τ , (τ -net, for
short) is given by finite and disjoint sets P of places and T of transitions, an
initial marking M0 : P −→ {0, 1}, and a (total) flow function f : P × T → τ .
For a natural number d, a τ -net is called d-restricted if for every p ∈ P : |{t ∈
T | f(p, t) �= nop}| ≤ d. A τ -net realizes a certain behavior by firing sequences
of transitions: A transition t ∈ T can fire in a marking M : P −→ {0, 1} if
δτ (M(p), f(p, t)) is defined for all p ∈ P . By firing, t produces the next marking
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M ′ : P −→ {0, 1} where M ′(p) = δτ (M(p), f(p, t)) for all p ∈ P . This is denoted

by M t M ′. Given a τ -net N = (P, T,M0, f), its behavior is captured by a
transition system AN , called the reachability graph of N . The state set of AN

is the reachability set RS(N), that is, the set of all markings that, starting
from initial state M0, are reachable by firing a sequence of transitions. For every
reachable marking M and transition t ∈ T with M t M ′ the state transition
function δ of A is defined as δ(M, t) = M ′.

τ-Regions. Let τ ⊆ I. If an input A of τ -synthesis allows a positive decision then
we want to construct a corresponding τ -net N purely from A. Since A and AN

are isomorphic, N ’s transitions correspond to A’s events. However, the notion of
a place is unknown for TSs. So called regions mimic places of nets: A τ -region
of a given A = (S,E, δ, s0) is a pair (sup, sig) of support sup : S → Sτ = {0, 1}
and signature sig : E → Eτ = τ where every transition s e s′ of A leads

to a transition sup(s) sig(e) sup(s′) of τ . A region (sup, sig) models a place p
and the corresponding part of the flow function f . In particular, sig(e) models
f(p, e) and sup(s) models M(p) in the marking M ∈ RS(N) corresponding to
s ∈ S(A). We say that τ -region (sup, sig) respects the parameter d, if |{e ∈ E |
sig(e) �= nop}| ≤ d. Every set R of τ -regions of A defines the synthesized τ -
net NR

A = (R, E, f,M0) with flow function f((sup, sig), e) = sig(e) and initial
marking M0((sup, sig)) = sup(s0) for all (sup, sig) ∈ R, e ∈ E. It is well-known
that ANR

A
and A are isomorphic if and only if R’s regions solve certain separation

atoms [2]. A pair (s, s′) of distinct states of A defines a state separation atom
(SSP atom, for short). A τ -region R = (sup, sig) solves (s, s′) if sup(s) �= sup(s′).
The meaning of R is to ensure that NR

A contains at least one place R such
that M(R) �= M ′(R) for the markings M and M ′ corresponding to s and s′,
respectively. If there is a τ -region that solves (s, s′) then s and s′ are called τ -
solvable. If every SSP atom of A is τ -solvable then A has the τ -state separation
property (τ -SSP, for short). A pair (e, s) of event e ∈ E and state s ∈ S where e

does not occur at s, that is ¬s e , defines an event state separation atom (ESSP
atom, for short). A τ -region R = (sup, sig) solves (e, s) if sig(e) is not defined on
sup(s) in τ , that is, ¬δτ (sup(s), sig(e)). The meaning of R is to ensure that there
is at least one place R in NR

A such that ¬M e for the marking M corresponding
to s. If there is a τ -region that solves (e, s) then e and s are called τ -solvable.
If every ESSP atom of A is τ -solvable then A has the τ -event state separation
property (τ -ESSP, for short). A set R of τ -regions of A is called τ -admissible
if for every of A’s (E)SSP atoms there is a τ -region R in R that solves it.
The following lemma, borrowed from [2, p.163], summarizes the already implied
connection between the existence of τ -admissible sets of A and (the solvability
of) τ -synthesis:

Lemma 1 ([2]). A TS A is isomorphic to the reachability graph of a τ -net N
if and only if there is a τ -admissible set R of A such that N = NR

A .

In this paper, we investigate the following parameterized problem: d-
Restricted τ-Rynthesis (dRτS). The input (A, d) consists of a TS A and
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a natural number d ∈ N. The parameter is d. The question to answer is, if there
is a τ -admissible set R of A such that |{e ∈ E(A) | sig(e) �= nop}| ≤ d is true
for all R ∈ R.

3 W [1]-Hardness of d-Restricted τ -Synthesis

Theorem 1. The problem d-restricted τ -synthesis is W [1]-hard if

1. τ = {nop, inp, free} or τ = {nop, inp, free, used} or τ = {nop, out, used} or
τ = {nop, out, free, used},

2. τ = {nop, swap} ∪ ω such that ω ⊆ {inp, out, res, set, free, used} and ω ∩
{inp, out, free, used} �= ∅
The proofs of Theorem 1.1 and Theorem 1.2 base on parameterized reduc-

tions of the problems Regular Independent Set and Odd Set, respectively. Both
problems are well-known to be W [1]-complete (see e.g. [3]) and are defined as
follows:

Regular Independent Set (RIS). The input (U,M, κ) consists of a finite set
U, a set M = {M0, . . . , Mm−1}, Mi ⊆ U and |Mi| = 2 for all i ∈ {0, . . . , m − 1},
and κ ∈ N. The parameter is κ. Moreover, there is r ∈ N for all X ∈ U such
that |{a ∈ M | X ∈ a}| = r. The question is whether there is an independent
set S ⊆ U, that is, {X,X ′} �∈ M for all X,X ′ ∈ S, such that |S| ≥ κ.

Odd Set (OD). The input (U,M, κ) consists of a finite set U, a set M =
{M0, . . . , Mm−1} of subsets of U and a natural number κ. The parameter is κ.
The question to answer is whether there is a set S ⊆ U of size at most κ such
that |S ∩ Mi| is odd for every i ∈ {0, . . . , m − 1}.

The General Reduction Idea. An input I = (U,M, κ) (of RIS or OD),
where M = {M0, . . . , Mm−1}, is reduced to an instance (Aτ

I , d) with TS Aτ
I and

d = f(κ) (f being a polynomial time computable function) as follows: For every
i ∈ {0, . . . , m− 1}, the TS Aτ

I has for the set Mi = {Xi0 , . . . , Ximi−1} a directed

labelled path Pi = si,0
Xi0 . . .

Ximi−1 si,mi
that represents Mi and uses its ele-

ments as events. The TS Aτ
I has an ESSP atom α such that if R = (sup, sig)

is a τ -region that solves α and respects d, then there are indices i0, . . . , ij ∈
{0, . . . , m−1} such that sup(si�,0) �= sup(si�,mi�

) for all � ∈ {0, . . . , j}. Since the
image of Pi�

is a directed path in τ , by sup(si�,0) �= sup(si�,mi�
), there has to

be an element X ∈ Mi�
such that s X s′ ∈ Pi�

implies sup(s) �= sup(s′). That
is, X causes a state change in τ . This is simultaneously true for all Pi0 , . . . , Pij

.

The reduction ensures that S = {X ∈ U | s X s′ ⇒ sup(s) �= sup(s′)} defines
a searched independent set or a searched odd set, depending on the actually
reduced problem. Thus, if (Aτ

I , d) is a yes-instance, implying the solvability of
α, then I = (U,M, κ) is, too.

Reversely, if I = (U,M, κ) is a yes-instance, then there is a fitting τ -region of
Aτ

I that solves α. The reduction ensures that the τ -solvability of α implies that



On the Parameterized Complexity of d-Restricted Boolean Net Synthesis 231

all (E)SSP atoms of Aτ
I are solvable by τ -regions respecting d. Thus, (Aτ

I , d) is
a yes-instance, too.

In what follows, we present the corresponding reductions, show that the
solvability of α implies a searched (independent or odd) set and argue that the
existence of a searched set implies the solvability of α.

The Proof of Theorem 1.1. Let τ ∈ {{nop, inp, free}, {nop, inp, free, used}}. We
prove the claim for τ , by symmetry, the proof for the other types is similar.

Let I = (U,M, κ) be an instance of RIS, where M = {M0, . . . , Mm−1} such
that Mi = {Xi0 ,Xi1} and (without loss of generality we assume that) i0 < i1
for all i ∈ {0, . . . , m − 1}. Let r ∈ N such that |{a ∈ M | X ∈ a}| = r for all
X ∈ U.

For a start, we define d = κ · (r +1)+2. The TS Aτ
I has the following gadget

H with events k0 and k1 that provides the atom α = (k1, h0):

h0 h1 h2

k0 k1

Moreover, for every i ∈ {0, . . . , m − 1}, the TS Aτ
I has the following gadget Ti

that represents Mi = {Xi0 ,Xi1}:

⊥i,0 ⊥i,1 ⊥i,2 . . . ⊥i,i ⊥i,i+1 ti,0 ti,1 ti,2

ti,4 . . .ti,5 ti,rκ+2
ti,3

⊕i ⊕i−1 ⊕0 ui Xi0 Xi1

a0
i

a1
i

arκ−1
i

k0

The gadget Ti uses Mi’s elements Xi0 and Xi1 as events. Moreover, it has exactly
rκ events a0

i , . . . , a
rκ−1
i that occur consecutively on a path. If i ∈ {0, . . . , m − 1}

and j ∈ {0, . . . , rκ − 1}, then we say aj
i is the j-th event of (the set) Mi. For

every j ∈ {0, . . . , rκ − 1}, the TS Aτ
I has the following gadget Gj :

�j gj,0 gj,1 gj,2 . . . gj,m−2 gj,m−1 gj,m gj,m+1

gj,m+2

vj aj
0 aj

1 aj
m−2 aj

m−1 k1
k0

For all i ∈ {0, . . . , m − 1}, the gadget Gi applies the j-th event of Mi, and the
events aj

0, . . . , a
j
m−1 occur consecutively in a row.

The initial state of Aτ
I is ⊥m−1,0. Fresh events �0, . . . ,�m−1 and

�0, . . . ,�rκ−1 join the introduced gadgets H, T0, . . . , Tm−1 and G0, . . . , Grκ−1

into the TS Aτ
I and make all states reachable from ⊥m−1,0. More exactly, for

all i ∈ {1, . . . , m − 1}, the TS Aτ
I has the edge ⊥i,0

�i ⊥i−1,0, and it has

the edge ⊥0,0
�0 h0. Moreover, Aτ

I has the edge ⊥m−1,0
�0 �0 and, for all

j ∈ {0, . . . , rκ − 2}, the edge �j
�j+1 �j+1. The resulting TS is Aτ

I , and it
is easy to see that (Aτ

I , d) is obtained by a parameterized reduction.
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Let (Aτ
I , d) be a yes-instance. We argue that (U,M, κ) has an independence

set of size κ. Since (Aτ
I , d) is a yes-instance, there is a τ -region R = (sup, sig) that

solves α and respects the parameter d, that is, |{e ∈ E(Aτ
I ) | sig(e) �= nop}| ≤ d.

In the following, we argue that S = {X ∈ U | sig(X) = inp} is a searched set. The
general idea is as follows: The region R selects exactly rκ gadgets Ti0 , . . . Tirκ−1 ,
representing the sets Mi0 , . . . , Mirκ−1 , such that sup(tij ,0) = 1 and sup(tij ,2) = 0
for all j ∈ {0, . . . , rκ − 1}. In particular, for all j ∈ {0, . . . , rκ − 1}, that makes

sup(tij ,0)
Xij0 sup(tij ,1)

Xij1 sup(tij ,2) a path from 1 to 0 in τ . Consequently, for
every j ∈ {0, . . . , rκ−1}, there is exactly one event e ∈ {Xij0

,Xij1
} with sig(e) =

inp. The reduction ensures that there are exactly κ elements Xi0 , . . . , Xiκ−1 ∈ U
such that sig(Xij

) = inp for all j ∈ {0, . . . , κ − 1}. Moreover, it also ensures
sig(e) = nop for all e ∈ U \ {X ∈ U | sig(X) = inp}. As a result, rκ sets are
“covered” by κ elements. Since every elements is a member of exactly r sets,
S = {X ∈ U | sig(X) = inp} is an independent set of size κ of (U,M).

Let us formally argue that the reduction correctly converts this general idea.
By definition of τ , one easily finds out that sig(k1) = free, sup(h0) = 1 and

sig(k0) = inp. By ti,0
k0 , this implies sup(ti,0) = 1 for all i ∈ {0, . . . , m − 1}.

Moreover, since R respects d, there are at most κ · (r+1) other events left whose
signature is different from nop.

Let j, j′ ∈ {0, . . . , rκ − 1} such that j �= j′. By sig(k0) = inp and gj,0
k0 ,

we have sup(gj,0) = 1; by sig(k1) = free and gj,m
k1 , we have sup(gj,m) = 0.

Consequently, sup(gj,0)
sig(aj

0) . . .
sig(aj

m−1) sup(gj,m) is a path from 1 to 0 in
τ . Since there is no path in τ on which inp occurs twice, there is exactly one
i ∈ {0, . . . , m − 1} such that sig(aj

i ) = inp. Similarly, there is exactly one i′ ∈
{0, . . . , m − 1} such that sig(aj′

i′ ) = inp. For all i ∈ {0, . . . , m − 1}, the events
a0

i , . . . , a
rκ−1
i occur consecutively on a path in Ti, and inp never occurs twice on

a path in τ . Thus, by j �= j′, we have i �= i′, that is, never the j-th and the
j′-th event of the same set Mi are selected. Consequently, by the arbitrariness
of j and j′, there are exactly rκ events aj0

i0
, . . . , a

jrκ−1
irκ−1

such that sig(aj0
i0

) = · · · =

sig(ajrκ−1
irκ−1

) = inp, and all i0, . . . , irκ−1 ∈ {0, . . . , m−1} are pairwise distinct. On
the one hand, this shows that there are rκ gadgets Ti0 , . . . , Tirκ−1 (representing
the sets Mi0 , . . . , Mirκ−1) such that sup(tij ,0) = 1 and sup(tij ,2) = 0 for all
j ∈ {0, . . . , rκ − 1}. Thus, for every j ∈ {0, . . . , rκ − 1} there is an event X ∈
{Xij0

,Xij1
} with sig(X) = inp. On the other hand, since R respects d and

|{k0, k1, a
j0
i0

, . . . , a
jrκ−1
irκ−1

}| = rκ+2, there are at most κ events Xi0 , . . . , Xiκ−1 ∈ U
whose signature is different from nop. Thus, rκ sets are “covered” by at most κ
elements. Since every element is a member of exactly r sets, this is only possible

if S = {X ∈ U | sig(X) = inp} = {X ∈ U | s X s′ ⇒ sup(s) �= sup(s′)} defines
an independent set of size κ.

Let (U,M, κ) be a yes-instance of RIS. In the following we argue that α is
solvable by a τ -region that respects the parameter. Let S be an independent set
of size κ. Every element of U occurs in exactly r sets. Thus, there are exactly



On the Parameterized Complexity of d-Restricted Boolean Net Synthesis 233

rκ sets Mi0 , . . . , Mirκ−1 ∈ M such that S ∩ Mij
�= ∅ for all j ∈ {0, . . . , rκ − 1}.

We define R = (sup, sig) as follows: sup(⊥m−1,0) = 1; for all e ∈ E(Aτ
I ), if

e ∈ {k0} ∪ S, then sig(e) = inp; if e = k1, then sig(k1) = free; if e = aj
ij

and
j ∈ {0, . . . , rκ − 1}, then sig(aj

ij
) = inp; else sig(e) = nop.

For all s ∈ S(Aτ
I ) \ {⊥m−1,0}, there is a path ⊥m−1,0 = s0

e1 s1 . . . en sn =
s. By inductive defining sup(si+1) = δτ (si, sig(ei+1)) for all i ∈ {0, . . . , n − 1},
we obtain sup. One easily verifies that (sup, sig) is a fitting region that
solves α. ��
The Proof of Theorem 1.2 for τ ∩ {used, free} = ∅. Let I = (U,M, κ) be an
instance of OD, that is, U = {X0, . . . , Xn−1}, M = {M0, . . . , Mm−1} and Mi =
{Xi0 , . . . , Ximi−1} ⊆ U for all i ∈ {0, . . . , m − 1}. Without loss of generality, we
assume i0 < i1 < · · · < imi−2 < imi−1 for all i ∈ {0, . . . , m − 1}.

For a start, we define d = 2κ + 2. The TS Aτ
I has the following gadget H

that applies the events k, z, o and wm and provides the atom α = (k, h2):

�m h0 h1 h2 h3 h4

wm k z o k

Next, we introduce Aτ
I ’s gadgets using the elements of U = {X0, . . . , Xn−1} as

events. Moreover, these gadgets use also the events of u = {x0, . . . , xn−1}, and
U and u are connected as follows: For every i ∈ {0, . . . , n − 1}, the event Xi is

associated with the event xi such that s Xi s′ is an edge in Aτ
I if and only if

s xi s′ is an edge in Aτ
I . In particular, for all i ∈ {0, . . . , m − 1}, the TS Aτ

I

has for the set Mi = {Xi0 , . . . , Ximi−1} the following gadget Ti that uses the
elements of Mi (and their associated events of u) as events:

ti,0 ti,1 ti,2 ti,3 . . . ti,mi
ti,mi+1 ti,mi+2 ti,mi+3

k
Xi0 Xi1

Ximi−1

z k

xi0 xi1 ximi−1

We postpone the actual joining of H,T0, . . . , Tm−1 and argue first that a d-
restricted τ -region R = (sup, sig) solving α implies a searched odd set S.

Since R solves α and τ ∩ {free, used} = ∅, we have sig(k) ∈ {inp, out}. In

what follows, we assume sig(k) = inp and argue that S = {X ∈ U | s X s′ ⇒
sup(s) �= sup(s′)} defines a fitting odd set of size at most κ. By symmetry, the
case sig(k) = out is similar.

Since R solves α and sig(k) = inp, we have sup(h2) = 0. Moreover, for

all s ∈ S(Aτ
I ), if k s, then sup(s) = 0, and if s k , then sup(s) = 1. By

h1
z h2 and z t0,m0+2, this implies sig(z) = nop; by h2

o h3, this implies
sig(o) �= nop. Let i ∈ {0, . . . , m−1} be arbitrary but fixed. By sig(z) = nop and

k ti,1 and ti,mi+1
z ti,mi+2

k we obtain sup(ti,1) = 0 and sup(ti,mi+1) = 1.

Thus, the path sup(ti,1)
sig(Xi1) . . .

sig(Ximi−1) sup(ti,mi+1) is a path from 0 to
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1 in τ . In particular, the number of state changes between 0 and 1 on this
path is odd. Consequently, since every X ∈ Mi occurs once in Ti, the number

|{X ∈ Mi|s X s′ ∈ Ti and sup(s) �= sup(s′)}| is odd. Since i was arbitrary, this
is simultaneously true for all gadgets T0, . . . , Tm−1. In the following, we show that
|S∩Mi| is odd for all i ∈ {0, . . . , m−1}. To do so, we argue that for all X ∈ S and

Ti �= Tj , i, j ∈ {0, . . . , m − 1}, with s X s′ ∈ Ti and q X q′ ∈ Tj the following
is true: If sup(s) �= sup(s′), then sup(q) �= sup(q′). Intuitively, there is no X
contributing to a state change in Ti but not in Tj . Since X always occurs with
its associated event x, both s x s′ and q x q′ are present. Thus, if sup(s) = 0
and sup(s′) = 1, then sig(X) ∈ {out, set, swap} and sig(x) ∈ {inp, res, swap}.
Clearly, if sig(X) = swap or sig(x) = swap, then sup(q) �= sup(q′). Otherwise,

if sig(X) ∈ {out, set} and sig(x) ∈ {inp, res}, then q X q′ and q x q′ imply
sup(q) = 0 �= sup(q′) = 1. Similarly, if sup(s) = 1 and sig(s′) = 0, then also
sup(q) �= sup(q′). Consequently, |S ∩ Mi| is odd for all i ∈ {0, . . . , m − 1}.

We argue that |S| ≤ κ. Every X ∈ S occurs always with its associated

event x ∈ u: if s X s′, then s x s′. Moreover, X ∈ S implies sup(s) �= sup(s′)
and, thus, sig(X) �= nop and sig(x) �= nop. Recall that sig(k), sig(o) �∈ {nop}.
Consequently, if |S| ≥ κ + 1, then |{e ∈ E(Aτ

I ) | sig(e) �= nop}| ≥ 2κ + 4, a
contradiction. This proves |S| ≤ κ. In particular, S defines a searched odd set.

In the following, we complete the construction of Aτ
I . In order to do that, for

all i ∈ {0, . . . , m − 1}, we enhance Ti to a (path) gadget Gi = �i Ti with
starting state �i. This extension of Ti is necessary to ensure that if α is solvable
by a τ -region that respects d, then all of Aτ

I ’s (E)SSP atoms are too. To finally
obtain Aτ

I , we use fresh events �1, . . . ,�m and thread G0, . . . , Gm−1 and H on

a chain, that is, �0
�1 . . . �m−1 �m−1

�m �m.
Let j ∈ {0, . . . , m − 1} and � ∈ {0, . . . , mj}. We define the set Vj,� as follows:

Vj,� =

⎧
⎪⎨

⎪⎩

{Xj0}, if � = 0
{Xj�−1 ,Xj�

}, if 1 ≤ � ≤ mj − 1
{Xjmj−1}, if � = mj

Let i ∈ {0, . . . , m−1} and j ∈ {0, . . . , i−1, i+1, . . . ,m−1}. The number σi,j

of elements of Vj = {Vj,0, . . . , Vj,mj
} that are subsets of Mi is defined by σi,j =

|{V ∈ Vj | V ⊆ Mi}|. Let �0, . . . , �σi,j−1 ∈ {0, . . . , mj−1} be the pairwise distinct
indices (in increasing order) such that Vj,�k

⊆ Mi for all k ∈ {0, . . . , σi,j − 1}.
The gadget Gi implements events ui,j

�0
, vj

�0
, . . . , uj,i

�σi,j−1
, vj

�σi,j−1
consecutively on

the following path P j
i =

⊥i,j,0
uj,i

�0 ⊥i,j,1
vj

�0 ⊥i,j,2
uj,i

�1 ⊥i,j,3
vj

�1 . . .
uj,i

�σi,j−1 ⊥i,j,2σi,j+1

vj
�σi,j−1 ⊥i,j,2σi,j+2

Notice that the events vj
�0

, . . . , vj
�σi,j−1

might occur on different paths of Aτ
I , that

is, P j
i and P j

i′ where i �= i′. On the other hand, the events uj,i
�0

, . . . , uj,i
�σi,j−1

occur
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Fig. 3. The TS Aτ
I0 that origins from I0, defined by Example 1. Top: P 1

0 (red), P 2
0

(olive), P 3
0 (blue). The red colored circles sketch the states mapped to 1 by the region

R that bases on S0, solves (k, h2) and respects d = 5. (Color figure online)

exactly once in Aτ
I (on the path P j

i ). The gadget Gi is finally built as follows. If
σi,j = 0 for all j ∈ {0, . . . , i − 1, i + 1, . . . , m − 1}, then Gi = �i

wi Ti. That is,
we extend Ti simply by the edge �i

wi ti,0. Otherwise, Gi is given by

Gi = �i
wi Pi,j0

ci,j0 Pi,j1
ci,j1 . . .

ci,j�−1 Pi,j�
ci,j� Ti

where j0, . . . , j� ∈ {0, . . . , i − 1, i + 1, . . . , m − 1}, j0 < · · · < j�, are exactly the
indices such that σi,jk

> 0 for all k ∈ {0, . . . , �}. This finally results in Aτ
I , and

it is easy to see that this is a parameterized (and even polynomial) reduction.

Example 1. Let I0 = (U,M, κ) be (the yes-instance) defined by U =
{X0, . . . , X4}, M = {M0, . . . , M3} with M0 = {X0,X1,X2}, M1 = {X0,X3},
M2 = {X1,X2} and M3 = {X2,X3,X4} and κ = 3. The set S0 = {X2,X3,X4}
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is a fitting odd set of size 3. By definition, V0,0 = {X0}, V0,1 = {X0,X1},
V0,2 = {X1,X2} and V0,3 = {X2}; V1,0 = {X0}, V1,1 = {X0,X3} and
V1,2 = {X3}; V2,0 = {X1}, V2,1 = {X1,X2} and V2,2 = {X2}; V3,0 = {X2},
V3,1 = {X2,X3}, V3,2 = {X3,X4} and V3,3 = {X4}.

For G0, we have V1,0 ⊆ M0, V1,1 �⊆ M0 and V1,2 �⊆ M0. Thus, σ0,1 = 1. By
V2,0 ⊆ M0, V2,1 ⊆ M0 and V2,2 ⊆ M0, we have σ0,2 = 3. Finally, only V3,0 is a
subset of (interest of) M0, thus, σ0,3 = 1. The red, olive and blue colored paths
of Fig. 3 show P0,1, P0,2 and P0,3, respectively.

For G1, the only set of interest is V0,0 ⊆ M1, thus σ1,0 = 0 and σ1,2 = σ1,3 =
0. For G2, we have V0,2, V0,3, V3,0 ⊆ M2, thus, σ2,0 = 2, σ2,1 = 0 and σ2,3 = 1.
For G3, we observe V0,3, V1,2, V2,2 ⊆ M3, thus, σ3,0 = σ3,1 = σ3,2 = 1. Figure 3
finally shows the joining of G0, . . . , G3 and H into Aτ

I0
.

So far, we have argued that if (Aτ
I , d) is a yes-instance, then (U,M, κ) is too. In

the following, we argue that if S is a fitting odd set S of (U,M, κ), then α is solvable
by a τ -region R = (sup, sig) that respects d: sup(�0) = 1; for all e ∈ E(Aτ

I ), if
e = k, then sig(k) = inp; if e ∈ {o} ∪ S ∪ {x ∈ u | X ∈ S}, then sig(e) = swap;
otherwise, sig(e) = nop. By Aτ

I ’s reachability, one easily finds that this properly
defines R. Figure 3 sketches R for the odd set S = {X2,X3,X4}. ��

If τ is a type of Theorem 1.2 such that τ ∩ {used, free} �= ∅, then the former
reduction generally does not fit. For example, if τ = {nop, swap, used}, then a
τ -solvable TS A satisfies that s e s′ ∈ A implies s′ e . Since used is the only
interaction of τ that ever allows τ -solvability of ESSP atoms, (e, s′) would be
unsolvable otherwise. Thus, for τ = {nop, swap, used}, the previous reduction
yields always no-instances. However, if τ is a type of Theorem 1.2 such that
τ ∩ {used, free}, then the reduction of the following proof fits for τ .

The Proof of Theorem 1.2 for τ ∩ {used, free} �= ∅. For a start, we define d = κ+4.
The TS Aτ

I has the following gadgets H0,H1 with events k, z0, z1, o0 and o1 that
provide the atom α = (k, h0,2):

H0 = �m h0,0 h0,1 h0,2 h0,3 h0,4

wm k o0 o1 k

H1 =�m+1 h1,0 h1,1 h1,2 h1,3 h1,4 h1,5

wm+1 k z0 o0 z1 k

Moreover, for every set Mi = {Xi0 , . . . , Xmi−1}, i ∈ {0, . . . , m − 1}, the TS Aτ
I

has the following gadget Ti that uses the elements of Mi as events:

ti,0 ti,1 ti,2 . . . ti,mi+2 ti,mi+3 ti,mi+4
k z0 Xi0

Ximi−1 z1 k

Moreover, we extend Ti to a gadget Gi = �1 Ti in exactly the same
way like the previous reduction for τ ∩ {used, free} = ∅. Finally, for all i ∈
{0, . . . , m − 1}, we use the fresh events �1, . . . ,�m+1 and apply the edges

�0
�1 . . . �m+1 �m+1.
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Let R = (sup, sig) be a τ -region that solves α and respects d. Let e ∈
E(Aτ

I ) be arbitrary. Since s e s′ implies s′ e s, sig(e) �∈ {inp, out} is true. In
particular, since R solves α, sig(k) ∈ {used, free}. Moreover, if sup(s) �= sup(s′),
then sig(e) = swap.

In what follows, we assume sig(k) = used, which implies sup(h0,0) = 0 and,
thus, sig(o0) = sig(o1) = swap. By symmetry, the case sig(k) = free is similar.

By sig(k) = used, sup(h1,1) sig(z0) . . . sig(z1) sup(h1,4) is a path from 1 to 1 in
τ . In particular, the number |{e ∈ {z0, z1, o0} | sig(e) = swap}| is even. Since
sig(o0) = swap, there is exactly one event e ∈ {z0, z1} such that sig(e) = swap.
In the following, we assume sig(z0) = swap implying sig(z1) ∈ {nop, used}. By
symmetry, the case sig(z1) = swap is similar. Since R respects d, there are at
most κ events left whose signature is different from nop. Let i ∈ {0, . . . , m−1} be
arbitrary but fixed. By sig(k) = inp, sig(z0) = swap and sig(z1) ∈ {nop, used},

the path sup(ti,2)
sig(Xi0) . . .

sig(Ximi−1) sup(ti,mi+2) is a path from 0 to 1 in τ .

Similar to the case τ ∩{used, free} = ∅, the set S = {X ∈ U | s X s′ ⇒ sup(s) �=
sup(s′)} of elements of U mapped to swap implies a searched odd set of M .

For the reverse direction, let S ⊆ U be an odd size of size at most κ of M .
We obtain a τ -region R = (sup, sig) that solves (k, h0,2) an respects d as follows:
For a start, we let sup(�0) = 1. Moreover, for all e ∈ E(Aτ

I ), if e = k, then
sig(e) = used; if e ∈ {o0, o1, z0}∪S, then sig(e) = swap; otherwise sig(e) = nop.
This implicitly defines a fitting region that solves α. ��

4 Conclusion

In this paper, we investigate the parameterized complexity of dRτS parame-
terized by d and show W [1]-completeness for a range of Boolean types. As a
result, d is ruled out for fpt-approaches for the considered types of nets. As
future work, one may investigate the parameterized complexity of dRτS for other
boolean types [5]. Moreover, one may look for other more promising parameters:
If N = (P, T,M0, f) is a Boolean net, p ∈ P and if the occupation number op

of p is defined by op = |{M ∈ RS(N) | M(p) = 1}| then the occupation number
oN of N is defined by oN = max{op | p ∈ P}. If R is a τ -admissible set (of a
TS A) and R ∈ R, then the support of R determines the number of markings
of NR

A that occupy R, that, is, oR = |{s ∈ S(A) | sup(s) = 1}|. Thus, searching
for a τ -net where oN ≤ n, n ∈ N, corresponds to searching for a τ -admissible set
R such that |{s ∈ S(A) | sup(s) = 1}| ≤ n for all R ∈ R. As a result, for each
(E)SSP atom α there are at most O(

(|S|
oN

)
) fitting supports for τ -regions solving

α. Thus, the corresponding problem oN -restricted τ -synthesis parameterized by
oN is in XP if, in a certain sense, τ -regions are fully determined by a given
support sup.
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