
Partial Sums on the Ultra-Wide
Word RAM

Philip Bille(B) , Inge Li Gørtz , and Frederik Rye Skjoldjensen

DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
{phbi,inge}@dtu.dk

Abstract. We consider the classic partial sums problem on the ultra-
wide word RAM model of computation. This model extends the clas-
sic w-bit word RAM model with special ultrawords of length w2 bits
that support standard arithmetic and boolean operation and scattered
memory access operations that can access w (non-contiguous) locations
in memory. The ultra-wide word RAM model captures (and idealizes)
modern vector processor architectures.

Our main result is a new in-place data structure for the partial sum
problem that only stores a constant number of ultrawords in addition
to the input and supports operations in doubly logarithmic time. This
matches the best known time bounds for the problem (among polyno-
mial space data structures) while improving the space from superlinear
to a constant number of ultrawords. Our results are based on a simple
and elegant in-place word RAM data structure, known as the Fenwick
tree. Our main technical contribution is a new efficient parallel ultra-
wide word RAM implementation of the Fenwick tree, which is likely of
independent interest.

Keywords: Ultra-wide word RAM model · Partial sums · Fenwick tree

1 Introduction

Let A[1, . . . , n] be an array of integers of length n. The partial sums problem is
to maintain a data structure for A under the following operations:

– sum(i): return
∑i

k=1 A[k].
– update(i,Δ): set A[i] ← A[i] + Δ.

The partial sums problem is a classic and well-studied data structure prob-
lem [1–4,9,12,14,16–19,21–24,31,32,38]. Partial sums is a natural range query
problem with applications in areas such as list indexing and dynamic rank-
ing [12], dynamic arrays [3,32], and arithmetic coding [14,34]. From a lower
bound perspective, the problem has been central in the development of new
techniques for proving lower bounds [29]. In classic models of computation the
complexity of the partial sums problem is well-understood with tight logarithmic
upper and lower bounds on the operations [31]. Hence, a natural question is if
c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 13–24, 2020.
https://doi.org/10.1007/978-3-030-59267-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_2&domain=pdf
http://orcid.org/0000-0002-1120-5154
http://orcid.org/0000-0002-8322-4952
https://doi.org/10.1007/978-3-030-59267-7_2


14 P. Bille et al.

practical models of computation capturing modern hardware advances will allow
us the overcome the logarithmic barrier.

One such model is the RAM with byte overlap (RAMBO) model of com-
putation [6,7,17]. The RAMBO model extends the standard w-bit word RAM
model [20] with special words where individual bits are shared among other
words, i.e., changing a bit in a word will also change the bit in the words that
share that bit. The precise model depends on the layout of shared bits. This
memory architecture is feasible to design in hardware and prototypes have been
built [27]. In the RAMBO model Brodnik et al. [8] gave a time-space trade-off
for partial sums that uses O(nw/2τ

+ n) space and supports operations in O(τ)
time and for a parameter τ , 1 ≤ τ ≤ log log n. Here, the n term in the space
bound is for the special words with shared bits (organized in a tree layout) and
the O(nw/2τ

) term is for standard words. Plugging in constant τ , this gives an
O(nεw+n) space and constant time solution, for any ε > 0. At the other extreme,
with τ = log log n, this gives an O(n) space and O(log log n) time solution.

More recently, Farzan et al. [13] introduced the ultra-wide word RAM
(UWRAM) model of computation. The UWRAM model also extends the word
RAM model, but with special ultrawords of length w2 bits. The model sup-
ports standard arithmetic and boolean operations on ultrawords and scattered
memory access operations that access w locations in memory specified by an
ultraword in parallel. The UWRAM captures modern vector processor architec-
tures [11,28,33,36]. We present the details of the UWRAM model in Sect. 2.
Farzan et al. [13] showed how to simulate algorithms on RAMBO model on the
UWRAM model at the cost of slightly increasing space. Simulating the above
solution for partial sums they gave a time-space trade-off for partial sums that
uses O(nw/2τ

+ nw log n) space and supports operations in O(τ) time and for a
parameter τ , 1 ≤ τ ≤ log log n. For constant τ , this is O(nεw + nw log n) space
and constant time, for any ε > 0, and for τ = log log n this is O(nw log log n)
space and O(log log n) time.

1.1 Setup and Results

We revisit the partial sums problem on the UWRAM and present a simple new
algorithm that significantly improves the space overhead of the previous solu-
tions. Let A be an array of n w-bit integers. An in-place data structure for the
partial sums problem is a data structure that modifies the input array A, e.g.,
by replacing some of the entries in A, to efficiently support operations. In addi-
tion to the modified array the data structure is only allowed to store O(1) of
ultrawords. This definition extends the standard in-place/implicit data struc-
ture concept [10,15,30,35,37] to the UWRAM, by allowing a constant number
of ultrawords to be stored instead of (standard) words. Clearly, without this
modification computation on ultrawords is impossible. As in Farzan et al. [13]
we distinguish between the restricted UWRAM that supports a minimal set of
instructions on ultrawords consisting of addition, subtraction, shifts, and bitwise
boolean operations and the multiplication UWRAM that extends the instruction



Partial Sums on the Ultra-Wide Word RAM 15

set of the restricted UWRAM with a multiplication operation on ultrawords. We
show the following main result:

Theorem 1. Given an array A of n w-bit integers, we can construct in-place
partial sums data structures for A that support sum and update operations in
O(log log n) time on a restricted UWRAM.

Compared to the previous result, Theorem 1 matches the O(log log n) time bound
of Farzan et al. [13] (with parameter τ = Θ(log log n) while improving the space
overhead from O(nw log n) to a constant number of ultrawords. This is important
in practical applications since modern vector processors have a very limited
number of ultrawords available.

Technically, our solution is based on a simple and elegant in-place word RAM
data structure, called the Fenwick tree (see Sect. 3 for a detailed description).
The Fenwick tree support operations in O(log n) by sequentially traversing an
implicit tree structure. We show how to efficiently compute the access pattern on
the tree structure in parallel using prefix sum computations on ultrawords. Then,
given the locations to access we use scattered memory operations to access them
all in parallel. In total, this leads to the exponential improvement of Fenwick
trees. The main bottleneck in our algorithm is the prefix sum computation.
Interestingly, if we allow multiplication we can compute prefix sums in constant
time leading to the following Corollary for the multiplication UWRAM:

Corollary 1. Given an array A of n w-bit integers, we can construct in-place
partial sums data structures for A that support sum and update operations in
constant time on a multiplication UWRAM.

Multiplication (or prefix sum computation) is not an AC0 operation (it cannot
be implemented by a constant depth, polynomial size circuit) and therefore likely
not practical to implement on ultraword. However, Corollary 1 shows that we
can achieve significant improvements on the UWRAM with special operations.
Since UWRAM capture modern processors, we believe it is worth investigating
further, and that our work is a first step in this direction.

1.2 Outline

The paper is organized as follows. In Sect. 2 and 3 we review the UWRAM
model of computation and the Fenwick tree. In Sect. 4 we present our UWRAM
implementation of the Fenwick tree. Finally, in Sect. 4.4 we discuss extensions of
the result and open problems.

2 The Ultra-Wide Word RAM Model

The word RAM model of computation [20] consists of an infinite memory of
w-bit words and an instruction set of arithmetic, boolean, and memory access
instructions such as the ones available in standard programming languages such



16 P. Bille et al.

X〈0〉X〈1〉X〈2〉X〈w − 1〉
w

w2

Fig. 1. The layout of an ultraword of w2 divided into w words each of w bits. The
leftmost bit of each word is reserved to be a test bit.

as C. We assume that we can store a pointer into the input in a single word and
hence w ≥ log n, where n is the size of the input. The time complexity of a word
RAM algorithm is the number of instructions and the space complexity is the
number of words used by the algorithm.

The ultra-wide word RAM (UWRAM) model of computation [13] extends the
word RAM model with special ultrawords of w2 bits. We distinguish between the
restricted UWRAM that supports a minimal set of instructions on ultrawords
consisting of addition, subtraction, shifts, and bitwise boolean operations and
the multiplication UWRAM that additionally supports multiplication. The time
complexity is the number of instruction (on standard words or ultrawords) and
the space complexity is the number of (standard) words used by the algorithm.
The restricted UWRAM captures modern vector processor architectures [11,28,
33,36]. For instance, the Intel AVX-512 vector extension [33] support similar
operations on 512-bit wide words (i.e., a factor of 8 compared to 642 = 4096).

2.1 Word-Level Parallelism

Due to their similarities, we can adopt many word-level parallelism techniques
from the word RAM to the UWRAM. We briefly review the key primitives and
techniques that we will use.

Let X be an ultraword of w2 bits. We often view X as divided into w words
of w consecutive bits each. See Fig. 1. We number the words in X from right-
to-left starting from 0 and use the notation X〈j〉 to denote the jth word in X.
Similarly, the bits of each word X〈j〉 are numbered from right-to-left starting
from 0. If only the rightmost � ≤ w words in X are non-zero, we say that X
has length �. For simplicity in the presentation, we reserve the leftmost bit of
each word to be a test bit for word-level parallelism operations. One may always
remove this assumption at no asymptotic cost, e.g., by using two words in an
ultraword to simulate each single word.

We now show how to implement common operations on ultrawords that we
will use later. Most of these are already available in hardware on modern vector
processor architectures. Componentwise arithmetic and bitwise operation are
straightforward to implement using standard word-level parallelism techniques
from the word RAM. For instance, given ultrawords X and Y , we can compute
the componentwise addition, i.e., the ultraword Z such that Z〈j〉 = X〈j〉+Y 〈j〉
for j = 0, . . . , w − 1 by adding X and Y and & ’ing with the mask (01w−1)w to



Partial Sums on the Ultra-Wide Word RAM 17

clear any test bits (we use exponentiation to denote bit repetition, i.e., 031 =
0001). We can also compare X and Y componentwise by |’ing in the test bits of
X, subtracting Y , and masking out the test bits by &’ing with (10w−1)w. The jth
test bit of the result contains a 1 iff X〈j〉 ≥ Y 〈j〉. Given X and another ultraword
T containing only test bits, we can extract the words in X according to the test
bits, i.e., the ultraword E such that E〈j〉 = X〈j〉 if the jth test bit of T is 1 and
E〈j〉 = 0 otherwise. To do so we copy the test bits by a subtracting (0w−11)w

from T and &’ing the result with X. All of the above mentioned operation take
constant time on a restricted UWRAM. Given an ultraword X of length �, the
prefix sum of X is the ultraword P of length �, such that P 〈j〉 =

∑
k≤j X〈k〉.

We assume here that the integers computed in the prefix sum never exceed the
maximum size available in a word such that P 〈j〉 is always well-defined. We need
the following result.

Lemma 1. Given an ultraword X of length � we can compute the prefix sum of
X in O(log �) time on a restricted UWRAM and in O(1) time on a multiplication
UWRAM.

Proof. First consider the restricted UWRAM. We implement a standard parallel
prefix-sum algorithm [25] (see also the survey by Blelloch [5]). For simplicity, we
assume that � is a power of two. The algorithm consists of two phases that
conceptually construct and traverse a perfectly balanced binary tree T of height
log � whose leaves are the � words of X.

Given an internal node v in T , let vleft and vright denote the left and right
child of v, respectively. The first phase performs a bottom-up traversal of T and
computes for each node v an integer b(v). If v is a leaf, b(v) is the corresponding
integer in X and if v is an internal node b(v) = b(vleft) + b(vright). The second
phase performs a top-down traversal of T and computes an integer t(v). If v
is the root then t(v) = 0 and if v is an internal node then t(vleft) = t(v) and
t(vright) = t(vleft) + b(vright). After the second phase the integers at the leaves is
the prefix sum shifted by a single element and missing the last element. We shift
and add the last element to produce the final prefix sum. Since T is perfectly
balanced we can implement each level of a phase in constant time using shifting
and addition. The final shift and addition of the last element takes constant
time. It follow that the total time is O(log �). During the computation we only
need to maintain all of the values in a constant number of ultrawords.

Next consider the multiplication instruction set. We can then simply multiply
X with the constant (0w−11)w and mask out the � rightmost words of the result
to produce the prefix sum. See Hagerup [20] for a detailed description of why
this is correct. In total this uses O(1) time.

2.2 Memory Access

The UWRAM supports standard memory access operation to read or write a sin-
gle word or a sequence of w contiguous words. More interestingly, the UWRAM
also supports scattered access operations that access w memory locations (not



18 P. Bille et al.

necessarily contiguous) in parallel. Given an ultraword A containing w memory
addresses, a scattered read loads the contents of the addresses into an ultraword
X, such that X〈j〉 contains the contents of memory location A〈j〉. Given two
ultrawords A and X scattered write sets the contents memory location A〈j〉 to
be X〈j〉. Scattered memory accesses captures the memory model used by IBM’s
Cell architecture [11]. Scattered memory access operations were also proposed
by Larsen and Pagh [26] in the context of the I/O model of computation.

31 1 0 3 0 3 1 1

11 12 10 2 3 1 0 1 3 4 1 1 2

3 5 2 11 1 8 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

F 24

Fig. 2. A array A and the Fenwick tree F . The lines above F indicate the partial
sum of A stored at the rightmost endpoint of the line. For instance, the F [12] =
A[9] + A[10] + A[11] + A[12] = 0 + 1 + 3 + 4 = 8.

3 Fenwick Trees

Let A be an array of n w-bit integers and assume for simplicity that n is a power
of two. The Fenwick tree [14,34] is an in-place data structure that replaces the
array A as follows. If n = 1, then leave A unchanged. Otherwise, replace all
values at even entries A[2i] by the sum A[2i − 1] + A[2i]. Then, recurse on the
subarray A[2, 4, . . . , n]. The resulting array F stores a subset of the partial sums
of A organized in a tree layout (see Fig. 1).

To answer sum(i) query, we compute a sequence of indices in F and add
the values in F at these indices together. Let rmb(x) denote the position of
the rightmost bit in an integer x. Define the sum sequence is1, . . . , i

s
r given by

is1 = i and isj = isj−1 − 2rmb(is
j−1), for j = 2, . . . , r. The final element isr is

0. We compute and return F [is1] + F [is2] + · · · + F [isr−1]. For instance, for i =
13 = (1101)2 the sum sequence is 13, 12, 8, 0 = (1101)2, (1100)2, (1000)2, (0000)2.
Hence, sum(13) = F [13]+F [12]+F [8] = 1+8+11 = 20 = A[1]+ · · ·+A[13]. We
access at most O(log n) entries in F and hence the total time for sum is O(log n).
Note that we can always recover the original array A using the sum operation,
since A[i] = sum(i) − sum(i − 1).

To compute update(i,Δ), we compute a sequence of indices in F and add Δ
to the values in F at each of these indices. Define the update sequence iu1 , . . . , iut
given by iu1 = i and iuj = iuj−1 + 2rmb(iu

j−1), for j = 2, . . . , t. The final element iut
is 2n. We set F [iu1 ] = F [iu1 ]+Δ, . . . , F [iut ] = F [iut−1]+Δ. For instance, for i = 13
the update sequence is 13, 14, 16, 32. Hence, update(13, 5) adds 5 to F [13], F [14],
and F [16]. Similar to the sum operation, the total running time for update is
O(log n).



Partial Sums on the Ultra-Wide Word RAM 19

4 Partial Sums on the Ultra-Wide Word RAM

We now present an efficient implementation of Fenwick trees on the UWRAM
model of computation. We only store the Fenwick tree, as the array F described
in Sect. 3 and a constant number of ultraword constants that we use for com-
putation. We first show some basic properties of the sum and update sequences
in Sect. 4.1, before presenting our UWRAM implementation of the operations in
Sects. 4.2 and 4.3.

4.1 Computing Sum and Update Sequences

To compute the sum and update sequences we cannot directly apply the recursive
definitions, since this would need Ω(log n) steps. Instead, we show how to express
the sequences as a prefix sum that we can efficiently derive from the input integer
i. Then, using Lemma 1 we will show how to compute it in on the UWRAM in
the following sections.

Let is1, . . . , i
s
r and iu1 , . . . , iut be the sum sequence and update sequences,

respectively, for i as defined in Sect. 3. Define the offset sum sequence os
1, . . . , o

s
r−1

and offset update sequence ou
1 , . . . , ou

t−1 for i to be the sequences of differences
of the sum and update sequences, respectively, that is, os

j = isj+1 − isj , for
j = 1, . . . , r − 1 and ou

j = iuj+1 − iuj , for j = 1, . . . , t − 1. By definition, we
have that

isj = i +

⎛

⎝
∑

k<j

os
k

⎞

⎠ iuj = i +

⎛

⎝
∑

k<j

ou
k

⎞

⎠ (1)

We also have that os
j = −2rmb(is

j) and hence each sum offset is a power
of 2 corresponding to the rightmost 1 bit in isj . Thus, os

1 corresponds to the
rightmost 1 in is1 = i. Adding os

1 = −2rmb(i) (i.e., subtracting 2rmb(i)) “clears”
the rightmost 1 bit in i. Thus, os

2 corresponds to the 1 bit in i immediately to
left of the rightmost 1 bit. In general, we have that os

j = −2b, where b is the
position of the jth rightmost bit in i, for j = 1, . . . , r − 1. For instance, for
i = 13 = (1101)2 the offset sum sequence is −1,−4,−8 corresponding to the
three 1 bits in the binary representation of i.

Similarly, for the update offsets, we have that ou
j = 2rmb(iu

j ). Hence, ou
1 corre-

sponds to rightmost 1 in i. Adding ou
1 = 2rmb(iu

1 ) clears the rightmost consecutive
group of 1 bits in i and flips the following 0 bit to 1. In general, we have that
ou

j = 2b, where b is the position of the jth rightmost 0 to the left of rmb(i), for
j = 2, . . . , t − 1. For instance, for i = 13 = (01101)2 the offset update sequence
is 1, 2, 16.

4.2 Sum

To compute the sum(i), the main idea is to first construct the sum sequence in
an ultraword, then use a scattered read to retrieve the entries from F in parallel
into another ultraword, and finally sum the entries of this ultraword to compute



20 P. Bille et al.

the final result. We do this in 3 steps as follows. See Fig. 3 for an example of the
computed ultrawords during the algorithm.

8

I 13 13 13 13

4 2 1

8O 4 1

M

1P 13 5

5 1

8 12 13

P ′

S

Fig. 3. Computing the sum sequence for i = 13 = (1011)2. Words with 0 are left
blank. I contains duplicates of i. M is a precomputed mask. O is the bitwise & of I
and M . P is the prefix sum of the non-zero words in O. P ′ is P shifted left by one
word. S is the sum sequence obtained by componentwise subtraction of P ′ from I.

Step 1: Compute Offsets Compute the ultraword O such that O〈j〉 = 2j if −2j

is an offset for i and 0 otherwise, i.e., the non-zero entries of O is the offset
sequence for i. To do so we first construct the ultraword I consisting of log n
duplicates of i, i.e., I〈j〉 = i for j = 1, . . . , log n. We then compute the bitwise
& of I and a mask M , such that M〈j〉 = 2j for j = 1, . . . , log n, i.e., bit j of
M〈j〉 = 1 and the other bits of M〈j〉 are 0. By the discussion in Sect. 4.1 the
resulting ultraword is O.

On the multiplication UWRAM we can construct I in constant time by
multiplying i with (0w−11)w. On the restricted UWRAM we can construct I in
O(log log n) time by repeatedly doubling using shifts and bitwise |. The rest of
the computation takes constant time in both models.

Step 2: Compute Sum Sequence Compute an ultraword S of length log n whose
non-zero entries is the sum sequence is1, . . . , i

s
r−1. To do so we first compute the

prefix sum P of the non-zero words of O, i.e., we compute the prefix sum of
O and then extract the words corresponding to non-zero words in O. Then we
shift P by 1 word to the left to produce an ultraword P ′ and finally subtract P ′

from I to produce an ultraword S. By (1) the non-zero words in S is the sum
sequence for i.

By Lemma 1 the prefix sum computation takes constant time on a multipli-
cation UWRAM and O(log log n) time on a restricted UWRAM. The remaining
steps take constant time.

Step 3: Compute Sum Finally, we compute F [is1] + F [is2] + · · · + F [isr−1]. To
do so we do a scattered read on S to retrieve F [iu1 ], . . . , F [ius−1] into a single



Partial Sums on the Ultra-Wide Word RAM 21

ultraword F ′ and compute a prefix sum on F ′. The sum is then the last word in
the result. The scattered read takes constant time. The prefix sum computation
takes constant time on a multiplication UWRAM and O(log log n) time on a
restricted UWRAM. We assume here that F [0] = 0. If not we may simply
temporarily set F [0] = 0 during the computation. Also note that it suffices to
perform the first phase of the prefix sum computation as discussed in the proof
of Lemma 1 since we only need the sum of all of the retrieved entries.

In total, the sum operation takes constant time on a multiplication UWRAM
and O(log log n) time on a restricted UWRAM.

4.3 Update

We compute update(i,Δ) similar to our algorithm for sum. We describe how to
modify each step of sum.

In step 1, we modify the computation of the ultraword O such that it now
contains the update offsets, that is, O〈j〉 = 2j if 2j is an update offset for i and
0 otherwise. To do so we now construct a mask M such that M〈j〉 contains a 0
in bit j if j is to the left of rmb(i) and 1 elsewhere. We then compute a bitwise
| of M and I and negate the result. Finally, we set word rmb(i) of the result to
be 2rmb(i). By the discussion in Sect. 4.1 the resulting ultraword is O.

In step 2, since O now contains the offsets and not the negative offsets, we
change the final subtraction to an addition to produce the update sequence
stored in a single ultraword U .

In step 3, we do a scattered read on U to retrieve F [iu1 ], . . . , F [ius−1] into a
single ultraword F ′. We then duplicate Δ to all words in an ultraword D and
add D to F ′ to produce an ultraword F ′′. Finally, we do a scattered write on U
and F ′′ to update F .

The changes are straightforward to implement in the same time as above.
Hence, the update operation takes constant time on a multiplication UWRAM
and O(log log n) time on a restricted UWRAM.

In summary, we use O(log log n) time on a restricted UWRAM and O(1) time
on a multiplication UWRAM for both operation. We only store the Fenwick tree
in the array F and a constant number of ultrawords. This completes the proof
of Theorem 1 and Corollary 1.

4.4 Extensions and Open Problems

We sometimes also consider the following operations in the context of partial
sums:

– access(i): return A[i].
– select(j): return the smallest i such that sum(i) ≥ j

As mentioned access is trivial to support since A(i) = sum(i) − sum(i − 1). In
contrast, the select operation do not seem to easily lend itself to an efficient par-
allel implementation on the UWRAM. While it is straightforward to implement



22 P. Bille et al.

in O(log n) time by “top-down” traversal of the Fenwick tree our techniques do
not appear be useful to speed up this solution on the UWRAM. We leave it as
an open problem to investigate the complexity of the select operation on the
UWRAM.

Our results leave the precise relation between UWRAM and RAMBO model
of computation open. While Farzan et al. [13] show how to simulate RAMBO
algorithms with a small overhead in space our results show that a direct app-
roach to designing UWRAM algorithms can produce significantly better results.
We wonder what the precise relation between the models are and if stronger
simulation results are possible.

References

1. Ben-Amram, A.M., Galil, Z.: A generalization of a lower bound technique due to
Fredman and Saks. Algorithmica 30(1), 34–66 (2001)

2. Ben-Amram, A.M., Galil, Z.: Lower bounds for dynamic data structures on alge-
braic RAMs. Algorithmica 32(3), 364–395 (2002)

3. Bille, P., et al.: Dynamic relative compression, dynamic partial sums, and substring
concatenation. Algorithmica 80(11), 3207–3224 (2018). Announced at ISAAC 2016

4. Bille, P., Christiansen, A.R., Prezza, N., Skjoldjensen, F.R.: Succinct partial sums
and Fenwick trees. In: Fici, G., Sciortino, M., Venturini, R. (eds.) SPIRE 2017.
LNCS, vol. 10508, pp. 91–96. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-67428-5 8

5. Blelloch, G.E.: Prefix sums and their applications. In: Synthesis of Parallel Algo-
rithms (1990)

6. Brodnik, A.: Searching in constant time and minimum space (Minimae res magni
momenti sunt). Ph.D. thesis, University of Waterloo (1995)

7. Brodnik, A., Carlsson, S., Fredman, M.L., Karlsson, J., Munro, J.I.: Worst case
constant time priority queue. J. Syst. Softw. 78(3), 249–256 (2005)

8. Brodnik, A., Karlsson, J., Munro, J.I., Nilsson, A.: An O(1) solution to the prefix
sum problem on a specialized memory architecture. In: Navarro, G., Bertossi, L.,
Kohayakawa, Y. (eds.) TCS 2006. IIFIP, vol. 209, pp. 103–114. Springer, Boston,
MA (2006). https://doi.org/10.1007/978-0-387-34735-6 12

9. Burkhard, W.A., Fredman, M.L., Kleitman, D.J.: Inherent complexity trade-offs
for range query problems. Theor. Comput. Sci. 16(3), 279–290 (1981)

10. Chan, T.M., Chen, E.Y.: Optimal in-place algorithms for 3-D convex hulls and 2-D
segment intersection. In: Proceedings of the 25th SOCG, pp. 80–87 (2009)

11. Chen, T., Raghavan, R., Dale, J.N., Iwata, E.: Cell broadband engine architecture
and its first implementation—a performance view. IBM J. Res. Dev. 51(5), 559–
572 (2007)

12. Dietz, P.F.: Optimal algorithms for list indexing and subset rank. In: Dehne, F.,
Sack, J.-R., Santoro, N. (eds.) WADS 1989. LNCS, vol. 382, pp. 39–46. Springer,
Heidelberg (1989). https://doi.org/10.1007/3-540-51542-9 5

13. Farzan, A., López-Ortiz, A., Nicholson, P.K., Salinger, A.: Algorithms in the ultra-
wide word model. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS,
vol. 9076, pp. 335–346. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
17142-5 29

14. Fenwick, P.M.: A new data structure for cumulative frequency tables. Softw. Pract.
Exp. 24(3), 327–336 (1994)

https://doi.org/10.1007/978-3-319-67428-5_8
https://doi.org/10.1007/978-3-319-67428-5_8
https://doi.org/10.1007/978-0-387-34735-6_12
https://doi.org/10.1007/3-540-51542-9_5
https://doi.org/10.1007/978-3-319-17142-5_29
https://doi.org/10.1007/978-3-319-17142-5_29


Partial Sums on the Ultra-Wide Word RAM 23

15. Franceschini, G., Muthukrishnan, S., Pǎtraşcu, M.: Radix sorting with no extra
space. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp.
194–205. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75520-
3 19

16. Frandsen, G.S., Miltersen, P.B., Skyum, S.: Dynamic word problems. J. ACM
44(2), 257–271 (1997)

17. Fredman, M., Saks, M.: The cell probe complexity of dynamic data structures. In:
Proceedings of the 21st STOC, pp. 345–354 (1989)

18. Fredman, M.L.: A lower bound on the complexity of orthogonal range queries. J.
ACM 28(4), 696–705 (1981)

19. Fredman, M.L.: The complexity of maintaining an array and computing its partial
sums. J. ACM 29(1), 250–260 (1982)

20. Hagerup, T.: Sorting and searching on the word RAM. In: Morvan, M., Meinel, C.,
Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 366–398. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0028575

21. Hampapuram, H., Fredman, M.L.: Optimal biweighted binary trees and the com-
plexity of maintaining partial sums. SIAM J. Comput. 28(1), 1–9 (1998)

22. Hon, W.K., Sadakane, K., Sung, W.K.: Succinct data structures for searchable
partial sums with optimal worst-case performance. Theor. Comput. Sci. 412(39),
5176–5186 (2011)

23. Husfeldt, T., Rauhe, T.: New lower bound techniques for dynamic partial sums
and related problems. SIAM J. Comput. 32(3), 736–753 (2003)

24. Husfeldt, T., Rauhe, T., Skyum, S.: Lower bounds for dynamic transitive closure,
planar point location, and parentheses matching. In: Karlsson, R., Lingas, A. (eds.)
SWAT 1996. LNCS, vol. 1097, pp. 198–211. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-61422-2 132

25. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4), 831–838
(1980)

26. Larsen, K.G., Pagh, R.: I/O-efficient data structures for colored range and prefix
reporting. In: Proceedings of the 23rd SODA, pp. 583–592 (2012)

27. Leben, R., Miletic, M., Špegel, M., Trost, A., Brodnik, A., Karlsson, J.: Design of
high performance memory module on PC100. In: Proceedings of the ECSC, pp.
75–78 (1999)

28. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: a unified
graphics and computing architecture. IEEE Micro 28(2), 39–55 (2008)

29. Miltersen, P.B.: Cell probe complexity-a survey. In: Proceedings of the 19th
FSTTCS, p. 2 (1999)

30. Munro, J.I., Suwanda, H.: Implicit data structures for fast search and update. J.
Comput. Syst. Sci. 21(2), 236–250 (1980)

31. Pǎtraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput. 35(4), 932–963 (2006). Announced at SODA 2004

32. Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 426–437.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44634-6 39

33. Reinders, J.: AVX-512 Instructions. Intel Corporation, Santa Clara (2013)
34. Ryabko, B.Y.: A fast on-line adaptive code. IEEE Trans. Inf. Theory 38(4), 1400–

1404 (1992)
35. Salowe, J., Steiger, W.: Simplified stable merging tasks. J. Algorithms 8(4), 557–

571 (1987)

https://doi.org/10.1007/978-3-540-75520-3_19
https://doi.org/10.1007/978-3-540-75520-3_19
https://doi.org/10.1007/BFb0028575
https://doi.org/10.1007/3-540-61422-2_132
https://doi.org/10.1007/3-540-61422-2_132
https://doi.org/10.1007/3-540-44634-6_39


24 P. Bille et al.

36. Stephens, N., et al.: The ARM scalable vector extension. IEEE Micro 37(2), 26–39
(2017)

37. Williams, J.W.J.: Algorithm 232: heapsort. Commun. ACM 7, 347–348 (1964)
38. Yao, A.C.: On the complexity of maintaining partial sums. SIAM J. Comput. 14(2),

277–288 (1985)


	Partial Sums on the Ultra-Wide Word RAM
	1 Introduction
	1.1 Setup and Results
	1.2 Outline

	2 The Ultra-Wide Word RAM Model
	2.1 Word-Level Parallelism
	2.2 Memory Access

	3 Fenwick Trees
	4 Partial Sums on the Ultra-Wide Word RAM
	4.1 Computing Sum and Update Sequences
	4.2 Sum
	4.3 Update
	4.4 Extensions and Open Problems

	References




