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Abstract. For two matroids M1 and M2 with the same ground set V
and two cost functions w1 and w2 on 2V , we consider the problem of
finding bases X1 of M1 and X2 of M2 minimizing w1(X1)+w2(X2) sub-
ject to a certain cardinality constraint on their intersection X1 ∩ X2.
Lendl, Peis, and Timmermans (2019) discussed modular cost functions:
They reduced the problem to weighted matroid intersection for the case
where the cardinality constraint is |X1 ∩ X2| ≤ k or |X1 ∩ X2| ≥ k; and
designed a new primal-dual algorithm for the case where |X1 ∩X2| = k.
The aim of this paper is to generalize the problems to have nonlinear
convex cost functions, and to comprehend them from the viewpoint of
discrete convex analysis. We prove that each generalized problem can be
solved via valuated independent assignment, valuated matroid intersec-
tion, or M-convex submodular flow, to offer a comprehensive understand-
ing of weighted matroid intersection with intersection constraints. We
also show the NP-hardness of some variants of these problems, which clar-
ifies the coverage of discrete convex analysis for those problems. Finally,
we present applications of our generalized problems in matroid conges-
tion games and combinatorial optimization problems with interaction
costs.

Keywords: Valuated independent assignment · Valuated matroid
intersection · M-convex submodular flow · Matroid congestion game ·
Combinatorial optimization problem with interaction costs

1 Introduction

Weighted matroid intersection is one of the most fundamental combinatorial
optimization problems solvable in polynomial time. This problem generalizes
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a number of tractable problems including maximum-weight bipartite matching
and minimum-weight arborescence. The comprehension of mathematical struc-
tures of weighted matroid intersection, e.g., Edmonds’ intersection theorem [4]
and Frank’s weight splitting theorem [5], contributes to the development of poly-
hedral combinatorial optimization as well as matroid theory.

Recently, Lendl, Peis, and Timmermans [9] have introduced the following
variants of weighted matroid intersection, in which a cardinality constraint is
imposed on the intersection. Let V be a finite set, n a positive integer, and
[n] := {1, 2, . . . , n}. For each i ∈ [n], let Mi = (V,Bi) be a matroid with ground
set V and base family of Bi, and wi a modular function on 2V . Let k be a
nonnegative integer. The problems are formulated as follows.

Minimize w1(X1) + w2(X2)
subject to Xi ∈ Bi (i = 1, 2),

|X1 ∩ X2| = k.
(1.1)

Minimize
n∑

i=1

wi(Xi)

subject to Xi ∈ Bi (i ∈ [n]),∣∣∣∣∣

n⋂

i=1

Xi

∣∣∣∣∣ ≤ k.

(1.2)

They further discussed the following problem for polymatroids. Let B1, B2 ⊆ ZV

be the base polytopes of some polymatroids on the ground set V . Here, w1 and
w2 are linear functions on ZV .

Minimize w1(x1) + w2(x2)
subject to xi ∈ Bi (i = 1, 2),∑

v∈V

min{xv, yv} ≥ k.
(1.3)

Lendl et al. [9] showed that the problems (1.1)–(1.3) are polynomial-time
solvable. They developed a new primal-dual algorithm for the problem (1.1), and
reduced the problems (1.2) and (1.3) to existing tractable problems of weighted
matroid intersection and polymatroidal flow, respectively. By this result, they
affirmatively settled an open question on the polynomial-time solvability of the
recoverable robust matroid basis problem [7].

The aim of this paper is to provide a comprehensive understanding of the
result of Lendl et al. [9] in view of discrete convex analysis (DCA) [14,17],
particularly focusing on M-convexity [11]. DCA offers a theory of convex func-
tions on the integer lattice ZV , and M-convexity, a quantitative generalization of
matroids, plays the central roles in DCA. M-convex functions naturally appear
in combinatorial optimization, economics, and game theory [18,19].

The formal definition of M-convex functions is given as follows. A function f :
ZV → R ∪ {+∞} is said to be M-convex if it satisfies the following generalization
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of the matroid exchange axiom: for all x = (xv)v∈V and y = (yv)v∈V with
x, y ∈ domf , and all v ∈ V with xv > yv, there exists u ∈ V with xu < yu such
that f(x) + f(y) ≥ f(x − χv + χu) + f(y + χv − χu), where domf denotes the
effective domain {x ∈ ZV | f(x) < +∞} of f and χv the v-th unit vector for
v ∈ V . In particular, if domf is included in the hypercube {0, 1}V , then f is
called a valuated matroid1 [2,3].

We address M-convex (and hence nonlinear) generalizations of the prob-
lems (1.1)–(1.3). Let ω1, ω2, . . . , ωn be valuated matroids on 2V , where we
identify 2V with {0, 1}V by the natural correspondence between X ⊆ V and
x ∈ {0, 1}V ; xv = 1 if and only if v ∈ X.

– For the problem (1.1), by generalizing the modular cost functions w1 and w2

to valuated matroids, we obtain:

Minimize ω1(X1) + ω2(X2)
subject to |X1 ∩ X2| = k.

(1.4)

– For the problem (1.2), as well as generalizing w1, w2, . . . , wn to valuated
matroids, we generalize the cardinality constraint |⋂n

i=1 Xi| ≤ k to a matroid
constraint. Namely, let M = (V, I) be a new matroid, where I denotes its
independent set family, and generalize (1.2) as follows.

Minimize
n∑

i=1

ωi(Xi)

subject to
n⋂

i=1

Xi ∈ I.

(1.5)

– It is also reasonable to take the cardinality constraint into the objective func-
tion. Let w : V → R be a weight function. The next problem is a variant of
the above problem.

Minimize
n∑

i=1

ωi(Xi) + w

(
n⋂

i=1

Xi

)
. (1.6)

– Let f1 and f2 be M-convex functions on ZV such that domf1 and domf2
are included in ZV

+, where Z+ is the set of nonnegative integers. Also let
w : ZV → R be a linear function. The problem (1.3) is generalized as follows.

Minimize f1(x) + f2(y) + w(min{x, y})
subject to

∑

v∈V

min{xv, yv} ≥ k, (1.7)

where min{x, y} := (min{xv, yv})v∈V .

1 The original definition of a valuated matroid is an M-concave function, i.e., the
negative of an M-convex function, such that its effective domain is included in the
hypercube.
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Our main contribution is to show the tractability of the generalized prob-
lems (1.4)–(1.7):
Theorem 1. There exist polynomial-time algorithms to solve the problems
(1.4), (1.5), (1.6) for w ≥ 0, and (1.7) for w ≤ 0.

The algorithm for the problem (1.4) is based on valuated independent assign-
ment [12,13], that for (1.5) and (1.6) on valuated matroid intersection [12,13],
and that for (1.7) on M �-convex submodular flow [15]. It would be noteworthy
that we essentially require the concept of valuated matroid intersection to solve
the problem (1.6) even if ωi is a modular function for each i ∈ [n]. That is,
the problem (1.6) with modular functions ωi (i ∈ [n]) is an interesting example
which only requires matroids to define, but requires valuated matroids to solve.
It might also be interesting that the problem (1.5) can be solved in polynomial
time when n ≥ 3, in spite of the fact that matroid intersection for more than
two matroids is NP-hard.

We also demonstrate that the tractability of the problems (1.6) and (1.7)
relies on the assumptions on w (w ≥ 0 and w ≤ 0, respectively), by showing the
NP-hardness of the problems.

Theorem 2. The problems (1.6) and (1.7) are NP-hard in general even if w ≤ 0
and m ≥ 3 for (1.6), and w ≥ 0 and k = 0 for (1.7).

We then present applications of our generalized problems to matroid conges-
tion games [1] and combinatorial optimization problems with interaction costs
(COPIC ) [8]. We show that computing the socially optimal state in a certain
generalized model of matroid congestion games can be reduced to (a general-
ized version of) the problem (1.6), and thus can be done in polynomial time.
We also reduce a certain generalized case of the COPIC with diagonal costs
to (1.6) and (1.7), to provide a generalized class of COPIC which can be solved
in polynomial time.

The proofs are omitted due to space constraint; see the full version for the
proofs.

2 Algorithms

In this section, we provide polynomial-time algorithms for the problems (1.4)–
(1.7) to prove Theorem 1. Theorem 2 is also shown in this section.

We first prepare several facts and terminologies on M-convex functions. For
an M-convex function f , all members in domf have the same “cardinality,”
that is, there exists some integer r such that

∑
v∈V xv = r for all x ∈ domf .

We call r the rank of f . An M�-convex function [20] is a function f : ZV →
R∪ {+∞} defined by the following weaker exchange axiom: for all x = (xv)v∈V

and y = (yv)v∈V with x, y ∈ dom f , and all v ∈ V with xv > yv, it holds that
f(x) + f(y) ≥ f(x − χv) + f(y + χv), or there exists u ∈ V with xu < yu such
that f(x) + f(y) ≥ f(x − χv + χu) + f(y + χv − χu). From the definition, it is
clear that M�-convex functions are a slight generalization of M-convex functions.
Meanwhile, M�-convexity and M-convexity are essentially equivalent concepts
(see e.g., [17]).
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2.1 Reduction of (1.4) to Valuated Independent Assignment

This subsection provides a polynomial-time algorithm for solving the prob-
lem (1.4). In [9], the authors developed a new algorithm specific to (1.1). In
this article, we give a reduction of the generalized problem (1.4) to a known
tractable problem of valuated independent assignment [12,13], building upon the
DCA perspective.

Let G = (V, V ′;E) be a bipartite graph, ω and ω′ valuated matroids on
2V and on 2V ′

, respectively, and w a weight function on E. Then the valuated
independent assignment problem parameterized by an integer k, referred to as
VIAP(k), is described as follows.

VIAP(k)
Minimize ω(X) + ω′(X ′) + w(F )
subject to F ⊆ Eis a matching ofGwith ∂F ⊆ X ∪ X ′,

|F | = k,

where ∂F denote the set of endpoints of F .
We first consider the following variant of the problem (1.4):

Minimize ω1(X1) + ω2(X2)
subject to |X1 ∩ X2| ≥ k,

(2.1)

in which the constraint |X1 ∩ X2| = k is replaced by |X1 ∩ X2| ≥ k. The
problem (2.1) can be naturally reduced to VIAP(k) as follows. Set the input
bipartite graph G of VIAP(k) by (V1, V2; {{v1, v2} | v ∈ V }), where Vi is a copy
of V and vi ∈ Vi is a copy of v ∈ V for i = 1, 2. We regard ωi as a valuated
matroid on 2Vi . Set w := 0 for all edges. Then consider VIAP(k) for such G, ω1,
ω2, and w. One can see that, if (X1,X2) is feasible for the problem (2.1), i.e.,
|X1 ∩X2| ≥ k, then there is a matching F of G with ∂F ⊆ X1 ∪X2 and |F | = k,
i.e., (X1,X2, F ) is feasible for VIAP(k). On the other hand, if (X1,X2, F ) is
feasible for VIAP(k), then (X1,X2) is feasible for the problem (2.1). Moreover
the objective value of a feasible solution (X1,X2) for the problem (2.1) is equal
to that of any corresponding feasible solution (X1,X2, F ) for VIAP(k) since w
is identically zero.

Thus the problem (2.1) can be solved in polynomial time in the following
way based on the augmenting path algorithm for VIAP(k) [12,13]; see also [16,
Theorem 5.2.62]. Let X1 and X2 be the minimizers of ω1 and ω2, respectively,
which can be found in a greedy manner.

Step 1: If |X1 ∩ X2| ≥ k, then output them and stop. Otherwise, let Xj
1 := X1

and Xj
2 := X2, where j := |X1 ∩ X2| < k.

Step 2: Execute the augmenting path algorithm for VIAP(k). Then we
obtain a sequence

(
(Xj

1 ,X
j
2), (X

j+1
1 ,Xj+1

2 ), . . . , (X�
1,X

�
2)

)
of solutions, where

∣∣∣Xj′
1 ∩ Xj′

2

∣∣∣ = j′ for j′ = j, j + 1, . . . , �. If � < k, then output “the prob-

lem (2.1) is infeasible.” If � ≥ k, then output (Xk
1 ,Xk

2 ).
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The above approach directly leads to the following algorithm for the prob-
lem (1.4). Again let X1 and X2 be the minimizers of ω1 and ω2, respectively.

Case 1: If |X1 ∩ X2| ≤ k, then execute the augmenting path algorithm for
VIAP(k), and let

(
(Xj

1 ,X
j
2), (X

j+1
1 ,Xj+1

2 ), . . . , (X�
1,X

�
2)

)
be the sequence of

solutions obtained in the algorithm. If � < k, then output “the problem (1.4)
is infeasible.” If � ≥ k, then output (Xk

1 ,Xk
2 ).

Case 2: If |X1 ∩ X2| > k, then let r be the rank of ω2 and ω2(X) := ω2(V \ X)
for X ⊆ V , which is the dual valuated matroid of ω2. Then apply Case 1,
where VIAP(k) is replaced by VIAP(r − k) for (G,w, ω1, ω2).

Remark 1. If we are given at least three valuated matroids, then the prob-
lems (2.1) (and hence (1.4)) will be NP-hard, since it can formulate the matroid
intersection problem for three matroids. �

2.2 Reduction of (1.5) and (1.6) to Valuated Matroid Intersection

In this subsection, we give polynomial-time algorithms for solving the prob-
lems (1.5) and (1.6) by reducing them to valuated matroid intersection. This is
the following generalization of weighted matroid intersection problem: Given two
valuated matroids ω and ω′ on 2V , minimize the sum ω(X) + ω′(X) for X ⊆ V .
It is known [12,13] that valuated matroid intersection is polynomially solvable.

In order to reduce our problems to valuated matroid intersection, we need
to prepare two valuated matroids for each problem. One valuated matroid is
common in the reductions of the problems (1.5) and (1.6), which is defined as
follows. Let

∐
i∈[n] V be the discriminated union of n copies of V . We denote by

(X1,X2, . . . , Xn) a subset
∐

i∈[n] Xi of
∐

i∈[n] V , where Xi ⊆ V for each i ∈ [n].
Let us define ω̃ by the disjoint sum of ω1, ω2, . . . , ωn. That is, ω̃ is a function on
2

∐
i∈[n] V defined by ω(X1,X2, . . . , Xn) := ω1(X1) + ω2(X2) + · · · + ωn(Xn) for

(X1,X2, . . . , Xn) ⊆ ∐
i∈[n] V . It is a valuated matroid with rank r :=

∑n
i=1 ri,

where ri is the rank of ωi.
We then provide the other valuated matroid used in the reduction of the

problem (1.5). Define a set system M̃ = (
∐

i∈[n] V, B̃) by

B̃ =

{
(X1,X2, . . . , Xn)

∣∣∣∣∣ Xi ⊆ V (i ∈ [n]),
n⋂

i=1

Xi ∈ I,

n∑

i=1

|Xi| = r

}
.

It is clear that (1.5) is equivalent to the problem of minimizing the sum of ω̃ and
δB̃, where δB̃ denotes the indicator function of B̃, namely, δB̃(X1,X2, . . . , Xn) :=
0 if (X1,X2, . . . , Xn) ∈ B̃ and δB̃(X1,X2, . . . , Xn) := +∞ otherwise. We now
have the following lemma.

Lemma 1. M̃ is a matroid with the base family B̃.
It follows from Lemma 1 that the function δB̃ is a valuated matroid, and we thus
conclude that the problem (1.5) can be reduced to valuated matroid intersection.
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Remark 2. If we replace the constraint
⋂n

i=1 Xi ∈ I in (1.5) by
⋂n

i=1 Xi ∈ B,
where B is the base family of some matroid, then the problem will be NP-hard
even if m = 2, since it can formulate the matroid intersection problem for three
matroids. �

We next provide another valuated matroid that is used in the reduction
of the problem (1.6). A laminar convex function [17, Section 6.3], which is a
typical example of an M�-convex function, plays a key role here. A function
f : ZV → R ∪ {+∞} is said to be laminar convex if f is representable as

f(x) =
∑

X∈L
gX

(
∑

v∈X

xv

)
(
x ∈ ZV

)
,

where L ⊆ 2V is a laminar family on V , and for each X ∈ L, gX : Z → R∪ {+∞}
is a univariate discrete convex function, i.e., gX(k +1)+ gX(k − 1) ≥ 2gX(k) for
every k ∈ Z. As mentioned above, a laminar convex function is M�-convex.

Now define a function w̃ on 2
∐

i∈[n] V by w̃(X1,X2, . . . , Xn) := w(
⋂n

i=1 Xi) for
(X1,X2, . . . , Xn) ⊆ ∐

i∈[n] V . It is clear that (1.6) is equivalent to the problem
of minimizing the sum of ω̃ and the restriction of w̃ to {(X1,X2, . . . , Xn) ⊆∐

i∈[n] V | ∑n
i=1 |Xi| = r}. For w̃, the following holds.

Lemma 2. The function w̃ is a laminar convex function on 2
∐

i∈[n] V if w ≥ 0.

By Lemma 2, the restriction of w̃ to {(X1,X2, . . . , Xn) ⊆ ∐
i∈[n] V |

∑n
i=1 |Xi| = r} is a valuated matroid on 2

∐
i∈[n] V if w ≥ 0. Indeed, it is

known [20] that, for an M�-convex function f and an integer r, the restriction
of f to a hyperplane {x ∈ ZV | ∑

v∈V xv = r} is an M-convex function with
rank r, if its effective domain is nonempty. Thus the problem (1.6) can be for-
mulated as the valuated matroid intersection problem for ω̃ and w̃, establishing
the tractability of the problem (1.6) in case of w ≥ 0.

On the other hand, if w ≤ 0 and m ≥ 3, then the problem (1.6) is NP-hard,
since it can formulate the matroid intersection problem for three matroids.

Remark 3. As mentioned in Sect. 1, the problem (1.6) with w ≥ 0 does not
fall into the weighted matroid intersection framework even if all functions are
modular, while it can be reduced to valuated matroid intersection. That is, the
concept of M-convexity is crucial for capturing the tractability of (1.6) even
when all functions are modular. �

2.3 Reduction of (1.7) to M�-Convex Submodular Flow

In this subsection, we prove that the problem (1.7) with w ≤ 0 can be solved in
polynomial time by reducing it to M�-convex submodular flow, which is defined
as follows. Let f be an M�-convex function on ZV and G = (V,A) a directed
graph endowed with an upper capacity c : A → R ∪ {+∞}, a lower capacity
c : A → R∪{−∞}, and a weight function w : A → R. For a flow ξ ∈ RA, define
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its boundary ∂ξ ∈ RV by ∂ξ(v) :=
∑{ξ(a) | a ∈ A, a enters v inG} − ∑{ξ(a) |

a ∈ A, a leaves v inG} for v ∈ V . The M�-convex submodular flow problem for
(f,G) is the following problem with variable ξ ∈ RA:

Minimize f(∂ξ) +
∑

a∈A

w(a)ξ(a)

subject to c(a) ≤ ξ(a) ≤ c(a),
∂ξ ∈ domf.

It is known [15] that the M�-convex submodular flow problem can be solved in
polynomial time.

The problem (1.7) with w ≤ 0 can be reduced to M�-convex submodular flow
in the following way. Let r1 and r2 be the rank of f1 and f2, respectively. We
define univariate functions g1 and g2 on Z by

g1(p) :=

{
0 if p ≤ r2 − k,

+∞ otherwise,
g2(q) :=

{
0 if q ≤ r1 − k,

+∞ otherwise.

Then define the function h on ZV �{p}�V �{q} by the disjoint sum of f1, g1 with
the simultaneous coordinate inversion and f2, g2, i.e.,

h(x, p, y, q) := (f1(−x) + g1(−p)) + (f2(y) + g2(q)) x, y ∈ ZV (and p, q ∈ Z).

It is not difficult to see that h is M�-convex. We then construct a directed bipar-
tite graph G = ({xv}v∈V ∪{p}, {yv}v∈V ∪{q};A) endowed with a weight function
ŵ : A → R defined by

A := {(xv, yv) | v ∈ V } ∪ {(p, yv) | v ∈ V } ∪ {(xv, q) | v ∈ V },

ŵ(a) :=

{
w(v) if a = (xv, yv),
0 otherwise,

(a ∈ A).

Here we identify the vertices of G with the variables of f . Consider the following
instance of the M�-convex submodular flow problem:

Minimize h(∂ξ) +
∑

a∈A

ŵ(a)ξ(a)

subject to ξ(a) ≥ 0 (a ∈ A),
∂ξ ∈ domh.

(2.2)

The following lemma shows that the problem (1.7) with w ≤ 0 is reduced to
the problem (2.2), and thus establishes its tractability.

Lemma 3. The problem (1.7) with w ≤ 0 is equivalent to the problem (2.2).

The NP-hardness of the problem (1.7) with w ≥ 0 and k = 0 follows from
the fact that it can formulate the problem of minimizing f1(x1)+f2(x2) subject
to

∑
v∈V min{xv, yv} = 0, whose NP-hardness has been shown in [9].
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3 Applications

In this section, we present two applications of our generalized problems (1.6)
and (1.7). One is for matroid congestion games, and the other for combinatorial
optimization problems with interaction costs.

3.1 Socially Optimal States in Valuated Matroid Congestion Games

A congestion game [21] is represented by a tuple (N,V, (Bi)i∈N , (cv)v∈V ), where
N = {1, 2, . . . , n} is a set of players, V is a set of resources, Bi ⊆ 2V is the
set of strategies of a player i ∈ N , and cv : Z+ → R+ is a nondecreasing cost
function associated with a resource v ∈ V . Here R+ is the set of nonnegative
real numbers. A state X = (X1,X2, . . . , Xn) is a collection of strategies of all
players, i.e., Xi ∈ Bi for each i ∈ N . For a state X = (X1,X2, . . . , Xn), let xv(X )
denote the number of players using v, i.e., xv(X ) = |{i ∈ N | v ∈ Xi}|. If X is
clear from the context, xv(X ) is abbreviated as xv. In a state X , every player
using a resource v ∈ V should pay cv(xv) to use v, and thus the total cost paid
by a player i ∈ N is

∑
v∈Xi

cv(xv).
The importance of congestion games is appreciated through the fact that the

class of congestion games coincides with that of potential games. Rosenthal [21]
proved that every congestion game is a potential game, and conversely, Monderer
and Shapley [10] proved that every potential game is represented by a congestion
game with the same potential function.

We show that, in a certain generalized model of matroid congestion games
with player-specific costs, computing socially optimal states reduces to (a gen-
eralized version of) the problem (1.6). A state X ∗ = (X∗

1 ,X∗
2 , . . . , X∗

n) is called
socially optimal if the sum of the costs paid by all the players is minimum, i.e.,

∑

i∈N

∑

v∈X∗
i

cv(xv(X ∗)) ≤
∑

i∈N

∑

v∈Xi

cv(xv(X ))

for any state X = (X1,X2, . . . , Xn). In a matroid congestion game, the set
Bi ⊆ 2V of the strategies of each player i ∈ N is the base family of a matroid
on V . For matroid congestion games, a socially optimal state can be computed
in polynomial time if the cost functions are weakly convex [1,23], while it is
NP-hard for general nondecreasing cost functions [1]. A function c : Z+ → R
is called weakly convex if (x + 1) · c(x + 1) − x · c(x) is nondecreasing for each
x ∈ Z+. In a player specific-cost model, the cost paid by a player i ∈ N for using
v ∈ V is represented by a function ci,e : Z+ → R+, which may vary with each
player.

We consider the following generalized model of congestion games with player-
specific costs. In a state X = (X1,X2, . . . , Xn), the cost paid by a player i ∈ N is

ωi(Xi) +
∑

v∈Xi

dv(xv),



Optimal Matroid Bases with Intersection Constraints 165

where ωi : 2V → R+ is a monotone set function and dv : Z+ → R+ is a non-
decreasing function for each v ∈ V . This model represents a situation where a
player i ∈ N should pay ωi(Xi) regardless of the strategies of the other players,
as well as dv(xv) for every resource v ∈ Xi, which is an additional cost resulting
from the congestion on v. It is clear that the standard model of congestion games
is a special case where ωi(Xi) =

∑
v∈Xi

cv(1) for every i ∈ N and every Xi ∈ Bi,
and

dv(x) =

{
0 (x = 0),
cv(x) − cv(1) (x ≥ 1).

In this model, the sum of the costs paid by all the players is equal to
∑

i∈N

ωi(Xi) +
∑

v∈V

xv · dv(xv). (3.1)

The following lemma is also straightforward to see.

Lemma 4. The following are equivalent.

– cv is weakly convex.
– dv is weakly convex.
– x · dv is discrete convex.

By Lamma 4, if cv (or dv) is weakly convex, then the function
∑

v∈V xv · dv(xv)
is laminar convex.

The solution for the problem (1.6), or the DCA perspective for (1.6), provides
a new insight on this model of cost functions in matroid congestion games. In
addition to the weak convexity of dv (v ∈ V ), this model allows us to introduce
some convexity of the cost function ωi. Namely, we assume that ωi is a valuated
matroid for every i ∈ N . Then, computing the optimal state, i.e., minimizing
(3.1), is naturally viewed as the valuated matroid intersection problem for the
valuated matroid

∑
i∈N ωi(Xi) and the laminar convex function

∑
v∈V xv ·dv(xv)

as in the problem (1.6). Thus it can be done in polynomial time.

3.2 Combinatorial Optimization Problem with Interaction Costs

Lendl, Ćustić, and Punnen [8] introduced a framework of combinatorial opti-
mization with interaction costs (COPIC ), described as follows. For two sets V1

and V2, we are given cost functions w1 : V1 → R and w2 : V2 → R, as well as
interaction costs q : V1 × V2 → R. The objective is to find a pair of feasible sets
X1 ⊆ V1 and X2 ⊆ V2 minimizing

w1(X1) + w2(X2) +
∑

u∈X1

∑

v∈X2

quv.

We focus on the diagonal COPIC, where V1 and V2 are identical and quv = 0 if
u 
= v. We further assume that the feasible sets are the base families of matroids.
That is, we are given two matroids (V,B1) and (V,B2), and a pair (X1,X2) of
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subsets of V is feasible if and only if X1 ∈ B1 and X2 ∈ B2. In summary, the
problem is formulated as

Minimize w1(X1) + w2(X2) + q(X1 ∩ X2)
subject to Xi ∈ Bi (i = 1, 2). (3.2)

If w1 and w2 are identically zero and q ≥ 0, then the problem (3.2) amounts
to finding a socially optimal state in a two-player matroid congestion game, and
thus can be solved in polynomial time [1]. Lendl et al. [8] showed the solvability
on the case where the interaction cost q may be arbitrary.

Now we can discuss another direction of generalization; the costs w1(X1) and
w2(X2) are valuated matroids. This is a special case of the problem (1.6) or the
problem (1.7), and thus can be solved in polynomial time when q ≥ 0 or q ≤ 0.

4 Discussions

In this paper, we have analyzed the complexity of several types of minimization
of the sum of valuated matroids (or M-convex functions) under intersection con-
straints. For the following standard problem of this type, its complexity is still
open even when the cardinality constraint |X1 ∩ X2| = k is removed and ω1, ω2

are modular functions on the base families of some matroids:

Minimize ω1(X1) + ω2(X2) + w(X1 ∩ X2)
subject to |X1 ∩ X2| = k,

where ω1 and ω2 are valuated matroids on 2V , w is a modular function on 2V ,
and k is a nonnegative integer.

The above problem seems similar to VIAP(k), but is essentially different; the
problem of this type formulated by VIAP(k) is

Minimize ω1(X1) + ω2(X2) + w(F )
subject to F ⊆ X1 ∩ X2,

|F | = k.

Only the following cases are known to be tractable:

– w is identically zero. This case is equivalent to the problem (1.4).
– w ≥ 0 and the cardinality constraint |X1 ∩ X2| = k is removed. This case is

a subclass of the problem (1.6).
– w ≤ 0 and |X1 ∩X2| = k is replaced by |X1 ∩X2| ≥ k. This case is a subclass

of the problem (1.7).
– |X1 ∩ X2| = k is removed and ω1, ω2 are the indicator functions of the base

families of some matroids. This case has been dealt with Lendl et al. [8];
see Sect. 3.2.

Another possible direction of research would be to generalize our framework
so that it includes computing the socially optimal state of polymatroid congestion
games [6,22], as we have done for matroid congestion games in Sect. 3.1.
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8. Lendl, S., Ćustić, A., Punnen, A.P.: Combinatorial optimization with interaction
costs: complexity and solvable cases. Discrete Optim. 33, 101–117 (2019)

9. Lendl, S., Peis, B., Timmermans, V.: Matroid bases with cardinality constraints
on the intersection (2019). arXiv:1907.04741v1

10. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143
(1996)

11. Murota, K.: Convexity and Steinitz’s exchange property. Adv. Math. 124, 272–311
(1996)

12. Murota, K.: Valuated matroid intersection, I: optimality criteria. SIAM J. Discrete
Math. 9, 545–561 (1996)

13. Murota, K.: Valuated matroid intersection, II: algorithms. SIAM J. Discrete Math.
9, 562–576 (1996)

14. Vygen, J.: Discrete convex analysis. Math. Intell. 26(3), 74–76 (2004). https://doi.
org/10.1007/BF02986756

15. Murota, K.: Submodular flow problem with a nonseparable cost function. Combi-
natorica 19, 87–109 (1999). https://doi.org/10.1007/s004930050047

16. Murota, K.: Matrices and Matroids for Systems Analysis. Springer, Heidelberg
(2000)

17. Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)
18. Murota, K.: Recent developments in discrete convex analysis. In: Cook, W., Lovász,

L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 219–260.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1 11

19. Murota, K.: Discrete convex analysis: a tool for economics and game theory. J.
Mech. Inst. Des. 1(1), 151–273 (2016)

20. Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math.
Oper. Res. 24(1), 95–105 (1999)

21. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int.
J. Game Theory 2, 65–67 (1973). https://doi.org/10.1007/BF01737559

22. Takazawa, K.: Generalizations of weighted matroid congestion games: pure Nash
equilibrium, sensitivity analysis, and discrete convex function. J. Comb. Optim.
38, 1043–1065 (2019). https://doi.org/10.1007/s10878-019-00435-9

23. Werneck, R.F.F., Setubal, J.C.: Finding minimum congestion spanning trees. ACM
J. Exp. Algorithmics 5, 11:1–11:22 (2000)

https://doi.org/10.1007/3-540-36478-1_2
https://doi.org/10.1007/3-540-36478-1_2
https://doi.org/10.1007/s11590-016-1057-x
http://arxiv.org/abs/1907.04741v1
https://doi.org/10.1007/BF02986756
https://doi.org/10.1007/BF02986756
https://doi.org/10.1007/s004930050047
https://doi.org/10.1007/978-3-540-76796-1_11
https://doi.org/10.1007/BF01737559
https://doi.org/10.1007/s10878-019-00435-9

	Optimal Matroid Bases with Intersection Constraints: Valuated Matroids, M-convex Functions, and Their Applications
	1 Introduction
	2 Algorithms
	2.1 Reduction of (1.4) to Valuated Independent Assignment
	2.2 Reduction of (1.5) and (1.6) to Valuated Matroid Intersection
	2.3 Reduction of (1.7) to M-Convex Submodular Flow

	3 Applications
	3.1 Socially Optimal States in Valuated Matroid Congestion Games
	3.2 Combinatorial Optimization Problem with Interaction Costs

	4 Discussions
	References




