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Abstract. The lower-bounded k-median problem considers a set C of
clients, a set F of facilities, and a parameter B, the goal is to open k facil-
ities and connect each client to an opened facility, such that each opened
facility is connected with at least B clients and the total connection cost
is minimized. The problem is known to admit an O(1)-approximation
algorithm, while the constant is implicit and seems to be a very large
constant. In this paper, we give an approach that converts the lower-
bounded k-median problem to the capacitated facility location problem,
which yields a (516 + ε)-approximation for the lower-bounded k-median
problem.
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1 Introduction

k-median is a widely studied clustering problem and has applications in many
fields related to computer science. Given a set C of clients and a set F of facili-
ties located in a metric space, the k-median problem aims to open a set S ⊆ F
of at most k facilities, such that the objective function

∑
j∈C d(j, S) is mini-

mized, where d(j, S) denotes the distance from j ∈ C to its nearest facility in S.
This problem is known to be NP-hard, which leads to a lot of efforts devoted to
obtaining its approximation algorithms [5,7,11,13,16]. The current best approx-
imation guarantee for the problem is 2.675 + ε [5], which is obtained Li and
Svensson [16].

The clustering problem has an inherent assumption that each client can be
optionally connected to any opened facility. However, many real world scenarios
associate a notion of lower bound with each facility, and the number of the clients
connected to each facility should not be less than the lower bound associated
with it. For example, in the design of buy-at-bulk network, a set of demands
needs to be connected to a set of servers, and each server is required to have
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a minimum amount of demand assigned to it. Karger and Minkoff [12] and
Guha et al. [10] introduced the lower-bounded facility location problem to deal
with such constraints. They presented constant-factor bi-criteria approximation
algorithms for the problem, which violate the lower bound of the facilities. On
the basis of the techniques given in [12] and [10], Svitkina [17] gave a (448 + ε)-
approximation without violating the lower bound constraint. The ratio was later
improved to 82.6 + ε by Ahmadian and Swamy [1]. Most recently, Li [15] gave
a (3926 + ε)-approximation for the facility location problem with non-uniform
lower bounds.

In this paper, we consider the lower-bounded k-median problem.

Definition 1 (lower-bounded k-median). Given a set C of clients and a set
F of facilities located in a metric space, an integer k, and a parameter B, the
lower-bounded k-median problem is to open a set S of at most k facilities, and
identify a connection function σ, such that the number of the clients connected
to each facility is no less than B, and the objective cost(S, σ) =

∑
j∈C d(j, σ(j))

is minimized, where σ(j) = i denotes client j is connected to facility i ∈ S for
each j ∈ C, and d(j, σ(j)) denotes the distance from j to σ(j).

In Euclidean space, Ding and Xu [9] gave a (1 + ε)-approximation for
the lower-bounded k-median problem with running time O(n2d · (log n)k+2 ·
2poly(k/ε)). Bhattacharya et al. [4] later improved the running time of the algo-
rithm in [9] to O(n2d · (log n)2 · (k

ε )O(k/ε)). Ahmadian and Swamy [2] gave that
the problem admits an O(1)-approximation algorithm that runs in polynomial
time. The approximation ratio is implicit but seems to be a very large number.

1.1 Our Results

In this paper, we obtain the following result for the lower-bounded k-median
problem.

Theorem 1. There exists a (516 + ε)-approximation algorithm for the lower-
bounded k-median problem that runs in polynomial time.

We now give the high level idea of our approach. Given an instance of the
lower-bounded k-median problem, it can be seen that the instance has a feasible
solution if |C| ≥ B. We present a bi-criteria approximation algorithm for the
problem. The algorithm yields a constant factor approximation solution which
violates the lower bound of the facilities. To convert such a bi-criteria approxi-
mation solution to a feasible solution, we reconnect some clients and close some
facilities so that the lower bound constraint of each facility can be satisfied. We
consider an instance of the capacitated facility location problem to minimize
the loss in the cost induced by the converting. This instance is constructed by
interchanging the roles of the clients and the facilities. A set of clients connected
to a same location is now viewed as a facility whose capacity is the same as the
size of the client set, and a facility whose lower bound is violated now becomes a
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set T of clients with |T | = (1 − λ)B, where λB is the number of the clients con-
nected to this facility in the original bi-criteria approximation solution. Based
on a known O(1)-approximation algorithm for the capacitated facility location
problem, we convert the bi-criteria solution to a solution satisfying the lower
bound, which induces a constant factor loss in the approximation ratio.

1.2 Other Related Work

A commonly studied extension of the clustering problem is the capacitated clus-
tering problem, which can be viewed as the opposite of the lower-bounded clus-
tering problem in some sense. In this problem, each facility is associated with a
capacity, and the number of the clients connected to a facility should be less than
its capacity. The capacitated facility location problem can be formally defined
as follows.

Definition 2 (Capacitated facility location). Given a set C of clients and a
set F of facilities located in a metric space, an opening cost fi and a capacity ui

associated with each i ∈ F , the capacitated facility location problem is to open a
set S of facilities, and identify a connection function σ, such that the number of
the clients connected to each facility i ∈ S is no more than ui, and the objective
cost(S, σ) =

∑
j∈C d(j, σ(j)) +

∑
i∈S fi is minimized, where σ(j) = i denotes

client j is connected to facility i ∈ S for each j ∈ C, and d(j, σ(j)) denotes the
distance from j to σ(j).

The capacitated clustering problem is significantly harder than the ordinary
clustering problem. There are several known O(1)-approximation algorithms for
the capacitated facility location problem. The current best approximation guar-
antee for the problem is 5 + ε [3], which was obtained based on a local search
algorithm. However, constant factor approximation algorithms for the capaci-
tated k-median problem only exist for the case where the capacity constraint or
the number of clusters can be violated [8,14].

2 A Bi-criteria Approximation

In this section, we give a constant factor bi-criteria approximation for the lower-
bounded k-median problem by constructing an instance of the k-facility location
problem. This problem can be formally defined as follows.

Definition 3 (k-facility location). Given a set C of clients and a set F of
facilities located in a metric space, an integer k, and an opening cost fi associated
with each i ∈ F , the k-facility location problem aims to open a set S of at most
k facilities, such that the objective

∑
j∈C d(j, S) +

∑
i∈S fi is minimized, where

d(j, S) denotes the distance from j to its nearest facility in S.

Let I = (C,F, k,B) be an instance of the lower-bounded k-median problem.
Given a facility i ∈ F , let Ji denote the set of the B clients in C closest to i.
Given β ∈ (0, 1) and a solution (S, σ) of I, we call (S, σ) a β-covered solution if it
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connects no less than βB clients to each i ∈ F , and let costI(S, σ) denote its cost
of the problem. We construct an instance I ′ = (C,F, f) for the k-facility location
problem, where fi = 2β

1−β

∑
j∈Ji

d(i, j) for each i ∈ F . We solve the constructed
instance by the algorithm given in [6], which gives a 3.25-approximation solution
for the k-facility location problem. Let S′ be the resulted set of the open facilities.
Let costI′(S′) denote the cost of S′ for the k-facility location problem.

We now show that any λ-approximation solution of I ′ can be converted to
an O(λ)-approximation solution of I, which induces a constant factor violation
in the lower bound of the facilities.

Lemma 1. For an arbitrary solution (S, σ) of I, the solution is also a feasible
for I ′, and we have

∑

i∈S

fi ≤ 2β

1 − β
cost(S, σ).

Proof. Since (S, σ) is a feasible solution of I, for each i ∈ S, i is connected with
at least B clients. This implies that

∑
j∈Ji

d(i, j) ≤ ∑
j∈σ−1(i) d(i, j). Thus, we

have
∑

i∈S

fi =
∑

i∈S

(
2β

1 − β

∑

j∈Ji

d(i, j))

≤ 2β

1 − β

∑

i∈S,j∈σ−1(i)

d(i, j)

=
2β

1 − β

∑

j∈C

d(j, σ(j))

=
2β

1 − β
costI(S, σ),

where the first step follows from the the definition of fi. ��
Lemma 1 implies that for any solution (S, σ) of instance I, we have

costI′(S) ≤ 1+β
1−β costI(S). We proceed by showing that a solution S′ to I ′ can be

converted to a β-covered solution (S, σ) of I.

Lemma 2. Given a solution S′ of I ′, we can find a β-covered solution (S, σ) of
I such that costI(S, σ) ≤ costI′(S′).

Proof. We prove the lemma by giving an algorithm that yields the desired β-
covered solution. Based on instance I ′, we construct a new instance Ik for the
k-median problem by removing all facility open costs. Let S = S′ initially. While
there exists some i ∈ S such that costI′(S\{i}) ≤ costI′(S), let S = S\{i}. The
final solution (S, σ) is called a minimal feasible solution of instance Ik, where each
j ∈ C is assigned to its nearest facility in S by function σ. It is easy to show
that costIk(S, σ) ≤ costI′(S), which implies that costIk(S, σ) ≤ costI′(S) ≤
costI′(S′).
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Now we want to show that in the solution (S, σ), each facility i ∈ S is
connected by at least βB clients. For the sake of contradiction, assume that there
exists a facility i ∈ S such that |σ−1(i)| ≤ βB. This implies that |Ji\σ−1(i)| ≥
(1 − β)B. We know that there exists a client j′ ∈ Ji\σ−1(i), such that

d(i, j′) ≤ 1
(1 − β)B

∑

j∈Ji\σ−1(i)

d(i, j) ≤ 1
(1 − β)B

∑

j∈Ji

d(i, j).

Since j′ is not connected to i in the solution (S, σ), it is connected to some other
facility i′ ∈ S with d(j′, i′) ≤ d(j′, i). Thus, we have

∑

j∈σ−1(i)

d(j, i′) ≤
∑

j∈σ−1(i)

(d(j, i) + d(i, j′) + d(j′, i′))

≤
∑

j∈σ−1(i)

d(j, i) + |σ−1(i)| × 2d(i, j′)

≤
∑

j∈σ−1(i)

d(j, i) + βB × 2
(1 − β)B

∑

j∈Ji

d(i, j)

=
∑

j∈σ−1(i)

d(j, i) +
2β

(1 − β)

∑

j∈Ji

d(i, j).

If we close i and reconnect each client from i to i′, then the increment in the
connection cost is no more than 2β

(1−β)

∑
j∈Ji

d(i, j), which is bounded by f ′
i . We

have costI′(S\{i}) ≤ costI′(S), contradicting that (S, σ) is a minimal feasible
solution of instance Ik. Thus (S, σ) is a β-covered solution of I. ��

Based on Lemma 1 and Lemma 2, we get the following approximation guar-
antee.

Theorem 2. There exists a 3.25 1+β
1−β -approximation algorithm for the lower-

bounded k-median problem which violates the lower bound by a factor β.

Proof. We first get a solution S′ of I ′ using the 3.25-approximation algorithm
for the k-facility location problem. We denote the set of the opened facilities in
an optimal solution of I by S∗. We have costI′(S′) ≤ 3.25costI′(S∗). Thus, we
get

costI′(S′) ≤ 3.25(
∑

i∈S∗
fi +

∑

j∈C

d(j, S∗))

≤ 3.25(
2β

1 − β
costI(S∗, σ∗) +

∑

j∈C

d(j, S∗))

≤ 3.25(
2β

1 − β
costI(S∗, σ∗) + costI(S∗, σ∗))

= 3.25
1 + β

1 − β
costI(S∗, σ∗),
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where the second step follows from Lemma 1. By Lemma 2, we can obtain a
β-covered solution (So, σo) of I such that

costI(So, σo) ≤ costI′(S′) ≤ 3.25(
1 + β

1 − β
)costI(σ∗).

��
By Theorem 2, we can get a pseudo-solution for the lower-bounded k-median

problem, which violates the lower bound restriction by the a constant β ∈ (0, 1).
This implies that we find a solution where each opened facility is connected with
at least βB clients instead of B clients. In the following we will show how to
make such a solution feasible for the lower-bounded k-median problem.

3 The Approximation Algorithm

3.1 Aggregating Clients

Given an instance I = (C,F,B, k) of the lower-bounded k-median problem,
by Lemma 1 and Lemma 2, we can obtain a bi-criteria approximation solution
(So, σo) which violates the constraint of lower bound by a factor β. We construct
a new instance I1 for the lower-bounded k-median problem, where C,F , and B
are the same as that of I, but the metric is different from I. In instance I1, each
client j ∈ C is moved to σo(j). Then, for each i1, i2 ∈ F and j1, j2 ∈ C, we have
d1(i1, i2) = d(i1, i2), d1(i1, j1) = d(i1, σo(j1)), and d1(j1, j2) = d(σo(j1), σo(j2)).
For arbitrary i ∈ F and j ∈ C, using triangle inequality, we get

d1(i, j) = d(i, σo(j)) ≤ d(i, j) + d(j, σo(j)). (1)

For an optimal solution (S∗, σ∗) of instance I, we have

costI1(S∗, σ∗) ≤ costI(S∗, σ∗) + costI(So, σo)

≤ costI(S∗, σ∗) + 3.25
1 + β

1 − β
costI(S∗, σ∗)

=
(

1 + 3.25
1 + β

1 − β

)

costI(S∗, σ∗),

(2)

where the first step follows from inequality (1), the second step follows from
Theorem 2. We have the following result based on the methods in [17].

Theorem 3. If there is an α1-approximation solution of I1, we can efficiently
find an α-approximation solution of I, where α = α1(1 + 3.25 1+β

1−β ) + 3.25 1+β
1−β .
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3.2 Contracting Facility Set

We now focus on instance I1 = (C,F,B, k). For each i ∈ So, define γi =
{j|σo−1(i)} as the set of clients connected to i. We have |γi| ≥ βB for each
i ∈ So. An instance I2 = (C,So, B, k) is constructed by removing each facility
in F\So from I1.

Lemma 3. If there is a solution (S1, σ1) of I1, then we can efficiently find a
solution (S2, σ2) of I2 such that costI2(S2, σ2) ≤ 2costI1(S1, σ1).

Proof. For each i ∈ F\So, let i′ denote the facility in So nearest to i. We
construct a solution (S2, σ2) of I2 by opening each i ∈ S1 ∩ So and facility
i′ for each i ∈ F ∩ (S1\So). For a facility i ∈ F ∩ (S1\So), the clients con-
nected to i in solution (S1, σ1) are reconnected to i′. By triangle inequality and
the definition of d1(∗), the increased cost induced by a client j is bounded by
d1(i, i′) = d(i, i′) ≤ d(i, σo−1(j)) = d1(i, j). Summing the inequality over each
j ∈ C, we get that the total increased cost is no more than costI1(S1, σ1), which
implies that costI2(S2, σ2) ≤ 2costI1(S1, σ1). ��

Lemma 3 implies that a solution of instance I1 can be converted to a feasible
solution of instance I2. It is easy to see that a solution (S, σ) of instance I2 is
also feasible of instance I1 and satisfies costI1(S, σ) = costI2(S, σ). Thus, we get
the following result for I1 and I2.

Theorem 4. Given an α2-approximation solution of I2, we can find an α1-
approximation solution of I1, where α1 = 2α2.

Proof. Let (S∗1, σ∗1) be an optimal solution of instance I1. Using Lemma 3, we
can get a solution (S2, σ2) of I2 that satisfies costI2(S2, σ2) ≤ 2costI1(S∗1, σ∗1).
Let (S, σ) denote an α2-approximation solution of I2, we have costI2(S, σ) ≤
2α2costI1(S∗1, σ∗1). Recall that (S, σ) is also feasible for I1 and costI1(S, σ) =
costI2(S, σ) ≤ 2α2costI1(S∗1, σ∗1). ��

Now we focus on instance I2. We only consider one facility for each position
in I2.

3.3 Adding Penalties to Instance I2

Based on instance I2, we construct a new instance I3 by considering penalties
for closing the facilities from So. For each i ∈ So, if i is closed in the solution,
then a penalty cost PcI3(i) = 2β−1

β |γi|�i should be paid, where �i denotes the
distance from i to its nearest facility in So\{i}. For a solution (S, σ) of I3, define
PcI3(S, σ) =

∑
i∈So\S PcI3(i) as the total penalty cost of (S, σ).

Lemma 4. For any solution (S, σ) of I2 and I3, we have

costI2(S, σ) ≤ costI3(S, σ) ≤ 3β − 1
β

costI2(S, σ).
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Proof. The cost of solution (S, σ) of I3 consists of the connection cost and
the penalty cost of the closed facilities, where the connection cost is equal to
costI2(S, σ). Thus, costI2(S, σ) ≤ costI3(S, σ). We have

∑

i∈So\S

PcI3(i) =
∑

i∈So\S

2β − 1
β

|γi|�i

≤ 2β − 1
β

∑

i∈So\S

∑

j∈γi

d1(j, σ(j))

≤ 2β − 1
β

∑

j∈C

d1(j, σ(j))

=
2β − 1

β
costI2(S, σ).

This implies that

costI3(S, σ) = costI2(S, σ) + PcI3(S, σ) ≤ 3β − 1
β

costI2(S, σ).

��
Lemma 4 implies that I2 can be converted to I3 with a constant factor loss

in the approximation ratio.

Theorem 5. Given an α3-approximation solution of I3, we can find an α2-
approximation solution of I2, where α2 = 3β−1

β α3.

Proof. Let (S∗2, σ∗2) be an optimal solution of instance I2. By Lemma 4, there
exists a solution (S3, σ3) of I3 such that costI3(S3, σ3) ≤ 3β−1

β costI2(S∗2, σ∗2).
Let (S, σ) denote an α3-approximation solution of I3, we have costI2(S, σ) ≤
costI3(S, σ) ≤ 3β−1

β α3costI2(S∗2, σ∗2). ��

3.4 Constructing an Instance of Capacitated Facility Location

In this section, we show how to convert I3 to an instance of the capacitated
facility location problem (CFL). Recall that we only consider one facility for
each position in the lower bounded k-median problem. For each i ∈ So, let
Δ1

i = |γi| and Δ2
i = |γi| − B, we define a variable Δi ∈ {Δ1

i ,Δ
2
i }. In addition,

we define Pi as the position of i for any i ∈ So. If Δi = Δ1
i , then we close facility

i. In such case, Δ1
i clients should be reconnected. For the case where Δi = Δ2

i ,
we open facility i, if Δ2

i > 0 then |Δ2
i | clients from γi can be reconnected without

violating the lower bound of i. Otherwise, |Δ2
i | clients should be reconnected to

i. It can be seen that instance I3 is to identify the value of Δi for each Pi where
i ∈ So such that

∑
i∈So Δi ≥ 0.

We now show how to construct an instance I4 of CFL based on I3. To avoid
confusion, each facility in the CFL instance is called a C-facility, and each
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client in CFL instance is called a C-client. The total cost of an instance of
CFL is the sum of the open cost of C-facilities and connection cost of C-clients.
For each Pi where i ∈ So, we construct a C-facility with open cost 2β−1

β |γi|�i

and capacity Δ1
i − Δ2

i . Moreover, a set of C-clients or a C-facility in Pi are
constructed depending on the value of Δ2

i . If Δi
2 < 0, then we construct a set of

|Δ2
i | C-clients. If Δ2

i > 0, then we construct a C-facility with open cost 0 and
capacity Δ2

i . Note that some locations may have more than one C-facilities in
I4. Given a solution (S, σ) of I4, let fI4(S, σ) denote the open cost of C-facilities
and θI4(S, σ) denote the connection cost of C-clients.

Lemma 5. Given any solution (S, σ) of instance I3, we can find a solution
(Sc, σc) of instance I4 of CFL such that costI4(Sc, σc) ≤ costI3(S, σ).

Proof. We identify the value of Δi for each Pi where i ∈ So based on solution
(S, σ). We have

∑
i∈So Δi ≥ 0 due to (S, σ) is a feasible solution of I3. As

mentioned above, in instance I4, for each Pi where i ∈ So, there are |Δ2
i | C-

clients in Pi which need to be connected if Δ2
i < 0. Otherwise we open the

C-facility with open cost 0 and capacity Δ2
i at this position. Moreover, for each

Pi where i ∈ So \S, we open the C-facility at this position, whose open cost and
capacity are 2β−1

β |γi|�i and Δ1
i − Δ2

i , respectively.
Now, we get a set Sc of opened C-facility for instance I4. Note that if a

position Pi where i ∈ S is located two opened C-facilities, then in this position
the total capacity is Δ1

i . If there are |Δ2
i | C-clients in Pi where i ∈ So \ S, then

the C-facility in the same position has the priority of connecting these clients.
Recall that the capacity of such a C-facility is Δ1

i − Δ2
i , which implies that the

|Δ2
i | C-clients can be connected to it without violating the capacity. Thus, in

instance I4, we have Δi = Δ2
i for each Pi where i ∈ S and Δi = Δ1

i for each Pi

where i ∈ So\S. Recall that
∑

i∈So Δi ≥ 0. Thus we can find a feasible solution
for I4 based on Sc.

Let (Sc, σc) denote the constructed solution of I4, where σc is obtained by
“switching” the direction of σ. Assume that η clients located in position P1 are
connected to a facility located in P2 by σ for some η > 0. For the instance I4,
if there exists C-clients in P2, then η C-clients in P2 are connected to the C-
facilities in P1 by σc. Otherwise we will do nothing and this is feasible for I4.
It can be seen that the connection cost of solution (Sc, σc) on instance I4 is no
more than the connection cost of (S, σ) on I3.

In solution (S, σ) to instance I3, if a facility i ∈ So is not opened, then a
penalty cost 2β−1

β |γi|�i should be paid. The penalty cost is equal to the open
cost of a C-facility with capacity Δ1

i − Δ2
i in instance I4. Thus, we get

costI4(Sc, σc) = θI4(Sc, σc) + fI4(Sc, σc)
≤ θI3(S, σ) + PcI3(S, σ)
= costI3(S, σ).

��
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Lemma 5 implies that a solution (S, σ) of I3 can be converted to a solution
(Sc, σc) of I4. We now show how a solution of I4 can be converted to a solution
of I3.

Lemma 6. Given a solution (Sc, σc) of instance CFL, we can find a solution
(S, σ) of instance I3 such that costI3(S, σ) ≤ 2β

2β−1costI4(Sc, σc).

Proof. We construct a solution (S, σ) of I3 based on solution (Sc, σc). Given
a position, if a C-facility with open cost 2β−1

β |γi|�i and capacity Δ1
i − Δ2

i in
the position is opened in I4, then no facility in the position is opened in I3.
Otherwise, the facility in the position is opened in I3. For a position where a
C-facility i with open cost 2β−1

β |γi|�i and capacity Δ1
i −Δ2

i is opened in instance
I4, we have the following two cases: (1) Δ2

i > 0, and (2) Δ2
i < 0. For case (1),

a C-facility with open cost 0 and capacity Δ2
i is located in the position. For

case (2), there are |Δ2
i | C-clients in the position that can be connected with

the C-facilities located in the same position. In both cases, the C-facilities in
the position can still be connected with Δ1

i C-clients. For each position where
no facility is opened in instance I3, then Δ1

i clients in the position should be
reconnected, and the total capacity in instance I4 is Δ1

i . For other positions, we
have Δi = Δ2

i in both instances I3 and I4. Since (Sc, σc) is feasible for I4, we
have

∑
i∈So Δi ≥ 0, which implies that we can find a feasible solution for I3

based on S.
We now find the connection function σ for instance I3. Such a function cannot

be simply identified by “switching” the direction of σc. Indeed, the number of
the C-clients connected with each C-facility is not guaranteed to be equal to
the capacity of the C-facility. However, all the clients need to be connected in
instance I3. This implies that connecting the clients in I3 by “switching” the
direction of σc may cause some clients unconnected. It can be seen that such
unconnected clients are located in the positions where no facility is opened in
solution (S, σ) and the number of the C-clients which are connected to this
position is not equal to the sum of the capacities of the C-facilities located in
the same position.

For each Pi where i ∈ So, let δPi
be the set of the unconnected clients

located in Pi. For the case where δPi
> 0, we first attempt to connect each

unconnected client to the nearest facility i′ to i. If i′ is opened, then we connect
each client in δPi

to i′, and the connection cost is at most B�i ≤ |γi|
β �i. If i′ is not

opened, we further consider the following two cases: (1) |δPi
| + |δPi′ | ≥ B, and

(2) |δPi
| + |δPi′ | < B. For case (1), we open i′ and connect each client in δPi

to
i′. The condition of case (1) implies that i′ can be opened without violating its
lower bound. For case (2), we move each client in δi to i′ and let δPi′ = δPi

∪δPi′ .
We now perform the same operation described above on Pi′ .

The challenge is that the procedure may be caught in several facilities, and
we cannot open a facility to satisfy the lower bound. For instance, it may be
the case that the clients are moved to a facility i′ for more than one time, and
the walk forms a cycle. Let i denote the facility in the previous position of i′ in
the walk. Our approach to deal with this issue is to connect these clients to the
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opened facility io that minimizes the connection cost. We have |δPi
| < B and

|γi′ |+ |γi| ≥ 2βB. So there are at least |γi′ |+ |γi∗ |−|δPi∗ | ≥ (2β−1)B connected
clients and we can bound the connection cost as

∑

j∈γi′ ∪γi\δPi

d1(j, σ(j)) ≥ (2β − 1)Bd1(io, {i′, i}). (3)

Using triangle inequality and inequality (3), we have
∑

j∈δPi

d1(j, io) ≤ Bd1(i, io) ≤ B(d1(io, {i′, i}) + �i)

≤ 1
2β − 1

∑

j∈γi′ ∪γi\δPi

d1(j, σ(j)) +
�i|γi|

β
,

which implies that the total increased cost induced by the unconnected clients
is no more than

1
2β − 1

PcI3(S, σ) +
1

2β − 1
θI3(S, σ).

Thus, we have

costI3(S, σ) ≤ θI3(S, σ) + PcI3(S, σ) +
1

2β − 1
PcI3(S, σ) +

1
2β − 1

θI3(S, σ)

=
2β

2β − 1
PcI3(S, σ) +

2β

2β − 1
θI3(S, σ)

=
2β

2β − 1
costCFL(Sc, σc).

��
Theorem 6. Given an α4-approximation solution of CFL, we can find an α3-
approximation solution of I3, where α3 = 2β

2β−1α4.

Proof. Let (S∗3, σ∗3) be an optimal solution of instance I3. Using Lemma 5,
there exists a solution (Sc, σc) of I4 such that costI4(Sc, σc) ≤ costI3(S∗3, σ∗3).
Given an α4-approximation solution (S′, σ′) of I4, we have costI4(S′, σ′) ≤
αI4costI3(S∗3, σ∗3). By Lemma 6, we can get a solution (S, σ) of I3 that satisfies
costI3(S, σ) ≤ 2β

2β−1costI4(S′, σ′) ≤ 2β
2β−1α4costI3(S∗3, σ∗3).

3.5 Combining Everything

Using the algorithm for the capacitated facility location problem given in [1],
we get a (1 +

√
2)-approximation solution of I4. Let β = 2

3 . By Theorem 6, we
get α3 = 2β

2β−1 (1 +
√

2) = 4(1 +
√

2). By Theorems 5, 4, and 3, we get α2 =
3β−1

β α3 = 3β−1
β ×4(1+

√
2) = 6(1+

√
2), α1 = 2α2 = 2×6(1+

√
2) = 12(1+

√
2),

α = α1(1 + 3.25 1+β
1−β ) + 3.25 1+β

1−β = 12(1 +
√

2) × (1 + 3.25 1+β
1−β ) + 3.25 1+β

1−β ≈ 516.
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