
Jianer Chen
Qilong Feng
Jinhui Xu (Eds.)

LN
CS

 1
23

37

16th International Conference, TAMC 2020
Changsha, China, October 18–20, 2020
Proceedings

Theory and Applications
of Models of Computation

Lecture Notes in Computer Science 12337

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Jianer Chen • Qilong Feng •

Jinhui Xu (Eds.)

Theory and Applications
of Models of Computation
16th International Conference, TAMC 2020
Changsha, China, October 18–20, 2020
Proceedings

123

Editors
Jianer Chen
Department of Computer Science
Texas A&M University
College Station, TX, USA

Qilong Feng
School of Computer Science
and Engineering
Central South University
Changsha, China

Jinhui Xu
Department of Computer Science
and Engineering
State University of New York at Buffalo
Buffalo, NY, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-59266-0 ISBN 978-3-030-59267-7 (eBook)
https://doi.org/10.1007/978-3-030-59267-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-59267-7

Preface

The 16th Annual Conference on Theory and Applications of Models of Computation
(TAMC 2020) was held during October 18–20, 2020, in Changsha, China. The
workshop brings together researchers working on all aspects of computer science for
the exchange of ideas and results.

TAMC 2020 was the 16th conference in the series. The main themes of TAMC
2020 were computability, complexity, algorithms, information theory and their
extensions to machine learning theory, and foundations of artificial intelligence.
83 submissions were received from more than 13 countries and regions. The TAMC
2020 Program Committee selected 37 papers for presentation at the conference. In
addition, we had two plenary speakers, Gregory Gutin (Royal Holloway, University of
London, UK) and Xianfeng David Gu (State University of New York at Stony Brook,
USA). Thanks for their contributions to the conference and proceedings.

We would like to thank the Program Committee members and external reviewers for
their hard work in reviewing and selecting papers. We are also very grateful to all the
authors who submitted their work to TAMC 2020. We thank the members of the
Editorial Board who agreed to publish this volume in the Lecture Notes in Computer
Science series and the editors at Springer for their encouragement, cooperation, and
hard work throughout the preparation of these proceedings.

May 2020 Jianer Chen
Qilong Feng

Jinhui Xu

Organization

Program Committee

Anthony Bonato Ryerson University, Canada
Yixin Cao The Hong Kong Polytechnic University, Hong Kong,

China
Jianer Chen Texas A&M University, USA
Hu Ding University of Science and Technology of China, China
Thomas Erlebach University of Leicester, UK
Qilong Feng Central South University, China
Seok-Hee Hong The University of Sydney, Australia
Ziyun Huang Penn State Erie, The Behrend College, USA
Aaron D. Jaggard U.S. Naval Research Laboratory, USA
Steffen Lempp University of Wisconsin-Madison, USA
Jian Li Tsinghua University, China
Shi Li State University of New York at Buffalo, USA
Mia Minnes University of California, San Diego, USA
Evanthia Papadopoulou University of Lugano (USI), Switzerland
A. Pavan Iowa State University, USA
Anil Seth IIT Kanpur, India
Xiaoming Sun Institute of Computing Technology, Chinese Academy

of Sciences, China
Shin-Ichi Tanigawa The University of Tokyo, Japan
Takeshi Tokuyama Tohoku University, Japan
Haitao Wang Utah State University, USA
Lusheng Wang City University of Hong Kong, Hong Kong, China
Ge Xia Lafayette College, USA
Jinhui Xu State University of New York at Buffalo, USA
Boting Yang University of Regina, Canada
Christos Zaroliagis CTI, University of Patras, Greece
Guochuan Zhang Zhejiang University, China
Huaming Zhang University of Alabama in Huntsville, China
Martin Ziegler KAIST, China

Additional Reviewers

Abam, Mohammad Ali
Ackerman, Eyal
Coiteux-Roy, Xavier
Crole, Roy
Della Vedova, Gianluca
Deng, Shichuan
Eiben, Eduard
Fujii, Kaito
Guan, Chaowen
Higashikawa, Yuya
Hitchcock, John M.
Horn, Paul
Huang, Jiawei
Huang, Lingxiao
Huang, Zengfeng
Iwamasa, Yuni
Jiang, Zhihao
Jung, Achim
Kanellopoulos, Panagiotis
Kawachi, Akinori
Kontogiannis, Spyros
Krishnaswamy, Ravishankar
Kulkarni, Janardhan
LeGall, Francois
Li, Wenjun

Loff, Bruno
Lukovszki, Tamas
Martin, Keye
Niewerth, Matthias
Nomikos, Christos
Qin, Ruizhe
Quanrud, Kent
Rajagopal Padmanabhan, Madhavan
Shi, Feng
Shioura, Akiyoshi
Soma, Tasuku
Tsichlas, Kostas
Variyam, Vinodchandran
lachos, Evangelos
Voudouris, Alexandros
Wang, Di
Wang, Minghua
Wang, Zixiu
Ward, Justin
Yang, Fan
Yu, Haikuo
Yu, Wei
Zhang, Peng
Zhang, Tianyi
Zhou, Yufan

viii Organization

Contents

Semilattices of Punctual Numberings . 1
Nikolay Bazhenov, Manat Mustafa, and Sergei Ospichev

Partial Sums on the Ultra-Wide Word RAM. 13
Philip Bille, Inge Li Gørtz, and Frederik Rye Skjoldjensen

Securely Computing the n-Variable Equality Function with 2n Cards 25
Suthee Ruangwises and Toshiya Itoh

Polynomial Kernels for Paw-Free Edge Modification Problems 37
Yixin Cao, Yuping Ke, and Hanchun Yuan

Floorplans with Walls . 50
Katsuhisa Yamanaka and Shin-ichi Nakano

A Primal-Dual Randomized Algorithm for the Online Weighted
Set Multi-cover Problem . 60

Wenbin Chen, Fufang Li, Ke Qi, Miao Liu, and Maobin Tang

Sumcheck-Based Delegation of Quantum Computing to Rational Server 69
Yuki Takeuchi, Tomoyuki Morimae, and Seiichiro Tani

Online Removable Knapsack Problems for Integer-Sized Items 82
Kanaho Hanji, Hiroshi Fujiwara, and Hiroaki Yamamoto

An Improved Approximation Algorithm for the Prize-Collecting
Red-Blue Median Problem . 94

Zhen Zhang, Yutian Guo, and Junyu Huang

LP-Based Algorithms for Computing Maximum Vertex-Disjoint Paths
with Different Colors. 107

Yunyun Deng, Yi Chen, Kewen Liao, and Longkun Guo

A Constant Factor Approximation for Lower-Bounded k-Median 119
Yutian Guo, Junyu Huang, and Zhen Zhang

Reverse Mathematics, Projective Modules and Invertible Modules. 132
Huishan Wu

Two-Stage Submodular Maximization Problem Beyond Non-negative
and Monotone . 144

Zhicheng Liu, Hong Chang, Ran Ma, Donglei Du, and Xiaoyan Zhang

Optimal Matroid Bases with Intersection Constraints: Valuated Matroids,
M-convex Functions, and Their Applications . 156

Yuni Iwamasa and Kenjiro Takazawa

On the Complexity of Acyclic Modules in Automata Networks 168
Kévin Perrot, Pacôme Perrotin, and Sylvain Sené

Eternal Connected Vertex Cover Problem. 181
Toshihiro Fujito and Tomoya Nakamura

Parametric Streaming Two-Stage Submodular Maximization. 193
Ruiqi Yang, Dachuan Xu, Longkun Guo, and Dongmei Zhang

Approximation Guarantees for Deterministic Maximization of Submodular
Function with a Matroid Constraint . 205

Xin Sun, Dachuan Xu, Longkun Guo, and Min Li

A Novel Initialization Algorithm for Fuzzy C-means Problem 215
Qian Liu, Jianxin Liu, Min Li, and Yang Zhou

On the Parameterized Complexity of d-Restricted Boolean Net Synthesis 226
Ronny Tredup and Evgeny Erofeev

Approximate #Knapsack Computations to Count Semi-fair Allocations 239
Theofilos Triommatis and Aris Pagourtzis

Characterizations and Approximability of Hard Counting Classes
Below #P . 251

Eleni Bakali, Aggeliki Chalki, and Aris Pagourtzis

On Existence of Equilibrium Under Social Coalition Structures. 263
Bugra Caskurlu, Ozgun Ekici, and Fatih Erdem Kizilkaya

Space Complexity of Streaming Algorithms on Universal Quantum
Computers . 275

Yanglin Hu, Darya Melnyk, Yuyi Wang, and Roger Wattenhofer

On Coresets for Support Vector Machines . 287
Murad Tukan, Cenk Baykal, Dan Feldman, and Daniela Rus

Tractabilities for Tree Assembly Problems . 300
Feng Shi, Jie You, Zhen Zhang, and Jingyi Liu

On Characterization of Petrie Partitionable Plane Graphs 313
Xin He and Huaming Zhang

Disjunctive Propositional Logic and Scott Domains 327
Longchun Wang and Qingguo Li

x Contents

Dispersing and Grouping Points on Segments in the Plane 340
Xiaozhou He, Wenfeng Lai, Binhai Zhu, and Peng Zou

Synchronizing Words and Monoid Factorization: A Parameterized
Perspective . 352

Jens Bruchertseifer and Henning Fernau

Hidden Community Detection on Two-Layer Stochastic Models:
A Theoretical Perspective. 365

Jialu Bao, Kun He, Xiaodong Xin, Bart Selman, and John E. Hopcroft

A Primal-Dual Algorithm for Euclidean k-Means Problem with Penalties 377
Chunying Ren, Dachuan Xu, Donglei Du, and Min Li

The Complexity of the Partition Coloring Problem 390
Zhenyu Guo, Mingyu Xiao, and Yi Zhou

FPT Algorithms for Generalized Feedback Vertex Set Problems 402
Bin Sheng

Fixed-Order Book Thickness with Respect to the Vertex-Cover Number:
New Observations and Further Analysis. 414

Yunlong Liu, Jie Chen, and Jingui Huang

Acyclic Edge Coloring Conjecture Is True on Planar Graphs Without
Intersecting Triangles. 426

Qiaojun Shu, Yong Chen, Shuguang Han, Guohui Lin, Eiji Miyano,
and An Zhang

On Pure Space vs Catalytic Space . 439
Sagar Bisoyi, Krishnamoorthy Dinesh, and Jayalal Sarma

Author Index . 453

Contents xi

Semilattices of Punctual Numberings

Nikolay Bazhenov1,2(B) , Manat Mustafa3 , and Sergei Ospichev1,2

1 Sobolev Institute of Mathematics, 4 Acad. Koptyug Avenue,
Novosibirsk 630090, Russia

2 Novosibirsk State University, 2 Pirogova St., Novosibirsk 630090, Russia
{bazhenov,ospichev}@math.nsc.ru

3 Department of Mathematics, School of Sciences and Humanities,
Nazarbayev University, 53 Qabanbaybatyr Avenue, Nur-Sultan 010000, Kazakhstan

manat.mustafa@nu.edu.kz

Abstract. The theory of numberings studies uniform computations for
classes of mathematical objects. A large body of literature is devoted to
investigations of computable numberings, i.e. uniform enumerations for
families of computably enumerable sets, and the reducibility ≤ among
these numberings. This reducibility, induced by Turing computable func-
tions, aims to classify the algorithmic complexity of numberings.

The paper is inspired by the recent advances in the area of punctual
algebraic structures. We recast the classical studies of numberings in the
punctual setting—we study punctual numberings, i.e. uniform computa-
tions for families of primitive recursive functions. The reducibility ≤pr

between punctual numberings is induced by primitive recursive func-
tions. This approach gives rise to upper semilattices of degrees, which
are called Rogers pr-semilattices. We prove that any infinite Rogers pr-
semilattice is dense and does not have minimal elements. Furthermore,
we give an example of infinite Rogers pr-semilattice, which is a lattice.
These results exhibit interesting phenomena, which do not occur in the
classical case of computable numberings and their semilattices.

Keywords: Numbering · Upper semilattice · Rogers semilattice ·
Primitive recursion · Friedberg numbering · Online computation ·
Punctual structure

1 Introduction

The theory of numberings gives a formal approach to studying uniform computa-
tions for classes of mathematical objects. One of the first important applications
of this theory is provided by Gödel [15], who employed an effective numbering of

The work was supported by Nazarbayev University Faculty Development Competitive
Research Grants N090118FD5342. The first author was partially supported by the
grant of the President of the Russian Federation (No. MK-1214.2019.1). The third
author was partially supported by the program of fundamental scientific researches of
the SB RAS No. I.1.1, project No. 0314-2019-0002.

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 1–12, 2020.
https://doi.org/10.1007/978-3-030-59267-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_1&domain=pdf
http://orcid.org/0000-0002-5834-2770
http://orcid.org/0000-0002-8259-4441
http://orcid.org/0000-0001-9912-6364
https://doi.org/10.1007/978-3-030-59267-7_1

2 N. Bazhenov et al.

first-order formulae in the proof of his seminal incompleteness theorems. Kleene’s
results [24], in a sense, created numberings as a separate object of study: in par-
ticular, he constructed a universal partial computable function. After that, the
foundations of the modern theory of numberings were developed by Kolmogorov
and Uspenskii [25,35] and, independently, by Rogers [33].

Let S be a countable set. A numbering of S is a surjective map ν from the
set of natural numbers ω onto S. A standard tool for measuring the algorith-
mic complexity of numberings is provided by the notion of reducibility between
numberings: A numbering ν is reducible to another numbering μ (denoted by
ν ≤ μ) if there is total computable function f(x) such that ν(n) = μ(f(n)) for
all n ∈ ω. In other words, there is an effective procedure which, given a ν-index
of an object from S, computes a μ-index for the same object.

Since 1960s, the investigations of computable numberings have become a fruit-
ful area of research. Let S be a countable family of computably enumerable (c.e.)
sets. A numbering ν of the family S is computable if the set

{〈n, x〉 : n ∈ ω, x ∈ ν(n)}
is c.e. The family S is computable if it has a computable numbering. Informally
speaking, the computability of S means that there is a procedure, which provides
a uniform enumeration of the family S.

In a standard recursion-theoretic way, the notion of reducibility between
numberings give rise to the Rogers upper semilattice (or Rogers semilattice for
short) of a computable family S: This semilattice contains the degrees of all com-
putable numberings of S. Here two numberings have the same degree if they are
reducible to each other. Rogers semilattices allow one to measure computations
of a given family and also used as a tool to classify properties of computable
numberings for different families.

To name only a few, computable numberings and the corresponding Rogers
semilattices were studied by Badaev [3,4], Ershov [11,12], Friedberg [14], Gon-
charov [16,17], Lachlan [26,27], Mal’tsev [28], Pour-El [32], Selivanov [34], and
many other researchers. Note that computable numberings are closely connected
to algorithmic learning theory (see, e.g., the recent papers [1,9,21]). For a survey
of results and bibliographical references on computable numberings, the reader
is referred to the monograph [12] and the articles [2,5,13].

Goncharov and Sorbi [19] started developing the theory of generalized
computable numberings: roughly speaking, these numberings provide uniform
descriptions for families of sets belonging to the levels of various computabi-
lity-theoretic hierarchies. In this direction, much work has been done for the
hyperarithmetical hierarchy [2,7,31] and the Ershov hierarchy [6,18,20,30].

The prior investigations in the theory of numberings are mainly motivated
by the general area of computable or effective mathematics. This area aims to
understand and calibrate the algorithmic content of mathematical objects. The
roots of this direction go back to the introduction of non-recursive mathematical
methods at the beginning of the 20th century, as discussed in [29]. Following the
agenda of computable mathematics, the theory of numberings generally employs
the Turing computability framework.

Semilattices of Punctual Numberings 3

Our paper is inspired by the recent developments in computable structure
theory: Kalimullin, Melnikov, and Ng [22] introduced the notion of a punctual (or
fully primitive recursive) structure. An infinite structure S in a finite signature
is punctual if the domain of S is equal to ω, and the basic functions and relations
of S are primitive recursive.

The notion of punctuality essentially eliminates all instances of unbounded
search in Turing computable algorithms. This feature allows one to mimic any
reasonable “online” algorithm, i.e. an algorithm, which has to make decisions
on the fly. A typical example of such an algorithm is online colouring, say, of
a tree: given the nth vertex of an input tree, you have to decide its colour
right at the moment (you cannot wait for the (n + 1)-th vertex to appear). The
reader is referred to the survey [8] for a detailed discussion of the motivation
behind punctuality, the known results in this area, and further bibliographical
references.

The aim of this paper is to introduce online computational models into the
study of numberings. Our approach is based on the punctuality paradigm of
[8,22].

Definition 1.1. Let S be a family of total functions acting from ω into ω. We
say that a numbering ν of the family S is punctual if the function

gν(n, x) := (ν(n))(x)

is primitive recursive. A family S is punctual if it has a punctual numbering.

Informally speaking, the punctuality of S means that one can promptly
(and uniformly) compute every function from S. The punctuality paradigm
requires that we have to modify the notion of the reduction between numberings
accordingly:

Definition 1.2. Let ν and μ be numberings. We say that ν is punctually
reducible to μ, denoted by ν ≤pr μ, if there is a primitive recursive function
f : ω → ω such that

ν(n) = μ(f(n)), for all n ∈ ω.

In this case, we say that f punctually reduces ν to μ.

In a natural way, Definitions 1.1 and 1.2 give rise to the notion of Rogers
pr-semilattice of a punctual family S, see Sect. 2 for a formal definition. Most
of the problems on numberings in terms of Rogers semilattices, in the general
setting, can be formulated as follows:

– Find global algebraic properties of Rogers semilattices (such as cardinality,
type of the algebraic structure, ideals, segments, covers, etc.)

– Describe invariants, and among them the number of maximal and minimal
elements, to distinguish different Rogers semilattices.

– Classify numberings which generate special elements in Rogers semilattices
(extremal elements, limit points, split elements, etc.).

4 N. Bazhenov et al.

Based on the motivation above, in our paper we show that the theory of
punctual numberings exhibits striking differences with the classical numbering
theory—The main results of the article can be summarized as follows. Let S be
an infinite punctual family.

– Below an arbitrary degree from Rpr(S), one can build an infinite descending
chain and an infinite antichain (Theorems 3.1 and 4.1). In contrast, in the
classical setting, the Rogers semilattice of, say, the family T0 := {∅}∪{{i} : i ∈
ω} has the least element.

– The semilattice Rpr(S) is dense (Theorem 6.1), i.e. given two degrees a < b,
there is always a degree c with a < c < b. On the other hand, standard
recursion-theoretic methods show that the classical Rogers semilattice of T0

has an initial segment containing precisely two degrees.
– There is a simple example of a family S1 such that the structure Rpr(S1) is

an infinite lattice (Proposition 5.1). Note that Selivanov [34] proved that any
infinite classical Rogers semilattice cannot be a lattice.

The proofs of these results employ some techniques developed for finitely gener-
ated punctual structures in [22] and Section 7 of [8].

2 Preliminaries and General Facts

Given a total function f : ω → ω and a non-zero natural number m, by f � m
we denote the following tuple:

f � m := (f(0), f(1), . . . , f(m − 1)).

For a set A ⊆ ω, by χA we denote the characteristic function of A. For a pair of
natural numbers (k, �), the value 〈k, �〉 is its standard Cantor index, i.e.

〈k, �〉 =
(k + �)(k + � + 1)

2
+ k.

Suppose that ν is a numbering of a family S0, and μ is a numbering of a
family S1. Note that the condition ν ≤ μ always implies that S0 ⊆ S1. Clearly,
if ν ≤pr μ, then ν ≤ μ.

Numberings ν and μ are equivalent (denoted by ν ≡ μ) if ν ≤ μ and μ ≤ ν.
The punctual equivalence ≡pr is defined in a similar way. The numbering ν ⊕ μ
of the family S0 ∪ S1 is defined as follows:

(ν ⊕ μ)(2x) = ν(x), (ν ⊕ μ)(2x + 1) = μ(x).

It is not hard to establish the following fact (see, e.g., Proposition 3 in [12,
p. 36]). If � ∈ {≤,≤pr} and ξ is a numbering of a family S2, then

(ν � ξ &μ � ξ) ⇔ (ν ⊕ μ � ξ).

Let S be a punctual family of functions. By Compr(S) we denote the set of all
punctual numberings of S. Since the relation ≡pr is a congruence on the structure

Semilattices of Punctual Numberings 5

(Compr(S);≤pr,⊕), we use the same symbols ≤pr and ⊕ on numberings of S
and on ≡pr-equivalence classes of these numberings.

The quotient structure Rpr(S) := (Compr(S)/≡pr ;≤pr,⊕) is an upper semi-
lattice. We call the structure Rpr(S) the Rogers pr-semilattice of the punctual
family S.

Let T be a family of (Turing) computable functions acting from ω into ω. A
numbering ν of the family T is computable if the function gν from Definition 1.1 is
computable. Note that this definition is consistent with the notion of computable
numbering from the introduction: If we identify functions from T with their
graphs, then we will get precisely the same notions.

We say that a family T is Turing computable if it has a computable number-
ing. The definition of Rogers semilattice Rc(T) is obtained in a similar way to
the semilattice Rpr(S), modulo the following modification: one needs to consider
all computable numberings of T and the standard reducibility ≤ between them.

If ν is a numbering, then by ην we denote the corresponding equivalence
relation on ω:

m ην n ⇔ ν(m) = ν(n).

A numbering ν is negative if the relation ην is co-c.e., i.e. ην is the complement
of a c.e. set. A numbering ν is decidable if the relation ην is (Turing) computable.
Numbering ν is Friedberg if ην is the identity relation.

2.1 Basics of Punctuality

The restricted Church–Turing thesis for primitive recursive functions says the
following: A function is primitive recursive if and only if it can be described
by an algorithm that uses only bounded loops. Informally speaking, one needs
to eliminate all instances of while ... do, repeat ... until, and goto in a
Pascal-like programming language.

Our proofs will exploit the restricted Church–Turing thesis without an
explicit reference.

We fix a computable list (pe)e∈ω of all unary primitive recursive functions.
We emphasize that the list is computable, but it cannot be primitive recursive.
Nevertheless, the following function can be treated as a punctual object:

pe[t](x) :=

⎧
⎪⎨

⎪⎩

pe(x), if the value pe(x) is computed in
at most t computational steps,

undefined, otherwise.

Without loss of generality, one may also assume the following: if pe(x) is equal
to N , then for any t ≤ max(e, x,N), the value pe[t](x) is undefined. The formal
details can be recovered from Section 10 of [8].

2.2 First Facts About Punctual Numberings

Proposition 2.1. Let S be a finite punctual family. Then the semilattice
Rpr(S) contains precisely one element.

6 N. Bazhenov et al.

Proof. Suppose that S = {f0, f1, . . . , fm}. We fix a natural number N such that
the strings fi � N , i ≤ m, are pairwise different.

It is sufficient to establish the following fact: For arbitrary punctual number-
ings ν and μ of S, one can build a function g, which punctually reduces ν to
μ.

The desired g is constructed as follows. We fix indices ai, i ≤ m, such that
μ(ai) = fi. For an arbitrary index k ∈ ω, we promptly find the number j ≤ m
such that ν(k) � N = fj � N . Then we define g(k) := aj . �

Let T be an infinite, Turing computable family of functions. Mal’tsev [28]
showed that every computable numbering of T is negative. Ershov [10] proved
that for any computable numbering ν of T , there is a computable Friedberg
numbering μ of T such that μ ≤ ν.

Here we adapt these facts to the punctual setting.

Definition 2.1. Let S be a punctual family, and let ν be a punctual numbering
of S. We say that ν is strongly punctually decidable (or spd for short) if it
satisfies the following:

1. the equivalence relation ην is primitive recursive, and
2. for any ην-equivalence class C, either C contains only one element, or C =

[0]ην
.

Proposition 2.2. Suppose that S is a punctual family, and ν is a punctual
numbering of S. Then:

(a) ν is negative, and
(b) there is a strongly punctually decidable numbering μ ∈ Compr(S) such that

μ ≤pr ν.

Proof. The item (a) is an easy corollary of the Mal’tsev’s result mentioned above.
We sketch the proof of the item (b).

Since the numbering ν is negative, the set

Iν := {n ∈ ω : (∀i < n)(ν(i) �= ν(n))}

is computably enumerable. Choose a primitive recursive function h such that
range(h) = Iν . We define a new primitive recursive function

ĥ(x) :=

{
h(x), if (∀i < x)(h(i) �= h(x)),
h(0), otherwise.

The desired numbering is defined as μ := ν ◦ ĥ. It is not hard to establish that
μ satisfies the conditions of the proposition. �

Semilattices of Punctual Numberings 7

3 Warming Up: Absence of Minimal Elements

The section contains an introduction to punctual constructions: we give a
detailed proof of the result below, which serves as a good starting point.

Theorem 3.1. Let S be an infinite punctual family. Then the semilattice
Rpr(S) does not contain minimal elements. Consequently, the structure Rpr(S)
is infinite.

Proof. Let α be a punctual numbering of S. By Proposition 2.2, there is a spd
numbering ν ∈ Compr(S) such that ν ≤pr α. In order to prove the theorem, we
build a numbering μ ∈ Compr(S) such that μ ≤pr ν and ν �pr μ.

Our construction will satisfy the following series of requirements:

Pe: The function pe does not punctually reduce ν to μ.

The key difference between our construction and a typical injury argument
(of recursion theory) is the following: Our requirements do not injure each other,
and we will satisfy only one requirement Pe at a time.

Strategy for Pe. Suppose that the Pe-strategy starts working at a stage se of
the construction, and Ne is the least index such that the object μ(Ne) is still
undefined at the beginning of the stage se.

We wait until the first stage t > se with the following properties:

(a) There is a (least) number we ≤ t such that we ≥ e, ν(we) �= ν(0), and we
have not used the object ν(we) in our definition of μ before.

(b) For this particular we, the value pe[t](we) is already defined.

Note that checking whether ν(we) is equal to ν(0) is a punctual procedure, since
the numbering ν is spd.

While waiting for this t to appear, we should not delay the definition of the
numbering μ, so, one by one, we put:

μ(Ne) := ν(0), μ(Ne + 1) := ν(0), μ(Ne + 2) := ν(0),

When the desired stage t is achieved, we proceed as follows:

1. For each k ≤ pe(we), if the object μ(k) is still undefined, then put μ(k) :=
ν(0).

2. Let m be the least index such that at this moment, μ(m) is still undefined.
Set μ(m + �) := ν(�), for every � ≤ we.

It is clear that the described actions ensure that the requirement Pe is for-
ever satisfied: Our choice of the witness we guarantees that we have ν(we) �=
μ(pe(we)).

The construction is arranged as follows: We start the P0-strategy and wait
until it is satisfied. When P0 is satisfied, we immediately start the P1-strategy.
After P1 is satisfied, we start P2, etc.

8 N. Bazhenov et al.

Verification. Since the family S is infinite, each strategy Pe will eventually
find its witness we, and after that, Pe will eventually become satisfied. Therefore,
we deduce ν �pr μ.

The constructed numbering μ is punctual: Indeed, for an index k ∈ ω, one
can just look at the stage k+1 of the described construction. At this stage k+1,
we can promptly find an index r(k) such that μ(k) is equal to ν(r(k)). This
shows the punctuality of μ, and furthermore, the function r punctually reduces
μ to ν.

Informally speaking, the punctuality of μ is ensured by elimination of
unbounded searches: Surely, the Pe-strategy wants to “catch” a particularly
good stage t, but this quest for t does not delay the construction at all—while
doing the t-search, our definition of μ just executes a straightforward filler action
(copying ν(0) for appropriate μ-indices).

Now it is enough to show that the numbering μ has an index for every element
of S. This is ensured by the assignment μ(m + �) := ν(�) given above—after
satisfying Pe, μ copies the long initial segment ν(0), ν(1), . . . , ν(we). �

The classical result of Khutoretskii [23] shows that for any computable family
T , its semilattice Rc(T) is either one-element, or infinite. Proposition 2.1 and
Theorem 3.1 together imply that the punctual setting exhibits a similar behavior:

Corollary 3.1. For an arbitrary punctual family S, its Rogers pr-semilattice is
either one-element or infinite.

4 Infinite Antichain

Theorem 4.1. Let S be an infinite punctual family, and β be a punctual num-
bering of S. Then the semilattice Rpr(S) contains an infinite antichain under
the degree of β.

Proof. Here we give a construction, which builds two ≤pr-incomparable punctual
numberings ν and μ of S. This construction admits a straightforward general-
ization to the case of countably many incomparable elements.

We apply Proposition 2.2 and fix a spd numbering α of the family S such
that α ≤pr β. Our numberings ν and μ will copy different pieces of α. We satisfy
the following series of requirements:

Pe: pe : ν �pr μ, i.e. pe does not punctually reduce ν to μ.
Qi: pi : μ �pr ν.

We fix a (punctual) ordering of the requirements: P0 < Q0 < P1 < Q1 <
This means that we will satisfy P0, then Q0, then P1, etc.

The Pe- and Qi-requirements are very similar, so we give a description only
for a Pe-strategy. Essentially, this is a slightly modified version of the strategy
from Theorem 3.1.

Semilattices of Punctual Numberings 9

The Pe-strategy. By the background action of the Pe-strategy, we mean the
following: Whenever we are waiting for some object to be found, we do not delay
our construction, and we just put

ν(N) = μ(N) := α(0), ν(N + 1) = μ(N + 1) := α(0), . . . ,

starting with an appropriate index N . This N is typically clear from the context
(recall the Ne from Theorem 3.1).

The strategy Pe waits until the first (large enough) stage t with the following
property: There is an index w ≤ t such that α(w) �= α(0), and the object α(w)
has not been employed in the construction before.

When this w is found, we choose the least me such that ν(me) is still unde-
fined, and we set ν(me) := α(w). We wait for the first stage t1 such that the
value pe[t1](me) is defined. After that, proceed as follows:

– For every k ≤ pe(me), if μ(k) is still undefined, then put μ(k) := α(0).
– Ensure that both μ and ν copy pieces of α: set μ(N0+�) = ν(N1+�) := α(�),

where � ≤ w and the indices N0, N1 are chosen in an appropriate way.

These actions guarantee that ν(me) = α(w) �= μ(pe(me)), and the Pe-
requirement is satisfied.

The Qi-strategy is essentially the same as that of Pe, modulo the following
modification: ν and μ need to switch places in the strategy description.

The construction is arranged similarly to Theorem 3.1: our requirements are
satisified one by one, according to their priority ordering.

Verification mimics that of Theorem 3.1. Clearly, the numberings ν and μ
are ≤pr-incomparable. Moreover, they are punctual, and both of them can be
punctually reduced to α. The copying of large α-pieces implies that both ν and
μ index the whole family S. �

5 Lattices

Selivanov [34] obtained the following result: For any computable family T , if the
semilattice Rc(T) is infinite, then it cannot be a lattice.

The propositions of this section show that the result of Selivanov cannot be
transferred to the punctual setting: Sometimes, an infinite Rpr(S) is a lattice,
and sometimes it is not.

Proposition 5.1. Let S be a punctual family containing the following functions:
for i ∈ ω,

gi(x) := i, for all x.

Then the structure Rpr(S) is an infinite lattice with the greatest element.

For reasons of space, the proof of Proposition 5.1 is omitted.

Proposition 5.2. There exists an infinite punctual family S such that the semi-
lattice Rpr(S) contains a minimal pair. Consequently, Rpr(S) is not a lattice.

The desired family S of Proposition 5.2 is defined via its punctual Friedberg
numbering: for k, � ∈ ω, set ν〈k, 0〉 := χ{2k} and ν〈k, � + 1〉 := χ{2k,2�+1}. For
reasons of space, further proof is omitted.

10 N. Bazhenov et al.

6 Density

Recall that Theorem 3.1 proves that every infinite Rogers pr-semilattice is down-
wards dense. Proposition 5.1 gives an example of infinite Rpr(S) having the
greatest element. Thus, in general, pr-semilattices are not upwards dense.

This section contains two results. First, we provide an example of upwards
dense pr-semilattice. After that, we establish a general result (Theorem 6.1)
which proves density for an arbitrary infinite Rpr(S).

Proposition 6.1. Let S be a punctual family containing the following functions:
gi := χ{i}, for i ∈ ω. Then the structure Rpr(S) does not have maximal elements.

Proof (sketch). Let ν be an arbitrary punctual numbering of the family S. In
order to prove the proposition, we want to build a punctual numbering μ of some
subfamily S0 ⊆ S such that μ �pr ν. Indeed, the existence of such μ is sufficient
for us, since this implies that ν ≤pr ν ⊕ μ and ν ⊕ μ �pr ν.

We satisfy the series of requirements

Pe: pe : μ �pr ν.

The Pe-strategy. Choose the least w such that we have not talked about the
object μ(w) before. Wait for the least stage s such that the value pe[s](w) is
defined, and there is a number N ≤ s with (ν(pe(w)))(N) = 1.

While waiting for this s, just propagate

μ(w)(0) := 0, μ(w)(1) := 0, μ(w)(2) := 0,

When the stage s and the corresponding N is found, set μ(w) := χ{N+s+1}.
The construction is arranged in a straightforward way. We note that in order

to ensure the punctuality of μ, the Pe-strategy also has to implement some simple
background actions—e.g., one by one, we set μ(w+1) := χ{0}, μ(w+2) := χ{0},
etc.

Clearly, μ indexes a subfamily of S. Since every Pe is eventually satisfied, we
have μ �pr ν. �

Theorem 6.1. Let S be an infinite punctual family. Suppose that ν and μ are
punctual numberings of S such that ν <pr μ, i.e. ν ≤pr μ and ν �≡pr μ. Then
there is a numbering ξ ∈ Compr(S) such that ν <pr ξ <pr μ.

For reasons of space, the proof of Theorem 6.1 is omitted.

Acknowledgements. Part of the research contained in this paper was carried out
while the first and the last authors were visiting the Department of Mathematics of
Nazarbayev University, Nur-Sultan. The authors wish to thank Nazarbayev University
for its hospitality.

Semilattices of Punctual Numberings 11

References

1. Ambos-Spies, K., Badaev, S., Goncharov, S.: Inductive inference and computable
numberings. Theor. Comput. Sci. 412(18), 1652–1668 (2011). https://doi.org/10.
1016/j.tcs.2010.12.041

2. Badaev, S., Goncharov, S.: Computability and numberings. In: Cooper, S.B., Löwe,
B., Sorbi, A. (eds.) New Computational Paradigms, pp. 19–34. Springer, New York
(2008). https://doi.org/10.1007/978-0-387-68546-5 2

3. Badaev, S.A.: Computable enumerations of families of general recursive functions.
Algebra Log. 16(2), 83–98 (1977). https://doi.org/10.1007/BF01668593

4. Badaev, S.A.: Minimal numerations of positively computable families. Algebra Log.
33(3), 131–141 (1994). https://doi.org/10.1007/BF00750228

5. Badaev, S.A., Goncharov, S.S.: Theory of numberings: open problems. In: Cholak,
P., Lempp, S., Lerman, M., Shore, R. (eds.) Computability Theory and Its Appli-
cations, Contemporary Mathematics, vol. 257, pp. 23–38. American Mathematical
Society, Providence (2000). https://doi.org/10.1090/conm/257/04025

6. Badaev, S.A., Lempp, S.: A decomposition of the Rogers semilattice of a family
of d.c.e. sets. J. Symb. Logic 74(2), 618–640 (2009). https://doi.org/10.2178/jsl/
1243948330

7. Bazhenov, N., Mustafa, M., Yamaleev, M.: Elementary theories and hereditary
undecidability for semilattices of numberings. Arch. Math. Log. 58(3–4), 485–500
(2019). https://doi.org/10.1007/s00153-018-0647-y

8. Bazhenov, N., Downey, R., Kalimullin, I., Melnikov, A.: Foundations of online
structure theory. Bull. Symb. Log. 25(2), 141–181 (2019). https://doi.org/10.1017/
bsl.2019.20

9. Case, J., Jain, S., Stephan, F.: Effectivity questions for Kleene’s recursion theorem.
Theor. Comput. Sci. 733, 55–70 (2018). https://doi.org/10.1016/j.tcs.2018.04.036

10. Ershov, Y.L.: Enumeration of families of general recursive functions. Sib. Math. J.
8(5), 771–778 (1967). https://doi.org/10.1007/BF01040653

11. Ershov, Y.L.: On computable enumerations. Algebra Log. 7(5), 330–346 (1968).
https://doi.org/10.1007/BF02219286

12. Ershov, Y.L.: Theory of Numberings. Nauka, Moscow (1977). (in Russian)
13. Ershov, Y.L.: Theory of numberings. In: Griffor, E.R. (ed.) Handbook of Com-

putability Theory. Studies in Logic and the Foundations of Mathematics, vol. 140,
pp. 473–503. North-Holland, Amsterdam (1999). https://doi.org/10.1016/S0049-
237X(99)80030-5

14. Friedberg, R.M.: Three theorems on recursive enumeration. I. Decomposition. II.
Maximal set. III. Enumeration without duplication. J. Symb. Log. 23(3), 309–316
(1958). https://doi.org/10.2307/2964290

15. Gödel, K.: Über formal unentscheidbare Sätze der Principia Mathematica und
verwandter Systeme I. Monatshefte für Mathematik und Physik 38(1), 173–198
(1931). https://doi.org/10.1007/BF01700692

16. Goncharov, S.S.: Computable single-valued numerations. Algebra Log. 19(5), 325–
356 (1980). https://doi.org/10.1007/BF01669607

17. Goncharov, S.S.: Positive numerations of families with one-valued numerations.
Algebra Log. 22(5), 345–350 (1983). https://doi.org/10.1007/BF01982111

18. Goncharov, S.S., Lempp, S., Solomon, D.R.: Friedberg numberings of families of
n-computably enumerable sets. Algebra Log. 41(2), 81–86 (2002). https://doi.org/
10.1023/A:1015352513117

https://doi.org/10.1016/j.tcs.2010.12.041
https://doi.org/10.1016/j.tcs.2010.12.041
https://doi.org/10.1007/978-0-387-68546-5_2
https://doi.org/10.1007/BF01668593
https://doi.org/10.1007/BF00750228
https://doi.org/10.1090/conm/257/04025
https://doi.org/10.2178/jsl/1243948330
https://doi.org/10.2178/jsl/1243948330
https://doi.org/10.1007/s00153-018-0647-y
https://doi.org/10.1017/bsl.2019.20
https://doi.org/10.1017/bsl.2019.20
https://doi.org/10.1016/j.tcs.2018.04.036
https://doi.org/10.1007/BF01040653
https://doi.org/10.1007/BF02219286
https://doi.org/10.1016/S0049-237X(99)80030-5
https://doi.org/10.1016/S0049-237X(99)80030-5
https://doi.org/10.2307/2964290
https://doi.org/10.1007/BF01700692
https://doi.org/10.1007/BF01669607
https://doi.org/10.1007/BF01982111
https://doi.org/10.1023/A:1015352513117
https://doi.org/10.1023/A:1015352513117

12 N. Bazhenov et al.

19. Goncharov, S.S., Sorbi, A.: Generalized computable numerations and nontrivial
Rogers semilattices. Algebra Log. 36(6), 359–369 (1997). https://doi.org/10.1007/
BF02671553

20. Herbert, I., Jain, S., Lempp, S., Mustafa, M., Stephan, F.: Reductions between
types of numberings. Ann. Pure Appl. Logic 170(12), 102716 (2019). https://doi.
org/10.1016/j.apal.2019.102716

21. Jain, S., Stephan, F.: Numberings optimal for learning. J. Comput. Syst. Sci. 76(3–
4), 233–250 (2010). https://doi.org/10.1016/j.jcss.2009.08.001

22. Kalimullin, I., Melnikov, A., Ng, K.M.: Algebraic structures computable without
delay. Theor. Comput. Sci. 674, 73–98 (2017). https://doi.org/10.1016/j.tcs.2017.
01.029

23. Khutoretskii, A.B.: On the cardinality of the upper semilattice of computable
enumerations. Algebra Log. 10(5), 348–352 (1971). https://doi.org/10.1007/
BF02219842

24. Kleene, S.C.: Introduction to Metamathematics. Van Nostrand, New York (1952)
25. Kolmogorov, A.N., Uspenskii, V.A.: On the definition of an algorithm. Uspehi Mat.

Nauk. 13(4), 3–28 (1958). (in Russian)
26. Lachlan, A.H.: Standard classes of recursively enumerable sets. Z. Math.

Logik Grundlagen Math. 10(2–3), 23–42 (1964). https://doi.org/10.1002/malq.
19640100203

27. Lachlan, A.H.: On recursive enumeration without repetition. Z. Math.
Logik Grundlagen Math. 11(3), 209–220 (1965). https://doi.org/10.1002/malq.
19650110305

28. Mal’cev, A.I.: Positive and negative numerations. Sov. Math. Dokl. 6, 75–77 (1965)
29. Metakides, G., Nerode, A.: The introduction of nonrecursive methods into mathe-

matics. In: The L. E. J. Brouwer Centenary Symposium (Noordwijkerhout, 1981).
Studies in Logic and the Foundations of Mathematics, vol. 110, pp. 319–335. North-
Holland, Amsterdam (1982). https://doi.org/10.1016/S0049-237X(09)70135-1

30. Ospichev, S.S.: Friedberg numberings in the Ershov hierarchy. Algebra Log. 54(4),
283–295 (2015). https://doi.org/10.1007/s10469-015-9349-2

31. Podzorov, S.Y.: Arithmetical D-degrees. Sib. Math. J. 49(6), 1109–1123 (2008).
https://doi.org/10.1007/s11202-008-0107-8

32. Pour-El, M.B.: Gödel numberings versus Friedberg numberings. Proc. Am. Math.
Soc. 15(2), 252–256 (1964). https://doi.org/10.2307/2034045

33. Rogers, H.: Gödel numberings of partial recursive functions. J. Symb. Log. 23(3),
331–341 (1958). https://doi.org/10.2307/2964292

34. Selivanov, V.L.: Two theorems on computable numberings. Algebra Log. 15(4),
297–306 (1976). https://doi.org/10.1007/BF01875946

35. Uspenskii, V.A.: Systems of denumerable sets and their enumeration. Dokl. Akad.
Nauk SSSR 105, 1155–1158 (1958). (in Russian)

https://doi.org/10.1007/BF02671553
https://doi.org/10.1007/BF02671553
https://doi.org/10.1016/j.apal.2019.102716
https://doi.org/10.1016/j.apal.2019.102716
https://doi.org/10.1016/j.jcss.2009.08.001
https://doi.org/10.1016/j.tcs.2017.01.029
https://doi.org/10.1016/j.tcs.2017.01.029
https://doi.org/10.1007/BF02219842
https://doi.org/10.1007/BF02219842
https://doi.org/10.1002/malq.19640100203
https://doi.org/10.1002/malq.19640100203
https://doi.org/10.1002/malq.19650110305
https://doi.org/10.1002/malq.19650110305
https://doi.org/10.1016/S0049-237X(09)70135-1
https://doi.org/10.1007/s10469-015-9349-2
https://doi.org/10.1007/s11202-008-0107-8
https://doi.org/10.2307/2034045
https://doi.org/10.2307/2964292
https://doi.org/10.1007/BF01875946

Partial Sums on the Ultra-Wide
Word RAM

Philip Bille(B) , Inge Li Gørtz , and Frederik Rye Skjoldjensen

DTU Compute, Technical University of Denmark, Kgs. Lyngby, Denmark
{phbi,inge}@dtu.dk

Abstract. We consider the classic partial sums problem on the ultra-
wide word RAM model of computation. This model extends the clas-
sic w-bit word RAM model with special ultrawords of length w2 bits
that support standard arithmetic and boolean operation and scattered
memory access operations that can access w (non-contiguous) locations
in memory. The ultra-wide word RAM model captures (and idealizes)
modern vector processor architectures.

Our main result is a new in-place data structure for the partial sum
problem that only stores a constant number of ultrawords in addition
to the input and supports operations in doubly logarithmic time. This
matches the best known time bounds for the problem (among polyno-
mial space data structures) while improving the space from superlinear
to a constant number of ultrawords. Our results are based on a simple
and elegant in-place word RAM data structure, known as the Fenwick
tree. Our main technical contribution is a new efficient parallel ultra-
wide word RAM implementation of the Fenwick tree, which is likely of
independent interest.

Keywords: Ultra-wide word RAM model · Partial sums · Fenwick tree

1 Introduction

Let A[1, . . . , n] be an array of integers of length n. The partial sums problem is
to maintain a data structure for A under the following operations:

– sum(i): return
∑i

k=1 A[k].
– update(i,Δ): set A[i] ← A[i] + Δ.

The partial sums problem is a classic and well-studied data structure prob-
lem [1–4,9,12,14,16–19,21–24,31,32,38]. Partial sums is a natural range query
problem with applications in areas such as list indexing and dynamic rank-
ing [12], dynamic arrays [3,32], and arithmetic coding [14,34]. From a lower
bound perspective, the problem has been central in the development of new
techniques for proving lower bounds [29]. In classic models of computation the
complexity of the partial sums problem is well-understood with tight logarithmic
upper and lower bounds on the operations [31]. Hence, a natural question is if
c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 13–24, 2020.
https://doi.org/10.1007/978-3-030-59267-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_2&domain=pdf
http://orcid.org/0000-0002-1120-5154
http://orcid.org/0000-0002-8322-4952
https://doi.org/10.1007/978-3-030-59267-7_2

14 P. Bille et al.

practical models of computation capturing modern hardware advances will allow
us the overcome the logarithmic barrier.

One such model is the RAM with byte overlap (RAMBO) model of com-
putation [6,7,17]. The RAMBO model extends the standard w-bit word RAM
model [20] with special words where individual bits are shared among other
words, i.e., changing a bit in a word will also change the bit in the words that
share that bit. The precise model depends on the layout of shared bits. This
memory architecture is feasible to design in hardware and prototypes have been
built [27]. In the RAMBO model Brodnik et al. [8] gave a time-space trade-off
for partial sums that uses O(nw/2τ

+ n) space and supports operations in O(τ)
time and for a parameter τ , 1 ≤ τ ≤ log log n. Here, the n term in the space
bound is for the special words with shared bits (organized in a tree layout) and
the O(nw/2τ

) term is for standard words. Plugging in constant τ , this gives an
O(nεw+n) space and constant time solution, for any ε > 0. At the other extreme,
with τ = log log n, this gives an O(n) space and O(log log n) time solution.

More recently, Farzan et al. [13] introduced the ultra-wide word RAM
(UWRAM) model of computation. The UWRAM model also extends the word
RAM model, but with special ultrawords of length w2 bits. The model sup-
ports standard arithmetic and boolean operations on ultrawords and scattered
memory access operations that access w locations in memory specified by an
ultraword in parallel. The UWRAM captures modern vector processor architec-
tures [11,28,33,36]. We present the details of the UWRAM model in Sect. 2.
Farzan et al. [13] showed how to simulate algorithms on RAMBO model on the
UWRAM model at the cost of slightly increasing space. Simulating the above
solution for partial sums they gave a time-space trade-off for partial sums that
uses O(nw/2τ

+ nw log n) space and supports operations in O(τ) time and for a
parameter τ , 1 ≤ τ ≤ log log n. For constant τ , this is O(nεw + nw log n) space
and constant time, for any ε > 0, and for τ = log log n this is O(nw log log n)
space and O(log log n) time.

1.1 Setup and Results

We revisit the partial sums problem on the UWRAM and present a simple new
algorithm that significantly improves the space overhead of the previous solu-
tions. Let A be an array of n w-bit integers. An in-place data structure for the
partial sums problem is a data structure that modifies the input array A, e.g.,
by replacing some of the entries in A, to efficiently support operations. In addi-
tion to the modified array the data structure is only allowed to store O(1) of
ultrawords. This definition extends the standard in-place/implicit data struc-
ture concept [10,15,30,35,37] to the UWRAM, by allowing a constant number
of ultrawords to be stored instead of (standard) words. Clearly, without this
modification computation on ultrawords is impossible. As in Farzan et al. [13]
we distinguish between the restricted UWRAM that supports a minimal set of
instructions on ultrawords consisting of addition, subtraction, shifts, and bitwise
boolean operations and the multiplication UWRAM that extends the instruction

Partial Sums on the Ultra-Wide Word RAM 15

set of the restricted UWRAM with a multiplication operation on ultrawords. We
show the following main result:

Theorem 1. Given an array A of n w-bit integers, we can construct in-place
partial sums data structures for A that support sum and update operations in
O(log log n) time on a restricted UWRAM.

Compared to the previous result, Theorem 1 matches the O(log log n) time bound
of Farzan et al. [13] (with parameter τ = Θ(log log n) while improving the space
overhead from O(nw log n) to a constant number of ultrawords. This is important
in practical applications since modern vector processors have a very limited
number of ultrawords available.

Technically, our solution is based on a simple and elegant in-place word RAM
data structure, called the Fenwick tree (see Sect. 3 for a detailed description).
The Fenwick tree support operations in O(log n) by sequentially traversing an
implicit tree structure. We show how to efficiently compute the access pattern on
the tree structure in parallel using prefix sum computations on ultrawords. Then,
given the locations to access we use scattered memory operations to access them
all in parallel. In total, this leads to the exponential improvement of Fenwick
trees. The main bottleneck in our algorithm is the prefix sum computation.
Interestingly, if we allow multiplication we can compute prefix sums in constant
time leading to the following Corollary for the multiplication UWRAM:

Corollary 1. Given an array A of n w-bit integers, we can construct in-place
partial sums data structures for A that support sum and update operations in
constant time on a multiplication UWRAM.

Multiplication (or prefix sum computation) is not an AC0 operation (it cannot
be implemented by a constant depth, polynomial size circuit) and therefore likely
not practical to implement on ultraword. However, Corollary 1 shows that we
can achieve significant improvements on the UWRAM with special operations.
Since UWRAM capture modern processors, we believe it is worth investigating
further, and that our work is a first step in this direction.

1.2 Outline

The paper is organized as follows. In Sect. 2 and 3 we review the UWRAM
model of computation and the Fenwick tree. In Sect. 4 we present our UWRAM
implementation of the Fenwick tree. Finally, in Sect. 4.4 we discuss extensions of
the result and open problems.

2 The Ultra-Wide Word RAM Model

The word RAM model of computation [20] consists of an infinite memory of
w-bit words and an instruction set of arithmetic, boolean, and memory access
instructions such as the ones available in standard programming languages such

16 P. Bille et al.

X〈0〉X〈1〉X〈2〉X〈w − 1〉
w

w2

Fig. 1. The layout of an ultraword of w2 divided into w words each of w bits. The
leftmost bit of each word is reserved to be a test bit.

as C. We assume that we can store a pointer into the input in a single word and
hence w ≥ log n, where n is the size of the input. The time complexity of a word
RAM algorithm is the number of instructions and the space complexity is the
number of words used by the algorithm.

The ultra-wide word RAM (UWRAM) model of computation [13] extends the
word RAM model with special ultrawords of w2 bits. We distinguish between the
restricted UWRAM that supports a minimal set of instructions on ultrawords
consisting of addition, subtraction, shifts, and bitwise boolean operations and
the multiplication UWRAM that additionally supports multiplication. The time
complexity is the number of instruction (on standard words or ultrawords) and
the space complexity is the number of (standard) words used by the algorithm.
The restricted UWRAM captures modern vector processor architectures [11,28,
33,36]. For instance, the Intel AVX-512 vector extension [33] support similar
operations on 512-bit wide words (i.e., a factor of 8 compared to 642 = 4096).

2.1 Word-Level Parallelism

Due to their similarities, we can adopt many word-level parallelism techniques
from the word RAM to the UWRAM. We briefly review the key primitives and
techniques that we will use.

Let X be an ultraword of w2 bits. We often view X as divided into w words
of w consecutive bits each. See Fig. 1. We number the words in X from right-
to-left starting from 0 and use the notation X〈j〉 to denote the jth word in X.
Similarly, the bits of each word X〈j〉 are numbered from right-to-left starting
from 0. If only the rightmost � ≤ w words in X are non-zero, we say that X
has length �. For simplicity in the presentation, we reserve the leftmost bit of
each word to be a test bit for word-level parallelism operations. One may always
remove this assumption at no asymptotic cost, e.g., by using two words in an
ultraword to simulate each single word.

We now show how to implement common operations on ultrawords that we
will use later. Most of these are already available in hardware on modern vector
processor architectures. Componentwise arithmetic and bitwise operation are
straightforward to implement using standard word-level parallelism techniques
from the word RAM. For instance, given ultrawords X and Y , we can compute
the componentwise addition, i.e., the ultraword Z such that Z〈j〉 = X〈j〉+Y 〈j〉
for j = 0, . . . , w − 1 by adding X and Y and & ’ing with the mask (01w−1)w to

Partial Sums on the Ultra-Wide Word RAM 17

clear any test bits (we use exponentiation to denote bit repetition, i.e., 031 =
0001). We can also compare X and Y componentwise by |’ing in the test bits of
X, subtracting Y , and masking out the test bits by &’ing with (10w−1)w. The jth
test bit of the result contains a 1 iff X〈j〉 ≥ Y 〈j〉. Given X and another ultraword
T containing only test bits, we can extract the words in X according to the test
bits, i.e., the ultraword E such that E〈j〉 = X〈j〉 if the jth test bit of T is 1 and
E〈j〉 = 0 otherwise. To do so we copy the test bits by a subtracting (0w−11)w

from T and &’ing the result with X. All of the above mentioned operation take
constant time on a restricted UWRAM. Given an ultraword X of length �, the
prefix sum of X is the ultraword P of length �, such that P 〈j〉 =

∑
k≤j X〈k〉.

We assume here that the integers computed in the prefix sum never exceed the
maximum size available in a word such that P 〈j〉 is always well-defined. We need
the following result.

Lemma 1. Given an ultraword X of length � we can compute the prefix sum of
X in O(log �) time on a restricted UWRAM and in O(1) time on a multiplication
UWRAM.

Proof. First consider the restricted UWRAM. We implement a standard parallel
prefix-sum algorithm [25] (see also the survey by Blelloch [5]). For simplicity, we
assume that � is a power of two. The algorithm consists of two phases that
conceptually construct and traverse a perfectly balanced binary tree T of height
log � whose leaves are the � words of X.

Given an internal node v in T , let vleft and vright denote the left and right
child of v, respectively. The first phase performs a bottom-up traversal of T and
computes for each node v an integer b(v). If v is a leaf, b(v) is the corresponding
integer in X and if v is an internal node b(v) = b(vleft) + b(vright). The second
phase performs a top-down traversal of T and computes an integer t(v). If v
is the root then t(v) = 0 and if v is an internal node then t(vleft) = t(v) and
t(vright) = t(vleft) + b(vright). After the second phase the integers at the leaves is
the prefix sum shifted by a single element and missing the last element. We shift
and add the last element to produce the final prefix sum. Since T is perfectly
balanced we can implement each level of a phase in constant time using shifting
and addition. The final shift and addition of the last element takes constant
time. It follow that the total time is O(log �). During the computation we only
need to maintain all of the values in a constant number of ultrawords.

Next consider the multiplication instruction set. We can then simply multiply
X with the constant (0w−11)w and mask out the � rightmost words of the result
to produce the prefix sum. See Hagerup [20] for a detailed description of why
this is correct. In total this uses O(1) time.

2.2 Memory Access

The UWRAM supports standard memory access operation to read or write a sin-
gle word or a sequence of w contiguous words. More interestingly, the UWRAM
also supports scattered access operations that access w memory locations (not

18 P. Bille et al.

necessarily contiguous) in parallel. Given an ultraword A containing w memory
addresses, a scattered read loads the contents of the addresses into an ultraword
X, such that X〈j〉 contains the contents of memory location A〈j〉. Given two
ultrawords A and X scattered write sets the contents memory location A〈j〉 to
be X〈j〉. Scattered memory accesses captures the memory model used by IBM’s
Cell architecture [11]. Scattered memory access operations were also proposed
by Larsen and Pagh [26] in the context of the I/O model of computation.

31 1 0 3 0 3 1 1

11 12 10 2 3 1 0 1 3 4 1 1 2

3 5 2 11 1 8 2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

A

F 24

Fig. 2. A array A and the Fenwick tree F . The lines above F indicate the partial
sum of A stored at the rightmost endpoint of the line. For instance, the F [12] =
A[9] + A[10] + A[11] + A[12] = 0 + 1 + 3 + 4 = 8.

3 Fenwick Trees

Let A be an array of n w-bit integers and assume for simplicity that n is a power
of two. The Fenwick tree [14,34] is an in-place data structure that replaces the
array A as follows. If n = 1, then leave A unchanged. Otherwise, replace all
values at even entries A[2i] by the sum A[2i − 1] + A[2i]. Then, recurse on the
subarray A[2, 4, . . . , n]. The resulting array F stores a subset of the partial sums
of A organized in a tree layout (see Fig. 1).

To answer sum(i) query, we compute a sequence of indices in F and add
the values in F at these indices together. Let rmb(x) denote the position of
the rightmost bit in an integer x. Define the sum sequence is1, . . . , i

s
r given by

is1 = i and isj = isj−1 − 2rmb(is
j−1), for j = 2, . . . , r. The final element isr is

0. We compute and return F [is1] + F [is2] + · · · + F [isr−1]. For instance, for i =
13 = (1101)2 the sum sequence is 13, 12, 8, 0 = (1101)2, (1100)2, (1000)2, (0000)2.
Hence, sum(13) = F [13]+F [12]+F [8] = 1+8+11 = 20 = A[1]+ · · ·+A[13]. We
access at most O(log n) entries in F and hence the total time for sum is O(log n).
Note that we can always recover the original array A using the sum operation,
since A[i] = sum(i) − sum(i − 1).

To compute update(i,Δ), we compute a sequence of indices in F and add Δ
to the values in F at each of these indices. Define the update sequence iu1 , . . . , iut
given by iu1 = i and iuj = iuj−1 + 2rmb(iu

j−1), for j = 2, . . . , t. The final element iut
is 2n. We set F [iu1] = F [iu1]+Δ, . . . , F [iut] = F [iut−1]+Δ. For instance, for i = 13
the update sequence is 13, 14, 16, 32. Hence, update(13, 5) adds 5 to F [13], F [14],
and F [16]. Similar to the sum operation, the total running time for update is
O(log n).

Partial Sums on the Ultra-Wide Word RAM 19

4 Partial Sums on the Ultra-Wide Word RAM

We now present an efficient implementation of Fenwick trees on the UWRAM
model of computation. We only store the Fenwick tree, as the array F described
in Sect. 3 and a constant number of ultraword constants that we use for com-
putation. We first show some basic properties of the sum and update sequences
in Sect. 4.1, before presenting our UWRAM implementation of the operations in
Sects. 4.2 and 4.3.

4.1 Computing Sum and Update Sequences

To compute the sum and update sequences we cannot directly apply the recursive
definitions, since this would need Ω(log n) steps. Instead, we show how to express
the sequences as a prefix sum that we can efficiently derive from the input integer
i. Then, using Lemma 1 we will show how to compute it in on the UWRAM in
the following sections.

Let is1, . . . , i
s
r and iu1 , . . . , iut be the sum sequence and update sequences,

respectively, for i as defined in Sect. 3. Define the offset sum sequence os
1, . . . , o

s
r−1

and offset update sequence ou
1 , . . . , ou

t−1 for i to be the sequences of differences
of the sum and update sequences, respectively, that is, os

j = isj+1 − isj , for
j = 1, . . . , r − 1 and ou

j = iuj+1 − iuj , for j = 1, . . . , t − 1. By definition, we
have that

isj = i +

⎛

⎝
∑

k<j

os
k

⎞

⎠ iuj = i +

⎛

⎝
∑

k<j

ou
k

⎞

⎠ (1)

We also have that os
j = −2rmb(is

j) and hence each sum offset is a power
of 2 corresponding to the rightmost 1 bit in isj . Thus, os

1 corresponds to the
rightmost 1 in is1 = i. Adding os

1 = −2rmb(i) (i.e., subtracting 2rmb(i)) “clears”
the rightmost 1 bit in i. Thus, os

2 corresponds to the 1 bit in i immediately to
left of the rightmost 1 bit. In general, we have that os

j = −2b, where b is the
position of the jth rightmost bit in i, for j = 1, . . . , r − 1. For instance, for
i = 13 = (1101)2 the offset sum sequence is −1,−4,−8 corresponding to the
three 1 bits in the binary representation of i.

Similarly, for the update offsets, we have that ou
j = 2rmb(iu

j). Hence, ou
1 corre-

sponds to rightmost 1 in i. Adding ou
1 = 2rmb(iu

1) clears the rightmost consecutive
group of 1 bits in i and flips the following 0 bit to 1. In general, we have that
ou

j = 2b, where b is the position of the jth rightmost 0 to the left of rmb(i), for
j = 2, . . . , t − 1. For instance, for i = 13 = (01101)2 the offset update sequence
is 1, 2, 16.

4.2 Sum

To compute the sum(i), the main idea is to first construct the sum sequence in
an ultraword, then use a scattered read to retrieve the entries from F in parallel
into another ultraword, and finally sum the entries of this ultraword to compute

20 P. Bille et al.

the final result. We do this in 3 steps as follows. See Fig. 3 for an example of the
computed ultrawords during the algorithm.

8

I 13 13 13 13

4 2 1

8O 4 1

M

1P 13 5

5 1

8 12 13

P ′

S

Fig. 3. Computing the sum sequence for i = 13 = (1011)2. Words with 0 are left
blank. I contains duplicates of i. M is a precomputed mask. O is the bitwise & of I
and M . P is the prefix sum of the non-zero words in O. P ′ is P shifted left by one
word. S is the sum sequence obtained by componentwise subtraction of P ′ from I.

Step 1: Compute Offsets Compute the ultraword O such that O〈j〉 = 2j if −2j

is an offset for i and 0 otherwise, i.e., the non-zero entries of O is the offset
sequence for i. To do so we first construct the ultraword I consisting of log n
duplicates of i, i.e., I〈j〉 = i for j = 1, . . . , log n. We then compute the bitwise
& of I and a mask M , such that M〈j〉 = 2j for j = 1, . . . , log n, i.e., bit j of
M〈j〉 = 1 and the other bits of M〈j〉 are 0. By the discussion in Sect. 4.1 the
resulting ultraword is O.

On the multiplication UWRAM we can construct I in constant time by
multiplying i with (0w−11)w. On the restricted UWRAM we can construct I in
O(log log n) time by repeatedly doubling using shifts and bitwise |. The rest of
the computation takes constant time in both models.

Step 2: Compute Sum Sequence Compute an ultraword S of length log n whose
non-zero entries is the sum sequence is1, . . . , i

s
r−1. To do so we first compute the

prefix sum P of the non-zero words of O, i.e., we compute the prefix sum of
O and then extract the words corresponding to non-zero words in O. Then we
shift P by 1 word to the left to produce an ultraword P ′ and finally subtract P ′

from I to produce an ultraword S. By (1) the non-zero words in S is the sum
sequence for i.

By Lemma 1 the prefix sum computation takes constant time on a multipli-
cation UWRAM and O(log log n) time on a restricted UWRAM. The remaining
steps take constant time.

Step 3: Compute Sum Finally, we compute F [is1] + F [is2] + · · · + F [isr−1]. To
do so we do a scattered read on S to retrieve F [iu1], . . . , F [ius−1] into a single

Partial Sums on the Ultra-Wide Word RAM 21

ultraword F ′ and compute a prefix sum on F ′. The sum is then the last word in
the result. The scattered read takes constant time. The prefix sum computation
takes constant time on a multiplication UWRAM and O(log log n) time on a
restricted UWRAM. We assume here that F [0] = 0. If not we may simply
temporarily set F [0] = 0 during the computation. Also note that it suffices to
perform the first phase of the prefix sum computation as discussed in the proof
of Lemma 1 since we only need the sum of all of the retrieved entries.

In total, the sum operation takes constant time on a multiplication UWRAM
and O(log log n) time on a restricted UWRAM.

4.3 Update

We compute update(i,Δ) similar to our algorithm for sum. We describe how to
modify each step of sum.

In step 1, we modify the computation of the ultraword O such that it now
contains the update offsets, that is, O〈j〉 = 2j if 2j is an update offset for i and
0 otherwise. To do so we now construct a mask M such that M〈j〉 contains a 0
in bit j if j is to the left of rmb(i) and 1 elsewhere. We then compute a bitwise
| of M and I and negate the result. Finally, we set word rmb(i) of the result to
be 2rmb(i). By the discussion in Sect. 4.1 the resulting ultraword is O.

In step 2, since O now contains the offsets and not the negative offsets, we
change the final subtraction to an addition to produce the update sequence
stored in a single ultraword U .

In step 3, we do a scattered read on U to retrieve F [iu1], . . . , F [ius−1] into a
single ultraword F ′. We then duplicate Δ to all words in an ultraword D and
add D to F ′ to produce an ultraword F ′′. Finally, we do a scattered write on U
and F ′′ to update F .

The changes are straightforward to implement in the same time as above.
Hence, the update operation takes constant time on a multiplication UWRAM
and O(log log n) time on a restricted UWRAM.

In summary, we use O(log log n) time on a restricted UWRAM and O(1) time
on a multiplication UWRAM for both operation. We only store the Fenwick tree
in the array F and a constant number of ultrawords. This completes the proof
of Theorem 1 and Corollary 1.

4.4 Extensions and Open Problems

We sometimes also consider the following operations in the context of partial
sums:

– access(i): return A[i].
– select(j): return the smallest i such that sum(i) ≥ j

As mentioned access is trivial to support since A(i) = sum(i) − sum(i − 1). In
contrast, the select operation do not seem to easily lend itself to an efficient par-
allel implementation on the UWRAM. While it is straightforward to implement

22 P. Bille et al.

in O(log n) time by “top-down” traversal of the Fenwick tree our techniques do
not appear be useful to speed up this solution on the UWRAM. We leave it as
an open problem to investigate the complexity of the select operation on the
UWRAM.

Our results leave the precise relation between UWRAM and RAMBO model
of computation open. While Farzan et al. [13] show how to simulate RAMBO
algorithms with a small overhead in space our results show that a direct app-
roach to designing UWRAM algorithms can produce significantly better results.
We wonder what the precise relation between the models are and if stronger
simulation results are possible.

References

1. Ben-Amram, A.M., Galil, Z.: A generalization of a lower bound technique due to
Fredman and Saks. Algorithmica 30(1), 34–66 (2001)

2. Ben-Amram, A.M., Galil, Z.: Lower bounds for dynamic data structures on alge-
braic RAMs. Algorithmica 32(3), 364–395 (2002)

3. Bille, P., et al.: Dynamic relative compression, dynamic partial sums, and substring
concatenation. Algorithmica 80(11), 3207–3224 (2018). Announced at ISAAC 2016

4. Bille, P., Christiansen, A.R., Prezza, N., Skjoldjensen, F.R.: Succinct partial sums
and Fenwick trees. In: Fici, G., Sciortino, M., Venturini, R. (eds.) SPIRE 2017.
LNCS, vol. 10508, pp. 91–96. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-67428-5 8

5. Blelloch, G.E.: Prefix sums and their applications. In: Synthesis of Parallel Algo-
rithms (1990)

6. Brodnik, A.: Searching in constant time and minimum space (Minimae res magni
momenti sunt). Ph.D. thesis, University of Waterloo (1995)

7. Brodnik, A., Carlsson, S., Fredman, M.L., Karlsson, J., Munro, J.I.: Worst case
constant time priority queue. J. Syst. Softw. 78(3), 249–256 (2005)

8. Brodnik, A., Karlsson, J., Munro, J.I., Nilsson, A.: An O(1) solution to the prefix
sum problem on a specialized memory architecture. In: Navarro, G., Bertossi, L.,
Kohayakawa, Y. (eds.) TCS 2006. IIFIP, vol. 209, pp. 103–114. Springer, Boston,
MA (2006). https://doi.org/10.1007/978-0-387-34735-6 12

9. Burkhard, W.A., Fredman, M.L., Kleitman, D.J.: Inherent complexity trade-offs
for range query problems. Theor. Comput. Sci. 16(3), 279–290 (1981)

10. Chan, T.M., Chen, E.Y.: Optimal in-place algorithms for 3-D convex hulls and 2-D
segment intersection. In: Proceedings of the 25th SOCG, pp. 80–87 (2009)

11. Chen, T., Raghavan, R., Dale, J.N., Iwata, E.: Cell broadband engine architecture
and its first implementation—a performance view. IBM J. Res. Dev. 51(5), 559–
572 (2007)

12. Dietz, P.F.: Optimal algorithms for list indexing and subset rank. In: Dehne, F.,
Sack, J.-R., Santoro, N. (eds.) WADS 1989. LNCS, vol. 382, pp. 39–46. Springer,
Heidelberg (1989). https://doi.org/10.1007/3-540-51542-9 5

13. Farzan, A., López-Ortiz, A., Nicholson, P.K., Salinger, A.: Algorithms in the ultra-
wide word model. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS,
vol. 9076, pp. 335–346. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
17142-5 29

14. Fenwick, P.M.: A new data structure for cumulative frequency tables. Softw. Pract.
Exp. 24(3), 327–336 (1994)

https://doi.org/10.1007/978-3-319-67428-5_8
https://doi.org/10.1007/978-3-319-67428-5_8
https://doi.org/10.1007/978-0-387-34735-6_12
https://doi.org/10.1007/3-540-51542-9_5
https://doi.org/10.1007/978-3-319-17142-5_29
https://doi.org/10.1007/978-3-319-17142-5_29

Partial Sums on the Ultra-Wide Word RAM 23

15. Franceschini, G., Muthukrishnan, S., Pǎtraşcu, M.: Radix sorting with no extra
space. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS, vol. 4698, pp.
194–205. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75520-
3 19

16. Frandsen, G.S., Miltersen, P.B., Skyum, S.: Dynamic word problems. J. ACM
44(2), 257–271 (1997)

17. Fredman, M., Saks, M.: The cell probe complexity of dynamic data structures. In:
Proceedings of the 21st STOC, pp. 345–354 (1989)

18. Fredman, M.L.: A lower bound on the complexity of orthogonal range queries. J.
ACM 28(4), 696–705 (1981)

19. Fredman, M.L.: The complexity of maintaining an array and computing its partial
sums. J. ACM 29(1), 250–260 (1982)

20. Hagerup, T.: Sorting and searching on the word RAM. In: Morvan, M., Meinel, C.,
Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 366–398. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0028575

21. Hampapuram, H., Fredman, M.L.: Optimal biweighted binary trees and the com-
plexity of maintaining partial sums. SIAM J. Comput. 28(1), 1–9 (1998)

22. Hon, W.K., Sadakane, K., Sung, W.K.: Succinct data structures for searchable
partial sums with optimal worst-case performance. Theor. Comput. Sci. 412(39),
5176–5186 (2011)

23. Husfeldt, T., Rauhe, T.: New lower bound techniques for dynamic partial sums
and related problems. SIAM J. Comput. 32(3), 736–753 (2003)

24. Husfeldt, T., Rauhe, T., Skyum, S.: Lower bounds for dynamic transitive closure,
planar point location, and parentheses matching. In: Karlsson, R., Lingas, A. (eds.)
SWAT 1996. LNCS, vol. 1097, pp. 198–211. Springer, Heidelberg (1996). https://
doi.org/10.1007/3-540-61422-2 132

25. Ladner, R.E., Fischer, M.J.: Parallel prefix computation. J. ACM 27(4), 831–838
(1980)

26. Larsen, K.G., Pagh, R.: I/O-efficient data structures for colored range and prefix
reporting. In: Proceedings of the 23rd SODA, pp. 583–592 (2012)

27. Leben, R., Miletic, M., Špegel, M., Trost, A., Brodnik, A., Karlsson, J.: Design of
high performance memory module on PC100. In: Proceedings of the ECSC, pp.
75–78 (1999)

28. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA Tesla: a unified
graphics and computing architecture. IEEE Micro 28(2), 39–55 (2008)

29. Miltersen, P.B.: Cell probe complexity-a survey. In: Proceedings of the 19th
FSTTCS, p. 2 (1999)

30. Munro, J.I., Suwanda, H.: Implicit data structures for fast search and update. J.
Comput. Syst. Sci. 21(2), 236–250 (1980)

31. Pǎtraşcu, M., Demaine, E.D.: Logarithmic lower bounds in the cell-probe model.
SIAM J. Comput. 35(4), 932–963 (2006). Announced at SODA 2004

32. Raman, R., Raman, V., Rao, S.S.: Succinct dynamic data structures. In: Dehne,
F., Sack, J.-R., Tamassia, R. (eds.) WADS 2001. LNCS, vol. 2125, pp. 426–437.
Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44634-6 39

33. Reinders, J.: AVX-512 Instructions. Intel Corporation, Santa Clara (2013)
34. Ryabko, B.Y.: A fast on-line adaptive code. IEEE Trans. Inf. Theory 38(4), 1400–

1404 (1992)
35. Salowe, J., Steiger, W.: Simplified stable merging tasks. J. Algorithms 8(4), 557–

571 (1987)

https://doi.org/10.1007/978-3-540-75520-3_19
https://doi.org/10.1007/978-3-540-75520-3_19
https://doi.org/10.1007/BFb0028575
https://doi.org/10.1007/3-540-61422-2_132
https://doi.org/10.1007/3-540-61422-2_132
https://doi.org/10.1007/3-540-44634-6_39

24 P. Bille et al.

36. Stephens, N., et al.: The ARM scalable vector extension. IEEE Micro 37(2), 26–39
(2017)

37. Williams, J.W.J.: Algorithm 232: heapsort. Commun. ACM 7, 347–348 (1964)
38. Yao, A.C.: On the complexity of maintaining partial sums. SIAM J. Comput. 14(2),

277–288 (1985)

Securely Computing the n-Variable
Equality Function with 2n Cards

Suthee Ruangwises(B) and Toshiya Itoh

Department of Mathematical and Computing Science,
Tokyo Institute of Technology, Tokyo, Japan

ruangwises.s.aa@m.titech.ac.jp, titoh@c.titech.ac.jp

Abstract. Research on the area of secure multi-party computation
using a deck of playing cards, often called card-based cryptography,
started from the introduction of the “five-card trick” to compute the
logical AND function by den Boar in 1989. Since then, many proto-
cols to compute various functions have been developed. In this paper, we
propose a new card-based protocol that securely computes the n-variable
equality function using 2n cards. We also show that the same technique
can be applied to compute any doubly symmetric function f : {0, 1}n →
Z using 2n cards, and any symmetric function f : {0, 1}n → Z using
2n + 2 cards.

Keywords: Card-based cryptography · Secure multi-party
computation · Equality function · Symmetric function · Doubly
symmetric function

1 Introduction

During a two-candidate election, a group of n friends decides that they should
discuss about the election only if everyone in the group supports the same candi-
date. However, each person does not know other people’s preferences and wants
to hide his/her own preference from the others unless they all support the same
candidate in order to avoid awkwardness in the conversation. How can they know
whether their preferences all coincide without leaking any other information?

In terms of secure multi-party computation, this situation can be viewed as
a group of n players where the ith player has a bit ai of either 0 or 1. Define
the equality function E(a1, ..., an) = 1 if a1 = ... = an and E(a1, ..., an) =
0 otherwise. Our goal is to design a protocol that announces only the value
of E(a1, ..., an) without leaking any other information, such as the preference
of any player or the number of players who support each candidate (not even
probabilistic information).

Secure multi-party computation is one of the most actively studied research
areas in cryptography. It involves situations where multiple parties want to com-
pare their private information without revealing it. In particular, this paper
focuses on secure multi-party computation using a deck of playing cards, often
c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 25–36, 2020.
https://doi.org/10.1007/978-3-030-59267-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_3&domain=pdf
http://orcid.org/0000-0002-2820-1301
http://orcid.org/0000-0002-1149-7046
https://doi.org/10.1007/978-3-030-59267-7_3

26 S. Ruangwises and T. Itoh

called card-based cryptography. The benefit of card-based protocols is that they
provide solutions to real-world situations using only a small deck of cards, which
is portable and can be found in everyday life, and do not require computers.
Moreover, these straightforward protocols are easy to understand and verify the
correctness and security, even for non-experts.

1.1 Related Work

The first research on card-based cryptography started in 1989 with the “five-
card trick” introduced by den Boer [3] to compute the logical AND function on
two players’ bits a and b. This protocol uses three identical ♣ cards and two
identical ♥ cards.

Throughout this paper, a bit 0 is encoded by a commitment ♣♥ and a bit
1 by a commitment ♥♣. We give each player one ♣ card and one ♥ card,
and put another ♣ card face-down on a table. The first player then places his
commitment of a face-down to the left of the ♣ card, while the second player
places his commitment of b face-down to the right of it. Then, we swap the
fourth and the fifth cards from the left, resulting in the following four possible
sequences.

♣ ♥ ♣ ♣ ♥
⇓

♣ ♥ ♣ ♥ ♣

(a, b) = (0, 0)

♣ ♥ ♣ ♥ ♣
⇓

♣ ♥ ♣ ♣ ♥

(a, b) = (0, 1)

♥ ♣ ♣ ♣ ♥
⇓

♥ ♣ ♣ ♥ ♣

(a, b) = (1, 0)

♥ ♣ ♣ ♥ ♣
⇓

♥ ♣ ♣ ♣ ♥

(a, b) = (1, 1)

Observe that there are only two possible sequences in a cyclic rotation of the
deck, ♥♣♥♣♣ and ♥♥♣♣♣, with the latter showing up if and only if a = b = 1.
We can obscure the initial position of the cards by making a random cut to
shuffle the deck into a uniformly random cyclic permutation, i.e. a permutation
uniformly chosen at random from {id, π, π2, π3, π4} where π = (1 2 3 4 5), before
turning all cards face-up. Hence, we can determine whether a ∧ b = 1 from the
cycle.

Since the introduction of the five-card trick, several other protocols to
compute the AND function have been developed. These subsequent results
[1,2,4,5,7,8,10,13,16] aimed to either reduce the number of required cards or
improve properties of the protocol involving output format, running time, type
of shuffles, etc.

Apart from the AND function protocol, various kinds of protocols have been
developed as well, such as the XOR function protocol [2,8,9], the copy protocol
[8] (creating multiple copies of the commitment), the majority function protocol
[12] (deciding whether there are more 0s or 1s in the inputs), and the adder
protocol [6] (adding bits and storing the sum in binary representation). Nishida
et al. [11] proved that any n-variable Boolean function can be computed with
2n + 6 cards, and any such function that is symmetric can be computed with
2n + 2 cards.

Securely Computing the n-Variable Equality Function with 2n Cards 27

1.2 The Six-Card Trick

For the equality function, the case n = 2 is a negation of the XOR function,
which can be easily computed with four cards. For the case n = 3, Shinagawa
and Mizuki [14] developed the following protocol called the “six-card trick” to
compute the function E(a, b, c) on three players’ bits a, b, and c using six cards.

First, the players put the commitments of a, b, and c face-down on a table
in this order from left to right. Then, we rearrange the cards into a (2 4 6)
permutation, i.e. move the second leftmost card to the fourth leftmost position,
the fourth card to the sixth position, and the sixth card to the second position,
resulting in the following eight possible sequences.

♣ ♥ ♣ ♥ ♣ ♥
⇓

♣ ♥ ♣ ♥ ♣ ♥

(a, b, c) = (0, 0, 0)

♥ ♣ ♣ ♥ ♣ ♥
⇓

♥ ♥ ♣ ♣ ♣ ♥

(a, b, c) = (1, 0, 0)

♣ ♥ ♣ ♥ ♥ ♣
⇓

♣ ♣ ♣ ♥ ♥ ♥

(a, b, c) = (0, 0, 1)

♥ ♣ ♣ ♥ ♥ ♣
⇓

♥ ♣ ♣ ♣ ♥ ♥

(a, b, c) = (1, 0, 1)

♣ ♥ ♥ ♣ ♣ ♥
⇓

♣ ♥ ♥ ♥ ♣ ♣

(a, b, c) = (0, 1, 0)

♥ ♣ ♥ ♣ ♣ ♥
⇓

♥ ♥ ♥ ♣ ♣ ♣

(a, b, c) = (1, 1, 0)

♣ ♥ ♥ ♣ ♥ ♣
⇓

♣ ♣ ♥ ♥ ♥ ♣

(a, b, c) = (0, 1, 1)

♥ ♣ ♥ ♣ ♥ ♣
⇓

♥ ♣ ♥ ♣ ♥ ♣

(a, b, c) = (1, 1, 1)

Observe that there are only two possible sequences in a cyclic rotation of
the deck, ♣♣♣♥♥♥ and ♣♥♣♥♣♥, with the latter showing up if and only if
a = b = c, i.e. E(a, b, c) = 1. Again, we can obscure the initial position of the
cards by making a random cut before turning all cards face-up, hence we can
determine the value of E(a, b, c) from the cycle.

The six-card trick has a benefit that it uses only one random cut. However,
the technique used in this protocol heavily relies on the symmetric nature of the
special case n = 3, suggesting that there might not be an equivalent protocol
using 2n cards for a general n. In fact, in [14] they found by using a computer
that in the case n = 4, an eight-card protocol that uses only one random cut
does not exist.

1.3 Our Contribution

In this paper, we develop a card-based protocol that securely computes the n-
variable equality function using 2n cards. We also show that the same technique
can be applied to compute any doubly symmetric function (see the definition
in Sect. 4.1) f : {0, 1}n → Z using 2n cards, and any symmetric function f :
{0, 1}n → Z using 2n + 2 cards.

2 Basic Operations

First, we will introduce basic operations on a deck of cards that will be used in
our protocols.

28 S. Ruangwises and T. Itoh

2.1 Random Cut

Suppose we have a sequence of cards (x0, x1, ..., xk−1). A random cut is an oper-
ation to shuffle the deck into a uniformly random cyclic permutation, shifting
the sequence into (xr, xr+1, ..., xr+k−1), where r is a uniformly random integer
from {0, 1, ..., k − 1} and the indices are taken in mod k.

? ? ... ? ⇒ ? ? ... ?
x0 x1 xk−1 xr xr+1 xr+k−1

In real world, a random cut can be performed by applying a Hindu cut, which
is a basic shuffling operation commonly used in card games [17].

2.2 Random k-Section Cut

A random k-section cut is a generalization of a random bisection cut introduced
by Mizuki and Sone [8]. Suppose we have a sequence of km cards (x0, x1, ...,
xkm−1). We divide the cards into k blocks B0, ..., Bk−1, with each block Bi

consisting of m consecutive cards xim, xim+1, ..., x(i+1)m−1.

B0 B1 Bk−1

? ? ... ? ? ? ... ? ... ? ? ... ?
x0 x1 xm−1 xm xm+1 x2m−1 x(k−1)m x(k−1)m+1 xkm−1

Then, we shuffle the blocks into a uniformly random cyclic permutation,
shifting the order of them into (Br, Br+1, ..., Br+k−1), where r is a uniformly
random integer from {0, 1, ..., k − 1} and the indices are taken in mod k. This
operation shifts the sequence of cards into (xrm, xrm+1, ..., x(r+k)m−1), where
the indices are taken in mod km.

B0 Bk−1 Br Br+k−1

? ? ... ? ... ? ? ... ? ⇒ ? ? ... ? ... ? ? ... ?

In real world, a random k-section cut can be performed by putting each block
of cards into an envelope and applying a random cut on the pile of envelopes
before taking the cards out.

2.3 XOR with a Random Bit

Recall that we encode 0 and 1 by commitments ♣♥ and ♥♣, respectively.
Suppose we have a sequence of k bits (a1, a2, ..., ak) as an input, with each
ai encoded by a commitment (xi, yi). We want to securely perform the XOR
operation with the same random bit on every input bit, i.e. output the sequence
(a1 ⊕ r, a2 ⊕ r, ..., ak ⊕ r) where r ∈ {0, 1} is a uniformly random bit.

Securely Computing the n-Variable Equality Function with 2n Cards 29

We can achieve this by applying a random 2-section cut in a way similar
to the copy protocol of Mizuki and Sone [8]. First, arrange the cards as X =
(x1, x2, ..., xk, y1, y2, ..., yk) and apply a random 2-section cut on X. Then, for
each i = 1, 2, ..., k, take the ith and the (i + k)-th cards from X in this order as
the commitment of the ith output bit.

? ? , ? ? , ... , ? ?
x1 y1 x2 y2 xk yk

⇓
? ? ... ? ? ? ... ?
x1 x2 xk y1 y2 yk
⇑ ⇓

? ? ... ? ? ? ... ? or ? ? ... ? ? ? ... ?
x1 x2 xk y1 y2 yk y1 y2 yk x1 x2 xk

⇓ ⇓
? ? , ? ? , ... , ? ? or ? ? , ? ? , ... , ? ?
x1 y1 x2 y2 xk yk y1 x1 y2 x2 yk xk

Observe that after applying the random 2-section cut, the sequence X
will become either (x1, x2, ..., xk, y1, y2, ..., yk) or (y1, y2, ..., yk, x1, x2, ..., xk) with
equal probability. In the former case, the commitment of every ith output bit
will be (xi, yi), which is ai ⊕ 0; in the latter case, the commitment of every
ith output bit will be (yi, xi), which is ai ⊕ 1. Therefore, the correctness of the
operation is verified.

2.4 Adding Two Integers in Z/kZ

For k ≥ 3, we first introduce two schemes of encoding integers in Z/kZ, the
♣-scheme and the ♥-scheme. The ♣-scheme uses one ♣ card and k − 1 ♥ cards
arranged in a row. An integer i corresponds to an arrangement where the ♣ card
is the (i + 1)-th card from the left, e.g.. ♥♣♥ encodes 1 in Z/3Z. Conversely,
the ♥-scheme uses one♥ card and k − 1 ♣ cards arranged in a row. An integer i
corresponds to an arrangement where the ♥ card is the (i + 1)-th card from the
left, e.g. ♣♣♥♣ encodes 2 in Z/4Z.

Suppose we have integers a and b in Z/kZ, with a encoded in ♥-scheme by a
sequence of face-down cards X = (x0, x1, ..., xk−1), and b encoded in ♣-scheme
by a sequence of face-down cards Y = (y0, y1, ..., yk−1). We want to securely
compute the sum a + b (mod k) and have it encoded in ♥-scheme without using
any additional card.

The intuition of this protocol is that we transform a and b into a−r and b+r
for a random r ∈ Z/kZ, reveal b + r, and then shift the cards encoding a − r to
the right by b + r positions to make them encode (a − r) + (b + r) = a + b. This
technique was first used by Shinagawa et al. [15] in the context of using regular
k-gon cards to encode integers in Z/kZ.

First, take the cards from X and Y in the following order and place them on
a single row from left to right: the leftmost card of X, the rightmost card of Y ,

30 S. Ruangwises and T. Itoh

the second leftmost card of X, the second rightmost card of Y , and so on. The
cards now form a new sequence Z = (x0, yk−1, x1, yk−2, ..., xk−1, y0).

x0 x1 xk−1

X: ? ? ... ? Y : ? ? ... ? ⇒ Z: ? ? ? ? ... ? ?
x0 x1 xk−1 y0 y1 yk−1 yk−1 yk−2 y0

Apply a random k-section cut on Z, transforming the sequence into (xr,
y−r+k−1, xr+1, y−r+k−2, ..., xr+k−1, y−r) for a uniformly random r ∈ Z/kZ,
where the indices are taken in mod k.

x0 x1 xk−1 xr xr+1 xr+k−1

Z: ? ? ? ? ... ? ? ⇒ Z: ? ? ? ? ... ? ?
yk−1 yk−2 y0 y−r+k−1 y−r+k−2 y−r

Take the cards in Z from left to right and place them at these positions
in X and Y in the following order: the leftmost position of X, the rightmost
position of Y , the second leftmost position of X, the second rightmost position
of Y , and so on. We now have sequences X = (xr, xr+1, ..., xr+k−1) and Y =
(y−r, y−r+1, ..., y−r+k−1), which encode a − r and b + r, respectively.

xr xr+1 xr+k−1

Z: ? ? ? ? ... ? ? ⇒ X : ? ? ... ? Y : ? ? ... ?
y−r+k−1 y−r+k−2 y−r xr xr+1 xr+k−1 y−r y−r+1 y−r+k−1

Turn all cards in Y face-up to reveal s = b+r. Note that this revelation does
not leak any information of b because b + r has an equal probability to be any
integer in Z/kZ no matter what b is. Then, we shift the cards in X to the right
by s positions, transforming X into (xr−s, xr−s+1, ..., xr−s+k−1).

X : ? ? ... ? ⇒ X : ? ? ... ?
xr xr+1 xr+k−1 xr−s xr−s+1 xr−s+k−1

Therefore, we now have a sequence X encoding a−r+s = (a−r)+(b+r) =
a + b in ♥-scheme as desired.

3 Our Main Protocol

We get back to our main problem. Observe that if we treat each input ai as
an integer, the value of E(a1, ..., an) depends only on the sum sn =

∑n
i=1 ai.

Therefore, we will first develop a protocol to compute that sum. The intuition
of this protocol is that for each k = 2, 3, ..., n, we inductively compute the sum
sk =

∑k
i=1 ai in Z/(k+1)Z. Note that since sk is at most k, its value in Z/(k+1)Z

does not change from its actual value.

Securely Computing the n-Variable Equality Function with 2n Cards 31

3.1 Summation of the First k Bits

We will show that if we have two additional cards, one ♣ and one ♥, we can
compute the sum sk for every k = 2, 3, ..., n by the following procedure.

First, swap the two cards in the commitment of a1 and place an additional ♣
card face-down to the right of them. The resulting sequence, called C1, encodes
a1 in Z/3Z in ♥-scheme.

Case a1 = 0: ♣ ♥
Case a1 = 1: ♥ ♣

a1: ? ? ⇒

♥ ♣
♣ ♥
? ? ⇒

♥ ♣ ♣
♣ ♥ ♣

C1: ? ? ♣

Then, put an additional ♥ card face-down to the right of the commitment of
a2. The resulting sequence, called C2, encodes a2 in Z/3Z in ♣-scheme.

Case a2 = 0: ♣ ♥
Case a2 = 1: ♥ ♣

a2: ? ? ⇒

♣ ♥ ♥
♥ ♣ ♥

C2: ? ? ♥

We then apply the addition protocol introduced in Sect. 2.4 to store the sum
s2 = a1 +a2 in Z/3Z encoded in ♥-scheme in C1. We also now have two ♥ cards
and one ♣ card from C2 after we turned them face-up. These cards are called
free cards and are available to be used later in the protocol.

C1 encoding s2:

free cards from C2:

? ? ?

♣ ♥ ♥

Inductively, for each k ≥ 3, after we finish computing sk−1, we now have
a sequence C1 of k face-down cards encoding sk−1 in Z/kZ in ♥-scheme. We
also have k − 1 free ♥ cards and one free ♣ card from Ck−1 after we turned
them face-up. Append the free ♣ card face-down to the right of C1, making the
sequence now encode sk−1 in Z/(k + 1)Z in ♥-scheme. Also, place the k − 1 free
♥ cards face-down to the right of the commitment of ak. The resulting sequence,
called Ck, encodes ak in Z/(k + 1)Z in ♣-scheme.

C1 encoding sk−1:

commitment of ak:

? ? ... ?

? ?

⇒

⇒

C1 encoding sk−1:

Ck encoding ak:

? ? ... ? ♣

? ? ♥ ... ♥

free cards from Ck−1: 1×♣ , (k−1)×♥

Then, apply the addition protocol to compute the sum sk−1+ak (mod k+1)
= sk (mod k + 1) = sk and have it encoded in ♥-scheme by C1 as desired.

32 S. Ruangwises and T. Itoh

C1 encoding sk:

free cards from Ck:

? ? ... ?

1×♣ , k×♥

Therefore, starting with one additional ♣ card and one additional ♥ card,
we can compute the sum sk =

∑k
i=1 ai for every k = 2, 3, ..., n.

3.2 Putting Together

The summation protocol introduced in Sect. 3.1 requires two additional cards to
compute sk. However, we can compute the equality function without using any
additional card by the following procedure.

First, apply the random bit XOR protocol in Sect. 2.3 to transform the input
into (a1 ⊕ r, a2 ⊕ r, ..., an ⊕ r) for a random bit r ∈ {0, 1}. Then, turn the two
cards encoding the nth bit face-up to reveal an⊕r. Note that this revelation does
not leak any information of an because seeing ♣♥ and ♥♣ each has probability
1/2 no matter whether an is 0 or 1.

If the cards are ♣♥, i.e. an⊕r = 0, the equality function outputs 1 if and only
if ai ⊕ r = 0 for every i = 1, ..., n − 1, which is equivalent to

∑n−1
i=1 (ai ⊕ r) = 0.

Note that we now have one free ♣ card and one free ♥ card from the cards we just
turned face-up. With these two additional cards, we can apply the summation
protocol to compute

∑n−1
i=1 (ai ⊕ r) as desired. On the other hand, if the two

rightmost cards are ♥♣, i.e. an⊕r = 1, the equality function outputs 1 if and only
if ai ⊕r = 1 for every i = 1, ..., n−1, which is equivalent to

∑n−1
i=1 (ai ⊕r⊕1) = 0.

Therefore, we can swap the two cards encoding every bit so that each ith bit
becomes ai ⊕ r ⊕ 1 and then apply the same protocol.

Note that the final sum is encoded in ♥-scheme by a row of n cards, where
the equality function outputs 1 if and only if the sum is zero, i.e. the ♥ card
is at the leftmost position. However, we do not want to reveal any information
about the actual value of the sum except whether it is zero or not. Therefore,
we apply a final random cut on the sequence of n − 1 rightmost cards (all cards
in the row except the leftmost one) to make all the cases where the sum is not
zero indistinguishable. Finally, we turn all cards face-up and locate the position
of the ♥ card. If it is the leftmost card in the row, then output 1; otherwise
output 0.

We use one random 2-section cut in the random bit XOR operation, n − 2
random k-section cuts for computing the sum of n − 1 bits, and one random
cut in the final shuffle. Therefore, the total number of shuffles used in the whole
protocol is n.

4 Applications

4.1 Computing Other Symmetric Functions

A function f : {0, 1}n → Z is called symmetric if

f(a1, ..., an) = f(aσ1 , ..., aσn
)

Securely Computing the n-Variable Equality Function with 2n Cards 33

for any a1, ..., an and any permutation (σ1, ..., σn) of (1, ..., n). A symmetric func-
tion f is called doubly symmetric if

f(a1, ..., an) = f(1 − a1, ..., 1 − an)

for any a1, ..., an. For example, the equality function is doubly symmetric, while
the majority function is symmetric but not doubly symmetric. Another example
of a doubly symmetric function is f(a1, ..., an) = a1 ⊕ ... ⊕ an for an even n.

Observe that for any symmetric function f : {0, 1}n → Z, the value of
f(a1, ..., an) depends only on the sum

∑n
i=1 ai, hence f can be written as

f(a1, ..., an) = g

(
n∑

i=1

ai

)

for some function g : {0, ..., n} → Z. Also, if f is doubly symmetric, we have
g(a) = g(n − a) for any a ∈ {0, ..., n}.

Our protocol can also be applied to compute any doubly symmetric function.
Let f : {0, 1}n → Z be any doubly symmetric function and let g : {0, ..., n} → Z

be a function such that

f(a1, ..., an) = g

(
n∑

i=1

ai

)

.

First, we apply the random bit XOR protocol with a random bit r ∈ {0, 1} to
every input ai and then reveal an ⊕ r (without leaking any information of an

since an ⊕ r has an equal probability to be 0 and 1 no matter whether an is 0
or 1).

Since f is doubly symmetric, if an ⊕ r = 0, we have

f(a1, ..., an) = f(a1 ⊕ r, ..., an ⊕ r)

= g

(
n∑

i=1

(ai ⊕ r)

)

= g

(
n−1∑

i=1

(ai ⊕ r)

)

,

so we can apply the summation protocol to compute
∑n−1

i=1 (ai ⊕r). On the other
hand, if an ⊕ r = 1, we have an ⊕ r ⊕ 1 = 0, so

f(a1, ..., an) = f(a1 ⊕ r ⊕ 1, ..., an ⊕ r ⊕ 1)

= g

(
n∑

i=1

(ai ⊕ r ⊕ 1)

)

= g

(
n−1∑

i=1

(ai ⊕ r ⊕ 1)

)

,

34 S. Ruangwises and T. Itoh

hence we can swap the two cards encoding every bit and apply the same protocol
to compute

∑n−1
i=1 (ai ⊕ r ⊕ 1).

For each b ∈ Im f = Im g, let Pb = {a ∈ {0, 1, ..., n}|g(a) = b}. We now
have a row of n cards encoding the sum in ♥-scheme. Recall that in ♥-scheme,
an integer i corresponds to an arrangement where the (i + 1)-th card from the
left being ♥. Therefore, we can take from the row all the cards corresponding
to integers in Pb, i.e. the (i + 1)-th card from the left for every i ∈ Pb, apply a
random cut on them, and put them back into the row at their original positions
in order to make all the cases where the sum is in Pb indistinguishable. We need
to separately apply such random cut for every b ∈ Im f such that |Pb| > 1.
These random cuts ensure that turning the cards face-up does not reveal any
information about the sum except the output value of g. Finally, we turn all
cards face-up to reveal an integer s and output g(s). The number of required
cards is 2n, and the total number of shuffles is at most n − 1 + | Im f |.

For a function that is symmetric but not doubly symmetric, we can directly
apply the summation protocol to compute the sum sn =

∑n
i=1 ai, apply the

above random cut for every b ∈ Im f such that |Pb| > 1, and output g(sn),
although it requires two additional cards at the beginning. Therefore, the number
of required cards is 2n + 2, and the total number of shuffles is at most n − 1 +
| Im f |.

4.2 Optimality

There is a protocol developed by Mizuki et al. [6] that can compute the sum of
n input bits using only O(log n) cards, but their protocol restricts the order of
submission of the inputs so that the cards can be reused. Any protocol that the
inputs are submitted simultaneously requires at least 2n cards as we need two
cards for a commitment of each person’s bit, hence our protocol is the optimal
one for computing any doubly symmetric function.

For computing symmetric functions that are not doubly symmetric, the pro-
tocol of Nishida et al. [11] also uses 2n + 2 cards to compute any symmetric
function f : {0, 1}n → {0, 1}. Their protocol has a benefit that the output is in
committed-format, i.e. encoded in the same format as the input (♣♥ for 0 and
♥♣ for 1), so the output can be securely used as an input of another function.
However, our protocol uses fewer number of shuffles and also has a benefit that
the output is not restricted to be binary, hence supporting functions with more
than two possible outputs (an example of such function is the majority function
that supports the case of a tie for an even n, which has three possible outputs).

5 Future Work

For computing the equality function or any doubly symmetric function, our pro-
tocol is optimal in terms of number of cards as it matches the trivial lower bound
of 2n. However, there is still an open problem to find a committed-format pro-
tocol that uses 2n cards, or a non-committed-format one with the same number

Securely Computing the n-Variable Equality Function with 2n Cards 35

of cards but uses a fewer number of shuffles. For symmetric functions that are
not doubly symmetric, an open problem is to find a protocol that computes such
functions with less than 2n + 2 cards.

Another interesting future work is to prove the lower bound of the number
of cards or the number of shuffles required to compute such functions, either for
a committed-format protocol or for any protocol.

References

1. Abe, Y., Hayashi, Y., Mizuki, T., Sone, H.: Five-card AND protocol in committed
format using only practical shuffles. In: Proceedings of the 5th ACM on ASIA
Public-Key Cryptography Workshop (APKC 2018), pp. 3–8 (2018)

2. Crépeau, C., Kilian, J.: Discreet solitary games. In: Stinson, D.R. (ed.) CRYPTO
1993. LNCS, vol. 773, pp. 319–330. Springer, Heidelberg (1994). https://doi.org/
10.1007/3-540-48329-2 27

3. Boer, B.: More efficient match-making and satisfiability the five card trick. In:
Quisquater, J.-J., Vandewalle, J. (eds.) EUROCRYPT 1989. LNCS, vol. 434, pp.
208–217. Springer, Heidelberg (1990). https://doi.org/10.1007/3-540-46885-4 23

4. Koch, A.: The Landscape of Optimal Card-based Protocols. Cryptology ePrint
Archive https://eprint.iacr.org/2018/951/20181009:160322 (2018)

5. Koch, A., Walzer, S., Härtel, K.: Card-based cryptographic protocols using a min-
imal number of cards. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS,
vol. 9452, pp. 783–807. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48797-6 32

6. Mizuki, T., Asiedu, I.K., Sone, H.: Voting with a logarithmic number of cards. In:
Mauri, G., Dennunzio, A., Manzoni, L., Porreca, A.E. (eds.) UCNC 2013. LNCS,
vol. 7956, pp. 162–173. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-39074-6 16

7. Mizuki, T., Kumamoto, M., Sone, H.: The five-card trick can be done with four
cards. In: Wang, X., Sako, K. (eds.) ASIACRYPT 2012. LNCS, vol. 7658, pp. 598–
606. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34961-4 36

8. Mizuki, T., Sone, H.: Six-card secure AND and four-card secure XOR. In: Deng, X.,
Hopcroft, J.E., Xue, J. (eds.) FAW 2009. LNCS, vol. 5598, pp. 358–369. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02270-8 36

9. Mizuki, T., Uchiike, F., Sone, H.: Securely computing XOR with 10 cards. Aus-
tralas. J. Comb. 36, 279–293 (2006)

10. Niemi, V., Renvall, A.: Secure multiparty computations without computers. Theor.
Comput. Sci. 191, 173–183 (1998)

11. Nishida, T., Hayashi, Y., Mizuki, T., Sone, H.: Card-based protocols for any
boolean function. In: Jain, R., Jain, S., Stephan, F. (eds.) TAMC 2015. LNCS,
vol. 9076, pp. 110–121. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
17142-5 11

12. Nishida, T., Mizuki, T., Sone, H.: Securely computing the three-input majority
function with eight cards. In: Dediu, A.-H., Mart́ın-Vide, C., Truthe, B., Vega-
Rodŕıguez, M.A. (eds.) TPNC 2013. LNCS, vol. 8273, pp. 193–204. Springer, Hei-
delberg (2013). https://doi.org/10.1007/978-3-642-45008-2 16

13. Ruangwises, S., Itoh, T.: AND protocols using only uniform shuffles. In: van Bev-
ern, R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 349–358. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-19955-5 30

https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-48329-2_27
https://doi.org/10.1007/3-540-46885-4_23
https://eprint.iacr.org/2018/951/20181009:160322
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-662-48797-6_32
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-39074-6_16
https://doi.org/10.1007/978-3-642-34961-4_36
https://doi.org/10.1007/978-3-642-02270-8_36
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-319-17142-5_11
https://doi.org/10.1007/978-3-642-45008-2_16
https://doi.org/10.1007/978-3-030-19955-5_30

36 S. Ruangwises and T. Itoh

14. Shinagawa, K., Mizuki, T.: The six-card trick: secure computation of three-input
equality. In: Lee, K. (ed.) ICISC 2018. LNCS, vol. 11396, pp. 123–131. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-12146-4 8

15. Shinagawa, K., et al.: Multi-party computation with small shuffle complexity using
regular polygon cards. In: Au, M.-H., Miyaji, A. (eds.) ProvSec 2015. LNCS, vol.
9451, pp. 127–146. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
26059-4 7

16. Stiglic, A.: Computations with a deck of cards. Theor. Comput. Sci. 259, 671–678
(2001)

17. Ueda, I., Nishimura, A., Hayashi, Y., Mizuki, T., Sone, H.: How to implement
a random bisection cut. In: Mart́ın-Vide, C., Mizuki, T., Vega-Rodŕıguez, M.A.
(eds.) TPNC 2016. LNCS, vol. 10071, pp. 58–69. Springer, Cham (2016). https://
doi.org/10.1007/978-3-319-49001-4 5

https://doi.org/10.1007/978-3-030-12146-4_8
https://doi.org/10.1007/978-3-319-26059-4_7
https://doi.org/10.1007/978-3-319-26059-4_7
https://doi.org/10.1007/978-3-319-49001-4_5
https://doi.org/10.1007/978-3-319-49001-4_5

Polynomial Kernels for Paw-Free Edge
Modification Problems

Yixin Cao1(B) , Yuping Ke1, and Hanchun Yuan2

1 Department of Computing, Hong Kong Polytechnic University,
Hong Kong, China

yixin.cao@polyu.edu.hk
2 School of Computer Science and Engineering, Central South University,

Changsha, China

Abstract. Let H be a fixed graph. Given a graph G and an integer k,
the H-free edge modification problem asks whether it is possible to mod-
ify at most k edges in G to make it H-free. Sandeep and Sivadasan (IPEC
2015) asks whether the paw-free completion problem and the paw-free
edge deletion problem admit polynomial kernels. We answer both ques-
tions affirmatively by presenting, respectively, O(k)-vertex and O(k4)-
vertex kernels for them. This is part of an ongoing program that aims at
understanding compressibility of H-free edge modification problems.

Keywords: Kernelization · Paw-free graph · Graph modification

1 Introduction

A graph modification problem asks whether one can apply at most k modifi-
cations to a graph to make it satisfy certain properties. By modifications we
usually mean additions and/or deletions, and they can be applied to vertices
or edges. Although other modifications are also considered, most results in lit-
erature are on vertex deletion and the following three edge modifications: edge
deletion, edge addition, and edge editing (addition/deletion).

Compared to the general dichotomy results on vertex deletion problems [1,5],
the picture for edge modification problems is far murkier. Embarrassingly, this
remains true for the simplest case, namely, H-free graphs for fixed graphs H.
This paper is a sequel to [2], and we are aiming at understanding for which
H, the H-free edge modification problems admitting polynomial kernels. Our
current focus is on the four-vertex graphs; see Fig. 1 (some four-vertex graphs
are omitted because they are complement of ones presented here) and Table 1.1

We refer the reader to [2] for background of this research and related work.
1 Disclaimer: Independent of our work, Eiben et al. [3] obtain similar results for edge

modification problems to paw-free graphs. They are also able to develop a polynomial
kernel for the editing problem.

Supported by RGC grants 15201317 and 15226116, and NSFC grant 61972330.

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 37–49, 2020.
https://doi.org/10.1007/978-3-030-59267-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_4&domain=pdf
http://orcid.org/0000-0002-6927-438X
https://doi.org/10.1007/978-3-030-59267-7_4

38 Y. Cao et al.

(a) P4 (b) C4 (c) K4 (d) claw (e) paw (f) diamond

Fig. 1. Graphs on four vertices (their complements are omitted).

Table 1. The compressibility results of H-free edge modification problems for H being
four-vertex graphs. Note that every result holds for the complement of H; e.g., the
answers are also no when H is 2K2 (the complement of C4).

H Completion Deletion Editing

K4 Trivial O(k3) O(k3) [8]

P4 O(k3) O(k3) O(k3) [4]

Diamond Trivial O(k3) O(k8) [2]

Paw O(k) [this paper] O(k4) [this paper] O(k6) [3]

Claw Unknown Unknown Unknown

C4 No No No [4]

In this paper, we show polynomial kernels for both the completion and edge
deletion problems when H is the paw (Fig. 1(e)). They answer open problems
posed by Sandeep and Sivadasan [7].

Theorem 1. The paw-free completion problem has a 38k-vertex kernel.

Theorem 2. The paw-free edge deletion problem has an O(k4)-vertex kernel.

It is easy to see that each component of a paw-free graph is either triangle-
free or a complete multipartite graph with at least three parts [6]. This simple
observation motivates us to take the modulator approach. Here by modulator
we mean a set of vertices that intersect every paw of the input graph by at least
two vertices. Note that the deletion of all the vertices in the modulator leaves
the graph paw-free. We then study the interaction between the modulator M
and the components of G−M , which are triangle-free or complete multipartite.
We use slightly different modulators for the two problems under study.

2 Paw-Free Graphs

All graphs discussed in this paper are undirected and simple. A graph G is given
by its vertex set V (G) and edge set E(G). For a set U ⊆ V (G) of vertices, we
denote by G[U] the subgraph induced by U , whose vertex set is U and whose
edge set comprises all edges of G with both ends in U . We use G − X, where
X ⊆ V (G), as a shorthand for G[V (G) \X], which is further shortened as G− v
when X = {v}. For a set E+ of edges, we denote by G + E+ the graph obtained

Polynomial Kernels for Paw-Free Edge Modification Problems 39

by adding edges in E+ to G,—its vertex set is still V (G) and its edge set becomes
E(G)∪E+. The graph G−E− is defined analogously. A paw is shown in Fig. 1(e).

For the paw-free completion (resp., edge deletion) problem, a solution of an
instance (G, k) consists of a set E+ (resp., E−) of at most k edges such that
G+E+ (resp., G−E−) is paw-free. For a positive integer k, a k-partite graph is
a graph whose vertices can be partitioned into k different independent sets, called
parts, and a k-partite graph is complete if all the possible edges are present, i.e.,
there is an edge between every pair of vertices from different parts. A complete
multipartite graph is a graph that is complete k-partite for some k ≥ 3. Note
that here we exclude complete bipartite graphs for convenience.

Proposition 1 ([6]). A graph G is paw-free if and only if every component of
G is triangle-free or complete multipartite.

In other words, if a connected paw-free graph contains a triangle, then it is
necessarily a complete multipartite graph. Another simple fact is on the adja-
cency between a vertex and a (maximal) clique in a paw-free graph.

Proposition 2 (�2). Let K be a clique in a paw-free graph. If a vertex v is
adjacent to K, then |K \ N [v]| ≤ 1.

A set M ⊆ V (G) of vertices is a modulator of a graph G if every paw in G
intersects M by at least two vertices. Note that G−M is paw-free. The following
three propositions characterize the interaction between the modulator M and
the components of G − M .

Proposition 3 (�). Let M be a modulator of G. If v ∈ M forms a triangle with
some component C of G − M , then all the neighbors of v are in M and C.

In other words, if a vertex v in M forms a triangle with a component of G −
M , then v is a “private” neighbor of this component. As we will see, these
components (forming triangles with a single vertex from M) are the focus of our
algorithms.

Proposition 4 (�). Let G be a graph and M a modulator of G. If a vertex
v ∈ M forms a triangle with an edge in a triangle-free component C of G − M ,
then (i) v is adjacent to all the vertices of C; and (ii) C is complete bipartite.

We say that a triangle-free component of G − M is of type i if it forms
a triangle with some vertex in M , or type ii otherwise. By Proposition 4, for
each type-i triangle-free component, all its vertices have a common neighbor in
M . A component is trivial if it consists of a single vertex. Note that all trivial
components of G − M are type-ii triangle-free components.

Proposition 5. Let G be a graph and M a modulator of G. For any complete
multipartite component C of G − M and vertex v ∈ M adjacent to C, the set
of vertices in C that are nonadjacent to v is either empty or precisely one part
of C.
2 The proof of a proposition marked with a � is deferred to the full version.

40 Y. Cao et al.

Proof. Suppose that the parts of C are U1, . . . , Up. We have nothing to prove if
all the vertices in C are adjacent to v. In the following we assume that, without
loss of generality, v is adjacent to u ∈ U1 and nonadjacent to w ∈ Up. We need
to argue that v is adjacent to all vertices in the first p − 1 parts but none in the
last part. Any vertex x ∈ Ui with 1 < i < p makes a clique with u and w. It
is adjacent to v by the definition of the modulator ({u, v, w, x} cannot induce a
paw) and Proposition 2. Now that v is adjacent to some vertex from another part
(p ≥ 3), the same argument implies U1 ⊆ N(v). To see Up ∩N(v) = ∅, note that
a vertex w′ ∈ Up ∩ N(v) would form a paw together with u, v, w, contradicting
the definition of the modulator. 	

A false twin class of a graph G is a vertex set in which every vertex has
the same open neighborhood. It is necessarily independent. The following is
immediate from Proposition 5.

Corollary 1. Let M be a modulator of G, and C a complete multipartite com-
ponent of G − M . Each part of C is a false twin class of G.

The preservation of false twins by all minimum paw-free completions may be of
independent interest.

Lemma 1 (�). Let G be a graph and E+ a minimum set of edges such that
G+E+ is paw-free. A false twin class of G remains a false twin class of G+E+.

3 Paw-Free Completion

The safeness of our first rule is straightforward.

Rule 1. If a component of G contains no paw, delete it.

Behind our kernelization algorithm for the paw-free completion problem is the
following simple and crucial observation. After Rule 1 is applied, each remaining
component of G contains a paw, hence a triangle, and by Proposition 1, we
need to make it complete multipartite. We say that a vertex v and an edge
xy dominate each other if at least one of x and y is adjacent to v. Note that
an edge dominates, and is dominated by, both endpoints of this edge. Every
edge in a complete multipartite graph dominates all its vertices, and hence in a
yes-instance, every edge “almost” dominates vertices in the component.

Lemma 2 (�). Let G be a connected graph containing a paw and uv an edge
in G. We need to add at least |V (G) \ N [{u, v}]| edges incident to u or v to G
to make it paw-free.

For the paw-free completion problem, we build the modulator using the pro-
cedure in Fig. 2, whose correctness is proved in Lemma 3. Starting from an empty
set of paws, we greedily add paws: If a paw does not intersect any previously cho-
sen paw with two or more vertices, then add it. All the vertices of the selected
paws already satisfy the definition of the modulator. After that, we have two

Polynomial Kernels for Paw-Free Edge Modification Problems 41

more steps, taking all the degree-one vertices of all paws in G, and deleting a
vertex from M ∩G′ for certain component G′ of G. Their purposes are to simplify
the disposal of triangle-free components of G − M : In particular, (iii) and (iv)
of Lemma 3 are instrumental for dealing with, respectively, type-i and type-ii
triangle-free components of G − M .

Fig. 2. The construction of the modulator for G.

Lemma 3. Let (G, k) be an instance of the paw-free completion problem. The
vertex set M constructed in Fig. 2 has the following properties.

(i) The construction is correct and its result is a modulator of G.
(ii) For each component G′ of G, we need to add at least |M ∩ G′|/4 edges to

G′ to make it paw-free.
(iii) Let C be a triangle-free component of G − M . If C is nontrivial and any

vertex in C is contained in a triangle, then C is of type i.
(iv) For each isolated vertex v in G − M , there is an edge in Gv − N [v], where

Gv is the component of G containing v.

Proof. We may assume without loss of generality that G is connected and con-
tains a paw; otherwise it suffices to work on its components that contain paws
one by one, because both the construction and all the statements are component-
wise.

We denote by M ′ the set of vertices added to M in step 1. Note that it is a
modulator of G because vertices added in step 1.1 already satisfy the definition.
Let X be the set of isolated vertices in G − M ′ each of which dominates all the
edges in G. If X is empty, then step 2 is not run, M = M ′ and we are done. In the
rest, X �= ∅. We argue first that X is a false twin class. Vertices in X are pairwise
nonadjacent by definition. Suppose for contradiction that N(x1) �= N(x2) for
x1, x2 ∈ X, then there is a vertex v in N(x1) \ N(x2) or in N(x2) \ N(x1).
But then x2 does not dominate edge vx1, or x1 does not dominate edge vx2,

42 Y. Cao et al.

contradicting the definition of X. We then argue that any vertex x ∈ X is in a
triangle. By assumption, G contains a triangle uvw. If x ∈ {u, v, w}, then we are
done. Otherwise, x must be adjacent to at least two of {u, v, w} to dominate all
the three edges in this triangle. Note that N(x) ∈ M ′ because x is isolated in
G − M ′. This justifies step 2.1 of the construction of M . Note that it removes
only one vertex from M ′.

Now we prove by contradiction that M is a modulator of G. Suppose that
there is a paw F with |F ∩M | ≤ 1. By construction, |F ∩M ′| ≥ 2, which means
|F ∩ M | = 1 and the only vertex in M ′ \ M is in F . Let {v} = M ′ \ M and
{u} = F ∩ M ; note that the other two vertices of F are in V (G) \ M ′. Since
any vertex in X is isolated in G − M ′ and dominates all the edges of G, every
component of G − M ′ is trivial, which means that the two vertices in F \ {u, v}
are not adjacent. Therefore, one of u and v must be the degree-three vertex of
F , and the other is a degree-two vertex of F . But the degree-one vertex of F
has been added to M ′ in step 1.1 or 1.2, a contradiction. This justifies (i).

Let U1 and U2 be the sets of vertices added to M ′ in steps 1.1 and 1.2
respectively; U1 ∪ U2 = M ′. For each paw F added in step 1.1, at least one of
its missing edges needs to be added to G to make it paw-free. This edge is not
in any previous selected paw F ′, because we add F only when |F ∩ F ′| ≤ 1.
Therefore, we need to add at least |U1|/4 edges to G[U1] to make it paw-free. On
the other hand, each vertex v in U2 is the degree-one vertex of some paw F , (it
is possible that all other three vertices of F are in U1,) we need to add at least
one edge incident to v. Therefore, we need to add at least |U2|/2 edges incident
to vertices in U2 to G to make it paw-free. Note that these two sets of edges
we need to add are disjoint. The total number of edges we need to add to G to
make it paw-free is at least |U1|/4 + |U2|/2 ≥ |U1 ∪ U2|/4 = |M ′|/4 ≥ |M |/4.
This concludes assertion (ii).

Assertion (iii) follows from Proposition 4 if the triangle has two vertices from
C: Note that the other vertex must be from M because C itself is triangle-free.
Let the vertices in the triangle be u, v ∈ M and w ∈ C. If C contains the vertex
in M ′ \ M , then X ⊆ C because it is a false twin class, and there is a vertex in
M making a triangle with C, and it follows from Proposition 4. Now that C is a
nontrivial component of G − M ′, we can find a neighbor x of w in C. Note that
it is adjacent to at least one of u and v; otherwise, x is the degree-one vertex of
the paw induced by {x, u, v, w} and should be in M ′. As a result, x is adjacent
to at least one of u and v, and then we can use Proposition 4.

Assertion (iv) follows from the construction of M and the fact that X is a
false twin class we proved above. 	

Corollary 2. If (G, k) is a yes-instance, then M contains at most 4k vertices.

We proceed only when |M | ≤ 4k. A consequence of this modulator is a simple
upper bound on the number of vertices in all the type-ii triangle-free components
of G − M . Note that all trivial components of G − M are considered here.
Lemma 4 (�). Let (G, k) be a yes-instance to the paw-free completion problem
on which Rule 1 is not applicable, and M the modulator of G. The total number
of vertices in all the type-ii triangle-free components of G − M is at most 2k.

Polynomial Kernels for Paw-Free Edge Modification Problems 43

Hereafter we consider the components G′ of G one by one; let M ′ = M ∩
V (G′). If all components of G′ − M ′ are type-ii triangle-free components, then
a bound of the size of V (G′) \ M ′ is given in Lemma 4. In the rest, at least
one component of G′ − M ′ is a type-i triangle-free component or a complete
multipartite component. The way we bound |V (G′) \ M ′| for such a component
is to show, after applying some reductions, the minimum number of edges we
need to add to G′ to make it paw-free is linear on |V (G′) \ M ′|. The first one is
very straightforward.

Lemma 5 (�). If two components in G′ −M ′ are not type-ii triangle-free com-
ponents, then we need to add at least |V (G′) \ M ′|/2 edges to G′ to make it
paw-free.

Henceforth, G′ − M ′ has precisely one type-i triangle-free component or one
complete multipartite component, but not both. Each part of such a component
is an independent set (recall that a type-i triangle-free component is complete
bipartite by Proposition 4). The next two propositions are on independent sets
I of G. The first is about the cost of separating vertices in I into more than one
part; it also means that a sufficiently large independent set cannot be separated.
The second states that if each of the vertices in I is adjacent to all the other
vertices, then we can remove all but one vertex in I from the graph.

Proposition 6 (�). Let G′ be a connected graph containing a paw, and I an
independent set of G′. If we do not add all the missing edges between I and N(I),
then we need to add at least |I| − 1 edges among I to G′ to make it paw-free.

Proposition 7 (�). Let I be an independent set in a component G′ of a graph
G. If every vertex in I is adjacent to every vertex in V (G′) \ I, then (G, k) is
a yes-instance if and only if (G − (I \ {v}), k) is a yes-instance for any v ∈ I.
Moreover, if G − I is connected, then (G, k) is a yes-instance if and only if
(G − I, k) is a yes-instance.

We are now ready to consider type-i triangle-free components.

Lemma 6. Let C be a type-i triangle-free component of G′−M ′ and let L�R be
the bipartition of C with |L| ≥ |R|. If any of the following conditions is satisfied,
then we need to add at least |C|/32 edges to G′ to make it paw-free.

(i) |L| ≤ 4|M ′|;
(ii) there is an edge in G′ − N [L];
(iii) V (G′) �= N [C] and |L| ≤ 2|R|;
(iv) there are |L|/2 or more missing edges between L and N(L);
(v) |L| ≤ |R| + |M ′| and G − N [R] has an edge; or
(vi) |L| ≤ |R| + |M ′| and there are |R|/2 or more missing edges between R and

N(R).

Proof. (i) If |L| ≤ 4|M ′|, then |C| = |L| + |R| ≤ 2|L| ≤ 8|M ′|, and it follows
from Lemma 3(ii). (ii) By Lemma 2, we need to add at least |L| ≥ |C|/2 edges.

44 Y. Cao et al.

(iii) Since C is complete bipartite and |L| ≥ |R|, we can find a matching of
size |R| between L and R. By Lemma 2, for each vertex v ∈ V (G′) \ N [C], the
number of edges between v and C we need to add is at least |R| = (2|R|+|R|)/3 ≥
(|L|+|R|)/3 = |C|/3. (iv) By Proposition 6, we need to add at least |L|/2 ≥ |C|/4
edges.

In the rest, (v) and (vi), |L| ≤ |R|+|M ′|. We may assume none of the previous
conditions is satisfied. Therefore, |L| > 4|M ′|, which means |L| ≤ 2|R|. Also note
that the proofs for these two conditions are almost the same as conditions (ii)
and (iv) respectively. (v) By Lemma 2, we need to add at least |R| ≥ |C|/3
edges. (vi) By Proposition 6, we need to add at least |R|/2 ≥ |C|/6 edges. 	

We say that a type-i triangle-free component C of G′ − M ′ is reducible if
none of the conditions in Lemma 6 holds true.

Rule 2 (�). Let C be a type-i triangle-free component of G′ − M ′ and let L �
R be the bipartition of C with |L| ≥ |R|. If C is reducible, then add all the
missing edges between L and N(L) and all the missing edges between V (G′) \
N [L] and N(L); decrease k accordingly; and remove all but one vertex from
(V (G′) \ N [L]) ∪ L.

In the last we consider the complete multipartite components of G′ − M ′.

Lemma 7 (�). Let C be a complete multipartite component of G′ −M ′, and let
P ∗ be a largest part of C. If any of the following conditions is satisfied, then we
need to add at least |C|/12 edges to G′ to make it paw-free.

(i) |C| ≤ 3|M ′|;
(ii) there is an edge in G′ − N [C];
(iii) |P ∗| > 2|C|/3 and G′ − N [P ∗] has an edge;
(iv) |P ∗| ≤ 2|C|/3 and V (G′) �= N [C]; or
(v) |P ∗| ≤ 2|C|/3 and V (G′) = N [C], and for every part P of C,

– G′ − N [P] contains an edge, or
– there are at least |P | missing edges between V (G′) \ N [P] and N(P).

We say that a complete multipartite component C of G′ − M ′ is reducible if
none of the conditions in Lemma 7 holds true.

Rule 3 (�). Let C be a reducible complete multipartite component of G′ − M ′

and P ∗ a largest part of C.

(1) If |P ∗| > 2|C|/3, then add all the missing edges between V (G′) \ N [P ∗] and
N(P ∗); decrease k accordingly; and remove (V (G′) \ N [P ∗]) ∪ P ∗ from G.

(2) Otherwise, find a part P such that V (G′) \ N [P] is an independent set and
there are less than |P | missing edges between V (G′) \ N [P] and N(P). Add
all the missing edges between V (G′)\N [P] and N(P); decrease k accordingly;
and remove P ∪ (V (G′) \ N [P]) from G.

We summarize our kernelization algorithm for the paw-free completion prob-
lem in Fig. 3 and use it to prove our main result of this section.

Polynomial Kernels for Paw-Free Edge Modification Problems 45

Fig. 3. The kernelization algorithm for the paw-free completion problem.

Proof (of Theorem 1). We use the algorithm described in Fig. 3. The correctness
of steps 0 and 1 follows from the definition of the problem and Rule 1 respectively.
Steps 2 and 3 are justified by Lemma 3 and Corollary 2. Step 4 is correct because
of Lemma 4, and after that we only need to consider the components of G − M
that are not type-ii triangle-free components, which are dealt with in step 5.
The cost of a component of G is the minimum number of edges we need to add
to it to make it paw-free.

If two components of G′−M ′ are not type-ii triangle-free components, then by
Lemma 5, the cost of G′ is at least |V (G′)\M |/2. Therefore, there is nothing to do
for step 5.2. Henceforth, G′−M ′ has precisely one type-i triangle-free component
or one complete multipartite component, but not both. The algorithm enters
step 5.3 if there is a type-i triangle-free component C in G′−M ′. If C is reducible,
we rely on the correctness of Rule 2; otherwise, the cost of G′ is at least |C|/32
by Lemma 6. The algorithm enters step 5.4 if there is a complete multipartite
component C in G′ −M ′. If C is reducible, we rely on the correctness of Rule 3;
otherwise, the cost of G′ is at least |C|/12 by Lemma 7.

When the algorithm reaches step 6, neither of Rules 2 and 3 is applicable.
There are at most 4k vertices in M , at most 2k vertices in all the type-ii triangle-
free components of G−M . On the other hand, for each other vertex, there is an
amortized cost of at least 1/32. Therefore, if (G, k) is a yes-instance, then the
number of vertices is at most 38k, and this justifies steps 6 and 7.

We now analyze the running time of this algorithm. When each time the
algorithm calls itself in step 5.3 or 5.4, it removes at least one vertex from the
graph. Therefore, the recursive calls can be made at most n times. On the other

46 Y. Cao et al.

hand, each step clearly takes polynomial time. Therefore, the algorithm returns
in polynomial time. 	

4 Paw-Free Edge Deletion

For this problem, we construct the modulator in the standard way. We greedily
find a maximal packing of edge-disjoint paws. We can terminate by returning
“no-instance” if there are more than k of them. Let M denote the set of vertices
in all the paws found; we have |M | ≤ 4k. It is a modulator because every paw not
included shares at least an edge with some chosen one, hence at least 2 vertices.

The safeness of the following rule is straightforward: If we do not delete this
edge, we have to delete a distinct one from each of the paws, hence k + 1.

Rule 4. Let uv be an edge of G. If there exist k + 1 paws such that for any pair
of them, the only common edge is uv, then delete uv from G and decrease k by 1.

We first deal with complete multipartite components of G − M .

Rule 5 (�). Let C be a complete multipartite component of G − M . From each
part of C, delete all but k + 1 vertices.

Rule 6 (�). Let C be a complete multipartite component of G − M . Delete all
but k + 4 parts of C that are adjacent to all vertices in N(C).

Lemma 8 (�). After Rules 5 and 6 are applied, there are at most O(k3) vertices
in the complete multipartite components of G − M .

In the following, we assume that Rule 4 is not applicable. We mark some
vertices from each of the triangle-free components that should be preserved, and
then remove all the unmarked vertices. Recall that a triangle-free component of
G−M is of type i or type ii depending on whether it forms a triangle with some
vertex in M .

The following simple observation is a consequence of Proposition 3 and the
definition of type-i triangle-free components.

Corollary 3. If a vertex in M is adjacent to the triangle-free components of
G−M , then either it is adjacent to precisely one type-i triangle-free component,
or it is adjacent to only type-ii triangle-free components.

By Proposition 4, a type-i triangle-free component C of G − M is complete
bipartite.

Rule 7. Let C be all the type-i triangle-free components of G − M , and let U =⋃
C∈C V (C).

(i) For each S ⊆ M with |S| = 3 and each S′ ⊆ S, mark k + 1 vertices from
{x ∈ U | N(x) ∩ S = S′}.

Polynomial Kernels for Paw-Free Edge Modification Problems 47

(ii) For each C ∈ C with bipartition L�R do the following. For each S ⊆ M with
|S| = 2 and each S′ ⊆ S, mark k + 3 vertices from {x ∈ L | N(x) ∩ S = S′}
and k + 3 vertices from {x ∈ R | N(x) ∩ S = S′}.

Delete all the unmarked vertices from U .

Lemma 9. Rule 7 is safe.

Proof. Let G′ be the graph obtained after applying Rule 7. If (G, k) is a yes-
instance, then (G′, k) is a yes-instance. For the other direction, suppose that
(G′, k) is a yes-instance, with a solution E−. We prove by contradiction that
G − E− is paw-free as well. A paw F in G − E− contains at least one deleted
vertex, because G′ − E− is paw-free, and at most two deleted vertices, because
otherwise F is a paw of G and should be in the modulator.

Consider first that F contains only one deleted vertex x. Let C be the
triangle-free component of G − M containing it. If all the other three vertices in
F are from M , then in step (i) we have marked k + 1 vertices in C that have
the same adjacency to F \{x} as x in G. Since |E−| ≤ k, the adjacency between
F \ {x} and at least one of these marked vertex is unchanged. This vertex forms
a paw with F\{x} in G′ − E−, a contradiction. Now at most two vertices of
F are from M . We may assume without loss of generality that x ∈ L, where
L�R is the bipartition of C. In step (ii) we have marked k+3 vertices in L that
have the same adjacency to F ∩ M as x; let them be Q. By Proposition 4, every
vertex in Q ∪ {x} is adjacent to all vertices in R; on the other hand, no vertex
in Q ∪ {x} is adjacent to any vertex in another component of G − M different
from C. Therefore, all vertices in Q ∪ {x} have the same adjacency to F \ L in
G. Since |E−| ≤ k, the adjacency between F \ {x} and at least one vertex in Q
is unchanged (noting that |Q ∩ F | ≤ 2). This vertex forms a paw with F\{x} in
G′ − E−, a contradiction.

In the rest, F contains two deleted vertices x and y. If x and y are adjacent,
then they are from the different parts of some component C = L � R. Without
loss of generality, we assume that x ∈ L and y ∈ R. Since |F ∩ M | ≤ 2, by step
(ii), we can find two set Q1 ⊆ L and Q2 ⊆ R that have the same adjacency to
F ∩ M as x and y respectively. Note that |Q1| ≥ k + 3 and |Q2| ≥ k + 3. Each
vertex in Q1 has the same adjacency to F \ {x}. The situation is similar for Q2

and F \{y}. For i = 1, 2, since |E−| ≤ k and |Qi∩F | ≤ 2, the adjacency between
F \ {x} and at least one vertex in Qi is unchanged. These two vertices form a
paw with F\{x, y} in G′ − E−, a contradiction (because Q1 � Q2 is complete
bipartite). Now that x and y are not adjacent, then they are in the same part
or in different components. Then one of x and y is the degree-one vertex of F
and the other is a degree-two vertex of F , and we can get that the adjacency of
x and y to F ∩ M are different. By Proposition 4, the component(s) containing
x and y is complete bipartite, then x and y are adjacent to all vertices in the
part that does not contain them in corresponding component. By step (ii), we
can find two set Q1 in the part containing x and Q2 in the part containing y
that have the same adjacency to F ∩ M as x and y respectively. Then Q1 �= Q2.
Since |E−| ≤ k, |Q1 ∩ F | ≤ 2 and |Q2 ∩ F | ≤ 2, at least one vertex in Q1 and

48 Y. Cao et al.

at least one vertex in Q2 are unchanged. These two vertices form a paw with
F\{x, y} in G′ − E−, a contradiction. 	

Lemma 10 (�). After Rule 7 is applied, there are at most O(k4) vertices in all
the type-i triangle-free components of G − M .

Finally, we deal with type-ii triangle-free components of G − M .

Rule 8. Let C be all the type-ii triangle-free components of G − M , and let
U =

⋃
C∈C V (C).

(i) For each S ⊆ M with |S| = 3 and each S′ ⊆ S, mark k + 1 vertices from
{x ∈ U | N(x) ∩ S = S′}.

(ii) Mark all the vertices in non-trivial components that form a triangle with M ,
and for each of them, mark k + 1 of its neighbors in C.

Delete all the unmarked vertices from C.

Lemma 11. Rule 8 is safe.

Proof. Let G′ be the graph obtained after applying Rule 8. If (G, k) is a yes-
instance, then (G′, k) is a yes-instance. For the other direction, suppose that
(G′, k) is a yes-instance, with a solution E−. We prove by contradiction that
G − E− is paw-free as well. A paw F in G − E− contains at least one deleted
vertex since G′ − E− is paw-free.

By the definition of type-ii triangle-free components, no triangle contains an
edge in C, implying that the triangle t in F contains no edge in C. Note that if F
contains three vertices in C, then t must contain an edge in C, a contradiction.
If F contains precisely one vertex v in C, then by step (i), we can find a vertex
v′ in G′ −E− such that v′ has the same adjacency to F ∩M as v, implying that
F \ {v} ∪ {v′} in G′ − E− forms a paw. If F contains two vertices x and y in C,
then either x or y is in a triangle t of F . Without loss of generality, we assume
that x is in t, implying that x is marked in step (ii). If y is adjacent to x, then
by step (ii), there are k + 1 marked vertices adjacent to x; let them be Q. The
vertices in Q are not adjacent to any vertex in F ∩ M since no triangle in G
contains an edge in C. Then, each vertex in Q forms a paw with F \ {y} in G′.
Since |E−| ≤ k, there is a vertex v′ in Q forms a paw with F \ {y} in G′ − E−,
a contradiction. If x is not adjacent to y, by step (i), there are k + 1 marked
vertices Q′ having the same adjacency to F ∩ M as y such that each vertex in
Q′ is not adjacent to x since no triangle in G contains an edge in C. Then, each
vertex in Q′ forms a paw with F \ {y} in G′. Since |E−| ≤ k, there is a vertex
v′ in Q′ forms a paw with F \ {y} in G′ − E−, a contradiction. 	

Lemma 12 (�). After Rule 8 is applied, there are at most O(k4) vertices in all
the type-ii triangle-free components of G − M .

Polynomial Kernels for Paw-Free Edge Modification Problems 49

References

1. Cai, L.: Fixed-parameter tractability of graph modification problems for hereditary
properties. Inf. Process. Lett. 58(4), 171–176 (1996)

2. Cao, Y., Rai, A., Sandeep, R.B., Ye, J.: A polynomial kernel for diamond-free edit-
ing. In: ESA 2018, pp. 10:1–10:13 (2018)

3. Eiben, E., Lochet, W., Saurabh, S.: A polynomial kernel for paw-free editing (2019).
arXiv:1911.03683

4. Guillemot, S., Havet, F., Paul, C., Perez, A.: On the (non-)existence of polynomial
kernels for Pl-free edge modification problems. Algorithmica 65(4), 900–926 (2013)

5. Lewis, J.M., Yannakakis, M.: The node-deletion problem for hereditary properties
is NP-complete. J. Comput. Syst. Sci. 20(2), 219–230 (1980)

6. Olariu, S.: Paw-free graphs. Inf. Process. Lett. 28(1), 53–54 (1988)
7. Sandeep, R.B., Sivadasan, N.: Parameterized lower bound and improved kernel for

diamond-free edge deletion. In: IPEC 365–376 (2015)
8. Tsur, D.: Kernel for Kt-free edge deletion (2019). arXiv:1908.03600

http://arxiv.org/abs/1911.03683
http://arxiv.org/abs/1908.03600

Floorplans with Walls

Katsuhisa Yamanaka1 and Shin-ichi Nakano2(B)

1 Iwate University, Morioka, Japan
2 Gunma University, Kiryu, Japan

nakano@cs.gunma-u.ac.jp

Abstract. Let P be a set of n points in the proper inside of an axis-
aligned rectangle R, and each point in P is either h-type, v-type or f-type.
We wish to partition R into a set S of n+1 rectangles by n line segments
so that each point in P is on the common boundary line segment between
two rectangles in S, and also each h-type point in P is on a horizontal
line segment and each v-type point in P is on a vertical line segment.
(Each f-type point in P is on a line segment. f-type menas free type).
Such a partition of R is called a feasible floorplan of R with respect to
P . Each point in P corresponds to the location of a structurally neces-
sary horizontal or vertical wall, or a column (pillar) to support upper
part, and a feasible floorplan is a floorplan achieving suitable earthquake
resistance. An algorithm to enumerate all feasible floorplans of R with
respect to P is known when P consists of only f-type points.

In this paper when P consists of the three type points we give an effi-
cient algorithm to enumerate all feasible floorplans of R with respect to
P . The algorithm is based on the reverse search method, and enumerates
all feasible floorplans in O(|SP |n) time using O(n) space, after O(n log n)
time preprocessing, where SP is the set of the feasible floorplans of R
with respect to P .

Keywords: Enumeration · Floorplan · Algorithm

1 Introduction

Let P be a set of n points in the proper inside of an axis-aligned rectangle R,
and each point in P is either h-type, v-type or f-type. Those are shortened forms
of horizontal type, vertical type and free type. We wish to partition R into a
set S of n + 1 rectangles by n line segments so that each point in P is on the
common boundary line segment between two rectangles in S, and also each h-
type point in P is on a horizontal line segment and each v-type point in P is
on a vertical line segment. Each f-type point in P is on either a horizontal or
vertical line segment. We call such a partition of R a feasible floorplan of R with
respect to P . Figure 1(b) illustrates the 8 feasible floorplans of R with respect
to the point set P in Fig. 1(a). For simplicity we assume no two points have the
same x-coordinate, and no two points have the same y-coordinate (Otherwise
one can slightly modify the locations). Intuitively each point in P is the location
c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 50–59, 2020.
https://doi.org/10.1007/978-3-030-59267-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_5

Floorplans with Walls 51

(a) (b)

h-type point

v-type point
f-type point

Fig. 1. (a) An example of a rectangle R and a set P of three points in R, (b) all feasible
floorplans of R with respect to P .

of a structurally necessary horizontal or vertical wall, or a column to support
upper part, and a feasible floorplan is a floorplan achieving suitable earthquake
resistance.

When P consists of only f-type points, several results are known. Ackerman
et al. [1,2] gave an algorithm to enumerate all feasible floorplans with respect to
P . The algorithm is based on the reverse search method [3,4] and enumerates
all feasible floorplans in either O(|SP |n) time using O(n) space or O(|SP | log n)
time using O(n3) space, where SP is the set of feasible floorplans with respect
to P . Yamanaka et al. [8] designed a faster algorithm, which is also based on
the reverse search method. The algorithm is simple and uses only O(n) space,
and enumerates all feasible floorplans in O(|SP |) time. Some efficient algorithms
using a similar technique are designed [5–7].

In this paper we consider a more general problem in which P consists of
the three type points. We give an efficient algorithm to enumerate all feasible
floorplans of R with respect to P . The algorithm is based on the reverse search
method, and enumerates all feasible floorplans in O(|SP |n) time using O(n)
space, after O(n log n) time preprocessing, where SP is the set of all feasible
floorplans of R with respect to P .

The rest of the paper is organized as follows. Section 2 gives some definitions.
Section 3 defines a tree structure among the feasible floorplans. Section 4 gives
our enumeration algorithm. Finally Sect. 5 is a conclusion.

2 Preliminaries

In this section we give some definitions.
Let P be a set of n points in the proper inside of an axis-aligned rectangle

R, and each point in P is either h-type, v-type or f-type. We assume that no
two points in P have the same x-coordinate, and no two points have the same y-
coordinate. A feasible floorplan is a partition of R into a set S of n+1 rectangles
by n line segments so that each point in P is on the common boundary line

52 K. Yamanaka and S. Nakano

segment between two rectangles in S, and also each h-type point in P is on a
horizontal line segment and each v-type point in P is on a vertical line segment,
and each f-type point in P is on either a horizontal or vertical line segment. We
assume that no four rectangles in S share a common corner point in a floorplan.
One can observe that every maximal line segment not on R contains exactly one
point in P in any feasible floorplan of R with respect to P . Let SP be the set of
all feasible floorplans with respect to P . For R and P in Fig. 1(a), all 8 feasible
floorplans in SP are illustrated in Fig. 1(b).

Let Q be a feasible floorplan of R with respect to P . A line segment containing
no end point of other line segment except at its endpoint is called a basic line
segment. Each maximal line segment consists of one or more basic line segments.
A maximal vertical line segment containing a point p ∈ P is type(u, d) if it
contains u end points of maximal horizontal line segments above p and d end
points of maximal horizontal line segment below p. Thus if a basic line segment
is also a maximal vertical line segment then it is type(0, 0). A basic vertical line
segment with type(0, 0) is a fixed v-wall if it contains a v-type point in P .

3 Family Tree

In this section we define a tree structure among the feasible floorplans of R with
respect to P .

Let Qr be the feasible floorplan of R with respect to P such that each h-type
or f-type point is on a horizontal line segment having its left end on the left
vertical line segment of R and its right end on the right vertical line segment
of R, and each v-type point in P is on a fixed v-wall. We will show that Qr

corresponds to the root of the tree structure. See examples in Fig. 4(d) and
Fig. 5.

Given a feasible floorplans Q �= Qr of R with respect to P , we define the
parent feasible floorplan P (Q) of R with respect to P , as follows. Let s be the
leftmost maximal vertical line segment in Q which is neither the left vertical line
segment of R nor a fixed v-wall. Since Q �= Qr such s always exists. Let p ∈ P
be the point on s. Since s is a vertical line segment, p is either v-type or f-type.
We have the following two cases to consider.

Case 1. s is type(0, 0). See Fig. 2(a).
In this case s consists of exactly one basic vertical line segment, and p is f-type. If
it were v-type then it would contradict the choice of s. We (1) remove s from Q,
then (2) append a horizontal line segment s′ containing p as a basic horizontal
line segment, then extend s′ to left so that s′ has the left end on the left vertical
line segment of R and shrink crossing fixed v-walls so that they remain fixed v-
walls in the resulting floorplan, as illustrated in Fig. 2. Intuitively this is rotation
of s. Note that s′ has exactly one basic horizontal line segment on the right of p.

Case 2. Otherwise. See Fig. 3(a).
In this case s consists of two or more basic vertical line segments. We (1) remove
s from Q, then (2) extend each maximal horizontal line segment t having left

Floorplans with Walls 53

s,

P(Q)

Q
(a)

(d)

s

p

p

(b)

p

h-type point

v-type point
f-type point

(c)

p
s,

Fig. 2. The parent floorplan P (Q) of Q in Case 1.

end on s to left so that t has the left end on the left vertical line segment of
R, and shrink the fixed v-walls crossing with some t so that they remain fixed
v-walls, (Note that each t crosses with only fixed v-walls by the definition of
s. See Fig. 3(c)) then (3) extend each maximal horizontal line segment t having
right end on s to the right so that t has exactly one basic horizontal line segment
on the right of p, then (4) finally execute one of the following two subcases.

Case 2(a). p is f-type.
Append a horizontal line segment s′ containing p as a basic horizontal line seg-
ment then extend to left so that s′ has the left end on the left vertical line
segment of R and shrink crossing fixed v-walls so that they remain fixed v-walls.
See an example in Fig. 3(d). Intuitively this is shrink and rotation of s. Note
that s′ has exactly one basic horizontal line segment on the right of p.

Case 2(b). p is v-type.
Append a vertical line segment s′ containing p as a fixed v-wall. Intuitively this
is shrink of s.

We have the following fact.

Fact 1. If P(Q) is derived from Q by rotation of a vertical line segment s to a
horizontal line segment s′ (Case 1 or Case 2(a)), then s′ has exactly one basic
horizontal line segment on the right of p in P(Q).

54 K. Yamanaka and S. Nakano

(a) (b)

(c) (d)

F

Q

P(Q)

F
p
s

p

p p

s

s,

h-type point

v-type point
f-type point

Fig. 3. The parent floorplan P (Q) of Q in Case 2.

Note that the number of maximal vertical line segments of P (Q) is one less
or equal to that of Q. We have defined P (Q) for each feasible floorplan Q except
Qr. We say P (Q) is the parent of Q and Q is a child of P (Q).

Given a feasible floorplan Q in SP , which is the set of all feasible floorplans
of R with respect to P , by repeatedly computing its parent, we can have the
unique sequence Q, P (Q), P (P (Q)), · · · of feasible floorplans with respect to P
which eventually ends with Qr. Note that the total length of the vertical line
segments in those feasible floorplans is decreasing in the sequence, and Qr has
the minimum such length. See an example of such sequence in Fig. 4.

By merging those sequences we define the family tree TP of SP in which the
vertices of TP correspond to feasible floorplans of R with respect to P , and each
edge corresponds to each relation between some Q and P (Q). See Fig. 5.

4 Algorithm

In this section we design an algorithm to enumerate all feasible floorplans of R
with respect to P . The algorithm is based on the reverse search method [3,4].

If we have an algorithm to compute all child floorplans of a given feasible
floorplan of R with respect to P , then by recursively executing the algorithm
from Qr, we can compute all feasible floorplans of R with respect to P . This is
the outline of the reverse search method [3,4]. We are now going to design such
a all-children-enumeration algorithm.

Floorplans with Walls 55

(a) (b)
Q rP(Q)

(c)
P(P(Q))

(d)
P(P(P(Q)))=Q

Fig. 4. The removing sequence.

Fig. 5. The family tree.

Let s′ be the maximal leftmost vertical line segment in Q which is neither
the left vertical line segment of R nor a fixed v-wall, and p′ ∈ P be the point
on s′ (If Q = Qr we hypothetically regard s′ the right vertical line segment of
R, and we regard p′ any point on s′). One can observe that each possible child
floorplan of Q is one of the following three types for some maximal horizontal
line segment s. See Fig. 6.

Type 1: C(s, 0, 0)
In this type s is a maximal horizontal line segment containing a f-type point
p ∈ P locating on the left of p′ and s has no upper or lower end point of other
vertical line segment on the right of p, so s has exactly one basic horizontal line
segment on the right of p. Thus the horizontal line segment between p and the
right end point of s is (a part of) basic, but s may have an upper or lower end
point of some fixed v-wall on the left of p.

C(s, 0, 0) is the floorplan constructed from Q by (1) removing s from Q, then
(2) appending a vertical line segment s′′ containing p as a basic line segment,

56 K. Yamanaka and S. Nakano

then (3) extend the fixed v-walls having end points on s (on the left of p) so that
they remain fixed v-walls.

Now C(s, 0, 0) is also a feasible floorplan with respect to P . Intuitively this
is the child floorplan derived from Q by rotation of s.

Note that if s is a horizontal line segment containing a point in P locating on
the “right” of p′ then resulting floorplan C(s, 0, 0) is not a child of Q, since the
leftmost vertical line segment of the resulting floorplan is not s′′ but s′, so the
parent of the resulting floorplan is not Q. Thus we do not need check C(s, 0, 0)
with such s. Also note that if s has an upper or lower end point of other vertical
line segment on the right of p, then s has two or more basic horizontal line
segment on the right of p in Q, so C(s, 0, 0) is not a child of Q by Fact 1. We
can observe otherwise C(s, 0, 0) is a child of Q.

Type 2(a): C(s, u, d)
In this type s is a maximal horizontal line segment containing a f-type point
p ∈ P locating on the left of p′ and s has no upper or lower end point of other
vertical line segment on the right of p, so s has exactly one basic horizontal
line segment on the right of p. Thus, as in Type 1, the horizontal line segment
between p and the right end point of s is basic, but s may have an upper or
lower end point of some fixed v-wall on the left of p.

Let u′ be the number of maximal horizontal line segments above p and d′

the number of maximal horizontal line segments below p in Q. For example for
the floorplan Q in Fig. 6, u′ = 3 and d′ = 2. For two integers u < u′ and d < d′,
C(s, u, d) is the floorplan constructed from Q by (1) removing s from Q, then
(2) appending a vertical line segment s′′ containing p as a basic line segment,
then (3) extending s′′ upward and downward so that it becomes type(u, d), then
(4) shrinking each maximal horizontal line segment t properly intersecting s′′

so that it has an end point on s′′, then (5) extend the fixed v-walls locating on
the left of p and having end points on some shrinked horizontal line segment so
that they remain fixed v-walls. See examples in Fig. 6. Intuitively this is a child
floorplan derived from Q by rotation and extension of s. If u = d = 0 then this
is just C(s, 0, 0).

Note that if s is a horizontal line segment containing a point in P locating on
the “right” of p′ then resulting floorplan C(s, u, d) is not a child of Q, since the
leftmost vertical line segment of the resulting floorplan is not s′′ but s′. Thus
we do not need check C(s, u, d) with such s. Also note that, as in Type 1, if s
has an upper or lower end point of other vertical line segment on the right of
p, then s has two or more basic horizontal line segment on the right of p in Q,
so C(s, u, d) is not a child of Q by Fact 1. Similarly if some t in (4) has an
upper or lower end point of other vertical line segment on the “right” of p in Q
(See Q in Fig. 7) then t has two or more basic horizontal line segment on the
right of p in Q then C(s, u, d) is not a child of Q, since the basic line segments
in t locating right of p except the leftmost one cannot exist in C(s, u, d) (See
the dashed line of C(s, 1, 0) in Fig. 7) so P (C(s, u, d)) is not Q. We can observe
otherwise C(s, u, d) is a child of Q.

Floorplans with Walls 57

Type 2(b): C(s, u, d)
In this type s is a fixed v-wall containing a v-type point p ∈ P locating left of
p′. Let u′ be the number of maximal horizontal line segments above p and d′

the number of maximal horizontal line segments below p in Q. For two integers
u < u′ and d < d′, C(s, u, d) is the floorplan constructed from Q by (1) extending
s upward and downward so that it becomes type(u, d), then (2) shrinking each
maximal horizontal line segment t properly intersecting s so that it has an end
point on s, then (3) extend the fixed v-walls locating on the left of p and having
end points on some shrinked horizontal line segment so that they remain fixed
v-walls. Intuitively this is the child floorplan derived from Q by extension of s.

Note that if s is locating on the “right” of p′ then resulting floorplan C(s, u, d)
is not a child of Q, since the leftmost vertical line segment of the resulting
floorplan is not s but s′. Thus we do not need check C(s, u, d) with such s.
Similarly if some t in (2) has an upper or lower end point of other vertical line
segment on the “right” of p, then t has two or more basic horizontal line segment
on the right of p, then, similar to Type 2(a) above, C(s, u, d) is not a child of Q.
We can observe otherwise C(s, u, d) is a child of Q.

We have the following lemma.

Lemma 1. Based on the analysis above one can enumerate all child floorplans
of given Q.

We now explain a data structure required for our child enumeration algo-
rithm. We regard each corner of a rectangle as a vertex, each basic line segment
as an edge and a floorplan as a graph. We store and maintain the current floor-
plan using some standard data structure for plane graphs during the execution of
our enumeration algorithm. This part needs O(n) space. We can efficiently trace
the basic segments on the boundary of each rectangle. Also given a vertex and
a direction (up/down/left/right) we can find the neighbour vertex in constant
time.

We also maintain the list of the maximal horizontal line segments having a
point in P on the left of the current leftmost vertical line segment. We assume
that those horizontal line segments are sorted in the list by the x-coordinates
of the points in P on the horizontal line segments. For Qr such list can be
constructed in O(n log n) time. Thus we need O(n) space for the list and can
update it efficiently.

For each recursive call we need O(n) memory and the depth of the call is at
most n so this part needs O(n2) space in total.

We have the following lemma.

Lemma 2. Given a child floorplan C(s, u, d) of Q one can check if C(s, u+1, d)
is a child floorplan of Q or not, and if it is a child floorplan of Q one can generate
C(s, u + 1, d) in O(n) time.

Proof. Let t be the maximal horizontal line segment containing the upper end
point of s′′ in C(s, u, d). We have the following three cases.

58 K. Yamanaka and S. Nakano

p s

s

Q

h-type point

v-type point
f-type point

C(s,0,0) C(s,1,0) C(s,2,0)

C(s,0,1) C(s,1,1) C(s,2,1)

p

s

p

,

,

,,

s,, s,, s,,

s,, s,,

p p

p p p

Fig. 6. The child floorplans with respect to s.

If t has a point in P on the left of p ∈ P on s′′, and t has exactly one basic
line segments on the right of p in C(s, u, d), then shrinking t from C(s, u, d) so
that the right end point of t is on s′′ then extending s′′ upward so that it has
one more basic line segment results in C(s, u + 1, d) and it is a child of Q. The
number of different segments between them is clearly O(n), so one can generates
C(s, u + 1, d) from C(s, u, d) in O(n) time.

If t has a point in P on the left of p ∈ P on s′′, and t has two or more
basic line segments on the right of p in C(s, u, d) (See C(s, 0, 0) in Fig. 7) then
C(s, u+ 1, d) is not a child of Q, since the basic line segments of t locating right
of p except the leftmost one cannot exist in C(s, u + 1, d) (See the dashed line
of C(s, 1, 0) in Fig. 7) so P (C(s, u + 1, d)) is not Q.

If t has a point in P on the right of p ∈ P on s′′ then removing the part of
t locating left of p from C(s, u, d) then extending s′′ upward so that it has one
more basic line segment and modifying the fixed v-walls having end points on t

p s

t t s’’

Q

p
s’’

t

Q(s,0,0)

p

C(s,1,0)

p

P(C(s,1,0))

Fig. 7. C(s, 1, 0) is not a child of Q.

Floorplans with Walls 59

so that they remain fixed v-walls results in C(s, u + 1, d), and it is a child of Q.
The number of different segments between them is also O(n).

Thus in O(n) time we can check if C(s, u + 1, d) is a child of Q or not, and
if it is a child we can generate C(s, u + 1, d) from C(s, u, d). ��

Similarly given C(s, u, d) one can check if C(s, u, d+1) is a child floorplan of
Q or not, and if it is a child floorplan of Q one can generate C(s, u, d + 1) from
C(s, u, d) in O(n) time. Thus we have the following lemma.

Lemma 3. One can enumerate all child floorplans of a given feasible floorplan
Q with respect to P in O(kn) time, where k is the number of child floorplans of
Q.

Since we need O(kn) time for each vertex of the family tree, where k is
the number of child floorplans of the floorplan corresponding to the vertex, the
algorithm above runs in O(|SP |n) time in total, where SP is the set of feasible
floorplans with respect to P .

We have the following theorem.

Theorem 1. After O(n log n) time preprocessing one can enumerate all feasible
floorplans with respect to P in O(|SP |n) time and O(n2) space.

5 Conclusion

In this paper we have designed a simple and efficient algorithm to enumerate all
feasible floorplans with respect to a given set P of points. Our algorithm enu-
merate all such floorplans in O(|SP |n) time after O(n log n) time preprocessing,
where SP is the set of floorplans with respect to P , and |P | = n.

Can we enumerate all feasible floorplans with respect to P in O(|SP |) time?

References

1. Ackerman, E., Barequet, G., Pinter, R.Y.: On the number of rectangulations. In:
Proceedings of the SODA, pp. 729–738 (2004)

2. Ackerman, E., Barequet, G., Pinter, R.Y.: On the number of rectangulations of a
planar point set. J. Comb. Theory Ser. A 113, 1072–1091 (2006)

3. Avis, D.: Generating rooted triangulations without repetitions. Algorithmica 16,
618–632 (1996)

4. Avis, D., Fukuda, K.: Reverse search for enumeration. Discrete Appl. Math. 65,
21–46 (1996)

5. Nakano, S.: Enumerating floorplans with n rooms. In: Eades, P., Takaoka, T. (eds.)
ISAAC 2001. LNCS, vol. 2223, pp. 107–115. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-45678-3 10

6. Nakano, S.: Efficient generation of plane trees. Inf. Process. Lett. 84, 167–172 (2002)
7. Li, Z., Nakano, S.: Efficient generation of plane triangulations without repeti-

tions. In: Orejas, F., Spirakis, P.G., van Leeuwen, J. (eds.) ICALP 2001. LNCS,
vol. 2076, pp. 433–443. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
48224-5 36

8. Yamanaka, K., Rahman, M.S., Nakano, S.-I.: Floorplans with columns. In: Gao, X.,
Du, H., Han, M. (eds.) COCOA 2017. LNCS, vol. 10627, pp. 33–40. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-71150-8 3

https://doi.org/10.1007/3-540-45678-3_10
https://doi.org/10.1007/3-540-45678-3_10
https://doi.org/10.1007/3-540-48224-5_36
https://doi.org/10.1007/3-540-48224-5_36
https://doi.org/10.1007/978-3-319-71150-8_3

A Primal-Dual Randomized Algorithm
for the Online Weighted Set

Multi-cover Problem

Wenbin Chen1,2(B), Fufang Li1, Ke Qi1, Miao Liu1, and Maobin Tang1

1 School of Computer Science and Cyber Engineering, Guangzhou University,
Guangzhou, People’s Republic of China

cwb2011@gzhu.edu.cn
2 Guangxi Key Laboratory of Cryptography and Information Security,

Guilin 541004, Guangxi, China

Abstract. Given a ground set U of n elements and a family of m subsets
S = {Si : Si ⊆ U}. Each subset S ∈ S has a positive cost c(S) and every
element e ∈ U is associated with an integer coverage requirement re > 0,
which means that e has to be covered at least re times. The weighted
set multi-cover problem asks for the minimum cost subcollection which
covers all of the elements such that each element e is covered at least re
times.

In this paper, we study the online version of the weighted set multi-
cover problem. We give a randomized algorithm with competitive ratio
8(1+ln m) ln n for this problem based on the primal-dual method, which
improve previous competitive ratio 12 log m log n for the online set multi-
cover problem that is the special version where each cost c(S) is 1 for
every subset S.

1 Introduction

The weighted set multi-cover problem is the generalization of the set cover prob-
lem, which is defined as follows. Given a ground set U = {1, . . . , n} of n elements
and a family of m subsets S = {Si : 1 ≤ i ≤ m}, where Si ⊆ U for all i. Each
subset S ∈ S has a positive cost c(S) and every element e ∈ U is associated with
an integer coverage requirement re > 0, which means that e has to be covered
at least re times. The goal is to find a minimum cost subcollection that covers
all of the elements such that each element e is covered at least specified times
re. When all re = 1, the set multi-cover problem becomes the set cover problem.
Let R = max

e∈U
re. We assume that R = O(n).

Similarly, the online weighted set multi-cover problem is the generalization of
the online set cover problem, which is described as follows. An adversary gives
elements and their coverage requirement to the algorithm from U one-by-one.
When a new element e and its coverage requirement re are given, the algorithm
has to cover it at least re times by choosing some sets of S containing it. We
assume that the elements of U and the coverage requirement of elements and
c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 60–68, 2020.
https://doi.org/10.1007/978-3-030-59267-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_6

A Primal-Dual Randomized Algorithm 61

the members of S are known in advance to the algorithm, however, the set of
elements given by the adversary is not known in advance to the algorithm. The
objective is to minimize the total cost of the sets chosen by the algorithm.

The performance of an online algorithm is measured by the competitive ratio,
which is defined as follows. Given an instance I of a minimization optimization
problem M . Let OPT (I) denote the optimum cost of off-line algorithms for
instance I. If for each instance I of M , an online algorithm OA outputs a solution
with cost at most c ·OPT (I)+α, where α is a constant independent of the input
sequence, then the competitive ratio of OA is c. If for each instance I of M ,
a randomized online algorithm ROA outputs a solution with expected cost at
most c · OPT (I) + α, where α is independent of the input sequence, then the
competitive ratio of ROA is c.

The set cover problem has wide application and is a well-known problem in
algorithms and complexity. In [11], Karp shows that the set cover problem is
NP-compete. Johnson [10] and Lovasz [13] give the greedy approximation algo-
rithm for the unweighted set cover problem. Chvatal [7] proposes the greedy
approximation algorithm for the weighted set cover problem. These greedy algo-
rithms are of approximation ratio Hn, where Hn = 1 + 1/2 + . . . + 1/n. Lund
and Yannakakis show that the approximation ratio O(log n) for the set cover
problem is essentially tight [14]. Later, Feige proves that it is impossible to have
an approximation algorithm for the set cover problem with approximation ratio
better than O(log n) [8]. Rajagopalan and Vazirani propose primal-dual RNC
approximation algorithms for the set mullti-cover and covering integer programs
problems [15]. Noga Alon et al. study the online set cover problem. Based on
the techniques from computational learning theory, Noga Alon et al. propose a
deterministic algorithm for this problem with competitive ratio O(log m log n)
[1]. The set cover problem is related to the budgeted maximum coverage problem,
which is a flexible model for many applications [16–20].

In the areas of exact and approximation algorithms, the primal-dual method
is one of powerful design methods. To our best of knowledge, the first time that
the primal-dual method is used to the design of online algorithms is in Young’
work about weighted paging [21], where he design an k-competitive online algo-
rithm. In recent several years, Buchbinder and Naor have shown that the primal-
dual method can be widely used to the design and analysis of online algorithms
for many problems such as ski-rental, ad-auctions, routing and network opti-
mization problems and so on [2–6].

In [12], Kuhnle et al. introduce the online set multi-cover problem and design
randomized algorithms with 12 log m log n-competitive ratio. In this paper, we
study the online weighted set multi-cover problem. We present an 8(1+ln m) ln n
competitive randomized algorithm for this problem based on the primal-dual
method. Specially, when each cost c(S) is 1 for every subset S, the online
weighted set multi-cover problem become the online set multi-cover problem.
Thus, our algorithm improve Kuhnle et al.’s competitive ratio for the online set
multi-cover problem.

62 W. Chen et al.

2 A Fractional Primal-Dual Algorithm For the Online
Weighted Set Multi-cover Problem

In this section, we design a fractional algorithm for the online weighted set
multi-cover problem via the primal-dual method. A fractional algorithm allows
an element e is fractionally covered its fS part by a set S such that

∑

e∈S

fS = 1.

First, the weighted set multi-cover problem can be formulated as a 0–1 integer
program as follows.

Minimize
∑

S∈S
c(S)xS

Subject to
∑

S:e∈S

xS ≥ re, e ∈ U
xS ∈ {0, 1}, S ∈ S

Its Linear Programs relaxation is as follows.

Minimize
∑

S∈S
c(S)xS

Subject to
∑

S:e∈S

xS ≥ re, e ∈ U
−xS ≥ −1, S ∈ S
xS ≥ 0, S ∈ S

Its Dual Programs is as follows

Maximize
∑

e∈U

reye − ∑

S∈S
zS

Subject to
∑

e∈S

ye − zS ≤ c(S), S ∈ S
ye ≥ 0, e ∈ U
zS ≥ 0, S ∈ S

In the following, we design the online fractional algorithm for the weighted
set multi-cover problem via the primal-dual design method developed in recent
years [2–6] (see Algorithm 2.1).

1: At time t, when an element e with coverage requirement re arrives:
2: If the primal constraints

∑

S:e∈S

xS ≥ re corresponding to e is satisfied, then do

nothing.
3: Otherwise, do the following:
4: While

∑

S:e∈S

xS < re:

5: Continuously increase ye .
6: If xS = 0 and (

∑

e∈S

ye) − zS = c(S), then set xS ← 1
m

.

7: If 1
m

≤ xS < 1, then xS increase by the following function:
xS ← 1

m
·exp(1

c(S)
[(

∑

e∈S

ye) − zS − c(S)]).

8: If xS = 1, then zS is increased at the same ratio as ye.

Algorithm 2.1: The online fractional algorithm for the weighted set multi-cover
problem.

A Primal-Dual Randomized Algorithm 63

Theorem 1. The fractional online algorithm for the weighted set multi-cover
problem is of competitive ratio 2(1 + lnm).

Proof. Let P denote the value of the objective function of the primal solution
and D denote the value of the objective function of the dual solution. Initially,
let P = 0 and D = 0. In the following, we prove three claims:

(1) The primal solution produced by the fractional algorithm is feasible.
(2) Every dual constraint in the dual program is violated by a factor of at most

(1 + lnm).
(3) P ≤ 2D.

By three claims and weak duality of linear programs, the theorem follows
immediately.

First, we prove the claim (1) as follows. Consider a primal constraint∑

S:e∈S

xS ≥ re. In each While iteration (From line 5 to line 8 in the fractional

algorithm), when this new primal constraint
∑

S:e∈S

xS ≥ re becomes be satisfied,

the variable xS stop increasing its value and its value is not greater than 1. Upon
xS become 1, the fractional algorithm begin to increase zS and ye at the same
ratio. After that, the increases of zS and ye cannot result in infeasibility.

Second, we prove the claim (2) as follows. Consider any dual constraint∑

e∈S

ye − zS ≤ c(S). Since its corresponding variable xS is not greater than 1, we

get that:
xS = 1

m ·exp(1
c(S) [(

∑

e∈S

ye) − zS − c(S)]) ≤ 1.

So exp(1
c(S) [(

∑

e∈S

ye) − zS − c(S)]) ≤ m.

Then, (
∑

e∈S

ye) − zS − c(S) ≤ c(S) ln m.

Thus, we get that: (
∑

e∈S

ye) − zS ≤ c(S)(1 + lnm).

Third, we prove claim (3) as follows. The contribution to the primal cost
consists of two parts. Let C1 denote the contribution part which is from (6) of
the fractional algorithm, where variables xS are increased from 0 → 1

m . Let C2

denote the other contribution part which is from (7) of the fractional algorithm,
where variables xS are increased from 1

m up to at most 1 by the exponential
function.

Bounding C1: Let x̃S = min(xS , 1
m). We bound the term

∑

S∈S
c(S)x̃S . To do

this, we need the following several facts.
First, from the fractional algorithm, we get that if xS > 0, and therefore

x̃S > 0, then: ∑

e∈S

ye − zS ≥ c(S). (1)

We call (1) as the primal complementary slackness condition.
At the time t, let B′(S) = {S|xS = 1, e ∈ S}. Then |B′(S)| ≤ re since

otherwise the constraint at time t has been already satisfied and the fractional

64 W. Chen et al.

algorithm stops increasing the variable ye. Thus, (m − 1)|B′(S)| ≤ (m − 1)re.
So m−|B′(S)|

m ≤ re − |B′(S)|. Since x̃S ≤ 1
m ,

∑

S∈S\B′(S)

x̃S ≤ m−B′(S)
m . Hence

∑

S∈S\B′(S)

x̃S ≤ re − |B′(S)| (2)

Also, it follows from the algorithm that if zS > 0, then:

xS ≥ 1. (3)

We call (2) as the dual complementary slackness and (3) as the second dual
complementary slackness condition.

Using the primal and dual complementary slackness conditions, we show the
following conclusions:

∑

S∈S
c(S)x̃S

≤
∑

S∈S
(
∑

e∈S

ye − zS)x̃S (4)

=
∑

S∈S
(
∑

e∈S

yex̃S) −
∑

S∈S
zS x̃S (5)

=
∑

e

(
∑

S:e∈S

x̃S)ye) −
∑

S∈S
zS x̃S (6)

≤
∑

e

reye −
∑

S∈S
zS (7)

Where inequality (4) follows from inequality (1) and equality (6) follows by
changing the order of summation. As for the reason why inequality (7) holds,
we consider some time t. At the time t when e with coverage requirement re
arrive. From the fractional algorithm, we know that zS is increased at the same
ratio as ye only when xS = 1. Thus, dye

dt = dzS
dt only when S ∈ B′(S). Hence, the

increasing ratio of the left-hand side of (7) at the time t is (
∑

S∈S\B′(S)

x̃S)dye

dt . But,

at the time t, the increasing ratio of the right-hand side of (7) is (re−|B′(S)|)dye

dt .
By inequality (2), we get (

∑

S∈S\B′(S)

x̃S)dye

dt ≤ (re − |B′(S)|)dye

dt . So inequality

(7) holds
Thus, C1 is at most D.
Bounding C2 : At some time t, we show that the increase ΔC2 is most ΔD

in the same round.
ΔC2 =

∑

S∈S, 1
m≤xS<1

c(S) · ΔxS (8)

A Primal-Dual Randomized Algorithm 65

From the line 7 of the fractional algorithm, we get that dxS

dye
= 1

c(S) · xS . So,
ΔxS = 1

c(S) · xS · Δye. Thus, we get that:

ΔC2 = (
∑

S∈S, 1
m≤xS<1

xS) · Δye (9)

At the time t, the new primal constraints are not yet satisfied, so we get that:∑

S∈S, 1
m≤xS<1

xS +
∑

xS=1
1 < re. Thus,

∑

S∈S, 1
m≤xS<1

xS < re − ∑

xS=1
1. Hence,

ΔC2 ≤ (re −
∑

xS=1

1) · Δye (10)

From the line 8 of the fractional algorithm, Δye = ΔzS when xS = 1 in the
same sound at the time t. So,

ΔC2 ≤ re · Δye −
∑

xS=1

ΔzS = ΔD (11)

Thus, C2 ≤ D.
Hence, we get that P = C1 +C2 ≤ 2D. So, claim (3) holds. Furthermore, the

theorem holds. ��

3 Randomized Algorithm for the Online Weighted Set
Multi-cover Problem

In this section, we design a randomized algorithm for the online weighted set
multi-cover problem with competitive ratio 8(1 + lnm) ln n.

1: For each set S ∈ S, 4 ln n independently random variables V (S, i) are uniformly
chosen from [0, 1] at random.

2: For every set S ∈ S, let ε(S) = min4 lnn
i=1 V (S, i).

3: At time t,a new element e and its cover requirement re arrives. Let ce is the times
that e has been covered at time t and let ue = re − ce. If ce ≥ re, then do nothing.

4: Otherwise, we use Algorithm 2.1 to compute the values of xS in the unsatisfied
primal constraint that corresponds to e, and let C denote the cover set, then do the
following:

5: for j = 1 to ue do
6: For all unchosen sets S ∈ S\C that appears in the unsatisfied primal constraint

that corresponds to e, when xS ≥ ε(S), take one of these sets to the cover C.
7: S ← S\{S}; C ← C ∪ S.
8: end for

Algorithm 3.1: The randomized online algorithm for the weighted set multi-
cover problem.

66 W. Chen et al.

Theorem 2. The randomized algorithm is of competitive ratio 8(1 + lnm) ln n.

Proof. First, we show that the randomized algorithm produces a feasible solution
with high probability 1 − O(1

n2) > 1
2 .

Consider any an element e, assume that it appears at time t. let Ai denote
the event that e isn’t covered in the i-th round from 5-th to 7-th line in the
randomized algorithm. Let Sti denote the unchosen sets of S and Cti denote the
chosen sets at the beginning of in the i-th round. c(e, ti) denote the number of
e has been covered at the beginning of in the i-th round.

Then, we compute the probability that Ai occurs. Consider any j(1 ≤ j ≤
4 ln n), let Dj denote the event that e is not covered due to j, which means that
for all unchosen sets S ∈ Sti and e ∈ S, none of the value of V (S, j) is less than
xS . Thus, Pr(Ai = 1) =

⋂

1≤j≤4 lnn

Pr(Dj = 1)

The probability Pr(V (S, i) ≤ xS) is xS . So Pr(Dj = 1) =
∏

S∈Sti
|e∈S

(1 −
xS). Since 1 − x ≤ exp(−x), we get that: Pr(Dj = 1) ≤ exp(− ∑

S∈Sti
|e∈S

xS).

Since all xS consist of a fractional solution after the fractional algorithm, we get
that

∑

S∈S:e∈S

xS ≥ re. Thus,
∑

S∈Sti
|e∈S

xS +
∑

S∈Cti
|e∈S

xS ≥ re. So
∑

S∈Sti
|e∈S

xS ≥
re − ∑

S∈Cti
|e∈S

xS = re − c(e, ti). Hence, Pr(Dj = 1) ≤ exp(− ∑

S∈Sti
|e∈S

xS) ≤
exp(−ni), where ni = re − c(e, ti). So, Pr(Dj = 1) ≤ exp(−1). Hence, Pr(Ai =
1) ≤ (exp(−1))4 lnn = exp(−4 ln n) = 1

n4 .
So, the probability that e is not covered re times is Pr(A1 = 1 ∨ . . . ∨ Aue

=
1) ≤ ∑ue

i=1 Pr(Ai = 1) ≤ ∑ue

i=1
1
n4 = ne

n4 ≤ re
n4 ≤ R

n4 ≤ O(n)
n4 = O(1

n3).
By the union bound that the probability of union events is at most the sum

of the probability of each event, the probability that there is an element e which
is not covered re times is at most n × O(1

n3) = O(1
n2) since there are at most n

elements.
Hence, the randomized algorithm produces a feasible solution with high prob-

ability 1 − O(1
n2) > 1

2 .
Second, we show that the expected cost of the solution of randomized algo-

rithms is O(log n) times the fractional solution.
Let Bi denote the event that V (S, i) ≤ xS . Then, Pr(Bi = 1) = xS . The

probability that the set S is chosen to the solution is at most the probability
that there exists an i, 1 ≤ i ≤ 4 ln n, such that V (S, i) ≤ xS .

Thus, the probability that S is chosen to the solution is at most the prob-
ability of

⋃4 lnn
i=1 Bi. By the union bound this probability is at most the sum of

the probabilities of the different events, which is 4xS ln n. Therefore, using the
linearity of expectation, the expected cost of the solution is at most 4 lnn times
the cost of the fractional solution.

By Theorem 1, the cost of the fractional solution is 2(1 + lnm) times the
optimal solution. So the competitive ratio of the randomized algorithm is 8(1 +
ln m) ln n. ��

A Primal-Dual Randomized Algorithm 67

4 Conclusion

In this paper, we have studied the online version of the weighted set multi-cover
problem. We have proposed a 8(1+lnm) ln n-competitive randomized algorithm
for this problem based on the primal-dual method. An interesting open problem
is to design deterministic algorithms for the online weighted set multi-cover
problem.

Acknowledgments. We would like to thank the anonymous referees for their careful
readings of the manuscripts and many useful suggestions.

Wenbin Chen’s research has been supported by the National Science Foundation of
China (NSFC) under Grant No. 11271097, and by the Project of Ordinary University
Innovation Team Construction of Guangdong Province Under No. 2015KCXTD014
and No. 2016KCXTD017. This work has been also supported by the Natural Science
Foundation of China (U1936116), the Guangxi Key Laboratory of Cryptography and
Information Security (GCIS201807). FuFang Li’s work had been co-financed by: Natu-
ral Science Foundation of China under Grant No. 61472092; Guangdong Provincial Sci-
ence and Technology Plan Project under Grant No. 2013B010401037; and GuangZhou
Municipal High School Science Research Fund under grant No. 1201421317. Ke Qi’s
research has been supported by the Guangzhou Science and Technology Plan Project
under Grant No. 201707010283 and the National Science Foundation of Guangdong
Province under Grant No. 2017A030313374. Miao Liu’s research has been supported
by the Guangzhou Municipal Universities project 1201620342.

References

1. Alon, N., Awerbuch, B., Azar, Y., Buchbinder, N., Naor, J.: The online set cover
problem. In: STOC 2003, pp. 100–105 (2003)

2. Bansal, N., Buchbinder, N., Naor, J.: A primal-dual randomized algorithm for
weighted paging. In: FOCS 2007, pp. 507–517 (2007)

3. Buchbinder, N., Jain, K., Naor, J.S.: Online primal-dual algorithms for maximizing
ad-auctions revenue. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007. LNCS,
vol. 4698, pp. 253–264. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-75520-3 24

4. Buchbinder, N., Naor, J.: Online primal-dual algorithms for covering and packing
problems. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp.
689–701. Springer, Heidelberg (2005). https://doi.org/10.1007/11561071 61

5. Buchbinder, N., Naor, J.: Improved bounds for online routing and packing via a
primal-dual approach. In: Proceedings of the 47th Symposium on Foundations of
Computer Science (FOCS), pp. 293–304 (2006)

6. Buchbinder, N., Naor, J.: The design of competitive online algorithms via a primal-
dual approach. Found. Trends Theor. Comput. Sci. 3(2–3), 93–263 (2009)

7. Chvatal, V.: A greedy heuristic for the set covering problem. Math. Oper. Res. 4,
233–235 (1979)

8. Feige, U.: A threshold of ln n for approximating set cover. In: Proceedings of the
28th ACM Symposium on the Theory of Computing, pp. 312–318 (1996)

9. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45(4), 634–652
(1998)

https://doi.org/10.1007/978-3-540-75520-3_24
https://doi.org/10.1007/978-3-540-75520-3_24
https://doi.org/10.1007/11561071_61

68 W. Chen et al.

10. Johnson, D.S.: Approximation algorithms for combinatorial problems. J. Comput.
Syst. Sci. 9, 256–278 (1974)

11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Complexity of Computer Computations, pp. 85–103. Plenum
Press, New York (1972)

12. Kuhnle, A., Li, X., Smith, J.D., Thai, M.T.: Online set multicover algorithms for
dynamic D2D communications. J. Comb. Optim. 34(4), 1237–1264 (2017). https://
doi.org/10.1007/s10878-017-0144-y

13. Lovász, L.: On the ratio of optimal integral and fractional covers. Discrete Math.
13, 383–390 (1975)

14. Lund, C., Yannakakis, M.: On the hardness of approximating minimization prob-
lems. In: Proceedings of the 25th ACM Symposium on Theory of Computing, pp.
286–293 (1993)

15. Rajagopalan, S., Vazirani, V.V.: Primal-dual RNC approximation algorithms for
set cover and covering integer programs. SIAM J. Comput. 109(28), 525–540
(1998)

16. Sun, Z., Li, L., Li, X., Xing, X., Li, Y.: Optimization coverage conserving protocol
with authentication in wireless sensor networks. Int. J. Distrib. Sens. Netw. 13(3),
1–16 (2017)

17. Sun, Z., Li, C., Xing, X., Wang, H., Yan, B., Li, X.: K-degree coverage algorithm
based on optimization nodes deployment in wireless sensor networks. Int. J. Distrib.
Sens. Netw. 13(2), 1–16 (2017)

18. Sun, Z., Shu, Y., Xing, X., et al.: LPOCS: a novel linear programming optimization
coverage scheme in wireless sensor networks. J. Ad Hoc Sens. Wirel. Netw. 33(1/4),
173–197 (2016)

19. Sun, Z., Zhang, Y., Xing, X., et al.: EBKCCA: a novel energy balanced k-coverage
control algorithm based on probability model in wireless sensor networks. KSII
Trans. Internet Inf. Syst. 10(8), 3621–3640 (2016)

20. Sun, Z., Wang, H., Wu, W., Xing, X.: ECAPM: an enhanced coverage algorithm
in wireless sensor network based on probability model. Int. J. Distrib. Sens. Netw.
2015Article ID 203502, 11 pages (2015)

21. Young, N.E.: The k-server dual and loose competitiveness for paging. Algorithmica
11, 525–541 (1994). Preliminary version appeared in SODA’91 titled “On-Line
Caching as Cache Size Varies”

https://doi.org/10.1007/s10878-017-0144-y
https://doi.org/10.1007/s10878-017-0144-y

Sumcheck-Based Delegation of Quantum
Computing to Rational Server

Yuki Takeuchi1(B), Tomoyuki Morimae2,3, and Seiichiro Tani1

1 NTT Communication Science Laboratories, NTT Corporation,
3-1 Morinosato Wakamiya, Atsugi, Kanagawa 243-0198, Japan
{yuki.takeuchi.yt,seiichiro.tani.cs}@hco.ntt.co.jp

2 Yukawa Institute for Theoretical Physics, Kyoto University,
Kitashirakawa Oiwakecho, Sakyoku, Kyoto 606-8502, Japan

tomoyuki.morimae@yukawa.kyoto-u.ac.jp
3 JST, PRESTO, 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan

Abstract. Recently, a new model of delegated quantum computing has
been proposed, namely, rational delegated quantum computing. In this
model, after a client delegates quantum computing to a server, the client
pays a reward to the server. In this paper, we propose novel one-round
rational delegated quantum computing protocols. The construction of
the previous rational protocols depends on gate sets, while our sumcheck
technique can be easily realized with any local gate set. We also show
that a constant reward gap can be achieved if two non-communicating
but entangled rational servers are allowed. Furthermore, we show, under
a certain condition, the equivalence between rational and ordinary dele-
gated quantum computing protocols.

Keywords: Quantum computing · Rational interactive proof · Game
theory

1 Introduction

1.1 Background

Delegated quantum computing enables a client with weak computational power
to delegate quantum computing to a remote (potentially malicious) server in
such a way that the client can efficiently verify whether the server faithfully
computes the delegated problem (i.e., can verify the server’s integrity). Due to
the size of a universal quantum computer and the difficulty of maintaining it, it
is expected that first generation full-fledged quantum computers will be used in
the delegated-quantum-computing style. Furthermore, since quantum operations

This work is partially supported by MEXT Quantum Leap Flagship Program (MEXT
Q-LEAP) Grant Number JPMXS0118067394, JST PRESTO No. JPMJPR176A, and
JSPS Grant-in-Aid for Young Scientists (B) No. JP17K12637.

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 69–81, 2020.
https://doi.org/10.1007/978-3-030-59267-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_7

70 Y. Takeuchi et al.

and communication are too demanding (for current technologies), the client’s
operations and their communication should be made classical.

One of the most important open problems in the field of quantum computing
is whether a classical client can efficiently delegate universal quantum comput-
ing to a quantum server while efficiently verifying the server’s integrity. In del-
egated quantum computing, the honest server’s computational power should be
bounded by polynomial-time quantum computing, because delegated quantum
computing with a server having unbounded computational power is unrealistic.
This limitation is the large difference between delegated quantum computing
and interactive proof systems for BQP. In interactive proof systems, the compu-
tational power of the prover (i.e., the server) is unbounded. Therefore, this open
problem cannot be straightforwardly solved from the well-known containment
BQP ⊆ PSPACE=IP [1].

In this paper, we take a different approach to construct protocols for classical-
client delegated quantum computing. We consider delegating quantum com-
puting to a rational server. This model was first proposed by Morimae and
Nishimura [2] based on the concept of rational interactive proof systems [3]. We
note again that the computational power of the server is bounded by BQP1 in
rational delegated quantum computing, while it is unbounded in the rational
interactive proof systems. In rational delegated quantum computing, after the
client interacts with the server, the client pays a reward to the server depend-
ing on the server’s messages and the client’s random bits. In ordinary delegated
quantum computing, the server may be malicious. On the other hand, in ratio-
nal one, the server is always rational, i.e., he/she tries to maximize the expected
value of the reward. In the real world, there are several situations where ser-
vice providers want to maximize their profits. Since rational delegated quantum
computing reflects such situations, this model can be considered as another pos-
sible situation for delegated quantum computing. In Ref. [2], it was shown that
the classical client can delegate universal quantum computing to the rational
quantum server in one round.

1.2 Our Contribution

As our main contribution, we propose a novel one-round delegated quantum
computing protocol with a classical client and a rational quantum server. More
precisely, we construct protocols where the classical client can efficiently delegate
to the rational quantum server the estimation of output probabilities of n-qubit
quantum circuits. Their estimation has many applications such as estimating
the expected values of observables, which are quantities interested especially by
physicists, and solving decision problems in BQP. Specifically, we consider any n-
qubit polynomial-size quantum circuit with k-qubit output measurements, where
k = O(log n). Since the goal of our rational protocol is to delegate the estima-
tion of the output probabilities, we, for clarity, refer to our protocol as delegated
1 For simplicity, we sometimes use complexity classes to represent computational pow-

ers. For example, we say that a server (a client) is a BQP server (a BPP client) when
he/she performs polynomial-time quantum (probabilistic classical) computing.

Sumcheck-Based Delegation of Quantum Computing to Rational Server 71

quantum estimating protocol. As shown in the full paper [4], our argument can
also be used to construct a one-round rational delegated quantum computing
protocol for any BQP problem. Intuitively, using a certain BQP-complete prob-
lem [5], any BQP problem can be reduced to the estimation of the probability
of the first qubit being projected onto |1〉. Therefore, our argument works. Fur-
thermore, if a delegated quantum circuit is approximately sparse, our result can
be generalized to the estimation of output probabilities with n-qubit output
measurements. For general quantum circuits, such generalization is still open.

Our protocols can be applied to a broader class of universal gate sets than
the previous protocols [2]. They work for any universal gate set each of whose
elementary gates acts on at most O(log n) qubits, while the previous protocols
are tailored for Clifford gates plus T ≡ |0〉〈0| + eiπ/4|1〉〈1| or classical gates plus
the Hadamard gate. Note that we only consider gate sets whose elementary gates
can be specified with a polynomial number of bits.

Four conditions should be satisfied by practical rational delegated quantum
computing protocols:

1. The reward is upper-bounded by a constant.
2. The reward is always non-negative if the BQP server takes an optimal strategy

that maximizes its expected value.2
3. The maximum of the expected value of the reward is lower-bounded by a

constant.
4. The reward gap [6] is larger than a constant. Here, simply speaking, the

reward gap is a minimum loss on the expected value of the server’s reward
incurred by the server’s behavior that makes the client accept an incorrect
answer. Note that such behavior may require computational power beyond
BQP, while we limit the optimal strategy maximizing the expected value to
one that can be executed in quantum polynomial time.

The protocols of Ref. [2] and our protocol satisfy only conditions 1–3.
Whether the above four conditions can be satisfied simultaneously is an open
problem. In Ref. [2], it is shown that if the reward gap is larger than 1/f(n) with
a polynomial f(n), a super-polynomial increase of the reward (i.e., the violation
of the first condition) is unavoidable in one-round protocols with a single server
unless BQP ⊆ ΣP

3 . Since this inclusion is considered unlikely given the oracle
separation between BQP and PH [7], this implies that it may be impossible to
satisfy the above four conditions simultaneously in one-round protocols with a
single server.

As the second contribution, for BQP problems, we construct a multi-rational-
server delegated quantum computing protocol that satisfies all four conditions
simultaneously. In the full paper [4], we also discuss whether a single server is
sufficient under the (widely believed) assumption that the learning with errors
(LWE) problem is hard for polynomial-time quantum computation.
2 More precisely, the server takes an optimal strategy that can be executed in quantum

polynomial time, because we assume that the computational power of the server is
bounded by BQP. Throughout this paper, the server’s optimization is limited to one
that can be performed in quantum polynomial time unless explicitly noted otherwise.

72 Y. Takeuchi et al.

Finally, apart from these results, we show that under the certain condition
introduced in Ref. [12], rational and ordinary delegated quantum computing
protocols can be converted from one to the other and vice versa. This equivalence
may provide a new approach to tackle the open problem of whether a classical
client can efficiently delegate universal quantum computing to a (non-rational)
quantum server while efficiently verifying the server’s integrity. Based on this
equivalence, we give an amplification method for the reward gap.

2 Preliminaries

2.1 Rational Delegated Quantum Computing

In this subsection, we define rational delegated quantum computing. Following
the original definition of rational interactive proof systems [3], we first define the
transcript T , the server’s view S, and the client’s view C as follows:

Definition 1. We assume that k is odd. Given an instance x and a round i, we
define the ith transcript Ti, the ith server’s view Si, and the ith client’s view Ci

as follows (0 ≤ i ≤ k):

– T0 = S0 = C0 = {x}.
– When i is odd, Ti = {Ti−1, ai}, where ai is the ith server’s message. On the

other hand, when i(> 0) is even, Ti = {Ti−1, bi}, where bi is the ith client’s
message.

– For odd i, Si = {Si−2, Ti−1, Vi}, where Vi is a quantum circuit used to compute
ai. Note that Si and Vi are not defined for even i because the even-numbered
round is a communication from the client to the server.

– For even i, Ci = {Ci−2, Ti−1, ri}, where ri is a random bit string used to
compute bi. Note that Ci is not defined for odd i because the odd-numbered
round is a communication from the server to the client.

For all i, messages ai and bi are polynomial lengths. Particularly, bi is generated
from Ci in classical polynomial time. The quantum circuit Vi is decided from
Si−2.

Based on Definition 1, we define the following k-round interaction between a
BPP client and a server:

Definition 2. Let k be odd. This means that the protocol begins with the server’s
step. When k is even, the following definition can be adopted by adding a com-
munication from the server to the client at the beginning of the protocol. Let us
consider the following k-round interaction:

1. A BPP client interacts with a server k times. In the ith round for odd i, the
server sends ai to the client. In the ith round for even i, the client sends bi

to the server.
2. The client efficiently calculates a predicate on the instance x and the kth

transcript Tk. If the predicate evaluates to o = 1, the client answers YES. On
the other hand, if o = 0, the client answers NO.

Sumcheck-Based Delegation of Quantum Computing to Rational Server 73

3. The client efficiently calculates the reward R ∈ [0, c] and pays it to the server,
where c is a positive constant. Note that it is not necessary for the client and
server to know the value of c. The reward function R : {0, 1}∗×{0, 1}poly(|x|) ×
{0, 1}poly(|x|) → R≥0 depends on the instance x ∈ {0, 1}∗, the kth transcript
Tk ∈ {0, 1}poly(|x|), and the client’s random bits rk+1 ∈ {0, 1}poly(|x|).

Rational delegated quantum computing for decision problems is defined as
follows:

Definition 3. The k-round interaction defined in Definition 2 is called a k-
round rational delegated quantum computing protocol for decision problems if
and only if the following conditions hold: let E[f] denote the expectation value
of a function f . Let Dk be a distribution that the kth transcript follows. For a
language L ⊆ {0, 1}∗ in BQP, if x ∈ L, there exists a classical polynomial-time
predicate and a distribution DYES that can be generated in quantum polynomial
time, such that

Pr[o = 1 | Dk = DYES] ≥
2
3

(1)

and
ETk∼DYES,rk+1 [R(x, Tk, rk+1)] ≥ cYES (2)

with some positive constant cYES ≤ c.
On the other hand, if x /∈ L, there exists a classical polynomial-time predicate

and a distribution DNO that can be generated in quantum polynomial time, such
that

Pr[o = 0 | Dk = DNO] ≥
2
3

(3)

and
ETk∼DNO,rk+1 [R(x, Tk, rk+1)] ≥ cNO (4)

with some positive constant cNO ≤ c.
To generate distributions DYES and DNO, the server decides the ith message

ai following a distribution Di that can be generated in quantum polynomial time
and satisfies

Di = argmaxDi
EDk,Tk ∼Dk,rk+1 [R(x, Tk, rk+1)|Di,Si], (5)

where the expectation is taken over all possible distributions Dk that are compat-
ible with the current server’s view Si. Here, we consider only the maximizations
that can be performed in quantum polynomial time.

Since the server’s computational power is bounded by BQP, it is in general
hard for the server to select an optimal message that satisfies Eqs. (1) and (2).
Therefore, the server’s message ai should be probabilistically generated. That is
why we consider the distribution DYES. The same argument holds for the NO
case.

The value 2/3 in Eqs. (1) and (3) can be amplified to 1 − 2−f(|x|), where
f(|x|) is any polynomial in |x|, using the standard amplification method

74 Y. Takeuchi et al.

(i.e., by repeating steps 1 and 2, and then taking the majority vote among
outputs in step 2). We here mention that the above rational delegated quantum
computing protocol satisfies conditions 1–3 in Sect. 1. This is straightforward
from R ∈ [0, c] and Eqs. (2) and (4).

The server would like to generate the ith message ai following a distribution
that maximizes the expected value of the finally obtained reward. However,
at that time, the server cannot predict the future distribution Dk. Therefore,
the server also takes the expectation over all possible distributions Dk. The
distribution Di in Eq. (5) is a distribution that maximizes such expected reward.

All of our rational protocols except for one in Sect. 3 are in accordance with
Definition 3. Our rational protocol in Sect. 3 is a rational delegated quantum
computing protocol for function problems, which can be defined in a similar
way.

2.2 Reward Gap

Guo et al. have introduced the reward gap [6]. For convenience, we define a strat-
egy s as a set {ai}i of the server’s messages, which may be adaptively decided
according to the previous client’s messages. When we focus on the dependence
on the server’s messages, we write ETk∼D,rk+1 [R(x, Tk, rk+1)] by Es∼D′ [R(x, s)]
for short. For decision problems, the reward gap is defined as follows:

Definition 4. Let D′ be a distribution that the server’s strategy s follows. Let
D′

max be the distribution D′, where each message ai follows the distribution in
Eq. (5). We say that a rational delegated quantum computing protocol has a
1/γ(|x|)-reward gap if for any input x,

Es∼D′
max

[R(x, s)] − maxs∈SincorrectE[R(x, s)] ≥
1

γ(|x|), (6)

where γ(|x|) is any function of |x|, and Sincorrect is the set of the server’s strate-
gies that make the client output an incorrect answer. Here, the expectation is also
taken over the client’s random bits. Note that Sincorrect may include strategies
that cannot be executed in quantum polynomial time.

From Definition 3, if the server’s strategy s follows the distribution D′
max, the

client outputs a correct answer with high probability. Es∼D′
max

[R(x, s)] is the
maximum expected value of the reward paid to the rational BQP server. On
the other hand, maxs∈SincorrectE[R(x, s)] is the maximum expected value of the
reward paid to the malicious computationally-unbounded server if the server
wants to maximize the expected value as much as possible while deceiving the
client. This is because the client outputs an incorrect answer when the server
takes the strategy s ∈ Sincorrect. As a result, the reward gap represents how
much benefit the rational server can obtain compared with the malicious one.
For function problems, we can define the reward gap in a similar way.

Sumcheck-Based Delegation of Quantum Computing to Rational Server 75

3 Sumcheck-Based Rational Delegated Quantum
Computing

In this section, we construct a rational delegated quantum computing protocol
for estimating output probabilities of n-qubit quantum circuits, which we call
the rational delegated quantum estimating protocol. Particularly, we consider
any n-qubit polynomial-size quantum circuit with O(log n)-qubit output mea-
surements. We also show that our protocol satisfies conditions 1–3 mentioned in
Sect. 1.

Let {qz}z∈{0,1}k be the output probability distribution of the quantum circuit
U , where qz ≡ 〈0n|U†(|z〉〈z|⊗I⊗n−k)U |0n〉 and I is the two-dimensional identity
operator. We show that if the quantum server is rational, the classical client can
efficiently obtain the estimated values {pz}z∈{0,1}k with high probability such
that |pz − qz| ≤ 1/f(n) for any z and any polynomial f(n). Therefore, for
example, the classical client can approximately sample with high probability
in polynomial time from the output probability distribution {qz}z∈{0,1}k of the
quantum circuit U . Before proposing our rational delegated quantum estimating
protocol, we calculate qz using the Feynman path integral. Let U = uL . . . u2u1 ≡∏1

i=L ui, where ui is an elementary gate in a universal gate set for all i, and L
is a polynomial in n. The probability qz is calculated as follows:

qz =
∑

s∈{0,1}(2L−1)n−k

g(z, s), (7)

where

g(z, s) ≡ 〈0n|u†
1

⎛

⎝
2∏

j=L

uj |s(j−1)〉〈s(j−1)|

⎞

⎠

†

|zs(L)〉〈zs(L)| (8)

(
2∏

i=L

ui|s(L+i−1)〉〈s(L+i−1)|
)

u1|0n〉,

and s is a shorthand notation of the (2L − 1)n − k bit string s(1)s(2) . . . s(2L−1).
As an important point, given z and s, the function g(z, s) can be calculated in
classical polynomial time. This is because each elementary gate acts on at most
O(log n) qubits. Furthermore, from Eq. (8), 0 ≤ (1 + Re[g(z, s)])/2 ≤ 1, where
Re[g(z, s)] is the real part of g(z, s).

To construct our rational delegated quantum estimating protocol, we use the
rational sumcheck protocol [8]. The rational sumcheck protocol enables the client
to efficiently delegate to the rational server the calculation (or approximation) of
∑l

i=1 xi, where xi is an integer for any i. To fit the rational sumcheck protocol
to our case, we generalize it for the case of the complex number xi. As a result,
we can set xi = g(z, s) and z to be a certain fixed value. Our protocol runs as
follows:

[Protocol 1]

76 Y. Takeuchi et al.

1. For all z ∈ {0, 1}k, the rational server and the client perform the following
steps:
(a) The rational server sends to the client a real non-negative number yz,

which is explained later. (Note that yz is represented by a bit string with
logarithmic length; therefore, the message size from the server to the client
is logarithmic.)

(b) The client samples s uniformly at random from {0, 1}(2L−1)n−k.
(c) The client flips a coin that lands heads with probability (1+Re[g(z, s)])/2.

If the coin lands heads, the client sets bz = 1; otherwise, bz = 0.
(d) Let Yz ≡ [yz + 2(2L−1)n−(k+1)]/2(2L−1)n−k. The client calculates the

reward

R(yz, bz) ≡
1
2k

[
2Yzbz + 2 (1 − Yz) (1 − bz) − Y 2

z − (1 − Yz)
2 + 1

]
, (9)

which is the (slightly modified) Brier’s scoring rule [9]. This scoring rule
guarantees that the expected value of the reward is maximized when yz

is equal to the probability of bz = 1 up to additive and multiplicative
factors. Then, the client pays the reward R(yz, bz) to the rational server.

2. The client calculates

pz ≡
yz

∑
z∈{0,1}k yz

(10)

for all z.

Since the sampling in step (c) can be approximately performed in classical poly-
nomial time, what the client has to do is simply efficient classical computing.
Furthermore, since the repetitions in step 1 can be performed in parallel, this is
a one-round protocol. Note that except for the communication required to pay
the reward to the server, Protocol 1 only requires one-way communication from
the server to the client.

We show that pz satisfies
∑

z∈{0,1}k |pz − qz| ≤ 1/f(n) for any fixed polyno-
mial f(n) with high probability. This means that pz is an approximated value
of qz for each z with high probability. More precisely, we show the following
theorem:

Theorem 1. Let f(n) and h(n) be any polynomials in n. Let qz =
〈0n|U†(|z〉〈z| ⊗ I⊗n−k)U |0n〉, and pz be the probability given in Eq. (10). Then,
for any f(n) and h(n), there exists Protocol 1 such that

∑
z∈{0,1}k |pz − qz| ≤

1/f(n) with probability of at least 1 − e−h(n).

The proof is given in the full paper [4]. The intuitive idea is that the expected
value of our reward function increases as yz becomes to be close to qz/2 for
all z. Therefore, the rational server essentially sends approximated values of
{qz}z∈{0,1}k to the client.

From Theorem 1, by approximately sampling from {pz}z∈{0,1}k , the client can
approximately sample from {qz}z∈{0,1}k with high probability. Given the values

Sumcheck-Based Delegation of Quantum Computing to Rational Server 77

of {pz}z∈{0,1}k , the approximate sampling from {pz}z∈{0,1}k can be classically
performed in polynomial time.

In Protocol 1, we assume that (1 + Re[g(z, s)])/2 can be exactly represented
using a polynomial number of bits. If this is not the case, the classical client has
to approximate (1 + Re[g(z, s)])/2. As a result, as shown in the full paper [4],
the expected value of the reward is maximized when yz = qz/2 + δ, where the
real number δ satisfies |δ| ≤ 2−f ′(n) for a polynomial f ′(n). Therefore, even in
the approximation case, the classical client can efficiently obtain the estimated
values of the output probabilities of quantum circuits.

Next, we show the following theorem:

Theorem 2. In Protocol 1, the total reward
∑

z∈{0,1}k R(yz, bz) is between 3/2−
O(1/2(2L−1)n−k) and 3/2 + O(1/2(2L−1)n−k) for bz ∈ {0, 1} and any real values
yz ∈ [0, 1/2]. Furthermore, the maximum expected value of the total reward is
lower-bounded by 3/2 + O

(
1/22(2L−1)n−k

)
.

The proof is given in the full paper [4]. From this theorem, Protocol 1 satisfies
conditions 1–3 in Sect. 1.

4 Multi-Rational-Server Delegated Quantum Computing
with a Constant Reward Gap

In this section, we consider the reward gap. Although a large reward gap is
desirable to incentivize the server to behave optimally, our sumcheck-based pro-
tocol has only an exponentially small gap as in the existing rational delegated
quantum computing protocols [2]. It is open as to whether a constant reward
gap is possible. However, in this subsection, we show that if non-communicating
but entangled multiservers are allowed, we can construct a rational delegated
quantum computing protocol with a constant reward gap for BQP problems
while keeping three conditions 1–3 in Sect. 1. To this end, we utilize multiprover
interactive proof systems for BQP. In some multiprover interactive proof systems
proposed for BQP, the computational ability of the honest provers is bounded by
BQP but that of the malicious provers is unbounded (e.g., Refs. [10,11]). Simply
speaking, these multiprover interactive proof systems satisfy the following: for
any language L ∈ BQP, there exists a poly(|x|)-time classical verifier V interact-
ing with a constant number of non-communicating but entangled provers, such
that for instances x, if x ∈ L, then there exists a poly(|x|)-time quantum provers’
strategy in which V accepts with probability of at least 2/3, and if x /∈ L, then
for any (computationally-unbounded) provers’ strategy, V accepts with proba-
bility of at most 1/3. We denote the above interaction between V and provers
as πL for the language L ∈ BQP.

Using the above multiprover interactive proof systems and the construction
used in Ref. [3], we construct the following rational delegated quantum comput-
ing protocol:

78 Y. Takeuchi et al.

[Protocol 2]

1. For a given BQP language L and an instance x, one of M rational servers
sends b ∈ {0, 1} to the client. As shown in Theorem 3, if the server is rational,
b = 1(0) when x is in L (x is not in L).

2. If b = 1, the client and M servers simulate πL for the language L and instance
x; otherwise, the client and M servers simulate πL̄ for the complement L̄ and
the instance x.

3. The client pays reward R = 1/M to each of the M servers if the simulated
verifier accepts. On other hand, if the simulated verifier rejects, the client
pays R = 0.

4. The client concludes x ∈ L if b = 1; otherwise, the client concludes x /∈ L.

Note that since BQP is closed under complement, πL̄ exists for the complement
L̄. Here, we notice that even if the simulated verifier accepts, each server can
obtain only 1/M as the reward. However, since the number M of the servers
is two in the multiprover interactive proof systems in Refs. [10,11], the reward
1/M paid to each server can be made 1/2. Furthermore, when we use the results
in Refs. [10,11], the number of rounds in Protocol 2 becomes a constant.

We clarify the meaning of “rational” in multi-rational-server delegated quan-
tum computing. We can consider at least two possible definitions of “rational”.
One is that each server wants to maximize each reward, and the other is that all
servers want to collaboratively maximize their total reward. Fortunately, in Pro-
tocol 2, these two definitions are equivalent. In other words, the total reward is
maximized if and only if the reward paid to each server is maximized. Hereafter,
we therefore do not distinguish between these two definitions.

Before we show that Protocol 2 has a constant reward gap, we show that if
the servers are rational, the client’s answer is correct. More formally, we prove
the following theorem:

Theorem 3. In Protocol 2, if the servers are rational, i.e., take the strategy that
maximizes the expectation value of the reward, then b = 1 if and only if x ∈ L.

Proof. First, we consider the YES case, i.e., the case where x is in L. If b = 1,
the client and the servers perform πL for the language L and the instance x.
Therefore, when the servers simulate the honest provers in πL, the client accepts
with probability of at least 2/3. On the other hand, if b = 0, the client accepts
with probability less than or equal to 1/3. This is because x is a NO instance for
the complement L̄, i.e., x /∈ L̄. In πL̄, when the answer is NO, the acceptance
probability is at most 1/3 for any provers’ strategy. Since the completeness-
soundness gap 1/3 is a positive constant, one of the rational servers sends b = 1
if x ∈ L. By following the same argument, one of them sends b = 0 when x /∈ L.

From this proof, we notice that the reward gap has the same value as the
completeness-soundness gap.3 Protocol 2 has a 1/3 reward gap, which is con-
stant. Furthermore, it can be straightforwardly shown that Protocol 2 also satis-
fies conditions 1–3 mentioned in Sect. 1 as follows. Since the total reward M ×R
3 Precisely speaking, since the computational power of the server is bounded by BQP,

the server sends b = 0(1) with an exponentially small probability when the correct

Sumcheck-Based Delegation of Quantum Computing to Rational Server 79

paid to M servers is 0 or 1, the first and second conditions are satisfied. When
the servers behave rationally, the client accepts with probability at least 2/3.
Therefore, the expected value of the total reward paid to the rational servers is
at least 2/3, which satisfies the third condition.

5 Relation Between Rational and Ordinary Delegated
Quantum Computing Protocols

In Sect. 4, by incorporating ordinary delegated quantum computing into rational
delegated quantum computing, we have shown that the four conditions can be
simultaneously satisfied. In this section, we consider the reverse direction, i.e.,
constructing ordinary delegated quantum computing protocols from rational del-
egated quantum computing protocols. By combining this construction with the
idea in Sect. 4, we obtain an equivalence (under a certain condition) between
these two types of delegated quantum computing. Note that in ordinary ones,
the server’s ability is unbounded in NO cases (i.e., when x /∈ L).

To construct ordinary delegated quantum computing protocols from ratio-
nal ones, we consider the general poly(|x|)-round rational delegated quantum
computing protocol defined in Definition 3, which we call RDQC for short. By
adding two conditions for RDQC, we define constrained RDQC as follows:

Definition 5. The constrained RDQC protocol is an RDQC protocol defined in
Definition 3 such that

1. There exists a classically efficiently computable polynomial f(|x|) such that

cYES − maxs∈Sincorrect,x/∈LE[R(s, x)] ≥
1

f(|x|), (11)

2. The upper-bound c of the reward is classically efficiently computable.

The first condition was introduced in Ref. [12]. It is worth mentioning that
the second condition is satisfied in our sumcheck-based protocol, while the first
condition is not. Note that the left-hand side of Eq. (11) is not the reward gap.

We show that an ordinary delegated quantum computing protocol with a sin-
gle BQP server and a single BPP client can be constructed from any constrained
RDQC protocol. To this end, we show the following theorem:

Theorem 4. If a language L in BQP has a k-round constrained RDQC protocol,
then L has a k-round interactive proof system with the completeness-soundness
gap 1/(cf(|x|)) between an honest BQP prover and a BPP verifier.

answer is YES (NO). Therefore, the finally obtained reward gap is decreased by the
inverse of an exponential from the original completeness-soundness gap. However,
this is negligible because the original completeness-soundness gap is a constant.

80 Y. Takeuchi et al.

The proof is essentially the same as that of Theorem 4 in Ref. [12].
As shown in the full paper [4], from Theorem 4, we can show that if there

exists a constant-round constrained RDQC protocol for BQP, then BQP ⊆
∏p

2,
which seems to be unlikely due to the oracle separation between BQP and PH [7].

We show that the reverse conversion is also possible using the idea in Sect. 4.

Theorem 5. If a language L in BQP has an interactive proof system with an
honest BQP prover and a BPP verifier, then L has a constrained RDQC protocol.

The detail is given in the full paper [4].
Finally, by applying Theorems 4 and 5, we give the following amplification

method for the reward gap:

Corollary 1. The reward gap of the constrained RDQC can be amplified to a
constant.

The proof is given in the full paper [4]. Here, we explain the basic idea of the
proof. Using the conversion between rational and ordinary delegated quantum
computing protocols, we show that the amplification of the reward gap can
be replaced with that of the soundness-completeness gap. This means that the
traditional amplification method for the soundness-completeness gap can be used
to amplify the reward gap. Remarkably, this amplification method works even if
the original constrained RDQC protocol has only an exponentially small reward
gap. This is because the original constrained RDQC protocol satisfies Eq. (11).

References

1. Shamir, A.: IP=PSPACE. In: Proceedings of the 31st Annual Symposium on Foun-
dations of Computer Science, pp. 11–15. IEEE, St. Louis (1990)

2. Morimae, T., Nishimura, H.: Rational proofs for quantum computing.
arXiv:1804.08868

3. Azar, P.D., Micali, S.: Rational proofs. In: Proceedings of the 44th Symposium on
Theory of Computing, pp. 1017–1028. ACM, New York (2012)

4. Takeuchi, Y., Morimae, T., Tani, S.: Sumcheck-based delegation of quantum com-
puting to rational server. arXiv:1911.04734

5. Aharonov, D., Ben-Or, M., Eban, E.: Interactive proofs for quantum computations.
In: Proceedings of Innovations in Computer Science 2010, pp. 453–469. Tsinghua
Univ. Press, Beijing (2010)

6. Guo, S., Hubáček, P., Rosen, A., Vald, M.: Rational arguments: single round dele-
gation with sublinear verification. In: Proceedings of the 5th Conference on Inno-
vations in Theoretical Computer Science, pp. 523–540. ACM, New Jersey (2014)

7. Raz, R., Tal, A.: Oracle separation of BQP and PH. In: Proceedings of the 51st
Annual Symposium on Theory of Computing, pp. 13–23. ACM, New York (2019)

8. Guo, S., Hubáček, P., Rosen, A., Vald, M.: Rational sumchecks. In: Kushilevitz, E.,
Malkin, T. (eds.) TCC 2016. LNCS, vol. 9563, pp. 319–351. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-49099-0 12

9. Brier, G.W.: Verification of forecasts expressed in terms of probability. Mon.
Weather. Rev. 78, 1–3 (1950). https://journals.ametsoc.org/mwr/article/78/1/1/
96424/VERIFICATION-OF-FORECASTS-EXPRESSED-IN-TERMS-OF

http://arxiv.org/abs/1804.08868
http://arxiv.org/abs/1911.04734
https://doi.org/10.1007/978-3-662-49099-0_12
https://journals.ametsoc.org/mwr/article/78/1/1/96424/VERIFICATION-OF-FORECASTS-EXPRESSED-IN-TERMS-OF
https://journals.ametsoc.org/mwr/article/78/1/1/96424/VERIFICATION-OF-FORECASTS-EXPRESSED-IN-TERMS-OF

Sumcheck-Based Delegation of Quantum Computing to Rational Server 81

10. Coladangelo, A., Grilo, A.B., Jeffery, S., Vidick, T.: Verifier-on-a-leash: new
schemes for verifiable delegated quantum computation, with quasilinear resources.
In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp. 247–277.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 9

11. Grilo, A.B.: A simple protocol for verifiable delegation of quantum computation
in one round. In: Proceedings of the 46th International Colloquium on Automata,
Languages, and Programming, pp. 28:1–28:13. EATCS, Patras (2019)

12. Chen, J., McCauley, S., Singh, S.: Efficient rational proofs with strong utility-
gap guarantees. In: Deng, X. (ed.) SAGT 2018. LNCS, vol. 11059, pp. 150–162.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-99660-8 14

https://doi.org/10.1007/978-3-030-17659-4_9
https://doi.org/10.1007/978-3-319-99660-8_14

Online Removable Knapsack Problems
for Integer-Sized Items

Kanaho Hanji(B), Hiroshi Fujiwara, and Hiroaki Yamamoto

Shinshu University, Nagano, Japan
19w2100j@shinshu-u.ac.jp, {fujiwara,yamamoto}@cs.shinshu-u.ac.jp

Abstract. In the online removable knapsack problem, a sequence of
items, each labeled with its profit and its size, is given in one by one.
At each arrival of an item, a player has to decide whether to put it into
a knapsack or not. The player is also allowed to discard some of the
items that are already in the knapsack. The objective is to maximize
the total profit of the knapsack. Iwama and Taketomi gave an optimal
algorithm for the case where the profit of each item is equal to its size.
In this paper we consider a case with an additional constraint that the
size of the knapsack is a positive integer N and the sizes of the items are
all integral. For each of the cases N = 1, 2, . . ., we design an algorithm
and prove its optimality. It is revealed that the competitive ratio is not
monotonic with respect to N .

1 Introduction

In the knapsack problem, a player receives a set of items, each with a profit and
a size, and packs some of the items into a knapsack so that the total profit is
maximized and the total size does not exceed the knapsack size [5]. Iwama and
Taketomi first proposed an online version called the online removable knapsack
problem [4], which has the following additional settings: (i) The player receives
items one by one. Each time an item arrives, the player has to decide whether to
put it into the knapsack or throw it away. The player does not know when the
sequence of items ends. (ii) When an item arrives, the player can discard some
of items that are already in the knapsack.

The competitive ratio is often used as an evaluation measure of algorithms
for online problems [1]. The competitive ratio is the maximum ratio of the online
profit to the optimal offline profit. The online profit is the total profit obtained
by an algorithm for items arriving one by one. The optimal offline profit is
the optimal profit of a clairvoyant player who knows the whole item sequence
beforehand. The smaller the competitive ratio is, the better the algorithm is.

The paper [4] gave an optimal online algorithm with competitive ratio√
5+1
2 (≈ 1.618) for the online removable knapsack problem under a setting that

for each item, its profit is equal to its size. In this paper, we impose a further
additional setting that the knapsack size is a positive integer N and the size
of each item is also an integer between 1 and N . For each N, we design an
c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 82–93, 2020.
https://doi.org/10.1007/978-3-030-59267-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_8

Online Removable Knapsack Problems for Integer-Sized Items 83

optimal algorithm for the problem. The motivation of our study comes from
application to practical problems: Although rational numbers are mostly han-
dled in computation, we deal with them as a problem over integral numbers by
reduction.

Table 1. The competitive ratio for integer-sized items with profit = size.

Knapsack size 1 to 3 4 5 6 7 8 9

Competitive ratio 1 4
3 (≈ 1.33) 5

4 (≈ 1.25) 4
3 (≈ 1.33) 7

5 (≈ 1.4) 4
3 (≈ 1.33) 3

2 (≈ 1.5)

Fig. 1. The competitive ratio for integer-sized items with profit = size. The dashed

line stands for the competitive ratio (=
√
5+1
2

) for arbitrary-sized items with profit =
size [4].

1.1 Our Contribution

Our algorithm achieves a competitive ratio of

max
{

N

�Nt� + 1
,min

{
N

�Nt� ,
�Nt�

N − �Nt� + 1

}}
(1)

for each N , where t =
√
5−1
2 . This is optimal since we show that the competitive

ratio of any algorithm is at least that value. The lower bound is derived in a
similar way as in the paper [4]. In contrast, the design of our algorithm involves

84 K. Hanji et al.

a more careful analysis for individual N . See Table 1 and Fig. 1 for the values of
the competitive ratios.

It is observed that each competitive ratio of our algorithm is lower than√
5+1
2 , which is a natural consequence as our problem is more restricted than the

original problem in [4]. Nevertheless, our result reveals a non-intuitive relation
between N and the competitive ratio: The competitive ratio does not increase
monotonically as N grows. For example, the competitive ratio for N = 4 is 4

3 ,
while the competitive ratio for N = 5 is 5

4 < 4
3 .

1.2 Previous Research

The knapsack problem is one of many famous combinatorial optimization prob-
lems [5]. The task is to choose a subset of items so that the total profit is
maximized and the total size does not exceed the knapsack size. To consider an
online version of optimization problems is a natural interest of researchers [1,2,6].
Iwama and Taketomi first proposed the online removable knapsack problem [4].
For the case where the profit of each item is equal to its size, they gave an
optimal online algorithm with a competitive ratio of

√
5+1
2 .

Han et al. studied the online removable knapsack problem in which the profit
of an item is a convex function of its size [3]. They provided a 5

3 (≈ 1.666)-
competitive algorithm, as well as a lower bound of

√
5+1
2 (≈ 1.618) on the com-

petitive ratio.

2 Online Removable Knapsack Problem

2.1 Problem Statement

In the online removable knapsack problem, a player receives a sequence of items
u1, u2, . . . one by one. When item u arrives, the player has to determine (i)
whether to put u into the knapsack or not, and (ii) a subset of items in the
knapsack to be discarded, so that the total size of items in the knapsack does
not exceed the knapsack size. Let |u| stand for the size of item u. A sequence of
items is displayed as σ = (|u1|, |u2|, |u3|, . . .). We do not define the symbol for
profit since we will assume that the profit of an item always equals its size of
it. Let |B| denote the total profit (= total size) of items in the knapsack. The
objective of this problem is to maximize |B|.

2.2 Evaluation of Algorithms

The competitive ratio is most commonly used as a performance measure of
an algorithm for an online optimization problem [1]. For the online removable
knapsack problem, the competitive ratio of algorithm ALG is defined as the

Online Removable Knapsack Problems for Integer-Sized Items 85

maximum value over the ratio of the total profit by ALG to the optimal total
profit in the setting that the entire sequence is known in advance. That is,

RALG = max
σ

OPT (σ)
ALG(σ)

.

It can be said that the smaller the competitive ratio is, the better the algo-
rithm is.

2.3 Additional Settings

We mention two additional settings to the online removable knapsack problem.
The first setting (I) is to assume that for every item, the profit equals the size. In
the paper [4], an optimal algorithm for the online removable knapsack problem
with the setting (I), which we present as Theorem 1 below. Note that with the
setting (I), each item ui satisfies 0 < |ui| ≤ 1 and it always holds that 0 < |B| ≤ 1.

Theorem 1 ([4]). For the online removable knapsack problem with the setting
(I), an algorithm whose competitive ratio is

√
5+1
2 (≈ 1.618) exists and is optimal.

The second setting (II) is to let the size of the knapsack be a positive integer N
and to let the size of each item be in the set {1, 2, 3, . . . , N}. Hereinafter, such an
item is called an integer-sized item. Under the two settings (I) and (II), the range
of the total profit in the knapsack is 0 < |B| ≤ N . Below is our main theorem.

Theorem 2. For the online removable knapsack problem with the setting (I)
and (II), an algorithm whose competitive ratio is 1

t′(N) exists and is optimal,

where t′(N) = 1

max{ N
�Nt�+1 ,min{ N

�Nt� ,
�Nt�

N−�Nt�+1}} and t =
√
5−1
2 .

Theorem 2 is proven by Lemmas 1, 3, 4, 5, and 6 in the following sections.

3 Lower Bounds

We give a lower bound for the problem with the settings (I) and (II) by a similar
way to the proof in the paper [4], which is summarized as the following: An
arbitrary algorithm receives an input item sequence with two or possibly three
items. The first two items of the sequence cannot be packed into the knapsack
together. Depending on the choice of which item to pack, the adversary decides
whether the third item follows or not.

Such a derivation may look too simple and possible to improve. However, the
analysis in Sect. 4 clarifies that the resulting bound is tight.

Lemma 1. Let the size of knapsack be N ≥ 3 and t =
√
5−1
2 . For any algorithm

A, it follows that

RA ≥ max
{

N

�Nt� + 1
,min

{
N

�Nt� ,
�Nt�

N − �Nt� + 1

}}
.

86 K. Hanji et al.

Proof. We consider two scenarios: One is σc = (�Nt� + 1, N − �Nt�, �Nt�) or a
prefix of σc with two items. The other is σf = (�Nt�, N −�Nt�+1, �Nt�− 1) or
a prefix of σf with two items. For each of these sequences, the first item and the
second item cannot be put together into the knapsack since �Nt� + 1 + N −
�Nt� > N and �Nt� + N − �Nt� + 1 > N .

The adversary, observing the behavior of algorithm A, determines whether
the player receives the third item or not. For σc, if algorithm A puts the second
item into the knapsack, then the third item is not given. Thus, we have RA ≥
�Nt�+1
N−�Nt� , since the optimal choice from (�Nt�+1, N −�Nt�) is just the first one.
If algorithm A puts the first item of σc into the knapsack, then the third item
arrives. Thus, we have RA ≥ N

�Nt�+1 , since the optimal choice from (�Nt� +
1, N − �Nt�, �Nt�) is the second and third one. For σf likewise, if algorithm A
puts the second item into the knapsack, then the third item is not given. Thus,
we have RA ≥ �Nt�

N−�Nt�+1 , since the optimal choice from (�Nt�, N − �Nt� + 1)
is just the first one. If algorithm A puts the first item of σf into the knapsack,
then the third item arrives. Thus, we have RA ≥ N

�Nt� , since the optimal choice
from (�Nt�, N − �Nt� + 1, �Nt� − 1) is the second and third one.

From above, we obtain a lower bound as

RA ≥ max
{

min
{

N

�Nt� + 1
,

�Nt� + 1
N − �Nt�

}
,min

{
N

�Nt� ,
�Nt�

N − �Nt� + 1

}}
.

Here, a simple derivation leads to the inequality

N

�Nt� + 1
<

�Nt� + 1
N − �Nt�

for all N . Using this, the lower bound is rewritten in a simpler form

RA ≥ max
{

N

�Nt� + 1
,min

{
N

�Nt� ,
�Nt�

N − �Nt� + 1

}}
.

��
Lemma 1 does not tell anything about the cases of N = 1 and 2. In Sect. 4, it is
revealed that a trivial lower bound of 1 is tight for both these cases.

4 Upper Bounds

4.1 Algorithm of Iwama and Taketomi Revisited

In this section we show that for each N , there exists an algorithm which has
a competitive ratio that is equal to the lower bound in Sect. 3. The algorithm
of Iwama and Taketomi [4] with a little modification satisfies our purpose. The
algorithm classifies each item by its size and then decides how to pack it.

We follow the notation of Iwama and Taketomi for the item size classification.
The classes are S, M , L, and X, which are ordered so that the size increases.

Online Removable Knapsack Problems for Integer-Sized Items 87

We sometimes identify classes with disjoint sets of item sizes. Later, some classes
may be set to be empty sets. We write the maximum (or minimum) size of class
S as Smax (or Smin, respectively). For M , L, and X, we also use the same
notation.

We first describe the algorithm of Iwama and Taketomi [4] for generalized
classes of items S, M , L, and X.

Algorithm IT [4]: For each item u, do the following operations. Here, |B| is
the total profit of items that are in the knapsack immediately before the arrival
of u.

– If |B| ∈ X, discard u.
– Otherwise, if |u| + |B| ≤ N , put u into the knapsack.
– Otherwise, if |u| ∈ X, put only u into the knapsack.
– Otherwise, if only items of S or M size exists in the knapsack, put u into

the knapsack and discard the items of S or M size in the knapsack until |B|
becomes less than N .

– Otherwise, for the item l which is the item of L size in the knapsack,
if |u| + |l| ≤ N , put u and l only,
otherwise, put the smaller item of u and l.

The reader may think that even if we apply the original item classifica-
tion to algorithm IT, that is to say, not modifying the work of [4] at all, the
algorithm can achieve tight bounds. However, it is revealed that such a simple
application fails. For example, when N = 40, our lower bound on the compet-
itive ratio is 25

16 . For N = 40, the item classification of Iwama and Taketomi
is, after a straightforward rounding, that Smin = 1, Smax = 11, Mmin = 12,
Mmax = 14, Lmin = 15, Lmax = 25, and Xmin = 26. When the item sequence is
σ = (1, 25, 15), the algorithm of Iwama and Taketomi [4] yields a knapsack con-
sisting of items B = {1, 15} and therefore |B| = 16. However, at this time, the
competitive ratio becomes more than 1.625 = 26

16 (> 25
16) since the total profit of

the optimal knapsack is |OPT | = |{1, 25}| = 26, which means that the algorithm
cannot achieve a tight bound.

We pick up the proof of competitiveness from the paper [4] and interpret it
for a generalized item size classification as the following lemma.

Lemma 2 ([4]). Let c be a positive real number. Suppose that a family of classes
X, L, M , and S satisfies the following condition: Class X, L, and M satisfy

Xmax = N, (2)

Xmin ≥
⌈

N

c

⌉
, (3)

Lmax = Xmin − 1, (4)
Lmax

Lmin
≤ c, (5)

2Lmin ≥ Xmin, (6)
Mmax ≤ N − Lmax, (7)

and Mmin ≥ Xmin − Lmin. (8)

88 K. Hanji et al.

Class S is empty or satisfies

Smax = Mmin − 1 (9)
and Smin = 1. (10)

Then, it holds that
RIT ≤ c.

4.2 A Tight Upper Bound for Each Knapsack Size

In the paper [4], the authors set a target parameter 1
t =

√
5+1
2 = 1.618... and

gave an algorithm whose competitive ratio less than 1
t . Our analysis involves a

similar parameter. For given N , we let 1
t′(N) be the value of the lower bound of

the competitive ratio, which is derived in Sect. 3. That is to say, we define

1
t′(N)

= max
{

N

�Nt� + 1
,min

{
N

�Nt� ,
�Nt�

N − �Nt� + 1

}}
. (11)

For the case of N = 1, a trivial algorithm achieves a competitive ratio of 1.
For each of the cases of N = 2, 3, and 4, we individually show by Lemma 2 that
algorithm IT achieves a competitive ratio of 1

t′(N) .

Lemma 3. For each of the cases of N = 2, 3, and 4, let c = 1
t′(N) . Then,

there exists an item classification which satisfies the conditions of Lemma 2, for
N = 2, the classes M and S are empty, the class X = 2 and the class L = 1.
Then, the competitive ratio is 1 since this classification satisfies the condition of
Lemma 2. For N = 3, the class S is empty, the class X = {3}, the class L = {2},
and the class M = {1}. Then, the competitive ratio is 1 since this classification
satisfies the condition of Lemma 2. For N = 4, the class M is empty, the class
X = {4, 3}, the class L = {2}, and the class S = {1}. Then, the competitive
ratio is 4

3 since this classification satisfies the condition of Lemma 2.

As for general N ≥ 5, we classify N into three subsets and discuss competi-
tiveness separately along the classification. Note that N

�Nt�+1 < N
�Nt� . We divide

the set of all integers ≥ 5 into the following three subsets with respect to the
magnitude relation between �Nt�

N−�Nt�+1 , N
�Nt�+1 , and N

�Nt� .

Definition 1. Define A1, A2, and A3 as the set of integers N ≥ 5 such that
1

t′(N) is N
�Nt�+1 ,

N
�Nt� , and

�Nt�
N−�Nt�+1 , respectively. That is to say,

A1 =
{

N
∣∣∣ �Nt�

N − �Nt� + 1
≤ N

�Nt� + 1

}
= {N |8, 16, 21, ...},

A2 =
{

N
∣∣∣ N

�Nt� ≤ �Nt�
N − �Nt� + 1

}
= {N |5, 7, 9, ...},

and A3 =
{

N
∣∣∣ N

�Nt� + 1
<

�Nt�
N − �Nt� + 1

<
N

�Nt�
}

= {N |6, 11, 14...}.

Online Removable Knapsack Problems for Integer-Sized Items 89

Now, we mention Lemmas 4 and 5, which will play an important role in the
proof of competitiveness. Recall t′(N) defined in (11). In the following lemmas,
we write the value of t′(N) simply as t′.

Lemma 4. For all N ≥ 5,

2t′�Nt′� − 2t′ − �Nt′� ≥ 0 (12)

holds true, where t′ is the value of t′(N).

Proof. We show the lemma according to the classification of N .
(i) Case N ∈ A1 = {8, 16, 21, . . .}:

2t′�Nt′� − 2t′ − �Nt′�
= 2 · �Nt� + 1

N

⌈
N · �Nt� + 1

N

⌉
− 2 · �Nt� + 1

N
−

⌈
N · �Nt� + 1

N

⌉

=
2
N

(�Nt� + 1)2 − 2
N

(�Nt� + 1) − (�Nt� + 1)

=
�Nt� + 1

N
(2�Nt� + 2 − 2 − N)

=
�Nt� + 1

N
(2�Nt� − N)

>
Nt + 1

N
(2Nt − N) (∵ Nt < �Nt�)

=
Nt + 1

N
{N(2t − 1)} > 0.

(ii) Case N ∈ A2 = {5, 7, 9, . . .}: For the cases of N = 5 and N = 7, we directly
confirm the inequality: For N = 5, we have

2 · 4
5

⌈
5 · 4

5

⌉
− 2 · 4

5
−

⌈
5 · 4

5

⌉
=

4
5

> 0.

For N = 7, we have

2 · 5
7

⌈
7 · 5

7

⌉
− 2 · 5

7
−

⌈
7 · 5

7

⌉
=

5
7

> 0.

We then evaluate the inequality generally for the case where N ≥ 9. Let d =
�Nt�

N . We see that d = �Nt�
N > Nt

N = t holds. We derive

90 K. Hanji et al.

2t′�Nt′� − 2t′ − �Nt′�
= 2 · �Nt�

N

⌈
N · �Nt�

N

⌉
− 2 · �Nt�

N
−

⌈
N · �Nt�

N

⌉

= 2 · �Nt�2
N

− 2 · �Nt�
N

− �Nt�

= 2Nd2 − 2d − Nd

(
∵ d =

�Nt�
N

)

= d(2d − 1)N − 2d

≥ d(2d − 1)9 − 2d

(
∵ d(2d − 1) > 0 and N ≥ 9 from d > t >

1
2

)

= 18d

(
d − 11

18

)
> 0

(
∵ d > t >

11
18

)
.

(iii) Case N ∈ A3 = {6, 11, 14, . . .}: For the cases of N = 6 and N = 11, we
directly confirm the inequality: For N = 6, we have

2 · 3
4

⌈
6 · 3

4

⌉
− 2 · 3

4
−

⌈
6 · 3

4

⌉
= 1 > 0.

For N = 11, we have

2 · 5
7

⌈
11 · 5

7

⌉
− 2 · 5

7
−

⌈
11 · 5

7

⌉
= 2 > 0.

It remains to prove the inequality for N ≥ 14. We know that the equality

�Nt′� = �Nt� + 1

holds from the definition of A3. Using this, we have

2t′�Nt′� − 2t′ − �Nt′� = 2t′(�Nt� + 1) − 2t′ − (�Nt� + 1)
= 2t′�Nt� + 2t′ − 2t′ − �Nt� − 1
= 2t′�Nt� − �Nt� − 1

= 2 · N − �Nt� + 1
�Nt� · �Nt� − �Nt� − 1

= 2N − 3�Nt� + 1
> 2N − 3(Nt + 1) + 1 (∵ Nt < �Nt�)
= N(2 − 3t) − 2
≥ 14(2 − 3t) − 2 (∵ N ≥ 14)

= 42 ·
(

13
21

− t

)
> 0

(
∵ t <

13
21

)
.

��

Online Removable Knapsack Problems for Integer-Sized Items 91

Lemma 5. For all N ≥ 5,

N − �Nt′� − �Nt′�t′ + t′ + 2 ≥ 0 (13)

holds true, where t′ is the value of t′(N).

Proof. We show the lemma according to the classification of N .
(i) Case N ∈ A1 = {8, 16, 21, . . .}: Let d = �Nt�

N , then

d < d +
1
N

<
1
d

− 1 +
1

dN

−d2 − d + 1 >
d

N
− 1

N

holds from the definition of A1. Then, we have

N − �Nt′� − �Nt′�t′ + t′ + 2

= N −
⌈
N · �Nt� + 1

N

⌉
−

⌈
N · �Nt� + 1

N

⌉
· �Nt� + 1

N
+

�Nt� + 1
N

+ 2

= N − �Nt� − (�Nt� + 1)2

N
+

�Nt� + 1
N

+ 1

= N − Nd2 − Nd − d + 1
= N(−d2 − d + 1) − d + 1

> N

(
d

N
− 1

N

)
− d + 1

(
∵ −d2 − d + 1 >

d

N
− 1

N

)

= d − 1 − d + 1 = 0.

(ii) Case N ∈ A2 = {5, 7, 9, . . .}:

N − �Nt′� − �Nt′�t′ + t′ + 2

= N −
⌈
N

�Nt�
N

⌉
−

⌈
N

�Nt�
N

⌉
· �Nt�

N
+

�Nt�
N

+ 2

= N − �Nt� − �Nt�2
N

+
�Nt�
N

+ 2

= N − �Nt� + 2 − �Nt�
N

(�Nt� − 1)

> N − (Nt + 1) + 2 − Nt + 1
N

(Nt + 1 − 1) (∵ �Nt� < Nt + 1)

= N − Nt − Nt2 − t + 1
= N(−t2 − t + 1) + 1 − t

= 1 − t > 0 (∵ t < 0.7).

(iii) Case N ∈ A3 = {6, 11, 14, . . .}: From the definition of A3,

�Nt′� = �Nt� + 1

92 K. Hanji et al.

holds. Then, we have

N − �Nt′� − �Nt′�t′ + t′ + 2

= N − (�Nt� + 1) − (�Nt� + 1) · N − �Nt� + 1
�Nt� +

N − �Nt� + 1
�Nt� + 2

= 0.

��
Our choice of the item size classification is as follows:

Definition 2. For each N ≥ 5, define a family of classes X, L, M , and S as
the following. The definition of classes depends on N . We below denote the value
of t′(N) by simply t′. First of all, regardlessly of the value of N , set

Xmin = �Nt′�,
Lmax = �Nt′� − 1,

Lmin = N − �Nt′� + 2,

and Mmax = N − �Nt′� + 1.

(a) If 2�Nt′� − N − 3 > 0, set

Mmin = 2�Nt′� − N − 2,

Smax = 2�Nt′� − N − 3,

and Smin = 1.

(b) Otherwise, the class S is empty and set

Mmin = 1.

Lemma 6. For each N ≥ 5, X, L, M , S, and c = 1
t′(N) satisfy the condition

of Lemma 2.

Proof. We show that the conditions for the item size classification in Lemma 2
are satisfied by substituting the value which were defined in Definition 2. Firstly,
we mention common part of (a) and (b) in Definition 2. The condition of (2) is
trivial. For the conditions of (3) and (4),

Xmin = �Nt′� ≥
⌈

N
1
t′

⌉
=

⌈
N

c

⌉

and Lmax = �Nt′� − 1 = Xmin − 1.

The condition (5) is confirmed as:

N − �Nt′� − �Nt′�t′ + t′ + 2 ≥ 0 (∵ (13))
(�Nt′� − 1)t′ ≤ N − �Nt′� + 2

Lmaxt′ ≤ Lmin

Lmax

Lmin

≤ 1
t′

.

Online Removable Knapsack Problems for Integer-Sized Items 93

The following derivation holds true by Lemma 4.

2Lmin ≥ 2Lmaxt′ (∵ (13))
= 2(�Nt′� − 1)t′

≥ �Nt′� (∵ (12))
= Xmin.

The condition (7) holds true, since

Mmax = N − �Nt′� + 1 = N − (�Nt′� − 1) = N − Lmax.

Moreover, we mention each of the cases (a) and (b).
(a) If 2�Nt′� − N − 3 > 0, the condition (8) holds true, since

Mmin = 2�Nt′� − N − 2 = �Nt′� − (N − �Nt′� + 2) ≥ Xmin − Lmin.

The condition (9) holds true, since

Smax = 2�Nt′� − N − 3 = Mmin − 1.

The condition (10) is trivial.
(b) Otherwise, the condition (8) holds true, since

Mmin = 1 = �Nt′� − �Nt′� + 1 = �Nt′� − (�Nt′� − 1) ≥ Xmin − Lmin.

��

5 Conclusion

Our result reveals that the competitive ratio of our problem does not increase
monotonically as N grows. This anomaly may be somehow related to the validity
of the competitive ratio. A natural extension is to consider the case where each
item is integer-sized, but the profit is not equal to the size.

References

1. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Cam-
bridge University Press, Cambridge (1998)

2. Fiat, A., Woeginger, G.J. (eds.): Online Algorithms, The State of the Art (the
Book Grown Out of a Dagstuhl Seminar, June 1996). LNCS, vol. 1442. Springer,
Heidelberg (1998). https://doi.org/10.1007/BFb0029561

3. Han, X., Kawase, Y., Makino, K., Guo, H.: Online removable knapsack problem
under convex function. Theor. Comput. Sci. 540–541, 62–69 (2014). Combinatorial
Optimization: Theory of algorithms and Complexity

4. Iwama, K., Taketomi, S.: Removable online knapsack problems. In: Widmayer, P.,
Eidenbenz, S., Triguero, F., Morales, R., Conejo, R., Hennessy, M. (eds.) ICALP
2002. LNCS, vol. 2380, pp. 293–305. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-45465-9 26

5. Kellerer, H., Pferschy, U., Pisinger, D.: Knapsack Problems. Springer, Heidelberg
(2004). https://doi.org/10.1007/978-3-540-24777-7

6. Komm, D.: An Introduction to Online Computation: Determinism, Randomization,
Advice. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42749-2

https://doi.org/10.1007/BFb0029561
https://doi.org/10.1007/3-540-45465-9_26
https://doi.org/10.1007/3-540-45465-9_26
https://doi.org/10.1007/978-3-540-24777-7
https://doi.org/10.1007/978-3-319-42749-2

An Improved Approximation Algorithm
for the Prize-Collecting Red-Blue Median

Problem

Zhen Zhang(B), Yutian Guo, and Junyu Huang

School of Computer Science and Engineering, Central South University,
Changsha 410083, People’s Republic of China

csuzz@foxmail.com

Abstract. The red-blue median problem considers a set of red facilities,
a set of blue facilities, and a set of clients located in some metric space.
The goal is to open kr red facilities and kb blue facilities such that the
sum of the distance from each client to its nearest opened facility is
minimized, where kr, kb ≥ 0 are two given integers. Designing approx-
imation algorithms for this problem remains an active area of research
due to its applications in various fields. However, in many applications,
the existence of noisy data poses a big challenge for the problem. In this
paper, we consider the prize-collecting red-blue median problem, where
the noisy data can be removed by paying a penalty cost. The current
best approximation for the problem is a ratio of 24, which was obtained
by LP-rounding. We deal with this problem using a local search algo-
rithm. We construct a layered structure of the swap pairs, which yields
a (9 + ε)-approximation for the prize-collecting red-blue median prob-
lem. Our techniques generalize to a more general prize-collecting τ -color
median problem, where the facilities have τ different types, and give a
(4τ + 1 + ε)-approximation for the problem for the case where τ is a
constant.

Keywords: Clustering · Approximation · Local search

1 Introduction

k-median is a widely studied clustering problem and finds applications in many
fields related to unsupervised learning. Given a set D of clients and a set F of
facilities in a metric space, the k-median problem is to open k facilities such
that the sum of the distance from each client to its nearest opened facility is
minimized.

In many applications, the clustering problem has different types of facilities
and upper bound on the number of the opened facilities of each type. One such

This work was supported by National Natural Science Foundation of China (61672536,
61872450, 61828205, and 61802441), Hunan Provincial Key Lab on Bioinformatics, and
Hunan Provincial Science and Technology Program (2018WK4001).

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 94–106, 2020.
https://doi.org/10.1007/978-3-030-59267-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_9

The Prize-Collecting Red-Blue Median Problem 95

example is in the design of Content Distribution Networks [2], where a set of
clients need to be connected to a set of servers with a few different types, and
there is a budget constraint on the number of the arranged severs of each type.
Motivated by such applications, Hajiaghayi et al. [9] introduced the red-blue
median problem which involves two facility-types. They showed that local search
yields a constant factor approximation for the problem. The current best approx-
imation for the red-blue median problem is a ratio of 5 + ε due to Friggstad and
Zhang [8]. Inspired by the work on the red-blue median problem, Krishnaswamy
et al. [12] introduced a more general matroid median problem, where the set
of facilities has a matroid structure, and the set of the opened facilities should
be an independent set in the matroid. The matroid median problem does not
only generalize the red-blue median problem, but also the τ -color median prob-
lem where more than two facility-types are considered. Krishnaswamy et al. [12]
gave a 16-approximation for the matroid median problem by an LP-rounding
technique. The approximation guarantee was later improved by a series of work
[4,14] to the current best ratio of 7.081 + ε [13].

Although red-blue median and its related clustering problems have been
extensively studied, algorithms developed for these problems could significantly
deteriorate their performance when applied to real-world data. One reason is that
these problems implicitly assume that all clients can be clustered into several
distinct groups. However, real-world data are often contaminated with various
types of noises, which need to be excluded from the solution [3,6,13]. To deal
with such noisy data, Charikar et al. [3] introduced the problem of prize-collecting
clustering. The problem is the same as the standard clustering problem, except
that we can remove a set of distant clients and pay their penalty costs instead.
By discarding the distant clients, one could significantly reduce the clustering
cost and thus improve the quality of solution.

Hajiaghayi et al. [9] gave an O(1)-approximation for the prize-collecting
red-blue median problem by local search technique. The approximation ratio
is implicit but can be easily shown not better than 30. Krishnaswamy et al.
[12] later gave a 360-approximation algorithm for the prize-collecting red-blue
median problem based on an LP-rounding technique. They showed that the guar-
antee of 360-approximation generalizes to the prize-collecting matroid median
problem. The approximation ratio was recently improved to 24 by a novel round-
ing procedure [14]. This is also the current best approximation guarantee for
both the problems of prize-collecting red-blue median and prize-collecting τ -
color median. The noisy data appear frequently in the clustering problems, and
the prize-collecting versions of other clustering problems have also been exten-
sively studied [5,7,11,15].

We curtly remark on the commonly used approaches for clustering to show
the obstacles in obtaining better ratios than 24 for the problems of prize-
collecting red-blue median and prize-collecting τ -color median.

1). Hajiaghayi et al. [9] gave a constant factor approximation for the prize-
collecting red-blue median problem by local search. Their analysis is based
on a technique for dividing the facilities into blocks with certain properties.

96 Z. Zhang et al.

This provides a clear way to get the approximation guarantee for the local
search algorithm. However, getting such well structured blocks induces a large
approximation ratio for the problem. It seems quite difficult to apply the tech-
nique given in [9] to beat the 24-approximation. Moreover, the method for
constructing blocks relies heavily on the fact that the facilities have no more
than two different types, which cannot be applied to the τ -color median prob-
lem. Indeed, it is still an open problem that whether local search works for the
τ -color median problem for the case where τ is a constant, see discussions in
[8,10].

2). LP-rounding has been shown to be an effective technique for the problems of
red-blue median and τ -color median [4,12–14]. However, it was known that
the existence of the penalized clients has a strong impact on the performance
of the algorithms based on LP-rounding [12,14]. For instance, the standard
LP relaxation of the red-blue median problem has a variable xij associated
with each facility i and client j, which indicates that whether j is connected
to i. A constraint

∑
i xij = 1 is given for each client j to ensure that j is

connected to a facility. Unfortunately, in the prize-collecting red-blue median
problem, the sum

∑
i xij is not guaranteed to be an integer since not all the

clients should be connected. It is unclear whether the LP-rounding approach
for clustering with outliers given in [13] can be adapted to clustering with
penalties and beat the 24 approximation ratio.

3). The technique of primal-dual has been widely applied for the problem of
prize-collecting clustering [3,7,11]. However, it is difficult to use this tech-
nique to deal with the red-blue median problem, as discussed in [9,10]. This
is further compounded in the prize-collecting red-blue median problem since
there is an additional task of identifying the penalized clients.

1.1 Our Results

We use a local search algorithm to deal with the prize-collecting τ -color median
problem. Starting with an arbitrary feasible solution, the algorithm tries to swap
no more than O(τ) facilities of each type. It terminates if no such swap yields
an improved solution. Otherwise, it iterates with the improved solution. The
solution given by the algorithm is called local optimum.

Theorem 1. The local optimum for the prize-collecting τ -color median problem
is a (4τ + 1)-approximation solution.

On the basis of standard techniques [1] (which is curtly described in Sect. 2),
the runtime of the local search algorithm can be polynomially bounded for the
case where τ is a constant, which induces an arbitrarily small loss in the approx-
imation ratio.

Theorem 2. For any ε > 0, there is a (4τ +1+ ε)-approximation algorithm for
the prize-collecting τ -color median problem that runs in polynomial time for the
case where τ is a constant.

The Prize-Collecting Red-Blue Median Problem 97

Theorem 2 implies a (9 + ε)-approximation for the prize-collecting red-blue
median problem, which improves the previous best approximation ratio of 24
given by Swamy [14]. Note that for the prize-collecting τ -color median problem,
we only obtain improved approximation guarantee for the case where τ ≤ 5,
and the ratio of 24 given in [14] is still the best guarantee for the general prize-
collecting τ -color median problem. Indeed, Krishnaswamy et al. [12] showed
that local search cannot yield constant factor approximation for the τ -color
median problem with polynomial time. However, this negative result does not
rule out the possibility of obtaining a local search-based O(1)-approximation for
the problem in polynomial time for the case where τ is a constant. Theorem 2
shows that local search actually yields an O(1)-approximation for this special
case.

1.2 Our Techniques

The local search algorithms are commonly analyzed by considering a set of swap
pairs where some facilities in the local optimum are swapped with some facilities
from an optimal solution. The desired approximation guarantee is obtained by
the fact that no such swap pair can improve the local optimum. However, in
the prize-collecting τ -color median problem, the swap pairs may violate the
constraint on the number of the opened facilities of each type. For instance,
after closing a red facility and opening a blue facility, we are forced to swapping
another pair of facilities to balance the number of the facilities of each type.
This makes the analysis of the cost induced by the local optimum much more
complex.

For each to-be-clustered client j, let Oj and Sj be the costs of j induced by
the local optimum and optimal solution, respectively. Our analysis starts with
carefully constructing a set of feasible swap pairs with some special properties
(see Sect. 3.1). By estimating the increased cost induced by the constructed
swap pairs, we obtain a set of inequalities that involve some “+Oj”terms, some
“−Sj” terms, and some “+Sj” terms for each client j (see Sect. 3.2). We want
to add these inequalities together to get O(1)

∑
j Oj −O(1)

∑
j Sj ≥ 0, based on

which the desired approximation ratio can be obtained. The challenge is how to
eliminate each “+Sj” term. To overcome this challenge, we prove the existence
of a layered structure of our constructed swap pairs (see Sect. 3.3). It is shown
that for each swap pair, the “+Sj” terms induced by it can be counteracted by
repeatedly using the swap pairs in the lower layers. These ideas lead to the proof
of the (4τ + 1 + ε)-approximation ratio.

2 Preliminaries

The prize-collecting τ -color median problem can be defined as follows.

Definition 1 (prize-collecting τ -color median). Given a set C of clients
and τ disjoint sets F1,. . . , Fτ of facilities in a metric space, τ positive integers

98 Z. Zhang et al.

k1, . . . , kτ , and a penalty function p defined over the clients in C, where p(j) ≥ 0
for each j ∈ C, the goal is to identify a subset St ⊆ F t of no more than kt

facilities for each t ∈ {1, . . . , τ}, such that the objective function
∑

j∈C
min{d(j,

⋃

1≤t≤τ

St), p(j)}

is minimized, where d(j,
⋃

1≤t≤τ St) denotes the distance from j to its nearest
facility in

⋃
1≤t≤τ St.

The special case of τ = 2 corresponds to the prize-collecting red-blue median
problem. Given τ sets S1, . . . ,Sτ of facilities, where St ⊆ F t for each 1 ≤ t ≤ τ ,
we call S = (S1, . . . ,Sτ) a feasible solution if

∣
∣St

∣
∣ = kt for each 1 ≤ t ≤ τ , and

let Φ(S) =
∑

j∈C min{d(j,
⋃

1≤t≤τ St), p(j)} denote its cost. Let OPT denote
the cost of an optimal solution. The local search algorithm for the problem is
described in Algorithm 1.

Algorithm 1: Local search for the prize-collecting τ -color median problem
Input: An instance (C, F1, . . . , Fτ , k1, . . . , kτ , p) of the prize-collecting τ -color

median problem;
Output: A local optimum S = (S1, . . . , Sτ);

1 Let S = (S1, . . . , Sτ) be an arbitrary feasible solution;

2 while there exists a feasible solution ˜S = (˜S1, . . . , ˜Sτ) such that
∣

∣ ˜St − St
∣

∣ ≤ 2τ

for each 1 ≤ t ≤ τ and Φ(˜S) < Φ(S) do

3 S ⇐ ˜S;

4 return S.

Each iteration of Algorithm 1 takes O(
∣
∣C∣

∣ ∏
1≤t≤τ (

∣
∣F t

∣
∣kt)2τ) time, which is

polynomial in the input size for the case where τ is a constant. However, it
may be the case that the number of the iterations exponentially depends on
the input size. We can use a well-known trick to ensure that the algorithm
terminates in a polynomial number of steps. The idea is to execute a swap only
if Φ(S̃) ≤ (1− ε

Δ)Φ(S), where the value of Δ is polynomial in the input size. Our
analysis is compatible with this trick: it can be verified that the total weight of
all the inequalities we consider is polynomially bounded. See [1] for details of
the trick.

3 Analysis

We introduce some notations to help analyze Algorithm 1. Let F =
⋃

1≤t≤τ F t.
Let d(i, j) denote the distance from i to j for each i, j ∈ C ∪ F . Let S =
(S1, . . . ,Sτ) denote the local optimum and O = (O1, . . . ,Oτ) be an optimal
solution. Define S =

⋃
1≤t≤τ St and O =

⋃
1≤t≤τ Ot. Let P and P∗ denote the

The Prize-Collecting Red-Blue Median Problem 99

sets of the clients that are penalized when opening the facilities from S and
O, respectively. For each j ∈ C\P, let sj denote the nearest facility to j in S,
and define Sj = d(j, sj). Similarly, for each j ∈ C\P∗, let oj be the nearest
facility to j in O, and define Oj = d(j, oj). For each i ∈ O and i′ ∈ S, define
N ∗(i) = {j ∈ C\P∗ : oj = i} and N (i′) = {j ∈ C\P : sj = i′}. For each O′ ⊆ O
and S ′ ⊆ S, let N ∗(O′) =

⋃
i∈O′ N ∗(i) and N (S ′) =

⋃
i∈S′ N (i). Given an

integer 1 ≤ t ≤ τ and a facility i ∈ F t, define T (i) = t as its type. Given two
integers t1 and t2, if t1 = t2, then let δ(t1, t2) = 1. Otherwise, let δ(t1, t2) = 0.

3.1 A Set of Swap Pairs

Algorithm 1 closes a set Aout of facilities and opens a set Ain of facilities in each
iteration, let A = (Aout | Ain) denote this swap pair. We call A a feasible swap
pair if

∣
∣Aout

∣
∣ =

∣
∣Ain

∣
∣ �= 0, and

∣
∣Aout ∩F t

∣
∣ =

∣
∣Ain ∩F t

∣
∣ holds for each 1 ≤ t ≤ τ .

It is easy to show that after performing a feasible swap pair, a feasible solution
to the problem is still feasible. We also use a notation of almost-feasible pairs.
Given a swap pair B = (Bout | Bin) that is not feasible, if there exist a facility
i1 ∈ Bout and a facility i2 ∈ Bin, such that either Bout\{i1} = Bin\{i2} = ∅, or
(Bout\{i1} | Bin\{i2}) is a feasible swap pair, then we call B an almost-feasible
pair, and define T (Bout) = T (i1) and T (Bin) = T (i2). The following proposition
follows directly from the definition of the almost-feasible pairs.

Proposition 1. Given an almost-feasible pair B and two facilities i1 ∈ S, i2 ∈
O, swap pair (Bout ∪{i1} | Bin ∪{i2}) is a feasible swap pair iff T (Bout) = T (i2)
and T (Bin) = T (i1).

It can be seen that no feasible swap pair A with
∣
∣Aout∩F t

∣
∣ =

∣
∣Ain∩F t

∣
∣ ≤ 2τ

for each t ∈ {1, . . . , τ} can be performed to reduce the cost of the local optimum.
We consider a set of such swap pairs to show that the local optimum has small
cost. These swap pairs close some facilities from S and open some facilities from
O. The swap pairs are selected based on the following mapping relationships.

Definition 2 (ϕ(∗), η(∗)). For each i ∈ O, let ϕ(i) denote the nearest facility
to i in S. For each i′ ∈ S with ϕ−1(i′) �= ∅, let η(i′) denote the nearest facility
to i′ in ϕ−1(i′). Given a set S ′ ⊆ S, define ϕ−1(S ′) =

⋃
i∈S′ ϕ−1(i).

Define S1 = {i ∈ S : ϕ−1(i) �= ∅}, O1 = {η(i) : i ∈ S1}, S2 = S\S1, and
O2 = O\O1. The procedure for selecting the swap pairs is given in Algorithm 2.
Note that this procedure is only used in the analysis. The algorithm yields a set
A of feasible swap pairs, which is empty initially. In the process of the algorithm,
we say that a facility is unpaired if it is not yet involved in a swap pair from A.
Each facility is involved in at most one swap pair in A.

In the first loop (steps 2 and 3), Algorithm 2 considers each subset S ′ ⊆ S1

of size no more than τ , and adds (S ′ | ⋃
i∈S′{η(i)}) to A if it is a feasible

swap pair. The algorithm then constructs a set B of almost-feasible pairs. By
the termination condition of the first loop, for each unpaired facility i ∈ S1,
({i} | {η(i)}) is not a feasible swap pair and can be viewed as an almost-feasible

100 Z. Zhang et al.

Algorithm 2: Selecting a set of swap pairs
Input: The local optimum (S1, . . . , Sτ) and an optimal solution (O1, . . . , Oτ);
Output: A set A of swap pairs;

1 A ⇐ ∅, B ⇐ ∅, S ′
1 ⇐ {i ∈ ⋃

1≤t≤τ St : ϕ−1(i) �= ∅}, S ′
2 ⇐ (

⋃

1≤t≤τ St)\S ′
1,

O′
1 ⇐ {η(i) : i ∈ S ′

1}, O′
2 ⇐ (

⋃

1≤t≤τ Ot)\O′
1;

2 while ∃ S ′ ⊆ S ′
1 with 1 ≤ |S ′| ≤ τ , such that A = (S ′ | ⋃

i∈S′{η(i)}) is a feasible
swap pair do

3 A ⇐ A ∪ {A}, S ′
1 ⇐ S ′

1\S ′, O′
1 ⇐ O′

1\
⋃

i∈S′{η(i)};

4 for each i ∈ S ′
1 do

5 B ⇐ B ∪ {(i | η(i))};

6 while ∃ B1, B2 ∈ B such that B = (B1
out ∪ B2

out | B1
in ∪ B2

in) is an almost-feasible
pair do

7 B ⇐ B ∪ {B}\{B1, B2};

8 while ∃ B
′ ⊆ B, H1 ⊆ S ′

2, and H2 ⊆ ϕ−1(
⋃

B∈B′ Bout) ∩ O′
2, such that

1 ≤ |B′| = |H1| = |H2| ≤ τ and A = (
⋃

B∈B′ Bout ∪ H1 | ⋃

B∈B′ Bin ∪ H2) is a
feasible swap pair do

9 A ⇐ A ∪ {A}, B ⇐ B\B′, S ′
2 ⇐ S ′

2\H1, O′
2 ⇐ O′

2\H2;

10 while ∃ B ∈ B, i1 ∈ S ′
2, and i2 ∈ O′

2, such that A = (Bout ∪ {i1} | Bin ∪ {i2}) is
a feasible swap pair do

11 A ⇐ A ∪ {A}, B ⇐ B\{B}, S ′
2 ⇐ S ′

2\{i1}, O′
2 ⇐ O′

2\{i2};

12 while ∃ i1 ∈ S ′
2 and i2 ∈ O′

2 such that A = ({i1} | {i2}) is a feasible swap pair
do

13 A ⇐ A ∪ {A}, S ′
2 ⇐ S ′

2\{i1}, O′
2 ⇐ O′

2\{i2};

14 return A.

pair. The algorithm adds all such almost-feasible pairs to B in the second loop
(steps 4 and 5). In the third loop (steps 6 and 7), it combines two almost-
feasible pairs from B if this yields a new almost-feasible pair. The combination
is performed iteratively until no two pairs in B can form an almost-feasible pair.
After that, the algorithm combines the almost-feasible pairs in B with some
facilities from S2 and O2 to obtain a set of feasible swap pairs in the fourth
and fifth loops (steps 8, 9, 10, and 11). In the fourth loop (steps 8 and 9),
the algorithm iteratively determines whether there exist g almost-feasible pairs
B1, . . . ,Bg in B, g unpaired facilities in ϕ−1(

⋃
1≤t≤g Bt

out) ∩ O′
2, and g unpaired

facilities in S2 that can form a feasible swap pair, where 1 ≤ g ≤ τ . If such
a feasible swap pair exists, then the algorithm adds the swap pair to A and
deletes B1, . . . ,Bg from B. In the fifth loop (steps 10 and 11), for each remained
almost-feasible pair B in B, the algorithm finds two unpaired facilities i1 ∈ S2

and i2 ∈ O2, such that (Bout ∪ {i1} | Bin ∪ {i2}) is a feasible swap pair and
can be added to A. Finally, the remained unpaired facilities in S2 and O2 are
assigned to single-swap pairs and added to A in the last loop (steps 12 and 13).

See Figs. 1 and 2 for an example. By the definitions of S1, S2, O1, and O2,
we have {r1, r2, r3, r4, b1} = S1, {b2, b3, b4} = S2, {r∗

1 , r
∗
2 , b

∗
1, b

∗
2, b

∗
3} = O1, and

The Prize-Collecting Red-Blue Median Problem 101

{r∗
3 , r

∗
4 , b

∗
4} = O2. It can be seen that A1 = ({r1} | {η(r1)}) and A2 = ({r2, b1} |

{η(r2), η(b1)}) are two feasible swap pairs and should be added to A in the first
loop of Algorithm 2 (steps 2 and 3). The algorithm then considers two almost-
feasible pairs B1 = ({r3} | {η(r3)}) and B2 = ({r4} | {η(r4)}). In the fourth loop
(steps 8 and 9), it combines B1 with two facilities r∗

3 ∈ ϕ−1(r3)∩O2 and b2 ∈ S2

to obtain a feasible swap pair A3 = ({r3, b2} | {r∗
3 , η(r3)}). In the fifth loop

(steps 10 and 11), a feasible swap pair A4 = ({r4, b3} | {r∗
4 , η(r4)}) is obtained

by combining B2 with two facilities r∗
4 ∈ O2 and b3 ∈ S2. Finally, the remained

unpaired facilities b4 and b∗
4 are combined into a feasible swap pair in the last

loop (steps 12 and 13). The constructed swap pairs are shown in Fig. 2.

r∗
1 (η(r1)) r∗

2 (η(b1)) b∗
1(η(r2)) b∗

2(η(r3)) b∗
3(η(r4))r∗

3 r∗
4 b∗

4

r1 r2 r3 r4 b1 b2 b3 b4

Fig. 1. O = {r∗
1 , r∗

2 , r∗
3 , r∗

4 , b∗
1, b

∗
2, b

∗
3, b

∗
4} and S = {r1, r2, r3, r4, b1, b2, b3, b4} are the sets

of the facilities opened in the optimal solution and local optimum respectively, where
{r∗

1 , r∗
2 , r∗

3 , r∗
4 , r1, r2, r3, r4} ⊆ F1 and {b∗

1, b
∗
2, b

∗
3, b

∗
4, b1, b2, b3, b4} ⊆ F2. For each i ∈ S

and i∗ ∈ ϕ−1(i)\{η(i)}, we joint i and i∗ with a dashed line. For each i ∈ S with
ϕ−1(i) �= ∅, we joint i and η(i) with a solid line.

r∗
1 r∗

2 b∗
1 r∗

3 b∗
2 r∗

4 b∗
3 b∗

4

r1 r2 b1 r3 b2 r4 b3 b4

A1 A2 A3 A4 A5

Fig. 2. The constructed swap pairs.

Let A denote the set of the swap pairs given by Algorithm 2. Let B be the set
of the almost-feasible pairs obtained after the third loop of the algorithm (steps
6 and 7). We now give some useful properties of Algorithm 2.

102 Z. Zhang et al.

Proposition 2. We have
∑

B∈B
δ(T (Bout), t) · ∑

B∈B
δ(T (Bin), t) = 0 for each

t ∈ {1, . . . , τ}.
Proposition 3. For each A ∈ A and i ∈ Aout with ϕ−1(i) �= ∅, η(i) ∈ Ain.

Proposition 4. For each A ∈ A and t ∈ {1, . . . , τ}, ∣
∣Aout ∩St

∣
∣ =

∣
∣Ain ∩Ot

∣
∣ ≤

2τ .

Proposition 5. Each facility i ∈ S ∪ O appears exactly one time in the swap
pairs from A.

3.2 An Upper Bound on the Cost Increase

In this section, we present a strategy for reconnecting clients after performing
the swap pairs from A on the local optimum. This gives an upper bound on the
increased cost induced by a swap pair. Consider a swap pair A ∈ A, we close the
facilities in Aout and open the facilities in Ain. We reconnect the clients from
N (Aout)∪N ∗(Ain). Each j ∈ N ∗(Ain) is reconnected to oj (oj is guaranteed to
be opened by the definition of N ∗(∗)). We pay the penalty costs of the clients
from N (Aout) ∩ P∗. The clients from N (Aout)\P∗ should be reconnected to a
nearby opened facility. By Proposition 3, η(i) is opened for each i ∈ Aout. This
motivates the following strategy for reconnecting each j ∈ N (Aout)\P∗. See
Fig. 3 for an example of the strategy.

i∗
1(η(i1)) i∗

2 i∗
3

i1(ϕ(i∗
2)) i2(ϕ(i∗

3))

N (i1) ∩ N ∗(i∗
1) N (i1) ∩ N ∗(i∗

2) N (i1) ∩ N ∗(i∗
3)

j1 j2 j3

Fig. 3. Reconnection of the clients after performing the swap pair A = ({i1} | {i∗1}).
The solid lines indicate the connection of the clients after the swap. For each j ∈
N (i1)\P∗, j is reconnected to oj , if j ∈ N (i1) ∩ N ∗(i∗1); ϕ(oj), if j ∈ N (i1) ∩ N ∗(i∗3);
and η(ϕ(oj)), if j ∈ N (i1) ∩ N ∗(i∗2).

• If oj ∈ Ain, then j is reconnected to oj .
• If oj /∈ Ain and ϕ(oj) /∈ Aout, then j is reconnected to ϕ(oj).
• If oj /∈ Ain and ϕ(oj) ∈ Aout, then j is reconnected to η(ϕ(oj)).

The Prize-Collecting Red-Blue Median Problem 103

The following lemma shows that the reconnection cost of each client j ∈
N (Aout)\P∗ can be bounded by a combination of Oj and Sj .

Lemma 1. For each j ∈ C\(P∗ ∪ P), we have d(j, ϕ(oj)) ≤ 2Oj + Sj and
d(j, η(ϕ(oj))) ≤ 3Oj + 2Sj.

The following lemma follows from an upper bound on the increased cost
induced by performing a swap pair from A.

Lemma 2. For each swap pair A ∈ A, we have

0 ≤
∑

j∈N ∗(Ain)∩P
(Oj − p(j)) +

∑

j∈N ∗(Ain)\P
(Oj − Sj)

+
∑

j∈N (Aout)∩P∗
(p(j) − Sj) +

∑

j∈[N (Aout)\P∗]\N ∗(ϕ−1(Aout)∪Ain)

2Oj

+
∑

j∈N ∗(ϕ−1(Aout)\Ain)∩N (Aout)

(3Oj + Sj). (1)

3.3 A Layered Structure of the Swap Pairs

Observe that inequality (1) contains “+Oj” terms for some clients from C\P∗,
“−Sj” terms for some clients from C\P, “+p(j)” terms for some clients from
P∗, and “−p(j)” terms for some clients from P. Our idea for obtaining the
approximation guarantee for the local optimum is to add together some inequal-
ities of this type such that we can get O(1)(

∑
j∈C\P∗ Oj +

∑
j∈P∗ p(j)) −

O(1)(
∑

j∈C\P Sj +
∑

j∈P p(j)) ≥ 0, which directly implies the desired approxi-
mation ratio. The challenge is that inequality (1) also involves a “+Sj” term for
a client from N ∗(ϕ−1(Aout)\Ain)∩N (Aout). In this case, we have to repeatedly
use another inequality which contains a “−Sj” term to counteract the “+Sj”
term. To obtain a “−Sj” term for each j ∈ C\P, we prove the existence of a
layered structure of the swap pairs from A. Note that this structure is only used
in the analysis.

Lemma 3. A can be partitioned into f disjoint sets A1, . . . ,Af satisfying the
following properties.

• 3 ≤ f ≤ τ + 1.
• ⋃

A∈At
ϕ−1(Aout)\Ain ⊆ ⋃

A∈A
−
t

Ain for each t ∈ {1, . . . , f −1}, where A
−
t =

⋃
t<t′≤f At′ .

• ⋃
A∈Af

ϕ−1(Aout) = ∅.
Before proving Lemma 3, we first show its implication. Given a swap pair

A ∈ A, inequality (1) involves a “+Sj” term for each j ∈ N ∗(ϕ−1(Aout)\Ain) ∩
N (Aout) and a “−Sj” term for each j ∈ N ∗(Ain). Using Lemma 3, we know that⋃

A∈A1
ϕ−1(Aout)\Ain ⊆ ⋃

A∈A
−
1

Ain and
⋃

A∈A2
ϕ−1(Aout)\Ain ⊆ ⋃

A∈A
−
2

Ain.
Thus, we can multiply inequality (1) by factor 2 for each A ∈ A

−
1 to counter-

act the “+Sj” terms induced by the swap pairs from A1. Now each swap pair

104 Z. Zhang et al.

from A2 induces some “+2Sj” terms, which can be counteracted by multiplying
inequality (1) by factor 3 instead of 2 for each A ∈ A

−
2 . By a similar argu-

ment, we can counteract all the “+Sj” terms through using the swap pairs from
At for t times, for each t ∈ {1, . . . , f}. We will later show that this yields an
O(f)-approximation guarantee for the prize-collecting τ -color median problem.

Proof [of Lemma 3]. Let A′ denote the set of the swap pairs added to A in the
fifth loop of Algorithm 2 (steps 10 and 11). It can be seen that each A ∈ A

′

is a combination of an almost-feasible pair and two facilities from S2 ∪ O2. For
each A ∈ A

′, define T (A) = T (B′
out), where B′ denotes the almost-feasible pair

involved in A. For each t ∈ {1, . . . , τ}, define A
′
t = {A ∈ A

′ : T (A) = t}. We
construct a directed graph G as follows: A vertex vt is constructed for each
t ∈ {1, . . . , τ} with A

′
t �= ∅; For any two vertices vt1 , vt2 of G, there is a directed

edge (simply called arc) from vt1 to vt2 if there exist a swap pair A ∈ A
′
t1 and a

facility i ∈ ϕ−1(Aout)\Ain such that T (i) = t2. We have the following claim.

Claim 1. G is a directed acyclic graph, whose vertices are no more than τ − 1.

Define V as the vertex set of G. Given two vertices v, v′ ∈ V, if there exists
a path from v to v′ in G, then let L(v, v′) denote the number of the vertices in
a longest path from v to v′. Otherwise, let L(v, v′) = 2. Let V0 denote the set of
the vertices in G whose in-degrees are 0. For each v ∈ V0, define L(v) = 2. For
each v ∈ V\V0, define L(v) = maxv′∈V0 L(v′, v) + 1. We have 2 ≤ L(v) ≤ ∣

∣V∣
∣ + 1

for each v ∈ V. Let f = maxv∈V L(v) + 1. We have 3 ≤ f ≤ ∣
∣V∣

∣ + 2 ≤ τ + 1 by
Claim 1. We partition A into f disjoint sets A1, . . . ,Af as follows.

• Let A1 be the set of the swap pairs added to A in the first and fourth loops
of Algorithm 2 (steps 2, 3, 8, and 9).

• For each integer 1 < g < f , let Ag =
⋃

L(vt)=g A
′
t.

• Let Af be the set of the swap pairs added to A in the last loop of Algorithm 2
(steps 12 and 13).

Recall that A
−
t =

⋃
t<t′≤f At′ for each t ∈ {1, . . . , f − 1}. Based on Claim 1

and the properties of the swap pairs from A, we have the following result.

Claim 2. For each t ∈ {1, . . . , f − 1},
⋃

A∈At
ϕ−1(Aout)\Ain ⊆ ⋃

A∈A
−
t

Ain.

For each swap pair A added to A in the last loop of Algorithm 2, we have
Aout ⊆ S2. The definition of S2 implies that ϕ−1(S2) = ∅, which in turn implies
that ϕ−1(Aout) = ∅ for each A ∈ Af . By the fact that 3 ≤ f ≤ τ + 1 and
Claim 2, we complete the proof of Lemma 3. ��

3.4 Bound the Cost of the Local Optimum

We are now ready to bound the cost of the local optimum. Adding together
several inequalities (1), we obtain the following result.

The Prize-Collecting Red-Blue Median Problem 105

Lemma 4.
∑

j∈C\P Sj +
∑

j∈P\P∗ p(j) ≤ (4τ + 1)
∑

j∈C\P∗ Oj + (τ +
1)

∑
j∈P∗\P p(j).

Adding
∑

j∈P∗∩P p(j) to both sides of the inequality in Lemma 4 and sim-
plifying, we have

∑

j∈C\P
Sj +

∑

j∈P
p(j) ≤ (4τ + 1)

∑

j∈C\P∗
Oj + (τ + 1)

∑

j∈P∗
p(j) ≤ (4τ + 1)OPT,

which implies that the local optimum is a (4τ + 1)-approximation solution to
the prize-collecting τ -color median problem.

References

1. Arya, V., Garg, N., Khandekar, R., Meyerson, A., Munagala, K., Pandit, V.: Local
search heuristics for k-median and facility location problems. SIAM J. Comput.
33(3), 544–562 (2004)

2. Bateni, M., Hajiaghayi, M.: Assignment problem in content distribution networks:
unsplittable hard-capacitated facility location. ACM Trans. Algorithms 8(3), 20:1–
20:19 (2012)

3. Charikar, M., Khuller, S., Mount, D.M., Narasimhan, G.: Algorithms for facility
location problems with outliers. In: Proceedings of the 12th ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 642–651 (2001)

4. Charikar, M., Li, S.: A dependent LP-rounding approach for the k -median problem.
In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012.
LNCS, vol. 7391, pp. 194–205. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31594-7 17

5. Cohen-Addad, V., Feldmann, A.E., Saulpic, D.: Near-linear time approximation
schemes for clustering in doubling metrics. In: Proceedings of the 60th IEEE Sym-
posium on Foundations of Computer Science, pp. 540–559 (2019)

6. Feng, Q., Zhang, Z., Huang, Z., Xu, J., Wang, J.: Improved algorithms for clustering
with outliers. In: Proceedings of the 30th International Symposium on Algorithms
and Computation, pp. 61:1–61:12 (2019)

7. Feng, Q., Zhang, Z., Shi, F., Wang, J.: An improved approximation algorithm for
the k -means problem with penalties. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW
2019. LNCS, vol. 11458, pp. 170–181. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-18126-0 15

8. Friggstad, Z., Zhang, Y.: Tight analysis of a multiple-swap heurstic for bud-
geted red-blue median. In: Proceedings of the 43rd International Colloquium on
Automata, Languages, and Programming, pp. 75:1–75:13 (2016)

9. Hajiaghayi, M.T., Khandekar, R., Kortsarz, G.: Budgeted red-blue median and its
generalizations. In: de Berg, M., Meyer, U. (eds.) ESA 2010. LNCS, vol. 6346, pp.
314–325. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15775-
2 27

10. Hajiaghayi, M., Khandekar, R., Kortsarz, G.: Local search algorithms for the
red-blue median problem. Algorithmica 63(4), 795–814 (2012). https://doi.org/
10.1007/s00453-011-9547-9

11. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility
location algorithms analyzed using dual fitting with factor-revealing LP. J. ACM
50(6), 795–824 (2003)

https://doi.org/10.1007/978-3-642-31594-7_17
https://doi.org/10.1007/978-3-642-31594-7_17
https://doi.org/10.1007/978-3-030-18126-0_15
https://doi.org/10.1007/978-3-030-18126-0_15
https://doi.org/10.1007/978-3-642-15775-2_27
https://doi.org/10.1007/978-3-642-15775-2_27
https://doi.org/10.1007/s00453-011-9547-9
https://doi.org/10.1007/s00453-011-9547-9

106 Z. Zhang et al.

12. Krishnaswamy, R., Kumar, A., Nagarajan, V., Sabharwal, Y., Saha, B.: The
matroid median problem. In: Proceedings of 22nd Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 1117–1130 (2011)

13. Krishnaswamy, R., Li, S., Sandeep, S.: Constant approximation for k-median and
k-means with outliers via iterative rounding. In: Proceedings of the 50th ACM
Symposium on Theory of Computing, pp. 646–659 (2018)

14. Swamy, C.: Improved approximation algorithms for matroid and knapsack median
problems and applications. ACM Trans. Algorithms 12(4), 49:1–49:22 (2016)

15. Zhang, D., Hao, C., Wu, C., Xu, D., Zhang, Z.: Local search approximation algo-
rithms for the k-means problem with penalties. J. Comb. Optim. 37(2), 439–453
(2019)

LP-Based Algorithms for Computing
Maximum Vertex-Disjoint Paths with

Different Colors

Yunyun Deng1, Yi Chen2, Kewen Liao3, and Longkun Guo4(B)

1 Officers College of Chinese People’s Armed Police Force, Chengdu 610213,
People’s Republic of China

2 College of Mathematics and Computer Science, Fuzhou University, Fuzhou 350116,
People’s Republic of China

3 Peter Faber Business School, Australian Catholic University, Sydney, Australia
kewen.liao@acu.edu.au

4 School of Computer Science and Technology, Qilu University of Technology
(Shandong Academy of Sciences), Jinan 250353, People’s Republic of China

longkun.guo@gmail.com

Abstract. Booming applications in wireless networks have imposed a
great growth in data transmission together with stricter requirements of
bandwidth and load balancing. In order to capture and meet the require-
ments, we consider a new problem of computing maximum disjoint paths
with different colors (MDPDC) in networks. In MDPDC, transmission
frequencies are modeled as different colors and the aim is to find a maxi-
mum number of constrained node-disjoint paths where nodes in any dis-
joint path share the same color, while colors are different among paths.
Observing the NP-completeness of MDPDC, the paper proposes two
linear programming based algorithms as generic solutions.

Keywords: Disjoint paths with different frequencies · Wireless
network · NP-complete · Linear programming

1 Introduction

In the past decades, wireless communication technology has brought tremendous
changes to the Internet, telecom and data networks while dramatically boosting
the development of passive and ubiquitous computing. Along also comes with
people’s rich communication contents which, in addition to text data, contain
photos, videos, large multimedia files etc. As a result, data traffic has explosively
increased, bringing in unprecedented challenges in network congestion and packet
loss and consequently unsatisfactory user experience provided limited network
resources.

Multi-path routing, which leverages multiple paths in a network for data
transmission, is generally considered as a preferred routing method. It usually
comes with a much better data transmission quality than the widely deployed
c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 107–118, 2020.
https://doi.org/10.1007/978-3-030-59267-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_10

108 Y. Deng et al.

single shortest path routing, e.g. the 802.1D protocols [1]. In particular, disjoint
paths routing is designated to provide better bandwidth and load balancing.
However, in the context of wireless networks, two nodes emitting data at the
same frequency (say 5180 MHz in 5G channels) can interfere with each other
and result significant packet losses at an end node receiving signals from both
nodes simultaneously. Therefore, in order to greatly reduce the interference, dis-
joint paths can be further restricted to transfer data end-to-end at different
frequencies. For this purpose, we model each frequency as a color, and intro-
duce the problem of computing maximum disjoint paths with different colors
(MDPDC) in the following:

Definition 1. (Maximum disjoint paths with different colors, MDPDC) Given
a universal set of colors R (representing different frequency bands), a network
graph G = (V, E) and a pair of distinct vertices s, t ∈ V , where each vi ∈
V \ {s, t} is assigned with a set of colors Ri ⊆ R. The MDPDC problem is
to maximize the number of vertex-disjoint st-paths P1, P2, . . . , Pk, such that for
each path Pj, there exists a color col(Pj) which satisfies two conditions: (1)
Each vi ∈ Pj can be colored with col(Pj), i.e. col(Pj) ∈ Ri holds for every
vertex vi ∈ Pj; (2) For any j �= j′, Pj and Pj′ must have different colors, i.e.
col(Pj) �= col(Pj′) must hold.

In the paper, we develop LP-based algorithms for finding near-optimal solu-
tions for MDPDC, since optimally solving the problem requires exponential time
unless P = NP according to the theorem as below (The formal proof will be
given in later sections):

Theorem 2. The MDPDC problem is NP-complete in either directed or undi-
rected graphs.

1.1 Related Work

To the best of our knowledge, the problem of finding k-disjoint paths with dif-
ferent colors (k-DPDC) was introduced by Zhang et al. [20], who addressed the
restricted k-DPDC problem subjected to MinSum and MinMax objectives in a
directed acyclic graph (DAG), and respectively presented two fully polynomial-
time approximation scheme (FPTAS). Previous to Zhang et al., Wu [18] has
studied another color-disjoint variant of MDPDC, namely the Maximum Colored
Disjoint Path (Max CDP) problem. Different with MDPDC, Max CDP allows
two or more disjoint paths sharing one identical color, while it has the similar
aim of maximizing the number of vertex-disjoint paths between two specified
vertices, where each path consists of edges of the same colors. Wu [18] has devel-
oped both approximation algorithm with a factor c and exact algorithm for Max
CDP in the paper, where c is the number of colors. In line with [2], Bonizzoni
et al. shown Max CDP is not approximable within factor c1−ε for any constant
ε > 0, where c is number of colors. In [7], Dondi et al. introduced Max CDDP,
a new variant of Max CDP that aims to find a maximum number of uni-color
paths that are both vertex-disjoint and color-disjoint in an edge-colored graph.

LP-Based Algorithms for MDPDC 109

They show the problem can be solved within a factor 1
2 by a parameterized

approximation algorithm, where the parameter is the size of the vertex cover.
Besides the studies of k-DPDC, the classical disjoint paths (DP) problem has

a rich research history. The DP problem is known as NP-complete in directed
graphs for both vertex-disjoint and edge-disjoint versions, even for the task of
computing only two paths [8]. In contrast, DP was shown polynomial in undi-
rected graphs when k = 2. Shiloach [16] proposed a polynomial-time algorithm
for the two vertex-disjoint paths problem in undirected graphs with a runtime
O(mn). The result was generalized that the problem is shown can be solved in
polynomial time for any k in arbitrary undirected graphs [14], while the run-
time was later improved to O(n + mα(m,n)) by Tholey [17], where α is the
inverse of the Ackermann function. For general k, DP was shown polynomial
solvable in some special graphs. Frank proposed an algorithm for finding k edge-
disjoint paths in a planar undirected graph with a runtime O(|n|3log|n|) [9].
Later, Schrijver [15] showed the k disjoint paths problem in directed planar
graphs is solvable in polynomial time |n| + σ + k based on cohomology over
free groups method. More recently, because of its advantage in reliability as well
as congestion avoidance, some variants of DP has recently witnessed renewed
interests from researchers in the networking community. In particular, Challal et
al. proposed a highly reliable intrusion fault-tolerant routing scheme, through a
secure multi-path routing structure [3]. Moreover, disjoint paths were also used
for minimizing energy consumption in networks due to Lin et al., where they
designed a fast heuristic solution called Two Disjoint Paths by Shortest Path
(2DP-SP)[13]. Hou et al. employed its vertex disjoint version, namely BS-2NDP,
to formulate the generic Bandwidth Scheduling problem to support big data
transfer [11]. Besides, a similar but more complicated problem, named the δ
V-kPESP problem, aiming to compute k edge-disjoint paths sharing at most δ
common vertices, was first studied in [19] for k = 2 and shown solvable within
a time complexity O

(
mn2 + n3 · log n

)
. Later, the runtime was improved to

O (δm + n log n)[10]. Moreover, the edge version of δ V-kPESP of computing k
partial edge-disjoint paths sharing at most δ common edges, was shown solvable
within a runtime O

(
mn log(1+m/n) n + δn2

)
for k = 2 by Deng et al. [6].

When the input graph contains exactly one color, MDPDC can be consid-
ered as a network flow problem. Flow and disjoint paths problems, along with
several variants and special cases, have been extensively studied. While allowing
fractional paths within the flow and with each connection requirement to be com-
pletely satisfied or none, the all-or-nothing flow problem was introduced in [4]
together with approximation algorithms. For the node-capacitated all-or-nothing
flow problem, Chekuri et al. obtain a ratio of O(log4 k log n) for general graph
and O(log2 k log n) for planar graph [5]. For the edge capacitated all-or-nothing
flow problem, Chekuri et al. obtain an O(log2 k) approximation in general graphs
and an O(log k) approximation in planar graphs [5]. These respectively improve
the earlier ratios of O(log3 n log log n) and O(log2 n log log n) obtained in [4].
Later, Kawarabayashi and Kobyashi gave an O(1)-approximation algorithm and

110 Y. Deng et al.

showed that the integrality gap is O(1) for the all-or-nothing multicommodity
flow problem in planar graphs in [12].

1.2 Our Results

The main results of this paper can be summarized as follows:

– We introduce a novel MDPDC problem/model for the big data challenges in
wireless networks such as increased network routing congestion and packet
loss due to signal interference.

– We prove the NP-Completeness of MDPDC in directed graphs via a simple
reduction from the directed Disjoint Path (DP) problem. For the harder case
of undirected graphs, as DP becomes polynomial-time solvable, we instead
construct a more complicated but essential reduction from the fundamental
3SAT problem that is well known to be NP -complete.

– After settling the computational complexity, linear program (LP) models are
proposed for MDPDC. Based on the LPs, two algorithms are invented to
solve MDPDC via rounding fractional LP solutions.

In addition, numerical experiments manifested that the LP -based algorithm
outputs integral solutions at a relatively high probability.

1.3 Organization

The reminder of the paper is organized as follows: Sect. 2 gives NP-completeness
proofs for MDPDC in both directed and undirected graphs; Sect. 3 presents LP -
based algorithms for solving MDPDC ; Sect. 4 concludes the paper.

2 Proof of Theorem 2

In this section, we shall show the correctness of Theorem 2 via proving the
NP-completeness of the two different color disjoint paths (2DPDC) problem,
which is a simpler case of the maximum different color disjoint paths (MDPDC)
problem and determines only whether there exist at least two different color
disjoint paths. Apparently, the NP-hardness of MDPDC can immediately be
reduced from the NP-completeness of 2DPDC.

We first prove the NP-completeness of 2DPDC in digraphs by simply reduc-
ing from the disjoint paths (DP) problem that is known NP-complete. Notably,
the proof is only valid for digraphs and can not be extended to undirected graph,
because DP is polynomially solvable in undirected graph [8]. So instead we
propose another reduction from 3SAT with more complicated details to show
MDPDC remains NP-complete in undirected graph.

LP-Based Algorithms for MDPDC 111

2.1 The NP-completeness Proof for 2DPDC in Digraphs

Apparently, 2DPDC is in NP, since for a given disjoint paths pair (P1,P2), we
can check whether col(P1) �= col(P2) holds or not in polynomial time. 2DPDC is
apparently NP-complete in a directed graph by constructing a reduction from
the Disjoint Path (DP) Problem which is known NP-complete in digraph [8].
Assume that we are given an instance of the DP problem, which is, a directed
graph G(V,E) and four distinct vertices s1, t1, s2 and t2. In the polynomial-time
reduction, we create a directed graph G1(V1,E1), where V1 = V ∪ {s,t} in that
s and t respectively denote the source and destination vertices of the 2DPDC
problem, while E1 = E ∪{(s,s1),(s,s2),(t1,t),(t2,t)}. An example of constructing
auxiliary graph G1(V1,E1) is as illustrated in Fig. 1a. It remains to show the
following lemma to complete the NP-hardness proof.

Lemma 3. There exists a solution for 2DPDC iff there exists a solution for the
corresponding DP instance.

Proof. Suppose 2DPDC in G1 is solvable, i.e., there is a pair of disjoint paths
{P1,P2} from s to t with different colors in G1. Note that following the construc-
tion vertices s1 and t1 are both in red, while vertices s2 and t2 are blue. Then
P1 = s → s1 → . . . → t1 → t and P2 = s → s2 → . . . → t2 → t are two disjoint
paths with different colors, in which P

′
1 = s1 → . . . → t1 and P

′
2 = s2 → . . . → t2

immediately compose a feasible solution to DP. Conversely, assume {P
′
1(s1, t1),

P
′
2(s2, t2)} is a solution to DP. Then P1 = s → s1 → . . . → t1 → t and

P2 = s → s2 → . . . → t2 → t immediately compose a solution to 2DPDC,
as every vertex on P1 can be colored as red while P2 blue. This completes the
proof. ��
However, we cannot extend the above NP-completeness proof to undirected
graphs, because interestingly DP is polynomial-solvable in an undirected graph.
In the following, MDPDC is shown to remain NP-complete in undirected
graphs, which is different to the case of DP.

2.2 The NP-completeness Proof for 2DPDC in Undirected Graphs

Lemma 4. 2DPDC is NP-complete in an undirected graph.

Similar to the directed case, emph2DPDC is obviously in NP. Then, we will
prove the remaining part of Lemma 4 by reducing from 3SAT that is known to
be NP -complete. An instance of 3SAT has n variables {x1, . . . , xn}, with each
variable xi giving rise to literals xi, xi. It also has m clauses {C1, . . . ,Cm}, each
a 3-subset of literals. A true assignment is a function τ :{xi} →{true, false}. We
say that Cj is satisfied under τ if Cj contains a literal xi with τ(xi) =true, or
a literal xi with τ(xi) =false. The 3SAT problem is to determine whether there
is an assignment satisfying all the m clauses.

For any given instance of 3SAT , the key idea of our reduction is to construct
an auxiliary graph G, such that G contains two different disjoint paths P1 and

112 Y. Deng et al.

Fig. 1. The auxiliary graph

P2 with col(P1) �= col(P2) iff the instance of 3SAT is satisfiable. The construction
is composed with the following three parts. First, for each variable xi with pi

occurrences of xi and qi occurrences of xi in the clauses, we add a vertex wi with
color blue and construct a lobe Gi in Fig. 1b which contains two paths from wi

to wi+1, say P1(wi, wi+1) and P2(wi, wi+1) respectively. Formally, we set:

P1(wi, wi+1) = wi → u1
i → b → · · · → uj

i → b → · · · → upi

i → wi+1,

P2(wi, wi+1) = wi → v1
i → b → · · · → vj

i → b → · · · → vqi
i → wi+1,

where b is a vertex of color blue and pi and qi are respectively the numbers of
occurrences of xi and xi.

Then, for each clause Cj , add two vertices yi and zi, as well as edge (zi,yi+1),
1 ≤ i ≤ m − 1, with the color of vertices are red. In addition, we add s and t
together with four edges (s,y1), (s,w1), (zm,t), (wn+1,t).

Last but not the least, for the relationship between the variables and the
clauses, say variable xi occurs in clause Cj as its pth occurrence, if the occurrence
is xi, we add two edges (yj ,u

p
j), (up

j ,zj); Otherwise, Cj contains xi, then we add
two edges (yj ,v

p
j), (vp

j ,zj).

LP-Based Algorithms for MDPDC 113

For example, graph G constructed for the instance x1 ∨x2 ∨x3, x1 ∨x2 ∨x4,
x2 ∨ x3 ∨ x4 is as illustrated in Fig. 1c.

Then since 2DPDC is clearly in NP, the correctness of Lemma 4 can be
immediately obtained from the following lemma:

Lemma 5. An instance of 3SAT is satisfiable iff in its corresponding auxiliary
graph G there exist two different disjoint paths P1 and P2 but col(P1) �= col(P2).

Proof. The proof is omitted due to the length constraint. ��
Following Lemma 3 and 4, 2DPDC is NP-complete in both directed and undi-
rected graphs. Therefore, we have the NP-hardness of MDPDC and then the
correctness of Theorem 2.

3 LP-Based Algorithms for MDPDC

In this section, we will first transform the vertex colored MDPDC problem to
its equivalent edge colored version, then give a linear program (LP) relaxation
for computing maximum disjoint paths with different colors, and at last propose
two algorithms by employing flow decomposition.

3.1 The Transformation

For an vertex-colored graph G(V, E), we convert it into an edge-colored graph
by assigned the edges in the graph with colors. For an edge ei = (u, v) ∈ E, we
set Rei

= R(u) ∩ R(v) as the set of colors for the edge ei. An example of the
transformation is as shown in Fig. 2, where Fig. 2a is an original vertex-colored
graph and Fig. 2b is the corresponding edge-colored graph, where r, g, b are the
colors of vertices and edges while ∅ represents that no color is assigned to the
edge.

3.2 The LP Formula

We denote by yr the total value of flow accommodated by the paths of color
r ∈ R, and denoted by xr

e the flow of color r accommodated by the edge e. Note
that, xr

e = 1 means edge e is used completely for a flow of color r, while xr
e = 0

indicates otherwise. Moreover, Inequality (1) ensures that each edge is at most
in one color and Inequality (2) guarantees each color-edge can only have one
occurrence. Besides, Inequality (4) guarantees that each vertex (except s and t)
can be used once at most. Then the integer linear programming (ILP) formula
for MDPDC is as below (ILP(1)):

114 Y. Deng et al.

Fig. 2. An example for the transformation

max
∑

r∈R yr

s.t.
∑

e∈δ+(v) xr
e − ∑

e∈δ−(v) xr
e = 0 ∀r ∈ R, v ∈ V \{s, t}

∑
e∈δ+(s) xr

e ≤ 1 ∀r ∈ R (1)
∑

r∈R xr
e ≤ 1 ∀e ∈ E (2)

∑
e∈δ+(s) xr

e − yr ≥ 0 ∀r ∈ R (3)
∑

e∈δ+(v)

∑

r∈R

xr
e ≤ 1 ∀v ∈ V \ {s, t} (4)

xr
e,yr ∈ {0,1} ∀r ∈ R,∀e ∈ E

where δ+(v) and δ−(v) denote the two sets of edges leaving and entering v in G,
respectively.

Lemma 6. ILP(1) correctly models the MDPDC problem.

Proof. Given a solution for ILP, we can construct a corresponding solution to
MDPDC and vice versa. Suppose there exists a solution for ILP(1), say Y ={
y1,. . . ,yr,. . . , y|R|

}
with

∑|R|
i=1 yi = g. First of all, Y apparently indicates an st-

flow of value g, say f , since s and t are respectively with a degree g and −g while
each other vertex of E(f) \ {s, t} is with degree 0 or 2. Then because Inequality
(1) guarantees that a feasible solution of ILP(1) contains at most one edge
leaving s for each color. That is, each edge leaving s has different color with any
other edges. Moreover, each edge in f can only be assigned with one color (i.e.,
Inequality 2). That is, there is no shared edge in the solution. Besides, Inequality
(4) indicates that each vertex except s and t in f can be selected for only once. In
other word, Inequality (4) ensures vertex-disjoint. Thus, f is an st-flow of value

LP-Based Algorithms for MDPDC 115

Algorithm 1. A heuristic algorithm for MDPDC
Input: A graph G, specified vertices s and t, a color set R;
Output: A solution to MDPDC.
0: Set P := ∅;
1: Solve LP(1) and obtain x be the solution to LP(1);
2: If x is integral (i.e. each dimension of x is an integer) then

return P ∪ x;
3: If x is not integral then
4: Decompose x to a set of flow-paths Q by Algorithm 2;
5: Select a path Pj with maximal flow value from Q;
6: Set P := P ∪ {Pj};
7: G := G/Pj and R := R \ col(Pj);
8: If there exists st-path in G with colors of R then

Go to Step 1 against LP(1) with new G and R;
9: Return P.

g, and is a set of disjoint paths with different colors in G because each edge
in f is integral. Therefore, Y is indeed a solution to MDPDC. Conversely and
obviously, from a solution to MDPDC, we can immediately construct a feasible
solution to its corresponding formula of ILP(1). Combining the two directions,
we immediately complete the proof. ��

From the above lemma, an optimum solution to ILP(1) is exactly an optimum
solution to the corresponding MDPDC problem and vice versa. We denote the
LP relaxation for MDPDC as LP(1), whose difference with ILP(1) is that xr

e

and yr are relaxed to be real numbers between 0 and 1.

3.3 A Greedy-Based Iterative LP Rounding Algorithm

Our algorithm is composed of iterations, where each iteration is to select and
round a maximum path-flow from a computed optimum solution to LP(1), and
return the remained graph of removing the rounded path for the next iteration.
Apparently, the aim of the entire rounding is to maximize the number of the
possible remained paths.

The main steps of each iteration proceed as below: First, solve LP(1) against
the remained graph (which is initially the original graph) to obtain an st-flow;
Second, decompose the flow to a set of flow-paths Q by employing Algorithm2,
which repeats peeling a flow-path with maximum value from the st-flow until
the decomposition is done; Third, select and round a flow-path Pj ∈ Q with
the maximum flow value. At last, remove the edges on the rounded path from
the graph, and use the remained graph for the next iteration. The algorithm
terminates when the st-flow computed via LP(1) is integral. Formally, the whole
heuristic algorithm is as in Algorithm 1.

It remains to give the edge-peeling algorithm for flow decomposition. The key
idea is to repeatedly peel off each path-flow of a minimum flow value of an edge
thereon, from the flow produced by solving the LP formula, until the value of the

116 Y. Deng et al.

Algorithm 2. The edge-peeling algorithm
Input: Specified vertices s and t, a set of colors R, a solution of LP(1) Sol;
Output: A set of flow-paths P.
0: Set P := ∅;
1: Decompose Sol to a collection of sets of flow-paths, say {f1, . . . , fh} where fi is the

set of flow with color i;
2: For fi in {f1, . . . , fh} do
3: While the value of fj is not zero do
4: Find an st-path Pj in the graph for fj and add to P;
5: Decrease each edge in Pj with minimum flow value;
6: EndWhile
7: Return P.

flow is zero. The algorithm is mainly composed by three phases: Firstly, compute
an optimal solution to LP(1), and obtain an st flow; Secondly, decompose the
solution of LP(1) to a collection of subflow, say{f1, . . . , fh}, where fi is the set
of flow with color i; Thirdly, for each subflow, repeatedly peel a portion of the
subflow until the value of the remaining subflow is 0. In the phase, we find an
st-path Pj in the graph exactly accommodating the subflow, and then reduce
the flow value of each edge in Pj by Δ, where Δ is the minimum value of the
edges on Pj . The full layout of the algorithm is as described in Algorithm 2.

3.4 An LP-rounding Algorithm Based on a Second ILP

The disadvantage of Algorithm 1 is its high runtime, because it runs iterations.
So we propose another algorithm which round a fractional solution to an integral
one in only one iteration. The key idea is to use another ILP to round the solution
of LP(1), i.e. to select proper flow-paths to compose the approximate solution.
The ILP is formally as below (ILP2):

max
∑

r∈R

yr

s.t.
∑

j: e∈Fj

xj ≤ 1 ∀e ∈ E

∑

j:col(Fj)=r

xj − yr ≥ 0 ∀r ∈ R

∑

j:col(Fj)=r

xj ≤ 1 ∀r ∈ R

∑

j: v∈Fj

xj ≤ 1 ∀v ∈ V \ {s, t}
xj ,yr ∈ {0,1} 1 ≤ j ≤ h, ∀r ∈ R

Similarly, we denote by yr the total value of flow accommodated by the paths
of color r ∈ R, and denote by xj the j-th flow in F := (F1, . . . , Fh), where xj = 1
means the j-th flow is used completely in the solution, while xj = 0 indicates
otherwise. Furthermore, the first Inequality in ILP(2) ensures that each edge
can be selected for at most once. The second guarantees that the value of each

LP-Based Algorithms for MDPDC 117

Algorithm 3. A rounding algorithm based on another LP
Input: A general graph G, specified vertices s and t, a set of colors R;
Output: A solution to MDPDC.
0: Solve LP(1) and obtain x an optimal solution;
1: If x is integral (i.e. each dimension of x is an integer) then

return x;
2: Decompose x to flow-paths {F1, . . . , Fh} by Algorithm 2;
3: Solve ILP(2) against (F1, . . . , Fh) to obtain {y1, . . . , yg}.

flow for each color can not exceed value one; the third Inequality guarantees at
most one path is selected for each color. At last, the fourth Inequality ensures
each vertex can only be assigned with one color.

The main steps of the rounding proceed as below: Firstly, solve LP(1) to
obtain an st-flow that is then decomposed to a set of path-flow F by employing
the edge peeling Algorithm 2, when the solution is not integer; Secondly, run
ILP(2) against the path-flow F := (F1, . . . , Fh) to obtain a rounded integral
solution {y1, . . . , yg}. The detailed algorithm is as depicted in Algorithm 3.

4 Conclusion

In this paper, we first proved the NP -completeness of MDPDC in both directed
and undirected graphs, by giving reductions from the directed disjoint paths
problem and the 3SAT problem, respectively. Then, we gave an integer linear
program (ILP) for modeling MDPDC, and developed two algorithms based on
rounding fractional solution to the accordingly relaxed linear program (LP). In
future, we shall evaluate performance gains of the algorithms by comparing them
with exact solutions from ILP and LP solvers through numerical experiments.

Acknowledgements. This work is supported by Natural Science Foundation of China
(No. 61772005) and Natural Science Foundation of Fujian Province (No. 2017J01753).
Part of the research was done when the first and forth authors were with College of
Mathematics and Computer Science, Fuzhou University, P.R. China.

References

1. https://standards.ieee.org/standard/802 1D-2004.html
2. Bonizzoni, P., Dondi, R., Pirola, Y.: Maximum disjoint paths on edge-colored

graphs: approximability and tractability. Algorithms 6(1), 1–11 (2013)
3. Challal, Y., Ouadjaout, A., Lasla, N., Bagaa, M., Hadjidj, A.: Secure and effi-

cient disjoint multipath construction for fault tolerant routing in wireless sensor
networks. J. Netw. Comput. Appl. 34(4), 1380–1397 (2011)

4. Chekuri, C., Khanna, S., Shepherd, F.B.: The all-or-nothing multicommodity flow
problem. In: Proceedings of the Thirty-sixth Annual ACM Symposium on Theory
of Computing, pp. 156–165. ACM (2004)

https://standards.ieee.org/standard/802_1D-2004.html

118 Y. Deng et al.

5. Chekuri, C., Khanna, S., Shepherd, F.B.: Multicommodity flow, well-linked termi-
nals, and routing problems. In: Proceedings of the Thirty-seventh Annual ACM
Symposium on Theory of Computing, pp. 183–192. ACM (2005)

6. Deng, Y., Guo, L., Huang, P.: Exact algorithms for finding partial edge-disjoint
paths. In: Wang, L., Zhu, D. (eds.) COCOON 2018. LNCS, vol. 10976, pp. 14–25.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94776-1 2

7. Dondi, R., Sikora, F.: Finding disjoint paths on edge-colored graphs: more
tractability results. J. Comb. Optim. 36(4), 1315–1332 (2017). https://doi.org/
10.1007/s10878-017-0238-6

8. Fortune, S., Hopcroft, J., Wyllie, J.: The directed subgraph homeomorphism prob-
lem. Theoret. Comput. Sci. 10(2), 111–121 (1980)

9. Frank, A.: Edge-disjoint paths in planar graphs. J. Comb. Theory Ser. B 39(2),
164–178 (1985)

10. Guo, L., Deng, Y., Liao, K., He, Q., Sellis, T., Hu, Z.: A fast algorithm for optimally
finding partially disjoint shortest paths. In: IJCAI, pp. 1456–1462 (2018)

11. Hou, A., Wu, C.Q., Fang, D., Wang, Y., Wang, M.: Bandwidth scheduling for big
data transfer using multiple fixed node-disjoint paths. J. Network Comput. Appl.
85, 47–55 (2017)

12. Kawarabayashi, K.I., Kobayashi, Y.: All-or-nothing multicommodity flow problem
with bounded fractionality in planar graphs. In: IEEE Symposium on Foundations
of Computer Science (2013)

13. Lin, G., Soh, S., Chin, K.-W., Lazarescu, M.: Energy aware two disjoint paths
routing. J. Netw. Comput. Appl. 43, 27–41 (2014)

14. Robertson, N., Seymour, P.D.: Graph minors. XIII. The disjoint paths problem. J.
Combin. Theory Ser. B 63, 65–110 (1995)

15. Schrijver, A.: Finding k disjoint paths in a directed planar graph. SIAM J. Comput.
23(4), 780–788 (1994)

16. Shiloach, Y.: A polynomial solution to the undirected two paths problem. J. the
ACM (JACM) 27(3), 445–456 (1980)

17. Tholey, T.: Solving the 2-disjoint paths problem in nearly linear time. Theory
Comput. Syst. 39(1), 51–78 (2006)

18. Wu, B.Y.: On the maximum disjoint paths problem on edge-colored graphs. Dis-
crete Optim. 9(1), 50–57 (2012)

19. Yallouz, J., Rottenstreich, O., Babarczi, P., Mendelson, A., Orda., A.: Optimal
link-disjoint node-“somewhat disjoint” paths. In: 2016 IEEE 24th International
Conference on Network Protocols (ICNP), pp. 1–10. IEEE (2016)

20. Zhang, S., Chen, L., Yang, W.: On fault-tolerant path optimization under QoS
constraint in multi-channel wireless networks. Theoret. Comput. Sci. 695, 74–82
(2017)

https://doi.org/10.1007/978-3-319-94776-1_2
https://doi.org/10.1007/s10878-017-0238-6
https://doi.org/10.1007/s10878-017-0238-6

A Constant Factor Approximation for
Lower-Bounded k-Median

Yutian Guo, Junyu Huang, and Zhen Zhang(B)

School of Computer Science and Engineering, Central South University,
Changsha 410083, People’s Republic of China

csuzz@foxmail.com

Abstract. The lower-bounded k-median problem considers a set C of
clients, a set F of facilities, and a parameter B, the goal is to open k facil-
ities and connect each client to an opened facility, such that each opened
facility is connected with at least B clients and the total connection cost
is minimized. The problem is known to admit an O(1)-approximation
algorithm, while the constant is implicit and seems to be a very large
constant. In this paper, we give an approach that converts the lower-
bounded k-median problem to the capacitated facility location problem,
which yields a (516 + ε)-approximation for the lower-bounded k-median
problem.

Keywords: Approximation algorithm · k-median

1 Introduction

k-median is a widely studied clustering problem and has applications in many
fields related to computer science. Given a set C of clients and a set F of facili-
ties located in a metric space, the k-median problem aims to open a set S ⊆ F
of at most k facilities, such that the objective function

∑
j∈C d(j, S) is mini-

mized, where d(j, S) denotes the distance from j ∈ C to its nearest facility in S.
This problem is known to be NP-hard, which leads to a lot of efforts devoted to
obtaining its approximation algorithms [5,7,11,13,16]. The current best approx-
imation guarantee for the problem is 2.675 + ε [5], which is obtained Li and
Svensson [16].

The clustering problem has an inherent assumption that each client can be
optionally connected to any opened facility. However, many real world scenarios
associate a notion of lower bound with each facility, and the number of the clients
connected to each facility should not be less than the lower bound associated
with it. For example, in the design of buy-at-bulk network, a set of demands
needs to be connected to a set of servers, and each server is required to have

This work was supported by National Natural Science Foundation of China (61672536,
61872450, 61828205, and 61802441), Hunan Provincial Key Lab on Bioinformatics, and
Hunan Provincial Science and Technology Program (2018WK4001).

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 119–131, 2020.
https://doi.org/10.1007/978-3-030-59267-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_11

120 Y. Guo et al.

a minimum amount of demand assigned to it. Karger and Minkoff [12] and
Guha et al. [10] introduced the lower-bounded facility location problem to deal
with such constraints. They presented constant-factor bi-criteria approximation
algorithms for the problem, which violate the lower bound of the facilities. On
the basis of the techniques given in [12] and [10], Svitkina [17] gave a (448 + ε)-
approximation without violating the lower bound constraint. The ratio was later
improved to 82.6 + ε by Ahmadian and Swamy [1]. Most recently, Li [15] gave
a (3926 + ε)-approximation for the facility location problem with non-uniform
lower bounds.

In this paper, we consider the lower-bounded k-median problem.

Definition 1 (lower-bounded k-median). Given a set C of clients and a set
F of facilities located in a metric space, an integer k, and a parameter B, the
lower-bounded k-median problem is to open a set S of at most k facilities, and
identify a connection function σ, such that the number of the clients connected
to each facility is no less than B, and the objective cost(S, σ) =

∑
j∈C d(j, σ(j))

is minimized, where σ(j) = i denotes client j is connected to facility i ∈ S for
each j ∈ C, and d(j, σ(j)) denotes the distance from j to σ(j).

In Euclidean space, Ding and Xu [9] gave a (1 + ε)-approximation for
the lower-bounded k-median problem with running time O(n2d · (log n)k+2 ·
2poly(k/ε)). Bhattacharya et al. [4] later improved the running time of the algo-
rithm in [9] to O(n2d · (log n)2 · (k

ε)O(k/ε)). Ahmadian and Swamy [2] gave that
the problem admits an O(1)-approximation algorithm that runs in polynomial
time. The approximation ratio is implicit but seems to be a very large number.

1.1 Our Results

In this paper, we obtain the following result for the lower-bounded k-median
problem.

Theorem 1. There exists a (516 + ε)-approximation algorithm for the lower-
bounded k-median problem that runs in polynomial time.

We now give the high level idea of our approach. Given an instance of the
lower-bounded k-median problem, it can be seen that the instance has a feasible
solution if |C| ≥ B. We present a bi-criteria approximation algorithm for the
problem. The algorithm yields a constant factor approximation solution which
violates the lower bound of the facilities. To convert such a bi-criteria approxi-
mation solution to a feasible solution, we reconnect some clients and close some
facilities so that the lower bound constraint of each facility can be satisfied. We
consider an instance of the capacitated facility location problem to minimize
the loss in the cost induced by the converting. This instance is constructed by
interchanging the roles of the clients and the facilities. A set of clients connected
to a same location is now viewed as a facility whose capacity is the same as the
size of the client set, and a facility whose lower bound is violated now becomes a

A Constant Factor Approximation for Lower-Bounded k-Median 121

set T of clients with |T | = (1 − λ)B, where λB is the number of the clients con-
nected to this facility in the original bi-criteria approximation solution. Based
on a known O(1)-approximation algorithm for the capacitated facility location
problem, we convert the bi-criteria solution to a solution satisfying the lower
bound, which induces a constant factor loss in the approximation ratio.

1.2 Other Related Work

A commonly studied extension of the clustering problem is the capacitated clus-
tering problem, which can be viewed as the opposite of the lower-bounded clus-
tering problem in some sense. In this problem, each facility is associated with a
capacity, and the number of the clients connected to a facility should be less than
its capacity. The capacitated facility location problem can be formally defined
as follows.

Definition 2 (Capacitated facility location). Given a set C of clients and a
set F of facilities located in a metric space, an opening cost fi and a capacity ui

associated with each i ∈ F , the capacitated facility location problem is to open a
set S of facilities, and identify a connection function σ, such that the number of
the clients connected to each facility i ∈ S is no more than ui, and the objective
cost(S, σ) =

∑
j∈C d(j, σ(j)) +

∑
i∈S fi is minimized, where σ(j) = i denotes

client j is connected to facility i ∈ S for each j ∈ C, and d(j, σ(j)) denotes the
distance from j to σ(j).

The capacitated clustering problem is significantly harder than the ordinary
clustering problem. There are several known O(1)-approximation algorithms for
the capacitated facility location problem. The current best approximation guar-
antee for the problem is 5 + ε [3], which was obtained based on a local search
algorithm. However, constant factor approximation algorithms for the capaci-
tated k-median problem only exist for the case where the capacity constraint or
the number of clusters can be violated [8,14].

2 A Bi-criteria Approximation

In this section, we give a constant factor bi-criteria approximation for the lower-
bounded k-median problem by constructing an instance of the k-facility location
problem. This problem can be formally defined as follows.

Definition 3 (k-facility location). Given a set C of clients and a set F of
facilities located in a metric space, an integer k, and an opening cost fi associated
with each i ∈ F , the k-facility location problem aims to open a set S of at most
k facilities, such that the objective

∑
j∈C d(j, S) +

∑
i∈S fi is minimized, where

d(j, S) denotes the distance from j to its nearest facility in S.

Let I = (C,F, k,B) be an instance of the lower-bounded k-median problem.
Given a facility i ∈ F , let Ji denote the set of the B clients in C closest to i.
Given β ∈ (0, 1) and a solution (S, σ) of I, we call (S, σ) a β-covered solution if it

122 Y. Guo et al.

connects no less than βB clients to each i ∈ F , and let costI(S, σ) denote its cost
of the problem. We construct an instance I ′ = (C,F, f) for the k-facility location
problem, where fi = 2β

1−β

∑
j∈Ji

d(i, j) for each i ∈ F . We solve the constructed
instance by the algorithm given in [6], which gives a 3.25-approximation solution
for the k-facility location problem. Let S′ be the resulted set of the open facilities.
Let costI′(S′) denote the cost of S′ for the k-facility location problem.

We now show that any λ-approximation solution of I ′ can be converted to
an O(λ)-approximation solution of I, which induces a constant factor violation
in the lower bound of the facilities.

Lemma 1. For an arbitrary solution (S, σ) of I, the solution is also a feasible
for I ′, and we have

∑

i∈S

fi ≤ 2β

1 − β
cost(S, σ).

Proof. Since (S, σ) is a feasible solution of I, for each i ∈ S, i is connected with
at least B clients. This implies that

∑
j∈Ji

d(i, j) ≤ ∑
j∈σ−1(i) d(i, j). Thus, we

have
∑

i∈S

fi =
∑

i∈S

(
2β

1 − β

∑

j∈Ji

d(i, j))

≤ 2β

1 − β

∑

i∈S,j∈σ−1(i)

d(i, j)

=
2β

1 − β

∑

j∈C

d(j, σ(j))

=
2β

1 − β
costI(S, σ),

where the first step follows from the the definition of fi. ��
Lemma 1 implies that for any solution (S, σ) of instance I, we have

costI′(S) ≤ 1+β
1−β costI(S). We proceed by showing that a solution S′ to I ′ can be

converted to a β-covered solution (S, σ) of I.

Lemma 2. Given a solution S′ of I ′, we can find a β-covered solution (S, σ) of
I such that costI(S, σ) ≤ costI′(S′).

Proof. We prove the lemma by giving an algorithm that yields the desired β-
covered solution. Based on instance I ′, we construct a new instance Ik for the
k-median problem by removing all facility open costs. Let S = S′ initially. While
there exists some i ∈ S such that costI′(S\{i}) ≤ costI′(S), let S = S\{i}. The
final solution (S, σ) is called a minimal feasible solution of instance Ik, where each
j ∈ C is assigned to its nearest facility in S by function σ. It is easy to show
that costIk(S, σ) ≤ costI′(S), which implies that costIk(S, σ) ≤ costI′(S) ≤
costI′(S′).

A Constant Factor Approximation for Lower-Bounded k-Median 123

Now we want to show that in the solution (S, σ), each facility i ∈ S is
connected by at least βB clients. For the sake of contradiction, assume that there
exists a facility i ∈ S such that |σ−1(i)| ≤ βB. This implies that |Ji\σ−1(i)| ≥
(1 − β)B. We know that there exists a client j′ ∈ Ji\σ−1(i), such that

d(i, j′) ≤ 1
(1 − β)B

∑

j∈Ji\σ−1(i)

d(i, j) ≤ 1
(1 − β)B

∑

j∈Ji

d(i, j).

Since j′ is not connected to i in the solution (S, σ), it is connected to some other
facility i′ ∈ S with d(j′, i′) ≤ d(j′, i). Thus, we have

∑

j∈σ−1(i)

d(j, i′) ≤
∑

j∈σ−1(i)

(d(j, i) + d(i, j′) + d(j′, i′))

≤
∑

j∈σ−1(i)

d(j, i) + |σ−1(i)| × 2d(i, j′)

≤
∑

j∈σ−1(i)

d(j, i) + βB × 2
(1 − β)B

∑

j∈Ji

d(i, j)

=
∑

j∈σ−1(i)

d(j, i) +
2β

(1 − β)

∑

j∈Ji

d(i, j).

If we close i and reconnect each client from i to i′, then the increment in the
connection cost is no more than 2β

(1−β)

∑
j∈Ji

d(i, j), which is bounded by f ′
i . We

have costI′(S\{i}) ≤ costI′(S), contradicting that (S, σ) is a minimal feasible
solution of instance Ik. Thus (S, σ) is a β-covered solution of I. ��

Based on Lemma 1 and Lemma 2, we get the following approximation guar-
antee.

Theorem 2. There exists a 3.25 1+β
1−β -approximation algorithm for the lower-

bounded k-median problem which violates the lower bound by a factor β.

Proof. We first get a solution S′ of I ′ using the 3.25-approximation algorithm
for the k-facility location problem. We denote the set of the opened facilities in
an optimal solution of I by S∗. We have costI′(S′) ≤ 3.25costI′(S∗). Thus, we
get

costI′(S′) ≤ 3.25(
∑

i∈S∗
fi +

∑

j∈C

d(j, S∗))

≤ 3.25(
2β

1 − β
costI(S∗, σ∗) +

∑

j∈C

d(j, S∗))

≤ 3.25(
2β

1 − β
costI(S∗, σ∗) + costI(S∗, σ∗))

= 3.25
1 + β

1 − β
costI(S∗, σ∗),

124 Y. Guo et al.

where the second step follows from Lemma 1. By Lemma 2, we can obtain a
β-covered solution (So, σo) of I such that

costI(So, σo) ≤ costI′(S′) ≤ 3.25(
1 + β

1 − β
)costI(σ∗).

��
By Theorem 2, we can get a pseudo-solution for the lower-bounded k-median

problem, which violates the lower bound restriction by the a constant β ∈ (0, 1).
This implies that we find a solution where each opened facility is connected with
at least βB clients instead of B clients. In the following we will show how to
make such a solution feasible for the lower-bounded k-median problem.

3 The Approximation Algorithm

3.1 Aggregating Clients

Given an instance I = (C,F,B, k) of the lower-bounded k-median problem,
by Lemma 1 and Lemma 2, we can obtain a bi-criteria approximation solution
(So, σo) which violates the constraint of lower bound by a factor β. We construct
a new instance I1 for the lower-bounded k-median problem, where C,F , and B
are the same as that of I, but the metric is different from I. In instance I1, each
client j ∈ C is moved to σo(j). Then, for each i1, i2 ∈ F and j1, j2 ∈ C, we have
d1(i1, i2) = d(i1, i2), d1(i1, j1) = d(i1, σo(j1)), and d1(j1, j2) = d(σo(j1), σo(j2)).
For arbitrary i ∈ F and j ∈ C, using triangle inequality, we get

d1(i, j) = d(i, σo(j)) ≤ d(i, j) + d(j, σo(j)). (1)

For an optimal solution (S∗, σ∗) of instance I, we have

costI1(S∗, σ∗) ≤ costI(S∗, σ∗) + costI(So, σo)

≤ costI(S∗, σ∗) + 3.25
1 + β

1 − β
costI(S∗, σ∗)

=
(

1 + 3.25
1 + β

1 − β

)

costI(S∗, σ∗),

(2)

where the first step follows from inequality (1), the second step follows from
Theorem 2. We have the following result based on the methods in [17].

Theorem 3. If there is an α1-approximation solution of I1, we can efficiently
find an α-approximation solution of I, where α = α1(1 + 3.25 1+β

1−β) + 3.25 1+β
1−β .

A Constant Factor Approximation for Lower-Bounded k-Median 125

3.2 Contracting Facility Set

We now focus on instance I1 = (C,F,B, k). For each i ∈ So, define γi =
{j|σo−1(i)} as the set of clients connected to i. We have |γi| ≥ βB for each
i ∈ So. An instance I2 = (C,So, B, k) is constructed by removing each facility
in F\So from I1.

Lemma 3. If there is a solution (S1, σ1) of I1, then we can efficiently find a
solution (S2, σ2) of I2 such that costI2(S2, σ2) ≤ 2costI1(S1, σ1).

Proof. For each i ∈ F\So, let i′ denote the facility in So nearest to i. We
construct a solution (S2, σ2) of I2 by opening each i ∈ S1 ∩ So and facility
i′ for each i ∈ F ∩ (S1\So). For a facility i ∈ F ∩ (S1\So), the clients con-
nected to i in solution (S1, σ1) are reconnected to i′. By triangle inequality and
the definition of d1(∗), the increased cost induced by a client j is bounded by
d1(i, i′) = d(i, i′) ≤ d(i, σo−1(j)) = d1(i, j). Summing the inequality over each
j ∈ C, we get that the total increased cost is no more than costI1(S1, σ1), which
implies that costI2(S2, σ2) ≤ 2costI1(S1, σ1). ��

Lemma 3 implies that a solution of instance I1 can be converted to a feasible
solution of instance I2. It is easy to see that a solution (S, σ) of instance I2 is
also feasible of instance I1 and satisfies costI1(S, σ) = costI2(S, σ). Thus, we get
the following result for I1 and I2.

Theorem 4. Given an α2-approximation solution of I2, we can find an α1-
approximation solution of I1, where α1 = 2α2.

Proof. Let (S∗1, σ∗1) be an optimal solution of instance I1. Using Lemma 3, we
can get a solution (S2, σ2) of I2 that satisfies costI2(S2, σ2) ≤ 2costI1(S∗1, σ∗1).
Let (S, σ) denote an α2-approximation solution of I2, we have costI2(S, σ) ≤
2α2costI1(S∗1, σ∗1). Recall that (S, σ) is also feasible for I1 and costI1(S, σ) =
costI2(S, σ) ≤ 2α2costI1(S∗1, σ∗1). ��

Now we focus on instance I2. We only consider one facility for each position
in I2.

3.3 Adding Penalties to Instance I2

Based on instance I2, we construct a new instance I3 by considering penalties
for closing the facilities from So. For each i ∈ So, if i is closed in the solution,
then a penalty cost PcI3(i) = 2β−1

β |γi|�i should be paid, where �i denotes the
distance from i to its nearest facility in So\{i}. For a solution (S, σ) of I3, define
PcI3(S, σ) =

∑
i∈So\S PcI3(i) as the total penalty cost of (S, σ).

Lemma 4. For any solution (S, σ) of I2 and I3, we have

costI2(S, σ) ≤ costI3(S, σ) ≤ 3β − 1
β

costI2(S, σ).

126 Y. Guo et al.

Proof. The cost of solution (S, σ) of I3 consists of the connection cost and
the penalty cost of the closed facilities, where the connection cost is equal to
costI2(S, σ). Thus, costI2(S, σ) ≤ costI3(S, σ). We have

∑

i∈So\S

PcI3(i) =
∑

i∈So\S

2β − 1
β

|γi|�i

≤ 2β − 1
β

∑

i∈So\S

∑

j∈γi

d1(j, σ(j))

≤ 2β − 1
β

∑

j∈C

d1(j, σ(j))

=
2β − 1

β
costI2(S, σ).

This implies that

costI3(S, σ) = costI2(S, σ) + PcI3(S, σ) ≤ 3β − 1
β

costI2(S, σ).

��
Lemma 4 implies that I2 can be converted to I3 with a constant factor loss

in the approximation ratio.

Theorem 5. Given an α3-approximation solution of I3, we can find an α2-
approximation solution of I2, where α2 = 3β−1

β α3.

Proof. Let (S∗2, σ∗2) be an optimal solution of instance I2. By Lemma 4, there
exists a solution (S3, σ3) of I3 such that costI3(S3, σ3) ≤ 3β−1

β costI2(S∗2, σ∗2).
Let (S, σ) denote an α3-approximation solution of I3, we have costI2(S, σ) ≤
costI3(S, σ) ≤ 3β−1

β α3costI2(S∗2, σ∗2). ��

3.4 Constructing an Instance of Capacitated Facility Location

In this section, we show how to convert I3 to an instance of the capacitated
facility location problem (CFL). Recall that we only consider one facility for
each position in the lower bounded k-median problem. For each i ∈ So, let
Δ1

i = |γi| and Δ2
i = |γi| − B, we define a variable Δi ∈ {Δ1

i ,Δ
2
i }. In addition,

we define Pi as the position of i for any i ∈ So. If Δi = Δ1
i , then we close facility

i. In such case, Δ1
i clients should be reconnected. For the case where Δi = Δ2

i ,
we open facility i, if Δ2

i > 0 then |Δ2
i | clients from γi can be reconnected without

violating the lower bound of i. Otherwise, |Δ2
i | clients should be reconnected to

i. It can be seen that instance I3 is to identify the value of Δi for each Pi where
i ∈ So such that

∑
i∈So Δi ≥ 0.

We now show how to construct an instance I4 of CFL based on I3. To avoid
confusion, each facility in the CFL instance is called a C-facility, and each

A Constant Factor Approximation for Lower-Bounded k-Median 127

client in CFL instance is called a C-client. The total cost of an instance of
CFL is the sum of the open cost of C-facilities and connection cost of C-clients.
For each Pi where i ∈ So, we construct a C-facility with open cost 2β−1

β |γi|�i

and capacity Δ1
i − Δ2

i . Moreover, a set of C-clients or a C-facility in Pi are
constructed depending on the value of Δ2

i . If Δi
2 < 0, then we construct a set of

|Δ2
i | C-clients. If Δ2

i > 0, then we construct a C-facility with open cost 0 and
capacity Δ2

i . Note that some locations may have more than one C-facilities in
I4. Given a solution (S, σ) of I4, let fI4(S, σ) denote the open cost of C-facilities
and θI4(S, σ) denote the connection cost of C-clients.

Lemma 5. Given any solution (S, σ) of instance I3, we can find a solution
(Sc, σc) of instance I4 of CFL such that costI4(Sc, σc) ≤ costI3(S, σ).

Proof. We identify the value of Δi for each Pi where i ∈ So based on solution
(S, σ). We have

∑
i∈So Δi ≥ 0 due to (S, σ) is a feasible solution of I3. As

mentioned above, in instance I4, for each Pi where i ∈ So, there are |Δ2
i | C-

clients in Pi which need to be connected if Δ2
i < 0. Otherwise we open the

C-facility with open cost 0 and capacity Δ2
i at this position. Moreover, for each

Pi where i ∈ So \S, we open the C-facility at this position, whose open cost and
capacity are 2β−1

β |γi|�i and Δ1
i − Δ2

i , respectively.
Now, we get a set Sc of opened C-facility for instance I4. Note that if a

position Pi where i ∈ S is located two opened C-facilities, then in this position
the total capacity is Δ1

i . If there are |Δ2
i | C-clients in Pi where i ∈ So \ S, then

the C-facility in the same position has the priority of connecting these clients.
Recall that the capacity of such a C-facility is Δ1

i − Δ2
i , which implies that the

|Δ2
i | C-clients can be connected to it without violating the capacity. Thus, in

instance I4, we have Δi = Δ2
i for each Pi where i ∈ S and Δi = Δ1

i for each Pi

where i ∈ So\S. Recall that
∑

i∈So Δi ≥ 0. Thus we can find a feasible solution
for I4 based on Sc.

Let (Sc, σc) denote the constructed solution of I4, where σc is obtained by
“switching” the direction of σ. Assume that η clients located in position P1 are
connected to a facility located in P2 by σ for some η > 0. For the instance I4,
if there exists C-clients in P2, then η C-clients in P2 are connected to the C-
facilities in P1 by σc. Otherwise we will do nothing and this is feasible for I4.
It can be seen that the connection cost of solution (Sc, σc) on instance I4 is no
more than the connection cost of (S, σ) on I3.

In solution (S, σ) to instance I3, if a facility i ∈ So is not opened, then a
penalty cost 2β−1

β |γi|�i should be paid. The penalty cost is equal to the open
cost of a C-facility with capacity Δ1

i − Δ2
i in instance I4. Thus, we get

costI4(Sc, σc) = θI4(Sc, σc) + fI4(Sc, σc)
≤ θI3(S, σ) + PcI3(S, σ)
= costI3(S, σ).

��

128 Y. Guo et al.

Lemma 5 implies that a solution (S, σ) of I3 can be converted to a solution
(Sc, σc) of I4. We now show how a solution of I4 can be converted to a solution
of I3.

Lemma 6. Given a solution (Sc, σc) of instance CFL, we can find a solution
(S, σ) of instance I3 such that costI3(S, σ) ≤ 2β

2β−1costI4(Sc, σc).

Proof. We construct a solution (S, σ) of I3 based on solution (Sc, σc). Given
a position, if a C-facility with open cost 2β−1

β |γi|�i and capacity Δ1
i − Δ2

i in
the position is opened in I4, then no facility in the position is opened in I3.
Otherwise, the facility in the position is opened in I3. For a position where a
C-facility i with open cost 2β−1

β |γi|�i and capacity Δ1
i −Δ2

i is opened in instance
I4, we have the following two cases: (1) Δ2

i > 0, and (2) Δ2
i < 0. For case (1),

a C-facility with open cost 0 and capacity Δ2
i is located in the position. For

case (2), there are |Δ2
i | C-clients in the position that can be connected with

the C-facilities located in the same position. In both cases, the C-facilities in
the position can still be connected with Δ1

i C-clients. For each position where
no facility is opened in instance I3, then Δ1

i clients in the position should be
reconnected, and the total capacity in instance I4 is Δ1

i . For other positions, we
have Δi = Δ2

i in both instances I3 and I4. Since (Sc, σc) is feasible for I4, we
have

∑
i∈So Δi ≥ 0, which implies that we can find a feasible solution for I3

based on S.
We now find the connection function σ for instance I3. Such a function cannot

be simply identified by “switching” the direction of σc. Indeed, the number of
the C-clients connected with each C-facility is not guaranteed to be equal to
the capacity of the C-facility. However, all the clients need to be connected in
instance I3. This implies that connecting the clients in I3 by “switching” the
direction of σc may cause some clients unconnected. It can be seen that such
unconnected clients are located in the positions where no facility is opened in
solution (S, σ) and the number of the C-clients which are connected to this
position is not equal to the sum of the capacities of the C-facilities located in
the same position.

For each Pi where i ∈ So, let δPi
be the set of the unconnected clients

located in Pi. For the case where δPi
> 0, we first attempt to connect each

unconnected client to the nearest facility i′ to i. If i′ is opened, then we connect
each client in δPi

to i′, and the connection cost is at most B�i ≤ |γi|
β �i. If i′ is not

opened, we further consider the following two cases: (1) |δPi
| + |δPi′ | ≥ B, and

(2) |δPi
| + |δPi′ | < B. For case (1), we open i′ and connect each client in δPi

to
i′. The condition of case (1) implies that i′ can be opened without violating its
lower bound. For case (2), we move each client in δi to i′ and let δPi′ = δPi

∪δPi′ .
We now perform the same operation described above on Pi′ .

The challenge is that the procedure may be caught in several facilities, and
we cannot open a facility to satisfy the lower bound. For instance, it may be
the case that the clients are moved to a facility i′ for more than one time, and
the walk forms a cycle. Let i denote the facility in the previous position of i′ in
the walk. Our approach to deal with this issue is to connect these clients to the

A Constant Factor Approximation for Lower-Bounded k-Median 129

opened facility io that minimizes the connection cost. We have |δPi
| < B and

|γi′ |+ |γi| ≥ 2βB. So there are at least |γi′ |+ |γi∗ |−|δPi∗ | ≥ (2β−1)B connected
clients and we can bound the connection cost as

∑

j∈γi′ ∪γi\δPi

d1(j, σ(j)) ≥ (2β − 1)Bd1(io, {i′, i}). (3)

Using triangle inequality and inequality (3), we have
∑

j∈δPi

d1(j, io) ≤ Bd1(i, io) ≤ B(d1(io, {i′, i}) + �i)

≤ 1
2β − 1

∑

j∈γi′ ∪γi\δPi

d1(j, σ(j)) +
�i|γi|

β
,

which implies that the total increased cost induced by the unconnected clients
is no more than

1
2β − 1

PcI3(S, σ) +
1

2β − 1
θI3(S, σ).

Thus, we have

costI3(S, σ) ≤ θI3(S, σ) + PcI3(S, σ) +
1

2β − 1
PcI3(S, σ) +

1
2β − 1

θI3(S, σ)

=
2β

2β − 1
PcI3(S, σ) +

2β

2β − 1
θI3(S, σ)

=
2β

2β − 1
costCFL(Sc, σc).

��
Theorem 6. Given an α4-approximation solution of CFL, we can find an α3-
approximation solution of I3, where α3 = 2β

2β−1α4.

Proof. Let (S∗3, σ∗3) be an optimal solution of instance I3. Using Lemma 5,
there exists a solution (Sc, σc) of I4 such that costI4(Sc, σc) ≤ costI3(S∗3, σ∗3).
Given an α4-approximation solution (S′, σ′) of I4, we have costI4(S′, σ′) ≤
αI4costI3(S∗3, σ∗3). By Lemma 6, we can get a solution (S, σ) of I3 that satisfies
costI3(S, σ) ≤ 2β

2β−1costI4(S′, σ′) ≤ 2β
2β−1α4costI3(S∗3, σ∗3).

3.5 Combining Everything

Using the algorithm for the capacitated facility location problem given in [1],
we get a (1 +

√
2)-approximation solution of I4. Let β = 2

3 . By Theorem 6, we
get α3 = 2β

2β−1 (1 +
√

2) = 4(1 +
√

2). By Theorems 5, 4, and 3, we get α2 =
3β−1

β α3 = 3β−1
β ×4(1+

√
2) = 6(1+

√
2), α1 = 2α2 = 2×6(1+

√
2) = 12(1+

√
2),

α = α1(1 + 3.25 1+β
1−β) + 3.25 1+β

1−β = 12(1 +
√

2) × (1 + 3.25 1+β
1−β) + 3.25 1+β

1−β ≈ 516.

130 Y. Guo et al.

References

1. Ahmadian, S., Swamy, C.: Improved approximation guarantees for lower-bounded
facility location. In: Erlebach, T., Persiano, G. (eds.) WAOA 2012. LNCS, vol.
7846, pp. 257–271. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38016-7 21

2. Ahmadian, S., Swamy, C.: Approximation algorithms for clustering problems with
lower bounds and outliers. In: Proceedings of the 43rd International Colloquium
on Automata, Languages, and Programming, pp. 69:1–69:15 (2016)

3. Bansal, M., Garg, N., Gupta, N.: A 5-approximation for capacitated facility loca-
tion. In: Epstein, L., Ferragina, P. (eds.) ESA 2012. LNCS, vol. 7501, pp. 133–144.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33090-2 13

4. Bhattacharya, A., Jaiswal, R., Kumar, A.: Faster Algorithms for the Constrained
k -means Problem. Theory of Comput. Syst. 62(1), 93–115 (2017). https://doi.org/
10.1007/s00224-017-9820-7

5. Byrka, J., Pensyl, T., Rybicki, B., Srinivasan, A., Trinh, K.: An improved approx-
imation for k-median and positive correlation in budgeted optimization. ACM
Trans. Algorithms 13(2), 23:1–23:31 (2017)

6. Charikar, M., Li, S.: A dependent LP-rounding approach for the k -median problem.
In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012.
LNCS, vol. 7391, pp. 194–205. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-31594-7 17

7. Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation
schemes for k-means and k-median in Euclidean and minor-free metrics. In: Pro-
ceedings of the 57th IEEE Symposium on Foundations of Computer Science, pp.
353–364 (2016)

8. Demirci, H.G., Li, S.: Constant approximation for capacitated k-median with
(1+ε)-capacity violation. In: Proceedings of the 43rd International Colloquium
on Automata, Languages, and Programming, pp. 73:1–73:14 (2016)

9. Ding, H., Xu, J.: A unified framework for clustering constrained data without
locality property. In: Proc. 26th Annual ACM-SIAM Symposium on Discrete Algo-
rithms, pp. 1471–1490 (2015)

10. Guha, S., Meyerson, A., Munagala, K.: Hierarchical placement and network design
problems. In: Proceedings of the 41st Annual Symposium on Foundations of Com-
puter Science, pp. 603–612 (2000)

11. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. J.
ACM 48(2), 274–296 (2001)

12. Karger, D.R., Minkoff, M.: Building Steiner trees with incomplete global knowl-
edge. In: Proceedings of the 41st Annual Symposium on Foundations of Computer
Science, pp. 613–623 (2000)

13. Kumar, A., Sabharwal, Y., Sen, S.: Linear-time approximation schemes for clus-
tering problems in any dimensions. J. ACM 57(2), 1–32 (2010)

14. Li, S.: Approximating capacitated k-median with (1 + ε)k open facilities. In: Pro-
ceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms, pp.
786–796 (2016)

https://doi.org/10.1007/978-3-642-38016-7_21
https://doi.org/10.1007/978-3-642-38016-7_21
https://doi.org/10.1007/978-3-642-33090-2_13
https://doi.org/10.1007/s00224-017-9820-7
https://doi.org/10.1007/s00224-017-9820-7
https://doi.org/10.1007/978-3-642-31594-7_17
https://doi.org/10.1007/978-3-642-31594-7_17

A Constant Factor Approximation for Lower-Bounded k-Median 131

15. Li, S.: On facility location with general lower bounds. In: Proceedings of the 13th
Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 2279–2290 (2019)

16. Li, S., Svensson, O.: Approximating k-median via pseudo-approximation. SIAM J.
Comput. 45(2), 530–547 (2016)

17. Svitkina, Z.: Lower-bounded facility location. ACM Trans. Algorithms 6(4), 69:1–
69:16 (2010)

Reverse Mathematics, Projective
Modules and Invertible Modules

Huishan Wu(B)

School of Information Science, Beijing Language and Culture University,
15 Xueyuan Road, Haidian District, Beijing 100083, China

huishanwu@blcu.edu.cn

Abstract. We study projective modules and invertible modules by tech-
niques of reverse mathematics. Dual Basis Lemma provides an equivalent
characterization of projective R-modules M via their dual HomR(M, R).
It is a useful tool to prove various theorems about projective modules.
We first formalize and prove the Dual Basis Lemma in RCA0. Then we
study Kaplansky’s Theorem, which says that every submodule of a free
module over a hereditary ring is projective. We show that RCA0 proves
that a submodule of a free module over a Σ0

1 -hereditary ring is a direct
sum of projective modules, and thus projective. By defining invertible
R-submodules of an extension ring of R via Σ0

2 formulas, we show that
RCA0 proves the statement that invertible R-modules are finitely gen-
erated projective R-modules. Modified Projectivity Test and Modified
Injectivity Test are basic tests for determining projective modules and
injective modules, respectively. Lastly, we show that the Modified Pro-
jectivity Test and the Modified Injectivity Test are provable in ACA0

and RCA0, respectively.

Keywords: Reverse mathematics · Projective module · Invertible
module · Hereditary ring

1 Introduction

The logical strength of properties and theorems related to abelian groups and
vector spaces are well-learned in reverse algebra (see [1,2]). Since modules over
rings are mathematical structures which are more general than abelian groups as
well as vector spaces, people began to study modules by means of reverse mathe-
matics. For example, Yamazaki have investigated the proof-theoretic strength of
results of modules over general rings by techniques of reverse mathematics (refer
to [3] and [4]). Particularly, he investigated proofs of theorems about semisim-
ple modules, projective modules as well as injective modules. The author have
examined the existence of radicals and socles of modules in reverse mathematics

This work is supported by the National Natural Science Foundation of China (No.
61972052) and the Discipline Team Support Program of Beijing Language and Culture
University (No. GF201905).

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 132–143, 2020.
https://doi.org/10.1007/978-3-030-59267-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_12&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_12

Reverse Mathematics, Projective Modules and Invertible Modules 133

in a recent paper [5]. Here, we study projective modules and invertible mod-
ules over commutative rings form the viewpoint of reverse mathematics (for the
background on projective modules and invertible modules, we refer to [6]).

We briefly review two subsystems of second order arithmetic. The weak-
est subsystem we work in is RCA0, which contains basic axioms, Σ0

1 -induction
and Δ0

1-comprehension. The next subsystem is ACA0, that is, RCA0 plus Σ0
k-

comprehension for all k ≥ 1. In the remaining, modules are all over commutative
rings.

1.1 Projective Modules

Definition 1. (RCA0) An R-module F is free if it has a basis, that is, a maximal
linearly independent set which generates F .

Lemma 1. (Yamazaki [3]) Let M be a module over a ring R. The following
assertions are equivalent over RCA0.

(1) M is a direct summand of a free R-module.
(2) For any surjective R-homomorphism g : N1 → N2 and R-homomorphism

h : M → N2, there is an R-homomorphism ψ : M → N1 such that h = gψ.
ψ is said to be a lifting of h along g.

Projective modules are often defined by (2) of Lemma 1 in standard algebra
text books, such as [6,7]. The author used this classical definition, and stud-
ied basic properties of projective modules in her PhD thesis [8]. For instance,
she showed that ACA0 proves that submodules of projective modules over Σ0

1 -
PIDs (principal ideal domains) are projective (Corollary 7.1, [8]). Here, we follow
Yamazaki and adopt (1) of Lemma 1 as the definition for projective module; then
we can show that RCA0 proves that submodules of projective modules over Σ0

1 -
PIDs are projective (see Corollary 3 in Sect. 3).

Definition 2. (Yamazaki [4]) (RCA0) An R-module M is projective if it is a
direct summand of a free R-module F . That is, there is a submodule K of F
such that F = M

⊕
K.

Proposition 1. (Yamazaki [4]) The following assertions are equivalent over
RCA0.

(1) For each i ∈ N, Pi is projective.
(2) P =

⊕

i∈N

Pi is projective.

For projective modules, we will study the proof-theoretic strength of results
like Dual Basis Lemma and Kaplansky’s Theorem. Classically, the Dual Basis
Lemma characterizes projective modules via their dual modules, where the
dual of an R-module M is the set of R-homomorphisms from M to R, i.e.,
HomR(M,R).

134 H. Wu

• Dual Basis Lemma: An R-module M is projective if and only if there exists
a family of elements 〈xi : i ∈ I〉 of M and linear functionals 〈hi : i ∈ I〉 of
HomR(M,R) such that for any x ∈ M , hi(x) = 0 for almost all i ∈ I, and
x =

∑

i∈I

hi(x)xi.

In Sect. 2, we formalize the Dual Basis Lemma in RCA0, and show that an R-
module M is projective if and only if there exists a Σ0

1 -sequence 〈xi : i ∈ N〉 of
elements of M and a uniform sequence 〈fi : i ∈ N〉 of R-homomorphisms from
M to R such that for any x ∈ M , fi(x) = 0 for almost all i, and x =

∑

i∈N

fi(x)xi.

Free modules over commutative rings are projective, the converse fails in
general. For hereditary rings R, as stated in the Kaplansky’s Theorem below,
projective R-modules have a close relationship with free modules.

• Kaplansky’s Theorem: Any submodule of a free module over a hereditary
ring is a direct sum of projective modules; in particular, the submodule is
projective.

In Sect. 3, we will study the Kaplansky’s Theorem. We first define Σ0
1 -

hereditary rings and then show that RCA0 proves that submodules of projective
modules over Σ0

1 -hereditary rings are projective. Since Σ0
1 -PIDs are automati-

cally hereditary, RCA0 proves that submodules of projective modules over Σ0
1 -

PIDs are projective.

1.2 Invertible Modules

Let S be a commutative extension ring of a commutative ring R. Then an R-
submodule M of S is invertible if and only if there exists an R-submodule N such
that the multiplication of M and N is R if and only if the multiplication of M
and the quotient of R modulo M (denoted by R : M) is R. Classically, invertible
modules are finitely generated projective modules. In Sect. 4, we will define
invertible modules via Σ0

2 -formulas and show that RCA0 proves that invertible
R-submodules of an extension ring of R are finitely generated projective R-
modules.

We are also interested in invertible modules inside a special kind of ring
extensions of commutative rings, namely, the localization of a ring at its regular
elements.

Definition 3. (RCA0) Let R be a commutative ring. An element x of R is called
regular if ∀y ∈ R[xy = 0R → y = 0R]. That is, x is a non zero-divisor of R.

Let R be a commutative ring and Reg(R) be the set of all regular elements
of R. Reg(R) is closed under multiplication.

Definition 4. (RCA0) The localization of R with respect to the multiplicative
set Reg(R) is called the total ring of quotients of R, denoted by Q(R).

Reverse Mathematics, Projective Modules and Invertible Modules 135

When R is a domain, Q(R) is just the quotient field of R. We mention that
Sato in his PhD thesis (Theorem 6.8, [9]) proved that “for a commutative ring
R, Q(R) exists” is equivalent to ACA0 over RCA0. Classically, an R-submodule
M of Q(R) is invertible if and only if M is projective and M ∩ Reg(R) 	= ∅. In
Sect. 4, we will prove this equivalence within RCA0 under the assumption that
Q(R) exists.

1.3 Modified Projectivity and Injectivity Test

Definition 5. (RCA0) Let M be a module over a ring R. M is called injective
if for any one-to-one R-homomorphism ι : N1 → N2 and R-homomorphism
g : N1 → M , there is an R-homomorphism h : N2 → M such that g = hι.

The notion of injective modules is dual to that of projective modules. It is
interesting that injective modules can be used to determine the projectivity of
modules. We now introduce a test for projectivity. Let P be a property of R-
modules such that any R-module M can be embedded into an R-module M ′

possessing property P.

• Modified Projectivity Test: An R-module M is projective if and only
if for any surjective R-homomorphism g : N1 → N2 with N1 possessing
property P and R-homomorphism h : M → N2, there is an R-homomorphism
ψ : M → N1 such that h = gψ.

In classical algebra, an R-module M can be embedded into an injective Z-
module, A say. Then M can also be embedded into an injective R-module,
namely, HomZ(R,A). Observe that HomZ(R,A) is a third order object, thus
can not be studied in subsystems of second-order arithmetic. However, for Z-
modules, by Proposition 2, the property P in the Modified Projectivity Test can
be taken to be the injectivity.

Proposition 2. (Yamazika [4]) RCA0 proves that every Z-module can be
embedded into an injective Z-module.

In general, as long as the property P in the Modified Projectivity Test is
provided, we can eventually prove it in ACA0. This will be done in Sect. 5.

Note that we have the well-known Baer’s Test for injectivity. Yamazika have
already obtained the reverse mathematical result of it.

Theorem 1. (Yamazika [3]) The following are equivalent over RCA0.

(1) ACA0.
(2) Let R be a commutative ring. If for any ideal I of R, and R-homomorphism

g : I → M , there is an R-homomorphism h : R → M such that g(x) = h(x)
for all x ∈ I, then M is injective.

136 H. Wu

For the detail proof of Theorem 1 above, please refer to the author’s Ph.D
thesis (Theorem 7.4, [8]).

Dual to the Modified Projectivity Test, we also have the Modified Injectiv-
ity Test for testing injective modules. We now introduce this test for injective
modules and study the proof-theoretic strength of it. Let Q be a property of R-
modules such that for any R-module M , there is a surjective R-homomorphism
from an R-module N possessing property Q to M .

• Modified Injectivity Test: An R-module M is injective if and only if for
any one-to-one R-homomorphism ι : N1 → N2 with N2 possessing property Q
and R-homomorphism g : N1 → M , there is an R-homomorphism h : N2 →
M such that g = hι.

Note that RCA0 proves that an R-module is a surjective image of a free R-
module, the property Q can be taken as the freeness of modules. We will study
the Modified Injectivity Test and prove it in RCA0. Although Baer’s Test is
more effective for testing injectivity in classical algebra, the proof of it requires
ACA0, which is more harder than the Modified Injectivity Test.

The rest of the paper is organized as follows. We first formalize and prove
the Dual Basis Lemma and the Kaplansky’s Theorem in RCA0 in Sects. 2 and 3,
respectively. We then define invertible modules via Σ0

2 formulas and study prop-
erties of invertible R-submodules of the total ring of quotients of R in Sect. 4.
Finally, in Sect. 5, we formalize and prove the Modified Projectivity Test and the
Modified Injectivity Test within ACA0 and RCA0, respectively.

2 Dual Basis Lemma

Dual Basis Lemma provides a nice characterization for projective modules, it is
useful to prove properties of invertible modules in Sect. 4. We first study this
lemma.

Theorem 2. (Dual Basis Lemma) The following are equivalent over RCA0.

(1) An R-module M is projective.
(2) There exists a Σ0

1 -sequence 〈xi : i ∈ N〉 of elements of M and a uniform
sequence 〈fi : i ∈ N〉 of R-homomorphisms from M to R such that for any
x ∈ M , fi(x) = 0 for almost all i, and x =

∑

i∈N

fi(x)xi.

Proof. For (1) ⇒ (2). Suppose that M is projective. RCA0 proves that there
is a free module F with a basis {bi : i ∈ N} and a onto R-homomorphism
g : F → M . For the identity R-homomorphism idM : M → M , by Lemma 1,
there is a homomorphism ψ : M → F such that idM = gψ. That is, the diagram
commutes:

M

idM

��

ψ

����
��
��
��

F
g �� M �� 0

Reverse Mathematics, Projective Modules and Invertible Modules 137

For any x ∈ M , x = g(ψ(x)) and ψ(x) is a unique finite R-linear sum of base
elements. Let ψ(x) =

∑

i∈I

ribi be the unique finite sum. For any x ∈ M , define

f(i, x) = ri if i ∈ I and 0 otherwise. As we can define the unique expression∑

i∈I

ribi of ψ(x) effectively from x, f : N × M → R exists in RCA0.

For each i ∈ N, let fi(x) = f(i, x), x ∈ M . By definition, fi(x) = 0 except
finitely many i ∈ N. It can be checked directly that fi is an R-homomorphism
from M to R. Now 〈fi : i ∈ N〉 is a uniform sequence of R-homomorphisms. For
each i ∈ N, let xi = g(bi), then 〈xi : i ∈ N〉 is a Σ0

1 -sequence of M . Moreover,

x = g(ψ(x)) = g(
∑

i∈I

ribi) =
∑

i∈I

rig(bi) =
∑

i∈I

fi(x)xi =
∑

i∈N

fi(x)xi.

For (2) ⇒ (1). Suppose that the desired Σ0
1 -sequence 〈xi : i ∈ N〉 and the

desired uniform sequence 〈fi : i ∈ N〉 exist. Let F =
⊕

i∈N

Rbi be the free R-module

with basis {bi : i ∈ N}. On the one hand, we can define an R-homomorphism
g : F → M by setting g(bi) = xi, i ∈ N.

On the other hand, as x =
∑

i∈N

fi(x)xi for each x ∈ M , we can also define an

R-homomorphism ψ : M → F by mapping xi to bi, that is,

ψ(x) = ψ(
∑

i∈N

fi(x)xi) =
∑

i∈N

fi(x)ψ(xi) =
∑

i∈N

fi(x)bi.

For each x ∈ M ,

g(ψ(x)) = g(
∑

i∈N

fi(x)bi) =
∑

i∈N

fi(x)g(bi) =
∑

i∈N

fi(x)xi = x.

So gψ = idM , and ψ is one-to-one. Then F ∼= M
⊕

ker(g). Indeed,

Ψ : M
⊕

ker(g) → F ; 〈x, y〉 → ψ(x) + y

is an R-module isomorphism, we omit the direct checking here. Now M
⊕

ker(g)
is a free R-module. That is, M is a direct summand of a free module, and thus
projective. ��

3 Kaplansky’s Theorem

Classically, a commutative ring R is hereditary if every ideal of it is projective
as R-modules. Note that Downey, Lempp and Mileti proved in [10] that WKL0

is equivalent to the statement that a commutative ring which is not a field has a
nontrivial proper ideal. So a commutative ring may have no ideals in RCA0. Like
Σ0

1 -principal ideal domains (such domains are already studied in literature, such
as [8,9]), to study properties of hereditary rings, we will focus on Σ0

1 -hereditary
rings. Recall that a sequence 〈ri : i ∈ N〉 of a commutative ring R is called a
Σ0

1 -ideal of R if ∀i, j ∈ N∃k ∈ N[rk = ri +rj] and ∀i ∈ N∀r ∈ R∃k ∈ N[rk = rri].

138 H. Wu

Definition 6. (RCA0) A commutative ring R is called Σ0
1 -hereditary if every

Σ0
1 -ideal of R is projective as R-modules.

Σ0
1 -principal ideal domains are natural examples of Σ0

1 -hereditary domains.

Theorem 3. (RCA0) (Kaplansky’s Theorem) Let R be a Σ0
1 -hereditary ring.

Then any submodule M of a free R-module is a direct sum of projective R-
modules; in particular, M is projective.

Proof. Let F be a countable free R-module. Then F is isomorphic to
⊕

0≤i≤n

R

for some n ∈ N or
⊕

i∈N

R. Without loss of generality, assume that F =
⊕

i∈N

R.

Elements of F are finite tuples of the form 〈r0, · · · , rn〉 with r0, · · · , rn ∈ R. For
each n ∈ N, set Fn =

⊕

0≤i≤n

R, and let F−1 = 0, the zero R-module.

For a submodule M of F , we can define an R-homomorphism

fn : M ∩ Fn → R; x = 〈r0, · · · , rn〉 → rn.

Then ker(fn) = M ∩ Fn−1 and im(fn) = M ∩ Fn/M ∩ Fn−1. We view elements
of im(fn) as least ≤-representatives under the equivalence relation ∼:

• for any x, y ∈ M ∩ Fn, x ∼ y ⇔ x − y ∈ M ∩ Fn−1,

where ≤ is a fixed linear order on F . So im(fn) is indeed Δ0
1 with parameter

M . Now im(fn) is a Δ0
1 ideal of R. As R is Σ0

1 -hereditary, im(fn) is projective
as R-modules.

For simplicity, we adopt symbol An to denote im(fn). As An is projective, for
the identity homomorphism idAn

: An → An and the surjective homomorphism
fn : M ∩ Fn → An, there is an R-homomorphism gn : An → M ∩ Fn such that
idAn

= fngn. Then we have the commutative diagram:

An

idAn

��

gn

�����
��
��
��

0 �� M ∩ Fn−1
�� M ∩ Fn

fn �� An
�� 0

Let Bn = {y ∈ M ∩ Fn : ∃x ∈ An[gn(x) = y]} be the image of gn. Then
gn : An → Bn is an isomorphism. As An is projective, so is Bn. At first glance,
Bn is Σ0

1 . By the following claim, Bn is indeed Δ0
1. So it exists in RCA0.

Claim. M =
⊕

n∈N

Bn.

Proof of the Claim. First, we show that for each n ∈ N,

M ∩ Fn = (M ∩ Fn−1)
⊕

Bn.

Reverse Mathematics, Projective Modules and Invertible Modules 139

Let x = 〈r0, · · · , rn〉 ∈ M ∩ Fn. Then fn(x) = rn = fn(gn(rn)), and then

y = x − gn(rn) ∈ ker(fn) = M ∩ Fn−1.

So x = y+gn(rn) ∈ M ∩Fn−1+Bn. This shows that M ∩Fn = (M ∩Fn−1)+Bn.
If y ∈ (M ∩ Fn−1) ∩ Bn, let y = gn(r) with r ∈ An, then

r = fn(gn(r)) = fn(y) = 0,

and then y = gn(r) = 0. So (M ∩ Fn−1) ∩ Bn = {0}.
Second, we prove that M =

∑

n∈N

Bn. Suppose otherwise, then M �
∑

n∈N

Bn.

Let N be the least number such that there is a x ∈ (M ∩ FN) \ ∑

n∈N

Bn. By

M ∩ FN = (M ∩ FN−1)
⊕

BN , there are y ∈ M ∩ FN−1 and z ∈ BN such that
x = y + z. If y ∈ ∑

n∈N

Bn, then x ∈ ∑

n∈N

Bn, which is a contradiction. We have

y /∈ ∑

n∈N

Bn. But then y ∈ (M ∩ FN−1) \ ∑

n∈N

Bn, this also contradicts the choice

of N . So M =
∑

n∈N

Bn.

Third, M =
⊕

n∈N

Bn. Let x0 + · · ·+xn = 0 with xi ∈ Bi for i = 0, · · · , n. Now

xn = −(x0 + · · · + xn−1) ∈ (M ∩ Fn−1) ∩ Bn,

so xn = 0, and x0+· · ·+xn−1 = 0. By induction, we see that xn−1 = · · · = x0 = 0.
So the expression of zero as sums of elements in Bn with n ∈ N is unique, and
thus M =

⊕

n∈N

Bn.

This completes the proof of the claim.
Since Bn is projective for all n ∈ N, M =

⊕

n∈N

Bn is a direct sum of projective

R-modules. By Proposition 1, M is projective. ��
Corollary 1. (RCA0) Let R be a Σ0

1 -hereditary ring and M an R-module. Then
M is projective iff it can be embedded in to a free R-module.

Corollary 2. (RCA0) A ring R is Σ0
1 -hereditary iff Σ0

1 -submodules of projective
R-modules are projective.

Proof. (⇒) Let M be a projective R-module and N a Σ0
1 -submodule of M .

By definition, M is a direct summand of a free R-module. Then N is a Σ0
1 -

submodule of a free R-module. By almost the same proof in the Kaplansky’s
Theorem above, the Σ0

1 -submodule N is projective.
(⇐) Let I be a Σ0

1 -ideal of R. Then I is a Σ0
1 -submodule of the reg-

ular module R. As the regular module R is projective, I is projective as
R-modules. ��
Corollary 3. (RCA0) Let R be a Σ0

1 -principal ideal domain. Then every Σ0
1 -

submodule of a projective R-module is projective.

140 H. Wu

4 Invertible Modules

Definition 7. (RCA0) Let R ⊆ S be commutative rings. S is a natural R-
module. For two R-submodules M,N of S, the multiplication of M,N , denoted
by MN , is the R-submodule of S generated by {xy : x ∈ M,y ∈ N}.

Classically, an R-submodule M of an extension ring S of R is invertible if
and only if the multiplication of M and M−1 is R (i.e., MM−1 = R), where
M−1 = {y ∈ S : My ⊆ R} and My = {xy : x ∈ M}. Observe that MM−1 = R
is equivalent to 1R ∈ MM−1, invertible submodules can be defined by Σ0

2 -
formulas.

Definition 8. (RCA0) An R-submodule M of a commutative ring S is invertible
if there are x1, · · · , xn ∈ M and y1, · · · , yn ∈ S such that for all x ∈ M , we have
xy1, · · · , xyn ∈ R and 1R = x1y1 + · · · xnyn.

Invertible modules are closely related to projective modules. We now study
properties of invertible modules.

Proposition 3. (RCA0) An invertible R-submodule of a commutative ring S is
finitely generated and projective.

Proof. Let M be an invertible R-submodule of S. By definition, 1R = x1y1 +
· · ·+xnyn for some x1, · · · , xn ∈ M and y1, · · · , yn ∈ S with xy1, · · · xyn ∈ R for
all x ∈ M . To show that M is projective, we will apply the Dual Basis Lemma
(i.e., Theorem 2 in Sect. 2). As S is commutative, for any z ∈ M , we have

z = zx1y1 + · · · + zxnyn

= zy1x1 + · · · + zynxn

Now {x1 · · · , xn} is a finite sequence of elements of M . Note that for 1 ≤ i ≤
n, zyi ∈ R, we can define R-homomorphisms fi : M → R by setting fi(z) = zyi.
Then z = f1(z)x1 + · · · + fn(z)xn, and then M is projective by Dual Basis
Lemma. Moreover, M is generated by {x1, · · · , xn}. ��

We now study invertible submodules inside the total ring of quotients of
commutative rings. That is, the localization of a ring at its regular elements,
where an element x of R is regular if ∀y ∈ R[xy = 0R → y = 0R].

Let R be a commutative ring and

Reg(R) = {x ∈ R : ∀y ∈ R[xy = 0R → y = 0R]}.

The total ring of quotients of R is just Q(R) = R × Reg(R)/ ∼, where for any
(r, s), (r′, s′) ∈ R × Reg(R),

(r, s) ∼ (r′, s′) ⇔ ∃u ∈ Reg(R) [urs′ = ur′s].

As usual, the equivalence class of (r, s) under the equivalence relation ∼ are
denoted by rs−1, and elements of Q(R) are of the form rs−1 with r ∈ R, s ∈
Reg(R).

Reverse Mathematics, Projective Modules and Invertible Modules 141

Quotient fields are standard examples of ring extension of domains. The pro-
cess of constructing quotient fields from a given domain is effective, so RCA0

proves that every domain have a quotient field. Unlike quotient fields, Sato
proved in his PhD thesis (Theorem 6.8, [9]) that the statement that every com-
mutative ring has the total ring of quotients is equivalent to ACA0 over RCA0.

Proposition 4. Assume that R is a commutative ring such that Q(R) exists.
Let M be an R-submodule of Q(R), then the following are equivalent over RCA0.

(1) M is invertible.
(2) M is projective and M ∩ Reg(R) 	= ∅.
Proof. For (1) ⇒ (2). By Proposition 3, M is projective and 1R = x1y1+· · · xnyn

for some x1, · · · , xn ∈ M and y1, · · · , yn ∈ Q(R). For i = 1, · · · , n, by taking
a common denominator z, we can write xi = aiz

−1 and yi = biz
−1 where

ai, bi ∈ R, z ∈ Reg(R). Then ai = zxi ∈ M , bi = zyi ∈ R for 1 ≤ i ≤ n, and
then

z2 = zx1zy1 + · · · + zxnzyn = a1b1 + · · · + anbn ∈ M.

As z is regular, so is z2. Then z2 ∈ M ∩ Reg(R), and M ∩ Reg(R) 	= ∅.
For (2) ⇒ (1). Assume that M is projective. By the Dual Basis Lemma, there

is a Σ0
1 -sequence 〈xi : i ∈ N〉 of elements of M and a uniform sequence 〈fi : i ∈ N〉

of R-homomorphisms from M to R such that for any x ∈ M , fi(x) = 0 for almost
all i ∈ N and x =

∑

i∈N

fi(x)xi. Fix an element z ∈ M ∩ Reg(R). Then fi(z) = 0

for almost all i. Let I = {i ∈ N : fi(z) 	= 0}. I is a finite set and z =
∑

i∈I

fi(z)xi.

For each i ∈ I, let yi = fi(z)z−1. Then yi ∈ Q(R) and fi(z) = yiz. Moreover,
for all x ∈ M , let x = rs−1 where r ∈ R, s ∈ Reg(R), we have

szfi(x) = fi(szx) = fi(szrs−1) = fi(rz) = rfi(z),

then
fi(x) = z−1s−1rfi(z) = z−1fi(z)x = yix.

So yix ∈ R for all x ∈ M . By z =
∑

i∈I

fi(z)xi =
∑

i∈I

zyixi = z(
∑

i∈I

xiyi), We have

1R =
∑

i∈I

xiyi.

Hence, there exist finite sequences 〈xi ∈ M : i ∈ I〉 and 〈yi ∈ Q(R) : i ∈ I〉
such that for each i ∈ I, xyi ∈ R for all x ∈ M and 1R =

∑

i∈I

xiyi. By definition,

M is invertible. ��

5 Modified Projectivity and Injectivity Test

Proposition 5. (ACA0) Modified Projectivity Test: Let P be a property such
that an R-module can be embedded into an R-module with property P. Then
M is a projective R-module if and only if for any surjective R-homomorphism
g : N1 → N2 with N1 possessing property P and R-homomorphism h : M → N2,
there is an R-homomorphism ψ : M → N1 such that h = gψ.

142 H. Wu

Proof. (⇒) If M is projective, that is, M is a direct summand of a free R-module,
then by Lemma 1, the conclusion is clear.

(⇐) We reason in ACA0. Let g : N1 → N2 be a surjective R-homomorphism
and h : M → N2 an R-homomorphism, we need to show that there is an R-
homomorphism ψ : M → N1 such that h = gψ.

First, N1 can be embedded into an R-module satisfying P, M1 say, and let
λ : N1 ↪→ M1 be the embedding. Form the direct sum M1

⊕
N2 of M1, N2.

For convenience, assume that M1, N2 are subsets of N (generally, elements of
modules are encoded by natural numbers). The elements of M1

⊕
N2 are pairs

〈x, y〉 with x ∈ M1, y ∈ N2, where 〈·, ·〉 : N×N → N is a fixed bijection. M1

⊕
N2

is the R-module with usual point wise operations, so it exists in RCA0. By a
direct checking, A = {〈λ(x),−g(x)〉 : x ∈ N1} is a submodule of M1

⊕
N2. Since

〈y, z〉 ∈ A ⇔ ∃x ∈ N1[y = λ(x) ∧ z = −g(x)],

A is Σ0
1 and thus exists by Σ0

1 -comprehension. Let B be the quotient module of
M1

⊕
N2 modulo A. Elements of B are of the form 〈x, y〉 with additional equality

relation =B : 〈x, y〉 =B 〈x′, y′〉 ⇔ 〈x − x′, y − y′〉 ∈ A . Then B exists in ACA0.
Define R-homomorphisms α : M1 → B;x → 〈x, 0〉 and β : N2 → B; y → 〈0, y〉.
(i) α is onto. Let 〈x, y〉 ∈ B. As y ∈ N2, and g is onto, there is a z ∈ N1 such

that y = g(z). Then 〈0, y〉 =B 〈0, g(z)〉 =B 〈λ(z), 0〉 and then

〈x, y〉 =B 〈x, 0〉 + 〈0, y〉 =B 〈x, 0〉 + 〈λ(z), 0〉 =B 〈x + λ(z), 0〉 = α(x + λ(z)).

(ii) β is one-to-one. Let y ∈ N2 with β(y) = 〈0, 0〉. Then 〈0, y〉 ∈ A, and then
y = −g(0) = 0.

For the surjective α : M1 → B and the homomorphism βh : M → B, as M1

has the property P, by the assumption, there is a homomorphism ψ : M → M1

such that αψ = βh. Now we have the following commutative diagram:

M

h

��
ψ

����
��
��
��
��
��
��
�

N1
g ��

λ

���
��

��
��

� N2

β

��

�� 0

M1
α �� B �� 0

Note that im(λ) = {y ∈ M1 : ∃x ∈ N1[λ(x) = y]}. We show that for any x ∈ M ,
ψ(x) ∈ im(λ). By

α(ψ(x)) = 〈ψ(x), 0〉 = β(h(x)) = 〈0, h(x)〉,
〈ψ(x),−h(x)〉 ∈ A. That is, there is a y ∈ N1 such that ψ(x) = λ(y), and
−h(x) = −g(y). In particular, ψ(x) ∈ im(λ). So ψ is also an R-homomorphism

Reverse Mathematics, Projective Modules and Invertible Modules 143

from M to im(λ). As λ is one-to-one, the inverse of λ is an R-homomorphism
from im(λ) to N1.

Let ϕ = λ−1ψ : M → N1 be an R-homomorphism. For any x ∈ M , we have

βh(x) = α(ψ(x)) = αλ(λ−1ψ(x)) = αλ(ϕ(x)) = β(g(ϕ(x))).

Since β is one-to-one, for any x ∈ M , h(x) = g(ϕ(x)). That is, h = gϕ. We
have shown that for any surjective R-homomorphism g : N1 → N2 and any
R-homomorphism h : M → N2, there is an R-homomorphism ϕ : M → N1 such
that h = gϕ. By Lemma 1, M is projective. ��

Unlike the Modified Projectivity Test, the Modified Injectivity Test for injec-
tive modules is indeed provable in RCA0, we omit the detail proof here.

Proposition 6. (RCA0) Modified Injectivity Test: Let Q be a property of R-
modules such that for any R-module M , there is an R-module N possessing
property Q and also a surjective R-homomorphism from N to M . Then M is an
injective R-module if and only if for any one-to-one R-homomorphism ι : N1 →
N2 with N2 possessing property Q and any R-homomorphism g : N1 → M , there
is an R-homomorphism h : N2 → M such that g = hι.

References

1. Friedman, H.M., Simpson, S.G., Smith, R.L.: Countable algebra and set existence
axioms. Ann. Pure Appl. Logic 25, 141–181 (1983)

2. Simpson, S.G.: Subsystems of Second Order Arithmetic. Springer, Heidelberg
(1999)

3. Yamazaki, T.: Reverse mathematics and commutative ring theory. Computability
Theory and Foundations of Mathematics, Tokyo Institute Of Technology, 18–20
February 2013

4. Yamazaki, T.: Homological algebra and reverse mathematics (a middle report). In:
Second Workshop on Mathematical Logic and its Applications in Kanazawa (2018)

5. Wu, H.: The complexity of radicals and Socles of modules. Notre Dame J. Formal
Logic 61, 141–153 (2020)

6. Lam, T.Y.: Lectures on Modules and Rings. Graduate Texts in Mathematics.
Springer, New York (1998). https://doi.org/10.1007/978-1-4612-0525-8

7. Hilton, P.J., Stammbach, U.: A Course in Homological Algebra. Graduate Texts in
Mathematics, 2nd edn. Springer, New York (1997). https://doi.org/10.1007/978-
1-4684-9936-0

8. Wu, H.: Computability theory and algebra. Ph.D thesis, Nanyang Technological
University, Singapore (2017)

9. Sato, T.: Reverse mathematics and countable algebraic systems. Ph.D thesis,
Tohoku University, Sendai, Japan (2016)

10. Downey, R.G., Lempp, S., Mileti, J.R.: Ideals in commutative rings. J. Algebra
314, 872–887 (2007)

https://doi.org/10.1007/978-1-4612-0525-8
https://doi.org/10.1007/978-1-4684-9936-0
https://doi.org/10.1007/978-1-4684-9936-0

Two-Stage Submodular Maximization
Problem Beyond Non-negative

and Monotone

Zhicheng Liu1, Hong Chang1, Ran Ma2, Donglei Du3,
and Xiaoyan Zhang1(B)

1 School of Mathematical Science and Institute of Mathematics,
Nanjing Normal University, Nanjing 210023, People’s Republic of China

zhangxiaoyan@njnu.edu.cn
2 School of Management Engineering, Qingdao University of Technology,

Qingdao 266520, People’s Republic of China
3 Faculty of Management, University of New Brunswick,

Fredericton, New Brunswick E3B 5A3, Canada

Abstract. Two-stage submodular maximization problems have been
recently applied in machine learning, economics and engineering. In this
paper, we consider a two-stage submodular problem subject to cardi-
nality constraint and matroid constraint. Previous work for this prob-
lem usually assume that the objective functions are non-negative and
monotone. Our focus in this work relaxes these assumptions by con-
sidering an objective function which is the expected difference of a
non-negative monotone submodular function and a non-negative mono-
tone modular function, and hence neither non-negative nor monotone.
We present strong approximation guarantees by offering two bi-factor
approximation algorithms for this problem. The first is a deterministic(
1
2

(
1 − e−2

)
, 1

)
-approximation algorithm, and the second is a random-

ized
(
1
2

(
1 − e−2

) − ε, 1
)
-approximation algorithm with improved time

efficiency. Moreover, we generalize the matroid constraint to k-matroid
constraint and also give the corresponding approximation algorithms.

Keywords: Submodular maximization · Greedy algorithm · Matroid

1 Introduction

We consider a two-stage submodular maximization problem. Given a ground set
V = {1, . . . , n}, let F = (f1, f2, . . . , fm) be a set of functions such that each
fj : 2V → R+ (j = 1, . . . ,m) is a nonnegative monotone submodular function,
and let � = (�1, . . . , �m) be a set of functions such that each �j : 2V → R+ (j =
1, . . . ,m) is a nonnegative monotone modular function. For a given nonnegative
integer p, the two-stage problem is as follows

max
S⊆V :|S|≤p

F (S) :=
m∑

j=1

max
T∈I(S)

(fj(T) − �j(T)), (1.1)

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 144–155, 2020.
https://doi.org/10.1007/978-3-030-59267-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_13&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_13

Two-Stage Submodular Maximization Problem 145

where I(S) is the family of the common independent sets of matroid M =
(S, I(S)) over the same ground set S ⊆ V . Any matriod satisfies three properties:
(i) ∅ ∈ I; (ii) If J ′ ⊆ J ∈ I(S), then J ′ ∈ I(S); and (iii) ∀A,B ∈ I(S), if
|A| < |B|, then there exists an element u ∈ B \ A such that A + u ∈ I.

A set function f : 2V → R+ is non-decreasing if f(S) ≤ f(T),∀S ⊆ T ⊆
V . It is submodular if f(S) + f(T) ≥ f(S ∩ T) + f(S ∪ T),∀S, T ⊆ V . It is
supermodular if its negative is submodular. It is modular if it is both submodular
and supermodular.

Problem (1.1) is two-stage in nature because of the two optimization phases
involved therein: (1) the first stage finds the optimal S ⊆ V of size at most p
to maximize the average of the first stage objective values over j = 1, . . . , m;
and (2) the second stage (inner problem) maximizes the difference between a
monotone submodular function and a monotone modular function subject to an
arbitrary matriod constraint on the ground S ⊆ V and j = 1, . . . ,m, resulting
in the optimal objective value being a function of S.

Problem (1.1) has various interpretations which lead to many applications [2,
18,22]. For instance, the modular function � may be considered as a penalty when
choosing elements in existing submodular maximization problems. In facility
location games, we can assume the function f represents the revenue and the
function � represents the cost of opening a facility. Our contribution is to offer
two bi-factor approximation algorithms to solve Problem (1.1).

First, we present a deterministic algorithm that returns a set S ⊆ V such
that

F (S) ≥ 1
2

(
1 − 1

e2

) m∑

j=1

fj(S∗
j) −

m∑

j=1

�j(S∗
j),

where S∗
j (j = 1, . . . ,m) is the optimal solution of the following problem

S∗
j = arg max

T∈ I (S∗)
(fj(T) − �j(T)),

and S∗ is the optimal solution of F (S).
This algorithm involves O(rmpn) function evaluations, where r = rM(V)

is the rank of the ground set (The rank function of a matriod M = (V, I) is
defined as rM(S) = max{|T | : T ⊆ S, T ∈ I},∀S ⊆ V .)

The second algorithm is randomized with improved function calls
O(rm log 1

ε n), while sacrificing only an ε > 0 in the approximation ratio.
Finally, we generalize the matroid constraint to k-matroid constraint and

give two algorithms. The first is a deterministic algorithm that returns a set
S ⊆ V such that

F (S) ≥ 1
k + 1

(
1 − 1

ek+1

) m∑

j=1

fj(S∗
j) −

m∑

j=1

�j(S∗
j),

and the second algorithm is randomized with improved time efficiency.

146 Z. Liu et al.

The main challenges in this problem are as follows:

(1) for i ∈ {1, . . . , p}, we need to construct functions

Φi(S) =
(

1 − 2
p

)p−i m∑

j=1

fj(Tj) −
m∑

j=1

�j(Tj);

(2) the objective functions are not monotone.

The rest of this paper is organized as follows. In Sect. 2, we review relevant
literature. In Sect. 3 we introduce some definitions and properties of submodular
function and matroid. In Sects. 4.1 and 4.3, respectively, we consider the case
when constraints are cardinality constraint and matroid constraint, and present
a deterministic algorithm and a randomized algorithm, along with their approx-
imation ratios analysis. In Sect. 4, we consider the k-matroid constraint. Finally,
we offer concluding remarks in Sect. 6.

2 Related Work

The literature on (single-stage) submodular maximization is extensive due to
its wide applications in machine learning, economics, and engineering, among
many others. For example, feature/variable selection [12], crowd teaching [21],
recommender systems [3], and influence maximization [11]. Especially, submod-
ularity has been used in a lot of summarization settings. The authors in [17]
selected representative images using an exemplarbased clustering approach. The
authors in [7,9] worked on submodular image summarization directly, while the
authors in [19] investigate document summarization. Since the modern data
sets is very large, much work pays attention to solving submodular maximiza-
tion at large scale. This work ranges from distributed submodular optimization
[4,13,16,17], to streaming approaches [1,10], as well as algorithms based on fil-
tering the ground set in multiple stages [6].

The most relevant work to our problem is the two-stage submodular max-
imization problem investigated in [2,18,22], where the objective function is a
monotone submodular function and satisfies some distribution D. In [2], they
give two algorithms based on techniques of continuous optimization and local
search, although their runtimes are very expensive. The authors in [18] develop
the first streaming and distributed algorithms to this problem. The authors in
[22] use a simple greedy algorithm to improve the approximation ratio from
1
2 (1 − 1

e) to 1
2 (1 − 1

e2).
Our problem is also related to the problem of the maximization of the dif-

ference between γ-weakly submodular and modular function [8], where their
objective function is f − � with f being a monotone γ-weakly submodular func-
tion and � being a non-negative modular function. They present an algorithm
with approximation ratio 1 − 1

e .
Another relevant problem considers an objective function that is the sum of

a submodular function and a modular function [5,23]. In [23], they consider the

Two-Stage Submodular Maximization Problem 147

problem of maximizing f + � where f is a monotone submodular function and l
is an arbitrary modular function subject to a solvable polytope constraint. They
use the multilinear extension technique to present an (1 − 1/e)-approximation
algorithm, assuming the optimal value is known. In [5], a new greedy algorithm
is designed to remove assumption of knowing the optimal value.

3 Preliminaries

Given a ground set V = {1, . . . , n} and a family of subsets I of V , a matroid
M = (V, I) satisfies the following properties

(1) If A ⊆ B ∈ I, then A ∈ I;
(2) If A,B ∈ I and |A| ≤ |B|, then there exists an element u ∈ B\A for which

A + u ∈ I.

Next, we introduce the equivalent definition of submodular function and
properties of submodular function.

Definition 1. A function f : 2V → R+ is submodular if for every X ⊆ Y ⊆
V, a ∈ V \ Y,

f(X ∪ {a}) − f(X) ≥ f(Y ∪ {a}) − f(Y).

Property 1. For any submodular function f : 2V → R+ and X,Y ⊆ V , we have
∑

u∈X

(f(Y ∪ {u}) − f(Y)) ≥ f(X ∪ Y) − f(Y).

4 Two-Stage Submodular Maximization Subject to
Cardinality and Matroid Constraints

4.1 The Deterministic Algorithm

The algorithm works in p rounds. In every round, we use a distorted greedy
method to get the maximum increment and our algorithm only adds the element
with positive marginal value. It starts with an empty set S0 = ∅ and uses
exchange property of matroid to avoid violating the matroid constraints.

For convenience, we let Δf
j (x,A) = fj({x}∪A)− fj(A) ≥ 0, and Δl

j(x,A) =
�j({x} ∪ A) − �j(A) ≥ 0 denote the marginal contributions of an element x
to the set A of the functions fj , and �j , respectively, where these marginal
contributions are nonnegative due to the monotonicity of fj and �j . We use
∇f

j (x, y,A) = fj({x} ∪ A \ y) − fj(A), and ∇l
j(x, y,A) = �j({x} ∪ A \ y) − �j(A)

to define the corresponding gains of removing a set y ∈ A and replacing it with
x, respectively. These two quantities’ signs are not restricted. In addition, we
also denote

Δj(x,A) =
(

1 − 2
p

)p−(i+1)

Δf
j (x,A) − Δl

j(x,A),

∇j(x, y,A) =
(

1 − 2
p

)p−(i+1)

∇f
j (x, y,A) − ∇l

j(x, y,A).

148 Z. Liu et al.

Algorithm 1: Distorted Replacement Greedy
1: S0 ← ∅, T 0

j ← ∅ (∀1 ≤ j ≤ m)
2: for 0 ≤ i ≤ p − 1 do

3: ei ← arg maxe∈V

m∑

j=1

[(
1 − 2

p

)p−(i+1)

∇f
j (e, T i

j) − ∇l
j(e, T

i
j)

]

4: if
m∑

j=1

[(
1 − 2

p

)p−(i+1)

∇f
j (ei, T

i
j) − ∇l

j(ei, T
i
j)

]
> 0 then

5: Si+1 ← Si ∪ {ei}
6: for all 1 ≤ j ≤ m do

7: if
(
1 − 2

p

)p−(i+1)

∇f
j (ei, T

i
j) − ∇l

j(ei, T
i
j) > 0 then

8: T i+1
j ← T i

j ∪ {ei} \ Repj(ei, T
i
j)

9: else
10: T i+1

j ← T i
j

11: end if
12: end for
13: else
14: Si+1 ← Si, T i+1

1 ← T i
1 , T

i+1
2 ← T i

2 , · · · , T i+1
m ← T i

m

15: end if
16: end for
17: Return sets Sp and T p

1 , T p
2 , · · · , T p

m

Consider the set A. According to the exchange property of matroid, our
algorithm does not violate the matroid constraint, i.e. I(x,A) = {y ∈ A :
A ∪ {x}\{y} ∈ I}. So, we define the replacement gain of x w.r.t. a set A as
follows:

(
1 − 2

p

)p−(i+1)
∇f

j (x, A) − ∇l
j(x, A) =

{
max{0, Δj(x, A)}, if A ∪ {x} ∈ I,

max{0, maxy∈I(x,A) ∇j(x, y, A)}, otherwise.

Finally, we use Repj(x,A) to denote the element that should be replaced
by x:

Repj(x,A) =

{
∅, ifA ∪ {x} ∈ I,

arg maxy∈I(x,A) ∇j(x, y,A), otherwise.

4.2 The Analysis

Define S∗ as the optimal solution

S∗ = arg max
|S|≤p

m∑

j=1

max
T∈I(S)

(fj(T) − �j(T)).

Denote S∗
j as the optimal solution of fj − �j

S∗
j = arg max

T∈I(S∗)
(fj(T) − �j(T)).

Two-Stage Submodular Maximization Problem 149

According to the algorithm, Si is the solution of function F (S) obtained by the
greedy heuristic in the ith round, and T i

j is the set which was chosen by fj(T).
Our analysis relies on the following potential function. Let p denote the car-

dinality constraint. For any Si in the algorithm (i = 0, 1, · · · , p), define

Φi(Si) =
(

1 − 2
p

)p−i m∑

j=1

fj(T i
j) −

m∑

j=1

�j(T i
j).

Define further

∇̃(ei, T
i) = max

⎧
⎨

⎩

m∑

j=1

[(
1 − 2

p

)p−(i+1)

∇f
j (ei, T

i
j) − ∇l

j(ei, T
i
j)

]
, 0

⎫
⎬

⎭ .

Our analysis includes three lemmas. First, we use Lemma 1 below to bound
the distorted objective function Φ.

Lemma 1. In each iteration of the Distorted Replacement Greedy algorithm,

Φi+1(Si+1) − Φi(Si) = ∇̃(ei, T
i) +

2
p

(
1 − 2

p

)p−(i+1) m∑

j=1

fj(T i
j).

We present the complete proof in the appendix.

The second lemma gives a lower bound of
(
1 − 2

p

)p−(i+1)

∇f
j (ei, T

i
j) −

∇l
j(ei, T

i
j).

Lemma 2
(

1 − 2
p

)p−(i+1)

∇f
j (ei, T

i
j) − ∇l

j(ei, T
i
j)

≥
(

1 − 2
p

)p−(i+1)

[fj({ei} ∪ T i
j \ y) − fj(T i

j)] − [
�j({ei} ∪ T i

j) − �j(T i
j)

]
,

where y ∈ T i
j .

Proof. If T i
j ∪ {ei} ∈ I, and y ∈ T i

j , then

(
1 − 2

p

)p−(i+1)

∇f
j (ei, T

i
j) − ∇l

j(ei, T
i
j) ≥ Δj(ei, T

i
j)

=
(

1 − 2
p

)p−(i+1)

Δf
j (ei, T

i
j) − Δl

j(ei, T
i
j)

=
(

1 − 2
p

)p−(i+1) [
fj(ei ∪ T i

j) − fj(T i
j)] − [�j(ei ∪ T i

j) − �j(T i
j)

]

≥
(

1 − 2
p

)p−(i+1) [
fj(ei ∪ T i

j \ y) − fj(T i
j)] − [�j(ei ∪ T i

j) − �j(T i
j)

]
.

150 Z. Liu et al.

If T i
j ∪ {ei} /∈ I, and y ∈ T i

j , then

(
1 − 2

p

)p−(i+1)

∇f
j (ei, T

i
j) − ∇l

j(ei, T
i
j) ≥ ∇j(ei, y, T i

j)

=
(

1 − 2
p

)p−(i+1)

∇f
j (ei, y, T i

j) − ∇l
j(ei, y, T i

j)

=
(

1 − 2
p

)p−(i+1)

[fj(ei ∪ T i
j \ y) − fj(T i

j)] − [�j(ei ∪ T i
j \ y) − �j(T i

j)]

≥
(

1 − 2
p

)p−(i+1) [
fj(ei ∪ T i

j \ y) − fj(T i
j)] − [�j(ei ∪ T i

j) − �j(T i
j)

]
.

�
In the following lemma, we show that the increment in each iteration is large

enough to ensure the desired approximation ratio.

Lemma 3. In each iteration of the Distorted Replacement Greedy algorithm,

∇̃(ei, T
i)

≥ 1
p

(
1 − 2

p

)p−(i+1) m∑

j=1

fj(S∗
j) − 2

p

(
1 − 2

p

)p−(i+1) m∑

j=1

fj(T i
j) − 1

p

m∑

j=1

�j(S∗
j).

Proof. From the exchange property of matroid, there exists a mapping πj :
S∗

j \ T i
j → T i

j \ S∗
j ∪ {∅} such that (T i

j \ πj(e)) ∪ {e} ∈ I, where e ∈ S∗
j \ T i

j .

∇̃(ei, T
i
) = max

⎧⎨
⎩

m∑
j=1

[(
1 − 2

p

)p−(i+1)
∇f

j (ei, T
i
j) − ∇l

j(ei, T
i
j)

]
, 0

⎫⎬
⎭

≥ max
e∈S∗

⎧⎨
⎩

m∑
j=1

[(
1 − 2

p

)p−(i+1)
∇f

j (e, T
i
j) − ∇l

j(e, T
i
j)

]
, 0

⎫⎬
⎭

≥ max
e∈S∗

⎧⎨
⎩

m∑
j=1

[(
1 − 2

p

)p−(i+1)
∇f

j (e, T
i
j) − ∇l

j(e, T
i
j)

]⎫⎬
⎭

≥ 1

|S∗|
∑

e∈S∗

m∑
j=1

[(
1 − 2

p

)p−(i+1)
∇f

j (e, T
i
j) − ∇l

j(e, T
i
j)

]

≥ 1

p

∑
e∈S∗

m∑
j=1

[(
1 − 2

p

)p−(i+1)
∇f

j (e, T
i
j) − ∇l

j(e, T
i
j)

]

=
1

p

m∑
j=1

∑
e∈S∗

[(
1 − 2

p

)p−(i+1)
∇f

j (e, T
i
j) − ∇l

j(e, T
i
j)

]

≥ 1

p

m∑
j=1

∑
e∈S∗

j
\Ti

j

[(
1 − 2

p

)p−(i+1)
∇f

j (e, T
i
j) − ∇l

j(e, T
i
j)

]

≥ 1

p

m∑
j=1

∑
e∈S∗

j
\Ti

j

{(
1 − 2

p

)p−(i+1) [
fj({e} ∪ T

i
j \ πt(e)) − fj(T

i
j)

]
−

[
�j({e} ∪ T

i
j) − �j(T

i
j)

]}

=
1

p

m∑
j=1

∑
e∈S∗

j
\Ti

j

(
1 − 2

p

)p−(i+1) [
fj({e} ∪ T

i
j \ πt(e)) − fj(T

i
j)

]
− 1

p

m∑
j=1

∑
e∈S∗

j
\Ti

j

[�j({e} ∪ T
i
j)

−�j(T
i
j)]

Two-Stage Submodular Maximization Problem 151

=
1

p

m∑
j=1

∑
e∈S∗

j
\Ti

j

(
1 − 2

p

)p−(i+1) [
fj({e} ∪ T

i
j \ πt(e)) − fj({e} ∪ T

i
j) + fj({e} ∪ T

i
j) − fj(T

i
j)

]

− 1

p

m∑
j=1

∑
e∈S∗

j
\Ti

j

Δ
l
j(e, T

i
j)

=
1

p

m∑
j=1

∑
e∈S∗

j
\Ti

j

(
1 − 2

p

)p−(i+1) [
Δ

f
j (e, T

i
j) − Δ

f
j (πt(e), {e} ∪ T

i
j \ πt(e))

]
− 1

p

m∑
j=1

∑
e∈S∗

j
\Ti

j

Δ
l
j(e, T

i
j)

≥ 1

p

m∑
j=1

∑
e∈S∗

j
\Ti

j

(
1 − 2

p

)p−(i+1) [
Δ

f
j (e, T

i
j) − Δ

f
j (πt(e), T

i
j \ πt(e))

]
− 1

p

m∑
j=1

∑
e∈S∗

j
\Ti

j

Δ
l
j(e, T

i
j)

≥ 1

p

(
1 − 2

p

)p−(i+1) m∑
j=1

[fj(S
∗
j ∪ T

i
j) − 2fj(T

i
j)] − 1

p

m∑
j=1

�j(S
∗
j \ T

i
j)

≥ 1

p

(
1 − 2

p

)p−(i+1) m∑
j=1

[fj(S
∗
j) − 2fj(T

i
j)] − 1

p

m∑
j=1

�j(S
∗
j)

=
1

p

(
1 − 2

p

)p−(i+1) m∑
j=1

fj(S
∗
j) − 2

p

(
1 − 2

p

)p−(i+1) m∑
j=1

fj(T
i
j) − 1

p

m∑
j=1

�j(S
∗
j).

The fifth inequality follows because

[(
1 − 2

p

)p−(i+1)

∇f
j (e, T i

j)−

∇l
j(e, T

i
j)

]
≥ 0 and S∗

j \ T i
j ⊆ S∗. The sixth inequality is due to Lemma 2.

The seventh and eighth inequalities are from Property 1. �
These three lemmas together imply the desired approximation ratio of this

algorithm.

Theorem 1. Algorithm 1 returns a set Sp with

F (Sp) ≥ 1
2

(
1 − 1

e2

) m∑

j=1

fj(S∗
j) −

m∑

j=1

�j(S∗
j).

Proof. According to the definition of Φ, we obtain

Φ0(S0) =
(

1 − 2
p

)p m∑

j=1

fj(∅) −
m∑

j=1

�j(∅) = 0,

Φp(Sp) =
(

1 − 2
p

)0 m∑

j=1

fj(T
p
j) −

m∑

j=1

�j(T
p
j) ≤ F (Sp).

152 Z. Liu et al.

Applying Lemmas 1 and 3, respectively, we have

Φi+1(S
i+1) − Φi(S

i) = ∇̃(ei, T
i) +

2

p

(
1 − 2

p

)p−(i+1) m∑
j=1

fj(T
i
j)

≥ 1

p

(
1 − 2

p

)p−(i+1) m∑
j=1

fj(S
∗
j) − 2

p

(
1 − 2

p

)p−(i+1) m∑
j=1

fj(T
i
j)

−1

p

m∑
j=1

�j(S
∗
j) +

2

p

(
1 − 2

p

)p−(i+1) m∑
j=1

fj(T
i
j)

=
1

p

(
1 − 2

p

)p−(i+1) m∑
j=1

fj(S
∗
j) − 1

p

m∑
j=1

�j(S
∗
j).

Finally,

F (Sp) ≥ Φp(Sp) − Φ0(S0) =
p−1∑

i=0

(Φi+1(Si+1) − Φi(Si))

≥
p−1∑

i=0

⎡

⎣1
p

(
1 − 2

p

)p−(i+1) m∑

j=1

fj(S∗
j) − 1

p

m∑

j=1

�j(S∗
j)

⎤

⎦

≥ 1
2

(
1 − 1

e2

) m∑

j=1

fj(S∗
j) −

m∑

j=1

�j(S∗
j).

�

4.3 The Randomized Algorithm

In this section, we modify Algorithm 1 to obtain a randomized distorted greedy
algorithm. It uses the same greedy objective as that in the previous algorithm,
but enjoys an asymptotically faster running time by utilizing the sampling tech-
niques in [15]. Instead of choosing the greedy element from the entire ground set
in every round, Randomized Distorted Greedy uses a random sample Ai ⊆ V of
size �n

p log 1
ε � to replace the entire ground set. If the sample size is sufficiently

large, Ai contains at least one element of S with high probability.

Theorem 2. Algorithm 2 returns a set Sp with

F (Sp) ≥
(

1
2
(1 − 1

e2
) − ε

) m∑

j=1

fj(S∗
j) −

m∑

j=1

�j(S∗
j).

The proof is in the appendix.

Two-Stage Submodular Maximization Problem 153

Algorithm 2: Randomized Distorted Replacement Greedy
1: S0 ← ∅, T 0

j ← ∅, s ← �n
p

log 1
ε
	 (∀1 ≤ j ≤ m)

2: for 0 ≤ i ≤ p − 1 do
3: Ai ← sample s elements uniformly and independently from V

4: ei ← arg maxe∈Ai

m∑

j=1

[(
1 − 2

p

)p−(i+1)

∇f
j (e, T i

j) − ∇l
j(e, T

i
j)

]

5: if
m∑

j=1

[(
1 − 2

p

)p−(i+1)

∇f
j (ei, T

i
j) − ∇l

j(ei, T
i
j)

]
> 0 then

6: Si+1 ← Si ∪ {ei}
7: for all 1 ≤ j ≤ m do

8: if
(
1 − 2

p

)p−(i+1)

∇f
j (ei, T

i
j) − ∇l

j(ei, T
i
j) > 0 then

9: T i+1
j ← T i

j ∪ {ei} \ Repj(ei, T
i
j)

10: else
11: T i+1

j ← T i
j

12: end if
13: end for
14: else
15: Si+1 ← Si, T i+1

1 ← T i
1 , T

i+1
2 ← T i

2 , · · · , T i+1
m ← T i

m

16: end if
17: end for
18: Return sets Sp and T p

1 , T p
2 , · · · , T p

m

5 Two-Stage Submodular Maximization Subject to
Cardinality and k-matroid Constraints

In this section, we generalize the matroid constraint to k-matroid constraint. For
this problem, we can modify Algorithm 1 to obtain Algorithm 3. The full details
of Algorithm 3 and the corresponding proofs are deferred to the full version of
the paper.

Theorem 3. Algorithm 3 returns a set Sp with

F (Sp) ≥ 1
k + 1

(
1 − 1

ek+1

) m∑

j=1

fj(S∗
j) −

m∑

j=1

�j(S∗
j).

154 Z. Liu et al.

Algorithm 3: Distorted Replacement Greedy k-matroid
1: S0 ← ∅, T 0

j ← ∅ (∀1 ≤ j ≤ m)
2: for 0 ≤ i ≤ p − 1 do

3: ei ← arg maxe∈V

m∑

j=1

[(
1 − k+1

p

)p−(i+1)

∇f
j (e, T i

j) − ∇l
j(e, T

i
j)

]

4: if
m∑

j=1

[(
1 − k+1

p

)p−(i+1)

∇f
j (ei, T

i
j) − ∇l

j(ei, T
i
j)

]
> 0 then

5: Si+1 ← Si ∪ {ei}
6: for all 1 ≤ j ≤ m do

7: if
(
1 − k+1

p

)p−(i+1)

∇f
j (ei, T

i
j) − ∇l

j(ei, T
i
j) > 0 then

8: T i+1
j ← T i

j ∪ {ei} \ Repj(ei, T
i
j)

9: else
10: T i+1

j ← T i
j

11: end if
12: end for
13: else
14: Si+1 ← Si, T i+1

1 ← T i
1 , T

i+1
2 ← T i

2 , · · · , T i+1
m ← T i

m

15: end if
16: end for
17: Return sets Sp and T p

1 , T p
2 , · · · , T p

m

6 Conclusion

In this paper, we design two distorted greedy algorithms for solving the random
two-stage submodular problem. Unlike the previous work [2,18,22], we do not
assume the objective function being monotone. We leave two open problems for
future research. One is to consider modular functions of not necessarily mono-
tonic and another one is that if each fj has curvature c, is it possible to use the
results in [23] to improve the approximation ratio presented in this paper.

Acknowledgements. This research is supported or partially supported by the
National Natural Science Foundation of China (Grant Nos. 11871280, 11501171,
11771251, 11971349, 11771386 and 11728104), the Natural Sciences and Engineering
Research Council of Canada (NSERC) Grant 06446 and Qinglan Project.

References

1. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming submod-
ular maximization: massive data summarization on the fly. In: KDD, pp. 671–680
(2014)

2. Balkanski, E., Mirzasoleiman, B., Krause, A., Singer, Y.: Learning sparse combi-
natorial representations via two-stage submodular maximization. In: ICML, pp.
2207–2216 (2016)

3. El-Arini, K., Veda, G., Shahaf, D., Guestrin, C.: Turning down the noise in the
blogosphere. In KDD, pp. 289–298 (2009)

Two-Stage Submodular Maximization Problem 155

4. Epasto, A., Mirrokni, V.S., Zadimoghaddam, M.: Bicriteria distributed submodular
maximization in a few rounds. In: SPAA, pp. 25–33 (2017)

5. Feldman, M.: Guess free maximization of submodular and linear sums. In: Frig-
gstad, Z., Sack, J.-R., Salavatipour, M.R. (eds.) WADS 2019. LNCS, vol. 11646, pp.
380–394. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24766-9 28

6. Feldman, M., Harshaw, C., Karbasi, A.: Greed is good: near-optimal submodular
maximization via greedy optimization. In: COLT, pp. 758–784 (2017)

7. Feldman, M., Karbasi, A., Kazemi, E.: Do less, get more: streaming submodular
maximization with subsampling. CoRR, abs/1802.07098 (2018). http://arxiv.org/
abs/1802.07098 maximization. In: FOCS, pp. 570–579 (2011)

8. Harshaw, C., Feldman, M., Ward, J., Karbasi, A.: Submodular maximization
beyond non-negativity: guarantees, fast algorithms, and applications. In: ICML,
pp. 2634–2643 (2019)

9. Kirchhoff, K., Bilmes, J.: Submodularity for data selection in statistical machine
translation. In: EMNLP, pp. 131–141 (2014)

10. Krause, A., Gomes, R.G.: Budgeted nonparametric learning from data streams. In:
ICML, pp. 391–398 (2010)

11. Kempe, D., Kleinberg, J.M., Tardos, á: Maximizing the spread of influence through
a social network. In: KDD, pp. 137–146 (2003)

12. Krause, A., Guestrin, C.: Near-optimal nonmyopic value of information in graphical
models. In: UAI, pp. 324–331 (2005)

13. Kumar, R., Moseley, B., Vassilvitskii, S., Vattani, A.: Fast greedy algorithms in
MapReduce and streaming. TOPC 2(3), 141–1422 (2015)

14. Lee, J., Mirrokni, V.S., Nagarajan, V., Sviridenko, M.: Maximizing nonmonotone
submodular functions under matroid or knapsack constraints. SIAM J. Discrete
Math. 23(4), 2053–2078 (2010)

15. Mirzasoleiman, B., Badanidiyuru, A., Karbasi, A., Vondraák, J., Krause, A.: Lazier
than lazy greedy. In: AAAI, pp. 1812–1818 (2015)

16. Mirzasoleiman, B., Karbasi, A., Badanidiyuru, A., Krause, A.: Distributed sub-
modular cover: succinctly summarizing massive data. In: NIPS, pp. 2881–2889
(2015)

17. Mirzasoleiman, B., Karbasi, A., Sarkar, R., Krause, A.: Distributed submodular
maximization: identifying representative elements in massive data. In: NIPS, pp.
2049–2057 (2013)

18. Mitrovic, M., Kazemi, E., Zadimoghaddam, M., Karbasi, A.: Data summarization
at scale: a two-stage submodular approach. In: ICML, pp. 3593–3602 (2018)

19. Lin, H., Bilmes, J.A.: Multi-document summarization via budgeted maximization
of submodular functions. In: HLT-NAACL, pp. 912–920 (2010)

20. Schrijver, A.: Combinatorial Optimization-Polyhedra and Efficiency. Springer,
Berlin (2003)

21. Singla, A., Bogunovic, I., Bartok, G., Karbasi, A., Krause, A.: Near-optimally
teaching the crowd to classify. In: ICML, pp. 154–162 (2014)

22. Stan, S., Zadimoghaddam, M., Krause, A., Karbasi, A.: Probabilistic submodular
maximization in sub-linear time. In: ICML, pp. 3241–3250 (2017)

23. Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular
and supermodular optimization with bounded curvature. Math. Oper. Res. 42(4),
1197–1218 (2017)

https://doi.org/10.1007/978-3-030-24766-9_28
http://arxiv.org/abs/1802.07098
http://arxiv.org/abs/1802.07098

Optimal Matroid Bases with Intersection
Constraints: Valuated Matroids,
M-convex Functions, and Their

Applications

Yuni Iwamasa1(B) and Kenjiro Takazawa2

1 National Institute of Informatics, Tokyo 101-8430, Japan
yuni iwamasa@nii.ac.jp

2 Hosei University, Tokyo 184-8584, Japan
takazawa@hosei.ac.jp

Abstract. For two matroids M1 and M2 with the same ground set V
and two cost functions w1 and w2 on 2V , we consider the problem of
finding bases X1 of M1 and X2 of M2 minimizing w1(X1)+w2(X2) sub-
ject to a certain cardinality constraint on their intersection X1 ∩ X2.
Lendl, Peis, and Timmermans (2019) discussed modular cost functions:
They reduced the problem to weighted matroid intersection for the case
where the cardinality constraint is |X1 ∩ X2| ≤ k or |X1 ∩ X2| ≥ k; and
designed a new primal-dual algorithm for the case where |X1 ∩X2| = k.
The aim of this paper is to generalize the problems to have nonlinear
convex cost functions, and to comprehend them from the viewpoint of
discrete convex analysis. We prove that each generalized problem can be
solved via valuated independent assignment, valuated matroid intersec-
tion, or M-convex submodular flow, to offer a comprehensive understand-
ing of weighted matroid intersection with intersection constraints. We
also show the NP-hardness of some variants of these problems, which clar-
ifies the coverage of discrete convex analysis for those problems. Finally,
we present applications of our generalized problems in matroid conges-
tion games and combinatorial optimization problems with interaction
costs.

Keywords: Valuated independent assignment · Valuated matroid
intersection · M-convex submodular flow · Matroid congestion game ·
Combinatorial optimization problem with interaction costs

1 Introduction

Weighted matroid intersection is one of the most fundamental combinatorial
optimization problems solvable in polynomial time. This problem generalizes

The first author was supported by JSPS KAKENHI Grant Number JP19J01302, Japan.
The second author was supported by JSPS KAKENHI Grant Numbers JP16K16012,
JP26280004, Japan.

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 156–167, 2020.
https://doi.org/10.1007/978-3-030-59267-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_14&domain=pdf
http://orcid.org/0000-0002-6794-3543
http://orcid.org/0000-0002-7662-7374
https://doi.org/10.1007/978-3-030-59267-7_14

Optimal Matroid Bases with Intersection Constraints 157

a number of tractable problems including maximum-weight bipartite matching
and minimum-weight arborescence. The comprehension of mathematical struc-
tures of weighted matroid intersection, e.g., Edmonds’ intersection theorem [4]
and Frank’s weight splitting theorem [5], contributes to the development of poly-
hedral combinatorial optimization as well as matroid theory.

Recently, Lendl, Peis, and Timmermans [9] have introduced the following
variants of weighted matroid intersection, in which a cardinality constraint is
imposed on the intersection. Let V be a finite set, n a positive integer, and
[n] := {1, 2, . . . , n}. For each i ∈ [n], let Mi = (V,Bi) be a matroid with ground
set V and base family of Bi, and wi a modular function on 2V . Let k be a
nonnegative integer. The problems are formulated as follows.

Minimize w1(X1) + w2(X2)
subject to Xi ∈ Bi (i = 1, 2),

|X1 ∩ X2| = k.
(1.1)

Minimize
n∑

i=1

wi(Xi)

subject to Xi ∈ Bi (i ∈ [n]),∣∣∣∣∣

n⋂

i=1

Xi

∣∣∣∣∣ ≤ k.

(1.2)

They further discussed the following problem for polymatroids. Let B1, B2 ⊆ ZV

be the base polytopes of some polymatroids on the ground set V . Here, w1 and
w2 are linear functions on ZV .

Minimize w1(x1) + w2(x2)
subject to xi ∈ Bi (i = 1, 2),∑

v∈V

min{xv, yv} ≥ k.
(1.3)

Lendl et al. [9] showed that the problems (1.1)–(1.3) are polynomial-time
solvable. They developed a new primal-dual algorithm for the problem (1.1), and
reduced the problems (1.2) and (1.3) to existing tractable problems of weighted
matroid intersection and polymatroidal flow, respectively. By this result, they
affirmatively settled an open question on the polynomial-time solvability of the
recoverable robust matroid basis problem [7].

The aim of this paper is to provide a comprehensive understanding of the
result of Lendl et al. [9] in view of discrete convex analysis (DCA) [14,17],
particularly focusing on M-convexity [11]. DCA offers a theory of convex func-
tions on the integer lattice ZV , and M-convexity, a quantitative generalization of
matroids, plays the central roles in DCA. M-convex functions naturally appear
in combinatorial optimization, economics, and game theory [18,19].

The formal definition of M-convex functions is given as follows. A function f :
ZV → R ∪ {+∞} is said to be M-convex if it satisfies the following generalization

158 Y. Iwamasa and K. Takazawa

of the matroid exchange axiom: for all x = (xv)v∈V and y = (yv)v∈V with
x, y ∈ domf , and all v ∈ V with xv > yv, there exists u ∈ V with xu < yu such
that f(x) + f(y) ≥ f(x − χv + χu) + f(y + χv − χu), where domf denotes the
effective domain {x ∈ ZV | f(x) < +∞} of f and χv the v-th unit vector for
v ∈ V . In particular, if domf is included in the hypercube {0, 1}V , then f is
called a valuated matroid1 [2,3].

We address M-convex (and hence nonlinear) generalizations of the prob-
lems (1.1)–(1.3). Let ω1, ω2, . . . , ωn be valuated matroids on 2V , where we
identify 2V with {0, 1}V by the natural correspondence between X ⊆ V and
x ∈ {0, 1}V ; xv = 1 if and only if v ∈ X.

– For the problem (1.1), by generalizing the modular cost functions w1 and w2

to valuated matroids, we obtain:

Minimize ω1(X1) + ω2(X2)
subject to |X1 ∩ X2| = k.

(1.4)

– For the problem (1.2), as well as generalizing w1, w2, . . . , wn to valuated
matroids, we generalize the cardinality constraint |⋂n

i=1 Xi| ≤ k to a matroid
constraint. Namely, let M = (V, I) be a new matroid, where I denotes its
independent set family, and generalize (1.2) as follows.

Minimize
n∑

i=1

ωi(Xi)

subject to
n⋂

i=1

Xi ∈ I.

(1.5)

– It is also reasonable to take the cardinality constraint into the objective func-
tion. Let w : V → R be a weight function. The next problem is a variant of
the above problem.

Minimize
n∑

i=1

ωi(Xi) + w

(
n⋂

i=1

Xi

)
. (1.6)

– Let f1 and f2 be M-convex functions on ZV such that domf1 and domf2
are included in ZV

+, where Z+ is the set of nonnegative integers. Also let
w : ZV → R be a linear function. The problem (1.3) is generalized as follows.

Minimize f1(x) + f2(y) + w(min{x, y})
subject to

∑

v∈V

min{xv, yv} ≥ k, (1.7)

where min{x, y} := (min{xv, yv})v∈V .

1 The original definition of a valuated matroid is an M-concave function, i.e., the
negative of an M-convex function, such that its effective domain is included in the
hypercube.

Optimal Matroid Bases with Intersection Constraints 159

Our main contribution is to show the tractability of the generalized prob-
lems (1.4)–(1.7):
Theorem 1. There exist polynomial-time algorithms to solve the problems
(1.4), (1.5), (1.6) for w ≥ 0, and (1.7) for w ≤ 0.

The algorithm for the problem (1.4) is based on valuated independent assign-
ment [12,13], that for (1.5) and (1.6) on valuated matroid intersection [12,13],
and that for (1.7) on M �-convex submodular flow [15]. It would be noteworthy
that we essentially require the concept of valuated matroid intersection to solve
the problem (1.6) even if ωi is a modular function for each i ∈ [n]. That is,
the problem (1.6) with modular functions ωi (i ∈ [n]) is an interesting example
which only requires matroids to define, but requires valuated matroids to solve.
It might also be interesting that the problem (1.5) can be solved in polynomial
time when n ≥ 3, in spite of the fact that matroid intersection for more than
two matroids is NP-hard.

We also demonstrate that the tractability of the problems (1.6) and (1.7)
relies on the assumptions on w (w ≥ 0 and w ≤ 0, respectively), by showing the
NP-hardness of the problems.

Theorem 2. The problems (1.6) and (1.7) are NP-hard in general even if w ≤ 0
and m ≥ 3 for (1.6), and w ≥ 0 and k = 0 for (1.7).

We then present applications of our generalized problems to matroid conges-
tion games [1] and combinatorial optimization problems with interaction costs
(COPIC) [8]. We show that computing the socially optimal state in a certain
generalized model of matroid congestion games can be reduced to (a general-
ized version of) the problem (1.6), and thus can be done in polynomial time.
We also reduce a certain generalized case of the COPIC with diagonal costs
to (1.6) and (1.7), to provide a generalized class of COPIC which can be solved
in polynomial time.

The proofs are omitted due to space constraint; see the full version for the
proofs.

2 Algorithms

In this section, we provide polynomial-time algorithms for the problems (1.4)–
(1.7) to prove Theorem 1. Theorem 2 is also shown in this section.

We first prepare several facts and terminologies on M-convex functions. For
an M-convex function f , all members in domf have the same “cardinality,”
that is, there exists some integer r such that

∑
v∈V xv = r for all x ∈ domf .

We call r the rank of f . An M�-convex function [20] is a function f : ZV →
R∪ {+∞} defined by the following weaker exchange axiom: for all x = (xv)v∈V

and y = (yv)v∈V with x, y ∈ dom f , and all v ∈ V with xv > yv, it holds that
f(x) + f(y) ≥ f(x − χv) + f(y + χv), or there exists u ∈ V with xu < yu such
that f(x) + f(y) ≥ f(x − χv + χu) + f(y + χv − χu). From the definition, it is
clear that M�-convex functions are a slight generalization of M-convex functions.
Meanwhile, M�-convexity and M-convexity are essentially equivalent concepts
(see e.g., [17]).

160 Y. Iwamasa and K. Takazawa

2.1 Reduction of (1.4) to Valuated Independent Assignment

This subsection provides a polynomial-time algorithm for solving the prob-
lem (1.4). In [9], the authors developed a new algorithm specific to (1.1). In
this article, we give a reduction of the generalized problem (1.4) to a known
tractable problem of valuated independent assignment [12,13], building upon the
DCA perspective.

Let G = (V, V ′;E) be a bipartite graph, ω and ω′ valuated matroids on
2V and on 2V ′

, respectively, and w a weight function on E. Then the valuated
independent assignment problem parameterized by an integer k, referred to as
VIAP(k), is described as follows.

VIAP(k)
Minimize ω(X) + ω′(X ′) + w(F)
subject to F ⊆ Eis a matching ofGwith ∂F ⊆ X ∪ X ′,

|F | = k,

where ∂F denote the set of endpoints of F .
We first consider the following variant of the problem (1.4):

Minimize ω1(X1) + ω2(X2)
subject to |X1 ∩ X2| ≥ k,

(2.1)

in which the constraint |X1 ∩ X2| = k is replaced by |X1 ∩ X2| ≥ k. The
problem (2.1) can be naturally reduced to VIAP(k) as follows. Set the input
bipartite graph G of VIAP(k) by (V1, V2; {{v1, v2} | v ∈ V }), where Vi is a copy
of V and vi ∈ Vi is a copy of v ∈ V for i = 1, 2. We regard ωi as a valuated
matroid on 2Vi . Set w := 0 for all edges. Then consider VIAP(k) for such G, ω1,
ω2, and w. One can see that, if (X1,X2) is feasible for the problem (2.1), i.e.,
|X1 ∩X2| ≥ k, then there is a matching F of G with ∂F ⊆ X1 ∪X2 and |F | = k,
i.e., (X1,X2, F) is feasible for VIAP(k). On the other hand, if (X1,X2, F) is
feasible for VIAP(k), then (X1,X2) is feasible for the problem (2.1). Moreover
the objective value of a feasible solution (X1,X2) for the problem (2.1) is equal
to that of any corresponding feasible solution (X1,X2, F) for VIAP(k) since w
is identically zero.

Thus the problem (2.1) can be solved in polynomial time in the following
way based on the augmenting path algorithm for VIAP(k) [12,13]; see also [16,
Theorem 5.2.62]. Let X1 and X2 be the minimizers of ω1 and ω2, respectively,
which can be found in a greedy manner.

Step 1: If |X1 ∩ X2| ≥ k, then output them and stop. Otherwise, let Xj
1 := X1

and Xj
2 := X2, where j := |X1 ∩ X2| < k.

Step 2: Execute the augmenting path algorithm for VIAP(k). Then we
obtain a sequence

(
(Xj

1 ,X
j
2), (X

j+1
1 ,Xj+1

2), . . . , (X�
1,X

�
2)

)
of solutions, where

∣∣∣Xj′
1 ∩ Xj′

2

∣∣∣ = j′ for j′ = j, j + 1, . . . , �. If � < k, then output “the prob-

lem (2.1) is infeasible.” If � ≥ k, then output (Xk
1 ,Xk

2).

Optimal Matroid Bases with Intersection Constraints 161

The above approach directly leads to the following algorithm for the prob-
lem (1.4). Again let X1 and X2 be the minimizers of ω1 and ω2, respectively.

Case 1: If |X1 ∩ X2| ≤ k, then execute the augmenting path algorithm for
VIAP(k), and let

(
(Xj

1 ,X
j
2), (X

j+1
1 ,Xj+1

2), . . . , (X�
1,X

�
2)

)
be the sequence of

solutions obtained in the algorithm. If � < k, then output “the problem (1.4)
is infeasible.” If � ≥ k, then output (Xk

1 ,Xk
2).

Case 2: If |X1 ∩ X2| > k, then let r be the rank of ω2 and ω2(X) := ω2(V \ X)
for X ⊆ V , which is the dual valuated matroid of ω2. Then apply Case 1,
where VIAP(k) is replaced by VIAP(r − k) for (G,w, ω1, ω2).

Remark 1. If we are given at least three valuated matroids, then the prob-
lems (2.1) (and hence (1.4)) will be NP-hard, since it can formulate the matroid
intersection problem for three matroids. �

2.2 Reduction of (1.5) and (1.6) to Valuated Matroid Intersection

In this subsection, we give polynomial-time algorithms for solving the prob-
lems (1.5) and (1.6) by reducing them to valuated matroid intersection. This is
the following generalization of weighted matroid intersection problem: Given two
valuated matroids ω and ω′ on 2V , minimize the sum ω(X) + ω′(X) for X ⊆ V .
It is known [12,13] that valuated matroid intersection is polynomially solvable.

In order to reduce our problems to valuated matroid intersection, we need
to prepare two valuated matroids for each problem. One valuated matroid is
common in the reductions of the problems (1.5) and (1.6), which is defined as
follows. Let

∐
i∈[n] V be the discriminated union of n copies of V . We denote by

(X1,X2, . . . , Xn) a subset
∐

i∈[n] Xi of
∐

i∈[n] V , where Xi ⊆ V for each i ∈ [n].
Let us define ω̃ by the disjoint sum of ω1, ω2, . . . , ωn. That is, ω̃ is a function on
2

∐
i∈[n] V defined by ω(X1,X2, . . . , Xn) := ω1(X1) + ω2(X2) + · · · + ωn(Xn) for

(X1,X2, . . . , Xn) ⊆ ∐
i∈[n] V . It is a valuated matroid with rank r :=

∑n
i=1 ri,

where ri is the rank of ωi.
We then provide the other valuated matroid used in the reduction of the

problem (1.5). Define a set system M̃ = (
∐

i∈[n] V, B̃) by

B̃ =

{
(X1,X2, . . . , Xn)

∣∣∣∣∣ Xi ⊆ V (i ∈ [n]),
n⋂

i=1

Xi ∈ I,

n∑

i=1

|Xi| = r

}
.

It is clear that (1.5) is equivalent to the problem of minimizing the sum of ω̃ and
δB̃, where δB̃ denotes the indicator function of B̃, namely, δB̃(X1,X2, . . . , Xn) :=
0 if (X1,X2, . . . , Xn) ∈ B̃ and δB̃(X1,X2, . . . , Xn) := +∞ otherwise. We now
have the following lemma.

Lemma 1. M̃ is a matroid with the base family B̃.
It follows from Lemma 1 that the function δB̃ is a valuated matroid, and we thus
conclude that the problem (1.5) can be reduced to valuated matroid intersection.

162 Y. Iwamasa and K. Takazawa

Remark 2. If we replace the constraint
⋂n

i=1 Xi ∈ I in (1.5) by
⋂n

i=1 Xi ∈ B,
where B is the base family of some matroid, then the problem will be NP-hard
even if m = 2, since it can formulate the matroid intersection problem for three
matroids. �

We next provide another valuated matroid that is used in the reduction
of the problem (1.6). A laminar convex function [17, Section 6.3], which is a
typical example of an M�-convex function, plays a key role here. A function
f : ZV → R ∪ {+∞} is said to be laminar convex if f is representable as

f(x) =
∑

X∈L
gX

(
∑

v∈X

xv

)
(
x ∈ ZV

)
,

where L ⊆ 2V is a laminar family on V , and for each X ∈ L, gX : Z → R∪ {+∞}
is a univariate discrete convex function, i.e., gX(k +1)+ gX(k − 1) ≥ 2gX(k) for
every k ∈ Z. As mentioned above, a laminar convex function is M�-convex.

Now define a function w̃ on 2
∐

i∈[n] V by w̃(X1,X2, . . . , Xn) := w(
⋂n

i=1 Xi) for
(X1,X2, . . . , Xn) ⊆ ∐

i∈[n] V . It is clear that (1.6) is equivalent to the problem
of minimizing the sum of ω̃ and the restriction of w̃ to {(X1,X2, . . . , Xn) ⊆∐

i∈[n] V | ∑n
i=1 |Xi| = r}. For w̃, the following holds.

Lemma 2. The function w̃ is a laminar convex function on 2
∐

i∈[n] V if w ≥ 0.

By Lemma 2, the restriction of w̃ to {(X1,X2, . . . , Xn) ⊆ ∐
i∈[n] V |

∑n
i=1 |Xi| = r} is a valuated matroid on 2

∐
i∈[n] V if w ≥ 0. Indeed, it is

known [20] that, for an M�-convex function f and an integer r, the restriction
of f to a hyperplane {x ∈ ZV | ∑

v∈V xv = r} is an M-convex function with
rank r, if its effective domain is nonempty. Thus the problem (1.6) can be for-
mulated as the valuated matroid intersection problem for ω̃ and w̃, establishing
the tractability of the problem (1.6) in case of w ≥ 0.

On the other hand, if w ≤ 0 and m ≥ 3, then the problem (1.6) is NP-hard,
since it can formulate the matroid intersection problem for three matroids.

Remark 3. As mentioned in Sect. 1, the problem (1.6) with w ≥ 0 does not
fall into the weighted matroid intersection framework even if all functions are
modular, while it can be reduced to valuated matroid intersection. That is, the
concept of M-convexity is crucial for capturing the tractability of (1.6) even
when all functions are modular. �

2.3 Reduction of (1.7) to M�-Convex Submodular Flow

In this subsection, we prove that the problem (1.7) with w ≤ 0 can be solved in
polynomial time by reducing it to M�-convex submodular flow, which is defined
as follows. Let f be an M�-convex function on ZV and G = (V,A) a directed
graph endowed with an upper capacity c : A → R ∪ {+∞}, a lower capacity
c : A → R∪{−∞}, and a weight function w : A → R. For a flow ξ ∈ RA, define

Optimal Matroid Bases with Intersection Constraints 163

its boundary ∂ξ ∈ RV by ∂ξ(v) :=
∑{ξ(a) | a ∈ A, a enters v inG} − ∑{ξ(a) |

a ∈ A, a leaves v inG} for v ∈ V . The M�-convex submodular flow problem for
(f,G) is the following problem with variable ξ ∈ RA:

Minimize f(∂ξ) +
∑

a∈A

w(a)ξ(a)

subject to c(a) ≤ ξ(a) ≤ c(a),
∂ξ ∈ domf.

It is known [15] that the M�-convex submodular flow problem can be solved in
polynomial time.

The problem (1.7) with w ≤ 0 can be reduced to M�-convex submodular flow
in the following way. Let r1 and r2 be the rank of f1 and f2, respectively. We
define univariate functions g1 and g2 on Z by

g1(p) :=

{
0 if p ≤ r2 − k,

+∞ otherwise,
g2(q) :=

{
0 if q ≤ r1 − k,

+∞ otherwise.

Then define the function h on ZV �{p}�V �{q} by the disjoint sum of f1, g1 with
the simultaneous coordinate inversion and f2, g2, i.e.,

h(x, p, y, q) := (f1(−x) + g1(−p)) + (f2(y) + g2(q)) x, y ∈ ZV (and p, q ∈ Z).

It is not difficult to see that h is M�-convex. We then construct a directed bipar-
tite graph G = ({xv}v∈V ∪{p}, {yv}v∈V ∪{q};A) endowed with a weight function
ŵ : A → R defined by

A := {(xv, yv) | v ∈ V } ∪ {(p, yv) | v ∈ V } ∪ {(xv, q) | v ∈ V },

ŵ(a) :=

{
w(v) if a = (xv, yv),
0 otherwise,

(a ∈ A).

Here we identify the vertices of G with the variables of f . Consider the following
instance of the M�-convex submodular flow problem:

Minimize h(∂ξ) +
∑

a∈A

ŵ(a)ξ(a)

subject to ξ(a) ≥ 0 (a ∈ A),
∂ξ ∈ domh.

(2.2)

The following lemma shows that the problem (1.7) with w ≤ 0 is reduced to
the problem (2.2), and thus establishes its tractability.

Lemma 3. The problem (1.7) with w ≤ 0 is equivalent to the problem (2.2).

The NP-hardness of the problem (1.7) with w ≥ 0 and k = 0 follows from
the fact that it can formulate the problem of minimizing f1(x1)+f2(x2) subject
to

∑
v∈V min{xv, yv} = 0, whose NP-hardness has been shown in [9].

164 Y. Iwamasa and K. Takazawa

3 Applications

In this section, we present two applications of our generalized problems (1.6)
and (1.7). One is for matroid congestion games, and the other for combinatorial
optimization problems with interaction costs.

3.1 Socially Optimal States in Valuated Matroid Congestion Games

A congestion game [21] is represented by a tuple (N,V, (Bi)i∈N , (cv)v∈V), where
N = {1, 2, . . . , n} is a set of players, V is a set of resources, Bi ⊆ 2V is the
set of strategies of a player i ∈ N , and cv : Z+ → R+ is a nondecreasing cost
function associated with a resource v ∈ V . Here R+ is the set of nonnegative
real numbers. A state X = (X1,X2, . . . , Xn) is a collection of strategies of all
players, i.e., Xi ∈ Bi for each i ∈ N . For a state X = (X1,X2, . . . , Xn), let xv(X)
denote the number of players using v, i.e., xv(X) = |{i ∈ N | v ∈ Xi}|. If X is
clear from the context, xv(X) is abbreviated as xv. In a state X , every player
using a resource v ∈ V should pay cv(xv) to use v, and thus the total cost paid
by a player i ∈ N is

∑
v∈Xi

cv(xv).
The importance of congestion games is appreciated through the fact that the

class of congestion games coincides with that of potential games. Rosenthal [21]
proved that every congestion game is a potential game, and conversely, Monderer
and Shapley [10] proved that every potential game is represented by a congestion
game with the same potential function.

We show that, in a certain generalized model of matroid congestion games
with player-specific costs, computing socially optimal states reduces to (a gen-
eralized version of) the problem (1.6). A state X ∗ = (X∗

1 ,X∗
2 , . . . , X∗

n) is called
socially optimal if the sum of the costs paid by all the players is minimum, i.e.,

∑

i∈N

∑

v∈X∗
i

cv(xv(X ∗)) ≤
∑

i∈N

∑

v∈Xi

cv(xv(X))

for any state X = (X1,X2, . . . , Xn). In a matroid congestion game, the set
Bi ⊆ 2V of the strategies of each player i ∈ N is the base family of a matroid
on V . For matroid congestion games, a socially optimal state can be computed
in polynomial time if the cost functions are weakly convex [1,23], while it is
NP-hard for general nondecreasing cost functions [1]. A function c : Z+ → R
is called weakly convex if (x + 1) · c(x + 1) − x · c(x) is nondecreasing for each
x ∈ Z+. In a player specific-cost model, the cost paid by a player i ∈ N for using
v ∈ V is represented by a function ci,e : Z+ → R+, which may vary with each
player.

We consider the following generalized model of congestion games with player-
specific costs. In a state X = (X1,X2, . . . , Xn), the cost paid by a player i ∈ N is

ωi(Xi) +
∑

v∈Xi

dv(xv),

Optimal Matroid Bases with Intersection Constraints 165

where ωi : 2V → R+ is a monotone set function and dv : Z+ → R+ is a non-
decreasing function for each v ∈ V . This model represents a situation where a
player i ∈ N should pay ωi(Xi) regardless of the strategies of the other players,
as well as dv(xv) for every resource v ∈ Xi, which is an additional cost resulting
from the congestion on v. It is clear that the standard model of congestion games
is a special case where ωi(Xi) =

∑
v∈Xi

cv(1) for every i ∈ N and every Xi ∈ Bi,
and

dv(x) =

{
0 (x = 0),
cv(x) − cv(1) (x ≥ 1).

In this model, the sum of the costs paid by all the players is equal to
∑

i∈N

ωi(Xi) +
∑

v∈V

xv · dv(xv). (3.1)

The following lemma is also straightforward to see.

Lemma 4. The following are equivalent.

– cv is weakly convex.
– dv is weakly convex.
– x · dv is discrete convex.

By Lamma 4, if cv (or dv) is weakly convex, then the function
∑

v∈V xv · dv(xv)
is laminar convex.

The solution for the problem (1.6), or the DCA perspective for (1.6), provides
a new insight on this model of cost functions in matroid congestion games. In
addition to the weak convexity of dv (v ∈ V), this model allows us to introduce
some convexity of the cost function ωi. Namely, we assume that ωi is a valuated
matroid for every i ∈ N . Then, computing the optimal state, i.e., minimizing
(3.1), is naturally viewed as the valuated matroid intersection problem for the
valuated matroid

∑
i∈N ωi(Xi) and the laminar convex function

∑
v∈V xv ·dv(xv)

as in the problem (1.6). Thus it can be done in polynomial time.

3.2 Combinatorial Optimization Problem with Interaction Costs

Lendl, Ćustić, and Punnen [8] introduced a framework of combinatorial opti-
mization with interaction costs (COPIC), described as follows. For two sets V1

and V2, we are given cost functions w1 : V1 → R and w2 : V2 → R, as well as
interaction costs q : V1 × V2 → R. The objective is to find a pair of feasible sets
X1 ⊆ V1 and X2 ⊆ V2 minimizing

w1(X1) + w2(X2) +
∑

u∈X1

∑

v∈X2

quv.

We focus on the diagonal COPIC, where V1 and V2 are identical and quv = 0 if
u
= v. We further assume that the feasible sets are the base families of matroids.
That is, we are given two matroids (V,B1) and (V,B2), and a pair (X1,X2) of

166 Y. Iwamasa and K. Takazawa

subsets of V is feasible if and only if X1 ∈ B1 and X2 ∈ B2. In summary, the
problem is formulated as

Minimize w1(X1) + w2(X2) + q(X1 ∩ X2)
subject to Xi ∈ Bi (i = 1, 2). (3.2)

If w1 and w2 are identically zero and q ≥ 0, then the problem (3.2) amounts
to finding a socially optimal state in a two-player matroid congestion game, and
thus can be solved in polynomial time [1]. Lendl et al. [8] showed the solvability
on the case where the interaction cost q may be arbitrary.

Now we can discuss another direction of generalization; the costs w1(X1) and
w2(X2) are valuated matroids. This is a special case of the problem (1.6) or the
problem (1.7), and thus can be solved in polynomial time when q ≥ 0 or q ≤ 0.

4 Discussions

In this paper, we have analyzed the complexity of several types of minimization
of the sum of valuated matroids (or M-convex functions) under intersection con-
straints. For the following standard problem of this type, its complexity is still
open even when the cardinality constraint |X1 ∩ X2| = k is removed and ω1, ω2

are modular functions on the base families of some matroids:

Minimize ω1(X1) + ω2(X2) + w(X1 ∩ X2)
subject to |X1 ∩ X2| = k,

where ω1 and ω2 are valuated matroids on 2V , w is a modular function on 2V ,
and k is a nonnegative integer.

The above problem seems similar to VIAP(k), but is essentially different; the
problem of this type formulated by VIAP(k) is

Minimize ω1(X1) + ω2(X2) + w(F)
subject to F ⊆ X1 ∩ X2,

|F | = k.

Only the following cases are known to be tractable:

– w is identically zero. This case is equivalent to the problem (1.4).
– w ≥ 0 and the cardinality constraint |X1 ∩ X2| = k is removed. This case is

a subclass of the problem (1.6).
– w ≤ 0 and |X1 ∩X2| = k is replaced by |X1 ∩X2| ≥ k. This case is a subclass

of the problem (1.7).
– |X1 ∩ X2| = k is removed and ω1, ω2 are the indicator functions of the base

families of some matroids. This case has been dealt with Lendl et al. [8];
see Sect. 3.2.

Another possible direction of research would be to generalize our framework
so that it includes computing the socially optimal state of polymatroid congestion
games [6,22], as we have done for matroid congestion games in Sect. 3.1.

Optimal Matroid Bases with Intersection Constraints 167

References

1. Ackermann, H., Röglin, H., Vöcking, B.: On the impact of combinatorial structure
on congestion games. J. ACM 55(6), 25:1–25:22 (2008)

2. Dress, A.W.M., Wenzel, W.: Valuated matroids: a new look at the greedy algo-
rithm. Appl. Math. Lett. 3(2), 33–35 (1990)

3. Dress, A.W.M., Wenzel, W.: Valuated matroids. Adv. Math. 93, 214–250 (1992)
4. Edmonds, J.: Submodular functions, matroids, and certain polyhedra. In: Jünger,

M., Reinelt, G., Rinaldi, G. (eds.) Combinatorial Optimization — Eureka, You
Shrink!. LNCS, vol. 2570, pp. 11–26. Springer, Heidelberg (2003). https://doi.org/
10.1007/3-540-36478-1 2

5. Frank, A.: A weighted matroid intersection algorithm. J. Algorithms 2, 328–336
(1981)

6. Harks, T., Klimm, M., Peis, B.: Sensitivity analysis for convex separable optimiza-
tion over integral polymatroids. SIAM J. Optim. 28, 2222–2245 (2018)

7. Hradovich, M., Kasperski, A., Zieliński, P.: The recoverable robust spanning tree
problem with interval costs is polynomialy solvable. Optim. Lett. 11(1), 17–30
(2016). https://doi.org/10.1007/s11590-016-1057-x

8. Lendl, S., Ćustić, A., Punnen, A.P.: Combinatorial optimization with interaction
costs: complexity and solvable cases. Discrete Optim. 33, 101–117 (2019)

9. Lendl, S., Peis, B., Timmermans, V.: Matroid bases with cardinality constraints
on the intersection (2019). arXiv:1907.04741v1

10. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143
(1996)

11. Murota, K.: Convexity and Steinitz’s exchange property. Adv. Math. 124, 272–311
(1996)

12. Murota, K.: Valuated matroid intersection, I: optimality criteria. SIAM J. Discrete
Math. 9, 545–561 (1996)

13. Murota, K.: Valuated matroid intersection, II: algorithms. SIAM J. Discrete Math.
9, 562–576 (1996)

14. Vygen, J.: Discrete convex analysis. Math. Intell. 26(3), 74–76 (2004). https://doi.
org/10.1007/BF02986756

15. Murota, K.: Submodular flow problem with a nonseparable cost function. Combi-
natorica 19, 87–109 (1999). https://doi.org/10.1007/s004930050047

16. Murota, K.: Matrices and Matroids for Systems Analysis. Springer, Heidelberg
(2000)

17. Murota, K.: Discrete Convex Analysis. SIAM, Philadelphia (2003)
18. Murota, K.: Recent developments in discrete convex analysis. In: Cook, W., Lovász,

L., Vygen, J. (eds.) Research Trends in Combinatorial Optimization, pp. 219–260.
Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-76796-1 11

19. Murota, K.: Discrete convex analysis: a tool for economics and game theory. J.
Mech. Inst. Des. 1(1), 151–273 (2016)

20. Murota, K., Shioura, A.: M-convex function on generalized polymatroid. Math.
Oper. Res. 24(1), 95–105 (1999)

21. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int.
J. Game Theory 2, 65–67 (1973). https://doi.org/10.1007/BF01737559

22. Takazawa, K.: Generalizations of weighted matroid congestion games: pure Nash
equilibrium, sensitivity analysis, and discrete convex function. J. Comb. Optim.
38, 1043–1065 (2019). https://doi.org/10.1007/s10878-019-00435-9

23. Werneck, R.F.F., Setubal, J.C.: Finding minimum congestion spanning trees. ACM
J. Exp. Algorithmics 5, 11:1–11:22 (2000)

https://doi.org/10.1007/3-540-36478-1_2
https://doi.org/10.1007/3-540-36478-1_2
https://doi.org/10.1007/s11590-016-1057-x
http://arxiv.org/abs/1907.04741v1
https://doi.org/10.1007/BF02986756
https://doi.org/10.1007/BF02986756
https://doi.org/10.1007/s004930050047
https://doi.org/10.1007/978-3-540-76796-1_11
https://doi.org/10.1007/BF01737559
https://doi.org/10.1007/s10878-019-00435-9

On the Complexity of Acyclic Modules
in Automata Networks

Kévin Perrot1, Pacôme Perrotin2(B), and Sylvain Sené1

1 Université publique, Marseille, France
2 Aix-Marseille Univ., Univ. de Toulon, CNRS, LIS, UMR 7020, Marseille, France

pacome.perrotin@lis-lab.fr

Abstract. Modules were introduced as an extension of Boolean
automata networks. They have inputs which are used in the computation
said modules perform, and can be used to wire modules with each other.
In the present paper we extend this new formalism and study the spe-
cific case of acyclic modules. These modules prove to be well described
in their limit behavior by functions called output functions. We provide
other results that offer an upper bound on the number of attractors in an
acyclic module when wired recursively into an automata network, along-
side a diversity of complexity results around the difficulty of deciding the
existence of cycles depending on the number of inputs and the size of
said cycle.

1 Introduction

Automata networks (ANs) are a generalisation of Cellular automata (CAs).
While classical CAs require a n-dimensional lattice with uniform local func-
tions, ANs can be built on any graph structure, and with any function at each
vertex of the graph. They have been applied to the study of genetic regulation
networks [7,9,15,16,23] where the influence of different genes (inhibition, acti-
vation) are represented by automata whose functions mirror together the global
dynamics of the network. This application in particular motivates the develop-
ment of tools to understand, predict and describe the dynamics of ANs in an
efficient way. In the worst case, studying the dynamics of an AN (i.e. analysing
the behavior of all possible configurations of the system) will always take an
exponential amount of time in the size of the network. Attempts using mainly
combinatorics have been made to predict and count specific limit behavior of
the system without enumerating the entire network’s dynamics [2,4,10]. Other
studies focused on understanding the dynamics of such complex systems by con-
sidering them as compositions of bricks simpler to analyse [5,8,22] and propose
to study manners of controlling these bricks and/or systems [6,19]. In line with
such approaches and [12] the authors developed in [20] the formalism of mod-
ules. They are ANs with inputs, and operators called wirings that allow modules
to be composed into larger modules, and eventually into ANs. In this paper we
propose an exploration of a specific type of modules, namely acyclic modules,

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 168–180, 2020.
https://doi.org/10.1007/978-3-030-59267-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_15&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_15

On the Complexity of Acyclic Modules in Automata Networks 169

which do not include cycles in their interaction graph. The present paper also
introduces output functions, which characterise the behavior of an acyclic mod-
ule as a function of the inputs of the network over time. Output functions allow
us to characterise the dynamics of a network while forgetting its inner struc-
ture, illustrated by Theorem 1, which shows that if two acyclic modules have
equivalent output functions, they also have isomorphic attractors.

In Sect. 2 we propose definitions of ANs, modules and wirings. Section 3
presents definitions of acyclicity in modules and related concepts and results.
Finally in Sect. 4 we explore complexity results around acyclic modules and
their inputs. The demonstrations of all results are available in the arXiv version
of this paper.

General Notations. We denote B the set of Booleans B = {0, 1}. For Λ an alpha-
bet, we denote Λn the set of vectors of size n with values in Λ. For x ∈ Λn,
we might denote x by x1x2 . . . xn. For example, a vector x ∈ B

3 defined such
that x1 = 1, x2 = 0, x3 = 1 can alternatively be denoted by x = 101. For
S an ordered set of labels, x ∈ ΛS , s in S, and f a function which takes x
as an input, we might denote f(x) = s as a simplification of f(x) = xs. For
G a digraph, we denote by V (G) the set of its vertices and by A(G) the set
of its arcs. Let G,G′ be two digraphs, we denote G ⊆ G′ if and only if G is
an induced subdigraph of G′, that is V (G) ⊆ V (G′) and u, v ∈ V (G) implies
(u, v) ∈ A(G) ⇔ (u, v) ∈ A(G′). For f : A → B, and C ⊆ A, we denote f |C
the function defined over f |C : C → B such that f |C(x) = f(x) for all x ∈ C.
For x ∈ ΛS , for any function f : R → S (for some set R), we define x ◦ f as
(x◦f)r = xf(r), for all r ∈ R. For X = (x1, x2, . . . , xk) a sequence of xi ∈ ΛS , we
define X ◦ f as the sequence (x1 ◦ f, x2 ◦ f, . . . , xk ◦ f). In most of our examples,
the alphabet Λ will be B and the set S finite, hence x ∈ ΛS will be considered
as a Boolean vector (according to some order on S).

2 Definitions

2.1 Automata Networks

ANs are composed by a set S of automata. Each automaton in S, or node, is
at any time in a state in Λ. Gathering those isolated states into a vector of
dimension |S| provides us with a configuration of the network. More formally,
a configuration of S over Λ is a vector in ΛS . The state of every automaton is
bound to evolve as a function of the configuration of the entire network. Each
node has a unique function, called a local function that is predefined and does not
change over time. A local function is thus a function f defined over f : ΛS → Λ.
An AN is described as a set which provides a local function to every node in the
network. Formally, an automata network F is a set of local functions fs over S
and Λ for every s ∈ S.

Example 1. For Λ = B, and S = {a, b, c}, let F be a Boolean AN with local
functions fa(x) = ¬a, fb(x) = a ∨ ¬c, and fc(x) = ¬c ∧ ¬a.

170 K. Perrot et al.

a

cb

000 001

100

010

101

011

110 111

Fig. 1. (Left) Interaction digraph and of (right) dynamics of the network of Example 1

The configuration of an AN is updated using the local functions. The protocol
by which the local functions are applied is called its update schedule. Many
different update schedules exist (actually, there are an infinite number of these),
and it is well known that changing the update schedule of ANs can change the
obtained dynamics [3,14,17,21]. The update schedule used in this paper is the
parallel update schedule, in which every node udpates its value according to its
local function at each time step. Thus, considering a configuration x of an AN
F , the update F (x) of F over x is the configuration such that for all s ∈ S,
F (x)s = fs(x), where fs is the local function assigned to s in F .

Example 2. Following the previous example, we can see that F (000) = 111,
F (010) = 111 and that F (111) = 010.

ANs are usually represented by the influence that automata hold on each
other. As such the visual representation of an AN is a directed graph, called an
interaction digraph, whose nodes are the automata of the network, and arcs are
the influences that link the different automata. Formally, s influences s′ if and
only if there exist two configurations x, x′ such that ∀r ∈ S, r
= s ⇐⇒ xr = x′

r,
and F (x)s′
= F (x′)s′ . From this, we define the interaction digraph of F as the
directed graph with nodes S such that (s, s′) is an arc of the digraph if and only
if s influences s′. For instance the interaction digraph of the network developed
in Example 1 is depicted in Fig. 1.

To encapsulate the entire behavior of the network, one needs to enumerate all
the possible configurations the network, namely the elements of ΛS , and describe
the global update function upon this set. This is often done via another graphical
representation, which is another digraph, called the dynamics of the network.
Intuitively, this graph defines an arc from x to x′ if and only if the update of
the network over the configuration x results in the configuration x′. Formally,
the dynamics of F can be represented as the digraph G with vertex set ΛS , such
that (x, x′) is an arc in G if and only if F (x) = x′. The dynamics of the network
developed in Example 1 is presented in Fig. 1.

The dynamics of a network is a large object. A commonly studied part of
this object is called the attractors of the networks. An attractor is a sequence of
configurations which constitutes a cycle in the dynamics of the network. Alter-
natively, the attractors of a network can be defined as the set of non trivial

On the Complexity of Acyclic Modules in Automata Networks 171

strongly connected components of its dynamics. Formally, an attractor of F is a
connected component of the subdigraph GL ⊆ G, such that x is a node in GL if
and only if there exists k ∈ N \ {0} such that F k(x) = x. Notice that, classically
in the domain of ANs, An attractor of size one is called a fixed point, whereas
an attractor of size greater than one is called a limit cycle.

Example 3. In our example, the attractors of F are the configurations 010 and
111 since they verify F 2(010) = 010 and F 2(111) = 111. For any other con-
figuration, updating the network more than two times changes the state of the
network to 010 or 111. Alternatively, the configuration 010 and 111 form the
only non trivial strongly connected component of the dynamics of this network.

2.2 Modules

Informally, modules can be described as ANs with inputs. More formally, for
a given module, we introduce a new set of labels, usually denoted I, which
contains the inputs of the module. By convention, inputs will be denoted with
Greek letters. A local function of a module does not only depend on the states of
the automata of the network, but also on the evaluations of the inputs. Inputs are
not automata, and do not have a state; but it is interesting to suggest that inputs
are added nodes of the network that do not admit local functions. Formally, by
considering S and I as sets of labels, and Λ as an alphabet, a module is a set
which, for every s ∈ S, defines a local function fs : ΛS∪I → Λ.

Example 4. For Λ = B, S = {a, b, c} and I = {α, β, γ} let M be a module with
local functions fa(x, i) = ¬b∨α, fb(x, i) = a∨¬c∨β∨¬α, and fc(x, i) = ¬c∧¬γ.

The digraph representation of a module is similar to that of an AN; the
inputs are added for clarity as incident arrows to the nodes they influence. For
instance, the module of Example 4 is illustrated in Fig. 3. As well, updating
a module over the parallel update schedule is similar to updating an AN. The
inputs are introduced with specific notations which are detailed below. Let x
and i be configurations over S and I respectively. The update of a module M
over x and i, denoted M(x, i), is defined as a configuration over S such that, for
all s ∈ S, M(x, i)s = fs(x, i), where fs is the local function assigned to s in M .

Example 5. Let us update the module M over the node configuration x = 011
and the input configuration i = 000. We compute fa(x, i) = ¬1∨0 = 0, fb(x, i) =
0 ∨ ¬1 ∨ 0 ∨ ¬0 = 1 and fc(x, i) = ¬1 ∧ ¬0 = 0, thus giving M(011, 000) = 010.

Since it will be convenient to update a module over multiple iterations at
once, we will generally consider a sequence of input configurations of the form
(i1, i2, . . . , im). For α, β, . . . the inputs of the considered module, we will denote
for convenience α1, β1, . . . the evaluation of those inputs in the configuration
i1, and so on, denoting αk, βk, . . . the evaluation of the respective inputs in
the configuration ik. We will denote by M(x, (i1, i2, . . . , im)) the execution of
m updates of the module M starting with configuration x, taking the input
configuration ik at update number k. Formally, it is defined recursively as:

M(x, (i1, i2, . . . im)) = M(M(x, i1), (i2, . . . , im)), with M(x, ∅) = x.

172 K. Perrot et al.

a

cb

αα

β

γ

d eδ

a

cb

αα

β

γ

d e

Fig. 2. Illustration of the wiring of Example 7. Interaction digraphs of the modules
(left) M, (center) M

′
and (right) M

′′
.

2.3 Wirings

Modules are a formalism of composition and decomposition of ANs. As such,
we define the process of composing modules together as wiring. Wirings exist in
two forms. One is recursive, and proposes the rearrangement of a single module
by connecting inputs of the module to itself. The second type of wiring is non-
recursive, and defines the combination of two modules into one, connecting inputs
of one module to the nodes of the other. When an input is connected, any
function depending on the value of that input relies on the state of the connected
node instead. Those two sorts of wirings were proven to be universal to compose
any network from elementary parts [20]. Wiring operations are defined upon
an object that specifies the operated connections, usually denoted ω which is a
partial function defined from a subset of inputs of the second module to nodes
of the first.

Recursive Wiring. Let M be a module with label sets S and I which, for every
s ∈ S, defines the local function fs. For ω : I � S a partial function, we define
�ω M the module which, for every s ∈ S, defines the local function f ′

s such that:

∀x ∈ ΛS∪I\dom(ω), f ′
s(x) = fs(x◦ω̂), with ω̂(k) =

{
ω(k) if k ∈ dom(ω)
k if k ∈ S ∪ I \ dom(ω) .

Example 6. For Λ = B, S = {a, b, c} and I = {α, β, γ} let M be a module with
local functions fa(x, i) = ¬b∨α, fb(x, i) = a∨¬c∨β∨¬α, and fc(x, i) = ¬c∧¬γ.
Let us define a partial function ω : I → S such that dom(ω) = {α, γ}, and
ω(α) = c and ω(γ) = a. The result of the recursive wiring �ω M is a module
with label sets S′ = S and I ′ = {β} with local functions f ′

a(x, i) = ¬b ∨ c,
f ′

b(x, i) = a ∨ ¬c ∨ β ∨ ¬c, and f ′
c(x, i) = ¬c ∧ ¬a.

Non-recursive Wiring. Let M and M ′ be two modules with respective label
sets S,I, and S′,I ′. W e denote fs and f ′

s′ the local functions defined respectively
in M and M′ for every s ∈ S aand s′ ∈ S′. For ω : I ′

� S a partial function, we
define M �ω M ′ the module with label sets S ∪ S′ and I ∪ I ′ \ dom(ω) which,
for every s ∈ S ∪ S′, defines the local function f ′′

s such that:

On the Complexity of Acyclic Modules in Automata Networks 173

∀x ∈ ΛS , f ′′
s (x) =

{
fs(x|S∪I) if s ∈ S
f ′

s(x ◦ ω̂) if s ∈ S′ with ω̂(k) =
{

ω(k) if k ∈ dom(ω)
k if k ∈ S

,

for S = S ∪ S′ ∪ I ∪ I ′ \ dom(ω).

Example 7. For Λ = B, S = {a, b, c} and I = {α, β, γ}, let M be a module with
local functions fa(x, i) = ¬b∨α, fb(x, i) = a∨¬c∨β∨¬α, and fc(x, i) = ¬c∧¬γ.
Let also be S′ = {d, e}, I ′ = {δ} and M ′ another module with local functions
f ′

d(x, i) = ¬d∨e∨δ and f ′
e(x, i) = ¬e∨d. Let ω : I ′ → S be the function such that

ω(δ) = b. The result of the non-recursive wiring M �ω M ′ is the module with
sets S′′ = {a, b, c, d, e} and I ′′ = {α, β, γ} with local functions f ′′

a (x, i) = ¬b ∨ α,
f ′′

b (x, i) = a ∨ ¬c ∨ β ∨ ¬α, f ′′
c (x, i) = ¬c ∧ ¬γ, f ′′

d (x, i) = ¬d ∨ e ∨ b and
f ′′

e (x, i) = ¬e ∨ d. (See an illustration in Fig. 2.)

3 Acyclicity

3.1 Acyclic Automata Networks

Acyclicity is a property of the interaction digraph of the considered AN; it means
that no node of the network influences itself, neither by a direct loop nor through
the action of any cycle that would include this node. Acyclic ANs have been one
of the first families of ANs to be studied and characterised [21]. Their dynamical
behavior is trivial: there is only one fixed point, which attracts every other
configuration. This is true under the parallel update schedule as well as any
other schedule which would eventually update every node a minimum amount
of time for the stabilisation to propagate. This early result led to the simple
conclusion that cycles are essential to the complexity of their dynamics.

3.2 Acyclic Modules

Acyclicity. A module M is acyclic if its interaction digraph is acyclic.

Example 8. For Λ = B, S = {a, b, c} and I = {α, β, γ} let M be a module with
local functions fa(x, i) = α, fb(x, i) = a ∨ β ∨ ¬α, and fc(x, i) = ¬b ∧ a ∧ ¬γ. M
is acyclic. (See an illustration in Fig. 3.)

The dynamics of this family of objects is simple enough to be studied, and
complex enough to provide insights into the general dynamics of ANs. It is indeed
clear that every AN can be decomposed into a recursively wired acyclic module.
This can be done by taking a feedback arc set of the interaction digraph of the
network, and producing a module that replaces every arc in the set by an input.

As an acyclic module has no loop or cycle in its influences, it can support no
long lasting memory used for computation. As such the behavior of any node in
the network can be understood as a function of only the evaluation of the inputs
in its last iterations. This function is called an output function and how much it
must look in the past to make its prediction is called the delay of the function.

174 K. Perrot et al.

a

cb

αα

β

γ a

cb

αα

β γ

Fig. 3. Interaction digraph of (left) the module of Example 4, (right) the acyclic module
of Example 8.

For M a module with k inputs, an output function O with delay m is a
function defined over a sequence of inputs (i1, i2, . . . , im). Each node of a network
defines its own output function, similarly to how it defines a local function. The
output function of a node always has minimal delay and will depend on the
output functions defined by the nodes which influence it. In other terms, if node
a influences node b, then whatever output function which predicts the value of
a based only on inputs will be useful to predict the evaluation of b one iteration
later. As such b does not directly depend on the output function of a, but on
the output function of a with incremented delay.

Output functions are sufficient to describe the behavior of the entire module
from the inputs after a given amount of time. This fact is illustrated by the
Property 1 below.

Node Output. Let M be an acyclic module. For every s ∈ S, we define the
output function of s, denoted Os, as the output function with minimal delay m
such that for any sequence of inputs J = (i1, i2, . . . , im)and any configuration x,
M(x, J)s = Os(J).

Example 9. For Λ = B, S = {a, b, c} and I = {α, β, γ} let M be a module with
local functions fa(x, i) = α, fb(x, i) = a∨β ∨¬α, and fc(x, i) = ¬b∧a∧¬γ. The
module M verifies the following output functions : Oa = α1, which has delay 1,
Ob = α2 ∨ β1 ∨ ¬α1, which has delay 2, and Oc = ¬α3 ∧ ¬β2 ∧ α2 ∧ α2 ∧ ¬γ1,
which has delay 3.

Property 1. Let M be an acyclic module. For every s ∈ S, s has one and only
one output function Os.

Property 1 can be further refined to propose the following result, which states
that two networks have the same attractors if and only if the modules they
can be decomposed into have the same number of inputs and the same output
functions on the nodes on which those inputs are wired. As such, modules can
be considered as black boxes which are to be considered equivalent in their limit
behavior, as long as they share the same output functions, according to some
bijection between their inputs.

Theorem 1. Let M and M ′ be two acyclic modules, with T and T ′ subsets of
their nodes such that |T | = |T ′|. If there exists g a bijection from I to I ′ and h a

On the Complexity of Acyclic Modules in Automata Networks 175

bijection from T to T ′ such that for every s ∈ T , Os and O′
h(s) have same delay,

and for every input sequence J with length the delay of Os,

Os(J) = O′
h(s)(J ◦ g−1)

then for any function ω : I → T , the networks �ω M and �h◦ω◦g−1 M ′ have
isomorphic attractors (up to the renaming of automata given by h).

Output functions are a characterisation of the behavior of acyclic modules
which is enough to understand their limit dynamics under parallel schedule. This
characterisation behaves in expected ways under non-recursive wirings. Taking
two acyclic modules and wiring them non-recursively makes a module whose
output functions are deducible from the output functions of the initial acyclic
module. We now state a result which provides an upper bound on the number
of attractors of each size of an AN, which is wired from a module with k inputs.

Theorem 2. Taking an acyclic module with k inputs and wiring all inputs recur-
sively gives an AN. Let us denote a(k, c) the number of attractors of size c of its
dynamics. We state a(k, c) ≤ A(k, c), with:

A(k, 1) = |Λ|k and A(k, c) = |Λ|kc −
∑

c′<c, c′|c
A(k, c′).

The smallest k which can be provided for any AN is equal to the minimum
feedback arc set of the network. As such this result is very similar to a previous
result of [2,4], which states an upper bound on the total number of attractors
depending on the size of a positive feedback arc set. Though the global bound
with a positive feedback arc set would be stronger, the present result is different
as it operates on parallel update schedule and provides different bounds on dif-
ferent sizes of attractors, where the previous result offered a bound on the total
count of attractors under asynchronous update schedule.

3.3 One-to-One Modules

A module with only one input has the particularity of being recursively wired
in a linear amount of possible ways. That is, the only degree of freedom in the
wiring is the choice of the node which will serve as output. Let us consider a
module with only one input, and let us consider e ∈ S as the designated output
node of the module. In this context we will denote � M as the AN obtained by
wiring the input of the module to its designated output. Furthermore, the output
function Oe will sometimes be denoted O, as the designated output function of
the module. Such an acyclic module with only one input and a designated output
is called a one-to-one module.

Theorem 3. Let M be a one-to-one module. The one-to-one module Mmin with
a minimum number of nodes and which defines the same output function as M
is of size d, for d the delay of the output function of M .

An example of the application of Theorem 3 is illustrated in Fig. 4. This con-
struction is polynomial in time, and bears strong resemblances with the objects
known as Feedback Shift Registers [11].

176 K. Perrot et al.

a

b

c

d

α

α

α

= ¬α

= ¬α ∨ ¬a

= ¬a ∧ b ∧ d

= α ∨ a

a

b

cα

= α

= a

= a ∧ b

Fig. 4. Illustration of Theorem 3. Both modules consider c as their output node, and
display the same output function O = α2 ∧ α3The module on the right is optimal, as
3 is the delay of its output function.

4 Complexity Results

This section presents complexity results that have been obtained around out-
put functions, and the difficulty of the analysis of the dynamics of acyclic
modules after being recursively wired into a complete network. Remark that
these questions have been widely addressed in the context of threshold Boolean
ANs [1,13,18]. Such a wiring will sometimes be denoted as a complete recursive
wiring of the module. A module is encoded into the input of a decision prob-
lem as the list of its local functions written in propositional logic. As such the
computation of the output functions of an acyclic module is comparable to the
computation of a circuit.

Let us provide a few decision problems on the dynamics of a network obtained
from a recursively wired acyclic module.

� Acyclic Module Attractor Problem
Input: An acyclic module M with k inputs and n nodes, a function ω

which defines a complete recursive wiring over M , and a number
c encoded in unary.

Question: Does there exist an attractor of size c in the dynamics of �ω M?

� One-to-one Module Attractor Problem
Input: A one-to-one module M with n nodes, a function ω which defines

a complete recursive wiring over M , and a number c encoded in
unary.

Question: Does there exist an attractor of size c in the dynamics of �ω M?

� Acyclic Module Fixed Point Problem
Input: An acyclic module M with k inputs and n nodes, and a function

ω which defines a complete recursive wiring over M .
Question: Does there exist a configuration x such that �ω M(x) = x?

� One-to-one Module Fixed Point Problem
Input: A one-to-one module M with n nodes, and a function ω which

defines a complete recursive wiring over M .
Question: Does there exist a configuration x such that �ω M(x) = x?

On the Complexity of Acyclic Modules in Automata Networks 177

Those four problems are variations of the same question under different sets
of constraints. The first problem, the Acyclic Module Attractor Problem, gen-
eralises the other three decision problems, while the One-to-one Module Fixed
Point Problem is a specific case of the other three decision problems. We provide
our complexity analysis of those problems in a way that mirrors this diamond-like
structure.

Theorem 4. The Acyclic Module Attractor Problem can be solved in time
O(f(k×c)q(n)) for some function f and q a polynomial, i.e. it is fixed parameter
tractable.

Sketch of Proof. We obtain this by iterating all of the possible input sequences
of size c. We execute the network on each sequence and check if the outputs
correspond to the given input. This process scales polynomially with the size of
the network, but exponentially with the size of the attractor and the number of
inputs. ��
Theorem 5. The One-to-one Module Attractor Problem is NP-complete.

Sketch of Proof. We provide a reduction from the SAT problem which for any
formula with m variables, constructs a module of size 3m + 1. The first 3m
nodes encode the input and the last node checks the evaluation. If at any point
the formula is evaluated at false or if the encoding is wrong, the whole network
stabilises to a fixed point. If the encoding is correct and the evaluation positive,
the configuration will shift in the network, providing an attractor of size 3m+1.
The existence of this attractor is proven equivalent to the satisfiability of the
formula. ��
Theorem 6. The Acyclic Module Fixed Point Problem is NP-complete.

Sketch of Proof. We provide a reduction from the SAT problem. In this reduc-
tion, the obtained module will stabilise only if a given node, which computes a
SAT formula, has constant value 1. ��
Corollary 1. The One-to-one Module Fixed Point Problem is in P.

Sketch of Proof. This is an application of Theorem 4. ��
The above stated results imply that the size of the network is not a meaningful

parameter in the difficulty of the task of finding attractors. Thereom 4 shows that
the two parameters which apply this effect are the size of the desired attractor
and the number of inputs the network bears when seen as an acyclic module. In
other terms this second parameter is the level of interconnectivity of the network.
Theorems 5 and 6 prove that this caracterisation is tight. Together, these four
theorems provide a new perspective on a known fact; that cycles in ANs are
crucial for complexity to arise.

178 K. Perrot et al.

� Acyclic Module Output Construction Problem
Input: A set {M1,M2, . . . ,M�} of acyclic modules, and O an output

function encoded in a lookup table.
Question: Does there exist a set of non-recursive wirings ω which can con-

struct an acyclic module from M1,M2, . . . ,M� such that O is an
output function of the obtained module?

Theorem 7. The Acyclic Module Output Construction Problem is NP-
complete.

Sketch of Proof. We provide a reduction from the SAT problem. We ask for
the construction of an output function via the wiring of two modules with a
unique constant function ‘0’ and ‘1’ respectively, and a bigger module which
executes a computation from its inputs based on the formula, such that the
target output function is obtained by non-recursive wirings if and only if the
formula is satisfiable. ��

5 Conclusion

Automata Networks are complex systems, the exhaustive study of which requires
an amount of resources exponential in the size of the network. By defining and
studying acyclic modules we propose an innovative way of approaching this ques-
tion. Theorem 1 proposes the reduction of the limit dynamic of a network to the
output functions of an acyclic module which composes it. We think that this
result, alongside with Theorem 3 which is a direct application of it, provides an
interesting way of categorising networks depending on their output functions.
Also presented are Theorem 2 which proposes a bound on the total number
of attractors depending on the number of inputs in an acyclic module, and the
results listed in Sect. 4, which state a range of complexity results on acyclic mod-
ules. The set of results proposed in this paper describe, in our opinion, a good
picture of the limits and possibilities that come from studying acyclic modules.

In future works, we plan to expand this formalism to more general update
schedules, and to propose a version of Theorem 3 which would generalise to
modules with more than one input and one output. We also plan to apply those
tools to optimise large automata networks, such as those designed and studied
in biology applications.

Acknowledgments. The works of Kévin Perrot and Sylvain Sené were funded mainly
by their salaries as French State agents, affiliated to Aix-Marseille Univ., Univ. de
Toulon, CNRS, LIS, UMR 7020, Marseille, France (both) and to Univ. Côte d’Azur,
CNRS, I3S, UMR 7271, Sophia Antipolis, France (KP), and secondarily by ANR-18-
CE40-0002 FANs project, ECOS-Sud C16E01 project, STIC AmSud CoDANet 19-
STIC-03 (Campus France 43478PD) project.

References

1. Alon, N.: Asynchronous threshold networks. Graphs Combin. 1, 305–310 (1985).
https://doi.org/10.1007/BF02582959

https://doi.org/10.1007/BF02582959

On the Complexity of Acyclic Modules in Automata Networks 179

2. Aracena, J.: Maximum number of fixed points in regulatory Boolean networks. Bull.
Math. Biol. 70, 1398–1409 (2008). https://doi.org/10.1007/s11538-008-9304-7

3. Aracena, J., Gómez, L., Salinas, L.: Limit cycles and update digraphs in Boolean
networks. Discrete Appl. Math. 161, 1–12 (2013)

4. Aracena, J., Richard, A., Salinas, L.: Number of fixed points and disjoint cycles in
monotone Boolean networks. SIAM J. Discrete Math. 31, 1702–1725 (2017)

5. Bernot, G., Tahi, F.: Behaviour preservation of a biological regulatory network
when embedded into a larger network. Fund. Inform. 91, 463–485 (2009)

6. Biane, C., Delaplace, F.: Causal reasoning on Boolean control networks based on
abduction: theory and application to cancer drug discovery. IEEE/ACM Trans.
Comput. Biol. Bioinform. 16, 1574–1585 (2019)

7. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence
of fission yeast. PLoS One 3, e1672 (2008)

8. Delaplace, F., Klaudel, H., Melliti, T., Sené, S.: Analysis of modular organisation
of interaction networks based on asymptotic dynamics. In: Gilbert, D., Heiner, M.
(eds.) CMSB 2012. LNCS, pp. 148–165. Springer, Heidelberg (2012). https://doi.
org/10.1007/978-3-642-33636-2 10

9. Demongeot, J., Goles, E., Morvan, M., Noual, M., Sené, S.: Attraction basins as
gauges of robustness against boundary conditions in biological complex systems.
PLoS One 5, e11793 (2010)

10. Demongeot, J., Noual, M., Sené, S.: Combinatorics of Boolean automata circuits
dynamics. Discr. Appl. Math. 160, 398–415 (2012)

11. Elspas, B.: The theory of autonomous linear sequential networks. IRE Trans. Cir-
cuit Theory 6(1), 45–60 (1959)

12. Feder, T.: Stable networks and product graphs. Ph.D thesis, Stanford Univ. (1990)
13. Floreen, P., Orponen, P.: Counting stable states and sizes of attraction domains in

Hopfield nets is hard. In: Proceedings of the of IJCNN 1989, pp. 395–399 (1989)
14. Goles, E., Salinas, L.: Comparison between parallel and serial dynamics of Boolean

networks. Theor. Comput. Sci. 396, 247–253 (2008)
15. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic

nets. J. Theor. Biol. 22, 437–467 (1969)
16. Mendoza, L., Alvarez-Buylla, E.R.: Dynamics of the genetic regulatory network for

Arabidopsis thaliana flower morphogenesis. J. Theor. Biol. 193, 307–319 (1998)
17. Noual, M., Sené, S.: Synchronism versus asynchronism in monotonic Boolean

automata networks. Nat. Comput. 17(2), 393–402 (2017). https://doi.org/10.1007/
s11047-016-9608-8

18. Orponen, P.: Neural networks and complexity theory. In: Havel, I.M., Koubek,
V. (eds.) MFCS 1992. LNCS, vol. 629, pp. 50–61. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55808-X 5

19. Pardo, J., Ivanov, S., Delaplace, F.: Sequential reprogramming of biological network
fate. In: Bortolussi, L., Sanguinetti, G. (eds.) CMSB 2019. LNCS, vol. 11773, pp.
20–41. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-31304-3 2

20. Perrot, K., Perrotin, P., Sené, S.: A framework for (de)composing with boolean
automata networks. In: Durand-Lose, J., Verlan, S. (eds.) MCU 2018. LNCS, vol.
10881, pp. 121–136. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
92402-1 7

https://doi.org/10.1007/s11538-008-9304-7
https://doi.org/10.1007/978-3-642-33636-2_10
https://doi.org/10.1007/978-3-642-33636-2_10
https://doi.org/10.1007/s11047-016-9608-8
https://doi.org/10.1007/s11047-016-9608-8
https://doi.org/10.1007/3-540-55808-X_5
https://doi.org/10.1007/978-3-030-31304-3_2
https://doi.org/10.1007/978-3-319-92402-1_7
https://doi.org/10.1007/978-3-319-92402-1_7

180 K. Perrot et al.

21. Robert, F.: Discrete Iterations: A Metric Study. Springer, Heidelberg (1986).
https://doi.org/10.1007/978-3-642-61607-5

22. Siebert, H.: Dynamical and structural modularity of discrete regulatory networks.
In: Proceedings of COMPMOD 2009, volume 6 of EPTCS, pp. 109–124 (2009)

23. Thomas, R.: Boolean formalization of genetic control circuits. J. Theor. Biol. 42,
563–585 (1973)

https://doi.org/10.1007/978-3-642-61607-5

Eternal Connected Vertex Cover Problem

Toshihiro Fujito(B) and Tomoya Nakamura

Toyohashi University of Technology, Toyohashi 441-8580, Japan
fujito@cs.tut.ac.jp, w-nakamura@algo.cs.tut.ac.jp

Abstract. A new variant of the classic problem of Vertex Cover
(VC) is introduced. Either Connected Vertex Cover (CVC) or
Eternal Vertex Cover (EVC) is already a variant of VC, and Eter-
nal Connected Vertex Cover (ECVC) is an eternal version of CVC,
or a connected version of EVC. A connected vertex cover of a connected
graph G is a vertex cover of G inducing a connected subgraph in G.
CVC is the problem of computing a minimum connected vertex cover.
For EVC a multi-round game on G is considered, and in response to
every attack on some edge e of G, a guard positioned on a vertex of G
must cross e to repel it. EVC asks the minimum number of guards to
be placed on the vertices of a given G, that is sufficient to repel any
sequence of edge attacks of an arbitrary length.

ECVC is EVC in which any configuration of guards, that is the set
of vertices occupied by them, needs to be kept connected in each round.
This paper presents, besides some basic structural properties of ECVC,
1) a polynomial time algorithm for ECVC on chordal graphs, 2) NP-
completeness of ECVC on locally connected graphs, 3) a complete char-
acterization of ECVC on cactus graphs, block graphs, or any graphs
in which every block is either a simple cycle or a clique, and 4) a 2-
approximation algorithm for ECVC on general graphs.

Keywords: Eternal vertex cover · Connected vertex cover · Chordal
graphs

1 Introduction

In this paper we introduce a new computational problem called Eternal Con-
nected Vertex Cover (ECVC), and as the name suggests, it is a variant
of both Eternal Vertex Cover (EVC) and Connected Vertex Cover
(CVC), where each of them is in turn a variant of the classic problem of Ver-
tex Cover (VC). A vertex subset S ⊆ V of a graph G = (V,E) is called a
vertex cover of G when every edge in G is incident to some vertex of S. VC is
the problem of computing the size of a minimum vertex cover of G, called the
vertex cover number τ(G) of G.

EVC is a variant of VC with game-theoretic flavor. The game begins with
some number of guards placed on vertices of an input graph G = (V,E) (possibly

This work is supported in part by JSPS KAKENHI under Grant Number 17K00013.

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 181–192, 2020.
https://doi.org/10.1007/978-3-030-59267-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_16&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_16

182 T. Fujito and T. Nakamura

more than one guard on one vertex), thereafter proceeding in rounds without
changing the number of guards being used. In each round, any (but only one)
edge e ∈ E is subject to an attack by the enemy, and each guard positioned
at any u ∈ V may remain there or move to a vertex v adjacent to u passing
an edge {u, v} in response to such an attack. Any attack on an edge can be
defended if at least one guard moves to a neighboring vertex by passing over
the attacked edge within the corresponding round, but when no guard can do
so, the attack on G succeeds and the game is over. The minimum number of
guards sufficient to keep on protecting G by indefinitely repelling any arbitrarily
long sequence of edge attacks is called the eternal vertex cover number τ∞(G)
of G. Following the presentation of [3], let C be a family of vertex covers of G
of the same cardinality. It is intended that each C ∈ C specifies a configuration
of guards, that is the set of vertices occupied by guards. If a team of guards can
successfully keep on defending G from an indefinitely long sequence of arbitrary
edge attacks by changing its configurations chosen only from C, starting with an
arbitrary one, C is called an eternal vertex cover class and a vertex cover in C an
eternal vertex cover, of G. The eternal vertex cover number τ∞(G) of G is then
the minimum cardinality of an eternal vertex cover of G. EVC was introduced
by Klostermeyer and Mynhardt [16] and was further studied by Fomin et al. [11]
and others. Closely related, earlier introduced, and more extensively studied is
the eternal domination (or eternal security) problem, where an arbitrary vertex
is attacked, instead of an edge, and it is required that some guard moves onto
the vertex to repel it in each round; see for instance [1,5,6,13,14,16,18].

Connected Vertex Cover (CVC) is another variant of VC, where a
vertex cover inducing a connected subgraph of G is sought in a given connected
graph G. Such a vertex cover is called a connected vertex cover (cvc), and the
connected vertex cover number τc(G) is the minimum cardinality of a cvc of G.
CVC was introduced by Garey and Johnson [12] along with its NP-hardness. The
problem is known to have some applications in the domain of wireless network
design, and it was also indicated that CVC can be used to solve the Top Right
Access point minimum length corridor problem (see [9]).

The new problem which we call Eternal Connected Vertex Cover
(ECVC) is a variation of EVC where every configuration in an eternal vertex
cover class must be a cvc of G for a connected graph G, and such a cvc is called
an eternal connected vertex cover (ecvc) of G. The eternal connected vertex cover
number τ∞

c (G) of G is then the minimum cardinality of an ecvc of G. ECVC is
supposed to arise as a natural problem in the context of graph protection where
tight communication is needed among all the participating mobile guards for
their coordinated moves. In fact a connected version of the eternal dominating
set is already introduced, and some upper bounds on the minimum size of an
eternal connected dominating set were obtained in [19].

1.1 Previous Related Work

Klostermeyer and Mynhardt showed in [17] that

Eternal Connected Vertex Cover Problem 183

– τ∞(Cn) = τ(Cn) = �n/2� for a cycle Cn on n vertices with n ≥ 3,
– When G is a tree on n vertices with n ≥ 2, τ∞(G) is one more than the

number of its internal vertices,
– τ(G) ≤ τ∞(G) ≤ 2τ(G) for any graph G, and both of these bounds are tight,
– τ∞(G) = τ(G) when G is a complete graph, Peterson graph, Km�Kn, and

Cm�Cn (where � represents the box product),
– τ∞(G) = τ(G) or τ∞(G) = τ(G) + 1 for n × m grid graphs depending on

n and m.

while giving a characterization for graphs G for which τ∞(G) = 2τ(G) holds
(see [15] for more bounds on τ∞(G) and related graph parameters). The com-
putational complexity of EVC (for general graphs) was investigated by Fomin
et al. [11], and it was shown that

– the decision version of EVC is NP-hard but fixed parameter tractable when
parameterized by the number of guards,

– EVC is approximable within a factor of 2 in polynomial time.

Following the work of Klostermeyer and Mynhardt [17], it was further pur-
sued and achieved by Babu et al. [3] to characterize a class of graphs G having
τ∞(G) = τ(G), and it was shown that

– one can decide whether τ∞(G) = τ(G) or not in polynomial time when G is
a chordal graph,

– one can compute τ∞(G) in polynomial time when G is a biconnected chordal
graph, and

– when graphs are locally connected, the decision version of EVC is NP-
complete, and it is NP-hard to approximate τ∞(G) within any factor less
than 10

√
5 − 21 ≈ 1.36.

As for CVC,

– it is NP-hard even if graphs are planar bipartite of maximum degree 4 [10],
planar biconnected of maximum degree 4 [21], 3-connected [24], or k-regular
with k ≥ 4 [20], and

– nontrivial cases in which τc(G) is polynomially computable are known only
for graphs of maximum degree 3 [23] and for chordal graphs [9].

1.2 Our Contribution

This paper introduces a new variant of Vertex Cover, Connected Vertex
Cover, and Eternal Vertex Cover, which we call Eternal Connected
Vertex Cover (ECVC). We present, besides some basic structural properties
of ECVC, 1) a polynomial time algorithm for ECVC on chordal graphs, 2) NP-
completeness of the decision version of ECVC on locally connected graphs, 3)
a complete characterization of ECVC on cactus graphs, block graphs, or any
graphs in which every block is either a simple cycle or a clique, and 4) a 2-
approximation algorithm for ECVC on general graphs.

184 T. Fujito and T. Nakamura

Notation and Definitions. Extending the notation τ(G),τc(G),τ∞(G), and
τ∞
c (G) introduced earlier for a graph G = (V,E), let τ(G;U) (τc(G;U), resp.)

for U ⊆ V denote the minimum cardinality of a vc (cvc, resp.) C of G such
that U ⊆ C; that is, τ(G;U) = min{|C| | C is a vc of G with U ⊆ C} and
τc(G;U) = min{|C| | C is a cvc of G with U ⊆ C}. Notice that τc(G;U) ≥ τc(G)
but τc(G;U)
= τc(G) in general when U
= ∅. Similarly, τ∞

c (G;U) is the mini-
mum cardinality of an eternal connected vertex cover of G in a class C such that
U ⊆ C for any C ∈ C. Thus, τ∞

c (G;U) is the minimum number of guards needed
to protect all the edges of G indefinitely while maintaining their configuration
always connected and all the vertices of U always occupied by them.

2 Some Basic Properties of Eternal Connected Vertex
Cover

We start with a fundamental relation between CVC and ECVC. It was shown
in [17] that, for any cvc C of G, all the edges of G can be eternally protected by
(|C| + 1) guards.

Proposition 1. For any connected vertex cover C of any connected graph G,
all the edges of G can be eternally protected by (|C| + 1) guards in such a way
that all the vertices in C are always occupied by guards. In particular,

τ∞
c (G) ≤ τc(G) + 1.

So, since τ∞
c (G) ≥ τc(G) obviously, the question to answer is whether

τ∞
c (G) = τc(G) or τ∞

c (G) = τc(G) + 1. It is also rather obvious that, if
τ∞
c (G) = τc(G), there must exist a minimum cvc containing v for each vertex v

(i.e., τc(G; {v}) = τc(G)). More generally,

Lemma 1. Let G = (V,E) be a connected graph and U ⊆ V . If τ∞
c (G;U) =

τc(G;U), then τc(G;U) = τc(G;U ∪ {v}) for every vertex v ∈ V − U .

Proof. Let C be an ECVC class such that every configuration of C is an ecvc
of cardinality τc(G;U) containing U . There must exist a configuration Cv ∈ C
containing v for any v ∈ V −U since, otherwise, an attack on an edge e incident
to v cannot be defended by C; some guard must pass e to protect e, implying
a guard must be positioned on v after (or before) the attack. Therefore, there
must exist a cvc of size τc(G;U) containing v. �
Let us call a vertex of a graph G forbidden if it does not belong to any minimum
cvc of G. In other words, v is a forbidden vertex iff τc(G; {v})
= τc(G), and by
Lemma 1 with U = ∅, the existence of a forbidden vertex gives an immediate
evidence that τ∞

c (G) = τc(G) + 1.
Let us now introduce a basic structural property of connected vertex covers

in light of block decomposition of graphs. For this purpose, let Cut(G) denote
the set of cut vertices in G and V (B) the set of vertices in a block B of G.

Eternal Connected Vertex Cover Problem 185

Lemma 2 ([9]). Let G be a connected graph. Then, C ⊆ V is a cvc of G if and
only if for each block B of G, C ∩V (B) is a cvc of B containing Cut(G)∩V (B).

Corollary 1. τc(G) = τc(G;Cut(G)) and τ∞
c (G) = τ∞

c (G;Cut(G)).

Lemma 2 also implies that any cut vertex belongs to every cvc. It follows that
computation of a minimum cvc of G can be reduced to that of a smallest cvc of
each block B containing all the cut vertices existent in B. That is,

Corollary 2 ([9]). Let G be a connected graph and let Cut(B) = Cut(G)∩V (B)
for a block B of G. Then, C ⊆ V is a minimum cvc of G if and only if for each
block B of G, C ∩ V (B) is a cvc of B of minimum size containing Cut(B).

From Lemma 1 it is clear that for a graph G to have τc(G) = τ∞
c (G), it is

necessary that every vertex of G belongs to some minimum cvc of G, whereas
all of cut vertices must be included in any cvc according to Lemma 2. Therefore,
Lemmas 1 and 2 imply the following necessary condition for τ∞

c (G) = τc(G):

Lemma 3. Let G = (V,E) be a connected graph. If τ∞
c (G) = τc(G), then

τc(G) = τc(G; {v}) for every vertex v ∈ V − Cut(G).

Proof. If τ∞
c (G; Cut(G)) = τc(G; Cut(G)), then τc(G; Cut(G)) = τc(G; Cut(G) ∪

{v}) for every vertex v ∈ V −Cut(G), by Lemma 1. Since τc(G; Cut(G)) = τc(G)
and τc(G; Cut(G) ∪ {v}) = τc(G; {v}) for any v ∈ V − Cut(G) according to
Lemma 2, τ∞

c (G) = τc(G) implies that τc(G) = τc(G; {v}), ∀v ∈ V − Cut(G).

It is interesting to see whether this necessary condition is also sufficient or
not for τ∞

c (G) = τc(G). In fact, in case between τ(G) and τ∞(G), they are not
necessarily equal to each other even if every vertex belongs to some minimum
vertex cover of G; it was instead shown to become sufficient when it is addition-
ally assumed that every minimum vertex cover of G containing all cut vertices
is connected [3].

Theorem 1 ([3]). Let G = (V,E) be a connected graph with |V | ≥ 2. Suppose
every vertex cover of of size τ(G;Cut(G)) containing Cut(G) is connected. Then
τ∞(G) = τ(G) if and only if τ(G;Cut(G) ∪ {v}) = τ(G) for every vertex v ∈
V − Cut(G).

Under the same assumption, it is possible to show that the necessary condition
given in Lemma 3 is sufficient for the case between τc(G) and τ∞

c (G):

Theorem 2. Let G = (V,E) be a connected graph with |V | ≥ 2. Suppose
every vertex cover of of size τ(G;Cut(G)) containing Cut(G) is connected. Then,
τ∞
c (G) = τc(G) if and only if τc(G; {v}) = τc(G) for every vertex v ∈ V −Cut(G).

Proof. Necessity is granted by Lemma 3 without any supposition on G.
So, assume that every vc containing Cut(G) of size τ(G; Cut(G)) is a cvc of G.

Notice that the size of such a vc also equals to τc(G) since τc(G) = τc(G; Cut(G)).
To prove sufficiency, take a family C of all minimum vc’s (cvc’s) containing

186 T. Fujito and T. Nakamura

Cut(G). We will prove in what follows that C is indeed an ECVC class for
G, which implies that τ∞

c (G) = τc(G), if τc(G) = τc(G; {v}) for every vertex
v ∈ V − Cut(G). Let C be any configuration in C, that is, C is a cvc with
Cut(G) ⊆ C of cardinality τc(G). Suppose an edge e = {u, v} is attacked. If
e ⊆ C then it is easy to repel the attack by exchanging the positions of guards
located on u and v within C without changing the current configuration. Of
course e ∩ C
= ∅ as C is a cvc of G, and it suffices to show that G can be
protected from an attack on e when u ∈ C and v
∈ C. Let Cv be a family of
all cvc’s containing Cut(G) ∪ {v} of cardinality τc(G). Then, Cv is a nonempty
subfamily of C since τc(G) = τc(G; {v}),∀v ∈ V − Cut(G). Choose Cv within Cv

such that Cv maximizes |C ∩ Cv| among those in Cv. Let X,Y, and Z denote
C − Cv, Cv − C, and C ∩ Cv, respectively. Then Cut(G) ⊆ Z, and either of
X and Y is an independent set in G since each of C and Cv is a vertex cover of
G. Also notice that |X| = |Y | ≥ 1 since |C| = |Cv| and C
= Cv. Therefore, the
subgraph H = G[X ∪ Y] of G induced by X ∪ Y is a bipartite graph of color
classes X and Y of equal size.

Recall that v ∈ Y and consider the bipartite subgraph Hx of H for x ∈ X,
obtained by removing x and v from H:

Claim. Hx has a perfect matching for any x ∈ X.

Proof (of Claim). For any Y ′ ⊆ Y consider NG(Y ′), the set of vertices adjacent
in G with a vertex in Y ′. Then, NG(Y ′) ⊆ X ∪ Z since C = X ∪ Z is a vc of G.
Consider next NH(Y ′) = NG(Y ′) ∩ X. If |NH(Y ′)| < |Y ′|, then NH(Y ′) ∪ (Y −
Y ′) ∪ Z is a vc of G of size smaller than |Cv| = τc(G), which contradicts our
assumption on G. Therefore, we have |NH(Y ′)| ≥ |Y ′|,∀Y ′ ⊆ Y , and hence, H
has a perfect matching by Hall’s theorem [7].

Let us consider Hx now. The claim holds trivially if Hx is empty. Take
nonempty Y ′ ⊆ Y − {v}, and then |NH(Y ′)| ≥ |Y ′| as already observed for
H. Suppose |NH(Y ′)| = |Y ′| and take C ′

v = NH(Y ′) ∪ (Y − Y ′) ∪ Z. Then, C ′
v

is a vc containing Cut(G) of size |Cv| = τc(G), and hence, it must be a cvc by
the assumption on G. The existence of C ′

v however contradicts our choice of Cv

since C ′
v has a larger overlap with C than Cv does. Therefore, we may conclude

that |NH(Y ′)| ≥ |Y ′| + 1 for any Y ′ ⊆ Y − {v}, and hence, |NHx
(Y ′)| ≥ |Y ′|

and Hx has a perfect matching for any x ∈ X. �
We are now ready to describe how to defend the attack on edge {u, v} within

G, where u ∈ C and v ∈ Y = Cv − C, meanwhile changing configurations from
C to Cv:

Case 1. u ∈ X: Let M denote a perfect matching existent within Hu. The attack
on edge {u, v} can be repelled by moving the guard on u to v and all the other
guards within X to Y − v along the edges of M .

Case 2. u ∈ Z: Since C is a cvc of G there exists a path between u and any
vertex in X in G. Let P be a shortest path within G[C] = G[X ∪Z] connecting u
with some vertex in X, and let x ∈ X be the one nearest to u among the vertices

Eternal Connected Vertex Cover Problem 187

in X. Then, all the vertices of P other than x lie within Z, and suppose P starts
at x and ends at u. Let M now denote a perfect matching existent within Hx. In
response to the attack on {u, v}, move the guard on u to v, shift the positions of
all the guards on P −u including x by one vertex toward the end vertex u along
P . All the guards in X other than x are at the same time moved to Y − {v}
along the edges of M . �
Remark 1. The sufficient condition for τ∞

c (G) = τc(G) proven above can be also
seen to hold by following the proof of Theorem 1 given in [3] and observing that
the EVC class used in it is an ECVC class for G.

The next corollary follows immediately from Theorem 2 (and Proposition 1)
because Cut(G) = ∅ when G is biconnected:

Corollary 3. Let G = (V,E) be a biconnected graph such that every minimum
vertex cover is connected. Then,

τ∞
c (G) =

{
τc(G) if every vertex of G belongs to some minimum cvc,
τc(G) + 1 otherwise.

To illustrate the usefulness of Theorem 1 some graph classes for which every
vertex cover containing all cut vertices is a cvc were focused in [3], and one of
them is a class of locally connected graphs. A graph G is locally connected if
for every vertex v of G, its open neighborhood NG(v) = {u ∈ V | {u, v} ∈ E}
induces a connected subgraph in G. Some well-known graph classes are examples
of locally connected graphs such as biconnected chordal graphs and biconnected
internally triangulated planar graphs. It was observed in [3] that for a connected
graph G every vertex cover S of G with Cut(G) ⊆ S is connected if every block
of G is locally connected. Therefore, the following is immediate from Theorem 2
and Corollary 3:

Corollary 4. Let G = (V,E) be a connected graph with |V | ≥ 2 in which every
block is locally connected. Then,

τ∞
c (G) =

{
τc(G) if τc(G; {v}) = τc(G)for every vertexv ∈ V − Cut(G),
τc(G) + 1 otherwise.

3 Polynomially Solvable Cases

For graphs of some simple structure it is easy to know the value of τ∞
c (G). For

instance, it is an easy exercise to check that

– τc(Cn) = τ∞
c (Cn) = n − 1, and τc(Kn) = τ∞

c (Kn) = n − 1, where Cn is a
cycle and Kn is a complete graph, both on n vertices, and

– for a tree T on n vertices with n ≥ 3, τc(T) = # of internal nodes in T , and
τ∞
c (T) = τc(T) + 1 = (# of internal nodes in T) + 1,

188 T. Fujito and T. Nakamura

and we will consider graphs of more nontrivial structures in what follows.
We have the following corollary of Lemma 1 for cases when forbidden vertices

can be easily identified.

Corollary 5. τ∞
c (G) = τc(G) + 1 if

– G has a leaf (i.e., a degree 1 vertex), or
– G has a block having exactly one non-cut vertex, or more generally,
– G has a block B s.t. V (B)
⊆ Cut(G) and V (B) ∩ Cut(G) is a cvc of B.

Proof. Will explain only the last case. Suppose G has a block B s.t. V (B)
⊆
Cut(G) and V (B) ∩ Cut(G) is a cvc of B. Then there exist a vertex v ∈ V (B) −
Cut(G) and it must be forbidden. To see it suppose there exists a minimum cvc
C of G containing v. Every minimum cvc of G must contain Cut(G) entirely,
and V (B) ∩ Cut(G) is a cvc of B by the assumption. Thus, (C − {v}) ∩ V (B) is
still a cvc of B, and C − {v} must be a cvc of G, contradicting the minimality
of C. �

A cactus is such a graph in which every edge belongs to at most one simple
cycle. It can be also defined to be a graph in which every block is either a single
edge or a simple cycle. When every block is a clique such a graph is called a
block graph. The Eternal Domination problem on cactus graphs was recently
studied in [4], and an upper bound on the size of a minimum eternal domination
was obtained together with a linear time algorithm for a special cases of cactus
graphs where each vertex is in at most two biconnected components. Whether
each block B is a cycle or a clique, ECVC is easier than Eternal Domination
because a vertex v can be forbidden in such a block B iff v is the only non-cut
vertex in B. Therefore, we have

Theorem 3. Let G be a cactus graph, a block graph, or any graph in which
every block is either a simple cycle or a clique. Then,

τ∞
c (G) =

{
τc(G) + 1 if G has a block containing exactly one non-cut vertex in it,

τc(G) otherwise.

Proof. Notice that every vertex subset of V (B) of size |V (B)| − 1 is a minimum
cvc of B when B is a cycle or a clique. Hence, for any X � V (B) and w ∈
V (B) − X, there must exist a minimum cvc C of B such that X ∪ {w} ⊆ C as
long as |X| < |V (B)| − 1 while such C does not exist in case |X| = |V (B)| − 1.
Therefore, a vertex v can be forbidden iff it is the only non-cut vertex within
some block of G. It follows from Lemma 3 that τ∞

c (G) = τc(G)+1 in case when
G has a block containing exactly one non-cut vertex.

Conversely, suppose every block contains at least two non-cut vertices or
none. Any edge attack occurs within a block B of G, and if V (B) ⊆ Cut(G),
V (B) ⊆ C for any minimum cvc C of G, and any edge attack within B can be
certainly defended by the guards located on C without changing its configuration.
For the case when V (B)
⊆ Cut(G), B contains at least two non-cut vertices and
consider the set D of all the subsets of V (B) of size |V (B)| − 1 containing

Eternal Connected Vertex Cover Problem 189

V (B) ∩ Cut(G). It can be observed that, for any D,D′ ∈ D and any minimum
cvc C of G such that C∩V (B) = D, C−D∪D′ is another minimum cvc of G and
that any edge attack within B can be defended by changing a guard configuration
of some minimum cvc C only within B from C ∩ V (B) = D ∈ D to another
D′ ∈ D (possibly D = D′). Therefore, we may conclude that τ∞

c (G) = τc(G) in
this case. �
It should also be observed that, for any graph G = (V,E) considered in Theo-
rem 3, C ⊆ V is a minimum cvc of G iff 1) Cut(G) ⊆ C and 2) for any block B
of G, |C ∩ V (B)| = |V (B)| − 1 whenever V (B)
⊆ Cut(G). Therefore, we have
explicit formulae for τc(G) and τ∞

c (G) for such a graph G:

Corollary 6. Let G be a graph such that every block of G is either a cycle or a
clique, and let bnc denote the number of blocks of G containing a non-cut vertex
in G. Then,

τc(G) = |V | − bnc

and

τ∞
c (G) =

{
|V | − bnc + 1 if G has a block containing exactly one non-cut vertex in it,

|V | − bnc otherwise.

Although Corollary 4 does not give a polynomial algorithm for computing
τ∞
c (G) for free, even if every block of G is locally connected, it is worth consid-

ering applications of Theorem 2 to derive more polynomially solvable cases of
τ∞
c (G). For a graph G = (V,E) and its vertex v ∈ V , consider the operation of

attaching a new vertex w to G via new edge {v, w}. Let us call this a pendant
operation on v of G, and denote the resulting graph by G ◦ v.

Theorem 4. Let H be a graph class closed under the pendant operation such
that

1. every minimum vertex cover S of G with Cut(G) ⊆ S is connected for any
G ∈ H, and

2. the minimum connected vertex cover number can be computed in polynomial
time.

Then τ∞
c (G) can be computed in polynomial time for any G ∈ H.

Proof. Because of condition 1, τ∞
c (G) = τc(G) if τc(G; {v}) = τc(G) for every

v ∈ V − Cut(G), and otherwise, τ∞
c (G) = τc(G) + 1 by Theorem 2. The set

Cut(G) of cut vertices can be computed in polynomial time, and so is τc(G)
according to condition 2. Thus, what remains is only to compute τc(G; {v}) for
each v ∈ V − Cut(G). But this can be also done in polynomial time because
clearly τc(G; {v}) = τc(G ◦ v) and H is closed under the pendant operation. �

A graph is chordal if it contains no induced cycle of length 4 or more. A
class of chordal graphs is an example satisfying all the preconditions given in
Theorem 4; namely, it is closed under the pendant operation, the minimum
connected vertex cover number is polynomially computable [9], and condition 1
is satisfied because, as easily verified, the biconnected chordal graphs are locally
connected. Therefore,

190 T. Fujito and T. Nakamura

Corollary 7. For any chordal graph G, τ∞
c (G) can be computed in polynomial

time.

4 NP-Completeness and Approximation

EVC was shown to be NP-hard in general [11], and it is NP-complete when
graphs are locally connected [3]. ECVC can be shown equally hard but belonging
to NP, due to Corollary 4:

Theorem 5. For locally connected graphs (the decision version of) ECVC is
NP-complete and it is NP-hard to approximate τ∞

c (G) to within a factor smaller
than 10

√
5 − 21.

Proof. According to Corollary 4, τ∞
c (G) = τc(G) if τc(G; {v}) = τc(G) for every

v ∈ V , and τ∞
c (G) = τc(G) + 1 otherwise, when G is a (biconnected) locally

connected graph. Thus, to decide whether τ∞
c (G) ≤ k or not given a locally

connected G and k, all we need to do is to guess a cvc of smallest size containing
each vertex v ∈ V and decide that τ∞

c (G) ≤ k iff all the cvc’s computed are
of size k or less. Since ECVC on locally connected graphs is this way decidable
nondeterministically in polynomial time, it belongs to NP.

To show NP-hardness, let us first observe that VC can be reduced to CVC
on locally connected graphs in the same way as the standard reduction of VC to
CVC. Given a connected graph G = (V,E) as a VC instance, add a new vertex z
and connect it to every vertex of G, and let G′ denote the resulting graph. Then,
G′ is locally connected and τc(G′) = τ(G) + 1. Thus, CVC on locally connected
graphs is NP-hard. Moreover, since it is known to be NP-hard to approximate
τ(G) on connected graphs to within a factor smaller than 10

√
5 − 21 [8], so

is it to approximate τc(G) on locally connected graphs within the same factor.
Because τc(G) ≤ τ∞

c (G) ≤ τc(G) + 1 in general (by Proposition 1), it is also
NP-hard to approximate τ∞

c (G) on locally connected graphs to within a factor
smaller than 10

√
5 − 21. �

It was shown in [11] that EVC is approximable within 2, using a maximal
matching based approximation algorithm. As such this algorithm does not pro-
duce a connected solution in general, and in case of ECVC it is more natural
to consider utilizing an approximation algorithm for CVC. Or, it is more con-
venient in fact to divert approximate solutions for Tree Cover into eternal
cvc’s. Suppose a subgraph T = (VT , ET) of a connected graph G = (V,E) is a
tree. An edge set ET ⊆ E is called a tree cover of G if either e is an edge of T
or e is adjacent to some edge of T for all edges e ∈ E. Tree Cover (TC) is
the problem of computing a minimum cardinality tree cover of G. Clearly, the
edge set F ⊆ E of a tree is a tree cover if the set of vertices induced by F (i.e.,
{v ∈ V | v is an end vertex of some e ∈ F}) is a cvc, and conversely, C ⊆ V is a
cvc if any spanning tree of G[C], the subgraph of G induced by C, is a tree cover.
It was shown in [2,22] that either CVC or TC is approximable within a factor
of 2, and we may use any 2-approximation algorithm for TC for our purpose:

Eternal Connected Vertex Cover Problem 191

Theorem 6. ECVC is approximable within a factor of 2. More specifically, an
ecvc for G of size bounded by 2τc(G) can be computed in polynomial time.

Proof. The algorithm first computes a cvc C of a connected graph G = (V,E).
An ecvc is constructed by adding one more vertex to C, and we already know
that all the edges of G can be eternally defended by a connected team of |C|+1
mobile guards as described in Proposition 1.

To compute a cvc C, one can use any 2-approximation algorithm for TC.
Let OPTTC(G) denote the minimum size of a TC solution for G, and F ⊆ E
an approximate tree cover solution thus computed. Set C = V [F], the set of
vertices induced by F . Then, |F | ≤ 2·OPTTC(G), and because of the equivalence
between CVC and TC solutions, τc(G) = OPTTC(G)+ 1. The size of an ecvc to
be computed is |C| + 1 and it is bounded by

|V [F]| + 1 = |F | + 2 ≤ 2 · OPTTC(G) + 2 = 2(OPTTC(G) + 1) = 2τc(G). �

5 Concluding Remarks

A new variant of VC, CVC, and EVC, called Eternal Connected Vertex
Cover (ECVC), has been introduced, and we have studied various aspects of
ECVC mainly building on top of existing results concerning CVC and EVC.

Still some questions concerning core properties of ECVC remain unan-
swered. One of them is the question of whether the necessary condition for
τc(G) = τ∞

c (G) given in Lemma 3 is sufficient or not. As noted earlier, such suf-
ficiency was denied by Babu et al. by some of concrete instances in case between
τ(G) and τ∞(G) [3]. It is also possible to construct an instance denying such suf-
ficiency even in the context of Eternal Connected Dominating Set, but it
remains open whether τc(G; {v}) = τc(G), ∀v ∈ Cut(G), implies τc(G) = τ∞

c (G)
or not.

Another question of interest is whether ECVC can be solved in polynomial
time or not for graphs of maximum degree 3. The class of graphs of maximum
degree 3 is one of a few for which CVC is known solvable in polynomial time.
Since this graph class is not closed under the pendant operation, however, it is
not possible to apply the same approach as we used for chordal graphs.

References

1. Anderson, M., Barrientos, C., Brigham, R.C., Carrington, J.R., Vitray, R.P.,
Yellen, J.: Maximum-demand graphs for eternal security. J. Combin. Math. Com-
bin. Comput. 61, 111–127 (2007)

2. Arkin, E.M., Halldórsson, M.M., Hassin, R.: Approximating the tree and tour
covers of a graph. Inform. Process. Lett. 47(6), 275–282 (1993)

3. Babu, J., Chandran, L.S., Francis, M., Prabhakaran, V., Rajendraprasad, D., War-
rier, J.N.: On graphs with minimal eternal vertex cover number. In: Pal, S.P.,
Vijayakumar, A. (eds.) CALDAM 2019. LNCS, vol. 11394, pp. 263–273. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-11509-8 22

https://doi.org/10.1007/978-3-030-11509-8_22

192 T. Fujito and T. Nakamura

4. Blažej, V., Křǐst’an, J.M., Valla, T.: On the m-eternal domination number of cactus
graphs. In: Filiot, E., Jungers, R., Potapov, I. (eds.) RP 2019. LNCS, vol. 11674,
pp. 33–47. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30806-3 4

5. Burger, A.P., Cockayne, E.J., Gründlingh, W.R., Mynhardt, C.M., van Vuuren,
J.H., Winterbach, W.: Infinite order domination in graphs. J. Combin. Math. Com-
bin. Comput. 50, 179–194 (2004)

6. Cockayne, E.J., Dreyer Jr., P.A., Hedetniemi, S.M., Hedetniemi, S.T.: Roman dom-
ination in graphs. Discrete Math. 278(1–3), 11–22 (2004)

7. Diestel, R.: Graph Theory. GTM, vol. 173. Springer, Heidelberg (2017). https://
doi.org/10.1007/978-3-662-53622-3

8. Dinur, I., Safra, S.: On the hardness of approximating minimum vertex cover. Ann
Math (2) 162(1), 439–485 (2005)

9. Escoffier, B., Gourvès, L., Monnot, J.: Complexity and approximation results for
the connected vertex cover problem in graphs and hypergraphs. J. Discrete Algo-
rithms 8(1), 36–49 (2010)

10. Fernau, H., Manlove, D.F.: Vertex and edge covers with clustering properties: com-
plexity and algorithms. J. Discrete Algorithms 7(2), 149–167 (2009)

11. Fomin, F.V., Gaspers, S., Golovach, P.A., Kratsch, D., Saurabh, S.: Parameterized
algorithm for eternal vertex cover. Inf. Process. Lett. 110(16), 702–706 (2010)

12. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete.
SIAM J. Appl. Math. 32(4), 826–834 (1977)

13. Goddard, W., Hedetniemi, S.M., Hedetniemi, S.T.: Eternal security in graphs. J.
Combin. Math. Combin. Comput. 52, 169–180 (2005)

14. Goldwasser, J.L., Klostermeyer, W.F.: Tight bounds for eternal dominating sets
in graphs. Discrete Math. 308(12), 2589–2593 (2008)

15. Klostermeyer, W.F.: An eternal vertex cover problem. J. Combin. Math. Combin.
Comput. 85, 79–95 (2013)

16. Klostermeyer, W.F., MacGillivray, G.: Eternal dominating sets in graphs. J. Com-
bin. Math. Combin. Comput. 68, 97–111 (2009)

17. Klostermeyer, W.F., Mynhardt, C.M.: Edge protection in graphs. Australas. J.
Combin. 45, 235–250 (2009)

18. Klostermeyer, W.F., Mynhardt, C.M.: Graphs with equal eternal vertex cover and
eternal domination numbers. Discrete Math. 311(14), 1371–1379 (2011)

19. Klostermeyer, W.F., Mynhardt, C.M.: Eternal total domination in graphs. Ars
Combin. 107, 473–492 (2012)

20. Li, Y., Wang, W., Yang, Z.: The connected vertex cover problem in k-regular
graphs. J. Comb. Optim. 38(2), 635–645 (2019). https://doi.org/10.1007/s10878-
019-00403-3

21. Priyadarsini, P.L.K., Hemalatha, T.: Connected vertex cover in 2-connected planar
graph with maximum degree 4 is NP-complete. Int. J. Math. Phys. Eng. Sci. 2(1),
51–54 (2008)

22. Savage, C.: Depth-first search and the vertex cover problem. Inform. Process. Lett.
14(5), 233–235 (1982)

23. Ueno, S., Kajitani, Y., Gotoh, S.: On the nonseparating independent set problem
and feedback set problem for graphs with no vertex degree exceeding three. Discrete
Math. 72, 355–360 (1988)

24. Watanabe, T., Kajita, S., Onaga, K.: Vertex covers and connected vertex covers in
3-connected graphs. In: IEEE International Symposium on Circuits and Systems,
pp. 1017–1020 (1991)

https://doi.org/10.1007/978-3-030-30806-3_4
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/978-3-662-53622-3
https://doi.org/10.1007/s10878-019-00403-3
https://doi.org/10.1007/s10878-019-00403-3

Parametric Streaming Two-Stage
Submodular Maximization

Ruiqi Yang1, Dachuan Xu1, Longkun Guo2, and Dongmei Zhang3(B)

1 Department of Operations Research and Scientific Computing, Beijing University
of Technology, Beijing 100124, People’s Republic of China

yangruiqi@emails.bjut.edu.cn, xudc@bjut.edu.cn
2 School of Computer Science and Technology, Qilu University of Technology
(Shandong Academy of Sciences), Jinan 250353, People’s Republic of China

longkun.guo@gmail.com
3 School of Computer Science and Technology, Shandong Jianzhu University,

Jinan 250101, People’s Republic of China
zhangdongmei@sdjzu.edu.cn

Abstract. We study the submodular maximization problem in general-
ized streaming setting using a two-stage policy. In the streaming context,
elements are released in a fashion that an element is revealed at one time.
Subject to a limited memory capacity, the problem aims to sieve a subset
of elements with a sublinear size �, such that the expecting objective value
of all utility functions over the summarized subsets has a performance
guarantee. We present a generalized one pass,

(
γ5
min/(5 + 2γ2

min) − O(ε)
)
-

approximation, which consumes O(ε−1� log(�γ−1
min)) memory and runs in

O(ε−1kmn log(�γ−1
min)) time, where k, n, m and γmin denote the cardi-

nality constraint, the element stream size, the amount of the learned
functions, and the minimum generic submodular ratio of the learned
functions, respectively.

Keywords: Submodular maximization · Streaming algorithm ·
Submodular ratio · Approximation ratio

1 Introduction

Submodular maximization has many applications, such as influence maximiza-
tion [5], document summarization [7] and network monitoring [6]. The model
can be formally described as

max
S⊆V :S∈I

f(S),

where V denotes the element ground set and I represents some specific-defined
constraints, such as cardinality, knapsack and matroid constraints. The above
problem can be treated as a single stage optimization and solved by the greedy
method devised in [9], which starts with an empty set and picks an element with
the maximum marginal gain in each iteration. Next we study a generalized set
c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 193–204, 2020.
https://doi.org/10.1007/978-3-030-59267-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_17&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_17

194 R. Yang et al.

function maximization, in which the true utility function follows some unknown
distribution D, but a family F = {f1, ..., fm} of these functions can be learned
based on historical data. These learned functions are defined on the common
ground set V, such that each of them is equipped with a generic submodularity
ratio γi, characterizing how close a normalized increasing set function is to be
submodular. In addition, we assume the elements are revealed in a streaming
fashion, in which an element is released at one time. The goal is to summarize
a representative subset S with a size at most � from the stream, such that each
function fi restricted on S has a high value. The problem is motivated by a ride-
share application, in which there are hundreds of thousands of pick-up locations
and the aim is to select a subset of the locations to maximize the utility in terms
of total location value provided that the values vary over time. To assess the true
utility in long-term, we can learn some functions that approximately calculate
its value in expectation.

Streaming-based model is popular for handling optimization applications
with a large scale. In the model, the elements are either stored in distribu-
tion, or generated in a place that has a storage capability. Moreover, we only
have access to a limited memory at any time during the procession, while the
goal is to assemble a small fraction of elements so as to maximize the utility.
To evaluate the performance of algorithms for streaming submodular problems,
Badanidiyuru et al. [1] introduced four parameters: passes, memory, running
time, and approximation ratio. Threshold-based method plays an important role
in the developing of streaming algorithms for submodular optimization. In such
method, the main idea is to choose a proper threshold, according to which we
determine whether the arrived element should be discarded or not. For streaming
submodular maximization with a cardinality constraint, Badanidiyuru et al. [1]
provided a threshold-based, one pass, (0.5 − ε)-approximation, which consumes
O(k log k/ε) memory and runs in O(n log k/ε) time, where n denotes the stream
size. A survey of threshold-based methods for streaming submodular can be
found in [12]. In addition, Buchbinder et al. [3] studied submodular maximiza-
tion under online setting, in which the elements arrive online and the arriving
element must be decided whether should be maintained or not before the next
time slot. They presented a preemption-based algorithm, which can be extended
with respect to streaming setting. In their algorithm, the arriving element is
selected if it occurs a large utility increment via exchanging it with the elements
of the current solution. Combining the two threshold-based and preemption-
based methods, Mitrovic et al. [8] considered the two-stage submodular max-
imization under streaming, and provided a one pass, 1/(6 + ε)-approximation
that uses O(� log �/ε) memory and has O(kmn log �/ε) running time, where �, k,
m, and n denote the subset size, the set cardinality, the learned functions and
the element set size, respectively.

In this paper, we consider an extended version of the two-stage set func-
tion maximization problem, in which the utility functions are equipped with
generic submodularity ratios. Inspired by the work of [8], we present a gener-
alized streaming algorithm, which deserves an approximation ratio (γ5

min/(5 +

Parametric Streaming Two-Stage Submodular Maximization 195

2γ2
min)−O(ε)), uses O(� log(�γ−1

min)/ε) memory and runs in O(kmn log(�γ−1
min)/ε)

time, where γmin = mini∈[m] γi represents the minimum generic submodular
ratio over all learned functions.

1.1 Related Work

To interpret the task involving multiple objectives, Balkanski et al. [2] intro-
duced the two-stage submodular maximization problem, which is more expres-
sive than the single stage submodular maximization. In the two-stage submod-
ular maximization model, we are given an element ground set V of size n, a
family F = {f1, ..., fm} of set functions in which each function f : 2V → R is
submodular. The aim is to summarize a subset with size at most �, which can
serve as a new ground set of a high value for all functions. In particular, assuming
G(S) = 1/m·∑m

i=1 maxT⊆S:|T |≤k fi(T), the two-stage submodular maximization
problem can be casted as

max
S⊆V:|S|≤�

G(S).

Based on local search, Balkanski et al. [2] presented a (1−1/e)/2-approximation,
which needs O(km�n2 log(n)) function evaluations (running time). Combining
greedy and local search, Stan et al. [10] studied a more generalized two-stage
submodular maximization with matroid constraint and improved the approxi-
mation ratio to (1 − 1/e2)/2. In addition, they also decreased the amount of
function evaluations to O(m�nr), where r denotes the matroid rank. Recently,
Yang et al. [11] considered the two-stage submodular maximization with more P -
matroid constraint and devised a generalized (1 − 1/e2)/(P + 1)-approximation
with O(m�nrP) function evaluations. For the two-stage submodular maximiza-
tion under distribution, Mitrovic et al. [8] proposed two approximations with
ratios (1 − 1/e2)/4 and 0.107, respectively.

1.2 Organizations

The rest of the paper is organized as follows. Section 2 provides some necessary
preliminaries. Section 3 gives the main streaming algorithm whose theoretical
analysis are presented in Sect. 4. At last, Sect. 5 concludes our work.

2 Preliminaries

Given an element ground set V of size n, a learned collection F = {f1, ..., fm}
of set functions, where m represents an integer and all functions are defined on
the same ground V. Let [m] = {1, ...,m}. We have fi : 2V → R+ for any i ∈ [m].
A set function f : 2V → R+ is submodular, if and only if for any A,B ⊆ V, we
have

f(A) + f(B) ≥ f(A ∪ B) + f(A ∩ B).

For easy presentation, let A+e = A∪{e} and A−e = A\{e} for any e ∈ V and
A ⊆ V. We denote Δ(e,A) = f(A + e) − f(A) as the marginal gain of adding

196 R. Yang et al.

e to A. A set function f is normalized, if f(∅) = 0. Further, a normalized set
function is monotone if Δ(e,A) ≥ 0. An equivalent definition of submodular can
be represented as following: A normalized set function f is submodular if and
only if for any A ⊆ B ⊆ V and e /∈ B,

Δ(e,A) ≥ Δ(e,B).

Following the work of [4], the definition of generic submodular ratio can be
restated as follows.

Definition 1 ([4]). Given any normalized set function f , the generic submod-
ular ratio is defined as the largest scalar γ ∈ [0, 1] subject to

Δ(e,A) ≥ γ · Δ(e,B),∀A ⊆ B ⊆ V, e /∈ B.

Following by the above definition, we restate an observation as
∑

e∈S

f(e) ≥ γ · f(S),∀S ⊆ V,

which has been proved by [4]. We consider a generalized two-stage submodular
maximization problem under streaming setting. That is, elements are revealed
in a streaming fashion. An element is released in each time slot. With respect
to the limited memory capacity, the goal is to sieve a subset S of size at most
�
 n, such that the functions fi, i ∈ [m] over S have a good performance.
Formally, the problem is defined as

max
S⊆V:|S|≤�

m∑

i=1

max
T⊆S:|T |≤k

fi(T),

where k denotes an integer, each function fi, i ∈ [m] is equipped with a generic
submodular ratio γi. Denote G(S) =

∑m
i=1 maxT⊆S:|T |≤k fi(T) for any S ⊆ V,

then the problem is to find S ⊆ V of size at most �, such that G(S) is maximized.
Note that the objective function G(S) loses submodularity even when all generic
submodular ratios reduce to 1, as the counter-example given by [2].

In addition, we assume a value oracle is given, such that for any A ⊆ V, we
can have access to the value of fi(A), i ∈ [m] in O(1) time. We also assume the
generic submodular ratios vary within the range of (0, 1].

3 Algorithm Description

The main algorithm is based on two operations defined by local search: add and
exchange. For any subset A ⊆ V and an element e ∈ V, we reset

ΔA
i (e|A) = Δi(e,A) = fi(A + e) − fi(A),

Parametric Streaming Two-Stage Submodular Maximization 197

Algorithm 1. Framework of Replacement Streaming
Input: The distribution of functions, D; The value of parameters, α, β.
1: Learn a collection F = {f1, ..., fm} of functions, where each function fi is charac-

terized by the generic submodular ratio γi;
2: Determine the current arriving element et if it should be maintained with the help

of each threshold value τ ∈ Ot;
3: Update the representative subset Sτ and surrogate sets {Tτ,i}m

i=1, with the help of
add and exchange operations;

4: Stop at the time of meeting cardinality capacity or the stream is finished;
5: Return the summarization Sτ and surrogate subsets {Tτ,i}m

i=1 with the maximum
objective value.

for any i ∈ [m], as the gain of adding element e to A with respect to function
fi. In addition, we denote

Exchi(e,A) = argmax
e′∈A

fi(A − e′ + e) − fi(A)

as the element of A with the maximum gain by exchanging it with elements in
A. Denote the largest gain as

ΔE
i (e|A) = fi(A − Exchi(e,A) + e) − fi(A).

We introduce symbol ∇ to show the true gain of an element. For any A ⊆ V and
e ∈ V, we have

∇i(e,A) =

{
1{ΔA

i (e|A)≥ α
kγi

·fi(A)} · ΔA
i (e|A), if |S| < k;

1{ΔE
i (e|A)≥ α

kγi
·fi(A)} · ΔE

i (e|A), otherwise,

where 1 denotes the indicator function and α is a tunable parameter.
Then it remains to describe the main algorithm. Inspired by the work of

[8], we apply their algorithm to more general set maximization scenario. The
framework of our algorithm can be summarized as in Algorithm 1.

In the algorithm, we firstly learn a collection F = {f1, ..., fm} of functions,
where each function fi, i ∈ [m], is measured by the generic submodular ratio γi.
After the learning step, assume the element et arrives and we need to determine
if the element et should be added to the solution. Note that, by monotonicity
and the front observation, we can conclude

m0 ≤ f(S∗) ≤ 1
m

·
m∑

i=1

fi(S∗
i) ≤ 1

m
·

m∑

i=1

∑

e∈S∗
i

fi(e)
γi

≤ �m0

γmin
,

where m0 = 1/m · maxe∈V

∑m
i=1 fi(e) denotes the maximum single value of the

objective function, S∗ = argmaxS⊆V :|S|≤� G(S) represents an optimal solution
of the parametric two-stage problem and S∗

i = argmaxT⊆S∗:|T |≤k fi(T) denotes
an optimal solution of fi restricted to S∗. Let τ∗ = f(S∗)/(β�), where β ≥ 1

198 R. Yang et al.

represent a parameter which will be determined in the following section. We can
construct

O =
{

(1 + ε)l :
m0

β�
≤ (1 + ε)l ≤ m0

βγmin

}

and guess an approximation τ ∈ O of τ∗ in O(log(�/γmin)) time subject to

(1 − ε)τ∗ ≤ τ ≤ τ∗.

Although the true value of m0 can be learned after the arrival of the whole
stream, we can steadily approximate τ∗ by constructing a relaxed candidate
threshold set

Ot =
{

(1 + ε)l :
mt

β�
≤ (1 + ε)l ≤ mt

γmin

}

,

where mt = 1/m · maxt′:t′≤t

∑m
i=1 fi(et′) denotes the maximum single value

till time t. For each τ ∈ Ot, provided τ as a new installed value, we start
with Sτ = ∅ and T 0

τ,i = ∅. Consider the arriving element et with |Sτ | < �

for each τ ∈ Ot, if 1/m · ∑m
i=1 ∇i(et, T

t−1
τ,i) ≥ τ for T t−1

τ,i being the state of
Tτ,i at the beginning of encountering et, then we update Sτ = Sτ + et. For
each i ∈ [m], if ∇i(et, T

t−1
τ,i) ≥ 0, we execute the following add and exchange

operations, respectively.

– If |T t−1
τ,i | < k, update T t

τ,i = T t−1
τ,i + et;

– If |T t−1
τ,i | = k, update T t

τ,i = T t−1
τ,i − Exchi(et, T

t−1
τ,i) + et.

The procedure stops once the cardinality capacity of representative set is met or
the stream finishes.

4 Theoretical Analysis

For briefness, we omit the index τ in Sτ and {Tτ,i}m
i=1. Let St be the state of S

after the arriving of element et. For each i ∈ [m], we denote T t
i as the maintained

set after the revealing of et. In addition, denote At
i = ∪1≤j≤tT

j
i as the set of

elements that ever appeared in Ti till time t. We yield a generalized lower bound
of ΔE

i (et|T t−1
i) as stated in the following lemma.

Lemma 1. Consider the arriving element et is exchanged with Exchi(et, T
t−1
i)

for any i ∈ [m], we have

ΔE
i (et|T t−1

i) ≥ γ2
i · ΔA

i (et|At−1
i) − 1

kγi
· fi(T t−1

i).

Parametric Streaming Two-Stage Submodular Maximization 199

Proof. Mainly following by the work of [3,8], we derive an inequality

ΔE
i (et|T t−1

i) = fi(T t−1
i − Exchi(et, T

t−1
i) + et) − fi(T t−1

i)

≥ 1
k

·
⎡

⎣
∑

e∈T t−1
i

fi(T t−1
i − e + et) − fi(T t−1

i)

⎤

⎦

=
1
k

·
∑

e∈T t−1
i

fi(T t−1
i − e + et) − fi(T t−1

i − e)

− 1
k

·
∑

e∈T t−1
i

fi(T t−1
i) − fi(T t−1

i − e).

The inequality is obtained by the fact of definition of Exchi(et, T
t−1
i). Next we

respectively bound the two terms of above inequality. By the definition of generic
submodular ratio, for any e ∈ T t−1

i , we have

1
k

·
∑

e∈T t−1
i

fi(T t−1
i − e + et) − fi(T t−1

i − e)

≥ 1
k

·
∑

e∈T t−1
i

γi · (
fi(T t−1

i + et) − fi(T t−1
i)

)

= γi · ΔA
i (et|T t−1

i). (1)

To bound the second term, without loss of generality, we set T t−1
i = {e1, ..., ek}.

Reusing the definition of generic submodular ratio, we yield

1
k

·
∑

e∈T t−1
i

fi(T t−1
i) − fi(T t−1

i − e)

≤ 1
kγi

·
k∑

z=1

fi({e1, ..., ez}) − fi({e1, ..., ez−1})

=
1

kγi
· (fi(T t−1

i) − fi(∅))

≤ 1
kγi

· fi(T t−1
i). (2)

Combining inequalities (1) and (2), we conclude

ΔE
i (et|T t−1

i) ≥ γi · ΔA
i (et|T t−1

i) − 1
kγi

· fi(T t−1
i)

≥ γ2
i · ΔA

i (et|At−1
i) − 1

kγi
· fi(T t−1

i).

This completes the proof of this lemma.

200 R. Yang et al.

Corollary 1. If ΔE
i (et|T t−1

i) < α/(kγi) · fi(T t−1
i), then we have

ΔA
i (et|An

i) ≤ α + 1
kγ4

i

· fi(Tn
i).

Proof. Following from the above lemma and the definition of generic submodular
ratio, we yield

γ3
i · ΔA

i (et|An
i) ≤ γ2

i · ΔA
i (et|At−1

i)

≤ ΔE
i (et|T t−1

i) +
1

kγi
· fi(T t−1

i)

<
α + 1
kγi

· fi(T t−1
i) ≤ α + 1

kγi
· fi(Tn

i).

Since the utility fi is nondecreasing over t, the last inequality is derived.

By the above lemma and the two type operations in Algorithm 1, we can
estimate f(T t

i), i ∈ [m] as in the next lemma.

Lemma 2. Consider any arriving element et and any i ∈ [m], we have

fi(T t
i) ≥ αγ2

i

α + 1
· fi(At

i).

Proof. Note that |T t
i | < k means Algorithm 1 only executes add operation and

we have At
i = T t

i . Then the claim directly holds. Next we consider the case of
|T t

i | = k. The process can be completed by induction of iterations. We assume
fi(T t−1

i) ≥ (αγ2
i)/(α+1) ·fi(At−1

i) and the element et is exchanged to T t−1
i . We

already have ΔE
i (et|T t−1

i) ≥ α/(kγi) · fi(T t−1
i) in this case. Further, we acquire

fi(T t
i) = fi(T t−1

i − Exchi(et, T
t−1
i) + et) = fi(T t−1

i) + Δi(et, T
t−1
i)

≥ fi(T t−1
i) + max

{

γ2
i · Δi(et|At−1

i) − 1
kγi

· fi(T t−1
i),

α

kγi
· fi(T t−1

i)
}

≥ fi(T t−1
i) + max

λ∈[0,1]

{

λ ·
(

γ2
i · Δi(et|At−1

i) − 1
kγi

· fi(T t−1
i)

)

+(1 − λ) ·
(

α

kγi
· fi(T t−1

i)
)}

≥ fi(T t−1
i) +

{
α

α + 1
·
(

γ2
i · Δi(et|At−1

i) − 1
kγi

· fi(T t−1
i)

)

+
(

1 − α

α + 1
·
)

·
(

α

kγi
· fi(T t−1

i)
)}

= fi(T t−1
i) +

αγ2
i

α + 1
· ΔA

i (et|At−1
i)

≥ αγ2
i

α + 1
· fi(At

i).

Parametric Streaming Two-Stage Submodular Maximization 201

The first inequality comes from Lemma 1 and the factor of ΔE
i (et|T t−1

i) ≥
α/(kγi) · fi(T t−1

i). The second inequality is obtained by the definition of λ. The
third inequality is derived by setting λ := α/(α+1). The last inequality follows
by the assumption of fi(T t−1

i).

Equipped with the above lemmas, we state the main result in the following
theorem.

Theorem 1. Given ε > 0, setting α := 1 and β := (α2 + α(3 + 2γ2
min) +

1)/(αγ5
min), with O(� log(�/γmin)/ε) memory and O(mnk log(�/γmin)/ε) running

time, Algorithm 1 makes one pass over the stream, and outputs a summarization
S̃ such that

f(S̃) ≥
(

γ5
min

5 + 2γ2
min

− O(ε)
)

· f(S∗).

Proof. For briefness, we denote S and {Ti}m
i=1 as the returned sets of Algorithm1

according to threshold τ ∈ ∪tOt subject to (1 − ε)τ∗ ≤ τ ≤ τ∗. We distinguish
two cases |S| = � and |S| < �. For the case of |S| = �, we have

1
m

m∑

i=1

fi(Tn
i)

=
1
m

n∑

t=1

m∑

i=1

[
fi(T t

i) − fi(T t−1
i)

]

=
1
m

m∑

i=1

1et∈S · ∇i(et, T
t−1
i)

≥ �τ ≥ 1 − ε

β
· f(S∗). (3)

Now we consider the case of |S| < �. Denote S∗
i \An

i = {e1, ..., es}, then we have

fi(S∗
i) ≤ fi(An

i) + ΔA
i (S

∗
i |An

i)

≤ fi(An
i) +

1
γi

·
s∑

t=1

[fi(An
i ∪ {et}) − fi(An

i)]

= fi(An
i) +

1
γi

·
∑

et∈S∗
i

ΔA
i (et|An

i),

where the first inequality follows by monotonicity and the second is achieved
by the definition of generic submodular ratio. Summing up all inequalities of
i ∈ [m], we conclude

f(S∗) ≤ 1
m

m∑

i=1

fi(An
i) +

1
γmin

· 1
m

m∑

i=1

∑

et∈S∗
i

ΔA
i (et|An

i)

≤ 1
m

m∑

i=1

fi(An
i) +

1
γmin

· 1
m

m∑

i=1

∑

et∈S∗
1et∈S∗

i

[
1et∈Di

ΔA
i (et|An

i)

+ 1et /∈Di
[1et∈Pi

ΔA
i (e|An

i) + 1et∈Qi
ΔA

i (e|An
i)]

]
,

202 R. Yang et al.

where Di represents the set of elements of S∗
i \ An

i encountered before setting
threshold T t−1

i , the other elements of S∗
i \ An

i are partitioned into Pi and Qi as
follows:

Pi =
{

et : ΔE
i (et|T t−1

i) <
α

kγi
· fi(T tz−1

i)
}

and

Qi =

{

et : ΔE
i (et|T tz−1

i) ≥ α

kγi
· fi(T tz−1

i) and
1
m

·
m∑

i=1

∇i(et|T t−1
i) < τ

}

.

By Lemma 2, we bound 1/m · ∑m
i=1 fi(An

i) by

1
m

m∑

i=1

fi(An
i) ≤ 1

m

m∑

i=1

α + 1
αγ2

i

fi(Tn
i) ≤ α + 1

αγ2
min

· 1
m

m∑

i=1

fi(Tn
i). (4)

Considering elements in Di, we yield

1
m

m∑

i=1

∇i(et, T
t−1
i) ≤ 1

m

m∑

i=1

ΔA
i (et|T t−1

i) ≤ 1
m

m∑

i=1

fi(et)
γi

≤ mt

γmin
< τ.

Then we can derive

1
m

m∑

i=1

∑

et∈S∗
1et∈S∗

i
1et∈Di

ΔA
i (et|An

i) ≤ �τ ≤ f(S∗)
β

. (5)

Next we consider elements in Pi, then

1
m

m∑

i=1

∑

et∈S∗
1et∈S∗

i
1et /∈Di

1et∈Pi
ΔA

i (et|An
i) ≤ α + 1

γ4
min

· 1
m

m∑

i=1

fi(Tn
i) (6)

follows by combining Corollary 1 and the fact of |Pi| ≤ k. Considering elements
in Qi and following Lemma 1, we have

1
m

m∑

i=1

1et∈S∗
i
1et /∈Di

1et∈Oi

[

γ2
i ΔA

i (et|At−1
i) − fi(T t−1

i)
kγi

]

≤ 1
m

m∑

i=1

1et∈S∗
i
∇i(et, T

t−1
i) ≤ τ.

Then we yield

1
m

m∑

i=1

1et∈S∗
i
1et /∈Di

1et∈Oi
ΔA

i (et|An
i) ≤ τ

γ2
min

+
1

kγ3
min

· 1
m

m∑

i=1

1et∈S∗
i
fi(Tn

i).

Parametric Streaming Two-Stage Submodular Maximization 203

Based on the above inequality, we can derive

1
m

m∑

i=1

∑

et∈S∗\An
i

1et∈S∗
i
1et /∈Di

1et∈Oi
ΔA

i (e|An
i)

≤ �τ

γ2
min

+
1

γ3
min

· 1
m

m∑

i=1

fi(Tn
i)

≤ f(S∗)
βγ2

min

+
1

γ3
min

· 1
m

m∑

i=1

fi(Tn
i). (7)

Equipped with the inequalities (4)–(7), we yield

f(S∗) ≤
(

α + 1
αγ2

min

+
α + 1
γ5
min

+
1

γ4
min

)

· 1
m

m∑

i=1

fi(Tn
i) +

1
β

(
1

γmin
+

1
γ3
min

)

· f(S∗)

≤ α2 + 3α + 1
αγ5

min

· 1
m

m∑

i=1

fi(Tn
i) +

2
βγ3

min

· f(S∗).

Rearranging the above inequality, we obtain

1
m

m∑

i=1

fi(Tn
i) ≥ αγ5

min − 2αγ2
min/β

α2 + 3α + 1
· f(S∗). (8)

To have Inequality (8), we need to guarantee

1 − 1
β

(
1

γmin
+

1
γ3
min

)

> 0.

Setting β > 2/(γ3
min), we acquire

1 − 1
β

(
1

γmin
+

1
γ3
min

)

≥ 1 − 2
βγ3

min

> 0.

Combining inequalities (3) and (8), we have

f(S̃) ≥ 1
m

m∑

i=1

fi(Tn
i) ≥ min

{
1 − ε

β
,
αγ5

min − 2αγ2
min/β

α2 + 3α + 1

}

· f(S∗)

≥ αγ5
min(1 − ε)

α2 + α(3 + 2γ2
min) + 1

· f(S∗)

=
(

γ5
min

5 + 2γ2
min

− O(ε)
)

· f(S∗).

By setting α := 1 and β := (α2 + α(3 + 2γ2
min) + 1)/(αγ5

min) > 2/γ3
min, we can

eventually derive the above inequality.

Corollary 2. If all generic submodular ratios reduce to 1, by setting α = 1 and
β = 7, Algorithm 1 gets a (1/7−O(ε))-approximation for the streaming two-stage
submodular maximization problem.

204 R. Yang et al.

5 Conclusion

In this paper, we consider the problem of maximizing set functions with generic
submodular ratios under a two-stage policy. Comparing to the work of [8], we
extend the two-stage submodular model to a more general non-submodular set-
ting and present a generalized streaming algorithm, whose performance guar-
antees are measured by the minimum generic submodular ratio. In future, we
shall further study generalized two-stage submodular maximization with more
practical constraints imposed by emerging applications.

Acknowledgements. The first two and fourth authors are supported by Natural
Science Foundation of China (No. 11871081). The third author is supported by Natural
Science Foundation of China (No. 61772005) and Natural Science Foundation of Fujian
Province (No. 2017J01753).

References

1. Badanidiyuru, A., Mirzasoleiman, B., Karbasi, A., Krause, A.: Streaming sub-
modular maximization: massive data summarization on the fly. In: Proceedings of
KDD, pp. 671–680 (2014)

2. Balkanski, E., Mirzasoleiman, B., Krause, A., Singer, Y.: Learning sparse combi-
natorial representations via two-stage submodular maximization. In: Proceedings
of ICML, pp. 2207–2216 (2016)

3. Buchbinder, N., Feldman, M., Schwartz, R.: Online submodular maximization with
preemption. In: Proceedings of SODA, pp. 1202–1216 (2015)

4. Gong, S., Nong, Q., Liu, W., Fang, Q.: Parametric monotone function maximiza-
tion with matroid constraints. J. Global Optim. 75(3), 833–849 (2019). https://
doi.org/10.1007/s10898-019-00800-2

5. Kempe, D., Kleinberg, J., Tardos, É.: Maximizing the spread of influence through
a social network. In: Proceedings of KDD, pp. 137–146 (2003)

6. Krause, A., McMahan, H.B., Guestrin, C., Gupta, A.: Robust submodular obser-
vation selection. J. Mach. Learn. Res. 9, 2761–2801 (2008)

7. Lin, H., Bilmes, J.: A class of submodular functions for document summarization.
In: Proceedings of ACL, pp. 510–520 (2011)

8. Mitrovic, M., Kazemi, E., Zadimoghaddam, M., Karbasi, A.: Data summarization
at scale: a two-stage submodular approach. In: Proceedings of ICML, pp. 3593–
3602 (2018)

9. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for
maximizing submodular set functions-I. Math. Program. 14, 265–294 (1978)

10. Stan, S., Zadimoghaddam, M., Krause, A., Karbasi, A.: Probabilistic submodular
maximization in sub-linear time. In: Proceedings of ICML, pp. 3241–3250 (2017)

11. Yang, R., Gu, S., Gao, C., Wu, W., Wang, H., Xu, D.: A two-stage constrained
submodular maximization. In: Proceedings of AAIM, pp. 329–340 (2019)

12. Yang, R., Xu, D., Li, M., Xu, Y.: Thresholding methods for streaming submodular
maximization with a cardinality constraint and its variants. In: Du, D.-Z., Pardalos,
P.M., Zhang, Z. (eds.) Nonlinear Combinatorial Optimization. SOIA, vol. 147, pp.
123–140. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-16194-1 5

https://doi.org/10.1007/s10898-019-00800-2
https://doi.org/10.1007/s10898-019-00800-2
https://doi.org/10.1007/978-3-030-16194-1_5

Approximation Guarantees for
Deterministic Maximization of

Submodular Function with a Matroid
Constraint

Xin Sun1, Dachuan Xu1, Longkun Guo2(B), and Min Li3

1 Department of Operations Research and Information Engineering, Beijing
University of Technology, Beijing 100124, People’s Republic of China

athossun@emails.bjut.edu.cn, xudc@bjut.edu.cn
2 School of Computer Science and Technology, Qilu University of Technology
(Shandong Academy of Sciences), Jinan 250353, People’s Republic of China

longkun.guo@gmail.com
3 School of Mathematics and Statistics, Shandong Normal University, Jinan 250014,

People’s Republic of China
liminemily@sdnu.edu.cn

Abstract. In the paper, we propose a deterministic approximation algo-
rithm for maximizing a generalized monotone submodular function sub-
ject to a matroid constraint. The function is generalized through a cur-
vature parameter c ∈ [0, 1], and essentially reduces to a submodular
function when c = 1. Our algorithm employs the deterministic approxi-
mation devised by Buchbinder et al. [3] for the c = 1 case of the problem
as a building block, and eventually attains an approximation ratio of
1+gc(x)+Δ·[3+c−(2+c)x−(1+c)gc(x)]

2+c+(1+c)(1−x)
for the curvature parameter c ∈ [0, 1]

and for a calibrating parameter that is any x ∈ [0, 1]. For c = 1, the
ratio attains 0.5008 by setting x = 0.9, coinciding with the renowned
performance guarantee of the problem. Moreover, when the submodular
set function degenerates to a linear function, our generalized algorithm
always produces optimum solutions and thus achieves an approximation
ratio 1.

Keywords: Submodular optimization · Matroid constraint ·
Curvature · Deterministic algorithm

1 Introduction

As a classical problem in submodular optimization, maximization of a mono-
tone submodular function f subject to a single matroid constraint has broad
applications in industry and data science, such as Submodular Welfare Prob-
lem [13] which is essentially a submodular maximization problem subject to a
partition matroid. In the problem, typically we are given S a ground set of n
elements and an oracle that accesses to a non-negative monotone submodular
c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 205–214, 2020.
https://doi.org/10.1007/978-3-030-59267-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_18&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_18

206 X. Sun et al.

function f : 2S → R≥0. The aim is to find the a feasible set B ⊆ S satisfying
the constraint over a matroid M to maximize f .

Recently, a well-studied generalization of submodular maximization is
renewed attracting research interest [2,7,11,12,16,18]. The generalization con-
siders the so-called total curvature of f introduced by Conforti and Cornuéjols
[7]. By definition, curvature is the minimum c ∈ [0, 1], for which for any subset
U ⊂ S and element j ∈ S\U , f(U ∪ {j}) − f(U) ≥ (1 − c)f({j}) holds. The
concept indicates how far a function f deviates from linearity.

It is well-known that the standard greedy algorithm gave a 1/2-
approximation ratio for the problem of monotone submodular maximization over
a matroid constraint [10], and 1/(1 + c)-approximation when f has curvature c
[7]. In previous works, Feige [8] showed that there exists no polynomial-time
algorithm with an approximation ratio better than (1 − 1/e). Also, Nemhauser
and Wolsely [14] showed that any improvement over (1 − 1/e) has to make sac-
rifice for an exponential number of queries to the value oracle. In recent years,
Calinescu et al. [5,17] presented a randomized (1 − e−c)/c-approximation algo-
rithm for the problem. This is a breakthrough result that perfectly matches the
conjecture given by Feige [8]. Their technique is continuous greedy with pipage
rounding [1], as well as swap rounding [6] which is a rapid method running in
continuous time. Another excellent work to this problem is done by Filmus and
Ward [9], who gave a non-oblivious local search algorithm with an approxima-
tion ratio of (1 − e−c)/c. The randomized algorithm is combinatorial and based
on local search. Notably, the two algorithms above are not easy to derandomize
because they are intrinsically randomized. Therefore, Calinescu et al. [5] propose
the still open problem “whether a (1 − e−c)/c-approximation can be obtained
using a deterministic algorithm”.

For the open problem, Buchbinder et al. [3] lately made a step forward by
proposing a deterministic 0.5008-approximation algorithm. Observing the diffi-
culty of applying derandomization method to submodular maximization prob-
lems, their algorithm consists of two simple components. One is a deterministic
greedy-like split algorithm; The other is a randomized algorithm which has a
known deterministic version. The latter algorithm, known as Residual Random
Greedy (RRGreedy) algorithm and originally described in [4], is a simple greedy-
like randomized algorithm but not difficult to derandomize. The main algorithm
unites these two greedy algorithms in the following way: it first obtains two
disjoint sets whose union is a base through the split algorithm, then finds the
other parts for each one of them to make them a base on appropriate contracted
matroids; at last, outputs the better one within these two bases. Buchbinder et
al. devised a novel method to select the parameters to ensure the approximation
ratio is strictly better than 0.5.

Contribution. In this paper, we present an approximation algorithm for the
submodular maximization problem with a curvature parameter c by generalizing
the deterministic 0.5008-approximation by Buchbinder [3]. As a by-product, we
first show the algorithm achieves an identical ratio of 0.5008 when curvature

Guarantees for Submodular Maximization with a Matroid Constraint 207

c = 1. Then, we generalize the analysis to arbitrary curvature c ∈ [0, 1] and
argue that the algorithm achieves the following performance guarantee:

Fig. 1. The relationship between the approximation ratios, curvature c and the cali-
brating parameter x.

Theorem 1.1. For curvature c ∈ [0, 1] and for any x ∈ [0, 1], there exists a
deterministic algorithm which yields an approximation ratio

1 + gc(x) + Δ · [3 + c − (2 + c)x − (1 + c)gc(x)]
2 + c + (1 + c)(1 − x)

,

where gc(x) .= 1−(1−x)1+c

1+c .

The relationship between the approximation ratios, curvature c and parame-
ter x is demonstrated as in Fig. 1 and Table 1. Note that both the total curvature
c and the calibrating parameter x are in [0, 1]. Comparing to the case in [3] when
curvature c equals to 1, the above ratio also attains 0.5008 by setting x = 0.9.
Moreover, for other values of c, the ratio is strictly better than 0.5008 as depicted
in the figure. In particular, the approximation ratio attains 1 when the curvature
of the submodular function is 0 so that the set function degenerates to linear
function.

Organization. The remainder of the paper is organized as below: Sect. 2 gives
preliminary definitions of the paper; Sect. 3 presents the algorithms and all
analysis; Sect. 4 finally concludes the paper. In addition, the formal proofs are
deferred to the journal version.

208 X. Sun et al.

Table 1. The approximation ratios of our algorithm respectively against a list of fixed
curvature c ∈ [0, 1] obtained through a list of carefully chosen x.

Cur. c Best x Ratio Cur. c Best x Ratio

1.0 0.9 0.50087 0.48 1.0 0.67568

0.98 0.9 0.50527 0.46 1.0 0.68493

0.96 1.0 0.5102 0.44 1.0 0.69444

0.94 1.0 0.51546 0.42 1.0 0.70423

0.92 1.0 0.52083 0.4 1.0 0.71429

0.9 1.0 0.52632 0.38 1.0 0.72464

0.88 1.0 0.53191 0.36 1.0 0.73529

0.86 1.0 0.53763 0.34 1.0 0.74627

0.84 1.0 0.54348 0.32 1.0 0.75758

0.82 1.0 0.54945 0.3 1.0 0.76923

0.8 1.0 0.55556 0.28 1.0 0.78125

0.78 1.0 0.5618 0.26 1.0 0.79365

0.76 1.0 0.56818 0.24 1.0 0.80645

0.74 1.0 0.57471 0.22 1.0 0.81967

0.72 1.0 0.5814 0.2 1.0 0.83333

0.7 1.0 0.58824 0.18 1.0 0.84746

0.68 1.0 0.59524 0.16 1.0 0.86207

0.66 1.0 0.60241 0.14 1.0 0.87719

0.64 1.0 0.60976 0.12 1.0 0.89286

0.62 1.0 0.61728 0.1 1.0 0.90909

0.6 1.0 0.625 0.08 1.0 0.92593

0.58 1.0 0.63291 0.06 1.0 0.9434

0.56 1.0 0.64103 0.04 1.0 0.96154

0.54 1.0 0.64935 0.02 1.0 0.98039

0.52 1.0 0.65789 0.0 1.0 1.0

0.5 1.0 0.66667

2 Preliminaries

This section gives the formal definition of the terms and notations used in the
paper. A set function f : 2S → R defined on a ground set S of size n is submodular
if and only if for any U, V ⊆ S, f(U ∪ V) + f(U ∩ V) ≤ f(U) + f(V). Moreover,
we say f is monotone if f(U) ≤ f(V) whenever U ⊆ V . Given a submodular
function, the marginal profit of adding an element j ∈ S to U is defined by
f({j}|U) .= f(U ∪ {j}) − f(U). The total curvature of a monotone submodular
function f is the minimum c ∈ [0, 1] such that for any U ⊂ S and j ∈ S\U ,

Guarantees for Submodular Maximization with a Matroid Constraint 209

f(U ∪ j) − f(U) ≥ (1 − c)f(j). For simplicity, we abbreviate f({j}|U), U ∪ {j}
and U\{j} as f(j|U), U + j and U − j.

Algorithm 1. Main Algorithm
Input: function f , matroid M
Output: The better solution out of U = (U1 ∪ U2) and V = (V1 ∪ V2).
1: (U1, V1) ← Partition(f, M, q).
2: U2 ← RRG(f(·|U1), M/U1).
3: V2 ← RRG(f(·|V1), M/V1).

A pair M = (S, I) is called a matroid w.r.t. a ground set S, if and only if
the independence system I is a nonempty collection of subsets of S satisfying
the following properties:

(i) If U ⊆ V ⊆ S and V ∈ I, then U ∈ I;
(ii) If U, V ∈ I and |U | < |V |, then there is an element j ∈ V \U such that

U + j ∈ I.

For a matroid M = (S, I), a subset U of S is called independent if and
only if U belongs to I. A set B is called the base of the matroid M if B ∈ S
is a maximal independent subset of S. The common size of all bases is called
the rank of M and denoted by r. We assume r ≥ 2 throughout this paper.
Moreover, for an independent set U of M, we denote by M/U the matroid
obtained from M by contracting U . We recommend [15] to the readers for more
information on matroid theory. Similar to the case of submodular functions,
the size of the description of a matroid can be exponential in the size of its
ground set. Hence, we assume that the algorithms have access to matroids only
through an independence oracle that for a given set U ⊆ S answers whether U
is independent or not.

We are interested in the problem of maximizing a non-negative monotone
function f : 2S → R≥0 subject to curvature c ∈ [0, 1] and a matroid M = (S, I)
constraint. We use OPT to denote the optimal solution for this problem. For
the case of r = 1, the above problem is apparently polynomial solvable.

3 Generalizing the Deterministic 0.5008-Approximation
Algorithm

In the section, we shall present our main algorithm, which uses two simple
greedy-like algorithms as building blocks. The first is the Partition algorithm
for generating the partitions and the second is the Residual Random Greedy
algorithm that was introduced in 2014 [4]. The formal layout of the main algo-
rithm is as stated in Algorithm 1.

Our analysis starts from the Partition algorithm, which is a greedy-like algo-
rithm and takes the set function f , matroid M and a parameter q ∈ [0, 1] as

210 X. Sun et al.

inputs. At each iteration, it selects the element that has maximal marginal profit
in a certain contracted matroid. Formally, the Partition algorithm proceeds as
in Algorithm 2.

Algorithm 2. Partition
Input: function f , matroidM, parameter q
Output: (Ur, Vr)
1: Initialize: U0 ← ∅, V0 ← ∅.
2: for k = 1 to r do
3: iUk = arg maxi∈M/(Uk−1∪Vk−1){f(i|Uk−1)}.

4: iVk = arg maxi∈M/(Uk−1∪Vk−1){f(i|Vk−1)}.

5: if q · f(iUk |Uk−1) ≥ (1 − q) · f(iVk |Vk−1) then
6: Uk ← Uk−1 + iUk and Vk ← Vk−1.
7: else
8: Vk ← Vk−1 + iVk and Uk ← Uk−1.
9: end if

10: end for

The algorithm outputs a partition of a base B with a lower bound as stated
in the following lemma:

Lemma 3.1. For each base B of matroid M, set function f with curvature c,
and parameters α ∈ [0, 1], q ∈ [0, 1], the Partition algorithm satisfies

θf(Uk) + (1 − θ)f(Vk) ≥ Δ · f(B) ≥ 1
3

· f(B),

where

θ =
q [(1 + α) − α(1 − c)]

q [(1 + α) − α(1 − c)] + (1 − q) [(2 − α) − (1 − α)(1 − c)]

and

Δ =
[αq + (1 − α)(1 − q)]

q [(1 + α) − α(1 − c)] + (1 − q) [(2 − α) − (1 − α)(1 − c)]
.

Moreover, the following lemma shows the output of Algorithm 2 is always a
partition for a base B of M with guaranteed properties as follows.

Lemma 3.2. For every base B of M, there exists a partition B = BU ∪ BV

such that the following two characteristics are true

(1) Ur ∪ BU and Vr ∪ BV are bases of M.

(2) c · f(Ur) + f(Ur ∪ BU) ≥ f(B) and c · f(Vr) + f(Vr ∪ BV) ≥ f(B).

After obtaining the properties of the partition as in Algorithm 2, we adopt the
Residual Random Greedy (RRG) algorithm given by [4] to eventually produce
our desired subset. The detailed algorithm is illustrated in Algorithm 3.

Guarantees for Submodular Maximization with a Matroid Constraint 211

Algorithm 3. Residual Random Greedy Algorithm
Input: function f , matroid M
Output: Ur

1: Initialize: U0 ← ∅.
2: for k = 1 to r do
3: Xk be a base of M/Uk−1 maximizing

∑
u∈Xk

f(i|Uk−1).
4: Uk ← Uk−1 + ik, where ik is a uniformly random element from Xk.
5: end for

Apparently, Algorithm 3 is again a greedy-like algorithm. We will show the
algorithm has an approximation ratio of 1/(1+c). Before presenting the analysis
of this algorithm, we construct for every integer k ∈ {0, . . . , r} a set Bk from an
arbitrary base B of M, which is a base of the contracted matroid M/Uk and a
bijection mapping ωk : Xk → Bk−1 as in [3]. This maps every element i ∈ Xk

to an element of Bk−1 in a way that (Bk−1 − ωk(i)) + ik is a base of M/Uk−1.
The following lemma is the beginning for showing the main result regarding
Algorithm 3.

Lemma 3.3. For every integer k ∈ [r] and a possibly random set T ⊂ S,
E [f(Uk) + f(Uk ∪ Bk ∪ T)] ≥ E [f(Uk−1) + f(Uk−1 ∪ Bk−1 ∪ T) + (1 − c) · f(ik)] .

Naturally, we can generalize the result of the above lemma to a conclusive
result related to the matroid rank r.

Corollary 3.1. For every 1 ≤ k ≤ r and a possibly random set T ⊂ S,

E [f(Ur) + f(Ur ∪ T)] ≥ E

[
f(Uk) + f(Uk ∪ Bk ∪ T) + (1 − c) ·

r∑
l=k+1

f(il)

]

≥ E [f(B ∪ T) + (1 − c) · f(Ur)] .

By setting T = ∅ in the above corollary, we immediately obtain the approxi-
mation ratio 1/2. Then we use the next lemma to show the property of E[f(Uk)],
which is intuitively the expected value of Uk in each round.

Lemma 3.4. For every 0 ≤ k ≤ r, we have the following result

E [f(Uk)] ≥
[
gc

(
k

r

)
+ δc

]
· f(B),

where

gc(x) =
1 − (1 − x)1+c

1 + c

and

δc =
{ c

(1+c)k1+c 0 < k < r

0 otherwise.

212 X. Sun et al.

Furthermore, we can actually extend Lemma 3.4 to non-integer values,
through the following lemma:

Lemma 3.5. For every 0 ≤ x < 1, α = �rx + 1� − rx and k = �rx�, then

α · E[f(Uk)] + (1 − α) · E[f(Uk+1)] ≥ gc(x) · f(B).

Moreover, the next lemma gives another lower bound to Algorithm 3, which
helps analyzing the main algorithm.

Lemma 3.6. For every 0 ≤ x ≤ 1 and an arbitrary base B′ of M,

(2 + c) · E[f(Ur)] ≥ (1 + gc(x)) · f(B′) + (1 − x) · f(B|B′).

Recall the main algorithm produces two sets U1 and V1 in the first step.
According to Lemma 3.2, the optimal solution OPT , which is certainly a base
of M due to the assumption of this problem, can be separated into OPTU and
OPTV . Those two sets can be supplementary set to U1 and V1, respectively. This
indicates that the unions of U1 ∪ OPTU and V1 ∪ OPTV are two bases of M.
Consequently, we begin the analysis of the main algorithm with the following
lemma on the property of the two complementary sets V1 and OPTU of U1.

Lemma 3.7. The union of the two complementary sets V1 and OPTU of U1

satisfies the following inequality

f(V1 ∪ OPTU) ≥ f(OPT) − (1 + c) · E [f(V |V1)] .

Therefore, we have a lower bound on the linear combination of the outputs
produced by the main algorithm.

Lemma 3.8. For every 0 ≤ x ≤ 1,

(2 + c) · E[f(U2|U1)] + (1 + c)(1 − x) · E[f(V)]
≥ (1 + g(x)) · f(OPT) + (2 − x − (1 + c)gc(x)) · f(U1) + (1 + c)(1 − x) · f(V1).

Combining the above lemmas, we can eventually prove the main result as
stated in Theorem 1.1.
Proof of Theorem 1.1. According to the result of Lemma 3.8, we can let

θ =
2 − x − (1 + c)gc(x)

2 − x − (1 + c)gc(x) + (1 + c)(1 − x)

=
2 − x − (1 + c)gc(x)

3 + c − (2 + c)x − (1 + c)gc(x)
.

Then we get the followings from Lemma 3.1 by setting base B = OPT

(2 − x − (1 + c)gc(x)) · f(U1) + (1 + c)(1 − x) · f(V1)
≥ Δ · (3 + c − (2 + c)x − (1 + c)gc(x)) · f(OPT).

Guarantees for Submodular Maximization with a Matroid Constraint 213

Right now we pay attention to the two outputs U and V of the main algo-
rithm. We have

max {E[f(U)], E[f(V)]}

≥ (2 + c) · E[f(U)] + (1 + c)(1 − x) · E[f(V)]

2 + c + (1 + c)(1 − x)

≥ (1 + gc(x)) · f(OPT) + ((2 − x) − (1 + c)gc(x)) · f(U1) + (1 + c)(1 − x) · f(V1)

2 + c + (1 + c)(1 − x)

≥ 1 + gc(x) + Δ · [3 + c − (2 + c)x − (1 + c)gc(x)]

2 + c + (1 + c)(1 − x)
· f(OPT),

where the second inequality is given by Lemma 3.8 and the final one follows
from Lemma 3.1.

We show the relationship between the approximation ratios, curvature c and
parameter x in Fig. 1. Note that the total curvature c ∈ [0, 1] and x ∈ [0, 1].
And we have the same condition comparing to [3] if curvature c equals to 1. In
this case, the above ratio attains 0.5008 via setting x = 0.9. In other cases of c,
we can verify it is strictly better than 0.5008 through a numerical experiment
Table 1. In particular, the ratio achieves 1 when the curvature of the submodular
function equals to 0 that the set function degenerates to linear function. �

Note that the main algorithm is still a randomized algorithm because of
the randomization procession in the RRG algorithm. Anyhow, it can be deran-
domized in a way following a similar line as the derandomization of the RRG
algorithm in [3]. In fact, we can adopt their derandomization method against
our algorithm without compromising the lemmas above. Thus, the derandom-
ized algorithm derived from our algorithm deserves the same approximation ratio
as the randomized algorithm.

4 Conclusions

In this paper, we present an algorithm for the problem of maximizing a mono-
tone submodular function with a total curvature c ∈ [0, 1] and a general
matroid constraint. We show the algorithm achieves an approximation ratio of
1+gc(x)+Δ·[3+c−(2+c)x−(1+c)gc(x)]

2+c+(1+c)(1−x) for calibrating parameter x ∈ [0, 1]. Our algo-
rithm essentially generalizes the 0.5008-approximation algorithm due to Buch-
binder et al. [3], which solves the special case of the problem when c = 1 and
is renown for being the first polynomial time deterministic algorithm with an
approximation guarantee better than 1/2. Moreover, our algorithm achieves
an approximation guarantee 1 when the set function degenerates to a linear
function.

Acknowledgements. The first two authors are supported by Natural Science Foun-
dation of China (No. 11871081). The third author is supported by Natural Sci-
ence Foundation of China (No. 61772005) and Natural Science Foundation of Fujian
Province (No. 2017J01753). The fourth author is supported by Higher Educational
Science and Technology Program of Shandong Province (No. J17KA171) and Natural
Science Foundation of Shandong Province (No. ZR2019MA032) of China.

214 X. Sun et al.

References

1. Ageev, A.A., Sviridenko, M.I.: Pipage rounding: a new method of constructing
algorithms with proven performance guarantee. J. Comb. Optim. 8, 307–328 (2004)

2. Balkanski, E., Rubinstein, A., Singer, Y.: The power of optimization from samples.
In: Proceedings of NIPS, pp. 4017–4025 (2016)

3. Buchbinder, N., Feldman, M., Garg, M.: Deterministic (1/2+ε)-approximation for
submodular maximization over a matroid. In: Proceedings of SODA, pp. 241–254
(2019)

4. Buchbinder, N., Feldman, M., Naor, J.S., Schwartz, R.: Submodular maximization
with cardinality constraints. In: Proceedings of SODA, pp. 1433–1452 (2014)

5. Călinescu, G., Chekuri, C., Pál, M., Vondrák, J.: Maximizing a monotone submod-
ular function subject to a matroid constraint. SIAM J. Comput. 40, 1740–1766
(2011)

6. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via
exchange properties of combinatorial structures. In: Proceedings of FOCS, pp.
575–584 (2010)

7. Conforti, M., Cornuéjols, G.: Submodular set functions, matroids and the greedy
algorithm: tight worst-case bounds and some generalizations of the Rado-Edmonds
theorem. Discrete Appl. Math. 7, 251–274 (1984)

8. Feige, U.: A threshold of ln n for approximating set cover. J. ACM 45, 634–652
(1998)

9. Filmus, Y., Ward, J.: Monotone submodular maximization over a matroid via non-
oblivious local search. SIAM J. Comput. 43, 514–542 (2014)

10. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for
maximizing submodular set functions-II. Math. Program. Study 8, 73–87 (1978)

11. Iyer, R.K., Bilmes, J.A.: Submodular optimization with submodular cover and
submodular knapsack constraints. In: Proceedings of NIPS, pp. 2436–2444 (2013)

12. Iyer, R.K., Jegelka, S., Bilmes, J.A.: Curvature and optimal algorithms for learning
and minimizing submodular functions. In: Proceedings of NIPS, pp. 2742–2750
(2013)

13. Lehmann, B., Lehmann, D.J., Nisan, N.: Combinatorial auctions with decreasing
marginal utilities. Games Econ. Behav. 55, 270–296 (2006)

14. Nemhauser, G.L., Wolsey, L.A.: Best algorithms for approximating the maximum
of a submodular set function. Math. Oper. Res. 3, 177–188 (1978)

15. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Springer, Hei-
delberg (2003)

16. Sviridenko, M., Vondrák, J., Ward, J.: Optimal approximation for submodular
and supermodular optimization with bounded curvature. Math. Oper. Res. 42,
1197–1218 (2017)

17. Vondrák, J.: Optimal approximation for the submodular welfare problem in the
value oracle model. In: Proceedings of STOC, pp. 67–74 (2008)

18. Vondrák, J.: Submodularity and curvature: the optimal algorithm. RIMS
Kokyuroku Bessatsu B23, 253–266 (2010)

A Novel Initialization Algorithm for
Fuzzy C-means Problem

Qian Liu, Jianxin Liu, Min Li, and Yang Zhou(B)

School of Mathematics and Statistics, Shandong Normal University,
Jinan 250014, People’s Republic of China

lq qsh@163.com, 3286330436@qq.com, liminEmily@sdnu.edu.cn, zhyg1212@163.com

Abstract. The fuzzy C-means problem belongs to soft clustering prob-
lem, where each given point has relationship to every center point. This
problem is different from the k-means problem, where each point should
belong to only one cluster. In this paper, we design one seeding algorithm
for fuzzy C-means problem and obtain performance ratio O(klnk). We
also give the performance guarantee O(k2lnk) of the seeding algorithm
based on k-means++ for fuzzy C-means problem. At last, we present
our numerical experiment to show the validity of the algorithms.

Keywords: Fuzzy C-means problem · Approximation algorithm ·
Seeding algorithm

1 Introduction

As a classical problem, data clustering may arise in plenty of areas such as
machine learning, pattern recognition, facility location, etc. Among different
models for clustering, k-means problem is known as the most widely used model,
in which given an integer k and a set of n data points, the goal is to choose k
centers so as to minimize the sum of the squared distances between each point
and its closest center. The data samples can then be assigned into k clusters
according to their distances to the centers. This problem is proved to be NP-
hard [2,5]. The first constant approximation algorithm and the best one are
given with performance guarantees 108 [10] and 6.357 [1], respectively.

As a heuristic algorithm, the Lloyd’s method [14] is proposed and widely used
for this problem for its easy implementation and speediness. In Lloyd’s method,
one begins with k randomly chosen centers from the data points. Each point is

Supported by Higher Educational Science and Technology Program of Shandong
Province (No. J17KA171), Natural Science Foundation of Shandong Province (Nos.
ZR2019MA032, ZR2019PA004) of China.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-59267-7 19) contains supplementary material, which is
available to authorized users.

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 215–225, 2020.
https://doi.org/10.1007/978-3-030-59267-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_19
https://doi.org/10.1007/978-3-030-59267-7_19
https://doi.org/10.1007/978-3-030-59267-7_19

216 Q. Liu et al.

then assigned to the nearest center, and each center is recomputed as the center
of mass of all points assigned to it. These two steps (assignment and center
calculation) are repeated until the process stabilizes. To improve the accuracy of
Lloyd’s method, a careful seeding technic is added called k-means++ algorithm
is proposed and it is proved that this algorithm is O(log k)-competitive with the
optimal clustering [3]. The underlying idea of the seeding algorithm is picking
the first centers uniformly from the dataset, and then picking the rest points one
by one from the dataset with probabilities proportional to their contributions to
the potential function. The idea of seeding algorithm has been applied to many
variants of k-means problem, such as spherical k-means problem [13], k-means
problem with penalties [12], functional k-means problem [11] and so on. For
more study of approximation algorithm about k-means problem, one can refer
to [8,15,21,22].

However, in many of real applications there are no strict boundaries among
different categories. One object may belong to several clusters in different
extents. In those cases, instead of hard clustering, it is more natural to con-
sider the soft clustering strategy. For example, we consider the location problem
of k super markets around a district. When we assume that people prefer to
go to the nearest one, then the location of markets can be formulated as a k-
means problem. However, people do not go to only one market since there are
plenty of factors which will affect their preference, which consequently leads to
a fuzzy C-means model [6,19]. And there are some work about the comparison
between k-means problem and fuzzy C-means problem [9,20]. For more details
of applications of fuzzy C-means, see [16,18].

In fuzzy C-means problem, instead of determine the affiliation of objects
to clusters, degrees of membership (between 0 and 1) of each object to each
representative are defined to describe the level of closeness between them. Fuzzy
C-means problem can also be seen as a generalization of k-means problem. In
k-means problem, the degrees of membership are either 0 or 1. When k is fixed,
Blömer et al. present a PTAS for fuzzy C-means problem [7].

In 2015, Stetco et al. propose the fuzzy C-means++ algorithm (FCM++,
Algorithm 2) to solve fuzzy C-means problem, in which the seeding strategy of
k-means++ is utilized to improve the effectiveness and speed of the classical algo-
rithms [17]. Numerical experiments show that this algorithm have significantly
improved both the computation time and final cost function values, whereas
theoretical analysis on FCM++ stays unsolved.

The motivation of this paper is as following. It is well known that for the
standard FCM algorithm to solve fuzzy C-means problem given in Algorithm 1
[14], the initialization has a great influence on its effectiveness. Thus in [17], the
algorithm is improved by utilizing the seeding mechanism of the k-means++
algorithm, in which initial centers are sampled by special probability as in
Algorithm 2. However, the probability only depends on the contribution of
the given point to the potential in k-means problem, whereas any information
related to the membership degree is not used. Moreover, the performance ratio is
O(lnk) when Algorithm 2 is applied to k-means problem whereas no performance

A Novel Initialization Algorithm for Fuzzy C-means Problem 217

guarantee are given for fuzzy C-means problem. Therefore, it is natural to con-
sider that the initial centers are chosen according to a new probability which
depends on the contribution of the given point to the potential in fuzzy C-means
problem.

The contribution of this paper is twofold. Firstly, noting that the seeding strat-
egy in FCM++ is based on the contribution of data points to the potential of
k-means problem, we propose a novel seeding algorithm to fuzzy C-means prob-
lem. In this algorithm the centers (except the first one) are also chosen randomly
according to a distribution, which is constructed according to their contribution
to the potential function of the fuzzy C-means problem. We show that an O(klnk)-
competitive solution can be obtained by the algorithm when the fuzzifier param-
eter is selected as 2, denoted by m in this paper. For a more general case that
m ∈ N++, which denotes the set of positive integers, the performance ratio can
be extended as O(km−1lnk). Secondly, we show that the performance ratio of
FCM++ algorithm is O(k2m−2lnk) for m ∈ N++. Numerical results show that
the new algorithm performs well in solving the fuzzy C-means problem.

The rest of this paper is organized as follows. In Sect. 2, we present the
fuzzy C-means problem and some basic notations. We introduce the seeding
algorithms and the main results for fuzzy C-means problem in Sect. 3. In Sect.
4, the proof to show the correctness of the algorithm is given. In Sect. 5, the
numerical experiment about the seeding algorithm for fuzzy C-means problem
is presented. The final remarks are concluded in Sect. 6.

2 Preliminaries

In this section, the definition of fuzzy C-means problem, some symbols and
notations, as well as some important results are mainly introduced.

Given a set X = {x1, x2, . . . , xn} and C = {c1, c2, . . . , ck} in R
d, μij ∈

[0, 1] (i = 1, 2, . . . , n; j = 1, 2, . . . , k) such that
∑k

j=1 μij = 1 for i = 1, 2, . . . , n,
and m ≥ 2, we can define the loss function or potential function of X over C as
follows.

φ(X,C,m) =
n∑

i=1

k∑

j=1

μm
ij ||xi − cj ||2.

In general, we call m fuzzifier parameter and μ = (μij)n×k membership degree.
The fuzzy C-means problem is to find a clustering C and membership degree
μ minimizing the loss function φ(X,C,m). We use (C∗(m), μ∗(m)) to denote
an optimal solution and φ∗(m) to denote the corresponding objective value. If
m = 1, it is easy to see that fuzzy C-means problem is reduced to k-means
problem. However, there is an example showing that fuzzy C-means problem
and k-means problem have different optimal centers when m = 2.

Example 1 (A problem with different optimal centers under k-means problem
and fuzzy C-means model). Let X = {0.0153, 0.7353, 0.4143, 0.2110} ⊆ R and
k = 2. The k-means optimal solution of this problem is {0.5748, 0.1132}, which

218 Q. Liu et al.

are actually two means of every two data points. For the fuzzy C-means problem,
the objective value of {0.5748, 0.1132} is 0.0624. And there is a better center
set {0.1414, 0.6533} with potential function value as 0.058955. Then it can be
concluded that the optimal centers of k-means and fuzzy C-means problem with
the same data sets may still vary.

In the following discussion, we assume that m = 2. The case that m ∈ N++

will be presented in the later journal version of the paper. Then the loss function
is defined as follows.

φ(X,C) = φ(X,C, 2) =
n∑

i=1

k∑

j=1

μ2
ij ||xi − cj ||2.

We use (C∗, μ∗) to denote an optimal solution and φ∗ to denote the correspond-
ing objective value. Given a set A ⊆ X, we denote

φ(A,C) =
∑

xi∈A

k∑

j=1

μ2
ij ||xi − cj ||2,

and
φ∗(A) =

∑

xi∈A

∑

cj∈C∗
μ∗2
ij ||xi − c∗

j ||2.

Specially, when A = {a}, we use φ(a,C) to denote the loss function of A over C
for short.

Remark 1. Given any set C = {c1, c2, . . . , ck}, we can get the optimal member-
ship degrees as follows.

μij =
1

∑k
l=1

(‖xi−cj‖
‖xi−cl‖

)2 , i = 1, 2, . . . , n; j = 1, 2, . . . , k.

Moreover, the loss function of any point xi ∈ X without membership degrees is

φ(xi, C) =
k∑

j=1

μ2
ij‖xi − cj‖2

=
1

∑k
l=1

1
‖xi−cl‖2

. (1)

Inversely, given any μ with
∑k

j=1 μij = 1, i = 1, 2, . . . , n, we can obtain the
optimal center points corresponding to μ:

cj =

∑n
i=1 μ2

ijxi
∑n

i=1 μ2
ij

, j = 1, 2, ..., k.

A Novel Initialization Algorithm for Fuzzy C-means Problem 219

3 The Seeding Algorithms and Our Main Result

In this section, we will mainly present the seeding algorithms for the fuzzy C-
means problem, which are based on the FCM algorithm for fuzzy C-means
problem given in Algorithm 1 [14]. The clustering centers and the member-
ship degree are updated in each iteration because of their special relationship.
And this algorithm makes enough improvement in each cycle until the cluster-
ing or membership degree is no longer changed. This algorithm is improved in
[17], which samples the initial centers by special probability as in Algorithm 2. In
fact, Algorithm 2 is the seeding section in k-means++ for k-means problem. The
probability only depends on the contribution of the given point to the poten-
tial in k-means problem, whereas any information related to the membership
degree is not used. Moreover, the performance ratio is O(lnk) when Algorithm
2 is applied to k-means problem. But there is no performance guarantee given
when this algorithm is used to solve fuzzy C-means problem. In Algorithm 3,
we use a new probability to choose the initial centers, which depends on the
contribution of the given point to the potential in fuzzy C-means problem. The
motivation of this chosen method comes from the loss function of the observation
point without computing membership degrees, which is presented in (1). From
now on, the probability used in Algorithm 2 is called D2-weighting, and the one
in Algorithm 3 is called μ2-weighting.

Algorithm 1. FCM for fuzzy C-means problem
Input: A set of n data points X = {xi}n

i=1, the clusters number k, the initial centers
C = {ci}k

i=1 with k points, and the intial matrix of membership degree µn×k = 0.
Output: A fuzzy C-means C of X and the matrix of membership degree µ = (µij)n×k.

1: for i from 1 to n and j from 1 to k do

2: Update the membership degree µij :=

1
‖xi−cj‖2

∑k
l=1

1
‖xi−cl‖2

;

3: end for
4: for i from 1 to k do

5: Update the centers cj :=
∑n

i=1 µ2
ijxi

∑n
i=1 µ2

ij
;

6: end for
7: Repeat Step 1 to Step 6 until C or µ no longer changes;
8: Return C and µ.

Then, we present our main result as follows.

Theorem 1. Suppose that C is constructed in Algorithm 3 for X ⊆ R
d, then

the corresponding cost function satisfies E[φ(X,C)] ≤ 16k(ln k + 2)φ∗.

Theorem 2. Suppose that C is constructed in Algorithm 2 for X ⊆ R
d, then

the corresponding cost function satisfies E[φ(X,C)] ≤ 16k2(ln k + 2)φ∗.

220 Q. Liu et al.

Algorithm 2. The seeding algorithm for k-means problem
Input: A set of n data points X = {xi}n

i=1, the clusters number k and set C := ∅.
Output: A clustering C of X.

1: Choose the first center c1 uniformly at random from X, then set C := C ∪ {c1};
2: for i from 2 to k do
3: Choose the i-th center ci from X \ C with probability d2(ci,C)

∑
xi∈X\C d2(xi,C)

;

4: Set C := C ∪ {ci};
5: end for
6: Return C.

Algorithm 3. The seeding algorithm for fuzzy C-means problem
Input: A set of n data points X = {xi}n

i=1, the clusters number k and initial center
set C := ∅.
Output: A set of centers C of X.

1: Choose the first center c1 uniformly at random from X, then set C := C ∪ {c1};
2: for i from 2 to k do

3: Choose the i-th center ci from X \C with probability

1∑
cj∈C ‖ci−cj‖−2

∑
xi∈X\C

1∑
cj∈C ‖xi−cj‖−2

;

4: Set C := C ∪ {ci};
5: end for
6: Return C.

4 Proof of Correctness

Given an optimal solution (C∗, μ∗), where C∗ = {c∗
1, c

∗
2, . . . , c

∗
k}, the set X can

be partitioned into k optimal clusters as follows.

Xj = {x ∈ X|‖x − c∗
j‖ ≤ ‖x − c∗

l ‖,∀l �= j}, j = 1, 2, ..., k.

Lemma 1. Let A be an optimal cluster and c(A)∗ be the center of A. Then
∑

xi∈A

‖xi − c(A)∗‖2 ≤ kφ∗(A).

Proof.
∑

xi∈A

‖xi − c(A)∗‖2 =
∑

xi∈A

(μ∗
i1 + μ∗

i2 + · · · + μ∗
ik)

2‖xi − c(A)∗‖2

≤ k
∑

xi∈A

k∑

l=1

μ∗
il
2‖xi − c(A)∗‖2

≤ k
∑

xi∈A

k∑

l=1

μ∗
il
2‖xi − c∗

l ‖2

= kφ∗(A).

A Novel Initialization Algorithm for Fuzzy C-means Problem 221

Remark 2. The first inequality can be tight when each μ∗
ij = 1

k , j = 1, 2, . . . , k.
In fact, if there is an observation point with the same distance to each center
point, the same components of μ can be obtained. For k-means problem, Lemma
1 is trivial since

∑
xi∈A ‖xi−c(A)∗‖2 = φ∗(A). Therefore, this lemma shows why

the performance guarantee of fuzzy C-means problem is O(klnk) and the one of
k-means problem is O(lnk).

When there is only one center point chosen, one can obtain the following
bound by using the triangle inequality.

Lemma 2. Let A be an optimal cluster, and let C be the clustering with just
one center, which is chosen uniformly at random from A. Then,

E[φ(A,C)] ≤ 4kφ∗(A).

The following two lemmas can be proved easily by induction and will be used
to prove Lemma 5.

Lemma 3. For any A,B > 0 and a ≥ 0, we have

1
1
A + a

+
1

1
B + a

≥ 1
1

A+B + a
.

Lemma 4. For any positive integer n, bi are positive constants for i = 1, · · · , n,
and a ≥ 0. The following inequality holds

1
1

b1+a + · · · + 1
bn+a

≤ 1
1
b1

+ · · · + 1
bn

+ a.

If another center point is sampled, we can know the influence to the potential
function from the following lemma.

Lemma 5. Let A be an optimal cluster, and let C be an arbitrary representative
C = {c1, · · · , ct}. If we add a random point to C from A, chosen with μ2-
weighting (or D2-weighting), then

E[φ(A,C ′)] ≤ 16kφ∗(A),

where C ′ is the new representative.

When several center points are added, we can know the influence to the potential
function from the following lemma.

Lemma 6. Let C be an arbitrary representative, u > 0 be the number of “uncov-
ered” optimal clusters, and Xu denote the set of points in these clusters. Also
let Xc = X −Xu. Now suppose we add t ≤ u random points to C. Let C ′ denote
the resulting set of representative.

(i) If the new points are chosen with μ2-weighting, the E[φ(X,C ′)] is at most,

[φ(Xc, C) + 16kφ∗(Xu)](1 + Ht) +
u − t

u
φ(Xu, C);

222 Q. Liu et al.

(ii) If the new points are chosen with D2-weighting, the E[φ(X,C ′)] is at
most,

k[φ(Xc, C) + 16kφ∗(Xu)](1 + Ht) +
u − t

u
φ(Xu, C),

where Ht = 1 + 1
2 + · · · + 1

t .

For the proof details of Lemma 2–6, please see the journal version of the paper.
Now, we can present the proofs of our main results as follows.

Proof of Theorem 1
Applying Lemma 2 and Lemma 6 (i) with t = u = k − 1 and with A being the
only covered cluster, where the chosen point is a ∈ A, we have,

E[φ(X,C)] ≤ [φ(A, {a}) + 16kφ∗ − 16kφ∗(A)](1 + Hk−1)
≤ (2 + lnk)[4kφ∗(A) + 16kφ∗ − 16kφ∗(A)]
≤ 16k(2 + lnk)φ∗.

Proof of Theorem 2
Applying Lemma 2 and Lemma 6 (ii) with t = u = k − 1 and with A being the
only covered cluster, where the chosen point is a ∈ A, we have,

E[φ(X,C)] ≤ k[φ(A, {a}) + 16kφ∗ − 16kφ∗(A)](1 + Hk−1)
≤ k(2 + lnk)[4kφ∗(A) + 16kφ∗ − 16kφ∗(A)]

≤ 16k2(2 + lnk)φ∗.

5 Numerical Results

In this section we report the numerical results of to test the accuracy and effi-
ciency of the proposed algorithm. The algorithm is implemented in Matlab 2016b
and executed on a 2.5 GHz Intel Core i-6500U machine with 16 GB memory.

First, we give a report on solving Example 1 (in Sect. 2) by k-means++,
FCM++ and FCM with initialization by Algorithm 2 (NFCM for short). In
solving this problem, it is found that there are about a half chance that k-
means++ obtains a wrong solution as {0.2135, 0.7353}, whereas FCM++ and
NFCM are more stable for this problem.

Secondly, we test the two algorithms for fuzzy C-means problem with some
real data. Two public datasets, SPAM and IRIS, from UC-Irvine Machine Learn-
ing Repository [4] is used in this section for the test. The Iris dataset contains
three classes of Iris plants with 50 instances each: setosa, versicolor or virginica.
For each instance a real positive vector with dimension 4 is recorded. The SPAM
dataset contains 4601 instances which describes the characteristics of two cate-
gories of emails (solicited and unsolicited). For each instance a dimension 56 real
valued vector is recorded to describe frequencies of certain words, capital letters,
etc. On account of the randomness of the two algorithms, for each k = 2, 3, . . . , 10

A Novel Initialization Algorithm for Fuzzy C-means Problem 223

0
-1

-0.5

0

0.5

1
k-means++ falis

data points
k-mean++
NFCM
FCM++

00.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
-1

-0.5

0

0.5

1
k-means++ succeeds

data points
k-mean++
NFCM
FCM++

Fig. 1. The distribution of a 2-means problem with its solution computed by k-
means++, FCM++ and NFCM algorithm. On the k-means++ algorithm there are
chances that it fails to obtain the optimal solution as shown in the second figure.

IRIS

0
k

0

50

100

150

fin
al

 fu
nc

tio
n

va
lu

e

NFCM
FCM++

0
k

0

50

100

150

200

250

300
fu

nc
tio

n
va

lu
e

af
te

r s
ee

di
ng NFCM

FCM++

0
k

0

10

20

30

40

50

ite
ra

tio
n

nu
m

be
r

NFCM
FCM++

2 4 6 8 1 2 4 6 8 1

2 4 6 8 1 2 4 6 8 10
k

0

0.1

0.2

0.3

0.4

0.5

C
PU

 ti
m

e

NFCM
FCM++

Fig. 2. Numerical results on solving fuzzy C-means problem using FCM++ and NFCM
with dataset as IRIS.

and algorithm we run 100 trials and record the means of function values (final
and seeding), iteration numbers and CPU times (Fig. 1).

Numerical results of testing FCM++ and NFCM with the two data sets
are given in Fig. 2 and 3 respectively. Seen from the figures, the two algorithms
perform almost similar to each other. For the IRIS example, NFCM outperforms
slightly on iterations and CPU times for certain k. From this point of view it is
also natural to conjecture that there holds similar theoretical results on FCM++.

224 Q. Liu et al.

SPAM

k

0

2

4

6

8
fin

al
 fu

nc
tio

n
va

lu
e

× 108

NFCM
FCM++

k

0

2

4

6

8

10

12

fu
nc

tio
n

va
lu

e
af

te
r s

ee
di

ng

× 108

NFCM
FCM++

k

40

60

80

100

120

140

ite
ra

tio
n

nu
m

be
r

NFCM
FCM++

2 4 6 8 10 2 4 6 8 10

2 4 6 8 10 2 4 6 8 10
k

0.4

0.6

0.8

1

1.2

1.4

C
PU

 ti
m

e

NFCM
FCM++

Fig. 3. Numerical results on solving fuzzy C-means problem using FCM++ and NFCM
with dataset as SPAM.

6 Conclusions

In this paper, a novel seeding algorithm for fuzzy C-means problem is proposed
with its performance ratio proved to be O(klnk). The guarantee of the seeding
algorithm based on k-means++ for fuzzy C-means problem, as FCM++ [17] is
also given to be O(k2lnk). Numerical experiment shows the competitiveness of
this algorithm to state-of-art methods for fuzzy C-means problems.

References

1. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for
k-means and Euclidean k-median by primal-dual algorithms. SIAM J. Comput.
(2019). https://doi.org/10.1137/18M1171321

2. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-
of-squares clustering. Mach. Learn. 75(2), 245–248 (2009)

3. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
Proceedings of the Eighteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms (SODA), pp. 1027–1035 (2007)

4. Asuncion, A., Newman, D.J.: UCI machine learning repository. University of Cal-
ifornia Irvine School of Information (2007)

5. Awasthi, P., Charikar, M., Krishnaswamy, R., Sinop, A.K.: The hardness of approx-
imation of Euclidean k-means. In: Proceedings of the 31st International Symposium
on Computational Geometry (SoCG), pp. 754–767 (2015)

https://doi.org/10.1137/18M1171321

A Novel Initialization Algorithm for Fuzzy C-means Problem 225

6. Bezdek, J.C.: Pattern Recognition with Fuzzy Objective Function Algorithms.
AAPR. Springer, Boston, MA (1981). https://doi.org/10.1007/978-1-4757-0450-1

7. Blömer, J., Brauer, S., Bujna, K.: A theoretical analysis of the fuzzy k-means
problem. In: 2016 IEEE 16th International Conference on Data Mining (ICDM),
pp. 805–810 (2016)

8. Feng, Q., Zhang, Z., Shi, F., Wang, J.: An improved approximation algorithm for
the k -means problem with penalties. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW
2019. LNCS, vol. 11458, pp. 170–181. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-18126-0 15

9. Gafar, A.F.O., Tahyudin, I., et al.: Comparison between k-means and fuzzy C-
means clustering in network traffic activities. In: Xu, J., Gen, M., Hajiyev, A.,
Cooke, F. (eds.) International Conference on Management Science and Engineering
Management (ICMSEM), pp. 300–310. Springer, Cham (2017)

10. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. J.
ACM 48(2), 274–296 (2001)

11. Li, M., Wang, Y., Xu, D., Zhang, D.: The seeding algorithm for functional k-means
problem. In: International Computing and Combinatorics Conference, pp. 387–396
(2019)

12. Li, M., Xu, D., Yue, J., Zhang, D., Zhang, P.: The seeding algorithm for k-means
problem with penalties. J. Comb. Optim. 39(1), 15–32 (2020)

13. Li, M., Xu, D., Zhang, D., Zou, J.: The seeding algorithms for spherical k -
means clustering. J. Glob. Optim. 76(4), 695–708 (2019). https://doi.org/10.1007/
s10898-019-00779-w

14. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28(2),
129–137 (1982)

15. Peng, J., Wei, Y.: Approximating k-means-type clustering via semidefinite pro-
gramming. SIAM J. Optim. 18(1), 186–205 (2007)

16. Soomro, S., Munir, A., Choi, K.N.: Fuzzy C-means clustering based active contour
model driven by edge scaled region information. Expert Syst. Appl. 120, 387–396
(2019)

17. Stetco, A., Zeng, X.J., Keane, J.: Fuzzy C-means++: fuzzy C-means with effective
seeding initialization. Expert Syst. Appl. 42(21), 7541–7548 (2015)

18. Tomar, N., Manjhvar, A.K.: Role of clustering in crime detection: application of
fuzzy k-means. In: Advances in Computer and Computational Sciences, pp. 591–
599 (2018)

19. Wang, P.: Pattern recognition with fuzzy objective function algorithms (James C.
Bezdek). SIAM Rev. 25(3), 442–442 (1983)

20. Wang, S., Zhang, X., Cheng, Y., Jiang, F., Yu, W., Peng, J.: A fast content-
based spam filtering algorithm with fuzzy- SVM and k-means. In: 2018 IEEE
International Conference on Big Data and Smart Computing (BigComp), pp. 301–
307 (2018)

21. Xu, D., Xu, Y., Zhang, D.: A survey on algorithms for k-means problem and its
variants. Oper. Res. Trans. 21(2), 101–109 (2017)

22. Xu, D., Xu, Y., Zhang, D.: A survey on the initialization methods for the k-means
algorithm. Oper. Res. Trans. 22(2), 31–40 (2018)

https://doi.org/10.1007/978-1-4757-0450-1
https://doi.org/10.1007/978-3-030-18126-0_15
https://doi.org/10.1007/978-3-030-18126-0_15
https://doi.org/10.1007/s10898-019-00779-w
https://doi.org/10.1007/s10898-019-00779-w

On the Parameterized Complexity
of d-Restricted Boolean Net Synthesis

Ronny Tredup1(B) and Evgeny Erofeev2

1 Institut für Informatik, Theoretische Informatik,
Universität Rostock, Albert-Einstein-Straße 22, 18059 Rostock, Germany

ronny.tredup@uni-rostock.de
2 Department of Computing Science, Carl von Ossietzky Universität Oldenburg,

26111 Oldenburg, Germany
evgeny.erofeev@informatik.uni-oldenburg.de

Abstract. In this paper, we investigate the parameterized complexity of
d-restricted τ -synthesis (dRτS) parameterized by d for a range of Boolean
types of nets τ . We show that dRτS is W [1]-hard for 64 of 128 possible
Boolean types that allow places and transitions to be independent.

Keywords: Synthesis · Parameterized complexity · Boolean Petri net

1 Introduction

Boolean Petri nets are one of the most well-known and used families of Petri
nets, see [2, pp. 139–152] (and references therein). For Boolean nets, a place p
contains at most one token in every reachable marking. Thus, p is considered
as a Boolean condition which is true if p is marked and false otherwise. In a
Boolean Petri net, a place p and a transition t are related by one of the Boolean
interactions: no operation (nop), input (inp), output (out), unconditionally set
to true (set), unconditionally reset to false (res), inverting (swap), test if true
(used), and test if false (free). These interactions define in which way p and t
influence each other: The interaction inp (out) defines that p must be true (false)
before and false (true) after t’s firing; free (used) implies that t’s firing proves
that p is false (true); nop means that p and t do not affect each other at all; res
(set) implies that p may initially be both false or true but after t’s firing it is
false (true); swap means that t inverts p’s current Boolean value.

A set τ of Boolean interactions is called a type of net. Since we have eight
interactions to choose from, there are a total of 256 different types. A Boolean
Petri net N is of type τ (a τ -net) if it applies at most the interactions of τ . For
a type τ , the τ -synthesis problem consists in deciding whether a given directed
labelled graph A, also called transition system, is isomorphic to the reachability
graph of some τ -net N , and in constructing N if it exists.

Supported by DFG through grant Be 1267/16-1 ASYST.

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 226–238, 2020.
https://doi.org/10.1007/978-3-030-59267-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_20

On the Parameterized Complexity of d-Restricted Boolean Net Synthesis 227

Badouel et al. [1] and Schmitt [4] investigated the computational complex-
ity of τ -synthesis for elementary net systems ({nop, inp, out}) and flip-flop nets
({nop, inp, out, swap}), respectively; while synthesis is NP-complete for the for-
mer, it is polynomial for the latter. In [5], the complexity of τ -synthesis restricted
to g-bounded inputs (every state of A has at most g incoming and g outgoing
arcs) has been completely characterized for the types that contain nop and,
thus, allow places and transitions to be independent. For 84 of these 128 types
it turned out that synthesis is NP-complete, even for small fixed g ≤ 3. As a
result, τ -synthesis parameterized by g is certainly not fixed parameter tractable
(FPT).

This paper addresses the computational complexity of a different instance of
τ -synthesis, namely d-restricted τ -synthesis (dRτS), imposing a limitation for
the synthesis output: The d-restricted synthesis targets to those τ -nets in which
every place must be in relation nop with all but d transitions of the net, while the
synthesis input is no longer confined. This formulation of the synthesis problem
is motivated at least twofold. On the one hand, in applications, places are usually
meant as resources while transitions are meant as agents. Hence such a restriction
ensures that a certain resource binds only few agents. On the other hand, dRτS
is of a particular interest from the theoretical point of view, since, parameterized
by d, it belongs to the complexity class XP [5, p. 25]. Consequently, the question
for the existence of FPT-algorithms arises.

In this paper, we enhance our understanding of dRτS from a parameterized
complexity point of view and show W [1]-hardness for the following types of nets:

1. {nop, inp, free}, {nop, inp, free, used}, {nop, out, used}, {nop, out, free, used},
2. τ = {nop, swap} ∪ ω such that ω ⊆ {inp, out, res, set, free, used} and ω ∩

{inp, out, free, used} �= ∅
Our proofs base on parameterized reductions of the well-known W [1]-complete
problems Regular Independent Set and Odd Set [3]. While all types of (2) have
been shown to be NP-complete [5], the types covered by (1) that does not con-
tain any of res, set have been shown to be polynomial [4,6]. However, since our
parameterized reductions are actually polynomial-time reductions, here we show
NP-completeness and W [1]-hardness for these types at the same time.

The paper is organized as follows. After introducing of the necessary defini-
tions in Sect. 2, the main contribution is presented in Sect. 3. Section 4 suggests
an outlook of the further research directions.

2 Preliminaries

We assume that the reader is familiar with the concepts relating to fixed-
parameter tractability. Due to space restrictions, some formal definitions and
some proofs are omitted. See [3] for the definitions of relevant notions in param-
eterized complexity theory.

Transition Systems. A (deterministic) transition system (TS, for short) A =
(S,E, δ) is a directed labeled graph with states S, events E and partial transition

228 R. Tredup and E. Erofeev

Fig. 1. All Interactions i of I. If a cell is empty, then i is undefined on the respective x.

Fig. 2. Left: τ = {nop, inp, free}. Right: τ̃ = {nop, swap, used, set}. The TS A1 has no
ESSP atoms. Hence, it has the τ -ESSP and τ̃ -ESSP. The only SSP atom of A1 is (s0, s1).
It is τ̃ -solvable by R1 = (sup1, sig1) with sup1(s0) = 0, sup1(s1) = 1, sig1(a) = swap.
Thus, A1 has the τ -admissible set R = {R1}, and the τ -net NR

A = ({R1}, {a}, M0, f)
with M0(R1) = sup1(R1) and f(R1, a) = sig1(R1) solves A1. The SSP atom (s0, s1)
is not τ -solvable, thus, neither is A1. TS A2 has ESSP atoms (b, r1) and (c, r0), which
are both τ̃ -unsolvable. The only SSP atom (r0, r1) in A2 can be solved by τ̃ -region
R2 = (sup2, sig2) with sup2(r0) = 0, sup2(r1) = 1, sig2(b) = set, sig2(c) = swap. Thus,
A2 has the τ̃ -SSP, but not the τ̃ -ESSP. None of the (E)SSP atoms of A2 can be solved
by any τ -region. Notice that the τ̃ -region R2 maps two events to a signature different
from nop. Thus, in case of d-restricted τ̃ -synthesis, R2 would be not valid for d = 1.

function δ : S ×E −→ S, where δ(s, e) = s′ is interpreted as s e s′. For s e s′

we say s is a source and s′ is a sink of e, respectively. An event e occurs at a
state s, denoted by s e , if δ(s, e) is defined. An initialized TS A = (S,E, δ, s0)
is a TS with a distinct state s0 ∈ S where every state s ∈ S is reachable from s0
by a directed labeled path.

Boolean Types of Nets [2]. The following notion of Boolean types of nets
allows to capture all Boolean Petri nets in one uniform way. A Boolean type
of net τ = ({0, 1}, Eτ , δτ) is a TS such that Eτ is a subset of the Boolean
interactions: Eτ ⊆ I = {nop, inp, out, set, res, swap, used, free}. The interactions
i ∈ I are binary partial functions i : {0, 1} → {0, 1} as defined in Fig. 1. For all
x ∈ {0, 1} and all i ∈ Eτ the transition function of τ is defined by δτ (x, i) = i(x).
By definition, a Boolean type τ is completely determined by its event set Eτ .
Hence, in the following we identify τ with Eτ , cf. Fig. 2.

τ-Nets. Let τ ⊆ I. A Boolean Petri net N = (P, T,M0, f) of type τ , (τ -net, for
short) is given by finite and disjoint sets P of places and T of transitions, an
initial marking M0 : P −→ {0, 1}, and a (total) flow function f : P × T → τ .
For a natural number d, a τ -net is called d-restricted if for every p ∈ P : |{t ∈
T | f(p, t) �= nop}| ≤ d. A τ -net realizes a certain behavior by firing sequences
of transitions: A transition t ∈ T can fire in a marking M : P −→ {0, 1} if
δτ (M(p), f(p, t)) is defined for all p ∈ P . By firing, t produces the next marking

On the Parameterized Complexity of d-Restricted Boolean Net Synthesis 229

M ′ : P −→ {0, 1} where M ′(p) = δτ (M(p), f(p, t)) for all p ∈ P . This is denoted

by M t M ′. Given a τ -net N = (P, T,M0, f), its behavior is captured by a
transition system AN , called the reachability graph of N . The state set of AN

is the reachability set RS(N), that is, the set of all markings that, starting
from initial state M0, are reachable by firing a sequence of transitions. For every
reachable marking M and transition t ∈ T with M t M ′ the state transition
function δ of A is defined as δ(M, t) = M ′.

τ-Regions. Let τ ⊆ I. If an input A of τ -synthesis allows a positive decision then
we want to construct a corresponding τ -net N purely from A. Since A and AN

are isomorphic, N ’s transitions correspond to A’s events. However, the notion of
a place is unknown for TSs. So called regions mimic places of nets: A τ -region
of a given A = (S,E, δ, s0) is a pair (sup, sig) of support sup : S → Sτ = {0, 1}
and signature sig : E → Eτ = τ where every transition s e s′ of A leads

to a transition sup(s) sig(e) sup(s′) of τ . A region (sup, sig) models a place p
and the corresponding part of the flow function f . In particular, sig(e) models
f(p, e) and sup(s) models M(p) in the marking M ∈ RS(N) corresponding to
s ∈ S(A). We say that τ -region (sup, sig) respects the parameter d, if |{e ∈ E |
sig(e) �= nop}| ≤ d. Every set R of τ -regions of A defines the synthesized τ -
net NR

A = (R, E, f,M0) with flow function f((sup, sig), e) = sig(e) and initial
marking M0((sup, sig)) = sup(s0) for all (sup, sig) ∈ R, e ∈ E. It is well-known
that ANR

A
and A are isomorphic if and only if R’s regions solve certain separation

atoms [2]. A pair (s, s′) of distinct states of A defines a state separation atom
(SSP atom, for short). A τ -region R = (sup, sig) solves (s, s′) if sup(s) �= sup(s′).
The meaning of R is to ensure that NR

A contains at least one place R such
that M(R) �= M ′(R) for the markings M and M ′ corresponding to s and s′,
respectively. If there is a τ -region that solves (s, s′) then s and s′ are called τ -
solvable. If every SSP atom of A is τ -solvable then A has the τ -state separation
property (τ -SSP, for short). A pair (e, s) of event e ∈ E and state s ∈ S where e

does not occur at s, that is ¬s e , defines an event state separation atom (ESSP
atom, for short). A τ -region R = (sup, sig) solves (e, s) if sig(e) is not defined on
sup(s) in τ , that is, ¬δτ (sup(s), sig(e)). The meaning of R is to ensure that there
is at least one place R in NR

A such that ¬M e for the marking M corresponding
to s. If there is a τ -region that solves (e, s) then e and s are called τ -solvable.
If every ESSP atom of A is τ -solvable then A has the τ -event state separation
property (τ -ESSP, for short). A set R of τ -regions of A is called τ -admissible
if for every of A’s (E)SSP atoms there is a τ -region R in R that solves it.
The following lemma, borrowed from [2, p.163], summarizes the already implied
connection between the existence of τ -admissible sets of A and (the solvability
of) τ -synthesis:

Lemma 1 ([2]). A TS A is isomorphic to the reachability graph of a τ -net N
if and only if there is a τ -admissible set R of A such that N = NR

A .

In this paper, we investigate the following parameterized problem: d-
Restricted τ-Rynthesis (dRτS). The input (A, d) consists of a TS A and

230 R. Tredup and E. Erofeev

a natural number d ∈ N. The parameter is d. The question to answer is, if there
is a τ -admissible set R of A such that |{e ∈ E(A) | sig(e) �= nop}| ≤ d is true
for all R ∈ R.

3 W [1]-Hardness of d-Restricted τ -Synthesis

Theorem 1. The problem d-restricted τ -synthesis is W [1]-hard if

1. τ = {nop, inp, free} or τ = {nop, inp, free, used} or τ = {nop, out, used} or
τ = {nop, out, free, used},

2. τ = {nop, swap} ∪ ω such that ω ⊆ {inp, out, res, set, free, used} and ω ∩
{inp, out, free, used} �= ∅
The proofs of Theorem 1.1 and Theorem 1.2 base on parameterized reduc-

tions of the problems Regular Independent Set and Odd Set, respectively. Both
problems are well-known to be W [1]-complete (see e.g. [3]) and are defined as
follows:

Regular Independent Set (RIS). The input (U,M, κ) consists of a finite set
U, a set M = {M0, . . . ,Mm−1}, Mi ⊆ U and |Mi| = 2 for all i ∈ {0, . . . , m − 1},
and κ ∈ N. The parameter is κ. Moreover, there is r ∈ N for all X ∈ U such
that |{a ∈ M | X ∈ a}| = r. The question is whether there is an independent
set S ⊆ U, that is, {X,X ′} �∈ M for all X,X ′ ∈ S, such that |S| ≥ κ.

Odd Set (OD). The input (U,M, κ) consists of a finite set U, a set M =
{M0, . . . ,Mm−1} of subsets of U and a natural number κ. The parameter is κ.
The question to answer is whether there is a set S ⊆ U of size at most κ such
that |S ∩ Mi| is odd for every i ∈ {0, . . . , m − 1}.

The General Reduction Idea. An input I = (U,M, κ) (of RIS or OD),
where M = {M0, . . . ,Mm−1}, is reduced to an instance (Aτ

I , d) with TS Aτ
I and

d = f(κ) (f being a polynomial time computable function) as follows: For every
i ∈ {0, . . . , m− 1}, the TS Aτ

I has for the set Mi = {Xi0 , . . . , Ximi−1} a directed

labelled path Pi = si,0
Xi0 . . .

Ximi−1 si,mi
that represents Mi and uses its ele-

ments as events. The TS Aτ
I has an ESSP atom α such that if R = (sup, sig)

is a τ -region that solves α and respects d, then there are indices i0, . . . , ij ∈
{0, . . . , m−1} such that sup(si�,0) �= sup(si�,mi�

) for all � ∈ {0, . . . , j}. Since the
image of Pi�

is a directed path in τ , by sup(si�,0) �= sup(si�,mi�
), there has to

be an element X ∈ Mi�
such that s X s′ ∈ Pi�

implies sup(s) �= sup(s′). That
is, X causes a state change in τ . This is simultaneously true for all Pi0 , . . . , Pij

.

The reduction ensures that S = {X ∈ U | s X s′ ⇒ sup(s) �= sup(s′)} defines
a searched independent set or a searched odd set, depending on the actually
reduced problem. Thus, if (Aτ

I , d) is a yes-instance, implying the solvability of
α, then I = (U,M, κ) is, too.

Reversely, if I = (U,M, κ) is a yes-instance, then there is a fitting τ -region of
Aτ

I that solves α. The reduction ensures that the τ -solvability of α implies that

On the Parameterized Complexity of d-Restricted Boolean Net Synthesis 231

all (E)SSP atoms of Aτ
I are solvable by τ -regions respecting d. Thus, (Aτ

I , d) is
a yes-instance, too.

In what follows, we present the corresponding reductions, show that the
solvability of α implies a searched (independent or odd) set and argue that the
existence of a searched set implies the solvability of α.

The Proof of Theorem 1.1. Let τ ∈ {{nop, inp, free}, {nop, inp, free, used}}. We
prove the claim for τ , by symmetry, the proof for the other types is similar.

Let I = (U,M, κ) be an instance of RIS, where M = {M0, . . . ,Mm−1} such
that Mi = {Xi0 ,Xi1} and (without loss of generality we assume that) i0 < i1
for all i ∈ {0, . . . , m − 1}. Let r ∈ N such that |{a ∈ M | X ∈ a}| = r for all
X ∈ U.

For a start, we define d = κ · (r +1)+2. The TS Aτ
I has the following gadget

H with events k0 and k1 that provides the atom α = (k1, h0):

h0 h1 h2

k0 k1

Moreover, for every i ∈ {0, . . . , m − 1}, the TS Aτ
I has the following gadget Ti

that represents Mi = {Xi0 ,Xi1}:

⊥i,0 ⊥i,1 ⊥i,2 . . . ⊥i,i ⊥i,i+1 ti,0 ti,1 ti,2

ti,4 . . .ti,5 ti,rκ+2
ti,3

⊕i ⊕i−1 ⊕0 ui Xi0 Xi1

a0
i

a1
i

arκ−1
i

k0

The gadget Ti uses Mi’s elements Xi0 and Xi1 as events. Moreover, it has exactly
rκ events a0

i , . . . , a
rκ−1
i that occur consecutively on a path. If i ∈ {0, . . . , m − 1}

and j ∈ {0, . . . , rκ − 1}, then we say aj
i is the j-th event of (the set) Mi. For

every j ∈ {0, . . . , rκ − 1}, the TS Aτ
I has the following gadget Gj :

�j gj,0 gj,1 gj,2 . . . gj,m−2 gj,m−1 gj,m gj,m+1

gj,m+2

vj aj
0 aj

1 aj
m−2 aj

m−1 k1
k0

For all i ∈ {0, . . . , m − 1}, the gadget Gi applies the j-th event of Mi, and the
events aj

0, . . . , a
j
m−1 occur consecutively in a row.

The initial state of Aτ
I is ⊥m−1,0. Fresh events �0, . . . ,�m−1 and

�0, . . . ,�rκ−1 join the introduced gadgets H, T0, . . . , Tm−1 and G0, . . . , Grκ−1

into the TS Aτ
I and make all states reachable from ⊥m−1,0. More exactly, for

all i ∈ {1, . . . , m − 1}, the TS Aτ
I has the edge ⊥i,0

�i ⊥i−1,0, and it has

the edge ⊥0,0
�0 h0. Moreover, Aτ

I has the edge ⊥m−1,0
�0 �0 and, for all

j ∈ {0, . . . , rκ − 2}, the edge �j
�j+1 �j+1. The resulting TS is Aτ

I , and it
is easy to see that (Aτ

I , d) is obtained by a parameterized reduction.

232 R. Tredup and E. Erofeev

Let (Aτ
I , d) be a yes-instance. We argue that (U,M, κ) has an independence

set of size κ. Since (Aτ
I , d) is a yes-instance, there is a τ -region R = (sup, sig) that

solves α and respects the parameter d, that is, |{e ∈ E(Aτ
I) | sig(e) �= nop}| ≤ d.

In the following, we argue that S = {X ∈ U | sig(X) = inp} is a searched set. The
general idea is as follows: The region R selects exactly rκ gadgets Ti0 , . . . Tirκ−1 ,
representing the sets Mi0 , . . . ,Mirκ−1 , such that sup(tij ,0) = 1 and sup(tij ,2) = 0
for all j ∈ {0, . . . , rκ − 1}. In particular, for all j ∈ {0, . . . , rκ − 1}, that makes

sup(tij ,0)
Xij0 sup(tij ,1)

Xij1 sup(tij ,2) a path from 1 to 0 in τ . Consequently, for
every j ∈ {0, . . . , rκ−1}, there is exactly one event e ∈ {Xij0

,Xij1
} with sig(e) =

inp. The reduction ensures that there are exactly κ elements Xi0 , . . . , Xiκ−1 ∈ U
such that sig(Xij

) = inp for all j ∈ {0, . . . , κ − 1}. Moreover, it also ensures
sig(e) = nop for all e ∈ U \ {X ∈ U | sig(X) = inp}. As a result, rκ sets are
“covered” by κ elements. Since every elements is a member of exactly r sets,
S = {X ∈ U | sig(X) = inp} is an independent set of size κ of (U,M).

Let us formally argue that the reduction correctly converts this general idea.
By definition of τ , one easily finds out that sig(k1) = free, sup(h0) = 1 and

sig(k0) = inp. By ti,0
k0 , this implies sup(ti,0) = 1 for all i ∈ {0, . . . , m − 1}.

Moreover, since R respects d, there are at most κ · (r+1) other events left whose
signature is different from nop.

Let j, j′ ∈ {0, . . . , rκ − 1} such that j �= j′. By sig(k0) = inp and gj,0
k0 ,

we have sup(gj,0) = 1; by sig(k1) = free and gj,m
k1 , we have sup(gj,m) = 0.

Consequently, sup(gj,0)
sig(aj

0) . . .
sig(aj

m−1) sup(gj,m) is a path from 1 to 0 in
τ . Since there is no path in τ on which inp occurs twice, there is exactly one
i ∈ {0, . . . , m − 1} such that sig(aj

i) = inp. Similarly, there is exactly one i′ ∈
{0, . . . , m − 1} such that sig(aj′

i′) = inp. For all i ∈ {0, . . . ,m − 1}, the events
a0

i , . . . , a
rκ−1
i occur consecutively on a path in Ti, and inp never occurs twice on

a path in τ . Thus, by j �= j′, we have i �= i′, that is, never the j-th and the
j′-th event of the same set Mi are selected. Consequently, by the arbitrariness
of j and j′, there are exactly rκ events aj0

i0
, . . . , a

jrκ−1
irκ−1

such that sig(aj0
i0

) = · · · =

sig(ajrκ−1
irκ−1

) = inp, and all i0, . . . , irκ−1 ∈ {0, . . . , m−1} are pairwise distinct. On
the one hand, this shows that there are rκ gadgets Ti0 , . . . , Tirκ−1 (representing
the sets Mi0 , . . . ,Mirκ−1) such that sup(tij ,0) = 1 and sup(tij ,2) = 0 for all
j ∈ {0, . . . , rκ − 1}. Thus, for every j ∈ {0, . . . , rκ − 1} there is an event X ∈
{Xij0

,Xij1
} with sig(X) = inp. On the other hand, since R respects d and

|{k0, k1, a
j0
i0

, . . . , a
jrκ−1
irκ−1

}| = rκ+2, there are at most κ events Xi0 , . . . , Xiκ−1 ∈ U
whose signature is different from nop. Thus, rκ sets are “covered” by at most κ
elements. Since every element is a member of exactly r sets, this is only possible

if S = {X ∈ U | sig(X) = inp} = {X ∈ U | s X s′ ⇒ sup(s) �= sup(s′)} defines
an independent set of size κ.

Let (U,M, κ) be a yes-instance of RIS. In the following we argue that α is
solvable by a τ -region that respects the parameter. Let S be an independent set
of size κ. Every element of U occurs in exactly r sets. Thus, there are exactly

On the Parameterized Complexity of d-Restricted Boolean Net Synthesis 233

rκ sets Mi0 , . . . ,Mirκ−1 ∈ M such that S ∩ Mij
�= ∅ for all j ∈ {0, . . . , rκ − 1}.

We define R = (sup, sig) as follows: sup(⊥m−1,0) = 1; for all e ∈ E(Aτ
I), if

e ∈ {k0} ∪ S, then sig(e) = inp; if e = k1, then sig(k1) = free; if e = aj
ij

and
j ∈ {0, . . . , rκ − 1}, then sig(aj

ij
) = inp; else sig(e) = nop.

For all s ∈ S(Aτ
I) \ {⊥m−1,0}, there is a path ⊥m−1,0 = s0

e1 s1 . . . en sn =
s. By inductive defining sup(si+1) = δτ (si, sig(ei+1)) for all i ∈ {0, . . . , n − 1},
we obtain sup. One easily verifies that (sup, sig) is a fitting region that
solves α. ��
The Proof of Theorem 1.2 for τ ∩ {used, free} = ∅. Let I = (U,M, κ) be an
instance of OD, that is, U = {X0, . . . , Xn−1}, M = {M0, . . . ,Mm−1} and Mi =
{Xi0 , . . . , Ximi−1} ⊆ U for all i ∈ {0, . . . , m − 1}. Without loss of generality, we
assume i0 < i1 < · · · < imi−2 < imi−1 for all i ∈ {0, . . . , m − 1}.

For a start, we define d = 2κ + 2. The TS Aτ
I has the following gadget H

that applies the events k, z, o and wm and provides the atom α = (k, h2):

�m h0 h1 h2 h3 h4

wm k z o k

Next, we introduce Aτ
I ’s gadgets using the elements of U = {X0, . . . , Xn−1} as

events. Moreover, these gadgets use also the events of u = {x0, . . . , xn−1}, and
U and u are connected as follows: For every i ∈ {0, . . . , n − 1}, the event Xi is

associated with the event xi such that s Xi s′ is an edge in Aτ
I if and only if

s xi s′ is an edge in Aτ
I . In particular, for all i ∈ {0, . . . , m − 1}, the TS Aτ

I

has for the set Mi = {Xi0 , . . . , Ximi−1} the following gadget Ti that uses the
elements of Mi (and their associated events of u) as events:

ti,0 ti,1 ti,2 ti,3 . . . ti,mi
ti,mi+1 ti,mi+2 ti,mi+3

k
Xi0 Xi1

Ximi−1

z k

xi0 xi1 ximi−1

We postpone the actual joining of H,T0, . . . , Tm−1 and argue first that a d-
restricted τ -region R = (sup, sig) solving α implies a searched odd set S.

Since R solves α and τ ∩ {free, used} = ∅, we have sig(k) ∈ {inp, out}. In

what follows, we assume sig(k) = inp and argue that S = {X ∈ U | s X s′ ⇒
sup(s) �= sup(s′)} defines a fitting odd set of size at most κ. By symmetry, the
case sig(k) = out is similar.

Since R solves α and sig(k) = inp, we have sup(h2) = 0. Moreover, for

all s ∈ S(Aτ
I), if k s, then sup(s) = 0, and if s k , then sup(s) = 1. By

h1
z h2 and z t0,m0+2, this implies sig(z) = nop; by h2

o h3, this implies
sig(o) �= nop. Let i ∈ {0, . . . , m−1} be arbitrary but fixed. By sig(z) = nop and

k ti,1 and ti,mi+1
z ti,mi+2

k we obtain sup(ti,1) = 0 and sup(ti,mi+1) = 1.

Thus, the path sup(ti,1)
sig(Xi1) . . .

sig(Ximi−1) sup(ti,mi+1) is a path from 0 to

234 R. Tredup and E. Erofeev

1 in τ . In particular, the number of state changes between 0 and 1 on this
path is odd. Consequently, since every X ∈ Mi occurs once in Ti, the number

|{X ∈ Mi|s X s′ ∈ Ti and sup(s) �= sup(s′)}| is odd. Since i was arbitrary, this
is simultaneously true for all gadgets T0, . . . , Tm−1. In the following, we show that
|S∩Mi| is odd for all i ∈ {0, . . . , m−1}. To do so, we argue that for all X ∈ S and

Ti �= Tj , i, j ∈ {0, . . . , m − 1}, with s X s′ ∈ Ti and q X q′ ∈ Tj the following
is true: If sup(s) �= sup(s′), then sup(q) �= sup(q′). Intuitively, there is no X
contributing to a state change in Ti but not in Tj . Since X always occurs with
its associated event x, both s x s′ and q x q′ are present. Thus, if sup(s) = 0
and sup(s′) = 1, then sig(X) ∈ {out, set, swap} and sig(x) ∈ {inp, res, swap}.
Clearly, if sig(X) = swap or sig(x) = swap, then sup(q) �= sup(q′). Otherwise,

if sig(X) ∈ {out, set} and sig(x) ∈ {inp, res}, then q X q′ and q x q′ imply
sup(q) = 0 �= sup(q′) = 1. Similarly, if sup(s) = 1 and sig(s′) = 0, then also
sup(q) �= sup(q′). Consequently, |S ∩ Mi| is odd for all i ∈ {0, . . . , m − 1}.

We argue that |S| ≤ κ. Every X ∈ S occurs always with its associated

event x ∈ u: if s X s′, then s x s′. Moreover, X ∈ S implies sup(s) �= sup(s′)
and, thus, sig(X) �= nop and sig(x) �= nop. Recall that sig(k), sig(o) �∈ {nop}.
Consequently, if |S| ≥ κ + 1, then |{e ∈ E(Aτ

I) | sig(e) �= nop}| ≥ 2κ + 4, a
contradiction. This proves |S| ≤ κ. In particular, S defines a searched odd set.

In the following, we complete the construction of Aτ
I . In order to do that, for

all i ∈ {0, . . . , m − 1}, we enhance Ti to a (path) gadget Gi = �i Ti with
starting state �i. This extension of Ti is necessary to ensure that if α is solvable
by a τ -region that respects d, then all of Aτ

I ’s (E)SSP atoms are too. To finally
obtain Aτ

I , we use fresh events �1, . . . ,�m and thread G0, . . . , Gm−1 and H on

a chain, that is, �0
�1 . . . �m−1 �m−1

�m �m.
Let j ∈ {0, . . . , m − 1} and � ∈ {0, . . . , mj}. We define the set Vj,� as follows:

Vj,� =

⎧
⎪⎨

⎪⎩

{Xj0}, if � = 0
{Xj�−1 ,Xj�

}, if 1 ≤ � ≤ mj − 1
{Xjmj−1}, if � = mj

Let i ∈ {0, . . . , m−1} and j ∈ {0, . . . , i−1, i+1, . . . ,m−1}. The number σi,j

of elements of Vj = {Vj,0, . . . , Vj,mj
} that are subsets of Mi is defined by σi,j =

|{V ∈ Vj | V ⊆ Mi}|. Let �0, . . . , �σi,j−1 ∈ {0, . . . , mj−1} be the pairwise distinct
indices (in increasing order) such that Vj,�k

⊆ Mi for all k ∈ {0, . . . , σi,j − 1}.
The gadget Gi implements events ui,j

�0
, vj

�0
, . . . , uj,i

�σi,j−1
, vj

�σi,j−1
consecutively on

the following path P j
i =

⊥i,j,0
uj,i

�0 ⊥i,j,1
vj

�0 ⊥i,j,2
uj,i

�1 ⊥i,j,3
vj

�1 . . .
uj,i

�σi,j−1 ⊥i,j,2σi,j+1

vj
�σi,j−1 ⊥i,j,2σi,j+2

Notice that the events vj
�0

, . . . , vj
�σi,j−1

might occur on different paths of Aτ
I , that

is, P j
i and P j

i′ where i �= i′. On the other hand, the events uj,i
�0

, . . . , uj,i
�σi,j−1

occur

On the Parameterized Complexity of d-Restricted Boolean Net Synthesis 235

Fig. 3. The TS Aτ
I0 that origins from I0, defined by Example 1. Top: P 1

0 (red), P 2
0

(olive), P 3
0 (blue). The red colored circles sketch the states mapped to 1 by the region

R that bases on S0, solves (k, h2) and respects d = 5. (Color figure online)

exactly once in Aτ
I (on the path P j

i). The gadget Gi is finally built as follows. If
σi,j = 0 for all j ∈ {0, . . . , i − 1, i + 1, . . . ,m − 1}, then Gi = �i

wi Ti. That is,
we extend Ti simply by the edge �i

wi ti,0. Otherwise, Gi is given by

Gi = �i
wi Pi,j0

ci,j0 Pi,j1
ci,j1 . . .

ci,j�−1 Pi,j�
ci,j� Ti

where j0, . . . , j� ∈ {0, . . . , i − 1, i + 1, . . . , m − 1}, j0 < · · · < j�, are exactly the
indices such that σi,jk

> 0 for all k ∈ {0, . . . , �}. This finally results in Aτ
I , and

it is easy to see that this is a parameterized (and even polynomial) reduction.

Example 1. Let I0 = (U,M, κ) be (the yes-instance) defined by U =
{X0, . . . , X4}, M = {M0, . . . ,M3} with M0 = {X0,X1,X2}, M1 = {X0,X3},
M2 = {X1,X2} and M3 = {X2,X3,X4} and κ = 3. The set S0 = {X2,X3,X4}

236 R. Tredup and E. Erofeev

is a fitting odd set of size 3. By definition, V0,0 = {X0}, V0,1 = {X0,X1},
V0,2 = {X1,X2} and V0,3 = {X2}; V1,0 = {X0}, V1,1 = {X0,X3} and
V1,2 = {X3}; V2,0 = {X1}, V2,1 = {X1,X2} and V2,2 = {X2}; V3,0 = {X2},
V3,1 = {X2,X3}, V3,2 = {X3,X4} and V3,3 = {X4}.

For G0, we have V1,0 ⊆ M0, V1,1 �⊆ M0 and V1,2 �⊆ M0. Thus, σ0,1 = 1. By
V2,0 ⊆ M0, V2,1 ⊆ M0 and V2,2 ⊆ M0, we have σ0,2 = 3. Finally, only V3,0 is a
subset of (interest of) M0, thus, σ0,3 = 1. The red, olive and blue colored paths
of Fig. 3 show P0,1, P0,2 and P0,3, respectively.

For G1, the only set of interest is V0,0 ⊆ M1, thus σ1,0 = 0 and σ1,2 = σ1,3 =
0. For G2, we have V0,2, V0,3, V3,0 ⊆ M2, thus, σ2,0 = 2, σ2,1 = 0 and σ2,3 = 1.
For G3, we observe V0,3, V1,2, V2,2 ⊆ M3, thus, σ3,0 = σ3,1 = σ3,2 = 1. Figure 3
finally shows the joining of G0, . . . , G3 and H into Aτ

I0
.

So far, we have argued that if (Aτ
I , d) is a yes-instance, then (U,M, κ) is too. In

the following, we argue that if S is a fitting odd set S of (U,M, κ), then α is solvable
by a τ -region R = (sup, sig) that respects d: sup(�0) = 1; for all e ∈ E(Aτ

I), if
e = k, then sig(k) = inp; if e ∈ {o} ∪ S ∪ {x ∈ u | X ∈ S}, then sig(e) = swap;
otherwise, sig(e) = nop. By Aτ

I ’s reachability, one easily finds that this properly
defines R. Figure 3 sketches R for the odd set S = {X2,X3,X4}. ��

If τ is a type of Theorem 1.2 such that τ ∩ {used, free} �= ∅, then the former
reduction generally does not fit. For example, if τ = {nop, swap, used}, then a
τ -solvable TS A satisfies that s e s′ ∈ A implies s′ e . Since used is the only
interaction of τ that ever allows τ -solvability of ESSP atoms, (e, s′) would be
unsolvable otherwise. Thus, for τ = {nop, swap, used}, the previous reduction
yields always no-instances. However, if τ is a type of Theorem 1.2 such that
τ ∩ {used, free}, then the reduction of the following proof fits for τ .

The Proof of Theorem 1.2 for τ ∩ {used, free} �= ∅. For a start, we define d = κ+4.
The TS Aτ

I has the following gadgets H0,H1 with events k, z0, z1, o0 and o1 that
provide the atom α = (k, h0,2):

H0 = �m h0,0 h0,1 h0,2 h0,3 h0,4

wm k o0 o1 k

H1 =�m+1 h1,0 h1,1 h1,2 h1,3 h1,4 h1,5

wm+1 k z0 o0 z1 k

Moreover, for every set Mi = {Xi0 , . . . , Xmi−1}, i ∈ {0, . . . , m − 1}, the TS Aτ
I

has the following gadget Ti that uses the elements of Mi as events:

ti,0 ti,1 ti,2 . . . ti,mi+2 ti,mi+3 ti,mi+4
k z0 Xi0

Ximi−1 z1 k

Moreover, we extend Ti to a gadget Gi = �1 Ti in exactly the same
way like the previous reduction for τ ∩ {used, free} = ∅. Finally, for all i ∈
{0, . . . , m − 1}, we use the fresh events �1, . . . ,�m+1 and apply the edges

�0
�1 . . . �m+1 �m+1.

On the Parameterized Complexity of d-Restricted Boolean Net Synthesis 237

Let R = (sup, sig) be a τ -region that solves α and respects d. Let e ∈
E(Aτ

I) be arbitrary. Since s e s′ implies s′ e s, sig(e) �∈ {inp, out} is true. In
particular, since R solves α, sig(k) ∈ {used, free}. Moreover, if sup(s) �= sup(s′),
then sig(e) = swap.

In what follows, we assume sig(k) = used, which implies sup(h0,0) = 0 and,
thus, sig(o0) = sig(o1) = swap. By symmetry, the case sig(k) = free is similar.

By sig(k) = used, sup(h1,1) sig(z0) . . . sig(z1) sup(h1,4) is a path from 1 to 1 in
τ . In particular, the number |{e ∈ {z0, z1, o0} | sig(e) = swap}| is even. Since
sig(o0) = swap, there is exactly one event e ∈ {z0, z1} such that sig(e) = swap.
In the following, we assume sig(z0) = swap implying sig(z1) ∈ {nop, used}. By
symmetry, the case sig(z1) = swap is similar. Since R respects d, there are at
most κ events left whose signature is different from nop. Let i ∈ {0, . . . , m−1} be
arbitrary but fixed. By sig(k) = inp, sig(z0) = swap and sig(z1) ∈ {nop, used},

the path sup(ti,2)
sig(Xi0) . . .

sig(Ximi−1) sup(ti,mi+2) is a path from 0 to 1 in τ .

Similar to the case τ ∩{used, free} = ∅, the set S = {X ∈ U | s X s′ ⇒ sup(s) �=
sup(s′)} of elements of U mapped to swap implies a searched odd set of M .

For the reverse direction, let S ⊆ U be an odd size of size at most κ of M .
We obtain a τ -region R = (sup, sig) that solves (k, h0,2) an respects d as follows:
For a start, we let sup(�0) = 1. Moreover, for all e ∈ E(Aτ

I), if e = k, then
sig(e) = used; if e ∈ {o0, o1, z0}∪S, then sig(e) = swap; otherwise sig(e) = nop.
This implicitly defines a fitting region that solves α. ��

4 Conclusion

In this paper, we investigate the parameterized complexity of dRτS parame-
terized by d and show W [1]-completeness for a range of Boolean types. As a
result, d is ruled out for fpt-approaches for the considered types of nets. As
future work, one may investigate the parameterized complexity of dRτS for other
boolean types [5]. Moreover, one may look for other more promising parameters:
If N = (P, T,M0, f) is a Boolean net, p ∈ P and if the occupation number op

of p is defined by op = |{M ∈ RS(N) | M(p) = 1}| then the occupation number
oN of N is defined by oN = max{op | p ∈ P}. If R is a τ -admissible set (of a
TS A) and R ∈ R, then the support of R determines the number of markings
of NR

A that occupy R, that, is, oR = |{s ∈ S(A) | sup(s) = 1}|. Thus, searching
for a τ -net where oN ≤ n, n ∈ N, corresponds to searching for a τ -admissible set
R such that |{s ∈ S(A) | sup(s) = 1}| ≤ n for all R ∈ R. As a result, for each
(E)SSP atom α there are at most O(

(|S|
oN

)
) fitting supports for τ -regions solving

α. Thus, the corresponding problem oN -restricted τ -synthesis parameterized by
oN is in XP if, in a certain sense, τ -regions are fully determined by a given
support sup.

238 R. Tredup and E. Erofeev

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997).
https://doi.org/10.1016/S0304-3975(96)00219-8

2. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

3. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

4. Schmitt, V.: Flip-flop nets. In: Puech, C., Reischuk, R. (eds.) STACS 1996. LNCS,
vol. 1046, pp. 515–528. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-
60922-9 42

5. Tredup, R.: The complexity of synthesizing NOP-equipped Boolean nets from G-
bounded inputs (technical report), submitted for topnoc 2020 (2019)

6. Tredup, R., Rosenke, C.: The complexity of synthesis for 43 Boolean Petri net types.
In: Gopal, T.V., Watada, J. (eds.) TAMC 2019. LNCS, vol. 11436, pp. 615–634.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-14812-6 38

https://doi.org/10.1016/S0304-3975(96)00219-8
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/3-540-60922-9_42
https://doi.org/10.1007/3-540-60922-9_42
https://doi.org/10.1007/978-3-030-14812-6_38

Approximate #Knapsack Computations
to Count Semi-fair Allocations

Theofilos Triommatis1(B) and Aris Pagourtzis2

1 School of Electrical Engineering, Electronics and Computer Science,
University of Liverpool, Liverpool L69-3BX, UK

Theofilos.Triommatis@liverpool.ac.uk
2 School of Electrical and Computer Engineering, National Technical

University of Athens, Polytechnioupoli, 15780 Zografou, Athens, Greece
pagour@cs.ntua.gr

Abstract. In this paper, we study the problem of counting the number
of different knapsack solutions with a prescribed cardinality. We present
an FPTAS for this problem, based on dynamic programming. We also
introduce two different types of semi-fair allocations of indivisible goods
between two players. By semi-fair allocations, we mean allocations that
ensure that at least one of the two players will be free of envy. We
study the problem of counting such allocations and we provide FPTASs
for both types, by employing our FPTAS for the prescribed cardinality
knapsack problem.

Keywords: Knapsack problems · Counting problems · Fptas · Fair
allocations · Envy-freeness

1 Introduction

We define and study three counting problems. The first of them concerns knap-
sack solutions with a prescribed number of items allowed in the knapsack, while
the other two concern two new notions of allocations of indivisible goods among
two players. We show that both our allocation notions imply a semi-fairness
property, namely that at least one of the two players is envy-free. From a com-
putational point of view both types of allocations are shown to be easy to satisfy,
however the corresponding counting problems seem to be hard. We provide fully
polynomial-time approximation schemes for all three problems that we study.
Along the way we compare our new notions of allocations to the standard notion
of envy-freeness (EF) [5] and show that while one of them is incomparable to EF,
the other one includes all EF allocations. Note that the problem of approximate

Theofilos Triommatis was supported in part for this work by EPSRC grant
EP/S023445/1 EPSRC Centre for Doctoral Training in Distributed Algorithms: the
what, how and where of next-generation data science, https://gow.epsrc.ukri.org/
NGBOViewGrant.aspx?GrantRef=EP/S023445/1.

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 239–250, 2020.
https://doi.org/10.1007/978-3-030-59267-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_21&domain=pdf
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/S023445/1
https://gow.epsrc.ukri.org/NGBOViewGrant.aspx?GrantRef=EP/S023445/1
https://doi.org/10.1007/978-3-030-59267-7_21

240 T. Triommatis and A. Pagourtzis

counting allocations, apart from its own interest, may serve as a basis for solving
problems under uncertainty [2].

In the counting version of a decision problem that asks for the existence
of a solution to the given instance we are interested in counting the number
of solutions to the instance. The complexity class that characterizes counting
problems with polynomial-time verifiable solutions is the well-known class #P
[12] and it is known that it contains some hard counting problems. It is also
known that counting problems that have NP-complete existence versions are not
approximable unless NP = RP [4]. In contrast, the class #PE [6,9], consisting
of counting problems in #P that have an easy existence version, contains many
approximable counting problems. Moreover, several well-known approximable
counting problems belong to a subclass of #PE, called TotP [9]; in [9] it is
proven that TotP is the class that contains all the functions of #PE that are
self-reducible. Such a problem is #Knapsack, which admits an FPTAS [10].
Here we show, among others, that our counting problems share the property of
having easy existence version, thus providing the first evidence that they admit
an FPTAS.

The first problem that we study is #Exact M -Items Knapsack, a problem
the optimization version of which has recently been studied [7]. We will first
present an FPTAS for this problem, by extending the FPTAS of Stefankovic
et al. [10], and then use it to obtain FPTASs for the allocation counting problems
that we define in this paper. This connection could be of further interest as only
few variants of Knapsack have been associated to allocation problems; such an
example is the Non-Linear Fractional Equality Knapsack [13].

Due to space limitations, some proofs will be omitted; they can be found in
the full version of the paper [11].

2 The #Exact M -Items KnapsackProblem

In this section, we define #Exact M -Items Knapsackand provide an FPTAS
for it. Our algorithm uses dynamic programming and builds on techniques devel-
oped in [3] and [10]. More specifically we adapt the technique of [10] by defin-
ing an extra parameter that takes into account the number of knapsack items,
restricting the set of feasible solutions accordingly.

We will first define the decision version of #Exact M -Items Knap-
sackwhich is very similar to the standard Knapsack problem with the addi-
tional restriction that a specific number of objects should be put in the knapsack.
Note that we ignore objects’ values as we are interested in all feasible solutions,
that is, solutions in which the sum of weights does not exceed the capacity of
the knapsack.

Definition 2.1 (Exact M-Items Knapsack). Given the weights
{
w1, . . . ,

wn

}
of n objects, an integer M ∈ {1, . . . , n} and a capacity C, is there a subset

S of {1, . . . , n} such that
∑

i∈S

wi ≤ C and |S| = M (1)

An FPTAS for #Semi-fair Allocations 241

To describe the set of feasible solutions of Exact M -Items Knapsack in
any sub-problem we examine, we will use a function f : {1, . . . , n}×{1, . . . ,M}×
R

+ → P(P(S)) with

f(i,m, c) =

⎧
⎨

⎩
S ⊆ {1, . . . , i} :

∑

j∈S

wj ≤ c and |S| = m

⎫
⎬

⎭
(2)

where P(A) denotes the power set of A.
Thus, f(i,m, c) is the set of feasible knapsack solutions that use only the first

i objects and have exactly m objects in the knapsack and total weight at most
c. Clearly, the set of solutions to the Exact M -Items Knapsack problem is
given by f(n,M,C).

Let us now define the counting version of Exact M -Items Knapsack.

Definition 2.2 (#Exact M-Items Knapsack). Given the weights {w1, . . . ,
wn} of n objects, an integer M ∈ {1, . . . , n} and a capacity C, count how many
subsets S of {1, . . . , n} are there such that

∑

i∈S

wi ≤ C and |S| = M (3)

Remark 2.1. Note that the solution to an instance of #Exact M -Items Knap-
sack is the cardinality of f(n,M,C), i.e. |f(n,M,C)|.
Remark 2.2. If the values n and M are fixed and c, c′ ∈ R

+ with c ≤ c′ then

|f(n,M, c)| ≤ |f(n,M, c′)|
This means that f is monotone w.r.t. the capacity.

The #Exact M -Items Knapsackproblem is #P-hard, since #Knapsack
can be easily reduced to it. We therefore aim at approximating it. Following ideas
of Stefankovic et al. [10] we will define a function τ in order to approximate the
solution of #Exact M -Items Knapsack.

Definition 2.3. We define τ : {0, . . . ,M} × {0, . . . , n} × R
+ −→ R with

τ(m, i, a) =

⎧
⎪⎨

⎪⎩

+∞ if a = 0 or m > i,

min {c ∈ R : |f(i,m, c)| ≥ a} if a ≤ (
i
m

)
and m ≤ i,

+∞ otherwise
(4)

Remark 2.3. Note that we consider as a feasible solution the one that leaves the
knapsack empty, hence τ(0, i, 1) = 0.

So τ(m, i, a) represents the minimum capacity such that the number of solu-
tions of Exact M -Items Knapsackwith exactly m items from {1, . . . , i} is at
least a.

242 T. Triommatis and A. Pagourtzis

We also note that a should be a non negative integer, more precisely
a ∈ {0, 1, . . . , 2n}, but instead in the above definition we let a ∈ R

+. This hap-
pens because we will approximate the number of solutions of Exact M -Items
Knapsack.

Notice that with the help of function τ we can redefine the solution to an
instance of #Exact M -Items Knapsackas follows:

|f(n,M,C)| = max {a ∈ {0, 1, . . . , 2n} : τ(M,n, a) ≤ C}

Remark 2.4. From Remark 2.2 and the definition of τ it is easy to see that for
fixed 0 ≤ i ≤ n, 0 ≤ m ≤ i and a ≤ a′ we have that

τ(m, i, a) ≤ τ(m, i, a′)

This means that τ is non-decreasing w.r.t. a.

Lemma 2.1. For every i ∈ {1, . . . , n}, m ∈ {1, . . . , M} and a ∈ R
+, τ satisfies

the following recursion

τ(m, i, a) = min
k∈[0,1]

max

{
τ(m − 1, i − 1, ka) + wi

τ (m, i − 1, (1 − k)a)
(5)

Note that in the i-th step of the recursion, there are (1 − k)a solutions that
do not contain wi and ka solutions that contain it. Furthermore we can calculate
the minimum in each step if we consider every

k =
r

a
, where r ∈ Z and 0 ≤ r ≤ a

By Definition 2.3 the domain of τ is Dom(τ) = {1, . . . , M} × {1, . . . , n} × R
+.

In order to compute the exact minimum in every step of the recursion we would
have to check every possible value of r, 0 ≤ r ≤ a ≤ (

i
m

)
, thus needing in the end

O(2n) evaluations. We can approximate the minimum efficiently by restricting
τ in Ω where

Ω = {1, . . . , M} × {1, . . . , n} ×
{

0, 1, . . . , �n logQ(ε) 2	
}

and Q(ε) = 1 +
ε

n + 1

Let s = �n logQ 2	 and T = τ |Ω , the restriction of τ in Ω. As T is a restriction
of τ it must satisfy recursion 5, and in particular:

T (m, i, j) = min
k∈[0,1]

max

{
T

(
m − 1, i − 1,
j + logQ k�) + wi

T
(
m, i − 1,
j + logQ(1 − k)�) (6)

Now with the following algorithm we can compute T efficiently and as a
result we get an approximation of its optimal solution.

An FPTAS for #Semi-fair Allocations 243

Algorithm 1. Count Exact M -Items Knapsack

Require: Integers w1, . . . , wn, C, M and ε > 0
Ensure: (1 + ε)-approximation of #Exact M -Items Knapsack
1: Set T [0, i, 1] = 0 for i ≥ 0 and T [0, i, 0] = ∞ for i ≥ 0
2: Set T [1, i, 0] = ∞ for i ≥ 0 and T [1, 0, j] = ∞ for j ≥ 0
3: Set T [0, i, j] = ∞ for i, j ≥ 0
4: Set Q = 1 + ε

n+1

5: for m=1 to M do
6: for i=1 to n do
7: for j=1 to s do
8: if

(
m > i or j >

(
i
m

))
then

9: T [m, i, j] = ∞
10: else

11: T [m, i, j] = mink∈[0,1] max

{
T

[
m − 1, i − 1, �j + logQ k�] + wi

T
[
m, i − 1, �j + logQ(1 − k)�]

12: Set j′ = max{j : T [M, n, j] ≤ C}
13: Return: Z′ = Qj′+1

Now we will prove that T approximates τ in the following manner

Lemma 2.2. Let i ≥ 1, 0 ≤ m ≤ i. Assume that for every j ∈ {0, . . . , s},
T [m, i − 1, j] satisfies

τ
(
m, i − 1, Qj−i+1

) ≤ T [m, i − 1, j] ≤ τ
(
m, i − 1, Qj

)

Then for all j ∈ {0, . . . , s} we have that T [m, i, j] computed using 6 satisfies:

τ
(
m, i,Qj−i

) ≤ T [m, i, j] ≤ τ
(
m, i,Qj

)

Now we are ready to prove that the output Z ′ of Algorithm 1 is a (1 + ε)
approximation of the solution of #Exact M -Items Knapsack.

Theorem 2.1. Let Z be the solution of #Exact M-Items Knapsack problem
on an instance with n items. Then for every ε ∈ (0, 1), Algorithm 1 outputs Z ′

such that

(1 − ε)Z ≤ Z ′ ≤ (1 + ε)Z, and the algorithm runs in time O
(

n4

ε
log

n

ε

)

Proof. By Lemma 2.2 we have for j′ = max{j : T [M,n, j] ≤ C} that the
approximation Z ′ does not underestimates Z because

C ≤ T [M,n, j′ + 1] ≤ τ
(
M,n,Qj′+1

)

Moreover we have at least Q(j′−n) solutions of Exact M -Items Knap-
sackbecause

τ
(
M,n,Q(j′−n)

)
≤ T [M,n, j′] ≤ C

244 T. Triommatis and A. Pagourtzis

hence,
Z ′

Z
≤ Qj′+1

Qj′−n
= Qn+1 =

(
1 +

ε

n + 1

)n+1

≤ eε

This proves that the output of the algorithm satisfies the statement of the
theorem. All that is left to prove is the running time.

The algorithm fills up a (n × m × s) matrix with m = O(n). Also we have
discussed above that in order to compute the minimum in recursion (6) we must
search all the values of a finite and discrete set S. More particular for every
j ∈ {0, 1, . . . , s}, we have that S = S1 ∪ S2 where S1 = {Q−j , . . . , Q0} and
S2 = {1 − Q0, . . . , 1 − Q−j}. So it will take time O(s) to calculate the T [m, i, j]
cell of the matrix. Therefore it will take time O(nms2) to fill up the matrix.

Moreover we have that s = �n logQ 2	 = O
(

n2

ε

)
. So if the algorithm searches

all the values of S in each step in order to compute the minimum of recursion
(6) it will take time O

(
n6

ε2

)
.

But from Remark 2.4, we know that τ is increasing, so as k ∈ [0, 1] increases,
T

[
m − 1, i − 1,
j + logQ k�] + wi increases and T

[
m, i − 1,
j + logQ (1 − k)�]

decreases.
Now the minimum of the maximum, will be achieved for k ∈ [0, 1] with the

following property: Either k ∈ {0, 1} or for every k′ < k we have

T
[
m, i − 1,
j + logQ (1 − k′)�] < T

[
m − 1, i − 1,
j + logQ k′�] + wi

and for every k′ > k

T
[
m, i − 1,
j + logQ (1 − k′)�] ≥ T

[
m − 1, i − 1,
j + logQ k′�] + wi

Unfortunately we can’t have S sorted, but we can compute S1 and S2 in such
a way that their elements will already be in order. If we apply binary search to
S1 then we can find k1 ∈ [0, 1] that satisfies the property to be the minimum
of the maximum of T . Accordingly by applying binary search to S2 we will find
k2 ∈ [0, 1] that satisfies the above property. So with this technique it takes time
O(log s) to compute T [m, i, j] and finally the running time of the algorithm is
O (nms log s) = O

(
n4

ε log n
ε

)
, concluding the proof. �

3 Allocations Where Players Value Their Bundle More
Than Others Do

In this section we will define the problem of allocating n goods between two
players A and B in such a way that each player values its bundle more than the
other player. We will assume that the i-th goods has value ai for A and bi for
B. More formally we have

Definition 3.1 (Larger-than-swap-Player-Valuation (LPV) allocation).
Given two sets A =

{
ai ∈ Z

+ : 1 ≤ i ≤ n
}

and B =
{
bi ∈ Z

+ :

An FPTAS for #Semi-fair Allocations 245

1 ≤ i ≤ n
}
, where n ∈ N, the goal is to find a partition of S = {1, . . . , n} into two

sets SA and SB, such that
∑

SA

ai ≥
∑

SA

bi and
∑

SB

bi ≥
∑

SB

ai (7)

In other words, the LPV allocation is a pair of bundles (SA, SB) such that
bundle SA is more valuable to A than to B and bundle SB is more valuable to
B than to A.

Usually in this type of problems we are interested in fair solutions, but the
interesting part is that there are many definitions of fairness. The most common
notion of a fair solution is that the players should be envy free as was introduced
in [5] and as the name suggests the goal is, A not to envy the bundle of B and
vice versa.

Definition 3.2 (Envy-Free (EF) allocation). An allocation (SA, SB) of n
goods among two players A and B, where the i-th good has value ai for A and
bi for B, is called Envy Free if

∑

SA

ai ≥
∑

SB

ai and
∑

SB

bi ≥
∑

SA

bi (8)

Definition 3.3 (semi-Envy-Free (sEF) allocation). For an allocation
(SA, SB) of n goods among two players A and B wi will say that A doesn’t
envy B or A is free of envy, and we will denote it with sEF(A), if

∑

SA

ai ≥
∑

SB

ai (9)

Lemma 3.1. In an LPV allocation at least one of the two players is free of
envy.

Proof. There are two possible cases either
∑

SA

bi ≥
∑

SB

bi or
∑

SB

bi ≥
∑

SA

bi

If
∑

SB
bi ≥ ∑

SA
bi then, by definition, B is free of envy. If

∑
SA

bi ≥ ∑
SB

bi

then considering the property of LPV allocation (7) we have
∑

SA

ai ≥
∑

SA

bi ≥
∑

SB

bi ≥
∑

SB

ai =⇒
∑

SA

ai ≥
∑

SB

ai

hence player A is free of envy. �

Remark 3.1. It is easy to find an LPV allocation. We can look at all values
ai and bi, if ai ≥ bi then i ∈ SA else i ∈ SB. Note that there is only one LPV
allocation if ai > bi for every 1 ≤ i ≤ n, namely SA = S, SB = ∅ (and similarly
if bi > ai for every 1 ≤ i ≤ n). This means that the problem of counting LPV
allocations belongs to #PE as mentioned earlier (cf. [6,9]).

246 T. Triommatis and A. Pagourtzis

Definition 3.4 (#LPV Allocations Problem). Given two sets A = {ai ∈
Z
+ : 1 ≤ i ≤ n} and B = {bi ∈ Z

+ : 1 ≤ i ≤ n}, where n ∈ N, find the number
of partitions of S = {1, . . . , n} into two sets SA and SB, such that

∑

SA

ai ≥
∑

SA

bi and
∑

SB

bi ≥
∑

SB

ai (10)

We will now give a reduction of #LPV Allocations problem to #Exact
M -Items Knapsack. This will lead to an FPTAS for the former.

Lemma 3.2. The solution Y of #LPV Allocations on input A =
{a1, . . . , an} and B = {b1, . . . , bn}, coincides with the sum of solutions Zm of
#Exact M-Items Knapsackon input w1, . . . , wn, where wi = ai − bi + b, and
b = max1≤i≤n bi, capacity C = mb and exactly m items in the knapsack, for
m ∈ {1, . . . , n − 1} (assuming w.l.o.g.

∑n
i=1 ai ≥ ∑n

i=1 bi):

Y =
n−1∑

m=1

Zm

So an FPTAS algorithm for #LPV Allocations is the following:

Algorithm 2. Count LPV Allocations

Require: Integers a1, . . . , an, b1, . . . , bn and ε > 0
Ensure: (1 + ε)-approximation of #LPV Allocations
1: Sa = a1 + · · · + an

2: Sb = b1 + · · · + bn

3: Y =0
4: if Sa ≥ Sb then
5: b = max(b1, ..., bn)
6: for i=1 to n do
7: wi = ai − bi + b

8: for m = 1 to n − 1 do
9: Y =Y +Count Exact M -Items Knapsack(w1, ..., wn, mb, m, ε)

10: else
11: b = max(a1, ..., an)
12: for i=1 to n do
13: wi = bi − ai + b

14: for m = 1 to n − 1 do
15: Y =Y +Count Exact M -Items Knapsack(w1, ..., wn, mb, m, ε)

16: Return: Y

Theorem 3.1. Let Y be the solution of #LPV Allocations problem. Then
for every ε ∈ (0, 1), Algorithm 2 outputs Y ′ such that

(1 − ε)Y ≤ Y ′ ≤ (1 + ε)Y, and the algorithm runs in time O
(

n5

ε
log

n

ε

)

An FPTAS for #Semi-fair Allocations 247

Proof. Let Z ′
m be the output of Algorithm 1 for the #Exact M -Items Knap-

sackproblem with m items in the knapsack, capacity C(m) (depends on m) and
weights w1, w2, . . . , wn and Zm be its exact solution. From Lemma 3.2 we have
that Algorithm 2 outputs

Y ′ =
n−1∑

m=1

Z ′
m ≤

n−1∑

m=1

(1 + ε)Zm = (1 + ε)
n−1∑

m=1

Zm = (1 + ε)Y

Accordingly

Y ′ =
n−1∑

m=1

Z ′
m ≥

n−1∑

m=1

(1 − ε)Zm = (1 − ε)
n−1∑

m=1

Zm = (1 − ε)Y

As far as running time is concerned, Algorithm 2 consists of simple operations
that take time O(n) and then executes (n− 1) times the algorithm for #Exact

M -Items Knapsack. Since Algorithm 1 runs in time O
(

n4

ε log n
ε

)
, we obtain

the claimed running time. �

4 LTV Allocations

In the previous section we have studied the LPV Allocations and we proved
that in a solution of the LPV Allocations, at least one of the two players will
be free of envy. However, the converse is not true, as there exist instances such
as A = {8, 4, 6, 5} and B = {5, 8, 7, 7}: if A picks items 1 and 2 and B picks
items 3 and 4, i.e. SA = {1, 2} and SB = {3, 4}, it is easy to confirm that the
couple (SA, SB) is an envy free solution but it doesn’t satisfy Definition 3.1. The
Venn diagram in Fig. 1 visualizes the situation.

sEF (A) sEF (B)

LPV

EF

Fig. 1. Relation of LPV to (semi-)envy-free allocations. EF denotes the set of Envy-
Free allocations, sEF(A) denotes the set of semi-Envy-Free allocations of A (accordingly
for B) and LPV is the set of LPV allocations.

248 T. Triommatis and A. Pagourtzis

Observe that by counting LPV allocations we may miss several EF or sEF
allocations. In order to capture more EF and sEF allocations, we will now define
a second notion of allocations.

Definition 4.1 (Larger-than-swap-Total-Valuation (LTV) allocations).
Given two sets A = {ai ∈ Z

+ : 1 ≤ i ≤ n} and B = {bi ∈ Z
+ : 1 ≤ i ≤ n}

where n ∈ N, the goal is to find a partition of S = {1, . . . , n} into two sets SA

and SB, such that SA ∩ SB = ∅ and SA ∪ SB = S with the following property
∑

SA

(ai − bi) ≥
∑

SB

(ai − bi) (11)

Proposition 4.1. LTV allocations contain all EF and all LPV allocations.

We can now update the Venn diagram of the allocations to include the LTV
allocations, giving a much clearer view of the inclusion relation between the
allocations (Fig. 2).

sEF (A) sEF (B)

LPV

LTV

EF

Fig. 2. Relations between LTV, LPV and (semi) Envy Free Allocations. LTV denotes
the set of LTV allocations.

Remark 4.1. The LTV Allocations problem also has some easy-to-find solu-
tions, e.g. the solution that assigns to A all objects that A values more than B
and vice versa.

We will now define the corresponding counting problem and study its com-
plexity.

Definition 4.2 (#LTV Allocations). Given two sets A = {ai ∈ Z
+ : 1 ≤

i ≤ n} and B = {bi ∈ Z
+ : 1 ≤ i ≤ n}, where n ∈ N, the goal is to find how

many partitions of S = {1, . . . , n} into two sets (SA, SB) are there, such that
SA ∩ SB = ∅ and SA ∪ SB = S, satisfying the following property

∑

SA

(ai − bi) ≥
∑

SB

(ai − bi) (12)

An FPTAS for #Semi-fair Allocations 249

Algorithm 3. Count LTV Allocations

Require: Integers a1, . . . , an, b1, . . . , bn and ε > 0
Ensure: (1 + ε)-approximation of #LTV Allocations
1: for i=1 to n do
2: di = ai − bi

3: Sum = (d1 + . . . + dn)/2
4: Set b = 1 − min(d1, ..., dn)
5: for i=1 to n do
6: Set wi = ai − bi + b

7: for m = 1 to n − 1 do
8: Y = Y + Count Exact M -Items Knapsack(w1, ..., wn, Sum + mb, m, ε)

9: return Y

By Remark 4.1 it is not unlikely that #LTV Allocations be approximable,
as it belongs to #PE (cf. [6,9]). Indeed, using similar arguments to those in the
proof of Lemma 3.2 we can prove that Algorithm 3 is an FPTAS algorithm for
#LTV Allocations.

Lemma 4.1. The solution Y of #LTV Allocations on input A =
{a1, . . . , an} and B = {b1, . . . , bn}, coincides with the sum of solu-
tions Zm of #Exact M-Items Knapsackon input w1, . . . , wn, capacity
((

∑n
i=1 wi)/2 + mβ), β = min {ai − bi : 1 ≤ i ≤ n} and wi = ai − bi − β + 1,

and exactly m items in the knapsack, for m ∈ {1, . . . , n − 1}, that is,

Y =
n−1∑

m=1

Zm (13)

Theorem 4.1. Let Y be the exact solution of #LTV Allocations problem on
some input. Then for every ε ∈ (0, 1), Algorithm 3 outputs Y ′ such that

(1 − ε)Y ≤ Y ′ ≤ (1 + ε)Y, and runs in time O
(

n5

ε
log

n

ε

)

The proof is similar to the proof of Theorem 3.1.

5 Discussion

We presented an FPTAS for the problem of counting feasible knapsack solu-
tions with a specific (given) number of items; to the best of our knowledge no
FTPAS has been proposed for this problem so far, despite its evident impor-
tance. We built on Dyer’s dynamic programming algorithm [3]. An interesting
future work would be to improve the complexity of the FPTAS by exploring
dimension reduction techniques (see e.g. [8]).

We also defined two new notions of allocations of indivisible goods and pro-
vided FPTASs for the counting problems associated with them by employing

250 T. Triommatis and A. Pagourtzis

the above mentioned FPTAS. We leave as an open question whether our results
can be extended to more than two players.

Different notions of fair allocation are examined in various papers (see, e.g.,
[1] and references therein); it would be interesting to compare these notions to
our notions of LPV and LTV allocations. Moreover, we would like to see which of
our techniques might be applicable to counting versions of other fair allocation
problems.

Finally, we would like to settle the complexity of counting LPV and LTV allo-
cations either by proving #P-hardness (as we believe is the case) or by providing
polynomial-time algorithms.

References

1. Amanatidis, G., Birmpas, G., Markakis, V.: Comparing approximate relaxations
of envy-freeness. In: Proceedings of IJCAI 2018, pp. 42–48 (2018). ijcai.org

2. Buhmann, J.M., Gronskiy, A., Mihalák, M., Pröger, T., Srámek, R., Widmayer, P.:
Robust optimization in the presence of uncertainty: a generic approach. J. Comput.
Syst. Sci. 94, 135–166 (2018)

3. Dyer, M.E.: Approximate counting by dynamic programming. In: Proceedings of
the 35th Annual ACM Symposium on Theory of Computing, STOC 2003, pp.
693–699. ACM (2003)

4. Dyer, M.E., Goldberg, L.A., Greenhill, C.S., Jerrum, M.: The relative complexity
of approximate counting problems. Algorithmica 38(3), 471–500 (2004)

5. Foley, D.K.: Resource allocation and the public sector. Yale Econ Essays 7, 45–98
(1967)

6. Kiayias, A., Pagourtzis, A., Sharma, K., Zachos, S.: Acceptor-definable counting
classes. In: Manolopoulos, Y., Evripidou, S., Kakas, A.C. (eds.) PCI 2001. LNCS,
vol. 2563, pp. 453–463. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-38076-0 29

7. Li, W., Lee, J., Shroff, N.B.: A faster FPTAS for knapsack problem with cardinality
constraint. CoRR, abs/1902.00919 (2019)

8. Melissinos, N., Pagourtzis, A.: A faster FPTAS for the subset-sums ratio problem.
In: Wang, L., Zhu, D. (eds.) COCOON 2018. LNCS, vol. 10976, pp. 602–614.
Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94776-1 50

9. Pagourtzis, A., Zachos, S.: The complexity of counting functions with easy decision
version. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
741–752. Springer, Heidelberg (2006). https://doi.org/10.1007/11821069 64

10. Stefankovic, D., Vempala, S., Vigoda, E.: A deterministic polynomial-time approx-
imation scheme for counting knapsack solutions. SIAM J. Comput. 41(2), 356–366
(2012)

11. Triommatis, T., Pagourtzis, A.: Approximate #knapsack computations to count
semi-fair allocations. CoRR, abs/1912.12430 (2019)

12. Valiant, L.G.: The complexity of computing the permanent. Theoret. Comput. Sci.
8, 189–201 (1979)

13. Yazidi, A., Jonassen, T.M., Herrera-Viedma, E.: An aggregation approach for solv-
ing the non-linear fractional equality knapsack problem. Expert Syst. Appl. 110,
323–334 (2018)

http://www.ijcai.org
https://doi.org/10.1007/3-540-38076-0_29
https://doi.org/10.1007/3-540-38076-0_29
https://doi.org/10.1007/978-3-319-94776-1_50
https://doi.org/10.1007/11821069_64

Characterizations and Approximability
of Hard Counting Classes Below #P

Eleni Bakali, Aggeliki Chalki(B), and Aris Pagourtzis

School of Electrical and Computer Engineering,
National Technical University of Athens, 15780 Athens, Greece
{mpakali,achalki}@corelab.ntua.gr, pagour@cs.ntua.gr

Abstract. An important objective of research in counting complexity is
to understand which counting problems are approximable. In this quest,
the complexity class TotP, a hard subclass of #P, is of key importance,
as it contains self-reducible counting problems with easy decision version,
thus eligible to be approximable. Indeed, most problems known so far to
admit an fpras fall into this class.

An open question raised recently by the community of descriptive
complexity is to find a logical characterization of TotP and of robust
subclasses of TotP. In this work we define two subclasses of TotP, in
terms of descriptive complexity, both of which are robust in the sense
that they have natural complete problems, which are defined in terms of
satisfiability of Boolean formulae.

We then explore the relationship between the class of approximable
counting problems and TotP. We prove that TotP � FPRAS if and only
if NP �= RP and FPRAS � TotP unless RP = P. To this end we introduce
two ancillary classes that can both be seen as counting versions of RP.
We further show that FPRAS lies between one of these classes and a
counting version of BPP.

Finally, we provide a complete picture of inclusions among all the
classes defined or discussed in this paper with respect to different con-
jectures about the NP vs. RP vs. P questions.

1 Introduction

The class #P [21] is the class of functions that count the number of solutions to
problems in NP, e.g. #Sat is the function that on input a formula φ returns the
number of satisfying assignments of φ. Equivalently, functions in #P count accept-
ing paths of non-deterministic polynomial time Turing machines (NPTMs).

NP-complete problems are hard to count, but it is not the case that problems
in P are easy to count as well. When we consider counting, non-trivial facts hold.
First of all there exist #P-complete problems, that have decision version in P, e.g.
#Dnf. Moreover, some of them can be approximated, e.g. the Permanent [13]
and #Dnf [14], while others cannot, e.g. #Is [8]. The class of problems in
#P with decision version in P is called #PE, and a subclass of #PE is TotP,

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 251–262, 2020.
https://doi.org/10.1007/978-3-030-59267-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_22&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_22

252 E. Bakali et al.

which contains all self-reducible problems in #PE [17]. Their significance will be
apparent in what follows.

Since many counting problems cannot be exactly computed in polyno-
mial time, the interest of the community has turned to the complexity of
approximating them. On one side, there is an enormous literature on approx-
imation algorithms and inapproximability results for individual problems in
#P [8,10,13,14,21]. On the other hand, there have been attempts to classify
counting problems with respect to their approximability [2,3,9,19].

Related Work. From a unifying point of view, the most important results
regarding approximability are the following. Every function in #P either admits
an fpras, or does not admit any polynomial approximation ratio [20]; we will
therefore call the latter inapproximable. For self-reducible problems in #P, fpras
is equivalent to almost uniform sampling [20]. With respect to approximation
preserving reductions, there are three main classes of functions in #P [9]: (a) the
class of functions that admit an fpras, (b) the class of functions that are interre-
ducible with #Sat, and (c) the class #RHΠ1 of problems that are interreducible
with #Bis. Problems in the second class do not admit an fpras unless NP =RP,
while the approximability status of problems in the third class is unknown and
the conjecture is that they are neither interreducible with #Sat, nor they admit
an fpras. We will denote FPRAS the class of #P problems that admit an fpras.

Several works have attempted to provide a structural characterization that
exactly captures FPRAS, in terms of path counting [4,17], interval size func-
tions [5], or descriptive complexity [3]. Since counting problems with NP-complete
decision version are inapproximable unless NP = RP [9], those that admit fpras
should be found among those with easy decision version (i.e., in BPP or even in P).
Even more specifically, in search of a logical characterization of a class that exactly
captures FPRAS, Arenas et al. [3] show that subclasses of FPRAS are contained in
TotP, and they implicitly propose to study subclasses of TotP with certain addi-
tional properties in order to come up with approximable problems. Notably, most
problems proven so far to admit an fpras belong to TotP, and several counting
complexity classes proven to admit an fpras, namely #Σ1, #RΣ2 [19], ΣQSO(Σ1),
ΣQSO(Σ1[FO]) [3] and spanL [2], are subclasses of TotP.

Counting problems in #P have also been studied in terms of descriptive
complexity [3,6,7,9,19]. Arenas et al. [3] raised the question of defining classes
in terms of descriptive complexity that capture either TotP or robust subclasses
of TotP, as one of the most important open questions in the area. A robust class
of counting problems needs either to have a natural complete problem or to be
closed under addition, multiplication and subtraction by one [3]. In particular,
TotP satisfies both of the above properties [3,4].

Our Contribution. In the first part of the paper we focus on the exploration of
the structure of #P through descriptive complexity. In particular, we define two
subclasses of TotP, namely ΣQSO(Σ2-2SAT) and #Π2-1VAR, via logical char-
acterizations; for both these classes we show robustness by providing natural

Characterizations and Approximability of Hard Counting Classes Below #P 253

complete problems for them. Namely, we prove that the problem #Disj2Sat of
computing the number of satisfying assignments to disjunctions of 2SAT formu-
lae is complete for ΣQSO(Σ2-2SAT) under parsimonious reductions. This reveals
that problems hard for ΣQSO(Σ2-2SAT) under parsimonious reductions can-
not admit an fpras unless NP = RP. We also prove that #MonotoneSat is
complete for #Π2-1VAR under product reductions. Our result is the first com-
pleteness result for #MonotoneSat under reductions stronger than Turing.
Notably, the complexity of #MonotoneSat has been investigated in [5,12]
and it is still open whether it is complete for TotP, or for a subclass of TotP
under reductions for which the class is downwards closed. Although, #Π2-1VAR
is not known to be downwards closed under product reductions, our result is a
step towards understanding the exact complexity of #MonotoneSat.

Fig. 1. Relation of FPRAS
to counting classes below
#P.

In the second part of this paper we examine the
relationship between the class TotP and FPRAS. As
we already mentioned, most (if not all) problems
proven so far to admit fpras belong to TotP, so we
would like to examine whether FPRAS ⊆ TotP. Of
course, problems in FPRAS have decision version in
BPP [11], so if we assume P �= BPP this is proba-
bly not the case. Therefore, a more realistic goal is
to determine assumptions under which the conjecture
FPRAS ⊆ TotP might be true. The world so far is
depicted in Fig. 1, where #BPP denotes the class of
problems in #P with decision version in BPP.

In this work we refine this picture by proving that
(a) FPRAS � TotP unless RP=P, which means that proving FPRAS ⊆ TotP
would be at least as hard as proving RP = P, (b) TotP � FPRAS if and only
if NP �= RP, (c) FPRAS lies between two classes that can be seen as counting
versions of RP and BPP, and (d) FPRAS′, which is the subclass of FPRAS with
zero error probability when the function value is zero, lies between two classes
that we introduce here, that can both be seen as counting versions of RP, and
which surprisingly do not coincide unless RP = NP. Finally, we give a complete
picture of inclusions among all the classes defined or discussed in this paper with
respect to different conjectures about the NP vs. RP vs. P questions.

2 Two Robust Subclasses of TotP

In this section we give the logical characterization of two robust subclasses of
TotP. Each one of them has a natural complete problem. Two kinds of reductions
will be used for the completeness results; parsimonious and product reductions.
Note that both of them preserve approximations of multiplicative error [9,19].

Definition 1. Let f , g : Σ∗ → N be two counting functions.
(a) We say that there is a parsimonious (or Karp) reduction from f to g,

symb. f ≤p
m g, if there is a polynomial-time computable function h, such that

for every x ∈ Σ∗ it holds that f(x) = g(h(x)).

254 E. Bakali et al.

(b) We say that there is a product reduction from f to g, symb. f ≤pr g, if
there are polynomial-time computable functions h1, h2 such that for every x ∈ Σ∗

it holds that f(x) = g(h1(x)) · h2(x).

Formal definitions of the classes #PE and TotP can be found in [17].
Some proofs are omitted due to space limitations. They will appear in the

full version of the paper.

2.1 The Class ΣQSO(Σ2-2SAT)

In order to define the first class we make use of the framework of Quantitative
Second-Order Logics (QSO) defined in [3].

Given a relational vocabulary σ, the set of First-Order logic formulae over σ
is given by the grammar:

φ := x = y |R(−→x) | ¬φ |φ ∨ φ | ∃xφ | 	 | ⊥
where x, y are first-order variables, R ∈ σ, −→x is a tuple of first order variables,
	 represents a tautology, and ⊥ represents the negation of a tautology.

We define a literal to be either of the form X(−→x) or ¬X(−→x), where X is a
second-order variable and −→x is a tuple of first-order variables. A 2SAT clause
over σ is a formula of the form φ1 ∨ φ2 ∨ φ3, where each of the φi’s, 1 ≤ i ≤ 3,
can be either a literal or a first-order formula over σ. In addition, at least one of
them is a first-order formula. The set of Σ2-2SAT formulae over σ are given by:

ψ := ∃−→x ∀−→y
k∧

j=1

Cj(−→x ,−→y)

where −→x ,−→y are tuples of first-order variables, k ∈ N and Cj are 2SAT clauses
for every 1 ≤ j ≤ k.

The set of ΣQSO(Σ2 -2SAT) formulae over σ is given by the following
grammar:

α := φ | s | (α + α) |Σx.α |ΣX.α

where φ is a Σ2-2SAT formula, s ∈ N, x is a first-order variable and X is a
second-order variable. The syntax of ΣQSO(Σ2 -2SAT) formulae includes the
counting operators of addition +, Σx, ΣX. Specifically, Σx, ΣX are called
first-order and second-order quantitative quantifiers respectively.

Let σ be a relational vocabulary, A a σ-structure with universe A, v a first-
order assignment for A and V a second-order assignment for A. Then the evalu-
ation of a ΣQSO(Σ2 -2SAT) formula α over (A, V, v) is defined as a function [[α]]
that on input (A, V, v) returns a number in N. The function [[α]] is recursively
defined in Table 1. A ΣQSO(Σ2 -2SAT) formula α is said to be a sentence if it
does not have any free variable, that is, every variable in α is under the scope
of a usual quantifier (∃, ∀) or a quantitative quantifier. It is important to notice
that if α is a ΣQSO(Σ2 -2SAT) sentence over a vocabulary σ, then for every σ-
structure A, first-order assignments v1, v2 for A and second-order assignments

Characterizations and Approximability of Hard Counting Classes Below #P 255

Table 1. The semantics of ΣQSO(Σ2 -2SAT) formulae

V1, V2 for A, it holds that [[α]](A, v1, V1) = [[α]](A, v2, V2). Thus, in such a case
we use the term [[α]](A) to denote [[α]](A, v, V) for some arbitrary first-order
assignment v and some arbitrary second-order assignment V for A.

At this point it is clear that for any ΣQSO(Σ2 -2SAT) formula α, a function
[[α]] is defined. In the rest of the paper we will use the same notation, namely
ΣQSO(Σ2-2SAT), both for the set of formulae and the set of corresponding count-
ing functions.1

The following inclusion holds between the class #RHΠ1 [9] and the class
ΣQSO(Σ2-2SAT) defined presently.

Proposition 1. #RHΠ1 ⊆ ΣQSO(Σ2-2SAT)

The class ΣQSO(Σ2-2SAT) contains problems that are tractable, such as
#2Col, which is known to be computable in polynomial time [10]. It also con-
tains all the problems in #RHΠ1, such as #Bis, #1P1NSat, #Downsets [9].
These three problems are complete for #RHΠ1 under approximation preserving
reductions and are not believed to have an fpras. At last, the problem # Is [9],
which is interriducible with #Sat under approximation preserving reductions,
belongs to ΣQSO(Σ2-2SAT) as well.

We next show that a generalization of #2Sat, which we will call #Disj2Sat,
is complete for ΣQSO(Σ2-2SAT) under parsimonious reductions.

Membership of #Disj2Sat in ΣQSO(Σ2-2SAT)
In propositional logic, a 2SAT formula is a conjunction of clauses that contain
at most two literals. Suppose we are given a propositional formula φ, which is a
disjunction of 2SAT formulae, then #Disj2Sat on input φ equals the number
of satisfying assignments of φ.

In this subsection we assume that 2SAT formulae consist of clauses which
contain exactly two literals since we can rewrite a clause of the form l as l ∨ l,
for any literal l.

1 Moreover, we will use the terms ‘(counting) problem’ and ‘(counting) function’ inter-
changeably throughout the paper.

256 E. Bakali et al.

Theorem 1. #Disj2Sat ∈ ΣQSO(Σ2-2SAT)

Proof. Consider the vocabulary σ = {C1, C2, C3, C4,D} where Ci, 1 ≤ i ≤ 4,
are ternary relations and D is a binary relation. This vocabulary can encode any
formula which is a disjunction of 2SAT formulae. More precisely, C1(c, x, y) iff
clause c is of the form x ∨ y, C2(c, x, y) iff c is ¬x ∨ y, C3(c, x, y) iff c is x ∨ ¬y,
C4(c, x, y) iff c is ¬x ∨ ¬y and D(d, c) iff clause c appears in the “disjunct” d.

Let φ be an input to #Disj2Sat encoded by an ordered σ-structure A =
〈A,C1, C2, C3, C4,D〉, where the universe A consists of elements representing
variables, clauses and “disjuncts”. Then, it holds that the number of satisfying
assignments of φ is equal to [[ΣT.ψ(T)]](A), where

ψ(T) := ∃d∀c∀x∀y
(
(¬D(d, c) ∨ ¬C1(c, x, y) ∨ T (x) ∨ T (y))∧

(¬D(d, c) ∨ ¬C2(c, x, y) ∨ ¬T (x) ∨ T (y))∧
(¬D(d, c) ∨ ¬C3(c, x, y) ∨ T (x) ∨ ¬T (y))∧
(¬D(d, c) ∨ ¬C4(c, x, y) ∨ ¬T (x) ∨ ¬T (y)

)

Thus, #Disj2Sat is defined by ΣT.ψ(T) which is in ΣQSO(Σ2-2SAT). ��

Hardness of #Disj2Sat
Suppose we have a formula α in ΣQSO(Σ2-2SAT) and an input structure A over
a vocabulary σ. We describe a polynomial-time reduction that given α and A,
it returns a propositional formula φαA which is a disjunction of 2SAT formulae
and it holds that [[α]](A) = #Disj2Sat(φαA). The reduction is a parsimonious
reduction, i.e. it preserves the values of the functions involved.

Theorem 2. #Disj2Sat is hard for ΣQSO(Σ2-2SAT) under parsimonious
reductions.

It is known that #2Sat has no fpras unless NP = RP, since it is equiv-
alent to counting all independent sets in a graph [9]. Thus, problems hard
for ΣQSO(Σ2-2SAT) under parsimonious reductions also cannot admit an fpras
unless NP = RP.

Inclusion of ΣQSO(Σ2-2SAT) in TotP
Several problems in ΣQSO(Σ2-2SAT), like #1P1NSat, #Is, #2Col, and
#2Sat, are also in TotP. We next prove that this is not a coincidence.

Theorem 3. ΣQSO(Σ2-2SAT) ⊆ TotP

Proof. Since TotP is exactly the Karp closure of self-reducible functions of
#PE [17], it suffices to show that the ΣQSO(Σ2-2SAT)-complete problem
#Disj2Sat is such a function.

First of all, Disj2Sat belongs to P. Thus #Disj2Sat ∈ #PE.
Secondly, every counting function associated with the problem of count-

ing satisfying assignments for a propositional formula is self-reducible. So
#Disj2Sat has this property as well.

Characterizations and Approximability of Hard Counting Classes Below #P 257

Therefore, any ΣQSO(Σ2-2SAT) formula α defines a function [[α]] that
belongs to TotP. ��
Corollary 1. #RHΠ1 ⊆ TotP

2.2 The Class #Π2-1VAR

To define the second class #Π2-1VAR, we make use of the framework presented
in [19].

We say that a counting problem #B belongs to the class #Π2-1VAR if for
any ordered structure A over a vocabulary σ, which is an input to #B, it holds
that #B(A) = |{〈X〉 : A |= ∀−→y ∃−→z ψ(−→y ,−→z ,X)}|. The formula ψ(−→y ,−→z ,X) is
of the form φ(−→y ,−→z) ∧ X(−→z), where φ is a first-order formula over σ and X is a
positive appearance of a second-order variable. We call the formula ψ a variable,
since it contains only one second-order variable. Moreover, we allow counting
only the assignments to the second-order variable X under which the structure
A satisfies ∀−→y ∃−→z ψ(−→y ,−→z ,X).

Proposition 2. #V c ∈ #Π2-1VAR, where #Vc is the problem of counting the
vertex covers of all sizes in a graph.

Completeness of #MonotoneSat for #Π2-1VAR
Given a propositional formula φ in conjunctive normal form, where all the lit-
erals are positive, #MonotoneSat on input φ equals the number of satisfying
assignments of φ.

Theorem 4. #MonotoneSat ∈ #Π2-1VAR

Proof. Consider the vocabulary σ = {C} with the binary relation C(c, x) to
indicate that the variable x appears in the clause c. Given a σ-structure A =
〈A,C〉 that encodes a formula φ, which is an input to #MonotoneSat, it holds
that #MonotoneSat(φ) = |{〈T 〉 : A |= ∀c∃x

(
C(c, x) ∧ T (x)

)}|.
Therefore, #MonotoneSat ∈ #Π2-1VAR. ��

Theorem 5. #MonotoneSat is hard for #Π2-1VAR under product
reductions.

Inclusion of #Π2-1VAR in TotP

Theorem 6. #Π2-1VAR ∈ TotP

Proof. It is easy to prove that #MonotoneSat ∈ TotP and that TotP is closed
under product reductions. Thus, the above results imply that every counting
problem in #Π2-1VAR belongs to TotP. ��

258 E. Bakali et al.

3 On TotP vs. FPRAS

In this section we study the relationship between the classes TotP and FPRAS.
First of all we give some definitions and facts that will be needed.

Theorem 7. [17] (a) FP ⊆ TotP ⊆ #PE ⊆ #P. The inclusions are proper
unless P = NP.

(b) TotP is the Karp closure of self-reducible #PE functions.

We consider FPRAS to be the class of functions in #P that admit fpras, and
we also introduce an ancillary class FPRAS′. Formally:

Definition 2. A function f belongs to FPRAS if f ∈ #P and there exists a
randomized algorithm that on input x ∈ Σ∗, ε > 0, δ > 0, returns a value f̂(x)
such that

Pr[(1 − ε)f(x) ≤ f̂(x) ≤ (1 + ε)f(x)] ≥ 1 − δ

in time poly(|x|, ε−1, log δ−1).
We further say that a function f ∈ FPRAS belongs to FPRAS′ if whenever

f(x) = 0 the returned value f̂(x) equals 0 with probability 1.

We begin with the following observation.2

Theorem 8. #P ⊆ FPRAS if and only if NP=RP.

Corollary 2. TotP ⊆ FPRAS if and only if TotP ⊆ FPRAS′ if and only if
NP = RP.

Now we examine the opposite inclusion, i.e. whether FPRAS is a subset of
TotP. To this end we introduce two classes that contain counting problems with
decision in RP.

Recall that if a counting function f admits an fpras, then its decision version,
i.e. deciding whether f(x) = 0, is in BPP. In a similar way, if a counting function
belongs to FPRAS′, then its decision version is in RP. So we need to define the
subclass of #P with decision in RP. Clearly, if for a problem Π in #P the corre-
sponding counting machine has an RP behavior (i.e., either a majority of paths
are accepting or all paths are rejecting) then the decision version is naturally in
RP. However, this seems to be a quite restrictive requirement. Therefore we will
examine two subclasses of #P.

For that we need the following definition of the set of Turing Machines asso-
ciated to problems in RP.

Definition 3. Let M be an NPTM. We denote by pM the polynomial such that
on inputs of size n, M makes pM (n) non-deterministic choices.
MR = {M | M is an NPTM and for all x ∈ Σ∗ either accM (x) = 0 or accM >
1
2 · 2pM (|x|)}.

2 The following theorem is probably well-known among counting complexity
researchers. However, since we have not been able to find a proof in the literature
we provide one here for the sake of completeness.

Characterizations and Approximability of Hard Counting Classes Below #P 259

Definition 4. #RP1 = {f ∈ #P | ∃M ∈ MR ∀x ∈ Σ∗ : f(x) = accM (x)}.

Definition 5. #RP2 = {f ∈ #P | Lf ∈ RP}.

Note that #RP1, although restrictive, contains counting versions of some of
the most representative problems in RP, for which no deterministic algorithms
are known. For example consider the polynomial identity testing problem (Pit3):
Given an arithmetic circuit of degree d that computes a polynomial in a field,
determine whether the polynomial is not equal to the zero polynomial. A proba-
bilistic solution to it is to evaluate it on a random point (from a sufficiently large
subset S of the field). If the polynomial is zero then all points will be evaluated
to 0, else the probability of getting 0 is at most d

|S| . A counting analogue of Pit
is to count the number of elements in S that evaluate to non-zero values; clearly
this problem belongs to #RP1. Another problem in #RP1 is to count the num-
ber of compositeness witnesses (as defined by the Miller-Rabin primality test)
on input an integer n > 2; although in this case the decision problem is in P (a
prime number has no such witnesses and this can be checked deterministically
by AKS algorithm [1]), for a composite number n at least half of the integers in
Zn are Miller-Rabin witnesses, hence there exists a NPTM M ∈ MR that has
as many accepting paths as the number of witnesses.

#RP2 contains natural counting problems as well. Two examples in #RP2
are #Exact Matchings and #Blue-Red Matchings, which are counting
versions of Exact Matching [18] and Blue-Red Matching [16], respectively,
both of which belong to RP (in fact in RNC) as shown in [15,16]; however, it is
still open so far whether they can be solved in polynomial time. Therefore it is
also open whether #Exact Matchings and #Blue-Red Matchings belong
to TotP.

We will now focus on relationships among the aforementioned classes. We
start by presenting some unconditional inclusions and then we explore possible
inclusions under the condition that either NP �= RP �= P or NP �= RP = P holds.

The results are summarized in Figs. 2 and 3.

3.1 Unconditional Inclusions

Theorem 9. FP ⊆ #RP1 ⊆ #RP2 ⊆ #P. Also TotP ⊆ #PE ⊆ #RP2.

Theorem 10. #RP1 ⊆ FPRAS′ ⊆ #RP2.

Corollary 3. #RP1 ⊆ FPRAS′ ⊆ FPRAS ⊆ #BPP.

Corollary 4. If FPRAS ⊆ TotP then RP=P.

Corollary 5. If #RP1 = #RP2 then NP=RP.

Theorems 9 and 10 together with Theorem7 are summarised in Fig. 2.
3 Determining the computational complexity of polynomial identity testing is consid-

ered one of the most important open problems in the mathematical field of Algebraic
Computing Complexity.

260 E. Bakali et al.

Fig. 2. Unconditional inclu-
sions.

Fig. 3. Conditional inclusions. The following nota-
tion is used: A → B denotes A ⊆ B, A � B denotes
A �⊆ B, and A �→ B denotes A � B.

3.2 Conditional Inclusions/Possible Worlds

Now we will explore further relationships between the above mentioned classes,
and we will present two possible worlds inside #P, with respect to NP vs. RP
vs. P.

Theorem 11. The inclusions depicted in Figure 3 hold under the corresponding
assumptions on top of each subfigure.

4 Conclusions and Open Questions

Fig. 4. Inclusions and separations in
the case of NP �= RP = P.

Regarding the question of whether FPRAS
is a subset of TotP, Corollary 4 states that
if it actually holds, then proving it is at
least as difficult as proving RP =P.

A long-sought structural characteriza-
tion for FPRAS might be obtained by
exploring the fact that it lies between #RP1
and #BPP.

Another open question is whether
FPRAS′ is included in #RP1. It seems that
both a negative and a positive answer are
compatible with our two possible worlds.

By employing descriptive complexity methods we obtained two new robust
subclasses of TotP; the class ΣQSO(Σ2-2SAT) for which the counting problem
#Disj2Sat is complete under parsimonious reductions and the class #Π2-1VAR

Characterizations and Approximability of Hard Counting Classes Below #P 261

for which #MonotoneSat is complete under product reductions. We do not
expect ΣQSO(Σ2-2SAT) to be a subclass of FPRAS, given that #Disj2Sat does
not admit an fpras unless NP = RP. On the other hand, it is an open question
whether all problems #Π2-1VAR admit an fpras. This is equivalent to asking
whether #MonotoneSat admits an fpras.

Although proving #MonotoneSat complete for #Π2-1VAR under product
reductions, allows a more precise classification of the problem within #P, the
question of [12] remains open, i.e. whether #MonotoneSat is complete for
some counting class under reductions under which the class is downwards closed.

Finally, assuming NP �= RP = P, which is the most widely believed con-
jecture, the relationships among the classes studied in this paper are given in
Fig. 4.

References

1. Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Ann. Math. 160(2), 781–793
(2004). https://doi.org/10.4007/annals.2004.160.781

2. Arenas, M., Croquevielle, L.A., Jayaram, R., Riveros, C.: Efficient logspace classes
for enumeration, counting, and uniform generation. CoRR abs/1906.09226 (2019).
https://doi.org/10.1145/3294052.3319704. http://arxiv.org/abs/1906.09226

3. Arenas, M., Muñoz, M., Riveros, C.: Descriptive complexity for counting complex-
ity classes. CoRR abs/1805.02724 (2018). http://arxiv.org/abs/1805.02724

4. Bakali, E., Chalki, A., Pagourtzis, A., Pantavos, P., Zachos, S.: Completeness
results for counting problems with easy decision. In: Fotakis, D., Pagourtzis, A.,
Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 55–66. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-57586-5_6

5. Bampas, E., Göbel, A., Pagourtzis, A., Tentes, A.: On the connection between
interval size functions and path counting. Comput. Complex. 26(2), 421–467
(2017). https://doi.org/10.1007/s00037-016-0137-8

6. Bulatov, A., Dalmau, V., Thurley, M.: Descriptive complexity of approximate
counting CSPs. In: Rocca, S.R.D. (ed.) Computer Science Logic 2013 (CSL 2013).
LIPIcs, vol. 23, pp. 149–164. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik,
Dagstuhl, Germany (2013). https://doi.org/10.4230/LIPIcs.CSL.2013.149. http://
drops.dagstuhl.de/opus/volltexte/2013/4195

7. Dalmau, V.: Linear datalog and bounded path duality of relational structures. Log.
Methods Comput. Sci. 1(1) (2005). https://doi.org/10.2168/LMCS-1(1:5)2005.
https://lmcs.episciences.org/2275

8. Dyer, M., Frieze, A., Jerrum, M.: On counting independent sets in sparse
graphs. SIAM J. Comput. 31(5), 1527–1541 (2002). https://doi.org/10.1137/
S0097539701383844

9. Dyer, M.E., Goldberg, L.A., Greenhill, C.S., Jerrum, M.: The relative complexity
of approximate counting problems. Algorithmica 38(3), 471–500 (2004). https://
doi.org/10.1007/s00453-003-1073-y

10. Galanis, A., Goldberg, L.A., Jerrum, M.: A complexity trichotomy for approx-
imately counting list H-colorings. ACM Trans. Comput. Theory 9(2) (2017).
https://doi.org/10.1145/3037381

11. Gill, J.: Computational complexity of probabilistic Turing machines. SIAM J. Com-
put. 6(4), 675–695 (1977). https://doi.org/10.1137/020604910.1137/0206049

https://doi.org/10.4007/annals.2004.160.781
https://doi.org/10.1145/3294052.3319704
http://arxiv.org/abs/1906.09226
http://arxiv.org/abs/1805.02724
https://doi.org/10.1007/978-3-319-57586-5_6
https://doi.org/10.1007/s00037-016-0137-8
https://doi.org/10.4230/LIPIcs.CSL.2013.149
http://drops.dagstuhl.de/opus/volltexte/2013/4195
http://drops.dagstuhl.de/opus/volltexte/2013/4195
https://doi.org/10.2168/LMCS-1(1:5)2005
https://lmcs.episciences.org/2275
https://doi.org/10.1137/S0097539701383844
https://doi.org/10.1137/S0097539701383844
https://doi.org/10.1007/s00453-003-1073-y
https://doi.org/10.1007/s00453-003-1073-y
https://doi.org/10.1145/3037381
https://doi.org/10.1137/020604910.1137/0206049

262 E. Bakali et al.

12. Hemaspaandra, L.A., Homan, C.M., Kosub, S., Wagner, K.W.: The complexity
of computing the size of an interval. SIAM J. Comput. 36(5), 1264–1300 (2007).
https://doi.org/10.1137/S0097539705447013

13. Jerrum, M., Sinclair, A.: The Markov Chain Monte Carlo Method: An Approach to
Approximate Counting and Integration, pp. 482–520. PWS Publishing Co., USA
(1996) https://doi.org/10.1145/261342.571216

14. Karp, R.M., Luby, M., Madras, N.: Monte-Carlo approximation algorithms for
enumeration problems. J. Algorithms 10(3), 429–448 (1989). https://doi.org/10.
1016/0196-6774(89)90038-2. http://www.sciencedirect.com/science/article/pii/
0196677489900382

15. Mulmuley, K., Vazirani, U.V., Vazirani, V.V.: Matching is as easy as matrix inver-
sion. Combinatorica 7(1), 105–113 (1987). https://doi.org/10.1007/BF02579206

16. Nomikos, C., Pagourtzis, A., Zachos, S.: Randomized and approximation algo-
rithms for blue-red matching. In: Kučera, L., Kučera, A. (eds.) MFCS 2007. LNCS,
vol. 4708, pp. 715–725. Springer, Heidelberg (2007). https://doi.org/10.1007/978-
3-540-74456-6_63

17. Pagourtzis, A., Zachos, S.: The complexity of counting functions with easy decision
version. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
741–752. Springer, Heidelberg (2006). https://doi.org/10.1007/11821069_64

18. Papadimitriou, C.H., Yannakakis, M.: The complexity of restricted minimum span-
ning tree problems (extended abstract). In: Maurer, H.A. (ed.) ICALP 1979. LNCS,
vol. 71, pp. 460–470. Springer, Heidelberg (1979). https://doi.org/10.1007/3-540-
09510-1_36

19. Saluja, S., Subrahmanyam, K., Thakur, M.: Descriptive complexity of #P func-
tions. J. Comput. Syst. Sci. 50(3), 493–505 (1995). https://doi.org/10.1006/jcss.
1995.1039. http://www.sciencedirect.com/science/article/pii/S0022000085710392

20. Sinclair, A., Jerrum, M.: Approximate counting, uniform generation and rapidly
mixing Markov chains. Inf. Comput. 82(1), 93–133 (1989). https://doi.org/10.
1016/0890-5401(89)90067-9. http://www.sciencedirect.com/science/article/pii/
0890540189900679

21. Valiant, L.: The complexity of computing the permanent. Theor. Com-
put. Sci. 8(2), 189–201 (1979). https://doi.org/10.1016/0304-3975(79)90044-6.
http://www.sciencedirect.com/science/article/pii/0304397579900446

https://doi.org/10.1137/S0097539705447013
https://doi.org/10.1145/261342.571216
https://doi.org/10.1016/0196-6774(89)90038-2
https://doi.org/10.1016/0196-6774(89)90038-2
http://www.sciencedirect.com/science/article/pii/0196677489900382
http://www.sciencedirect.com/science/article/pii/0196677489900382
https://doi.org/10.1007/BF02579206
https://doi.org/10.1007/978-3-540-74456-6_63
https://doi.org/10.1007/978-3-540-74456-6_63
https://doi.org/10.1007/11821069_64
https://doi.org/10.1007/3-540-09510-1_36
https://doi.org/10.1007/3-540-09510-1_36
https://doi.org/10.1006/jcss.1995.1039
https://doi.org/10.1006/jcss.1995.1039
http://www.sciencedirect.com/science/article/pii/S0022000085710392
https://doi.org/10.1016/0890-5401(89)90067-9
https://doi.org/10.1016/0890-5401(89)90067-9
http://www.sciencedirect.com/science/article/pii/0890540189900679
http://www.sciencedirect.com/science/article/pii/0890540189900679
https://doi.org/10.1016/0304-3975(79)90044-6
http://www.sciencedirect.com/science/article/pii/0304397579900446

On Existence of Equilibrium Under Social
Coalition Structures

Bugra Caskurlu1(B), Ozgun Ekici2, and Fatih Erdem Kizilkaya1

1 TOBB University of Economics and Technology, Ankara, Turkey
{bcaskurlu,f.kizilkaya}@etu.edu.tr
2 Ozyegin University, Istanbul, Turkey

ozgun.ekici@ozyegin.edu.tr

Abstract. In a strategic form game, a strategy profile is an equilibrium
if no viable coalition of agents benefits (in the Pareto sense) from jointly
changing their strategies. Weaker or stronger equilibrium notions can be
defined by considering various restrictions on coalition formation. In a
Nash equilibrium, for instance, the assumption is that viable coalitions
are singletons, and in a super strong equilibrium, every coalition is viable.
Restrictions on coalition formation can be justified by communication,
coordination or institutional constraints. In this paper, inspired by social
structures in various real-life scenarios, we introduce certain restrictions
on coalition formation, and on their basis, we introduce a number of equi-
librium notions. We study our equilibrium notions in resource selection
games (RSGs), and we present a complete set of existence and non-
existence results for general RSGs and their important special cases.

1 Introduction

In game theory, the centerpiece of analysis is the notion of an equilibrium. An
equilibrium is a strategy profile at which certain types of coalitions of agents do
not have profitable deviations. The strongest notion that can be defined along
this line is a super strong equilibrium: no coalition of agents benefits from jointly
changing their strategies. Note that in a game with n agents there are as many
as 2n − 1 possible coalitions if any coalition is deemed viable. However, deeming
every coalition viable and disqualifying strategy profiles as non-equilibrium may
be misguided.1 Indeed, this is the very same idea behind the Nash equilibrium
[22] solution concept, wherein only singletons are deemed to be viable coali-
tions. In this paper, our goal is to fill the gap between the less restrictive Nash
1 In defining our equilibrium notions we use the weak domination relation: a profitable

deviation is one that makes the coalition members better off in the Pareto sense.
An alternative approach is to define an equilibrium using the strong domination
relation, which requires every coalition member to be strictly better off. For studies
on strong equilibrium, its existence, and some other related work, see [3,4,13–15,20].

This work is supported by The Scientific and Technological Research Council of Turkey
(TÜBİTAK) through grant 118E126.

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 263–274, 2020.
https://doi.org/10.1007/978-3-030-59267-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_23&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_23

264 B. Caskurlu et al.

equilibrium notion and the very restrictive super strong equilibrium notion. We
introduce and study various notions of equilibrium, defined by various restric-
tions on coalition formation. The restrictions that we consider are motivated by
constraints or difficulties that agents may face in real life in coalition formation.
We give below a number of examples.

Coordinational Difficulties: A deviation by a coalition requires coalition
members to act in unison. However, if coalition members are not familiar with
one another, taking coordinated action may not be feasible. Or, it may be that
agents are familiar with one another yet they find it difficult to coordinate their
actions when the number of coalition members is large.

Communicational Difficulties: The formation of a coalition requires that
agents communicate. However, imagine that agents communicate through a net-
work where each agent is located at one of the nodes. If agent i is to offer a
deviation to agent j, then every agent along the path from i to j may have to be
part of the coalition, too, or else they may block any offer that excludes them
and leads to a deterioration in their well-being.

Institutional Constraints: Coalition formation possibilities may also be
restricted by institutional constraints. For instance, in global affairs, it is not
uncommon that a government feels compelled to act in unison with its allies
against a third country. For instance, it may be forced to uphold trade sanctions
on a neighboring country, even if doing so may cause much harm to its economy.

A full consideration of what restrictions on coalition formation is reasonable
in a specific real-life scenario is beyond the scope of our paper. We focus on
restrictions motivated by natural real-life social structures. On the basis of our
restrictions, we define new equilibrium notions. We study how they relate to one
another, and when they are guaranteed to exist. Indeed, adding social structures
to games is a growing trend in recent literature. The following equilibrium notion
introduced in an earlier study is related to our study in particular2:

Partition Equilibrium: It is assumed that the set of viable coalitions is a
partition of the set of agents; see Fig. 1a. This notion, introduced by Feldman
and Tennenholtz [10], generalizes the notion of a Nash equilibrium.

Along similar lines, we introduce the following three notions of equilibrium.

Laminar Equilibrium: It is assumed that the set of viable coalitions exhibits
a laminar structure; see Fig. 1b. This notion is motivated by institutional con-
straints as it relates to hierarchical communities in real life. For instance, a
military is divided into corps, legions, and brigades; a cabinet is divided into
ministries, departments, and directorates; and a company is divided into divi-
sions and departments.

2 For three other related studies see Ashlagi et al. [2], Caskurlu et al. [7] and Hoefer
et al. [12].

On Existence of Equilibrium Under Social Coalition Structures 265

1 2 3 4 5 6 7 8 9

(a) A Partition Coalition Structure

1 2 3 4 5 6 7 8 9

(b) A Laminar Coalition Structure

Fig. 1. Examples of partition and laminar coalition structures

Contiguous Equilibrium: It is assumed that agents are distributed on a line
and each viable coalition consists of some agents that are ordered subsequently;
see Fig. 2a. For instance, in politics, political parties are often positioned on a
left-right political spectrum, and arguably, coalitions are formed by parties that
lie in the same ideological neighborhood on the political spectrum.

Centralized Equilibrium: It is assumed that agents are distributed on a plane
and each viable coalition corresponds to a circle on the plane: agents that lie
inside the circle are the coalition members, and at the circle’s center lies one of
the coalition members (perhaps the coalition leader); see Fig. 2b.

1 2 3 4 5 6

(a) A Contiguous Coalition Structure

1 2

3 4

5 6

7 8

9 10

(b) A Centralized Coalition Structure

Fig. 2. Examples of contiguous and centralized coalition structures

The number of viable coalitions is O(n) in the case of a partition equilibrium
or a laminar equilibrium, and it is O(n2) in the case of a contiguous equilibrium or
a centralized equilibrium. As opposed to a partition equilibrium, viable coalitions
w.r.t. our equilibrium notions may be overlapping. A similar solution concept in
this regard [12] assumes that the agents are embedded in a social network, and
the only viable coalitions are the cliques in the network.3

We first show that each equilibrium notion given above generalizes the pre-
ceding one by Theorem 1. Then, we study the existence of the above notions of
equilibrium in resource selection games (RSGs), for the following reasons:

– RSGs are a subclass of congestion games [24] for which the existence of a Nash
equilibrium is guaranteed (see [19,24]). However, a super strong equilibrium

3 There are other settings where overlapping coalitions are considered such as coalition
games in interaction graphs [6,21]. The power of agents which are distributed on a
line, and where each interval corresponds to a coalition has been studied in the
context of voting games [9].

266 B. Caskurlu et al.

may not exist even in the simplest special cases of RSGs [10]. Since the newly
defined solution concepts are generalizations of a Nash equilibrium, and the
super strong equilibrium notion is a refinement of them, the existence of
equilibria w.r.t. these solution concepts is nontrivial.

– Simple as they may be, RSGs not only have an immense number of applica-
tions [11,13,16–18,23] but also capture the essence of more general games.4

– RSGs are a benchmark to study the existence of equilibrium w.r.t. newly
defined solution concepts.5

Our results in RSGs and their relation to the results in the literature are
as follows: Feldman and Tennenholtz [10] showed that a partition equilibrium
always exists in RSGs under the following restrictions: (i) if the size of a viable
coalition is bounded by 2; or (ii) if there are only two resources; or (iii) if the
resources are identical. Anshelevich et al. [1] generalized this result by proving
that a strategy profile that is both a partition equilibrium and a Nash equi-
librium is guaranteed to exist in general RSGs. Caskurlu et al. [7] studied the
computational complexity of deciding existence of equilibrium with respect to a
given coalition structure in RSGs. They proved that the problem is NP-HARD in
general, and identified restricted settings for which polynomial-time algorithms
exist.

Our findings are as follows:

– We generalize the results (ii) and (iii) above in [10] to the notion of a laminar
equilibrium. We prove that a laminar equilibrium exists if there are only two
resources (Theorem 3), or if the resources are identical (Corollary 4).6

– We show that an analogous generalization of the result in [1] is not possible.
Via an intricate counterexample, we show that a laminar equilibrium may
not exist in general RSGs (Theorem 4). Indeed, our counterexample shows
that in general RSGs there may not exist a strategy profile that is Pareto
efficient, a partition equilibrium, and a Nash equilibrium (Corollary 2).7

– We show that a contiguous equilibrium may not exist in an RSG with two
resources (Theorem 6), however, contiguous equilibrium exists when resources
are identical (Theorem 5). We also show that a centralized equilibrium may
not exist even in the setting with two identical resources (Theorem 7).

4 In the routing games literature, they are known as parallel-link networks. For recent
literature on routing games on parallel-link networks, see [5] and the references
therein.

5 Not only the immediate previous work [1,10], but also several other newly defined
solution concepts [11,12] are studied for RSGs.

6 Note that RSGs with two resources is interesting in its own right. For instance, the
well-known PoA = 4/3 result for selfish routing also holds for parallel-link networks
with two links [8].

7 Notice that the main existence result in [1] does not survive a minimal extension of
their domain of viable set of coalitions, i.e., when the set of all agents is added to
the viable set of coalitions.

On Existence of Equilibrium Under Social Coalition Structures 267

Table 1 below summarizes these findings:

Table 1. Existence (+) and Non-existence (−) results

Solution concepts Resources

General Two Identical Two identical

Partition +∗∗ +∗ +∗ +∗

Laminar − + + +

Contiguous − − + +

Centralized − − − −
∗due to Feldman and Tennenholtz [10] ∗∗due to Anshelevich
et al. [1]

2 The Equilibrium Notions

This section introduces our equilibrium notions in the context of a strategic form
game and then studies how these notions are related.

Let 〈N,S,U〉 be a strategic form game where N is a finite set of agents,
S : (Sj)j∈N is the strategy space and U : S → R

|N | is the payoff function. Agent
j’s payoff at strategy profile s ∈ S is denoted by Uj(s).8 A coalition c is a non-
empty subset of agents. Let P(N) be the power set of N . Then the domain of
coalitions is P(N) − {∅}. Let P≥1(N) denote this domain. A coalition structure
C is a set of viable coalitions; i.e., C ⊆ P≥1(N).

Let Sc denote the restriction of the strategy space for coalition c. Let sc denote
the restriction of the strategy profile s for coalition c. That is, Sc = (Sj)j∈c and
sc = (sj)j∈c. Note that the strategy space can be written as (Sc, SNsetminusc).
The space Sc represents the domain of deviations for coalition c. At s if coali-
tion c takes deviation s̃c ∈ Sc, the resulting strategy profile is (s̃c, sNsetminusc) ∈
(Sc, SNsetminusc). This is a profitable deviation for coalition c if for each j ∈ c,
Uj(s̃c, sNsetminusc) ≥ Uj(s), and for some j ∈ c, Uj(s̃c, sNsetminusc) > Uj(s).
That is, the deviation makes coalition c better off in the Pareto sense. A strat-
egy profile s is called c-stable if coalition c has no profitable deviation at s, and
C-stable if for coalition structure C, s is c-stable for each c ∈ C.

Notice that a strategy profile is a super strong equilibrium if it is P≥1(N)-
stable, and a strategy profile is a Nash equilibrium if it is P=1(N)-stable where
P=1(N) = {c ⊂ N | |c| = 1}. We now define the partition equilibrium which was
introduced in the earlier literature, and the three notions of equilibrium which
are introduced first in our paper.

Partition Equilibrium: A coalition structure C is a partition if for each j ∈ N ,
there exists a unique coalition c ∈ C such that j ∈ c. Given a partition coalition
structure C, a strategy profile is a partition equilibrium if it is C-stable.
8 Throughout, ⊂ and ⊆ denote the “strict subset of” and the “subset of” relations.

For a set X, |X| denotes the cardinality of X. For a number x, |x| denotes the
absolute value of x, and �x� denotes the greatest integer smaller than x.

268 B. Caskurlu et al.

Laminar Equilibrium: A coalition structure C is laminar if for any two coali-
tions c1, c2 ∈ C such that c1 ∩ c2 �= ∅, either c1 ⊆ c2 or c2 ⊆ c1. Given a laminar
coalition structure C, a strategy profile is a laminar equilibrium if it is C-stable.

Contiguous Equilibrium: A coalition structure C is contiguous if there exists
a path P : j1−j2−· · ·−j|N | (the vertices are agents) in accordance with C in the
following sense: for each c ∈ C, the agents in c are subsequently ordered under
P . Given a contiguous coalition structure C, a strategy profile is a contiguous
equilibrium if it is C-stable.

Centralized Equilibrium: A coalition structure C is centralized if the agents
lie on a plane and a viable coalition consists of agents that lie inside a circle
with the restriction that one coalition member lies at the circle’s center. Given
a centralized coalition structure C, a strategy profile is a centralized equilibrium
if it is C-stable.

Let Csse = {P≥1(N)}. Let Cne = {P=1(N)}. Also, let Cpe, Cle, Ccoe, Ccee be,
respectively, the domains of coalition structures that are partitions, laminar,
contiguous, and centralized. Thus, a strategy profile that is C-stable is a super
strong equilibrium if C ∈ Csse; a Nash equilibrium if C ∈ Cne; a partition
equilibrium if C ∈ Cpe, and so on. Theorem 1 states how Cne, Cpe, Cle, Ccoe, Ccee,
and Csse are related.

Theorem 1. We have Cne ⊆ Cpe ⊆ Cle ⊆ Ccoe ⊆ Ccee. Also,

– Cne ⊂ Cpe ⊂ Cle for |N | ≥ 2,
– Cle ⊂ Ccoe for |N | ≥ 3,
– Ccoe ⊂ Ccee for |N | ≥ 4,
– for each C ∈ Ccee, C ⊆ P≥1(N),
– for |N | ≥ 3, P≥1(N) /∈ Ccee.

3 An Application: Resource Selection Games

A resource selection game (RSG) is a triplet 〈N,M, f〉 where N : {1, 2, . . . , n}
is the set of agents, M : {1, 2, . . . ,m} is the set of resources and f : (fi)mi=1 is
the profile of strictly monotonic increasing cost functions such that fi(0) = 0 for
all i ∈ {1, 2, . . . ,m}. When q agents use resource i, each incurs a cost equal to
fi(q). Each agent tries to minimize the cost it incurs. In the rest of the paper,
we fix the game 〈N,M, f〉.

An allocation is a sequence a : (ai)mi=1 such that: i) For each i ∈ M , we have
ai ⊆ N ; ii) For every i, i′ ∈ M such that i �= i′, we have ai ∩ ai′ = ∅; and iii)
We have

⋃

i∈M ai = N . Above, ai denotes the set of agents that are assigned to
resource i at allocation a. Thus, at allocation a, each agent in ai incurs a cost
equal to fi(|ai|). Let A be the domain of allocations.

The maxcost of an allocation a is the maximum cost incurred by an agent at
a. That is, the maxcost of allocation a equals maxi∈M fi(|ai|). The minmaxcost
of the RSG, to be denoted by α, is the maxcost of the allocation whose maxcost
is smallest. That is, α = mina∈A maxi∈M fi(|ai|).

On Existence of Equilibrium Under Social Coalition Structures 269

Let qi = maxq∈Z≥0 fi(q) ≤ α. We refer to qi as resource i’s quota. That is,
a resource’s quota is the maximum number of agents that can be assigned to
it without making its cost exceed α. We distinguish between resources that can
and that cannot attain the minmaxcost α. A resource i is a Type 1 resource if
fi(qi) = α, and a Type 2 resource if fi(qi) < α. Let T1 and T2 denote, respectively,
the sets of type 1 and type 2 resources. Since the minmaxcost of the game is α,
we have T1 �= ∅. Also, for i ∈ T1, let βi = fi(qi − 1). We refer to βi as resource
i’s beta value. Note that for a type 1 resource i, its beta value is its cost when
the number of agents assigned to it is one less than its quota.

Note that an RSG is a non-cooperative game in the strategic form although
its formulation here is different from the formulation of a strategic form game
in Sect. 2. Here, agents’ payoffs are negative (i.e., they incur costs rather than
receive payoffs) and an agent’s strategy space is the set M .

In this context, we continue to use the terminology in Sect. 2 in regards to
coalitions and coalition structures; i.e., c, C, P=1(N), P≥1(N), Csse, Cne, Cle,
Ccoe, Ccee are as described in Sect. 2. We also use the terminology in Sect. 2
regarding the stability and equilibrium notions but with one exception: Note that
in an RSG an allocation fully specifies the strategies of agents. Therefore, in this
context, we speak of an “allocation” as a substitute for a strategy profile. Hence,
in this context, rather than a strategy profile we speak of an allocation being
c-stable or C-stable; or being a laminar equilibrium or a contiguous equilibrium.

Also, in this context, we represent a deviation by a coalition c as a sequence
(ci)mi=1 such that: (i) c1 ∪ c2 ∪ · · · ∪ cm = c; and (ii) for each i, i′ ∈ M and
i �= i′, ci ∩ ci′ = ∅. That is, a deviation is an agreement by coalition members
on which resources they will use: ci is the set of coalition members who agree
to use resource i. We use a ◦ (ci)mi=1 to denote the allocation that results when
coalition c takes deviation (ci)mi=1 at allocation a: i.e., after the deviation the set
of agents that are assigned to resource i is (aisetminusc) ∪ ci. Also, note that
a deviation is a profitable deviation if at the resulting allocation each coalition
member becomes weakly better off (i.e., the cost it incurs does not increase) and
at least one of them becomes better off (i.e., the cost it incurs decreases).

The notion of a super strong equilibrium is very appealing since it precludes
profitable deviations by any coalition of agents. However, in most game forms a
super strong equilibrium is not guaranteed to exist. This is also true for RSGs,
even in the very restricted setting with three agents and two identical resources
[10]. We next present a characterization of Nash equilibrium in RSGs given by [1].

Theorem 2 (due to Anshelevich et al. [1]). An allocation a of an RSG is
a Nash equilibrium if and only if: (i) for each i ∈ T2, |ai| = qi; (ii) for each
i ∈ T1, |ai| ∈ {qi − 1, qi}; and (iii) for some i ∈ T1, |ai| = qi.

Let allocation a be a Nash equilibrium. We need to designate the set of type
1 resources that are not assigned at a up to their quotas: Let L(a) = {i ∈
T1 | |ai| = qi − 1}. Also, let H(a) = M \ L(a). We refer to the resources in L(a)
and in H(a) as low and high resources at a, respectively. The corollary below
immediately follows from the above theorem and it will be useful later on.

270 B. Caskurlu et al.

Corollary 1. Let allocation a be a Nash equilibrium. Then, |L(a)| =
∑

i∈M qi−
n and |H(a)| = m − |L(a)|. Therefore, the number of low and high resources are
the same at every Nash equilibrium allocation.

The rest of this section is divided into two parts. We present our results for
the laminar equilibrium notion in Sect. 3.1, and the results for contiguous and
centralized equilibrium notions in Sect. 3.2.

3.1 Existence and Non-existence Results for Laminar Equilibrium

In this section, we first present Theorem 3 that states the existence of lami-
nar equilibrium in two-resource RSGs. Existence result for laminar equilibrium
in identical-resource RSGs (Corollary 4) follows from the more general result
that contiguous equilibrium always exists in identical-resource RSGs, which is
presented in Sect. 3.2.

Theorem 3. In a two-resource RSG, for any laminar coalition structure C ∈
Cle, there exists a C-stable allocation.

The rest of this section is, thus, devoted to proving that a laminar equilibrium
does not necessarily exist in RSGs (Theorem 4). The example that we use to
show Theorem 4 is an intricate one, consisting of a large number of agents and
resources. We present it below.

Example 1. Consider an RSG as follows:

– There are n = 14052 agents and m = 2001 resources.
– Every resource is of type 1.
– The set of resources can be written as M = Mx ∪ My ∪ Mz such that:

• Mx = {x} and qx = 53.
• My = {y1, y2, . . . , y1000} where each resource in My has the same cost

function, and qy = 8 for all y ∈ My.
• Mz = {z1, z2, . . . , z1000} where each resource in Mz has the same cost

function, and qz = 7 for all z ∈ Mz.
• For all y ∈ My and z ∈ Mz, we have βx > βy > βz > fx (qx − 2). �

Theorem 4. In an RSG, for C ∈ Cle, it may be that no allocation is C-stable.
That is, in RSGs a laminar equilibrium is not guaranteed to exist.

Proof. In Example 1, consider the following coalition structure: C =
{c1, . . . , c6} ∪ P=1(N) ∪ {N} where the sets c1, . . . , c6 are disjoint and each has
a cardinality of 14052/6 = 2342. Note that C is laminar. We prove the the-
orem by showing that no C-stable allocation exists in Example 1. By way of
contradiction, suppose that in Example 1 there exists an allocation a which is
C-stable.

Note that by Corollary 1: |L(a)| = 1001 (= 53+8×1000+7×1000−14052).
And |H(a)| = 2001 − 1001 = 1000. Since P=1(N) ⊂ C, a is a Nash equilibrium.

On Existence of Equilibrium Under Social Coalition Structures 271

Therefore, using Corollary 1, at allocation a there are 1001 low resources and
1000 high resources.

We divide the proof into six parts:
(1) We show that x ∈ L (a).
By way of contradiction, suppose that x ∈ H (a). Then, in My ∪ Mz, there

are 1001 resources that are low. Let i, i′ be two of them (i �= i′). Consider the
agents ai ∪ai′ . Note that |ai ∪ ai′ | = qi + qi′ − 2 ≤ 14. Let N1 ∪N2 ⊂ ax be such
that N1 and N2 are disjoint, |N1| = qi, and |N2| = qi′ . We define allocation a′

from a as follows.

– Remove the agents in N1 ∪ N2 ∪ ai ∪ ai′ from their assigned resources.
– Assign agents in N1 to resource i, assign agents in N2 to resource i′, and

assign agents in ai ∪ ai′ to resource x.
(The assignments of remaining agents are the same as before.)

At allocation a′, the agents assigned to resource x are now better off (since
x is now assigned qx − 2 agents). All other agents are equally well off at the two
allocations. But then a is not N -stable, a contradiction. Thus, x ∈ L (a).

(2) We show that |H (a) ∩ My| ≤ 7. (Hence, |H (a) ∩ Mz| ≥ 993.)
By (1), we know that x ∈ L (a). Then, at a, in My ∪ Mz there are 1000

high resources and 1000 low resources. By way of contradiction, suppose that
|H (a) ∩ My| ≥ 8. This implies that |L (a) ∩ Mz| ≥ 8. We define allocation a′

from a as follows. We pick 7 high resources in My: Wlog., let y1, · · · , y7 ∈
H (a) ∩ My. We pick 8 low resources in Mz: Wlog., let z1, · · · , z8 ∈ L (a) ∩ Mz.
We pick 49 agents assigned to x at a: Let Nx ⊂ ax be such that |Nx| = 49. Then:

– Remove the agents in Nx ∪ ay1 ∪ · · · ∪ ay7 ∪ az1 ∪ · · · ∪ az8 from their assigned
resources.

– Assign the 49 agents in Nx to resources y1, · · · , y7 such that each resource is
assigned 7 agents.

– Assign the 56 agents in ay1 ∪ · · · ∪ ay7 to resources z1, · · · , z8 such that each
resource is assigned 7 agents.

– Assign the 48 agents in az1 ∪ · · · ∪ az8 to resource x.
(The assignments of remaining agents are the same as before.)

At allocation a′, the agents assigned to resource x are now better off (since
x is now assigned qx − 2 agents). The agents assigned to resources y1, · · · , y7 are
also better off (because they are now assigned to low resources for which the
beta value is smaller). The agents assigned to resources z1, · · · , z8 are equally
well off (because they are assigned to high resources at both a and a′). The
agents assigned to the remaining resources are equally well off. But then a is
not N -stable, a contradiction. Thus, |H (a) ∩ My| ≤ 7. Hence, we also have
|H (a) ∩ Mz| ≥ 993.

(3) We show that there exists c ∈ {c1, . . . , c6} such that there are at least
1159 agents in c which are assigned to resources in H (a) ∩ Mz at allocation a.

Above, by (2), at a there are at least 993 high resources in Mz. Since each of
them is assigned 7 agents, at a the number of agents assigned to high resources in

272 B. Caskurlu et al.

Mz is at least 993 × 7 = 6951. But then by the generalized pigeonhole principle,
there is a coalition c ∈ {c1, . . . , c6} such that at a the number of agents in c that
are assigned to high resources in Mz is at least

⌈

6951
6

⌉

= 1159.
(4) Let c ∈ {c1, . . . , c6} be as described in (3). We show that there exists

z ∈ H (a) ∩ Mz such that there are at least two agents in c that are assigned to
z at allocation a.

Note that at a the number of high resources in Mz is at most 1000 (because
|Mz| = 1000). By (3) we also know that there are at least 1159 agents in c which
are assigned to high resources in Mz at allocation a. But then, by the pigeonhole
principle, there exists z ∈ H (a) ∩ Mz such that there are at least two agents in
c that are assigned to z at allocation a.

(5) Let c ∈ {c1, . . . , c6} be as described in (3). We show that for each resource
y ∈ L (a) ∩ (Mx ∪ My), there are at least two agents in c that are assigned to y
at allocation a.

By (4) there exists z ∈ H (a) ∩ Mz such that there are at least two agents
in c that are assigned to z at allocation a. Thus, let j, j′ ∈ c be such that j �= j′

and at a the agents j and j′ are assigned to resource z.
By way of contradiction, suppose that there exists y ∈ L (a) ∩ (Mx ∪ My)

such that |c ∩ ay| ≤ 1.
Suppose that |c ∩ ay| = 0. We define allocation a′ from a as follows: Agent

j is removed from resource z and then assigned to resource y. It is clear that
at a′ coalition c is better off. But then a is not C-stable, a contradiction. Thus,
|c ∩ ay| �= 0.

Suppose that |c ∩ ay| = 1. Let ˜j be the agent in c ∩ ay. We define allocation
a′ from a as follows: Agents j and j′ are removed from resource z and then
assigned to resource y, and agent ˜j is removed from resource y and then assigned
to resource z. Note that at a′ the agents j and j′ are equally well off (they are
still assigned to high resources) and the agents in c that are assigned to z (˜j
and perhaps some other agents) are better off (because z is now a low resource,
and the beta value for z is smaller than the beta value for y). The remaining
agents in c are equally well off. But then a is not C-stable, a contradiction. Thus,
|c ∩ ay| �= 1. Therefore, |c ∩ ay| ≥ 2.

(6) We conclude the proof as follows: Let c be as described in (3). By (1) and
(2), there are at least 994 resources in L(a) ∩ (Mx ∪ My). By (5), the number
of agents in coalition c that are assigned to resources in L(a) ∩ (Mx ∪ My) is at
least 2 × 994 = 1988 at allocation a. By (3), there are at least 1159 agents in c
which are assigned to resources in H (a) ∩ Mz at allocation a. But then we get
|c| ≥ 1988 + 1159 = 3147. This contradicts the fact that |c| = 2342. �

Corollary 2. In an RSG, there may not exist a Pareto efficient allocation a
that is both a partition equilibrium and a Nash equilibrium.

Proof. We work with the coalition structure C = {c1, . . . , c6} ∪ P=1(N) ∪ {N}
in proving Theorem 4. The part {c1, . . . , c6} is a partition of the agents, the
part P=1(N) is the set of singleton coalitions, and the part {N} is the grand
coalition. �

On Existence of Equilibrium Under Social Coalition Structures 273

Theorem 1 and Theorem 4 together imply the following result.

Corollary 3. In an RSG, the existence of a contiguous equilibrium, or of a
centralized equilibrium, is also not guaranteed.

3.2 Existence and Non-existence Results for Contiguous and
Centralized Equilibrium

In this section, we first present Theorem 5 that states the existence of contiguous
equilibrium in identical-resource RSGs.

Theorem 5. In an identical-resource RSG, for any given contiguous coalition
structure C ∈ Ccoe, there exists a C-stable allocation.

Theorem 1 and Theorem 4 together imply the following result.

Corollary 4. In an identical-resource RSG, for any given laminar coalition
structure C ∈ Cle, there exists a C-stable allocation.

We next present Theorem 6 which states that in a two-resource RSG a con-
tiguous equilibrium is not guaranteed to exist.

Theorem 6. In an RSG with two resources, for C ∈ Ccoe, it may be that no
allocation is C-stable.

We finally present Theorem 7, which states that a centralized equilibrium
may not exist even for the two identical resources case. Note that even though
centralized coalition structures contain O(n2) viable coalitions, equilibrium may
not exist in the two-identical resources setting, i.e., it strengthens the non-
existence result of super strong equilibrium [10].

Theorem 7. In an RSG with two identical resources, for C ∈ Ccee, it may be
that no allocation is C-stable.

References

1. Anshelevich, E., Caskurlu, B., Hate, A.: Partition equilibrium always exists in
resource selection games. Theory Comput. Syst. 53(1), 73–85 (2013)

2. Ashlagi, I., Krysta P., Tennenholtz, M.: Social context games. In: International
Workshop on Internet and Network Economics (2008)

3. Aumann, R.J.: Acceptable points in general cooperative n-person games. In: Con-
tributions to the Theory of Games, pp. 287–324 (1959)

4. Bernheim, B.D., Peleg, B., Whinston, M.D.: Coalition-proof Nash equilibria con-
cepts. J. Econ. Theory 42(1), 1–12 (1987)

5. Bhaskar, U., Lolakapuri, P. R.: Equilibrium computation in atomic splittable rout-
ing games. In: 26th Annual European Symposium on Algorithms, pp. 1–14 (2018)

274 B. Caskurlu et al.

6. Bousquet, N., Li, Z., Vetta, A.: Coalition games on interaction graphs: a horti-
cultural perspective. Proceedings of the Sixteenth ACM Conference on Economics
and Computation (2015)

7. Caskurlu, B., Ekici, O., Kizilkaya, F.E.: On efficient computation of equilibrium
under social coalition structures. Turk. J. Electr. Eng. Comput. Sci. 28, 1686–1698
(2020)

8. Correa, J.R., Schulz, A.S., Stier-Moses, N.E.: A geometric approach to the price
of anarchy in nonatomic congestion games. Games Econ. Behav. 64(2), 457–469
(2008)

9. Edelman, P.H.: A note on voting. Math. Soc. Sci. 34(1), 37–50 (1997)
10. Feldman, M., Tennenholtz, M.: Structured coalitions in resource selection games.

ACM Trans. Intell. Syst. Technol. 1(1), 4 (2010)
11. Hayrapetyan, A., Tardos, É., Wexler, T.: The effect of collusion in congestion

games. In: Proceedings of the Thirty-Eighth Annual ACM Symposium on Theory
of Computing (2006)

12. Hoefer, M., Penn, M., Polukarov, Maria., Skopalik, A., Vöcking, B.: Considerate
equilibrium. In: IJCAI (2011)

13. Holzman, R., Law-Yone, N.: Strong equilibrium in congestion games. Games Econ.
Behav. 21(1–2), 85–101 (1997)

14. Konishi, H., Le Breton, N., Weber, S.: Equilibria in a model with partial rivalry.
J. Econ. Theory 72(1), 225–237 (1997)

15. Konishi, H., Le Breton, M., Weber, S.: On coalition-proof Nash equilibria in com-
mon agency games. J. Econ. Theory 85(1), 122–139 (1999)

16. Kuniavsky, S., Smorodinsky, R.: Equilibrium and potential in coalitional congestion
games. Theory Decis. 76(1), 69–79 (2013). https://doi.org/10.1007/s11238-013-
9357-4

17. Milchtaich, I.: Congestion games with player-specific payoff functions. Games Econ.
Behav. 13(1), 111–124 (1996)

18. Milinski, M.: An evolutionarily stable feeding strategy in sticklebacks. Zeitschrift
für Tierpsychologie 51(1), 36–40 (1979)

19. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14(1), 124–143
(1996)

20. Moreno, D., Wooders, J.: Coalition-proof equilibrium. Games Econ. Behav. 17(1),
80–112 (1996)

21. Myerson, R.B.: Graphs and cooperation in games. Math. Oper. Res. 2, 225–229
(1977)

22. Nash, J.: Non-cooperative games. Ann. Math. 54, 286–295 (1951)
23. Quint, T., and Martin S.: A model of migration. Cowles Foundation for Research

in Economics 1088 (1994)
24. Rosenthal, R.W.: A class of games possessing pure-strategy Nash equilibria. Int.

J. Game Theory 2(1), 65–67 (1973)

https://doi.org/10.1007/s11238-013-9357-4
https://doi.org/10.1007/s11238-013-9357-4

Space Complexity of Streaming
Algorithms on Universal Quantum

Computers

Yanglin Hu, Darya Melnyk(B), Yuyi Wang, and Roger Wattenhofer

ETH Zurich, Zürich, Switzerland
{yahu,dmelnyk,yuwang,wattenhofer}@ethz.ch

Abstract. Universal quantum computers are the only general purpose
quantum computers known that can be implemented as of today. These
computers consist of a classical memory component which controls the
quantum memory. In this paper, the space complexity of some data
stream problems, such as PartialMOD and Equality, is investigated on
universal quantum computers. The quantum algorithms for these prob-
lems are believed to outperform their classical counterparts. Universal
quantum computers, however, need classical bits for controlling quan-
tum gates in addition to qubits. Our analysis shows that the number of
classical bits used in quantum algorithms is equal to or even larger than
that of classical bits used in corresponding classical algorithms. These
results suggest that there is no advantage of implementing certain data
stream problems on universal quantum computers instead of classical
computers when space complexity is considered.

Keywords: Streaming algorithm · Universal quantum computer ·
Space complexity · Solovay-Kitaev algorithm

1 Introduction

In the past two decades, scientists have made significant progress in the field of
quantum computation. Quantum computer protocols based on different physical
principles have been constructed and manufactured. Despite this progress, large-
scale quantum computers are still not available.

According to the no-programming Theorem [19], a quantum-controlled quan-
tum computer is not better than a classically controlled quantum computer.
Therefore, a modern quantum computer consists of a large classical memory
controlling a small quantum memory. The limited quantum memory poses great
challenges to physicists and computer scientists. In particular, one must decide
how to use this limited quantum memory efficiently. One possible way is to build
larger-scale quantum computers. Another way is to introduce algorithms that
require a small quantum memory, but a large classical memory. In this work, we
address the latter case for a special class of problems – the data stream problems.

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 275–286, 2020.
https://doi.org/10.1007/978-3-030-59267-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_24&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_24

276 Y. Hu et al.

Data stream problems process data streams where the input data comes at
a high rate. The massive input data challenges communication, computation,
and storage. In particular, one may not be able to transmit, compute and store
the whole input. For such problems, classical and quantum algorithms have been
proposed with the aim to reduce space complexity. On quantum computers, such
algorithms usually use polynomially or even exponentially less quantum memory
than their classical counterparts using classical memory.

However, quantum algorithms are generally performed on a universal quan-
tum computer. Note that for some structures quantum gates can change contin-
uously by slowly varying some physical parameters, and it seems that one should
use a continuous set of quantum gates to describe them. However, by consider-
ing the uncertainty principle, physical parameters can only be measured with
errors. Due to these errors, quantum gates with slightly different parameters can
therefore often not be distinguished and should be regarded as the same quan-
tum gate. This brings us back to a discrete set of quantum gates and a universal
quantum computer. On such a universal quantum computer, only a finite set
of quantum gates – the universal quantum gates – can be used directly. Other
quantum gates are approximated by quantum gate array to a certain accuracy.

According to the no-programming theorem, universal quantum computers
need extra memory, in particular, they need classical memory in order to store
the program for the desired quantum gate array. Therefore, the length of the
desired quantum gate array would determine the length of the program, which
requires extra memory. In this work, we include the extra memory for programs
when considering the space complexity, and show that if the extra memory is
taken into account, the space complexity of the proposed quantum algorithm for
the PartialMOD problem is approximately equal to the space complexity of the
respective classical algorithms and that for the Equality problem is even worse.
This way, the considered streaming algorithm on universal quantum computers
have no advantage over their classical counterparts. Note that our result does
not imply that these problems cannot be solved efficiently in a different model.
Instead, it suggests that different problems may be solved more efficiently in
some particular model, but not in others. We therefore see our result as an
inspiration to consider quantum algorithms with respect to the framework in
which they can be implemented.

2 Related Work

Classical data stream problems have been first formalized and popularized by
Alon et al. [4] in order to estimate the frequency moment of a sequence using as
little memory as possible. The PartialMOD [5] and Equality-like problems [23]
are well-known examples of problems in this class. For the PartialMOD problem,
Ambainis et al. [5] proved a tight bound of log p bits in the deterministic setting.
Ablayev et al. [1,3] proved a tight bound of n bits for the deterministic classical
streaming algorithms computing Equality problems.

Streaming Algorithms on Universal Quantum Computers 277

For the quantum version of data stream problems, Watrous [22] proved the
well-known result that the complexity class PrSPACE(s) is equal to the complex-
ity class PrQSPACE(s), which implies that to some extent, quantum algorithms
are not better than classical algorithms with respect to their space complexity.
For the PartialMOD problem, Ablayev et al. [2] proposed a quantum algorithm
that requires only 1 qubit while classical algorithms need log p bits. Ablayev et
al. [3] later proposed quantum streaming algorithms for Equality Boolean func-
tions. Their results show that some problems have both logarithmic or better
quantum algorithms, whereas at least a logarithmic number of bits is needed
for classical algorithms. Based on both previous results, Khadiev et al. [13–15]
proposed quantum stream algorithms with constant space complexity, which is
better than classical streaming algorithms that require polylogarithmically many
bits. Le Gall [17] also investigated a certain variation of the Equality problem
and proposed a quantum algorithm with exponentially lower space complexity
(both quantum and classical) than the corresponding classical algorithm.

The field of communication complexity also investigated Equality problems.
Buhrman et al. [7] introduced quantum fingerprinting and proposed to use it
in communication theory. They chose the Equality problem as an example in
their paper. Recently, Guan et al. [10] managed to realize the above progress
experimentally.

In our paper, we focus on the space complexity of data stream problems
on universal quantum computers. For such computers, the Solovay-Kitaev algo-
rithm [8,11,16] states that any operator can be approximated to an accuracy
of ε by logc 1

ε quantum gates from a finite set of gates. Different versions of
the Solovay-Kitaev algorithm consider different values of c. In [8], Dawson and
Nielsen introduced a version with c ≈ 4. Kitaev et al. [16] proposed a version
with c ≈ 2, and Harrow et al. [11] finally proved a lower bound of c = 1. More-
over, they showed that the corresponding algorithm exists but cannot be given
explicitly.

3 Background

We will start by describing the notation for quantum computation we use in this
paper. We will introduce fundamental concepts of quantum physics using the
Dirac notation, and also present the Bloch sphere model, which is a geometric
way to comprehend quantum algorithms. In Sect. 3.2, we will then clarify the
Solovay-Kitaev algorithm [8] which gives a way to efficiently approximate any
desired operation on a universal quantum computer with a finite set of opera-
tions. Finally, in Sect. 3.3, we will explain the quantum no-programming theorem
[19]. This theorem points out that we must use orthonormal quantum states to
perform different operators with deterministic quantum gate arrays and as such
it forms the basis of a classically controlled quantum computer.

278 Y. Hu et al.

3.1 Notation

Let |i〉 denote the i-th classical state of the (complete orthonormal) computa-
tional basis of a Hilbert space. We can write a pure state of a quantum mem-
ory as a column vector |ψ〉 = (α1, ..., αn)T =

∑n
i=1 αi|i〉. Its norm satisfies

〈ψ|ψ〉 =
∑n

i=1 |αi|2 = 1, where 〈ψ| is the conjugate transpose of |ψ〉.
The evolution of a state can be represented by a unitary operator U . That

is, given an initial state |ψ〉, the final state after applying U is |ψ′〉 = U |ψ〉. It is
easy to verify that the norm of a state does not change after an evolution.

A single-qubit memory can be represented as a point on the so-called Bloch
sphere. Explicitly, a unitary operator

U =
(

cos(θ
2) −e−iφ sin(θ

2)
eiφ sin(θ

2) cos(θ
2)

)

.

corresponds to the vector U |0〉, pointing to (θ, φ) on the sphere, where θ is
the angle between the vector and the z-axis, and φ is the angle between the
projection of the vector onto xOy plane and the x-axis. Note that the north pole
corresponds to all (0, φ) and the south pole corresponds to all (π, φ).

A projective measurement can be represented by a set of orthogonal projec-
tors followed by a normalization. That is, if we apply a measurement {Pi} to
the initial state |ψ〉, the final state becomes |ψ′

i〉 = Pi|ψ〉/‖Pi|ψ〉‖ with prob-
ability |〈ψ|P |ψ〉|. In particular, if the measurement is {|i〉〈i|} and the initial
state is

∑
αi|i〉, the final state is |i〉 with probability |αi|2. Note that the total

probability of all possible final states is 1.

3.2 Solovay-Kitaev Algorithm

In order to present the Solovay-Kitaev algorithm, we first need to introduce the
concept of universality.
Definition 1 (Universal quantum gates [20]). A set of quantum gates is
universal for quantum computation if any unitary operator can be approximated
to arbitrary accuracy by a quantum circuit involving only these gates.

Note that an example of such a set can be found in Chapter 4 of [20].
Based on the well-defined universal set, we can now state the Solovay-Kitaev

theorem which talks about how efficient a universal set is:

Theorem 1 (Solovay-Kitaev [8]). There exist algorithms that can approxi-
mate any unitary operator U to an accuracy of ‖U−Uapprox‖2 ≤ ε with O(logc 1

ε)
universal quantum gates.

The proof of the theorem can be found in [8].
According to Harrow [11], Ω(log 1

ε) quantum gates are needed in order to
approximate any unitary operator in two dimensions to an accuracy of ε. The
Solovay-Kitaev algorithm is optimal if we disregard poly-logarithmic differences
in the number of quantum gates.

The Solovay-Kitaev theorem does not exclude the possibility that we can
approximate some unitary operator with a quantum gate array much shorter
than O(log 1

ε) to an accuracy of ε.

Streaming Algorithms on Universal Quantum Computers 279

3.3 No-Programming Theorem

The no-programming theorem [19] shows that we cannot use fewer qubits than
classical bits for programming if we want to implement a quantum gate array
deterministically. We view our quantum computer as a unitary operator G acting
on both the quantum program |P 〉 and the memory |d〉. G acting on a quan-
tum program |P 〉 for unitary U results in U |d〉 ⊗ |P ′〉. After measurement we
get U |d〉 deterministically. However, G acting on a superposition of orthogonal
quantum programs 1√

2
(|P1〉+|P2〉) results in a superposition of orthogonal states

1√
2
(U1|d〉 ⊗ |P ′

1〉 + U2|d〉 ⊗ |P ′
2〉). Therefore, after our measurement, we obtain

either U1|d〉 or U2|d〉 stochastically.

Theorem 2. On a fixed, general purposed quantum computer, if we want
to deterministically implement a quantum gate array, quantum programs
|P1〉,...,|Pn〉 performing distinct unitary operator U1,...,Un are orthogonal. The
program memory is at least N -dimensional, that is, it contains at least log(N)
qubits.

The theorem shows that, when used for programming a deterministic quan-
tum gate array, a quantum program has no advantage over a classical program,
i.e. in this aspect a quantum controlled quantum computer is no better than a
classically controlled quantum computer.

When used for programming a probabilistic quantum gate array, there are
quantum programs that use exponentially less space but succeed with expo-
nentially smaller probability, which is not practical. In our paper, we thus only
consider classical bits for programming.

4 Data Stream Problems

In this section, we present selected examples of data stream problems and study
their space complexity. Each section is organized as follows: we first introduce
the problem statement and the corresponding proposed algorithm for quantum
computers with a continuous set of gates. In practice, quantum computers with a
continuous set of gates cannot be realized, which makes such algorithms only of
theoretic interest. In the following section, we assume that our universal quantum
computer first selects a certain universal set of gates, then it is asked data stream
problems with any possible scale and parameter. The quantum computer should
answer any possible question using the same universal set of gates. We therefore
analyze the space complexity of the respective algorithm on such a universal
quantum computer and show that it has no advantage over the space complexity
of the best known classical algorithm.

4.1 PartialMOD Problem

In this section, we study the PartialMOD problem as presented in [1,5,15]. In
this problem, we receive some unknown bitstring bit by bit of which we know

280 Y. Hu et al.

that the number of bits with value 1 is a multiple of a given number. The task
is to determine the parity of the multiplier of this number while storing as few
bits as possible in the memory.

Definition 2 (PartialMOD problem). Let (x1, ..., xn) be an input sequence
of classical bits. Assume that we know in advance that #1 is a multiple of p,
i.e., #1 = v · p, where #1 denotes the number of ones in the string. The bits are
received one by one by the algorithm. The problem is to determine the parity of
v, i.e., to output v mod 2.

Algorithm with a Continuous Set of Gates. Ambainis and Yakaryilmaz [5]
showed that there exists no deterministic or probabilistic algorithm to compute
PartialMOD problem with o(log p) classical bits. In their paper, they also propose
a quantum algorithm solving PartialMOD using only one qubit. This algorithm
works as follows: There is only one qubit in the quantum memory. Let the initial
state of the qubit be |0〉, which is the north pole of the Bloch sphere, and set
θp = π

2p . Each time we receive a 1 as the next bit, we apply a unitary operator

R(θp) =
(

cos θp sin θp

− sin θp cos θp

)

.

on the qubit, which is a rotation by 2θp around y-axis on the Bloch sphere. After
v · p steps, we receive all the input bit and get the state

|ψf 〉 =
(
cos(v

π

2
) − sin(v

π

2
)
)T

.

If v mod 2 = 0, we return to the north pole of the Bloch sphere and the final
state of the qubit is |0〉. If v mod 2 = 1, we reach the south pole of the Bloch
sphere and the final state is |1〉. Finally, we can measure the qubit and obtain
its state.

With this procedure, we only need one qubit to solve the PartialMOD prob-
lem on quantum computers. In contrast, a classical computer requires to use
log p bits, as is shown in [1].

Analysis on Universal Quantum Computers. In the following, we show
that the proposed quantum algorithm is not space efficient on universal quantum
computers. We suppose that our universal quantum computer is able to solve any
specific PartialMOD problem, which requires that we should be able to apply
any R(θp) to the demanded accuracy. Observe that there are infinitely many
choices of p, and thus infinitely many different R(θp). Since only finitely many
gates can be selected in the universal set of a quantum computer, R(θp) have to
be approximated by a quantum gate array, where each gate of the array is from
the universal set. This leads to possibly wrong outputs. Assume therefore that
we approximate R(θp) by R(θp + εp), which satisfies

‖R(θp) − R(θp + εp)‖2 = 4 sin
εp

4
.

Streaming Algorithms on Universal Quantum Computers 281

Starting with the initial state |0〉, we reach the state

|ψf 〉 =
(

cos(v π
2 + vp · εp)

− sin(v π
2 + vp · εp)

)

.

after vp steps. With probability sin2(vp ·εp) we may get an incorrect output from
the measurement. If vp · εp is small enough, we can bound the probability of an
incorrect output by a positive constant δ as follows

1
2
vp · 4 sin

(εp

4

)
≤ sin (vp · εp) ≤

√
δ.

Therefore, an accuracy of 2
√

δ
vp must be achieved. Such an accuracy comes at the

cost of additional quantum gates.
Intuitively, applying the Solovay-Kitaev algorithm, we need a quantum gate

array of log vp

2
√

δ
. We will show next that a quantum gate array of at least

Ω(log(v√
δ

log p)) gates must be used in order to approximate R(θp) in the pro-

posed algorithm to an accuracy of 2
√

δ
vp . Note that in this theorem we do not

assume the optimality of the Solovay-Kitaev algorithm. Because the optimality
of Solovay-Kitaev algorithm is in the sense of polylogarithmic equivalence, and
the truly optimal algorithm has not been given, simply assuming this algorithm
to be optimal may cause difficulties. However, even without such an assump-
tion, Theorem 3 still shows that the quantum algorithm performs worse in some
situations.

Theorem 3. No algorithm can approximate all R(θp), where θp = ε
2p and

p ≤ p0, to an accuracy of εp = ε
2p using o(log(1ε log p0)) quantum gates on a

universal computer, where p0 is sufficiently large and ε sufficiently small. We do
not assume the optimality of the Solovay-Kitaev algorithm here.

We will not present the proof here, but the general idea of the proof is inspired
by [11].

Theorem 3 implies that at least O(log(v√
δ

log p0)) quantum gates are needed
in order to approximate all R(θp), where p ≤ p0, to the demanded accuracy of
εp = 2

√
δ

vp in order to ensure a success probability of at least 1− δ. Since we have
to store the arrangement of the quantum gate array for each R(θp), the number
of classical bits required is equal to the number of gates in the quantum gate
array, that is, at least O(log(v√

δ
log p)) classical bits. It is obvious that when

v approaches infinity while p remains finite, the quantum algorithm for Par-
tialMOD is not more space-efficient than the corresponding classical algorithm.

Assuming the optimality of the Solovay-Kitaev algorithm, which is discussed
in [11], we can also show that in order to obtain such an accuracy, at least
O(log(vp√

δ
)) quantum gates must be used by any algorithm.

Theorem 4. Let p be sufficiently large. No algorithm can approximate all R(θp),
where θp = π

2p to any accuracy εp with o(log(1
εp

)) quantum gates on a universal
computer, if the optimality of the Solovay-Kitaev algorithm is assumed.

282 Y. Hu et al.

This theorem can be proved by contradiction: if one can approximate these
operators with o(log(1

εp
)) quantum gates, then it is possible to construct a better

algorithm than the Solovay-Kitaev algorithm.
Theorem 4 shows that there exists some R(θp) for which we need at least

Ω(log 1
εp

) = Ω(log v + log p) gates in order to approximate it to the demanded

accuracy of εp = 2
√

δ
vp , assuming the optimality of the Solovay-Kitaev theorem.

Since we have to store the arrangement of the quantum gate array, the number
of classical bits needed is Ω(log v + log p). When v or p approach infinity, the
quantum algorithm is not more space-efficient than the classical algorithm.

Theorem 3 and Theorem 4 are proved under different assumptions. Together
they show that the previously proposed algorithm is not more space-efficient
than its classical counterpart under certain conditions.

4.2 Equality Problem

In this section, we investigate the so-called Equality problem [3,7,18]. In this
problem, two bitstrings are received once one after another bit by bit. The task
is to find out whether these two given sequences of bits are equal while storing
a minimal amount of information.

Definition 3 (Equality problem). We are given an input sequence (x, y) =
(x1, ..., xn, y1, ..., yn) of classical bits. The bits are received one by one by the
algorithm. We do not receive any bit of y before we have received all bits of x.
The output is whether x and y are equal, i.e., O = δ(‖x − y‖) = 1, x = y; 0, x 	= y.

Algorithm with a Continuous Set of Gates. According to [18,21], there
is no classical deterministic algorithm that can compute the equality problem
with o(n) classical bits, while there is a randomized algorithm, i.e. Karp-Rabin
algorithm, with a space complexity of O(log n) [12]. There also exists a quantum
algorithm that has the same performance. Ablayev et al. [3] applied quantum
fingerprinting in a quantum streaming algorithm to solve this problem with
O(log n) qubits on a quantum computer with a continuous set of gates. Their
algorithm seems to have the same performance as the Karp-Rabin algorithm.

The quantum memory is divided into two parts. The first part is the first
qubit, whose state is in a 2-dimensional space. The second part contains the
remaining log t qubits in a t-dimensional space. The initial state is |0〉⊗ |0〉. The
strategy is to first apply Hadamard gates on all qubits of the second part and
receive 1√

t
|0〉 ⊗ ∑t

j=1 |j〉. If we receive a 1 for xi, we apply a unitary operator

Ui =
∑t

j=1{R(θij) ⊗ |j〉〈j|}, where R(θij) is a rotation on the first qubit by
θij = 2πmj

2i+1 and mj some positive integer. If we receive a 1 for yi, we replace
R(θij) with R(−θij) in Ui. After receiving all the input bits, the state is

1√
t

∑

j

R

(
2πmj(x − y)

2n+1

)

|0〉 ⊗ |j〉.

Streaming Algorithms on Universal Quantum Computers 283

Then we apply Hadamard gates on all qubits in the second part. The final state
becomes

1
t

∑

j

(

cos
2πmj(x − y)

2n+1

)

|0〉 ⊗ |0〉 + rest.

If x = y, we return to the initial state. If x 	= y, we reach a non-initial state. We
require that the coefficient of |0〉 ⊗ |0〉 in the final state is approximately a delta
function, that is,

∥
∥
∥
∥
∥
∥

1
t

∑

j

cos
2πmj(x − y)

2n+1
− δ(x − y)

∥
∥
∥
∥
∥
∥

≤ √
ε.

Then we can easily verify whether x = y by checking whether we get |0〉 ⊗ |0〉
after measurement. If x = y, we obtain |0〉 with probability 1. If x 	= y, we obtain
|0〉 ⊗ |0〉 with probability less than ε.

If we apply discrete Fourier transform to δ(g), that is, mjs take t = 2n

integers from 0 to 2n, ε is exactly 0. But in that case we need log(t) = n qubits.
It is however possible that if we do not apply discrete Fourier transform, that
is, mjs only take t = O(n log 1

ε)
 2n integers from 0 to 2n, ε is also bounded.
The next theorem states this fact, its proof can be found in [3].

Theorem 5. There exists a set of t > 2
ε ln(2m) elements, {mj , j = 1, ..., t}

such that
1
t

∥
∥
∥
∥
∥
∥

∑

j

cos
(

2πmjg

m

)
∥
∥
∥
∥
∥
∥

≤ √
ε, ∀g 	= 0.

Theorem 5 implies that there exists a set of t = 2
ε ln(2m) + 1 elements,

{mj , j = 1, ..., t}, which ensures cos
(

2πkig
m

)
’s to almost cancel each other.

Indeed, if we select integers uniformly at random from 0 to m − 1, we are likely
to get such mj . By applying Theorem 5 to the Equality problem, we only need
log(n)+1 qubits on quantum computers with a continuous set of gates, which is
exponentially better than n bits deterministic algorithms on computers, as was
shown by Babai et al. [6].

Analysis on Universal Quantum Computers. The proposed algorithm to
solve the Equality problem is not space-efficient on universal quantum comput-
ers. Similar to the PartialMOD problem, we will first bound the accuracy of each
operator. Let us denote the probability for the algorithm to accept the input,
i.e., in the case where the final state is |0〉 ⊗ |0〉, as Pr(x, y). Further, assume
that it is possible to approximate the operator R(θij) to an accuracy of δij . After
applying Theorem 5, the partial derivative of Pr(x, y) becomes

δ Pr(x, y) ≤
√

ε

t

∥
∥
∥
∥
∥
∥

t∑

j=1

∑

i

sin
(

mjπ2i(x − y)i

2n

)

δij

∥
∥
∥
∥
∥
∥

.

284 Y. Hu et al.

Differently than in the PartialMOD problem, it is challenging to bound the
accuracy for the Equality problem precisely. Instead, we simply assume we need
Ω(1) gates for each R(θij). The following theorem defines an upper bound on
the accuracy needed, and shows our simple assumption is reasonable.

Theorem 6. Let |δij | ≤ 1
n . Then, there exists a set of t = 2

ε (n + 3) elements
mj , j = 1, ..., t, such that the following two inequalities are satisfied

1
t

∥
∥
∥
∥
∥
∥

∑

j

cos
(πmjg

2n

)
∥
∥
∥
∥
∥
∥

≤ √
ε, ∀g 	= 0,

and
1
t

∥
∥
∥
∥
∥
∥

t∑

j=1

∑

i

sin
(

mjπ2igi

2n

)

δij

∥
∥
∥
∥
∥
∥

≤ √
ε, ∀g 	= 0.

Here, we prove it via a method similar to that of Theorem 5, shown in [3].
The algorithm for the Equality problem will succeed as long as we reach an

accuracy of 1
n for a suitably chosen set of O(n) elements. In order to achieve such

accuracy, we need at most O(log4 n) quantum gates according to the Solovay-
Kitaev theorem. Since we need to apply at least one quantum gate in order to
be able to implement an operator, it is reasonable to assume that we need at
least Ω(1) quantum gates for each operator to achieve such accuracy.

Now we can analyze the space complexity, for which we also take into account
classical bits. When we perform the above algorithm we need to store the set
{mj}, since the set {mj} is not chosen arbitrarily. There are two natural ways
to do so. One way is to store {mj} directly: consider mj that range from 0 to 2n,
and thus need n classical bits. We have n such integers, and thus at least Ω(n2)
bits are needed. This strategy requires even more bits than a classical brute
force method which saves all O(n) bits of the input. The second way is to store
{R(θij)}: note that R(θij) need at least Ω(1) quantum gates for each operator,
and thus each need Ω(1) classical bits. Since we have n2 such operators in our
algorithm, at least Ω(n2) bits of storage are needed, which is more than that
in the classical deterministic algorithm. In the following theorem, we provide a
more rigorous proof.

Theorem 7. At least Ω(n2) bits are needed in order to store a set {mj , j = 1...t}
where mj ∈ [0, 2n − 1] and t = 2

ε (n + 3) without pre-knowledge of the set.

Proof. We first consider the classical case. The number of possible choices in the
classical case is

C2n

t =
2n!

t! · (2n − t)!
.

The information entropy of knowing a certain choice from all possible choices
with equal possibility is S = ln

(
C2n

t

)
. Consider when n is sufficiently large,

2n t = 2
ε (n + 3), use ln(1 + x) ≈ x an ln(x!) ≈ x ln(x) − x, we have

S = ln(2n) + ... + ln(2n − t + 1) − ln(t!) ≈ nt − t2

2n
− t ln(t) + t = O(n2).

Streaming Algorithms on Universal Quantum Computers 285

Since the number of bits required is linearly dependent on the information
entropy, O(n2) bits are needed in order to store this set.

We next consider the quantum case. The set {mj , j = 1...t,mj ∈ [0, 2n − 1]}
is used to program our quantum computer. Due to the quantum no-programming
theorem in Sect. 3.3, quantum programs have no advantage over the classical
program with respect to space complexity. Therefore, Ω(n2) bits or qubits are
needed to store this set.

Therefore, the considered algorithm for the Equality problem has no advan-
tage over the classical deterministic algorithm.

5 Conclusion

Based on the Solovay-Kitaev algorithm, we investigated the space complexity
of streaming algorithms on a universal computer when only a finite number of
quantum gates are available. We used the PartialMOD problem and the Equality
problem to analyze the quantum streaming algorithms in systems where classical
bits are used in order to control quantum gates. By applying the Solovay-Kitaev
algorithm we concluded that the considered quantum streaming algorithms do
not beat their classical counterparts in this system.

Our work shows that not all quantum streaming algorithms can perform
well on a universal quantum computer. There are also data stream problems for
which quantum algorithms may perform well on a universal quantum computer.
One example is the variation of the Equality problem proposed in [17]. In this
problem, the input is repeated many times, which is different from the Equality
problem discussed in this paper, where we receive the input only once. Another
possible candidate is the problem based on the universal (ε, l,m)-code of matrices
proposed by Sauerhoff et al. in [21] and Gavinsky et al. [9], where the input
directly corresponds to a quantum gate array, and one can therefore save space
when storing quantum gates for application. By comparing these algorithms, we
conclude that a framework can be extremely efficient for a certain set of problems
and corresponding algorithms, but not necessarily for all problems. We therefore
think that the space complexity of algorithms should be analyzed with respect
to the framework of the quantum computer in which they can be implemented.

References

1. Ablayev, F., Gainutdinova, A., Karpinski, M., Moore, C., Pollett, C.: On the com-
putational power of probabilistic and quantum branching program. Inf. Comput.
203(2), 145–162 (2005)

2. Ablayev, F., Gainutdinova, A., Khadiev, K., Yakaryılmaz, A.: Very narrow quan-
tum OBDDs and width hierarchies for classical OBDDs. In: Jürgensen, H.,
Karhumäki, J., Okhotin, A. (eds.) DCFS 2014. LNCS, vol. 8614, pp. 53–64.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-09704-6 6

3. Ablayev, F., Khasianov, A., Vasiliev, A.: On complexity of quantum branching
programs computing equality-like Boolean functions. Electronic Colloquium on
Computational Complexity (2010)

https://doi.org/10.1007/978-3-319-09704-6_6

286 Y. Hu et al.

4. Alon, N., Matias, Y., Szegedy, M.: The space complexity of approximating the fre-
quency moments. In: Proceedings of the Twenty-Eighth Annual ACM Symposium
on Theory of Computing. STOC (1996)

5. Ambainis, A., Yakaryılmaz, A.: Superiority of exact quantum automata for promise
problems. Inf. Process. Lett. 112(7), 289–291 (2012)

6. Babai, L., Kimmel, P.G.: Randomized simultaneous messages: solution of a prob-
lem of Yao in communication complexity. In: Proceedings of the 12th Annual IEEE
Conference on Computational Complexity. CCC (1997)

7. Buhrman, H., Cleve, R., Watrous, J., de Wolf, R.: Quantum fingerprinting. Phys.
Rev. Lett. 87, 167902 (2001)

8. Dawson, C.M., Nielsen, M.A.: The Solovay-Kitaev algorithm. Quantum Inf. Com-
put. 6(1), 81–95 (2006)

9. Gavinsky, D., Kempe, J., Kerenidis, I., Raz, R., de Wolf, R.: Exponential sep-
arations for one-way quantum communication complexity, with applications to
cryptography. In: Proceedings of the Thirty-Ninth Annual ACM Symposium on
Theory of Computing. STOC (2007)

10. Guan, J.Y., et al.: Observation of quantum fingerprinting beating the classical
limit. Phys. Rev. Lett. 116, 240502 (2016)

11. Harrow, A.W., Recht, B., Chuang, I.L.: Efficient discrete approximations of quan-
tum gates. J. Math. Phys. 43(9), 4445–4451 (2002)

12. Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249–260 (1987)

13. Khadiev, K., Khadieva, A., Kravchenko, D., Rivosh, A.: Quantum versus Classical
Online Algorithms with Advice and Logarithmic Space (2017)

14. Khadiev, K., Khadieva, A., Mannapov, I.: Quantum online algorithms with respect
to space complexity. Lobachevskii J. Math. 39, 1377–1387 (2017)

15. Khadiev, K., Ziatdinov, M., Mannapov, I., Khadieva, A., Yamilov, R.: Quantum
Online Streaming Algorithms with Constant Number of Advice Bits (2018)

16. Kitaev, A.Y., Shen, A., Vyalyi, M.N.: Classical and Quantum Computation. Amer-
ican Mathematical Society, Boston (2002)

17. Le Gall, F.: Exponential separation of quantum and classical online space com-
plexity. Theory Comput. Syst. 45, 188–202 (2009)

18. Newman, I., Szegedy, M.: Public vs. private coin flips in one round communication
games (extended abstract). In: Proceedings of the Twenty-eighth Annual ACM
Symposium on Theory of Computing. STOC (1996)

19. Nielsen, M.A., Chuang, I.L.: Programmable quantum gate arrays. Phys. Rev. Lett.
79, 321 (1997)

20. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information:
10th, Anniversary Edition. Cambridge University Press, Cambridge (2010)

21. Sauerhoff, M., Sieling, D.: Quantum branching programs and space-bounded
nonuniform quantum complexity. Theoret. Comput. Sci. 334(1), 177–225 (2005)

22. Watrous, J.H.: Space-bounded quantum computation. Ph.D. thesis, The University
of Wisconsin, Madison (1998)

23. Yao, A.C.C.: Some complexity questions related to distributive computing (prelim-
inary report). In: Proceedings of the Eleventh Annual ACM Symposium on Theory
of Computing. STOC (1979)

On Coresets for Support Vector Machines

Murad Tukan1(B), Cenk Baykal2(B), Dan Feldman1(B), and Daniela Rus2(B)

1 Computer Science Department, University of Haifa, Haifa, Israel
muradtuk@gmail.com, dannyf.post@gmail.com

2 MIT CSAIL, Cambridge, USA
{baykal,rus}@mit.edu

Abstract. We present an efficient coreset construction algorithm for
large-scale Support Vector Machine (SVM) training in Big Data and
streaming applications. A coreset is a small, representative subset of
the original data points such that a models trained on the coreset are
provably competitive with those trained on the original data set. Since
the size of the coreset is generally much smaller than the original set,
our preprocess-then-train scheme has potential to lead to significant
speedups when training SVM models. We prove lower and upper bounds
on the size of the coreset required to obtain small data summaries for the
SVM problem. As a corollary, we show that our algorithm can be used
to extend the applicability of any off-the-shelf SVM solver to streaming,
distributed, and dynamic data settings. We evaluate the performance of
our algorithm on real-world and synthetic data sets. Our experimental
results reaffirm the favorable theoretical properties of our algorithm and
demonstrate its practical effectiveness in accelerating SVM training.

1 Introduction

Popular machine learning algorithms are computationally expensive, or worse
yet, intractable to train on massive data sets, where the input data set is so
large that it may not be possible to process all the data at one time. A natural
approach to achieve scalability when faced with Big Data is to first conduct a
preprocessing step to summarize the input data points by a significantly smaller,
representative set. Off-the-shelf training algorithms can then be run efficiently
on this compressed set of data points. The premise of this two-step learning
procedure is that the model trained on the compressed set will be provably com-
petitive with the model trained on the original set – as long as the data summary,
i.e., the coreset, can be generated efficiently and is sufficiently representative.

Coresets are small weighted subsets of the training points such that models
trained on the coreset are approximately as good as the ones trained on the orig-
inal (massive) data set. Coreset constructions were originally introduced in the

This research was supported in part by the U.S. National Science Foundation (NSF)
under Awards 1723943 and 1526815, Office of Naval Research (ONR) Grant N00014-
18-1-2830, Microsoft, and JP Morgan Chase.
M. Tukan and C. Baykal—These authors contributed equally to this work.

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 287–299, 2020.
https://doi.org/10.1007/978-3-030-59267-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_25&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_25

288 M. Tukan et al.

context of computational geometry [1] and subsequently generalized for applica-
tions to other problems, such as logistic regression, neural network compression,
and mixture model training [5,6,10,17,19] (see [9] for a survey).

A popular coreset construction technique – and the one that we leverage in
this paper – is to use importance sampling with respect to the points’ sensitivi-
ties. The sensitivity of each point is defined to be the worst-case relative impact
of each data point on the objective function. Points with high sensitivities have
a large impact on the objective value and are sampled with correspondingly
high probability, and vice-versa. The main challenge in generating small-sized
coresets often lies in evaluating the importance of each point in an accurate and
computationally-efficient way.

1.1 Our Contributions

In this paper, we propose an efficient coreset construction algorithm to generate
compact representations of large data sets to accelerate SVM training. Our app-
roach hinges on bridging the SVM problem with that of k-means clustering. As
a corollary to our theoretical analysis, we obtain theoretical justification for the
widely reported empirical success of using k-means clustering as a way to gener-
ate data summaries for large-scale SVM training. In contrast to prior approaches,
our approach is both (i) provably efficient and (ii) naturally extends to stream-
ing or dynamic data settings. Above all, our approach can be used to enable the
applicability of any off-the-shelf SVM solver – including gradient-based and/or
approximate ones, e.g., Pegasos [25], to streaming and distributed data settings
by exploiting the composibility and reducibility properties of coresets [9].

In particular, this paper contributes the following:

1. A coreset construction algorithm for accelerating SVM training based on an
efficient importance sampling scheme.

2. An analysis proving lower bounds on the number of samples required by any
coreset construction algorithm to approximate the input data set.

3. Theoretical guarantees on the efficiency and accuracy of our coreset construc-
tion algorithm.

4. Evaluations on synthetic and real-world data sets that demonstrate the effec-
tiveness of our algorithm in both streaming and offline settings.

2 Related Work

Training SVMs requires O(n3) time and O(n2) space in the offline setting where
n is the number of training points. Towards the goal of accelerating SVM train-
ing in the offline setting, [26,27] introduced the Core Vector Machine (CVM) and
Ball Vector Machine (BVM) algorithms, which are based on reformulating the
SVM problem as the Minimum Enclosing Ball (MEB) problem and Enclosing
Ball (EB) problem, respectively, and by leveraging existing coreset construc-
tions for each; see [4]. However, CVM’s accuracy and convergence properties

On Coresets for Support Vector Machines 289

have been noted to be at times inferior relative to those of existing SVM imple-
mentations [20]; moreover, unlike the algorithm presented in this paper, neither
the CVM, nor the BVM algorithm extends naturally to streaming or dynamic
settings where data points are continuously inserted or deleted. Similar geometric
approaches, including extensions of the MEB formulation, those based on convex
hulls and extreme points, among others, were investigated by [2,11,13,15,22,24].
Another class of related work includes the use of canonical optimization algo-
rithms such as the Frank-Wolfe algorithm [7], Gilbert’s algorithm [7,8], and a
primal-dual approach combined with Stochastic Gradient Descent (SGD) [14].

SGD-based approaches, such as Pegasos [25], have been a popular tool of
choice in approximately-optimal SVM training. Pegasos is a stochastic sub-
gradient algorithm for obtaining a (1 + ε)-approximate solution to the SVM
problem in ˜O(dnλ/ε) time for a linear kernel, where λ is the regularization
parameter and d is the dimensionality of the input data points. In contrast
to our method, these approaches and their corresponding theoretical guaran-
tees do not feasibly extend to dynamic data sets and/or streaming settings. In
particular, gradient-based approaches cannot be trivially extended to streaming
settings since the arrival of each input point in the stream results in a change of
the gradient.

There has been prior work in streaming algorithms for SVMs, such as those
of [2,13,23,24]. However, these works generally suffer from poor practical perfor-
mance in comparison to that of approximately optimal SVM algorithms in the
offline (batch) setting, high difficulty of implementation and application to prac-
tical settings, and/or lack of strong theoretical guarantees. Unlike the algorithms
of prior work, our method is simultaneously simple-to-implement, exhibits the-
oretical guarantees, and naturally extends to streaming and dynamic data set-
tings, where the input data set is so large that it may not be possible to store
or process all the data at one time.

3 Problem Definition

Let P =
{

(x, y) : x ∈ R
d × 1, y ∈ {±1}}

denote a set of n input points. Note
that for each point p = (x, y) ∈ P , the last entry xd+1 = 1 of x accounts for
the bias term embedding into the feature space1. To present our results with full
generality, we consider the setting where the input points P may have weights
associated with them. Hence, given P and a weight function u : P → R≥0, we
let P = (P, u) denote the weighted set with respect to P and u. The canonical
unweighted case can be represented by the weight function that assigns a uniform
weight of 1 to each point, i.e., u(p) = 1 for every point p ∈ P . For every T ⊆ P ,
let U(T) =

∑

p∈T u(p). We consider the scenario where n is much larger than
the dimension of the data points, i.e., n � d.

For a normal to a separating hyperplane w ∈ R
d+1, let w1:d denote vector

which contains the first d entries of w. The last entry of w (wd+1) encodes the

1 We perform this embedding for ease of presentation later on in our analysis.

290 M. Tukan et al.

bias term b ∈ R. Under this setting, the hinge loss of any point p = (x, y) ∈ P
with respect to a normal to a separating hyperplane, w ∈ R

d+1, is defined as
h(p,w) = [1 − y〈x,w〉]+, where [·]+ = max{0, ·}. As a prelude to our subsequent
analysis of sensitivity-based sampling, we quantify the contribution of each point
p = (x, y) ∈ P to the SVM objective function as

fλ(p,w) =
1

2U(P)
‖w1:d‖22 + λh(p,w), (1)

where λ ∈ [0, 1] is the SVM regularization parameter, and h(p,w) =
[1 − y〈x,w〉]+ is the hinge loss with respect to the query w ∈ R

d+1 and point
p = (x, y). Putting it all together, we formalize the λ-regularized SVM problem
as follows.

Definition 1 (λ-regularized SVM Problem). For a given weighted set of
points P = (P, u) and a regularization parameter λ ∈ [0, 1], the λ-regularized
SVM problem with respect to P is given by

min
w∈Rd+1

Fλ(P, w),

where
Fλ(P, w) =

∑

p∈P
u(p)f(p,w). (2)

We let w∗ denote the optimal solution to the SVM problem with respect to P,
i.e., w∗ ∈ argminw∈Rd+1 Fλ(P, w). A solution ŵ ∈ R

d+1 is an ξ-approximation
to the SVM problem if Fλ(P, ŵ) ≤ Fλ(P, w∗)+ξ. Next, we formalize the coreset
guarantee that we will strive for when constructing our data summaries.

Coresets. A coreset is a compact representation of the full data set that provably
approximates the SVM cost function (2) for every query w ∈ R

d+1 – including
that of the optimal solution w∗. We formalize this notion below for the SVM
problem with objective function Fλ(·) as in (2) below.

Definition 2 (ε-coreset). Let ε ∈ (0, 1) and let P = (P, u) be the weighted
set of training points as before. A weighted subset S = (S, v), where S ⊂ P and
v : S → R≥0 is an ε-coreset for P if

∀w ∈ R
d+1 |Fλ (P, w) − Fλ (S, w)| ≤ εFλ (P, w) . (3)

This strong guarantee implies that the models trained on the coreset S with
any off-the-shelf SVM solver will be approximately (and provably) as good as
the optimal solution w∗ obtained by training on the entire data set P. This
also implies that, if the size of the coreset is provably small, e.g., logartihmic in
n (see Sect. 5), then an approximately optimal solution can be obtained much
more quickly by training on S rather than P, leading to computational gains in
practice for both offline and streaming data settings (see Sect. 6).

On Coresets for Support Vector Machines 291

The difficulty in constructing coresets lies in constructing them (i) efficiently,
so that the preprocess-then-train pipeline takes less time than training on the
full data set and (ii) accurately, so that important data points – i.e., those that
are imperative to obtaining accurate models – are not left out of the coreset, and
redundant points are eliminated so that the coreset size is small. In the following
sections, we introduce and analyze our coreset algorithm for the SVM problem.

4 Method

Our coreset construction scheme is based on the unified framework of [10,17] and
is shown in Algorithm 1. The crux of our algorithm lies in generating the impor-
tance sampling distribution via efficiently computable upper bounds (proved in
Sect. 5) on the importance of each point (Lines 1–10). Sufficiently many points
are then sampled from this distribution and each point is given a weight that
is inversely proportional to its sample probability (Lines 11–12). The number
of points required to generate an ε-coreset with probability at least 1 − δ is a
function of the desired accuracy ε, failure probability δ, and complexity of the
data set (t from Theorem 1). Under mild assumptions on the problem at hand
(see Sect. 5.3), the required sample size is polylogarithmic in n.

Algorithm 1: Coreset(P, u, λ, ξ, k,m)

Input : A set of training points P ⊆ R
d+1 × {−1, 1} containing n points,

weight function u : P → R≥0, a regularization parameter λ ∈ [0, 1], an
approximation factor ξ > 0, a positive integer k, a sample size m

Output: An weighted set (S, v) which satisfies Theorem 1
1 w̃ ← An ξ-approximation for the optimal SVM of (P, u);

2 ˜optξ ← Fλ(P, w̃) − ξ;

3 for y ∈ {−, +} do
4 Py ← all the points in P that are associated with the label y;

5

(

c
(i)
y , P

(i)
y

)k

i=1
← k-means++(P, k);

6 for every i ∈ [k] do

7 α
(i)
y ← U(P\P

(i)
y)

2λU(P)U(P
(i)
y)

;

8 for every p = (x, y) ∈ P
(i)
y do

9 pΔ ← c
(i)
y − yx;

10 γ(p) ←
u(p)

U(P
(i)
y)

+ λu(p) 9
2

max

{

4
9
α
(i)
y ,

√

4
(

α
(i)
y

)2

+
2‖pΔ‖2

2
9˜optξ

− 2α
(i)
y

}

;

11 t ← ∑

p∈P γ(p);

12 (S, v) ← m weighted samples from P = (P, u) where each point p ∈ P is

sampled with probability q(p) = γ(p)
t

and, if sampled, has weight v(p) = u(p)
mq(p)

;

13 return (S, v);

292 M. Tukan et al.

Our algorithm is an importance sampling procedure that first generates
a judicious sampling distribution based on the structure of the input points
and samples sufficiently many points from the original data set. The resulting
weighted set of points S = (S, v), serves as an unbiased estimator for Fλ(P, w)
for any query w ∈ R

d+1, i.e., E[Fλ (S, w)] = Fλ(P, w). Although sampling points
uniformly with appropriate weights can also generate such an unbiased estima-
tor, it turns out that the variance of this estimation is minimized if the points are
sampled according to the distribution defined by the ratio between each point’s
sensitivity and the sum of sensitivities, i.e., γ(p)/t on Line 12 [3].

4.1 Computational Complexity

Coresets are intended to provide efficient and provable approximations to the
optimal SVM solution. However, the very first line of our algorithm entails com-
puting an (approximately) optimal solution to the SVM problem. This seem-
ingly eerie phenomenon is explained by the merge-and-reduce technique [12]
that ensures that our coreset algorithm is only run against small partitions of
the original data set [6,12,21]. The merge-and-reduce approach leverages the fact
that coresets are composable and reduces the coreset construction problem for
a (large) set of n points into the problem of computing coresets for n

2|S| points,
where 2|S| is the minimum size of input set that can be reduced to half using
Algorithm 1 [6]. Assuming that the sufficient conditions for obtaining polylog-
arithmic size coresets implied by Theorem 1 hold, the overall time required is
approximately linear in n.

5 Analysis

In this section, we analyze the sample-efficiency and computational complexity
of our algorithm. The outline of this section is as follows: we first formalize the
importance (i.e., sensitivity) of each point and summarize the necessary condi-
tions for the existence of small coresets. We then present the negative result that,
in general, sublinear coresets do not exist for every data set (Lemma 1). Despite
this, we show that we can obtain accurate approximations for the sensitivity of
each point via an approximate k-means clustering (Lemmas 2 and 3), and present
non-vacuous, data-dependent bounds on the sample complexity (Theorem 1).

5.1 Preliminaries

We will henceforth state all of our results with respect to the weighted set of
training points P = (P, u), λ ∈ [0, 1], and SVM cost function Fλ (as in Sect. 3).
The definition below rigorously quantifies the relative contribution of each point.

Definition 3 (Sensitivity [6]). The sensitivity of each point p ∈ P is given by

s(p) = sup
w

u(p)fλ(p,w)
Fλ(P, w)

. (4)

On Coresets for Support Vector Machines 293

Note that in practice, exact computation of the sensitivity is intractable, so we
usually settle for (sharp) upper bounds on the sensitivity γ(p) ≥ s(p) (e.g., as
in Algorithm 1). Sensitivity-based importance sampling then boils down to nor-
malizing the sensitivities by the normalization constant – to obtain an impor-
tance sampling distribution – which in this case is the sum of sensitivities
t =

∑

p∈P s(p). It turns out that the required size of the coreset is at least
linear in t [6], which implies that one immediate necessary condition for sublin-
ear coresets is t ∈ o(n).

5.2 Lower Bound for Sensitivity

The next lemma shows that a sublinear-sized coreset cannot be constructed for
every SVM problem instance. The proof of this result is based on demonstrating
a hard point set for which the sum of sensitivities is Ω(nλ), ignoring d factors,
which implies that sensitivity-based importance sampling roughly boils down to
uniform sampling for this data set. This in turn implies that if the regularization
parameter is too large, e.g., λ = θ(1), and if d n (as in Big Data applications)
then the required number of samples for property (3) to hold is Ω(n).

Lemma 1. For an even integer d ≥ 2, there exists a set of weighted points
P = (P, u) such that

s(p) ≥ nλ + d2

n (λ + d2)
∀p ∈ P and

∑

p∈P

s(p) ≥ nλ + d2

(λ + d2)
.

We next provide upper bounds on the sensitivity of each data point with
respect to the complexity of the input data. Despite the non-existence results
established above, our upper bounds shed light into the class of problems for
which small-sized coresets are ensured to exist.

5.3 Sensitivity Upper Bound

In this subsection we present sharp, data-dependent upper bounds on the sen-
sitivity of each point. Our approach is based on an approximate solution to the
k-means clustering problem and to the SVM problem itself (as in Algorithm 1).
To this end, we will henceforth let k be a positive integer, ξ ∈ [0, Fλ(P, w∗)] be
the error of the (coarse) SVM approximation, and let (c(i)y , P

(i)
y), α

(i)
y and pΔ for

every y ∈ {+,−}, i ∈ [k] and p ∈ P as in Lines 4–9 of Algorithm 1.

Lemma 2. Let k be a positive integer, ξ ∈ [0, Fλ(P, w∗)], and let P = (P, u) be
a weighted set. Then for every i ∈ [k], y ∈ {+,−} and p ∈ P

(i)
y ,

s(p) ≤ u(p)

U(P (i)
y)

+ λu(p)
9
2

max

⎧

⎨

⎩

4
9
α(i)

y ,

√

√

√

√4
(

α
(i)
y

)2

+
2 ‖pΔ‖22
9 ˜optξ

− 2α(i)
y

⎫

⎬

⎭

= γ(p).

294 M. Tukan et al.

Lemma 3. In the context of Lemma 2, the sum of sensitivities is bounded by

∑

p∈P

s(p) ≤ t = 4k +
k

∑

i=1

3λVar(i)+
√

2 ˜optξ

+
3λVar(i)−
√

2 ˜optξ

,

where Var(i)y =
∑

p∈P
(i)
y

u(p) ‖pΔ‖2 for all i ∈ [k] and y ∈ {+,−}.
Theorem 1. For any ε ∈ (0, 1/2), δ ∈ (0, 1), let m be an integer satisfying

m ∈ Ω

(

t

ε2
(

d log t + log(1/δ)
)

)

,

where t is as in Lemma 3. Invoking Coreset with the inputs defined in this
context yields a ε-coreset S = (S, v) with probability at least 1 − δ in O (nd + T)
time, where T represents the computational complexity of obtaining an ξ-
approximated solution to SVM and applying k-means++ on P+ and P−.

Sufficient Conditions and the Effect of k-Means on Our Sensitivity. Theorem 1
immediately implies that, for reasonable ε and δ, coresets of poly-logarithmic
(in n) size can be obtained if d = O(polylog(n)), which is usually the case in our

target Big Data applications, and if
∑k

i=1

3λVar
(i)
+

√

2 ˜optξ

+
3λVar

(i)
−

√

2 ˜optξ

= O(polylog(n)).

Despite the fact that any k-partitioning of the data can be applied instead of
k-means for achieving upper bound on the sensitivities of the points, its impor-
tant to note that k-means actually acts as a trade-off mechanism between the
raw contribution and the actual contribution (the weight term and the max term
from Lemma 2, respectively). Choosing the best k can be done via binary search
over the values of k that minimize the sensitivity. We refer the reader to literature
on the Silhouette and Elbow methods [16] as ways to pick the optimal k.

6 Results

In this section, we present experimental results that demonstrate and compare
the effectiveness of our algorithm on a variety of synthetic and real-world data

Table 1. The number of input points and measurements of the total sensitivity com-
puted empirically for each data set in the offline setting. The sum of sensitivities is
significantly less than n for virtually all of the data sets, which, by Theorem 1, ensures
the sample-efficiency of our approach on the evaluated scenarios.

Measurements Dataset

HTRU Credit Pathol. Skin Cod W1

Number of data-points (n) 17,898 30,000 1,000 245,057 488,565 49,749

Sum of Sensitivities (t) 475.8 1,013.0 77.6 271.5 2,889.2 24,231.6

t/n (Percentage) 2.7% 3.4% 7.7% 0.1% 0.6% 51.3%

On Coresets for Support Vector Machines 295

sets in offline and streaming data settings [18]. Our empirical evaluations demon-
strate the practicality and wide-spread effectiveness of our approach: our algo-
rithm consistently generated more compact and representative data summaries,
and yet incurred a negligible increase in computational complexity when com-
pared to uniform sampling.

Evaluation. We considered 6 real-world data sets of varying size and complexity
as depicted in Table 1. For each data set of size n, we selected a set of M = 15
geometrically-spaced subsample sizes m1, . . . ,mM ⊂ [log n, n4/5]. For each sam-
ple size m, we ran each algorithm (Algorithm 1 or uniform sampling) to construct
a subset S = (S, v) of size m. We then trained the SVM model as per usual on
this subset to obtain an optimal solution with respect to the coreset S, i.e.,
w∗

S = argminw Fλ(S, w). We then computed the relative error incurred by the
solution computed on the coreset (w∗

S) with respect to the ground-truth optimal
solution computed on the entire data set (w∗): |Fλ(P,w∗

S)−Fλ(P,w∗)|/Fλ(P,w∗). The
results were averaged across 100 trials.

Fig. 1. The relative error of query evaluations with respect uniform and coreset sub-
samples for the 6 data sets in the offline setting. Shaded region corresponds to values
within one standard deviation of the mean.

Figures 1 and 2 depict the results of our comparisons against uniform sampling
in the offline setting. In Fig. 1, we see that the coresets generated by our algorithm
are much more representative and compact than the ones constructed by uniform
sampling: across all data sets and sample sizes, training on our coreset yields sig-
nificantly better solutions to SVM problem when compared to those generated by
training on a uniform sample. For certain data sets, such as HTRU, Pathological,
and W1, this relative improvement over uniform sampling is at least an order of
magnitude better, especially for small sample sizes. Figure 1 also shows that, as
a consequence of a more informed sampling scheme, the variance of each model’s

296 M. Tukan et al.

performance trained on our coreset is much lower than that of uniform sampling
for all data sets.

Figure 2 shows the total computational time required for constructing the
sub-sample (i.e., coreset) S and training the SVM on the subset S to obtain
w∗

S . We observe that our approach takes significantly less time than training on
the original model when considering non-trivial data sets (i.e., n ≥ 18,000), and
underscores the efficiency of our method: we incur a negligible cost in the overall
SVM training time due to a more involved coreset construction procedure, but
benefit heavily in terms of the accuracy of the models generated (Fig. 1).

Fig. 2. The total computational cost of constructing a coreset and training the SVM
model on the coreset, plotted as a function of the size of the coreset.

Next, we evaluate our approach in the streaming setting, where data points
arrive one-by-one and the entire data set cannot be kept in memory, for the same
6 data sets. The results of the streaming setting are shown in Fig. 3. Figures 3
portray a similar trend as the one we observed in our offline evaluations: our
approach significantly outperforms uniform sampling for all of the evaluated
data sets and sample sizes, with negligible computational overhead.

In sum, our empirical evaluations demonstrate the practical efficiency of our
algorithm and reaffirm the favorable theoretical guarantees of our approach: the
additional computational complexity of constructing the coreset is negligible rel-
ative to that of uniform sampling, and the entire preprocess-then-train pipeline
is significantly more efficient than training on the original massive data set.

On Coresets for Support Vector Machines 297

Fig. 3. The relative error of query evaluations with respect uniform and coreset sub-
samples for the 6 data sets in the streaming setting. The figure shows that our method
tends to fare even better in the streaming setting (cf. Fig. 1).

7 Conclusion

We presented an efficient coreset construction algorithm for generating com-
pact representations of the input data points that are provably competitive
with the original data set in training Support Vector Machine models. Unlike
prior approaches, our method and its theoretical guarantees naturally extend to
streaming settings and scenarios involving dynamic data sets, where points are
continuously inserted and deleted. We established instance-dependent bounds on
the number of samples required to obtain accurate approximations to the SVM
problem as a function of input data complexity and established dataset depen-
dent conditions for the existence of compact representations. Our experimental
results on real-world data sets validate our theoretical results and demonstrate
the practical efficacy of our approach in speeding up SVM training. We conjec-
ture that our coreset construction can be extended to accelerate SVM training
for other classes of kernels and can be applied to a variety of Big Data scenarios.

References

1. Agarwal, P.K., Har-Peled, S., Varadarajan, K.R.: Geometric approximation via
coresets. Comb. Comput. Geom. 52, 1–30 (2005)

2. Agarwal, P.K., Sharathkumar, R.: Streaming algorithms for extent problems in
high dimensions. In: Proceedings of the Twenty-First Annual ACM-SIAM Sympo-
sium on Discrete Algorithms, pp. 1481–1489. Society for Industrial and Applied
Mathematics (2010)

3. Bachem, O., Lucic, M., Krause, A.: Practical coreset constructions for machine
learning. arXiv preprint arXiv:1703.06476 (2017)

http://arxiv.org/abs/1703.06476

298 M. Tukan et al.

4. Badoiu, M., Clarkson, K.L.: Smaller core-sets for balls. In: Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 801–802.
Society for Industrial and Applied Mathematics (2003)

5. Baykal, C., Liebenwein, L., Gilitschenski, I., Feldman, D., Rus, D.: Data-dependent
coresets for compressing neural networks with applications to generalization
bounds. arXiv preprint arXiv:1804.05345 (2018)

6. Braverman, V., Feldman, D., Lang, H.: New frameworks for offline and streaming
coreset constructions. arXiv preprint arXiv:1612.00889 (2016)

7. Clarkson, K.L.: Coresets, sparse greedy approximation, and the Frank-Wolfe algo-
rithm. ACM Trans. Algorithms (TALG) 6(4), 63 (2010)

8. Clarkson, K.L., Hazan, E., Woodruff, D.P.: Sublinear optimization for machine
learning. J. ACM (JACM) 59(5), 23 (2012)

9. Feldman, D.: Core-Sets: An Updated Survey. Wiley Interdisciplinary Reviews:
Data Mining and Knowledge Discovery, p. e1335 (2019)

10. Feldman, D., Langberg, M.: A unified framework for approximating and clustering
data. In: Proceedings of the Forty-Third Annual ACM Symposium on Theory of
Computing, pp. 569–578. ACM (2011)

11. Gärtner, B., Jaggi, M.: Coresets for polytope distance. In: Proceedings of the
Twenty-Fifth Annual Symposium on Computational Geometry, pp. 33–42. ACM
(2009)

12. Har-Peled, S., Mazumdar, S.: On coresets for k-means and k-median clustering. In:
Proceedings of the Thirty-Sixth Annual ACM Symposium on Theory of Comput-
ing, pp. 291–300. ACM (2004)

13. Har-Peled, S., Roth, D., Zimak, D.: Maximum margin coresets for active and noise
tolerant learning. In: IJCAI, pp. 836–841 (2007)

14. Hazan, E., Koren, T., Srebro, N.: Beating SGD: learning SVMs in sublinear time.
In: Advances in Neural Information Processing Systems, pp. 1233–1241 (2011)

15. Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the 12th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
217–226. ACM (2006)

16. Kodinariya, T.M., Makwana, P.R.: Review on determining number of cluster in
k-means clustering. Int. J. 1(6), 90–95 (2013)

17. Langberg, M., Schulman, L.J.: Universal ε-approximators for integrals. In: Proceed-
ings of the Twenty-First Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 598–607. SIAM (2010)

18. Lichman, M.: UCI machine learning repository (2013). http://archive.ics.uci.edu/
ml

19. Liebenwein, L., Baykal, C., Lang, H., Feldman, D., Rus, D.: Provable filter pruning
for efficient neural networks. arXiv preprint arXiv:1911.07412 (2019)

20. Loosli, G., Canu, S.: Comments on the core vector machines: fast SVM training
on very large data sets. J. Mach. Learn. Res. 8(Feb), 291–301 (2007)

21. Lucic, M., Faulkner, M., Krause, A., Feldman, D.: Training mixture models at
scale via coresets. arXiv preprint arXiv:1703.08110 (2017)

22. Nandan, M., Khargonekar, P.P., Talathi, S.S.: Fast SVM training using approxi-
mate extreme points. J. Mach. Learn. Res. 15(1), 59–98 (2014)

23. Nathan, V., Raghvendra, S.: Accurate streaming support vector machines. arXiv
preprint arXiv:1412.2485 (2014)

24. Rai, P., Daumé III, H., Venkatasubramanian, S.: Streamed learning: one-pass
SVMs. arXiv preprint arXiv:0908.0572 (2009)

25. Shalev-Shwartz, S., Singer, Y., Srebro, N., Cotter, A.: Pegasos: primal estimated
sub-gradient solver for SVM. Math. Program. 127(1), 3–30 (2011)

http://arxiv.org/abs/1804.05345
http://arxiv.org/abs/1612.00889
http://archive.ics.uci.edu/ml
http://archive.ics.uci.edu/ml
http://arxiv.org/abs/1911.07412
http://arxiv.org/abs/1703.08110
http://arxiv.org/abs/1412.2485
http://arxiv.org/abs/0908.0572

On Coresets for Support Vector Machines 299

26. Tsang, I.W., Kocsor, A., Kwok, J.T.: Simpler core vector machines with enclosing
balls. In: Proceedings of the 24th International Conference on Machine Learning,
pp. 911–918. ACM (2007)

27. Tsang, I.W., Kwok, J.T., Cheung, P.M.: Core vector machines: fast SVM training
on very large data sets. J. Mach. Learn. Res. 6(Apr), 363–392 (2005)

Tractabilities for Tree Assembly Problems

Feng Shi(B), Jie You, Zhen Zhang, and Jingyi Liu

School of Computer Science and Engineering, Central South University,
Changsha 410083, People’s Republic of China

fengshi@csu.edu.cn

Abstract. Calculating the “distance” between two given objects with
respect to a designated “editing” operation is a hot research area in
bioinformatics, where the “distance” is always defined as the minimum
number of the “editing” operations required to transform one object into
the other one. One of the famous problems in the area is the Minimum
Common String Partition problem, which is the simplified Minimum Tree
Cut/Paste Distance problem. Within the paper, we consider another
simplified version of the Minimum Tree Cut/Paste Distance problem,
named Tree Assembly problem, of which the edge-deletion operations are
specified. More specifically, the Tree Assembly problem aims to trans-
form a given forest into a given tree by edge-addition operations only. In
our investigations, we present a fixed-parameter algorithm with runtime
2O(k log k)nO(1) for the Tree Assembly problem, where k and n are the
numbers of trees and nodes in the forest, respectively. Additionally, we
give a polynomial-time algorithm for a restricted variant of the problem.

Keywords: Tree assembly problem · Fixed-parameter algorithm ·
Tree editing distance · Subforest isomorphism

1 Introduction

The Subgraph Isomorphism problem is a classical decision problem in the area
of theoretical computer science, where its input comprises two graphs H and G,
and the goal is to decide whether H is a subgraph of G. As we know, a plenty of
well-known NP-hard problems are restricted versions of the problem, such as the
k-clique problem, which decides if there exists a complete graph with at least k
vertices in G. The Subgraph Isomorphism problem remains NP-hard on many
constrained graph classes [7,8,12], and even some of them are quite specific, e.g.,
H is a tree and G is a graph of tree-width two, and at most one node in either of
them has degree larger than three [13]. Within the paper, we consider a variant
of the Subgraph Isomorphism problem, where H is forest and G is a tree, and
they have the same number of nodes. Note that if H is further restricted to a
tree, then the problem is actually the Tree Isomorphism problem, which can be

This work is supported by the National Natural Science Foundation of China under
Grants 61802441, 61672536, 61420106009, 61872450.

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 300–312, 2020.
https://doi.org/10.1007/978-3-030-59267-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_26&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_26

Tractabilities for Tree Assembly Problems 301

solved in linear runtime [1]. However, if H is a forest, then the problem becomes
NP-complete even if each tree in H is a path or star [2,10]. Additionally, You
et al. [16] showed that when H comprises a collection of paths (or stars), the
problem is fixed-parameter tractable by the number of trees in H. A problem is
fixed-parameter tractable (FPT) by a parameter k, if it admits an algorithm with
runtime f(k) × nO(1) for some function f depending on k only [5].

Given a forest F and a tree T , the Tree Assembly (TA) problem studied in the
paper asks whether a tree that is isomorphic to T can be obtained by assembling
the trees in F together with k edge-addition operations. It is easy to see that k is
exactly the number of trees in F minus one; in this sense, the problem is not an
optimization problem, but a decision problem. One closely related problem is the
Minimum Tree Cut/Paste Distance problem [10], which considers two trees T1

and T2, and aims to use the minimum number of edge-deletion and edge-addition
operations to transform T1 into T2. By a quick inspection on the definition, the
TA problem is indeed the processed Minimum Tree Cut/Paste Distance problem,
of which all edge-deletion operations are specified. You et al. [15] showed that
the Minimum Common String Partition problem [3,4] is also a restricted version
of the Minimum Tree Cut/Paste Distance problem, which has been shown to be
FPT by the partition size [3]. However, whether the Minimum Tree Cut/Paste
Distance problem is FPT, is unknown at so far. Thus we believe that the research
on the TA problem can impel the work on the fixed-parameter tractability of
the Minimum Tree Cut/Paste Distance problem.

With respect to the Minimum Common String Partition problem, the input
consists of two strings (note that each character has the same number of occur-
rences in the two input strings), and it asks whether we can use at most 2k
“string-cut” operations (at most k operations on each string) to make them
become the same collection of substrings. The problem remains NP-hard, even
if one of the two strings has already been cut into substrings, which is called the
Exact Block Cover problem [9]: Given a string X and a collection of k substrings,
it asks whether the k substrings can form a string that is identical with X. Jiang
et al. [9] gave a fixed-parameter algorithm with runtime O∗(2k) for the problem.
Again, the reduction due to You et al. [15] indicates that the TA problem con-
sidered in the paper is a generalization of the Exact Block Cover problem. This
inspires us that the algorithm proposed by Jiang et al. [9] may solve the TA prob-
lem directly. Unfortunately, it does not work. In their algorithm, they reduced
the problem into the Traveling Salesman problem [11], however, this fails on the
TA problem as the number of possible edge-addition operations between two
trees cannot be upper bounded by a constant. Fortunately, a simple reduction
rule that can downsize the considered trees is observed. Based on this, we give
a fixed-parameter algorithm with runtime 2O(k log k)nO(1) for the TA problem in
the paper, indicating that it is FPT by the number of trees in F .

Baumbach et al. [2] showed that if each tree in F is a star, and the types of
stars can be bounded by a constant, then the TA problem is polynomial-time
solvable. Hence, it is natural to consider whether the TA problem is polynomial-
time solvable if the types of trees in F are limited. However, it is not easy

302 F. Shi et al.

to answer: Let F consist of a set of paths and T be a spider tree (only one
internal node can have degree larger than 2, and the path from each leaf to the
internal node has at least one edge), then the problem is a variant of the Bin-
packing problem [14], where the number of different volumes can be bounded
by a constant. In the paper, we consider a restricted variant of the TA problem,
named Level-2 (1, k)-Tree Assembly problem (L2-(1, k)-TA problem), where the
considered forest F comprises two kinds of trees, called A-tree and B-tree, and
F has exactly one A-tree and k B-trees. The problem decides whether the k
B-trees can be attached to the A-tree by k edge-addition operations such that
the obtained tree is isomorphic to T . This variant has some restrictions, and a
polynomial-time algorithm for it is proposed that is surprisingly tricky.

2 Preliminary

A tree T is rooted if there is a unique ancestor-descendant relationship defined
in the tree, and with respect to which there is exactly one common ancestor for
all its nodes, where the common ancestor is called the root of the tree. More
specifically, a node u is an ancestor of a node v (or v is a descendant of u) if
u is visited by the path from the root of T to v; in this sense, v is an ancestor
(or descendant) of itself. All trees considered in the paper are rooted. Denote
by V (T) and E(T) the node set and edge set of T respectively, where |V (T)| is
the size of T , marked as n(T). An edge e of T is denoted by a node pair [u, v],
where u and v are endpoints of e, and u is an ancestor of v. For any subset
U ⊂ V (T), T [U] denotes the induced subforest of T comprising all nodes of U
and all edges with both endpoints in U . In particular, T [U] is a subtree of T
if T [U] is connected. For a node v in V (T), denote by dT (v) the number of
edges incident to v in T , which is called the degree of v in T ; by CT (v) the set
of descendants that are adjacent to v (i.e., the children of v); and by T (v) the
pendant subtree rooted at v, which is induced by all descendants of v in T . A tree
T1 is isomorphic to another tree T2, denoted by T1 = T2, if there is a bijection Φ
from V (T1) to V (T2) such that [v, v′] is an edge of T1 if and only if [Φ(v), Φ(v′)]
is an edge of T2. All forests considered in the paper are rooted, where a forest is
rooted if all its trees are rooted. Denote by |F | the number of trees in a forest
F , and by n(F) the number of nodes in F . For two forests F1 and F2, F1 ∪ F2

denotes the forest consisting of all the trees in F1 and F2. For a forest F and an
edge-set E, F + E denotes the graph obtained by adding the edges of E into F .

Given two nodes u and v of T1 and T2, respectively, an attach operation on u
and v adds a new edge between u and v into the resulting tree. As the resulting
tree should be rooted, the additional edge between u and v is required to claim
an ancestor-descendant relationship. W.l.o.g., assume that u is an ancestor of v,
and then, we say that T2 is attached to T1. Obviously, v should be the root of T2;
otherwise, there is no common ancestor in the resulting tree. It is necessary to
point out that u can be any node in T1. An attaching approach for some forest
F is a set of |F | − 1 edges, with which one can assemble the trees in F as a tree
by |F | − 1 attach operations. Let T ′ = F + E+ be the resulting tree for some

Tractabilities for Tree Assembly Problems 303

attaching approach E+ of F . For two trees T1 and T2 of F , if the path, from the
root of T ′ to that of T2, visits the root of T1, then we say that T2 is attached
below T1 with respect to E+. Precisely, T2 is attached to T1 if T2 is below T1 and
no other root is visited by the path from the root of T1 to that of T2 in T ′.

The parameterized version of the Tree Assembly problem considered in the
paper is formally given as follows.

Tree Assembly problem (TA problem)

Input: A forest F and a target tree T ∗ with n(F) = n(T ∗);
Parameter: k = |F |;
Output: Return yes if there is an attaching approach E+ making

F + E+ = T ∗; otherwise, return no.

An attaching approach E+ of F is of level-2, if there is a tree T in F such
that all the other trees are attached to it with respect to E+, where T is called
the top subtree with respect to E+. Next we define a restricted version of the TA
problem as follows, where the considered forest F consists of two kinds of trees,
denoted by A-tree and B-tree.

Level-2 (1, k)-Tree Assembly problem (L2-(1, k)-TA problem)

Input: A forest F consisting of one A-tree and k B-trees, and a target
tree T ∗ with n(F) = n(T ∗);

Output: Return yes if there is a level-2 attaching approach E+ making
F + E+ = T ∗, where the A-tree is the top subtree with respect
to E+; otherwise, return no.

3 An FPT Algorithm for TA Problem

Given two (rooted) trees with size n, we have the critical lemma given below (for
more details, please refer to pp. 84-85 in [1]). Thus given an instance (F, T ∗) of
the TA problem, if |F | = 1, then it is easy to derive whether (F, T ∗) is yes.

Lemma 1 [1]. It takes runtime O(n) to decide whether or not two rooted trees
with size n are isomorphic.

3.1 Simple Observations

In the following discussion, we assume that (F, T ∗) is yes and |F | ≥ 2. There
is an attaching approach E+ making F + E+ = T ∗, which we call a feasible
attaching approach for (F, T ∗). Meanwhile, the feasible attaching approach E+

implies a bijection Φ from V (F) to V (T ∗) such that if [v, v′] is an edge of F then
[Φ(v), Φ(v′)] is an edge of T ∗. Remark that in the remaining text, we also simply
say that Φ(v) is the image of v (or v maps to Φ(v)) with respect to E+.

Let v be a node of one tree T in F that maps to v∗ ∈ V (T ∗) with respect to Φ.
Observe that |CT (v)| ≤ |CT ∗(v∗)|; otherwise, contradicting to the assumption
that (F, T ∗) is yes. For the children of v and v∗, we have the following two
propositions (Fig. 1).

304 F. Shi et al.

F

T
v

c1 c

T ∗

v∗

c∗ c∗
1

Fig. 1. The mapping relation defined in the proof of Proposition 2. The left solid box
represents the forest F , in which the dashed one represents the tree T . The right solid
box represents the target tree T ∗. The solid thick line from c1 to c∗ represents the
bijection from c1 to c∗ with respect to Φ, which applies to the one from c to c∗

1. The
dashed thick line from c to c∗ represents the bijection from c to c∗ with respect to Φ′.

Proposition 1. Each node in CT (v) maps to one in CT ∗(v∗) with respect to Φ.

Proposition 2. If there are two nodes c ∈ CT (v) and c∗ ∈ CT ∗(v∗) satisfying
that T (c) = T ∗(c∗), then there is a feasible attaching approach for (F, T ∗), with
respect to which the nodes in V (T (c)) maps to that in V (T ∗(c∗)).

With respect to the feasible attaching approach E+ for the instance (F, T ∗),
an auxiliary (rooted) tree T can be constructed, where each node ν ∈ V (T) cor-
responds to a unique tree in F , which is marked as Bν , and T has an edge [ν, ν′]
if and only if E+ contains an edge with endpoints in Bν and Bν′ respectively.
The auxiliary tree T can be regarded as the “skeleton” of T ∗, and it specifies
the ancestor-descendant relationship among the trees in F with respect to E+.

Lemma 2. The auxiliary tree T for (F, T ∗) with respect to E+ can be obtained
in kO(k) runtime.

Suppose that we have found the auxiliary tree T for the instance (F, T ∗)
with respect to E+. Let γ and r∗ be the roots of T and T ∗, respectively, and
CT (γ) = {ν1, . . . , νh} and CT ∗(r∗) = {u1, . . . , up}. Let r be the root of Bγ

(recall that Bγ is the tree in F that corresponds to the node γ in T), and
CBγ

(r) = {v1, . . . , vq}. Observe that r maps to r∗ with respect to E+, and
q ≤ p. Please refer to Fig. 2. By Proposition 2, we have the following reduction
rule.

Rule 1. For any vi of CBγ
(r) with 1 ≤ i ≤ q, if there is a child u of r∗ satisfying

that Bγ(vi) = T ∗(u), then remove all nodes of Bγ(vi) and T ∗(u) from F and
T ∗, respectively.

Lemma 3. If (F, T ∗) is yes with respect to T , and Rule 1 is not applicable on
(F, T ∗), then p ≤ k − 1, where p = |CT ∗(r∗)| and k = |F |.

Now a new reduction rule is given for (F, T ∗), on which Rule 1 is assumed
to be not applicable.

Tractabilities for Tree Assembly Problems 305

F T ∗

T

r

v1 v2 vq

Bγ

r∗

u1 u2 up

γ

ν1 ν2 νh

Fig. 2. The top left solid box represents the forest F , and the top right one represents
the target tree T ∗. The tree located at the bottom is the auxiliary tree T with respect
to a feasible attaching approach E+ for (F, T ∗). Observe that for the root γ of T , the
root r of its corresponding tree Bγ in F maps to the root r∗ of T ∗.

Rule 2. If q = |CBγ
(r)| = 1 and p = |CT ∗(r∗)| = 1, then remove the nodes r

and r∗ from F and T ∗, respectively; if q = |CBγ
(r)| = 0 and p = |CT ∗(r∗)| = 1,

then remove the nodes r, r∗, and γ from F , T ∗, and T , respectively.
Note that q = |CBγ

(r)| and p = |CT ∗(r∗)| cannot be 0 at the same time, as
F is assumed to have at least two trees.

Lemma 4. For the instance I ′ and auxiliary tree T ′ obtained by an application
of Rule 2 on (F, T ∗), I ′ is yes with respect to T ′ if and only if (F, T ∗) is yes
with respect to T .

3.2 Constructing Sub-instances by Orderings

Now we assume that the values of q and p do not meet the cases given in Rule
2. By Lemma 3, for each child v of r, there is at least one tree in F \ Bγ that is
attached to some node of Bγ(v) with respect to the feasible attaching approach
E+ for (F, T ∗). In the following, we give the way to find the trees in F \Bγ that
are attached below Bγ(v), and the node in CT ∗(r∗) that is the image of v with
respect to E+, based on the orderings of the children of r, r∗, and γ.

We first fix an arbitrary ordering for the children of r, {v1, . . . , vq}, where
q ≤ p ≤ h ≤ k − 1. A notion that is critical in the following lemma is introduced
here. For an ordering of the children u1, . . . , up of r∗, it is adjusted if the nodes
in Φ(CBγ

(r)) are always on the left of CT ∗(r∗) \ Φ(CBγ
(r)) (recall that Φ is a

bijection from V (F) to V (T ∗) specified by E+).

Lemma 5. If (F, T ∗) is yes, then there exists an adjusted ordering ρ =
u1, . . . , up for the children of r∗ and an ordering σ = ν1, . . . , νh for the chil-
dren of γ satisfying the following two properties:

306 F. Shi et al.

(1). Φ(vi) = ui for all 1 ≤ i ≤ q;
(2). A partition P = {X1, . . . ,Xp} for ν1, . . . , νh can be found in polynomial-time

such that for each node ν′ of T (ν), where ν is in Xi (for any 1 ≤ i ≤ p),
the images of the nodes in Bν′ are in T ∗(ui) with respect to Φ.

Proof. For Property (1), as an ordering for the children of r is fixed, we can find
an ordering ρ = u1, . . . , up for the children of r∗ such that Φ(vi) = ui for all
1 ≤ i ≤ q by enumerating all possible orderings of the children of r∗. Note that
the ordering is adjusted.

Now we consider Property (2). By Lemma 3, for any child ν of γ, the image
of Bν is a subtree in some T ∗(ui) (1 ≤ i ≤ p). Moreover, by the definition of
T , if for the child ν of γ, the image of Bν is a subtree in T ∗(ui), then for every
node ν′ in T (ν), the image of Bν′ is as well a subtree in T ∗(ui). Additionally,
there may be more than one child of γ such that their images are in the same
T ∗(ui). Hence, there is an ordering σ = ν1, . . . , νh for the children of γ such that
all nodes νj with the image of Bνj

in T ∗(ui) are consecutive in σ; moreover,
these consecutive nodes form a group of the partition P, and the ordering of
the groups corresponds to that of u1, . . . , up. Now we give the way to find the
partition for ν1, . . . , νh.

By the discussion given above, if (F, T ∗) is yes, then there are p disjoint
index intervals I1 = [1, y1], I2 = [y1 + 1, y2], . . . , Ip = [yp−1 + 1, h] satisfying that
for any 1 ≤ i ≤ q (recall that q ≤ p),

n(Bγ(vi)) +
∑

j∈Ii

∑

ν∈V (T (νj))

n(Bν) = n(T ∗(ui)).

If q = p, then the proof is done. Otherwise, for any q + 1 ≤ i ≤ p, |Ii| = 1 and
∑

j∈Ii

∑

ν∈V (T (νj))

n(Bν) = n(T ∗(ui)).

Note that for q + 1 ≤ i ≤ p, Bνj
is attached to r, where Ii = {j}. It is easy to

verify that the p index intervals form a partition P for nodes in σ, and they can
be easily found in polynomial-time. �

Assume that we have gotten a partition P for nodes ν1, . . . , νh with respect to
two “correct” orderings σ and ρ. Now we are ready to split the instance (F, T ∗)
into p sub-instances as follows.

(1). For each 1 ≤ i ≤ q, let Fi = {Bγ(vi)} ∪ {Bν |ν ∈ V (T (ν′)), ν′ ∈ Xi}, and
T ∗

i = T ∗(ui). The auxiliary tree Ti for (Fi, T
∗
i) can be obtained by attaching

every T (ν) with ν ∈ Xi to a new root γi, where the tree Bγi
corresponding

to γi is Bγ(vi).
(2). For each q + 1 ≤ i ≤ p, let Fi = {Bν |ν ∈ V (T (ν′)), ν′ ∈ Xi} and T ∗

i =
T ∗(ui). The auxiliary tree Ti for (Fi, T

∗
i) is T (νj), where Xi = {νj}.

By Lemm 5, we have the following lemma.

Lemma 6. The instance (F, T ∗) is yes if and only if for all 1 ≤ i ≤ p, the
sub-instance (Fi, T

∗
i) is yes with respect to the auxiliary tree Ti.

Tractabilities for Tree Assembly Problems 307

3.3 Algorithm Presentation

Now we give an algorithm with an instance (F, T ∗) and an auxiliary tree T for
(F, T ∗) as input. Please refer to Fig. 3. Remark that the inputed auxiliary tree
T is obtained by enumerating all possible situations for the k trees in the forest
F , no matter whether the inputed instance (F, T ∗) is yes or no.

Fig. 3. The algorithm for the TA problem with a given auxiliary tree.

Theorem 1. There exists an algorithm with runtime kO(k)nO(1) that can decide
whether or not the instance (F, T ∗) of the TA problem is yes, where k = |F |
and n is the size of the input.

Proof. By Lemma 2, if (F, T ∗) is yes then we can obtain an auxiliary tree T in
k2k runtime with respect to some feasible attaching approach for (F, T ∗). Now
we use Fig. 3 for illustration. The correctness of Step 1 is obvious. Proposition 2
and Lemma 4 show the correctness of Steps 2 and 3, respectively. If (F, T ∗) is
yes, by Lemma 5, there are orderings for u1, . . . , up and ν1, . . . , νh such that one
can find a partition for ν1, . . . , νh in polynomial-time. The correctness of Step 9
is guaranteed by Lemma 6. If the algorithm cannot return yes for all orderings,
then Step 10 has to return no.

Now we analyze the runtime of the algorithm. For Step 6, it actually makes
an ordering for T : In each iteration, Step 6 finds an ordering for the children of a
distinct node in T . Since T contains k nodes, the total number of loops of Step 6
can be bounded by kk. In the following, we consider the upper bound on the times
of calling the algorithm Alg-TA to get a decision (yes or no) for (F, T ∗) with
respect to a fixed ordering for the auxiliary tree T (i.e., Step 6 can be ignored at
the moment), which is denoted by f(k). If k = 1, then |F | = 1, and the algorithm

308 F. Shi et al.

ends at Step 1, i.e., f(1) = 1. If k = 2, then p ≤ k − 1 = 1, implying that Rule
2 is applicable, and f(2) = 1. For k ≥ 3, we have f(k) = p! ×

∑p
i=1 f(ki),

where ki is the parameter of the i-th sub-instance created by Step 8, for any
1 ≤ i ≤ p ≤ k − 1. It is necessary to point out that since Rule 1 cannot be
applied, if p = q, then each ki ≥ 2 for all 1 ≤ i ≤ p; otherwise (i.e, p > q), ki ≥ 2
for all 1 ≤ i ≤ q, and ki ≥ 1 for all q +1 ≤ i ≤ p. Moreover,

∑p
i=1 ki = k − 1+ q.

Let kmax = max{k1, . . . , kp}. If q = p, then

kmax ≤
q∑

i=1

ki − 2q + 2 = k − q + 1 = k − p + 1.

Otherwise,

kmax ≤
q∑

i=1

ki − (p + q) + 2 = k − p + 1.

Therefore, we always have kmax ≤ k − p + 1. Then

f(k) ≤ p! × p × f(kmax) ≤ p! × p × f(k − p + 1).

Observe that p ≥ 1 can take different values at different levels of recursion,
and that the value of f(k) keeps the same value if p = 1. Thus, w.l.o.g., we
assume that the value ps taken by p at the s-th recursion is always not less than
2 for any 1 ≤ s ≤ t, where t denotes the depth of the recursion and t ≤ k. Then

t∑

s=1

ps = k + t, and f(k) ≤
t∏

s=1

ps! × ps ≤
t∏

s=1

(ps + 1)! ≤ (k + t)! ≤ 4k × k2k.

Since Steps 1–4 and 7–8 can be done in polynomial-time, we have that the
algorithm Alg-TA can be done in k5k × 4k × nO(1) time, i.e., the runtime can
be bounded by k6k × nO(1) (if k ≥ 4). It is worthy to point out that we can
enumerate all auxiliary trees with all feasible orderings in runtime k2k. Thus the
runtime of the algorithm can be improved to k5k × nO(1). The proof is done. �

4 A Polynomial-Time Algorithm for L2-(1, k)-TA
Problem

Consider an instance (F, T ∗) of the L2-(1, k)-TA problem, where F comprises
one A-tree TA and k B-trees. The following proposition can be easily derived.

Proposition 3. The instance (F, T ∗) of the L2-(1, k)-TA problem is yes if and
only if T ∗ has a subtree T † that is isomorphic to the A-tree and has the same
root with T ∗, such that removing the nodes in T † from T ∗ results in k B-trees.

In the following, we reduce the problem of finding the subtree T † defined in
Proposition 3 to the Maximum Common Subtree Isomorphism (MCSI) problem.
Several related notions are given below, which follow the ones given in [6]. Given

Tractabilities for Tree Assembly Problems 309

two trees T1 and T2 that have subtrees T ′
1 and T ′

2, respectively, if T ′
1 and T ′

2 are
isomorphic with respect to a bijective function Ψ from V (T ′

1) to V (T ′
2), then T ′

1

(or T ′
2) is a common subtree of T1 and T2.

Let f be a weight function defined on (V (T1)×V (T2))∪(E(T1)×E(T2)) → R.
Then the weight of Ψ is defined as

∑

v∈V (T ′
1)

f(v, Ψ(v)) +
∑

[u,v]∈E(T ′
1)

f([u, v], [Ψ(u), Ψ(v)]).

The MCSI problem on T1 and T2 asks for a subtree isomorphism with the max-
imum weight among all subtree isomorphisms between T1 and T2.

Now an instance (TA, T ∗; f) of the MCSI problem can be constructed, where
the setting approach for the weight function f defined on (V (TA) × V (T ∗)) ∪
(E(TA) × E(T ∗)) is given as follows. Let VTA

be the subset of V (TA) such that
TA(v) is isomorphic to the B-tree for each node v ∈ VTA

, and ETA
be the

set containing the edges between the nodes in VTA
and their parents in TA.

Note that VTA
may be empty. Similarly, let VT ∗ be the subset of V (T ∗) such

that T ∗(v) is isomorphic to the B-tree for each node v ∈ VT ∗ , T ′ be the tree
T ∗ −

⋃
v∈VT ∗ T ∗(v), and ET ∗ be the set containing the edges between the nodes

in VT ∗ and their parents in T ∗. Observe that |VT ∗ | ≥ k; otherwise, the instance
(F, T ∗) of the L2-(1, k)-TA problem is obviously no.

Case I. |VT ∗ | = k.
Clearly each node in VT ∗ is the image of the root of one B-tree in F if (F, T ∗)

is yes. That is, for any node v ∈ VT ∗ , the nodes in T ∗(v) are the images of that
in one B-tree of F if (F, T ∗) is yes. Thus if TA = T ′, then (F, T ∗) is yes;
otherwise, no. The weight function f is set with the following approach.

Setting Approach I. For any node v ∈ V (TA) and v′ ∈ V (T ∗), if v′ ∈ V (T ′),
then f(v, v′) = 1; otherwise, f(v, v′) = −1. For any edge e ∈ E(TA) and e′ ∈
E(T ∗), f(e, e′) = 0.

Lemma 7. For Case I, (F, T ∗) is yes if and only if (TA, T ∗; f) has an optimal
solution with weight n(TA).

Case II. |VT ∗ | > k.
Remark that |VT ∗ | > k indicates |VTA

| > 0. Let c = |VT ∗ | − k, and nB∗ be
the size of the B-tree. Thus n(TA) = n(T ′) + c · nB∗ . For this case, the weight
function f is set with the following approach.

Setting Approach II. For any node v ∈ V (TA) and v′ ∈ V (T ∗), if v′ ∈ V (T ′),
then f(v, v′) = n; otherwise, f(v, v′) = −1. For any edge e ∈ E(TA) and e′ ∈
E(T ∗), if e ∈ ETA

and e′ ∈ ET ∗ , then f(e, e′) = 1; otherwise, f(e, e′) = 0.

Proposition 4. Any optimal solution to (TA, T ∗; f) cannot have a weight
greater than n · n(T ′) − c · nB∗ + c.

Lemma 8. For Case II, (F, T ∗) is yes if and only if (TA, T ∗; f) has an optimal
solution with weight n · n(T ′) − c · nB∗ + c.

310 F. Shi et al.

Now we are ready to present the algorithm Alg-L2-TA for the L2-(1, k)-TA
problem, which is given in Fig. 4.

Theorem 2. Algorithm Alg-L2-TA can solve the L2-(1, k)-TA problem in run-
time O(n3), where n is the size of the input.

Fig. 4. The algorithm for the L2-(1,k)-TA problem

Proof. The correctness of Steps 1 is obvious. For Steps 4–10, the discussion
given in Lemmata 7 and 8 guarantee their correctness. For the runtime of the
algorithm, Steps 6 and 9 take runtime O(n3) [6], and the other steps take runtime
O(n). Together all, we have that the algorithm can be done in time O(n3). �

5 Conclusion

Within the paper, we investigated the Tree Assembly problem, which is a sim-
plified version of the Minimum Tree Cut/Paste Distance problem (with specified
edge-deletions), and a generalized version of the Exact Block Cover problem. By
the natural parameter, the number of trees in the considered forest, we gave the
first fixed-parameter algorithm with runtime 2O(k log k)nO(1), indicating that the
Tree Assembly problem is FPT. Inspired by the work of Baumbach et al. [2],
we also presented a variant of the Tree Assembly problem, named Level-2 (1, k)-
Tree Assembly problem. By transforming it to the Maximum Common Subtree
Isomorphism problem, we successfully gave an algorithm with runtime O(n3) for
the Level-2 (1, k)-Tree Assembly problem.

Tractabilities for Tree Assembly Problems 311

We considered a restricted version of the Tree Assembly problem, where F
contains exactly c kinds of trees (c is a constant). Although Baumbach et al. [2]
showed that the problem is polynomial-time solvable when F is a set of stars, the
case becomes quite complicated if we have no restriction on the structures of the
trees in F . Hence, studying the hardness of the Level-2 (k1, k2)-Tree Assembly
problem is a stepping stone to answer the problem mentioned above, where the
considered F comprises k1 A-trees and k2 B-trees, and the aim is to find a
level-2 attaching approach such that all the other trees are attached to a A-tree.
Additionally, Future work on the fixed-parameter tractability for the unrooted
version of the Tree Assembly problem would be very interesting.

References

1. Aho, A.V., Hopcroft, J.E.: The Design and Analysis of Computer Algorithms.
Pearson Education, Chennai (1974)

2. Baumbach, J., Guo, J., Ibragimov, R.: Covering tree with stars. In: Du, D.-Z.,
Zhang, G. (eds.) COCOON 2013. LNCS, vol. 7936, pp. 373–384. Springer, Heidel-
berg (2013). https://doi.org/10.1007/978-3-642-38768-5 34

3. Bulteau, L., Komusiewicz, C.: Minimum common string partition parameterized by
partition size is fixed-parameter tractable. In: ACM-SIAM Symposium on Discrete
Algorithms, pp. 102–121. SIAM (2014)

4. Chrobak, M., Kolman, P., Sgall, J.: The greedy algorithm for the minimum common
string partition problem. ACM Trans. Algorithms 1(2), 350–366 (2005)

5. Cygan, M., et al.: Parameterized Algorithms, vol. 4. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-21275-3

6. Droschinsky, A., Kriege, N.M., Mutzel, P.: Faster algorithms for the maximum
common subtree isomorphism problem. In: 41st International Symposium on Math-
ematical Foundations of Computer Science, MFCS 2016, Kraków, Poland, 22–26
August 2016, pp. 33:1–33:14 (2016)

7. Eppstein, D.: Subgraph isomorphism in planar graphs and related problems. In:
Graph Algorithms and Applications I, pp. 283–309. World Scientific (2002)

8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness, vol. 29. WH Freeman, New York (2002)

9. Jiang, H., Su, B., Xiao, M., Xu, Y., Zhong, F., Zhu, B.: On the exact block cover
problem. In: Gu, Q., Hell, P., Yang, B. (eds.) AAIM 2014. LNCS, vol. 8546, pp.
13–22. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-07956-1 2

10. Kirkpatrick, B., Reshef, Y., Finucane, H., Jiang, H., Zhu, B., Karp, R.M.: Com-
paring pedigree graphs. J. Comput. Biol. 19(9), 998–1014 (2012)

11. Lawler, E.L., Lenstra, J.K., Kan, A.R., Shmoys, D.B.: The Traveling Salesman
Problem: A Guided Tour of Combinatorial Optimization, vol. 3. Wiley, New York
(1985)

12. Lingas, A.: Subgraph isomorphism for biconnected outerplanar graphs in cubic
time. Theoret. Comput. Sci. 63(3), 295–302 (1989)

13. Matoušek, J., Thomas, R.: On the complexity of finding iso-and other morphisms
for partial k-trees. Discrete Math. 108(1–3), 343–364 (1992)

14. McCormick, S.T., Smallwood, S.R., Spieksma, F.C.: A polynomial algorithm for
multiprocessor scheduling with two job lengths. Math. Oper. Res. 26(1), 31–49
(2001)

https://doi.org/10.1007/978-3-642-38768-5_34
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-07956-1_2

312 F. Shi et al.

15. You, J., Wang, J., Feng, Q.: Parameterized algorithms for minimum tree cut/paste
distance and minimum common integer partition. In: Chen, J., Lu, P. (eds.) FAW
2018. LNCS, vol. 10823, pp. 99–111. Springer, Cham (2018). https://doi.org/10.
1007/978-3-319-78455-7 8

16. You, J., Wang, J., Feng, Q., Shi, F.: Kernelization and parameterized algorithms
for covering a tree by a set of stars or paths. Theoret. Comput. Sci. 607, 257–270
(2015)

https://doi.org/10.1007/978-3-319-78455-7_8
https://doi.org/10.1007/978-3-319-78455-7_8

On Characterization of Petrie
Partitionable Plane Graphs

Xin He1(B) and Huaming Zhang2

1 Department of Computer Science and Engineering,
State University of New York at Buffalo, Buffalo, NY 14260, USA

xinhe@buffalo.edu
2 Department of Computer Science, The University of Alabama in Huntsville,

Huntsville, USA
hzhang@cs.uah.edu

Abstract. Given a plane graph G = (V,E), a Petrie tour of G is a tour
P of G that alternately turns left and right at each step. A Petrie tour
partition of G is a collection P = {P1, . . . , Pq} of Petrie tours so that
each edge of G is in exactly one tour Pi ∈ P. A Petrie tour is called a
Petrie cycle if all its vertices are distinct. A Petrie cycle partition of G
is a collection C = {C1, . . . , Cp} of Petrie cycles so that each vertex of G
is in exactly one cycle Ci ∈ C. In this paper, we characterize 3-regular
(4-regular, resp.) plane graphs with Petrie cycle (tour, resp.) partitions.
Given a 4-regular plane graph G = (V,E), a 3-regularization of G is
a 3-regular plane graph G3 obtained from G by splitting every vertex
v ∈ V into two degree-3 vertices. G is called Petrie partitionable if it
has a 3-regularization that has a Petrie cycle partition. In this paper,
we present an elegant characterization of Petrie partitionable graphs.
The general version of this problem is motivated by a data compression
method, tristrip, used in computer graphics.

1 Introduction

Throughout this paper, G = (V,E) denotes a connected 3- or 4-regular plane
graph. Given a vertex v and an edge e = (u, v), the left-edge of e (at v) is the
edge e1 = (u1, v) that follows e (at v) in clockwise (cw) direction, the right-edge
of e (at v) is the edge e2 = (u2, v) that follows e (at v) in counter-clockwise
(ccw) direction. A walk of G is a sequence P = v0e1v1e2 . . . ekvk where vi ∈ V
are vertices (may be repeated) and ej = (vj−1, vj) ∈ E are distinct edges of G.
If v0 = vk, P is called a tour. A walk (tour, resp.) consisting of distinct vertices
is called a path (cycle, resp.) A walk is called a Petrie walk if the edge ei+1 is
alternately the left- and the right-edge of ei for 1 ≤ i < k. A tour P is called a
Petrie tour if it is a Petrie walk and the alternating left- and right-edge condition
also holds for ek−1, ek and e1. Petrie paths and Petrie cycles are defined similarly.

Consider a 3-regular plane graph G = (V,E) and a Petrie cycle partition
C = {C1, . . . , Cp} of G. If C consists of a single cycle C1, it is called a Petrie
Hamiltonian cycle. Consider a 4-regular plane graph G = (V,E) and a Petrie
c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 313–326, 2020.
https://doi.org/10.1007/978-3-030-59267-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_27&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_27

314 X. He and H. Zhang

tour partition P = {P1, . . . , Pq} of G. If P consists of a single tour P1, it is
called a Petrie Eulerian tour. Given a 4-regular plane graph G = (V,E), a 3-
regularization of G is a 3-regular plane graph G3 obtained from G by splitting
every vertex v ∈ V into two degree-3 vertices. G is called Petrie partitionable if
it has a 3-regularization G3 that has a Petrie cycle partition. In this paper, we
study the properties of Petrie partitionable graphs. The general version of this
problem is motivated by a data compression method, tristrip, used in computer
graphics. We present an elegant characterization of these graphs.

The paper is organized as follows. Section 2 presents the definitions and the
motivation from computer graphics. The properties of 3-regular plane graphs
with Petrie Hamiltonian cycle have been studied in [6–8]. In Sect. 3, we generalize
these results and give a characterization of 3-regular plane graphs with Petrie
cycle partitions. The properties of 4-regular plane graphs with Petrie Eulerian
tours have been studied in [10,13]. In Sect. 4, we generalize these results and
give a characterization of 4-regular plane graphs with Petrie tour partitions. The
results in Sect. 3 and Sect. 4 are relatively easy generalizations of known results
in [6–8,10,13]. To the best of our knowledge, they have not been published
in literature. Since they are of independent interests and also needed by the
development of our main results, we include these results here. Section 5 discusses
our main problem and presents a simple characterization of Petrie partitionable
graphs (Theorem 6). Section 6 concludes the paper.

2 Preliminaries and Motivations

We use standard terminology [3]. A graph G = (V,E) is called 3-regular (4-
regular, resp.), if deg(v) = 3 (deg(v) = 4, resp.) for all v ∈ V . A plane graph
G is a graph embedded in the plane without edge crossings (i.e. an embedded
planar graph). Let F denote the set of the faces of G. A plane graph G is called
a triangulation (quadrangulation, resp.), if deg(F) = 3 (deg(F) = 4, resp.) for
all faces F ∈ F . The dual graph G∗ = (V ∗, E∗) of a plane graph G = (V,E)
is defined as follows: Each face F of G corresponds to a vertex vF in V ∗. Each
edge e in G corresponds to an edge e∗ = (vF1 , vF2) in G∗, called the dual edge
of e, where F1 and F2 are the two faces of G with e on their common boundary.

Motivations: The problem studied in this paper is motivated by a data com-
pression technique used in computer graphics. 3D objects are often represented
by triangular mashes in computer graphics. For our purpose, this is just a plane
triangulation G̃ = (Ṽ , Ẽ). Its vertex set Ṽ = {1, 2, . . . , n} are called points. An
important problem in computer graphics is how to represent G̃ efficiently. A
naive method represents each face of G̃ by listing its three boundary points. If
G̃ has N faces, this method uses 3N points. For large 3D objects, this takes too
much space. The tristrips representation of G̃ was discussed in [15]. A tristrip is
a sequence T = F1F2 . . . Ft of faces in G̃, which can be represented by a sequence
ST = v1v2 . . . vt+2 of points of G̃ in such a way that, for each i (1 ≤ i ≤ t), the
three points vivi+1vi+2 are the boundary points of the face Fi. An example is

On Petrie Partitionable Plane Graphs 315

shown in Fig. 1(a). A tristrip T = F1 . . . Ft is called a tristrip-cycle, represented
by the point sequence ST = v1v2 . . . vt, if both T and ST are regarded as cyclic
sequences and every three consecutive points vivi+1vi+2 (1 ≤ i ≤ t) are the
boundary points of the face Fi. (Here we define t + 1 = 1 and t + 2 = 2). An
example of tristrip-cycle is shown in Fig. 1(b). Thus, by using a tristrip, t faces
in T are represented by ST of t + 2 points (t points for a tristrip-cycle).

Fig. 1. (a) A tristrip T = F1F2F3F4F5F6F7 represented by ST = 123456371. (b) A
tristrip-cycle T = F1F2F3F4F5F6 represented by ST = 123456.

If all faces of G̃ are included in one tristrip (or tristrip-cycle), we can reduce
the space for representing G̃ by a factor of 3 [5]. However, a typical triangular
mesh G̃ cannot be included in one tristrip (or tristrip-cycle). It is then a natural
question: how to find the fewest disjoint tristrips (or tristrip-cycles) that cover
all faces of G̃? This minimization problem is known as Stripification problem
in computer graphics. It was shown to be NP-hard in [5]. Various heuristic and
exact (exponential time) algorithms have been studied in [11,14,15].

The Stripification problem is closely related to the Petrie cycle partition
problem as follows. Let G = (V,E) be the dual graph of G̃. Clearly G is 3-
regular. For each face F of G̃, let vF denote the vertex in G corresponding to
F . It is easy to see that a sequence of faces T = F1 . . . Ft of G̃ is a tristrip (or
tristrip-cycle) if and only if the corresponding sequence vF1 . . . vFt

is a Petrie
path (or Petrie cycle) in G (see Fig. 1(a) and (b)). Hence the problem of finding
a minimum tristrip-cycle partition for the faces of G̃ is the same as the problem
of finding a minimum Petrie cycle partition for G.

In computer graphics, 3D objects are also represented by quadrangular
meshes (see [1,2,4]). For our purpose, this is just a plane quadrangulation
G̃ = (Ṽ , Ẽ). If we add a chord into each face F of G̃, G̃ becomes a plane triangu-
lation G̃3 which is called a triangular extension of G̃. Since each face F of G̃ has
degree 4, there are two ways to add a chord into F . If G̃ has f̃ faces, it has 2f̃

triangular extensions. One way to represent G̃ is: first convert it to a plane tri-
angular extension G̃3 by adding chords into its faces; then represent G̃3 by using
tristrips or tristrip-cycles [5]. The question is: for which of those 2f̃ triangular
extensions, its faces can be covered by disjoint tristrips/tristrip-cycles?

316 X. He and H. Zhang

A special version of this problem is closely related to the Petrie tour partition
problem. Consider the dual graph G = (V,E) of G̃. Clearly G is 4-regular.
Consider a vertex v ∈ V corresponding to a face F in G̃, with four incident
edges e1, e2, e3, e4 in cw order. The split operation at v splits v into two degree-3
vertices v′ and v′′ as shown in Fig. 2. There are two ways to split v corresponding
to the two ways of adding a chord into F . Let G3 be a 3-regularization of G
obtained by performing split operation at every vertex of G. The edge (v′, v′′)
of G3 for splitting a vertex v ∈ V is denoted by e(v) and called a split edge.

Fig. 2. (a) A vertex v corresponding to a face F in G̃. (b) and (c) Two ways to split v.

Suppose G has a Petrie tour partition P = {P1, . . . , Pq}. Consider any vertex
v ∈ V with four incident edges e1, e2, e3, e4 ∈ E. Two tours Pi and Pj in P
visit v (possibly Pi = Pj). We split v so that Pi and Pj are still tours after
splitting. (See Fig. 2(b) and (c).) Do this at every vertex v ∈ V . Let G3 be the
resulting 3-regularization of G. It is easy to see that P = {P1, . . . , Pq} is a Petrie
cycle partition of G3. Thus, if G has a Petrie tour partition, then G has a 3-
regularization G3 with a Petrie cycle partition. In this construction, every edge
e in G belongs to a Petrie cycle in the Petrie cycle partition P of G3. For its
application in computer graphics, this restriction is not necessary. Figure 6(a)
shows a 4-regular plane graph G which has no Petrie tour partition (as we will
see later). However, it has a 3-regularization G3 (shown in Fig. 6(b)) which has
a Petrie cycle partition with a single Petrie Hamiltonian cycle C. (Some edges
of G are in C. Some are not). This motivates:

Definition 1. A 4-regular plane graphs G is called Petrie partitionable if it has
a 3-regularization with a Petrie cycle partition.

The main interest of this paper is to characterize the Petrie partition-
able graphs. In computer graphics applications, the problem is to find a 3-
regularization of G whose faces can be partitioned into tristrips and/or tristrip-
cycles. The NP-hardness result in [5] suggests that this problem might be NP-
hard also. The problem considered in this paper is a restricted version of the
general problem: partition into Petrie cycles only. In contrast to the more gen-
eral problem, this restriction leads to a simple characterization. The focus of
our study is on the graph-theoretical properties of these problems. The insights
obtained here may help for solving the general problem.

On Petrie Partitionable Plane Graphs 317

3 Characterization of 3-Regular Plane Graphs with
Petrie Cycle Partition

In this section, G denotes a connected 3-regular simple (i.e. no self-loops
nor parallel edges) plane graph. Suppose G has a Petrie cycle partition C =
{C1, . . . , Cp}. For any vertex v ∈ V , two edges incident to v belong to a cycle
Ci ∈ C and its third incident edge is not in any Cj ∈ C. We call the third edge a
bridge edge with respect to C. A 3-regular plane graph G is called a multi-3-gon
if all of its faces have degrees divisible by 3. The following Lemma is known:

Lemma 1. [7,8] If a 3-regular plane graph has a Petrie Hamiltonian cycle, then
it must be a multi-3-gon.

The following lemma generalizes Lemma 1 (proof omitted).

Lemma 2. If a 3-regular plane graph G has a Petrie cycle partition, then G
must be a multi-3-gon.

If G has a 3-edge-coloring λ : E → {1, 2, 3}, the Heawood valuation (or simply
valuation) associated with λ is a mapping λ∗ : V → {−1, 1} defined as follows.
For any v ∈ V , if the three edges incident to v are colored 1,2,3 in cw order,
then λ∗(v) = 1. Otherwise λ∗(v) = −1. The following Lemma is well known.

Lemma 3. [12] A 3-regular plane graph G = (V,E) has a 3-edge-coloring if
and only if there exists a mapping κ : V → {−1, 1} such that the sum of the
values κ(v) for all vertices on the boundary of any face F of G is divisible by 3.
If κ is such a mapping, then there exists a 3-edge-coloring λ of G such that its
associated valuation λ∗ = κ.

The following two theorems characterize graphs with Petrie cycle partitions.

Theorem 1. Every connected 3-regular multi-3-gon G = (V,E) has exactly
three Petrie cycle partitions. (The proof is omitted).

Theorem 2. A connected 3-regular plane graph G has a Petrie cycle partition
if and only if it is a multi-3-gon. Such G has exactly three Petrie cycle partitions,
which can be found in linear time.

Proof. The proof follows from Lemma 2 and Theorem 1. To implement the algo-
rithm, we first construct a 3-edge-coloring λ of G such that λ∗(v) = 1 for all
v ∈ V . (Pick any vertex v and color its three incident edges 1, 2, 3 in cw
order. Then we can propagate the colors to all edges uniquely by the condition
λ∗(u) = 1 for all u ∈ V). Then construct the Petrie cycle partition C12 consisting
of the edges of color 1 and 2. Similarly construct C13 and C23. All these steps
can be easily done in linear time. �

318 X. He and H. Zhang

4 Characterization of 4-Regular Plane Graphs with
Petrie Tour Partitions

In this section, we study Petrie tour partitions of a 4-regular plane graph G. The
special case of this problem (the Petrie tour partition contains only one tour,
i.e. a Petrie Eulerian tour) was studied in [13]. We generalize the results in [13].
Throughout this section, G = (V,E) denotes a 4-regular plane graph without
self-loops, but possibly with parallel edges. Let P = e1 . . . ek be a Petrie walk of
G. Let P ∗ = e∗

1 . . . e∗
k be the sequence of the dual edges e∗

i in the dual graph G∗.
The following simple observation is crucial to our results.

Observation 1. [13] If P is a Petrie tour of G, then the sequence P ∗ of the
dual edges is a Petrie tour of the dual graph G∗.

This observation is illustrated in Fig. 3(a). Based on Observation 1, [13]
showed that a 4-regular plane graph with a Petrie Eulerian tour must be bipar-
tite. The following lemma generalizes this result (proof omitted.)

Fig. 3. (a) An example of Observation 1. (b) G and its S-tours S(G) = {S1, S2, S3}.

Lemma 4. If G = (V,E) has a Petrie tour partition, then G must be bipartite.

Note a 4-regular graph has exactly 2n edges, while a bipartite plane graph
with no multiple edges has at most 2n − 4 edges. This explains why we consider
multi-graphs in this section.

Consider a tour P of G. Since G is 4-regular, at every vertex of P , we can
continue the tour in three ways: go left, straight, or right. A tour S of G consisting
of only going-straight steps is called a straight tour (or an S-tour). Clearly the
edge set of G can be uniquely partitioned into S-tours. Denote this partition
by S(G) = {S1, . . . , Sk}. An S-tour may visit a vertex of G twice. An S-tour is
called simple if it is a cycle in G. Figure 3(b) shows a 4-regular plane graph G.
S(G) contains three S-tours: S1 and S2 are simple. S3 is not. Two S-tours are
independent if they do not intersect. The following theorem was proved in [9]:

On Petrie Partitionable Plane Graphs 319

Theorem 3. [9] Let G = (V,E) be a 4-regular plane graph and S(G) =
{S1 . . . Sk} be the set of S-tours of G. Then G is bipartite if and only if (i)
all S-tours Si ∈ S(G) are simple; and (ii) S can be partitioned into two subsets
S1 and S2 such that each Si (i = 1, 2) consists of mutually independent S-tours.

By Lemma 4 and Theorem 3, all 4-regular plane graphs with a Petrie tour
partition have a special structure: the set S(G) is partitioned into two subsets
S1 and S2; S1 is a collection of independent simple cycles; S2 is also a collection
of independent simple cycles; and the two sets of cycles are overlaid with each
other. Such graphs can be complex: Even if S1 has only one cycle S1 and S2 has
only one cycle S2, S1 and S2 can cross each other many times in complex ways.

In the following we show that every connected 4-regular bipartite plane graph
G has exactly two distinct Petrie tour partitions. Since G is bipartite, we can
color its vertices by two colors red and green. Since G is 4-regular, we can color
its faces by two colors white and black.

Fig. 4. (a) A vertex v and its incident edges and faces; (b) After the white merge
operation at v; (c) After the black merge operation at v.

Definition 2. Let v be a vertex of G with four incident edges ei (1 ≤ i ≤ 4)
in cw order and four incident faces Fi (1 ≤ i ≤ 4) where F1, F3 are white and
F2, F4 are black. Assume ei, ei+1 (1 ≤ i ≤ 4) are the edges of Fi (see Fig. 4(a).)

1. The white merge operation at v is (Fig. 4(b)): Replace v by two vertices v′

and v′′; Make the edges e1, e4 incident to v′; and make e2, e3 incident to v′′.
2. The black merge operation at v is (Fig. 4(c)): Replace v by two vertices v′

and v′′; Make the edges e1, e2 incident to v′′; and make e3, e4 incident to v′.

Note: After the white (black, resp.) merge operation at v, the two white
(black, resp.) faces F1 and F3 (F2 and F4, resp.) become one face.

Definition 3. 1. The red-white-merge graph, denoted by Grwm is the graph
obtained from G by applying the white merge operation at every red vertex of
G and the black merge operation at every green vertex of G. (Fig. 5(b).)

2. The red-black-merge graph, denoted by Grbm is the graph obtained from G
by applying the black merge operation at every red vertex of G and the white
merge operation at every green vertex in G. (See Fig. 5(c).)

320 X. He and H. Zhang

Clearly every vertex v in Grwm has degree 2 and the edge set of Grwm one-
to-one corresponds to the edge set of G. These properties also hold for Grbm.

(a) (b) (c)

Fig. 5. (a) A 4-regular bipartite plane graph G; (b) Grwm; (c) Grbm. (Color figure
online)

Theorem 4. Every connected 4-regular plane bipartite graph G has exactly two
Petrie tour partitions.

Proof. Consider the graph Grbm. Since every vertex in Grbm has degree 2, Grbm

is a set C = {C1, . . . , Cq} of disjoint cycles. For each cycle Ci ∈ C, let Pi be the
sequence of the edges of G corresponding to the edges of Ci. Then Pi is a tour
of G alternately traveling red and green vertices. Imagine we travel along Pi so
that the black faces are on right-side. By the construction of Grbm, Pi always
turns left at red vertices and right at green vertices (see Fig. 5(c)). Hence Pi is
a Petrie tour of G. Let Prbm = {P1, . . . , Pq}. Since the edge set of Grbm one-
to-one corresponds to the edge set of G, every edge of G belongs to exactly one
Pi ∈ Prbm. So Prbm is a Petrie tour partition of G. Similarly, the red-white-merge
graph Grwm defines another Petrie tour partition Prwm of G.

Next we show Prbm and Prwm are the only Petrie tour partitions of G. Let
Q = {Q1, . . . , Qt} be any Petrie tour partition of G. Since G is bipartite, each
Qi ∈ Q alternately travels red and green vertices. Consider any tour Qi ∈ Q
and three consecutive edges e1 = (u, v), e2 = (v, w) and e3 = (w, x) of Qi, where
u,w are green; v, x are red. Let F1 be the face with e1 and e2 on its boundary.
Let F2 be the face with e2 and e3 on its boundary. Depending on if F1 is a white
or black face and if Qi turns left or right between e1 and e2, there are four cases.
We only consider the case where Qi turns left at the red vertex v between e1 and
e2 and F1 is a white face. Since Qi is a Petrie tour, it turns right at the green
vertex w between e2 and e3. Since F1 and F2 share e2 as common boundary and
F1 is white, F2 must be black. This corresponds to performing the black merge
operation at the red vertex v, and the white merge operation at the green vertex
w. Repeating this argument, we see that all Qi ∈ Q are obtained by performing
the black merge operation at red vertices and the white merge operation at green
vertices of G. Thus Q is the same as the Petrie tour partition Prbm. (Other cases
are similar, resulting either Prbm or Prwm.) �

On Petrie Partitionable Plane Graphs 321

Figure 5(a) shows a 4-regular plane bipartite graph G. Figure 5(b) shows the
graph Grwm corresponding to a Petrie tour partition of G with a single Petrie
Eulerian tour. Figure 5(c) shows the graph Grbm corresponding to a Petrie tour
partition of G with three Petrie tours. The following theorem characterizes the
graphs with Petrie tour partitions.

Theorem 5. A connected 4-regular plane graph G has a Petrie tour partition if
and only if it is bipartite. Such G has exactly two Petrie tour partitions, which
can be found in linear time.

Proof. The proof immediately follows from Lemma4 and Theorem 4. The linear
time implementation of the algorithm is straightforward. �

5 Characterization of Petrie Partitionable 4-Regular
Plane Graphs

In this section, G always denotes a 4-regular plane graph, not necessarily bipar-
tite. S(G) = {S1, . . . , Sk} denotes the set of S-tours of G.

Definition 4. Let G be a 4-regular plane graph, and G3 be a 3-regularization of
G. A Petrie cycle partition C3 = {C1, . . . , Cp} of G3 is called full if every edge
of G belongs to a cycle Ci ∈ C3. (This implies all split edges of G3 are bridge
edges with respect to C3).

A full Petrie cycle partition of G3 corresponds to a Petrie tour partition of G.
So the problem considered in Sect. 4, characterizing G with Petrie tour partitions,
is to determine when G has a 3-regularization that has full Petrie cycle partitions.
In computer graphics, the restriction to full Petrie cycle partitions of G3 is not
necessary. In this section, we study the general problem: characterize the Petrie
partitionable graphs. Namely, determine when G has a 3-regularization G3 that
has Petrie cycle partition (full or not). The first observation is such graphs are
not necessarily bipartite. This makes the problem more difficult. In this section,
we present a simple characterization of such graphs.

Figure 6(a) shows a 4-regular plane graph G with three S-tours S1, S2, S3

where each pair of them intersect. By Lemma 4 and Theorem 3, G has no
Petrie tour partitions. Figure 6(b) shows a 3-regularization G3 of G with a sin-
gle Petrie Hamiltonian cycle C (denoted by thick lines). Note the bridge edges
(1′′, 2′′), (2′, 6′′), (6′, 5′′), (5′, 1′) in G3 correspond to the edges of S3. All edges of
S3 are bridge edges with respect to C.

Lemma 5. Let G3 be a 3-regularization of G with a Petrie cycle partition C3 =
{C1, . . . , Cp}. If any edge e1 = (u, v) of an S-tour Sa ∈ S(G) is a bridge edge
with respect to C3, then all edges of Sa are bridge edges with respect to C3.

Proof. Let e1, e2, e3, e4 be the four edges in G incident to v in cw order where
e1, e3 are in Sa (Fig. 7(a).) Suppose e1 = (u, v) is a bridge edge with respect to C3.
In G3, v is split into two vertices v′, v′′ connected by a split edge e(v) = (v′, v′′).

322 X. He and H. Zhang

Fig. 6. (a) G; (b) A 3-regularization of G with a Petrie Hamilton cycle.

Fig. 7. The proof of Lemma 5.

Case 1: e1 and e2 are incident to v′ (Fig. 7 (b).) Since e1 is a bridge edge, e2 and
the split edge (v′, v′′) must be in a Petrie cycle Cb ∈ C. Since Cb turns left at v′

between e2 and (v′, v′′), it must turn right at v′′. So e4 is in Sb and e3 must be
a bridge edge.
Case 2: e1 and e4 are incident to v′′ (Fig. 7(c).) By similar argument, we can
show e3 must be a bridge edge.

Repeating this argument, we can show all edges in Sa are bridge edges. �

Given a 3-regularization G3 and a Petrie cycle partition C3 (not necessarily
full) of G3, by Lemma 5, the set of S-tours S(G) can be partitioned into:

– Sbridge = {Si ∈ S(G) | all edges in Si are bridge edges with respect to C3}.
– Scycles = {Sj ∈ S(G) | all edges in Sj belong to some cycles in C3}.

Lemma 6. All S-tours in Sbridge are simple and are mutually independent.

Proof. If an Si ∈ Sbridge visits a vertex v twice, or two Si, Sj ∈ Sbridge intersect
at v, all four edges incident to v are bridge edges for C. This is impossible. �

Definition 5. Let Sa ∈ S(G) be an S-tour of G visiting the vertices v1, . . . , vt of
G. The graph obtained by expunging Sa, denoted by G�Sa, is obtained from G
as follows: (a) Delete all edges of Sa from G. (b) In the resulting graph, for each
degree 2 vertex v with two incident edges e′ = (u, v) and e′′ = (v, w), replace e′

On Petrie Partitionable Plane Graphs 323

and e′′ be a new edge (u,w), (which is called the residual edge of vi and denoted
by res(vi).) Repeat this process until the resulting graph is 4-regular again.

Note all vertices in Sa disappear from G � Sa, For example, if G is the graph
shown in Fig. 6(a), then G � S3 is the graph with two vertices 3, 4 and four
parallel edges connecting them.

G � Sa is clearly a 4-regular plane graph. We can easily obtain the set of
S-tours of G � Sa as follows. For any Sb ∈ S(G) (b �= a), define Sb � Sa as:

– If Sb does not pass any vertex vi ∈ Sa, define Sb � Sa = Sb.
– If Sb passes a vertex vi ∈ Sa, it must pass the two edges e′

i = (ui, vi) and
e′′
i = (vi, wi) incident to vi that are not on Sa. Replace these two edges by

the residual edge res(vi) = (ui, wi). Perform this operation for all vi of Sa

visited by Sb. Let Sb � Sa be the resulting tour.

Define S �Sa = {Sb �Sa | Sb ∈ S(G), b �= a}. Then S �Sa is the set of S-tours
of G � Sa. For any subset S ′ ⊆ S(G) of mutually independent S-tours of G, we
can expunge the S-tours in S ′ from G one by one. The resulting 4-regular plane
graph is denoted by G � S ′. The following two lemmas are needed by our main
theorem.

Lemma 7. Let G be a 4-regular plane graph and S(G) = {S1, . . . , Sk} be the set
of its S-tours. Suppose G has a 3-regularization G3 with a Petrie cycle partition
C3 = {C1, . . . , Cp} where all edges of an S-tour Sa ∈ S are bridge edges with
respect to C3. Then the graph G � Sa has a 3-regularization (G � Sa)3 with a
Petrie cycle partition C′

3 of the same size p. (The proof is omitted.)

Fig. 8. The proof of Lemma 8.

Lemma 8. Let G be a 4-regular plane graph and S(G) = {S1, . . . , Sk} be the set
of its S-tours. Let Sa ∈ S(G) be an S-tour that visits the vertices v1 . . . vt of G
in this order. Suppose that the graph G�Sa has a 3-regularization (G�Sa)3 with
a Petrie cycle partition C′

3 = {C ′
1, . . . C

′
p} such that every residual edge res(vi)

(1 ≤ i ≤ t) belongs to some C ′
b ∈ C′. Then G has a 3-regularization G3 with a

Petrie cycle partition C3 = {C1, . . . , Cp} of the same size as C′
3, where all edges

of Sa are bridge edges with respect to C3.

324 X. He and H. Zhang

Proof. We modify each C ′
b ∈ C′

3, so that it becomes a Petrie cycle of G, as follows:
- If C ′

b does not pass any residual edge res(vi), define Cb = C ′
b.

- If C ′
b passes a residual edge res(vi) = (ui, wi), replace res(vi) by a 3-edge

path consisting of e′
i = (ui, v

′
i), (v

′
i, v

′′
i), e′′

i = (v′′
i , wi). (For an illustration, see

Fig. 8. Figure 8(c) and (f) show the graph before the operation. Figure 8(b) and
(d) show the graph after the operation). Perform this operation for all residual
edges visited by C ′

b. Let Cb be the resulting cycle.
Then C3 = {Cb | C ′

b ∈ C′
3} is the required Petrie cycle partition of G. �

Now we can state our main result in this section.

Theorem 6. A 4-regular plane graph G with S-tour set S(G) is Petrie parti-
tionable if the following hold: (1) All S-tours in S(G) are simple; and (2) S(G)
can be partitioned into three subsets S1,S2,S3 of mutually independent S-tours.

Proof. Suppose G has a 3-regularization G3 with a Petrie cycle partition C3. Let
Sbridge be the set of S-tours of G consisting of bridge edges with respect to C3.
By Lemma 6, all S-tours in Sbridge are simple and mutually independent. Let
Scycle = S(G) − Sbridge and consider the graph G � Sbridge. Since the S-tours
in Sbridge are mutually independent, we can repeatedly apply Lemma7 for each
Sa ∈ Sbridge. In the end, we get a Petrie tour partition C′

3 of a 3-regularization
(G�Sbridge)3 of G�Sbridge such that all bridge edges with respect to C′

3 are split
edges. In other words, C′

3 corresponds to a Petrie tour partition of G � Sbridge.
By Theorem 5 and Theorem 3, all S-tours in Scycle are simple and Scycle can be
partitioned into two subsets S1,S2 of independent S-tours of G. Thus the two
conditions stated in the theorem hold.

Suppose the two conditions in theorem hold. Consider the graph G � S3.
It satisfies the conditions in Theorem 3, so G � S3 is bipartite. By Theorem 4,
G � S3 has a Petrie tour partition. That is: it has a 3-regularization (G � S3)3
with a full Petrie cycle partition C′

3. Namely, all bridge edges with respect to
C′
3 are the split edges of (G � S3)3. We can apply Lemma 8 once to restore one

S-tour Si in S3. Namely we get a 3-regularization (G�(S3−Si))3 of G�(S3−Si)
with a Petrie cycle partition C′

3, all of whose bridge edges are the split edges of
(G � S3)3 and the edges in Si. Now consider another S-tour Sj in S3. Since Si

and Sj are independent, we can apply Lemma8 again to restore Sj . Since the
S-tours in S3 are mutually independent, we can repeat this process and restore
all S-tours in S3 one by one to get a 3-regularization G3 of G with a Petrie cycle
partition C3 where all edges of each S-tours in S3 are bridge edges with respect
to C3. This completes the proof. �

6 Conclusion and Open Problems

We studied the properties of 3-regular (resp. 4-regular) plane graphs with Petrie
cycle (resp. tour) partitions. We found simple characterizations of these graphs.

We discovered a simple characterization of Petrie partitionable graphs (Theo-
rem 6). Although graph-theoretically elegant, this characterization does not lead

On Petrie Partitionable Plane Graphs 325

to a polynomial time algorithm for recognizing such graphs. Let H = (VH , VH)
be the graph obtained from G as follows. The node set VH of H is the set of
S-tours of G. Two nodes in VH are adjacent in H if and only if their correspond-
ing S-tours intersect in G. Testing the condition 2 in Theorem6 is equivalent to
testing if H is 3-vertex-colorable. This, in general, cannot be done in polynomial
time. It is interesting to investigate if H possesses special structures which can
lead to a polynomial time algorithm for solving this vertex-coloring problem.

The general version of these problems are motivated by applications in com-
puter graphics, which require finding minimum partition of 3-regular plane
graphs by Petrie paths and/or Petrie cycles, and finding minimum partition of
4-regular plane graphs by Petrie walks and/or Petrie tours. The general versions
of the problem may be NP-hard. It is interesting to see if the insights discovered
in this paper can lead to better heuristic algorithms and/or more efficient exact
algorithms for solving the general version of these problems.

References

1. Bommes, D., et al.: State of the art in quad meshing. In: Eurographics STARS.
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.363.6797 (2012)

2. Bommes, D., Campen, M., Ebke, H.-C., Alliez, P., Kobbelt, L.: Integer-grid maps
for reliable quad meshing. ACM Trans. Graph. 32(4), 98:1–98:12 (2013). Article
98

3. Bondy, J.A., Murty, U.S.R.: Graph Theory with Applications. Macmillan, London
(1979)

4. Dong, S., Bremer, P.-T., Garland, M., Pascucci, V., Hart, J.C.: Spectral surface
quadrangulation. In: ACM SIGGRAPH 2006, pp. 1057–1066 (2006)

5. Estkowski, R., Mitchell, J.S.B., Xiang, X.: Optimal decomposition of polygonal
models into triangle strips. In: Proceedings of the 18th ACM Symposium on Com-
putational Geometry (SoCG 2002), Barcelona, Spain, pp. 254–263, 5–7 June 2002

6. Fouquet, J.L., Jolivet, J.L.: Strong edge-coloring of cubic planar graphs. In: Adrian
Bondy, J., Murty, U.S.R. (eds.) Progress in Graph Theory. Proceedings of the Con-
ference on Combinatorics Held at the University of Waterloo, Waterloo, Ontario,
pp. 247–264. Academic Press, Cambridge (1982)

7. Ivančo, J., Jendrǒl, S.: On an Eberhard-type problem in cubic polyhedral graphs
having Petrie and Hamiltonian cycles. Tatra. Mt. Math. Publ. 18, 57–62 (1999)

8. Ivančo, J., Jendrǒl, S., Tkśč, M.: Note on Petrie and Hamiltonian cycles in cubic
polyhedral graphs. Comment. Math. Univ. Carolin. 35(2), 413–417 (1994)

9. Jaeger, F., Shank, H.: On the edge-coloring problem for a class of 4-regular maps.
J. Graph Theory 5, 269–275 (1981)

10. Kidwell, M.E., Bruce Richter, R.: Trees and Euler tours in a planar graph and its
relatives. Am. Math. Mon. 94, 618–630 (1987)

11. Porcu, M.B., Scateni, R.: An interactive strpification algorithm based on dual
graph operations. In: Eurographics 2003 (2003)

12. Ringel, G.: Färbungsprobleme auf Flächen und Graphen. Berlin (1959)
13. Z̆itnik, A.: Plane graphs with Eulerian Petrie walks. Discrete Math. 244, 539–549

(2002)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.363.6797

326 X. He and H. Zhang

14. Š́ıma, J.: Optimal triangle stripifications as minimum energy states in hopfield
nets. In: Duch, W., Kacprzyk, J., Oja, E., Zadrożny, S. (eds.) ICANN 2005.
LNCS, vol. 3696, pp. 199–204. Springer, Heidelberg (2005). https://doi.org/10.
1007/11550822 32

15. Xiang, X., Held, M., Mitchell, J.S.B.: Fast and effective stripification of polygonal
surface models. In: 1999 Symposium on Interactive 3D Graphics Layout, pp. 71–78
(1999)

https://doi.org/10.1007/11550822_32
https://doi.org/10.1007/11550822_32

Disjunctive Propositional Logic
and Scott Domains

Longchun Wang1,2 and Qingguo Li1(B)

1 School of Mathematics, Hunan University, Changsha, China
longchunw@163.com, liqingguoli@aliyun.com

2 School of Mathematical Sciences, Qufu Normal University, Qufu, China

Abstract. Based on the investigation of the proof system of a disjunc-
tive propositional logic, this paper establishes a purely, syntactic repre-
sentation of Scott-domains. More precisely, a category of certain proof
systems with consequence relations is shown to be equivalent to that of
Scott-domains with Scott-continuous functions.

Keywords: Domain theory · Scott-domain · Disjunctive sequent
calculus · Categorical equivalence

1 Introduction

Domains introduced by D. Scott have been the objects of interest on which great
progress has been made by computer scientists and mathematicians [5,6,10,21,
22]. One aspect of domains is that they can be presented by logical language, and
a great deal of possible logical representations for domains have been demon-
strated, ranging from Scott’s information systems [16] to Amramsky’s domain
theory in logic form [2].

Scott’s information system is a set of tokens endowed with a consistency
predicate and an entailment relation. This simple structure provides a conve-
nient means of presenting the category of Scott domains with Scott-continuous
functions [15]. Recently, many scholars established several kinds of information
systems for the representations of various domains [11,12,17,18,20]. Note that
although each of these information systems has many features of a logic, only
the atomic formulae is taken into account.

In [1], Abramsky devised a complete logical system for Scott-domains which
was deliberately suggestive of semantics theory. Scott’s information system, as
well as Abramsky’s domain logic, is made by extracting an appropriate logical
language from the category of Scott domains with Scott-continuous functions.
Abramsky also provided a logical representation for SFP-domains in a similar
way [2]. Following Abramsky’s idea, Jung, Kegelmann and Moshier [13] pre-
sented a coherent sequent calculus which is a logic corresponding to strong prox-
imity lattices. For a variety of results, see [14,19]. In [3], Chen and Jung built a

This Research Supported by the National Natural Science Foundation of China
(11771134).

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 327–339, 2020.
https://doi.org/10.1007/978-3-030-59267-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_28&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_28

328 L. Wang and Q. Li

disjunctive propositional logic, which is sound and complete with respect to dD-
semilattices. They showed how to use D-semilattices and stable D-semilattices
for descriptions of L-dcpos and algebraic L-domains, respectively.

In this paper, we aim to provide a new representation of Scott domains in the
framework of the disjunctive propositional logic. Note that our approach differs
from the style of Scott’s information system and Abramsky’s logical form. We
neither rely on consistent predicates and atomic formulae to make inference, nor
focus on the logical algebras.

As usual logic [7], in Sect. 3, we define several notions in a disjunctive propo-
sitional logic, such as tautology, contradiction, satisfiable formula, conjunction,
etc. Then we introduce the notions of consistent disjunctive sequent calculi and
logical states. We show that the set of logical states of a consistent disjunctive
sequent calculus under the set inclusion forms a Scott domain, and each Scott
domain can be obtained in this way, up to isomorphism.

On the side of Scott domains, Scott-continuous functions are typically used
as morphisms to form a cartesian closed category SD. In domain theory, the
category SD is the most appropriate candidate for the denotational semantics
of functional programming languages. In Sect. 4, we introduce the notion of
consequence relations, and establish a category equivalent to SD.

2 Preliminaries

We first recall some basic definitions and notations of domain theory. Most of
them come from [8,9]. For any set X, the symbol A � X indicates that A is
a finite subset of X. A nonempty subset D of a poset P is said to be directed
if every pair of elements of D has an upper bound in D. A complete lattice is
a poset in which every subset of it has a supremum. With respect to a poset
P , we write

⊔
X for the supremum of X. We use ↓X to denote the down set

{d ∈ P | (∃x ∈ X)d ≤ x}, where X is a subset of P . Similarly, we write ↑X for
the upper set {d ∈ P | (∃x ∈ X)x ≤ d}. If X is a singleton {x}, then we just
write ↓x or ↑x. X is a pairwise inconsistent subset of a poset P if ↑x ∩ ↑y = ∅
for all x
= y ∈ X. The least element of a poset P is denoted by ⊥.

A dcpo P is a poset in which every directed subset D has a supremum
⊔

D.
Let P be a dcpo and x ∈ P . Then x is called a compact element of P if for
any directed subset D of P the relation x ≤ ⊔

D always implies the existence
of some d ∈ D with x ≤ d. We write K(P) for the set of compact elements of P
and write K∗(P) for K(P) − {⊥}.

Definition 1. (1) A pointed dcpo P is called an algebraic domain if every ele-
ment x of P is the directed supremum of the compact elements below x.
(2) An algebraic domain is called a Scott domain if any two elements of it which

are bounded above has a supremum.

Definition 2. Let P and Q be algebraic domains. A function f : P → Q is
Scott-continuous if and only if for all directed subset D of P , f(

⊔
D) =

⊔{f(x) |
x ∈ D}.

Disjunctive Propositional Logic and Scott Domains 329

In [3, Definition 2.1], a disjunctive propositional logic was introduced by devi-
ating from classical propositional logic in some way. A sequent in a disjunctive
propositional logic is an object Γ ϕ, where Γ is a finite set of formulae and ϕ
is a single formula. As usual logic, the interpretation of a sequent Γ ϕ is that
the conjunction of the formulae in Γ implies ϕ.

Definition 3. ([3]) Let P be a set, every element of which we call an
atomic (disjunctive) formula. Likewise, let AP be a set of sequents of the form
p1, p2, . . . , pn F where the pi are atomic formulae, and F is the syntactic con-
stant for “false”. Each element of AP is called an atomic disjointness assump-
tions, and the pair (P,AP) is called a disjunctive basis.

The class L(P) of (disjunctive) formulae, and the set T(P) of valid sequents
are generated by mutual transfinite induction by the following rules:

• Disjunctive formulae

(At)
φ ∈ P

φ ∈ L(P)
(Const)

T, F ∈ L(P)

(Conj)
φ, ψ ∈ L(P)

φ ∧ ψ ∈ L(P)

(Disj)
φi ∈ L(P)(all i ∈ I) φi, φj F (all i
= j ∈ I)

∨̇
i∈Iφi ∈ L(P)

• Valid sequents

(Ax)
(Γ F) ∈ AP

Γ F
(Id)

φ ∈ L(P)
φ φ

(Lwk)
Γ ψ φ ∈ L(P)

Γ, φ ψ
(Cut)

Γ φ Δ, φ ψ

Γ,Δ ψ

(LF)
φ ∈ L(P)

F φ
(RT) T

(L∧)
Γ, φ, ψ θ

Γ, φ ∧ ψ θ
(R ∧)

Γ φ Δ ψ

Γ,Δ φ ∧ ψ

(L∨̇)
Γ, φi θ(all i ∈ I) φi, φj F (all i
= j ∈ I)

Γ,
∨̇

i∈Iφi θ

(R∨̇)
Γ φi0(some i0 ∈ I) φi, φj F (all i
= j ∈ I)

Γ ∨̇
i∈Iφi

.

330 L. Wang and Q. Li

Given a concrete disjunctive propositional logic, the set T(P) can be defined
by a relation , that is,

a sequent Γ ϕ ∈ T(P) if and only if (Γ, ϕ) ∈.

For convenience, we call the proof system of the disjunctive propositional logic
defined above a disjunctive sequent calculus and denoted it by (L(P),). So
when we check a pair (L(P),) is a disjunctive sequent calculus, we need only
to verify that (L(P),) satisfies all the rules of disjunctive formulae and valid
sequents defined in Definition 3.

Proposition 1. ([3]) Let (L(P),) be a disjunctive consequence calculus.

(1) Γ, ϕ, ψ φ is a valid sequent if and only if Γ, ϕ ∧ ψ φ is a valid sequent.
(2) Γ ϕ and Γ ψ are valid sequents if and only if Γ ϕ ∧ ψ is a valid

sequent.
(3) Assuming φi, φj F are valid sequents for all i
= j ∈ I, then Γ, φi θ are

valid sequents if and only if Γ,
∨̇

i∈Iφi θ is a valid sequent.

3 Logical Representations of Scott Domains

The purpose of this section is to show how the disjunctive propositional logic
can be used to represent Scott domains.

Definition 4. Let (L(P),) be a disjunctive sequent calculus and ϕ ∈ L(P).

(1) ϕ is called a tautology if T ϕ is a valid sequent.
(2) ϕ is called a contradiction if ϕ F is a valid sequent.
(3) ϕ is called a (nontrivial) satisfiable formula if it is neither a tautology nor

a contradiction.

The sets of tautologies and contradictions of a disjunctive sequent calcu-
lus (L(P),) are denoted by Tau(P) and Cont(P), respectively.

Definition 5. Let (L(P),) be a disjunctive sequent calculus and ϕ,ψ ∈ L(P).
ϕ and ψ are said to be logically equivalent, in symbols, ϕ ≈ ψ, if both ϕ ψ and
ψ ϕ are valid sequents.

Definition 6. Consider a disjunctive sequent calculus.

(1) A satisfiable formula built up from atomic formulae only by conjunctive con-
nectives is called a conjunction.

(2) A satisfiable formula is said to be a flat formula if it has the form
∨̇

i∈Iμi,
where μi is a conjunction with μi, μj F is valid for any i
= j ∈ I.

Proposition 2. ([3]) Every satisfiable formula is logically equivalent to a flat
formula.

We write N (P) for the set of flat formulae.

Disjunctive Propositional Logic and Scott Domains 331

Definition 7. Let (L(P),) be a disjunctive sequent calculus.

(1) A conjunction μ is said to be irreducible if, whenever μ ∨̇
i∈Iφi is valid,

where φi, φj F are valid for all i
= j ∈ I, then μ φi0 is valid for some
i0 ∈ I.

(2) A flat formula
∨̇

i∈Iμi is irreducible if each conjunction μi is irreducible.

We denote the set of all irreducible conjunctions by C(P).

Definition 8. A disjunctive sequent calculus (L(P),) is said to be consistent
if, every conjunction in it is irreducible, and for any satisfiable formula ψ there
exists an irreducible flat formula

∨̇
i∈Iμi such that ψ ∨̇

i∈Iμi and μi ψ are
valid for all i ∈ I.

For any X ⊆ L(P), we make the convention that

X[] = {ϕ ∈ L(P) | (∃Γ � X)Γ ϕ ∈ T(P)}. (3.1)

Definition 9. Let (L(P),) be a consistent disjunctive sequent calculus. A
nonempty proper subset S of L(P) is called a logical state of (L(P),) if it
satisfies the following conditions:

(S1) S[] ⊆ S.
(S2) If

∨̇
i∈Iμi ∈ S ∩ N (P), then there exists some i0 ∈ I such that μi0 ∈ S.

We denote the collection of all the logical states of a consistent disjunctive
sequent calculus (L(P),) by |(L(P),)|, which is ordered by set inclusion. The
following proposition is clear.

Proposition 3. Let S be a logical state. Then the following statements hold.

(1) S = S[].
(2) The constant F does not belong to S.
(3) If ϕ,ψ ∈ S, then ϕ ∧ ψ ∈ S.
(4) If ϕ ∈ S and ϕ ∧ ψ F is valid, then ψ /∈ S.

Proposition 4. Let (L(P),) be a consistent disjunctive sequent calculus.

(1) Tau(P) is a logical state but Cont(P) is not.
(2) The union of a directed subset of logical states is a logical state.

Proof. (1) According to definitions of a tautology and Tau(P)[], it is easy to
see that Tau(P)[] ⊆ Tau(P). And Tau(P) naturally fulfills condition (S2) since
Tau(P) ∩ N (P) = ∅. Consequently, TauP is a logical state.

Cont(P) is not a logical state because of part (3) of Proposition 3.
(2) Suppose that {Si | i ∈ I} is a directed set of logical states. Put S =⋃{Si | i ∈ I}. We show that S is a logical state by checking that S satisfies

conditions (S1) and (S2).
For condition (S1), let ϕ ∈ S[]. Then, by Eq. (3.1), there exists some Γ � S

such that Γ ϕ. From the fact that Γ � S and the set {Si | i ∈ I} is directed,

332 L. Wang and Q. Li

it follows that Γ � Si0 for some i0 ∈ I. Since Si0 is a logical state, we have
ϕ ∈ Si0 ⊆ S. Therefore, S[] ⊆ S.

For condition (S2), let
∨̇

j∈Jμj ∈ S ∩ N (P). Then
∨̇

j∈Jμj ∈ Si ∩ N (P)
for some i ∈ I. Because Si is a logical state, there exists some ji ∈ J such that
μji

∈ Si ⊆ S.

Proposition 5. Let (L(P),) be a consistent disjunctive sequent calculus and
S a logical state. Then for any subset X of S,

[X]S =
⋂

{W ∈ |(L(P),)| | X ⊆ W ⊆ S} (3.2)

is also a logical state.

Proof. Assume that ϕ ∈ [X]S []. Then there exists some Γ � [X]S such that
Γ ϕ. Thus Γ � W for all W ∈ |(L(P),)| with X ⊆ W ⊆ S. Since W is a
logical state and Γ ϕ, it follows that ϕ ∈ W , and therefore ϕ ∈ [Γ]S . This
implies that [X]S satisfies condition (S1).

For condition (S2), assume that
∨̇

i∈Iμi ∈ [X]S ∩ N (P). Then
∨̇

i∈Iμi ∈ W
for all W ∈ |(L(P),)| with X ⊆ W ⊆ S. Since W is a logical state, there exists
some iW ∈ I such that μiW

∈ W ⊆ S. Thus {μiW
| W ∈ |(L(P),)|,X ⊆ W ⊆

S} is a subset of S. Note that μi, μj F is valid for all i
= j ∈ I and S is a
logical state, the set {μiW

| W ∈ |(L(P),)|,X ⊆ W ⊆ S} must be a singleton,
say {μi0}. Consequently, there exists some i0 ∈ I such that μi0 ∈ [X]S .

Next, we show that each Scott domain can be realized as a poset |(L(P),)|
of logical states built from a suitable consistent disjunctive sequent calculus
(L(P),).

Theorem 1. Let (L(P),) be a consistent disjunctive sequent calculus. Then
(|(L(P),)|,⊆) is a Scott domain.

Proof. By part (2) of Proposition 4, for any directed subset {Si | i ∈ I} of
((L(P),)|,⊆), the union

⋃{Si | i ∈ I} is a logical state. Then
⊔{Si | i ∈ I}

exists in (|(L(P),)|,⊆), and
⊔

{Si | i ∈ I} =
⋃

{Si | i ∈ I}.

Part (1) of Proposition 4 has shown that Tau(P) is a logical state. As a result,
(|(L(P),)|,⊆) forms a dcpo.

We now prove that (|(L(P),)|,⊆) is a Scott domain, which, by Definition 1,
can be divided into three steps.

Step 1: We claim that, for each logical state S and finite subset Γ of S,
the logical state [Γ]S defined by Eq. 3.2 is a compact element of the dcpo
(|(L(P),)|,⊆). In fact, let {Si | i ∈ I} be a directed subset in the dcpo
(|(L(P),)|,⊆) with [Γ]S ⊆ ⋃{Si | i ∈ I}. Since

⋃{Si | i ∈ I} is a logical
state, it is evident that [Γ]S = [Γ]⋃{Si|i∈I}. Because Γ � ⋃{Si | i ∈ I}, there
exists some i0 ∈ I such that Γ ⊆ Si0 . Whence, [Γ]S = [Γ]⋃{Si|i∈I} ⊆ Si0 .

Disjunctive Propositional Logic and Scott Domains 333

Step 2: We show that for any logical state S, the set {[Γ]S | Γ � S} is
directed and S is its union.

Let Γ1, Γ2 � S. Then [Γ1 ∪ Γ2]S ∈ {[Γ]S | Γ � S}. Obviously, [Γ1]S , [Γ2]S ⊆
[Γ1 ∪ Γ2]S , which implies the set {[Γ]S | Γ � S} is directed.

We next show S =
⋃{[Γ]S | Γ � S}. It is clear that

⋃{[Γ]S | Γ � S} ⊆ S,
since [Γ]S ⊆ S for any Γ � S. Conversely, suppose that ϕ ∈ S. Then ϕ ∈
[{ϕ}]S ⊆ {[Γ]S | Γ � S}. This yields that S ⊆ ⋃{[Γ]S | Γ � S}.

Step 3: It remains to check that any two logical states which are bounded
above have a supremum. Let S1, S2 and S3 be logical states with S1, S2 ⊆ S3.
We now verify that

S = {ϕ ∈ L(P) | (∃μ1 ∈ S1 ∩ C(P),∃μ2 ∈ S2 ∩ C(P))μ1 ∧ μ2 ϕ ∈ T(P))}
(3.3)

is also a logical state and that is the supremum of S1 and S2.
Clearly, S1, S2 ⊆ S and S
= ∅ because of Eq. (3.3). Since S1, S2 ⊆ S3, by

part (3) of Proposition 3, μ1 ∧ μ2 ∈ S3 for any μ1 ∈ S1 ∩ C0(P) and μ2 ∈
S2 ∩ C0(P). This implies that S ⊆ S3 and μ1 ∧ μ2 is a conjunction, and thus,
μ1 ∧ μ2 is irreducible by assumption.

It is obvious that S[] ⊆ S, so that to prove S is a logical state we need only
to verify S satisfies condition (S2). For this, let

∨̇
i∈Iμi ∈ S ∩ N (P). Then there

exist ν1 ∈ S1 ∩ C(P) and ν2 ∈ S2 ∩ C(P) such that ν1 ∧ ν2 ∨̇
i∈Iμi is valid.

Since ν1 ∧ ν2 is an irreducible conjunction, there exists some i0 ∈ I such that
ν1 ∧ ν2 μi0 is valid. As a result, μi0 ∈ S.

Assume that S4 is any other logical state with S1, S2 ⊆ S4. According to
Eq. (3.3) and the fact that S4 is a logical state, it is easy to see that S ⊆ S4. As
a consequence, S is the supremum of S1 and S2 in |(L(P),)|.

Theorem 1 has shown that each consistent disjunctive sequent calculus
generates a Scott domain. We now turn things round and show that every
Scott domain (D,≤) can also associate a consistent disjunctive sequent calcu-
lus (L(P)D,).

Given a Scott domain (D,≤), put

U(D) = {↑A | A is a pairwise inconsistent subset of K(D)} ∪ {∅}. (3.4)

It is clear that the set U(D) is closed under finite intersections ∩ and arbitrary
disjoint unions

⋃̇
, since (D,≤) is a Scott domain. Thus we can make the following

definition.

Definition 10. Let (D,≤) be a Scott domain. Each element of the set PD =
{↑x | x ∈ K∗(D)} is said to be an atomic formula in L(PD), and the set L(PD)
is defined by induction as follows:

(1) Each atomic formula is an element of L(PD), and the constant connectives T
and F are elements of L(PD).

(2) if ϕ,ψ ∈ L(PD), then ϕ ∧ ψ ∈ L(PD),

334 L. Wang and Q. Li

(3) if {ϕi | i ∈ I} ∈ L(P) with ϕ̂i ∩ ϕ̂j = ∅ for any distinct pair (i, j) ∈ I, then
∨̇

i∈Iϕi ∈ L(PD), where ϕ̂ is the set replacing the connectives F,T,∧ and
∨̇

in ϕ with ∅,D,∪ and
⋃̇
, respectively.

Proposition 6. Let (D,≤) be a Scott domain. Define a relation as following

ψ1 ∧ ψ2 ∧ · · · ∧ ψn ϕ if and only if ψ̂1 ∩ ψ̂2 ∩ · · · ∩ ψ̂n ⊆ ϕ̂,

where ψ1, ψ2, · · · , ψn, ϕ ∈ L(PD).
Then (L(PD),) is a consistent disjunctive sequent calculus.

Proof. It is easy to see that the relation satisfies all the rules of disjunctive
formulae and valid sequents defined in Definition 3, then the pair (L(PD),) is
a disjunctive sequent calculus.

Let {x1, x2, · · · , xn} � K∗(D). Then the formula ↑x1 ∧ ↑x2 ∧ · · · ∧ ↑xn of
(L(PD),) is irreducible if and only if

⊔{x1, x2, · · · , xn} ∈ D. Note that D is a
Scott domain, it follows that each conjunction is irreducible.

For any satisfiable formula ψ of (L(PD),), there is a nonempty pairwise
inconsistent subset A of K∗(D) such that ψ̂ =

⋃̇
a∈A↑a. Therefore,

∨̇
a∈A↑a is a

flat formula such that ψ ∨̇
a∈A↑a and ↑a ψ are valid for all a ∈ A.

For a logical state of the consistent disjunctive sequent calculi (L(PD),),
we have the following characterization.

Proposition 7. Given a Scott domain (D,≤), a subset S of L(PD) is a logical
state of (L(PD),) if and only if there exists some d ∈ D such that S = {ϕ ∈
L(PD) | ϕ̂ ∈ U(D), d ∈ ϕ̂}, where U(D) is defined by Eq. (3.4).

Proof. Let d ∈ D and S = {ϕ ∈ L(PD) | ϕ̂ ∈ U(D), d ∈ ϕ̂}. We prove that S
is a logical state of (L(PD),) by showing S satisfies conditions (S1) and (S2).
Assume that ψ ∈ S[]. Then there exists some finite subset Γ of S such that
Γ ψ. If Γ = ∅, then ψ ∈Tau(P), and thus d ∈ ψ̂ = D. If Γ
= ∅, then d ∈ ϕ̂

for all ϕ ∈ Γ . This implies that d ∈ ψ̂ and hence ψ ∈ S. Condition (S1) follows.
For condition (S2), assume that

∨̇
i∈Iμi is a flat formula in S. Since d ∈ ⋃

i∈I μi,
there exists some i0 ∈ I such that d ∈ μi0 . Therefore, μi0 ∈ S.

For the converse implication, assume that S is a logical state of (L(PD),).
Then S ⊆ L(PD). We are now ready to look for an element dS of D such that
S = {ϕ ∈ L(PD) | ϕ̂ ∈ U(D), dS ∈ ϕ̂} in three stages.

First, for any ψ ∈ S, noting that ψ̂
= ∅, there exists some pairwise inconsis-
tent subset A of K(D) such that ψ̂ =

⋃
a∈A ↑a. Then

∨
a∈A ↑a ∈ S. By condition

(S2), we have ↑a0 ∈ S for some a0 ∈ A. This implies that
⋂

Ŝ =
⋂{↑a | ↑a ∈ S},

where Ŝ = {ϕ̂ ∈ U(D) | ϕ ∈ S}.
Second, we prove {a | ↑a ∈ S} is a directed set of D. Let a1, a2 ∈ {a | ↑a ∈ S}.

Since ↑a1, ↑a2 ∈ S, by part (3) of Proposition 3, ↑a1 ∧ ↑a2 ∈ S. This implies
↑a1 ∩ ↑a2
= ∅. Suppose ↑a1 ∩ ↑a2 =

⋃
b∈B ↑b, where B is a nonempty set of

pairwise incompatible elements of K(D). By condition (S2), ↑b ∈ S for some
b ∈ B. Therefor, b ∈ {a | ↑a ∈ S} and a1, a2 ≤ b.

Disjunctive Propositional Logic and Scott Domains 335

Finally, put dS =
⊔{a | ↑a ∈ S}. Then dS ∈ D and

⋂
Ŝ =

⋂{↑a | ↑a ∈ S} =
↑dS . Thus dS ∈ U for any U ∈ Ŝ. Therefore, S ⊆ {ϕ ∈ L(PD) | ϕ̂ ∈ U(D), dS ∈
ϕ̂}. Conversely, for any ϕ ∈ L(PD) with dS ∈ ϕ̂ ∈ U(D), there exists some
d ∈ K(D) such that dS ∈ ↑d ⊆ ϕ̂. Since dS =

⊔{a | ↑a ∈ S} and {a | ↑a ∈ S}
is directed, d ≤ a0 for some a0 ∈ {a | ↑a ∈ S}. This yields ↑a0 ⊆ ϕ̂, and hence
↑a0 ϕ is a valid sequent. By condition (S1), we have ϕ ∈ S.

With the above preparations, we obtain the main result of this section.

Theorem 2. Each Scott domain (D,≤) is isomorphic to (|(L(PD),)|,⊆).

Proof. By Proposition 7, the following mapping is not only well-defined but also
onto,

f : (D,≤) → (|(L(PD),)|,⊆), by d �→ {ϕ ∈ L(PD) | ϕ̂ ∈ U(D), d ∈ ϕ̂},

where U(D) is defined by Eq. 3.4.
Further, trivial checks verify that d1 ≤ d2 if and only if {ϕ ∈ L(PD) | ϕ̂ ∈

U(D), d1 ∈ ϕ̂} ⊆ {ϕ ∈ L(PD) | ϕ̂ ∈ U(D), d2 ∈ ϕ̂}. As a consequence, the
mapping f is an order-isomorphism from (D,≤) to (|(L(PD),)|,⊆). Whence
(D,≤) is isomorphic to (|(L(PD),)|,⊆).

4 A Categorical View

The purpose of this section is to extend to the relationship between consistent
disjunctive sequent calculi and Scott domains to a categorical equivalence.

Definition 11. Let P = (L(P),P) and Q = (L(Q),Q) be consistent disjunc-
tive sequent calculi. A consequence relation Θ from P to Q, written as Θ : P → Q,
is a binary relation between C(P) and L(Q) satisfies the following conditions:

(C1) If there is some ν ∈ C(P) such that μ P ν is valid and (ν, ψ) ∈ Θ,
then (μ, ψ) ∈ Θ.
(C2) If (μ, ϕ) ∈ Θ and ϕ Q ψ is valid, then (μ, ψ) ∈ Θ.
(C3) If (μ, ψ) ∈ Θ, then there is some ν ∈ C(Q) such that ν Q ψ is valid
and (μ, ν) ∈ Θ.

Consider a consequence relation Θ : P → Q. For any subset X of L(P), put

Θ[X] = {ϕ ∈ L(Q) | (∃μ ∈ X ∩ C(P))(μ, ϕ) ∈ Θ}. (4.1)

Proposition 8.

(1) If X1,X2 ⊆ L(P) with X1 ⊆ X2, then Θ[X1] ⊆ Θ[X2].
(2) If S is a logical state of P, then Θ[S] is a logical state of Q.
(3) If μ ∈ C(P), then Θ[{μ}] = Θ[{μ}[P]]

336 L. Wang and Q. Li

Proof. (1) Straightforward from Eq. (4.1).
(2) Assume that ϕ ∈ (Θ[S])[Q]. Then there exist μ ∈ S∩C(P) and ψ ∈ L(Q)

such that (μ, ψ) ∈ Θ and ψ Q ϕ is valid. By condition (C2), we have (μ, ϕ) ∈ Θ.
This implies that ϕ ∈ Θ[S] and hence (Θ[S])[Q] ⊆ Θ[S].

Assume that
∨̇

i∈Iμi ∈ Θ[S] ∩ N (P). Then there exists μ ∈ S ∩ C(P) such
that (μ,

∨̇
i∈Iμi) ∈ Θ. By condition (C3), there exists some ν ∈ C(Q) such that

(μ, ν) ∈ Θ and ν Q

∨̇
i∈Iμi is valid. Since ν is an irreducible conjunction,

ν Q μi0 is valid for some i0 ∈ I. Using condition (C2) again, (μ, μi0) ∈ Θ, and
thus μi0 ∈ Θ[S].

(3) According to part (1), it is clear Θ[{μ}] ⊆ Θ[{μ}[P]]. Conversely, let
ϕ ∈ Θ[{μ}[P]]. Then there exists some ν ∈ {μ}[P]∩C(P) such that (ν, ϕ) ∈ Θ.
But ν ∈ {μ}[P] implies that μ P ν is valid. By condition (C1), we have
(μ, ϕ) ∈ Θ, and thus ϕ ∈ Θ[{μ}].

Now we show that there is a one-to-one correspondence between consequence
relations from P to Q and Scott-continuous functions from |P| to |Q|.
Theorem 3. Let P and Q be consistent disjunctive sequent calculi.

(1) For any consequence relation Θ : P → Q, define a function fΘ : |P| → |Q|
by

fΘ(S) = Θ[S]. (4.2)

Then fΘ is Scott-continuous.
(2) For any Scott-continuous function f : |P| → |Q|, define Θf ⊆ C(P) × L(Q)

by

(μ, ψ) ∈ Θf ⇔ ψ ∈ f({μ}[P]). (4.3)

Then Θf is a consequence relation from P to Q.
(3) ΘfΘ

= Θ and fΘf
= f .

Proof. (1) By part (2) of Proposition 8, the function fΘ is well-defined. And part
(1) of Proposition 8 yields that the function fΘ is monotone. Let {Si | i ∈ I}
be a directed subset of logical states. Then

⋃
i∈I Si is a logical state. Since⋃

i∈I fΘ(Si) ⊆ fΘ(
⋃

i∈I Si) is clear, to prove the function fΘ is Scott-continuous,
it suffices to show that fΘ(

⋃
i∈I Si) ⊆ ⋃

i∈I fΘ(Si). If ϕ ∈ fΘ(
⋃

i∈I Si) =
Θ[

⋃
i∈I Si], then there exists some μ ∈ ⋃

i∈I Si ∩ C(P) such that (μ, ϕ) ∈ Θ.
From μ ∈ ⋃

i∈I Si, it follows that μ ∈ Si0 for some i0 ∈ I. Thus ϕ ∈ fΘ(Si0),
and therefore, fΘ(

⋃
i∈I Si) ⊆ ⋃

i∈I fΘ(Si).
(2) It suffices to show that Θf satisfies conditions (C1–C3).
For condition (C1), assume that ν ∈ C(P) such that μ P ν is valid and

(ν, ψ) ∈ Θf . Then ψ ∈ f({ν}[P]). From μ P ν it follows that {ν}[P] ⊆
{μ}[P]. Since f is monotone, ψ ∈ f({μ}[P]). This means that (μ, ψ) ∈ Θf .

For condition (C2), assume that (μ, ϕ) ∈ Θf and ϕ Q ψ is valid. Then
ϕ ∈ f({μ}[P]). Since f({μ}[P]) is a logical state and ϕ Q ψ is valid, ψ ∈
f({μ}[P]). That is (μ, ψ) ∈ Θf .

Disjunctive Propositional Logic and Scott Domains 337

For condition (C3), assume that (μ, ψ) ∈ Θf . Then ψ ∈ f({μ}[P]). Since
the disjunctive sequent calculus Q is consistent, there exists an irreducible flat
formula

∨̇
i∈Iμi such that ψ ∨̇

i∈Iμi and μi ψ are all valid for all i ∈ I. Note
that f({μ}[P]) is a logical state, it follows that

∨̇
i∈Iμi ∈ f({μ}[P]). Thus

μi0 ∈ f({μ}[P]) for some i0 ∈ I. Let μi0 = ν. Then we obtain some ν ∈ C0(Q)
such that (μ, ν) ∈ Θ and ν Q ψ is valid.

(3) For any μ ∈ C(P) and ϕ ∈ L(Q), we have

(μ, ϕ) ∈ ΘfΘ
⇔ ϕ ∈ fΘ({μ}[P])
⇔ ϕ ∈ Θ[{μ}[P]]
⇔ (∃ν ∈ C(Q)((μ, ϕ) ∈ Θ,μ P ν ∈ T(P)))
⇔ (μ, ϕ) ∈ Θ.

This proves that ΘfΘ
= Θ.

For any S ∈ |P|, we have

fΘf
(S) = Θf [S]

= {ϕ ∈ L(Q) | (∃μ ∈ S ∩ C(P))(μ, ϕ) ∈ Θf}
= {ϕ ∈ L(Q) | (∃μ ∈ S ∩ C(P))ϕ ∈ f({μ}[P])}
=

⋃
{f({μ}[P]) | μ ∈ S ∩ C(P)}

= f(
⋃

{{μ}[P] | μ ∈ S ∩ C(P)}
= f(S).

This proves that fΘf
= f .

Let Θ be a consequence relation from P to Q, and Θ′ a consequence relation
from Q to R. Define Θ′ ◦ Θ ⊆ C(P) × L(R) by

(μ, ϕ) ∈ Θ′ ◦ Θ ⇔ (∃ν ∈ C(Q))((μ, ν) ∈ Θ, (ν, ϕ) ∈ Θ′), (4.4)

and idP ⊆ C(P) × L(P) by

(μ, ϕ) ∈ idP ⇔ ϕ ∈ {μ}[P]. (4.5)

Then routine checks verify that Θ′ ◦Θ is a consequence relation from P to R and
idP is a consequence relation from P to itself.

Using the same argument as checking the associative law of a traditional
relation composition, we can carry out the composition ◦ defined by Expres-
sion (4.4) is associative. Conditions (C1) and (C2) yield that idP is the identity
morphism of P.

So Consistent disjunctive sequent calculi with consequence relations form a
category CDSC.

Moreover, G : CDSC → SD is a functor which maps every consistent dis-
junctive sequent calculi P to (|P|,⊆) and consequence relation Θ : P → Q to fΘ,
where fΘ is defined by Eq. (4.2).

338 L. Wang and Q. Li

Theorem 4. CDSC and SD are categorically equivalent.

Proof. According to Theorem 2, it suffices to show that the functor G is full and
faithful.

For any Scott-continuous function f : |P| → |Q|, by Theorem 3, the relation
Θf defined by Eq. (4.3) is a consequence relation from P to Q and G(Θf) =
fΘf

= f . This implies that G is full.
Let Θ1, Θ2 : P → Q be two consequence relations with fΘ1 = fΘ2 , where fΘ1

and fΘ2 are defined by Eq. (4.2). For any μ ∈ C(P), since

(μ, ϕ) ∈ Θ1 ⇔ ϕ ∈ Θ1[{μ}]
⇔ ϕ ∈ Θ1[{μ}[P]]
⇔ ϕ ∈ fΘ1({μ}[P])
⇔ ϕ ∈ fΘ2({μ}[P])
⇔ (μ, ϕ) ∈ Θ2,

it follows that Θ1 = Θ2, and hence G is faithful.

References

1. Abramsky, S.: Domain theory and the logic of observable properties. Ph.D. thesis,
University of London (1987)

2. Abramsky, S.: Domain theory in logical form. Ann. Pure Appl. Logic 51, 1–77
(1991)

3. Chen, Y., Jung, A.: A logical approach to stable domains. Theoret. Comput. Sci.
368, 124–148 (2006)

4. Edalat, A., Smthy, M.B.: Information categories. Appl. Categor. Struct. 1, 197–323
(1993)

5. Erné, M.: Categories of locally hypercompact spaces and quasicontinuous posets.
Appl. Categor. Struct. 26(5), 823–854 (2018). https://doi.org/10.1007/s10485-
018-9536-0

6. Ésik, Z.: Residuated park theories. J. Logic Comput. 25(2), 453–471, 2015
7. Gallier, J.H.: Logic for Computer Science: Foundations of Automatic Theorem

Proving. Courier Dover Publications, New York (2015)
8. Gierz, G., Hofmann, K.H., Keimel, K., Lawson, J.D., Mislove, M., Scott, D.S.:

Continuous Lattices and Domains. Cambridge University Press, Cambridge (2003)
9. Goubault-Larrecq, J.: Non-Hausdorff Topology and Domain Theory, Volume 22 of

New Mathematical Monographs. Cambridge University Press, Cambridge (2013)
10. Ho, W., Goubault-Larrecq, J., Jung, A., Xi, X.: The Ho-Zhao problem. Logical

Methods Comput. Sci. 14(1:7), 1–19 (2018)
11. Hoofman, R.: Continuous information systems. Inf. Comput. 105, 42–71 (1993)
12. Huang, M., Zhou, X., Li, Q.: Re-visiting axioms of information systems. Inf. Com-

put. 247, 130–140 (2015)
13. Jung, A., Kegelmann, M., Moshier, M.A.: Multi lingual sequent calculus and coher-

ent spaces. Fundamenta Informaticae 37, 369–412 (1999)
14. Jung, A.: Continuous domain theory in logical form. In: Coecke, B., Ong, L.,

Panangaden, P. (eds.) Computation, Logic, Games, and Quantum Foundations.
The Many Facets of Samson Abramsky. LNCS, vol. 7860, pp. 166–177. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38164-5 12

https://doi.org/10.1007/s10485-018-9536-0
https://doi.org/10.1007/s10485-018-9536-0
https://doi.org/10.1007/978-3-642-38164-5_12

Disjunctive Propositional Logic and Scott Domains 339

15. Larsen, K.G., Winskel, G.: Using information systems to solve reoursive domain
equations effectively. In: Kahn, G., MacQueen, D.B., Plotkin, G. (eds.) SDT 1984.
LNCS, vol. 173, pp. 109–129. Springer, Heidelberg (1984). https://doi.org/10.1007/
3-540-13346-1 5

16. Scott, D.S.: Domains for denotational semantics. In: Nielsen, M., Schmidt, E.M.
(eds.) ICALP 1982. LNCS, vol. 140, pp. 577–610. Springer, Heidelberg (1982).
https://doi.org/10.1007/BFb0012801

17. Spreen, D., Xu, L., Mao, X.: Information systems revisited: the general continuous
case. Theoret. Comput. Sci. 405, 176–187 (2008)

18. Vickers, S.: Entailment systems for stably locally compact locales. Theoret. Com-
put. Sci. 316, 259–296 (2004)

19. Wang, L., Li., Q.: A representation of proper BC domains based on conjunctive
sequent calculi. Math. Struct. Comput. Sci. 1–13 (2020). https://doi.org/10.1017/
S096012951900015X

20. Wu, M., Guo, L., Li, Q.: A representation of L-domains by information system.
Theoret. Comput. Sci. 612, 126–136 (2016)

21. Yao, W.: A categorical isomorphism between injective stratified fuzzy T0 spaces
and fuzzy continuous lattices. IEEE Trans. Fuzzy Syst. 24(1), 131–139 (2016)

22. Zhang, G.-Q.: Disjunctive systems and L-domains. In: Kuich, W. (ed.) ICALP
1992. LNCS, vol. 623, pp. 284–295. Springer, Heidelberg (1992). https://doi.org/
10.1007/3-540-55719-9 81

https://doi.org/10.1007/3-540-13346-1_5
https://doi.org/10.1007/3-540-13346-1_5
https://doi.org/10.1007/BFb0012801
https://doi.org/10.1017/S096012951900015X
https://doi.org/10.1017/S096012951900015X
https://doi.org/10.1007/3-540-55719-9_81
https://doi.org/10.1007/3-540-55719-9_81

Dispersing and Grouping Points
on Segments in the Plane

Xiaozhou He1, Wenfeng Lai2, Binhai Zhu3(B), and Peng Zou3

1 Business School, Sichuan University, Chengdu, China
xiaozhouhe126@qq.com

2 College of Computer Science and Technology, Shandong University,
Qingdao, China

2290892069@qq.com
3 Gianforte School of Computing, Montana State University,

Bozeman, MT 59717, USA
bhz@montana.edu, peng.zou@student.montana.edu

Abstract. Motivated by (continuous) facility location, we consider the
problem of dispersing and grouping points on a set of segments (of
streets) in the plane. In the former problem, given a set of n disjoint line
segments in the plane, we consider the problem of computing a point
on each of the n segments such that the minimum Euclidean distance
between any two of these points is maximized. We prove that this 2D
dispersion problem is NP-hard, in fact, the problem is NP-hard even if
all the segments are parallel and are of unit length. This is in contrast
to the polynomial solvability of the corresponding 1D problem by Li and
Wang (2016), where the intervals are in 1D and are all disjoint. With this
result, we also show that the Independent Set problem on Colored Lin-
ear Unit Disk Graph (meaning the convex hulls of points with the same
color form disjoint line segments) remains NP-hard, and the parameter-
ized version of it is in W[2]. In the latter problem, given a set of n disjoint
line segments in the plane, we consider the problem of computing a point
on each of the n segments such that the maximum Euclidean distance
between any two of these points is minimized. We present a factor-1.1547
approximation algorithm which runs in O(n log n) time. Our results can
be generalized to the Manhattan distance.

Keywords: Dispersion problem · NP-hardness · FPT · Manhattan
distance · Geometric optimization

1 Introduction

Dispersion problems belong to the classic facility location problem and have
been extensively studied. The goal of such a problem is to build facilities so that
they are as far as possible. A typical example is to build a chain of convenience
stores such that they should be far from each other to cover more customers. As

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 340–351, 2020.
https://doi.org/10.1007/978-3-030-59267-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_29&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_29

Dispersing and Grouping Points on Segments in the Plane 341

a matter of fact, a series of research has been done, either over a point set or
over a weighted graph [2,5,6,9,16–18].

In [11,12], Li and Wang considered an interesting variation of the problem,
where one is given a set of disjoint intervals in 1D and the objective is to put
one point on each interval such that the minimum distance between any two
of these computed points is maximized. Assuming the intervals are sorted, an
optimal linear time greedy algorithm was given (but the analysis is non-trivial).
The scenario corresponding to this problem can be considered as constructing
resting areas along a highway, where each interval is some section suitable for
constructing a resting area.

A natural question arises: what if we are given some disjoint (rectilinear)
segments (where each segment is part of a street)? (Here the objective function
is the same while the distance could be either Euclidean (L2) or Manhattan
(L1).) We show that this problem is NP-hard; in fact, NP-hard even when all
the segments are parallel (i.e., along one direction) and are of a unit length. It
turns out that this is related to the Independent Set (IS) problem on a unit disk
graph (UDG) [3,13]; in fact, our NP-hardness proof implies that the problem
remains NP-hard even when the unit disk graph is colored and linear (meaning
the convex hulls of points of the same color form disjoint line segments). We
suspect that the parameterized version remains to be W[1]-hard, though we are
only able to show that it is in W[2] at this point.

The symmetric problem of grouping points on a set of disjoint segments in
the plane, i.e., selecting one point on each segment such that the maximum
distance between the selected points is minimized, is motivated by constructing
commodity distribution centers within a road network. These centers should be
close to each other to reduce the distribution or transportation costs. It is not
known whether the problem is NP-hard yet, though we are able to show that
this problem admits a factor-1.1547 approximation running in O(n log n) time.

This paper is organized as follows. In Sect. 2, we give the preliminaries. In
Sect. 3, we prove that the 2D dispersion problem is NP-hard. In Sect. 4, we
consider briefly the independent set problem on colored linear unit disk graphs
and prove its W[2] membership. In Sect. 5, we give a simple polynomial time
approximation algorithm for the 2D grouping problem. We conclude the paper
in Sect. 6.

2 Preliminaries

2.1 Definitions

Given two points a = (xa, ya), b = (xb, yb) in the plane (2D), the Euclidean or L2

distance d(a, b) = d2(a, b) is defined as d(a, b) = ((xa −xb)2 +(ya −yb)2)1/2. The
Manhattan or L1 distance d1(a, b) is defined as d1(a, b) = |xa − xb| + |ya − yb|.
A line segment with endpoints a and b is denoted as l = (a, b).

Finally, a unit disk graph is one where each vertex is a given point of an
input set of planar points, two vertices u, v share an edge if two disks of radii
R centered at u, v intersect each other. (Note that the standard unit disk graph

342 X. He et al.

definitions require that R = 1/2, in our definition R could be more general.)
It is known that while most NP-hard problems on general graphs remain NP-
hard on unit disk graphs [4,7], there are exceptions (e.g., the maximum clique
problem is polynomially solvable [7]). Notably, the parameterized version of the
independent set problem on unit disk graphs, parameterized by the size of the
solution, is known to be W[1]-hard [13]. The more restricted colored version,
parameterized by the number of colors, remains to be W[1]-hard [3].

2.2 Problems

The problems studied in this paper are defined as follows:

2D Dispersion Problem: Given a set of disjoint line segments L = {L1,
L2, ..., Ln} ⊂ R2, the goal is to find n points V = {v1, v2, ..., vn} on the n line
segments respectively such that the minimum distance among two points in V
is maximized, i.e.,

max
V

min
vi,vj∈V

d(vi, vj).

2D Grouping Problem: Given a set of disjoint line segments L = {L1,
L2, ..., Ln} ⊂ R2, the goal is to find n points V = {v1, v2, ..., vn} on the n
line segments respectively such that the maximum distance among two points
in V is minimized, i.e.,

min
V

max
vi,vj∈V

d(vi, vj).

We show in the next section that the 2D dispersion problem is NP-hard.

3 NP-Hardness for the 2D Dispersion Problem

We reduce the planar 3-SAT problem to the 2D Dispersion problem. The planar
3-SAT problem is a special case of 3-SAT where the input is a conjunction of a set
of disjunctive clauses, each with three literals. Moreover, if we create a graph with

v1 v2 V3 v4

E1 E3

E2

Fig. 1. The planar graph for the planar 3-SAT instance φ = (v1 ∨ v2 ∨ v̄3) ∧ (v̄1 ∨ v2 ∨
v4) ∧ (v̄2 ∨ v3 ∨ v̄4).

Dispersing and Grouping Points on Segments in the Plane 343

edges connecting a literal x and clause c where x appears in c, then the resulting
graph is planar. Such a planar graph embedding can be computed in linear time.
Given a planar 3-SAT instance φ = (v1 ∨ v2 ∨ v̄3) ∧ (v̄1 ∨ v2 ∨ v4) ∧ (v̄2 ∨ v3 ∨ v̄4),
its corresponding planar graph is shown in Fig. 1.

When we reduce planar 3-SAT to the 2D Dispersion problem, all the segments
in U are with the unit length 1 and are horizontal.

Theorem 1. The 2D Dispersion Problem is NP-hard.

Proof. First, we describe the variable gadget and clause gadget in detail. Note
that the dashed segments in these two gadgets are only for illustration purpose.
In fact, they are only used to illustrate the distance between the points. Each
variable is corresponding to 4 parallel unit segments with length 1 and the dis-
tance between every two closest segments is

√
3/3, as shown in Fig. 2. The length

of the dashed segments is � = 2
√

3/3. The red points are selected for the ‘True’
assignment of this variable; and symmetrically, the green points are chosen for
the corresponding ‘False’ assignment.

Fig. 2. The variable gadget. (Color figure online)

Next, we depict the clause gadget, which is shown in Fig. 3. The length of
the dashed segments is also �. In each clause gadget, if all three green points
are selected, then placing one more point on the segment in the middle, the
minimum distance between any two of these four points would be smaller than
�. To achieve such a distance of at least �, we need to select at least one red point
x and another point y on the middle segment—according to which x is selected.
(For instance, if x is the top-right red point then y could be the mid-point of
the middle segment.)

A complete example of the construction for the clause (v1∨v2∨v̄3) is shown in
Fig. 4. Note that all the segments connecting the variable and clause gadgets are
horizontal; moreover, an additional segment is added to ensure the appearance
of vi in the corresponding clause gadget.

344 X. He et al.

Fig. 3. The clause gadget. (Color figure online)

We claim that the planar 3-SAT instance φ has a valid truth assignment if
and only in the converted 2D Dispersion instance the minimum distance of any
two chosen points is equal to �.

‘If’ part: If the planar 3-SAT instance φ has a truth assignment, in all variable
gadgets, either all red points or all green points would be selected. The closest

Fig. 4. A complete construction for the clause (v1 ∨ v2 ∨ v̄3). (Color figure online)

Dispersing and Grouping Points on Segments in the Plane 345

distance of two chosen points in the variable gadgets is equal to �. In the clause
gadget, at least one variables needs to be assigned ‘True’ for the clause. Hence,
at least one green points is not selected in the corresponding clause gadget. The
minimum distance of any two chosen points in the clause gadget is at least �.
Therefore, in the converted instance for 2D Dispersion, the minimum distance
of any two selected points is �.

‘Only if’ part: Suppose that the converted instance for 2D Dispersion has a
minimum distance of � between two selected points. Firstly, we note that in all
the variable gadgets, if we want to maximize the minimum distance of any two
selected points, then either all green points or all red points must be chosen.
At this point the minimum distance of any two such selected points is exactly
�. In the clause gadget, if the maximum of the minimum distance of any two
chosen points is at least �, then at least one red point x needs to be selected.
This implies that in the corresponding clause, the corresponding variable vx is
assigned ‘True’ or the corresponding literal v̄x is assigned ‘False’, which means
the corresponding clause is evaluated ‘True’. Therefore, if in the converted 2D
dispersion instance the minimum distance of any two chosen points is at least �,
the corresponding planar 3-SAT instance φ is satisfied. ��

Since the problem is NP-hard even when all the input segments are horizon-
tal and are of unit length, the general version of this problem (where disjoint
segments are of various lengths and are with arbitrary orientations) is also NP-
hard. We comment that the NP-hardness holds even when the L1 (or Manhat-
tan) distance is used, this can be done by adjusting the distance between parallel
segments accordingly.

4 Hardness for IS on Colored Linear Unit Disk Graphs

The NP-hardness result in the previous section has a direct implication on the
Independent Set (IS) problem on Colored Linear Unit Disk Graph, which is a
unit disk graph such that the convex hull of the points in the same color form
a line segment, no two such segments intersect and the problem is to select one
node (disk) in each color such that they form an independent set. We briefly go
through the implication in this section.

Before doing that, we note that finding k-multicolored clique or independent
set was initially motivated in proving the W[1]-hardness of some graph prob-
lems [8]. For geometric intersection graphs (specifically, unit disk graphs) Marx
showed the Independent Set problem is W[1]-hard, which implies it is not possi-
ble to obtain an FPT (fixed-parameter tractable) algorithm unless FPT=W[1]
[13]. Moreover, the W[1]-hardness of the problem implies that it is not possi-
ble to obtain an EPTAS (efficient PTAS, namely the running time is f(ε) · nc,
where n is the input size). Consequently the PTAS by Hunt et al. (with running
time O(n1ε)) [10] cannot be further improved to have an EPTAS. Bereg et al.
considered the k-multicolored independent set problem on unit disk graphs and
proved its W[1]-hardness and with that, they proved that the Largest Closest

346 X. He et al.

Pair Color-Spanning Set problem is W[1]-hard [3]. We now briefly sketch our
results.

Theorem 2. The Independent Set problem on Colored Linear Unit Disk Graph
is NP-hard, even when all the segments are parallel and are of a unit length.

Proof. We just use the reduction for Theorem 1. The two changes are: (1) put
1/ε points on each segment, (2) the corresponding unit disk graph is formed
by drawing an open disk centered at each point of each segment with a radii
�/2 =

√
3/3; moreover, all the disks centered at the same segment have the

same color. Let U be the set of unit-length segments. Calling the resulting unit
disk graph GU , we clearly still have the following statement: the planar 3-SAT
instance φ is satisfiable if and only if GU has an independent set of size |U |. The
details are standard and omitted. ��

An immediate question is the FPT tractability of the parameterized version
of the problem, where the parameter k is the number of segments, or the number
of colors. Note that the general version, where the points of the same color could
be arbitrarily distributed, is W[1]-hard [3]. However, in the current version the
unit disk graph is more restricted. Nevertheless we show below that it is in W[2].

Theorem 3. The Independent Set problem on Colored Linear Unit Disk Graph,
parameterized on the number of colors (e.g. segments), is in W[2].

Proof. Let the number of segments be k and let the set of linear points on
segment Li be ordered as Vi = {vi,j |j = 1..P (i)}. We need to decide whether a
value R exists such that the set S of points selected, one for each segment (color),
has the property that the closest pair has distance at least R (or, equivalently,
the unit disk graph with radii R/2 on all these points has a colorful independent
set, i.e., one for each color).

We construct a circuit C as follows: the input are variables corresponding to
all the points (for convenience, we still use vi,j ’s as variables, with a value one is
assigned to vi,j meaning that point is selected). For all the points on the same
segment Li, we construct a large OR (∨) gate. Here, ‘large’ means the input to
the OR gate could be greater than 2; and to make the OR gate output a true
value, one of these points must be selected.

For two points on two segments vi,i′ and vj,j′ , if their distance is shorter than
R then we cannot select both of them. This can be interpreted as ¬(vi,i′ ∧ vj,j′).
In fact, as the distance function from point vi,i′ to all (sorted) points on Lj (i.e.,
Vj) is unimodal. We could construct these nested ¬ and ∧ gates in one pass
when vi,i′ and Vj are fixed.

Finally, we connect all these OR (∨) gates and NOT (¬) gates to a large AND
(∧) gate, which is the output of this circuit. It is easy to see that the IS problem
on Colored Linear Unit Disk Graph (with radii R/2) has a solution if and only
if k variables are selected to have a ‘True’ output. As from any input gate to
the final output we have at most two wefts (large gates), the W[2] membership
is hence shown (Fig. 5). ��

Dispersing and Grouping Points on Segments in the Plane 347

Fig. 5. The circuit for the IS problem on Colored Linear Unit Disk Graph.

We comment that this proof is similar to the one given for the Minimum
Diameter Color-Spanning Set problem by Pruente [15]. However, it is tantaliz-
ingly open whether this version of the IS problem on unit disk graphs is W[1]-
hard. We comment that the unimodality property between vi,i′ and Vj might be
used either to show its W[1]-hardness or its membership in FPT.

5 Approximation for the 2D Grouping Problem

In this section, we design a factor-1.1547 polynomial-time approximation algo-
rithm for the 2D grouping problem. It turns out that this problem is also related
to unit disk graph. Recall that the input to the problem is a set of disjoint
line segment L = {L1, L2, ..., Ln}. Assuming that we have an optimal solution
V ∗ = {v1, v2, ..., vn} where each vi is selected from Li and the maximum dis-
tance between vi, vj is d∗. Let Ci(r) be a closed disk centered at vi with radius
r. Then, using the so-called intersection model for a unit disk graph, if we draw
a disk Ci(d∗/2) at each vi, these disks would have a common intersection.

5.1 The Minimum Intersecting Disk Problem

Based on this property, we define a related Minimum Intersecting Disk problem:

Minimum Intersecting Disk (MID) Problem: Given a set of disjoint line
segments L = {L1, L2, ..., Ln} ⊂ R2, compute a disk C(c, r) with center c and
radius r such that all Li’s intersect C(c, r) and r is minimized (at r+).

We will present an polynomial-time algorithm to solve the MID problem in
this subsection. We first obtain a simple decision procedure Decide(r) which
decides whether a disk of radius r exists that intersect all segments in L. Note
that a segment completely in C(c, r) is also considered being intersected by
C(c, r).

348 X. He et al.

Algorithm 1. Decide(r): decides if there is a disk of radius r intersecting L

1: For each segment Li, compute the Minkowski sum of Li with a disk of radius C(r),
denoted as Li ⊕ C(r).

2: Compute the common intersection F (r) of all Li⊕C(r), i.e., F (r) = ∩i(Li⊕C(r)).
3: If F (r) is not empty then return YES and any point in F (r) as a witness for the

center of such a disk; otherwise, return NO.

Note that all Li ⊕C(r) are convex, so their common intersection can be com-
puted using a standard method in computational geometry, e.g., the incremental
construction method (i.e., maintain the current common intersection, insert the
next one, and update to have the new common intersection). Due to convexity,
each update takes O(log n) time. Hence, F (r) can be computed in O(n log n)
time.

To compute r+, we notice that all possible values of r+ can be computed in
O(n3) time: each possible value is decided by either two or three segments, in
the former case it is half of the distance between the closest distance between
two segments and in the latter case it is the radius of the circle tangent to three
segments. We can then obtain the following algorithm.

Algorithm 2. Solution for MID
1: Compute a sorted list L which contains the radii of all possible circles which are

decided by two or three segments.
2: Binary search in L using Decide(r) to compute the disk C(c+, r+) with center c+

and with the minimum radius r+, which intersects all segments by construction.
3: Return C(c+, r+).

We note that |L| = O(n3), hence L can be constructed and then sorted in
O(n3 log n) time. Using the binary search, with D(r) as a subroutine, the cost
is O(n log n) × O(log n3) = O(n log2 n). The total cost is therefore O(n3 log n) +
O(n log2 n) = O(n3 log n). Note that this algorithm, though each to implement,
might be too slow when n is large.

We could in fact use the farthest Voronoi diagram for line segments [1,14]
to improve this time bound. Simply compute such a Voronoi diagram and the
center of MID must lie either on a Voronoi edge or at a Voronoi vertex. In either
case, a candidate intersecting disk can be computed in O(1) time. We thus have
the following theorem.

Theorem 4. The Minimum Intersecting Disk problem can be solved in
O(n log n) time.

Proof. The farthest line-segment Voronoi diagram can be computed in O(n log n)
time with n input segments [1,14]. Moreover, such a diagram has a linear size
(i.e., O(n) number of edges and vertices). Hence, with a linear search we could
identify O(n) candidate intersecting disks and return the smallest one. Therefore,
the MID problem can be solved in O(n log n) time. ��

Dispersing and Grouping Points on Segments in the Plane 349

5.2 Approximation Factor Analysis

Our approximation algorithm for the 2D Grouping problem is to compute the
minimum intersecting disk C+ = C(c+, r+) for L, and return the maximum
distance d(C+) between the two or three points defining this disk C(c+, r+).

Let C∗ be the minimum radius disk, with radius r(C∗), enclosing all the
selected points of L in an optimal solution for the 2D grouping problem on L.
Let d(C∗) be the maximum distance between the two or three points defining
C∗. Let Opt be the the maximum distance between the selected points in the
optimal 2D grouping problem.

We have the following lemma.

Lemma 1. r(C∗) ≤ d(C∗)√
3

.

Proof. When C∗ is defined by two points, apparently we have r(C∗) = d(C∗)
2 .

When C∗ is defined by three points, we have r(C∗) ≤ d(C∗)
α . This α is

minimized when the three defining points for C∗ form a regular triangle, where
we have α =

√
3. ��

Since Opt is the maximum distance between the selected points on L (which
are inside the circle C∗) and d(C∗) is the maximum distance between the two or
three points defining C∗, we have d(C∗) ≤ Opt. Let App be the solution of the
approximation solution. We then combine all the arguments together as follows.

App =d(C+)

≤2 · r+

≤2 · r(C∗) (by the optimality of r+)

≤ 2√
3
d(C∗) (by Lemma 1)

≤ 2√
3
Opt (by the optimality of Opt)

≤1.1547 · Opt.

Therefore, we have the following theorem.

Theorem 5. There is a factor-1.1547 approximation algorithm for the 2D
grouping problem which runs in O(n log n) time.

We comment that the algorithm would still work if L1 or Manhattan distance
is used, with the approximation factor increased by an additional

√
2 factor.

6 Concluding Remarks

We consider a general version of the 2D dispersing problem, whose 1D counter-
part was recently studied by Li and Wang [11,12]. We prove that the 2D disper-
sion problem is NP-hard, in fact, NP-hard even when all segments are parallel

350 X. He et al.

and are of unit length. The proof can be applied to show the maximum inde-
pendent set problem on colored linear unit disk graph remains to be NP-hard.
We also consider the symmetric problem of grouping a set of n points, one on
each input segment, such that the maximum distance between any two selected
ones is minimized. For the latter problem, we give a factor-1.1547 approximation
which runs in O(n log n) time.

We have several open problems related to this paper:

1. Does the 2D dispersion problem admit a constant factor approximation?
2. Is the Independent Set problem on Colored Linear Unit Disk Graph W[1]-

hard?
3. Is the 2D grouping problem polynomial-time solvable?

Acknowledgments. This research is supported by NSF of China under project
61628207. XH is supported by the Fundamental Research Funds for the Central Univer-
sities under Project 2012017yjsy219. We thank anonymous reviewers for several useful
comments which greatly improve the presentation of this paper.

References

1. Aurenhammer, F., Drysdale, R.L.S., Kraser, H.: Farthest line segment Voronoi
diagrams. Infor. Proc. Lett. 100, 220–225 (2006)

2. Baur, C., Fekete, S.P.: Approximation of geometric dispersion problems. In: Jansen,
K., Rolim, J. (eds.) APPROX 1998. LNCS, vol. 1444, pp. 63–75. Springer, Heidel-
berg (1998). https://doi.org/10.1007/BFb0053964

3. Bereg, S., Ma, F., Wang, W., Zhang, J., Zhu, B.: On some matching problems
under the color-spanning model. Theor. Comput. Sci. 786, 26–31 (2019)

4. Breu, H.: Algorithmic aspects of constrained unit disk graphs. Ph.D. dissertation,
Department of Computer Science, UBC, Canada (1996)

5. Cevallos, A., Eisenbrand, F., Zenklusen, R.: Local search for max-sum diversifica-
tion. In: Proceedings of SODA 2017, pp. 130–142 (2017)

6. Chandra, B., Halldorsson, M.: Approximation algorithms for dispersion problems.
J. Algorithms 38, 438–465 (2001)

7. Clark, B., Colbourn, C., Johnson, D.: Unit disk graphs. Discret. Math. 86(1–3),
165–177 (1990)

8. Fellows, M., Hermelin, D., Rosamond, F., Vialette, S.: On the parameterized com-
plexity of multiple-interval graph problems. Theor. Comput. Sci. 410(1), 53–61
(2009)

9. Hassin, R., Rubinstein, S., Tamir, A.: Approximation algorithms for maximum
dispersion. Oper. Res. Lett. 21, 133–137 (1997)

10. Hunt III, H.B., Marathe, M.V., Radhakrishnan, V., Ravi, S.S., Rosenkrantz, D.J.,
Stearns, R.E.: NC-approximation schemes for NP- and PSPACE-hard problems
for geometric graphs. J. Algorithms 26(2), 238–274 (1998)

11. Li, S., Wang, H.: Dispersing points on intervals. In: Proceedings of ISAAC 2016.
LIPIcs, vol. 64, pp. 52:1–52:12 (2016)

12. Li, S., Wang, H.: Dispersing points on intervals. Discret. Appl. Math. 239, 106–118
(2018)

https://doi.org/10.1007/BFb0053964

Dispersing and Grouping Points on Segments in the Plane 351

13. Marx, D.: Efficient approximation schemes for geometric problems? In: Brodal,
G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 448–459. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11561071 41

14. Papadopoulou, E., Dey, S.K.: On the farthest line-segment Voronoi diagram. Int.
J. Comput. Geom. and Appl. 23(6), 443–460 (2013)

15. Pruente, J.: Minimum diameter color-spanning sets revisited. Discret. Optim. 34,
100550 (2019)

16. Ravi, R., Rosenkrantz, D., Tayi, G.: Heuristic and special case algorithms for dis-
persing problems. Oper. Res. 42, 299–310 (1994)

17. Sydow, M.: Approximation guarantees for max sum and max min facility dispersion
with parameterised triangle inequality and applications in result diversification.
Mathematica Applicanda 42, 241–257 (2014)

18. Wang, D.W., Kuo, Y.-S.: A study on two geometric location problems. Inf. Process.
Lett. 28, 281–286 (1988)

https://doi.org/10.1007/11561071_41

Synchronizing Words and Monoid
Factorization: A Parameterized

Perspective

Jens Bruchertseifer and Henning Fernau(B)

Fachber. 4 – Abteilung Informatikwissenschaften, Universität Trier,
54286 Trier, Germany

{s4jebruc,fernau}@uni-trier.de

Abstract. The concept of a synchronizing word is a very important
notion in the theory of finite automata. We consider the associated deci-
sion problem to decide if a given DFA possesses a synchronizing word
of length at most k, where k is the standard parameter. We show that
this problem DFA-SW is equivalent to the problem Monoid Factor-
ization introduced by Cai, Chen, Downey and Fellows. Apart from the
known W[2]-hardness results, we show that these problems belong to A[2],
W[P] and WNL. This indicates that DFA-SW is not complete for any
of these classes and hence, we suggest a new parameterized complexity
class W[Sync] as a proper home for these (and more) problems.

Keywords: Synchronizing word · Deterministic Finite Automaton
(DFA) · Parameterized complexity

1 Introduction

Černý’s conjecture is arguably the most famous open combinatorial problem
concerning deterministic finite automata (DFA), somehow dating back to [7].
Recently, a particular Special Issue was dedicated to this conjecture being around
for more than five decades; see [29]. This Special Issue also contains an English
translation of Černý’s paper [8]. The key notion is that of a synchronizing word.
A word x is called synchronizing for a DFA A, if there is a state sf , also called
the synchronizing state of A, such that if A reads x starting in any state, it
will end up in sf . The Černý conjecture states that every n-state DFA can be
synchronized by a word of length (n − 1)2 if it can be synchronized at all [9].
Although this bound was proven for several classes of finite-state automata, the
general case is still widely open. The currently best upper bound is cubic, and
only very little progress has been made; see [19,24,26,27].

The notion of a synchronizing word is not only important from a mathemat-
ical perspective, offering a nice combinatorial question, but it is quite important
in a number of application areas, simply because synchronization is an impor-
tant concept for many applied areas: parallel and distributed programming, sys-
tem and protocol testing, information coding, robotics, etc. Therefore, it is also
c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 352–364, 2020.
https://doi.org/10.1007/978-3-030-59267-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_30&domain=pdf
http://orcid.org/0000-0002-4444-3220
https://doi.org/10.1007/978-3-030-59267-7_30

Synchronizing Words and Monoid Factorization 353

interesting to compute a shortest synchronizing word. Unfortunately, as it was
shown by Ryststov and Eppstein in [14,25], the corresponding decision problem
DFA-SW (defined in the following) is NP-complete. Possible applications of this
problem are explained in [21]. The problem has also been considered from the
viewpoint of approximation [1] and parameterized complexity [4,15,17,23].

DFA-SW
Input: DFA A, k ∈ N

Question: Is there a synchronizing word w for A with |w| ≤ k?

We will continue to study this problem from the point of parameterized com-
plexity. The standard parameter for this problem is the length upper bound k,
which we assume to be the case without further mentioning in this paper.
W.l.o.g., we assume that k is given in unary. It was shown in [4,15,23] that this
problem is W[2]-hard, even when restricted to quite particular (and restricted)
forms of finite automata. Also, other parameters have been studied, in particu-
lar, in [15]. Two decades ago, in [5], Cai, Chen, Downey and Fellows introduced
the following algebraic problem.

Monoid Factorization (see [5])
Input: A finite set Q, a collection F = {f0, f1, . . . , fm} of mappings fi : Q → Q,
k ∈ N

Question: Is there a selection of at most k mappings fi1 , . . . , fik′ , k′ ≤ k, with
ij ∈ {1, . . . , m} for j = 1, . . . , k′, such that f0 = fi1 ◦ fi2 ◦ · · · ◦ fik′ ?

Again, k is the standard parameter which we will also consider (exclusively)
in this paper. In [5], it was proven that Monoid Factorization is W[2]-hard.
We prove in this paper that both problems are in fact equivalent in a param-
eterized sense. Furthermore, we exhibit three parameterized complexity classes
to which both problems belong to, namely, A[2], W[P] and WNL. This indicates
that DFA-SW is not complete for any of these classes and hence, we suggest
a new parameterized complexity class W[Sync] as a proper home for these two
parameterized problems (and more, as we will show).

Throughout this paper, we assume the reader to be familiar with some con-
cepts from parameterized complexity. In particular, a parameterized reduction is
a many-one reduction that consumes FPT-time (in our cases, it mostly uses only
polynomial time) and translates a parameter value k to a parameter value of
f(k) (of the target problem), for some computable function f . A parameterized
complexity class can be characterized by one (complete) problem, assuming the
class is closed under parameterized reductions. Examples comprise the following
classes; for the typical problems, the parameter will be always called k:

W[1] Given a nondeterministic single-tape Turing machine and k ∈ N, does it
accept the empty word within at most k steps?

W[2] Given a nondeterministic multi-tape Turing machine and k ∈ N, does it
accept the empty word within at most k steps?

354 J. Bruchertseifer and H. Fernau

A[2] Given an alternating single-tape Turing machine whose initial state is exis-
tential and that is allowed to switch only once into the set of universal states
and k ∈ N, does it accept the empty word within at most k steps?

WNL Given a nondeterministic single-tape Turing machine and some integer
� ≥ 0 in unary and k ∈ N, does it accept the empty word within at most �
steps, visiting at most k tape cells?

W[P] Given a nondeterministic single-tape Turing machine and some integer
� ≥ 0 in unary and k ∈ N, does it accept the empty word within at most �
steps, thereby making at most k ≤ � nondeterministic steps?

More details can be found in textbooks like [12,18]. The Turing way to these
complexity classes is described also in [10,20]. Further interesting complexity
classes (in our discussion) are: FPT, W[3], W[SAT], A[3], para-NP and XP. From
the literature, the following relations are known:

– FPT ⊆ W[1] ⊆ W[2] ⊆ W[3] ⊆ · · · ⊆ W[SAT] ⊆ W[P] ⊆ (para-NP ∩ XP);
– FPT ⊆ W[1] = A[1] ⊆ W[2] ⊆ A[2] ⊆ A[3] ⊆ · · · ⊆ AW[P] ⊆ XP.

Each of the inclusions that we have explicitly written is conjectured but not
known to be strict. Also, no non-trivial inter-relations are known between the
A- and W-hierarchies, apart from W[t] ⊆ A[t] for each t.

Guillemot defined WNL in [20] in the same way as we described it above.
Interesting formal language problems complete for WNL include Bounded
DFA-Intersection, given k DFAs, with parameter k, plus the length of the
word that should be accepted by all k automata, or Longest Common Subse-
quence, parameterized by the number of given strings. WNL is situated above
all levels of the W-hierarchy, because the last two mentioned problems are known
to be hard for W[t] for any t ≥ 1, see [3,30]. This proves the first part of the
following theorem that we include also for the ease of reference.

Theorem 1.
⋃

t≥1 W[t] ⊆ WNL ⊆ (para-NP ∩ XP).

Proof. Clearly, by a standard product automaton construction, Bounded DFA-
Intersection can be tested in time O(nk), where n is the maximum number
of states of the input DFAs. Hence, WNL is included in XP.

Recall that membership of Bounded DFA-Intersection (parameterized
by the number of automata) in WNL follows by guessing an input word letter-by-
letter, keeping track of the DFAs by writing their k current states, plus a counter
for the number of steps, on the tape of the Turing machine M . We can do so by
using as many letters as there are states in the automata, plus q (which is given
in unary). Alternatively, when counting the number of bits needed to write down
the tape contents using the alphabet {0, 1}, this amounts in O(k log(n)) many
bits, if n upper-bounds the size (number of bits) of (an encoding) of a Bounded
DFA-Intersection instance. Assuming that M has s many states, then there
are obviously no more than s · 2O(k log n) many configurations of M . With the
help of an additional counter, using log(s ·2O(k log n)) = log(s)+O(k log n) many
additional bits, we can ensure that such a nondeterministic Turing machine M ′

(simulating M) would need no more time than s·2O(k log n) when moving through

Synchronizing Words and Monoid Factorization 355

the configuration graph, avoiding visiting configurations twice. This proves the
claimed membership in para-NP. Hence, WNL is included in para-NP. 	

As a final remark concerning this detour to parameterized complexity, observe
that WNL is also closely linked to the class N[f poly, f log] of parameterized
problems that can be solved nondeterministically (at the same time) obeying
some time bound f(k) · nc for some constant c and some space bound f(k) ·
log(n), where f is some (computable) function, k is the parameter (value) and
n gives the instance size, as discussed in [13]. Our reasoning also shows that
Bounded DFA-Intersection (parameterized by the number of automata)
lies in N[f poly, f log]. Hence, WNL can be seen as the closure of N[f poly, f log]
under parameterized reductions. So, although one can argue that N[f poly, f log]
(and also some other classes introduced by Elberfeld, Stockhusen and Tantau)
is a better model of parameterized space complexity, WNL fits better into the
landscape depicted in Fig. 1, being closed under parameterized reductions by its
definition. Elberfeld, Stockhusen and Tantau [13] chose other types of reductions.

Fig. 1. Visualization of the complexity classes (‘A → B’ means ‘A is contained in B’)

2 Finding a Home for DFA-SW

As mentioned above, DFA-SW is known to be W[2]-hard. However, no com-
plexity class was hitherto suggested to which DFA-SW belongs. In this section,
we will describe three different memberships.

Theorem 2. DFA-SW is contained in the classes WNL and W[P].

Proof. Given a DFA A with state set Q and input alphabet Σ, where, w.l.o.g.,
Q ∩ Σ = ∅, together with a bound k on the length of a synchronizing word, a
Turing machine M is constructed that works as follows: (1) M writes a word of
length at most k over the alphabet Σ on its tape, followed by some letter over
the alphabet Q. (2) For each q ∈ Q (this information can be hard-coded in the
finite-state memory of M), M first moves its head to the left end of its tape
and then starts reading the tape content from left to right. Each time a symbol
a ∈ Σ is read, M updates the current state it stores according to the transition
function of A. Finally, M will read a symbol from Q, and it will only continue

356 J. Bruchertseifer and H. Fernau

working if this symbol equals the current state stored in the finite memory of M .
Notice that (2) works deterministically. (3) Only if M has completely processed
the loop described in (2) (without abort), M will accept. This verifies that the
guessed word over Σ is indeed synchronizing, always leading into the state that
was also previously guessed. Hence, M will accept the empty word if and only
if there is a possibility to guess a synchronizing word of length at most k. It is
also clear that the Turing machine makes at most (|Q| + 1)(2k + 1) many steps,
visiting at most k + 1 tape cells, thereby making at most k + 1 guesses. 	

We failed when trying to put DFA-SW into W[SAT]. By observing that the
switch between phases (1) and (2) of the description of the Turing machine M
in the previous proof can be also viewed as switching between existentially and
universally quantified states, M can be also re-interpreted to show:

Theorem 3. DFA-SW is contained in the class A[2].

3 How to Factor Monoids

We are now going to prove that Monoid Factorization is FPT-equivalent to
DFA-SW.

Lemma 1. There is a polynomial-time computable parameterized many-one
reduction from Monoid Factorization to DFA-SW.

Proof. Let F = {f0, f1, . . . , fm} be a collection of mappings fi : Q → Q and
k ∈ N. Define Q̂ = Q × Q ∪ {s0, . . . , sk, sk+1, f}. Let Σ = {a1, . . . , am, σ, τ} and
define the transition function δ : Q̂ × Σ → Q̂ as follows.

δ(p, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(q1, fi(q2)) if p = (q1, q2), x = ai for some 1 ≤ i ≤ m
(q1, q1) if p = (q1, q2), x = σ, or x = τ and q2 = f0(q1)
f if p = (q1, q2), x = τ and q2 = f0(q1)
s0 if p = s0, x = σ
s1 if p = s0, x = σ
s0 if p = si, x = τ, i = 1, . . . , k
si+1 if p = si, x = τ, i = 1, . . . , k
f if p = sk+1, x = τ
sk+1 if p = sk+1, x = τ
f if p = f, x ∈ Σ

This describes the interesting aspects of the automaton AF . We claim that (F, k)
is a YES-instance of Monoid Factorization if and only if (AF , k + 2) is a
YES-instance of DFA-SW.

Namely, if (F, k) is a YES-instance of Monoid Factorization, then there
exists a selection of at most k mappings fi1 , . . . , fik′ , k′ ≤ k, with ij ∈ {1, . . . , m}
for j = 1, . . . , k′, such that f0 = fi1 ◦ fi2 ◦ · · · ◦ fik′ . Then, w = σk−k′+1ai1 ·
ai2 · · · aik′ τ synchronizes AF . Clearly, w begins with σk−k′+1. When started in

Synchronizing Words and Monoid Factorization 357

some (q1, q2), AF will be in state (q1, q1) after digesting σk−k′+1. The word
ai1 · ai2 · · · aik′ will then drive AF into some state (q1, q′

2). Now, upon reading τ ,
AF could only enter (the only) synchronizing state f if q′

2 = f0(q1) was true. If
AF starts reading w in any of the states {s0, . . . , sk, sk+1, f}, it is straightforward
to check that AF will be in state f thereafter.

Conversely, if w is any word of length at most k +2 that is synchronizing for
AF , then it must be of length exactly k + 2, as this is the shortest path length
from s0 down to f , which is a sink state and must be hence the synchronizing
state. This also enforces w to start with σ and to end with τ . Also, w cannot
contain another occurrence of τ , as this would lead to s0 again (from any of the
states si) and hence prevent w from entering f , because the states si should
be walked through one-by-one, hence counting up to k + 2. Let us study the
longest suffix vτ of w that satisfies v ∈ {a1, . . . , am}∗. By the structure of w
that we analyzed before, we must have w = uσvτ , for some possibly empty word
u such that uσ starts with σ. In particular, |v| ≤ k, as |u|+ |v| = k. Hence, after
reading the symbol σ preceding v, AF will be in one of the states (q, q) or si (for
some |u| + 1 ≤ i ≤ k + 1) or f . Now, digesting v leads us into one of the states
sk+1 or f or (q, p), with p = (fi1 ◦ fi2 ◦ · · · ◦ fik′)(q), from which we can enter f
only (after reading τ) if f0(q) = p. This shows that, if u = ai1 · ai2 · · · aik′ , then
f0 = fi1 ◦ fi2 ◦ · · · ◦ fik′ . 	

Lemma 2. There is a polynomial-time computable parameterized reduction that
produces, given some DFA A and some integer k as an instance of DFA-SW,
an equivalent instance (A′, k′) of DFA-SW such that A′ possesses a sink state
(which is then also the unique possible synchronizing state).

Proof. Consider the DFA A = (Q,Σ, δ, q0, F). Without loss of generality, assume
Σ ∩ Q = ∅ and σ /∈ Σ ∪ Q. Let Σ′ = Σ ∪ Q ∪ {σ} be the input alphabet of the
DFA A′ that we are going to construct. Let s0, . . . , sk, f /∈ Q be fresh states. Let
Q′ = Q ∪ {s0, . . . , sk, f} be the states of A′. Define the transition function δ′ as:

δ′(p, x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δ(p, x) if p ∈ Q,x ∈ Σ
p if p ∈ Q,x = σ ∨ x ∈ Q \ {p}
f if p ∈ Q,x = p
s0 if p = si, x ∈ Q, i = 0, . . . , k − 1
si+1 if p = si, x /∈ Q, i = 0, . . . , k − 1
f if p = sk, x ∈ Q
sk if p = sk, x /∈ Q
f if p = f, x ∈ Σ′

This describes the interesting aspects of the automaton A′. We claim that, letting
k′ = k + 1, then A has a synchronizing word of length at most k if and only if
A′ has a synchronizing word of length (at most and exactly) k′.

Let w ∈ Σ∗ be a synchronizing word, leading A into state qf ∈ Q, with
|w| ≤ k. Then it is easy to observe that the word w′ = σk−|w|wqf leads A′

into the sink state f , wherever A′ starts. Hence, w′ is a synchronizing word of

358 J. Bruchertseifer and H. Fernau

length k′ as claimed. Notice that due to the sequence of states s0, . . . , sk, f , there
cannot be any shorter synchronizing word in A′.

Conversely, let w′ be a synchronizing word of length at most k′ for A′. As f is
a sink state, it must be the synchronizing state. Since in particular δ′∗(s0, w′) =
f , |w′| = k′ = k+1, and for the same reason, w′ = w′′q for some w′′ ∈ (Σ∪{σ})k

and q ∈ Q. Observe that the special letter σ either loops (on Q∪{f}) or advances
as any other letter from Σ (on Q′ \ Q). Therefore, if w′ is synchronizing for A′,
then so is σk−|w|wq, where w is obtained from w′′ by deleting all occurrences of
σ, i.e., w ∈ Σ∗. As σ acts as the identity on Q, and because the final letter q
indicates that, upon starting in some state from Q, the automaton must have
reached state q (as w′ is leading to the sink state f), we can see that w is indeed
a synchronizing word for A; moreover, |w| ≤ k. 	

Theorem 4. Monoid Factorization is (parameterized and polynomial-time)
equivalent to DFA-SW.

Proof. By Lemma 1, we can reduce Monoid Factorization to DFA-SW. Con-
versely, by Lemma 2, we need to consider only instances of DFA-SW that have
a sink state. With some background knowledge on transition monoids, it is clear
that by interpreting a given DFA A = (Q,Σ, δ, q0, F) with sink state sf as a
collection FA of |Σ| many mappings fa : Q → Q, by setting fa(q) = δ(q, a), we
can solve a DFA synchronization problem given by (A, k) by solving the instance
(F, k) of Monoid Factorization, where F = {f0 = sf} ∪ FA and the aim is
to represent the constant target map f0 = sf . 	

This motivates us to suggest a new parameterized complexity class W[Sync]
as the class of parameterized problems that can be reduced to DFA-SW (Fig. 1).

Corollary 1. Monoid Factorization is W[Sync]-complete.

4 More Problems Complete for or Contained in W[Sync]

Theorem 5. Bounded DFA-Intersection, parameterized by the length of
the commonly accepted string, is complete for W[Sync].

Previously [30], only W[2]-hardness was known for this parameterized problem.

Proof. By Lemma 2, we need to consider only an instance A = (Q,Σ, δ, q0, F) of
DFA-SW with a sink state sf . Observe that A has a synchronizing word of length
at most k if and only if A has a synchronizing word of length exactly k, because
wu is a synchronizing word if w is. Define Aq = (Q,Σ, δ, q, {sf}). Observe that⋂

q∈Q L(Aq) contains some word w ∈ Σk if and only if A has a synchronizing
word of length exactly k.

Conversely, if {Ai | 1 ≤ i ≤ �} is a collection of DFAs Ai = (Qi, Σ, δi, q0,i, Fi),
then construct an equivalent instance of DFA-SW as follows. First, assume that
the state sets Qi are pairwise disjoint. Then, take two new letters a, b to form

Synchronizing Words and Monoid Factorization 359

Fig. 2. Transition function δ of the constructed W[Sync] instance.

Σ′ = Σ ∪ {σ, τ}. Let Q′ =
(⋃�

i=1 Qi

)
∪ {s0, . . . , sk, sk+1, f} be the state set of

the DFA A that we construct. Define the transition function δ as in Fig. 2.
This describes the interesting aspects of the automaton A. We claim that,

letting k′ = k + 2, then
⋂�

i=1 L(Ai) contains some word w ∈ Σk if and only if A
has a synchronizing word of length (at most and exactly) k′, namely w′ = σwτ .
More precisely, similar to the construction from Lemma 1, the states si force
to consider a word from {σ}Σk{τ} if there should be a synchronizing word of
length k′ for A at all. One could move only from the part Ai of A to f when
reading τ , which also forces to have been in the set of final states Fi before.
Digesting σ as the first letter lets Ai start in the initial state q0,i. 	

We now discuss the well-known Longest Common Subsequence problem.
The input consists of � strings x1, . . . , x� over an alphabet Σ, and the task is to
find a string w ∈ Σk occurring in each of the xi as a subsequence. As explained
in [30], by building an automaton Ai for each xi that accepts all subsequences
of xi, it is not hard to solve a Longest Common Subsequence instance by a
Bounded DFA-Intersection instance, preserving our parameter. Hence:

Proposition 1. Longest Common Subsequence ∈ W[Sync].

We do not know if Longest Common Subsequence is also hard for W[Sync].
We only know W[2]-hardness from [3], further membership results were unknown
hitherto, so the previous proposition remedies this situation a bit.

One could also think of many ways to restrict the inputs of Bounded DFA-
Intersection. For instance, observe that the automata constructed in the argu-
ment of Proposition 1 are all accepting finite languages. Is there a converse reduc-
tion from such a Bounded DFA-Intersection instance to some Longest
Common Subsequence instance? Is this leading to another complexity class
between W[2] and W[Sync]?

In [4], we discussed the restriction of DFAs to so-called TTSPL graphs
for instances of DFA-SW. While we could prove W[2]-hardness also for such
restricted instances, it is open if this leads to a problem that is still complete for
W[Sync]. As shown by Möhring [22], there are quite close connections between

360 J. Bruchertseifer and H. Fernau

TTSP(L) graphs and so-called series-parallel partial orders. Without going into
any details here, observe that the mappings Q → Q that can be associated
to input letters are monotone with respect to the series-parallel partial order
corresponding to the TTSPL automaton graph. Our earlier constructions show:

Corollary 2. DFA-SW, restricted to DFAs with TTSPL automata graphs,
is parameterized and polynomial-time equivalent to Monoid Factorization,
restricted to collections of mappings F that are monotone with respect to a given
series-parallel partial order on the finite ground set Q.

This discussion also entails the (open) question concerning the complexity
status of Monoid Factorization, restricted to collections of mappings F that
are monotone with respect to a given partial order on the finite ground set Q.

5 Further Comments

The problems that we considered in this paper have quite a rich structure and
many variations. We will comment on these variations in this section.

5.1 Variations on MONOID FACTORIZATION

Observe that it is important that the monoid used in Monoid Factorization
is only implicitly given, not by a multiplication table. A variation could be:

Input: A finite set M , a binary operation ◦ given in the form of a multiplication
table, such that (M, ◦) forms a finite monoid, with neutral element e ∈ M , a
target element t ∈ M , a finite subset B ⊆ M , k ∈ N

Question: Is there a selection of at most k elements b1, . . . , bk′ , k′ ≤ k, from B,
such that t = b1 ◦ b2 ◦ · · · ◦ bk′?

However, an explicit representation of the multiplication table of (QQ, ◦)
(where QQ is the set of all mappings from Q to Q) would already take O∗(|Q|2|Q|)
space and hence allow to construct an arc-labeled directed graph with a vertex
for each mapping Q → Q and an arc labeled fi from f to g if f ◦fi = g, where fi

is from the explicit set of generators F ′ = {f1, . . . , fm}. Now, the representability
of f0 with at most k mappings from F ′ can be solved by looking for a path of
length at most k in the directed graph we just described, leading from the identity
mapping ΔQ to f0. Hence, when the monoid is given in an explicit form, then the
factorization problem can be solved in polynomial time. It might be interesting to
study other implicitly given monoids with respect to the factorization question.
Let us mention one more example. Assume that our implicitly given monoid
operation is set union. Then, the corresponding factorization problem would take
subsets {X0,X1, . . . , Xm} of a given finite set S as an input, and the question is
to pick at most k sets from {X1, . . . , Xm}, say, Xi1 , . . . , Xik′ , where k′ ≤ k, such
that X0 =

⋃k′

j=1 Xij . Obviously, this corresponds to Set Cover, which hence
gives an example of a monoid factorization problem which, when parameterized

Synchronizing Words and Monoid Factorization 361

by k, is complete for W[2]. It might be interesting to investigate further implicitly
given monoids from this parameterized perspective. We only mention as a last
example from the literature Permutation Group Factorization, which is
known to be W[1]-hard but is lacking a precise classification; see [3,12].

5.2 Extension Variants

Following [6,16], we are now defining so-called extension problems, depending
on the chosen partial order ≺ on Σ∗. Maybe surprisingly, the complexity status
of these problems heavily depends on this choice.

Ext DFA-SW-≺
Input: DFA A with input alphabet Σ, u ∈ Σ∗

Question: Is there a w ∈ Σ∗, u ≺ w, such that w is minimal for the set of
synchronizing words for A with respect to ≺?

We are focussing on the length-lexicographical ordering ≤ll and the subse-
quence ordering | in the following. For further orderings, we refer to [16]. We
consider |u| to be the standard parameter.

Theorem 6. Ext DFA-SW-≤ll is contained in co-WNL ∩ co-W[P] ∩ co-A[2],
but hard for co-W[Sync].

Proof. For membership in co-WNL∩co-W[P]∩co-A[2], we can modify the proofs
of Theorems 2 or 3, building a nondeterministic Turing machine M as follows,
given A and u. As before, the machine can first guess a possible word w ≤ll u
and verify if it is synchronizing. If such a word is found, then (A, u) is a NO-
instance. The reduction itself checks if A is synchronizable at all; then we also
have that if M does not find a synchronizing word w ≤ll u, then (A, u) is a
YES-instance, because as A is synchronizable, there must be a synchronizing
word v, and according to the previous tests, u ≤ll v must hold.

For the hardness claim, consider a DFA A on input alphabet Σ, together
with k, as an instance of DFA-SW. We can first check in polynomial time if A
is synchronizable at all. If A is not synchronizable, then (A, k) (clearly) is a NO-
instance of DFA-SW, so our reduction will produce some fixed NO-instance of
Ext DFA-SW-≤ll. Hence, we now assume that A is synchronizable. Let c /∈ Σ
be a fresh letter. Consider an arbitrary ordering < on Σ, extended by c < x
for all x ∈ Σ towards an ordering on Σ̂ = Σ ∪ {c}. We are going to define the
DFA Â as an extension of A, working on the same state set Q. Let c simply
act as the identity on Q. Hence, no word from c∗ is synchronizing for Â. As A
is synchronizable, Â is also synchronizable. Consider Â together with u = ck+1

as an instance of Ext DFA-SW-≤ll. If Â has a synchronizing word w ∈ Σ≤k,
then clearly u is not extendible, as |w| < |u|. Otherwise, as Â is synchronizable,
Â must have some synchronizing word w with |w| ≥ |u|, and any synchronizing
word of Â is of length at least |u|. As u is the smallest of all words in Σ̂∗ of
length at least |u|, any synchronizing word will hence extend u. Hence, if Â has
no synchronizing word of length at most k, then u is extendible. 	

362 J. Bruchertseifer and H. Fernau

Theorem 27 in [16] converted an instance of Ext Hitting Set into an
instance of Ext DFA-SW-|. With [2], this proves that Ext DFA-SW-|, is
W[3]-hard, lifting it beyond another rarely mentioned complexity class; see [11].
This construction can be also adapted for TTSPL automata graphs.

5.3 Minimum Synchronizable Sub-automata

DFA-MSS (referring to a minimum synchronizable sub-automaton)
Input: DFA A with input alphabet Σ, k ∈ N

Question: Is there a sub-alphabet Σ̂ ⊆ Σ, |Σ̂| ≤ k, such that the restriction
of A to Σ̂ is synchonizable, i.e., is there a synchronizing word over Σ̂?

In [28], Türker and Yenegün asked to extract a synchronizable sub-automaton
that is as small as possible, obtained by deleting letters from its specification.
They formalized this idea as a weighted minimization problem. Here, it is suffi-
cient to consider the unweighted variant (defined in the box). Their NP-hardness
proof can be re-interpreted as a result on parameterized complexity.

Corollary 3. DFA-MSS is W[2]-hard.

Without proof, we mention the following membership result. However, mem-
bership in A[2] is open, nor to we know about WNL-hardness. It might be also
the case that DFA-MSS is W[Sync]-hard.

Theorem 7. DFA-MSS is contained in WNL ∩ W[P].

A Short Summary. We looked at various W[2]-hard problems where a proper
classification is still missing. In particular, problems rooting in Formal Languages
offer interesting sample problems. Many questions are still open about W[Sync].

References

1. Berlinkov, M.V.: Approximating the minimum length of synchronizing words is
hard. Theory Comput. Syst. 54(2), 211–223 (2014)

2. Bläsius, T., Friedrich, T., Lischeid, J., Meeks, K., Schirneck, M.: Efficiently enu-
merating hitting sets of hypergraphs arising in data profiling. In: Algorithm Engi-
neering and Experiments (ALENEX), pp. 130–143. SIAM (2019)

3. Bodlaender, H., Downey, R.G., Fellows, M.R., Wareham, H.T.: The parameterized
complexity of sequence alignment and consensus. Theor. Comput. Sci. 147, 31–54
(1995)

4. Bruchertseifer, J., Fernau, H.: Synchronizing series-parallel automata with loops.
In: Freund, R., Holzer, M., Sempere, J.M. (eds.) Eleventh Workshop on Non-
Classical Models of Automata and Applications, NCMA, pp. 63–78. Österreichische
Computer Gesellschaft (2019)

5. Cai, L., Chen, J., Downey, R., Fellows, M.: On the parameterized complexity of
short computation and factorization. Arch. Math. Logic 36, 321–337 (1997)

Synchronizing Words and Monoid Factorization 363

6. Casel, K., Fernau, H., Ghadikolaei, M.K., Monnot, J., Sikora, F.: On the complexity
of solution extension of optimization problems. Technical report arXiv:1810.04553
[cs.CC], Cornell University, arXiv (2018)

7. Černý, J.: Poznámka k homogénnym experimentom s konečnými automatmi.
Matematicko-fyzikálny časopis 14(3), 208–216 (1964)

8. Černý, J.: A note on homogeneous experiments with finite automata. J. Automata
Lang. Comb. 24(2–4), 123–132 (2019)

9. Černý, J., Pirická, A., Rosenauerová, B.: On directable automata. Kybernetika
7(4), 289–298 (1971)

10. Cesati, M.: The Turing way to parameterized complexity. J. Comput. Syst. Sci.
67, 654–685 (2003)

11. Chen, J., Zhang, F.: On product covering in 3-tier supply chain models: Natural
complete problems for W[3] and W[4]. Theor. Comput. Sci. 363(3), 278–288 (2006)

12. Downey, R.G., Fellows, M.R.: Fundamentals of Parameterized Complexity. Texts
in Computer Science. Springer, Heidelberg (2013). https://doi.org/10.1007/978-1-
4471-5559-1

13. Elberfeld, M., Stockhusen, C., Tantau, T.: On the space and circuit complexity of
parameterized problems: classes and completeness. Algorithmica 71(3), 661–701
(2015)

14. Eppstein, D.: Reset sequences for monotonic automata. SIAM J. Comput. 19(3),
500–510 (1990)

15. Fernau, H., Heggernes, P., Villanger, Y.: A multi-parameter analysis of hard prob-
lems on deterministic finite automata. J. Comput. Syst. Sci. 81(4), 747–765 (2015)

16. Fernau, H., Hoffmann, S.: Extensions to minimal synchronizing words. J. Automata
Lang. Comb. 24, 287–307 (2019)

17. Fernau, H., Krebs, A.: Problems on finite automata and the exponential time
hypothesis. Algorithms 10(24), 1–25 (2017)

18. Flum, J., Grohe, M.: Parameterized Complexity Theory. Springer, Heidelberg
(2006). https://doi.org/10.1007/3-540-29953-X

19. Frankl, P.: An extremal problem for two families of sets. Eur. J. Comb. 3(2), 125–
127 (1982)

20. Guillemot, S.: Parameterized complexity and approximability of the longest com-
patible sequence problem. Discret. Optim. 8(1), 50–60 (2011)

21. Kisielewicz, A., Kowalski, J., Szyku�la, M.: Computing the shortest reset words of
synchronizing automata. J. Comb. Optim. 29(1), 88–124 (2013). https://doi.org/
10.1007/s10878-013-9682-0

22. Möhring, R.H.: Computationally tractable classes of ordered sets. In: Rival, I. (ed.)
Algorithms and Order: Proceedings of the NATO Advanced Study Institute. NATO
Science Series C, vol. 255, pp. 105–194. Springer, Heidelberg (1989). https://doi.
org/10.1007/978-94-009-2639-4 4

23. Andres Montoya, J., Nolasco, C.: On the synchronization of planar automata. In:
Klein, S.T., Mart́ın-Vide, C., Shapira, D. (eds.) LATA 2018. LNCS, vol. 10792, pp.
93–104. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77313-1 7

24. Pin, J.E.: On two combinatorial problems arising from automata theory. Ann.
Discret. Math. 17, 535–548 (1983)

25. Rystsov, I.K.: On minimizing the length of synchronizing words for finite automata.
In: Theory of Designing of Computing Systems, pp. 75–82. Institute of Cybernetics
of Ukrainian Acad. Sci. (1980). (in Russian)

26. Shitov, Y.: An improvement to a recent upper bound for synchronizing words of
finite automata. J. Automata Lang. Combin. 24(2–4), 367–373 (2019)

http://arxiv.org/abs/1810.04553
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/978-1-4471-5559-1
https://doi.org/10.1007/3-540-29953-X
https://doi.org/10.1007/s10878-013-9682-0
https://doi.org/10.1007/s10878-013-9682-0
https://doi.org/10.1007/978-94-009-2639-4_4
https://doi.org/10.1007/978-94-009-2639-4_4
https://doi.org/10.1007/978-3-319-77313-1_7

364 J. Bruchertseifer and H. Fernau

27. Szyku�la, M.: Improving the upper bound on the length of the shortest reset word.
In: Niedermeier, R., Vallée, B. (eds.) 35th Symposium on Theoretical Aspects of
Computer Science, STACS. LIPIcs, vol. 96, pp. 56:1–56:13. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2018)

28. Türker, U.C., Yenigün, H.: Complexities of some problems related to synchronizing,
non-synchronizing and monotonic automata. Int. J. Found. Comput. Sci. 26(1),
99–122 (2015)

29. Volkov, M.V.: Preface: special issue on the Černý conjecture. J. Automata Lang.
Comb. 24(2–4), 119–121 (2019)

30. Todd Wareham, H.: The parameterized complexity of intersection and composition
operations on sets of finite-state automata. In: Yu, S., Păun, A. (eds.) CIAA 2000.
LNCS, vol. 2088, pp. 302–310. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-44674-5 26

https://doi.org/10.1007/3-540-44674-5_26
https://doi.org/10.1007/3-540-44674-5_26

Hidden Community Detection
on Two-Layer Stochastic Models: A

Theoretical Perspective

Jialu Bao1, Kun He2(B), Xiaodong Xin2, Bart Selman3, and John E. Hopcroft3

1 Department of Computer Science, University of Wisconsin-Madison,
Madison, WI 50706, USA

2 School of Computer Science and Technology, Huazhong University of Science
and Technology, Wuhan 430074, China

brooklet60@hust.edu.cn
3 Department of Computer Science, Cornell University, Ithaca, NY 14853, USA

Abstract. Hidden community is a new graph-theoretical concept
recently proposed by [3], in which the authors also propose a meta-
approach called HICODE (Hidden Community Detection) for detect-
ing hidden communities. HICODE is demonstrated through experiments
that it is able to uncover previously overshadowed weak layers and
uncover both weak and strong layers at a higher accuracy. However,
the authors provide no theoretical guarantee for the performance. In
this work, we focus on theoretical analysis of HICODE on synthetic two-
layer networks, where layers are independent to each other and each layer
is generated by stochastic block model. We bridge their gap through
two-layer stochastic block model networks in the following aspects: 1)
we show that partitions that locally optimize modularity correspond to
grounded layers, indicating modularity-optimizing algorithms can detect
strong layers; 2) we prove that when reducing found layers, HICODE
increases absolute modularities of all unreduced layers, showing its layer
reduction step makes weak layers more detectable. Our work builds a
solid theoretical base for HICODE, demonstrating that it is promising
in uncovering both weak and strong layers of communities in two-layer
networks.

Keywords: Hidden community · Multi-layer stochastic block model ·
Modularity optimization · Social network

1 Introduction

Community detection problem has occurred in a wide range of domains, from
social network analysis to biological protein-protein interactions, and numerous
algorithms have been proposed, based on the assumption that nodes in the same
community are more likely to connect with each other. While many real-world

J. Bao—Portion of the work was done while at Cornell University.

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 365–376, 2020.
https://doi.org/10.1007/978-3-030-59267-7_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_31&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_31

366 J. Bao et al.

social networks satisfy the assumption, their communities can overlap in interest-
ing ways: communities based on schools can overlap as students attend different
schools; connections of crime activities often hide behind innocuous social con-
nections; proteins serving multiple functions can belong to multiple function
communities. In any of these networks, communities can have more structures
than random overlappings. For example, communities based on schools may
be divided into primary school, middle school, high school, college and gradu-
ate school layers, where each layer are approximately disjoint. This observation
inspires us to model real world networks as having multiple layers.

To simulate real-world networks, researchers also build generative models
such as single-layer stochastic block model G(n, n1, p, q) (p > q). It can be seen
as Erdős-Rényi model with communities—G(n, n1, p, 1) has n nodes that belongs
to n1 disjoint blocks/communities (we use them interchangeably in the follow-
ing), and any node pair internal to a community has probability p to form an
edge, while any node pair across two communities have q probability to form an
edge. We propose a multi-layer stochastic block model G(n, n1, p1, ..., nL, pL),
where each layer l consists of nl disjoint communities, and communities in dif-
ferent layers are independent to each other. Each layer l is associated with one
edge probability pl, determining the probability that a node pair internal to a
community in that layer forms an edge. In this ideal abstraction, we assume
that each node belongs to exactly one community in each layer, and an edge is
generated only through that process, i.e. all edges outgoing communities of one
layer are generated as internal edges in some other layers. Note that our model
is different to the multi-layer stochastic blockmodel proposed by Paul et al. [6],
where they have different types of edges, and each type of edges forms one layer
of the network.

He et al. [3,4] first introduce the concept of hidden communities, remarked
as a new graph-theoretical concept [7]. He et al. propose the Hidden Commu-
nity Detection (HICODE) algorithm for networks containing both strong and
hidden layers of communities, where each layer consists of a set of disjoint or
slightly overlapping communities. A hidden community is a community most of
whose nodes also belong to other stronger communities as measured by metrics
like modularity [2]. They showed through experiments that HICODE uncovers
grounded communities with higher accuracy and finds hidden communities in
the weak layers. However, they did not provide any theoretical support.

In this work, we provide solid theoretical analysis that demonstrates the
effectiveness of HICODE on two-layer stochastic models. One important step in
HICODE algorithm is to reduce the strength of one partition when the partition
is found to approximate one layer of communities in the network. Since commu-
nities in different layers unavoidably overlap, both internal edges and outgoing
edges of remaining layers have a chance to be reduced while reducing one layer.
It was unclear how the modularity of remaining layer would change. Through
rigorous analysis of three layer weakening methods they suggested, we prove
that using any one of RemoveEdge, ReduceEdge and ReduceWeight on one layer
increases the modularity of the grounded partition in the unreduced layer. Thus,
we provide evidence that HICODE’s layer reduction step makes weak layers more
detectable.

Hidden Community Detection on Two-Layer Stochastic Models 367

In addition, through simulation, we show that on two-layer stochastic block
model networks, partitions with locally maximal modularity roughly correspond
to planted partitions given by grounded layers. As a result, modularity opti-
mizing community detection algorithms such as Louvain [1] can approximate
layers fairly accurately in a two-layer stochastic block model, even when layers
are almost equally strong and non-trivially overlapped. This indicates the previ-
ous proof’s assumption that one layer of communities is reduced exactly is rea-
sonable. We also illustrate how the modularity of randomly sampled partitions
change as HICODE iterates, and our plots show that not only absolute mod-
ularity but also relative modularity of unreduced layers increases as HICODE
reduces one found layer.

2 Preliminary

In this section, we first introduce metrics that measure community partition
quality. Then, we summarize important components in HICODE, the iterative
meta-approach we are going to analyze, and in particular, how it reduce layers
of detected communities during the iterations. Also, we define the multi-layer
stochastic block model formally, and the rationale why it is a reasonable abstrac-
tion of generative processes of real world networks.

2.1 Modularity Metric

In determining plausible underlying communities in a network, we rely on metrics
measuring quality of community partitions. Usually, nodes sharing common com-
munities are more likely to develop connections with each other, so in single-layer
networks, we expect that most edges are internal to one grounded community,
instead of outgoing edges whose two endpoints belong to two communities. It
thus gives rise to metrics measuring the similarity between an arbitrary partition
and the grounded partition based on the fraction of internal edges to outgoing
edges. One widely-used metric of this kind is “modularity” [2]. We define the
modularity of one community in multi-layer networks as follows:

Definition 1 (Modularity of a community). Given a graph G = (V,E)
with a total of e edges and multiple layers of communities, where each layer
of communities partitions all nodes in the graph, for a community i in layer
l, let eill denote i’s internal edges, and eilout denote the number of edges that
have exactly one endpoint in community i. Let dil be the total degree of nodes in
community i (dil = 2eill + eilout). Then the modularity of community i in layer l

is Qi
l = eill

e −
(

di
ll

2e

)2

.

Roughly, the higher fraction of internal edges a community has among all
edges, the higher its modularity in graph, indicating that members in that com-
munity are more closely connected.

When optimizing modularity, the algorithm concerns the modularity of a
partition instead of one community. The modularity of a partition is defined as
follows, which is consistent with the original definition of Girvan et al. [2]:

368 J. Bao et al.

Definition 2 (Modularity of a partition/layer). Given a network G =
(V,E) with multiple layers of communities, for any layer l, say l partitions
all the nodes into disjoint communities {1, . . . , N}, then the layer modularity
is Ql =

∑N
i=1 Qi

l.

Whether in single-layer network or multi-layer ones, the ground truth community
partition is expected to have high modularity when compared to other possible
partitions.

2.2 HIdden COmmunity DEtection (HICODE) Algorithm

Informally, given a state-of-the-art community detection algorithm A for single
layer networks, HICODE(A) finds all layers in multi-layer networks through
careful alternations of detecting the strongest layer in the remaining graph using
A and reducing found layers on the network. Given a network G = (V,E),
He et al. [3] proposed three slightly different methods for reducing layers in
HICODE:

1. RemoveEdge: Given one layer l that partitions G, RemoveEdge removes
all internal edges of layer l from G.

2. ReduceEdge: Given one layer l that partitions G, ReduceEdge approximates
the background density q of edges contributed by all other layers, and then
removes 1 − q fraction of internal edges of layer l from network G. We will
detail the computation of q after introducing multi-layer stochastic block
model.

3. ReduceWeight: This is the counterpart of ReduceEdge on weighted graphs.
Given one layer l that partitions network G, ReduceWeight approximates
the background density q of edges contributed by all other layers, and then
reduces the weight of all internal edges to a q fraction of its original values.

For detailed description of HICODE, see [3].

2.3 Multi-layer Stochastic Block Model

Before defining the general multi-layer Stochastic Block Model (SBM), consider
the case where there is exactly two layers.

Definition 3 (Two-layer Stochastic Block Model). A synthetic network
G(n, n1, p1, n2, p2) generated by two-layer stochastic block model has n nodes,
where n, n1, n2 ∈ N+, n1, n2 ≥ 3. For l = 1 or 2, layer l of G consists of nl

planted communities of size sl = n
nl

with internal edge probability pl ∈ (0, 1].
Communities in different layers are grouped independently, so they are expected
to intersect with each other by r = n

n1n2
nodes.

Each community of layer l is expected to have pl · 1
2sl1 internal edges1. The

model represents an ideal scenario when there is no noise and all outgoing edges
1 For simplicity, we allow self-loops.

Hidden Community Detection on Two-Layer Stochastic Models 369

of one layer are the result of them being internal edges of some other layers. We
will detail the expected number of outgoing edges and the size of the intersection
block of layers in Lemma 1 in the next section.

For example, in G(200, 4, 5, p1, p2), layer 1 contains four communities C1
1 =

{1, 2, ..., 50}, C2
1 = {51, 52, ..., 100}, C3

1 = {101, 102, ..., 150}, C4
1 = {151, 152, ...,

200}, and layer 2 contains five communities C1
2 = {1, 6, ..., 196}, C2

2 = {2, 7, ...,
197}, C3

2 = {3, 8, ..., 198}, C4
2 = {4, 9, ..., 199}, C5

2 = {5, 10, ..., 200}. Each com-
munity is modeled as an Erdős-Rényi graph. Each Ci

1 in layer 1 is expected
to have 0.5 · 502p1 internal edges, and each Ci

2 in layer 2 are expected to have
0.5 · 402p1 internal edges.

Each community in layer 1 overlaps with each community in layer 2. Each
overlap consists of 20% of the nodes of layer 1 community and 25% of the nodes
of layer 2 community. Figure 1 (a) and (b) show the adjacency matrix when nodes
are ordered by [1, ..., n] for layer 1, and [1, 6, ..., 196, 2, 7, ..., 197, 5, 10, ..., 200] for
layer 2, respectively (Here we set p1 = 0.12, p2 = 0.10). Fig. 1 (c) and (d) show
an enlarged block for each layer. Edges in layer 1 are plotted in red, edges in
layer 2 are plotted in blue and the intersected edges are plotted in green.

(a) layer 1 (b) layer 2 (c) a L1 block (d) a L2 block

Fig. 1. The stochastic blocks in two layers. (Color figure online)

More generally, we can define a multi-layer stochastic block model.

Definition 4 (Multi-layer Stochastic Block Model). A multi-layer
stochastic block model G(n, n1, p1, ..., nL, pL) generates a network with L lay-
ers, and each layer l has nl communities of size n

nl
with internal edge probability

pl. All layers are independent with each other.

2.4 Background Edge Probability for Multi-layer SBM

Given a layer, observed edge probability within its grounded communities would
be higher than its grounded edge generating probability, because other layers
could also generate edge internal to this layer. When we are interested in the
grounded edge generating probability of a layer, we can consider edges gener-
ated by all other layers as background noise. Since layers are independent to each
other, these background noise edges are uniformly distributed among communi-
ties of layer l, so we can expect background noise edge probability the same on
node pairs either internal to or across layer l communities. Thus, the observed
edge probability p̂ of communities in a layer l equals p + q̂ − p · q̂, where p is the

370 J. Bao et al.

grounded edge generating probability of layer l, q̂ is the observed edge probabil-
ity across layer 1 communities. Thus, we can estimate the actual edge probability
by p = p̂−q̂

1−q̂ .

3 Theoretical Analysis on Two-Layer SBM

In this section, we show that on networks generated by two-layer stochastic block
model, weakening one layer would not decrease the quality of communities in any
other layer even when they considerably overlap with each other. We will prove
on two-layer stochastic block models that absolute modularity of unreduced layer
must increase after performing RemoveEdge, ReduceEdge, or ReduceWeight.
For simplicity, we make the assumption that the base algorithm can uncover a
layer exactly – every time it finds a layer to reduce, it does not make mistakes
on community membership. This is a strong assumption, but later on we will
justify why our result still holds if the base algorithm only approximates layers
and why the base algorithm can almost always find some approximate layers.

For each community in layer l, let sl denote the size of each community in
layer l, and ml denote the number of node pairs in the community. Since we
allow self-loops, ml = 1

2s2l . Also, with the assumption that all communities in
one layer are equal sized, their expected numbers of internal (or outgoing) edges
are the same. Thus, we can use ell, elout to respectively denote the expected
number of internal, outgoing edges for each community i in layer l. Then, let
dl = 2ell + elout denote the expected total degree of any community in layer l.

Lemma 1. In the synthetic two-layer block model network G(n, n1, n2, p1, p2),
for a given community i in layer 1, the expected number of its internal edges as
well as outgoing edges, and layer 1’s modularity are as follows:

e11 =
(

1 − 1
n2

)
m1p1 +

1
n2

m1p12, (1)

e1out =
p2
n2

s1(n − s1), (2)

Q1 = 1 − 1
n1

− e1out
d1

, (3)

where p12 = p1 + p2 − p1 · p2. Symmetrically, given a community i in layer 2,
the expected number of its internal edges as well as outgoing edges, and layer 2’s
modularity are as follows:

e22 =
(

1 − 1
n1

)
m2p2 +

1
n1

m2p12, (4)

e2out =
p1
n1

s2(n − s2), (5)

Q2 = 1 − 1
n2

− e2out
d2

. (6)

We omitted the proof because of the space limit.

Hidden Community Detection on Two-Layer Stochastic Models 371

Lemma 2. For layer l in a two-layer stochastic block model, if the layer weak-
ening method (e.g. RemoveEdge, ReduceEdge, ReduceWeight) reduces a bigger
percentage of outgoing edges than internal edges, i.e. the expected number of
internal and outgoing edges after weakening, e′

ll, e
′
lout, satisfy e′

lout

elout
<

e′
ll

ell
, then

the modularity of layer l increases after the weakening method.

We omitted the proof because of the space limit.
For a synthetic stochastic block model network G with set of layers L, let Sl

be the set of edges whose underlying node pairs are only internal to layer l ⊆ L,
let Sl1l2 be the set of edges internal to both layers l1, l2 ⊆ L. Concretely, in the
two-layer stochastic block model, L = {1, 2}. S1 is the set of edges only internal
to layer 1, S2 is the set of edges only internal to layer 2, and S12 is the set of
edges internal to both layer 1 and layer 2.

Lemma 3. In a two-layer stochastic blockmodel network G(n, n1, n2, p1, p2),
before any weakening procedure.

e11 =
|S12| + |S1|

n1
, e1out =

2
n1

|S2|,

e22 =
|S12| + |S2|

n2
, e2out =

2
n2

|S1|.

We omitted the proof due to space limit.
Using the above three lemmas, we can prove the following theorems.

Theorem 1. For a two-layer stochastic blockmodel network G(n, n1, n2, p1, p2),
the modularity of a layer increases if we apply RemoveEdge on communities in
the other layer.

Proof. If we remove all internal edges of communities in layer 1, both |S12| and
|S1| become 0, then the remaining internal edges of layer 2 is e′

22 = 1
n2

(|S12| +

|S2|) = |S2|
n2

> 0. There is no outgoing edge of layer 2, so e′
2out = 0. Thus,

e′
2out

e2out
= 0 <

e′
22

e22
, and applying Lemma2, we have that the modularity of layer 2

after RemoveEdge on layer 1 Q′
2 > Q2.

Similarly, the modularity of layer 1 after RemoveEdge on layer 2, Q′
1, is

greater than Q1.

RemoveEdge not only guarantees to increase the absolute modularity of layer
2 but also guarantees that layer 2 would have higher modularity than any possible
partition of n nodes into n2 communities in the reduced network.

Theorem 2. For a two-layer stochastic blockmodel network G(n, n1, n2, p1, p2),
If no layer 2 community contains more than half of the total edges inside it after
applying RemoveEdge on layer 1, then layer 2 has the highest modularity among
all possible partitions of n nodes into n2 communities.

372 J. Bao et al.

Proof. After applying RemoveEdge on layer 1, there are no outgoing edges of
any community in layer 2. It means that for any community i, ei2out = 0 and
di2 = 2ei22. Thus, the modularity of layer 2 is:

Q2 =
∑

i∈layer 2

Qi
2 =

∑
i∈layer 2

[
ei22
e

−
(

di2
2e

)2
]

=
∑

i∈layer 2

[
4e · ei22 − (2ei22)

2

4e2

]
= n2

(
e · e22 − (e22)2

e2

)
.

For any one partition, we can transform layer 2 partition to it by moving a series
of nodes across communities. Every time we move one node from one community
i to another community j, both ei2out, e

j
2out will increase by 1, ei22 will decrease

by 2 while ej22 remains the same. Let e′i
2out, e

′i
22 denote corresponding values after

all movements. The following always holds no matter how many times we move:

2
∑

i∈layer 2

(ei22 − e′i
22) =

∑
i∈layer 2

e′i
2out

Now Q′
2, the modularity of the new partition after moving, is:

Q′
2 =

∑
i∈layer 2

e′i
22

e
−

(
d′i
2

2e

)2

=
∑

i∈layer 2

4e · e′i
22

4e2
−

∑
i∈layer 2

(2e′i
22 + e′i

2out)
2

4e2
.

Let ei22 − e′i
22 = Δi. Because of (a + b)2 ≥ a2 + b2 for any a, b ≥ 0, we have:

Q′
2 ≤

∑
i∈layer 2

4e · e′i
22

4e2
−

∑
i∈layer 2

(2e′i
22)

2 + (e′i
2out)

2

4e2

=
4e · ∑

e′i
22 − ∑

4(e′i
22)

2 − ∑
(e′i

2out)
2

4e2

=
4e · ∑

(ei22 − Δi) − ∑
4(ei22 − Δi)2 − ∑

(e′i
2out)

2

4e2

= Q2 +
8

∑
Δie

i
22 − 4e · ∑

Δi − ∑
(e′i

2out)
2 − 4

∑
Δ2

i

4e2

Let T abbreviate 8
∑

Δie
i
22−4e·∑ Δi−

∑
(e′i

2out)
2−4

∑
Δ2

i , then Q′
2 = Q2+ T

4e2 .
When no layer 2 community contains more than half of the total edges after
applying RemoveEdge on layer 1, i.e., ei22 ≤ e

2 ,

T = 8
∑

Δie
i
22 − 4e ·

∑
Δi −

∑
(e′i

2out)
2 − 4

∑
Δ2

i

≤4e ·
∑

Δi − 4e ·
∑

Δi −
∑

(e′i
2out)

2 − 4
∑

Δ2
i ≤ 0.

Hidden Community Detection on Two-Layer Stochastic Models 373

Finally, we have Q′
2 ≤ Q2 + T

4e2 ≤ Q2. Hence, layer 2 has the highest modular-
ity among all possible partitions of n nodes into n2 communities. In this way,
RemoveEdge makes the unreduced layer easier for the base algorithm to detect.

Theorem 3. For a two-layer stochastic blockmodel network G(n, n1, n2, p1, p2),
the modularity of a layer increases if we apply ReduceEdge on all communities
in the other layer.

Proof. In ReduceEdge of layer 1, we keep edges in the given community with
probability q′

1 = 1−p̂
1−q̂ , where p̂ is the observed edge probability within the

detected community and q̂ is the observed background noise.
ReduceEdge on layer 1 would only keep q′

1 fraction of edges in S12 and S1,
so after ReduceEdge,

e′
22 =

1
n2

(|S2| + |S12| · q′
1) >

1
n2

(|S2| + |S12|) · q′
1 = e22 · q′

1,

e′
2out =

2
n1

|S1| · q′
1 = e2out · q′

1.

Thus, e′
2out

e2out
<

e′
22

e22
, and Lemma 2 indicates that Q2 < Q′

2. Similarly, for the
modularity of layer 1 after ReduceEdge on layer 1, Q′

1 > Q1.

Theorem 4. For a synthetic two-layer block model network G(n, n1, n2, p1, p2),
the modularity of a layer increases if we apply ReduceWeight on all communities
in the other layer.

Proof. According to [3], ReduceWeight on layer 1 multiplies the weight of edges
in layer 1 community by q′

1 = 1 − 1−p̂
1−q̂ percent. In weighted network, the weight

sum of internal edges of a community i in layer 2 is e22 = 1
2

∑
u,v∈i wuv · Auv

where wuv is the weight of edge (u, v). By construction, ReduceWeight on layer
1 reduces weight of all edges in S12 or S1, but does not change weight of edges
in S2. Thus,

e′i
22 =

1
2

∑
u,v∈i, (u,v)∈S12

wuv · Auv · q′
1 +

1
2

∑
u,v∈i, (u,v)∈S2

wuv · Auv

>

⎛
⎝1

2

∑
u,v∈i, (u,v)∈S12

wuv · Auv +
1
2

∑
u,v∈i, (u,v)∈S2

wuv · Auv

⎞
⎠ · q′

1

= ei22 · q′
1

ei2out =
1
2

∑
u∈i,v /∈i

wuvAuv

e′i
2out =

1
2

∑
u∈i,v /∈i

wuvAuv · q′
1 = ei2out · q′

1

Thus, e′
2out

e2out
<

e′
22

e22
, and combined with Lemma2, this proves that Q′

2 > Q2, the
modularity increases after ReduceWeight.

Similarly, the modularity of layer 1 after RemoveEdge on layer 1, Q′
1 > Q1.

374 J. Bao et al.

The analysis shows that weakening one layer with any one of the meth-
ods (RemoveEdge, ReduceEdge, ReduceWeight) increases the modularity of the
other layer. These results follow naturally from Lemma 2, which is in some way
a stronger claim that the modularity of the remaining layer increases as long as
a larger percentage of outgoing edges is reduced than internal edges.

4 Simulation of Relative Modularity

To show whether reducing layers makes other layers more detectable when run-
ning HICODE, we simulate how grounded layers’ relative modularity changes
as the weakening method iterates on two-layer stochastic block models, and
compare the grounded layers’ modularity value with other partitions’ modu-
larity values. The number of possible partitions of n nodes is exponential, so it
would be computationally unrealistic just to enumerate them, let alone calculate
modularity for all of them. So we employ sampling of partitions. We calculate
modularity for all sampled partitions and plot them on a 2-dimensional plane
based on their similarities with the grounded layer 1 and layer 2, and show the
modularity values through the colormap with nearest interpolation.

4.1 Sampling Method

We sample 2000 partitions similar to layer 1 (or 2) by starting from layer 1 (or
2), and then exchange a pair of nodes or change the membership of one node for
k = 1, ..., 500 times. We also include 1200 partitions that mixed layer 1 and layer
2 by having k randomly selected nodes getting assigned to their communities in
layer 1 and the rest 200−k nodes getting assigned to their communities in layer
2. As planted communities in different layers are independent, this sampling
method gives a wide range of partitions while being relatively fast. To measure
the similarity between two partitions, we adapt normalized mutual information
(NMI) [5] for overlapping communities (The definition of NMI is in Appendix
C.). Partitions of nodes are inherently high-dimensional. To place them on 2-
dimensional plane for the plotting purpose, we use its NMI similarity with layer
1 as the x-coordinate, and NMI similarity with layer 2 as the y-coordinate.

At each iteration, We use the modularity optimization based fast commu-
nity detection algorithm [1] as the base algorithm to uncover a single layer of
communities.

4.2 Simulation on ReduceEdge

Figure 2 presents the simulated results on a two-layer block model G(600, 15,
12, 0.1, 0.12) using ReduceEdge as the weakening method. In this network, layer
2 is the dominant layer (communities are bigger and denser) and layer 1 is the
hidden layer. The modularity of layer 2 is 0.546, while the modularity of layer
1 is 0.398. We plot the modularity of the estimated layer and other sampled
partitions at different iterations of HICODE. On each subfigure, the dark red

Hidden Community Detection on Two-Layer Stochastic Models 375

Fig. 2. Simulation results of ReduceEdge on G(600, 15, 12, 0.1, 0.12). (Color figure
online)

cross sign denotes where the estimated layer projects on the 2-dimensional plane.
Simulations using RemoveEdge and ReduceWeight yield similar results.

1. Initially, two grounded layers here have similar modularity values, contribut-
ing to the two local peaks of modularity, one at the right-bottom and the
other at the left-top.

2. (a): At iteration t = 0:, the base algorithm finds an approximate layer 2,
whose NMI similarity with layer 2 is about 0.90.

3. (b): After reducing that partition, the modularity local peak at the left-top
sinks and the modularity peak at right-bottom rises, and the base algorithm
finds an approximate layer 1 whose NMI similarity with layer 1 is about 0.89.
ReduceEdge then reduces this approximated layer 1 and makes it easier to
approximate layer 2.

4. (c) and (d): At t = 1, the base algorithm finds an approximate layer 2 having
0.97 NMI similarity with layer 2, which is a significant improvement. As that
more accurate approximation of layer 2 is reduced, the base algorithm is
able to find a better approximation of layer 1 too. In our run, it finds an
approximation that has 0.96 NMI similarity with layer 1.

5. (e) and (f): As HICODE iterates, at t = 2, the base algorithm is able to
uncover an approximate layer 2 with 0.98 NMI similarity, and an approximate
layer 1 with 0.97 NMI similarity.

5 Conclusion

In this work, we provide a theoretical perspective on the hidden community
detection meta-approach HICODE, on multi-layer stochastic block models. We

376 J. Bao et al.

prove that in synthetic two-layer stochastic blockmodel networks, the modular-
ity of a layer will increase, after we apply a weakening method (RemoveEdge,
ReduceEdge, or ReduceWeight) on all communities in the other layer, which
boosts the detection of the current layer when the other layer is weakened. A sim-
ulation of relative modularity during iterations is also provided to illustrate on
how HICODE weakening method works during the iterations. Our work builds a
solid theoretical base for HICODE, demonstrating that it is promising in uncov-
ering both hidden and dominant layers of communities in two-layer stochastic
block model networks. In future work, we will generalize the theoretical analysis
to synthetic networks with more than two stochastic block model layers.

References

1. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of com-
munities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)

2. Girvan, M., Newman, M.E.: Community structure in social and biological networks.
Proc. Natl. Acad. Sci. 99(12), 3807–3870 (2015)

3. He, K., Li, Y., Soundarajan, S., Hopcroft, J.E.: Hidden community detection in
social networks. Inf. Sci. 425, 92–106 (2018)

4. He, K., Soundarajan, S., Cao, X., Hopcroft, J.E., Huang, M.: Revealing multiple
layers of hidden community structure in networks. CoRR abs/1501.05700 (2015)

5. McDaid, A.F., Greene, D., Hurley, N.: Normalized mutual information to evaluate
overlapping community finding algorithms. arXiv preprint arXiv:1110.2515 (2011)

6. Paul, S., Chen, Y.: Consistent community detection in multi-relational data through
restricted multi-layer stochastic blockmodel. Electron. J. Stat. 10(2), 3807–3870
(2016)

7. Teng, S.H., et al.: Scalable algorithms for data and network analysis. Found. Trends
Theor. Comput. Sci. 12(1–2), 1–274 (2016)

http://arxiv.org/abs/1110.2515

A Primal-Dual Algorithm for Euclidean
k-Means Problem with Penalties

Chunying Ren1, Dachuan Xu1, Donglei Du2, and Min Li3(B)

1 Department of Operations Research and Information Engineering, Beijing
University of Technology, Beijing 100124, People’s Republic of China

2 Faculty of Management, University of New Brunswick,
Fredericton, NB E3B 5A3, Canada

3 School of Mathematics and Statistics, Shandong Normal University, Jinan 250014,
People’s Republic of China
liminemily@sdnu.edu.cn

Abstract. In the classical k-means problem, we are given a data set
D ⊆ R

� and an integer k. The object is to select a set S ⊆ R� of size
at most k such that each point in D is connected to the closet cluster
in S with minimum total squared distances. However, in some real-life
applications, it is more desirable and beneficial to pay a small penalty
for not connecting some outliers in D that are too far away from most
points. As a result, we are motivated to study the k-means problem with
penalties, for which we propose a (6.357+ε)-approximation algorithm via
the primal-dual technique, improving the previous best approximation
ratio of 19.849 + ε in [7] also by using the primal-dual technique.

Keywords: Approximation algorithm · k-means problem · Penalties ·
Primal-dual

1 Introduction

The classic k-means problem has been extensively studied in operations research
and computer science [4,8,10,11,13–15]. Given an integer k and a data set D ⊆
R� of n points, the k-means problem selects a subset S of at most k center points
in R� to minimize

∑
j∈D c(j, S), where c(j, S) is the squared Euclidean distances

from j to the nearest point in S.
In general the problem is NP-hard [2,5]. Several approximation algorithms

exist in the literature based on different techniques. One popular algorithm
due to Lloyd-Forgy [12] is called the “k-means” algorithm. This algorithm per-
forms very well in practice but its theoretical guarantee is very poor. In order
to improve the performance guarantee, Arthur and Vassilvitskii [3] proposed
a modified “k-means” algorithm, called k-means++, by randomly selecting the
first initial k centers with a specific probability and show that this new algorithm
has approximation ratio O(ln k). The first constant polynomial time approxima-
tion algorithm for the k-means problem is given in [10] with an approximation
c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 377–389, 2020.
https://doi.org/10.1007/978-3-030-59267-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_32&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_32

378 C. Ren et al.

ratio 9 + ε based on local search technique. Currently, the best approximation
factor for the k-means problem is 6.357 + ε [1].

The main focus of this work is to consider the k-means problem with penal-
ties. Formally, we are given an integer k, and a data set D ⊆ R� of n points
where each point j ∈ D is associated with a penalty cost pj . The objective is to
select a set S ⊆ R� of size k and a subset Dp ⊆ D such that the total squared
distance of connected points and the total penalty cost of non-connected point,∑

j∈D\Dp
c(j, S) +

∑
j∈Dp

pj , is minimized. The first constant approximation
algorithm for this problem has an approximation ratio 25 + ε via local search
technique [16]. The current best approximation ratio 19.849 + ε is based on
primal-dual technique [7].

Our main contribution in this article is to give a quasi-polynomial time algo-
rithm with the best (6.357+ε)-approximation ratio so far by adopting the primal-
dual method, improving the previous best result.

The outline of this article is as follows. Section 2 describes preliminaries.
Section 3 presents how to obtain an integer feasible solution to the k-means prob-
lem with penalties through several algorithms, and analyzes the approximation
ratio. Finally, the concluding remarks are given in Sect. 4.

2 Preliminaries

Given a k-means problem with penalties instance, we apply the standard discrete
techniques [6] to obtain a corresponding discrete k-means problem with penal-
ties by sacrificing a small approximate ratio loss; That is, instead of arbitrary
choosing k points in R�, we select k points in the discrete set F ⊆ R�. From
now on, we simply refer to the discrete k-means problem with penalties as the
k-means problem with penalties.

Definition 1 (k-means problem with penalties). Given an instance
(D,F , p, d, k) of the problem, where D stands for the set of clients, F stands
for the set of facilities, p stands for the set of penalty costs, each of which is
assume to satisfy pj ≥ 1,∀j ∈ D, d is a metric distance, and k is an integer,
the object is to select a set S of k facilities in F and a set Dp in D, so as to
minimize the following objective function:

∑

j∈D\Dp

c(j, S) +
∑

j∈Dp

pj ,

where c(j, S) = d2(j, S).
Next, we introduce the linear programming (LP) formulation for the k-means

problem with penalties, along with the corresponding LP relaxation, Lagrangian
relaxation, and its dual program.

The standard linear programming formulation of the k-means problem with
penalties has three sets of indicator variables:

– yi = 1, if facility i ∈ F is opened; and yi = 0, otherwise.

A Primal-Dual Algorithm for Euclidean k-Means Problem with Penalties 379

– rj = 1, if client j ∈ D is not connected to a facility; and rj = 0, otherwise.
– xij = 1, if client j ∈ D is connected to facility i ∈ F ; and xij = 0, otherwise.

We relax each indicator variable to the positive real space to obtain the standard
LP relaxation as follows:

OPTk := min
∑

i∈F

∑

j∈D
xijc(i, j) +

∑

j∈D
pj · rj

s.t
∑

i∈F
xij + rj ≥ 1, ∀j ∈ D,

xij ≤ yi, ∀j ∈ D,∀i ∈ F ,
∑

i∈F
yi ≤ k,

xij , yi, rj ≥ 0, ∀j ∈ D,∀i ∈ F .

The first constraint indicates that each client should be either connected to at
least one facility or penalized. The second constraint says that clients can only
be connected to opened facilities. The third constraint enforces that at most k
facilities are opened.

We now establish a connection between the facility location problem with
penalties and the k-means problem with penalties by employing Lagrangian
relaxation (e.g., [9]), where a Lagrange multiplier λ is introduced to the third
constraint which can be included in the objective function.

LP-P(λ) := min
∑

i∈F

∑

j∈D
xijc(i, j) +

∑

j∈D
pj · rj + λ

(
∑

i∈F
yi − k

)

s. t.
∑

i∈F
xij + rj ≥ 1, ∀j ∈ D,

xij ≤ yi, ∀j ∈ D,∀i ∈ F ,

xij , yi, rj ≥ 0, ∀j ∈ D,∀i ∈ F .

DUAL-P(λ) := max
∑

j∈D
αj − λ · k

s. t.
∑

j∈D
βij ≤ λ, ∀i ∈ F ,

αj − c(i, j) ≤ βij , ∀j ∈ D,∀i ∈ F ,

αj ≤ pj , ∀j ∈ D,

αj , βij ≥ 0, ∀j ∈ D,∀i ∈ F .

Evidently, for any λ ≥ 0, the optimal primal value LP-P(λ) is at most the
optimal OPTk.

Note that if the term λ · k in the objective function of LP-P(λ) and DUAL-
P(λ) is ignored, LP-P(λ) and DUAL-P(λ) can be regarded as the standard

380 C. Ren et al.

linear program and its dual of the penalized facility location problem where
the open cost of each facility is equal to λ and the connection cost is equal to
c(·, ·) = d2(·, ·). If the number of facilities opened does not exceed k by selecting
the appropriate λ, then we have a feasible solution to the original problem.

Based on this idea we give a quasi-polynomial time (6.357+ε)-approximation
algorithm. This algorithm employs the JV algorithm [9] as the basic algorithm
and contains two sub-routines: first enumerate λ to obtain a sequence facility
solution S and then process the sequence S so that the number of open facilities
is exactly k.

3 A Quasi-Polynomial Time Approximation Algorithm

Before describing the main algorithm, we first present a new algorithm, denoted
as JV-P(δ), which is a modified primal-dual algorithm based on the JV(δ) algo-
rithm in [9] to solve the facility location problem with penalties where the open
cost of each facility is equal to λ.

3.1 JV-P(δ) Algorithm

This algorithm contains two phases: the dual-growth phase (Algorithm 1) and
the pruning phase (Algorithm 2).

In the dual-growth phase, we construct a feasible dual solution (α, β) for
DUAL-P(λ).

Algorithm 1. JV-P(δ): The dual-growth phase
1. Initially, let α := 0 and set βij := [αj − c(i, j)]+ = max{αj − c(i, j), 0}. Let A := D

denote the set of active clients and let θ represent time. Starting from zero, ∀j ∈ A,
αj and θ rise at the same time per unit speed. When αj = pj , we say that j is
frozen, and αj is not increased. If one of the following events occurs, j is removed
from A.
Event 1. A dual constraint

∑
j∈D[αj − c(j, i)]+ = λ for a facility i ∈ F . In this

case, we say that facility i is tight or temporarily opened. We update A by
removing j ∈ A if αj ≥ c(i, j). We say that facility i is the witness of these
removed clients, denoted as w(j) = i.

Event 2. An active client j ∈ A gets a tight edge, i.e., αj − c(j, i) = 0, to some
already tight facility i. In this case, we remove j from A and let i be its witness.

2. When A = ∅ or j is frozen ∀j ∈ A, the dual-growth phase stops.

The dual-growth phase may have opened more facilities than necessary. The
pruning phase will select a subset of these facilities to open. We introduce some
notations as follows.

1. Fy: the set of facilities temporarily opened during the dual-growth phase.

A Primal-Dual Algorithm for Euclidean k-Means Problem with Penalties 381

2. N(j) := {i ∈ F : αj − c(i, j) > 0}, ∀j ∈ D.
3. N(i) := {j ∈ D : αj − c(i, j) > 0}, ∀i ∈ F .
4. For a temporarily opened facility i, let ti := maxj∈N(i) αj , and ti := 0 if

N(i) = ∅. So, we have ti ≥ αj , ∀j ∈ N(i). For a client j and its witness w(j),
αj ≥ tw(j).

We construct the client-facility graph G and the conflict graph H.

– G = (D ∪ Fy, E): there is an edge between facility i and client j if i ∈ N(j).

– H = (Fy, E): there is an edge between facility i and i
′

if j ∈ N(i) ∩ N(i
′
)

and c(i, i
′
) ≤ δ min(ti, ti′).

Intuitively, the size of δ affects the number of edges in H, and thus deter-
mining the size of the maximal independent set in H. Therefore, by properly
adjusting δ, we can obtain a better approximation ratio of the JV-P(δ) algo-
rithm.

Algorithm 2. JV-P(δ): The pruning phase
Find a maximal independent set IS of H and open these facilities. Define the penalized
set of clients Dp,

Dp := {j ∈ D : j /∈ N(i), ∀i ∈ IS and αj = pj}.

The remaining clients are connected to the closest facility in IS.

Lemma 1. Let d be an Euclidean metric on D ∪ F and define c(j, i) := d(j, i)2

for every i ∈ F and j ∈ D. Then, for any λ ≥ 0, Algorithm JV-P(δ) constructs
a solution α to DUAL-P(λ) and outputs a set IS of opened facilities and Dp such
that

∑

j∈D\Dp

d(j, IS)2 +
∑

j∈Dp

pj ≤ ρ ·
⎛

⎝
∑

j∈D
αj − λ|IS|

⎞

⎠ , (1)

where δ ≥ 2 is a parameter which minimizes

ρ(δ) = max
{

(1 +
√

δ)2,
1

δ/2 − 1

}

.

It can be verified that δ ≈ 2.315 and ρ ≈ 6.357.

382 C. Ren et al.

Proof. According to Algorithm 1, α is a feasible solution to DUAL-P(λ). Now
we just need to prove

c(j, IS)
ρ

≤ αj −
∑

j∈N(j)∩IS

(αj − c(j, i))

= αj −
∑

i∈IS

[αj − c(j, i)]+, ∀j ∈ D \ Dp, (2)

pj

ρ
≤ αj −

∑

i∈IS

[αj − c(j, i)]+, ∀j ∈ Dp. (3)

Then summing up over all clients and by [αj −c(j, i)]+ ≥ 0 for any i ∈ IS, j ∈ Dp,
we have

1
ρ

⎛

⎝
∑

j∈D\Dp

d(j, IS)2 +
∑

j∈Dp

pj

⎞

⎠ ≤
∑

j∈D
αj −

∑

j∈D\Dp

∑

i∈IS

[αj − c(j, i)]+.

Moreover, Note that any facility in IS is opened and no client in Dp contributes
positively to any facility in IS. We obtain that

∑
j∈D\Dp

[αj − c(j, i)]+ = λ, for
any i ∈ IS. Therefore, (1) follows.

The inequality (2) follows form Theorem 3.3 in [1]. Here we briefly describe
the process.

According to the JV-P(δ) algorithm, we have |N(j) ∩ IS| = {0, 1, > 1}, j ∈
D \ Dp. Let sj := |N(j) ∩ IS|, Sj := N(j) ∩ IS, D0 := {j ∈ D \ Dp|sj = 0},
D1 := {j ∈ D \ Dp|sj = 1} and D>1 := {j ∈ D \ Dp|sj > 1}.

Case 1. sj = 0. ∀j ∈ D0, there exists a w(j) ∈ F such that αj ≥ tw(j), and
αj ≥ c(j, w(j)). Furthermore, if w(j) ∈ IS, then d(j, IS) ≤ d(j, w(j)); otherwise,
there exists an i ∈ F such that c(w(j), i) ≤ δ min{tw(j), ti} ≤ δαj , in which case

d(j, IS) ≤ d(j, i) ≤ d(w(j), j) + d(w(j), i) ≤ √
αj +

√
δαj = (1 +

√
δ)

√
αj .

Moreover, c(j, IS) ≤ (1 +
√

δ)2αj and
∑

i∈IS[αj − c(j, IS)]+ = 0 together imply
that

c(j, IS) ≤ (1 +
√

δ)2
{

αj −
∑

i∈IS

[αj − c(j, IS)]+
}

.

When ρ ≥ (1 +
√

δ)2, we have

c(j, IS)
ρ

≤ αj −
∑

i∈IS

[αj − c(j, IS)]+.

Case 2. sj = 1. ∀j ∈ D1, there is only one facility i∗ ∈ IS such that [αj −
c(j, i∗)]+ > 0. So, we have

c(j, IS) ≤ c(j, i∗) = αj − (αj − c(j, i∗)) = αj −
∑

i∈IS

[(αj − c(j, i)]+.

A Primal-Dual Algorithm for Euclidean k-Means Problem with Penalties 383

Case 3. sj > 1. In an 	-dimensional metric space, the following holds: ∀j ∈ D>1,

∑

i∈Sj

c(j, i) ≥
∑

i∈Sj

c(i, μ) =

∑
i∈Sj

∑
i′ ∈Sj

c(i, i
′
)

2sj

≥
∑

i∈Sj

∑
i′ ∈Sj ,i �=i′ c(i, i

′
)

2sj
≥

∑
i∈Sj

∑
i′ ∈Sj ,i �=i′ δαj

2sj

=
sj − 1

2
δ · αj .

In the above, μ = 1
sj

∑
i∈Sj

i is the centroid point of the facility in Sj , and the

fourth inequality follows from c(i, i
′
) > δ min{ti, ti′ } ≥ δαj , ∀i ∈ Sj . Hence,

∑

i∈Sj

(αj − c(j, i)) ≤
(

sj − sj − 1
2

δ

)

αj ≤
(

sj

(

1 − δ

2

)

+
δ

2

)

αj ≤
(

2 − δ

2

)

αj .

For sj > 1, sj(1 − δ
2) + δ

2 is a non-increasing function of sj because δ ≥ 2. We
also know that c(j, IS) ≤ c(j, i) ≤ αj , ∀i ∈ Sj .
So,

(

1 −
(

2 − δ

2

))

c(j, IS) =
(

δ

2
− 1

)

c(j, IS) ≤ αj −
∑

i∈Sj

(αj − c(j, i)).

When
ρ ≥ 1

δ
2 − 1

,

we have
c(j, IS)

ρ
≤ αj −

∑

i∈IS

[αj − c(j, IS)]+.

Combining all the above cases, let

ρ(δ) := max

{

(1 +
√

δ)2,
1

δ
2 − 1

}

,

where δ ≥ 2. Setting δ ≈ 2.315, we have ρ ≈ 6.357, and hence (2) follows.
For (3), we have αj = pj , and αj ≤ cij , ∀j ∈ Dp and ∀i ∈ IS. So

∑
i∈IS[αj −

c(j, IS)]+ = 0. Also ρ > 1. Hence (3) is correct. �
In the JV-P(δ) algorithm, |IS| ≤ k may not be guaranteed unless some infor-

mation about λ is given. When λ is small, the number of facilities in IS tends to
|F |. When λ is large, the number of facilities in IS approaches 1. Therefore, we
hope to find a suitable λ to make |IS| ≤ k. Similar to that in [1], we give a quasi-
polynomial algorithm for the k-means problem with penalties by enumerating λ
and finding a k-cardinality solution, such that the obtained solution satisfies the
constraint that at most k facilities are opened.

384 C. Ren et al.

3.2 Enumerating λ

We enumerate all the possibilities of λ = 0, 1 · εz, · · · , L · εz, where εz is a small
step size and L is large. By similar analysis in [1], we choose

n � 1/ε, εz = n−3−30 log1+ε n, L = 4n7 · ε−1
z .

At the same time, it can be guaranteed that when λ = 0, the solution obtained
by the algorithm is IS = F , and when λ = L · εz, |IS| ≤ 1.

We also use the notion of buckets that partition the α-values of the clients.

Definition 2. For any value x ∈ R, let

B(x) :=

{
0, if x < 1.

1 + log1+ε(x)�, if x ≥ 1.

Here B(x) is the index of the bucket containing x and is also a piecewise function.

Let n = |D|. In order to simplify the algorithm, we preprocess the given instance
such that 1 ≤ d(j, i)2 ≤ n6, ∀j ∈ D and ∀i ∈ F by only sacrificing the approxi-
mate ratio by a constant (1 + 100/n2). This proof can be found in Appendix C
of [1].

The enumeration of λ is given in Algorithm 3. Note that the enumeration of
λ iterates L times, and the running time per iteration is O(n), where n = |D|.
So the total running time is nO(ε−1 log n).

Algorithm 3. Enumerating λ

1. Initially, λ = 0 and set αout
j = min{mini∈F d(j, i)2, pj}, and IS = F .

2. α = αout, λ = λ + εz, Dp = ∅, A = ∅. θ represents time. Starting from zero, when
θ = αj ,∀j ∈ D, let A = A∪ j. αj and θ rise at the same time per unit speed. When
αj = pj , we say that j is frozen and αj is not increased. If one of the following
events occurs, j is removed from A.
Event 1. αj = pj and pj − c(j, i) ≤ 0 ∀i ∈ F . Set Dp = Dp ∪ j.
Event 2. j has a tight edge to a tight facility i with B(αj) ≥ B(ti). Let i be the
witness of j, denoted as w(j) = i.

3. While Step 2 is happening, we decrease every client j with B(αj) > B(θ) by |A|
times the growth rate of θ.

4. When all clients have been removed from A, output αout = α and Dp.
5. When λ = L · εz, the algorithm stops; Otherwise go back step 2.

Through the algorithm, when j has a tight edge to a facility i, or αj = pj , then
αj stops increasing. So αλ is a feasible solution for DUAL-P(λ). In every solution
α = αλ (λ = 0, 1·εz, · · · , L·εz), let Dp be the set of penalized clients. Every client
j ∈ D\Dp has a tight edge to a tight facility w(j) ∈ F with B(αj) ≥ B(tw(j)).

A Primal-Dual Algorithm for Euclidean k-Means Problem with Penalties 385

Lemma 2. For each client j ∈ D\Dp, we have

∣
∣
∣αλ

j − αλ+εz
j

∣
∣
∣ ≤ 1

n2
.

Proof. When the constraints αj = pj is added, Lemma 4.5 in [1] implies the
desired result.

3.3 Finding a k-cardinality Solution

To get a feasible solution to the k-means problem with penalties, we need to find
a suitable λ so that the number of corresponding IS is k, which will be achieved
in Algorithm 4.

Note that in Algorithm 4, the total number of iterations is at most L, and
the running time per iteration is at most O(m), where m = |F|. So the total
running time after adding algorithm 3 is also nO(ε−1 log n).

For each solution αλ, we construct Gλ, Hλ and ISλ, following the same
method as in Sect. 3.1.

Algorithm 4. Finding a k-cardinality solution
1. Initially, λ = 0.
2. Input Gλ = (D ∪ Fλ

y , Eλ), Gλ+εz = (D ∪ Fλ+εz
y , Eλ+εz), Hλ, ISλ.

3. Construct a client-facility graph G(λ,1) with bipartition D and Fλ
y ∪Fλ+εz

y that has
an edge from client j to facility i ∈ Fλ

y if (j, i) is present in Gλ and to i ∈ Fλ+εz
y

if (j, i) is present in Gλ+εz . The opening time ti of facility i is now naturally set
to tλ

i if i ∈ Fλ
y and to tλ+εz

i if i ∈ Fλ+εz
y .

4. Generate the conflict graph H(λ,1) from G(λ,1) and t, and output a maximal inde-
pendent set IS(λ,1) of H(λ,1) by greedily extending ISλ.

5. Let p = 2.

while p 	= |F λ
y | + 2 do

Removing a facility i ∈ Fλ
y from G(λ,1), we construct and output a new conflict

graph H(λ,p) from G(λ,p) and its maximal independent set IS(λ,p) by greedily
extending IS(λ,p−1)\{i}.
if |IS(λ,p)| = k, then

Algorithm 4 stop, and output IS(λ,p).
else

p = p + 1.
end if

end while

6. At the end of the procedure (after |F λ
y | many steps), we have Gλ+εz = G(λ,|F λ

y |+1).

Set Hλ+εz = H(λ,|F λ
y |+1), ISλ+εz = IS(λ,|F λ

y |+1) and λ = λ + εz. Go to Step 2.

386 C. Ren et al.

3.4 Analysis

By Algorithm 4, there must exist some λ such that the number of IS is equal to
k. Because at most one point is removed at one time in Algorithm 4, without
loss of generality, we assume |IS(λ,l)| = k, corresponding to G(λ,l), and H(λ,l),
for 2 ≤ l ≤ |Fλ

y |. Let

Dp :=
{

j ∈ D : j �∈ N(i),∀i ∈ IS and αλ+εz
j = pj

}
,

denote the set of penalized clients, where j �∈ N(i) for each i ∈ IS is interpreted
as αλ

j ≤ c(i, j) if i ∈ Hλ, or αλ+εz
j ≤ c(i, j) if i ∈ Hλ+εz . The other clients are

connected to their respective closest facilities in the IS.
Let

αj :=

{
min

{
αλ

j , αλ+εz
j

}
, j ∈ D\Dp,

pj , j ∈ Dp.

Note that α ≤ αλ+εz is a feasible solution of DUAL-P(λ + εz). Since αλ and
αλ+εz are close, so αj ≥ αλ − 1/n2, αj ≥ αλ+εz − 1/n2 for all j.

For each client j, we define a set of facilities Sj ⊆ IS to which j contributes
as follows: for all i ∈ IS, we have i ∈ Sj if αj > d(j, i)2.

Now we choose D0 = {j ∈ D\Dp : Sj = ∅}, D>0 = D\D0\Dp, βij =
[αj−d(j, i)2]+ and similarly βλ

ij = [αλ
j −d(j, i)2]+ and βλ+εz

ij = [αλ+εz
j −d(j, i)2]+.

Lemma 3. For any j ∈ D>0, we have d(j,IS)2 ≤ ρ · (αj − ∑
i∈Sj

βij).

The proof follows from Lemma 1, and we omit the details here.

Lemma 4. For every j ∈ D0, we have d(j, IS)2 ≤ (1 + 5ε)ρ · αj.

Proof. For every j ∈ D0, there exists a facility w(j) ∈ Fλ+εz
y such that

B(αj) ≥ B(tw(j)) ⇒ (1 + ε)αλ+εz
j ≥ tλ+εz

w(j) ,

αλ+εz
j ≥ c(j, w(j)).

Since αj = min
{

αλ
j , αλ+εz

j

}
, αλ and αλ+εz are close and αj ≥ 1. From Lemma 2,

we have

αλ+εz
j ≤ αj +

1
n2

≤
(

1 +
1
n2

)

αj .

If w(j) ∈IS, then d(j,IS) ≤ d(j, w(j)); otherwise, there exists an i ∈ IS such that
c(w(j), i) ≤ δ · tλ+εz

w(j) , and hence

d(j, IS) ≤ d(j, i) ≤ d(j, w(j)) + d(w(j), i) ≤
√

αλ+εz
j +

√
δ(1 + ε)αλ+εz

j

≤ (1 +
√

δ + ε)
√

αλ+εz
j ≤ (1 +

√
δ + ε)

√

1 +
1
n2

√
αj .

≤ (1 + 2ε)(1 +
√

δ)
√

αj .

A Primal-Dual Algorithm for Euclidean k-Means Problem with Penalties 387

Therefore
c(j, IS)

(1 +
√

δ)2
≤ (1 + 2ε)2αj ≤ (1 + 5ε)αj .

Recall that ρ ≥ (1 +
√

δ)2, implying the desired result. �

The following result is an immediate consequence of Algorithms 1–4.

Lemma 5. For every j ∈ Dp and i ∈ IS, we have pj = αj and βij = 0.

Lemma 6. For any i ∈IS, we have
∑

j∈D\Dp
βij ≥ λ − 1

n .

Proof. Since αj ≥ max{αλ+εz
j , αλ

j } − 1
n2 for every client j ∈ D \ Dp, we have

∑

j∈D\Dp

βij ≥
∑

j∈D\Dp

(

max
{

βλ+εz
j , βλ

j

}
− 1

n2

)

≥ λ − 1
n

.

The second inequality follows because, for any i ∈ IS, if i ∈ Fλ+εz
y , then

∑
j∈D\Dp

βλ+εz
ij = λ + εz; otherwise, if i ∈ Fλ

y , then
∑

j∈D\Dp
βλ+εz

ij = λ. �

Theorem 1. Algorithm 4 outputs IS satisfying
∑

j∈D\Dp

d(j, IS)2 +
∑

j∈Dp

pj ≤ (ρ + O(ε)) · OPTk,

where ρ ≈ 6.357.

Proof. From Lemmas 3–5, we have

∑

j∈D\Dp

d(j, IS)2 ≤ (1 + 5ε)ρ
∑

j∈D\Dp

⎛

⎝αj −
∑

i∈Sj

βij

⎞

⎠ ,

∑

j∈Dp

pj ≤ (1 + 5ε)ρ
∑

j∈Dp

αj .

Therefore,

∑

j∈D\Dp

d(j, IS)2 +
∑

j∈Dp

pj ≤ (1 + 5ε)ρ

⎛

⎝
∑

j∈D
αj −

∑

j∈D\Dp

∑

i∈Sj

βij

⎞

⎠ .

388 C. Ren et al.

α is a feasible solution of DUAL-P(λ + εz), by Lemma 6, and
∑

i∈IS βij =∑
i∈Sj

βij , we have
∑

j∈D\Dp

d(j, IS)2 +
∑

j∈Dp

pj

≤ (1 + 5ε)ρ

⎛

⎝
∑

j∈D
αj −

∑

j∈D\Dp

∑

i∈Sj

βij

⎞

⎠ ≤ (1 + 5ε)ρ

⎛

⎝
∑

j∈D
αj − |IS|(λ − 1

n
)

⎞

⎠

= (1 + 5ε)ρ

⎛

⎝
∑

j∈D
αj − k · (λ + εz) +

k

n
+ k · εz

⎞

⎠

= (1 + 5ε)ρ

⎛

⎝
∑

j∈D
αj − k · (λ + εz) +

k

n
+ k · n−3−30 log1+ε n

⎞

⎠

≤ (1 + 5ε) ρ(OPTk + 1 +
1
n3

) ≤ (1 + 5ε) ρ(OPTk + 2)

≤ (1 + 5ε) ρ(1 + 2ε)OPTk

= (ρ + O(ε))OPTk.

The penultimate inequality follows from

1 ≤ ε · n ≤ ε ·
∑

j∈D
min

{

min
i∈F

c(j, i), pj

}

≤ ε · OPTk. ��

4 Discussion

In this article, we study the k-means problem with penalties. In the Euclidean
space, a quasi-polynomial time (6.357 + ε)-approximation algorithm is given
via the primal-dual technique. We note that the same algorithm can be used to
obtain an approximate algorithm of 2.633+ε for the penalized k-median problem
in the Euclidean space. We conjecture that our algorithm can be improved to
achieve a polynomial time complexity with the same approximation ratio.

Acknowledgements. The first two authors are supported by Natural Science Foun-
dation of China (No. 11871081). The third author is supported by the Natural Sci-
ences and Engineering Research Council of Canada (NSERC) grant 06446, and Nat-
ural Science Foundation of China (Nos. 11771386, 11728104). The fourth author
is supported by Higher Educational Science and Technology Program of Shandong
Province (No. J17KA171) and Natural Science Foundation of Shandong Province (No.
ZR2019MA032) of China.

References

1. Ahmadian, S., Norouzi-Fard, A., Svensson, O., Ward, J.: Better guarantees for
k-means and Euclidean k-median by primal-dual algorithms. In: Proceedings of
FOCS, pp. 61–72 (2017)

A Primal-Dual Algorithm for Euclidean k-Means Problem with Penalties 389

2. Aloise, D., Deshpande, A., Hansen, P., Popat, P.: NP-hardness of Euclidean sum-
of-squares clustering. Mach. Learn. 75, 245–248 (2009)

3. Arthur, D., Vassilvitskii, S.: k-means++: the advantages of careful seeding. In:
Proceedings of SODA, pp. 1027–1035 (2007)

4. Cohen-Addad, V., Klein, P.N., Mathieu, C.: Local search yields approximation
schemes for k-means and k-median in Euclidean and minor-free metrics. SIAM J.
Comput. 48, 644–667 (2019)

5. Drineas, P., Frieze, A., Kannan, R., Vempala, S., Vinay, V.: Clustering large graphs
via the singular value decomposition. Mach. Learn. 56, 9–33 (2004)

6. Feldman, D., Monemizadeh, M., Sohler, C.: A PTAS for k-means clustering based
on weak coresets. In: Proceedings of SoCG, pp. 11–18 (2007)

7. Feng, Q., Zhang, Z., Shi, F., Wang, J.: An improved approximation algorithm for
the k -means problem with penalties. In: Chen, Y., Deng, X., Lu, M. (eds.) FAW
2019. LNCS, vol. 11458, pp. 170–181. Springer, Cham (2019). https://doi.org/10.
1007/978-3-030-18126-0 15

8. Friggstad, Z., Rezapour, M., Salavatipour, M.R.: Local search yields a PTAS for
k-means in doubling metrics. SIAM J. Comput. 48, 452–480 (2019)

9. Jain, K., Vazirani, V.V.: Approximation algorithms for metric facility location and
k-median problems using the primal-dual schema and Lagrangian relaxation. J.
ACM 48, 274–296 (2001)

10. Kanungo, T., Mount, D., Netanyahu, N., Piatko, C., Silverma, R.: A local search
approximation algorithm for k-means clustering. Comput. Geom. 28, 89–112
(2004)

11. Li, M., Xu, D., Yue, J., Zhang, D., Zhang, P.: The seeding algorithm for k-means
problem with penalties. J. Comb. Optim. 39, 15–32 (2020)

12. Lloyd, S.: Least squares quantization in PCM. IEEE Trans. Inf. Theory 28, 129–
137 (1982)

13. Makarychev, K., Makarychev, Y., Razenshteyn, I.: Performance of Johnson-
Lindenstrauss transform for k-means and k-medians clustering. In: Proceedings
of STOC, pp. 1027–1038 (2019)

14. Vazirani, V.V.: Approximation Algorithms. Springer, Heidelberg (2003)
15. Williamson, D.P., Shmoys, D.B.: The Design of Approximation Algorithms. Cam-

bridge University Press, Cambridge (2011)
16. Zhang, D., Hao, C., Wu, C., Xu, D., Zhang, Z.: Local search approximation algo-

rithms for the k-means problem with penalties. J. Comb. Optim. 37, 439–453
(2019)

https://doi.org/10.1007/978-3-030-18126-0_15
https://doi.org/10.1007/978-3-030-18126-0_15

The Complexity of the Partition Coloring
Problem

Zhenyu Guo(B), Mingyu Xiao , and Yi Zhou

University of Electronic Science and Technology of China, Chengdu, China
Harry.Guo@outlook.com, myxiao@gmail.com, zhou.yi@uestc.edu.cn

Abstract. Given a simple undirected graph G = (V,E) and a partition
of the vertex set V into p parts, the Partition Coloring Problem
asks if we can select one vertex from each part of the partition such
that the chromatic number of the subgraph induced on the p selected
vertices is bounded by k. PCP is a generalized problem of the classical
Vertex Coloring Problem and has applications in many areas, such
as scheduling and encoding, etc. In this paper, we show the complexity
status of the Partition Coloring Problem with three parameters: the
number of colors, the number of parts of the partition, and the maximum
size of each part of the partition. Furthermore, we give a new exact
algorithm for this problem.

Keywords: Graph coloring · Partition coloring · NP-completeness

1 Introduction

Given a simple undirected graph G = (V,E), the vertex coloring is to assign each
vertex a color such that no two adjacent vertices have the same color. In the Ver-
tex Coloring Problem (VCP), a graph G together with an integer k is given,
and the goal is to decide whether G can be colored by using at most k colors [17].
VCP is an important problem in both graph theory and practice [10–12].

In this paper, we study a generalized version of VCP, the Partition Color-
ing Problem (PCP), which is also called the Selective Graph Coloring
Problem in some references [4]. In PCP, we are given a graph G = (V,E) with
a partition V of the vertex set and an integer k, where V = {V1, V2, · · · , Vp},
Vi ∩ Vj = ∅ for all 1 ≤ i, j ≤ p, and

⋃
1≤i≤p Vi = V . The problem asks whether

there is an induced subgraph containing exactly one vertex from each part Vi

of the partition V that is colorable by using k colors. Note that when each part
Vi (1 ≤ i ≤ p) is a singleton, i.e., |Vi| = 1, PCP is equal to VCP. So VCP
is a special case of PCP. Indeed, PCP, together with other extended coloring
problems, such as the Coloring Sum Problem [19,21], the Edge Coloring
Problem [14], the Mixed Graph Coloring Problem [13], the Split Col-
oring Problem [7] and so on, have been intensively studied from the view of
computational complexity in the last decades [3,16,22,24].

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 390–401, 2020.
https://doi.org/10.1007/978-3-030-59267-7_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_33&domain=pdf
http://orcid.org/0000-0002-1012-2373
https://doi.org/10.1007/978-3-030-59267-7_33

The Complexity of the Partition Coloring Problem 391

1.1 Existing Literature

The literature dealing with PCP is rich and diverse. In terms of applications,
PCP was firstly introduced in [20] to solve the wavelength routine and assign-
ment problem, which is to assign a limited number of bandwidths on fiber net-
works. PCP also finds applications in a wide range in dichotomy-based constraint
encoding, antenna positioning, and frequency assignment and scheduling [4].

PCP is NP-Complete in general since the well-known NP-Complete prob-
lem VCP is a special case of PCP. In pursuit of fast solution methods for PCP,
heuristic searches without guarantee of the optimality represent one of the most
popular approaches [9,20,23]. Exact algorithms based on integer linear program-
ming were also investigated for solving problems of small scale [8,9,15]. In terms
of computational complexity, the NP-Hardness of this problem on special graph
classes, such as paths, circles, bipartite graphs, threshold graphs and split graphs
were studied [4,5].

1.2 Our Contributions

In this paper, we further study the computational complexity of PCP. We always
use k to denote the number of colors, p to denote the number of parts in the
partition V, and q to denote the upper bound of the size of all parts in the
partition V. We give some boundaries between P and NPC for this problem
with different constant settings on the three parameters. We also consider the
parameterized complexity of PCP: we show that PCP parameterized by p is
W[1]-hard and PCP parameterized by both p and q is FPT. The main complexity
results are summarized in Table 1 and Table 2. In addition, we give a fast
exact algorithm for PCP, which is based on subset convolution and runs in
O((n+p

p)pn log k) time. Note that when p = n, PCP becomes VCP and the
running time bound becomes O(2nn log k), the best-known running time bound
for VCP.

Due to the limited space, the proof of some lemmas and theorems are omitted,
which are marked with �.

2 Preliminaries

Let G = (V,E) stand for a simple and undirected graph with n = |V | vertices
and m = |E| edges. For a vertex subset X ⊆ V , we use G[X] to denote the
subgraph induced by X. For a vertex v ∈ V , the set of vertices adjacent to v is
called the set of neighbors of v and denoted by N(v). A graph is called a clique
if there is an edge between any pair of vertices in the graph and a graph is called
an independent set if there is no edge between any pair of vertices.

392 Z. Guo et al.

Table 1. Complexity results with different constants q and k

q k

k = 1 k = 2 k ≥ 3

q = 1 P (Theorem 2) P (Theorem 2) NPC (Theorem 2)

q = 2 P (Theorem 3) NPC (Corollary 1)

q ≥ 3 NPC (Theorem 5)

Table 2. Complexity results with parameters p and q

p is a constant P (Theorem 6)

Parameterized by p W[1]-hard (Theorem 7)

Parameterized by p and q FPT (Theorem 8)

For a nonnegative integer k, a k-coloring in a graph G = (V,E) is a function
c : V → {1, 2, · · · , k} such that for any edge vu it holds that c(v) �= c(u). A
graph is k-colorable if it allows a k-coloring. The Vertex Coloring Problem
(VCP) is to determine whether a given graph is k-colorable. The smallest integer
k to make G k-colorable is called the chromatic number of G and denoted by
χ(G).

Given an integer p, a p-partition of the vertex set V of G is denoted by
V = {V1, V2, · · · , Vp}, where Vi ∩ Vj = ∅ for any pair of different i and j in
{1, 2, . . . , p} and

⋃
1≤i≤p Vi = V . Each subset of a p-partition is also called a

part. The maximum size of the parts in a p-partition V = {V1, V2, · · · , Vp} is
denoted by q, i.e., q = maxp

i=1 |Vi|. A selection of a p-partition V is a subset of
vertex S ⊆ V such that |S ∩ Vi| = 1 for any i ∈ {1, 2, . . . , p}. The Partition
Coloring Problem is formally defined as follows.

The Partition Coloring Problem (PCP)
Input: a graph G = (V,E), a p-partition V = {V1, V2, · · · , Vp} of V , and an
integer k;
Question: Is there a selection S of V such that the chromatic number of the
induced graph G[S] is at most k, i.e., χ(G[S]) ≤ k?

We also introduce two known hard problems here, which will be used to prove
the hardness results of our problems.

A Conjunctive Normal Formula (CNF) φ is a conjunction of m given clauses
C1, C2, · · · , Cm on n boolean variables, where each clause Ci is a disjunction
of literals or a single literal and a literal is either a variable or the negation
of a variable. A literal xi and its negation xi are called a pair of contrary lit-
erals. A truth assignment to φ is an assignment of the n variables such that
every clause in φ is true. The k-Satisfiability Problem is defined as follows:

The Complexity of the Partition Coloring Problem 393

The k-Satisfiability Problem(k-SAT)
Input: A CNF φ of m given clauses C1, C2, · · · , Cm on n boolean variables
x1, x2, · · · , xn, where each clause contains at most k literals.
Question: Is there a truth assignment to φ?

The k-SAT is NP-Complete for each fixed integer k ≥ 3 [17], but polynomially
solvable for k = 1 or 2 [18]. These results will be used in the proofs of our
Theorems 3, 4 and 5.

The Independent Set Problem is another famous problem, which is
defined as follows:

The Independent Set Problem
Input: a graph G = (V,E), an integer k;
Question: Is there an independent set of size at least k in G?

The Independent Set Problem is polynomially solvable when k is a con-
stant and NP-Complete when k is part of the input [17]. Downey and Fellows [6]
further showed that the Independent Set Problem is W[1]-hard when taking
k as the parameter. This W[1]-hardness result implies that the Independent
Set Problem will not allow an algorithm with running time f(k)poly(n) for
any computable function f(k) and polynomial function on the input size poly(n)
under the assumption FPT �= W [1]. For more background about parameterized
complexity, readers are referred to the monograph [6]. The hardness results of
the Independent Set Problem will be used to prove the hardness of PCP,
say Theorem 7.

3 Complexity of PCP

In general, PCP is known to be NP-hard since it contains the well known NP-
hard problem, the Vertex Coloring Problem as a special case, where each
part contains exactly one vertex. In this paper, we will consider the complexity
of PCP with respect to the following three parameters:

– the number of colors, k;
– the number of parts in the partition, p;
– the maximum cardinality among all parts in the partition, q.

We will show that PCP is polynomially solvable only when some of the three
parameters are small constants. First of all, it is trivially to see that PCP is in
NP for any setting of the three parameters. Given an assignment of colors to a
subset of vertices, we can easily check whether it is a selection and a feasible
k-coloring in polynomial time.

Theorem 1. PCP is in NP.

394 Z. Guo et al.

3.1 Parameters q and k

We now discuss the NP-Hardness of PCP with different constant values of q and
k. As mentioned above, when q = 1, the problem is equal to VCP, which is NP-
Complete for each constant k ≥ 3 and polynomially solvable for each k ≤ 2 [17].
Therefore, we have the following conclusion.

Theorem 2. When q = 1, PCP is polynomially solvable for each constant 1 ≤
k ≤ 2 and NP-Complete for each constant k ≥ 3.

Next, we consider the cases where q ≥ 2.

Theorem 3. When q = 2 and k = 1, PCP is polynomially solvable.

Proof. We show that the case that k = 1 and q = 2 can be polynomially reduced
to the polynomially solvable problem 2-SAT [18].

For an instance of PCP with q = 2 and k = 1, a graph G = (V,E) and
a p-partition V of V where each part has at most 2 vertices, we construct an
instance φ of 2-SAT on p variables.

For each part Vj in V, we associate it with a variable xj . Then we have p
variables in φ. Furthermore, we associate each vertex in G with a literal (either
a variable x or its negative x): for each part of size 2, say Vj = {uj1, uj2}, we
associate vertex uj1 with literal �j1 = xj and associate vertex uj2 with literal
�j2 = xj ; for each part of size 1, say Vj = {uj1}, we associate vertex uj1 with
literal �j1 = xj . Next, we construct clauses. We will have p vertex clauses and
|E| edge clauses. For each part Vj of size 1, we construct a vertex clause �j1
containing exactly one literal; for each part Vj of size 2, we construct a vertex
clause �j1 ∨ �j2 of size 2. We can see that the second kind of vertex clause will
always be true since �j2 = �j1. However, we keep them for the purpose of the
presentation. For each edge (u, v) ∈ E, we construct an edge clause �u∨�v of size
2, where u is associated with the literal �u and v is associated with the literal
�v. Thus, we have |E| edge clauses.

We prove that there is a selection of V which is 1-colorable if and only if φ
is satisfied.

The “⇒” part: Assume there is a selection S of V which is 1-colorable. Then
S will form an independent set. For each vertex v in S, we let its associated
literal �v be 1. For any variable left without assigning a value, we simply let
it be 1. We claim that this is a truth assignment to φ. Since each vertex is
associated with a different literal, we know the above assignment of letting the
literals associated with vertices in S is feasible. First of all, we know each edge
clause is satisfied since each part contains at least one vertex in S and then each
edge clause contains at least one literal with value 1. For an edge clause �u ∨ �v
corresponding to the edge (u, v), if it is not satisfied, then �u = �v = 1 and
thus both of u and v are in S, which is a contradiction to the fact that S is an
independent set. So all edge clauses are satisfied and φ is satisfied.

The “⇐” part: Assume that φ is satisfied. For a truth assignment A of φ,
we select a vertex v into the selection S if and only if its associated literal is

The Complexity of the Partition Coloring Problem 395

assigned 1. Then the set S is a 1-colorable selection. The reason is as follows.
Each vertex clause can have at most one literal of value 1 in A. So each part
has one vertex being selected into S. For any two vertices u, v ∈ S, if there is
an edge between them, then there is an edge clause �u ∨ �v. Since �u ∨ �v should
be 1 in A, we know that at least one of �u and �v is 0 and then at least one of u
and v is not in S, a contradiction. So there is no edge between any two vertices
in S and such S is an independent set. �
Theorem 4. When q = 2 and k = 2, PCP is NP-Complete.

Proof. Theorem 1 shows that the problem is in NP. For the NP-Hardness, we
give a reduction from the known NP-Complete problem 3-SAT to PCP with
q = 2 and k = 2.

Let φ be a 3-SAT formula of m clauses C1, C2, · · · , Cm on n boolean variables
x1, x2, · · · , xn, where we can assume that |Ct| = 3 holds for each clause Ct. We
construct an instance of PCP. The graph G = (V,E) contains |V | = 9m + 2
vertices. In the p-partition V, each part has at most q = 2 vertices and p = 6m+2.
We will show that G has a selection S of V such that the chromatic number of
G[S] is at most k = 2 if and only if φ is satisfiable.

The graph G is constructed in the following way.
First, we introduce two vertices denoted by g and r. Then, for each clause

Ct = (at
1∨at

2∨at
3) (t ∈ {1, · · · ,m}) in φ, we introduce 9 vertices that are divided

into three layers of three vertices, called the literal layer, the middle layer and
the conflict layer. The three vertices in the literal layer are denoted by lt1, l

t
2, l

t
3,

the three vertices in the middle layer are denoted by mt
1,m

t
2,m

t
3, and the three

vertices in the conflict layer are denoted by ct1, c
t
2, c

t
3. For i ∈ 1, 2, 3 the four

vertices lti , mt
i and cti are associated with the literal at

i. In total, the graph has
9m + 2 vertices.

For edges in the graph G, we first add an edge between g and r. Then, for
each clause Ct, we introduce 9 edges as follows.

– Connect lti to mt
i for each each i ∈ {1, 2, 3} (3 edges);

– Connect each vertex mt
i (i ∈ {1, 2, 3}) in the middle layer to g (3 edges);

– Connect each pair of vertices in the conflict layer to form a triangle (3 edges).

Last, for each pair of contrary literals at1
i and at2

j (i, j ∈ {1, 2, 3}, t1, t2 ∈
{1, · · · ,m}) in φ, add an edge between the two vertices associated with at1

i

and at2
j in the literal layers.

In terms of the p-partition V, we will have p = 6m + 2 parts, each of which
contains at most q = 2 vertices. Vertices g and r form two separated parts
containing one vertex, {g} and {r}. For each clause Ct, the 9 vertices associated
with it will be divided into 6 parts: {lti} and {mt

i, c
t
i} for i = 1, 2, 3.

An illustration of the construction is shown in Fig. 1. We now show that
CNF φ is satisfiable if and only if there is a selection S of V such that G[S] is
2-colorable.

The “⇐” part: Assume that S is a selection of V such that G[S] is 2-
colorable and let c : S → {green, red} be a 2-coloring of G[S]. Since there is

396 Z. Guo et al.

Fig. 1. An example of the construction with two clauses Ct1 = x1 ∨ x2 ∨ x3 and
Ct2 = x2 ∨ x3 ∨ x4, where x1 and x2 have value true, and x3 and x4 have value false.
In the figure, a grey shadow represents a part of the partition. (Color figure online)

an edge between g and r, we know that c(g) �= c(r). With loss of generality, we
assume that c(g) = green and c(r) = red.

Each vertex in the literal layers must be in the selection S since it is in a
part of size 1. We claim that

Property 1. For the three vertices lt1, l
t
2 and lt3 (t ∈ {1, · · · ,m}) in a literal

layer associated to the clause Ct, at least one of them is assigned green in the
2-coloring c.

Assume to the contrary that c(lt1) = c(lt2) = c(lt3) = red. For this case, none
of mt

1,m
t
2 mt

3 can be assigned to either red or green and then none of them is
in S. Such all of ct1, c

t
2 and ct3 are in S. Note that ct1, c

t
2 and ct3 form a triangle. It

is impossible to color them by using only 2 colors, a contraction. So Property 1
holds.

For each clause Ct (t ∈ {1, . . . , m}), we select an arbitrary vertex lti in the
literal layer with green color in the 2-coloring c and assign the corresponding
literal at

i value 1. After doing this, if there are still variables without assigned
the value, arbitrarily assign 1 or 0 to it. We claim the above assignment of the
variables is a truth assignment to φ. Note that there is an edge between any
pair of contrary literals in the graph G. So it is impossible that two contrary
literals are assigned green in c. Therefore, the above assignment is a feasible
assignment. Furthermore, by Property 1, we know that each clause will have at
least one literal assigned value 1. Therefore, it is a truth assignment to φ.

The “⇒” part: Assume there is a truth assignment of φ. We show that there
is a selection S of V and a 2-coloring c of G[S]. First of all, vertices g and r are
selected into S. We let c(g) = green and c(r) = red. Second, all vertices in the

The Complexity of the Partition Coloring Problem 397

literal layers are selected into S, and a vertex lti in the literal layers is assigned to
color green (resp., red) in c if the corresponding literal at

i has value 1 (resp., 0).
Third, for the parts containing a vertex in the middle layer and a vertex in the
conflict layer, we select the vertex mt

i in the middle layer into S and assign color
red to it if the corresponding vertex lti in the literal layer is assigned to color
green; we select the vertex cti in the conflict layer into S if the corresponding
vertex lti in the literal layer is assigned to color red. For the color of cti, if no
neighbor of cti in G[S] has been assigned a color, we assign color green to it, and
otherwise, we assign color red to it. We argue that the above coloring is a feasible
2-coloring of G[S]. After the second step, no adjacent vertices are assigned the
same color because there are only edges between pairs of contrary literals. In the
third step, we can assign a red color to vertices mt

i in the middle layer because
they are only adjacent to vertices T and lti , both of which are assigned green.
For the vertices cti in the conflict layer, each of them is adjacent to at most one
vertex in G[S] because at least one vertex in the literal layer of each clause Ct is
assigned green by Property 1 and then at most two vertices in the conflict layer
of Ct can be selected into S. So our way to color vertices in the conflict layer is
correct. �

Readers are refer to Fig. 1 for an illustration of the reduction of the case
q = 2 and k = 2, where φ contains at least two clauses Ct1 = x1 ∨ x2 ∨ x3 and
Ct2 = x2 ∨ x3 ∨ x4. When x1 and x2 have value true, x3 and x4 have value false,
then we assign lt11 , lt21 , lt22 , ct12 and ct22 green and we assign lt12 , lt13 , lt23 , mt1

1 , mt2
1 ,

ct13 and ct23 red.
Now let us extend the below theorem to the cases q ≥ 2 and k ≥ 2.

Corollary 1. � For each constant q ≥ 2 and for each constant k ≥ 2, PCP is
NP-Complete.

Theorem 5. � When k = 1, PCP is NP-Complete for each constant q ≥ 3.

We can prove this theorem by reducing from q-SAT to PCP with k = 1,
where q ≥ 3. The detailed proof is omitted here.

3.2 Parameter p

Next, we consider the parameter p. It is easy to see that PCP is polynomially
solvable when p is a constant. A simple brute-force algorithm runs in polynomial
time: by enumerating all vertices in each part to search the selection S we will
get at most

∏p
i=1 |Vi| candidates for S in

∏p
i=1 |Vi| ≤ np time; for each candidate

we can check whether it is k-colorable in O(pk) time, where k ≤ p. When p is a
constant, the algorithm runs in polynomial time.

Theorem 6. When p is a constant, PCP is polynomially solvable.

Since PCP is NP-hard when p is part of the input and polynomially solvable
when p is a constant, it is reasonable to consider whether PCP is fixed-parameter
tractable by taking parameter p. We have the following negative result.

398 Z. Guo et al.

Theorem 7. � Taking p as the parameter, PCP is W[1]-hard even for each fixed
k ≥ 1.

This theorem can be proved by reducing from the Independent Set Problem.
The detailed proof is omitted here.

On the other hand, it is easy to see that PCP is FPT when both of p and q
are taking as the parameters.

Theorem 8. Taking p and q as the parameters, PCP is fixed-parameter
tractable.

Proof. In fact, a simple brute-force algorithm is FPT. If k > p, the problem is
trivial. Next, we assume that k ≤ p. We enumerate all possible selections, the
number of which is at most qp. For each candidate selection, there are at most
kp ≤ pp different ways to color them. To check whether a color is feasible can be
done in linear time. So the algorithm runs in O((pq)p(|V | + |E|)) time. �

4 An Exact Algorithm for PCP

In this section, we consider fast exact algorithms for PCP. It is known that
VCP can be solved in O∗(2n)1 time by using subset convolution [1], while tra-
ditional dynamic programming algorithms can only lead to running time of
O∗(3n). By using the O∗(2n)-time algorithm for VCP, we can get a simple
O∗((2np)p)-time algorithm for PCP: we enumerate all candidates of the selec-
tion and check whether they are k-colorable. The number of candidates of the
selection is

∏p
i=1 |Vi|, which is at most (np)p by the AM-GM inequality [2]. Each

candidate is a part of p vertices and we use the O∗(2p)-time algorithm to check
whether it is k-colorable. So in total, the algorithm runs in O∗((2np)p) time. Next,
we use the subset convolution technique to improve the running time bounded
to O((n+p

p)pn log k). Note that when p = n, the problem becomes VCP and the
running time bound reaches the best known bound O∗(2n) for VCP.

Definition 1. Given a p-partition V = {V1, · · · , Vp}, a vertex subset S ⊆ V is
called a semi-selection if it holds that |S ∩ Vi| ≤ 1 for all 1 ≤ i ≤ p.

It is easy to see that a semi-selection S with size |S| = p is a selection. We
use S to denote the set of all semi-selections corresponding to a p-partition V.
We have that

|S| ≤ (
n + p

p
)p. (1)

Each semi-selection S has at most one vertex in each part Vi. There are |Vi| + 1
possibilities for S∩Vi. Such the number of semi-selections is |S| =

∏p
i=1(|Vi|+1).

Since
∑p

i=1(|Vi| + 1) = n + p, by the AM-GM inequality, we have |S| ≤ (n+p
p)p.

The set S is a hereditary family, that is to say, for any semi-selection S ∈ S,
all the subsets of S are also semi-selections. We will use the following lemma to
design our algorithm.
1 The notation O∗ is a modified big-O notation that suppresses all polynomially

bounded factors.

The Complexity of the Partition Coloring Problem 399

Theorem 9. Let S ∈ S be a semi-selection. Then G[S] is k-colorable if there is
a subset T ⊆ S such that G[T] is 1-colorable and G[S \ T] is (k − 1)-colorable.

Proof. Since S is a hereditary family, we know that each subset of S is also a
semi-selection. For a k-coloring of G[S], the set of vertices with the same color
is a satisfied subset T . �

Before introducing our algorithm, we give the definition of the subset convo-
lution first.

Definition 2. Let S be a hereditary family on a set contains n elements and
g, h be two integer functions on S, i.e., g, h : S → Z. The subset convolution of
g and h, denoted by g ∗ h, is a function assigning to any S ∈ S an integer

(g ∗ h)(S) =
∑

T⊆S

g(T) · h(S \ T).

The subset convolution can be computed in time O(n|S|) [1].
We show how to use the subset convolution to solve PCP. Let f be an indica-

tor function on semi-selections f : S → {0, 1}. For any semi-selection S, f(S) = 1
if G[S] is 1-colorable, and f(S) = 0 otherwise. Define f∗k : S → Z as follows:

f∗k = f ∗ f ∗ · · · ∗ f
︸ ︷︷ ︸

k times

.

We have the following theorem

Theorem 10. � For any semi-selection S ∈ S, the graph G[S] is k-colorable if
and only if f∗k(S) > 0.

By this theorem, to check whether there is a k-colorable selection, we only
need to check whether there is a semi-selection S such that |S| = n and f∗k(S) >
0. The detailed steps of the algorithm are given below.

Algorithm 1. An exact algorithm for PCP.
Require: A simple undirected graph G = (V,E), a p-partition V and an integer k.
Ensure: ‘yes’ or ‘no’ to indicate wether there exits a selection S such that G[S] is

k-colorable.
1: Enumerate all semi-selections and store them in S;
2: Check all the semi-selections S whether they are 1-colorable, and let f(S) = 1 if S

is 1-colorable and f(S) = 0 otherwise;
3: Calculate the subset convolution f∗k;
4: If there is a semi-selection S such that |S| = p and f∗k(S) > 0, stop and return

‘yes’;
5: return ‘no’.

Theorem 11. � Algorithm 1 solves PCP in O((n+p
p)pn log k) time.

400 Z. Guo et al.

We have proved that PCP with parameter p is W[1]-hard. It is unlikely to
remove n from the exponential part of the running time. Furthermore, when
p = n, the problem becomes VCP and the running time bound O∗(2n), which is
the best-known result for VCP.

5 Concluding Remarks

In this paper, we have analyzed the computational complexity of the Partition
Coloring Problem. By reducing from or to the Independent Set Problem,
the Vertex Coloring Problem and the k-SAT problem, we show differ-
ent NP-hardness results of the Partition Coloring Problem with respect
to different constant settings of three parameters: the number of colors, the
number of parts of the partition, and the maximum size of each part of the
partition. We also design polynomial-time algorithms for the remaining cases.
It would be interesting to look into the complexity status of the problem in
subgraph classes with different settings on the three parameters and find more
effective fixed-parameter tractable algorithms for Partition Coloring Prob-
lem parameterized by both p and q.

References

1. Björklund, A., Husfeldt, T., Kaski, P., Koivisto, M.: Fourier meets möbius: fast
subset convolution. In: Proceedings of the Thirty-Ninth Annual ACM symposium
on Theory of computing, pp. 67–74. ACM (2007)

2. Cauchy, A.L.B.: Cours d’analyse de l’École Royale Polytechnique. Debure (1821)
3. Damaschke, P.: Parameterized mixed graph coloring. J. Comb. Optim. 38(2), 362–

374 (2019)
4. Demange, M., Ekim, T., Ries, B., Tanasescu, C.: On some applications of the

selective graph coloring problem. Eur. J. Oper. Res. 240(2), 307–314 (2015)
5. Demange, M., Monnot, J., Pop, P., Ries, B.: On the complexity of the selective

graph coloring problem in some special classes of graphs. Theoret. Comput. Sci.
540, 89–102 (2014)

6. Downey, R.G., Fellows, M.R.: Fixed-parameter tractability and completeness II:
on completeness for W[1]. Theoret. Comput. Sci. 141(1–2), 109–131 (1995)

7. Ekim, T., de Werra, D.: On split-coloring problems. J. Comb. Optim. 10(3), 211–
225 (2005). https://doi.org/10.1007/s10878-005-4103-7

8. Frota, Y., Maculan, N., Noronha, T.F., Ribeiro, C.C.: A branch-and-cut algorithm
for partition coloring. Networks 55(3), 194–204 (2010)

9. Furini, F., Malaguti, E., Santini, A.: An exact algorithm for the partition coloring
problem. Comput. Oper. Res. 92, 170–181 (2018)

10. Galinier, P., Hao, J.K.: Hybrid evolutionary algorithms for graph coloring. J.
Comb. Optim. 3(4), 379–397 (1999). https://doi.org/10.1023/A:1009823419804

11. Gamst, A.: Some lower bounds for a class of frequency assignment problems. IEEE
Trans. Veh. Technol. 35(1), 8–14 (1986)

12. Glass, C.A., Prügel-Bennett, A.: Genetic algorithm for graph coloring: exploration
of Galinier and Hao’s algorithm. J. Comb. Optim. 7(3), 229–236 (2003). https://
doi.org/10.1023/A:1027312403532

https://doi.org/10.1007/s10878-005-4103-7
https://doi.org/10.1023/A:1009823419804
https://doi.org/10.1023/A:1027312403532
https://doi.org/10.1023/A:1027312403532

The Complexity of the Partition Coloring Problem 401

13. Hansen, P., Kuplinsky, J., de Werra, D.: Mixed graph colorings. Math. Methods
Oper. Res. 45(1), 145–160 (1997). https://doi.org/10.1007/BF01194253

14. Holyer, I.: The NP-completeness of edge-coloring. SIAM J. Comput. 10(4), 718–
720 (1981)

15. Hoshino, E.A., Frota, Y.A., De Souza, C.C.: A branch-and-price approach for the
partition coloring problem. Oper. Res. Lett. 39(2), 132–137 (2011)

16. Jin, Y., Hamiez, J.-P., Hao, J.-K.: Algorithms for the minimum sum coloring prob-
lem: a review. Artif. Intell. Rev. 47(3), 367–394 (2016). https://doi.org/10.1007/
s10462-016-9485-7

17. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger, J.D. (eds) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103 (1972). Springer, Boston. https://
doi.org/10.1007/978-1-4684-2001-2 9

18. Krom, M.R.: The decision problem for a class of first-order formulas in which all
disjunctions are binary. Math. Logic Q. 13(1–2), 15–20 (1967)

19. Kubicka, E., Schwenk, A.J.: An introduction to chromatic sums. In: Proceedings
of the 17th Conference on ACM Annual Computer Science Conference, pp. 39–45.
ACM (1989)

20. Li, G., Simha, R.: The partition coloring problem and its application to wave-
length routing and assignment. In: Proceedings of the First Workshop on Optical
Networks, p. 1. Citeseer (2000)

21. Lin, W., Xiao, M., Zhou, Y., Guo, Z.: Computing lower bounds for minimum sum
coloring and optimum cost chromatic partition. Comput. Oper. Res. 109, 263–272
(2019)

22. Lucarelli, G., Milis, I., Paschos, V.T.: On the max-weight edge coloring problem. J.
Comb. Optim. 20(4), 429–442 (2010). https://doi.org/10.1007/s10878-009-9223-z

23. Pop, P.C., Hu, B., Raidl, G.R.: A memetic algorithm with two distinct solution rep-
resentations for the partition graph coloring problem. In: Moreno-Diaz, R., Pichler,
F., Quesada-Arencibia, A. (eds.) Computer Aided Systems Theory - EUROCAST
2013. EUROCAST 2013. Lecture Notes in Computer Science, vol. 8111, pp. 219–
226. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-53856-8 28

24. Zhou, X., Nishizeki, T.: Algorithm for the cost edge-coloring of trees. J.
Comb. Optim. 8(1), 97–108 (2004). https://doi.org/10.1023/B:JOCO.0000021940.
40066.0c

https://doi.org/10.1007/BF01194253
https://doi.org/10.1007/s10462-016-9485-7
https://doi.org/10.1007/s10462-016-9485-7
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/s10878-009-9223-z
https://doi.org/10.1007/978-3-642-53856-8_28
https://doi.org/10.1023/B:JOCO.0000021940.40066.0c
https://doi.org/10.1023/B:JOCO.0000021940.40066.0c

FPT Algorithms for Generalized
Feedback Vertex Set Problems

Bin Sheng(B)

Collaborative Innovation Center of Novel Software Technology and Industrialization,
College of Computer Science and Technology,

Nanjing University of Aeronautics and Astronautics,
Nanjing 211106, Jiangsu, People’s Republic of China

shengbinhello@nuaa.edu.cn

Abstract. An r-pseudoforest is a graph in which each component can
be made into a forest by deleting at most r edges, and a d-quasi-forest is
a graph in which each component can be made into a forest by deleting
at most d vertices.

In this paper, we study the parameterized tractability of deleting mini-
mum number of vertices to obtain r-pseudoforest and d-quasi-forest, gen-
eralizing the well-studied feedback vertex set problem. We first provide
improved FPT algorithm and kernelization results for the r-pseudoforest
deletion problem, and then we show that the d-quasi-forest deletion prob-
lem is also FPT.

Keywords: FPT · Kernelization · Generalized Feedback Vertex Set.

1 Preliminary

The Feedback Vertex Set problem, which asks to delete a minimum number of
vertices from a given graph to make it acyclic, is one of the 21 NP-hard problems
proved by Karp [11]. It has important applications in bio-computing, artificial
intelligence, and so on. The problem has attracted a lot of attention from the
parameterized complexity community due to its importance. Both its undirected
and directed versions have been well studied [3–5,8].

Feedback vertex set problem is fixed-parameter tractable when parameterized
with the solution size, the number of vertices to delete. For the undirected feed-
back vertex set problem, the state of the art algorithm runs in time O∗(3.460k)
in the deterministic setting [10] and O∗(3k) in the randomized setting [12], here
the O∗ notation hides polynomial factors in n.

Several classes of nearly acyclic graphs have been defined in the literature.
A graph F is an r-pseudoforest if we can delete at most r edges from each
component in F to get a forest. A pseudoforest is a 1-pseudoforest. A graph F
is an almost r-forest if we can delete r edges from F to get a forest.

National Natural Science Foundation of China (No. 61802178).

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 402–413, 2020.
https://doi.org/10.1007/978-3-030-59267-7_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_34&domain=pdf
http://orcid.org/0000-0003-4601-446X
https://doi.org/10.1007/978-3-030-59267-7_34

FPT Algorithms for Generalized Feedback Vertex Set Problems 403

As a generalization of feedback vertex set problem, Philip et al. [14] intro-
duced the problem of deleting vertices to get a nearly acyclic graph. Several
results have been obtained in this line of research. In [14], the authors gave a
O(ckrn

O(1)) algorithm for r-pseudoforest deletion, which asks to delete at most k
vertices to get an r-pseudoforest. The cr here depends on r doubly exponentially.
They also gave a 7.56knO(1) time algorithm for the problem of pseudoforest dele-
tion. Bodlaender et al. [1] gave an improved algorithm for pseudoforest deletion
running in time O(3knkO(1)).

Rai and Saurabh [15] gave a O∗(5.0024(k+r)) algorithm for the Almost Forest
Deletion problem, which asks to delete minimum vertices to get an almost r-
forest. Lin et al. [13] gave an improved algorithm for this problem that runs in
time O∗(5k4r).

A d-quasi-forest is a graph in which each connected component admits a
feedback vertex set of size at most d. Hols and Kratsch [9] raised this notion
and showed that the Vertex Cover problem admits a polynomial kernel when
parameterized with distance to d-quasi-forest. They did not show how to obtain
such a modulator to d-quasi-forest.

In this paper, we first give an algorithm for r-pseudoforest deletion that runs
in time (1 + (2r + 3)r+2)k+1nO(1), improving the algorithm in [14]. We also
provide an improved kernelization result for r-pseudoforest deletion. We then
give an FPT algorithm to obtain a minimum modulator to d-quasi-forest. To
the author’s knowledge, this is the first nontrivial FPT result for d-quasi-forest
deletion.

2 Notations and Terminology

Here we give a brief list of the graph theory concepts used in this paper; for
other notations and terminology, we refer readers to [2].

For a graph G = (V (G), E(G)), V (G) and E(G) are its vertex set and edge
set respectively. A non-empty graph G is connected if there is a path between
any pair of vertices. Otherwise, we call it disconnected.

The multiplicity of an edge is the number of its appearances in the multi-
graph. An edge uv is a loop if u = v. The degree of a vertex is the number of
its appearances as end-vertex of some edge. We use δ(G) to denote the mini-
mum degree of vertices in G. A forest is a graph in which there is no cycle. A
tree is a connected forest. A graph H = (V (H), E(H)) is a subgraph of a graph
G = (V (G), E(G)), if V (H) ⊆ V (G) and E(H) ⊆ E(G). A subgraph H of G is
an induced subgraph of G if for any u, v ∈ V (G), edge uv ∈ E(H) if and only if
uv ∈ E(G). We denote H by G[V (H)] if H is induced by the vertex set V (H).
We use E(X,Y) to denote the set of edges between vertex sets X and Y . And
NX(u) denotes the neighborhood of u in vertex set X ⊆ V (G).

For a positive integer r, an r-pseudoforest is a graph in which each connected
component can be made into a tree by deleting at most r edges. A pseudoforest
is 1-pseudoforest. A d-quasi-forest is a graph in which each component admits a
feedback vertex set of size at most d.

404 B. Sheng

3 Branching Algorithm for r-pseudoforest Deletion

Definition 1. Given a graph G = (V,E), a subset S ⊆ V (G) is an r-
pseudoforest deletion set of G if G \ S is an r-pseudoforest.

Here is a formal definition of the parameterized r-pseudoforest deletion
problem.

r-pseudoforest Deletion
Instance: Graph G, integers k and r.
Parameter: k and r.
Output: Decide if there exists an r-pseudoforest deletion set X of G with

|X| ≤ k?
For a connected component C in a graph G, we call the quantity |E(C)| −

|V (C)| + 1 the excess of C and denote it by ex(C). Note that ex(C) ≥ 0 for any
connected component. Let C be the set of components in G. We define the excess
of G, denoted by ex(G), as ex(G) = maxC∈Cex(C), i.e., the maximum excess
among all components in G. By definition, G is an r-pseudoforest if and only if
ex(G) ≤ r. For vertex subset S ⊆ V (G), let cc(S) = cc(G[S]) be the number of
components in G[S].

We give the following observations about r-pseudoforest.
Observation 1: If G′ is a subgraph of an r-pseudoforest, then G′ is also an

r-pseudoforest.
Observation 2: If G is an r-pseudoforest, then each component C in G has

at most |V (C)| − 1 + r edges.
By Observation 2, checking whether a given graph is an r-pseudoforest can

be done in polynomial time.
Now we show how to solve the r-pseudoforest deletion via the approach of

iterative compression. As a standard step, we introduce the following disjoint
version of r-pseudoforest deletion.

Disjoint r-pseudoforest Deletion
Input: Graph G with an r-pseudoforest deletion set S, |S| ≤ k + 1, integers

k and r.
Parameter: k and r.
Output: Decide if there exists an r-pseudoforest deletion set X of G with

|X| ≤ k and X ∩ S = ∅?
To solve the Disjoint r-pseudoforest Deletion, we apply the following reduc-

tion rules.
Reduction Rule 1: Let (G,S, k, r) be an instance of Disjoint r-pseudoforest

Deletion, if there exists a vertex v ∈ V (G) \ S such that dG(v) = 1, then return
(G − v, S, k, r).

We append the safety proof of Reduction Rule 1 in the appendix.
Reduction Rule 2: If there exists v ∈ V (G) \ S such that G[S ∪ v] is not

an r-pseudoforest, then return (G − v, S, k − 1, r).
Reduction Rule 2 is safe since every r-pseudoforest deletion set disjoint from

S must contain v.

FPT Algorithms for Generalized Feedback Vertex Set Problems 405

Reduction Rule 3: If there exists a vertex u ∈ V (G)\S of degree two, such
that at least one neighbor of u is in V (G) \ S, then delete u and put a new edge
between its two neighbors (even if they are adjacent). If both incident edges of
u are to the same vertex, delete u and put a new loop on the adjacent vertex
(even if it has a loop already).

The following lemma establishes the correctness of Rule 3, whose proof can
be found in the appendix.

Lemma 1. Reduction Rule 3 is safe.

Reduction Rule 4: If k < 0, then return no.
Reduction Rules 1–4 can be applied in polynomial time. Given an instance,

(G,S, k, r) of Disjoint r-pseudoforest Deletion, apply Rules 1–4 whenever possi-
ble.

Now we show how to solve the problem when Reduction Rules 1–4 cannot
be applied.

Define measure φ(I) = k + cc(S)+ΣC∈C(G[S])(r − ex(C)). Note that initially
φ(I) ≤ k + cc(S) + cc(S)r ≤ 2k + (k + 1)r + 1 < (k + 1)(r + 2) since |S| ≤ k + 1.

To get a depth bounded search tree, we prove that φ(I) decreases after each
application of the following branching rules.

BR-1. Branching on a vertex v /∈ S with dS(v) ≥ 2.
In one branch, we put v into the solution and call the algorithm on (G −

{v}, S, k − 1, r). Note that in this branch, cc(S), ex(C) (for each C ∈ C(G[S]))
remain the same while k decreases by 1. Hence φ(I) drops by 1.

In the other branch, we put v into S and call the algorithm on (G,S ∪
{v}, k, r). Let S′ = S ∪{v}. There are the following two possible cases regarding
the distribution of NS(v).

Case 1: NS(v) belongs to more than one component in G[S], thus cc(S′) ≤
cc(S) − 1. Let C1, C2, . . . , Ct(t ≥ 2) be the set of components in G[S] that are
adjacent to v.

To compute the difference between excess sums in S and S′, denote

σS = Σi∈[t](r − ex(Ci))
= rt − Σi∈[t](ex(Ci))
= rt − Σi∈[t](|E(Ci)| − |V (Ci)| + 1)
= rt − Σi∈[t]|E(Ci)| + Σi∈[t]|V (Ci)| − t,

σS′ = r − ex(G[∪i∈[t]V (Ci) ∪ {v}])
= r − (|E(∪i∈[t]V (Ci) ∪ {v})| − |V (∪i∈[t]V (Ci) ∪ {v})| + 1)
= r − (Σi∈[t]|E(Ci)| + dS(v) − Σi∈[t]|V (Ci)|)

Since σS − σS′ = r(t − 1) + dS(v) − t ≥ r(t − 1) ≥ r, φ(I) drops by at least
1 + σS − σS′ ≥ 1 + r(t − 1) ≥ 1 + r.

406 B. Sheng

Case 2: All the neighbors of v belong to one component, denoted by C∗.
Then cc(S′) = cc(S), and ex(G[V (C∗)∪{v}])− ex(C∗) ≥ 1 as dS(v) ≥ 2. Hence
φ(I) decreases by at least 1.

Therefore, in BR-1, the measure φ(I) drops by 1 in one case, and at least
1 + r or 1 in the other, while remaining non-negative. In the worst case, it gives
us a branching vector (1, 1).

After exhaustive applications of Rule 3 and BR-1, every vertex in G − S has
degree at least 3. Moreover, if there exists a vertex u 	∈ S such that dG−S(u) ≤ 1,
then dS(u) ≥ 2. And so if dS(u) ≤ 1 holds for each u ∈ G−S, then dG−S(u) ≥ 2,
that is δ(G − S) ≥ 2. Thus each u ∈ G − S must be in a cycle.

If G is not an r-pseudoforest, there must be edges between G − S and S,
since both G[S] and G − S are r-pseudoforest. In the following, we branch on
vertices in G − S adjacent to S.

BR-2. Branching on a vertex v /∈ S adjacent to S.
First, consider the case when there is a component C in G − S such that

there is only one edge uv between C and S, where u ∈ C and v ∈ S. Note that if
the solution should intersect V (C), then it suffices to contain u. Thus we branch
on whether to put u into the solution. In one branch, we put u into the solution,
then k decreases and φ(I) decreases by one. In the other branch, we put C into
S. Since each vertex in G − S is of degree at least 3, thus C is not a tree, and so
the value of r − ex(S) decreases, thus φ(I) also decreases by at least one.

Now assume each component in G − S has at least two edges to S. Look at
one shortest path P in G − S, such that both endvertices of P are adjacent to
some vertex in S (we allow P to be an isolated vertex). Note that such a shortest
path can be found in polynomial time. We prove that |V (P)| ≤ 2r + 2. As any
component C in G − S is an r-pseudoforest, |E(C)| − |V (C)| + 1 ≤ r. Note that
each vertex in P has degree at least 3 after exhaustive applications of Reduction
Rule 3. And observe that no internal vertex of P has an edge to S, otherwise we
find a path shorter than P , a contradiction. Let C0 be the component in G − S
containing P , we know |E(C0)| ≥ 3/2|V (P)| − 2, and ex(C0) ≥ ex(G[V (P)]) ≥
3/2|V (P)| − 2 − |V (P)| + 1. As ex(C0) ≤ r, so |V (P)| ≤ 2r + 2.

We branch on whether to delete any vertex on the path P . Suppose P =
v1, v2 . . . , vt. We consider t + 1 branches. In branch i, where i ∈ [t], we delete
vertex vi on path P , and call the algorithm on (G − {vi}, S, k − 1, r). In branch
t+1, we don’t delete any vertex on P . Note that for branch i, where i ≤ t, cc(S),
ex(C) (for any C ∈ C(G[S])) remain the same while k decreases by at least 1.
Thus φ(I) drops by at least 1.

If G[S + V (P)] is not an r-pseudoforest, then we ignore branch t + 1. Other-
wise, for branch t + 1, we get a new instance (G,S′, k, r), where S′ = S ∪ V (P).
If edges between V (P) and S are to the same component C in G[S], then
ex(C ∪ V (P)) = ex(C) + 1, thus in this branch, φ(I) decreases by 1. Other-
wise, the edges between V (P) and S are to different components in G[S]. In this
case, cc(S) decreases by 1 and σS − σS′ ≥ 0, so φ(I) drops by at least 1. This
gives us a (t + 1)-tuple branching vector (1, 1, . . . , 1) in which t ≤ 2r + 2.

FPT Algorithms for Generalized Feedback Vertex Set Problems 407

According to the branching vectors in BR-1 and BR-2, the algorithm runs in
time O∗((2r + 3)(k+1)(r+2)).

The following lemma states that a fast parameterized algorithm for the dis-
joint version problem gives a fast algorithm for the original problem.

Lemma 2. [7] If there is an algorithm solving Disjiont r-pseudoforest Deletion
in time f(k)nO(1), then there is an algorithm solving r-pseudoforest Deletion in
time

∑i=k
i=0

(
k+1
i

)
f(k − i)nO(1).

So we get an algorithm for r-pseudoforest deletion with a running time∑i=k
i=0

(
k+1
i

)
(2r + 3)(k−i+1)(r+2) ≤ (1 + (2r + 3)r+2)k+1, which improves over the

result in [14]. Our result answers the question raised in [1] on whether there is
an algorithm for r-pseudoforest deletion running in time O∗(ckr).

Theorem 1. There exists an algorithm for r-pseudoforest deletion with running
time (1 + (2r + 3)r+2)k+1nO(1).

4 Kernelization of r-pseudoforest Deletion

In this section, we give an improved kernel for the r-pseudoforest deletion prob-
lem. By exhaustively applying Reduction Rules 1 and 3, we get an instance with
minimum degree at least 3.

Lemma 3. If a graph G has minimum degree at least 3, maximum degree at
most d, and an r-pseudoforest deletion set of size at most k, then it has at most
(2dr − d + 1)k vertices and at most 3kdr − kd edges.

Proof. Let X be an r-pseudoforest deletion set of G of size at most k. Let
F = G − X. It follows that each component in F can be made into a forest by
deleting at most r edges. Suppose there are c components in F , we know that
c ≤ kd, since deleting any vertex of degree t produces at most t components. For
each component Ci with i ∈ [c], we know there are at most |V (Ci)|−1+r edges.
Thus, |E(F)| = Σi∈[c]|E(Ci)| ≤ Σi∈[c](|V (Ci)| − 1 + r) = |V (F)| + c(r − 1). By
counting the number of edges incident with V (F), we know that

3|V (F)| ≤ 2(|E(F)|) + |E(X,V (F))| ≤ 2(|V (F)| + c(r − 1)) + kd.

It follows that |V (F)| ≤ 2c(r − 1) + kd. So |V (G)| ≤ |X| + |V (F)| ≤ 2c(r − 1) +
k(d + 1) ≤ (2dr − d + 1)k. And |E(G)| ≤ |E(F)| + |E(X,V (F))| + |E(G[X])| ≤
|V (F)| + c(r − 1) + kd < 3c(r − 1) + 2kd = 3kdr − kd.
�

We need to make use of the following result.

Theorem 2. ([14]) Given an instance (G, k) of r-pseudoforest Deletion, in
polynomial time, we can get an equivalent instance (G′, k′) such that k′ ≤ k,
|V (G′)| ≤ |V (G)| and the maximum degree of G′ is at most (k + r)(3r + 8).

Theorem 3. The r-pseudoforest deletion problem admits a kernel with
max{O(k2r2), O(kr3)} vertices and max{O(k2r2), O(kr3)} edges.

408 B. Sheng

Proof. According to Theorem 2, we know that r-pseudoforest deletion admits a
kernel with maximum degree at most d = (k + r)(3r +8). Thus by Lemma 3, we
can obtain a kernel for r-pseudoforest deletion which has at most (2r−1)kd+k =
max{O(k2r2), O(kr3)} vertices, and at most (3r − 1)kd = (3r − 1)k(k + r)(3r +
8) = max{O(k2r2), O(kr3)} edges.
�
The kernel in Theorem 3 improves over the O(ck2) kernel in [14], in which the
constant c depends on r exponentially.

5 d-quasi-forest Deletion

Definition 2. Given a graph G = (V,E), a subset S ⊆ V (G) is a d-quasi-
forest deletion set of G if G − S is a d-quasi-forest.

Let us recall the definition of parameterized d-quasi-forest deletion first.

d-quasi-forest deletion
Instance: An undirected graph G, integers d and k.
Parameter: d and k.
Output: Decide if there exists a d-quasi-forest deletion set X ⊆ V (G) with

|X| ≤ k.

Lemma 4. A yes instance of d-quasi-forest deletion has treewidth at most k +
d + 1.

We append the proof of Lemma 4 in the appendix.
We first point out that the problem is FPT according to Courcelle’s theorem

by expressing it with Monadic Second Logic. The basic idea of the expression
is as follows: ∃v1, v2, . . . , vk ∈ V (G) such that ∀X ⊆ V (G) − {v1, v2, . . . , vk},
Conn(X) → FV S(X) ≤ d. The definition of FV S(X) ≤ d is as follows:
∃y1, y2, . . . , yd ∈ X, such that ¬ ExistsCycle(X − {y1, y2, . . . , yd}). The defini-
tion of ExistsCycle(X) is as follows: ∃E ⊆ E(G), such that Conn(E) and ∀e ∈
E, ∃u, v ∈ X, such that Inc(u, e) and Inc(v, e) and Deg(u,E) = Deg(v,E) = 2.

Theorem 4. (Courcelle [6]) Given a graph G and a formula ϕ in Monadic
Second Logic describing a property of interest, and parameterizing by the com-
bination of tw(G) and the size of the formula ϕ, it can be determined in time
f(tw(G), |ϕ|)nO(1) whether G has the property of interest.

Theorem 5. The d-quasi-forest deletion problem is FPT parameterized with k
and d.

Unfortunately, the algorithm implied by Courcelle’s Theorem may be several
layers exponential. Aiming at fully exploiting the problem structure and design
a faster algorithm, we solve the d-quasi-forest deletion problem by the iterative
compression approach.

FPT Algorithms for Generalized Feedback Vertex Set Problems 409

d-quasi-forest deletion compression
Instance: An undirected graph G, an integer k and a d-quasi-forest deletion

set Z ⊆ V (G) with |Z| ≤ k + 1.
Parameter: d and k.
Output: Decide if there exists a d-quasi-forest deletion set X ∈ V (G) with

|X| ≤ k.
By guessing the intersection of Z and X, we reduce the d-quasi-forest deletion

compression problem into the following disjoint version.

Disjoint d-quasi-forest deletion
Instance: An undirected graph G, an integer k and a d-quasi-forest deletion

set Z ⊆ V (G) with |Z| ≤ k + 1.
Parameter: d and k.
Output: Decide if there exists a d-quasi-forest deletion set X ∈ V (G) with

|X| ≤ k,X ∩ Z = ∅.

Denote F = G − Z, then F is a d-quasi-forest, that is, each connected com-
ponent in F admits feedback vertex set of size at most d. Note that according
to the algorithm in [10], we can check whether a given graph is a d-quasi-forest
in time O∗(3.460d).

Reduction Rule 1: If there is a vertex u of degree at most one, then delete
u and return a new instance (G − u, k).

Reduction Rule 2: If there is a vertex u of degree exactly two in G, then
delete u and add an edge between the neighbors of u.

After exhaustive applications of Reduction Rules 1–2, the resulting instance
has minimum degree at least 3.

Reduction Rule 3: Observe that G[Z] is a d-quasi-forest, otherwise, it is a
no-instance. If there is any vertex u ∈ V (G) \ Z such that G[u ∪ V (Z)] is not a
d-quasi-forest, then delete u and decrease k by one.

Lemma 5. If (G,Z, k) is a yes instance of Disjoint d-quasi-forest deletion, then
for each vertex u ∈ Z, G − Z contains at most k + d components, that contain
at least one cycle, adjacent with u.

Proof. If there are more than k + d components in G−Z, which are adjacent to
u, containing a cycle, then for any vertex set X ⊆ V (G−Z), such that |X| ≤ k,
the component containing u in G − X is not a d-quasi-forest. Thus (G,Z, k) is
a no instance. It follows that for each vertex u ∈ Z, the number of components
(which is not a tree) in G − Z that are adjacent to u is at most k + d.
�
Note that each component in G−Z admits a feedback vertex set of size at most d.
By branching on a minimum feedback vertex set of each component in G−Z, i.e.,
either put the vertex into the solution or put it into Z, we obtain new instances
in which every component in G−Z is a tree. Moreover, after all the branchings,
the size of Z is upper bounded by k +1+(k +1)(k + d)d = (k +1)(kd+ d2 +1).

From now on, we assume each component in G − Z is a tree. The following
lemma bounds the number of trees in G−Z that has a large neighborhood in Z.

410 B. Sheng

Lemma 6. If (G,Z, k) is a yes instance of Disjoint d-quasi-forest deletion, then
there are at most 2|Z|+d+k +1 trees in G−Z that has at least d+2 neighbors
in Z.

Proof. Consider the measure μ(I) = cc(Z) + d − fvs′(Z) + ω′(Z), in which
cc(Z) is the number of components in G[Z]. ω′(Z) is the maximum number of
components in G[Z − D] where D is a minimum feedback vertex set of G[Z].
And fvs′(Z) = maxC∈G[Z]fvs(C), where C is a component in G[Z]. Note that
μ(I) ≥ 0 if G[Z] is a d-quasi-forest.

By putting a tree T that has at least d + 2 neighbors in Z into Z,
μ(I) decreases, because either cc(Z) decreases, or fvs′(Z) increases, or ω′(Z)
decreases. Indeed, if cc(Z) and fvs′(Z) do not change, then any feedback vertex
set D of G[Z] contains no vertex in C. Since D contains at most d vertices, C
connects at least two components in G[Z − D], and so ω′(Z) decreases.

Since originally cc(Z) + d − fvs(Z) + ω′(Z) ≤ 2|Z| + d, G − Z of any yes
instance contains at most 2|Z| + d + k trees that have at least d + 2 neighbors
in Z. Otherwise, for any vertex subset X ⊆ V (G) \ Z with |X| ≤ k, there are
more than 2|Z|+ d+1 trees in G−Z −X that each has at least d+2 neighbors
in Z. If we put all such trees into Z, then μ(I) becomes negative and so G − X
is not a d-quasi-forest.
�
The next lemma shows that we can do some preprocessing to partition these
trees(with a large neighborhood in Z) into smaller subtrees.

Lemma 7. Let (G,Z, k) be a yes instance of Disjoint d-quasi-forest deletion.
For each tree T in G − Z that has at least d + 2 neighbors in Z, there is a
partition of T into less than 2(2|Z| + d + k + 1) subtrees, each has at most d + 1
neighbors in Z.

We append the proof of Lemma 7 in the appendix.
Let (G,Z0, k) be a yes instance of Disjoint d-quasi-forest deletion. For each

tree in G−Z0, by branching on the boundaries of its at most 2(2|Z0|+d+k+1)
subtrees(either put the vertex into the solution or put it into Z), we reduce the
instance into at most 22|Z0|+d+k+1) new instances, in which each tree has at most
d + 1 neighbors in Z. When we have done this for all trees in G − Z0, Z still has
bounded size, as for each such tree, we put less than 2(2|Z0|+d+k +1) vertices
into Z. Note that we have |Z0| ≤ (k + 1)(kd + d2 + 1).

Now we obtain instances in which G − Z consists of only trees each has
at most d + 1 neighbors in Z, where |Z| < |Z0| + 4(2|Z0| + d + k + 1)2 =
max{O(k4d2), O(k2d4)}. To design an FPT algorithm, we further reduce the
number of trees in G − Z.

Definition 3. Two trees T1, T2 in G − Z have same neighborhood type in Z
if NZ(T1) = NZ(T2) and for any vertex u ∈ NZ(T1), |E(u, T1)| = 1 if and only
if |E(u, T2)|.

Reduction Rule 4: For each neighborhood type σ, reduce the number of
trees in G − Z that have neighborhood type σ in Z to k + d + 2.

FPT Algorithms for Generalized Feedback Vertex Set Problems 411

Lemma 8. Reduction Rule 4 is safe.

We append the proof of Lemma 8 in the appendix.
It takes polynomial time to decide the neighborhood type of each tree in

G−Z, thus Reduction Rule 4 can be applied in polynomial time. By Definition 3,
for each M ⊆ Z, there are 2|M | different neighborhood types with neighborhood
M , depending on whether the number of edges between each vertex in M and
the trees is exactly one. Since every tree in G − Z has at most d + 1 neighbors
in Z, there are at most

∑
1≤i≤d+1

(|Z|
i

)
2i different neighborhood types. After

exhaustive applications of Reduction Rule 4, there are at most k + d + 2 trees
of each neighborhood type.

Now we just need to solve instances in which |Z| is upper bounded and G−Z
contains at most k trees, each has at most d + 1 neighbors in Z.

Since the number of trees in G−Z is upper bounded, we may guess which(at
most k) trees intersects the solution. For each guess, check whether putting all
the other trees into Z violate the requirement of d-quasi-forest. This checking
can be done in time O∗(3.460k).

Theorem 6. (Gallai) Given a simple graph G, a set R ⊆ V (G), and an integer
s, one can in polynomial time either

1. find a family of s + 1 pairwise vertex-disjoint R-paths, or
2. conclude that no such family exists and, moreover, find a set B of at most 2s

vertices, such that in G\B no connected component contains more than one
vertex of R.

Definition 4. A vertex u ∈ Z is forced, if u is in every feedback vertex set of
size at most d of the component containing u in G − X, for every solution X.

We introduce the notion of force vertex to help bound the size of each tree in
G − Z, with the observation that there is no need to keep too many neighbors
of forced vertices in trees in G − Z.

Let G′ be constructed from G by deleting u and add d(u) leaves, each adjacent
to one neighbor of u. Set s = k + d, and let R be the set of added leaves. If G′

contains k + d + 1 pairwise vertex-disjoint R-paths, which can be checked via
Gallai’s theorem, then u is a forced vertex.

The following lemma shows that we can further bound the size of each tree
in G − Z.

Lemma 9. The problem reduces to a bounded number of instances in which
G − Z consists of at most k trees and each has at most O(k2d2) neighbors in Z.
Moreover, each tree in G − Z contains at most k

(
p
2

)
+ k|N2| + (k + 1)(k

(
p
2

)
+

k|N2|) = O(k10d8) vertices, where p = max{O(k4d2), O(k2d4)} and |N2| ≤
k(d + 1).

Proof. Since G − Z contains at most k trees, we know that NZ(G − Z) contains
at most k(d+1) vertices. For each vertex u ∈ N , we decide whether it is a forced
vertex via Gallai’s Theorem. Thus we obtain a partition of NZ(G−Z) = N1∪N2,

412 B. Sheng

where N1 contains all the forced vertices and N2 = N \N1. Via Gallai’s Theorem,
for each vertex u ∈ N2, we can find a set Bu with at most 2(k + d) vertices,
such that each component in G − Z − Bu contains at most one neighbor of u.
Branching on whether to put each vertex in Bu into the solution, we partition
each tree T in G−Z into subtrees, which contains at most one neighbor of each
vertex in Bu ∪ N2.

We apply reduction rule 4 again to reduce the number of trees. In the reduced
instance, G − Z contains at most k trees, each containing at most one neighbor
of each vertex in N2 ∪ (∪u∈N2Bu). And then we further reduce the instance by
guessing how the trees are going to intersecting with the solution.

Now we show how to bound the size of each tree in G − Z.
We guess how the components are going to be separated in G−X, where X is

a minimum d-quasi-forest deletion set of (G,Z, k). There is a bounded number of
such guesses. And then, we check whether the guessing can be realized. Regard
all vertices in the same component from N1 as one vertex. For two vertices
u, v ∈ N1 that are guessed to be in two different components, there are at most
k vertices in G − Z that are neighbors of both u and v. Otherwise, deleting X
cannot separate u and v. Thus the total number of vertices that have neighbors
in two guessed components is upper bounded. Suppose we guessed there to be
p components, then at most

(
p
2

)
pairs of vertices in the components. It follows

that there are at most k
(
p
2

)
vertices in the trees that have neighbors in different

guessed components.
And we also know that in each tree, the number of vertices that are adjacent

to N2 ∪ (∪u∈N2Bu) is upper bounded, since each tree contains at most one
neighbor of each vertex in N2 ∪ (∪u∈N2Bu).

Thus we only need to bound the number of vertices that are not adjacent
to N2 ∪ (∪u∈N2Bu) and only have neighbors in just one component of G[Z].
We bound this by arguing that there is no need to keep too many such vertices
in the same tree, since such vertices only connecting vertices that are guessed
to be in the same components, moreover, their neighbors in Z are forced to be
in the feedback vertex sets, thus the number of such vertices does not affect
the set of feasible solutions. In each tree, for each path connecting neighbors of
N2 ∪ (∪u∈N2Bu) and vertices with neighbors in more than one component, we
just keep at most one vertex that is adjacent to one component in Z (note that
there are at most k + 1 components).

In the reduced instance, each tree in G − Z contains at most k
(
p
2

)
+ k|N2| +

(k+1)(k
(
p
2

)
+k|N2|) vertices. Moreover, there are at most k trees in G−Z. And

so we can solve the reduced instance in FPT time by branching on the vertices
in G − Z, which has a bounded number of vertices.
�
Theorem 7. The d-quasi-forest deletion problem can be solved in time

O∗(c1(k
2d2)

(c2k
2d2)

), where c1 and c2 are some constants.

We append the proof of Theorem 7 in the appendix.

FPT Algorithms for Generalized Feedback Vertex Set Problems 413

6 Conclusion

In this paper, we provide FPT results for two generalized versions of feedback
vertex set problem. It would be interesting to know whether the problem of
d-quasi-forest deletion admits a polynomial kernel.

References

1. Bodlaender, H.L., Ono, H., Otachi, Y.: A faster parameterized algorithm for pseud-
oforest deletion. Discrete Appl. Math. 236, 42–56 (2018)

2. Bollobás, B.: Modern Graph Theory. GTM, vol. 184. Springer, New York (1998).
https://doi.org/10.1007/978-1-4612-0619-4

3. Cao, Y., Chen, J., Liu, Y.: On feedback vertex set: new measure and new structures.
Algorithmica 73(1), 63–86 (2015). https://doi.org/10.1007/s00453-014-9904-6

4. Chen, J., Fomin, F.V., Liu, Y., Songjian, L., Villanger, Y.: Improved algorithms
for feedback vertex set problems. J. Comput. Syst. Sci. 74(7), 1188–1198 (2008)

5. Chitnis, R.H., Cygan, M., Hajiaghayi, M.T., Marx, D.: Directed subset feedback
vertex set is fixed-parameter tractable. ACM Trans. Algorithms 11(4), 28:1–28:28
(2015)

6. Courcelle, B.: The monadic second-order logic of graphs. I. Recognizable sets of
finite graphs. Inf. Comput. 85(1), 12–75 (1990)

7. Cygan, M., et al.: Parameterized Algorithms. Springer, Cham (2015). https://doi.
org/10.1007/978-3-319-21275-3

8. Cygan, M., Pilipczuk, M., Pilipczuk, M., Wojtaszczyk, J.O.: Subset feedback vertex
set is fixed-parameter tractable. SIAM J. Discrete Math. 27(1), 290–309 (2013)

9. Hols, E.-M.C., Kratsch, S.: Smaller parameters for vertex cover kernelization. In:
12th International Symposium on Parameterized and Exact Computation, IPEC
2017, 6–8 September 2017, Vienna, Austria, pp. 20:1–20:12 (2017)

10. Iwata, Y., Kobayashi, Y.: Improved analysis of highest-degree branching for feed-
back vertex set. In: 14th International Symposium on Parameterized and Exact
Computation, IPEC 2019, 11–13 September 2019, Munich, Germany, pp. 22:1–
22:11 (2019)

11. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W., Bohlinger J.D. (eds.) Complexity of Computer Computations.
The IBM Research Symposia Series, pp. 85–103. Springer, Boston. https://doi.
org/10.1007/978-1-4684-2001-2 9

12. Li, J., Nederlof, J.: Detecting feedback vertex sets of size k in O∗(2.7k) time. CoRR,
abs/1906.12298 (2019)

13. Lin, M., Feng, Q., Wang, J., Chen, J., Bin, F., Li, W.: An improved FPT algorithm
for almost forest deletion problem. Inf. Process. Lett. 136, 30–36 (2018)

14. Philip, G., Rai, A., Saurabh, S.: Generalized pseudoforest deletion: algorithms and
uniform kernel. SIAM J. Discrete Math. 32(2), 882–901 (2018)

15. Rai, A., Saurabh, S.: Bivariate complexity analysis of almost forest deletion. Theor.
Comput. Sci. 708, 18–33 (2018)

https://doi.org/10.1007/978-1-4612-0619-4
https://doi.org/10.1007/s00453-014-9904-6
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9

Fixed-Order Book Thickness with
Respect to the Vertex-Cover Number:
New Observations and Further Analysis

Yunlong Liu, Jie Chen, and Jingui Huang(B)

School of Information Science and Engineering, Hunan Normal University,
Changsha 410081, People’s Republic of China

{ylliu,jie,hjg}@hunnu.edu.cn

Abstract. The fixed-order book thickness problem asks, given a
graph G = (V, E) and a linear order ≺ of V , whether there is a page
assignment σ such that 〈≺, σ〉 is a k-page book embedding of G. Recently,
Bhore et al. (GD 2019) provided a parameterized algorithm with respect
to the vertex-cover number of G (denoted by τ). In this paper, we first
re-analyze Bhore et al.’s algorithm. By introducing a novel analysis app-

roach, we prove a bound of 2O(τ2logτ)· |V | improving on Bhore et al.’s

bound of 2O(τ3)· |V | for its running time. By employing this analysis
approach, we also show that the general fixed-order book thickness
problem, in which at most b crossings over all pages are allowed, admits

an algorithm running in time 2O((τ2+bτ)logτ(b+1))· |V |.

1 Introduction

The book thickness for graphs, as an important geometric invariant, has been
studied extensively [1–3]. It is directly related with the notion of k-page book
embedding of graphs. For an integer k ≥ 1, a k-page book embedding of a graph
G is to place the vertices linearly on a spine (a line segment) and the edges on
k pages (k half planes sharing the spine) so that each edge is embedded in one
of the pages without generating edge-crossings [3]. The minimum k such that G
admits a k-page book embedding is the book thickness of G, denoted by bt(G).

Given a graph G = (V,E) and a positive integer k, the problem book thick-
ness is to determine whether bt(G) ≤ k. When the linear order ≺ of V (namely,
the ordering of vertices in V along the spine) is predetermined and fixed, book
thickness is specially called fixed-order book thickness. Correspondingly,
the book thickness of G is called fixed-order book thickness and denoted by fo-
bt(G,≺) [4]. The problem fixed-order book thickness is equivalent to deter-
mining whether a given circle graph can be properly vertex-colored by at most k
colors [5]. It has been studied in many contexts, such as complexity theory [6,7],
graph coloring [8–10], and sorting with parallel stacks [11].

This research was supported in part by the National Natural Science Foundation of
China under Grant No. 61572190.

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 414–425, 2020.
https://doi.org/10.1007/978-3-030-59267-7_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_35&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_35

Fixed-Order Book Thickness with Respect to the Vertex-Cover Number 415

The problem fixed-order book thickness is NP-complete in general
[6,7]. Very recently, Bhore et al. [4] provided some parameterized algorithms for
this problem. In particular, they considered the vertex-cover number of graph,
denoted by τ , as the parameter, and presented an algorithm running in time
2O(τ3)· |V |.

One general version of fixed-order book thickness, concerns the setting
where we allow edges on the same page to cross, with a given budget of at most b
crossings over all pages. This problem was posed in [4] and one related problem
has been studied by Bannister and Eppstein [12] with the number of pages k
restricted to be either 1 or 2.

In this paper, we further study parameterized algorithms for fixed-order
book thickness (abbreviated by FOBT) with respect to the vertex-cover num-
ber. We re-analyze the algorithm given by Bhore et al. in [4]. Based on some
new observations on this problem, we introduce a noval approach to bound the
size of the record set in that algorithm. Our result is that the size of the record
set can be reduced from 2O(τ3) to 2O(τ2logτ), which indicates that the problem
FOBT admits an algorithm running in time 2O(τ2logτ)· |V |.

We also use our approach to investigate the general fixed-order book
thickness (abbreviated by FOBT-CROSS). We first develop an algorithm for
FOBT-CROSS by extending the techniques used in solving the problem FOBT,
whose feasibility was mentioned by Bhore et al. [4]. Then, we focus on employing
our approach to analyze its running time and show that this algorithm can be
done in time 2O((τ2+bτ)logτ(b+1))· |V |. Because of the space limit, several proofs
are omitted and will be given in the complete version of the paper.

2 Preliminaries

We consider only undirected graphs. For a graph G = (V,E), let n = |V | and
V (G) be the vertex set of G. For two vertices u and v, let uv denote the edge
between u and v. For r ∈ N, we use [1, r] to denote the set {1, . . . , r}.

A vertex cover C of a graph G = (V,E) is a subset C ⊆ V such that each
edge in E has at least one end-vertex in C. A vertex v ∈ V is a cover vertex if
v ∈ C. The vertex cover number of G, denoted by τ(G), is the size of a minimum
vertex cover of G. In the rest of this paper, we will use C to denote a minimum
vertex cover of size τ , and let U = V \ C.

Given a graph G = (V,E) and a minimum vertex cover C, we use EC to
denote the set of all edges whose both endpoints lie in C. For each i ∈ [1, n− τ],
we also use Ei = {ujc ∈ E | j < i, c ∈ C} to denote the set of all edges with one
endpoint outside of C that lies to the left of ui.

Given an n-vertex graph G = (V,E) with a linear order ≺ of V such that
v1 ≺ v2 ≺ . . . ≺ vn, we assume that V (G) = {v1, v2, . . . , vn} is indexed such
that i < j if and only if vi ≺ vj . We use X = {x ∈ [1, n − τ] | ∃c ∈ C : ux is
the immediate successor of c in ≺} to denote the set of indices of vertices in U
which occur immediately after a cover vertex; and assume that the integers in
X, denoted as x1, x2, . . . , xz, are listed in ascending order.

416 Y. Liu et al.

For ease of presentation, we define some special planer graphs. For an integer
k ≥ 0, a graph G is a k-restricted plane graph with spine L if G satisfies the
following properties: (1) all vertices lie in a horizontal line L with a fixed-order;
(2) all edges lie in the half-plane above L; and (3) G contains at most k crossings.
A k-restricted plane graph G with spine L is a k-crossings plane graph with
spine L if each edge of G takes part in generating edge-crossings. Obviously,
a k-restricted plane graph G with spine L can be decomposed into a maximal
0-restricted plane graph G1 with spine L and a k-crossings plane graph G2 with
spine L.

3 Improved Bounds on the Running Time of Algorithm
for FOBT

In this section, we re-analyze the parameterized algorithm for FOBT given by
Bhore et al. in [4], and prove an improved upper bounds on its running time.

We first restate some notations introduced in [4]. For a given graph G =
(V,E) and a minimum vertex cover C in G, let S be the family of all possible
non-crossing page assignments of edges in EC and let s ∈ S. A page assignment
α : Ei → [1, k] is called a valid partial page assignment if α ∪ s maps edges to
pages in a non-crossing fashion. In a valid partial page assignment α : Ei → [1, k],
a vertex c ∈ C is (α, s)-visible to ut (for t ∈ [1, n − τ]) on page p if it is possible
to draw an edge from ut to c on page p without crossing any other edge mapped
to page p by α ∪ s. For an index a ∈ [1, n − τ], a visibility matrix Mi(a, α, s) is a
k × τ matrix, where the entry (p, r) of Mi(a, α, s) is 1 if cr is (α, s)-visible to ua

on page p and 0 otherwise. It is assumed that k < τ since the problem FOBT
with respect to τ is trivial if τ ≤ k.

For a vertex ui ∈ U , the record set was defined as follows: Ri(s) =
{(Mi(i, α, s), Mi(x1, α, s), Mi(x2, α, s), . . ., Mi(xz, α, s)) | ∃ valid partial page
assignment α : Ei → [1, k]}. A mapping Λs

i from Ri(s) to a valid partial
page assignments of Ei maps (M0, . . . ,Mz) ∈ Ri(s) to some α such that
(M0, . . . ,Mz) = (Mi(i, α, s), Mi(x1, α, s), Mi(x2, α, s),. . ., Mi(xz, α, s)).

The basic idea in the algorithm given by Bhore et al. in [4] is to dynamically
process the vertices in U in a left-to-right fashion. For each vertex ui ∈ U , this
algorithm computes a record set Ri(s) containing at most 2τ3+τ2

records. Corre-
spondingly, all valid partial page assignments of Ei∪EC are divided into at most
2τ3+τ2

groups such that all assignments in the same group are “interchangeable”
and lead to the same visibility matrices stored in one record in Ri(s).

The function 2τ3+τ2
was directly deduced from the τ3 + τ2 binary bits [4].

Based on some new observations, we introduce a novel approach to estimate the
size of Ri(s) such that |Ri(s)| can be upper-bounded by another function.

We first sketch the main idea of our approach. Let α ∪ s be a valid page
assignment of the edges in Ei ∪ EC . Observe that, on each page, the invisibility
from a vertex c ∈ C to another vertex u ∈ U is essentially determined by only
one of edges that enclose c (or u). Correspondingly, the visibility matrices in
each record in Ri(s) can be essentially determined by only a part of edges in

Fixed-Order Book Thickness with Respect to the Vertex-Cover Number 417

Ei ∪ EC . Let V ′ = C ∪ {u1, ux1 , ux2 , . . . , uxz
}. Furthermore, we can obtain a

simplified assignment α′ ∪ s by shifting some edge on each page such that the
corresponding visibility matrices can be determined by edges whose endpoints
are all in the set V ′. Note that |V ′| ≤ 2τ + 1. This means that there are at
most (2τ + 1)τ edges on each page in α′ ∪ s. We also observe that any page of
a k-page book embedding is a planar subgraph, which indicates that the total
number of edges in each page is at most 3 × (2τ + 1) − 6 edges. Based on these
observations, we can obtain a new function f(τ) bounding the number of all
possible combinations of edges on each page, which results in a bound on the
number of records in Ri(s).

In the following, we formally define the operation on edge-shifting. Let α ∪ s
be a valid partial page assignment of edges in Ei∪EC , let u and y be two vertices
in U , and let E(p, y) for p ∈ [1, k] be the set of edges on page p that incident
to the vertex y. Suppose that E(p, y) = {yc1y, yc2y, . . . , yct

y}, where 1 ≤ t ≤ τ and
c1y ≺ c2y ≺ . . . ≺ ct

y. The operation SHIFT(u, y) on shifting edges in E(p, y)
from y to u is defined as follows.

For q = 1 to t do: (1) delete the edge ycq
y; (2) if there exists no edge between

u and cq
y, then add one edge ucq

y between u and cq
y.

Let V ′′ = {u1, ux1 , ux2 , . . . , uxz
}. Assume that the vertices in C are ordered

as c1 ≺ c2 ≺ . . . ≺ cτ . On page p, we shift some edge in Ei such that only some
vertex in V ′′ are adjacent to the vertices in C. Specifically, we distinguish three
cases based on the position of ui in ≺.

Case 1: ui ≺ c1. Assume that there are h (h ≥ 2) vertices lying on the left of
ui, denoted as u1

0 ≺ u2
0 ≺ . . . ≺ uh

0 ≺ ui. For each r ∈ [2, h], if E(p, ur
0)
= ∅ then

execute the operation SHIFT(u1
0, u

r
0).

Case 2: cj ≺ ui ≺ cj+1 (for j ∈ [1, τ − 1]). Assume that there are h (h ≥ 2)
vertices between cj and cj+1, denoted as cj ≺ u1

d ≺ u2
d ≺ . . . ≺ uh

d ≺ cj+1.
For each r ∈ [2, h], if E(p, ur

d)
= ∅ then execute the operation SHIFT(u1
d, u

r
d).

Additionally, if j ≥ 2, then execute the procedure as follows. For each d ∈
[1, j − 1], assume that there are hd (hd ≥ 2) vertices between cd and cd+1,
denoted as cd ≺ u1

d ≺ u2
d ≺ . . . ≺ uhd

d ≺ cd+1. For each r ∈ [2, hd], if E(p, ur
d)
= ∅

then execute the operation SHIFT(u1
d, u

r
d).

Case 3: cτ ≺ ui. Assume that there are h (h ≥ 2) vertices between cτ and
ui, denoted as cτ ≺ u1

τ ≺ u2
τ ≺ . . . ≺ uh

τ ≺ ui. For each r ∈ [2, h], if E(p, ur
τ)
= ∅

then execute the operation SHIFT(u1
τ , ur

τ).
For the assignment α ∪ s of edges in Ei ∪ EC , we deal with each page by

employing the previous shifting process. After shifting all possible edge on each
page, we obtain a simplified assignment α′ ∪ s such that all edges on each page
of α′ ∪ s are incident to at most 2τ + 1 vertices. Figure 1 shows one example of
edge-shifting.

Next, we show that the visibility matrices for α′ ∪ s are equals to those for
α ∪ s, respectively.

Lemma 1. For each x ∈ {i} ∪ X, Mi(x, α, s)=Mi(x, α′, s).

Proof. Let cj ∈ C for j ∈ [1, τ] and ux ∈ U for i ≤ x. By the definition of the
visibility matrix, it is sufficient to draw a comparison between α∪s and α′ ∪s on

418 Y. Liu et al.

u5c1 u4 c3c2u1 u2 u3

(a) (b)

u5c1 u4 c3c2u1 u2 u3

Fig. 1. The illustration on edge-shifting from an original 2-page assignment of E5 ∪EC

(a) to a simplified 2-page assignment (b).

the visibility from cj to ux. Moreover, since each edge in EC remains unchanged
during edge-shifting, we do not consider the edge in EC separating cj from ux.

(⇒) Assume that (p, j) is 0 in Mi(x, α, s) (p ∈ [1, k]). Then there must be
an edge cwuz in Ei separating cj from ux on page p in α ∪ s. In the following,
we show that the vertex cj is still separated from ux by an edge on page p in
α′ ∪ s, indicating that (p, j) is 0 in Mi(x, α′, s). We distinguish two cases based
on the order of cw, uz, cj , ux in ≺. Case (1): cw lies between cj and ux. Since
cwuz ∈ Ei and i ≤ x, only two subcases are valid, that is, uz ≺ cj ≺ cw ≺ ux or
uz ≺ ux ≺ cw ≺ cj . Evidently, the vertex uz always lies on the left of ux. After
edge-shifting, the edge uzcw either remains unchanged or is replaced by another
edge urcw with ur ≺ uz and r ∈ X ∪{1}. Hence, the vertices cj is still separated
from ux by at least one edge. Case (2): uz lies between cj and ux. Similarly,
only two subcases are valid, that is, cw ≺ cj ≺ uz ≺ ux or cj ≺ uz ≺ ux ≺ cw.
Correspondingly, the vertex cw lies either on the left of cj or on the right of ux.
After edge-shifting, the edge uzcw either remains unchanged or is replaced by
another edge urcw with r ∈ X ∪ {1} and cj ≺ ur. Hence, the vertex cj is still
separated from ux by at least one edge.

(⇐) Assume that the entry (p, j) is 0 in Mi(x, α′, s). Then there must be an
edge cwur (for some r ∈ X ∪ {1}) separating cj from ux on page p in α′ ∪ s.
We argue that cj must be separated from ux by an edge in Ei on page p in
α ∪ s, indicating that (p, j) is 0 in Mi(x, α, s). We distinguish two cases based
on the order of cw, cj , ur, ux in ≺. Case (1): cw lies between cj and ux. By the
assumption that i ≤ x and the fact that cwur is either in Ei or shifted from an
edge in Ei, we only consider two valid subcases, that is, ur ≺ cj ≺ cw ≺ ux or
ur ≺ ux ≺ cw ≺ cj . If cwur ∈ Ei, we are done. If cwur is shifted from an edge
cwuz in Ei, it follows that ur ≺ uz ≺ cj or ur ≺ uz ≺ ux, respectively. Hence,
the vertex cj is still separated from ux by cwuz in Ei on page p in α∪s. Case (2):
ur lies between cj and ux. Similarly, only two subcases need to be considered,
that is, cw ≺ cj ≺ ur ≺ ux or cj ≺ ur ≺ ux ≺ cw. If cwur ∈ Ei, we are done. If
cwur is shifted from an edge cwuz in Ei, it follows that cj ≺ ur ≺ uz ≺ ux or
cj ≺ ur ≺ uz ≺ ux, respectively. Hence, the vertex cj is still separated from ux

by cwuz in Ei. ��
Based on Lemma 1, we can re-estimate the size of the record set Ri(s).

Lemma 2. The size of Ri(s) can be bounded by 2O(τ2logτ).

Fixed-Order Book Thickness with Respect to the Vertex-Cover Number 419

Proof. Let L be a straight line joining 2τ + 1 vertices with a fixed order and let
Q= {P |P is a 0-restricted plane graph with spine L }. We first estimate the size
of Q according to the number of different combinations of its edges. As we know,
for a graph with 2τ +1 vertices, there are at most (2τ +1)×τ edges. Additionally,
there are at most 3× (2τ + 1)− 6 = 6τ − 3 edges in P since it is a planar graph
with 2τ + 1 vertices. Hence, |Q| = Σ6τ−3

i=1

(
(2τ+1)×τ

i

) ≤ (6τ − 3)(2τ2 + τ)6τ−3.
Let D =Q1×Q2 × · · · ×Qk (Qr = Q, r ∈ [1, k]). Then, |D| = (6τ − 3)k(2τ2 +

τ)(6τ−3)k = 2klog(6τ−3)+((6τ−3)k)(log(2τ2+τ)) = 2O(kτlogτ).
Let Pi(s) = {α∪s | α = Λs

i (ρ) and ρ ∈ Ri(s)}, and let α1∪s and α2∪s be two
distinct assignments in Pi(s). By the definition of Ri(s), there exists at least one
r ∈ {i} ∪ X such that Mi(r, α1, s)
= Mi(r, α2, s). In the following, we show that
there exists an injective function g from Pi(s) to D. (1) Let (α∪s) ∈ Pi(s). The
assignment α∪s is a k-page book embedding which includes k half-planes. After
shifting some edge in α∪s, each half-plane is translated into a 0-restricted plane
graph with 2τ + 1 vertices. Hence, there exists a unique tuple (P1, P2, . . . , Pk)
in D such that g(α ∪ s) = (P1, P2, . . . , Pk). (2) for any two distinct assignments
α1∪s and α2∪s in Pi(s), it holds that g(α1∪s)
= g(α2∪s). Otherwise, for each
x ∈ {i}∪X, Mi(x, g(α1), s) =Mi(x, g(α2), s). By Lemma 1, for each x ∈ {i}∪X,
Mi(x, α1, s) =Mi(x, α2, s), contradicting the fact that α1 ∪ s and α2 ∪ s are two
distinct assignments in Pi(s).

As a consequence, the size of Ri(s) is no larger than that of D. Note that
k < τ . Therefore, the size of Ri(s) can be bounded by 2O(τ2logτ).

��
Based on Lemma 2 and the fact |S| < τ τ2

, we draw the following conclusion.

Theorem 1. There is an algorithm which takes as input a graph G = (V,E)
with a vertex order ≺, runs in time 2O(τ2logτ)· |V | where τ is the vertex cover
number of G, and computes a page assignment σ such that (≺, σ) is a (fo-
bt(G,≺))-page book embedding of G.

4 On Parameterized Algorithm for the General Problem

The general fixed-order book thickness, i.e., FOBT-CROSS, parameterized
by the vertex-cover number τ and the number of crossings b is formally defined
as follows.

Input: a tuple (G = (V, E), ≺), a non-negative integer b.
Parameters: τ , b;
Output: a k-page book drawing (≺, σ) of G such that the number of crossings
over all pages in (≺, σ) is no more than b, or no such k-page drawing exists.

420 Y. Liu et al.

For the problem FOBT-CROSS, Bhore et al. [4] mentioned the techniques
in their algorithm for FOBT can be extended to it, but they did not elaborate
further. In order to facilitate the analysis, we first briefly present a specific
algorithm for FOBT-CROSS by extending the techniques in [4]. Then, we pay
more attention to employing our approach to analyze its running time.

4.1 Design of the Parameterized Algorithm

We expand some basic notions defined in [4], such as the valid assignment, the
visibility matrix, and the record set (restated in Sect. 3).

Given a graph G = (V,E) and a minimum vertex cover C in G, we call s
(resp. α) : EC (resp. Ei) → [1, k] a valid page assignment if s (resp. α ∪ s) maps
edges to k pages such that the number of crossings over all pages is no more than
b. Considering the allowed crossing may be on any one page, we introduce two
data tables, i.e., the crossing number vector and the crossing number matrix, to
store the information about the number of related crossings, respectively.

The cross number vector is used to record the number of crossings in each
page. More precisely, a crossing number vector Ni(α, s) is a k × 1 matrix, where
the entry Ni(α, s)[p] stores the number of crossings on page p in α∪s (p ∈ [1, k]).

The cross number matrix is used to record the number of crossings produced
by some “potential” edges and some assigned edges. More precisely, a k × τ
crossing number matrix Mi(a, α, s) is one data table in which the entry (p, r)
of Mi(a, α, s) records the number of edges in Ei ∪ EC separating cr from ua on
page p in α ∪ s. When the number of these edges exceeds b + 1, it only record
the number b + 1. Figure 2 shows the crossing number vector and the crossing
number matrix for a 2-page assignment of E3 ∪ EC , respectively.

u1 c1 c2 c3u2 u3 c4 c5

Fig. 2. A partial 2-page assignment of a graph G (left), the corresponding crossing
number vector (upper right), and the corresponding crossing number matrix (lower
right).

By the definition of crossing number matrix, there exists one corresponding
crossing number matrix for each vertex in U . However, for some vertices, their
corresponding matrices are actually the same one.

Lemma 3. Let α be a valid partial page assignment of Ei, xj ∈ X, and xl be
the immediate successor of xj in X. If ui ≺ uxj

≺ uh ≺ uxl
in ≺ and uh /∈ C,

then Mi(h, α, s)=Mi(xj , α, s).

Fixed-Order Book Thickness with Respect to the Vertex-Cover Number 421

Based on Lemma 3, we can use τ +1 matrices to capture the complete infor-
mation about all of the “potential” crossings on each page. Moreover, the infor-
mation in the crossing number vector plays an important role in distinguishing
different page assignments. Hence, we define one expanded record set as follows:
R′

i(s) = {(Ni(α, s), Mi(i, α, s), Mi(x1, α, s), Mi(x2, α, s), . . ., Mi(xz, α, s)) | ∃
valid partial page assignment α : Ei → [1, k] }. For ease of presentation, the
tuple (Ni(α, s), Mi(i, α, s), Mi(x1, α, s), Mi(x2, α, s), . . ., Mi(xz, α, s)) is also
called a matrix queue for α ∪ s, and is denoted by Mi(α, s) in the rest of this
paper. Along with R′

i(s), we also store a mapping Λ′s
i from R′

i(s) to a valid
partial page assignments of Ei which maps (N,M0, . . . ,Mz) ∈ R′

i(s) to some α
such that (N,M0, . . . ,Mz) = Mi(α, s).

Checking whether a page assignment is a valid assignment is the main step
for FOBT-CROSS. We discard the invalid partial assignment in two cases: (1)
if the number of crossings on any page exceeds the allowed value b; (2) if the
number of crossings over all page exceeds the allowed value b. Let γ be a valid
page assignment of Ei−1, and let β be a page assignment of the edges incident to
the vertex ui−1. Figure 3 describes the procedure of checking whether γ ∪ β ∪ s
is a valid partial page assignment of Ei ∪EC , in which nβ[j] denotes the number
of new crossings generated from edges mapped to page j in γ ∪ s by β.

Fig. 3. The main steps in Checking procedure

Let α1 and α2 be two valid page assignments of Ei−1, let β be a page assign-
ment of the edges incident to the vertex ui−1, and let α1 ∪ β ∪ s and α2 ∪ β ∪ s
be the corresponding outputs of the Checking procedure.

Lemma 4. If Mi−1(α1, s)=Mi−1(α2, s), then Mi(α1 ∪ β, s)=Mi(α2 ∪ β, s).

Proof. First, we show that for each p ∈ [1, k], Ni(α1∪β, s)[p] = Ni(α2∪β, s)[p].
Let n1 (resp. n2) be the number of crossings generated by adding some edge
assigned by β to page p in α1∪s (resp. α2∪s). By Mi−1(x, α1, s) = Mi−1(x, α2, s),
where x ∈ {i} ∪ X, it holds that n1 = n2. By Ni−1(α1, s)[p] = Ni−1(α2, s)[p], it

422 Y. Liu et al.

follows that Ni−1(α1, s)[p] + n1 = Ni−1(α2, s)[p] + n2, i.e., Ni(α1 ∪ β, s)[p] =
Ni(α2∪β, s)[p]. Note that in the case Ni−1(α1, s)[p]+n1 > b (or Ni−1(α2, s)[p]+
n2 > b), the assignment β will be discarded by the step 3 in the Checking
procedure.

Second, we show that for each x ∈ {i}∪X, Mi(x, α1∪β, s) = Mi(x, α2∪β, s).
Assume that one entry (p, j) in Mi(h, α1 ∪ β, s) increased by r due to adding
some edge by β, where h ∈ {i} ∪ X. Then there must be r′ (r′ ≥ r) added edges
separating cj from uh on page p in α1 ∪ β ∪ s, respectively. In the assignment
α2 ∪ β ∪ s, each of these edges added by β also separates cj from uh on page p.
Hence, the corresponding entry (p, j) in Mi(a, α2 ∪ β, s) is also increased by r.

��
Based on the framework of dynamic programming in [4] and the Checking

procedure above, we can obtain an algorithm for solving FOBT-CROSS, denoted
by ALGF. Specifically, the main steps in ALGF can be sketched as follows.

The basic strategy in ALGF is to dynamically generate some page assignment
containing at most b crossings in a left-to-right fashion. Assume the record set
R′

i−1(s) has been computed. Each page assignment β of edges incident to vertex
ui−1 and each matrix queue ρ ∈R′

i−1(s) are branched. For each such β and
γ = Λ′s

i−1(ρ), the procedure Checking(γ, s, β) is called. If γ ∪ β ∪ s contains at
most b crossings, then this procedure outputs a valid partial assignment γ ∪
β ∪ s. Moreover, the matrix queue Mi(γ ∪ β, s) is computed and stored, and
the mapping Λ′s

i is set to map this matrix queue to γ ∪ β. Otherwise, the tuple
(γ, s, β) is discarded.

Based on Lemma 4, we obtain the following conclusion on the algorithm
ALGF.

Theorem 2. If (G,≺) contains at least one valid assignment, then the algorithm
ALGF((G,≺), τ, b) returns a valid page assignment.

4.2 Analysis on the Running Time

We adapt the approach used for FOBT to analyze its running time. First of
all, we expand the notion of edge-shifting. Let α ∪ s be a valid partial page
assignment of edges in Ei ∪ EC , let u and y be two vertices in U , and let
E(p, y) be the set of edges on page p that incident to the vertex y. Assume that
E(p, y) = {yc1y, yc2y, . . . , yct

y}. The operation SHIFT′(u, y) on shifting edges in
E(p, y) from y to u is re-defined as follows.

For q = 1 to t do: (1) delete the edge ycq
y; (2) if the number of edges between

u and cq
y is less than b + 1 then add one edge ucq

y between u and cq
y.

For the assignment α ∪ s, we execute the extended edge-shifting along the
same lines in the description for FOBT (see Sect. 3). After shifting all possible
edges on each page, we obtain a simplified assignment α′ ∪ s such that the edges
on each page are incident only with at most 2τ + 1 vertices. Figure 4 shows one
example on the extended edge-shifting. Note that the operation SHIFT′ may
yield some multiple edges between two vertices on some page.

Fixed-Order Book Thickness with Respect to the Vertex-Cover Number 423

c1 c3u3 u4u1 u2 c2 u5 u6c1 c3u3 u4u1 u2 c2 u5

(a) (b)

u6

Fig. 4. The illustration on extended edge-shifting from an original 2-page assignment
of E6 ∪ EC (a) to a simplified 2-page assignment, in which b=1 (b).

Let i ∈ [1, n − τ], Mi(x, α, s) be the crossing number matrix for the orig-
inal assignment α ∪ s, and M ′

i(x, α′, s) be the crossing number matrix for the
simplified assignment α′ ∪ s.

Lemma 5. For each x ∈ {i} ∪ X, Mi(x, α, s)=Mi(x, α′, s).

Proof. Let cj ∈ C for j ∈ [1, τ] and ux ∈ U for i ≤ x. By the definition of the
crossing number matrix, it is sufficient to draw a comparison between α ∪ s and
α′ ∪ s on the number of edges separating cj from ux. Moreover, since each edge
in EC remains unchanged during the extended edge-shifting, we do not consider
the edge in EC separating cj from ux.

(⇒) Assume that the entry (p, j) is r in Mi(x, α, s) (p ∈ [1, k], r ∈ [0, b + 1]).
Then there must be h (h ≥ 0) edges separating cj from ux on page p in α ∪ s.
Our aim is to show that (p, j) is also r in Mi(x, α′, s). We distinguish two cases
based on the value of h. Case (1): h ≤ b + 1 (correspondingly, r = h). Without
loss of generality, let e be one of the h edges in Ei. By the proof of Lemma 1,
there exists a corresponding edge e′ separating cj from ux on page p in α′ ∪ s.
Moreover, by the assumption that h ≤ b + 1 and the rule that each repeated
edge generating from edge-shifting is replaced by one multiple-edge, there is a
one-to-one relationship between e and e′. Hence, there are h edges separating cj

from ux on page p in α′ ∪ s, indicating that (p, j) is r in Mi(x, α′, s). Case (2):
h > b + 1 (correspondingly, r = b + 1). Then there must be at least b + 2 edges
that separating cj from ux on page p in α∪s. After shifting some edge, the value
of h either remained unchanged or decreased. For the latter, h is at least b + 1
because the number of edges that incident to uq (uq ∈ U , q ∈ X ∪ {1}) is set to
b + 1. Thus, on page p in α′ ∪ s, the number of edges separating cj from ux is at
least b + 1, indicating that (p, j) is r in Mi(x, α′, s).

(⇐) Assume that the entry (p, j) is r in Mi(x, α′, s) (r ∈ [0, b + 1]). Then
there must be h (h ≥ 0) edges separating cj from ux on page p in α′ ∪ s. Our
aim is to show that (p, j) is r in Mi(x, α, s). We distinguish two cases based
on the value of h. Case (1): h ≤ b + 1 (correspondingly, r = h). Without loss
of generality, let e be one of the h edges. Along the same lines in the previous
paragraph, it holds that there exists one edge e′ ∈ Ei separating cj from ux on
page p in α ∪ s. Moreover, there exists a one-to-one relationship between e and
e′. So, (p, j) is r in Mi(x, α, s). Case (2): h > b + 1 (correspondingly, r = b + 1).
Then there must be at least b+2 edges separating cj from ux on page p in α′ ∪s.

424 Y. Liu et al.

By the rule of the extended edge-shifting, on page p in α ∪ s, the number of
edges separating cj from ux either remained unchanged or increased. Hence, the
entry (p, j) is filled with b + 1, indicating that (p, j) is r in Mi(x, α, s).

��
Based on Lemma 5, we obtain a bound on the size of the record set R′

i(s).

Lemma 6. The size of R′
i(s) can be bounded by 2O((τ2+2bτ)logτ(b+1)).

Proof. Let L be a straight line joining 2τ + 1 vertices with a fixed order, let
P1 = {P1 |P1 is a maximal 0-restricted plane graph with spine L.}, and let
P2 = {P2 |P2 is a b-crossings plane graph with spine L.}.

We first estimate the size of P1 and P2, respectively. Since each element in
P1 is a maximal planar graph, |P1| = Σ6τ−3

i=1

(
(2τ+1)τ

i

)
(b + 1)i ≤ (6τ − 3)((2τ +

1)τ)6τ−3(b+1)6τ−3, in which the factor (b+1)i indicates that the multiplicities of
each edge is at most b+1. Since each element in P2 contains at most b crossings
(i.e., at most 2b edges), |P2| = Σ2b

i=1

(
(2τ+1)τ

i

)
(b+1)i ≤ 2b((2τ+1)τ)2b(b+1)2b. Let

Q =P1×P2. Then, |Q|≤ (6τ −3)((2τ +1)τ)6τ−3(b+1)6τ−3 ×2b((2τ +1)τ)2b(b+
1)2b = 2b(6τ − 3)((2τ + 1)(b + 1)τ)6τ+2b−3.

Let N be a k×1 matrix, and for each i ∈ [1, k], assume that N [i] ∈ [0, b]. Let
D′ =N×Q1×Q2 × · · · ×Qk (Qr =Q, r ∈ [1, k]). Then, |D′| = (b + 1)k(2b)k(6τ −
3)k((2τ + 1)(b + 1)τ)(6τ+2b−3)k = 2O((τ+b)klogτ(b+1)).

Let P ′
i(s) = {α ∪ s | α =Λ′s

i (ρ) and ρ ∈ R′
i(s)}. Based on Lemma 5, we can

show that there exists an injective function g from P ′
i(s) to D′ along the same

lines in the proof of Lemma 2.
As a consequence, the size of R′

i(s) is no larger than that of D′. Therefore,
the size of R′

i(s) can be bounded by 2O((τ+b)klogτ(b+1)).
��

Based on Lemma 6 and the fact |S| < τ τ2
, we obtain the flowing conclusion.

Theorem 3. The algorithm ALGF for the problem FOBT-CROSS runs in time
2O((τ+b)klogτ(b+1))+τ2logτ · |V |.

Let fo-bt(G,≺, b) be the minimum k such that (G,≺, b) is a YES
instance of the problem FOBT-CROSS. Since fo-bt(G,≺, b) ≤ fo-bt(G,≺) and
fo-bt(G,≺) < τ , it follows that fo-bt(G,≺, b) < τ . Now, we arrive at our main
result.

Theorem 4. There is an algorithm which takes as input a graph G = (V,E)
with a vertex order ≺, and an integer b, runs in time 2O((τ2+bτ)logτ(b+1))· |V |,
and computes a page assignment σ such that (≺, σ) is a (fo-bt(G,≺, b))-page
book drawing of G.

Fixed-Order Book Thickness with Respect to the Vertex-Cover Number 425

5 Conclusions

We studied parameterized algorithms for the problem fixed-order book
thickness with respect to the vertex-cover number. By introducing a novel
analysis approach, we proved an improved running time bound for the param-
eterized algorithm given by Bhore et al. in [4]. By extending this analysis app-
roach, we also show that the general fixed-order book thickness problem
admits a parameterized algorithm running in time 2O((τ2+bτ)logτ(b+1))· |V |.

The main strategy in our analysis approach is to construct an auxiliary graph
by shifting some edge on the original graph such that the number of combinations
giving rise to the complexity of running time can be estimated conveniently
and more accurately. We believe this strategy has potential to derive improved
running time bound on some algorithms for other problems.

Acknowledgements. The authors thank the anonymous referees for their construc-
tive suggestions which have resulted in improvement on the presentations.

References

1. Bilski, T.: Optimum embedding of complete graphs in books. Discrete Math.
182(1–3), 21–28 (1998)

2. Ganley, J.L., Heath, L.S.: The page number of k-trees is O(k). Discrete Appl.
Math. 109(3), 215–221 (2001)

3. Hong, S.-H., Nagamochi, H.: Simpler algorithms for testing two-page book embed-
ding of partitioned graphs. Theoret. Comput. Sci. 725, 79–98 (2018)

4. Bhore, S., Ganian, R., Montecchiani, F., Nöllenburg, M.: Parameterized algorithms
for book embedding problems. In: Archambault, D., Tóth, C.D. (eds.) GD 2019.
LNCS, vol. 11904, pp. 365–378. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-35802-0 28

5. Dujmović, V., Wood, D.R.: On linear layouts of graphs. Discrete Math. Theoret.
Comput. Sci. 6, 339–358 (2004)

6. Garey, M.R., Johnson, D.S., Miller, G.L., Papadimitriou, C.H.: The complexity of
coloring circular arcs and chords. SIAM J. Alg. Discr. Meth. 1(2), 216–227 (1980)

7. Unger, W.: The complexity of colouring circle graphs. In: Finkel, A., Jantzen, M.
(eds.) STACS 1992. LNCS, vol. 577, pp. 389–400. Springer, Heidelberg (1992).
https://doi.org/10.1007/3-540-55210-3 199

8. Gyárfás, A.: On the chromatic number of multiple interval graphs and overlap
graphs. Discrete Math. 55(2), 161–166 (1985)

9. Ageev, A.A.: A triangle-free circle graph with chromatic number 5. Discrete Math.
152(1–3), 295–298 (1996)

10. Kostochka, A., Kratochv́ıl, J.: Covering and coloring polygon-circle graphs. Dis-
crete Math. 163(1–3), 299–305 (1997)

11. Chung, F., Leighton, F., Rosenberg, A.: Embedding graphs in book: a layout prob-
lem with applications to VLSI design. SIAM J. Alg. Discr. Meth. 8(1), 33–58 (1987)

12. Bannister, M.J., Eppstein, D.: Crossing minimization for 1-page and 2-page draw-
ings of graphs with bounded treewidth. J. Graph Algorithms Appl. 22(4), 577–606
(2018)

https://doi.org/10.1007/978-3-030-35802-0_28
https://doi.org/10.1007/978-3-030-35802-0_28
https://doi.org/10.1007/3-540-55210-3_199

Acyclic Edge Coloring Conjecture Is True
on Planar Graphs Without Intersecting

Triangles

Qiaojun Shu1,3, Yong Chen1, Shuguang Han2,3, Guohui Lin3(B), Eiji Miyano4,
and An Zhang1,3

1 Department of Mathematics, Hangzhou Dianzi University, Hangzhou, China
{qjshu,chenyong,anzhang}@hdu.edu.cn

2 Department of Mathematics, Zhejiang Sci-Tech University, Hangzhou, China
dawn1024@163.com

3 Department of Computing Science, University of Alberta, Edmonton, Canada
{qiaojun,shuguang,guohui,az4g}@ualberta.ca

4 Department of Artificial Intelligence, Kyushu Institute of Technology, Iizuka, Japan
miyano@ces.kyutech.ac.jp

Abstract. An acyclic edge coloring of a graph G is a proper edge color-
ing such that no bichromatic cycles are produced. The acyclic edge col-
oring conjecture by Fiamčik (1978) and Alon, Sudakov and Zaks (2001)
states that every simple graph with maximum degree Δ is acyclically
edge (Δ + 2)-colorable. Despite many milestones, the conjecture is still
unknown true or not even for planar graphs. In this paper, we first show
by discharging methods that every planar graph without intersecting
triangles must have one of the six specified groups of local structures;
then by induction on the number of edges we confirm affirmatively the
conjecture on planar graphs without intersecting triangles.

Keywords: Acyclic edge coloring · Planar graph · Intersecting
triangles · Discharging · Induction

1 Introduction

Only simple and connected graphs are considered in this paper. Let G be such
a graph with vertex set V (G) and edge set E(G). For an integer k ≥ 2, a
(proper) edge k-coloring is a mapping c : E(G) → {1, 2, . . . , k} such that any
two adjacent edges receive different colors. (We drop proper in the sequel.) G is
edge k-colorable if G has an edge k-coloring. The chromatic index χ′(G) of G is
the smallest integer k such that G is edge k-colorable. An edge k-coloring c of G
is called acyclic if there are no bichromatic cycles in G, i.e., the subgraph of G

The research was supported by ZJNSF LY20F030007 and LQ15A010010, NSFC
11601111, 11971139, 11771114 and 11571252, CSC 201508330054 and 201908330090,
NSERC, KAKENHI JP17K00016, and JST CREST JPMJR1402.

c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 426–438, 2020.
https://doi.org/10.1007/978-3-030-59267-7_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_36&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_36

Acyclic Edge Coloring Conjecture on Planar Graphs 427

induced by any two colors is a forest. The acyclic chromatic index of G, denoted
by a′(G), is the smallest integer k such that G is acyclically edge k-colorable.
Let Δ(G) (Δ for short) denote the maximum degree of the graph G. One sees
that Δ ≤ χ′(G) ≤ a′(G). Note that χ′(G) ≤ Δ + 1 by Vizing’s theorem [16] and
that a′(K4) = Δ+2. Fiamčik [7] and Alon, Sudakov, and Zaks [2] independently
made the following acyclic edge coloring conjecture (AECC):

Conjecture 1. (AECC) For any graph G, a′(G) ≤ Δ + 2.

On an arbitrary graph G, the following milestones have been achieved: Alon,
McDiarmid and Reed [1] proved that a′(G) ≤ 64Δ by a probabilistic argument.
The upper bound was improved to 16Δ [10], to �9.62(Δ − 1)� [11], to 4Δ − 4
[6], and most recently in 2017 to �3.74(Δ − 1)� + 1 by Giotis et al. [8] using the
Lovász local lemma. On the other hand, the AECC has been confirmed true for
graphs with Δ ∈ {3, 4} [3,4,15,19].

When G is planar, i.e., G can be drawn in the two-dimensional plane so that
its edges intersect only at their ending vertices, Basavaraju et al. [5] showed that
a′(G) ≤ Δ+12; and the upper bound was improved to Δ+7 by Wang et al. [21]
and to Δ + 6 by Wang and Zhang [18]. The AECC has been confirmed true for
graphs without i-cycles for each i ∈ {3, 4, 5, 6} in [13,14,20,22], respectively.

A triangle is synonymous with a 3-cycle. We say that two triangles are adja-
cent if they share a common edge, and are intersecting if they share at least a
common vertex. Recall that the truth of the AECC for planar graphs without
triangles has been verified in [14]. When a planar graph G contains triangles
but no intersecting triangles, Hou, Roussel, and Wu [9] proved the upper bound
a′(G) ≤ Δ + 5, and Wang and Zhang [17] improved it to a′(G) ≤ Δ + 3. This
paper focus on planar graphs without intersecting triangles too, and we com-
pletely resolve the AECC by showing the following main theorem.

Theorem 1. The AECC is true for planar graphs without intersecting triangles.

The rest of the paper is organized as follows. In Sect. 2, we characterize
six groups of local structures (also called configurations), and by discharging
methods we prove that any planar graph without intersecting triangles must
contain one of these local structures. Incorporating a known property of edge
colorings and bichromatic cycles (Lemma 9), in Sect. 3 we prove by induction
on the number of edges that the graph admits an acyclic edge (Δ + 2)-coloring.
Due to space limit, most part of the induction is not included here but provided
in [12].

2 The Six Groups of Local Structures

Given a graph G, let d(v) denote the degree of the vertex v in G. A vertex of
degree k (at least k, at most k, respectively) is called a k-vertex (k+-vertex, k−-
vertex, respectively). Let nk(v) (nk+(v), nk−(v), respectively) denote the number
of k-vertices (k+-vertices, k−-vertices, respectively) adjacent to v in G.

428 Q. Shu et al.

Theorem 2. Let G be a 2-connected planar graph with Δ ≥ 5 and without
intersecting triangles. Then G contains one of the following local structures (or
configurations, used interchangeably) (A1)–(A6), as shown in Fig. 1:

u v w

� �1.1A

5� u v

w1u

2u

� �2.1A
x

� �1.3A
u

v

w

1u

2u

1v

�3

�3
�3

� �1.2A

u v

�3

1u2u

3u

4u 5u
� � 1d uu �

w
1v

� �1.5A

u

v

w
1u

2u

1w

3u

2w

3w

u v w1u

2u
1v 2v

1w

2w

� �1.4A

�3

� �2.2A

u v

2

1u2u

3u

4u
� � 1d uu �

w

�3
5u

6u�3

2u

4u

� �3.2A

u v

2
3u

5u
� � 1d uu �

w

5x

u v

2
4u 5u

� � 1d uu �

w

5x

1u2u 1u

3u

� �4.2A

u v

2

1u2u

3u

4u 5u
� � 1d uu �

w
5�

1u

� �3.1A

u v

1w

2u 1v

4w
3v 2v

2w

3w

1u

� �3.2A

u v

1w

2u 1v

4w
3v 2v

2w

3w

5w

1u

� �3.3A

u v

1w

2u
1v

4w 3v
2v

2w

3w

5w

5�

u w

v

2v1v

1u

2u

1w

2w
� �4A � �5.1A

u v

4u3u
2u

1v

2v

1u

� �5.2A

u v

4u3u
2u

2v

� �1 1u v

� �5.3A

1u

u v 1v

2v

4u

2u3u

� �5.4A

u v

4u3u
2u

1v

2v

1u

� �6.1A

2u
u v 1v

4u
2v

5u

3u
1u

� �6.2A

2u
u v 1v

4u
2v

5u

3u
1u

Fig. 1. The six groups of local structures (A1)–(A6) specified in Theorem 2. In each
local structure, solid vertices have all their neighbors (and thus their degrees) deter-
mined while the non-filled vertices could be adjacent to other vertices outside of the
local structure. All vertices are labelled starting with a character, and the degree of a
non-filled vertex, if known, starts with a digit; each dashed edge indicates existence of
zero, one, or more edges.

Acyclic Edge Coloring Conjecture on Planar Graphs 429

(A1) A path uvw such that one of the following holds:
(A1.1) d(v) = 2 and d(u) ≤ 5;
(A1.2) d(u) = d(v) = 3;
(A1.3) d(v) = 3, d(u) = 4, and uw ∈ E(G);
(A1.4) d(v) = 4 and d(u) = d(w) = 3;
(A1.5) d(v) = 3 and d(u) = d(w) = 4.

(A2) A vertex u with n2(u) ≥ 1. Let u1, u2, . . . , ud(u)−1, v be the sorted neighbors
of u such that d(v) = 2 and d(ui) − n2(ui) ≥ d(ui+1) − n2(ui+1) for every
i = 1, 2, . . . , d(u) − 2. Then at least one of the following cases holds:
(A2.1) n2(u) + n3(u) ≥ d(u) − 2;
(A2.2) n2(u) + n3(u) = d(u) − 3, and n3(u) ≤ 3;
(A2.3) n2(u) = d(u) − 4, u3u4 ∈ E(G), and n2(u4) ∈ {d(u4) − 4, d(u4) − 5};
(A2.4) d(u3) ≤ 5, d(u4) = 4, d(u5) = 3, and u3u4 ∈ E(G).

(A3) A path u2uv with d(u) = 3, d(v) = 4. Let w1, w2, . . . , wd(u2)−1 be the
neighbors of u2 other than u. Then at least one of the following cases holds:
(A3.1) d(u2) = 5, d(w4) = 3, and w2w3 ∈ E(G);
(A3.2) d(u2) = 6, d(w3) = d(w4) = d(w5) = 3;
(A3.3) d(u2) = 6, d(w2) ≤ 5, d(w3) = 4, d(w4) = d(w5) = 3, and w2w3 ∈

E(G).
(A4) A 3-cycle uvwu with d(u) = d(v) = d(w) = 4.
(A5) A 5-vertex u is adjacent to u1, u2, u3, u4 and a 3-vertex v. Then at least

one of the following cases holds:
(A5.1) d(u3) = d(u4) = 3;
(A5.2) d(u4) = 3 and u1v ∈ E(G);
(A5.3) d(u1) = 4, d(u3) = 5, d(u4) = 3, and u1u3 ∈ E(G);
(A5.4) d(u3) = d(u4) = 4, and u3u4 ∈ E(G).

(A6) A 6-vertex u is adjacent to u1, u2 and four 3-vertices v, u3, u4, u5. Then
at least one of the following cases holds:
(A6.1) d(u2) = 3;
(A6.2) d(u1) = d(u2) = 4 and u1u2 ∈ E(G).

The rest of the section is devoted to the proof of Theorem 2, by contradiction.
That is, we assume to the contrary that G contains none of the local structures
(A1)–(A6), and derive contradictions. We employ several known local structural
properties for planar graphs from [13], which are summarized in Lemma 2.

2.1 Definitions and Notations

Since G is 2-connected, d(v) ≥ 2 for any v ∈ V (G). Let G′ be the graph obtained
by deleting all the 2-vertices of G; let H be a connected component of G′. Clearly,
every vertex v ∈ V (H) has its (called original) degree d(v) ≥ 3 in G, and H is
also a planar graph without intersecting triangles. In what follows, we assume
that H is embedded in the two dimensional plane such that its edges intersect
only at their ending vertices, and we refer H to as a plane graph.

430 Q. Shu et al.

For/In the plane graph H, we use the following notations:

– NH(v) = {u | uv ∈ E(H)} and dH(v) = |NH(v)|—the degree of the vertex
v ∈ V (H);

– similarly define what a k-vertex, a k+-vertex, and a k−-vertex are;
– n′

k(v) (n′
k+(v), n′

k−(v), respectively)—the number of k-vertices (k+-vertices,
k−-vertices, respectively) adjacent to v;

– F (H)—the face set of H;
– V (f)—the set of vertices on (the boundary of) the face f ;
– a vertex v and a face f are incident if v ∈ V (f);
– nk(f) (nk+(f), nk−(f), respectively)—the number of k-vertices (k+-vertices,

k−-vertices, respectively) in V (f);
– δ(f)—the minimum degree of the vertices in V (f);
– d(f)—the degree of the face f , which is the number of edges on the face f

with cut edges counted twice, and similarly define what a k-face, a k+-face,
and a k−-face are;

– F (v) = {f ∈ F (H) | v ∈ V (f)};
– mk(v) (mk+(v), mk−(v), respectively)—the number of k-faces (k+-faces, k−-

faces, respectively) in F (v);
– for a vertex v ∈ V (H) with dH(v) = k, let u1, u2, . . . , uk be all the neighbors

of v in clockwise order, and denote the face containing u1vu2 (u2vu3, . . .,
uk−1vuk, ukvu1, respectively) as f1 (f2, . . . , fk−1, fk, respectively); note that
some of them could refer to the same face, i.e., the number of distinct faces
could be less than k.

2.2 Structural Properties

Note from the construction of H that dH(u) = d(u) − n2(u) and thus dH(u) =
d(u) if n2(u) = 0. The inexistence of (A1.1) in G states that no 5−-vertex is
adjacent to a 2-vertex in G; thus 3 ≤ d(u) ≤ 5 implies dH(u) = d(u). The
inexistences of (A2.1) and (A2.2) in G together imply that every 6+-vertex u is
adjacent to at most (d(u) − 4) 2-vertices in G; thus if d(u) ≥ 6 and n2(u) ≥ 1,
then dH(u) ≥ 4. We summarize these into the following lemma.

Lemma 1. δ(H) ≥ 3; if the degree of a vertex u is 3 ≤ d(u) ≤ 5, then dH(u) =
d(u); if d(u) ≥ 6 and n2(u) ≥ 1, then dH(u) ≥ 4. �	

Assuming the inexistences of some of (A1)–(A6), the three items in the next
lemma are proven for planar graphs without 5-cycles in [13], but in fact hold for
all planar graphs.

Lemma 2. [13]

(1) n′
3(u) = n3(u) for any vertex u ∈ V (H).

(2) If a vertex u has dH(u) = 4 and n′
3(u) ≥ 1, then d(u) = 4.

(3) Let f = [uvw] be a 3-face with δ(f) = 3, then n5+(f) = 2. �	

Acyclic Edge Coloring Conjecture on Planar Graphs 431

Lemma 3. Let f = [uvw] be a 3-face with δ(f) = 4.

(1) If d(v) > dH(v) = 4, then min{dH(u), dH(w)} ≥ 6;
(2) if dH(v) = 4 and 4 ≤ dH(u) ≤ 5, then d(v) = 4;
(3) n5+(f) ≥ 1.

Proof. (1) and (2) hold due to the inexistence of (A2.3).
For (3), if n5+(f) = 0, then d(u) = d(v) = d(w) = 4 by (2), implying the

existence of (A4) in G, a contradiction. �	
Lemma 4. Let u be a vertex with dH(u) = 5. Then n3(u) ≤ 2, and if n3(u) = 2
then d(u) = 5.

Proof. If n3(u) ≥ 3 then n2(u) + n3(u) ≥ d(u) − 5 + 3 ≥ d(u) − 2; since (A2.1)
does not exist, we have n2(u) = 0 and subsequently d(u) = 5, which contradicts
to the inexistence of (A5.1). We thus prove that n3(u) ≤ 2.

From n3(u) = 2, we have n2(u) + n3(u) = d(u) − 5 + 2 = d(u) − 3; since
(A2.2) does not exist, we have n2(u) = 0 and subsequently d(u) = 5. �	
Lemma 5. Let u be a vertex with dH(u) = 6. Then n3(u) ≤ 4, and

(1) if n3(u) ≥ 3, then d(u) = 6;
(2) if n3(u) = 4, then n′

5+(v) ≥ 2 for any 3-vertex v ∈ NH(u).

Proof. Similar to the proof of Lemma 4, since G contains no (A6.1), we have
n3(u) ≤ 4, and if additionally n3(u) ≥ 3 then d(u) = 6, that is, (1) holds.

If n3(u) = 4, then by (1) d(u) = 6. Since G contains no (A3.2), n′
5+(v) ≥ 2

for any 3-vertex v ∈ NH(u), that is, (2) holds. �	

2.3 Discharging to Show Contradictions

To derive a contradiction, we make use of the discharging methods, which are
very similar to an amortized analysis. First, by Euler’s formula |V (H)|−|E(H)|+
|F (H)| = 2 and the relation

∑

v∈V (H)

dH(v) =
∑

f∈F (H)

d(f) = 2|E(H)|, we have

the following equality:
∑

u∈V (H)

(2dH(u) − 6) +
∑

f∈F (H)

(d(f) − 6) = −12. (1)

Next, we define an initial weight function ω(·) on V (H) by setting ω(u) =
2dH(u) − 6 for each vertex u ∈ V (H) and setting ω(f) = d(f) − 6 for each face
f ∈ F (H). It follows from Eq. (1) that the total weight is equal to −12. In what
follows, we will define a set of discharging rules (R1)–(R4) to move portions
of weights from vertices to faces (the function τ(u → f)). At the end of the
discharging, a new weight function ω′(·) is achieved and we are able to show
that ω′(x) ≥ 0 for every x ∈ V (H) ∪ F (H) (Lemmas 6–7). This contradicts the
negative total weight.

For a k-vertex u ∈ V (H) where k ≥ 4 and f ∈ F (u), let τ(u → f) denote
the amount of weight transferred from u to f .

432 Q. Shu et al.

(R1) When k = 4, τ(u → fi) = 1
2 for each i = 1, 2, 3, 4.

(R2) When k ≥ 5 and f = [vuw] is a 3-face,
(R2.1) if δ(f) = 3, then τ(u → f) = 3

2 ;
(R2.2) assume δ(f) = 4 with dH(v) = 4,

(R2.2.1) if k ≥ 7, then τ(u → f) = 2;
(R2.2.2) if k = 6, then

τ(u → f) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

3
2 , if n3(u) ≥ 4;
5
4 , if n3(u) = 3 and n6+(f) = 2;
5
4 , if n3(u) = 3, dH(w) = 5 and n3(w) ≤ 1;
2, otherwise;

(R2.2.3) if k = 5, then τ(u → f) =

⎧
⎪⎨

⎪⎩

2, if n3(u) = 0;
5
4 , if n3(u) = 1;
1, if n3(u) ≥ 2;

(R2.3) if δ(f) ≥ 5, then τ(u → f) = 1.
(R3) When k ≥ 5 and f = [vuyx] is a 4-face,

τ(u → f) =

⎧
⎪⎨

⎪⎩

1, if d(v) = 3 and, either d(y) = 3 or d(x) = 4;
3
4 , if d(v) = 3, dH(y) ≥ 4 and dH(x) ≥ 5;
1
2 , if dH(v) ≥ 4 and dH(y) ≥ 4.

(R4) When k ≥ 5 and f = [·xuy·] is a 5-face,

τ(u → f) =

{
1
2 , if d(x) = d(y) = 3;
1
4 , if max{dH(x), dH(y)} ≥ 4.

It remains to validate that ω′(x) ≥ 0 for every x ∈ V (H) ∪ F (H).

Lemma 6. For every face f ∈ F (H), ω′(f) ≥ 0.

Proof. We distinguish the following four cases for d(f).

Case 1. d(f) ≥ 6. Since a face never transfers out any weight, in this case
ω′(f) ≥ ω(f) = d(f) − 6 ≥ 0.

Case 2. d(f) = 3 with f = [uvw]. In this case, ω(f) = d(f) − 6 = −3.
If δ(f) = 3, then n5+(f) = 2 by Lemma 2(3); by (R2.1) each 5+-vertex in

V (f) gives 3
2 to f and thus ω′(f) ≥ −3 + 2 × 3

2 = 0.
If δ(f) ≥ 5, then by (R2.3) τ(u → f) = 1 for each u ∈ V (f), and thus

ω′(f) ≥ −3 + 3 × 1 = 0.
If δ(f) = 4 with dH(v) = 4, then n4+(f) = 3, n5+(f) ≥ 1 by Lemma 3,

and n3(x) ≤ dH(x) − 2 for each x ∈ {u,w}. By (R1) τ(v → f) = 1
2 . When

min{τ(u → f), τ(w → f)} ≥ 5
4 , ω′(f) ≥ −3 + 2 × 5

4 + 1
2 = 0; when max{τ(u →

f), τ(w → f)} = 2, ω′(f) ≥ −3 + 2 + 2 × 1
2 = 0. In the other cases:

Case 2.1. dH(u) = 4 and, either dH(w) = 6 with n3(w) = 4 or dH(w) = 5
with n3(w) ≥ 1. In this subcase, d(u) = d(v) = 4 by Lemma 3 and thus one of
(A2.4), (A5.4) and (A6.2) exists, a contradiction.

Case 2.2. dH(u) = dH(w) = 5, with n3(u) ≥ 2 and n3(w) ≥ 1. In this
subcase, n3(u) = 2 and d(u) = 5 by Lemma 4, and d(v) = 4 by Lemma 3. Since
G contains no (A2.4), we have d(w) = 5 and thus (A5.3) exists, a contradiction.

Acyclic Edge Coloring Conjecture on Planar Graphs 433

Case 3. d(f) = 4 with f = [uvxy]. In this case, ω(f) = d(f) − 6 = −2.
If δ(f) ≥ 4, then by (R1) and (R3) ω′(f) ≥ −1 + 4 × 1

2 = 0.
Consider next δ(f) = 3. Since G contains neither (A1.2) nor (A1.4), n3(f) ≤ 2.

If n3(f) = 2, then n5+(f) = 2 and by (R3) ω′(f) = −2 + 2 × 1 = 0.
If n3(f) = 1, then d(v) = 3 and, since G contains no (A1.5), we have

max{dH(x), dH(u)} ≥ 5. Assuming w.l.o.g. dH(u) ≥ 5, by (R1) and (R3), if
d(x) = 4, then we have τ(y → f) ≥ 1

2 , τ(u → f) = 1, and τ(x → f) = 1
2 ,

leading to ω′(f) ≥ −2 + 1 + 2 × 1
2 = 0; or if dH(x) ≥ 5, then we have

τ(u → f) = τ(x → f) = 3
4 , leading to ω′(f) ≥ −2 + 2 × 3

4 + 1
2 = 0.

Case 4. d(f) = 5 with f = [uvwxy]. In this case, ω(f) = d(f) − 6 = −1.
By (R1) and (R4), each 4+-vertex in V (f) gives at least 1

4 to f . If n4+(f) ≥ 4,
then ω′(f) ≥ −1 + 4 × 1

4 = 0.
Otherwise, since G contains neither (A1.2) nor (A1.4) and by Lemma 2(1),

we may assume w.l.o.g. d(u) = d(w) = 3, n4+(f) = 3, and dH(v) ≥ 5. Then
by (R1) and (R4), we have τ(v → f) ≥ 1

2 , τ(x → f) ≥ 1
4 , and τ(y → f) ≥ 1

4 ,
leading to ω′(f) ≥ −1 + 1 × 1

2 + 2 × 1
4 = 0. �	

Lemma 7. For every vertex u ∈ V (H), ω′(u) ≥ 0.

Proof. Recall from Lemma 1 that dH(u) ≥ 3. If dH(u) = 3, then ω′(u) = ω(u) =
2dH(u) − 6 = 0, since u never transfers its weight out by our rules.

If dH(u) = 4, then ω′(u) = ω(u) − 4 × 1
2 = 2dH(u) − 6 − 2 = 0 by (R1).

If dH(u) ≥ 7, then using the heaviest weights in (R2)–(R4) we have ω′(u) ≥
2dH(u) − 6 − 2 − 1 × (dH(u) − 1) = dH(u) − 7 ≥ 0.

Below we distinguish two cases where dH(u) = 5 and 6, respectively. Note
that m3(u) ≤ 1 since G contains no intersecting triangles.

Case 1. dH(u) = 5. In this case, ω(u) = 2dH(u) − 6 = 4.
By Lemma 4, n3(u) ≤ 2, and if n3(u) = 2 then d(u) = 5. When m3(u) = 0,

if the number of faces with τ(u → f) ≤ 1
2 is at least 2, then ω′(u) ≥ 4 −

2 × 1
2 − 3 × 1 = 0; otherwise, there is at most one face f ∈ F (u) such that

τ(u → f) ≤ 1
2 , and thus n3(u) = 2. One sees for the same reason that these

two 3-vertices should not be on the same face, and we assume they are u2 and
u4, i.e., d(u2) = d(u4) = 3. For each of u2 and u4, at least one of its neighbors
besides u is a 5+-vertex since G contains no (A1.5). It follows from (R3) and
(R4) that τ(u → f1) + τ(u → f2) ≤ 1 + 3

4 , τ(u → f3) + τ(u → f4) ≤ 1 + 3
4 ,

τ(u → f5) ≤ 1
2 , and thus ω′(u) ≥ 4 − 2 × (1 + 3

4) − 1
2 = 0.

When m3(u) = 1 and assume w.l.o.g. d(f1) = 3 with f1 = [u1uu2], we let
s3(u) be the number of 3-vertices in N(u)\{u1, u2} and we have s3(u) ≤ n3(u) ≤
2 by Lemma 4. Using (R2)–(R4), we discuss the following three subcases for three
possible values of s3(u).

Case 1.1. s3(u) = 0. If δ(f1) = 3 with d(u1) = 3, then τ(u → f1) = 3
2 ,

τ(u → fi) ≤ 1
2 , i ∈ {2, 3, 4}, τ(u → f5) ≤ 1, and ω′(u) ≥ 4 − 3

2 − 3 × 1
2 − 1 = 0.

If δ(f1) ≥ 4, then τ(u → f1) ≤ 2, τ(u → fi) ≤ 1
2 , i ∈ {2, 3, 4, 5}, and ω′(u) ≥

4 − 2 − 4 × 1
2 = 0.

Case 1.2. s3(u) = 1. By Lemma 4, if n3(u) = 2 then d(u) = 5 and one of
u1 and u2 is a 3-vertex, which contradicts the inexistence of (A5.2). Therefore,

434 Q. Shu et al.

n3(u) = 1, which implies δ(f1) ≥ 4 and further by (R2.2.3) and (R2.3) τ(u →
f1) ≤ 5

4 . By symmetry, if d(u3) = 3, then τ(u → f2) + τ(u → f3) ≤ 1 + 3
4 ,

τ(u → fi) ≤ 1
2 , i ∈ {4, 5}, leading to ω′(u) ≥ 4 − 5

4 − (1 + 3
4) − 2 × 1

2 = 0; if
d(u4) = 3, then τ(u → f3) + τ(u → f4) ≤ 1 + 3

4 , τ(u → fi) ≤ 1
2 , i ∈ {1, 5},

leading to ω′(u) ≥ 4 − 5
4 − (1 + 3

4) − 2 × 1
2 = 0.

Case 1.3. s3(u) = 2. We have d(u) = 5, n3(u) = 2 and δ(f1) ≥ 4, and further
by (R2.2.3) and (R2.3) τ(u → f1) ≤ 1. Since G contains no (A3.1), all neighbors
of the two 3-vertices in N(u) are 5+-vertices. By symmetry, if d(u3) = d(u4) = 3,
then τ(u → fi) ≤ 3

4 , i ∈ {2, 4}, τ(u → f3) ≤ 1, τ(u → f5) ≤ 1
2 , leading to

ω′(u) ≥ 4 − 2 × 1 − 2 × 3
4 − 1

2 = 0; if d(u3) = d(u5) = 3, then τ(u → fj) ≤ 3
4 ,

j ∈ {2, 3, 4, 5}, leading to ω′(u) ≥ 4 − 1 − 4 × 3
4 = 0.

Case 2. dH(u) = 6. In this case, ω(u) = 2dH(u) − 6 = 6. When m3(u) = 0,
ω′(u) ≥ 6 − 1 × 6 = 0; when m3(u) = 1, we discuss similarly as in Case 1 by
using Lemmas 2–5. We leave the details in [12].

This finishes the proof that for every vertex u, ω′(u) ≥ 0. �	
Lemmas 6 and 7 together contradict the negative total weight of −12 stated

in Eq. (1), and thus prove Theorem 2.

3 Acyclic Edge Coloring

In this section, we show how to derive an acyclic edge coloring, by an induction
on |E(G)|. The following lemma gives the starting point.

Lemma 8. ([3,4,15,19]) If Δ(G) ∈ {3, 4}, then a′(G) ≤ Δ(G) + 2.

Assume that c is a partial acyclic edge k-coloring of the graph G using the
color set C = {1, 2, . . . , k}. For a vertex v ∈ V (G), let C(v) denote the set
of colors assigned the edges incident at v under c. If the edges of a path P =
ux . . . v are alternatively colored with colors i and j, we call it an (i, j)(u,v)-
path. Furthermore, if uv ∈ E(G) is also colored by i or j, we call ux . . . vu an
(i, j)(u,v)-cycle. For simplicity, we use {e1, e2, . . . , em} → a to state that all the
edges e1, e2, . . ., em are (re-)colored with a, ei → S (S �= ∅) to state that ei is
(re-)colored with a color in S, simply e1 → a to state that e1 is colored with a,
and (e1, e2, . . . , em) → (a1, a2, . . . , am) to state that each ej is (re-)colored with
aj respectively. We also use (e1, e2, . . . , em)c = (a1, a2, . . . , am) to denote that
c(ej) = aj respectively.

Lemma 9. [15] Suppose G has an acyclic edge coloring c, and P = uv1v2-. . .-
vkvk+1 is a maximal (a, b)(u,vk+1)-path with c(uv1) = a and b �∈ C(u). Then there
is no (a, b)(u,w)-path for any vertex w �∈ V (P).

Proof of Theorem 1. The flow of the proof is depicted in Fig. 2. For the base
cases, when |E(G)| ≤ Δ + 2, each edge is colored distinctly; when Δ ≤ 4, we
assume an acyclic edge (Δ + 2)-coloring by Lemma 8.

Acyclic Edge Coloring Conjecture on Planar Graphs 435

In the sequel we assume that Δ ≥ 5 and |E(G)| ≥ Δ + 3. Recall that a
connected graph has a block-cut tree representation in which each block is a 2-
connected component and two blocks overlap at most one cut-vertex; we assume
w.l.o.g. that G is 2-connected, since if necessary we may swap any two colors
for the edges in a block. Theorem2 tells that G contains at least one of the
configurations (A1)–(A6). One sees that each of (A1)–(A6) contains an edge uv
such that d(u) + d(v) ≤ 8 or d(v) ∈ {2, 3}. We pick such an edge uv and let
H = G − uv (that is, H = (V,E \ {uv})). The graph H is also planar without
intersecting triangles and Δ ≥ Δ(H) ≥ Δ−1 ≥ 4. By the inductive assumption,
H has an acyclic edge (Δ+2)-coloring c using the color set C = {1, 2, . . . ,Δ+2}.
Since dH(u) + dH(v) ≤ 6, or dH(u) ≤ Δ − 1 and dH(v) ∈ {1, 2}, we conclude
from |C| = Δ + 2 > max{6,Δ + 1} that C \ (C(u) ∪ C(v)) �= ∅.

Fig. 2. The flow of the proof of Theorem 1.

If C(u) ∩ C(v) = ∅, then let uv → C \ (C(u) ∪ C(v)), which gives an acyclic
edge (Δ + 2)-coloring for G. Likewise, if there exists j ∈ C \ (C(u) ∪ C(v))
such that H contains no (i, j)(u,v)-path for any i ∈ C(u) ∩ C(v), then let
uv → j. In the remaining case, for each i ∈ C(u) ∩ C(v), let Bi = {j |
there is an (i, j)(us,vt)-path}, where c(uus) = c(vvt) = i. One clearly sees that
Bi ⊆ C(us) ∩ C(vt). In the sequel we continue the proof with the following
assumption (∗1):

436 Q. Shu et al.

(∗1) C(u)∩C(v) �= ∅; for any j ∈ C \(C(u)∪C(v)), H contains an (i, j)(u,v)-path
for some i ∈ C(u) ∩ C(v); and C \ (C(u) ∪ C(v)) ⊆ ⋃

i∈C(u)∩C(v) Bi.

It is not hard to see that if G contains (A1) or (A2.1), then the proof for the
cases (A1.1)–(A1.4), (A1.6) and (A2.1) in [13] can be adopted; if G contains (A4),
then the proof for the case (A3) in [20] can be adopted. In [12] we provide the
complete proof for the case where G contains one of the configurations (A2.2)–
(A2.4), (A3), and (A5), and show that an acyclic (Δ + 2)-edge coloring can
be achieved. The rest of the section deals with the case where G contains the
configuration (A6).

Assume c(uui) = i for 1 ≤ i ≤ 5 and C∗
6 = C \ {1, 2, 3, 4, 5}. Note that

|C∗
6 | ≥ 3, N(u) ∩ N(v) = ∅, and (C \ (C(u) ∪ C(v))) ⊆ ⋃

i∈C(u)∩C(v) Bi. By
Assumption (∗1), 1 ≤ |C(u)∩C(v)| ≤ 2. We thus distinguish two cases for the two
possible values of |C(u)∩C(v)|. We demonstrate one case where |C(u)∩C(v)| = 2
(denoted as (A6-II)), i.e., (vv1, vv2)c = (a, b) where a, b ∈ C(u), while leave the
other case (denoted as (A6-I)) to [12].

Let Si = {c(uuj) | d(uj) = i} for i ∈ {3, 4}.
If there exists i ∈ C∗

6 \ C(v1), then let vv1 → i and reduce the proof to Case
(A6-I). Otherwise, C∗

6 ⊆ C(v1) ∩ C(v2). If for any l ∈ C(u)\{a, b}, G contains
no (k, l)(ua,ul)-path for some k ∈ C∗

6 \ C(ua), then let uua → k and reduce the
proof to Case (A6-I). Otherwise, we conclude that:

(∗6.1) For each i ∈ {a, b}, C∗
6 ⊆ C(ui) or for any k ∈ C∗

6 \ C(ui), G contains a
(k, l)(ui,ul)-path for some l ∈ C(u)\{a, b}.

Conclusion (∗6.1) implies that C(v) \ S3 �= ∅ and we consider the following
three cases. Note that C∗

6 ⊆ C(v2) ∩ C(v1).

Case (A6-II-1). (vv1, vv2)c = (1, 2) for (A6.1). If G contains no (i, 2)(v1,v2)-path
for some i ∈ {3, 4, 5} \ C(v1), then let vv1 → i and we are done by Conclusion
(∗6.1); otherwise, G contains an (i, 2)(v1,v2)-path for every i ∈ {3, 4, 5} \ C(v1).
It follows that C(v1) = C∗

6 ∪ {1, 2, 3} and C(v2) = C∗
6 ∪ {2, 4, 5}. By Conclusion

(∗6.1), C(u2) ∩ {3, 4, 5} �= ∅. Note that (C∗
6 \ C(u2)) ⊆ B1. Further we have

(C∗
6 \ C(u2)) ⊆ Bi if letting (vv1, vv2) → (j, 1) for j ∈ {4, 5}. It implies that

Δ = 6, C(u2) = {2, 3, 6} and C(u4) = {4, 7, 8}, C(u5) = {5, 7, 8}. We let
(uu4, uv) → (6, 4).

Case (A6-II-2). (vv1, vv2)c = (1, 3) for (A6.2). By Conclusion (∗6.1), C(u3) ∩
{2, 4, 5} �= ∅ and assume that 7, 8 ∈ B1 \ C(u3). If G contains no (i, 3)(v1,v2)-
path for some i ∈ {4, 5} \ C(v1), let vv1 → i and we are done by Conclusion
(∗6.1); otherwise, {4, 5} ⊆ C(v1) or G contains an (i, 3)(v1,v2)-path for every
i ∈ {4, 5} \ C(v1).

Case 2.1. C(v1) = C∗
6 ∪ {1, 4, 5}. If there exists an i ∈ {4, 5} \ C(v2), letting

(vv1, vv2) → (3, i) and we are done by Conclusion (∗6.1); otherwise, C(v2) =
C∗

6 ∪ {3, 4, 5}. We let (vv1, vv2, uv) → (3, 1, 7).
Case 2.2. 3 ∈ C(v1) and G contains an (i, 3)(v1,v2)-path for every i ∈ {4, 5} \

C(v1). It follows that {4, 5}\C(v1) �= ∅ and assume that 5 �∈ C(v1). If 1 �∈ C(v2),
first let (vv1, vv2) → (5, 1) and then, uv → k if there is a k ∈ {7, 8} \ B5, or else

Acyclic Edge Coloring Conjecture on Planar Graphs 437

(uu5, uv) → (6, 7). If 1 ∈ C(v2), then it follows that C(v1) = C∗
6 ∪ {1, 3, 4} and

C(v2) = C∗
6 ∪ {3, 1, 5}. Letting vv1 → 2 and we are done by similar discussion

since 2 �∈ C(v2).

Case (A6-II-3). (vv1, vv2)c = (1, 2) for (A6.2). If 1 �∈ C(v2), then we let vv2 →
{3, 4, 5} \ C(v2); otherwise, we have 1 ∈ C(v2), 2 ∈ C(v1), and there exists
j1 ∈ {3, 4, 5} \ (C(v1) ∪ C(v2)). We then let vv2 → j1 to reduce to the above
Case (A6-II-2). �	

References

1. Alon, N., Mcdiarmid, C., Reed, B.: Acyclic coloring of graphs. Random Struct.
Algorithms 2, 277–288 (1991)

2. Alon, N., Sudakov, B., Zaks, A.: Acyclic edge colorings of graphs. J. Graph Theory
37, 157–167 (2001)

3. Andersen, L.D., Máčajová, E., Mazák, J.: Optimal acyclic edge-coloring of cubic
graphs. J. Graph Theory 71, 353–364 (2012)

4. Basavaraju, M., Chandran, L.S.: Acyclic edge coloring of graphs with maximum
degree 4. J. Graph Theory 61, 192–209 (2009)

5. Basavaraju, M., Chandran, L.S., Cohen, N., Havet, F., Müller, T.: Acyclic edge-
coloring of planar graphs. SIAM J. Discrete Math. 25, 463–478 (2011)

6. Esperet, L., Parreau, A.: Acyclic edge-coloring using entropy compression. Eur. J.
Comb. 34, 1019–1027 (2013)

7. Fiamcik, J.: The acyclic chromatic class of a graph. Math. Slovaca 28, 139–145
(1978)

8. Giotis, I., Kirousis, L., Psaromiligkos, K.I., Thilikos, D.M.: Acyclic edge coloring
through the Lovász local lemma. Theoret. Comput. Sci. 665, 40–50 (2017)

9. Hou, J., Roussel, N., Wu, J.: Acyclic chromatic index of planar graphs with trian-
gles. Inf. Process. Lett. 111, 836–840 (2011)

10. Molloy, M., Reed, B.: Further algorithmic aspects of the local lemma (1998)
11. Ndreca, S., Procacci, A., Scoppola, B.: Improved bounds on coloring of graphs.

Eur. J. Comb. 33, 592–609 (2012)
12. Shu, Q., Chen, Y., Han, S., Lin, G., Miyano, E., Zhang, A.: Acyclic edge coloring

conjecture is true on planar graphs without intersecting triangles. arXiv (2020)
13. Shu, Q., Wang, W., Wang, Y.: Acyclic edge coloring of planar graphs without

5-cycles. Discrete Appl. Math. 160, 1211–1223 (2012)
14. Shu, Q., Wang, W., Wang, Y.: Acyclic chromatic indices of planar graphs with

girth at least 4. J. Graph Theory 73, 386–399 (2013)
15. Shu, Q., Wang, Y., Ma, Y., Wang, W.: Acyclic edge coloring of 4-regular graphs

without 3-cycles. Bull. Malays. Math. Sci. Soc. 42, 285–296 (2019). https://doi.
org/10.1007/s40840-017-0484-x

16. Vizing, V.G.: On an estimate of the chromatic class of a p-graph. Discret Analiz
3, 25–30 (1964)

17. Wang, T., Zhang, Y.: Acyclic edge coloring of graphs. Discrete Appl. Math. 167,
290–303 (2014)

18. Wang, T., Zhang, Y.: Further result on acyclic chromatic index of planar graphs.
Discrete Appl. Math. 201, 228–247 (2016)

19. Wang, W., Ma, Y., Shu, Q., Wang, Y.: Acyclic edge coloring of 4-regular graphs
(II). Bull. Malays. Math. Sci. Soc. 42, 2047–2054 (2019). https://doi.org/10.1007/
s40840-017-0592-7

https://doi.org/10.1007/s40840-017-0484-x
https://doi.org/10.1007/s40840-017-0484-x
https://doi.org/10.1007/s40840-017-0592-7
https://doi.org/10.1007/s40840-017-0592-7

438 Q. Shu et al.

20. Wang, W., Shu, Q., Wang, Y.: Acyclic edge coloring of planar graphs without
4-cycles. J. Comb. Optim. 25, 562–586 (2013)

21. Wang, W., Shu, Q., Wang, Y.: A new upper bound on the acyclic chromatic indices
of planar graphs. Eur. J. Comb. 34, 338–354 (2013)

22. Wang, Y., Shu, Q., Wu, J.-L., Zhang, W.: Acyclic edge coloring of planar graphs
without a 3-cycle adjacent to a 6-cycle. J. Comb. Optim. 28(3), 692–715 (2014).
https://doi.org/10.1007/s10878-014-9765-6

https://doi.org/10.1007/s10878-014-9765-6

On Pure Space vs Catalytic Space

Sagar Bisoyi1, Krishnamoorthy Dinesh2, and Jayalal Sarma1(B)

1 Indian Institute of Technology Madras, Chennai, India
{CS17S020,jayalal}@cse.iitm.ac.in

2 Chinese University of Hong Kong, Sha Tin, China
krishnamoorthydinesh@cuhk.edu.hk

Abstract. This paper explores the power of catalytic computation when
the catalytic space (c(n), the full memory for which the content needs to
be restored to original content at the end of the computation) is much
more than exponential in the pure space (s(n), the empty memory which
does not have any access/restoration constraints). We study the following
three regimes of the relation between s(n) and c(n) and explore the class
CSPACE(s(n), c(n)) in each of them.

– Low-end regime : s(n) = O(1) We define the classes CR and CNR
(nondeterministic variant of CR) where s(n) = O(1) and c(n) =
poly(n). Exploring the connection between computational power of
one counter machines (OC) and constant pure space catalytic Turing
machines, we observe that OC ⊆ CR and show that CR ⊆ OC =⇒
CR �= CNR. We prove that L �⊆ CSPACE(O(1), o(

√
n))

– Low-end non-constant regime: s(n) = o(log log n): Let M be an
oblivious catalytic Turing machine using s(n) pure space and c(n)
catalytic space such that s(n) + log c(n) = o(log log n) then L(M) is
regular. This strengthens the classical theorem on s(n) = o(log log n)
to the case of catalytic Turing machines.

– High-end regime: s(n) = O(c(n)ε): We show an implementa-
tion of incremental dynamic program using catalytic machines,
thus showing that Knapsack problem (with n items, sum of their
costs as C and the capacity of the bag as K) can be solved in
O(n log n log C + log(nKC)) pure space and O(n2KC3 log2 K log n)
catalytic space. Hence, catalytic algorithms can lead to a non-trivial
saving in the pure space required for computation when K is Ω(n).

Our techniques include interesting generalizations of crossing sequence
arguments and implementations of incremental dynamic programs using
catalytic algorithms. These may be of independent interest.

1 Introduction

Space complexity - one of the central subareas of computational complexity
strives to understand the power and limitations of space efficient Turing machines
- deterministic, non-deterministic and randomized variants. The logarithmic
space (in short logspace), is an important regime in this line of study and leads
to the famous L vs NL problem, which asks if there is a deterministic logspace
algorithm for any problem solvable via a non-deterministic logspace algorithm.
c© Springer Nature Switzerland AG 2020
J. Chen et al. (Eds.): TAMC 2020, LNCS 12337, pp. 439–451, 2020.
https://doi.org/10.1007/978-3-030-59267-7_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59267-7_37&domain=pdf
https://doi.org/10.1007/978-3-030-59267-7_37

440 S. Bisoyi et al.

A recent innovation in the direction of space complexity is the notion of
catalytic space introduced by [1] (see [5] for a survey). In this notion, the Turing
machine is given larger space (which is full of otherwise useful data) which it is
allowed to use for the computation under the promise that the original data that
the space contained before the computation will be restored at the end of the
computation1, in addition to the computation being performed correctly. The
motivating question then, is whether we will be able to solve more problems
using this larger (full) space which we otherwise do not know how to solve in
small space.

The class of languages that can be solved in s(n) pure space and c(n) catalytic
space (where n is the length of the input) is denoted by CSPACE(s(n), c(n)).
Indeed, for the complexity class CSPACE(s(n), c(n)) to be meaningful, it is nec-
essary that c(n) ≥ s(n) for otherwise, it will be contained in SPACE(s(n)).
Buhrman et al. [1] limits their study to the class that c(n) cannot be more than
2O(s(n)) and restricts the study to the class CL =

⋃
c>0 CSPACE(c log n, nc). They

prove that this class is surprisingly powerful and contains the complexity class
TC1 which2 in turn contains NL too. That is, there is a deterministic algorithm
for reachability problem which uses polynomial catalytic space and logarithmic
pure-space which can be viewed (1) as an interesting step in both theoretical
quest for understanding the power of logspace bounded algorithms, and (2) the
practical aspects of designing space bounded algorithms for solving the funda-
mental problem of reachability testing.

A natural question is whether the restriction that c(n) cannot be more than
2O(s(n)) is required. Indeed, if this is not the case, the catalytic Turing machine
cannot even store the index to the catalytic tape in the pure space. However,
it can be easily seen that the model can accept even non-regular languages and
hence deserves a careful study.3

Low-End Regime: When s(n) is Constant: As a first step towards under-
standing the computational power of catalytic Turing machines when c(n) is
not upper bounded by 2O(s(n)), we study the extreme case when s(n) is con-
stant and c(n) is poly(n). We call such a class as catalytic regular (CR). That
is, CR =

⋃
c≥0 CSPACE(O(1), nc). Let OC denote the set of all languages that

can be accepted by a two-way counter machine with counter value restricted to
at most a polynomial in the input length. It is easy to observe that OC ⊆ CR.
On the other hand, we explore the nondeterministic version of CR which we will
define by CNR =

⋃
c≥0 CNSPACE(O(1), nc) by using the standard definition of

non-deterministic catalytic Turing machines (where the restoration condition is
imposed for all non-deterministic paths). Indeed, power of non-determinism in

1 See Sect. 2 for a formal definition.
2 The class of languages that can be computed by uniform Boolean circuits of depth

O(log n) and size O(nk) for a constant k, over {MAJ, ¬} gates.
3 Koucký [5], while justifying the choice that c(n) = (2O(s(n))) in [1], remarks that this

restricted variant of catalytic Turing machines (with c(n) = 2ω(s(n))) are possibly
equivalent to counter machines in terms of the languages that they accept.

On Pure Space vs Catalytic Space 441

this setting is a natural question which amounts to, is CR = CNR? Although we
do not answer this question, we prove the following connection.

Theorem 1. If CR ⊆ OC, then CR �= CNR.

The heart of the argument is a non-deterministic algorithm for a language Ldg

(see Sect. 2 for a definition) due to Duris and Galil [3] which is known to be
outside OC.

Given the definition of the catalytic regular class, a natural attempt to com-
pare with the standard complexity classes, leads to the question - can we simu-
late logarithmic pure space with polynomial catalytic space, that is - is L ⊆ CR
? Indeed, both containments are far from clear. To this end, using tools from
communication complexity and a variant of the crossing sequence argument for
catalytic Turing machines, we show,

Theorem 2. L �⊆ CSPACE(O(1), o(
√

n)).

We also strengthen the above theorem to show that L �⊆ CNSPACE(O(1), o(
√

n))
thus making progress on even the question is L ⊆ CNR.

Low-End Non-constant Regime: When s(n) is o(log log n) : Continuing
the attempt to understand the power catalytic Turing machines when c(n) is
not upper bounded by 2O(s(n)). In the standard Turing machine model, it is
known that languages accepted by Turing machines using at most o(log log n)
space is regular. We ask whether this statement would hold if we augment such
Turing machines with a catalytic space at most o(log n). We prove the following
general theorem in this context.

Theorem 3. Let M be an oblivious catalytic TM that uses s(n) pure space and
c(n) catalytic space such that s(n)+log c(n) = o(log log n). Then L(M) is regular.

The main technical part involved in the above theorem is an adaptation of the
crossing sequence argument for catalytic Turing machines. Note that we require
obliviousness restriction for the Turing machine in the above theorem, since it
is not known in general how to convert a general catalytic Turing machine to an
oblivious one accepting the same language without an additive Ω(log n) increase
in space.

High-end Regime: When s(n) = O(c(n)ε) for ε < 1: Buhrman et al. [1] shows
that even though we have c(n) ≤ 2O(s(n)), there are nontrivial computational
tasks which, uses catalytic space in a non-trivial way, and can be done in much
less catalytic space than 2O(s(n)). They show (Theorem 18 in [1]) that performing
iterated multiplication of n matrices (with integer entries) of order 2

√
log n (sub-

linear in n) can be done in O(log n) pure space and O(2
√
log n) catalytic space.

Our results in this regime, presents an argument that the catalytic space
indeed helps in reducing the amount of pure space required to solve a prob-
lem. We prove this for the Knapsack problem where, we are given n items
with ith item of weight wi ≥ 0 of reward ci ≥ 0 and a non-negative integer K

442 S. Bisoyi et al.

(Knapsack capacity). The goal is to find maxI⊆[n]

∑
i∈I ci subject to the con-

straint that
∑

i∈I wi ≤ K. Let C be the sum of the cost of all items.

Theorem 4. The Knapsack problem can be solved in O(n log n log C +
log(nKC)) pure space and O(n2KC3 log2 K log n) catalytic space.

On the other hand, this problem can be solved by a dynamic programming
based algorithm that uses O(K log C) pure space, where C is the sum of the costs
of the different items. Hence, catalytic algorithm can do a significant saving in
the pure space required for computation (O(K log C) versus O(n log K log C))
when K is Ω(n).

2 Preliminaries

In this section, we define the complexity theoretic preliminaries required for the
rest of the paper. SPACE(s(n)) (resp. NSPACE(s(n))) is the class of all languages
that can be decided by a (non)-deterministic Turing machine using O(s(n)) space
of the work-tape. The class SPACE(log n) (resp. NSPACE(s(n))) is denoted by L
(resp. NL).

Catalytic Computation: A Catalytic Turing Machine (defined by [1]) is a
deterministic Turing machine with an input tape, a work-tape and a catalytic
tape (both equipped with a left end marker symbol). M uses pure space s(n)
and catalytic space c(n) if for all inputs x ∈ {0, 1}n and catalytic tape contents
w ∈ {0, 1}c(n), M(x,w) on input x halts with w on its catalytic tape and the
worktape head does not move beyond s(n) from the left endmarker (�) and the
catalytic space head does not move beyond c(n) cells from the left endmarker.
In this case, we denote, s(n) as the pure space and c(n) as the catalytic space.

CSPACE(s(n), c(n)) is the class of all languages decided by a catalytic Turing
machine using pure space s(n) and auxiliary space c(n). Thus, a language is in
CSPACE(s(n), c(n)) if there is a catalytic Turing machine with s(n) pure space
and c(n) catalytic space such that ∀x ∈ {0, 1}n, ∀w ∈ {0, 1}c(n) : (1) M(x,w)
accepts on input x if and only x ∈ L and (2) M(x,w) halts with w as the
content of the catalytic tape. Let TimeM (x,w) denote the time taken by catalytic
machine M on catalytic content w on the input x.

A non-deterministic catalytic Turing machine is defined (in [2]) similar to the
above, except that the restoration condition is applied to all non-deterministic
paths of the Turing machine. That is, a language L is said to be accepted by
a non-deterministic catalytic Turing machine M if for all input x ∈ {0, 1}n,
∀w ∈ {0, 1}c(n) (1) M(x,w) has at least one non-deterministic path that accepts
if and only if x ∈ L and (2) in all non-deterministic paths of M(x,w), M(x,w)
halts with w as the content of the catalytic tape. Thus, CNSPACE(s(n), c(n)) is
the class of all languages decided by a catalytic Turing machine using pure space
s(n) and auxiliary space c(n).

CL =
⋃

c>0 CSPACE(c log n, nc) CNL =
⋃

c>0 CNSPACE(c log n, nc)

On Pure Space vs Catalytic Space 443

Transparent Programs: [1]. The model is a register machine over a ring
R working with read-only input registers x1, x2, . . . xn and working registers
r1, r2, . . . rm where each register holds an element of R. An instruction is of the
form ri ← ri ± u × v, where u and v are fixed elements from R or registers
other than ri. When the + and − are interchanged we can undo the effect of the
instruction and hence it is called the inverse of the original instruction and these
instructions are called reversible instructions. A program is a list of instructions
and a reversible program is a program where each instruction is reversible. A
function f(x) is said to be transparently computed by a reversible program to a
register ri if the program, when executed on the registers with in initial values
α1, α2, . . . αi . . . αm ends with values α1, α2, . . . αi + f(x) . . . αm in the respective
registers. When the function is computed by the program in a transparent way,
by a slight misuse of terminology, we also call the reversible program to be a
transparent program.

Proposition 1 (Arithmetic circuits to Transparent programs). Suppose
f (on n variables) is computed by a layered arithmetic circuit of size s and
depth d, with the ring operations being + and × (bounded fan-in), then f can
be computed by a transparent program (over the same ring) of length O(s2d+1),
O(s) registers and n inputs. If the fan-in of + gate is allowed to be unbounded,
then the same holds except that length of the resulting program is O(s22d+1).

The above proposition follows from Corollary 6 [1]. The original claim works
for general arithmetic circuits and also allows + fan-in to be unbounded. Addi-
tionally, the following proposition implies that we can simulate transparent pro-
grams catalytically.

Proposition 2 (Transparent programs to Catalytic algorithms). Given
a transparent program (over ring R) of length �, with m registers and n inputs
(each from R), there exists a catalytic TM that can simulate the transparent
program in catalytic space O(m · log |R|) and pure space O(log �+log n+log |R|).
The above proposition follows from Lemma 15 of [1] and improvement on the
catalytic space is based on the remark appearing in the proof of Lemma 15.

Counter Machines: A two-way deterministic counter (denoted as 2DC)
machine M is a 5-tuple (Q,Σ, q0, δ, F) where Q is a finite set of states, q0 a
special start state, F ⊆ Q the set of accepting states and Σ is a finite input
alphabet. The input is given in the input tape of the machine enclosed in start
and end markers. δ is a mapping from Q×Σ×{0, 1} to Q×{L,R}×{−1, 0,+1}.
The transition function takes three input parameters: the current state, the cur-
rent symbol being read, and the status of the counter (say, 0 if the counter reads
zero and 1 if non-zero) and then it changes the state, moves the head to left or
right, and changes the counter value by −1, 0 or +1. The counter can contain
only non-negative integers, decrementing a counter containing 0 is not allowed.
Define OC to be the set of languages that can be accepted by 2-way deterministic
one counter machines.

444 S. Bisoyi et al.

Let L = {w#w | w ∈ Σ∗} and L′ = {wwR | w ∈ Σ∗}. It is known that (c.f.
[3]) both L and L′ belongs to OC with counter value being bounded by O(n).
Now, consider the language

Ldg =
{

w0#w1# . . . #wk

∣
∣
∣
∣
∃n ≥ 1, k ≥ 1,∀i ∈ {0, . . . , k}, wi ∈ Σn

and ∃j �= 0, wj = w0

}

Duris and Galil [3] showed that this language cannot be recognized by two-way
deterministic one-counter machines. That is, Ldg /∈ OC.

Communication Complexity: Given a Boolean function f : {0, 1}n ×
{0, 1}n → {0, 1}, and n bit strings x, y. Consider the model of computation where
there are two parties - Alice (having x) and Bob (having y) and they exchange
bits to compute f(x, y). We call the strategy adopted by both the parties as
protocol π and the outcome of the protocol is denoted by π(x, y). A protocol π
is said to compute f if for every x, y ∈ {0, 1}n × {0, 1}n, π(x, y) = f(x, y). The
cost of a protocol π is maxx,y |π(x, y)| and the cost of computing f is the cost
of the best cost protocols π computing f . We consider two settings of the model
- non-deterministic. If the parties are non-deterministic, then we denote N1(f)
to denote cost of checking if f(x, y) is 1 by an optimal non-deterministic proto-
col. In the randomized setting, Alice and Bob have access to a shared source of
randomness which they can use in the computation. We denote Rpub

0 (f) as the
optimal expected cost of correctly computing f using (public) randomness. For
more details on the two settings of the models, see [7].

3 Low-End Regime: Catalytic Regular

As discussed in the introduction, in this section we aim to study the power of
catalytic computation with a low-end relationship between the catalytic and
pure space. That is, we consider the pure space to be a constant, which is as
good as s(n) = 0 since the state space is enough to represent the content of the
work tape as there are only a constant number of symbols to store. We define,
CR =

⋃
c>0 CSPACE(O(1), nc). It is natural in this case to ask if the machine

is more powerful than a finite automata. Indeed, it can accept the non-regular
language {anbn | n ≥ 0} over the alphabet {a, b} by using the head position of
the catalytic tape without modifying the catalytic tape at all (hence restoration
condition is trivially satisfied by the algorithm). This idea is more general and
is captured by the following easy proposition.

Proposition 3. OC ⊆ CR.

Indeed, the above proposition follows from the fact that the head position of the
catalytic tape can be used as a counter which can do increment and decrement
the counter (corresponds to moving the head to right and left respectively) and
test for zero (corresponds to testing whether the current symbol read is the left
endmarker or not).

On Pure Space vs Catalytic Space 445

The question of is CR ⊆ OC? is harder. To address this question, we consider
the non-deterministic variant of CR, defined as CNR =

⋃
c>0 CNSPACE(O(1), nc).

A natural question is whether non-determinism is more powerful in this resource
regime - the CR vs CNR question - if there exists a language which is
CNSPACE(O(1), nc) but not in CSPACE(O(1), nc′

) for any constant c′.
We now prove Theorem 1 from the introduction. That is, if CR is contained

in OC, then it has to be that CR is different from CNR. This follows from the
following result about the language Ldg. The proof is omitted due to space
limitations.

Proposition 4. The language Ldg is in CNSPACE(O(1), O(n)).

Limitations of CR : The CR vs L problem: In this section, we show
that there exists a language L in L such that it cannot be computed in
CNSPACE(O(1), o(n)), thus proving Theorem2. To this end, we prove a slightly
general result on the power of CSPACE(s(n), c(n)) for functions s(n) and c(n)
(with s(n) ≤ c(n)). (We do not assume here that s(n) ≥ log c(n)).

Lemma 1. Let fn : {0, 1}n × {0, 1}n → {0, 1} be a family of Boolean func-
tions and M be a catalytic machine using s(n) pure space and c(n) catalytic
space accepting the language Lf = {xzy ∈ {0, 1}∗ | |x| = |y| = n, z =
0n and fn(x, y) = 1, n ≥ 1}. Then, Rpub

0 (fn) = O(c(n)2s(n) · 2s(n)).

Proof. The idea is to have Alice and Bob simulate the catalytic machine after
fixing the catalytic content at random. Then, a location in z part of the input is
chosen at random (using public randomness) as the crossing over point at which
the entire configuration of the simulation is exchanged. They output 1 if the
machine accepts and 0 otherwise. We bound the expected bits exchanged.

Before starting, Alice and Bob fixes a location in z at random (using pub-
lic randomness). The protocol is as follows: Alice sets the catalytic content at
random and simulates M as long as the input head stays to the left of this
location. Once it crosses this location, Alice sends the current configuration of
the simulation to Bob who then continues the simulation as long as the input
head stays to right of this location. As soon as it crosses, Bob communicates his
configuration of the simulation to Alice. This is continued till the simulation is
completed. The protocol accepts if and only if the machine M accepts the string
xzy.

For the input xzy, we now estimate the average number of times the head of
M crosses the boundary. Let cr(w, i) denote the number of times the input head
of M crosses the cell i in z on the catalytic content w ∈ {0, 1}c(n). The average
crossings is given by

∑
i,w cr(w,i)

n·2c which is same as 1
n

∑
w

∑
i cr(w,i)

2c . Using the fact
that the total number of crossing cannot exceed the run time (Lemma 2), this is
upper bounded by 1

n

∑
w TimeM (xzy,w)

2c .
Since M is catalytic, by Lemma 2, the total runtime of M over all the catalytic

content is at most the number of configurations which is O(2s+c+log n+log s+log c).
(for convenience, we drop the parameter n from c(n) and s(n)). Hence, the

446 S. Bisoyi et al.

expected number of crossings is O(c · s · 2s). In each crossing, we send the con-
figuration which is O(c + log c + s + log s) = O(c + s) bits. Hence, the expected
number of bits exchanged is at most O((c+s)·c·s·2s) = O(c2s·2s) as s(n) ≤ c(n).

�
Corollary 1. For fn being the equality function on n bits, since4 Rpub

0 (fn) =
Ω(n) , any catalytic machine accepting Lf using s(n) = O(1) requires c(n) to be
at least Ω(n). Since Lf ∈ L, L �⊆ CSPACE(O(1), o(

√
n)).

An argument similar to Lemma 1 can be adapted to show the similar
result in the case of non-deterministic settings as well thus showing that
L �⊆ CNSPACE(O(1), o(

√
n)). This also shows that the complexity classes AC0

and CNSPACE(O(1), o(n)) are incomparable as, Lf (defined in Corollary 1) is in
AC0 and not in CR and ⊕n ∈ CNSPACE(O(1), o(n)) but not in AC0. This is in
contrast with CL which contains L-uniform TC1.

4 Low-End Non-constant Regime: o(log logn) Pure
Space Is Equivalent to No Space

It is known that any s(n) space bounded Turing machine with s(n) = o(log log n)
can only accepts regular languages. For the setting of catalytic machines, this
implication holds when s(n) + c(n) = o(log log n). Using standard crossing
sequence based arguments we show that the same holds when s(n) + log c(n) =
o(log log n) for oblivious catalytic Turing machines.

The following result on the number of configurations of a catalytic machine is
implicit in Theorem 19 [1] where it is used to conclude that CL ⊆ ZPP. We state
it here for catalytic Turing machines that are also oblivious with an improvement
on the count which is crucial for our result.

Lemma 2. For a catalytic Turing machine M with pure space s(n) and catalytic
space c(n), on input string x of length n, there exists a w such that M on
initial catalytic tape content w, reaches at most O(2s(n) · c(n) · s(n) · n) many
configurations. If M is an oblivious catalytic Turing machine, the bound on the
number of configuration can be improved to O(2s(n) · c(n) · s(n)).

We now use the above lemma to prove the main result of this section.

Proof (of Theorem 3). We use a standard recipe for this proof based on cross-
ing sequences and then overcome the technical difficulties in our situation. The
argument for showing that o(log log n) space bounded Turing machines can com-
pute only regular languages has two parts (1) establish an upper bound on the
number of crossing sequences on a given x and, (2) for any c, choose the minimal
x which uses more than c cells, and contradict minimality of x by establishing
that a shorter string would also have used more than c cells. In our context,

4 Holds since N1(fn) ≥ n and Rpub
0 (fn) = Ω(N1(fn) − log n). See Chap. 3 of [7] for

details.

On Pure Space vs Catalytic Space 447

(1) itself is nontrivial since there are exponentially many configurations in c(n)
and s(n). By using the tools from the catalytic computation, we establish that
there is a “nice” string w ∈ {0, 1}c(n) (depending on x) which when used as the
catalytic content for which the number of crossing sequences is still similarly
upper bounded. To address (2), by using standard cut-and-paste arguments, we
derive that the string w is still a nice string for the shorter string x′ we choose
as well.

We now execute this plan formally. For an input x of length n and the initial
catalytic content w ∈ {0, 1}c(n), we first define a semi-configuration of M and
crossing sequence of M . Without loss of generality, let the input alphabet set,
the catalytic tape alphabet set and the work tape alphabet set be from {0, 1}.

Define the semi-configuration of M , during its computation to be a tuple
consisting of (1) the current state of M (2) the symbol being scanned by the
input head (3) the contents of the catalytic tape and (4) the current position of
the catalytic head (5) the contents of the work tape and (6) the current position
of the work head. The number of possible semi-configuration of M for an input
x and initial catalytic content w, denoted by X = |Q|×2×2c(n) × c(n)×2s(n) ×
s(n) = O(2s(n)+c(n)+log s(n)+log c(n)).

For an input x such that |x| = n, initial catalytic content w ∈ {0, 1}c(n) and
for any i ∈ [n], we define the crossing sequence at position i, denoted CSi

w(x),
to be the ordered sequence of semi-configuration of M given by (Ci

1, C
i
2, . . . , C

i
t)

(for some t ≥ 1) whenever the input head is on the ith cell of the input tape.
We first argue that, the constraints on s(n) and c(n) forces the oblivious

Turing machine M to have o(n) different crossing sequences possible. Using this
we argue that M cannot accept a non-regular language.

By Lemma 2, for a oblivious catalytic machine M , there exists an initial
catalytic content w0 such that for all i ∈ [n], length of CSi

w0
(x) is, at most the

running time of M on (x,w0) which is, � = O(2s · c · s). Hence, the number of
different crossing sequence possible is given by,

∑�
i=0 Xi = X�+1−1

X−1 = O(X�).
This can be bounded by O(2(s+c+log s+log c)2s·c·s). Since s(n) ≤ c(n) this can in
turn be bounded by O(22(c+log c)c22s

). Now, 2(c + log c)c22s = O(23(s+log c)) =
o(log n) as s(n) + log c(n) = o(log log n). Hence, for any x of length n, there
exists a w0 ∈ {0, 1}c(n) for which the number of different crossing sequences is
2o(log n) = o(n).

We now argue that for all x, M never uses space more than some constant
c and hence can be simulated by a finite automata thereby implying that L(M)
is regular. For the sake of contradiction, assume that for any c, there exists
infinitely many x such that M accepts x using more than c cells of catalytic and
work tape. For a given c, let x0 be an input of minimum length using c cells. By
earlier argument, there exists a w0 such that the number of crossing sequences
on x0 is o(n). Hence, there exists a constant n0 such that for all n > n0 the
number of possible crossing sequence of length n is less than n/3. This implies
there must exist at least three positions i, j, k ∈ [n] on the input tape such that
CSi

w0
(x0) = CSj

w0
(x0) = CSk

w0
(x0). Let x0 be of the form of αaβaγaδ where

α, β, γ ∈ {0, 1}∗ and a ∈ {0, 1} with the positions of symbol a corresponds to

448 S. Bisoyi et al.

positions i, j, k. By a standard cut-and-paste argument (c.f. Chapter 1, [6]) which
can be done even in the presence of a catalytic tape content, we can conclude:

Claim M must accept x′ = αaγaδ and x′′ = αaβaδ on catalytic content w0. In
addition, TimeM (x′, w0) and TimeM (x′′, w0) are bounded by TimeM (x0, w0).

Let us argue about the amount of catalytic space used up by M . On input
x0, if M used up maximum amount of catalytic space while M ’s input head is
within the sub-string αa of x0 or γa of x0 or δ of x0 then, space used up by M
on x′ is at least c. Or if M used up maximum amount of catalytic space while
M ’s input head is within the sub-string βa of x0 then, space used up by M on
x′′ is at least c. In addition, x′ and x′′ does not take more time when run on w0

and hence can only have shorter crossing sequence than x0. Hence, M accepts a
string shorter than x0 and uses space at least c, a contradiction. �

5 High-End Regime: Implementing Dynamic Programs
Using Catalytic Space

In this section, we present our result for a case when s(n) = O(c(n)ε). We
prove that, even in such settings, catalytic algorithms can be provably useful. We
achieve this by showing an implementation of a dynamic programming algorithm
using less pure space by incorporating the use of catalytic space.

As a classic algorithmic paradigm, dynamic programming has also been stud-
ied via the model of incremental dynamic programs by Jukna [4]. We define
the model from [4] formally. Every dynamic program naturally induces a sub-
problem graph which is a DAG with sub problems as nodes with each of them
having a value (denoted by f) and edges connecting them describing how the
value f(v) of sub problem v gets computed.

A dynamic program P using max and plus (min and plus resp.) computing
a function f is said to be incremental if (1) for every input x = (x1, . . . , xn),
each edge in the sub-problem graph is determined by at most one data item
xi. (2) for each sub problem v depending on sub problems u1, . . . , uk, f(v) =
max{f(u1)+w1(x), . . . , f(uk)+wk(x)} where wi(x) is either 0 or some non-zero
weight based on x.

In this section, we describe how to solve the Knapsack problem using a cat-
alytic algorithms using small amount of pure space (Sect. 5.2). As a first step, the
above framework can be used to view the Knapsack problem as an incremental
dynamic program (as observed in [4]). Since such a program is a DAG with max
and + as operations, it can naturally be viewed as a (max,+) arithmetic cir-
cuit. Hence, to obtain a catalytic algorithm, it suffices to convert the associated
arithmetic circuit to catalytic algorithm which we achieve in Proposition 5. The
part that needs to be handled carefully is obtaining a catalytic algorithm for the
max operation (which we explain in Sect. 5.1).

On Pure Space vs Catalytic Space 449

Catalytic Algorithms for Computing Arithmetic Circuits. We describe how to
convert an arithmetic circuit (over a finite ring R) to a catalytic algorithm eval-
uating the polynomial computed by the arithmetic circuit. We achieve this by
first converting the arithmetic circuit to a transparent program (Proposition 1)
and then running the transparent program using a catalytic Turing machine
(Proposition 2). These are implicit in [1] and are stated explicitly in Sect. 2.

In the following proposition, starting from an arithmetic circuit, we describe
how to obtain a catalytic algorithm computing them.

Proposition 5. Given a layered arithmetic circuit over ring R of size s and
depth d, there exists a catalytic algorithm using O(s log |R|) catalytic space and
O(d + log s + log |R|) pure space evaluating the polynomial corresponding to the
arithmetic circuit.

5.1 Transparent Program to Compute max

In this section, we describe how to obtain a catalytic algorithm computing the
max over any finite field. For the Knapsack problem, we choose a large enough
field (based on K) and use this algorithm along with Proposition 5 to prove The-
orem 4 from Introduction.

Let (Fq, <) be any lattice. Given two transparent programs P1 and P2 com-
puting r1 ← r1 + f1 and r2 ← r2 + f2 over the finite field Fq, we show how
to obtain a transparent program computing max{z, y} where maximum is com-
puted according to < relation.

The idea is to obtain an arithmetic circuit computing max{·, ·} when viewed
as a polynomial over Fq[z, y]. We then use Proposition 1 to obtain a transparent
program computing max.

Proposition 6. Let P1 and P2 be transparent programs compute r1 ← τ1 + f1
and r2 ← τ2 +f2 over the finite field Fq. Then, there exists transparent programs
I, P ′′ such that P given by I, P1, P2, P

′′ compute r ← r + max{f1, f2}. The
program P ′′ is of length O(q4) and uses and O(q3) registers. The program I can
be of length O(q4). A similar statement also holds for computing min.

Proof. Following polynomial computes max over Fq according to the order
<. For a, b ∈ Fq let max{a, b} denote the maximum of a, b in Fq accord-
ing to < relation. max{z, y} =

∑
a∈Fq

∑
b∈Fq

ca,b · ∏
k 	=a(z − k)

∏
k 	=b(y − b)

where ca,b = max{a,b}∏
k �=a(a−k)

∏
k �=b(b−k) . Observe that if z = a and y = b, then

ca,b

∏
k 	=a(z − k)

∏
k 	=b(y − b) = max(a, b) and is zero otherwise. Hence this

polynomial correctly computes max. This polynomial can be computed by an
arithmetic formula with bounded fan-in × and unbounded fan-in + of size
q2(2q + 1) + 2q = O(q3) and depth 2 + log q = O(log q). We unify all occur-
rences of z (resp. y) as leaf into a single z (resp. y) to get an arithmetic circuit
of the same size and depth as the formula. Applying Proposition 1 gives us a
transparent program P ′ computing r ← r+max{z, y} of length O(q4) and O(q3)

450 S. Bisoyi et al.

registers. Let the registers in P ′ be denoted by si and ai denote its initial content
for 1 ≤ i ≤ O(q3).

We modify P ′ to compute r ← r+max{f1, f2} as follows. In the construction
of P ′, there must be lines which reads z of the form si ← si ± x. Let Tz (resp.
Ty) be the set of indices of the registers that reads z (resp. y) in the form as
mentioned. The modification is as follows: For each i ∈ Tz, we replace the read
of z by si ← si ± r1 (with appropriate sign) and for each j ∈ Ty, we replace the
read of y by si ← si ± r2 (with the appropriate sign). Let P ′′ be the resulting
program.

Let I denote the following instructions: (1) for each i ∈ Tz; si ← si − r1 and
(2) for each j ∈ Ty; sj ← sj − r2. The final program P computing max{f1, f2} is
I, P1, P2, P

′′. We now argue correctness. If we compute si ← si ±f1(x) for every
i ∈ Tz (by running P1 or P−1

1 appropriately) and similarly for Ty, the resulting
program along with P ′ will compute maximum. The program P ′′ is also doing
the same without computing f1 or f2 (or their inverse) repeatedly. We compute
f1 and f2 once (via P1 and P2 in P) and copy the values to all the registers that
reads z and y (via lines 1, 2 and the modifications that is done to P ′). �
Proposition 7 ((max,+) Arithmetic circuits to Catalytic algorithms).
Given a layered arithmetic circuit over Fq of size s and depth d with max gates
of fan-in t, there exists a catalytic algorithm using O(stq3(log q)) catalytic space
and O(d log q log t + log s + log q + log t) pure space computing the polynomial
corresponding to the arithmetic circuit.

Proof Replacing the max gates by an arithmetic circuit computing max, will
increase the size by a factor of q3 and depth by a factor of log q. The result
now follows by the fact that there exist a transparent program for comput-
ing max{·, ·} of O(q4) length and O(q3) registers (Proposition 6) and by apply-
ing Proposition 5. �

5.2 Implementing Incremental Dynamic Programming

We now apply the Proposition 7 in the context of Knapsack problem. Observe
that a Knapsack problem on n items with Knapsack capacity K can be expressed
as a (max,+) circuit with size nK, depth n and max fan-in of n. Recall that
C is the sum of the cost of all items. We choose a prime q such that C ≤
q < 2C (such a prime always exists) with the natural associated ordering Fq.
By Proposition 7, we get a catalytic algorithm solving the Knapsack problem
in O(n log n log C + log(nKC)) pure space and O(n2KC3 log2 K log n) catalytic
space. This completes the proof of Theorem 4.

On the other hand, this problem can be solved by a DP algorithm that
uses O(K log C) pure space. To see this, let T be an array of size K. Then,
for each i ∈ {1, 2, . . . , n} and each j from {0, 1, 2, . . . K − wi}, do TK−j ←
max{TK−j , TK−j−wi

+ cj} (where cj and wj is the reward and the weight of
jth item). The optimal value will be available in TK at the end of the itera-
tion. Hence, our catalytic algorithm can do a significant saving in pure space
(O(K log C) versus O(n log K log C)) when K is Ω(n).

On Pure Space vs Catalytic Space 451

Acknowledgments. The authors thank the anonymous reviewers for their construc-
tive comments. Part of the work was done while the second author was at IIT Madras
and was supported by the ERP funding CSE1718842RFERMNJA.

References

1. Buhrman, H., Cleve, R., Koucký, M., Loff, B., Speelman, F.: Computing with a full
memory: catalytic space. STOC 2014, 857–866 (2014)

2. Buhrman, H., Koucký, M., Loff, B., Speelman, F.: Catalytic space: non-determinism
and hierarchy. Theory Comput. Syst. 62(1), 116–135 (2018). https://doi.org/10.
1007/s00224-017-9784-7

3. Duris, P., Galil, Z.: Fooling a two way automaton or one pushdown store is better
than one counter for two way machines. Theor. Comput. Sci. 21, 39–53 (1982)

4. Jukna, S.: Limitations of incremental dynamic programming. Algorithmica 69(2),
461–492 (2014). https://doi.org/10.1007/s00453-013-9747-6

5. Koucký, M.: Catalytic computation. Bull. EATCS 118 (2016)
6. Kozen, D.: Theory of Computation. Texts in Computer Science. Springer, London

(2006). https://doi.org/10.1007/1-84628-477-5
7. Kushilevitz, E., Nisan, N.: Communication Complexity. Cambridge University

Press, Cambridge (1997)

https://doi.org/10.1007/s00224-017-9784-7
https://doi.org/10.1007/s00224-017-9784-7
https://doi.org/10.1007/s00453-013-9747-6
https://doi.org/10.1007/1-84628-477-5

Author Index

Bakali, Eleni 251
Bao, Jialu 365
Baykal, Cenk 287
Bazhenov, Nikolay 1
Bille, Philip 13
Bisoyi, Sagar 439
Bruchertseifer, Jens 352

Cao, Yixin 37
Caskurlu, Bugra 263
Chalki, Aggeliki 251
Chang, Hong 144
Chen, Jie 414
Chen, Wenbin 60
Chen, Yi 107
Chen, Yong 426

Deng, Yunyun 107
Dinesh, Krishnamoorthy 439
Du, Donglei 144, 377

Ekici, Ozgun 263
Erdem Kizilkaya, Fatih 263
Erofeev, Evgeny 226

Feldman, Dan 287
Fernau, Henning 352
Fujito, Toshihiro 181
Fujiwara, Hiroshi 82

Gørtz, Inge Li 13
Guo, Longkun 107, 193, 205
Guo, Yutian 94, 119
Guo, Zhenyu 390

Han, Shuguang 426
Hanji, Kanaho 82
He, Kun 365
He, Xiaozhou 340
He, Xin 313
Hopcroft, John E. 365
Hu, Yanglin 275

Huang, Jingui 414
Huang, Junyu 94, 119

Itoh, Toshiya 25
Iwamasa, Yuni 156

Ke, Yuping 37

Lai, Wenfeng 340
Li, Fufang 60
Li, Min 205, 215, 377
Li, Qingguo 327
Liao, Kewen 107
Lin, Guohui 426
Liu, Jianxin 215
Liu, Jingyi 300
Liu, Miao 60
Liu, Qian 215
Liu, Yunlong 414
Liu, Zhicheng 144

Ma, Ran 144
Melnyk, Darya 275
Miyano, Eiji 426
Morimae, Tomoyuki 69
Mustafa, Manat 1

Nakamura, Tomoya 181
Nakano, Shin-ichi 50

Ospichev, Sergei 1

Pagourtzis, Aris 239, 251
Perrot, Kévin 168
Perrotin, Pacôme 168

Qi, Ke 60

Ren, Chunying 377
Ruangwises, Suthee 25
Rus, Daniela 287

Sarma, Jayalal 439
Selman, Bart 365

Sené, Sylvain 168
Sheng, Bin 402
Shi, Feng 300
Shu, Qiaojun 426
Skjoldjensen, Frederik Rye 13
Sun, Xin 205

Takazawa, Kenjiro 156
Takeuchi, Yuki 69
Tang, Maobin 60
Tani, Seiichiro 69
Tredup, Ronny 226
Triommatis, Theofilos 239
Tukan, Murad 287

Wang, Longchun 327
Wang, Yuyi 275
Wattenhofer, Roger 275
Wu, Huishan 132

Xiao, Mingyu 390
Xin, Xiaodong 365
Xu, Dachuan 193, 205, 377

Yamamoto, Hiroaki 82
Yamanaka, Katsuhisa 50
Yang, Ruiqi 193
You, Jie 300
Yuan, Hanchun 37

Zhang, An 426
Zhang, Dongmei 193
Zhang, Huaming 313
Zhang, Xiaoyan 144
Zhang, Zhen 94, 119, 300
Zhou, Yang 215
Zhou, Yi 390
Zhu, Binhai 340
Zou, Peng 340

454 Author Index

	Preface
	Organization
	Contents
	Semilattices of Punctual Numberings
	1 Introduction
	2 Preliminaries and General Facts
	2.1 Basics of Punctuality
	2.2 First Facts About Punctual Numberings

	3 Warming Up: Absence of Minimal Elements
	4 Infinite Antichain
	5 Lattices
	6 Density
	References

	Partial Sums on the Ultra-Wide Word RAM
	1 Introduction
	1.1 Setup and Results
	1.2 Outline

	2 The Ultra-Wide Word RAM Model
	2.1 Word-Level Parallelism
	2.2 Memory Access

	3 Fenwick Trees
	4 Partial Sums on the Ultra-Wide Word RAM
	4.1 Computing Sum and Update Sequences
	4.2 Sum
	4.3 Update
	4.4 Extensions and Open Problems

	References

	Securely Computing the n-Variable Equality Function with 2n Cards
	1 Introduction
	1.1 Related Work
	1.2 The Six-Card Trick
	1.3 Our Contribution

	2 Basic Operations
	2.1 Random Cut
	2.2 Random k-Section Cut
	2.3 XOR with a Random Bit
	2.4 Adding Two Integers in Z/kZ

	3 Our Main Protocol
	3.1 Summation of the First k Bits
	3.2 Putting Together

	4 Applications
	4.1 Computing Other Symmetric Functions
	4.2 Optimality

	5 Future Work
	References

	Polynomial Kernels for Paw-Free Edge Modification Problems
	1 Introduction
	2 Paw-Free Graphs
	3 Paw-Free Completion
	4 Paw-Free Edge Deletion
	References

	Floorplans with Walls
	1 Introduction
	2 Preliminaries
	3 Family Tree
	4 Algorithm
	5 Conclusion
	References

	A Primal-Dual Randomized Algorithm for the Online Weighted Set Multi-cover Problem
	1 Introduction
	2 A Fractional Primal-Dual Algorithm For the Online Weighted Set Multi-cover Problem
	3 Randomized Algorithm for the Online Weighted Set Multi-cover Problem
	4 Conclusion
	References

	Sumcheck-Based Delegation of Quantum Computing to Rational Server
	1 Introduction
	1.1 Background
	1.2 Our Contribution

	2 Preliminaries
	2.1 Rational Delegated Quantum Computing
	2.2 Reward Gap

	3 Sumcheck-Based Rational Delegated Quantum Computing
	4 Multi-Rational-Server Delegated Quantum Computing with a Constant Reward Gap
	5 Relation Between Rational and Ordinary Delegated Quantum Computing Protocols
	References

	Online Removable Knapsack Problems for Integer-Sized Items
	1 Introduction
	1.1 Our Contribution
	1.2 Previous Research

	2 Online Removable Knapsack Problem
	2.1 Problem Statement
	2.2 Evaluation of Algorithms
	2.3 Additional Settings

	3 Lower Bounds
	4 Upper Bounds
	4.1 Algorithm of Iwama and Taketomi Revisited
	4.2 A Tight Upper Bound for Each Knapsack Size

	5 Conclusion
	References

	An Improved Approximation Algorithm for the Prize-Collecting Red-Blue Median Problem
	1 Introduction
	1.1 Our Results
	1.2 Our Techniques

	2 Preliminaries
	3 Analysis
	3.1 A Set of Swap Pairs
	3.2 An Upper Bound on the Cost Increase
	3.3 A Layered Structure of the Swap Pairs
	3.4 Bound the Cost of the Local Optimum

	References

	LP-Based Algorithms for Computing Maximum Vertex-Disjoint Paths with Different Colors
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Organization

	2 Proof of Theorem 2
	2.1 The NP-completeness Proof for 2DPDC in Digraphs
	2.2 The NP-completeness Proof for 2DPDC in Undirected Graphs

	3 LP-Based Algorithms for MDPDC
	3.1 The Transformation
	3.2 The LP Formula
	3.3 A Greedy-Based Iterative LP Rounding Algorithm
	3.4 An LP-rounding Algorithm Based on a Second ILP

	4 Conclusion
	References

	A Constant Factor Approximation for Lower-Bounded k-Median
	1 Introduction
	1.1 Our Results
	1.2 Other Related Work

	2 A Bi-criteria Approximation
	3 The Approximation Algorithm
	3.1 Aggregating Clients
	3.2 Contracting Facility Set
	3.3 Adding Penalties to Instance I2
	3.4 Constructing an Instance of Capacitated Facility Location
	3.5 Combining Everything

	References

	Reverse Mathematics, Projective Modules and Invertible Modules
	1 Introduction
	1.1 Projective Modules
	1.2 Invertible Modules
	1.3 Modified Projectivity and Injectivity Test

	2 Dual Basis Lemma
	3 Kaplansky's Theorem
	4 Invertible Modules
	5 Modified Projectivity and Injectivity Test
	References

	Two-Stage Submodular Maximization Problem Beyond Non-negative and Monotone
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Two-Stage Submodular Maximization Subject to Cardinality and Matroid Constraints
	4.1 The Deterministic Algorithm
	4.2 The Analysis
	4.3 The Randomized Algorithm

	5 Two-Stage Submodular Maximization Subject to Cardinality and k-matroid Constraints
	6 Conclusion
	References

	Optimal Matroid Bases with Intersection Constraints: Valuated Matroids, M-convex Functions, and Their Applications
	1 Introduction
	2 Algorithms
	2.1 Reduction of (1.4) to Valuated Independent Assignment
	2.2 Reduction of (1.5) and (1.6) to Valuated Matroid Intersection
	2.3 Reduction of (1.7) to M-Convex Submodular Flow

	3 Applications
	3.1 Socially Optimal States in Valuated Matroid Congestion Games
	3.2 Combinatorial Optimization Problem with Interaction Costs

	4 Discussions
	References

	On the Complexity of Acyclic Modules in Automata Networks
	1 Introduction
	2 Definitions
	2.1 Automata Networks
	2.2 Modules
	2.3 Wirings

	3 Acyclicity
	3.1 Acyclic Automata Networks
	3.2 Acyclic Modules
	3.3 One-to-One Modules

	4 Complexity Results
	5 Conclusion
	References

	Eternal Connected Vertex Cover Problem
	1 Introduction
	1.1 Previous Related Work
	1.2 Our Contribution

	2 Some Basic Properties of Eternal Connected Vertex Cover
	3 Polynomially Solvable Cases
	4 NP-Completeness and Approximation
	5 Concluding Remarks
	References

	Parametric Streaming Two-Stage Submodular Maximization
	1 Introduction
	1.1 Related Work
	1.2 Organizations

	2 Preliminaries
	3 Algorithm Description
	4 Theoretical Analysis
	5 Conclusion
	References

	Approximation Guarantees for Deterministic Maximization of Submodular Function with a Matroid Constraint
	1 Introduction
	2 Preliminaries
	3 Generalizing the Deterministic 0.5008-Approximation Algorithm
	4 Conclusions
	References

	A Novel Initialization Algorithm for Fuzzy C-means Problem
	1 Introduction
	2 Preliminaries
	3 The Seeding Algorithms and Our Main Result
	4 Proof of Correctness
	5 Numerical Results
	6 Conclusions
	References

	On the Parameterized Complexity of d-Restricted Boolean Net Synthesis
	1 Introduction
	2 Preliminaries
	3 W[1]-Hardness of d-Restricted -Synthesis
	4 Conclusion
	References

	Approximate #Knapsack Computations to Count Semi-fair Allocations
	1 Introduction
	2 The #Exact M-Items KnapsackProblem
	3 Allocations Where Players Value Their Bundle More Than Others Do
	4 LTV Allocations
	5 Discussion
	References

	Characterizations and Approximability of Hard Counting Classes Below #P
	1 Introduction
	2 Two Robust Subclasses of TotP
	2.1 The Class QSO(2-2SAT)
	2.2 The Class #2-1VAR

	3 On TotP vs. FPRAS
	3.1 Unconditional Inclusions
	3.2 Conditional Inclusions/Possible Worlds

	4 Conclusions and Open Questions
	References

	On Existence of Equilibrium Under Social Coalition Structures
	1 Introduction
	2 The Equilibrium Notions
	3 An Application: Resource Selection Games
	3.1 Existence and Non-existence Results for Laminar Equilibrium
	3.2 Existence and Non-existence Results for Contiguous and Centralized Equilibrium

	References

	Space Complexity of Streaming Algorithms on Universal Quantum Computers
	1 Introduction
	2 Related Work
	3 Background
	3.1 Notation
	3.2 Solovay-Kitaev Algorithm
	3.3 No-Programming Theorem

	4 Data Stream Problems
	4.1 PartialMOD Problem
	4.2 Equality Problem

	5 Conclusion
	References

	On Coresets for Support Vector Machines
	1 Introduction
	1.1 Our Contributions

	2 Related Work
	3 Problem Definition
	4 Method
	4.1 Computational Complexity

	5 Analysis
	5.1 Preliminaries
	5.2 Lower Bound for Sensitivity
	5.3 Sensitivity Upper Bound

	6 Results
	7 Conclusion
	References

	Tractabilities for Tree Assembly Problems
	1 Introduction
	2 Preliminary
	3 An FPT Algorithm for TA Problem
	3.1 Simple Observations
	3.2 Constructing Sub-instances by Orderings
	3.3 Algorithm Presentation

	4 A Polynomial-Time Algorithm for L2-(1,k)-TA Problem
	5 Conclusion
	References

	On Characterization of Petrie Partitionable Plane Graphs
	1 Introduction
	2 Preliminaries and Motivations
	3 Characterization of 3-Regular Plane Graphs with Petrie Cycle Partition
	4 Characterization of 4-Regular Plane Graphs with Petrie Tour Partitions
	5 Characterization of Petrie Partitionable 4-Regular Plane Graphs
	6 Conclusion and Open Problems
	References

	Disjunctive Propositional Logic and Scott Domains
	1 Introduction
	2 Preliminaries
	3 Logical Representations of Scott Domains
	4 A Categorical View
	References

	Dispersing and Grouping Points on Segments in the Plane
	1 Introduction
	2 Preliminaries
	2.1 Definitions
	2.2 Problems

	3 NP-Hardness for the 2D Dispersion Problem
	4 Hardness for IS on Colored Linear Unit Disk Graphs
	5 Approximation for the 2D Grouping Problem
	5.1 The Minimum Intersecting Disk Problem
	5.2 Approximation Factor Analysis

	6 Concluding Remarks
	References

	Synchronizing Words and Monoid Factorization: A Parameterized Perspective
	1 Introduction
	2 Finding a Home for DFA-SW
	3 How to Factor Monoids
	4 More Problems Complete for or Contained in W[Sync]
	5 Further Comments
	5.1 Variations on MONOID FACTORIZATION
	5.2 Extension Variants
	5.3 Minimum Synchronizable Sub-automata

	References

	Hidden Community Detection on Two-Layer Stochastic Models: A Theoretical Perspective
	1 Introduction
	2 Preliminary
	2.1 Modularity Metric
	2.2 HIdden COmmunity DEtection (HICODE) Algorithm
	2.3 Multi-layer Stochastic Block Model
	2.4 Background Edge Probability for Multi-layer SBM

	3 Theoretical Analysis on Two-Layer SBM
	4 Simulation of Relative Modularity
	4.1 Sampling Method
	4.2 Simulation on ReduceEdge

	5 Conclusion
	References

	A Primal-Dual Algorithm for Euclidean k-Means Problem with Penalties
	1 Introduction
	2 Preliminaries
	3 A Quasi-Polynomial Time Approximation Algorithm
	3.1 JV-P() Algorithm
	3.2 Enumerating
	3.3 Finding a k-cardinality Solution
	3.4 Analysis

	4 Discussion
	References

	The Complexity of the Partition Coloring Problem
	1 Introduction
	1.1 Existing Literature
	1.2 Our Contributions

	2 Preliminaries
	3 Complexity of PCP
	3.1 Parameters q and k
	3.2 Parameter p

	4 An Exact Algorithm for PCP
	5 Concluding Remarks
	References

	FPT Algorithms for Generalized Feedback Vertex Set Problems
	1 Preliminary
	2 Notations and Terminology
	3 Branching Algorithm for r-pseudoforest Deletion
	4 Kernelization of r-pseudoforest Deletion
	5 d-quasi-forest Deletion
	6 Conclusion
	References

	Fixed-Order Book Thickness with Respect to the Vertex-Cover Number: New Observations and Further Analysis
	1 Introduction
	2 Preliminaries
	3 Improved Bounds on the Running Time of Algorithm for FOBT
	4 On Parameterized Algorithm for the General Problem
	4.1 Design of the Parameterized Algorithm
	4.2 Analysis on the Running Time

	5 Conclusions
	References

	Acyclic Edge Coloring Conjecture Is True on Planar Graphs Without Intersecting Triangles
	1 Introduction
	2 The Six Groups of Local Structures
	2.1 Definitions and Notations
	2.2 Structural Properties
	2.3 Discharging to Show Contradictions

	3 Acyclic Edge Coloring
	References

	On Pure Space vs Catalytic Space
	1 Introduction
	2 Preliminaries
	3 Low-End Regime: Catalytic Regular
	4 Low-End Non-constant Regime: o(loglogn) Pure Space Is Equivalent to No Space
	5 High-End Regime: Implementing Dynamic Programs Using Catalytic Space
	5.1 Transparent Program to Compute max
	5.2 Implementing Incremental Dynamic Programming

	References

	Author Index

