
Chapter 8
Algorithmic Fractal Dimensions in Geometric
Measure Theory

Jack H. Lutz and Elvira Mayordomo

Abstract The development of algorithmic fractal dimensions in this century has had
many fruitful interactions with geometric measure theory, especially fractal geome-
try in Euclidean spaces. We survey these developments, with emphasis on connec-
tions with computable functions on the reals, recent uses of algorithmic dimensions
in proving new theorems in classical (non-algorithmic) fractal geometry, and direc-
tions for future research.

8.1 Introduction

In early 2000, classical Hausdorff dimension [32] was shown to admit a new charac-
terization in terms of betting strategies called martingales [51]. This characterization
enabled the development of various effective, i.e., algorithmic, versions of Haus-
dorff dimension obtained by imposing computability and complexity constraints on
these martingales. These algorithmic versions included resource-bounded dimen-
sions, which impose dimension structure on various complexity classes [52], the
(constructive) dimensions of infinite binary sequences, which interact usefully with
algorithmic information theory [53], and the finite-state dimensions of infinite bi-
nary sequences, which interact usefully with data compression and Borel normality
[19]. Soon thereafter, classical packing dimension [96, 94] was shown to admit a
new characterization in terms of martingales that is exactly dual to the martingale
characterization of Hausdorff dimension [1]. This led immediately to the develop-
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ment of strong resource-bounded dimensions, strong (constructive) dimension, and
strong finite-state dimension [1], which are all algorithmic versions of packing di-
mension. In the years since these developments, hundreds of research papers by
many authors have deepened our understanding of these algorithmic dimensions.

Most work to date on effective dimensions has been carried out in the Cantor
space, which consists of all infinite binary sequences. This is natural, because ef-
fective dimensions speak to many issues that were already being investigated in the
Cantor space. However, the classical fractal dimensions from which these effective
dimensions arose – Hausdorff dimension and packing dimension – are powerful
quantitative tools of geometric measure theory that have been most useful in Eu-
clidean spaces and other metric spaces that have far richer structures than the totally
disconnected Cantor space.

This chapter surveys research results to date on algorithmic fractal dimensions in
geometric measure theory, especially fractal geometry in Euclidean spaces. This is
a small fraction of the existing body of work on algorithmic fractal dimensions, but
it is substantial, and it includes some exciting new results.

It is natural to identify a real number with its binary expansion and to use this
identification to define algorithmic dimensions in Euclidean spaces in terms of their
counterparts in the Cantor space. This approach works for some purposes, but it
becomes a dead end when algorithmic dimensions are used in geometric measure
theory and computable analysis. The difficulty, first noted by Turing in his famous
correction [98], is that many obviously computable functions on the reals (e.g., ad-
dition) are not computable if reals are represented by their binary expansions [100].
We thus take a principled approach from the beginning, developing algorithmic di-
mensions in Euclidean spaces in terms of the quantity Kr(x) in the following para-
graph, so that the theory can seamlessly advance to sophisticated applications.

Algorithmic dimension and strong algorithmic dimension are the most exten-
sively investigated effective dimensions. One major reason for this is that these al-
gorithmic dimensions were shown by the second author and others [68, 1, 57] to
have characterizations in terms of Kolmogorov complexity, the central notion of al-
gorithmic information theory. In Section 8.2 below we give a brief introduction to
the Kolmogorov complexity Kr(x) of a point x in Euclidean space at a given preci-
sion r.

In Section 8.3 we use the above Kolmogorov complexity notion to develop the
algorithmic dimension dim(x) and the strong algorithmic dimension Dim(x) of each
point x in Euclidean space. This development supports the useful intuition that these
dimensions are asymptotic measures of the density of algorithmic information in
the point x. We discuss how these dimensions relate to the local dimensions that
arise in the so-called thermodynamic formalism of fractal geometry; we discuss the
history and terminology of algorithmic dimensions; we review the prima facie case
that algorithmic dimensions are geometrically meaningful; and we discuss what is
known about the circumstances in which algorithmic dimensions agree with their
classical counterparts. We then discuss the authors’ use of algorithmic dimensions to
analyze self-similar fractals [57]. This analysis gives us a new, information-theoretic
proof of the classical formula of Moran [73] for the Hausdorff dimensions of self-
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similar fractals in terms of the contraction ratios of the iterated function systems that
generate them. This new proof gives a clear account of “where the dimension comes
from” in the construction of such fractals. Section 8.3 concludes with a survey of the
dimensions of points on lines in Euclidean spaces, a topic that has been surprisingly
challenging until a very recent breakthrough by N. Lutz and Stull [63].

We survey interactive aspects of algorithmic fractal dimensions in Euclidean
spaces in Section 8.4, starting with the mutual algorithmic dimensions developed
by Case and the first author [13]. These dimensions, mdim(x : y) and Mdim(x : y),
are analogous to the mutual information measures of Shannon information theory
and algorithmic information theory. Intuitively, mdim(x : y) and Mdim(x : y) are
asymptotic measures of the density of the algorithmic information shared by points
x and y in Euclidean spaces. We survey the fundamental properties of these mutual
dimensions, which are analogous to those of their information-theoretic analogs.
The most important of these properties are those that govern how mutual dimen-
sions are affected by functions on Euclidean spaces that are computable in the
sense of computable analysis [100]. Specifically, we review the information pro-
cessing inequalities of [13], which state that mdim( f (x) : y) ≤ mdim(x : y) and
Mdim( f (x) : y) ≤Mdim(x : y) hold for all computable Lipschitz functions f , i.e.,
that applying such a function f to a point x cannot increase the density of algorithmic
information that it contains about a point y. We also survey the conditional dimen-
sions dim(x|y) and Dim(x|y) recently developed by the first author and N. Lutz [56].
Roughly speaking, these conditional dimensions quantify the density of algorithmic
information in x beyond what is already present in y.

It is rare for the theory of computing to be used to answer open questions in
mathematical analysis whose statements do not involve computation or related as-
pects of logic. In Section 8.5 we survey exciting new developments that do exactly
this. We first describe new characterizations by the first author and N. Lutz [56] of
the classical Hausdorff and packing dimensions of arbitrary sets in Euclidean spaces
in terms of the relativized dimensions of the individual points that belong to them.
These characterizations are called point-to-set principles because they enable one to
use a bound on the relativized dimension of a single, judiciously chosen point x in a
set E in Euclidean space to prove a bound on the classical Hausdorff or packing di-
mension of the set E. We illustrate the power of the point-to-set principle by giving
an overview of its use in the new, information-theoretic proof [56] of Davies’s 1971
theorem stating that the Kakeya conjecture holds in the Euclidean plane [20]. We
then discuss two very recent uses of the point-to-set principle to solve open prob-
lems in classical fractal geometry. These are N. Lutz and D. Stull’s strengthened
lower bounds on the Hausdorff dimensions of generalized Furstenberg sets [63] and
N. Lutz’s extension of the fractal intersection formulas for Hausdorff and packing
dimensions in Euclidean spaces from Borel sets to arbitrary sets. These are, to the
best of our knowledge, the first uses of algorithmic information theory to solve open
problems in classical mathematical analysis.

We briefly survey promising directions for future research in Section 8.6. These
include extending the algorithmic analysis of self-similar fractals [57] to other
classes of fractals, extending algorithmic dimensions to metric spaces other than
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Euclidean spaces, investigating algorithmic fractal dimensions that are more effec-
tive than constructive dimensions (e.g., polynomial-time or finite-state fractal di-
mensions) in fractal geometry, and extending algorithmic methods to rectifiability
and other aspects of geometric measure theory that do not necessarily concern frac-
tal geometry. In each of these we begin by describing an existing result that sheds
light on the promise of further inquiry.

Overviews of algorithmic dimensions in the Cantor space appear in [23, 69],
though these are already out of date. Even prior to the development of algorith-
mic fractal dimensions, a rich network of relationships among gambling strategies,
Hausdorff dimension, and Kolmogorov complexity was uncovered by reserach of
Ryabko [79, 80, 81, 82], Staiger [89, 90, 91], and Cai and Hartmanis [11]. A brief
account of this “prehistory” of algorithmic fractal dimensions appears in section 6
of [53].

8.2 Algorithmic Information in Euclidean Spaces

Algorithmic information theory has most often been used in the set {0,1}∗ of all
finite binary strings. The conditional Kolmogorov complexity (or conditional algo-
rithmic information content) of a string x ∈ {0,1}∗ given a string y ∈ {0,1}∗ is

K(x|y) = min{|π| |π ∈ {0,1}∗ and U(π,y) = x} .

Here U is a fixed universal Turing machine and |π| is the length of a binary “pro-
gram” π . Hence K(x|y) is the minimum number of bits required to specify x to U ,
when y is provided as side information. We refer the reader to any of the standard
texts [49, 23, 75, 87] for the history and intuition behind this notion, including its es-
sential invariance with respect to the choice of the universal Turing machine U . The
Kolmogorov complexity (or algorithmic information content) of a string x ∈ {0,1}∗
is then

K(x) = K(x|λ ),

where λ is the empty string.
Routine binary encoding enables one to extend the definitions of K(x) and K(x|y)

to situations where x and y range over other countable sets such as N, Q, N×Q, etc.
The key to “lifting” algorithmic information theory notions to Euclidean spaces

is to define the Kolmogorov complexity of a set E ⊆ Rn to be

K(E) = min{K(q) |q ∈Qn∩E } . (8.1)

(Shen and Vereshchagin [88] used a very similar notion for a very different purpose.)
Note that K(E) is the amount of information required to specify not the set E itself,
but rather some rational point in E. In particular, this implies that

E ⊆ F =⇒ K(E)≥ K(F).
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Note also that, if E contains no rational point, then K(E) = ∞.
The Kolmogorov complexity of a point x ∈ Rn at precision r ∈ N is

Kr(x) = K(B2−r(x)), (8.2)

where Bε(x) is the open ball of radius ε about x, i.e., the number of bits required
to specify some rational point q ∈ Qn satisfying |q− x| < 2−r, where |q− x| is the
Euclidean distance of q− x from the origin.

8.3 Algorithmic Dimensions

8.3.1 Dimensions of Points

We now define the (constructive) dimension of a point x ∈ Rn to be

dim(x) = liminf
r→∞

Kr(x)
r

(8.3)

and the strong (constructive) dimension of x to be

Dim(x) = limsup
r→∞

Kr(x)
r

. (8.4)

We note that dim(x) and Dim(x) were originally defined in terms of algorithmic
betting strategies called gales [53, 1]. The identities (8.3) and (8.4) were subsequent
theorems proven in [57], refining very similar results in [68, 1]. These identities
have been so convenient for work in Euclidean space that it is now natural to regard
them as definitions.

Since Kr(x) is the amount of information required to specify a rational point
that approximates x to within 2−r (i.e., with r bits of precision), dim(x) and Dim(x)
are intuitively the lower and upper asymptotic densities of information in the point
x. This intuition is a good starting point, but the fact that dim(x) and Dim(x) are
geometrically meaningful will only become evident in light of the mathematical
consequences of (8.3) and (8.4) surveyed in this chapter.

It is an easy exercise to show that, for all x ∈ Rn,

0≤ dim(x)≤ Dim(x)≤ n. (8.5)

If x is a computable point in Rn, then Kr(x) = o(r), so dim(x) = Dim(x) = 0. On the
other hand, if x is a random point in Rn (i.e., a point that is algorithmically random
in the sense of Martin-Löf [65]), then Kr(x) = nr−O(1), so dim(x) = Dim(x) = n.
Hence the dimensions of points range between 0 and the dimension of the Euclidean
space that they inhabit. In fact, for every real number α ∈ [0,n], the dimension level
set
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DIMα = {x ∈ Rn |dim(x) = α } (8.6)

and the strong dimension level set

DIMα
str = {x ∈ Rn |Dim(x) = α } (8.7)

are uncountable and dense in Rn [53, 1]. The dimensions dim(x) and Dim(x) can co-
incide, but they do not generally do so. In fact, the set DIM0∩DIMn

str is a comeager
(i.e., topologically large) subset of Rn [37].

Classical fractal geometry has local, or pointwise, dimensions that are useful,
especially in connection with dynamical systems. Specifically, if ν is an outer mea-
sure on Rn, i.e., a function ν : P(Rn)→ [0,∞] satisfying ν( /0) = 0, monotonicity
(E ⊆ F =⇒ ν(E)≤ ν(F)), and countable subadditivity (E ⊆∪∞

k=0Ek =⇒ ν(E)≤
∑

∞
k=0 ν(Ek)), and if ν is locally finite (i.e., every x ∈ Rn has a neighborhood N with

ν(N)< ∞), then the lower and upper local dimensions of ν at a point x ∈ Rn are

(dimloc ν)(x) = liminf
r→∞

log( 1
ν(B2−r (x))

)

r
(8.8)

and

(Dimloc ν)(x) = limsup
r→∞

log( 1
ν(B2−r (x))

)

r
, (8.9)

respectively, where log = log2 [25].
Until very recently, no relationship was known between the dimensions dim(x)

and Dim(x) and the local dimensions (8.8) and (8.9). However, N. Lutz recently
observed that a very non-classical choice of the outer measure ν remedies this. For
each E ⊆ Rn, let

κ(E) = 2−K(E), (8.10)

where K(E) is defined as in (8.1). Then κ is easily seen to be an outer measure on
Rn that is finite (i.e., κ(Rn) < ∞), hence certainly locally finite, whence the local
dimensions dimloc κ and Dimloc κ are well defined. In fact we have the following.

Theorem 8.3.1 (N. Lutz [60]). For all x ∈ Rn,

dim(x) = (dimloc κ)(x)

and
Dim(x) = (Dimloc κ)(x).

There is a direct conceptual path from the classical Hausdorff and packing di-
mensions to the dimensions of points defined in (8.3) and (8.4).

The Hausdorff dimension dimH(E) of a set E ⊆Rn was introduced by Hausdorff
[32] before 1920 and is arguably the most important notion of fractal dimension.
Its classical definition, which may be found in standard texts such as [93, 25, 7],
involves covering the set E by families of sets with diameters vanishing in the limit.
In all cases, 0≤ dimH(E)≤ n.
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At the beginning of the present century, in order to formulate versions of Haus-
dorff dimensions that would work in complexity classes and other algorithmic set-
tings, the first author [52] gave a new characterization of Hausdorff dimension in
terms of betting strategies, called gales, on which it is easy to impose computability
and complexity conditions. Of particular interest here, he then defined the construc-
tive dimension cdim(E) of a set E ⊆ Rn exactly like the gale characterization of
dimH(E), except that the gales were now required to be lower semicomputable [53].
He then defined the dimension dim(x) of a point x∈Rn to be the constructive dimen-
sion of its singleton, i.e., dim(x) = cdim({x}). The existence of a universal Turing
machine made it immediately evident that constructive dimension has the absolute
stability property that

cdim(E) = sup
x∈E

dim(x) (8.11)

for all x ∈ Rn. Accordingly, constructive dimension has since been investigated
pointwise. As noted earlier, the second author [68] then proved the characterization
(8.3) as a theorem.

Two things should be noted about the preceding paragraph. First, these early
papers were written entirely in terms of binary sequences, rather than points in Eu-
clidean space. However, the most straightforward binary encoding of points bridges
this gap. (In this survey we freely use those results from the Cantor space that do
extend easily to Euclidean space.) Second, although the gale characterization is es-
sential for polynomial time and many other stringent levels of effectivization, con-
structive dimension can be defined equivalently by effectivizing Hausdorff’s origi-
nal formulation [77].

8.3.2 The Correspondence Principle

In 2001, the first author conjectured that there should be a correspondence principle
(a term that Bohr had used analogously in quantum mechanics) assuring us that for
sufficiently simple sets E ⊆Rn, the constructive and classical dimensions agree, i.e.,

cdim(E) = dimH(E). (8.12)

Hitchcock [34] confirmed this conjecture, proving that (8.12) holds for any set E ⊆
Rn that is a union of sets that are computably closed, i.e., that are Π 0

1 in Kleene’s
arithmetical hierarchy. (This means that (8.12) holds for all Σ 0

2 sets, and also for
sets that are nonuniform unions of Π 0

1 sets.) Hitchcock also noted that this result
is the best possible in the arithmetical hierarchy, because there are Π 0

2 sets E (e.g.,
E = {z}, where z is a Martin-Löf random point that is ∆ 0

2 ) for which (8.12) fails.
By (8.11) and (8.12) we have

dimH(E) = sup
x∈E

dim(x), (8.13)
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which is a very nonclassical, pointwise characterization of the classical Hausdorff
dimensions of sets that are unions of Π 0

1 sets. Since most textbook examples of
fractal sets are Π 0

1 , (8.13) is a strong preliminary indication that the dimensions of
points are geometrically meaningful.

The packing dimension dimP(E) of a set E ⊆ Rn was introduced in the early
1980s by Tricot [96] and Sullivan [94]. Its original definition is a bit more involved
than that of Hausdorff dimension [25, 7] and implies that dimH(E)≤ dimP(E)≤ n
for all E ⊆ Rn.

After the development of constructive versions of Hausdorff dimension outlined
above, Athreya, Hitchcock, and the authors [1] undertook an analogous development
for packing dimension. The gale characterization of dimP(E) turns out to be exactly
dual to that of dimH(E), with just one limit superior replaced by a limit inferior. The
strong constructive dimension cDim(E) of a set E ⊆ Rn is defined by requiring the
gales to be lower semicomputable, and the strong dimension of a point x ∈ Rn is
Dim(x) = cDim({x}). The absolute stability of strong constructive dimension,

cDim(E) = sup
x∈E

Dim(x), (8.14)

holds for all E ⊆ Rn, as does the Kolmogorov complexity characterization (8.4).
All this was shown in [1], but a correspondence principle for strong constructive
dimension was left open. In fact, Conidis [16] subsequently used a clever priority
argument to construct a Π 0

1 set E ⊆ Rn for which cDim(E) 6= dimP(E). It is still
not known whether some simple, logical definability criterion for E implies that
cDim(E) = dimP(E). Staiger’s proof that regular ω-languages E satisfy this identity
is an encouraging step in this direction [92].

8.3.3 Self-Similar Fractals

The first application of algorithmic dimensions to fractal geometry was the authors’
investigation of the dimensions of points in self-similar fractals [57]. We give a
brief exposition of this work here, referring the reader to [57] for the many missing
details.

Self-similar fractals are the most widely known and best understood classes of
fractals [25]. Cantor’s middle-third set, the von Koch curve, the Sierpiński triangle,
and the Menger sponge are especially well known examples of self-similar fractals.

Briefly, a self-similar fractal in a Euclidean space Rn is generated from an initial
nonempty closed set D⊆ Rn by an iterated function system (IFS), which is a finite
list S = (S0,S1, . . . ,Sk−1) of k≥ 2 contracting similarities Si : D→D. Each of these
similarities Si is coded by the symbol i in the alphabet Σ = {0, . . . ,k−1}, and each
Si has a contraction ratio ci ∈ (0,1). The IFS S is required to satisfy Moran’s open set
condition [73], which says that there is a nonempty open set G ⊆ D whose images
Si(G), for i ∈ Σ , are disjoint subsets of G.
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For example, the Sierpiński triangle is generated from the set D⊆ R2 consisting
of the triangle with vertices v0 = (0,0), v1 = (1,0), and v2 = (1/2,

√
3/2), together

with this triangle’s interior, by the IFS S = (S0,S1,S2), where each Si : D→ D is
defined by

Si(p) = vi +
1
2
(p− vi)

for p∈D. Note that Σ = {0,1,2} and c0 = c1 = c2 = 1/2 in this example. Note also
that the open set condition is satisfied here by letting G be the topological interior
of D. Each infinite sequence T ∈ Σ ∞ codes a point S(T ) ∈ D that is obtained by
applying the similarities coded by the successive symbols in T in a canonical way.
(See Figure 8.1.) The Sierpiński triangle is the attractor (or invariant set) of S and
D, which consists of all points S(T ) for T ∈ Σ ∞.

Fig. 8.1 A sequence T ∈ {0,1,2}∞ codes a point S(T ) in the Sierpiński triangle (from [57]).

The main objective of [57] was to relate the dimension and strong dimension of
each point S(T ) ∈ Rn in a self-similar fractal to the corresponding dimensions of
the coding sequence T . As it turned out, the algorithmic dimensions in Σ ∞ had to
be extended in order to achieve this.

The similarity dimension of an IFS S = (S0, . . . ,Sk−1) with contraction ratios
c0, . . . ,ck−1 ∈ (0,1) is the unique solution sdim(S) = s of the equation

k−1

∑
i=0

cs
i = 1. (8.15)

The similarity probability measure of S is the probability measure on Σ that is im-
plicit in (8.15), i.e., the function πS : Σ → [0,1] defined by

πS(i) = csdim(S)
i (8.16)
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for each i ∈ Σ . If the contraction ratios of S are all the same, then πS is the uniform
probability measure on Σ , but this is not generally the case. We extend πS to the
domain Σ ∗ by setting

πS(w) =
|w|−1

∏
m=0

πS(w[m]) (8.17)

for each w ∈ Σ ∗. We define the Shannon S-self-information of each string w ∈ Σ ∗

to be the quantity

lS(w) = log
1

πS(w)
. (8.18)

Finally, we define the dimension of a sequence T ∈ Σ ∞ with respect to the IFS S to
be

dimS(T ) = liminf
j→∞

K(T [0.. j])
lS(T [0.. j])

. (8.19)

Similarly, the strong dimension of T with respect to S is

DimS(T ) = limsup
j→∞

K(T [0.. j])
lS(T [0.. j])

. (8.20)

The dimension (8.19) is a special case of an algorithmic Billingsley dimension
[6, 99, 12]. These are treated more generally in [57].

A set F ⊆ Rn is a computably self-similar fractal if it is the attractor of some D
and S as above such that the contracting similarities S0, . . . ,Sk−1 are all computable
in the sense of computable analysis.

The following theorem gives a complete analysis of the dimensions of points in
computably self-similar fractals.

Theorem 8.3.2 (J. Lutz and Mayordomo [57]). If F ⊆ Rn is a computably self-
similar fractal and S is an IFS testifying to this fact, then, for all points x ∈ F and
all coding sequences T ∈ Σ ∞ for x,

dim(x) = sdim(S)dimS(T ) (8.21)

and
Dim(x) = sdim(S)DimS(T ). (8.22)

The proof of Theorem 8.3.2 is nontrivial. It combines some very strong coding
properties of iterated function systems with some geometric Kolmogorov complex-
ity arguments.

The following characterization of continuous functions on the reals is one of the
oldest and most beautiful theorems of computable analysis.

Theorem 8.3.3 (Lacombe [45, 46]). A function f : Rn → Rm is continuous if and
only if there is an oracle A⊆ N relative to which f is computable.

Using Lacombe’s theorem it is easy to derive the classical analysis of self-similar
fractals (which need not be computably self-similar) from Theorem 8.3.2.
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Corollary 8.3.4 (Moran [73], Falconer [24]). For every self-similar fractal F ⊆Rn

and every IFS S that generates F,

dimH(F) = dimP(F) = sdim(F). (8.23)

Proof. Let F and S be as given. By Lacombe’s theorem there is an oracle A ⊆ N
relative to which S is computable. It follows by a theorem by Kamo and Kawamura
[41] that the set F is Π 0

1 relative to A, whence the relativization of (8.13) tells us
that

dimA
H(F) = sup

x∈F
dimA(x). (8.24)

We then have

dimH(F) ≤ dimP(F)

= dimA
P(F)

≤ cDimA(F)

= sup
x∈F

DimA(x)

(8.22)
= sup

T∈Σ∞

sdim(S)DimS,A(T )

= sdim(S)

= sup
T∈Σ∞

sdim(S)dimS,A(T )

(8.21)
= sup

x∈F
dimA(x)

(8.24)
= dimA

H(F)

= dimH(F),

so (8.23) holds. ut

Intuitively, Theorem 8.3.2 is stronger than its Corollary 8.3.4, because Theorem
8.3.2 gives a complete account of “where the dimension comes from”.

8.3.4 Dimension Level Sets

The dimension level sets DIMα and DIMα
str defined in (8.6) and (8.7) have been the

focus of several investigations. It was shown in [53, 1] that, for all 0≤ α ≤ n,

cdim(DIMα) = dimH(DIMα) = α

and
cDim(DIMα

str) = dimP(DIMα
str) = α.
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Hitchcock, Terwijn, and the first author [33] investigated the complexities of
these dimension level sets from the viewpoint of descriptive set theory. Following
standard usage [74], we write Σ

0
k and Π

0
k for the classes at the kth level (k ∈ Z+) of

the Borel hierarchy of subsets of Rn. That is, Σ
0
1 is the class of all open subsets of

Rn, each Π
0
k is the class of all complements of sets in Σ

0
k, and each Σ

0
k+1 is the class

of all countable unions of sets in Π
0
k. We also write Σ 0

k and Π 0
k for the classes of

the kth level of Kleene’s arithmetical hierarchy of subsets of Rn. That is, Σ 0
1 is the

class of all computably open subsets of Rn, each Π 0
k is the class of all complements

of sets in Σ 0
k , and each Σ 0

k+1 is the class of all effective (computable) unions of sets
in Π 0

k .
Recall that a real number α is ∆ 0

2 -computable if there is a computable function
f : N→Q such that limk→∞ f (k) = α .

The following facts were proven in [33].

1. DIM0 is Π 0
2 but not Σ

0
2.

2. For all α ∈ (0,n], DIMα is Π
0
3 (and Π 0

3 if α is ∆ 0
2 -computable) but not Σ

0
3.

3. DIMn
str is Π

0
2 and Π 0

3 but not Σ
0
2.

4. For all α ∈ [0,n), DIMα
str is Π

0
3 (and Π 0

4 if α is ∆ 0
2 -computable) but not Σ

0
3.

Weihrauch and the first author [59] investigated the connectivity properties of
sets of the form

DIMI =
⋃
α∈I

DIMα ,

where I ⊆ [0,n] is an interval. After making the easy observation that each of the
sets DIM[0,1) and DIM(n−1,n] is totally disconnected, they proved that each of the sets
DIM[0,1] and DIM[n−1,n] is path-connected. These results are especially intriguing in
the Euclidean plane, where they say that extending either of the sets DIM[0,1) or
DIM(1,2] to include the level set DIM1 transforms it from a totally disconnected set
to a path-connected set. This suggests that DIM1 is somehow a very special subset
of R2.

Turetsky [97] investigated this matter further and proved that DIM1 is a con-
nected set in Rn. He also proved that DIM[0,1) ∪DIM(1,2] is not a path-connected
subset of R2.

8.3.5 Dimensions of Points on Lines

Since effective dimension is a pointwise property, it is natural to study the dimension
spectrum of a set E ⊆ Rn, i.e., the set sp(E) = {dim(x) |x ∈ E }. This study is far
from obvious even for sets as apparently simple as straight lines. We review in this
section the results obtained so far, mainly for the case of straight lines in R2.

As noted in Section 8.3.4, the set of points in R2 of dimension exactly one is
connected, while the set of points in R2 with dimension less than 1 is totally dis-
connected. Therefore every line in R2 contains a point of dimension 1. Despite the
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surprising fact that there are lines in every direction that contain no random points
[55], the first author and N. Lutz have shown that almost every point on any line with
random slope has dimension 2 [56]. Still all these results leave open fundamental
questions about the structure of the dimension spectra of lines, since they don’t even
rule out the possibility of a line having the singleton set {1} as its dimension spec-
trum.

Very recently this latest open question has been answered in the negative. N. Lutz
and Stull [63] have proven the following general lower bound on the dimension of
points on lines in R2.

Theorem 8.3.5 (N. Lutz and Stull [63]). For all a,b,x ∈ R,

dim(x,ax+b)≥ dima,b(x)+min{dim(a,b),dima,b(x)}.

In particular, for almost every x ∈ R, dim(x,ax+b) = 1+min{dim(a,b),1}.

Taking x1 = 0 and x2 a Martin-Löf random real relative to (a,b), Theorem 8.3.5
gives us two points in the line, (0,b) and (x2,ax2 +b), whose dimensions differ by
at least one, so the dimension spectrum cannot be a singleton.

We briefly sketch here the main intuitions behind the (deep) proof of Theorem
8.3.5, fully based on algorithmic information theory. Theorem 8.3.5’s aim is to con-
nect dim(x,ax+ b) with dim(a,b,x) (i.e., a dimension in R2 with a dimension in
R3). Notice that in the case dim(a,b)≤ dima,b(x) the theorem’s conclusion is close
to saying dim(x,ax+b)≥ dim(a,b,x).

The proof is based on the property that says that under the following two condi-
tions

(i) dim(a,b) is small
(ii) whenever ux+ v = ax+b, either dim(u,v) is large or (u,v) is close to (a,b)

it holds that dim(x,ax+b) is close to dim(a,b,x).
There is an extra ingredient to finish this intuition.While condition (ii) can be

shown to hold in general, condition (i) can only be proven in a particular relativized
world whereas the conclusion of the theorem still holds for every oracle.

N. Lutz and Stull [62] have also shown that the dimension spectrum of a line is
always infinite, proving the following two results. The first theorem proves that if
dim(a,b) = Dim(a,b) then the corresponding line contains a length-1 interval.

Theorem 8.3.6 (N. Lutz and Stull [62]). Let a,b ∈ R satisfy that dim(a,b) =
Dim(a,b). Then for every s ∈ [0,1] there is a point x ∈R such that dim(x,ax+b) =
s+min{dim(a,b),1}.

The second result proves that all spectra of lines are infinite.

Theorem 8.3.7 (N. Lutz and Stull [62]). Let La,b be any line in R2. Then the di-
mension spectrum sp(La,b) is infinite.
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8.4 Mutual and Conditional Dimensions

Just as the dimension of a point x in Euclidean space is the asymptotic density of the
algorithmic information in x, the mutual dimension between two points x and y in
Euclidean spaces is the asymptotic density of the algorithmic information shared by
x and y. In this section, we survey this notion and the data processing inequalities,
which estimate the effect of computable functions on mutual dimension. We also
survey the related notion of conditional dimension.

8.4.1 Mutual Dimensions

The mutual (algorithmic) information between two rational points p ∈Qm and q ∈
Qn is

I(p : q) = K(p)−K(p|q).

This notion, essentially due to Kolmogorov [44], is an analog of mutual entropy
in Shannon information theory [86, 18, 49]. Intuitively, K(p|q) is the amount of
information in p not contained in q, so I(p : q) is the amount of information in p
that is contained in q. It is well known [49] that, for all p ∈Qm and q ∈Qn,

I(p : q)≈ K(p)+K(q)−K(p,q) (8.25)

in the sense that the magnitude of the difference between the two sides of (8.25) is
o(min{K(p),K(q)}). This fact is called symmetry of information, because it imme-
diately implies that I(p : q)≈ I(q : p).

The ideas in the rest of this section were introduced by Case and the first author
[13]. In the spirit of (8.1) they defined the mutual information between sets E ⊆Rm

and F ⊆ Rn to be

I(E : F) = min{I(p : q) | p ∈Qm∩E and q ∈Qn∩F } .

This is the amount of information that rational points p and q must share in order to
be in E and F , respectively. Note that, for all E1,E2 ⊆ Rm and F1,F2 ⊆ Rn,[

(E1 ⊆ E2) and (F1 ⊆ F2)
]
=⇒ I(E1 : F1)≥ I(E2 : F2).

The mutual information between two points x∈Rm and y∈Rn at precision r ∈N
is

Ir(x : y) = I(B2−r(x) : B2−r(y)).

This is the amount of information that rational approximations of x and y must share,
merely due to their proximities (distance less than 2−r) to x and y.

In analogy with (8.3) and (8.4), the lower and upper mutual dimensions between
points x ∈ Rm and y ∈ Rm are
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mdim(x : y) = liminf
r→∞

Ir(x : y)
r

(8.26)

and

Mdim(x : y) = limsup
r→∞

Ir(x : y)
r

, (8.27)

respectively.
The following theorem shows that the mutual dimensions mdim and Mdim have

many of the properties that one should expect them to have. The proof is involved
and includes a modest generalization of Levin’s coding theorem [47, 48].

Theorem 8.4.1 (Case and J. Lutz [13]). For all x ∈ Rm and y ∈ Rn, the following
hold.

1. mdim(x : y)≤min{dim(x),dim(y)}.
2. Mdim(x : y)≤min{Dim(x),Dim(y)}.
3. mdim(x : x) = dim(x).
4. Mdim(x : x) = Dim(x).
5. mdim(x : y) = mdim(y : x).
6. Mdim(x : y) = Mdim(y : x).
7. dim(x)+dim(y)−Dim(x,y)≤mdim(x : y)≤ Dim(x)+Dim(y)−Dim(x : y).
8. dim(x)+dim(y)−dim(x,y)≤Mdim(x : y)≤ Dim(x)+Dim(y)−dim(x : y).
9. If x and y are independently random, then Mdim(x : y) = 0.

The expressions dim(x,y) and Dim(x,y) in 7 and 8 above refer to the dimensions
of the point (x,y) ∈ Rm+n. In 9 above, x and y are independently random if (x,y) is
a Martin-Löf random point in Rm+n.

More properties of mutual dimensions may be found in [13, 14].

8.4.2 Data Processing Inequalities

The data processing inequality of Shannon information theory [18] says that, for
any two probability spaces X and Y , any set Z, and any function f : X → Z,

I( f (X);Y )≤ I(X ;Y ), (8.28)

i.e., the induced probability space f (X) obtained by “processing the information
in X through f ” has no greater mutual entropy with Y than X has with Y . More
succintly, f (X) tells us no more about Y than X tells us about Y . The data process-
ing inequality of algorithmic information theory [49] says that, for any computable
partial function f : {0,1}∗ → {0,1}∗, there is a constant c f ∈ N (essentially the
number of bits in a program that computes f ) such that, for all strings x ∈ dom f and
y ∈ {0,1}∗,

I( f (x) : y)≤ I(x : y)+ c f . (8.29)
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That is, modulo the constant c f , f (x) contains no more information about y than x
contains about y.

The data processing inequality for the mutual dimension mdim should say that
every nice function f : Rm→ Rn has the property that, for all x ∈ Rm and y ∈ Rk,

mdim( f (x) : y)≤mdim(x : y). (8.30)

But what should “nice” mean? A nice function certainly should be computable in
the sense of computable analysis [10, 43, 100]. But this is not enough. For example,
there is a function f : R→ R2 that is computable and space-filling in the sense that
[0,1]2⊆ range f [83, 17]. For such a function, choose x∈R such that dim( f (x)) = 2,
and let y = f (x). Then

mdim( f (x) : y) = mdim(y : y)

= dim(y)

= 2
> 1
≥ dim(x)

≥ mdim(x : y),

so (8.30) fails.
Intuitively, the above failure of (8.30) occurs because the function f is extremely

sensitive to its input, a property that “nice” functions do not have. A function
f : Rm→ Rn is Lipschitz if there is a real number c> 0 such that, for all x1,x2 ∈Rm,

| f (x1)− f (x2)| ≤ c|x1− x2|.

The following data processing inequalities show that computable Lipschitz func-
tions are “nice”.

Theorem 8.4.2 (Case and J. Lutz [13]). If f : Rm → Rn is computable and Lips-
chitz, then, for all x ∈ Rm and y ∈ Rk,

mdim( f (x) : y)≤mdim(x : y)

and
Mdim( f (x) : y)≤Mdim(x : y).

Several more theorems of this type and applications of these appear in [13].

8.4.3 Conditional Dimensions

A comprehensive theory of the fractal dimensions of points in Euclidean spaces
requires not only the dimensions dim(x) and Dim(x) and the mutual dimensions
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mdim(x : y) and Mdim(x : y), but also the conditional dimensions dim(x|y) and
Dim(x|y) formulated by the first author and N. Lutz [56]. We briefly describe these
formulations here.

The conditional Kolmogorov complexity K(p|q), defined for rational points p ∈
Qm and q ∈Qn, is lifted to the conditional dimensions in the following four steps.

1. For x ∈ Rm, q ∈Qn, and r ∈ N, the conditional Kolmogorov complexity of x at
precision r given q is

K̂r(x|q) = min{K(p|q) | p ∈Qm∩B2−r(x)} .

2. For x ∈ Rm, y ∈ Rn, and r,s ∈ N, the conditional Kolmogorov complexity of x
at precision r given y at precision s is

Kr,s(x|y) = max
{

K̂r(x|q) |q ∈Qn∩B2−s(y)
}
.

3. For x ∈ Rm, y ∈ Rn, and r ∈ N, the conditional Kolmogorov complexity of x
given y at precision r is

Kr(x|y) = Kr,r(x|y).

4. For x ∈ Rm and y ∈ Rn, the lower and upper conditional dimensions of x given
y are

dim(x|y) = liminf
r→∞

Kr(x|y)
r

and

Dim(x|y) = limsup
r→∞

Kr(x|y)
r

,

respectively.

Steps 1, 2, and 4 of the above lifting are very much in the spirit of what has
been done in Sections 8.2, 8.3.1, and 8.4.1 above. Step 3 appears to be problematic,
because using the same precision bound r for both x and y makes the definition seem
arbitrary and “brittle”. However, the following result shows that this is not the case.

Theorem 8.4.3 ([56]). Let s : N→ N. If |s(r)− r| = o(r), then, for all x ∈ Rm and
y ∈ Rn,

dim(x|y) = liminf
r→∞

Kr,s(r)(x|y)
r

and

Dim(x|y) = limsup
r→∞

Kr,s(r)(x|y)
r

.

The following result is useful for many purposes.

Theorem 8.4.4 (Chain rule for Kr). For all x ∈ Rm and y ∈ Rn,

Kr(x,y) = Kr(x|y)+Kr(y)+o(r). (8.31)
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An oracle for a point y ∈ Rn is a function g : N→ Qn such that, for all s ∈ N,
|g(s)−y| ≤ 2−s. The Kolmogorov complexity of a rational point p ∈Qm relative to
a point y ∈ Rn is

Ky(p) = max{Kg(p) |g is an oracle for y} ,

where Kg(p) is the Kolmogorov complexity of p when the universal machine has
access to the oracle g. The purpose of the maximum here is to prevent Ky(p) from
using oracles g that code more than y into their behaviors. For x ∈ Rm and y ∈ Rn,
the dimension dimy(x) relative to y is defined from Ky(p) exactly as dim(x) was
defined from K(p) in Sections 8.2 and 8.3.1 above. The relativized strong dimension
Dimy(x) is defined analogously.

The following result captures the intuition that conditioning on a point y is a
restricted form of oracle access to y.

Lemma 8.4.5 ([56]). For all x∈Rm and y∈Rn, dimy(x)≤ dim(x|y) and Dimy(x)≤
Dim(x|y).

The remaining results in this section confirm that conditional dimensions have
the correct information-theoretic relationships to dimensions and mutual dimen-
sions.

Theorem 8.4.6 ([56]). For all x ∈ Rm and y ∈ Rn,

mdim(x : y)≥ dim(x)−Dim(x|y)

and
Mdim(x : y)≤ Dim(x)−dim(x|y).

Theorem 8.4.7 (Chain rule for dimension [56]). For all x ∈ Rm and y ∈ Rn,

dim(x)+dim(y|x) ≤ dim(x,y)

≤ dim(x)+Dim(y|x)
≤ Dim(x,y)

≤ Dim(x)+Dim(y|x).

8.5 Algorithmic Discovery of New Classical Theorems

8.5.1 The Point-to-Set Principle

Many of the most challenging problems in geometric measure theory are prob-
lems of establishing lower bounds on the classical fractal dimensions dimH(E) and
dimP(E) for sets E ⊆Rn. Although such problems seem to involve global properties
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of the sets E and make no mention of algorithms, the dimensions of points have re-
cently been used to prove new lower bound results for classical fractal dimensions.
The key to these developments is the following pair of theorems of the first author
and N. Lutz.

Theorem 8.5.1 (Point-to-set-principle for Hausdorff dimension [56]). For every
E ⊆ Rn,

dimH(E) = min
A⊆N

sup
x∈E

dimA(x). (8.32)

Theorem 8.5.2 (Point-to-set-principle for packing dimension [56]). For every
E ⊆ Rn,

dimP(E) = min
A⊆N

sup
x∈E

DimA(x). (8.33)

The relativized dimensions dimA(x) and DimA(x) here are defined by substituting
KA

r (x) for Kr(x) in (8.3) and (8.4).
It is to be emphasized that these two theorems completely characterize dimH(E)

and dimP(E) for all sets E ⊆ Rn. These characterizations are called point-to-set
principles because they enable one to use a lower bound on the relativized dimen-
sion of a single, judiciously chosen point x ∈ E to establish a lower bound on the
classical dimension of the set E itself. More precisely, for example, Theorem 8.5.1
says that, in order to prove a lower bound dimH(E)≥ α , it suffices to show that, for
every oracle A⊆N and every ε > 0, there is a point x∈E such that dimA(x)≥α−ε .
In some cases, it can in fact be shown that, for every oracle A ⊆ N, there is a point
x ∈ E such that dimA(x) ≥ α . While the arbitrary oracle A is essential for the cor-
rectness of such proofs, the discussion below shows that its presence has not been
burdensome in applications to date.

8.5.2 Plane Kakeya Sets

The first application of the point-to-set principle was not a new theorem, but rather
a new, information-theoretic proof of an old theorem. We describe this proof here
because it illustrates the intuitive power of the point-to-set principle.

A Kakeya set in Rn is a set K ⊆ Rn that contains a unit segment in every direc-
tion. Sometime before 1920, Besicovitch [4, 5] proved the then-surprising existence
of Kakeya sets of Lebesgue measure 0 in Rn for all n≥ 2 and asked whether Kakeya
sets in R2 can have dimension less than 2 [20]. The famous Kakeya conjecture (in
its most commonly stated form) asserts a negative answer to this and the analo-
gous questions in higher dimensions. That is, the Kakeya conjecture says that every
Kakeya set in a Euclidean space Rn has Hausdorff dimension n. This conjecture
holds trivially for n = 1 and Davies [20] proved that it holds for n = 2. The Kakeya
conjecture remains an important open problem for n≥ 3 [101, 95].

Our objective here is to sketch the new proof by the first author and N. Lutz [56]
of Davies’s theorem, that the Kakeya conjecture holds in the Euclidean plane R2.
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This proof uses the following lower bound on the dimensions of points in a line
y = mx+b.

Lemma 8.5.3 (J. Lutz and N. Lutz [56]). Let m ∈ [0,1] and b ∈ R. For almost
every x ∈ [0,1],

dim(x,mx+b)≥ liminf
r→∞

Kr(m,b,x)−Kr(b|m)

r
. (8.34)

We do not prove this lemma here, but note that the proof relativizes, so the lemma
holds relative to every oracle A⊆ N.

To prove Davies’s theorem, let K⊆R2 be a Kakeya set. By the point-to-set prin-
ciple, fix A⊆ N such that

dimH(K) = sup
(x,y)∈K

dimA(x,y). (8.35)

Fix m ∈ [0,1] such that
dimA(m) = 1. (8.36)

(This holds for any m that is random relative to A.) Since K is Kakeya, there is
a unit segment L ⊆ K of slope m. Let (x0,y0) be the left endpoint of L, let q ∈
Q∩ [x0,x0 + 1/2], and let L′ be the unit segment of slope m whose endpoint is
(x0− q,y0). Then L′ crosses the y-axis at the point b = mq+ y0. By Lemma 8.5.3
(relativized to A), fix x ∈ [0,1/2] such that

dimA,m,b(x) = 1 (8.37)

and

dimA(x,mx+b)≥ liminf
r→∞

KA
r (m,b,x)−KA

r (b|m)

r
. (8.38)

(Such an x exists, because almost every x ∈ [0,1/2] satisfies (8.37) and (8.38).)
In the language of Section 8.5.1, our “judiciously chosen point” is (x+ q,mx+

b) ∈ L⊆ K, and the point-to-set principle tells us that it suffices to prove that

dimA(x+q,mx+b) = 2. (8.39)

But this is now easy. Since q is rational, (8.38) and two applications of the chain
rule (8.31) tell us that



8 Algorithmic Fractal Dimensions in Geometric Measure Theory 291

dimA(x+q,mx+b) = dimA(x,mx+b)

≥ liminf
r→∞

KA
r (m,b,x)−KA

r (b,m)+KA
r (m)

r

= liminf
r→∞

KA
r (x|b,m)+KA

r (m)

r

≥ liminf
r→∞

KA,m,b
r (x)

r
+ liminf

r→∞

KA
r (m)

r
= dimA,m,b(x)+dimA(m),

whence (8.36) and (8.37) tell us that (8.39) holds.
This information-theoretic proof of Davies can be summarized in very intuitive

terms: because K is Kakeya, it contains a unit segment L whose slope m has dimen-
sion 1 relative to A. A rational shift of L to a unit segment L′ crosses the y-axis at
some point b. Lemma 8.5.3 then gives us a point (x,mx+ b) on L′ that has dimen-
sion 2 relative to A. The point on L from which (x,mx+b) was shifted lies in K and
also has dimension 2 relative to A, so K has Hausdorff dimension 2.

The following two sections discuss recent uses of this method to prove new the-
orems in classical fractal geometry.

8.5.3 Intersections and Products of Fractals

We now consider two fundamental, nontrivial, textbook theorems of fractal geome-
try. The first, over thirty years old and called the intersection formula, concerns the
intersection of one fractal with a random translation of another fractal.

Theorem 8.5.4 (Kahane [40], Mattila [66, 67]). For all Borel sets E,F ⊆ Rn and
almost every z ∈ Rn,

dimH(E ∩ (F + z))≤max{0,dimH(E×F)−n}.

The second theorem, over sixty years old and called the product formula, con-
cerns the product of two fractals.

Theorem 8.5.5 (Marstrand [64]). For all E ⊆ Rn and F ⊆ Rn,

dimH(E×F)≥ dimH(E)+dimH(F).

In a recent breakthrough, algorithmic dimension was used to prove the following
extension of the intersection formula from Borel sets to all sets. We include the
simple (given the machinery that we have developed) and instructive proof here.

Theorem 8.5.6 (N. Lutz [61]). For all sets E,F ⊆ Rn and almost every z ∈ Rn,

dimH(E ∩ (F + z))≤max{0,dimH(E×F)−n}. (8.40)
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Proof. Let E,F ⊆Rn and z∈Rn. The theorem is trivially affirmed if F+z is disjoint
from E, so assume not. By the point-to-set principle, fix an oracle A⊆ N such that

dimH(E×F) = sup
(x,y)∈E×F

dimA(x,y). (8.41)

Let ε > 0. Since E ∩ (F + z) 6= /0, the point-to-set principle tells us that there is a
point x ∈ E ∩ (F + z) satisfying

dimA,z(x)> dimH(E ∩ (F + z))− ε. (8.42)

Now (x,x− z) ∈ E×F , so (8.41), Theorem 8.3.5, Lemma 8.4.5, and (8.42) tell us
that

dimH(E×F) ≥ dimA(x,x− z)

= dimA(x,z)

≥ dimA(z)+dimA(x|z)
≥ dimA(z)+dimA,z(x)

> dimA(z)+dimH(E ∩ (F + z))− ε.

Since ε is arbitrary here, it follows that

dimH(E ∩ (F + z))≤ dimH(E×F)−dimA(z).

Since almost every z ∈ Rn is Martin-Löf random relative to A and hence satisfies
dimA(z) = n, this affirms the theorem. ut

The paper [61] shows that the same method gives a new proof of the analog of
Theorem 8.5.6 for packing dimension. This result was already known to hold for
all sets E and F [26], but the new proof makes clear what a strong duality between
Hausdorff and packing dimensions is at play in the intersection formulas.

The paper [61] also gives a new, algorithmic proof of the following known ex-
tension of Theorem 8.5.5.

Theorem 8.5.7 (Marstrand [64], Tricot [96]). For all E ⊆ Rm and F ⊆ Rn,

dimH(E)+dimH(F) ≤ dimH(E×F)

≤ dimH(E)+dimP(F)

≤ dimP(E×F)

≤ dimP(E)+dimP(F).

This new proof is much simpler than previously known proofs of Theorem 8.5.7,
roughly as simple as previously known proofs of the restriction of Theorem 8.5.7
to Borel sets. The new proof is also quite natural, using the point-to-set principle to
derive Theorem 8.5.7 from the formally similar Theorem 8.4.7.



8 Algorithmic Fractal Dimensions in Geometric Measure Theory 293

8.5.4 Generalized Furstenberg Sets

For α ∈ (0,1], a plane set E ⊆ R2 is said to be of Furstenberg type with parameter
α or, more simply, α-Furstenberg, if, for every direction e ∈ S1 (where S1 is the unit
circle in R2), there is a line Le in direction e such that dimH(Le∩E)≥ α .

According to Wolff [101], the following well-known bound is probably due to
Furstenberg and Katznelson.

Theorem 8.5.8. For every α ∈ (0,1], every α-Furstenberg set E ⊆ R2 satisfies

dimH(E)≥ α +max{1/2,α}.

Note that every Kakeya set in the plane is 1-Furstenberg (since it contains a line
segment, which has Hausdorff dimension 1, in every direction e ∈ S1), so Davies’s
theorem follows from the case α = 1 of Theorem 8.5.8. It is an open question –
one with connections to Falconer’s distance conjecture [42] and Kakeya sets [101]
– whether Theorem 8.5.8 can be improved.

In 2012, Molter and Rela generalized α-Furstenberg sets in a natural way. For
α,β ∈ (0,1], a set E ⊆ R2 is (α,β )-generalized Furstenberg if there is a set J ⊆ S1

such that dimH(J) ≥ β and, for every e ∈ J, there is a line Le in direction e such
that dimH(Le∩E)≥ α . They then proved the following lower bound.

Theorem 8.5.9 (Molter and Rela [72]). For α,β ∈ (0,1], every (α,β )-generalized
Furstenberg set E ⊆ R2 satisfies

dimH(E)≥max{β/2,α +β −1}.

Note that every α-Furstenberg set is (α,1)-generalized Furstenberg, so Theorem
8.5.8 follows from the case β = 1 of Theorem 8.5.9.

Algorithmic dimensions were recently used to prove the following result, which
improves Theorem 8.5.9 when α,β ∈ (0,1) and β < 2α .

Theorem 8.5.10 (N. Lutz and Stull [63]). For all α,β ∈ (0,1], every (α,β )-
generalized Furstenberg set E ⊆ R2 satisfies

dimH(E)≥ α +min{β ,α}.

The proof of Theorem 8.5.10 uses the point-to-set principle and Theorem 8.3.5.

8.6 Research Directions

8.6.1 Beyond Self-Similarity

In previous sections we have analyzed the dimension of points in self-similar frac-
tals, but interesting natural examples need more elaborate concepts that combine
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self-similarity with random selection. In [31] Gu, Moser, and the authors started
the more challenging task of analyzing the dimensions of points in random frac-
tals. They focused on fractals that are randomly selected subfractals of a given self-
similar fractal.

Let F ⊆Rn be a computably self-similar fractal as defined in Section 8.3.3, with
S = (S0, . . . ,Sk−1) the corresponding IFS, and Σ = {0, . . . ,k− 1}. Recall that each
point x ∈ F has a coding sequence T ∈ Σ ∞, meaning that the point x is obtained by
applying the similarities coded by the successive symbols in T . We are interested in
certain randomly selected subfractals of the fractal F .

The specification of a point in such a subfractal can be formulated as the outcome
of an infinite two-player game between a selector that selects the subfractal and a
coder that selects a point within the subfractal. Specifically, the selector selects r out
of the k similarities and this choice depends on the coder’s earlier choices, that is, a
selector is a function σ : Γ ∗→ [Σ ]r where [Σ ]r is the set of all r-element subsets of
Σ , alphabet Γ = {0, . . . ,r−1}, and each element in Γ ∗ represents a coder’s earlier
history. A coder is a sequence U ∈ Γ ∞, that is, the coder selects a point in the
subfractal by repeatedly choosing a similarity out of the r previously picked by the
selector. Once a selector σ and a coder U have been chosen, the outcome of the
selector-coder game is a point determined by the sequence σ ∗U ∈ Σ ∞ that can be
precisely defined as

(σ ∗U)[t] = “the U [t]th element of σ(U [0..t−1])”

for all t ∈ N.
Each selector σ specifies (selects) the subfractal Fσ of F consisting of all points

with coding sequence T for which T is an outcome of playing σ against some coder,
Fσ = {S(σ ∗U) |U ∈ Γ ∞ }.

The focus of [31] is on randomly selected subfractals of F , by which we mean
subfractals Fσ of F for which the selector σ is random with respect to some prob-
ability measure. That is, we are interested in the case where the coder is playing a
“game against nature” (in order to make precise the idea of algorithmically random
selector each selector σ : Γ ∗ → [Σ ]r is identified with its characteristic sequence
χσ ∈ ([Σ ]r)∞).

Gu et al. determine the dimension spectra of a wide class of such randomly se-
lected subfractals, showing that each such fractal has a dimension spectrum that is a
closed interval whose endpoints can be computed or approximated from the param-
eters of the fractal. In general, the maximum of the spectrum is determined by the
degree to which the coder can reinforce the randomness in the selector, while the
minimum is determined by the degree to which the coder can cancel randomness
in the selector. This randomness cancellation phenomenon has also arisen in other
contexts, notably dimension spectra of random closed sets [2, 21] and of random
translations of the Cantor set [22]. The main result in [31] concerns subfractals that
are similarity random, that is, Fσ defined by a selector σ that is π̂S-random. Here
π̂S is the natural extension of πs, the similarity probability measure on Σ defined in
Section 8.3.3.
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Theorem 8.6.1 ([31]). For every similarity random subfractal Fσ of F, the dimen-
sion spectrum sp(Fσ ) is an interval satisfying[

s∗
log(k−1)− log(r−1+A(k− r))

log 1
a

,s∗
]
⊆ sp(Fσ )⊆

[
s∗

logk− logr
log 1

A

,s∗
]
,

where s∗ = sdim(S), a = min{πS(i) | i ∈ Σ}, and A = max{πS(i) | i ∈ Σ}.
In particular, if all the contraction ratios of F have the same value c, then ev-

ery similarity-random (i.e., uniformly random) subfractal Fσ of F has dimension
spectrum

sp(Fσ ) =

[
s∗(1− logr

logk
),s∗

]
,

where s∗ = sdim(S) = (logk)/(log 1
c ).

Many challenging open questions remain concerning the analysis of the dimen-
sion of points in more general versions of random fractals, both by extending the
results in [31] to random selectors for different probability measures and by consid-
ering generalizations such as self-affine fractals and fractals with randomly chosen
contraction ratios.

8.6.2 Beyond Euclidean Spaces

While Euclidean space has a very well-behaved metric based on a Borel measure
µ , where for instance s-Hausdorff measure coincides with µ for s = 1, this is not
the case for other metric spaces. Since both Hausdorff and packing dimension can
be defined in any metric space, the second author has considered in [70] the ex-
tension of algorithmic dimension to a large class of separable metric spaces, the
class of spaces with a computable nice cover. This extension includes an algorith-
mic information characterization of constructive dimension, based on the concept
of Kolmogorov complexity of a point at a certain precision, which is an extension
of the concept presented in Section 8.2 for Euclidean space.

8.6.3 Beyond Computability

Resource-bounded dimension, introduced in [52] by the first author, has been a very
fruitful tool in the quantitative study of complexity classes; see [35, 54] for the main
results. Many of the main complexity classes have a suitable resource bound for
which the corresponding dimension is adequate for the class, since it has maximal
value for the whole class.

The development of resource-bounded dimension was based on a characteri-
zation of Hausdorff dimension in terms of betting strategies, imposing different



296 Jack H. Lutz and Elvira Mayordomo

complexity constraints on those strategies to obtain the different resource-bounded
dimensions. Contrary to the case of computability constraints introduced in Sec-
tion 8.3, many important resource bounds such as polynomial-time dimension do
not have corresponding algorithmic information characterizations (although more
elaborate compression algorithm characterizations have been obtained in [50, 38]).

In fact the study of gambling under very low complexity constraints, finite-state
computability, has been studied at least since the 1970s [85, 27] and the correspond-
ing effective dimension, finite-state dimension, was studied by Dai, Lathrop, and the
two authors [19] where finite-state dimension is characterized in terms of finite-state
compression.

For the definition of resource-bounded dimension, a class of languages C is
represented via characteristic sequences as a set of infinite binary sequences C ⊆
{0,1}∞. Using binary representation each language can be seen as a real number
in [0,1] and resource-bounded dimension as a tool in Euclidean space. Resource-
bounded dimension has a natural extension Σ ∞ for other finite alphabets Σ and
the first question is therefore whether the choice of alphabet is relevant for the
study of Euclidean space. A satisfactory answer is given in [36] where it is proven
that polynomial-time dimension is invariant under base change, that is, for every
base b and set X ⊆ R the set of base-b representations of all elements in X has a
polynomial-time dimension independent of b.

Finite-state dimension is not closed under base change, but its connections with
number theory are deep. Borel introduced normal numbers in [8], defining a real
number α to be Borel normal in base b if for every finite sequence w of base-b dig-
its, the asymptotic, empirical frequency of w in the base-b expansion of α is b−|w|.
There is a tight relationship between Borel normality and finite-state dimension,
since a real number is normal in base b iff its base-b representation is a finite-state
dimension-1 sequence [85, 9]. It is known [15, 84] that there are numbers that are
normal in one base but not in another, so the nonclosure under base change property
of finite-state dimension is a corollary of these results. Absolutely normal numbers
are real numbers that are normal in every base, so they correspond to real num-
bers whose base-b representation has finite-state dimension 1 for every base b; this
characterization has been used in very effective constructions of absolutely normal
numbers [3, 58]. It is natural to ask whether there are real numbers for which the
finite-state dimension of their base-b representations is strictly between 0 and 1 and
does not depend on the base b.

8.6.4 Beyond Fractals

This chapter’s primary focus is the role of algorithmic fractal dimensions in fractal
geometry. However, it should be noted that fractal geometry is only a part of geo-
metric measure theory, and that algorithmic methods may shed light on many other
aspects of geometric measure theory.
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Many questions in geometric measure theory involve rectifiability [28]. The sim-
plest case of this classical notion is the rectifiability of curves. A curve in Rn is a
continuous function f : [0,1]→ Rn. The length of a curve f is

length( f ) = sup
a

k−1

∑
i=0
| f (ai+1)− f (ai)|,

where the supremum is taken over all dissections a of [0,1], i.e., all a = (a0, . . . ,ak)
with 0 = a0 < a1 < .. . < ak = 1. Note that length( f ) is the length of the actual
path traced by f , which may “retrace” parts of its range. (In fact, there are com-
putable curves f for which every computable curve g with the same range must do
unboundedly many such retracings [30].) A curve f is rectifiable if length( f )< ∞.

Gu and the authors [29] posed the fanciful question, “Where can an infinitely
small nanobot go?” Intuitively, the nanobot is the size of a Euclidean point, and its
motion is algorithmic, so its trajectory must be a curve f : [0,1]→ Rn that is com-
putable in the sense of computable analysis [100]. Moreover, the nanobot’s trajec-
tory f should be rectifiable. This last assumption, aside from being intuitively rea-
sonable, prevents the question from being trivialized by space-filling curves [83, 17].

The above considerations translate our fanciful question about a nanobot to the
following mathematical question. Which points in Rn (n≥ 2) lie on rectifiable com-
putable curves? In honor of an anonymous, poetic reviewer who called the set of
all such points “the beaten path”, we write BP(n) for the set of all points in Rn that
lie on rectifiable computable curves. The objective of [29] was to characterize the
elements of BP(n).

A few preliminary observations on the set BP(n) are in order here. Every com-
putable point in Rn clearly lies in BP(n), so BP(n) is a dense subset of Rn. It is also
easy to see that BP(n) is path-connected. On the other hand, the ranges of rectifiable
curves have Hausdorff dimension 1 [25] and there are only countably many com-
putable curves, so BP(n) is a countable union of sets of Hausdorff dimension 1 and
hence has Hausdorff dimension 1. Since n ≥ 2, this implies that most points in Rn

do not lie on the beaten path BP(n).
For each rectifiable computable curve f , the set range f is a computably closed,

i.e., Π 0
1 , subset of Rn. By the preceding paragraph and Hitchcock’s correspondence

principle (8.13), it follows that cdim(BP(n)) = 1, whence every point x ∈ BP(n) sat-
isfies dim(x) ≤ 1. This is a necessary, but not sufficient condition for membership
in BP(n), because the complement of BP(n) contains points of arbitrarily low dimen-
sion [29]. Characterizing membership in BP(n) thus requires algorithmic methods to
be extended beyond fractal dimensions.

The “analyst’s traveling salesman theorem” of geometric measure theory char-
acterizes those subsets of Euclidean space that are contained in rectifiable curves.
This celebrated theorem was proven for the plane by Jones [39] and extended to
high-dimensional Euclidean spaces by Okikiolu [76]. The main contribution of [29]
is to formulate the notion of a computable Jones constriction, an algorithmic version
of the infinitary data structure implicit in the analyst’s traveling salesman theorem,
and to prove the computable analyst’s traveling salesman theorem, which says that a
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point in Euclidean space lies on the beaten path BP(n) if and only if it is “permitted”
by some computable Jones constriction.

The computable analysis of points in rectifiable curves has continued in at least
two different directions. In one direction, Rettinger and Zheng have shown (answer-
ing a question in [29]) that there are points in BP(n) that do not lie on any computable
curve of computable length [78] and extended this to obtain a four-level hierarchy of
simple computable planar curves that are point-separable in the sense that the sets
of points lying on curves of the four types are distinct [102]. In another direction,
McNicholl [71] proved that there is a point on a computable arc (a set computably
homeomorphic to [0,1]) that does not lie in BP(n). In the same paper, McNicholl
used a beautiful geometric priority argument to prove that there is a point on a com-
putable curve of computable length that does not lie on any computable arc.

It is apparent from the above results that algorithmic methods will have a great
deal more to say about rectifiability and other aspects of geometric measure theory.
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