
Chapter 3
Computability of Differential Equations

Daniel S. Graça and Ning Zhong

Abstract In this chapter, we provide a survey of results concerning the computabil-
ity and computational complexity of differential equations. In particular, we study
the conditions which ensure computability of the solution to an initial value problem
for an ordinary differential equation (ODE) and analyze the computational complex-
ity of a computable solution. We also present computability results concerning the
asymptotic behaviors of ODEs as well as several classically important partial differ-
ential equations.

3.1 Introduction

A differential equation is an equation that relates a function with its (partial) deriva-
tives of various orders. Differential equations are widely used in many fields and
have been extensively studied since the time when the calculus was invented. Given
a differential equation, the goal is to find its solutions. Unfortunately, most differ-
ential equations do not possess solutions in explicit forms. In order to obtain useful
information about the solutions without having an explicit representation formula
for them, various methods and tools have been developed. Classically, the following
methods are of most significance:

• Numerical methods: where solutions are approximated numerically.
• Qualitative methods: where the behavior of a differential equation and of its so-

lutions is analyzed from a qualitative perspective.

Daniel S. Graça
Universidade do Algarve, Faro, Portugal and Instituto de Telecomunicações, Portugal
e-mail: dgraca@ualg.pt

Ning Zhong
Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, USA
e-mail: ning.zhong@uc.edu

71© Springer Nature Switzerland AG 2021

V. Brattka, P. Hertling (eds.), Handbook of Computability and Complexity in Analysis,

Theory and Applications of Computability, https://doi.org/10.1007/978-3-030-59234-9_3

mailto:dgraca@ualg.pt
mailto:ning.zhong@uc.edu
https://doi.org/10.1007/978-3-030-59234-9_3
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59234-9_3&domain=pdf

72 Daniel S. Graça and Ning Zhong

Numerical methods generate numerical algorithms which calculate approxima-
tions to the exact solution that cannot be found explicitly, and the approximations
are expected to converge to the exact solution. The convergence is a fundamental
property for a numerical algorithm to be of any use. In numerical analysis, the ac-
curacy of approximation (the convergence rate) is usually not specified – sometimes
it is impossible to specify (see [81] for an example) – as an input to the algorithm
that computes the approximations, but rather it is provided externally and implicitly
by finding certain analytical forms of approximation errors, which frequently de-
pend on additional assumptions; for example, the twice differentiability of the exact
solution. This requirement is often crucial, yet not applicable to many initial value
problems for the first-order ODEs whose solutions may not be C2 but nevertheless
are approximable by convergent numerical solutions.

The qualitative method is another key tool, often complementing numerical
methods, in the study of ordinary differential equations; in particular, in describing
the asymptotic behaviors of solutions of ODEs. For example, it is used to describe
the limit set of a typical solution as a spatial object as time tends to infinity.

In addition to the classical methods, there is also a relatively new approach based
on the Turing machine model over the real field (see [67, 56, 87] and references
therein):

• Computable analysis methods: where computability and computational complex-
ity of problems related to differential equations are studied.

In computable analysis, a problem is called computable if it can in principle be
solved or approximated with arbitrary precision by a computing device. The com-
putable analysis method provides useful insights on many problems related to a
given ODE from the perspective of computation in the sense that (1) the method
can be used to identify whether a problem is computable; (2) if a problem is proved
to be computable using the computable analysis method, often the proof generates
a (Turing) algorithm that computes approximations with arbitrary precision and,
moreover, with the accuracy specified as a part of the input (computability); and (3)
the method has a mechanism for assessing the resources needed for a computation
(computational complexity).

The computable analysis method has been used by many authors to explore the
computational aspects of differential equations; in particular, to address questions
related to computing solutions of differential equations. In this chapter, we present
a brief survey of some existing results.

The chapter is organized as follows. Section 3.2 addresses computability of solu-
tions of first-order ODEs, while Section 3.3 analyzes the computational complexity
of the computable solutions. Section 3.4 discusses computability of asymptotic be-
haviors of ODEs. Finally, Section 3.5 presents some computability results of several
classically important partial differential equations.

3 Computability of Differential Equations 73

3.2 Computability of the Solutions of Ordinary Differential
Equations

In this section, we consider ordinary differential equations (ODEs) of the form

y′ = f (y) (3.1)

and associated initial value problems (IVPs){
y′ = f (y)
y(t0) = y0

(3.2)

where f : E → Rn is continuous over E ⊆ Rn. Since an ODE of the more general
form y′ = g(t,y) can be reduced to (3.1) if one replaces the independent variable t by
a new variable yn+1 satisfying y′n+1 = 1, yn+1(t0) = t0, there is no loss of generality
in studying only ODEs in the form of (3.1).

3.2.1 Computability over Compact Sets

Assume that E is a compact subset of Rn. Classically, it is well known that conti-
nuity of f ensures the existence of solution(s) to the IVP (3.2) (Peano’s existence
theorem, see, e.g., [11, pp. 191-193]), and if f is Lipschitz continuous then the so-
lution is unique and C1 smooth (Picard-Lindelöf theorem, see, e.g., [43, pp. 8-10]).
The compactness of E is essential for the proof of Peano’s existence theorem, in
which a sequence of functions is constructed and then the Arzelà-Ascoli theorem
is employed to obtain a subsequence that converges toward a solution of (3.2). The
proof is non-constructive. On the other hand, the classical proof of existence and
uniqueness for Lipschitz continuous f is constructive, such as Picard’s scheme of
successive approximations; such constructive schemes lead naturally to some com-
puter programs for computing the unique solution, uniformly in f . Recall that f is
said to be Lipschitz continuous if it satisfies a Lipschitz condition on E; i.e., there
exists some positive constant K (a Lipschitz constant) such that, for all x,y ∈ E

‖ f (x)− f (y)‖ ≤ K ‖x− y‖ .

Thus the question remaining to be investigated is whether solutions are still com-
putable when the vector field f is continuous on E but fails to be Lipschitz contin-
uous. In this case, whether the IVP (3.2) has a unique solution plays a pivotal role
in determining whether (3.2) admits a computable solution. A theorem by Osgood
[10] shows implicitly that the initial value problem y′ = f (t,y), y(0) = y0 does ad-
mit a computable solution on [0,δ] for some δ > 0, provided that f is computable
on E = [0,1]× [−1,1] and the solution of the IVP is unique. The idea used for the
proof is to compute sequences of functions which converge to a maximal solution
ymax from above and a minimal solution ymin from below. If the solution is unique,

74 Daniel S. Graça and Ning Zhong

then the convergence is effective and thus results in a computable solution. However,
this technique only works in the plane, since in higher dimensions there is no similar
notion of a maximal or a minimal solution. In [71] Ruohonen generalizes this result
to higher dimensions, using approximation funnels to compute the solution of (3.2),
obtaining the following result.

Theorem 3.2.1. Suppose that f is computable and not identically zero on the closed
ball B(y0,b) = {x ∈ Rn : |y0− x| ≤ b}, where b > 0, t0,y0 are computable. Then the
solution of (3.2) is computable on [t0, t0 +δ] for δ = b

maxx∈E‖ f (x)‖ > 0, provided that
the solution of (3.2) is unique on that interval.

Another result that relies on Picard’s construction to compute the solution of
(3.2) is presented in [28]. There a domain-theoretic version of Picard’s operator
is presented to compute the solution of the IVP (3.2), provided that the function
defining the IVP is Lipschitz continuous.

It is also shown in [19] that, under certain conditions, solutions of the class of
implicit ODEs in the form of A(y) · y′ = f (y,λ) are computable, where A(y) is an
n× n matrix formed by polynomials in y1, . . . ,yn, with y = (y1, . . . ,yn), and λ is a
parameter.

The scenario changes completely if (3.2) admits multiple solutions. In this case,
it is possible that none of the solutions is computable. The following result was first
proved by Aberth [2, p. 152] for the case where f is assumed just to be computable;
later a different proof was presented by Pour-El and Richards [65]; then the result
was extended in [55] to include the case where f is polynomial-time computable.

Theorem 3.2.2. There exists a polynomial-time computable function f : [0,1]×
[−1,1]→ R such that {

y′ = f (t,y)
y(0) = 0 (3.3)

does not have a computable solution y on [0,δ] for any δ > 0.

The idea for the proof is to construct a function f that embeds a non-computable
problem P and show that if a computable solution for (3.3) exists, then P can be
solved computationally, a contradiction. For details of the proof, we refer the reader
to the original papers [65, 55] or to [56, pp. 216-219].

3.2.2 Computability over Non-compact Sets

In this subsection, we assume that E is an open subset of Rn. The Peano existence
theorem indicates that the IVP (3.2) has a solution existing on some time interval
containing t0 in its interior, provided that f is continuous on E. An interval is called
an interval of existence if it contains t0 and if a solution of (3.2) exists on it. The
following classical result indicates how large an interval of existence may be (see,
e.g., [43, pp. 12-13]).

3 Computability of Differential Equations 75

Proposition 3.2.3. (Maximal Interval of Existence) Let f : E → Rn be continuous
on E. Then the IVP (3.2) has a maximal interval of existence, and it is of the form
(α,β), with α ∈ [−∞,∞) and β ∈ (−∞,∞]. There is a solution y(t) of (3.2) on (α,β)
and y(t) leaves every compact subset of E, i.e., y(t) tends to the boundary ∂E of E,
as t→ α from above and as t→ β from below.

The proposition is a simple classical existence statement “the IVP (3.2) has a
maximal interval of existence and a solution exists on it.” It turns out that this simple
statement gives rise to a variety of questions about computability. Is the maximal
interval (α,β) of existence computable from the data (f , t0,y0) that defines the IVP
(3.2)? Does (3.2) admit a computable solution on (α,β)? If E =Rn, then a solution
of (3.2) is said to blow up in finite time if α and β are two real numbers. Is the
problem whether (3.2) admits a finite blowup solution decidable? We will discuss
these questions in this subsection.

It is known from Subsection 3.2.1 that if the IVP (3.2) has multiple solutions then
it may occur that none of the solutions is computable. Hence, in this subsection, we
consider only those IVPs to which the solution is unique.

We begin by examining the proof of the proposition. The proposition can be
proved by using the Peano existence theorem repeatedly: The theorem first produces
a solution y(t) of the IVP (3.2) on an interval [a0,b0] containing t0; then it extends
y(t) to [a1,a0] and to [b0,b1], a1 < a0 and b1 > b0, by yielding a solution to the IVP
v′ = f (v), v(b0) = y(b0), and to the IVP v′ = f (v), v(a0) = y(a0); and the process is
repeated infinitely many times to reach the maximality: (α,β) =

⋃
∞
j+1[a j,b j]. Thus,

if the IVP (3.2) has a unique solution y(t) over (α,β), then it follows from Theorem
3.2.1 that a j, b j, and y(t) on interval [a j,b j] are computable from j, f , t0, and y0.
But the argument is insufficient to show that y(t) is computable on (α,β) because it
is possible that there does not exist a “master” algorithm computing y(t), indepen-
dent of j. One possible way of dealing with this shortcoming is to strengthen f to
be a smoother function, which is actually an approach frequently used in classical
analysis of ODEs: the smoother the vector field f is, the better, possibly, the solution
y behaves. This is the approach used in [36]. By strengthening f to be a C1 function
on E, the following result is shown in [36].

Theorem 3.2.4. Assume that E is an r.e. open subset of Rn. Consider the initial
value problem (3.2) where f is C1 on E. Let (α,β) be the maximal interval of
existence of the solution y(·) of (3.2) on E. Then:

1. The operator (f , t0,y0) 7→ y(·) is computable;
2. The operator (f , t0,y0) 7→ (α,β) is semi-computable (i.e., α can be computed

from above and β can be computed from below).

Recall that E is an r.e. open subset of Rn if it can be filled up by a computer-
generated sequence {B j}∞

j=1 of rational balls (balls having rational centers and ra-
tional radii), i.e., E =

⋃
∞
j=1 B j. The main role played by the C1 smoothness in the

proof is that C1 smoothness implies local Lipschitz continuity (and the converse is
false); that is, if f is C1 on E, then f is Lipschitz continuous on every compact sub-
set of E. An algorithmic version of this fact is proved in [36]. Thus, when giving a

76 Daniel S. Graça and Ning Zhong

C1-name of f , it becomes possible to compute a Lipschitz constant K j for each E j,
where E j is the closure of

⋃ j
i=1 Bi, then compute the solution of (3.2) on E j, and

thus compute the solution over the maximal interval (α,β) of existence, because
the E j are getting ever larger and eventually fill up E.

Although for many important ODEs their vector fields f are indeed C1, the re-
quirement for f being C1 is nevertheless not necessary for ensuring the existence
of a unique solution. It is then natural to ask whether it is possible to compute
the unique solution of the IVP (3.2), whenever it exists, over the maximal interval
(α,β); in other words, whether Theorem 3.2.4 holds true over (α,β) when E is an
open subset of Rn. The problem is studied in [26] and a positive answer is presented
there. The proof uses a quite different approach; the idea underlying the approach
is to try to cover the solution with rational boxes and to test (i) and (ii), in an al-
gorithmic way: (i) whether a given set of rational boxes is an actual covering of
the solution of (3.2), and (ii) whether the “diameter of the covering” is sufficiently
small so that the rational boxes provide an approximation of the solution with the
desired accuracy whenever (i) is satisfied. The process of enumerating all possible
families of rational boxes and applying the tests (i) and (ii) to each family gener-
ates, effectively, better and better approximations to the unique solution of (3.2),
and thus proves that the solution is computable. This procedure can also be applied
to study the computability of differential inclusions (see [26] for more details). The
following theorem proved in [26] (see also [25]) strengthens Theorem 3.2.4.

Theorem 3.2.5. Consider the initial value problem (3.2) where f is continuous on
the open set E. Suppose that (3.2) has a unique solution y(·) on E, defined on the
maximal interval of existence (α,β). Then

1. The operator (f , t0,y0) 7→ y(·) is computable;
2. The operator (f , t0,y0) 7→ (α,β) is semi-computable (i.e., α can be computed

from above and β can be computed from below).

In particular, if f is a computable function and t0,y0 are computable points, then
(α,β) is a recursively enumerable open set and the solution y(·) is a computable
function.

A question that remains is whether the maximal interval of existence is com-
putable. The answer is negative, as shown in [36].

Theorem 3.2.6. There is an analytic and computable function f : R→ R such that
the unique solution of the problem {

y′ = f (y)
y(0) = 0 (3.4)

is defined on a non-computable maximal interval of existence.

The theorem indicates that the computability of the maximal interval (α,β) of
existence is not tied up with the smoothness of f ; rather it has more to do with

3 Computability of Differential Equations 77

the “globalness” of (α,β). Later, in Section 3.4, we will see again that a “global
property” is usually difficult to compute. The counterexample is constructed by cre-
ating a computable odd and bijective function ϕ : (−α,α)→ R, where α is a non-
computable real number, such that ϕ satisfies the following conditions: (i) ϕ is the
solution of (3.4) for an analytic and computable function f ; and (ii) ϕ(x)→±∞ as
x→±α∓.

When E is the whole space Rn and f is defined on Rn, if a solution y(t) of (3.2)
is defined for all t ≥ t0, it is called a (positively) global solution that does not blow
up in finite time. In general, it is difficult to predict whether or not a solution will
blow up in finite time from a given initial datum (t0,y0), as Theorem 3.2.6 already
indicates, because it often requires extra knowledge on some quantitative estimates
and asymptotics of the solution over a long period of time. Actually the problem
of determining whether the solution of (3.2) blows up in finite time is undecidable
even if f : Rn→Rn has only polynomials as components [39]. Nevertheless, certain
computational insight on the blowup problem is obtainable from f , as the following
theorem in [69] suggests.

Theorem 3.2.7. Consider the IVP (3.2), where f is locally Lipschitz. Let Z be the
set of all initial values (t0,y0) for which the corresponding unique solution of (3.2)
is (positively) global. Then Z is a Gδ -set and there is a computable operator deter-
mining Z from f .

3.3 Computational Complexity of the Solutions of Ordinary
Differential Equations

In this section we analyze the computational complexity of solving an initial value
problem (3.2).

We begin by noting that, as mentioned before, any C1 function defined on a com-
pact set E ⊆ Rn satisfies a Lipschitz condition. The analysis of any standard algo-
rithm (e.g., Euler’s method, or the algorithm implicit in Picard’s iteration method) to
solve an initial value problem (3.2) applied to a continuous function which satisfies
a Lipschitz condition over a compact set, with a Lipschitz constant K > 0, shows
that the value of the Lipschitz constant affects the number of iterations needed to
compute the solution of (3.2) with a given accuracy. However, since the Lipschitz
constant is constant in a compact set, it can be hidden in the big O notation. When
we solve (3.2) over a non-compact set, we typically have infinitely many distinct
local Lipschitz constants, and the complexity results need to take into account this
effect. This is the reason the two cases are analyzed in separate sections, as for the
case of computability.

78 Daniel S. Graça and Ning Zhong

3.3.1 Results for Compact Sets

We have just discussed above the importance that a Lipschitz condition seems to
have when computing the solution of an initial value problem (3.2). First it makes
sense to ask how the presence of a Lipschitz constant affects the computational
complexity of the solution of (3.2). We already know from Theorem 3.2.1 that if
(3.2) has a unique solution, then it must be computable. So what is the complexity
of the solution of (3.2) if we assume that f is “easy to compute” (polynomial-time
computable)? The following result from [56, p. 219], based on another result of
Miller [58, p. 469], shows that in that case the solution of (3.2), while computable,
can have arbitrarily high complexity.

Theorem 3.3.1. Let a be an arbitrary computable real number in [0,1]. Then there
is a polynomial-time computable function f defined on [0,1]× [−1,1] such that
y(t) = at2 is the unique solution of the initial value problem defined by

y′ = f (t,y) and y(0) = 0. (3.5)

Note that in (3.5) we have used the independent variable t explicitly, i.e., we
considered a non-autonomous ODE instead of an autonomous ODE as in (3.2).
Technically speaking, that is not needed as we have seen in Section 3.2, since a
non-autonomous IVP can be converted into an autonomous IVP. However, in the re-
mainder of this section we will explicitly consider the independent variable t since,
as we will see later in this section, this will allow us to do a more refined analysis on
what happens at a computational complexity level by analyzing how the smoothness
of f relative to t or to y can affect the complexity of the solution of (3.5). In this sec-
tion we also suppose that the initial condition for (3.5) is y(0) = 0, although WLOG
any initial condition y(t0) = y0, where t0,y0 are polynomial-time computable, could
be used to obtain the same results. We note that for non-autonomous IVPs (3.5) the
Lipschitz condition is not needed for the variable t. Therefore, in that case, we say
that f : [0,1]×B(0,1)→Rn, with B(0,1)⊆Rn, is (right-)Lipschitz if it satisfies the
following condition

‖ f (t,y1)− f (t,y2)‖ ≤ L‖y1− y2‖

for all t ∈ [0,1] and all y1,y2 ∈ B(0,1) ⊆ Rn. Remark that if f in (3.5) is (right-)
Lipschitz, then when we convert the ODE of the initial value problem (3.5) into an
autonomous ODE (3.1), then f in (3.1) is Lipschitz continuous. Therefore, using
non-autonomous ODEs with (right-)Lipschitz ODEs or autonomous Lipschitz con-
tinuous ODEs are equivalent approaches, although the non-autonomous case (3.5)
has the advantage mentioned above.

In (3.5) we also assume that the function f is defined on [0,1]×B(0,1). However,
those results can easily be extended to functions defined over [0,T]×B(0,M) for
T,M > 0 via rescaling. More concretely, let f : [0,T]×B(0,M)→ Rn and let y :
[0,T]→ B(0,M) be the solution of (3.5). Note that we suppose that y(t) is always
defined for all t ∈ [0,T] (and hence is always inside B(0,M)). Define the function

3 Computability of Differential Equations 79

y∗ : [0,1]→ Rn as y∗(t) = y(tT). In other words y∗(1) = y(T). It is not difficult to
see that y∗ is the solution of the IVP

y′∗ = T f (tT,y∗) and y∗(0) = 0.

Similarly one can define the function y∗∗ : [0,1] → Rn as y∗∗(t) = y∗(t)/M =
y(tT)/M. In other words y∗∗(t) is just like y∗, but scaled down by a factor of M
so that y∗∗(t) ∈ B(0,1) for all t ∈ [0,1]. It is also not difficult to check that y∗∗ is the
solution of the IVP

y′∗∗ =
T
M

f (tT,My∗∗) and y∗∗(0) = 0.

Note that, for a fixed compact set [0,T]×B(0,M), T and M are just constants. There-
fore the complexity of f : [0,T]×B(0,M)→ Rn is essentially the same as that of
f∗∗ : [0,1]×B(0,1)→ Rn given by f∗∗(t,y) = T

M f (tT,My) and thus the complexity
of finding the solution of (3.5) when f : [0,T]×B(0,M)→ Rn is essentially the
same as that of finding the solution of (3.5) when f : [0,1]×B(0,1)→ Rn.

In [23, p. 450] it is shown that if f of (3.5) satisfies a Lipschitz condition on
[0,1]× [−1,1] and f belongs to the nth level of the Grzegorczyk hierarchy E (n), for
n ≥ 3, then so will its solution y. This result is refined for the case of polynomial-
time computable functions f in [55, p. 159] (or [56, p. 221]). There it is mentioned
that if f of (3.5) is polynomial-time computable and satisfies a Lipschitz condition
on [0,1]× [−1,1], then the solution of (3.4) can be computed in polynomial space.
This result can be extended to the case where y : [0,1]→ B(0,1) where B(0,1)⊆Rn

and n≥ 1.

Theorem 3.3.2. Let f : [0,1]×B(0,1)→ Rn, with B(0,1) ⊆ Rn, be a polynomial-
time computable (right-)Lipschitz function and assume that y : [0,1]→ B(0,1) is the
solution of (3.5). Then y is polynomial-space computable.

As mentioned by Ko, the proof of this result follows from a careful analysis of
Euler’s method. For example, it is shown in [7, pp. 349-350] that when n = 1 and
we use Euler’s method to compute the solution y of (3.4) over the time interval [0,1]
with time step bounded by h > 0 and rounding error bounded by ρ > 0, the error en
in step n is bounded by

|en| ≤ Aρ +B(hC+ρ/h) (3.6)

where A,B,C > 0 are some constants (the original formula (6.2.32) [7] explicitly
tells how A,B,C depend on the Lipschitz constant, etc., but that level of detail is
not needed for our analysis). So to compute the solution of (3.4) over the time in-
terval [0,1] with accuracy 2−n we could use Euler’s method with h = a2−n and
ρ = b(2−n)2 for some appropriate constants a,b > 0 which are independent of n.
Euler’s method would then run in space polynomial (indeed quadratic) in n, which
shows the result. The case n > 1 can be obtained by considering the Euler method
for dimensions n > 1 as explained in [11, Section 7.2]. The analysis of the error
(done in [11, Section 7.3], except that the rounding error is not considered, but this
can also be taken into account using a procedure similar to that of [7, p. 350]) gives a

80 Daniel S. Graça and Ning Zhong

formula (3.6), but with constants A,B,C > 0 which have different values than from
the previous case, and therefore the conclusions remain valid for the case where
n > 1.

In [56, Section 7.4] (also implicitly in [55, p. 159, Question D],) Ko asks whether
polynomial space is also a lower bound for the complexity of the solution y of (3.5),
assuming the conditions of the previous theorem for n = 1. Kawamura provides an
affirmative answer in [49] (see also [48]) using an appropriate notion of reduction
(see [49, Section 2.2]) which allows us to define C -hard and C -complete functions
for a complexity class C . Namely Kawamura shows the following theorem.

Theorem 3.3.3. There exists a polynomial-time computable function f : [0,1]×
[−1,1]→ R which satisfies a (right-)Lipschitz condition, such that the unique solu-
tion y : [0,1]→ R of (3.5) takes values in [−1,1] and is PSPACE-complete.

As a corollary [49, Corollary 3.3] one has the following result.

Corollary 3.3.4. P = PSPACE if and only if any solution y : [0,1]→ B(0,1) of (3.5)
is polynomial-time computable, where f : [0,1]×B(0,1)→ Rn, with B(0,1) ⊆ Rn,
is a polynomial-time (right-)Lipschitz computable function.

The previous results are non-uniform since we fix the complexity of the input
to be polynomial time. But one can naturally ask what is the (uniform) complexity
of the operator LipIV P which maps a function f satisfying a Lipschitz condition
to the solution y of (3.5). A major problem to tackle is that until recently there
was no general theory to measure the complexity of operators which map functions
into functions. This problem was solved in [50] using appropriate representations of
functions and appropriate notions of reduction, hardness and completeness. Using
this setting one can define C -hard and C -complete functions for a complexity class
C . Since we are talking of functions, it makes sense to take C = FP (functions
computable in polynomial time) or C = FPSPACE (functions computable in poly-
nomial space). By using appropriate representations δ� for continuous functions in
C([0,1]) and δ�L for functions satisfying a Lipschitz condition (which are continu-
ous), and an appropriate reduction≤2

mF (see [50] for more details) it was also shown
in [50, Theorem 4.10] that the operator LipIV P is FPSPACE-complete.

Theorem 3.3.5. LipIV P is (δ�L,δ�)-FPSPACE-≤2
mF -complete.

An interesting question is whether smoothness of f helps reduce the computa-
tional complexity of solving an IVP (3.5). We say that f : [0,1]×R→ R is of class
C(i, j) if the partial derivative ∂ n+m f (t,y)/∂ tn∂ym exists and is continuous for all
n ≤ i and m ≤ j; it is said to be of class C(∞, j) if it is of class C(i, j) for all i ∈ N. In
[51] this question is analyzed and Theorem 3.3.3 is generalized to C(∞,1) functions.

Theorem 3.3.6. There exists a polynomial-time computable function f : [0,1]×
[−1,1]→ R of class C(∞,1) such that the unique solution y : [0,1]→ R of (3.5)
is PSPACE-complete.

3 Computability of Differential Equations 81

In that paper it is also shown [51, Theorem 2] that if f is more than once dif-
ferentiable, then the unique solution can be CH-hard, where CH ⊆ PSPACE is the
counting hierarchy.

Theorem 3.3.7. Let k be a positive integer. There exists a polynomial-time com-
putable function f : [0,1]× [−1,1]→R of class C(∞,k) such that the unique solution
y : [0,1]→ R of (3.5) is CH-hard.

In the most extreme case, when f is analytic, the solution of (3.5) is polynomial-
time computable on a compact set. This follows from results of Müller [60] and Ko
and Friedman [57], which show that polynomial-time computability of an analytic
function on a compact interval is equivalent to polynomial-time computability of
the sequence of its Taylor coefficients at a rational point. Given a sequence of Tay-
lor coefficients for f one can compute the Taylor coefficients for the solution y of
(3.5) [61, Theorem 2.1]. Note that it is known that if f is analytic, then so is the
solution y of (3.5) [5, Section 32.4]. By analytic continuation [60], polynomial-time
computability of y follows.

Theorem 3.3.8. Let f : [0,1]×B(0,1)→B(0,1) with B(0,1)⊆Rn be a polynomial-
time computable analytic function and y : [0,1]→ B(0,1) be the solution of (3.5).
Then y is polynomial-time computable.

As remarked in [51, last paragraph of Section 5.2], the previous argument also
shows uniform polynomial-time computability of the operator LipIV P, if we repre-
sent analytic functions by their sequence of Taylor coefficients, obtaining a repre-
sentation δTaylor, since the Taylor sequence of y is easy to compute from the Taylor
sequence of f . In the next theorem LipIV P �D represents the operator LipIV P re-
stricted to the class of (real) functions D and Cω represents the class of analytic
functions.

Theorem 3.3.9. The operator LipIV P �C
ω

belongs to (δTaylor,δTaylor)-FP.

Theorem 3.3.6 can also be extended to a uniform version by showing that the
operator LipIV P �C

(∞,1)
[51, last paragraph of Section 5.2] is FPSPACE complete,

using the polynomial-time Weihrauch reduction ≤W .

Theorem 3.3.10. The operator LipIV P �C
(∞,1)

is (δ�L,δ�)-FPSPACE-≤W -complete.

Computability in polynomial time of the solution of (3.5) is also obtained in [29]
by using polynomial enclosures in Picard’s method, provided that some assumptions
are made on the function f in (3.5), such as that f is Lipschitz and that its represen-
tation via polynomial enclosures satisfies certain properties (e.g., this representation
should not take “too much space”).

82 Daniel S. Graça and Ning Zhong

3.3.2 Results for Non-compact Sets

In the previous section we have analyzed the computational complexity of solutions
of an IVP (3.5) (or, equivalently, (3.2)) where f is considered over a compact set
[0,1]×B(0,1), with B(0,1) ⊆ Rn. But what happens when f : Rn+1→ Rn and the
solution y of (3.5) is considered over its maximal interval of definition? That is, what
is the computational complexity of y : R→ Rn, or more generally of the operator
mapping f to y?

As a first attempt we could consider the approach, given t ∈ [0,+∞), of rescal-
ing the IVP (3.5) given by f : [0, t]× B(0,M) → Rn, where M is big enough
so that y(t) ∈ B(0,M) for all t ∈ [0, t], to an IVP (3.5) which uses a function
f̄ : [0,1]×B(0,1) instead of f , as explained in the previous section. Since, for a
fixed M (and fixed T , with t ≤ T), the complexity of solving (3.5) is the same as the
complexity of solving (3.5) where f̄ is used instead of f , we might be led to conclude
that the complexity of obtaining the solution of (3.5) for the non-compact case where
f : Rn+1 → Rn is the same as when f is taken over a compact set [0,1]×B(0,1).
However this reasoning is incorrect, since M (and T) is not fixed in this case and
must be uniformly computed from y, i.e., M = M(y(t)) = M(t). This is not a triv-
ial task since to compute y(t), we need to know M(t). On the other side, to know
M(t), we need to know max0≤u≤t ‖y(u)‖ and therefore we get into a circular argu-
ment where M(t) is needed to compute y(t) and vice versa. To better illustrate this
problem, consider the following system taken from [64]

y1(0)= 1
y2(0)= 1

. . .
yd(0)= 1

y′1(t)= y1(t)
y′2(t)= y1(t)y2(t)
. . .

y′d(t)= y1(t) · · ·yd(t)

The results of Section 3.3.1 show that for any fixed, compact I = [0,T] the solution
y is polynomial-time computable since the ODE is analytic. On the other hand, this
system can be solved explicitly and yields:

y1(t) = et yi+1(t) = eyi(t)−1 yd(t) = ee.
. .

eet
−1

−1

One immediately sees that yd being a tower of exponentials prevents y from being
polynomial-time computable over R, since one might need (supra-)exponential time
just to write down an integer approximation of yd with precision 1/2 = 2−1 for d ≥
2. This example shows that the solution of an analytic IVP (or even of a polynomial
IVP) can be polynomial-time computable on any fixed compact set, while it may
not necessarily be polynomial-time computable over R.

A possible way to solve this problem is to analyze the complexity of (3.5) us-
ing a bound on the growth of the solution y as a parameter on the function used to
measure the complexity (this is an example of parametrized complexity), since the
problem of knowing how quickly y can grow is not generally well understood, even

3 Computability of Differential Equations 83

when f is constituted by polynomials. This approach is taken in [13] for the case of
polynomial IVPs (solutions of polynomial IVPs (3.5) where f is formed by poly-
nomials are sometimes called PIVP functions) and in [12] for the case of analytic
functions. The motivation for studying PIVPs is that the class of PIVP functions is
well behaved and includes many interesting functions. In particular it contains all
of the usual functions of analysis (exponential, trigonometric functions, polynomi-
als, their inverses) and is closed under the usual arithmetic operations, composition,
and ODE solving [21, 34]. It can also be shown that this class is exactly the class
of functions generated by Shannon’s General Purpose Analog Computer (GPAC)
[77, 35], which is the mathematical model for analog computers (differential an-
alyzers) used before the advent of digital computers [20] (see also the chapter “A
Survey on Analog Models of Computation” in this handbook). The following result
is from [13] and shows that the solution of a polynomial IVP can be computed in
polynomial time with respect to a bound of Y (t) = max0≤u≤t ‖y(u)‖.
Theorem 3.3.11. There exists an algorithm A which on any vector of polynomials
p with polynomial-time computable coefficients, µ ∈N, t ∈Q with t ≥ 0, and Y ∈Q
such that Y >max0≤u≤t ‖y(u)‖, satisfies

‖A (p,µ, t,Y)− y(t)‖
∞
6 2−µ

where y is the solution of (3.5). Furthermore A (p,µ, t,Y) is computed in time poly-
nomial in the value of µ, t, and Y .

This result can be extended to IVPs where f is not necessarily a polynomial,
assuming polynomial-time computability of the higher derivatives of f and an ap-
propriate (polynomial) bound on the growth of those derivatives (see [13, Section
7]).

We note that Theorem 3.3.11 can be extended to the case where the initial con-
dition is of the form y(t0) = y0, where t0 ∈Q and y0 is polynomial-time computable
(and it is actually stated in this way in the original paper [13]). This result is proved
by using a variable-order method in which the solution of (3.5) is computed over
a succession of subintervals [ai,ai+1], with i = 0,1,2, . . . and a0 = 0, whose union
gives the maximal interval of definition of the solution y of (3.5). On each sub-
interval a Taylor approximation of the solution is computed, but using a variable-
order method: instead of using an approximation of fixed order for each subinterval
[ai,ai+1], the order of the approximation is allowed to change on each interval. Note
that the usual methods for numerical integrations (including basic Euler’s method,
etc.) fall in the general theory of n-order methods for some n. It was already sug-
gested in [79, Section 3] that fixed-order methods might only run in exponential
time when solving (3.5) for certain polynomial-time computable functions, but that
variable-order methods might solve the same problem in polynomial time. Variable-
order methods have also been used in certain contexts to solve IVPs, but usually
without complexity results or with complexity results valid only for compact sets,
see, e.g., [27, 45, 8, 1].

The previous result has the drawback that we need to know a bound Y >
max0≤u≤t ‖y(u)‖ (which is used as input) to be able to compute y(u) for u ∈ [0, t].

84 Daniel S. Graça and Ning Zhong

This is improved in [64], where T and Y are replaced by a single parameter – the
length of the solution curve y, with the added benefit that this parameter is not
needed as an input to the algorithm. We recall that the length of the curve defined
by the graph of a function f between x = a and x = b is

length =
∫ b

a

√
1+(f ′(x))2dx

In the case of the solution of (3.5) where f = p is a vector of polynomials (i.e.,
each component of the vector p is a polynomial), we note that the derivative of the
solution y is given by p(y). If the degree of p is k (in the case where p has more than
one component, the degree of p is the maximum of the degrees of its components),
the length of the solution has a value which has an order of magnitude similar to the
following quantity

Len(t) =
∫ t

0
Σ pmax(1,‖y(u)‖)kdu

where Σ p denotes the sum of the absolute values of all the coefficients of p (or the
maximum of such sums taken over each component of p, if p has more than one
component). The following theorem is from [64].

Theorem 3.3.12. There exists an algorithm B such that if t0, t ∈R with t0≤ t, ε > 0,
and y satisfies (3.2) over [t0, t] and if

x = B(t0,y0, p, t,ε)

then ‖x− y(t)‖6 ε and the algorithm finishes in time

O((poly(k,Len(t0, t), log‖y0‖ , logΣ p,− logε))n)

where Len(t0, t) =
∫ t

t0 Σ pmax(1,‖y(u)‖)kdu, k is the degree of p, n is the number of
components of p, and poly(a1, . . . ,a j) means polynomial in a1, . . . ,a j.

More recently [85], [52] a similar result was established for IVPs with the form
(3.2), where f is analytic, using techniques similar to those of [13] (i.e., using
power series to compute the solution of the IVP). The authors also characterize
the complexity of solving (3.2) using parametrized complexity. In particular, if f
is polynomial-time computable in several input quantities (such as a bound for a
complex extension of f ; the inverse of the distance to a singularity; a bound on the
norm of the point where f is evaluated; the precision up to which f must be cal-
culated), then the solution of the IVP (3.2) is also polynomial-time computable on
those inputs. See [85, Theorem 4.4.1] for more details.

In [85], [54] the above result is applied to some classes of volume-preserving sys-
tems such as Hamiltonian systems. In particular, for some classes of such systems,
it can be shown that their average time complexity is polynomial-time computable,
provided that hard instances are relatively rare. The authors also apply this result
to show that the planar circular restricted three-body problem is polynomial-time
computable on average under certain assumptions.

3 Computability of Differential Equations 85

3.4 Computability of Qualitative Behaviors of Ordinary
Differential Equations

Qualitative analysis of asymptotic (long-term) behaviors is a key tool for explor-
ing ordinary differential equations because most ODEs do not have representation
formulas for their solutions and numerically computed solutions are usually limited
to the short term only. In some circumstances, in particular for hyperbolic systems,
qualitative analysis may also provide algorithmic descriptions, to various degrees,
of certain asymptotic behaviors. There are only a few results of this nature though,
which are mainly about computation of trajectory behaviors near a hyperbolic equi-
librium point.

We note that a statistical approach can also be used to obtain information about
the asymptotic behavior of a dynamical system. However, since this approach in-
volves measure theory, which is discussed in its own dedicated chapter of this book,
results of this nature are not discussed in this chapter.

The asymptotic behavior of a differential equation is captured by its limit sets,
which are the states the solutions reach after an infinite amount of time has passed.
A limit set can be a point, a finite set of points, a curve, a manifold, or even a
complicated set with a fractal structure known as a strange attractor. Limit sets are
well understood in dimensions one and two: in dimension one and for continuous
f in (3.1), the only possible limit sets are equilibrium points; in dimension two and
for C1 smooth f , a closed and bounded limit set other than a periodic orbit or an
equilibrium point consists of equilibria and solutions connecting them according
to the Poincaré-Bendixson Theorem, a celebrated result in the field of dynamical
systems. Structures of limit sets in dimensions greater than two become much richer
and more complex; for instance, strange attractors abound in R3.

An equilibrium point is the simplest type of limit set.

Definition 3.4.1. 1. A point ỹ ∈ Rn is called an equilibrium point of (3.1) if f (ỹ) =
0.

2. An equilibrium point ỹ is called hyperbolic if none of the eigenvalues of D f (ỹ)
has zero real part, where D f (ỹ) is the Jacobian of f at ỹ. If the real part of every
eigenvalue of D f (ỹ) is negative (positive, respectively), then ỹ is called a sink
(source, respectively).

The structure of solutions, also known as trajectories or orbits, near a hyperbolic
equilibrium is characterized by the Stable Manifold Theorem, which is one of the
most important results concerning the local qualitative theory of differential equa-
tions. From the perspective of computation, hyperbolicity ensures that D f does not
have a computational singularity near ỹ, an indication of the possible existence of
an algorithmic characterization for the orbit structure near ỹ. Note that D f presents
the directions of the trajectories. We recall that the condition x = 0 for computable
real numbers is considered a computational singularity because it cannot be decided
effectively. The following theorem is an effective version of the Stable Manifold
Theorem, which demonstrates that the trajectory structure near a hyperbolic equi-
librium is indeed computable.

86 Daniel S. Graça and Ning Zhong

Theorem 3.4.2. [Effective Stable Manifold Theorem [37]] Assume that ỹ ∈Rn is a
hyperbolic equilibrium point of (3.1). Let φ(t,y0) (or φt(y0)) denote the solution of
(3.1) with the initial value y0 at t = 0. Then there is a (Turing) algorithm that com-
putes, on input (f ,D f , ỹ), a k-dimensional manifold S⊂Rn, an (n−k)-dimensional
manifold U ⊂ Rn with 0 ≤ k ≤ n, both S and U containing ỹ, and three positive
rational numbers γ , ε , and δ such that

(i) For all y0 ∈ S, limt→+∞ φ(t,y0) = ỹ and for all y0 ∈U, limt→−∞ φ(t,y0) = ỹ;
(ii)|φ(t,y0)− ỹ| ≤ γ2−εt for all t ≥ 0 whenever y0 ∈ S and y0 ∈ B(ỹ,δ); |φ(t,y0)−

ỹ| ≤ γ2εt for all t ≤ 0 whenever y0 ∈U and y0 ∈ B(ỹ,δ).

Moreover, if k < n (k > 0), then a rational number η and a ball D centered at ỹ
can be computed from f such that for any solution φ(t,y0) to the equation (3.1) with
y0 ∈ D \ S, {φ(t,y0) : t ≥ 0} 6⊂ B(ỹ,η) (y0 ∈ D \U, {φ(t,y0) : t ≤ 0} 6⊂ B(ỹ,η),
respectively) no matter how close the initial value y0 is to ỹ.

The classical proof of the Stable Manifold Theorem relies on the Jordan canon-
ical form of A = D f (ỹ). To reduce A to its Jordan form, one needs to find a basis
of generalized eigenvectors. Since the process of finding eigenvectors from corre-
sponding eigenvalues is not continuous in general, it is a non-computable process.
Thus if one wishes to construct an algorithm that computes some S and U of (3.1)
at y0, a different method is needed. In [37] an analytic, rather than algebraic, ap-
proach to the eigenvalue problem is used to allow the computation of S and U with-
out calling for eigenvectors. The analytic approach is based on function-theoretical
treatment of resolvents (see, e.g., [84, 46, 47, 70]).

The local stable and unstable manifolds can be extended to the global stable and
unstable manifolds by taking

W s
f (y0) =

∞⋃
j=0

φ− j(S), W u
f (y0) =

∞⋃
j=0

φ j(U) (3.7)

respectively. Is the global stable or unstable manifold computable for a computable
hyperbolic equilibrium point? Since the global stable manifold of a sink s coincides
with the basin of attraction of s, a less ambitious question is whether the basin of
attraction of a computable sink is computable. The answer depends on the function
f in (3.1). It is known that for hyperbolic rational functions, there are (polynomial-
time) algorithms for computing basins of attraction and their complements (Julia
sets) with arbitrary precision [9]; in other words, basins of attraction and Julia sets of
hyperbolic rational functions are (polynomial-time) computable. On the other hand,
for more general but still well-behaved functions f , the answer can be negative,
even for computable and analytic functions (see [59, 100] for examples of non-
computable basins of attraction occurring in Ck- and C∞-systems). The following
theorem (taken from [33]) shows that the basin of attraction of a computable sink in
a computable and analytic system can be non-computable.

3 Computability of Differential Equations 87

Theorem 3.4.3. There exists an ODE (3.1) defined by an analytic and computable
function f which admits a computable hyperbolic sink s such that the global stable
manifold (basin of attraction) of s is not computable.

Although the basin of attraction constructed in the theorem above is not com-
putable, it is an r.e. open subset of Rn (see [100]); in other words, it can be filled
up by a computable sequence of open balls. In general, it can be shown (see [37,
Section 5]) that the degree of unsolvability of computing a global stable manifold is
essentially Σ 0

2 .
The proof of Theorem 3.4.3 is fairly complicated. It starts by encoding a well-

known non-decidable problem into the basin of a computable hyperbolic sink in a
discrete-time system; then this discrete-time system is embedded into a continuous-
time system. The standard suspension method (see Smale [78], Arnold and Avez [6])
for embedding a discrete-time system into a continuous-time system is not sufficient
for the construction; instead, a new method is developed for the embedding.

Another problem that is close in spirit to the Stable Manifold Theorem concerns
linearization of the flow of a nonlinear ODE (3.1) near a hyperbolic equilibrium
point. Poincaré originated the study and, later, a number of researchers contributed
to progress on related problems, which resulted in the Hartman-Grobman Theo-
rem (see, e.g., [63, Section 2.8]); the theorem asserts that near a hyperbolic equi-
librium point ỹ of a nonlinear ODE (3.1), there is a homeomorphism H such that
H ◦φ = L ◦H, where φ is the solution to the ODE (3.1) and L is the solution to its
linearization ẏ=D f (ỹ)y. In other words, near ỹ, the ODE (3.1) has the same qualita-
tive structure as its conjugated linear system. This theorem remains important, since
it shows the structural stability of hyperbolic equilibria in sufficiently smooth dy-
namical systems. The computability study of this linearization is motivated by one
of the seven open problems in the addendum to the book Computability in Analy-
sis and Physics by Pour-El and Richards [67], who asked, “What is the connection
between the computability of the original nonlinear operator and the linear operator
which results from it?” It is proved in [38] that the homeomorphism H that performs
the linearization is computable. The precise statement is given below.

For simplicity only the linearization near the origin is considered. Let AH denote
the set of all hyperbolic n× n matrices, where a matrix A is hyperbolic if all of
its eigenvalues have nonzero real part. The operator norm is used for A ∈ AH ; i.e.,
‖A‖ = sup|x|6=0 |Ax|/|x|. For Banach spaces X and Y , let Ck(X ;Y) denote the set of
all continuously k-times differentiable functions defined on open subsets of X with
ranges in Y , and L (X ;Y) the set of all bounded linear maps from X to Y . Let O
denote the set of all open subsets of Rn containing the origin of Rn, I the set of all
open intervals of R containing zero, and F the set of all functions f ∈C1(Rn;Rn)
such that the domain of f is in O , f (0) = 0, and D f (0) ∈ AH . In other words, for
any f ∈F , 0 is a hyperbolic equilibrium point of f .

Theorem 3.4.4. [Effective Hartman-Grobman Theorem [38]] There is a computable
map Θ : F → O ×O ×C(Rn;R)×C(Rn;Rn) such that for any f ∈ F , f 7→
(U,V,µ,H), where

(a) H : U →V is a homeomorphism ;

88 Daniel S. Graça and Ning Zhong

(b) the unique solution y(t,y0) = y(y0)(t) to the initial value problem ẏ = f (y) and
y(0) = y0 is defined on (−µ(y0),µ(y0)) for all y0 ∈U; moreover, y(t,y0)∈U for
all y0 ∈U and −µ(y0)< t < µ(y0) ;

(c) H(y(t,y0)) = eD f (0)tH(y0) for all y0 ∈U and −µ(y0)< t < µ(y0) .

Recall that for any y0 ∈ Rn, eD f (0)ty0 is the solution to the linear problem ẏ =
D f (0)y, y(0) = y0. So the theorem shows that the homeomorphism H, computable
from f , maps trajectories near 0, a hyperbolic equilibrium point, of the nonlinear
problem ẏ = f (y) onto trajectories near the origin of the linear problem ẏ = D f (0)y.
In other words, H is a conjugacy between the linear and nonlinear trajectories near
the origin. Since the classical proofs of the Hartman-Grobman linearization theorem
are not constructive, the effective version of the theorem cannot be obtained from a
classical proof.

The results discussed so far are centered at hyperbolic equilibrium points. Evi-
dently, hyperbolicity and locality (in the spatial sense) are two key conditions for
obtaining algorithmic descriptions about asymptotic behaviors of trajectories of the
ODE (3.1) near an equilibrium; on the other hand, the role played by the structure f ,
near an equilibrium, of the ODE (3.1) turns out not to be as crucial, since the com-
putations for a local stable manifold, a local unstable manifold, and the conjugacy
H at a hyperbolic equilibrium are all uniform in f .

Equilibrium points are the simplest limit sets, and there are many limit sets other
than equilibrium points. What about computability of other limit sets, in particular,
those with complicated fractal structures such as strange attractors? The question is
largely open. There is however one type of strange attractors – geometric Lorenz
attractors – that has been proved to be computable recently. The Lorenz attractor is
perhaps the most famous strange attractor. It was introduced in 1963 by E.N. Lorenz
as one of the first examples of strange attractors (see, e.g., [41, 44] for a treatment
of the Lorenz attractor and [4] for a more in-depth analysis of Lorenz-like attrac-
tors). However, Lorenz’s research was mainly based on (non-rigorous) numerical
simulations and, until recently, the proof of the existence of the Lorenz attractor re-
mained elusive. To address that problem, Afraimovich, Bykov, and Shil’nikov [3],
and Guckenheimer and Williams [42] originated the study of flows satisfying a cer-
tain list of geometric properties based on the behavior observed in the numerical
simulations of the Lorenz equation. In particular, they proved that any such flow
must contain a strange attractor. These examples came to be known as geometric
Lorenz models, and the strange attractor contained in a geometric Lorenz flow is
called the geometric Lorenz attractor. In 2002 Tucker [86] used a combination of
normal form theory and rigorous numerics to provide a formal proof of the exis-
tence of the Lorenz attractor by showing that geometric Lorenz models do indeed
correspond to the Lorenz system for certain parameters. Since a geometric Lorenz
model supports a strange attractor, so does the Lorenz system. Recently, the follow-
ing result concerning computability of geometric Lorenz attractors was proved in
[40].

3 Computability of Differential Equations 89

Theorem 3.4.5. For any geometric Lorenz flow, if the data defining the flow are
computable, then its attractor is a computable subset of R3. Moreover, the physical
measure supported on this attractor is a computable probability measure.

We should also note that some related problems can be found in verification the-
ory. For example, in [24] the reachability problem is analyzed from a computability
perspective. The reachability problem consists of finding the set of all points which
can be reached in finite time from trajectories starting in an initial set. It is shown in
[24] that the reachable set is lower-computable for ODEs (or, more generally, dif-
ferential inclusions). However computability only holds under certain conditions.

3.5 Computability of Partial Differential Equations

The area of partial differential equations is vast and no general theory is known con-
cerning the solvability of all PDEs. In fact, most PDEs do not even have classical
solutions (a solution of a PDE of order k is classical if it is at least k times continu-
ously differentiable in the uniform norm). Instead, they may only be solvable in the
sense of weak or generalized solutions defined in some function spaces equipped
with an energy-type norm such as Sobolev spaces or in the space of generalized
functions. Computability theories of these spaces are established in [98, 101]. Many
modern approaches to the subject – energy methods within Sobolev spaces, the cal-
culus of variations, conservation laws, semigroups, etc. – are also useful tools in the
recursion-theoretic study of the subject; in particular, energy methods augmented
by a fixed-point argument.

An equation is exactly solvable if there is an explicit formula for its (classic or
weak) solution. Only a few solvable partial differential equations are exactly solv-
able. Pour-El and Richards have studied three important second-order linear ex-
actly solvable PDEs from the viewpoint of computability [67]: the heat equation,
Laplace’s equation, and the wave equation. They showed, by exploiting the solu-
tion formulas, that the heat equation and Laplace’s equation admit directly com-
putable classical solutions, at least in the case where good domains such as rectan-
gular regions with computable corners are considered. For the wave equation, they
demonstrated that a computable initial datum may generate a non-computable wave
propagation measured in the uniform norm (also see [66, 68]. A discussion of those
results can also be found in [31]); but in a more physically relevant setting, the wave
equation does admit computable solutions in the energy norm (see, for example,
[92, 88, 91]). This study indicates that computability of the solution operator of a
PDE, if the PDE is uniquely solvable, depends not only on the structure of the equa-
tion but also on the physical measurements used for the initial/boundary function(s)
and for the solution. Another notable fact revealed by the study is that the unique-
ness of solution of a computable initial value problem for a PDE doesn’t guarantee
the solution being computable – a significant distinction between the computabil-
ity theories of ODEs and PDEs. A related result can be found in [22], where the
difficulty of solving (ordinary and partial) differential equations is studied using in-

90 Daniel S. Graça and Ning Zhong

dex sets. Several cases of differential equations are considered (e.g., equations with
locally computable solutions) and are shown to correspond to certain levels in the
arithmetical hierarchy, which depend on the particular problem being considered.
This type of results provides more precise characterizations of non-computability
results for differential equations presented in [65] and [66].

Since no general theory is known concerning the solvability of all partial differ-
ential equations, research in the field focuses on various particular PDEs which are
important for applications within and outside of mathematics; for example, the KdV
equation, the Schrödinger equation, and the Navier-Stokes equation. These impor-
tant equations also lie at the center of the computability study of nonlinear PDEs.
Indeed, as one of the seven open problems included in the Addendum in their 1989
book Computability in Analysis and Physics, Pour-El and Richards suggested: “A
third area of study is the recursion-theoretic study of popular nonlinear problems
of classical importance. Examples are the Navier-Stokes equation, the KdV equa-
tion, and the complex of problems associated with Feigenbaum’s constant.” The two
theorems below give partial answers to the open question.

The first result concerns the KdV equation, which is a mathematical model of
waves on shallow water surfaces. The initial value problem of the KdV equation
posed on the whole real line R:{

ut +uux +uxxx = 0, t,x ∈ R
u(x,0) = ϕ(x)

defines a nonlinear map (the solution operator) KR from the Sobolev space Hs(R)
to the space C(R;Hs(R)) for real numbers s ≥ 0, where u represents the ampli-
tude of the wave. It is shown in [94, 93] that for any integer s ≥ 3, the map
KR : Hs(R)→ C(R;Hs(R)) is Turing computable, which means that the solution
KR(ϕ) can be computed with arbitrary precision on Turing machines when suffi-
ciently good approximations to the initial function ϕ are available (in [30] a pre-
liminary computability result was presented for the periodic case). Note that the
solution operator KR is defined for real numbers s ≥ 0 while the computability of
KR is established only for integers s≥ 3 (the proof can be extended to real numbers
s ≥ 3 with some modifications). The stronger smoothness requirement is used for
ensuring that several derivatives in the construction of approximations remain com-
putable. It would be very interesting to know whether KR remains computable for
real numbers 0≤ s < 3.

We also note that computability results exist for similar PDEs. For example, in
[99] the initial and boundary value problem (IBVP){

ut +ux +uux +uxxx = 0, t,x≥ 0
u(x,0) = ϕ(x),u(0, t) = h(t)

is considered; it is shown that the operator which maps the initial and boundary data
to the solution of the IBVP is computable.

The (incompressible) Navier-Stokes Equation

3 Computability of Differential Equations 91

∂tu−4u+(u ·∇)u+∇P = f, ∇u = 0, u(0) = a, u
∣∣
∂Ω
≡ 0 (3.8)

describes the motion of a viscous incompressible fluid filling a rigid box Ω . The
vector field u = u(x, t) =

(
u(1),u(2), . . . ,u(d)

)
represents the velocity of the fluid,

P = P(x, t) is the scalar pressure, and f is a given external force. The question of
global existence and smoothness of solutions of Equation (3.8), even in the homo-
geneous case f ≡ 0, is one of the seven Millennium Prize Problems posted by the
Clay Mathematics Institute at the beginning of the twenty-first century. Local exis-
tence has been established, though, in various Lp settings [32], and uniqueness of
weak solutions in dimension 2, but not in dimension 3 [80, 14]. Nevertheless, nu-
merical solution methods have been devised in abundance, often based on pointwise
(or even uniform, rather than Lp) approximation and struggling with unphysical ar-
tifacts [62]. Thus, it becomes useful to know whether it is possible to compute a
local solution with arbitrary precision in a rigorous mathematical/physical setting.
A recent result provides a positive answer: it is shown in [83] that the solution op-
erator is indeed Turing computable. More precisely, it is shown that there exist a
computable map T ,

T : Lσ
2,0(Ω)×C([0,∞),Lσ

2,0(Ω))→ (0,∞),(a, f) 7→ T (a, f)

and a computable map S ,

S : Lσ
2,0(Ω)×C([0,∞),Lσ

2,0(Ω))→C([0,∞),Lσ
2,0(Ω)×L2(Ω))

such that for every a ∈ Lσ
2,0(Ω) and f ∈C([0,∞),Lσ

2,0(Ω)), the restriction

S (a, f) |[0,T (a,f)]= (u,P)

constitutes a (strong local) solution to Equation (3.8), where Ω = (−1,1)2 and
Lσ

2,0(Ω) is the set of all square-integrable, divergence-free and boundary-free func-
tions defined on Ω .

The proofs of both theorems make use of energy methods augmented by a fixed-
point argument by converting the PDE into an integral equation, assembling an it-
erate scheme, and then proving that the sequence generated by the iteration is com-
putable as well as effectively convergent and the unique limit is the computable
solution sought after. There are several typical difficulties in such constructions.
Firstly, there is often a need for some custom-designed representations for the
spaces of input and output functions, which are different from known canonical
ones. For example, the weak solution of the Navier-Stokes equation (3.8) defined
on a two-dimensional good region is a locally square-integrable, solenoidal (i.e.,
divergence-free), and boundary-free vector field. The canonical representation for
an Lp space using polynomials with rational coefficients is not rich enough to en-
code a boundary-free solenoid. Yet a strengthened representation for the boundary-
free solenoids must be sufficiently general and robust so that the information carried
by the representation won’t be destroyed by elementary analytical operations such
as (distributive) differentiation and (primitive) integration. The second challenging

92 Daniel S. Graça and Ning Zhong

issue is that the iteration usually involves several operations, which may move back
and forth among different spaces. Additional care for representations may become
inevitable in order to keep the computations flowing in and out from one space to
another. Thirdly, the iterate sequence may (effectively) converge only in a special
subspace of the space where the sequence is defined, which may further complicate
matters. For instance, Bourgain’s space is needed in showing that the iterate se-
quence is contracting and therefore converges to the solution of the KdV equation.

In addition to particular equations, there are studies on computability aspects of
several classes of PDEs. One such class is linear parabolic equations. An initial
value problem of a linear parabolic equation can be written in the form:{

du(t)/dt +A u(t) = f (t), t > 0
u(0) = x, x ∈ X (3.9)

where f : [0,T] → X is a continuous map and A is a strong elliptic operator,
bounded or unbounded, on a Banach space X . When X = L2(Rn), the solution to
the initial value problem (3.9) is given by the formula:

u(t) =W (t)x+
∫ t

0
W (t− s) f (s)ds

where W (t) is a C0 semigroup generated by the infinitesimal generator A . Thus if
the semigroup W is computable from A , then the solution operator K : (A , f ,x) 7→
u is computable uniformly from the data (A , f ,x) defining the problem. The study
concerning computability of semigroups is carried out in [96, 97]. It is shown in [96]
how to compute on Turing machines a uniformly continuous or strongly continuous
semigroup uniformly from its infinitesimal generator and vice versa.

Another class for which a master algorithm exists for computing (local) solutions
of any of its members is the class of general (nonlinear) first-order PDEs for scalar
functions with several independent variables. A problem in this class can be written
in the form:

F(Du,u,x) = 0 in U (3.10)

subject to the boundary condition

u = g on ∂U (the boundary of U) (3.11)

where x ∈U , U is an open subset of Rn, F : Rn×R×V → R and g : ∂U → R are
given, V is an open subset of Rn containing U , the closure of U , and u : U → R
is the unknown and Du is the gradient of u. A function u is called a (strong) so-
lution of the boundary value problem if it solves (3.10), (3.11). A special feature
of equation (3.10) is that it can, locally at least, be transformed into a system of
first-order ordinary differential equations, called the characteristic equations, as fol-
lows: to compute the solution u(x) at a point x ∈U , one finds some curve x(s) lying
within U , connecting x with a point x0 ∈ ∂U , such that along the curve x(s) the
boundary value problem for the PDE is reduced to an initial value problem for the
characteristic equations. As discussed in Section 3.2, a system of ODEs is in prin-

3 Computability of Differential Equations 93

ciple algorithmically uniformly solvable, sometimes quite explicitly. It is shown in
[82] that the method of characteristics can be used to compute local solutions of
(3.10), (3.11), at least for feasible instances and when the boundary ∂U is effec-
tively locally C1. In the same article, it is also shown that although the solution is
locally computable the maximal region of existence of a computable local solution
may not be computable. Moreover, the problem whether a boundary value problem
has a global solution is not algorithmically decidable. The negative results hold even
within the class of quasilinear equations defined by analytic computable functions
over particularly simple domains (quasilinear equations are among the simplest first-
order nonlinear partial differential equations). This fact shows that the algorithmic
unsolvability is intrinsic.

In [15] uniform computability results are given for some simple one-dimensional
elliptic boundary value problems. In particular, computability results are given for
problems with the following format: (i) −u′′+ u′+ u = f on [0,1], with u′(0) =
0 and u′(1) = 0; (ii) −u′′+ au′+ u = f on [0,1], with u(0) = u(1) = 0; and (iii)
−u′′ = f on [0,1], with u(0) = u(1) = 0. The computability of the solutions of these
problems follows from computable versions of the Fréchet-Riesz Theorem and the
Lax-Milgram Theorem, which are also proved in [15].

In [53] the computational complexity of the Dirichlet problem for Poisson’s
equation

∆u = f in Ω , u|∂Ω = g

is analyzed, where Ω ⊆ Rd is a domain, f : Ω → R and g : ∂Ω → R are given
functions, and ∆ is the Laplace operator. It is shown that, for fixed d and for Ω =
B(0,1) = {x ∈ Rd : ‖x‖ ≤ 1}, solving the Dirichlet problem for Poisson’s equation
is “complete” for the complexity class #P in the sense that FP = #P if and only if
the solution of the Dirichlet problem for Poisson’s equation on B(0,1) is computable
in polynomial time for any choice of polynomial-time computable functions f and
g.

In [95] (see also [89, 90]) the computability of the initial value problems for the
linear Schrödinger equation ut = i∆u+ φ and the nonlinear Schrödinger equation
iut =−∆u+mu+ |u|2u is studied and it is shown that the solution operator is com-
putable if the initial data are Sobolev functions but noncomputable in the linear case
if the initial data are Lp-functions and p 6= 2.

In [72] the authors study symmetric hyperbolic systems of PDEs of the form{
A ∂u

∂ t +∑
m
i=1 Bi

∂u
∂xi

= 0
u(x,0) = ϕ(x)

(3.12)

where A,B1, . . . ,Bm are computable constant symmetric n× n matrices, t ≥ 0, and
x∈ [0,1]m. There it is shown that if the matrices are fixed and if the first- and second-
order derivatives of the initial function ϕ are bounded, the operator which maps
the initial condition ϕ to the solution of the PDE is computable (see also [73] for
a correction and [74, Remark 5.5.3] for the statement given here, which removes
some unneeded assumptions used in the original formulation of [72]). Later it was
shown in [74, Theorem 5.3] that the operator which maps an initial condition and the

94 Daniel S. Graça and Ning Zhong

matrices A,B1, . . . ,Bm to the solution of the PDE is uniformly computable, provided
the matrices satisfy some algebraic conditions.

More recently, the computational complexity of solving PDEs with the format
(3.12) was studied in [76, 75]. There the (uniform) complexity of this problem is
shown to be in EXPTIME in general and in PTIME under certain conditions.

The Dirichlet Problem was also analyzed in [16, 17, 18] using Bishop’s frame-
work of constructive mathematics. It is shown that weak solutions of the Dirichlet
Problem exist if certain conditions hold.

3.6 Some Open Problems

In this chapter, we have presented several results concerning the computability and
computational complexity of differential equations. However, the field of differen-
tial equations is vast, and many more problems in the field await exploration from
the perspectives of computable analysis. Here we merely give two open problems.

1. The first problem is to give general principles from which the computability or
noncomputability of limit sets of ODEs follows as corollaries. For example, it
has been shown that a basin of attraction of an ODE defined by a hyperbolic
rational function f is computable, uniformly in f ([9]); however, on the other
hand, if f is analytic, computable but non-hyperbolic, a basin of attraction is no
longer necessarily computable ([33]). It would be interesting to know whether
a computable, analytic and hyperbolic f ensures the computability of a basin of
attraction.

2. The second problem is to characterize the computational complexity of well-
known computable PDEs such as the KdV equation, the Schrödinger equation,
and the Navier-Stokes equation.

Acknowledgements D. Graça was partially funded by FCT/MCTES through national funds and
co-funded EU funds under the project UIDB/50008/2020. This project has received funding
from the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 731143.

References

1. Abad, A., Barrio, R., Blesa, F., Rodrı́guez, M.: Algorithm 924: Tides, a Taylor series integra-
tor for differential equations. ACM Trans. Math. Softw. 39(1), 5:1–5:28 (2012)

2. Aberth, O.: The failure in computable analysis of a classical existence theorem for differential
equations. Proceedings of the American Mathematical Society 30, 151–156 (1971)

3. Afraimovich, V.S., Bykov, V.V., Shil’nikov, L.P.: On the appearence and structure of the
Lorenz attractor. Dokl. Acad. Sci. USSR 234, 336–339 (1977)

4. Araújo, V., Pacifico, M.: Three-Dimensional Flows. Springer (2010)
5. Arnold, V.I.: Ordinary Differential Equations. MIT Press (1978)

3 Computability of Differential Equations 95

6. Arnold, V.I., Avez, A.: Ergodic Problems of Classical Mechanics. W.A. Benjamin (1968)
7. Atkinson, K.E.: An Introduction to Numerical Analysis, 2nd edn. John Wiley & Sons (1989)
8. Barrio, R., Rodrı́guez, M., Abad, A., Blesa, F.: Breaking the limits: the Taylor series method.

Appl. Math. Comput. 217(20), 7940–7954 (2011)
9. Beardon, A.F.: Iteration of Rational Functions. Springer (1991)

10. Birkhoff, G. (ed.): A Source Book in Classical Analysis, chap. Osgood’s Existence Theorem,
pp. 251–258. Harvard University Press (1973)

11. Birkhoff, G., Rota, G.C.: Ordinary Differential Equations, 4th edn. John Wiley & Sons
(1989)

12. Bournez, O., Graça, D.S., Pouly, A.: Solving analytic differential equations in polynomial
time over unbounded domains. In: F. Murlak, P. Sankowski (eds.) Mathematical Foundations
of Computer Science 2011, Lecture Notes in Computer Science, vol. 6907, pp. 170–181.
Springer, Heidelberg (2011)

13. Bournez, O., Graça, D.S., Pouly, A.: On the complexity of solving initial value problems. In:
J. van der Hoeven, M. van Hoeij (eds.) ISSAC 2012—Proceedings of the 37th International
Symposium on Symbolic and Algebraic Computation, pp. 115–121. ACM, New York (2012)

14. Boyer, F., Fabrie, P.: Mathematical Tools for the Study of the Incompressible Navier-Stokes
Equations and Related Models. Springer (2013)

15. Brattka, V., Yoshikawa, A.: Towards computability of elliptic boundary value problems in
variational formulation. Journal of Complexity 22(6), 858–880 (2006)

16. Bridges, D.S., Wang, Y.: Constructive aspects of the Dirichlet problem. Journal of Universal
Computer Science 3(11), 1148–1161 (electronic) (1997)

17. Bridges, D.S., Wang, Y.: Constructive weak solutions of the Dirichlet problem. The Journal
of the London Mathematical Society. Second Series 57(3), 655–667 (1998)

18. Bridges, D.S., Wang, Y.: Weak solutions of the Dirichlet problem and the locatedness of
H1

0 (ω). New Zealand Journal of Mathematics 27(1), 1–5 (1998)
19. Buser, P., Scarpellini, B.: Recursive analysis of singular ordinary differential equations. An-

nals of Pure and Applied Logic 162, 20–35 (2010)
20. Bush, V.: The differential analyzer. A new machine for solving differential equations. J.

Franklin Inst. 212, 447–488 (1931)
21. Carothers, D.C., Parker, G.E., Sochacki, J.S., Warne, P.G.: Some properties of solutions to

polynomial systems of differential equations. Electron. J. Diff. Eqns. 2005(40) (2005)
22. Cenzer, D., Remmel, J.B.: Index sets for computable differential equations. Mathematical

Logic Quarterly 50(4,5), 329–344 (2004)
23. Cleave, J.: The primitive recursive analysis of ordinary differential equations and the com-

plexity of their solutions. Journal of Computer and Systems Sciences 3, 447–455 (1969)
24. Collins, P.: Continuity and computability on reachable sets. Theoretical Computer Science

341, 162–195 (2005)
25. Collins, P., Graça, D.: Effective computability of solutions of ordinary differential equations

the thousand monkeys approach. In: V. Brattka, R. Dillhage, T. Grubba, A. Klutsch (eds.)
CCA 2008, Fifth International Conference on Computability and Complexity in Analysis,
Electronic Notes in Theoretical Computer Science, vol. 221, pp. 103–114. Elsevier (2008),
CCA 2008, Fifth International Conference, Hagen, Germany, August 21–24, 2008

26. Collins, P., Graça, D.S.: Effective computability of solutions of differential inclusions: the
ten thousand monkeys approach. Journal of Universal Computer Science 15(6), 1162–1185
(2009)

27. Corliss, G., Chang, Y.F.: Solving ordinary differential equations using Taylor series. ACM
Trans. Math. Softw. 8(2), 114–144 (1982)

28. Edalat, A., Pattinson, D.: A domain-theoretic account of Picard’s theorem. LMS Journal of
Computation and Mathematics 10, 83–118 (2007)

29. Farjudian, A.: Polynomial-time solution of initial value problems using polynomial enclo-
sures. In: L. Ong, R. de Queiroz (eds.) Logic, Language, Information and Computation,
Lecture Notes in Computer Science, vol. 7456, pp. 232–245. Springer, Heidelberg (2012)

30. Gay, W., Zhang, B.Y., Zhong, N.: Computability of solutions of the Korteweg-de Vries equa-
tion. Mathematical Logic Quarterly 47(1), 93–110 (2001)

96 Daniel S. Graça and Ning Zhong

31. Gherardi, G.: Computability and incomputability of differential equations. In: G. Corsi,
R. Lupacchini (eds.) Deduction, Computation, Experiment, pp. 223–242. Springer Verlag,
Milano (2008)

32. Giga, Y., Miyakawa, T.: Solutions in Lr of the Navier-Stokes initial value problem. Archive
for Rational Mechanics and Analysis 89, 267–281 (1985)

33. Graça, D., Zhong, N.: An analytic system with a computable hyperbolic sink whose basin of
attraction is non-computable. Theory of Computing Systems 57(2), 478–520 (2015)

34. Graça, D.S., Campagnolo, M.L., Buescu, J.: Computability with polynomial differential
equations. Advances in Applied Mathematics 40(3), 330–349 (2008)

35. Graça, D.S., Costa, J.F.: Analog computers and recursive functions over the reals. Journal of
Complexity 19(5), 644–664 (2003)

36. Graça, D.S., Zhong, N., Buescu, J.: Computability, noncomputability and undecidability of
maximal intervals of IVPs. Transactions of the American Mathematical Society 361(6),
2913–2927 (2009)

37. Graça, D.S., Zhong, N., Buescu, J.: Computability, noncomputability, and hyperbolic sys-
tems. Appl. Math. Comput. 219(6), 3039–3054 (2012)

38. Graça, D.S., Zhong, N., Dumas, H.S.: The connection between computability of a nonlinear
problem and its linearization: The Hartman-Grobman theorem revisited. Theoret. Comput.
Sci. 457, 101–110 (2012)

39. Graça, D.S., Buescu, J., Campagnolo, M.L.: Boundedness of the domain of definition is
undecidable for polynomial ODEs. In: R. Dillhage, T. Grubba, A. Sorbi, K. Weihrauch,
N. Zhong (eds.) Proceedings of the Fourth International Conference on Computability and
Complexity in Analysis (CCA 2007), Electronic Notes in Theoretical Computer Science, vol.
202, pp. 49–57. Elsevier (2008), CCA 2007, Siena, Italy, June 16–18, 2007

40. Graça, D.S., Rojas, C., Zhong, N.: Computing geometric Lorenz attractors with arbitrary
precision. Transactions of the American Mathematical Society 370(4), 2955–2970 (2018)

41. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcation
of Vector Fields. Springer (1983)

42. Guckenheimer, J., Williams, R.F.: Structural stability of Lorenz attractors. Publ. Math. IHES
50, 59–72 (1979)

43. Hartman, P.: Ordinary Differential Equations, 2nd edn. Birkhäuser (1982)
44. Hirsch, M.W., Smale, S., Devaney, R.: Differential Equations, Dynamical Systems, and an

Introduction to Chaos. Academic Press (2004)
45. Jorba, À., Zou, M.: A software package for the numerical integration of ODEs by means of

high-order taylor methods. Experimental Mathematics 14(1), 99–117 (2005)
46. Kato, T.: On the convergence of the perturbation method. i. Progr. Theor. Phys. 4(4), 514–523

(1949)
47. Kato, T.: On the convergence of the perturbation method. ii. Progr. Theor. Phys. 5(1), 95–101

(1950)
48. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-space

complete. In: 24th Annual IEEE Conference on Computational Complexity, pp. 149–160.
IEEE Computer Soc., Los Alamitos, CA (2009)

49. Kawamura, A.: Lipschitz continuous ordinary differential equations are polynomial-space
complete. Computational Complexity 19(2), 305–332 (2010)

50. Kawamura, A., Cook, S.A.: Complexity theory for operators in analysis. ACM Transactions
on Computation Theory 4(2), 5:1–5:24 (2012)

51. Kawamura, A., Ota, H., Rösnick, C., Ziegler, M.: Computational complexity of smooth dif-
ferential equations. Logical Methods in Computer Science 10, 1:6,15 (2014)

52. Kawamura, A., Steinberg, F., Thies, H.: Parameterized complexity for uniform operators on
multidimensional analytic functions and ODE solving. In: L. Moss, R. de Queiroz, M. Mar-
tinez (eds.) Logic, language, information, and computation, Lecture Notes in Computer Sci-
ence, vol. 10944, pp. 223–236. Springer, Berlin (2018)

53. Kawamura, A., Steinberg, F., Ziegler, M.: On the computational complexity of the Dirichlet
problem for Poisson’s equation. Mathematical Structures in Computer Science 27(8), 1437–
1465 (2017)

3 Computability of Differential Equations 97

54. Kawamura, A., Thies, H., Ziegler, M.: Average-case polynomial-time computability of
Hamiltonian dynamics. In: 43rd International Symposium on Mathematical Foundations of
Computer Science, LIPIcs. Leibniz Int. Proc. Inform., vol. 117, pp. Art. No. 30, 17. Schloss
Dagstuhl. Leibniz-Zent. Inform., Wadern (2018)

55. Ko, K.I.: On the computational complexity of ordinary differential equations. Inform. Contr.
58, 157–194 (1983)

56. Ko, K.I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science.
Birkhäuser, Boston (1991)

57. Ko, K.I., Friedman, H.: Computing power series in polynomial time. Advances in Applied
Math. 9, 40–50 (1988)

58. Miller, W.: Recursive function theory and numerical analysis. Journal of Computer and
Systems Sciences 4, 465–472 (1970)

59. Moore, C.: Generalized shifts: unpredictability and undecidability in dynamical systems.
Nonlinearity 4(2), 199–230 (1991)

60. Müller, N.T.: Uniform computational complexity of Taylor series. In: T. Ottmann (ed.) Pro-
ceedings of the 14th International Colloquium on Automata, Languages, and Programming,
Lecture Notes in Computer Science, vol. 267, pp. 435–444. Springer, Berlin (1987)

61. Müller, N.T., Moiske, B.: Solving initial value problems in polynomial time. In: Proceedings
of the 22th JAIIO - Panel’93, Part 2, pp. 283–293 (1993), Buenos Aires, 1993

62. Patel, M.K., Markatos, N.C., Cross, M.: A critical evaluation of seven discretization schemes
for convection-diffusion equations. International Journal for Numerical Methods in Fluids
5(3), 225–244 (1985)

63. Perko, L.: Differential Equations and Dynamical Systems, 3rd edn. Springer (2001)
64. Pouly, A., Graça, D.S.: Computational complexity of solving polynomial differential equa-

tions over unbounded domains. Theoretical Computer Science 626, 67–82 (2016)
65. Pour-El, M.B., Richards, J.I.: A computable ordinary differential equation which possesses

no computable solution. Annals Math. Logic 17, 61–90 (1979)
66. Pour-El, M.B., Richards, J.I.: The wave equation with computable initial data such that its

unique solution is not computable. Advances in Math. 39, 215–239 (1981)
67. Pour-El, M.B., Richards, J.I.: Computability in Analysis and Physics. Perspectives in Math-

ematical Logic. Springer, Berlin (1989)
68. Pour-El, M.B., Zhong, N.: The wave equation with computable initial data whose unique

solution is nowhere computable. Mathematical Logic Quarterly 43(4), 499–509 (1997)
69. Rettinger, R., Weihrauch, K., Zhong, N.: Topological complexity of blowup problems. Jour-

nal of Universal Computer Science 15(6), 1301–1316 (2009)
70. Robinson, C.: Dynamical Systems. CRC Press (1995)
71. Ruohonen, K.: An effective Cauchy-Peano existence theorem for unique solutions. Internat.

J. Found. Comput. Sci. 7(2), 151–160 (1996)
72. Selivanova, S., Selivanov, V.: Computing solutions of symmetric hyperbolic systems of

PDE’s. In: V. Brattka, R. Dillhage, T. Grubba, A. Klutsch (eds.) CCA 2008, Fifth Inter-
national Conference on Computability and Complexity in Analysis, Electronic Notes in The-
oretical Computer Science, vol. 221, pp. 243–255. Elsevier (2008), CCA 2008, Fifth Inter-
national Conference, Hagen, Germany, August 21–24, 2008

73. Selivanova, S., Selivanov, V.: Computing the solution operators of symmetric hyperbolic
systems of PDE. Journal of Universal Computer Science 15(6), 1337–1364 (2009)

74. Selivanova, S., Selivanov, V.: Computing solution operators of boundary-value problems for
some linear hyperbolic systems of PDEs. Logical Methods in Computer Science 13(4) (2017)

75. Selivanova, S., Selivanov, V.: Bit complexity of computing solutions for symmetric hyper-
bolic systems of PDEs with guaranteed precision. Computability 10, (to appear) (2021)

76. Selivanova, S.V., Selivanov, V.L.: Bit complexity of computing solutions for symmetric hy-
perbolic systems of PDEs (extended abstract). In: F. Manea, R. Miller, D. Nowotka (eds.)
Sailing Routes in the World of Computation, Lecture Notes in Computer Science, vol. 10936,
pp. 376–385. Springer, Cham (2018)

77. Shannon, C.E.: Mathematical theory of the differential analyzer. J. Math. Phys. MIT 20,
337–354 (1941)

98 Daniel S. Graça and Ning Zhong

78. Smale, S.: Differentiable dynamical systems. Bull. Amer. Math. Soc. 73, 747–817 (1967)
79. Smith, W.D.: Church’s thesis meets the N-body problem. Applied Mathematics and Compu-

tation 178(1), 154–183 (2006)
80. Sohr, H.: The Navier-Stokes Equations: An Elementary Functional Analytic Approach.

Birkhäuser (2001)
81. Sun, S.M., Zhong, N.: On effective convergence of numerical solutions for differential equa-

tions. ACM Transactions on Computation Theory 6(1), Art. 4, 25 (2014)
82. Sun, S.M., Zhong, N.: Computability aspects for 1st-order partial differential equations via

characteristics. Theoretical Computer Science 583, 27–39 (2015)
83. Sun, S.M., Zhong, N., Ziegler, M.: On computability of Navier-Stokes’ equation. In:

A. Beckmann, V. Mitrana, M. Soskova (eds.) Evolving Computability, Lecture Notes in Com-
puter Science, vol. 9136, pp. 334–342. Springer, Cham (2015), 11th Conference on Com-
putability in Europe, CiE 2015, Bucharest, Romania, June 29–July 3, 2015

84. Szőkefalvi-Nagy, B.: Spektraldarstellung linearer Transformationen des Hilbertschen Rau-
mes. Springer (1942)

85. Thies, H.: Uniform computational complexity of ordinary differential equations with applica-
tions to dynamical systems and exact real arithmetic. Graduate School of Arts and Sciences,
University of Tokyo, Tokyo, Japan (2018)

86. Tucker, W.: A rigorous ODE solver and Smale’s 14th problem. Foundations of Computa-
tional Mathematics 2(1), 53–117 (2002)

87. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000)
88. Weihrauch, K., Zhong, N.: The wave propagator is Turing computable. In: J. Wiedermann,

P. van Emde Boas, M. Nielsen (eds.) Automata, Languages and Programming, Lecture Notes
in Computer Science, vol. 1644, pp. 697–706. Springer, Berlin (1999), 26th International
Colloquium, ICALP’99, Prague, Czech Republic, July, 1999

89. Weihrauch, K., Zhong, N.: Is the linear Schrödinger propagator Turing computable? In:
J. Blanck, V. Brattka, P. Hertling (eds.) Computability and Complexity in Analysis, Lecture
Notes in Computer Science, vol. 2064, pp. 369–377. Springer, Berlin (2001), 4th Interna-
tional Workshop, CCA 2000, Swansea, UK, September 2000

90. Weihrauch, K., Zhong, N.: Turing computability of a nonlinear Schrödinger propagator. In:
J. Wang (ed.) Computing and Combinatorics, Lecture Notes in Computer Science, vol. 2108,
pp. 596–599. Springer, Berlin (2001), 7th Annual International Conference, COCOON 2001,
Guilin, China, August 20-23, 2001

91. Weihrauch, K., Zhong, N.: Is wave propagation computable or can wave computers beat the
Turing machine? Proceedings of the London Mathematical Society 85(2), 312–332 (2002)

92. Weihrauch, K., Zhong, N.: The solution operator of the Korteweg-de Vries equation is com-
putable. In: V. Brattka, M. Schröder, K. Weihrauch (eds.) CCA 2002 Computability and
Complexity in Analysis, Electronic Notes in Theoretical Computer Science, vol. 66. Else-
vier, Amsterdam (2002), 5th International Workshop, CCA 2002, Málaga, Spain, July 12–13,
2002

93. Weihrauch, K., Zhong, N.: Computing the solution of the Korteweg-de Vries equation with
arbitrary precision on Turing machines. Theoretical Computer Science 332(1–3), 337–366
(2005)

94. Weihrauch, K., Zhong, N.: An algorithm for computing fundamental solutions. SIAM Jour-
nal on Computing 35(6), 1283–1294 (2006)

95. Weihrauch, K., Zhong, N.: Computing Schrödinger propagators on Type-2 Turing machines.
Journal of Complexity 22(6), 918–935 (2006)

96. Weihrauch, K., Zhong, N.: Computable analysis of the abstract Cauchy problem in a Ba-
nach space and its applications (I). In: D. Cenzer, R. Dillhage, T. Grubba, K. Weihrauch
(eds.) Proceedings of the Third International Conference on Computability and Complexity
in Analysis, Electronic Notes in Theoretical Computer Science, vol. 167, pp. 33–59. Elsevier,
Amsterdam (2007), CCA 2006, Gainesville, Florida, USA, November 1–5, 2006

97. Weihrauch, K., Zhong, N.: Computable analysis of the abstract Cauchy problem in a Banach
space and its applications I. Mathematical Logic Quarterly 53(4–5), 511–531 (2007)

3 Computability of Differential Equations 99

98. Zhong, N.: Computability structure of the Sobolev spaces and its applications. Theoretical
Computer Science 219, 487–510 (1999)

99. Zhong, N.: Computable analysis of a non-homogeneous boundary-value problem for the
Korteweg-de Vries equation. In: S.B. Cooper, B. Löwe, L. Torenvliet (eds.) New Compu-
tational Paradigms, Lecture Notes in Computer Science, vol. 3526, pp. 552–561. Springer,
Berlin (2005), First Conference on Computability in Europe, CiE 2005, Amsterdam, The
Netherlands, June 2005

100. Zhong, N.: Computational unsolvability of domains of attraction of nonlinear systems. Proc.
Amer. Math. Soc. 137(8), 2773–2783 (2009)

101. Zhong, N., Weihrauch, K.: Computability theory of generalized functions. Journal of the
Association for Computing Machinery 50(4), 469–505 (2003)

	Chapter 3 Computability of Differential Equations
	3.1 Introduction
	3.2 Computability of the Solutions of Ordinary Differential Equations
	3.2.1 Computability over Compact Sets
	3.2.2 Computability over Non-compact Sets

	3.3 Computational Complexity of the Solutions of Ordinary Differential Equations
	3.3.1 Results for Compact Sets
	3.3.2 Results for Non-compact Sets

	3.4 Computability of Qualitative Behaviors of Ordinary Differential Equations
	3.5 Computability of Partial Differential Equations
	3.6 Some Open Problems
	References

