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Preface

Computable analysis is the theory of computability and complexity in analysis that
arose out of Turing’s seminal work [22, 23] in the 1930s. Turing’s work was moti-
vated by questions such as: which real numbers and real number functions are com-
putable, which mathematical tasks in analysis can be solved by algorithmic means?

Nowadays this theory has many different facets that embrace topics from com-
putability theory, algorithmic randomness, computational complexity, dynamical
systems, fractals, and analog computers to logic, descriptive set theory, construc-
tivism, and reverse mathematics. Over the previous decades computable analysis
has invaded many branches of analysis, and computability and complexity questions
arising from real and complex analysis, functional analysis, the theory of differential
equations, (geometric) measure theory, and topology have been studied.

This handbook contains eleven chapters on computability and complexity in
analysis. They cover many important research topics in computable analysis of the
past two decades. Researchers and graduate students in the areas of theoretical com-
puter science and mathematical logic will find systematic introductions to many
branches of computable analysis and a wealth of information and references that
will help them to navigate through the modern research literature in this field.

We thank all of the authors of the chapters in this book for their contributions.
Each chapter has been reviewed according to the usual standards of our discipline.
We thank the external referees for their careful work.

Readers who wish to know more about computable analysis can find a lot of
information about it on the “Computability & Complexity in Analysis Network”
(short: CCA Network): http://cca-net.de/, for example a list of relevant
conferences and workshops, a bibliography, and a list of the members of the net-
work.

Finally, we would like to dedicate this handbook to Klaus Weihrauch. His efforts
played a central role in the tremendous growth of the field since the 1990s.

vii
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viii Preface

A Very Short History of Computable Analysis in the Previous
Century

In this section we give a very short overview of the development of computable
analysis in the twentieth century. We restrain ourselves from citing any of the many
important original research papers in this area with two exceptions: the seminal
papers [22, 23] by Turing. For a more detailed historical account including many
references the reader is referred to [2].

Computation problems have been solved for thousands of years. In fact, the de-
sire to solve computation problems that arose in everyday life and in other scientific
disciplines has been the main driving force behind the development of mathematics
throughout its history. But it was not before the twentieth century that the process
of solving computation problems itself was analyzed in detail. The first person who
did this was Alan Turing in his seminal paper “On Computable Numbers, with an
Application to the Entscheidungsproblem” [22]. In this paper he developed the no-
tion of a Turing machine, which is still considered the most important theoretical
model of a digital computer. The Turing machine model is the basis of both com-
putability theory and structural complexity theory. It offers mathematically precise
notions of what it means to solve a computation problem and what it means to solve
a computation problem within a certain amount of time, e.g., within polynomial
time, or with a certain amount of workspace. Interestingly, in both fields just men-
tioned, computability theory (which has been called “recursion theory” for a long
time) and structural complexity theory, most of the computation problems that were
analyzed using the notions offered by the Turing machine model were problems
over the natural numbers, in recursion theory in particular questions involving sets
of natural numbers, or over other discrete structures. Problems involving objects
like real numbers or real functions, so problems from (numerical) analysis or from
other parts of the “continuous world” of mathematics, were studied as well, but to
a much smaller extent. This is surprising as the paper [22] itself was explicitly con-
cerned with the question of which real numbers should be called computable. This
question was, as it seems, the main motivation for Turing to develop his machine
model. In this paper and in a correction [23] that appeared shortly afterwards Tur-
ing gave definitions of computable real numbers and computable real functions and
made first observations about these objects. So, one may call these papers also the
first papers concerned with computability in analysis. Of course, there were already
other scientists before Turing who worked on ideas concerning computability of real
numbers or real functions. One should mention Émil Borel, Luitzen E. J. Brouwer,
and work concerned with primitive recursion in the 1920s. But the precise mathe-
matical notions concerning computability that are needed for a satisfying theory of
computability in analysis were first provided by Turing.

Turing’s ideas concerning the computability of real numbers and functions were
taken up by Banach and Mazur already before the Second World War. Some notes
by Mazur on this were published only much later [16], though. Banach and Mazur
called a function mapping real numbers to real numbers computable if it maps any
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computable sequence of real numbers to a computable sequence of real numbers.
This idea was taken up again later. After the Second World War several people
across the world worked on computability questions concerning real numbers or
real functions. For example Ernst Specker in Switzerland constructed the so-called
Specker sequence, a strictly increasing computable sequence of rational numbers
converging to a noncomputable real number. Already in the papers [22, 23] by Tur-
ing different representations of real numbers had been considered. The questions
concerning different representations of real numbers were taken up by Specker and
other people, for example by Andrzej Mostowski. In the 1950s Georg Kreisel and H.
Gordon Rice obtained some first results in computable analysis as well. In a series
of papers Andrzej Grzegorczyk laid the foundations for the “Polish school of com-
putable analysis”. In particular, he gave several characterizations of a computability
notion for real functions that may be called effective continuity. These notions were
the basis for several later developments in computable analysis. At the same time
Daniel Lacombe in France introduced effectivity notions for open sets of real num-
bers and was the first to extend computability notions from Euclidean spaces to
other, more general topological spaces. Also at the same time, Andrej A. Markov
founded the “Russian school of constructive mathematics”, with contributions by
Andrej A. Markov, Nikolai Šanin, Igor D. Zaslavskiı̆, Gregory Ceı̆tin, Vladimir P.
Orevkov, Osvald Demuth, Boris Kushner, and many others. This school combined
ideas from constructive mathematics with notions from computability theory. If one
ignores the constructive aspects, one may say that in this theory a function map-
ping computable real numbers to computable real numbers is called computable if
there is an effective procedure for mapping a program for the input real number
to a program for the output real number. For an overview the reader is referred to
Šanin’s book [20] or Kushner’s book [15]. Oliver Aberth’s work [1] in the 1960s and
1970s is based on similar ideas and notions, though developed not in a constructive
framework but in a classical computability-theoretic framework. In the book [3]
Errett Bishop developed a considerable part of analysis in a constructive way. A
revised and expanded version [4] appeared in 1985. Although these books are nei-
ther based on computability-theoretic notions nor intended to be a contribution to
computable analysis, the constructive proofs in these books can easily be turned into
computability-theoretic statements. The influential approach to computable analysis
by Marian Boykan Pour-El and by J. Ian Richards was based on one of the character-
izations of computable functions by Grzegorczyk and culminated in their book [19].
They were in particular concerned with computability on Banach spaces and with
the solvability of differential equations in the strict sense of computability theory. In
the 1980s Harvey Friedman and Ker-I Ko started to work on complexity-theoretic
aspects of real number computations. Their results are summarized in another in-
fluential book [12], by Ker-I Ko. Slightly earlier Hauck in East Germany had taken
up the topic of representations of real numbers and extended it to representations
of other objects. This idea was taken up by Klaus Weihrauch and his Ph.D. student
Christoph Kreitz who developed a systematic theory of representations of certain
topological spaces and showed how to develop computability notions for general
spaces using admissible representations and computability-theoretic notions. For an
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overview of computable analysis from this point of view the reader is referred to the
monograph [24] by Weihrauch. Shorter reviews of computable analysis are [6] and
[5]. Since then computable analysis has seen a rather rapid and broad development.
It is the purpose of this handbook to give the reader an overview of many impor-
tant current research topics in the general area of computability and complexity in
analysis.

Overview of the Chapters

We have grouped the eleven chapters under the following headings:

1. Computability in Analysis
2. Complexity, Dynamics, and Randomness
3. Constructivity, Logic, and Descriptive Complexity

Computability in Analysis

The four chapters in the part about “Computability in Analysis” deal with com-
putability questions concerning objects in classical areas of analysis: real numbers,
subsets of metric spaces, differential equations, and complex analysis.

One of the fundamental notions of computable analysis is the notion of a com-
putable real number. We already mentioned that Specker had shown that there exist
noncomputable real numbers that can nevertheless be approximated effectively from
one side, the so-called left-computable or c.e. real numbers. In the chapter “Com-
putability of Real Numbers” Robert Rettinger and Xizhong Zheng review these and
many other classes of real numbers that can be approximated in some effective way
and that have been analyzed during the past decades.

We also mentioned that Lacombe had started to analyze computability condi-
tions for open subsets of Euclidean space. In the chapter “Computability of Subsets
of Metric Spaces” Zvonko Iljazović and Takayuki Kihara give a survey of results re-
lated to computability conditions for subsets of metric spaces. They discuss various
effective topological properties, computability of points in co-c.e. closed sets, clas-
sifications of Polish spaces, the question of when semicomputable sets are actually
computable, computability structures, and many other topics.

In the chapter “Computability of Differential Equations” Daniel Graça and Ning
Zhong give a survey of computability-theoretic and complexity-theoretic results
concerning differential equations. They study when the solution of an initial value
problem for an ordinary differential equation is computable and present results con-
cerning the computational complexity of a computable solution. They also study
the asymptotic behavior of solutions of ordinary differential equations and several
important partial differential equations.
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Valentin V. Andreev and Timothy H. McNicholl present an introduction to the
field of “Computable Complex Analysis”. They discuss computability-theoretic and
complexity-theoretic results on conformal mappings, harmonic functions, infinite
products, and constants, and they present several open problems.

Complexity, Dynamics, and Randomness

The first chapter in this part of the book, the chapter “Computable Geometric Com-
plex Analysis and Complex Dynamics” by Cristóbal Rojas and Michael Yampol-
sky, deals with two special parts of computable complex analysis that have been the
subject of a lot of activity during the past two decades: on the one hand, the com-
putability and computational complexity of conformal mappings and their boundary
extensions and, on the other hand, the computability and computational complexity
of objects in complex dynamics, in particular of Julia sets. The article complements
the book [7] by Braverman and Yampolsky on the computability on Julia sets.

A different topic and, in fact, different computation models, are discussed in
the chapter “A Survey on Analog Models of Computation” by Olivier Bournez and
Amaury Pouly. They discuss many different analog models of computation, mostly
from the point of view of computation theory.

The fundamental notion of an algorithmically random or Martin-Löf random bi-
nary sequence was invented in the 1960s by Martin-Löf. One should also mention
Solomonoff, Kolmogorov, and Chaitin in this context. In the 1990s and the first
decade after 2000 the research area of algorithmic randomness was extremely ac-
tive, leading to two textbooks [17, 10]. A recent survey article highlighting relations
between this area and computable analysis is [18]. The chapter “Computable Mea-
sure Theory and Algorithmic Randomness” by Mathieu Hoyrup and Jason Rute
gives a compact overview of recent results in computable measure and probability
theory and in algorithmic randomness.

In the chapter “Algorithmic Fractal Dimensions in Geometric Measure Theory”
Jack H. Lutz and Elvira Mayordomo survey the development of the theory of algo-
rithmic fractal dimensions in the past two decades. They discuss the interactions of
this theory with geometric measure theory, in particular with fractal geometry, and
its connections with computable functions on the reals. And they present recent re-
sults that show how one can use algorithmic dimensions for proving new theorems
in classical fractal geometry.

Constructivity, Logic, and Descriptive Complexity

We already mentioned that representations of real numbers have played an impor-
tant role in computable analysis from its very beginnings, namely already in the
papers [22, 23] by Turing. In the chapter “Admissibly Represented Spaces and Qcb-
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Spaces” Matthias Schröder presents an overview of the state of the art concerning
representations of topological spaces, with an emphasis on admissibly represented
spaces and the closely related class of qcb-spaces.

We also mentioned that there are various versions of constructive analysis. Two
quite recent books on constructive analysis are [8, 9]. In the chapter “Bishop-Style
Constructive Reverse Mathematics” Hannes Diener and Hajime Ishihara present an
overview of the current state of the area called constructive reverse mathematics. It
is the goal of this area to put some order into principles and results from classical
mathematics that cannot be proved in Bishop-style constructive mathematics. This
area is related to Simpson-style reverse mathematics [21] and to the topic of the final
chapter of the handbook.

The final chapter of the handbook, “Weihrauch Complexity in Computable Anal-
ysis” by Vasco Brattka, Guido Gherardi, and Arno Pauly, is a self-contained intro-
duction to the currently very active area of Weihrauch complexity and its applica-
tions in computable analysis. The goal of this theory is to order certain mathemat-
ical theorems according to their computational strength. The tool used for this is
Weihrauch reducibility. The chapter also contains a discussion of the relation of this
approach to other approaches.

Outlook

There are more topics that would have deserved to be treated in chapters in this
book. For example, the area of “proof mining” is related to computable analysis. In
this area classical proofs of theorems are analyzed with the goal to obtain effective
bounds or effective rates of convergence. The interested reader can find more about
this in the survey article [14] and in the monograph [13]. Also, connections to other
versions of constructive mathematics, to realizability, and to domain theory could
not be included. The perhaps most regrettable gap is that we were not able to in-
clude a chapter on the recent developments in uniform computational complexity in
analysis (see for instance [11]). Finally, the fundamental motivation for computable
analysis is the hope that it leads to improvements in the practice of computing. But
the practice of computing is a vast area spreading in many different directions, e.g.,
the development and implementation of numerical algorithms, error analysis, inter-
val analysis, high precision arithmetic, programming languages, software libraries,
computer arithmetic, and many others. Therefore, we have decided not to include
chapters reaching out to these topics.

We hope that the interested reader will find this book useful for getting an
overview of some of the currently most important research directions and hottest
research topics in computable analysis. Enjoy!

Munich, Vasco Brattka
December 2020 Peter Hertling
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Julia Sets: External Rays and Their Impressions . . . . . . . . 167
5.5.7 On the Computability of the Mandelbrot Set . . . . . . . . . . . 168

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6 A Survey on Analog Models of Computation . . . . . . . . . . . . . . . . . . . . 173
Olivier Bournez and Amaury Pouly
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
6.2 Various Analog Machines and Models . . . . . . . . . . . . . . . . . . . . . . . . 176

6.2.1 Historical Accounts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
6.2.2 Differential Analyzers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
6.2.3 Neural Networks and Deep Learning Models . . . . . . . . . . 178
6.2.4 Models from Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . 180
6.2.5 Blum-Shub-Smale’s Model . . . . . . . . . . . . . . . . . . . . . . . . . 181
6.2.6 Natural Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
6.2.7 Solving Various Problems Using Dynamical Systems . . . 183
6.2.8 Distributed Computing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
6.2.9 Black Hole Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
6.2.10 Spatial Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
6.2.11 Various Other Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.3 Dynamical Systems and Computations . . . . . . . . . . . . . . . . . . . . . . . 191
6.3.1 Arbitrary Versus Rational/Computable Reals . . . . . . . . . . . 191
6.3.2 Static Undecidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
6.3.3 Dynamic Undecidability . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.4 Philosophical, Mathematical and Physics-Related Aspects . . . . . . 194
6.4.1 Mathematical Models Versus Systems . . . . . . . . . . . . . . . . 194
6.4.2 Church-Turing Thesis and Variants . . . . . . . . . . . . . . . . . . 195
6.4.3 Are Analog Systems Capable of Hypercomputations? . . . 196
6.4.4 Can Analog Machines Compute Faster? . . . . . . . . . . . . . . . 197
6.4.5 Some Philosophical Aspects . . . . . . . . . . . . . . . . . . . . . . . . 198

6.5 Theory of Analog Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
6.5.1 Generic Formalizations of Analog Computations . . . . . . . 199
6.5.2 R-recursion Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 201
6.5.3 Analog Automata Theories . . . . . . . . . . . . . . . . . . . . . . . . . 202

6.6 Analyzing the Power and Limitations of Analog Computations . . . 203
6.6.1 Neural Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.6.2 Physical Oracles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
6.6.3 On the Effect of Noise on Computations . . . . . . . . . . . . . . 205
6.6.4 Complexity Theories for Analog Computations . . . . . . . . 205
6.6.5 Chemical Reaction Networks . . . . . . . . . . . . . . . . . . . . . . . 206



Contents xix

6.7 Computations by Polynomial Ordinary Differential Equations . . . . 207
6.7.1 GPAC and Polynomial Ordinary Differential Equations . 207
6.7.2 GPAC Generable Functions . . . . . . . . . . . . . . . . . . . . . . . . . 208
6.7.3 GPAC Computability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

7 Computable Measure Theory and Algorithmic Randomness . . . . . . . 227
Mathieu Hoyrup and Jason Rute
7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
7.2 Computable Measure Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

7.2.1 Background from Computable Analysis . . . . . . . . . . . . . . . 228
7.2.2 Framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
7.2.3 Results in Computable Measure and Probability Theory . 237

7.3 Algorithmic Randomness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 242
7.3.1 Effective Null Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243
7.3.2 Effective Convergence Theorems . . . . . . . . . . . . . . . . . . . . 247
7.3.3 Randomness Preservation . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
7.3.4 Product Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251

7.4 Pointwise Computable Measure Theory . . . . . . . . . . . . . . . . . . . . . . . 254
7.4.1 Effective Tightness . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 255
7.4.2 Effective Egorov’s Theorem . . . . . . . . . . . . . . . . . . . . . . . . . 256
7.4.3 Effective Lusin Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
7.4.4 Effective Absolute Continuity . . . . . . . . . . . . . . . . . . . . . . . 257
7.4.5 Properties of Layerwise Computable Functions . . . . . . . . . 258
7.4.6 Randomness via Encoding . . . . . . . . . . . . . . . . . . . . . . . . . . 260
7.4.7 Recovering a Distribution from a Sample . . . . . . . . . . . . . . 262

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 264

8 Algorithmic Fractal Dimensions in Geometric Measure Theory . . . . . 271
Jack H. Lutz and Elvira Mayordomo
8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271
8.2 Algorithmic Information in Euclidean Spaces . . . . . . . . . . . . . . . . . . 274
8.3 Algorithmic Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275

8.3.1 Dimensions of Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
8.3.2 The Correspondence Principle . . . . . . . . . . . . . . . . . . . . . . . 277
8.3.3 Self-Similar Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
8.3.4 Dimension Level Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281
8.3.5 Dimensions of Points on Lines . . . . . . . . . . . . . . . . . . . . . . 282

8.4 Mutual and Conditional Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 284
8.4.1 Mutual Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
8.4.2 Data Processing Inequalities . . . . . . . . . . . . . . . . . . . . . . . . 285
8.4.3 Conditional Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286

8.5 Algorithmic Discovery of New Classical Theorems . . . . . . . . . . . . . 288
8.5.1 The Point-to-Set Principle . . . . . . . . . . . . . . . . . . . . . . . . . . 288
8.5.2 Plane Kakeya Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
8.5.3 Intersections and Products of Fractals . . . . . . . . . . . . . . . . . 291



xx Contents

8.5.4 Generalized Furstenberg Sets . . . . . . . . . . . . . . . . . . . . . . . . 293
8.6 Research Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293

8.6.1 Beyond Self-Similarity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
8.6.2 Beyond Euclidean Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
8.6.3 Beyond Computability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
8.6.4 Beyond Fractals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 298

Part III Constructivity, Logic, and Descriptive Complexity

9 Admissibly Represented Spaces and Qcb-Spaces . . . . . . . . . . . . . . . . . 305
Matthias Schröder
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Department of Mathematics, Faculty of Science, University of Zagreb, Croatia
e-mail: zilj@math.hr

Hajime Ishihara
School of Information Science, Japan Advanced Institute of Science and
Technology, Nomi, Japan
e-mail: ishihara@jaist.ac.jp

Takayuki Kihara
Department of Mathematical Informatics, Graduate School of Informatics, Nagoya
University, Japan
e-mail: kihara@i.nagoya-u.ac.jp

Jack H. Lutz
Department of Computer Science, Iowa State University, Ames, Iowa, USA
e-mail: lutz@cs.iastate.edu

Elvira Mayordomo
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Chapter 1
Computability of Real Numbers

Robert Rettinger and Xizhong Zheng

Abstract In scientific computation and engineering real numbers are typically ap-
proximated by rational numbers which approximate, in principle, the real numbers
up to any given precision. This means that they are treated as the limits of com-
putable sequences of rational numbers where an effective error estimation is often
expected. Although such approximations exist for many constants, they do not exist
for all constants. More precisely, approximations with an effective control over the
approximation error exist only for the computable real numbers. As long as we are
interested in approximations of real numbers, the weakest condition we can ask for
is that a real number can be approximated by a computable sequence of rational
numbers without any information about the approximation error. These real num-
bers are called computably approximable. By relaxing and varying conditions on
the knowledge one has about the approximation, one gets several natural classes
between these two classes of real numbers. In this paper we review the most natu-
ral classes which have been investigated over the past decades with respect to this
viewpoint. Most of these classes can be characterized in different ways, partly by
purely mathematical properties and partly by their computational properties.

1.1 Introduction

A rigorous theory of real numbers is regarded as a solid foundation of modern math-
ematics as well as modern science in general. Typically real-world problems are
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modeled and solved by continuous structures which involve real numbers in some
way. Usually, various computations related to real numbers are involved. Thanks to
the rapid development of modern computer technology, most of these computations
of or on real numbers can be done to a very satisfying precision. Today’s computers
are so powerful that users can hardly recognize the fact that we can compute only by
means of approximations when we actually want to compute on real numbers. Nev-
ertheless, a gap remains between the well-established mathematical theory of real
numbers and the related continuous structures on one side, and the discrete essence
of computation by means of modern computers on the other side. To bridge this gap,
a theory of computability of and on real numbers is of theoretical as well as practical
importance.

Thus it is not surprising that already in the early ages of computer science the
question of a reasonable definition of the computable real numbers was raised: such
a definition was the motivation of Alan Turing’s seminal paper [41] in which the
Turing machine model was introduced. According to Turing [41], “a (real) number
is computable if its decimal can be written down by a machine”, in other words, a
real number is computable if its decimal digits can be represented by a computable
function. After Turing’s definition, Specker [40] compared the definitions of “prim-
itive recursive real numbers” (he called them “recursive real numbers”) and the
“computable real numbers” in terms of computable Cauchy sequences. It turns out
that four definitions of primitive recursive real numbers based on Cauchy sequences,
decimal expansions, Dedekind cuts and nested interval sequences, respectively, are
all different! In particular, the Dedekind primitive recursive real numbers are not
closed under addition, and the decimal primitive recursive real numbers are not
closed under multiplication.

For the computable real numbers, the situation is completely different. As was
pointed out by Robinson [36], Myhill [23], Rice [35] and others, all classical repre-
sentations of real numbers including Cauchy sequences, Dedekind cuts, etc. lead to
the same computability notion of real numbers as Turing’s. However, if we want to
define computable real functions, only the approach based on the representation by
Cauchy sequences seems most suitable. In this case, a real number x is called com-
putable if there is a computable sequence (xs) of rational numbers which converges
to x with an effective error estimation. In other words,

(∀s)(|x− xs| ≤ 2−s), (1.1)

where a sequence (xn) of rational numbers is called computable if there are three
computable functions f ,g,h : N→ N such that xn = ( f (n)− g(n))/(h(n)+ 1) for
all natural numbers n. The class of computable real numbers is denoted by EC (for
Effective Computable).

The effective error estimation condition (1.1) can equivalently be replaced by the
following condition

(∀s)(|xs− xs+1| ≤ 2−s). (1.2)
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This is a pure property of the sequence without mentioning its limit explicitly. A se-
quence (xs) converges effectively if it satisfies Condition (1.2). By relaxing this con-
dition various versions of weakly computable real numbers can be defined accord-
ingly. Depending on the convergence quality of a computable sequence of rational
numbers, its limit will have different levels of computability. One way to measure
the convergence quality is to count how often the condition (1.2) will be destroyed.
More reasonably, we can count the number of non-overlapping index pairs (i, j)
such that |xi− x j| > 2−n for a given n. For example, if the number of such index
pairs is bounded by a computable function of the argument n, then we will have a
quite natural class of real numbers of some weaker computability. In addition, we
are not only interested in the individual weakly computable real numbers, but also
the whole set of all real numbers of the same computability level. In particular, we
will explore which mathematical properties these subsets of weakly computable real
numbers can have.

In this chapter we will discuss some known classes of the real numbers with re-
spect to this viewpoint, i.e., by means of the knowledge we have on the convergence
of a given, computable sequence of rational numbers. We will furthermore give both
mathematical and computational properties of the classes we present and stress the
fact that indeed most of these classes have, in addition to their nice computational
properties, also natural mathematical properties.

This is not the only viewpoint one can take to classify the real numbers. A differ-
ent viewpoint is to classify the real numbers by means of (in)compressibility, i.e.,
Kolmogorov complexity. This viewpoint leads to another interesting and deep clas-
sification of the real numbers including such prominent notions as randomness and
K-triviality. The classification by means of Kolmogorov complexity leads usually
to a totally different one compared to the viewpoint taken in this chapter. However,
both viewpoints have common points of intersection. We will introduce this theory
only so far as it influences the classification by means of our viewpoint. Another
viewpoint is by pure means of classical computability theory: once a representation,
such as the decimal representation we are used to, is chosen, one can easily translate
most results of classical computability theory to real numbers.

We will start out with a brief overview of probably the most important class:
the class of computable real numbers. Afterwards we will give an overview of the
central classes of real numbers defined by different restrictions on the convergence
of a computable sequence of rational numbers. These classes will then be discussed
in the following sections in some more detail.

1.2 Computable Real Numbers

The class of computable real numbers is probably the most important and natural
one among the considered classes. It contains all constants which we can use in real
computations. For most of the constants we are used to, such as the number π or Eu-
ler’s constant e, we know how to compute approximations up to very high precisions
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very efficiently. Another class of real numbers which we can easily compute are the
algebraic numbers. However, not every constant used in mathematics is known to be
computable. For Bloch’s constant, for example, mathematical methods so far give
only very rough bounds. In the last couple of years some of these constants were
proven to be computable, whereas others such as the Hayman-Wu-constant [14] are
not known to be computable at all.

To compute mathematical constants one usually requires mathematical construc-
tions together with error estimations, where both are usually either directly given by
simple constructions or equations or given by images of functions, which are, in the
best case, even analytic. A quite recent result by Hertling and Spandl [15] shows
that such constructions and error estimations can be quite involved. They proved
the polynomial-time computability of the Feigenbaum constant, actually as a by-
product. A different technique, which can be applied to several other problems as
well (see [30]), was used to prove computability of Bloch’s and Landau’s constants
[28, 29]. We do not have the space to explain the details here and thus give rather
some overall intuition on the proof technique. To start with, Landau’s constant λ is
a fundamental constant in complex analysis. It is known that there exist constants
r > 0 such that for any analytic function h : D→ C from the unit disc into the
complex plane there exists a disc of radius at least |h′(0)| · r inside the image h(D).
Landau’s constant is the largest of these constants. By Robinson and Rademacher
[26] it was shown that

0.5≤ λ < 0.54325...

Bloch’s constant is defined similarly where the image disc is a conformal image.
To prove computability of these constants essentially two steps were used: First it
was shown how the radius of the largest (conformal) disc inside an image h(D) for
every holomorphic function f can be approximated up to any precision. This step
needs different techniques for Bloch’s and Landau’s constants. In the second step
a compact space of holomorphic functions is defined in such a way that searching
this space can be effectively done and that the approximations of the first step lead
to approximations of the neighborhood. This reduces the problem to finitely many
approximations solved by the first step.

Besides the fact that most interesting single real numbers belong to the class of
computable real numbers, this class has a rich structure by means of restricting the
resources of the computational model. We have already mentioned that this can be
done by means of classical notions of recursion theory such as primitive recursive
functions. Another way of restricting resources is by means of complexity theory.
Classes like P and NP can be defined nearly literally once one has decided on one
of the representations. Unfortunately, however, different representations can indeed
lead to different notions of complexity classes. Consider the set of dyadics, i.e.,
numbers z/2k for integers z and k and some standard representation over {0,1, .},
e.g., by words 1001.10111 with the usual meaning. Furthermore let the left cut LC
of a real x be the set of dyadics d with d < x. We say that x has a polynomial-time
computable left cut iff LC is in P. We say that x has a polynomial-time computable
Cauchy sequence iff there exists a polynomial-time computable function mapping



1 Computability of Real Numbers 7

0n to some dyadic dn such that |dn− x|< 2−n. We say that x has a polynomial-time
decimal representation iff the function which maps 0n to the decimal representation
of x up to length n is polynomial-time computable. The following result was shown
by Ker-I Ko in [16], where LCP, CSP and DRP denote the set of real numbers with
polynomial-time computable left cut, with polynomial-time computable Cauchy se-
quence and with polynomial-time computable decimal representation, respectively.

Theorem 1.2.1 (Ker-I Ko [16]). LCP = DRP ( CSP

Classical results such as dense time hierarchies as well as results on classes de-
fined by means of time-bounded functions with certain mathematical restrictions,
e.g., by roots of such functions, were also shown for real numbers (see [22]). Fi-
nally even theorems from abstract complexity theory such as the Speed-Up and Gap
Theorems were adapted to the real numbers (see [18]).

1.3 A Finite Hierarchy of Computably Approximable Real
Numbers

The computability of a real number requires an effective error estimation of the
computable approximation by rational numbers. Several weaker conditions on the
convergence of computable approximations have been investigated. The first and
the most popular condition is the monotone approximation. We call a real number
x computably enumerable, (or c.e., for short), if there is an increasing computable
sequence (xs) of rational numbers which converges to x. Equivalently, a real number
x is c.e. if its left Dedekind cut is a c.e. set. This is also the reason why we call such
real numbers c.e. The class of c.e. real numbers is denoted by CE. A c.e. number can
be approximated by rational numbers from the left side on the real line. Therefore,
c.e. real numbers are also called left computable. C.e. real numbers are also widely
called left-c.e. (see [7]).

Naturally, we can also define the right computable or co-c.e. real numbers
in a corresponding way. C.e. and co-c.e. real numbers together are called semi-
computable and we use SC to denote the class of all semi-computable real numbers.
Semi-computable real numbers also have a unified characterization: a real number
x is semi-computable iff there is a computable sequence (xs) of rational numbers
which converges to x (1-)monotonically in the sense that |x− xt | ≤ |x− xs| for all
t > s (see [1, 43] for more details).

Without loss of generality we can consider only the real numbers in the unit inter-
val [0,1] in this chapter. Thus, the binary expansion of a real number x corresponds
to a set A of natural numbers in a very natural way: x = xA := ∑n∈A 2−(n+1). We
will simply call the set A the binary expansion of the real number x if x = xA. The
c.e. real numbers are regarded as the counterparts of the c.e. sets of natural numbers
in computability theory. Apparently, a real number of a c.e. binary expansion must
be c.e. However the converse does not hold, as observed by Jockusch (see [37]).
For example, let A be a non-computable c.e. set with a computable enumeration
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A = {a1,a2,a3, · · ·}. Then the set B := A⊕A := {2n : n ∈ A}∪{2n+ 1 : n 6∈ A} is
not a c.e. set. On the other hand, we have

xB = ∑
i∈A

2−2i−1 +∑
i/∈A

2−2i−2 = ∑
i∈A

2−2i−1 +

(
1
3
−∑

i∈A
2−2i−2

)
=

1
3
+∑

i∈A
2−2i−2.

Therefore, the computable sequence (xs) of rational numbers defined by

xs :=
1
3
+

s

∑
i=1

2−(2ai+2)

is increasing and it converges to xB, and hence xB is a c.e. real number.
As a generalization of Jockusch’s example [37], a precise characterization of c.e.

real numbers in terms of binary expansions is shown by Calude, Hertling, Khous-
sainov and Wang in [4] by strongly ω-c.e. sets. According to Ershov [10, 11, 12], a
set A⊆N is called h-c.e. for a function h : N→N if there is a computable sequence
(As) of finite sets which converges to A such that A0 = /0 and

(∀n)(|{s ∈ N : As(n) 6= As+1(n)}| ≤ h(n)). (1.3)

That is, in the approximation (As) to A, any number n can be put into and deleted
from A no more than h(n) times. A set is called ω-c.e. if it is h-c.e. for a computable
function h. As a variation, a set A is called strongly ω-c.e. if there is a computable
sequence (As) of finite sets which converges to A such that

(∀n)(∀s)(n ∈ As\As+1 =⇒ (∃m < n)(m ∈ As+1\As)). (1.4)

In this case, the approximation (An) always puts a smaller number m into the set A,
whenever a larger number n > m is deleted from A at some stage. This is a natural
generalization of sets like B := A⊕A, for any c.e. set A for which 2n is enumerated
into B whenever 2n+1 is removed from B. Thus, according to (1.4), the number 0
can never be removed from A, the number 1 can be removed at most once, and so
on. In general, the number n can be removed at most 2n−1 times (and can be added
at most 2n times). Therefore, any strongly ω-c.e. set is 2(n+1)-c.e. and hence is also
ω-c.e. On the other hand, according to Ershov’s hierarchy theorem, not every ω-c.e.
set is strongly ω-c.e. Strongly ω-c.e. sets are also called almost c.e. (see [7])

Theorem 1.3.1 (Soare [37], Ambos-Spies et al. [1], Calude et al. [4]). A real num-
ber x is c.e. iff its binary expansion is a strongly ω-c.e. set.

Obviously, the sum of two c.e. numbers is also c.e., i.e., the class CE is closed
under addition. If x is c.e., then −x is co-c.e. but not c.e. if x is not computable.
Therefore, we should consider the class SC of semi-computable real numbers if we
are interested in the algebraic properties related to c.e. real numbers. Unfortunately,
even the class SC does not have nice algebraic properties according to the following
necessary condition of semi-computable real numbers. Remember that, for any sets
of natural numbers A and B, the set A is Turing reducible to the set B (denoted by
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A ≤T B) iff there is a Turing machine M such that M can compute A with B as an
oracle, i.e., MB(n) = A(n) for all n.

Theorem 1.3.2 (Ambos-Spies, Weihrauch and Zheng [1]). For any c.e. sets A,B⊆
N, if the real number xA⊕B is semi-computable, then either A≤T B or B ≤T A, i.e.,
the sets A and B must be Turing comparable.

Let A and B be two Turing incomparable c.e. sets. Then, by Theorem 1.3.2, the
real number xA⊕B = (x2A + 1/3)− x2B+1 is the difference of two c.e. real numbers
x2A +1/3 and x2B+1, but it is not semi-computable. This means that the class SC is
not closed under the addition and subtraction operations. This leads naturally to the
class of d.c.e real numbers, where a real number is called d.c.e (for difference of c.e.
real numbers) if it is the difference of two c.e. real numbers. The class of all d.c.e.
real numbers is denoted by DCE. Thus, the class DCE is a proper superset of SC.
A stronger result related to that has been proved by Barmpalias and Lewis-Pye in
[3] that for any non-computable c.e. real number x there is a c.e. real number y such
that x− y is not semi-computable.

The class of d.c.e. real numbers is defined algebraically as an extension of the
c.e. real numbers. Computationally, d.c.e. real numbers can be described by the
weakly convergent computable sequences of rational numbers. Because of the ef-
fectively converging condition (∀s)(|xs− xs+1| ≤ 2−s), an effectively convergent
sequence can make only a “small jump” in every step. Instead of exact control of
the jump of every step of the approximation, we can introduce a weaker version
of effective convergence by controlling the overall sum of jumps. More precisely,
we say that a sequence (xs) converges weakly effectively if the sum ∑ |xs− xs+1| is
finite. Weakly effective convergence characterizes perfectly the class of d.c.e. real
numbers as follows.

Theorem 1.3.3 (Ambos-Spies, Weihrauch and Zheng [1]). A real number x is
d.c.e. iff there is a computable sequence (xs) of rational numbers which converges
to x weakly effectively, i.e., ∑ |xs− xs+1| ≤ c for some constant c.

Proof. Let x = y− z be a d.c.e. real number and let (ys) and (zs) be two computable
increasing sequences of rational numbers which converge to y and z respectively.
Consider the computable sequence (xs) defined by xs := ys− zs. Then the jumps
|xs−xs+1| are contributed either by the increasing part of ys+1−ys or the decreasing
part of zs+1− zs. Therefore ∑ |xs− xs+1| ≤ (y− y0)+(z− z0). That is, the sequence
(xs) converges to x weakly effectively.

On the other hand, let (xs) be a computable sequence of rational numbers which
converges to x weakly effectively, i.e., ∑ |xs+1− xs| is bounded. Define two com-
putable sequences (ys) and (zs) of rational numbers by

ys := x0 +
s

∑
i=0

(xi+1
.− xi) and zs :=

s

∑
i=0

(xi
.− xi+1).

where the arithmetical difference x .−y is defined as x−y if x≥ y and as 0 otherwise.
Obviously, both sequences (ys) and (zs) are nondecreasing and bounded. Hence
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y := limys and z := limzs exist and they are both c.e. real numbers. Furthermore,

y− z = lim
s→∞

ys− lim
s→∞

zs = lim
s→∞

(
x0 +

s

∑
i=0

(xi+1
.− xi)−

s

∑
i=0

(xi
.− xi+1)

)

= lim
s→∞

(
x0 +

s

∑
i=0

(xi+1− xi)

)
= lim

s→∞
xs = x

That is, x is a d.c.e. real number. ut

It is not difficult to see that, if two sequences (xs) and (ys) converge weakly
effectively to x and y, respectively, then the sequences (xs+ys), (xs−ys), (xsys) and
(xs/ys) (suppose that y 6= 0 and ys 6= 0 for all s) converge also weakly effectively to
x+ y,x− y,xy and x/y, respectively. Thus, by Theorem 1.3.3, it is easy to see that
the class of d.c.e. real numbers is closed under the arithmetical operations addition,
subtraction, multiplication and division. That is, DCE is a field. As pointed out by
Downey and Laforte in [9], and proved independently by Raichev [27] and Ng [24],
DCE is also a real closed field. Thus, the class DCE is the first extension of the
computable real number class which has natural computational characterizations as
well as nice algebraic properties.

Next, we will ask whether the class DCE is closed under more general com-
putable operations, where computable operations are understood as the computable
functions. The computable real functions can be defined in many equivalent ways
([13, 25, 17, 42]). A very natural way is the definition by means of Turing machines.
That is, a real function f is computable, iff there is an (extended, or so-called, Type-
2) Turing machine which can transfer any effectively convergent sequence of ratio-
nal numbers in the sense of (1.2) which converges to x ∈ dom( f ) to an effectively
convergent sequence of rational numbers which converges to f (x) in the sense of
(1.2). Any computable real function is continuous and hence the computable real
functions are effectivizations of continuous real functions. It is shown in [34] that
the class DCE is not closed under the total computable real functions. The images
of d.c.e. real numbers under total computable real functions form another very in-
teresting class. This class has a very nice computational characterization in terms of
“big jumps” of an approximation.

Remember that any computable real number x has a computable approximation
(xs) of rational numbers which converges effectively, i.e., |xs−xs+1| ≤ 2−s for all s.
So we can say that such a computable approximation does not make any big jump.
If a real number can only be approximated by a computable sequence of rational
numbers with big jumps, then it cannot be computable. The more big jumps the
sequences have to have, the less computable its limit can be. In other words, the
computable level of a real number can be determined by the convergence quality of
its approximation. Counting the number of big jumps is a natural way to measure
the convergence quality of an approximation. If |xs− xs+1| > 2−s, then it has a big
jump at stage s. However, a big jump can be made in many steps instead of only one
step. So, more naturally, a big jump should be regarded as an index pair (i, j) such
that i, j ≥ n and |xi− x j|> 2−n.
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We call a real number divergence bounded computable (d.b.c. for short) if it can
be approximated by a computable sequence of rational numbers whose number of
big jumps can be bounded by a computable function. More precisely, a real number
x is d.b.c. if there exist a computable function f and a computable sequence (xs)
of rational numbers which converges to x such that the number of non-overlapping
index pairs (s, t) with s, t ≥ n and |xs− xt | > 2−n is bounded by f (n) for all n. The
class of all d.b.c. real numbers is denoted by DBC. Interestingly, the class DBC is
exactly the image of DCE under total computable real functions.

Theorem 1.3.4 (Zheng et al. [34, 51, 46]). A real number x is d.b.c. iff there is a
d.c.e. real number u and a total computable real function f such that x = f (u).

The class DBC is another class of real numbers after DCE which can be char-
acterized mathematically as well as computationally. It is not only a field, it is even
closed under total computable real functions.

Finally, we call a real number x computably approximable (c.a. for short) if there
is a computable sequence (xs) of rational numbers which converges to x, and we
denote the class of all c.a. real numbers by CA. Thus we get a finite hierarchy
EC ( CE ( DCE ( DBC ( CA, where the last inequality follows from a stronger
result, Theorem 1.6.3, of Section 1.6. All these five classes are introduced in a very
natural way and they all have nice mathematical and computational properties.

1.4 Differences of C.E. Real Numbers

In Section 1.3 we have seen that the class EC of computable real numbers is ex-
tended to DCE (difference of c.e.), DBC (divergence bounded computable) and
finally CA (computably approximable) real numbers. This forms a finite hierarchy
and each class is defined in a very natural way. In this section we are going to look
at the class DCE more closely and we will show more interesting properties about
the d.c.e real numbers.

Let’s start with another equivalent characterization of d.c.e real numbers by
another weakly effective convergence. While the effective convergence condition
|xs− xs+1| ≤ 2−s can be replaced by |x− xs| ≤ 2−s and we still get the same class
of computable real numbers, the weak convergence condition ∑s∈N |xs− xs+1| ≤ c
cannot be equivalently replaced by, say, ∑s∈N |x− xs| ≤ c for a constant c as shown
by the next proposition.

Proposition 1.4.1. If x is the limit of a computable sequence (xs) of rational num-
bers such that ∑s∈N |x− xs| ≤ c for some constant c, then x is computable.

Proof. Let (xs) be a computable sequence of rational numbers which converges to x
such that ∑s∈N |x− xs| ≤ c for a constant c. W.l.o.g., we suppose that c is a rational
number. Now we construct a computable sequence (ys) of rational numbers which
converges to x effectively, i.e., |x− ys| ≤ 2−s for all s. For any natural number n,
we choose a rational number yn such that there are at least c2n+1 elements xt of the
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sequence (xs) with the property that |xt−yn| ≤ 2−(n+1). Because (xs) is a convergent
computable sequence, such a yn exists and can be effectively found.

Suppose, by contradiction, that |x− yn| > 2−n. Then, all c2n+1 elements xt with
the property |xt−yn| ≤ 2−(n+1) have at least a distance 2−(n+1) from x. This implies
that ∑ |x− xs|> (c2n+1) · (2−(n+1)) = c, a contradiction.

Therefore, x must be computable. ut

Notice that, if |x− xs| ≤ cs and (cs) is a computable sequence of rational num-
bers which converges to 0, then the limit x is computable. However, if we consider
a computable sequence (cs) of c.e. real numbers converging to 0, we get another
equivalent characterization of the class of d.c.e. real numbers.

Definition 1.4.2. A sequence (xs) of real numbers converges to x computably enu-
merably bounded (c.e. bounded) if there is a computable sequence (δs) of positive
rational numbers such that ∑s∈N δs is finite and

(∀s ∈ N)
(
|x− xs| ≤∑i≥s δi

)
. (1.5)

Notice that, if a sequence (xs) converges effectively to x, then |x−xs| ≤ 2−s holds
for all s. Therefore, it is natural to say that (xs) converges computably bounded if (xs)
converges effectively. For a c.e. bounded convergent sequence (xs), a computable
bound for |x− xs| which is convergent to zero is not always available. The bounds
∑i≥s δi in (1.5) are only c.e. real numbers which converge to 0 monotonically when
s increases. The c.e. bounded convergence supplies another characterization of the
class of d.c.e. real numbers as follows.

Theorem 1.4.3 (Rettinger and Zheng [32]). A real number x is d.c.e. if and only
if there is a computable sequence (xs) of rational numbers which converges to x
c.e. bounded.

Proof. Let x = y− z be a d.c.e. real number where y and z are c.e. real numbers.
That is, there are increasing computable sequences (ys) and (zs) of rational numbers
which converge to y and z, respectively. Define xs := ys− zs for all s. Then (xs) is a
computable sequence of rational numbers which satisfies

|x− xs| = |(y− z)− (ys− zs)| ≤ (y− ys)+(z− zs)

= ∑i≥s((yi+1− yi)+(zi+1− zi))

for all s. Thus, the sequence (xs) converges c.e. bounded with respect to the sequence
(δs) defined by δs := (ys+1− ys)+(zs+1− zs) for all s.

On the other hand, let (xs) and (δs) (for δs > 0) be computable sequences of
rational numbers which satisfy condition (1.5). Define a computable sequence (x′s)
inductively by x′0 := x0 and

x′s+1 :=

 xs+1 if |x′s− xs+1| ≤ δs;
x′s +δs if |x′s− xs+1|> δs and x′s < xs+1;
x′s−δs if |x′s− xs+1|> δs and x′s > xs+1,

(1.6)
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for all s. By induction we can prove that the sequence (x′s) satisfies the following
condition:

(∀s ∈ N)
(
|x′s− x′s+1| ≤ δs & |x− x′s+1| ≤∑i>s δi

)
. (1.7)

The second inequality of (1.7) implies that the sequence (x′s) converges to x. The
first inequality of (1.7) implies furthermore that this convergence is weakly effective,
i.e., ∑s∈N |x′s− x′s+1| ≤ ∑s∈N δs. Thus, x is a d.c.e. real number. ut

Next we will investigate the randomness of the d.c.e real numbers. For more de-
tails about randomness the reader is referred to the book of Downey and Hirschfeldt
[7]. We call a Turing machine prefix-free if its domain is a prefix-free set. We de-
fine the prefix-free complexity of a binary string σ as K(σ) := min{|τ| : U(τ) = σ},
where U is a universal prefix-free machine. A binary sequence α is called random
if there is a constant c such that K(α � n)≥ n− c for all n (see, e.g., [20, 5]). Thus,
random sequences have the largest prefix-free complexity.

A real number is random if its binary expansion is a random sequence. Solovay
[39] has shown that a real x is random iff x is in only finitely many Ui for any
computable collection {Un : n ∈ N} of c.e. open sets such that ∑n∈N µ(Un) < ∞,
where µ(U) is the Lebesgue measure of U .

As we have seen in the last section, a d.c.e. real number may be neither c.e. nor
co-c.e. It is completely different for the random real numbers.

Theorem 1.4.4 (Rettinger and Zheng [32]). If a real number x is d.c.e and random,
then it is either c.e. or co-c.e., i.e., x must be semi-computable.

Proof. Let x be a d.c.e. random real and let (xs) be a computable sequence of rational
numbers which converges to x weakly effectively, i.e., ∑s∈N |xs+1− xs| < c for a
constant c.

Assume, by contradiction, that x is neither c.e. nor co-c.e. Then there are in-
finitely many s such that xs < x and there are infinitely many s such that xs > x too.
Thus, if xs < x for some s ∈ N, then there is a t ≥ s such that xt < x < xt+1 and if
xs > x then there is a t ≥ s such that xt > x > xt+1. This implies further that there
are infinitely many s such that xs < x < xs+1. Let Us := (xs,xs+1) if xs < xs+1 and
Us := /0 otherwise. Then {Un : n ∈ N} is a computable collection of c.e. open sets
such that ∑n∈N µ(Un) = ∑s∈N(xs+1

.− xs)≤ ∑s∈N |xs+1− xs| ≤ c. Since x belongs to
infinitely many Un, x is not random. This contradicts our assumption. ut

In order to compare the relative randomness of the c.e. real numbers, Solovay
[39] introduced a reducibility as follows: a c.e. real number x is Solovay reducible
to another c.e. real number y (denoted by x ≤0

S y) if there are a constant c and two
increasing computable sequences (xs) and (ys) of rational numbers which converge
to x and y, respectively, such that

(∀s ∈ N)(x− xs ≤ c(y− ys)). (1.8)

In other words, x≤0
S y means that y cannot be increasingly approximated faster than

x. In addition, if x is Solovay reducible to y, then we have K(x � n)≤K(y � n)+c for



14 Robert Rettinger and Xizhong Zheng

some constant c and all natural numbers n (this is the so-called “Solovay property”).
Therefore, that x is Solovay reducible to y implies that x has “less randomness” than
y.

Solovay reducibility classifies relative randomness of c.e. real numbers quite
well. Since Solovay reducibility is reflexive and transitive, the induced equivalence
classes are defined as Solovay degrees (S-degrees). Downey, Hirschfeldt and Nies
[8] showed that the S-degrees of all c.e. real numbers form a dense distributive
upper semilattice, where the natural join operation is induced simply by addition.
As expected, the smallest S-degree consists of all computable real numbers. More
interestingly, the class of all c.e. random real numbers forms the largest S-degree
among the c.e. S-degrees. This is proven by a series of works. At first, Chaitin [5]
introduced Ω reals as halting probabilities of universal prefix-free Turing machines,
i.e., ΩU := ∑U(σ)↓ 2−|σ | where U is a prefix-free universal Turing machine. Chaitin
showed that every Ω real is c.e. random. Solovay [39] called a c.e. real Ω -like if it is
complete under the Solovay reducibility on the c.e. real numbers, i.e., every c.e. real
is S-reducible to it. Then he showed that every Ω real is Ω -like and every Ω -like
real is c.e. random. Next, Calude, Hertling, Khoussainov and Wang [4], showed that
every Ω -like real is actually an Ω real. Finally, Kuçera and Slaman [19] closed this
circle by showing that any c.e. random real is Ω -like. Therefore, the notions Ω real,
Ω -like real and c.e. random real are equivalent. We will see that the random c.e. real
numbers are closely related to d.c.e. real numbers too. For this purpose, we should
first extend the Solovay reducibility to a larger class than CE.

The straightforward extension of Solovay reducibility to the c.a. real numbers
does not look very natural. For example, if we extend Solovay reducibility to the
class CA of all computably approximable real numbers simply using the inequality
|x− xs| ≤ c|y− ys| instead of (1.8), then this new reduction is not even transitive on
the class DCE. In fact, it is shown in [49] that, for any computable real number x,
if x is not a rational number, then there is a d.c.e. real number y such that x is not
reducible to y in this straightforwardly extended reducibility.

To solve this problem, Rettinger and Zheng [49] introduced another extension
of Solovay reducibility on the c.a. real numbers in the following way: A c.a. real
number x is Solovay reducible to another c.a. real number y (denoted by x ≤S y) if
there are a constant c and two (not necessarily increasing) computable sequences
(xs) and (ys) of rational numbers which converge to x and y, respectively, such that

(∀s ∈ N)(|x− xs| ≤ c(|y− ys|+2−s)). (1.9)

As shown in [49], this extended Solovay reducibility is reflexive, transitive and hence
is a reasonable reducibility. It has the Solovay property and coincides with the orig-
inal Solovay reducibility on c.e. real numbers as well.

This new version of Solovay reduction is very closely related to the class of
d.c.e. real numbers. It is easy to see that, if y is d.c.e. and x≤S y, then x is d.c.e. too.
That is, the class DCE is closed downward under this reduction. More interestingly,
we will see that the Ω -numbers are Solovay complete for the class DCE. Since
DCE is the smallest field containing all c.e. real numbers, it suffices to show that
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the class of real numbers which are Solovay reducible to an Ω -number is a field too.
For any c.a. real number x, let S(≤ x) denote the class of all real numbers which
are Solovay reducible to x, i.e., S(≤ x) := {y ∈ R : y ≤S x}. We first show a more
general result that S(≤ x) is a field for any c.a. real x.

We say that a real function f : Rn→R is locally Lipschitz if for each x∈ dom( f )
there is a neighborhood U of x and a constant L such that

(∀u,v ∈U)(| f (u)− f (v)| ≤ L · |u−v|), (1.10)

where |u−v| := ∑
n
i=1 |ui− vi| for u = (u1, . . . ,un) and v = (v1, . . . ,vn).

Theorem 1.4.5 (Rettinger and Zheng [32]). Let f : Rn→ R be a locally Lipschitz
computable function and let d be a computably approximable real number. Then the
class S(≤ d) is closed under the function f .

Proof. We prove only the case for n = 2 here. Let d be the limit of a computable
sequence (ds) of rational numbers, and let x,y ∈ S(≤ d). Then there are computable
sequences (xs) and (ys) of rational numbers which converge to x and y, respectively,
and a common constant c such that

|x− xs| ≤ c(|d−ds|+2−s) and |y− ys| ≤ c(|d−ds|+2−s)

for all s ∈ N.
Let L be a Lipschitz constant which satisfies condition (1.10). Assume, w.l.o.g.,

that all (xs,ys) are located in the neighborhood U in which the condition (1.10)
holds. By the sequential computability of the computable function f (see, e.g., [25]),
the sequence (zs) defined by zs := f (xs,ys) for all s is a computable sequence of real
numbers. Furthermore, this sequence satisfies the condition

| f (x,y)− zs|= | f (x,y)− f (xs,ys)| ≤ L(|x− xs|+ |y− ys|)≤ 2cL(|d−ds|+2−s)

for all s ∈ N. This implies that f (x,y)≤S d and hence f (x,y) ∈ S(≤ d). That is, the
class S(≤ d) is closed under the function f . ut

Since the addition, subtraction, multiplication and division functions are locally
Lipschitz functions, we have the following result immediately.

Corollary 1.4.6. For any computably approximable real y, the class S(≤ y) is a
field.

This immediately implies the following theorem.

Theorem 1.4.7 (Rettinger and Zheng [32]). If y is an Ω -number, then S(≤ y) =
DCE. Therefore, a real number is d.c.e. iff it is Solovay reducible to an Ω -number.

Random numbers have another interesting property concerning convergence of
computable sequences: In [2] it was shown that for computable sequences (xs) and
(ys) converging to random c.e. numbers x and y, respectively, the rates of conver-
gence define a number
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∂x
∂y

= lim
s→∞

x− xs

y− ys

which is independent of the choice of the sequences but only depends on x and y.
Furthermore it was shown that the difference x− y is random if and only if this
fraction is not 1. This beautiful result was extended by Joseph S. Miller in [21] to
d.c.e. numbers. To this end let Ω be a fixed Ω -number and define the derivative ∂x
of a d.c.e. number x by

∂x =
∂x
∂Ω

= lim
s→∞

x− xs

Ω −ωs

where (xs) and (ωs) are computable sequences converging to x and Ω , respectively.
Based on this definition, Miller proved the following statement.

Theorem 1.4.8 (Miller [21]).

1. ∂x does not depend on the choice of (xs) and (ωs)
2. ∂x > 0 iff x is a random left-c.e. number
3. ∂x < 0 iff x is a random right-c.e. number

One implication of this result is that the class of non-random d.c.e. numbers
forms a field.

1.5 Divergence Bounded Computable Real Numbers

As mentioned in Section 1.3, the divergence bounded computable real numbers can
be characterized as the images of d.c.e. real numbers under total computable func-
tions and the class DBC is actually closed under total computable real functions.
Equivalently, a real number is d.b.c. if there exists a computable sequence of ratio-
nal numbers which converges to it with computably bounded numbers of big jumps.
The name of “divergence bounded computable” comes from this second condition.

More precisely, we have the following definition.

Definition 1.5.1 (Rettinger et al. [34] and Zheng et al. [47]). Let h : N→ N be a
total function, x be a real number and C be a class of total functions f : N→ N.

1. A sequence (xs) of rational numbers converges h-bounded effectively if there are
at most h(n) non-overlapping index pairs (i, j) such that |xi− x j| ≥ 2−n, where
two pairs (i1, j1) and (i2, j2) of indices are non-overlapping if either i1 < j1 ≤
i2 < j2 or i2 < j2 ≤ i1 < j1.

2. A real number x is h-bounded computable (h-b.c. for short) if there is a com-
putable sequence (xs) of rational numbers which converges to x h-bounded ef-
fectively.

3. A real number x is C-bounded computable (C-b.c. for short) if it is h-b.c. for some
function h in C.
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In particular, if C is the class of computable functions, then the C-b.c. real num-
bers are called divergence bounded computable (d.b.c. for short). The classes of
h-b.c. real numbers and C-b.c. real numbers are denoted by h-BC and C-BC, re-
spectively.

If we count the jumps of a size between 2−n and 2−n+1 which appear after stage
n, then we will have the f -Cauchy computability which is investigated in [48]. The
f -Cauchy computability has a very nice hierarchy theorem that, for any computable
functions f and g, if there are infinitely many n such that f (n)< g(n), then there is
a g-Cauchy computable real number which is not f -Cauchy computable. Therefore,
we can have a hierarchy similar to the Ershov hierarchy. However, the real number
classes defined by f -Cauchy computability usually do not have good mathematical
properties. For example, the class of all f -Cauchy computable real numbers for
constant functions f is not closed under addition.

Notice that, if we call an index pair (i, j) with |xi− x j| ≥ 2−n a 2−n-jump of the
sequence (xs) of rational numbers, then, for any 2−n-jump (i, j), the binary expan-
sions of xi and x j differ at their first n positions. As a result, any real numbers of
an ω-c.e. binary expansion must be divergence bounded computable. However, not
every d.b.c. real number has an ω-c.e. binary expansion (see Theorem 1.6.3 and
Theorem 1.6.2 of Section 1.6). Let ω-bCE be the class of real numbers with ω-c.e.
binary expansions. Then we have ω-bCE ( DBC. On the other hand, it follows
from Theorem 1.3.4 that we have DCE⊆DBC. In order to show that this inclusion
is proper, it suffices to show that ω-bCE is not a subset of DCE.

Theorem 1.5.2 (Ambos-Spies, Weihrauch and Zheng [1]). For any set A⊆N, if x
is a d.c.e. real number of the binary expansion 2A, i.e., x = x2A, then the set A must
be h-c.e. for the function h = λn.23n.

Because there exists an ω-c.e. set A which is not 23n-c.e. the real number x2A has
an ω-c.e. binary expansion, hence it is d.b.c., but it is not d.c.e. Therefore, we have
ω-bCE 6⊆ DCE which implies that DCE ( DBC. Actually, by Theorem 1.6.1, not
every d.c.e. real number has an ω-c.e. binary expansion. So the classes ω-bCE and
DCE are incomparable. By a direct construction proof (see [34]) or by a stronger
result (see Theorem 1.6.3 of Section 1.6), there exist computably approximable real
numbers which are not d.b.c. Thus, we have the separation results DCE ( DBC (
CA. In Section 1.6, we will show a stronger separation theorem among the classes
DCE, DBC and CA (Theorem 1.6.3).

Now we are going to investigate more properties of the classes of f -BC for dif-
ferent functions f . Naturally, we are only interested in nondecreasing functions f .
First, from Definition 1.5.1, it is not difficult to see that, if liminf f (n) is finite,
then an f -b.c. real number must be rational, and if f (n) ≤ g(n) for almost all nat-
ural umbers n, then f -BC ⊆ g-BC. On the other hand, if the distance between the
functions f and g is bounded by a constant c, i.e., | f (n)− g(n)| ≤ c, then we have
f -BC = g-BC (cf. [47]). However, if the distance between the functions f and g is
unbounded, then f -BC is different from g-BC.

Theorem 1.5.3 (Zheng et al. [47]). Let f ,g : N→ N be two computable functions
such that
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(∀c ∈ N)(∃m ∈ N)(c+ f (m)< g(m)).

Then there exists a g-b.c. real which is not f -b.c., i.e., g-BC * f -BC.

Proof. We will construct a computable sequence (xs) of rational numbers which
converges g-bounded effectively to a non- f -b.c. real number x. That is, x satisfies,
for all e ∈ N, the following requirements

Re : (ϕe(s))s∈N converges f -bounded effectively to ye =⇒ ye 6= x,

where (ϕe) is an effective enumeration of the partial computable functions ϕe :⊆
N→ Q. The idea to satisfy a single requirement Re is easy. We choose an interval
I and a natural number m such that f (m) < g(m). Choose further two subinter-
vals Ie,Je ⊂ I such that Ie and Je have at least a distance 2−m. Then we can find a
real x either from Ie or Je to avoid the limit ye of the sequence (ϕe(s)). To satisfy
all the requirements simultaneously, we use a finite injury priority construction. In
the following construction, we use a second index s to denote the parameters con-
structed up to stage s. For example, Ie,s denotes the current value of Ie at stage s;
and ϕe,s(n) = m means that the Turing machine Me which computes ϕe outputs m in
s steps with the input n. However, if it is clear from the context, we often drop the
extra index s.

The formal construction of the sequence (xs):
Stage s = 0: We take the unit interval [0;1] as the base interval for R0 and let

I0 := [2−(m0+1);2 ·2−(m0+1)], J0 := [4 ·2−(m0+1);5 ·2−(m0+1)] where m0 := min{m :
m≥ 3 & f (m)< g(m)}. Then define x0 := 3 ·2−(m0+2). Notice that, the intervals I0
and J0 have the same length 2−(m0+1) and the distance between them is 2−m0 . The
rational number x0 is the middle point of I0. We need another parameter te to denote
that ϕe(te) is already used for our strategy. At this stage, let te,0 :=−1 for all e ∈ N.

Stage s+1: Given te,s, xs and the rational intervals I0, I1, · · · , Iks and J0, · · ·Jks for
some ks≥ 0 such that Ie,Je ( Ie−1, l(Ie) = l(Je) = 2−(me+1) and the distance between
the intervals Ie and Je is also 2−me , for all 0≤ e≤ ks. We say that a requirement Re
requires attention if e≤ ks and there is a natural number t > te,s such that ϕe,s(t)∈ Ie,s
and ϕe has not made more than f (me) jumps of distances larger than 2−me so far.
That is, maxGe,s(me, t)≤ f (me), where Ge,s(n, t) denotes the following finite set

{m : (∃i1 < j1 ≤ ·· · im < jm)(∀d < m)(|ϕe,s(id)−ϕe,s( jd)| ≥ 2−n)}.

Let Re be the requirement of the highest priority (i.e., of the minimal index)
which requires attention and let t be the corresponding natural number. Then we
exchange the intervals Ie and Je, that is, define Ie,s+1 := Je,s and Je,s+1 := Ie,s. All in-
tervals Ii and Ji for i > e are set to be undefined. Besides, define xs+1 := mid(Ie,s+1),
te,s+1 := t and ks+1 := e. In this case, we say that Re receives attention and the
requirements Ri for e < i≤ ks are injured at this stage.

Otherwise, suppose that no requirement requires attention at this stage. Let e :=
ks and let ns be the maximal mi,t which were defined so far for some i ∈N and t ≤ s.
Denote by j(s) the number of non-overlapping index pairs (i, j) such that i < j ≤ s
and |xi− x j| ≥ 2−ns . Then define
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me+1 := (µm)(m≥ ns +3 & j(s)+ f (m)< g(m)) . (1.11)

Choose five rational numbers ai (for i ≤ 4) by a0 := xs − 2−(me+1+2) and ai :=
a0 + i · 2−(me+1+1) for i := 1,2,3,4. Then define the intervals Ie+1,s+1 := [a0;a1],
Je+1,s+1 := [a3;a4] and let xs+1 := xs. Notice that the intervals Ie+1 and Je+1 have
length 2−(me+1+1) and the distance between them is 2−me+1 . Furthermore, xs+1 is the
middle point of both intervals Ie and Ie+1.

This ends the formal construction. To show that our construction succeeds, it
suffices to prove the following claims.

Claim 1.5.3.1 For any e ∈ N, the requirement Re requires and receives attention
only finitely many times.

Proof. By induction hypothesis we suppose that there is a stage s0 such that no
requirement Ri for i< e receives attention after stage s0. Then me,s =me,s0 for all s≥
s0. The intervals Ie and Je may be exchanged after stage s0 if Re receives attention.
Notice that, if Re receives attention at stages s2 > s1(> s0) successively, then we
have |ϕe(te,s1)−ϕe(te,s2)| ≥ 2−me,s0 , because the distance between the intervals Ie
and Je is 2−me,s0 . This implies that Re can receive attention after stage s0 at most
f (me,s0)+ 1 times because of the condition maxGe,s(me, t) ≤ f (me) and hence Re
receives attention finitely often totally. ut (claim)

Claim 1.5.3.2 The sequence (xs) converges g-bounded effectively to some x and
hence x is g-bounded computable.

Proof. By the construction, if xs 6= xs+1, then there is an e such that Re receives
attention at stage s+ 1. In this case, we have 2−me,s < |xs − xs+1| < 2−me,s+1. In
addition, if Re receives attention according to the same me,s at stage s+ 1 and t +
1(> s+ 1) consecutively, then we have |xs − xt+1| ≤ 2−(me,s+1) again because of
l(Ie,s) = 2−(me,s+1). This means that, if a natural number n is never chosen as me,s for
some e at some stage s, then there are no stages s1,s2 such that 2−n ≤ |xs1 − xs2 | ≤
2−n+1. Therefore, it suffices to show that, for any me,s, there are at most g(me,s)
non-overlapping index pairs (i, j) such that |xi− x j| ≥ 2−me,s .

Given any me,s, suppose that it is defined for the first time at stage s according to
condition (1.11). Then, there are only j(s) non-overlapping index pairs (i, j) such
that |xi− x j| ≥ 2−me,s up to stage s. After stage s, each such jump corresponds to a
stage at which Re receives attention according to the me,s. However, Re can receive
attention at most f (me,s)+1 times according to this same me,s and j(s)+ f (me,s)<
g(me,s). Therefore, there are at most g(me,s) non-overlapping jumps of (xs) which
are bigger than 2−me,s . Thus the computable sequence (xs) converges g-bounded
effectively to a g-b.c. real x. ut (claim)

Claim 1.5.3.3 The real x satisfies all requirements Re. Therefore, x is not f -bounded
computable.
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Proof. For any e ∈ N, suppose that ϕe is a total function and (ϕe(s)) converges
f -bounded effectively. By Claim 1.5.3.1, we can choose an s0 such that ks0 ≥ e
and no requirement Ri for i ≤ e requires attention after stage s0. This means that
Ie := Ie,s0 = Ie,s and te := te,s0 = te,s for any s≥ s0. By the definition of the sequence
(xs), we have xs ∈ Ie for all s≥ s0 and hence x ∈ Ie.

Assume by contradiction that x = lims→∞ ϕe(s). Then there is a stage s and a
t > te such that ϕe(v) is defined for all v≤ t and ϕe(t) ∈ Ie. Since (ϕe(v)) converges
f -bounded effectively, maxGe,s(me, t) ≤ f (me). That is, Re requires attention and
will receive attention at stage s+1. This contradicts the choice of s0. ut (claim)

By Claim 1.5.3.2 and Claim 1.5.3.3, the real number x is g-bounded computable
but not f -bounded computable. This completes the proof of the theorem. ut

Corollary 1.5.4. If f ,g : N→ N are computable functions such that f ∈ o(g), then
f -BC ( g-BC.

The classes of f -BC real numbers form a very natural hierarchy. However, in or-
der to have nice mathematical properties, we have to consider a class C of functions
instead of a single function f . A very natural and simple condition on the class C
guarantees that the class C-BC is a field as shown in the next theorem.

Theorem 1.5.5 (Zheng et al. [47]). Let C be a class of functions which contains
the successor function S(n) := n+1 as well as all constant functions and is closed
under addition and composition. Then the class C-BC is a field.

Proof. Suppose that C is a class of functions which contains the successor function
and all constant functions, and suppose also that C is closed under addition and com-
position. For any real numbers x,y∈C-BC, there are two computable sequences (xs)
and (ys) of rational numbers which converge f -bounded effectively and g-bounded
effectively to x and y, respectively, for two functions f ,g ∈C.

Let zs := xs+1 + ys+1 for all s. Then the computable sequence (zs) converges
to x+ y. For any natural number n and any indices s, t, if |zs− zt | > 2−n then we
have either |xs+1− xt+1| > 2−(n+1) or |ys+1− yt+1| > 2−(n+1). By assumption, the
number of such non-overlapping index pairs is bounded by f (n+ 1) + g(n+ 1).
This means that the sequence (zs) converges h-effectively to x+ y for the function
h(n) := f (n+ 1)+ g(n+ 1). Since h belongs to C, the sum x+ y is a C-bounded
computable real number too.

Analogously, we can show that x− y ∈C-BC.
For the product xy, we choose a natural number N large enough such that for all s,

max{|xs|, |ys|}≤ 2N hold. Define a computable sequence (zs) by zs := xs+N+1ys+N+1
for all s. Notice that if

|xs+N+1− xt+N+1| ≤ 2−(n+N+1) and |ys+N+1− yt+N+1| ≤ 2−(n+N+1),

then we have

|zs− zt | ≤ |xs+N+1||ys+N+1− yt+N+1|+ |yt+N+1||xs+N+1− xt+N+1| ≤ 2−n.
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In other words, if |zs−zt |> 2−n, then we have either |xs+N+1−xt+N+1|> 2−(n+N+1)

or |ys+N+1− yt+N+1|> 2−(n+N+1). This implies that the sequence (zs) converges h-
bounded effectively to xy for the function h(n) := f (n+N+1)+g(n+N+1). Since
the function h belongs to the class C, we have xy ∈C-BC.

Finally we consider the division x/y for y 6= 0. Suppose without loss of gen-
erality that ys 6= 0 for all s. Choose a natural number N such that 2−N ≤ |ys|
and max{|xs|, |ys|} ≤ 2N for all s. Define a computable sequence (zs) by zs :=
xs+3N+1/ys+3N+1. For any s, t and n, if we have

|xs+3N+1− xt+3N+1| ≤ 2−(n+3N+1) and |ys+3N+1− yt+3N+1| ≤ 2−(n+3N+1)

then we have

|zs− zt | =
∣∣∣∣xs+3N+1

ys+3N+1
− xt+3N+1

yt+3N+1

∣∣∣∣
≤ |xs+3N+1||ys+3N+1− yt+3N+1|+ |ys+3N+1||xs+3N+1− xt+3N+1|

|ys+3N+1yt+3N+1|
≤ 2−n.

Thus if the natural numbers s, t satisfy |zs− zt |> 2−n, then we have

|xs+3N+1− xt+3N+1|> 2−(n+3N+1) or |ys+3N+1− yt+3N+1|> 2−(n+3N+1).

This implies that the computable sequence (zs) converges h-bounded effectively to
x/y for the function h(n) := f (n+3N +1)+g(n+3N +1). Therefore the quotient
x/y is C-bounded effectively computable since h ∈C. ut

Thus, according to Theorem 1.5.5, we can define a lot of classes of real numbers
between EC and CA which have different levels of computability and they are fields
as well. For example, C can be the class of computable linear functions, computable
polynomial functions, primitive recursive functions, or the class of computable func-
tions, etc. However, it is not clear yet for which class C of functions we have
C-BC = DCE. Let o(ep) be the class of functions f such that limn→∞ f (n)/2n = 0,
and let oe(ep) be the class of computable functions in o(ep). Then it is shown in
[47] that SC ⊆ o(ep)-BC and SC * oe(ep)-BC.

Now we are going to explore the relationship between the class DBC and re-
ducibility defined on the class CA. As we mentioned in Section 1.4, the class of d.c.e
real numbers can be characterized by the (extended) Solovay reducibility, where a
real number x is Solovay reducible to another real number y (denoted by x ≤S y) if
there are a constant c and two computable sequences (xs) and (ys) which converge
to x and y respectively, such that |x− xs| ≤ c(|y− ys|+2−s) for all s. We have seen
that a real number is d.c.e iff it is Solovay reducible to a random c.e. real number. In
some sense, Solovay reducibility is a perfect match for the class of d.c.e. real num-
bers. Now we are trying to find a corresponding reducibility for the class of d.b.c.
real numbers.
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Notice that condition (1.9) of extended Solovay reducibility requires essentially
that the approximation errors of x are bounded by a fixed linear combination of the
approximation errors of y. This “linear combination domination” can be replaced by
a more general “computable domination” as follows.

Definition 1.5.6 (Zheng and Rettinger [50]). A c.a. real number x is convergence-
dominated reducible (cd-reducible, for short) to another c.a. real number y (denoted
by x≤cd y) if there exist a monotone total computable real function h : R→ R with
h(0) = 0 and two computable sequences (xs) and (ys) of rational numbers which
converge to x and y, respectively, such that

∀s ∈ N(|x− xs| ≤ h(|y− ys|)+2−s). (1.12)

Since we are interested only in comparing convergence speeds of two converging
sequences, the exact values of the function h in the inequality (1.12) are not really
important. It only matters how “large” it is, because it serves only as upper bounds.
This definition using a computable real function looks general enough, but a discrete
version might be convenient in many related proofs.

Lemma 1.5.7. A c.a. real number x is cd-reducible to another c.a. real number y if
and only if there are two computable sequences (xs) and (ys) which converge to x
and y, respectively, and there is a computable function h : N→ N such that

|y− ys| ≤ 2−h(n) =⇒ |x− xs| ≤ 2−n +2−s. (1.13)

Convergence-dominated reducibility is closely related to the class of divergence
bounded computable real numbers as shown in the next theorem.

Theorem 1.5.8 (Zheng and Rettinger [50]). For any c.a. real numbers x and y, we
have

1. If x≤S y then x≤cd y.
2. The class DBC is closed downward under the reduction ≤cd . That is, if x ≤cd y

and y is d.b.c., then x is d.b.c. too.
3. x is cd-reducible to an Ω -number if and only if x is d.b.c. In other words, Ω -

numbers are cd-complete for the class DBC.

Therefore, the Ω -numbers (i.e., the c.e. random real numbers) play the same role
for the class DBC with respect to cd-reducibility as for the class DCE with respect
to Solovay reducibility.

1.6 Turing Degrees of Computably Approximable Real Numbers

In the previous sections we have considered the real numbers which are limits of
computable sequences of rational numbers with various restrictions on the conver-
gences. Different levels of efficiency of convergence guarantee different levels of
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computability of the limits. If we do not require any efficiency of convergence, we
reach the class of computably approximable real numbers. In other words, a real
number is computably approximable if it is the limit of a computable sequence of
rational numbers. So, from a computation point of view, the class CA is the largest
class of real numbers which can somehow be computed.

In this section, we are going to explore the comparison of the c.a. real numbers
in terms of Turing reducibility. Turing reducibility is firstly defined between two
sets of natural numbers. For two sets A,B⊆ N, we say that A is Turing reducible to
B (denoted by A ≤T B) if there is a Turing machine Φ such that A can be decided
by Φ with the oracle B, that is, A(n) = ΦB(n) for all n. Turing reducibility can be
naturally extended to real numbers by means of binary expansion. We can call a real
number x Turing reducible to another real number y (denoted by x ≤T y as well)
if there are sets A,B such that x = xA,y = xB and A ≤T B. The Turing degrees and
their reducibility can be defined straightforwardly. For example, the Turing degree
of a real number x is the class of all real numbers which are Turing equivalent to
x, i.e., deg(x) := {y : x ≡T y}. It is not difficult to see that Turing reducibility can
be defined in terms of Dedekind cuts and Cauchy sequence representations of real
numbers equivalently.

Thus, the computable real numbers form a single Turing degree, denoted by 0,
while c.a. real numbers have the same Turing degree structure as the ∆ 0

2 -Turing de-
grees. Among the ∆ 0

2 -Turing degrees, the c.e. degrees play a significantly important
role in classical computability theory, where a Turing degree is called c.e. if it con-
tains at least one c.e. set. Since every c.e. set A of natural numbers corresponds to a
c.e. real number xA of which A is its binary expansion, so every c.e. degree contains
a c.e. real numbers. If we call a Turing degree a the degree of a c.e. real number if it
contains at least one c.e. real number, then all c.e. degrees are degrees of a c.e. real
number. On the other hand, the Dedekind cut of a c.e. real number is a c.e. set of
rational numbers and hence the degree of any c.e. real number is a c.e. degree.

For the d.c.e. real numbers the situation is different. If A = B−C is a d.c.e. set
where B and C are c.e. sets, then the real number xA = xB− xC∩B is obviously a
d.c.e real number. This means that every d.c.e degree contains at least one d.c.e.
real number, where a d.c.e. degree is a Turing degree which contains at least one
d.c.e. set. The converse is not true, as shown by the following theorem, where a real
number is called strongly c.e. if its binary expansion is a c.e. set.

Theorem 1.6.1 (Zheng [45]). There are two strongly c.e. real numbers x and y such
that the difference x− y does not have an ω-c.e. Turing degree. Thus, the Turing
degree of a d.c.e. real number is not necessarily ω-c.e.

Proof. We will construct the computable sequences (As), (Bs) and (Cs) of finite
subsets of N which satisfy the following conditions:

1. xAn = xBn − xCn for all n ∈ N.
2. The limits A := limAn, B := limBn and C := limCn exist and xA = xB−xC holds.
3. (Bs) and (Cs) are computable enumerations of the c.e. sets B and C, respectively.

Hence xA is d.c.e.
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4. The degree degT (A) is not ω-c.e.

To satisfy the third condition, we will define the finite sets Bs+1 and Cs+1 at
stage s+ 1 in such a way that Bs ⊆ Bs+1 and Cs ⊆ Cs+1 and then define As+1 by
xAs+1 = xBs+1−xCs+1 . This automatically satisfies the first and second conditions too.
For the fourth condition, it suffices to satisfy, for all ω-c.e. sets V , partial computable
functionals Γ and ∆ , the following requirements:

RV,Γ ,∆ : A 6= Γ
V or V 6= ∆

A.

From an effective enumeration of all ω-c.e. sets1 and all partial computable func-
tionals, these requirements can also be effectively enumerated as (Re). All require-
ments are given different priorities according to this enumeration. That is, Ri is of
higher priority than R j if and only if i < j.

The strategy for satisfying a single requirement RV,Γ ,∆ is as follows:
We choose an x ∈ N and a y > max{x,δγ(x)[s]}, where δ ,γ are use-functions

of the functionals ∆ and Γ (see, e.g., Soare [38]). By putting y into B or C it is
possible to force x to enter or leave A because of xA = xB− xC. For example, when
xA = 0.α01k where |α| = x and k = y− x, then by putting y (which equals x+ k)
into B, we will have xA = 0.α10k, which means that x is in A. After that, if we
put y into C, then we will have xA = 0.α01k again, which means that x is not in
A anymore. The purpose of x is to witness the requirement Re in such a way that
A(x) 6= Γ V (x) or V (x) 6= ∆ A(x). To this end, we consider the following phases.

Phase 1: x,y /∈ A∪B∪C. We wait for a stage s such that:

As(x) = Γ
V (x)[s] & V � γ(x)[s] = ∆

A � γ(x)[s]. (1.14)

(If this never happens, then x witnesses the requirement RV,Γ ,∆ already.) Define
Bs+1 := Bs ∪{x}, Cs+1 := Cs and then enter phase 2. It can be shown that As+1 =
As∪{x}. This implies that As+1(x) 6= As(x) = Γ V (x)[s].

Phase 2: x ∈ A and y /∈ B∪C. We wait for some new stage s′ > s such that

As′(x) = Γ
V �γ(x)(x)[s′] & V � γ(x)[s′] = ∆

A�δγ(x) � γ(x)[s′]. (1.15)

(If this never happens, then x is also a witness of the requirement RV,Γ ,∆ .) In this
case, we hope to remove x from A to force the initial segment V � γ(x)[s′] to be
changed if this condition is satisfied later again. This can be achieved by putting y
into C, i.e., define Bs′+1 := Bs′ , Cs′+1 :=Cs′ ∪{y}. Then go into phase 3.

Phase 3: x /∈ A and y ∈C \B. We wait for some new stage s′′ > s′ such that

As′′(x) = Γ
V �γ(x)(x)[s′′] & V � γ(x)[s′′] = ∆

A�δγ(x) � γ(x)[s′′]. (1.16)

1 We do not really have an effective enumeration of all ω-c.e. sets. For our proof it suffices to
consider the effective enumeration ((Vi,s)s∈N,ϕ j)i, j∈N of all computable sequences (Vi,s)s∈N of
finite subsets Vi,s ⊆ N and partial computable functions ϕ j . As long as the condition |{t ≤ s : n ∈
Vi,t \Vi,t+1∪Vi,t+1\Vi,t}|≤ϕ j(n) is not destroyed at stage s, we treat (Vi,s)s∈N as an ω-enumeration.
Otherwise, we can simply ignore the pair ((Vi,s)s∈N,ϕ j). However, the technical details related to
this are omitted in our proof for the simplicity.
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(If this never happens, then x is a witness of RV,Γ ,∆ again.) In this case we hope to
put x into A again. To achieve this, we put y into B. Namely, we define Bs′′+1 :=
Bs′′ ∪{y}, Cs′′+1 := Cs′′ . Now the supplementary element y is used two times and
y ∈ B∪C. We choose a new supplementary element y := y+1 (this new y is not in
B∪C) and go to phase 2.

Notice that, if we go from phase X to phase Y , then A(x), hence also V � γ(x),
has to be changed. But if we go from phase Y back to phase X later, A � δγ(x)
recovers the value it had in the last appearance of phase X . So, the initial segment
∆ A�δγ(x) � γ(x), hence also the initial segment V � γ(x), is recovered. This can happen
at most finitely often, because V is an ω-c.e. set. Therefore, after some stages, (1.15)
or (1.16) will never hold again. Thus the requirement RV,Γ ,∆ is finally satisfied by
the witness x.

To satisfy all the requirements, we apply a finite injury priority construction. A
witness xe and a supplementary element ye (> xe) are appointed to the requirement
Re at any stage. Whenever an action for Re appears, all requirements Ri with i > e
will be initialized by redefining the witnesses xi and supplementary elements yi
of Ri such that they are bigger than all elements enumerated into B and C so far
and also bigger than δγ(xe) to preserve the computation of ∆ A�δγ(x) � γ(xe) from
injury by lower priority requirements. Furthermore, we build a “firewall” between
the supplementary elements ye of Re and the witness xi of Ri for i > e. Namely, we
choose a second supplementary element ze such that (∀i > e)(ye < ze < xi,yi) and
put it into B\C. ut

In the following, for any class C of sets of natural numbers and class D of real
numbers, we will use D(C) and DR(D) to denote the class of degrees which contain
at least one set in C and the class of degrees which contain at least one real number in
D. By Theorem 1.6.1, we have now D(DCE)(DR(DCE). For the degrees of d.c.e.
real numbers, we have some other results which compare with the ω-c.e. degrees
and ∆ 0

2 -degrees as follows.

Theorem 1.6.2 (Downey, Wu and Zheng [6]).

1. Every ω-c.e. Turing degree contains a d.c.e. real number.
2. There exists a ∆ 0

2 -Turing degree which does not contain any d.c.e. real number.

Finally, let’s look at the class DBC of divergence bounded computable real num-
bers. In some sense, the idea of defining a divergence bounded computable real
number in terms of a computable sequence of rational numbers with a computably
bounded number of big jumps is quite similar to the definition of ω-c.e. sets of
natural numbers. However the comparison of the ω-c.e. degrees and the degrees
of d.b.c. real numbers does not make sense anymore because we have seen that
D(CE) ( D(ω-CE) ( DR(DCE). Not very surprisingly we can expect that the
class of degrees of d.b.c. real numbers is strictly between the class of degrees of
d.c.e. real numbers and the class of all ∆ 0

2 -degrees, as the following theorem shows.
Remember that a real number x is f -bounded computable ( f -b.c. for short) if there
is a computable sequence (xs) of rational numbers which converges to x such that
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the number of non-overlapping index pairs (i, j) with |xi− x j| ≥ 2−n is bounded by
f (n) for all n.

Theorem 1.6.3 (Rettinger and Zheng [31, 33]).

1. There is a ∆ 0
2 -Turing degree which does not contain any d.b.c. real number.

2. Let f ,g :N→N be two monotonically increasing computable functions such that

(∀n)(g(n+1)≥ g(n)+2) and (1.17)
(∃γ > 1)(∀c ∈ N)(∀∞n)( f (γn)+n+ c < g(n)) (1.18)

Then there is a g-b.c. real number x which is not Turing equivalent to any f -b.c.
real number.

3. There is a d.b.c. real number which is not Turing equivalent to any d.c.e real
number.

The proofs of Items 1. and 2. of Theorem 1.6.3 are relatively complicated con-
structions. Item 3. follows from Item 2. and the fact that any d.c.e. real number is
2n-bounded computable (see, e.g., [44]).

Combining Theorem 1.6.1, Theorem 1.6.2 and Theorem 1.6.3 we have the fol-
lowing relationship of the classes of Turing degrees.

D(CE)(D(ω-CE)(DR(DCE)(DR(DBC)(D(∆ 0
2 ).

Therefore, the classes of Turing degrees of real number classes discussed here form
a proper hierarchy as well.
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Chapter 2
Computability of Subsets of Metric Spaces

Zvonko Iljazović and Takayuki Kihara

Abstract We present a survey on computability of subsets of Euclidean space and,
more generally, computability concepts on metric spaces and their subsets. In par-
ticular, we discuss computability of points in co-c.e. closed sets, representations of
hyperspaces, Borel codes, computability of connectedness notions, classification of
Polish spaces, computability of semicomputable sets, continua and manifolds, prop-
erties of computable images of a segment, and computability structures.

2.1 Introduction

To investigate computability in analysis and related areas, we need a language
for talking about computability of complex numbers, compact sets, manifolds, etc.
There is a general consensus regarding computability of real and complex numbers.
However, what do we mean by a computable compact set, a computable measurable
set, a computable Borel set, a computable manifold, and so on?

There have already been a number of reasonable answers to these questions.
There are also various introductory materials on computability of basic concepts
in analysis and related fields, cf. [82, 95, 12, 10, 78, 81]. This survey collects the
answers to the above questions from a modern perspective.

Computable analysis has become a flourishing field; as a result research is very
diverse. Each researcher needs a notion of computability at an appropriate level of
abstraction. Therefore, in this survey, we introduce the notion of computability of
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sets step by step, namely, from subsets of Euclidean spaces to subsets of abstract
represented spaces.

However, the real purpose of this survey is not merely to introduce fundamental
notions of computability in analysis. In accordance with its rapid progress, com-
putable analysis has been becoming a mature field. A large part of research is no
longer at the stage of discussing basic definitions and producing expected results,
but at the stage of producing unexpected, surprising results with sophisticated tech-
niques.

From the authors’ own point of view, we select remarkable results related to com-
putability of sets (the selection is by no means exhaustive, of course), and attempt
to sketch how the computability notions have brought us an enormous number of
highly nontrivial and astonishing results.

Here we summarize the structure of this survey. In Section 2.2, we discuss the
notion of computability of a subset of Euclidean space. Then, in Section 2.3, we
introduce various notions of computability of subsets of computable metric spaces.
In Section 2.4, we give a survey on degrees of noncomputability of points in co-c.e.
closed sets (also known as Π 0

1 classes) from the perspective of computable analysis.
In Section 2.5 we introduce the notion of computability of closed and compact sets
in more abstract settings. Namely, we consider the hyperspaces of closed sets and
compact sets, which enable us to introduce computability of sets as computability of
points in hyperspaces. We also consider computability of Borel sets in Section 2.5.3.
In Section 2.6, we consider computability of path-connectivity, local connectivity,
etc. In Section 2.7, we sketch how the structure of degrees of noncomputability of
points in a Polish space is affected by the global structure of the space itself with
the emphasis on topological dimension theory. In Section 2.8, we give a survey on
various conditions under which a semicomputable set is computable. In Section 2.9,
we state some results about computable images of a segment. In Section 2.10, we
consider computability structures on metric spaces.

2.2 Computable Subsets of Euclidean Space

In this section we discuss several natural ways to define the notion of a computable
subset of Euclidean space.

A real number x is computable if it can be effectively approximated by a rational
number with arbitrary precision. A point x in Euclidean space Rn is computable if it
can be effectively approximated by a rational point q ∈Qn with arbitrary precision.
Similarly, we may say that a subset S of Rn is computable if it can be effectively
approximated by rational points with arbitrary precision. Of course, here we need to
make precise what an effective approximation by rational points means.

Let d be the Euclidean metric on Rn. Let A,B ⊆ Rn and ε > 0. We will say that
A and B are ε-close if for each x ∈ A there exists y ∈ B such that d(x,y)< ε and for
each y ∈ B there exists x ∈ A such that d(x,y)< ε .
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It is easy to conclude that for each compact set S⊆Rn and each ε > 0 there exists
a finite subset A of Qn such that S and A are ε-close. In view of this, it is natural to
define that a compact set S⊆ Rn is computable if for each k ∈ N we can effectively
find a finite subset Ak of Qn such that S and Ak are 2−k-close. Intuitively, the finite
set of points with rational coordinates Ak represents the image of the set S and this
image becomes sharper as k becomes larger.

Another way to define the notion of a computable subset of Euclidean space is to
follow the standard definition of a computable subset of Nn. In classical computabil-
ity theory a set S ⊆ Nn is computable if its characteristic function χS : Nn → N is
computable. However, if S ⊆ Rn, S 6= /0, S 6= R, then the function χS : Rn → R is
not continuous and hence not computable. Therefore, it does not make sense to de-
fine that a subset of Euclidean space is computable if its characteristic function is
computable. However, there is a suitable replacement for the characteristic func-
tion, namely for S⊆ Rn, S 6= /0, we may consider the distance function dS : Rn→ R
defined by

dS(x) = d(x,S).

It is reasonable to consider here closed sets since they are uniquely determined by
their distance functions. We will say that a closed set S ⊆ Rn is computable if the
function dS : Rn→ R is computable. Intuitively, this means that for a given x ∈ Rn

we can compute how close x lies to S (although, in general, we cannot effectively
determine whether x ∈ S or x /∈ S).

To introduce the notion of a computable subset of Rn we may also proceed in the
following way. We first define the notion of a computably enumerable (c.e.) subset
of Rn and then we define that S⊆Rn is computable if S and Rn\S are c.e. (following
the classical fact: S⊆ Nn is computable if S and Nn \S are c.e.).

A subset S of Rn may be uncountable, so it does not make much sense to define
that S is c.e. if it is the image of a computable function N→ Rn. What we can do
here is to define that S is c.e. if it is the closure of the image of such a function (or
S = /0). In other words, S is c.e. if S = /0 or there exists a computable sequence in Rn

which is dense in S. It is also reasonable to assume that S is closed (in this case the
given sequence uniquely determines S).

On the other hand, if S is closed, Rn \ S is open and to define that Rn \ S is c.e.
we need another notion of computable enumerability. An open set U ⊆ Rn will be
called c.e. open if it can be effectively exhausted by open balls. More precisely, U
is c.e. open if U = /0 or

U =
⋃
i∈N

B(xi,ri),

where (xi) is a computable sequence in Rn and (ri) a computable sequence of posi-
tive real numbers. Here, for a∈Rn and s > 0, B(a,s) denotes the open ball of radius
s centered in a. So, we will say that S ⊆ Rn is computable if S is c.e. closed and
Rn \S is c.e. open.

The second and third definition given in this section coincide, and all three defi-
nitions coincide if S is compact [12]. In the next section we examine computability
of sets in more general ambient spaces, namely in computable metric spaces.
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2.3 Computable Metric Spaces

To describe various computability notions in Euclidean space, such as those given
in the previous section, we actually only have to fix some effective enumeration
α :N→Qn of Qn or, more generally, some computable sequence α :N→Rn whose
image is dense in Rn. This motivates the study of the notion of a computable metric
space.

A computable metric space is a triple (X ,d,α), where (X ,d) is a metric space
and α = (αi) is a sequence in X whose image is dense in (X ,d) and such that
the function N2 → R, (i, j) 7→ d(αi,α j), is computable. If d is a complete metric,
then we also say that (X ,d,α) is a computable Polish space. For an introduction to
computable metric spaces, we refer the reader to [5, 94, 12, 71, 29].

Let (X ,d,α) be a computable metric space. A point x ∈ X is said to be com-
putable in (X ,d,α) if there exists a computable function f : N → N such that
d(x,α f (k)) < 2−k for each k ∈ N. A sequence (xi) in X is said to be computable in
(X ,d,α) if there exists a computable function f : N2→ N such that d(xi,α f (i,k))<

2−k for all i,k ∈ N.

Example 2.3.1. Let n ∈N, n≥ 1, let α : N→Qn be a computable surjection and let
d be the Euclidean metric on Rn. Then (Rn,d,α) is a computable metric space. It
is easy to conclude that x ∈ Rn, x = (x1, . . . ,xn), is a computable point in (Rn,d,α)
if and only if x1, . . . ,xn are computable numbers. Moreover, a sequence (xi) in Rn

is computable in (Rn,d,α) if and only if the component sequences of (xi) are com-
putable as functions N→ R. We say that (Rn,d,α) is the computable Euclidean
space.

A computable normed space (X ,‖·‖ ,e) is a separable normed space (X ,‖·‖)
together with a numbering e :N→X such that the linear span of rng(e) is dense in X ,
and the induced metric space is a computable metric space. A complete computable
normed space is called a computable Banach space. If a computable normed space
is also a Hilbert space, then it is called a computable Hilbert space. For basics on
these notions, see also Pour-El and Richards [82].

2.3.1 Computable Compact and Closed Sets

From now on, let (∆ j) be some fixed effective enumeration of all finite subsets of
N. If (X ,d,α) is a computable metric space and j ∈ N, let

Λ j = {αi | i ∈ ∆ j}. (2.1)

Clearly, (Λ j) is an enumeration of all finite subsets of {αi | i ∈ N}.
Let (X ,d) be a metric space. That two subsets A and B of X are ε-close can

be defined in the same way as in the case of Euclidean spaces (Section 2.2). For
nonempty compact sets A and B in (X ,d) we define their Hausdorff distance
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dH(A,B) = inf{ε > 0 | A and B are ε-close}. (2.2)

It is not hard to conclude that dH(A,B)< ε if and only if A and B are ε-close.
If (X ,d,α) is a computable metric space and S a nonempty compact set in (X ,d),

then for each ε > 0 there exists j ∈ N such that dH(S,Λ j)< ε .
Let (X ,d,α) be a computable metric space and let S be a compact set in (X ,d).

We say that S is a computable compact set in (X ,d,α) if S = /0 or there exists a
computable function f : N→ N such that dH(S,Λ f (k))< 2−k for each k ∈ N.

Example 2.3.2. Let (X ,d,α) be a computable metric space and let K be the set of
all nonempty compact sets in (X ,d). Then the function dH : K ×K →R defined by
(2.2) is a metric on K [74]. Let Λ = (Λ j) be the sequence defined by (2.1). It is easy
to conclude that Λ is a dense sequence in the metric space (K ,dH). Furthermore,
the function N2→R, (i, j) 7→ dH(Λi,Λ j), is computable (see e.g. Proposition 2.5 in
[41]). Hence (K ,dH ,Λ) is a computable metric space. Note that computable points
in (K ,dH ,Λ) are exactly nonempty computable compact sets in (X ,d,α).

A computable metric space (X ,d,α) is said to be effectively compact if X is a
computable compact set in (X ,d,α).

If (X ,d) is a metric space, x ∈ X and r > 0, by B(x,r) we will denote the open
ball in (X ,d) of radius r centered at x and by B(x,r) the corresponding closed ball.

Let (X ,d,α) be a computable metric space, n ∈ N and r ∈ Q, r > 0. We say
that B(αn,r) is a rational open ball in (X ,d,α) and B(αn,r) a rational closed ball
in (X ,d,α). Let τ1,τ2 : N→ N and q : N→Q be some fixed computable functions
such that the image of q is the set of all positive rational numbers and {(τ1(i),τ2(i)) |
i ∈ N}= N2. For i ∈ N we define λi = ατ1(i), ρi = qτ2(i) and

Ii = B(λi,ρi), Îi = B(λi,ρi).

Then (Ii) is an enumeration of all rational open balls and (Îi) is an enumeration of
all rational closed balls in (X ,d,α).

Let (X ,d,α) be a computable metric space and let S be a closed set in (X ,d).
We say that S is a computably enumerable closed set in (X ,d,α) (or merely a com-
putably enumerable set in (X ,d,α)) if {i ∈ N | Ii∩S 6= /0} is a c.e. subset of N.

Suppose (X ,d,α) is a computable metric space, S a closed set in (X ,d), and
(x j) a computable sequence in (X ,d,α) which is dense in S, i.e. such that S =

{x j | j ∈ N}. (Here, by A, for A⊆ X , we denote the closure of A in the metric space
(X ,d).) Then S is a c.e. set in (X ,d,α) [12]. So the following implication holds:

S contains a dense computable sequence ⇒ S is c.e. (2.3)

The converse of implication (2.3) does not hold in general [4].
Let (X ,d) be a metric space and S ⊆ X . We say that S is a complete set in (X ,d)

if S = /0 or S 6= /0 and (S,d|S×S) is a complete metric space.
If S is a complete set in a metric space (X ,d), then S is closed in (X ,d). Con-

versely, a closed set in (X ,d) need not be complete, however if the metric space
(X ,d) is complete, then each closed set in (X ,d) is complete.
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Although the converse of the implication (2.3) does not hold in general, it does
hold if S is a nonempty complete set. Hence, if (X ,d,α) is a computable metric
space and S is a nonempty c.e. set in this space which is complete in (X ,d), then S
contains a dense sequence which is computable in (X ,d,α) (see [46]). In particular,
if (X ,d) is a complete metric space, then each nonempty c.e. set in (X ,d,α) contains
a dense computable sequence [12].

Let (X ,d,α) be a computable metric space and let U ⊆ X . We say that U is a
computably enumerable open set in (X ,d,α) if there exists a c.e. set A ⊆ N such
that U =

⋃
i∈A Ii. We say that S is a co-computably enumerable (co-c.e.) closed set

in (X ,d,α) if X \S is a c.e. open set in (X ,d,α).
Let (X ,d,α) be a computable metric space and let S ⊆ X . We say that S is a

computable closed set in (X ,d,α) if S is c.e. and co-c.e. closed in (X ,d,α).
Let (X ,d,α) be a computable metric space, n ≥ 1, and B1, . . . ,Bn rational open

balls in this space. Then we say that B1∪·· ·∪Bn is a rational open set in (X ,d,α).
If (X ,d,α) is a computable metric space and j ∈ N, let

J j =
⋃

i∈∆ j

Ii.

Then {J j | j ∈ N} is the family of all rational open sets in (X ,d,α).
Let (X ,d,α) be a computable metric space and let K be a compact set in (X ,d).

We say that K is a semicomputable compact set in (X ,d,α) if the set { j ∈ N | K ⊆
J j} is c.e.

Less formally, K is semicomputable compact if we can effectively enumerate all
rational open sets which cover K.

Let (X ,d,α) be a computable metric space and let K ⊆ X . Then the following
equivalence holds (see [41]):

K computable compact ⇐⇒ K c.e. and K semicomputable compact. (2.4)

The notion of a semicomputable compact set can be generalized in the following
way. Let (X ,d,α) be a computable metric space and let S⊆ X be such that

(i) S∩B is a compact set in (X ,d) for each closed ball B in (X ,d);
(ii) the set {(i, j) ∈ N2 | S∩ Îi ⊆ J j} is c.e.

Then we say that S is a semicomputable set in (X ,d,α).
If S is compact in (X ,d) and semicomputable in (X ,d,α), then it is easy to con-

clude that S is semicomputable compact in (X ,d,α). The converse of this implica-
tion also holds (see Proposition 3.3 in [15]), hence the following equivalence holds:

S compact and S semicomputable ⇐⇒ S semicomputable compact. (2.5)

So, the notion of a semicomputable set generalizes the notion of a semicomputable
compact set. In view of (2.4), we extend the notion of a computable compact set.

Let (X ,d,α) be a computable metric space and let S ⊆ X . We say that S is a
computable set in (X ,d,α) if S is c.e. and semicomputable.
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By (2.4) and (2.5) we have

S computable compact ⇐⇒ S compact and S computable.

Condition (i) from the definition of a semicomputable set easily implies that each
semicomputable set in (X ,d,α) is closed in (X ,d). Moreover, we have the following
result (see Proposition 3.5 in [15]).

Proposition 2.3.3. Let (X ,d,α) be a computable metric space. Then each semi-
computable set in this space is co-c.e. closed. Consequently, each computable set in
(X ,d,α) is a computable closed set in (X ,d,α).

In general, a co-c.e. closed set need not be semicomputable. Also, a computable
closed set need not be a computable set. Namely, in Example 3.2 in [40] a com-
putable metric space ([0,b],d,α) was constructed, where b is a positive real number
and d is the Euclidean metric on [0,b], such that {b} is a co-c.e. closed set, but b
is not a computable point in this space. In general, it is easy to conclude that in a
computable metric space a point x is computable if and only if the set {x} is semi-
computable (see page 10 in [15]). Therefore, {b} is not a semicomputable set in
([0,b],d,α). Moreover, [0,b] is a computable closed set in this space (in general, if
(X ,d,α) is a computable metric space, then X is clearly a computable closed set in
(X ,d,α)), but [0,b] is not a computable set in this space: it is not semicomputable,
which follows from Example 3.2 in [40].

However, under certain conditions on the ambient space, the notions of a semi-
computable set and a co-c.e. closed set coincide.

Let (X ,d,α) be a computable metric space such that the set {(i, j)∈N2 | Îi ⊆ J j}
is c.e. Then we say that (X ,d,α) has the effective covering property [12].

The following theorem gives a sufficient condition that a computable metric
space has the effective covering property (see [37]).

Theorem 2.3.4. Let (X ,d,α) be a computable metric space such that each closed
ball in (X ,d) is compact. Suppose that there exists a computable point a0 and a
computable sequence (xi) in this space and a computable function F : N2→N such
that B(a0,m) ⊆

⋃
0≤i≤F(m,k) B(xi,2−k) for all m,k ∈ N, m ≥ 1. Then (X ,d,α) has

the effective covering property.

Using Theorem 2.3.4, it is easy to conclude that the computable Euclidean space
has the effective covering property.

Example 2.3.5. Let I∞ denote the set of all sequences in [0,1]. It is known that the
metric d on I∞ defined by d((xi),(yi)) = ∑

∞
i=0

1
2i |xi− yi| induces a topology which

coincides with the product topology on I∞. The metric space (I∞,d) is compact
(Tychonoff’s theorem) and it is called the Hilbert cube.

Let r :N→Q be a computable function whose range is [0,1]∩Q. Let σ :N2→N
and η : N→N be computable functions such that each nonempty finite sequence in
N equals (σ(i,0), . . . ,σ(i,η(i))) for some i∈N (such functions certainly exist). We
define α : N→ I∞ by αi = (rσ(i,0), . . . ,rσ(i,η(i)),0,0, . . .). Then (I∞,d,α) is a com-
putable metric space. Using Theorem 2.3.4 it is not hard to conclude that (I∞,d,α)
has the effective covering property (see [37]).
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The proof of the next proposition can be found in [15] (Proposition 3.6).

Proposition 2.3.6. Let (X ,d,α) be a computable metric space which has the effec-
tive covering property and compact closed balls. Let S⊆ X. Then S is co-c.e. closed
if and only if S is semicomputable. Consequently, S is a computable closed set if and
only if S is a computable set.

2.4 Noncomputability of Points in Co-C.E. Closed Sets

2.4.1 Basis Theorems in Computability Theory

In classical computability theory, a lot of energy has been devoted to the study of
the Turing degrees of points in subsets of an underlying space (mostly 2N or NN).
This field was pioneered by Kleene in the 1950s, who showed that

1. There is a nonempty co-c.e. closed subset of R with no computable points.
2. There is a nonempty co-c.e. closed subset of NN with no ∆ 1

1 points.

The above results are sometimes referred to as Kleene’s non-basis theorems.
These theorems were a starting point of the long-running study of degrees of points
in co-c.e. closed sets. As a second step, Kreisel proved the following basis theorems:

3. Every nonempty co-c.e. closed subset of R has a 0′-computable point.
4. Every nonempty co-c.e. singleton in R is computable.

These basis theorems fail for non-σ -compact spaces such as NN. Indeed, Jockusch-
McLaughlin [49] pointed out that for any computable ordinal α ,

5. there is a co-c.e. singleton {x} in NN such that x is not 0(α)-computable,

where 0(α) is the α-th Turing jump. This kind of bad behavior of a co-c.e. closed
set led us to the notion of semicomputability. For further studies on the degrees of
co-c.e. singletons in NN, see [19, 89] and [76, Chapters XII and XIII].

Regarding (3), the Kreisel basis theorem actually shows that the leftmost point
of a nonempty co-c.e. closed set P ⊆ [0,1] is left-c.e., that is, the supremum of a
computable sequence of rationals. It should be carefully noted that the notion “left-
c.e.” makes no sense at all in [0,1]n for n≥ 2.

In the higher-dimensional case, the following analog of left-c.e. is useful. For
n≤ ω , a point x = (xi)i<n ∈ [0,1]n is n-left-CEA if x0 is left-c.e. and xi+1 is left-c.e.
relative to xi uniformly in i. More formally, there is a computable sequence (gi)i<n
of computable functions gi : [0,1]i→QN such that xi = supn gi(x0, . . . ,xi−1)(n).

Given n≤ω and a nonempty closed set P⊆ [0,1]n, inductively define the leftmost
point (xi)i<n of P as follows. Define xk as the smallest value such that P has a point
whose first k + 1 coordinates are (x0, . . . ,xk). By compactness of P, such a point
exists. Then, it is easy to get a higher-dimensional analog of Kreisel’s basis theorem.
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Proposition 2.4.1 (see Kihara-Pauly [57]). For any n ≤ ω , the leftmost point in a
nonempty co-c.e. closed subset of [0,1]n is n-left-CEA.

The Kreisel basis theorem has been refined by Jockusch-Soare’s so-called low
basis theorem. The importance of the low basis theorem is that the standard proof is
applicable for any effectively compact computable metric space.

Given a computable metric space X , its presentation automatically involves a
computable list (Ge)e∈N of c.e. open sets in X . Then, the Turing jump of a point
x ∈X is defined by x′ = {e ∈ N : x ∈ Ge}. This generalization of the Turing jump
has desirable properties; see Gregoriades-Kihara-Ng [28]. We say that a point x∈X
is low if x′ is Turing reducible to 0′.

Theorem 2.4.2 (Low Basis Theorem; Jockusch-Soare [50]). Every nonempty co-
c.e. closed set in an effectively compact computable metric space contains a low
point.

Proof. Let P be a nonempty co-c.e. closed subset of an effectively compact com-
putable metric space X . We construct a 0′-computable decreasing sequence (Qe)e∈N
of co-c.e. closed sets in X . Define Q0 = P. By effective compactness, we can de-
cide Qe ⊆ Ge using 0′ uniformly in e. Put Qe+1 = Qe if Qe ⊆ Ge; otherwise, put
Qe+1 = Qe \Ge. For any z ∈

⋂
e∈N Qe, clearly, z′(e) = 1 if and only if Qe ⊆ Ge. We

conclude that z′ ≤T 0′ since the latter condition is 0′-computable. ut

A uniform version of the low basis theorem has also been proved by Brattka et
al. [8]. As a historical remark, the original low basis theorem [50] was proved in
the context of degrees of theories. A PA-degree is a Turing degree d such that every
co-c.e. closed subset of 2N has a d-computable point.

We shall emphasize that our introduction of basis theorems only scratches the
surface of extremely deep studies on co-c.e. closed sets (also known as Π 0

1 classes).
We refer the interested reader to Cenzer [16] and Diamondstone et al. [22] for more
detailed introductions to the degree-theoretic analysis of co-c.e. closed sets. De-
tailed analysis of basis theorems has also been carried out from the perspective of
Medvedev degrees and Muchnik degrees, cf. [88, 35, 34].

2.4.2 Basis Theorems in Computable Analysis

In computable analysis, we deal with a variety of geometric and topological prop-
erties of co-c.e. closed sets. When restricting our attention to co-c.e. closed sets
possessing such global properties, basis and non-basis theorems often exhibit an
interesting behavior. We first introduce a classical example in this direction. In the
early stages of computability theory, global properties were always associated with
measure and category. An example is as follows.

Theorem 2.4.3 (Kreisel-Lacombe [58]). There is a co-c.e. closed subset of [0,1] of
positive Lebesgue measure that contains no computable point.
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A co-c.e. closed set as constructed in Theorem 2.4.3 is totally disconnected; oth-
erwise, it contains a nonempty interval, and has a computable point. This trivial
observation has became a source of new basis and non-basis theorems. From the
geometric viewpoint, an interval is convex. From the topological viewpoint, an in-
terval is connected. For the geometric side, Le Roux-Ziegler [61] observed that a
nonempty convex co-c.e. closed set in Rn contains a computable point. It is possible
to go further.

Theorem 2.4.4 (Neumann [75]). Every nonempty convex co-c.e. closed subset of a
finite-dimensional computable Banach space contains a computable point.

Surprisingly, however, the same is not true in infinite-dimensional spaces. This
fact is first implicitly mentioned by Miller [69]. Later it was shown that there is a
computable dynamical system without computable invariant measures [25], where
the set of invariant measures in a computable system forms a compact convex co-c.e.
set.

Theorem 2.4.5 ([69, 25, 75]; see also Theorem 2.7.2). There exists a nonempty
convex co-c.e. closed subset of the Hilbert cube [0,1]N containing no computable
points.

For the topological side, this naturally raises the question of whether every con-
nected co-c.e. closed set contains a computable point. This is trivially false as
pointed out by Le Roux-Ziegler [61].

Example 2.4.6. If A is a co-c.e. closed subset of [0,1] with no computable element,
then the Cantor tartan given by ([0,1]×A)∪(A× [0,1]) is a connected co-c.e. closed
subset of [0,1]2 with no computable points. Similarly, ([0,1]2×A)∪ ([0,1]×A×
[0,1])∪ (A× [0,1]2) is a simply connected co-c.e. closed subset of [0,1]3 with no
computable points.

A topological space X is n-connected if it is pathwise connected and πi(X) ≡ 0
for any 1≤ i≤ n, where πi(X) is the i-th homotopy group of X . A space X is simply
connected if X is 1-connected. By a similar construction as in Example 2.4.6, one
can get a nonempty n-connected, but not (n+ 1)-connected, co-c.e. closed set in
[0,1]n+2 which contains no computable points.

A space X is contractible if the identity map on X is null-homotopic. Note that,
if X is contractible, then X is n-connected for each n ≥ 1. A higher-dimensional
variant of a Cantor tartan is never contractible. Thus, to construct a contractible co-
c.e. closed set with no computable points, we need a different approach. By a curve,
we mean a one-dimensional nondegenerate continuum. By a continuum, we mean a
compact and connected metric space.

Theorem 2.4.7 (Kihara [53]). There exists a contractible, co-c.e., planar curve
which contains no computable points.

Proof (Sketch). Let C⊆ [0,1] be a co-c.e. closed set with no computable points, and
A be a computable arc, one of whose endpoints is non-computable (see Miller [68,
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Example 4.1]). Imagine the cone space (C×A)/(C×{a}), where a is a unique non-
computable endpoint of A. This gives us a Cantor fan with no computable points
although it is unclear if it is co-c.e. or if it computably embeds into the Euclidean
plane. However, a slight modification of this construction makes a fan co-c.e. in
[0,1]2. For more details, see [53]. ut

As indicated in the above sketch, the example given by Kihara [53] is topologi-
cally homeomorphic to the Cantor fan. All known finite-dimensional co-c.e. closed
sets with no computable points are not locally connected.

Question 2.4.8. Does there exist a nonempty, locally connected, co-c.e. closed sub-
set of [0,1]n for some n ∈ N containing no computable points?

Note that Theorem 2.4.5 implies the existence of a nonempty, locally connected,
co-c.e. closed subset of the Hilbert cube [0,1]N which contains no computable points
since every convex set is locally connected.

As a historical remark, basis theorems in classical computable analysis have
sometimes been associated with mass problems. A mass problem is a subset of a
(represented) space which appears as the set of solutions of a mathematical prob-
lem. Several mathematical problems in algebra, analysis, combinatorics, etc. have
been found to be represented as co-c.e. closed subsets of certain computable metric
spaces (cf. Cenzer-Remmel [17]). Degrees of difficulty of mass problems are often
measured by Medvedev and Muchnik reducibility. We refer the reader to Simpson
[86, 88] for Muchnik degrees of co-c.e. closed sets. The concept of mass problems
is strongly associated with Reverse Mathematics [87], and the study of Weihrauch
degrees as well (see the last Chapter in this handbook).

2.5 Represented Spaces and Uniform Computability

In previous sections, we only considered non-uniform computability. In this section,
we introduce the notion of a represented space, which gives us a language for talking
about uniform computability. For basics on represented spaces, see Weihrauch [95].
We also refer the reader to Pauly [78] for an excellent introduction to the theory of
represented spaces.

Let X = (X ,d,α) be a computable metric space. Then, a Cauchy name of a
point x ∈ X is a sequence p ∈ NN such that d(x,αp(k)) < 2−k for any k ∈ N. This
notion induces a partial surjection δ :⊆ NN→ X defined by

δ (p) = x ⇐⇒ p is a Cauchy name of x.

This surjection δ is called the Cauchy representation of X (induced from (d,α)).
In general, a represented space is a pair X = (X ,δX ) of a set X and a partial

surjection δX :⊆ NN→ X . Such a δX is called a representation of X . If δX (p) = x,
then p is called a δX -name of x (or simply, a name of x if δX is clear from the context).
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A point x ∈X is computable if x has a computable name. A function f : X → Y
is computable (continuous, resp.) if there is a partial computable (continuous, resp.)
function on NN which, given a name of x ∈X , returns a name of f (x) ∈ Y . In
general, a partial function Φ :⊆ NN → NN is a realizer of f if for any name p of
x ∈X , Φ(p) is a name of f (x). By definition, f is computable if and only if f has
a computable realizer.

Remark 2.5.1. The notion of computability on computable metric spaces coincides
with the notion of computability on represented spaces (w.r.t. the induced Cauchy
representation). Thus, the theory of represented spaces generalizes the classical the-
ory on computable metric spaces. Indeed, this epoch-making theory makes it pos-
sible to develop computability theory on an extremely wide class of topological
spaces including various non-Hausdorff spaces, non-second-countable spaces, etc.
cf. [78]. More precisely, Schröder [83, 84] showed that a T0 space is admissibly
represented if and only if it has a countable cs-network (a cs-network is a variant of
Arhangel’skii’s notion of a network introduced by Guthrie [31]).

Remark 2.5.2. As a related concept, the notion of a numbered set has been exten-
sively studied in the theory of numberings (see Ershov [23]). A numbered set is a
represented space (X ,δX ) such that the domain of δX is (effectively homeomorphic
to) the natural numbers N. There is a unification of these concepts. In realizability
theory [77, 1], a represented space is called a modest set, and a multi-represented
space is called an assembly. To be precise, a represented space is a modest set over
Kleene’s second (relative) algebra, i.e., the (relative) partial combinatory algebra
given by Kleene’s functional realizability, and a numbered set is a modest set over
Kleene’s first algebra, i.e., the pca given by Kleene’s number realizability. We refer
the reader to Bauer [1] for more details. This unification is useful since many gen-
eralized computation models such as infinite-time Turing machines induce pcas [2],
and thus we do not have to reinvent the wheel for generalized computable analysis.

2.5.1 Represented Hyperspaces

The notion of a representation provides us with an abstract way of introducing com-
putability on subsets of a space by considering a represented hyperspace.

By A(X), we denote the set of all closed subsets of a computable metric space
X = (X ,d,α). Recall that (Ii)i∈N is a list of rational open balls in X . For p ∈ NN,
we write rng(p) = {p(n)−1 : p(n)> 0}. We first introduce two representations ψ+

and ψ− of A(X) capturing c.e. closed sets and co-c.e. closed sets, respectively.

ψ+(p) = S ⇐⇒ rng(p) = {n : S∩ In 6= /0},

ψ−(p) = S ⇐⇒ S = X \
⋃
{In : n ∈ rng(p)}.

The representations ψ+ and ψ− correspond to the lower Fell topology and the up-
per Fell topology on the hyperspace A(X) of closed subsets of X (cf. [12]). We then
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consider represented spaces A+(X ) = (A(X),ψ+), and A−(X ) = (A(X),ψ−). It
is clear that the computable points in A+(X ) and A−(X ) are exactly the c.e.
closed sets and the co-c.e. closed sets, respectively. One can also get a representa-
tion capturing computable closed sets as follows:

ψ±(p⊕q) = S ⇐⇒ ψ+(p) = ψ−(q) = S,

where (p⊕q)(2n) = p(n) and (p⊕q)(2n+1) = q(n). Then, the computable points
in A±(X ) are exactly the computable closed sets. Note that some authors use
A (X ) to denote A±(X ), while some other authors use A (X ) to denote A−(X ).

We next introduce a representation of the hyperspace K(X) of compact subsets
of X . For a computable metric space X = (X ,d,α), recall that (J j) j∈N is the list of
rational open sets in X . Then, we define

κ−(p) = S ⇐⇒ rng(p) = { j ∈ N : S⊆ Jp( j)}.

We also define κ±(p⊕ q) = S if and only if ψ+(p) = κ−(q) = S. We then de-
fine K−(X ) = (K(X),κ−) and K±(X ) = (K(X),κ±). The computable points in
K−(X ) and K±(X ) are exactly the semicomputable compact sets and the com-
putable compact sets, respectively.

The notion of a represented hyperspace enables us to discuss uniform com-
putability of operations on closed and compact subsets of a computable metric
space. For instance, consider the union and the intersection of co-c.e. closed sets.
It is clear that if A and B are co-c.e. closed subsets of X , so are A∪B and A∩B.
Indeed, the union and the intersection ∪,∩ : A−(X )×A−(X )→ A−(X ) are
computable, that is, given names of A and B, one can effectively find names of A∪B
and A∩B. In this way, the notion of computability on represented spaces automati-
cally involves uniformity.

From the uniform perspective, the negative representation is quite well behaved.
Actually, most basic operations on A−(X ) are known to be computable. For
the positive representation, as shown in Brattka-Weihrauch [13], even the inter-
section ∩ : A±(Rn)2 → A+(Rn) is not computable. Indeed, for a T1-space X ,
∩ : A+(X )2→A+(X ) is computable iff X is computably discrete [78].

There are a number of results regarding uniform computability of operations on
hyperspaces. For instance, let chull be the map which, given a closed set, returns its
convex hull. Then, chull : A+(Rn)→A+(Rn) and chull : A−([0,1]n)→A−([0,1]n)
are computable [104, 60]. This useful result gives us a computable enumeration of
all co-c.e. closed convex sets in [0,1]n while there is no limit computable way of
deciding convexity of a co-c.e. closed set (cf. [81]). For further studies on com-
putability of operations on hyperspaces, see Brattka-Presser [12]. For further read-
ing on computability on other hyperspaces, we refer the reader to [32, 103, 104] for
regular closed sets, and to [100, 101, 99] for measurable sets.
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2.5.2 Represented Function Spaces

There is a way of viewing a hyperspace of closed sets as a function space. To see
this, we first explain an important feature of represented spaces: The category of
represented spaces and (relatively) computable functions is cartesian closed. This
follows from the more general fact that the category Mod(Σ˜ ,Σ) of modest sets over
a relative pca 〈Σ˜ ,Σ〉 is cartesian closed (cf. Bauer [1]). The following contains the
details.

By Φ z
e , we denote the e-th partial computable function on NN relative to an or-

acle z ∈ NN. Let eaz denote the concatenation of e and z, that is, (eaz)(0) = e and
(eaz)(n+1) = z(n). If X and Y are represented spaces, the set of relatively com-
putable functions from X to Y is represented as follows:

η(eaz) = f ⇐⇒ if p is a name of x ∈X , then Φ z
e(p) is a name of f (x) ∈ Y .

In other words, Φ z
e is a realizer of f . By C (X ,Y ) we denote the space of rel-

atively computable functions from X to Y represented by η . Clearly, the com-
putable points in C (X ,Y ) are exactly the computable functions from X to Y .

Consider the set S = {>,⊥} represented by

δS(p) =

{
> if (∃n) p(n) 6= 0,
⊥ if (∀n) p(n) = 0.

We call S= (S,δS) the represented Sierpiński space [83]. Assume that X is a rep-
resented space. Then, we can think of the function space C (X ,S) as the hyper-
space of open sets in X , by identifying a function f : X → S with the open set
f−1{>} ⊆X . Similarly, this space can also be viewed as the hyperspace of closed
sets, by identifying a function f : X → S with the closed set f−1{⊥} ⊆X . Via
this identification, the representation η of the space C (X ,S) yields the Sierpiński
representation ψSier of the hyperspace A(X) of closed subsets of X as follows:

ψSier(p) = S ⇐⇒ S = η(p)−1{⊥}.

We now claim that ψSier is equivalent to ψ−. Given representations δ and η of a
set X , we say that δ is reducible to η if there is a computable function which, given
a δ -name of x ∈ X , returns an η-name of x. In other words, id : (X ,δ )→ (X ,η) is
computable. We say that δ is equivalent to η if δ is bireducible to η . Under this
definition, one can show the following.

Proposition 2.5.3 (Brattka-Presser [12]). The negative representation ψ− of the
hyperspace of closed subsets of a computable metric space is equivalent to the
Sierpiński representation ψSier.

The represented hyperspace K−(X ) of compact sets can also be viewed as a
function space. Let O(X ) be the hyperspace of open sets in X represented as
above, i.e., O(X ) ' C (X ,S). A space X is compact iff the universal quantifier
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∀X : O(X )→ S is continuous, where ∀X (X) = > and ∀X (U) = > for U 6= X .
Thus, a subset Y of X is compact iff AY : O(X )→ S is continuous, where

AY (U) =

{
> if Y ⊆U,

⊥ if Y 6⊆U.

In other words, Y ⊆X is compact iff AY ∈ OO(X ). Note that AY = AZ iff Y
and Z have the same saturation (cf. [78]). Thus, this notion yields a representation
κ∀ of saturated compact sets:

κ∀(p) = K ⇐⇒ p is an OO(X )-name of AK .

One can easily see that κ∀ is equivalent to κ− (for the hyperspace of compact subsets
of a computable metric space).

The dual notion of compactness is known as overtness [92]. A space X is overt,
iff the existential quantifier ∃X : O(X )→ S is continuous, where ∃X (U) = >
for U 6= /0 and ∃X ( /0) = ⊥. Thus, a subset Y of X is overt iff EY : O(X )→ S is
continuous, where

EY (U) =

{
> if Y ∩U 6= /0,
⊥ if Y ∩U = /0.

Although every subset Y ⊆ X is known to be overt, this definition yields a
nontrivial (multi-)represented space V (X ) of overt subsets of X by identifying
Y ⊆X with EY ∈ OO(X ). Obviously, EY = EZ iff Y and Z have the same topo-
logical closure; hence it induces a representation ψ∃ of the hyperspace of closed
subsets of X :

ψ∃(p) = Y ⇐⇒ p is an OO(X )-name of EY .

It is clear that ψ∃ is equivalent to the positive representation ψ+ (for the hyperspace
of closed subsets of a computable metric space).

In this way, computability theory on hyperspaces is absorbed into computabil-
ity theory on function spaces. It should be carefully noted that the function-space
representations ψSier, κ∀, and ψ∃ are defined for the hyperspaces of any represented
spaces, while the hyperspace representations ψ−, ψ+, κ−, etc. make sense only for
the hyperspaces of computable metric spaces. The representations introduced in this
section are essentially due to Schröder [83]. The term “overt” is due to Taylor [92].
This framework has become fundamental in various contexts such as Escardó’s syn-
thetic topology [24] and Taylor’s abstract Stone duality [92, 93]. See also Pauly
[78] for a more detailed study of represented hyperspaces in the language of func-
tion spaces.



44 Zvonko Iljazović and Takayuki Kihara

2.5.3 Borel Codes

A representation of Borel subsets of R (widely known as Borel codes) was first
introduced by Solovay [90] to define the notion of a random real over a model.
Solovay further explored the theory of Borel codes in his monumental work [91] on
a model of Zermelo-Fraenkel (ZF) set theory in which all sets of reals are Lebesgue
measurable. Since then, his representation of Borel sets has been a fundamental
notion almost everywhere in set theory.

Here we only deal with Borel sets of finite rank. Let X be a computable metric
space. We define representations σ0

n and π0
n of Σ˜ 0

n and Π˜ 0
n subsets of X as follows:

π
0
1 (p) = ψ−(p), σ

0
1 (p) = X \π

0
1 (p),

π
0
n (p) = X \σ

0
n (p), σ

0
n+1(p) =

⋃
i∈N

π
0
n (pi),

where recall that ψ− is the negative representation of the hyperspace of closed sub-
sets of X . By Σ˜ 0

n(X ) and Π˜ 0
n(X ), we denote the hyperspaces of Σ˜ 0

n and Π˜ 0
n sub-

sets of X represented by σ0
n and π0

n , respectively. By definition, Π˜ 0
1(X ) is iden-

tical with A−(X ). In particular, the computable points in the spaces Σ˜ 0
1(X ) and

Π˜ 0
1(X ) are the c.e. open sets and the co-c.e. closed sets, respectively. In general, a

computable point in Σ˜ 0
n(X ) (Π˜ 0

n(X ), resp.) is called a Σ 0
n set (a Π 0

n set, resp.)
A function f : X → Y is Σ˜ 0

n-measurable if the preimage of an open set un-
der f is Σ˜ 0

n. By second-countability of Y , this is equivalent to saying that f−1 :
Σ˜ 0

1(Y ) → Σ˜ 0
n(X ) is continuous. We say that f : X → Y is Σ 0

n -computable if
f−1 : Σ˜ 0

1(Y )→ Σ˜ 0
n(X ) is computable (see Brattka [6]). Clearly, Σ˜ 0

1-measurability
and Σ 0

1 -computability are equivalent to continuity and computability, respectively.
The correspondence between the Borel hierarchy and the Baire hierarchy (the
Banach-Hausdorff-Lebesgue theorem) was effectivized by Brattka as follows.

Theorem 2.5.4 (Brattka [6]). Let X and Y be computable metric spaces, and let
k ≥ 2. Then, any Σ 0

k+1-computable function f : X → Y is the pointwise limit of a
computable sequence of Σ 0

k -computable functions. For X = NN this holds true in
case k = 1 as well.

In other words, Σ 0
n+1-computability is equivalent to n-th iterated limit com-

putability (which can be thought of as a uniform version of the Shoenfield Limit
Lemma). By using this notion, we can talk about the degrees of noncomputability
of operations on represented spaces. Borel complexity of operations on represented
hyperspaces has been studied by Gherardi [26] and Brattka-Gherardi [9].

Example 2.5.5 (Gherardi [26]). The intersection ∩ : A (Rn)×A (Rn)→ A (Rn)
is Σ 0

2 -computable, but not computable. The intersection ∩ : A+(Rn)×A+(Rn)→
A+(Rn) is Σ 0

3 -computable, but not Σ 0
2 -computable.

In his work on functional analysis, Jayne [47] introduced a finer hierarchy of
Borel functions. For f : X → Y , we write f−1Σ˜ 0

m ⊆ Σ˜ 0
n if the preimage of a Σ˜ 0

m
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set under f is Σ˜ 0
n. In this terminology, Σ 0

n -measurability is described as f−1Σ˜ 0
1 ⊆

Σ˜ 0
n. By using Louveau’s separation theorem [62] in effective descriptive set theory,

Gregoriades-Kihara-Ng [28] showed that the property f−1Σ˜ 0
m ⊆ Σ˜ 0

n is equivalent to
that f−1 : Σ˜ 0

m(Y )→ Σ˜ 0
n(X ) has a Borel realizer. However, it is open whether the

property f−1Σ˜ 0
m ⊆ Σ˜ 0

n is equivalent to that f−1 : Σ˜ 0
m(Y )→ Σ˜ 0

n(X ) is continuous.
The Jayne-Rogers theorem [48] states that for a function f from an analytic sub-

set X of a Polish space to a separable metric space, f−1Σ˜ 0
2 ⊆ Σ˜ 0

2 if and only if it is
closed-piecewise continuous, that is, there is a closed cover (Pn)n∈N of X such that
f � Pn is continuous for any n ∈ N.

We consider effective versions of Jayne’s Borel hierarchy and piecewise con-
tinuity. A computable Π 0

n cover of X is a computable sequence (Pn)n∈N of Π 0
n

subsets of X such that X =
⋃

n Pn. We say that f : X → Y is Π 0
n -piecewise Σ 0

m-
computable if there is a computable Π 0

n cover of X such that the restriction f � Pn is
Σ 0

m-computable uniformly in n ∈N. If m = 1, we simply say that f is Π 0
n -piecewise

computable. The notion of Π 0
1 -piecewise computability is equivalent to computabil-

ity with finite mindchanges, which has turned out to be a very important notion in
computable analysis (cf. [8, 14]). Then, the Jayne-Rogers theorem is effectivized as
follows.

Theorem 2.5.6 (Pauly-de Brecht [79]). Let f : X → Y be a function between
computable metric spaces X and Y . Then, f−1 : Σ˜ 0

2(Y )→ Σ˜ 0
2(X ) is computable

if and only if f is Π 0
1 -piecewise computable.

Soon after, Kihara [54] found that Theorem 2.5.6 can be generalized to higher
Borel ranks whenever X and Y are finite-dimensional. The notion of topological
dimension suddenly appeared out of nowhere! The reason was later clarified by
Kihara-Pauly [57]: In [54], the Shore-Slaman join theorem in Turing degree theory
was a key tool for generalizing Theorem 2.5.6; however, the degree structure of an
infinite-dimensional computable metric space is generally different from the Turing
degrees (see Sections 2.7.2 and 2.7.3). After this discovery, Gregoriades-Kihara-Ng
[28] introduced a variant of Kumabe-Slaman forcing to generalize the Shore-Slaman
join theorem in the setting of “infinite-dimensional” Turing degree theory, and then
succeeded in removing the dimension-theoretic restriction from the former result
[54].

Theorem 2.5.7 (Gregoriades-Kihara-Ng [28]). Let f : X → Y be a function
between computable Polish spaces X and Y , and assume that n < 2m. Then,
f−1 : Σ˜ 0

m+1(Y )→Σ˜ 0
n+1(X ) is computable if and only if f is Π 0

n -piecewise Σ 0
n−m+1-

computable.

An open problem is whether we can remove the assumption n < 2m from The-
orem 2.5.7. For other directions of investigation on piecewise computability, it is
also important to think about decomposition into finitely many computable func-
tions. For k ∈N, we say that f : X →Y is k-Γ -piecewise computable if there is an
increasing sequence (Gi)i<k of Γ sets such that X =

⋃
i<k Gi and f � Gi \Gi−1 is
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computable. Then, (k+1)-Π 0
1 -piecewise computability corresponds to computabil-

ity with at most k mindchanges [14], and (k+ 1)-∆ 0
2 -piecewise computability cor-

responds to computability with finite mindchanges and at most k errors [33]. For
further reading on piecewise computability, see also de Brecht [14] and Kihara [55].

The notion of Borel codes in the context of represented spaces has also been
studied in Gregoriades et al. [29] in detail. Borel codes are also used to intro-
duce (multi-)representations of Borel-generated σ -ideals such as Lebesgue null sets
and meager sets (cf. [56]). Representations of such σ -ideals are evidently useful
when talking about randomness, genericity, forcing, etc. as Solovay did. This way
of thinking has become ubiquitous in modern set theory.

For further direction, Pauly-de Brecht [80] recently proposed synthetic descrip-
tive set theory as a reinterpretation of descriptive set theory (DST) in the category-
theoretic context. One of the core ideas of synthetic DST is the use of endofunctors.
An endofunctor is a functor from a category to itself. They introduced specific endo-
functors relevant for the study of DST, e.g. the finite-mindchange endofunctor ∇ and
the jump endofunctor ′. Applying ∇ and ′ to the hyperspace of open sets yields the
hyperspaces of ∆˜ 0

2 sets and Σ˜ 0
2 sets in the Borel hierarchy, respectively. In this way,

synthetic DST provides a language for talking about descriptive set-theoretic con-
cepts in a unified category-theoretic manner.

2.6 Computability of Connectedness Notions

The notion of a represented space is useful for introducing effective versions of vari-
ous topological concepts. In this section, we will use represented spaces to introduce
the notions of effective pathwise connectivity, effective local connectivity, etc., and
then we will address a few computability-theoretic works involving these notions.

2.6.1 Effective Connectivity Properties

Consider the notion of pathwise connectivity and arcwise connectivity. Every arc-
wise connected space is pathwise connected, and the converse also holds for Haus-
dorff spaces. However, Miller [68] first observed that the notions of effective path-
wise connectivity and effective arcwise connectivity do not coincide even for com-
putable closed subsets of [0,1]2.

Example 2.6.1 (Miller [68, Example 5.1]). There is a planar arc A with computable
endpoints such that A is computable closed, A is the image of a computable function
f : [0,1]→ [0,1]2, but A cannot be the image of a computable injection g : [0,1]→
[0,1]2.
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Informally, we say that a space X is computably pathwise connected if, given
(names of) points x,y ∈X , one can effectively find (a name of) a continuous func-
tion f : [0,1]→X such that f (0) = x and f (1) = y.

This yields the notion of computability of a multi-valued function. For repre-
sented spaces X and Y , a multi-valued function F : X ⇒ Y is computable if
there is a computable (single-valued) function Φ which, given a name of a point
x∈X , returns a name of an element of F(x)∈Y . Note that Φ does not necessarily
induce a function from X to Y , that is, even if p0 and p1 are names of the same
point x ∈X , Φ(p0) and Φ(p1) can be names of different points y0 6= y1 in F(x).

Brattka [7] formalized the notion of effective pathwise connectivity as follows.
We say that a computable metric space X is effectively pathwise connected if the
multi-valued function F : X 2⇒ C ([0,1],X ) defined by

F(x,y) = { f ∈ C ([0,1],X ) : f (0) = x and f (1) = y}

is computable. Note that if F has a single-valued continuous selection, then X has
to be contractible. Thus, multi-valuedness of the above definition is essential!

One can also define various different effectivizations of path/arcwise connectiv-
ity. For instance, a computable metric space X is [co-c.e. arc-] connected if the
multi-valued function F : X 2⇒A−(X ) defined by

F(x,y) = {S ∈A−(X ) : x,y ∈ S and S is an arc}

is computable. It is easy to see that there is a planar curve A such that A is com-
putable closed, effective pathwise connected, but not [co-c.e. arc-] connected [53].

2.6.2 Computable Graph Theorem

In classical computability theory a function f : N→ N is computable if and only if
its graph is computable. On the other hand, if X and Y are topological spaces such
that Y is compact and Hausdorff, then a function f : X→Y is continuous if and only
if its graph is a closed set in X ×Y [73]. The question is what can be said about a
computable version of this result, i.e. if X and Y are computable metric spaces and
f : X → Y , under what assumptions the computability of f is equivalent to the fact
that the graph of f is a computable closed set.

If (X ,d,α) and (Y,d′,α ′) are computable metric spaces, we define their product
as the computable metric space (X×Y,d′′,α ′′) defined by

d′′((x,y),(x′,y′)) = max{d(x,x′),d′(y,y′)} and α
′′〈i, j〉= (α(i),α ′( j)).

Let (X ,d,α) be a computable metric space and let O be the family of all open
sets in (X ,d). Let δ be the representation of O defined by

δ (p) =
⋃
{In | n ∈ rng(p)} .



48 Zvonko Iljazović and Takayuki Kihara

We say that (X ,d,α) is effectively locally connected [7] if there exists a computable
multivalued function C :⊆X×R⇒O such that for all x∈X and r > 0 the set C(x,r)
is nonempty and each U ∈C(x,r) is a connected set such that x ∈U ⊆ B(x,r).

Theorem 2.6.2 (Brattka [7]). Let X and Y be computable metric spaces. Then the
function

graph : C (X ,Y )→A±(X×Y ), f 7→ graph( f ) (2.6)

is computable.

(i) If Y is effectively compact, then the partial inverse graph−1 :⊆ A−(X ,Y ) →
C (X ,Y ) of the map (2.6) is computable.

(ii) If X is effectively locally connected and Y = Rn for some n≥ 1, then the partial
inverse graph−1 :⊆A±(X ,Y )→ C (X ,Y ) of the map (2.6) is computable.

(iii) If X is effectively pathwise connected and n≥ 1, then the map

F :⊆A−(X×Rn)×X×Rn→ C (X ,Rn), (A,a,b) 7→ graph−1(A),

which is defined for all (A,a,b) such that A = graph( f ) and f (a) = b for some
f ∈ C (X ,Rn), is computable.

As a consequence of Theorem 2.6.2 we get the following result.

Corollary 2.6.3 (Brattka [7]). Let X and Y be computable metric spaces. Suppose
Y is effectively compact and f : X→Y . Then f is computable if and only if graph( f )
is co-c.e. closed and if and only if graph( f ) is computable closed. We get the same
conclusion if we assume that X is effectively pathwise connected and Y = Rn for
some n≥ 1.

The additional assumptions on the computable metric spaces in the statement of
Corollary 2.6.3 cannot be omitted: in general it is possible that f is not computable
although it is continuous and graph( f ) is computable closed [7].

A computable metric space (X ,d,α) is said to be locally computable if for each
compact set A in (X ,d) there exists a computable compact set K in (X ,d,α) such
that A ⊆ K. In the following theorem we get the same conclusion as in Corollary
2.6.3 but with different assumptions.

Theorem 2.6.4 (Brattka [7]). Let X and Y be computable metric spaces such that
X is compact and Y is locally computable. Let f : X → Y be a continuous function.
Then f is computable if and only if graph( f ) is co-c.e. closed and if and only if
graph( f ) is computable closed.

2.6.3 Degrees of Difficulty

A new paradigm brought from the theory of representations enables us to talk about
the degrees of difficulty of problems involving hyperspaces. For instance,
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1. Find a connected component of a given nonempty co-c.e. closed subset of [0,1]n.
2. Find a nontrivial subcontinuum of a given co-c.e. closed subset of [0,1]N of pos-

itive dimension.

The problem (1) has been studied by Le Roux-Ziegler [61] and Brattka et al. [11].
If a compact metric space is not zero-dimensional, it always has a nondegenerate
subcontinuum. The problem (2) has been studied by Kihara [52].

In general topology, there are various strengthenings of connectivity. One of
those is the notion of a Cantor manifold, which was introduced by Urysohn as one
of the most fundamental notions in topological dimension theory. We say that a
topological space X is disconnected by A⊆X if X \A is a union of disjoint open
sets. It is clear that a space is disconnected iff it is disconnected by the empty set /0.
An n-dimensional Cantor manifold is an n-dimensional compact space which is not
disconnected by an at most (n−2)-dimensional subset.

Kihara [52] recently noticed that the notion of a Cantor manifold has an applica-
tion in the study of degrees of points in computable metric spaces. A key tool is the
Hurewicz-Tumarkin Cantor manifold theorem, which says that every n-dimensional
compact metric space contains an n-dimensional Cantor manifold (cf. [36, 67]). An
interesting open question is to determine the degree of difficulty of the Cantor man-
ifold theorem, for instance as follows.

Question 2.6.5. Let P ⊆ [0,1]N be a co-c.e. closed set of positive dimension. Does
every PA-degree compute an A−-name of a Cantor submanifold of P?

2.7 Classification of Polish Spaces

2.7.1 Borel Isomorphism Theorem

Kuratowski’s Borel isomorphism theorem is one of the most fundamental theorems
on Polish spaces; it says that every uncountable Polish space is Borel isomorphic
to R. For an effective counterpart, if we replace “uncountable” with “perfect,” it
is known that every perfect computable Polish space is ∆ 1

1 -isomorphic to R (see
Moschovakis [71, Section 3I]). However, Gregoriades [27] showed that perfectness
is essential for effectivity.

Theorem 2.7.1 (Gregoriades [27]). There exists a zero-dimensional, uncountable,
computable Polish space which is not ∆ 1

1 -isomorphic to R.

Proof. Let T ⊆ ω<ω be Kleene’s tree, none of whose infinite paths is ∆ 1
1 , and let

[T ] be the set of infinite paths through T . Consider T = T ∪ [T ], where a basic open
set is the set of all extensions of a finite string in T or the singleton consisting of a
finite string. It is easy to give a computable Polish metrization of T . Then T is a
c.e. open set consisting of isolated points in T . By our choice of T , the ∆ 1

1 points
in T are exactly T ; hence, c.e. open in T . Therefore, T is not ∆ 1

1 -isomorphic to R
since the set of all ∆ 1

1 points in R is not ∆ 1
1 . ut
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Gregoriades [27] then studied the ∆ 1
1 -embeddability order on (zero-dimensional)

computable Polish spaces, and showed that every countable partial order can be
embedded into the order. The proof requires a detailed analysis of (hyper)degrees of
points in computable Polish spaces. All spaces that appear in his proof computably
embed into NN, and thus, one can just adopt classical degree theory. However, as we
will see later, exploring degree theory in an arbitrary computable metric space leads
us to the discovery of a new connection between computability and dimension.

2.7.2 Continuous Degree Theory

Recall that every point in a computable metric space is named by elements in NN via
the Cauchy representation. We estimate how complicated a point in a computable
metric space is by considering the degree of difficulty of calling a name of the point.
Of course, it is possible for each point to have many names, and this nature yields
the phenomenon that there is a point with no easiest names with respect to Turing
reducibility.

Let X and Y be computable metric spaces. A point y ∈ Y is point-Turing re-
ducible to x ∈X if there is a computable function Φ that, given a name p of x,
returns a name Φ(p) of y. In other words, there is a partial computable function
f :⊆X → Y such that f (x) = y. This notion was introduced by Miller [69] under
the name of representation reducibility and continuous degrees. We say that a point
x ∈X has a Y -degree if x is point-Turing equivalent to a point in Y . Pour-El and
Richards [82] observed that any point in Euclidean space has a 2N-degree.

Miller’s discovery of non-2N-degrees and the connection between such degrees
and Scott ideals is an astounding achievement of the 2000s, which has brought a
new paradigm in computability theory.

A Turing ideal is a set I ⊆ 2N which forms an ideal w.r.t. Turing reducibility
≤T , that is, x ≤T y ∈ I implies x ∈ I , and x,y ∈ I implies x⊕ y ∈ I . A Scott
ideal is a Turing ideal I such that for any x ∈I , if P⊆ 2N is nonempty and co-c.e.
closed relative to x (that is, P is computable relative to x as a point in A−(2N)), then
P∩I is nonempty.

Theorem 2.7.2 (Miller [69]).

1. The Hilbert cube [0,1]N has a point of non-2N-degree.
2. If x ∈ [0,1]N has a non-2N-degree, then the set of all y ∈ 2N that are point-Turing

reducible to x forms a Scott ideal.
3. For every countable Scott ideal I , there is a point x ∈ [0,1]N such that y ∈I if

and only if y is point-Turing reducible to x.

Proof (for 1). Let Φe be the e-th partial computable function from [0,1]N to [0,1].
By approximating partial computations, one can easily construct a computable func-
tion ψ : [0,1]N×N→A−([0,1]) such that ψ(x,e) = {Φe(x)} if x ∈ dom(Φe); oth-
erwise, ψ(x,e) is a nondegenerate interval. Then, Ψ : [0,1]N→A−([0,1]N) defined
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by Ψ(x) = ∏e ψ(x,e) is a computable function with a co-c.e. closed graph such that
Ψ(x) is nonempty and convex for any x ∈ [0,1]N. By Kakutani’s fixed-point the-
orem, Ψ has a fixed-point x ∈Ψ(x). Note that there is a computable multi-valued
function F : [0,1]N⇒ [0,1] such that F(x) 6= x(e) for any e ∈ N. In particular, any
name of x computes some y ∈ [0,1] such that y 6∈ {x(e) : e ∈ N}. If x has a 2N-
degree, x computes its name, and thus, computes such a y; however, by the property
x ∈Ψ(x), if x computes y, then y = x(e) for some e, a contradiction. ut

Later, Day-Miller [21] observed a similar phenomenon in the theory of algo-
rithmic randomness. The space of Borel probability measures on 2N is computably
metrizable (e.g. via the Prokhorov metric). A probability measure µ is called neu-
tral if every infinite binary sequence is Martin-Löf random w.r.t. µ . Day-Miller [21]
noticed that a neutral measure cannot have a 2N-degree, and hence, its lower Turing
cone forms a Scott ideal as in Theorem 2.7.2 (2). They also showed an analog of
Theorem 2.7.2 (3): For every Scott ideal I , there is a neutral measure µ such that
y ∈I iff y is point-Turing reducible to µ .

2.7.3 Computable Aspects of Infinite Dimensionality

The previous works on continuous degrees [69, 21] make crucial use of the Kakutani
fixed-point theorem (for infinite-dimensional spaces). This leads us to the conjecture
that the notion of topological dimension is essential in degree theory on computable
metric spaces. It is made more and more plausible by the recent works [54, 28]
extending Theorem 2.5.6 and also by the following result.

Theorem 2.7.3 (Kihara-Pauly [57]). The following are equivalent for computable
metric spaces X and Y :

1. Every X -degree is a Y -degree.
2. There is a countable partition (Xi)i∈N of X such that each Xi computably em-

beds into Y .

By Theorem 2.7.3 with Y = 2N, we can characterize the Turing degrees in
terms of topological dimension theory. A topological space is called countable-
dimensional if it is a countable union of finite-dimensional subspaces. If X is Pol-
ish, this is equivalent to having transfinite small inductive dimension in the sense
of Menger-Urysohn (cf. [36]). Then, relative to some oracle, all points in X have
2N-degrees iff X is countable-dimensional. In particular, Theorem 2.7.2 (1) is a
corollary of Theorem 2.7.3 since it is known that the Hilbert cube is not countable-
dimensional (cf. [36, 67]). This simple observation completely solves a mystery
about the occurrence of non-2N-degrees in the Hilbert cube (and the space of prob-
ability measures).

There is more circumstantial evidence that topological dimension theory is cru-
cial to making a deep study of computable metric spaces. For n≤ ω , an n-left-CEA
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operator is a function Γ : NN→ [0,1]n such that Γ (x) is n-left-CEA uniformly rela-
tive to x. A universal n-left-CEA operator is an n-left-CEA operator Γ :NN→ [0,1]n

such that for any n-left-CEA operator Λ , there is an e such that Γ (eax) = Λ(x) for
any x. Kihara-Pauly [57] showed that the graph of a universal n-left-CEA operator
(as a subspace of the Hilbert cube) has an interesting dimension-theoretic property.

1. The graph Gn of a universal n-left-CEA operator is a totally disconnected n-
dimensional Polish space whose countable product GN

n is also n-dimensional.
2. The graph Gω of a universal ω-left-CEA operator is a totally disconnected

infinite-dimensional Polish space.

We say that X is finite-level Borel isomorphic to Y if there is a bijection f :
X →Y such that f−1Σ˜ 0

n ⊆ Σ˜ 0
n and f Σ˜ 0

n ⊆ Σ˜ 0
n for some n ∈N. We also say that X

finite-level Borel embeds into Y if X is finite-level Borel isomorphic to a Borel
subset of Y of finite rank. By applying Theorems 2.5.7, 2.7.2, and 2.7.3, one can
show that the graph of a universal ω-left-CEA operator has an intermediate finite-
level Borel isomorphism type.

Theorem 2.7.4 (Kihara-Pauly [57]). The Hilbert cube does not finite-level Borel
embed into Gω , and Gω does not finite-level Borel embed into any countable-
dimensional Polish space.

Despite its importance, there are only a few results on computable topological
dimension theory. The very first step was taken by Kenny [51]. Effectivizations
of the existence of a Henderson compactum and the Cantor manifold theorem are
discussed in Kihara [52]. Recently, McNicholl and Rute took an important next
step. They introduced the notion of a uniform degree, which is a generalization of
truth-table degrees in the setting of computable metric spaces. Then, for instance,
they proved that a point in R2 is contained in a computable arc if and only if it
has an R-uniform degree. The notion of a uniform degree is connected to various
notions in topological dimension theory. We have the impression that the further
development of the generalized truth-table degrees would give new insights into the
computability-theoretic nature of topological dimension theory.

2.8 Computability of Semicomputable Sets

Each computable closed set (and in particular computable) set is clearly co-c.e.
closed. Conversely, a co-c.e. closed set need not be computable closed. Moreover,
as noted in Section 2.4, there exists a nonempty co-c.e. subset of R which does not
contain a computable point. Hence, co-c.e. sets can be “far away from being com-
putable”. However, it turns out that under certain assumptions we can conclude that
a co-c.e. closed set is computable. The pioneering work in this area was done by
Miller.
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Theorem 2.8.1 (Miller [68]).

1. If S⊆ Rm is co-c.e. closed and S∼= Sn for some n≥ 1, then S is computable.
2. If D ⊆ Rm is co-c.e. closed and there exists, for some n ≥ 1, a homeomorphism

f : Bn→ D such that f (Sn−1) is also co-c.e. closed, then D is computable.

Here Sn denotes the unit sphere in Rn+1, Bn denotes the unit closed ball in Rn,
and X ∼= Y denotes that topological spaces X and Y are homeomorphic.

By Theorem 2.8.1, in Euclidean space each co-c.e. closed topological circle is
computable and each co-c.e. arc with computable endpoints is computable. The
second claim of Theorem 2.8.1 does not hold in general if we omit the assumption
that f (Sn−1) is co-c.e. closed. At the same time, the fact that f (Sn−1) is co-c.e.
closed is not actually necessary for f (Bn) to be computable.

Theorem 2.8.2 (Miller [68]).

1. There is a co-c.e. arc in R2 which is not computable.
2. There is a computable arc in R2 with non-computable endpoints.

So, although a co-c.e. closed set need not be computable, it makes sense to ask
the following general question: under what conditions does the implication

S co-c.e. closed =⇒ S computable closed (2.7)

hold in a computable metric space (X ,d,α)? Miller’s work shows that topology
plays an important role regarding conditions under which (2.7) holds. In Theorem
2.8.1, however, the ambient space is Euclidean space. It was later shown by Iljazović
[39] that the claim of that theorem holds in more general computable metric spaces.

Theorem 2.8.3. Let (X ,d,α) be a computable metric space which has the effective
covering property and compact closed balls. Suppose S ⊆ X is such that S ∼= Sn for
some n≥ 1 or S∼=Bn by a homeomorphism f :Bn→ S such that f (Sn−1) is a co-c.e.
closed set in (X ,d,α). Then implication (2.7) holds.

In particular, (2.7) holds if S is a topological circle or an arc with computable end-
points (in a computable metric space which has the effective covering property and
compact closed balls).

2.8.1 Semicomputable Chainable and Circularly Chainable
Continua

Arcs and topological circles are just representatives of more general topological
spaces: chainable and circularly chainable continua [74].

Let (X ,d) be a metric space, ε > 0 and C0, . . . ,Cm a finite sequence of nonempty
open sets in (X ,d) such that diamCi < ε for each i ∈ {0, . . . ,m}. We say that
C0, . . . ,Cm is an ε-chain in (X ,d) if, for all i, j ∈ {0, . . . ,m}, Ci ∩C j = /0 if and
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only if 1 < |i− j|. We say that C0, . . . ,Cm is an ε-circular chain in (X ,d) if, for
all i, j ∈ {0, . . . ,m}, Ci ∩C j = /0 if and only if 1 < |i− j| < m. We say that a finite
sequence of sets C0, . . . ,Cm covers a set X if X ⊆C0∪·· ·∪Cm.

A continuum (X ,d) will be called a chainable continuum if for each ε > 0 there
exists an ε-chain in (X ,d) which covers X . A continuum (X ,d) will be called a
circularly chainable continuum if for each ε > 0 there exists an ε-circular chain in
(X ,d) which covers X . If (X ,d) is a continuum and a,b ∈ X , we say that (X ,d) is a
continuum chainable from a to b if for each ε > 0 there exists an ε-chain C0, . . . ,Cm
in (X ,d) which covers X and such that a ∈C0 and b ∈Cm.

The segment [0,1] is a continuum chainable from 0 to 1. Consequently, if X is
an arc with endpoints a and b, then X is a continuum chainable from a to b. The
unit circle S1 is a circularly chainable continuum and therefore each topological
circle is also a circularly chainable continuum. On the other hand, the space K =
({0}× [−1,1])∪{(x,sin 1

x ) | x ∈ (0,1]}, known as the topologist’s sine curve, is an
example of a chainable continuum (K is chainable from a to c and also from b to c,
where a = (0,−1), b = (0,1) and c = (1,sin1)) which is not an arc. Furthermore,
the space W = K ∪ ({0}× [−2,−1])∪ ([0,1]×{−2})∪ ({1}× [−2,sin1]), known
as the Warsaw circle, is an example of a circularly chainable continuum which is
not a topological circle.

Theorem 2.8.4 (Iljazović [37]). Let (X ,d,α) be a computable metric space which
has the effective covering property and compact closed balls. Let S⊆ X.

1. If S is (as a subspace of (X ,d)) a circularly chainable continuum which is not
chainable, then (2.7) holds.

2. If S is a continuum chainable from a to b, where a and b are computable points
in (X ,d,α), then (2.7) holds.

3. Suppose S is a co-c.e. closed set. If S is a chainable and decomposable con-
tinuum, then for each ε > 0 there exists a subcontinuum K of S such that K is
computable and dH(S,K)< ε . Moreover, K can be chosen so that it is chainable
from a to b, where a and b are computable points.

That a continuum K is decomposable means that there exist proper subcontinua
K1 and K2 of K such that K = K1 ∪K2. For example, [0,1] is decomposable since
[0,1] = [0, 1

2 ]∪ [
1
2 ,1].

Each topological circle is a circularly chainable continuum which is not chain-
able. Therefore, Theorem 2.8.4 is a generalization of Theorem 2.8.3 for n = 1.

In Theorem 2.8.3 and Theorem 2.8.4 we assume that the computable metric space
(X ,d,α) has the effective covering property and compact closed balls. The natural
question is: are these additional assumptions on a computable metric space neces-
sary? The answer is affirmative: we cannot omit these assumptions. By [40] there
exists a computable metric space such that the following hold:

1. There exists a co-c.e. closed topological circle S in (X ,d,α) which does not
contain a computable point (and which in particular is not computable closed);

2. There exists a co-c.e. closed arc S in (X ,d,α) which is chainable from a to b,
where a and b are computable points, but which is not computable closed;
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3. There exists a co-c.e. closed arc S in (X ,d,α) which does not contain a com-
putable point (and which in particular cannot be approximated by a computable
subcontinuum).

Moreover, (X ,d,α) can be chosen so that either it has compact closed balls (but
not the effective covering property) or it has the effective covering property (but not
compact closed balls).

Recall that even a one-point co-c.e. closed set need not be computable (the dis-
cussion after Proposition 2.3.3). This indicates that we have to restrict ourselves to
some special computable metric spaces if we are looking for topological conditions
under which (2.7) holds.

On the other hand, by Proposition 2.3.6, in computable metric spaces which have
the effective covering property and compact closed balls the conditions under which
(2.7) holds are the same as the conditions under which the implication

S semicomputable =⇒ S computable (2.8)

holds. It turns out, however, that it is more convenient to search for conditions under
which (2.8) holds than for conditions under which (2.7) holds since we do not need
any additional assumptions on the ambient space. For example, (2.8) holds in any
computable metric space if S∼= Sn or S∼= Bn by a homeomorphism f : Bn→ S such
that f (Sn−1) is a semicomputable set [41]. This is a generalization of Theorem 2.8.3.
Similarly, if in Theorem 2.8.4 we remove the assumptions on the computable metric
space, replace “co-c.e. set” by “semicomputable set” and replace (2.7) by (2.8), we
get a claim which also holds [43] and which generalizes Theorem 2.8.4.

Actually, we have a much more general result than Theorem 2.8.3: (2.8) holds if
S is a compact manifold with computable boundary.

2.8.2 Semicomputable Manifolds

Let Hn = {(x1, . . . ,xn) ∈ Rn | xn ≥ 0} and BdHn = {(x1, . . . ,xn) ∈ Rn | xn = 0} (for
n≥ 1).

A second-countable Hausdorff space X is said to be an n–manifold with boundary
if for each x ∈ X there exists a neighborhood N of x in X such that N is homeomor-
phic to Rn or there exists a homeomorphism f : Hn→ N such that x ∈ f (BdHn).

If X is an n–manifold with boundary, we define ∂X to be the set of all points
x ∈ X which have no neighborhood homeomorphic to Rn. We say that ∂X is the
boundary of the manifold X .

If X is an n-manifold with boundary such that ∂X = /0, then we say that X is an
n-manifold. Hence a second-countable Hausdorff space X is an n-manifold if and
only if each point x ∈ X has a neighborhood homeomorphic to Rn.

Let n ∈ N. Then Sn is an n-manifold and Bn is an n-manifold with boundary; its
boundary is Sn−1 [72]. Consequently, if X ∼= Sn, then X is an n-manifold. Further-
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more, if f : Bn → X is a homeomorphism, then X is an n-manifold with boundary
and ∂X = f (Sn−1).

If (X ,d) is a metric space, A ⊆ X , and r > 0, then we will denote by Nr(A) the
r-neighborhood of A, i.e.

Nr(A) =
⋃
x∈A

B(x,r).

Note that for A,B ⊆ X and r > 0 we have that A and B are r-close if and only if
A ⊆ Nr(B) and B ⊆ Nr(A). The following notion is useful in the proof of the fact
that (2.8) holds for compact manifolds with computable boundaries.

Let (X ,d,α) be a computable metric space and A,B ⊆ X , A ⊆ B. We say that A
is computable up to B if there exists a computable function f : N→ N such that

A⊆ N2−k(Λ f (k)) and Λ f (k) ⊆ N2−k(B)

for each k ∈ N (recall definition (2.1)). Clearly, if S is a nonempty compact set in
(X ,d), then S is computable if and only if S is computable up to S. Furthermore, it
is easy to prove the following fact (see [41]): if A1, . . . ,An are sets computable up to
S, then A1∪·· ·∪An is computable up to S.

If S⊆ X and x∈ S, we say that S is computable at x if there exists a neighborhood
N of x in S such that N is computable up to S. The proof of the following proposition
is straightforward (see [41]).

Proposition 2.8.5. Let (X ,d,α) be a computable metric space and let S ⊆ X be a
compact set. Then S is computable if and only if S is computable at x for each x ∈ S.

A connection between topology and computability is apparent in the following
result: if x has a Euclidean neighborhood in S, then S is computable at x.

Theorem 2.8.6 (Iljazović [41]). Let (X ,d,α) be a computable metric space and let
S be a semicomputable set in this space.

1. Suppose x ∈ S is a point which has a neighborhood in S homeomorphic to Rn for
some n ∈ N\{0}. Then S is computable at x.

2. Let T be a semicomputable set such that T ⊆ S. Suppose x∈ S is a point which has
a neighborhood N in S with the following property: there exists n∈N\{0} and a
homeomorphism f : Hn→ N such that f (BdHn) = N∩T . Then S is computable
at x.

Actually, the original result from [41] assumes that S is compact, but this assumption
can easily be removed (see Theorem 5.2 in [46]).

Proposition 2.8.5 and Theorem 2.8.6 imply that (2.8) holds if S is a compact
manifold with computable boundary. This can be stated in the following way.

Theorem 2.8.7 ([41]). Let (X ,d,α) be a computable metric space and let S be a
semicomputable set in this space which is, as a subspace of (X ,d), a compact man-
ifold with boundary. Then the following implication holds:

∂S computable =⇒ S computable.
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In particular, each semicomputable compact manifold is computable.

In general, S ⊆ Rn is co-c.e. closed if and only if S = f−1({0}) for some com-
putable function f : Rn→ R [12]. Hence, if f : Rn→ R is a computable function,
then f−1({0}) need not be a computable set, moreover f−1({0}) need not contain
a computable point even if f−1({0}) 6= /0.

Let f : Rn→Rm be a function of class C1. Suppose y∈Rm is a regular value of f
(which means that the differential D( f )(x) : Rn→Rm of f in x is surjective for each
x ∈ f−1({y})) and f−1({y}) 6= /0. Then it is known from differential topology (see,
e.g. [85]) that f−1({y}) is an (n−m)-manifold. Additionally, if f is computable,
then f−1({y}) is co-c.e. closed and therefore semicomputable (Proposition 2.3.6).
The following is a consequence of Theorem 2.8.7.

Corollary 2.8.8. If f : Rn→Rm is a computable function of class C1 and y ∈Rm is
a regular value of f such that f−1({y}) is bounded, then f−1({y}) is computable.

For example, Corollary 2.8.8 easily implies that the set of all (x,y,z) ∈R3 such that
x2(1+ ex)+ y2(1+ ey)+ z2(1+ ez) = 1 is computable (see [41]).

The claim of Theorem 2.8.7 need not hold if we omit the assumption that S is
compact. This is shown by the following simple example from [15].

Example 2.8.9. Let A be a c.e. subset of N which is not computable. Then the set
B = N \A is co-c.e. closed in R and therefore the set S = B×R is co-c.e. closed
in R2. Since B⊆ N, S is a 1-manifold. So S is a semicomputable 1-manifold in R2,
but S is not computable in R2, which can be deduced from the fact that B is not
computable in N.

In general, if X is an n-manifold with boundary, then each connected compo-
nent of X is also an n-manifold with boundary. Semicomputable 1-manifolds with
boundaries have been studied in [15]. It is a well known fact (see e.g. [85]) that if X
is a connected 1-manifold with boundary, then X is a topological line (i.e. X ∼= R)
or a topological ray (i.e. X ∼= [0,∞)) or a topological circle or an arc.

Theorem 2.8.10 (Burnik-Iljazović [15]). Let (X ,d,α) be a computable metric
space and let S be a semicomputable set in this space which is, as a subspace of
(X ,d), a 1-manifold with boundary. Let K be a connected component of S.

1. If K is a topological line or circle, then K is c.e. closed in (X ,d,α).
2. If K is a topological ray with computable endpoint or an arc with computable

endpoints, then K is c.e. closed.
3. If ∂S is semicomputable, then each connected component of S is c.e. closed.

Since the union of finitely many c.e. closed sets is c.e. closed, an immediate conse-
quence of Theorem 2.8.10 is the following theorem.

Theorem 2.8.11 ([15]). Let (X ,d,α) be a computable metric space and let S be a
semicomputable set in this space which is a 1-manifold with boundary. Suppose that
S has finitely many connected components. Then the following implication holds:

∂S computable =⇒ S computable.
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In particular, each semicomputable 1-manifold with finitely many connected com-
ponents is computable.

It should be mentioned that the uniform versions of Theorems 2.8.3, 2.8.7 and
2.8.11 do not hold in general: there exists a sequence of topological circles in R2 (in
fact in [0,1]2) which is uniformly semi-computable, but not uniformly computable
(Example 7 in [37]).

If S is a co-c.e. closed set in a computable metric space (X ,d,α) such that X \S
is disconnected (for example, this holds by the Generalized Jordan Curve Theorem
if S is homeomorphic to Sn and X = Rn+1), then it is possible to conclude that,
under some additional assumptions, S is computable closed or at least contains a
computable point. Such conditions have been studied in [37, 42].

Finally, let us mention that semicomputable manifolds in computable topological
spaces have been studied in [44]. For a study of computable topological spaces see
[98, 96].

2.8.3 Inner Approximation

Let A be a collection of continua, and let B be a continuum. We say that B is
inner approximated by A if, for any ε > 0, there exists A ∈A such that A⊆ B and
dH(A,B) < ε , where we recall that dH is the Hausdorff distance. Classically, every
arcwise-connected continuum is inner approximated by locally connected continua.

In the computability-theoretic setting, claim 3 of Theorem 2.8.4 says the follow-
ing: every co-c.e. chainable and decomposable continuum is inner approximated by
computable chainable continua (in appropriate computable metric spaces; in fact,
by [43], in any computable metric space any semicomputable chainable and decom-
posable continuum is inner approximated by computable chainable continua).

However, we do not always have a computable inner approximation. Recall that
X is contractible if the identity map on X is null-homotopic, and that a curve means
a one-dimensional continuum.

Theorem 2.8.12 (Kihara [53]).

1. There exists a contractible, locally contractible, co-c.e., planar curve which is
not inner approximated by computable continua.

2. There exists a contractible, computable, planar curve which is not inner approx-
imated by locally connected, co-c.e. continua.

2.8.4 Density of Computable Points in Semicomputable Sets

Let (X ,d,α) be a computable metric space, S ⊆ X , and x ∈ S. Suppose that there
exists a neighborhood N of x in S such that N is computable in (X ,d,α). Then N, as
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a subset of S, is clearly computable up to S. So if x has a computable neighborhood
in S, then S is computable at x.

Theorem 2.8.13 (Iljazović-Validžić [46]). Let (X ,d,α) be a computable metric
space and S a complete set in (X ,d). Suppose S is computable at x. Then there
exists a neighborhood N of x in S such that N is computable compact in (X ,d,α).
Moreover, for each ε > 0 there exists such an N with the property that diamN < ε .

If S is a nonempty compact set in a metric space (X ,d) and ε > 0, then S∩B(x, ε

3 )
is a compact set for each x ∈ X , and it follows readily that there exist compact sets
K1, . . . ,Kn whose union is S and whose diameters are less than ε . On the other hand,
if S is a computable compact set, i ∈ N, and r ∈ Q, r > 0, then the intersection
S∩B(αi,r) need not be computable compact even if B(αi,r) is computable compact
(see [46]). Nevertheless, we have the following result.

Corollary 2.8.14 ([46]). Let (X ,d,α) be a computable metric space and let S be
a nonempty computable compact set in this space. Then for each ε > 0 there ex-
ist nonempty computable compact sets K1, . . . ,Kn such that S = K1 ∪ ·· · ∪Kn and
diamKi < ε for each i ∈ {1, . . . ,n}.

Proof. Let ε > 0. Since S is computable, it is computable at each point x ∈ S and
therefore, by Theorem 2.8.13, each point of S has a neighborhood in S which is
computable and has the diameter less than ε . This, together with the compactness
of S, proves the claim of the corollary. ut

Using Corollary 2.8.14 it is easy to deduce the following facts (see [46]): if (F,G)
is a separation of a computable compact set, then F and G are computable compact
sets; if S is a computable compact set which has finitely many components, then
each of these components is a computable compact set.

A connected component of a computable compact set need not be computable in
general. For example, there are uncountably many components of the Cantor set, so
at least one of them is not computable.

Let S be a semicomputable set in a computable metric space. Then S may not be
computable but, at the same time, computable points which lie in S may be dense in
S. Therefore, the general question is under what conditions the implication

S semicomputable =⇒ computable points are dense in S (2.9)

holds in a computable metric space. If (2.8) holds under certain conditions, then un-
der the same conditions (2.9) also holds. The converse does not hold. For example,
(2.9) holds if S is an arc in Euclidean space, but (2.8) need not hold if S is an arc in
Euclidean space [68]. Miller has proved in [68] that (2.9) holds in Euclidean space
if S∼= Bn for some n ∈ N.

The following result follows from Theorem 2.8.6 and Theorem 2.8.13.

Theorem 2.8.15 (Iljazović-Validžić [46]). Let (X ,d,α) be a computable metric
space and let S be a semicomputable set in this space. Suppose that S is a mani-
fold with boundary or S has the topological type of a polyhedron. Then the set of all
computable points which belong to S is dense in S.
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That S has the topological type of a polyhedron means that S ∼= P for some polyhe-
dron P. A polyhedron is a space obtained from simplices (line segments, triangles,
tetrahedra, and their higher-dimensional analogues) by gluing them together along
their faces (see [72] for the definition).

Suppose S is a nonempty compact set in which computable points are dense.
Then for each ε > 0 there exist computable points x0, . . . ,xn ∈ S such that S and
{x0, . . . ,xn} are ε-close. So, for each ε > 0 there exists a computable set K such that
K ⊆ S and dH(S,K)< ε . In particular, if S is a nonempty semicomputable compact
set which satisfies the conditions of Theorem 2.8.15, then S can be approximated by
its computable subset with arbitrary precision. However, if S is a nonempty semi-
computable compact manifold with boundary, then we can find an even better ap-
proximation, namely for each ε > 0 there exists a computable subset K of S which
is ε-close to S and covers the entire set S except for some part of S which lies in an
ε-neighborhood of ∂S (see Theorem 5.4 in [46]).

At the end of this section, let us mention the following problem. Suppose
(X ,d,α) is a computable metric space and U and V are c.e. open sets in this space.
Let S = X \(U ∪V ). Suppose A is a computable compact set which is connected and
which intersects both U and V . Then clearly A∩S 6= /0. The question is: does A∩S
have to contain a computable point? It is not hard to see that the answer in general
is negative [43]. An affirmative answer to this question is given in [43] in the case
when A is an arc and, under some additional assumptions, in the case when A is
a chainable continuum. These results can be considered as generalizations of the
computable intermediate value theorem: if f : [0,1]→ R is a computable function
such that f (0)< 0 and f (1)> 0, then f has a computable zero-point [82].

Let K be the unit square in the plane, i.e., K = [0,1]× [0,1], and let K̊ be the
corresponding open unit square. Suppose f ,g : [0,1]→ K are continuous functions
such that f (0) = (0,0), f (1) = (1,1), g(0) = (0,1), and g(1) = (1,0). Then the
images of f and g intersect. This nontrivial fact can be proved using the Jordan
curve theorem (see e.g. [97]). Manukyan has proved that a constructive version of
this result does not hold in general (even with the assumption that f (t),g(t) ∈ K̊ for
each t ∈ [0,1]\{0,1}) [63, 59]. The open question was: does a computable version
of this result hold? Weihrauch has recently solved this problem; his result can also
be considered to be a generalization of the computable intermediate value theorem.

Theorem 2.8.16 (Weihrauch [97]). Let f ,g : [0,1]→ K be computable functions
such that f (0) = (0,0), f (1) = (1,1), g(0) = (0,1), and g(1) = (1,0). Then the
images of f and g intersect in a computable point.

The image of a computable function [0,1]→Rn is easily seen to be a computable
compact set. On the other hand, the intersection of a semicomputable set and a co-
c.e. closed set is a semicomputable set (in any computable metric space, see [43]).
So Theorem 2.8.16 and the above results from [43] can be viewed as results which
provide conditions under which a semicomputable set contains a computable point.
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2.9 Computable Images of a Segment

As said, if f : [0,1]→ Rn is a computable function, then f ([0,1]) is a computable
compact set in Rn. The question is what can be said about various forms of the
converse of this statement. By Example 2.6.1, there exists a computable arc A in R2

with computable endpoints such that A is not the image of any computable injection
[0,1]→R2 (in fact, A is the image of a computable function [0,1]→R2). Moreover,
we have the following result.

Theorem 2.9.1 (Gu-Lutz-Mayordomo [30]). There exists an arc A in R2 with the
following properties:

1. A is rectifiable (i.e. A has finite length) and smooth except at one endpoint;
2. there exists a computable function f : [0,1]→ R2 whose image is A (moreover,

f , the velocity function f ′, and the acceleration function f ′′ are polynomial-time
computable);

3. for any computable function f : [0,1] → R2 whose image is A and for every
m ∈N, m≥ 1, there exist disjoint closed subintervals I0, . . . , Im of [0,1] such that
the arc f (I0) has positive length and f (Ii) = f (I0) for each i ∈ {1, . . . ,m}.

If f : [0,1]→R2 is a computable injection, then the arc f ([0,1]) need not be rec-
tifiable. On the other hand, if f : [0,1]→ R2 is a computable function such that the
curve f ([0,1]) is rectifiable, then f ([0,1]) clearly need not be an arc. The following
result points out a significant difference between these two types of sets.

Theorem 2.9.2 (McNicholl [64]).

1. There exists a computable injection f : [0,1]→R2 and a point x ∈ f ([0,1]) such
that there exists no computable function g : [0,1]→ R2 with the following prop-
erty: g([0,1]) is a rectifiable curve and x ∈ g([0,1]).

2. There exists a computable function g : [0,1]→ R2 such that g([0,1]) is a rectifi-
able curve and a point x ∈ g([0,1]) with the following property: there exists no
computable injection f : [0,1]→ R2 such that x ∈ f ([0,1]).

Of course, the arc f ([0,1]) in 1. cannot be rectifiable and the function g in 2. cannot
be injective.

A metrizable space which is locally connected, connected, and compact is called
a Peano continuum. The Hahn-Mazurkiewicz theorem (see e.g. [74, 18]) says that a
Hausdorff space X is a Peano continuum if and only if there is a continuous surjec-
tion [0,1]→ X .

If X is a subset of the plane, it makes sense to ask whether a computable version
of the Hahn-Mazurkiewicz theorem holds.

Theorem 2.9.3 (Couch-Daniel-McNicholl [20]). There is a computable compact
set X in R2 which is a Peano continuum and such that there exists no computable
function [0,1]→ R2 whose image is X.

However, the situation changes under the assumption that X is effectively locally
connected. If X ⊆ Rn, a local connectivity operator for X is a continuous operator
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that, given a name of a point p ∈ X in Rn and a name of a rational rectangle R in Rn

which contains p gives a name of an open set U in Rn such that U ∩X is connected
and p ∈U ∩X ⊆ R (see [20]). The set X is defined in [20] to be effectively locally
connected if it has a computable local connectivity operator.

Theorem 2.9.4 (Couch-Daniel-McNicholl [20]). Let X ⊆ Rn be a computable
Peano continuum. Suppose X is effectively locally connected. Then there exists a
computable function g : [0,1]→ Rn whose image is X. Moreover, a name of such a
function g can be uniformly computed from a name of a computable compact set X
and a name of a local connectivity operator for X.

The following theorem is a computable version of another well-know topologi-
cal result: each compact metric space is a continuous image of the Cantor set (see
Theorem 6.C.12 in [18]).

Theorem 2.9.5 (Couch-Daniel-McNicholl [20]). Let C be the Cantor middle-third
set. Let X be a nonempty computable compact set in Rn. Then there exists a com-
putable surjection C→ X. Moreover, a name of such a surjection can be uniformly
computed from a name of a computable compact set X.

2.10 Computability Structures

If (X ,d) is a metric space and α a sequence in X such that (X ,d,α) is a computable
metric space, then we say that α is an effective separating sequence in (X ,d) [102].
Suppose α and β are effective separating sequences in a metric space (X ,d). We
say that α and β are equivalent if α is a computable sequence in (X ,d,β ) and β is
a computable sequence in (X ,d,α).

If (X ,d,α) is a computable metric space, let Sα denote the set of all computable
sequences in (X ,d,α). It is easy to conclude that effective separating sequences α

and β in (X ,d) are equivalent if and only if Sα = Sβ [45].
The notions of a computable point, a computable sequence, a c.e. closed set, a co-

c.e. closed set, and a computable compact set in a computable metric space (X ,d,α)
depend, by definition, on the sequence α . However, it is easy to conclude that these
notions coincide in (X ,d,α) and (X ,d,β ) if α and β are equivalent effective sep-
arating sequences. This means that these notions can be viewed as notions defined
related to the entire set Sα and not just to α itself. Therefore, we can take sets of
the form Sα as a basis for computability concepts on a metric space (X ,d), which
leads to the notion of a computability structure on a metric space.

A computability structure S on a metric space (X ,d) is a set of sequences in X
such that the following hold [70, 102, 82, 45]:

1. if (xi),(y j) ∈S , then the function N2→ R, (i, j) 7→ d(xi,y j), is computable;
2. if (xi)∈S and (yi) is a sequence in X such that d(yi,xF(i,k))< 2−k for all i,k∈N,

where F : N2→ N is a computable function, then (yi) ∈S .
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A computability structure S on a metric space (X ,d) is said to be separable if
there exists (xi) ∈S such that (xi) is a dense sequence in (X ,d).

If (X ,d) is a metric space, then there exist computability structures on (X ,d):
we can take any a ∈ X , and then {(a,a,a, . . .)} is trivially a computability structure
on (X ,d). On the other hand, a separable computability structure on a metric space
(X ,d) need not exist. It certainly does not exist if (X ,d) is not a separable metric
space, but even if (X ,d) is separable, a separable computability structure on (X ,d)
need not exist. For example, we can take X = {0,γ}, where γ is an incomputable
real number, and the Euclidean metric d on X .

The general question is: if (X ,d) is a metric space, how many separable com-
putability structures exist on (X ,d)?

A computable metric space (X ,d,α) is said to be effectively totally bounded if
there exists a computable function f : N→ N such that

X = B(α0,2−k)∪·· ·∪B(α f (k),2
−k)

for each k ∈ N. If (X ,d,α) is effectively totally bounded, then (X ,d) is obviously
totally bounded. Conversely, if (X ,d) is totally bounded, (X ,d,α) need not be ef-
fectively totally bounded [38].

If α and β are equivalent effective separating sequences on a metric space
(X ,d,α), then it is not hard to conclude that (X ,d,α) is effectively totally bounded
if and only if (X ,d,β ) is effectively totally bounded. However, this claim holds even
if α and β are not equivalent.

Theorem 2.10.1 (Iljazović [38]). If α and β are effective separating sequences in
a metric space (X ,d), then (X ,d,α) is effectively totally bounded if and only if
(X ,d,β ) is effectively totally bounded.

Using Theorem 2.3.4 and Proposition 2.3.6 it is easy to conclude that a com-
putable metric space (X ,d,α) is effectively compact if and only if (X ,d) is compact
and (X ,d,α) is effectively totally bounded.

Theorem 2.10.2 (Iljazović [38]). Let (X ,d,α) be an effectively compact com-
putable metric space such that there exist only finitely many isometries of the metric
space (X ,d). Then there exists a unique separable computability structure on (X ,d).

For example, Theorem 2.10.2 implies that there exists a unique separable com-
putability structure on [0,1].

Let (X ,d) be a metric space, S a set of sequences in X , and f : X → X an
isometry. Let f (S ) denote the set {( f (xi)) | (xi) ∈ S }. Then S is a (separable)
computability structure on (X ,d) if and only if f (S ) is a (separable) computability
structure on (X ,d).

A metric space (X ,d) is said to be computably categorical if for all separable
computability structures S and T on (X ,d) there exists an isometry f : X → X
such that f (S ) = T [66].

Theorem 2.10.3 (Melnikov [66]).

1. Every separable Hilbert space is computably categorical (as a metric space).
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2. The space C[0,1] of all continuous functions [0,1]→R with the metric of uniform
convergence (supremum metric) is not computably categorical.

3. The Cantor space {0,1}N with the metric d((xn),(yn)) = max{2−n | xn 6= yn} is
computably categorical.

Theorem 2.10.4 (McNicholl [65]). Let p ∈ R, p ≥ 1. Let lp be the set of all se-
quences (xi) of complex (or real) numbers such that ∑

∞
i=0 |xi|p < ∞. Then lp, with

the metric induced by the norm ‖(xi)‖= (∑∞
i=0 |xi|p)

1
p , is computably categorical if

and only if p = 2.

The general question is: if (X ,d) is a separable metric space, does there exist
a metric space (Y,d′) which is homeomorphic to (X ,d) and which has a separa-
ble computability structure? A similar question is this: if S is a (compact) set in a
computable metric space, does there exist a computable compact set T in the same
space such that S and T are homeomorphic? Bosserhoff and Hertling have studied a
similar problem in Euclidean space and they got the following result.

Theorem 2.10.5 (Bosserhoff-Hertling [3]). Let n ∈ N, n≥ 1.

1. There exists a c.e. closed set K in Rn such that K is compact, K ⊆ [0,1]n, and
such that f (K) is not a computable compact set in Rn for any homeomorphism
f : Rn→ Rn.

2. There exists a co-c.e. closed set K in Rn such that K is compact, K ⊆ [0,1]n, and
such that f (K) is not a computable compact set in Rn for any homeomorphism
f : Rn→ Rn.

A computability structure on a metric space is called maximal if it is maximal
with respect to inclusion. Each separable computability structure is maximal, but the
converse does not hold in general. The question is under what conditions a maximal
computability structure is separable. Another question is under what conditions a
maximal computability structure on a metric space is unique.

Let S be a computability structure on a metric space (X ,d) and let a ∈ X . We
say that a is a computable point in S if there exists (xi) ∈S and i ∈ N such that
xi = a.

For X ⊆ Rn, X 6= /0, let dimX be the largest number k ∈ N such that there exist
geometrically independent points a0, . . . ,ak ∈ X .

Theorem 2.10.6 (Iljazović-Validžić [46]).

1. Each maximal computability structure on Rn is separable.
2. If X ⊆Rn, dimX = k, k≥ 1, and a0, . . . ,ak−1 ∈ X are geometrically independent

points such that d(xi,x j) is a computable number for all i, j ∈ {0, . . . ,k− 1},
where d is the Euclidean metric on X, then there exists a unique maximal com-
putability structure on (X ,d) in which a0, . . . ,ak−1 are computable points.

3. Let γ > 0. For a ∈ [0,γ] let Ma be the unique maximal computability structure
on [0,γ] in which a is a computable point (such a computability structure exists
by claim 2). Then Ma is a separable computability structure if and only if a and
γ−a are left computable numbers.
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M. Schröder, K. Weihrauch (eds.) CCA 2002 Computability and Complexity in Analysis,
Electronic Notes in Theoretical Computer Science, vol. 66. Elsevier, Amsterdam (2002), 5th
International Workshop, CCA 2002, Málaga, Spain, July 12–13, 2002

33. Higuchi, K., Kihara, T.: Inside the Muchnik degrees I: Discontinuity, learnability and con-
structivism. Annals of Pure and Applied Logic 165(5), 1058–1114 (2014)

34. Higuchi, K., Kihara, T.: Inside the Muchnik degrees II: The degree structures induced by the
arithmetical hierarchy of countably continuous functions. Annals of Pure and Applied Logic
165(6), 1201–1241 (2014)
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Chapter 3
Computability of Differential Equations

Daniel S. Graça and Ning Zhong

Abstract In this chapter, we provide a survey of results concerning the computabil-
ity and computational complexity of differential equations. In particular, we study
the conditions which ensure computability of the solution to an initial value problem
for an ordinary differential equation (ODE) and analyze the computational complex-
ity of a computable solution. We also present computability results concerning the
asymptotic behaviors of ODEs as well as several classically important partial differ-
ential equations.

3.1 Introduction

A differential equation is an equation that relates a function with its (partial) deriva-
tives of various orders. Differential equations are widely used in many fields and
have been extensively studied since the time when the calculus was invented. Given
a differential equation, the goal is to find its solutions. Unfortunately, most differ-
ential equations do not possess solutions in explicit forms. In order to obtain useful
information about the solutions without having an explicit representation formula
for them, various methods and tools have been developed. Classically, the following
methods are of most significance:

• Numerical methods: where solutions are approximated numerically.
• Qualitative methods: where the behavior of a differential equation and of its so-

lutions is analyzed from a qualitative perspective.
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Numerical methods generate numerical algorithms which calculate approxima-
tions to the exact solution that cannot be found explicitly, and the approximations
are expected to converge to the exact solution. The convergence is a fundamental
property for a numerical algorithm to be of any use. In numerical analysis, the ac-
curacy of approximation (the convergence rate) is usually not specified – sometimes
it is impossible to specify (see [81] for an example) – as an input to the algorithm
that computes the approximations, but rather it is provided externally and implicitly
by finding certain analytical forms of approximation errors, which frequently de-
pend on additional assumptions; for example, the twice differentiability of the exact
solution. This requirement is often crucial, yet not applicable to many initial value
problems for the first-order ODEs whose solutions may not be C2 but nevertheless
are approximable by convergent numerical solutions.

The qualitative method is another key tool, often complementing numerical
methods, in the study of ordinary differential equations; in particular, in describing
the asymptotic behaviors of solutions of ODEs. For example, it is used to describe
the limit set of a typical solution as a spatial object as time tends to infinity.

In addition to the classical methods, there is also a relatively new approach based
on the Turing machine model over the real field (see [67, 56, 87] and references
therein):

• Computable analysis methods: where computability and computational complex-
ity of problems related to differential equations are studied.

In computable analysis, a problem is called computable if it can in principle be
solved or approximated with arbitrary precision by a computing device. The com-
putable analysis method provides useful insights on many problems related to a
given ODE from the perspective of computation in the sense that (1) the method
can be used to identify whether a problem is computable; (2) if a problem is proved
to be computable using the computable analysis method, often the proof generates
a (Turing) algorithm that computes approximations with arbitrary precision and,
moreover, with the accuracy specified as a part of the input (computability); and (3)
the method has a mechanism for assessing the resources needed for a computation
(computational complexity).

The computable analysis method has been used by many authors to explore the
computational aspects of differential equations; in particular, to address questions
related to computing solutions of differential equations. In this chapter, we present
a brief survey of some existing results.

The chapter is organized as follows. Section 3.2 addresses computability of solu-
tions of first-order ODEs, while Section 3.3 analyzes the computational complexity
of the computable solutions. Section 3.4 discusses computability of asymptotic be-
haviors of ODEs. Finally, Section 3.5 presents some computability results of several
classically important partial differential equations.
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3.2 Computability of the Solutions of Ordinary Differential
Equations

In this section, we consider ordinary differential equations (ODEs) of the form

y′ = f (y) (3.1)

and associated initial value problems (IVPs){
y′ = f (y)
y(t0) = y0

(3.2)

where f : E → Rn is continuous over E ⊆ Rn. Since an ODE of the more general
form y′ = g(t,y) can be reduced to (3.1) if one replaces the independent variable t by
a new variable yn+1 satisfying y′n+1 = 1, yn+1(t0) = t0, there is no loss of generality
in studying only ODEs in the form of (3.1).

3.2.1 Computability over Compact Sets

Assume that E is a compact subset of Rn. Classically, it is well known that conti-
nuity of f ensures the existence of solution(s) to the IVP (3.2) (Peano’s existence
theorem, see, e.g., [11, pp. 191-193]), and if f is Lipschitz continuous then the so-
lution is unique and C1 smooth (Picard-Lindelöf theorem, see, e.g., [43, pp. 8-10]).
The compactness of E is essential for the proof of Peano’s existence theorem, in
which a sequence of functions is constructed and then the Arzelà-Ascoli theorem
is employed to obtain a subsequence that converges toward a solution of (3.2). The
proof is non-constructive. On the other hand, the classical proof of existence and
uniqueness for Lipschitz continuous f is constructive, such as Picard’s scheme of
successive approximations; such constructive schemes lead naturally to some com-
puter programs for computing the unique solution, uniformly in f . Recall that f is
said to be Lipschitz continuous if it satisfies a Lipschitz condition on E; i.e., there
exists some positive constant K (a Lipschitz constant) such that, for all x,y ∈ E

‖ f (x)− f (y)‖ ≤ K ‖x− y‖ .

Thus the question remaining to be investigated is whether solutions are still com-
putable when the vector field f is continuous on E but fails to be Lipschitz contin-
uous. In this case, whether the IVP (3.2) has a unique solution plays a pivotal role
in determining whether (3.2) admits a computable solution. A theorem by Osgood
[10] shows implicitly that the initial value problem y′ = f (t,y), y(0) = y0 does ad-
mit a computable solution on [0,δ ] for some δ > 0, provided that f is computable
on E = [0,1]× [−1,1] and the solution of the IVP is unique. The idea used for the
proof is to compute sequences of functions which converge to a maximal solution
ymax from above and a minimal solution ymin from below. If the solution is unique,
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then the convergence is effective and thus results in a computable solution. However,
this technique only works in the plane, since in higher dimensions there is no similar
notion of a maximal or a minimal solution. In [71] Ruohonen generalizes this result
to higher dimensions, using approximation funnels to compute the solution of (3.2),
obtaining the following result.

Theorem 3.2.1. Suppose that f is computable and not identically zero on the closed
ball B(y0,b) = {x ∈ Rn : |y0− x| ≤ b}, where b > 0, t0,y0 are computable. Then the
solution of (3.2) is computable on [t0, t0 +δ ] for δ = b

maxx∈E‖ f (x)‖ > 0, provided that
the solution of (3.2) is unique on that interval.

Another result that relies on Picard’s construction to compute the solution of
(3.2) is presented in [28]. There a domain-theoretic version of Picard’s operator
is presented to compute the solution of the IVP (3.2), provided that the function
defining the IVP is Lipschitz continuous.

It is also shown in [19] that, under certain conditions, solutions of the class of
implicit ODEs in the form of A(y) · y′ = f (y,λ ) are computable, where A(y) is an
n× n matrix formed by polynomials in y1, . . . ,yn, with y = (y1, . . . ,yn), and λ is a
parameter.

The scenario changes completely if (3.2) admits multiple solutions. In this case,
it is possible that none of the solutions is computable. The following result was first
proved by Aberth [2, p. 152] for the case where f is assumed just to be computable;
later a different proof was presented by Pour-El and Richards [65]; then the result
was extended in [55] to include the case where f is polynomial-time computable.

Theorem 3.2.2. There exists a polynomial-time computable function f : [0,1]×
[−1,1]→ R such that {

y′ = f (t,y)
y(0) = 0 (3.3)

does not have a computable solution y on [0,δ ] for any δ > 0.

The idea for the proof is to construct a function f that embeds a non-computable
problem P and show that if a computable solution for (3.3) exists, then P can be
solved computationally, a contradiction. For details of the proof, we refer the reader
to the original papers [65, 55] or to [56, pp. 216-219].

3.2.2 Computability over Non-compact Sets

In this subsection, we assume that E is an open subset of Rn. The Peano existence
theorem indicates that the IVP (3.2) has a solution existing on some time interval
containing t0 in its interior, provided that f is continuous on E. An interval is called
an interval of existence if it contains t0 and if a solution of (3.2) exists on it. The
following classical result indicates how large an interval of existence may be (see,
e.g., [43, pp. 12-13]).
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Proposition 3.2.3. (Maximal Interval of Existence) Let f : E → Rn be continuous
on E. Then the IVP (3.2) has a maximal interval of existence, and it is of the form
(α,β ), with α ∈ [−∞,∞) and β ∈ (−∞,∞]. There is a solution y(t) of (3.2) on (α,β )
and y(t) leaves every compact subset of E, i.e., y(t) tends to the boundary ∂E of E,
as t→ α from above and as t→ β from below.

The proposition is a simple classical existence statement “the IVP (3.2) has a
maximal interval of existence and a solution exists on it.” It turns out that this simple
statement gives rise to a variety of questions about computability. Is the maximal
interval (α,β ) of existence computable from the data ( f , t0,y0) that defines the IVP
(3.2)? Does (3.2) admit a computable solution on (α,β )? If E =Rn, then a solution
of (3.2) is said to blow up in finite time if α and β are two real numbers. Is the
problem whether (3.2) admits a finite blowup solution decidable? We will discuss
these questions in this subsection.

It is known from Subsection 3.2.1 that if the IVP (3.2) has multiple solutions then
it may occur that none of the solutions is computable. Hence, in this subsection, we
consider only those IVPs to which the solution is unique.

We begin by examining the proof of the proposition. The proposition can be
proved by using the Peano existence theorem repeatedly: The theorem first produces
a solution y(t) of the IVP (3.2) on an interval [a0,b0] containing t0; then it extends
y(t) to [a1,a0] and to [b0,b1], a1 < a0 and b1 > b0, by yielding a solution to the IVP
v′ = f (v), v(b0) = y(b0), and to the IVP v′ = f (v), v(a0) = y(a0); and the process is
repeated infinitely many times to reach the maximality: (α,β ) =

⋃
∞
j+1[a j,b j]. Thus,

if the IVP (3.2) has a unique solution y(t) over (α,β ), then it follows from Theorem
3.2.1 that a j, b j, and y(t) on interval [a j,b j] are computable from j, f , t0, and y0.
But the argument is insufficient to show that y(t) is computable on (α,β ) because it
is possible that there does not exist a “master” algorithm computing y(t), indepen-
dent of j. One possible way of dealing with this shortcoming is to strengthen f to
be a smoother function, which is actually an approach frequently used in classical
analysis of ODEs: the smoother the vector field f is, the better, possibly, the solution
y behaves. This is the approach used in [36]. By strengthening f to be a C1 function
on E, the following result is shown in [36].

Theorem 3.2.4. Assume that E is an r.e. open subset of Rn. Consider the initial
value problem (3.2) where f is C1 on E. Let (α,β ) be the maximal interval of
existence of the solution y(·) of (3.2) on E. Then:

1. The operator ( f , t0,y0) 7→ y(·) is computable;
2. The operator ( f , t0,y0) 7→ (α,β ) is semi-computable (i.e., α can be computed

from above and β can be computed from below).

Recall that E is an r.e. open subset of Rn if it can be filled up by a computer-
generated sequence {B j}∞

j=1 of rational balls (balls having rational centers and ra-
tional radii), i.e., E =

⋃
∞
j=1 B j. The main role played by the C1 smoothness in the

proof is that C1 smoothness implies local Lipschitz continuity (and the converse is
false); that is, if f is C1 on E, then f is Lipschitz continuous on every compact sub-
set of E. An algorithmic version of this fact is proved in [36]. Thus, when giving a
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C1-name of f , it becomes possible to compute a Lipschitz constant K j for each E j,
where E j is the closure of

⋃ j
i=1 Bi, then compute the solution of (3.2) on E j, and

thus compute the solution over the maximal interval (α,β ) of existence, because
the E j are getting ever larger and eventually fill up E.

Although for many important ODEs their vector fields f are indeed C1, the re-
quirement for f being C1 is nevertheless not necessary for ensuring the existence
of a unique solution. It is then natural to ask whether it is possible to compute
the unique solution of the IVP (3.2), whenever it exists, over the maximal interval
(α,β ); in other words, whether Theorem 3.2.4 holds true over (α,β ) when E is an
open subset of Rn. The problem is studied in [26] and a positive answer is presented
there. The proof uses a quite different approach; the idea underlying the approach
is to try to cover the solution with rational boxes and to test (i) and (ii), in an al-
gorithmic way: (i) whether a given set of rational boxes is an actual covering of
the solution of (3.2), and (ii) whether the “diameter of the covering” is sufficiently
small so that the rational boxes provide an approximation of the solution with the
desired accuracy whenever (i) is satisfied. The process of enumerating all possible
families of rational boxes and applying the tests (i) and (ii) to each family gener-
ates, effectively, better and better approximations to the unique solution of (3.2),
and thus proves that the solution is computable. This procedure can also be applied
to study the computability of differential inclusions (see [26] for more details). The
following theorem proved in [26] (see also [25]) strengthens Theorem 3.2.4.

Theorem 3.2.5. Consider the initial value problem (3.2) where f is continuous on
the open set E. Suppose that (3.2) has a unique solution y(·) on E, defined on the
maximal interval of existence (α,β ). Then

1. The operator ( f , t0,y0) 7→ y(·) is computable;
2. The operator ( f , t0,y0) 7→ (α,β ) is semi-computable (i.e., α can be computed

from above and β can be computed from below).

In particular, if f is a computable function and t0,y0 are computable points, then
(α,β ) is a recursively enumerable open set and the solution y(·) is a computable
function.

A question that remains is whether the maximal interval of existence is com-
putable. The answer is negative, as shown in [36].

Theorem 3.2.6. There is an analytic and computable function f : R→ R such that
the unique solution of the problem {

y′ = f (y)
y(0) = 0 (3.4)

is defined on a non-computable maximal interval of existence.

The theorem indicates that the computability of the maximal interval (α,β ) of
existence is not tied up with the smoothness of f ; rather it has more to do with
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the “globalness” of (α,β ). Later, in Section 3.4, we will see again that a “global
property” is usually difficult to compute. The counterexample is constructed by cre-
ating a computable odd and bijective function ϕ : (−α,α)→ R, where α is a non-
computable real number, such that ϕ satisfies the following conditions: (i) ϕ is the
solution of (3.4) for an analytic and computable function f ; and (ii) ϕ(x)→±∞ as
x→±α∓.

When E is the whole space Rn and f is defined on Rn, if a solution y(t) of (3.2)
is defined for all t ≥ t0, it is called a (positively) global solution that does not blow
up in finite time. In general, it is difficult to predict whether or not a solution will
blow up in finite time from a given initial datum (t0,y0), as Theorem 3.2.6 already
indicates, because it often requires extra knowledge on some quantitative estimates
and asymptotics of the solution over a long period of time. Actually the problem
of determining whether the solution of (3.2) blows up in finite time is undecidable
even if f : Rn→Rn has only polynomials as components [39]. Nevertheless, certain
computational insight on the blowup problem is obtainable from f , as the following
theorem in [69] suggests.

Theorem 3.2.7. Consider the IVP (3.2), where f is locally Lipschitz. Let Z be the
set of all initial values (t0,y0) for which the corresponding unique solution of (3.2)
is (positively) global. Then Z is a Gδ -set and there is a computable operator deter-
mining Z from f .

3.3 Computational Complexity of the Solutions of Ordinary
Differential Equations

In this section we analyze the computational complexity of solving an initial value
problem (3.2).

We begin by noting that, as mentioned before, any C1 function defined on a com-
pact set E ⊆ Rn satisfies a Lipschitz condition. The analysis of any standard algo-
rithm (e.g., Euler’s method, or the algorithm implicit in Picard’s iteration method) to
solve an initial value problem (3.2) applied to a continuous function which satisfies
a Lipschitz condition over a compact set, with a Lipschitz constant K > 0, shows
that the value of the Lipschitz constant affects the number of iterations needed to
compute the solution of (3.2) with a given accuracy. However, since the Lipschitz
constant is constant in a compact set, it can be hidden in the big O notation. When
we solve (3.2) over a non-compact set, we typically have infinitely many distinct
local Lipschitz constants, and the complexity results need to take into account this
effect. This is the reason the two cases are analyzed in separate sections, as for the
case of computability.
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3.3.1 Results for Compact Sets

We have just discussed above the importance that a Lipschitz condition seems to
have when computing the solution of an initial value problem (3.2). First it makes
sense to ask how the presence of a Lipschitz constant affects the computational
complexity of the solution of (3.2). We already know from Theorem 3.2.1 that if
(3.2) has a unique solution, then it must be computable. So what is the complexity
of the solution of (3.2) if we assume that f is “easy to compute” (polynomial-time
computable)? The following result from [56, p. 219], based on another result of
Miller [58, p. 469], shows that in that case the solution of (3.2), while computable,
can have arbitrarily high complexity.

Theorem 3.3.1. Let a be an arbitrary computable real number in [0,1]. Then there
is a polynomial-time computable function f defined on [0,1]× [−1,1] such that
y(t) = at2 is the unique solution of the initial value problem defined by

y′ = f (t,y) and y(0) = 0. (3.5)

Note that in (3.5) we have used the independent variable t explicitly, i.e., we
considered a non-autonomous ODE instead of an autonomous ODE as in (3.2).
Technically speaking, that is not needed as we have seen in Section 3.2, since a
non-autonomous IVP can be converted into an autonomous IVP. However, in the re-
mainder of this section we will explicitly consider the independent variable t since,
as we will see later in this section, this will allow us to do a more refined analysis on
what happens at a computational complexity level by analyzing how the smoothness
of f relative to t or to y can affect the complexity of the solution of (3.5). In this sec-
tion we also suppose that the initial condition for (3.5) is y(0) = 0, although WLOG
any initial condition y(t0) = y0, where t0,y0 are polynomial-time computable, could
be used to obtain the same results. We note that for non-autonomous IVPs (3.5) the
Lipschitz condition is not needed for the variable t. Therefore, in that case, we say
that f : [0,1]×B(0,1)→Rn, with B(0,1)⊆Rn, is (right-)Lipschitz if it satisfies the
following condition

‖ f (t,y1)− f (t,y2)‖ ≤ L‖y1− y2‖

for all t ∈ [0,1] and all y1,y2 ∈ B(0,1) ⊆ Rn. Remark that if f in (3.5) is (right-)
Lipschitz, then when we convert the ODE of the initial value problem (3.5) into an
autonomous ODE (3.1), then f in (3.1) is Lipschitz continuous. Therefore, using
non-autonomous ODEs with (right-)Lipschitz ODEs or autonomous Lipschitz con-
tinuous ODEs are equivalent approaches, although the non-autonomous case (3.5)
has the advantage mentioned above.

In (3.5) we also assume that the function f is defined on [0,1]×B(0,1). However,
those results can easily be extended to functions defined over [0,T ]×B(0,M) for
T,M > 0 via rescaling. More concretely, let f : [0,T ]×B(0,M)→ Rn and let y :
[0,T ]→ B(0,M) be the solution of (3.5). Note that we suppose that y(t) is always
defined for all t ∈ [0,T ] (and hence is always inside B(0,M)). Define the function
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y∗ : [0,1]→ Rn as y∗(t) = y(tT ). In other words y∗(1) = y(T ). It is not difficult to
see that y∗ is the solution of the IVP

y′∗ = T f (tT,y∗) and y∗(0) = 0.

Similarly one can define the function y∗∗ : [0,1] → Rn as y∗∗(t) = y∗(t)/M =
y(tT )/M. In other words y∗∗(t) is just like y∗, but scaled down by a factor of M
so that y∗∗(t) ∈ B(0,1) for all t ∈ [0,1]. It is also not difficult to check that y∗∗ is the
solution of the IVP

y′∗∗ =
T
M

f (tT,My∗∗) and y∗∗(0) = 0.

Note that, for a fixed compact set [0,T ]×B(0,M), T and M are just constants. There-
fore the complexity of f : [0,T ]×B(0,M)→ Rn is essentially the same as that of
f∗∗ : [0,1]×B(0,1)→ Rn given by f∗∗(t,y) = T

M f (tT,My) and thus the complexity
of finding the solution of (3.5) when f : [0,T ]×B(0,M)→ Rn is essentially the
same as that of finding the solution of (3.5) when f : [0,1]×B(0,1)→ Rn.

In [23, p. 450] it is shown that if f of (3.5) satisfies a Lipschitz condition on
[0,1]× [−1,1] and f belongs to the nth level of the Grzegorczyk hierarchy E (n), for
n ≥ 3, then so will its solution y. This result is refined for the case of polynomial-
time computable functions f in [55, p. 159] (or [56, p. 221]). There it is mentioned
that if f of (3.5) is polynomial-time computable and satisfies a Lipschitz condition
on [0,1]× [−1,1], then the solution of (3.4) can be computed in polynomial space.
This result can be extended to the case where y : [0,1]→ B(0,1) where B(0,1)⊆Rn

and n≥ 1.

Theorem 3.3.2. Let f : [0,1]×B(0,1)→ Rn, with B(0,1) ⊆ Rn, be a polynomial-
time computable (right-)Lipschitz function and assume that y : [0,1]→ B(0,1) is the
solution of (3.5). Then y is polynomial-space computable.

As mentioned by Ko, the proof of this result follows from a careful analysis of
Euler’s method. For example, it is shown in [7, pp. 349-350] that when n = 1 and
we use Euler’s method to compute the solution y of (3.4) over the time interval [0,1]
with time step bounded by h > 0 and rounding error bounded by ρ > 0, the error en
in step n is bounded by

|en| ≤ Aρ +B(hC+ρ/h) (3.6)

where A,B,C > 0 are some constants (the original formula (6.2.32) [7] explicitly
tells how A,B,C depend on the Lipschitz constant, etc., but that level of detail is
not needed for our analysis). So to compute the solution of (3.4) over the time in-
terval [0,1] with accuracy 2−n we could use Euler’s method with h = a2−n and
ρ = b(2−n)2 for some appropriate constants a,b > 0 which are independent of n.
Euler’s method would then run in space polynomial (indeed quadratic) in n, which
shows the result. The case n > 1 can be obtained by considering the Euler method
for dimensions n > 1 as explained in [11, Section 7.2]. The analysis of the error
(done in [11, Section 7.3], except that the rounding error is not considered, but this
can also be taken into account using a procedure similar to that of [7, p. 350]) gives a
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formula (3.6), but with constants A,B,C > 0 which have different values than from
the previous case, and therefore the conclusions remain valid for the case where
n > 1.

In [56, Section 7.4] (also implicitly in [55, p. 159, Question D],) Ko asks whether
polynomial space is also a lower bound for the complexity of the solution y of (3.5),
assuming the conditions of the previous theorem for n = 1. Kawamura provides an
affirmative answer in [49] (see also [48]) using an appropriate notion of reduction
(see [49, Section 2.2]) which allows us to define C -hard and C -complete functions
for a complexity class C . Namely Kawamura shows the following theorem.

Theorem 3.3.3. There exists a polynomial-time computable function f : [0,1]×
[−1,1]→ R which satisfies a (right-)Lipschitz condition, such that the unique solu-
tion y : [0,1]→ R of (3.5) takes values in [−1,1] and is PSPACE-complete.

As a corollary [49, Corollary 3.3] one has the following result.

Corollary 3.3.4. P = PSPACE if and only if any solution y : [0,1]→ B(0,1) of (3.5)
is polynomial-time computable, where f : [0,1]×B(0,1)→ Rn, with B(0,1) ⊆ Rn,
is a polynomial-time (right-)Lipschitz computable function.

The previous results are non-uniform since we fix the complexity of the input
to be polynomial time. But one can naturally ask what is the (uniform) complexity
of the operator LipIV P which maps a function f satisfying a Lipschitz condition
to the solution y of (3.5). A major problem to tackle is that until recently there
was no general theory to measure the complexity of operators which map functions
into functions. This problem was solved in [50] using appropriate representations of
functions and appropriate notions of reduction, hardness and completeness. Using
this setting one can define C -hard and C -complete functions for a complexity class
C . Since we are talking of functions, it makes sense to take C = FP (functions
computable in polynomial time) or C = FPSPACE (functions computable in poly-
nomial space). By using appropriate representations δ� for continuous functions in
C([0,1]) and δ�L for functions satisfying a Lipschitz condition (which are continu-
ous), and an appropriate reduction≤2

mF (see [50] for more details) it was also shown
in [50, Theorem 4.10] that the operator LipIV P is FPSPACE-complete.

Theorem 3.3.5. LipIV P is (δ�L,δ�)-FPSPACE-≤2
mF -complete.

An interesting question is whether smoothness of f helps reduce the computa-
tional complexity of solving an IVP (3.5). We say that f : [0,1]×R→ R is of class
C(i, j) if the partial derivative ∂ n+m f (t,y)/∂ tn∂ym exists and is continuous for all
n ≤ i and m ≤ j; it is said to be of class C(∞, j) if it is of class C(i, j) for all i ∈ N. In
[51] this question is analyzed and Theorem 3.3.3 is generalized to C(∞,1) functions.

Theorem 3.3.6. There exists a polynomial-time computable function f : [0,1]×
[−1,1]→ R of class C(∞,1) such that the unique solution y : [0,1]→ R of (3.5)
is PSPACE-complete.
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In that paper it is also shown [51, Theorem 2] that if f is more than once dif-
ferentiable, then the unique solution can be CH-hard, where CH ⊆ PSPACE is the
counting hierarchy.

Theorem 3.3.7. Let k be a positive integer. There exists a polynomial-time com-
putable function f : [0,1]× [−1,1]→R of class C(∞,k) such that the unique solution
y : [0,1]→ R of (3.5) is CH-hard.

In the most extreme case, when f is analytic, the solution of (3.5) is polynomial-
time computable on a compact set. This follows from results of Müller [60] and Ko
and Friedman [57], which show that polynomial-time computability of an analytic
function on a compact interval is equivalent to polynomial-time computability of
the sequence of its Taylor coefficients at a rational point. Given a sequence of Tay-
lor coefficients for f one can compute the Taylor coefficients for the solution y of
(3.5) [61, Theorem 2.1]. Note that it is known that if f is analytic, then so is the
solution y of (3.5) [5, Section 32.4]. By analytic continuation [60], polynomial-time
computability of y follows.

Theorem 3.3.8. Let f : [0,1]×B(0,1)→B(0,1) with B(0,1)⊆Rn be a polynomial-
time computable analytic function and y : [0,1]→ B(0,1) be the solution of (3.5).
Then y is polynomial-time computable.

As remarked in [51, last paragraph of Section 5.2], the previous argument also
shows uniform polynomial-time computability of the operator LipIV P, if we repre-
sent analytic functions by their sequence of Taylor coefficients, obtaining a repre-
sentation δTaylor, since the Taylor sequence of y is easy to compute from the Taylor
sequence of f . In the next theorem LipIV P �D represents the operator LipIV P re-
stricted to the class of (real) functions D and Cω represents the class of analytic
functions.

Theorem 3.3.9. The operator LipIV P �C
ω

belongs to (δTaylor,δTaylor)-FP.

Theorem 3.3.6 can also be extended to a uniform version by showing that the
operator LipIV P �C

(∞,1)
[51, last paragraph of Section 5.2] is FPSPACE complete,

using the polynomial-time Weihrauch reduction ≤W .

Theorem 3.3.10. The operator LipIV P �C
(∞,1)

is (δ�L,δ�)-FPSPACE-≤W -complete.

Computability in polynomial time of the solution of (3.5) is also obtained in [29]
by using polynomial enclosures in Picard’s method, provided that some assumptions
are made on the function f in (3.5), such as that f is Lipschitz and that its represen-
tation via polynomial enclosures satisfies certain properties (e.g., this representation
should not take “too much space”).
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3.3.2 Results for Non-compact Sets

In the previous section we have analyzed the computational complexity of solutions
of an IVP (3.5) (or, equivalently, (3.2)) where f is considered over a compact set
[0,1]×B(0,1), with B(0,1) ⊆ Rn. But what happens when f : Rn+1→ Rn and the
solution y of (3.5) is considered over its maximal interval of definition? That is, what
is the computational complexity of y : R→ Rn, or more generally of the operator
mapping f to y?

As a first attempt we could consider the approach, given t ∈ [0,+∞), of rescal-
ing the IVP (3.5) given by f : [0, t]× B(0,M) → Rn, where M is big enough
so that y(t) ∈ B(0,M) for all t ∈ [0, t], to an IVP (3.5) which uses a function
f̄ : [0,1]×B(0,1) instead of f , as explained in the previous section. Since, for a
fixed M (and fixed T , with t ≤ T ), the complexity of solving (3.5) is the same as the
complexity of solving (3.5) where f̄ is used instead of f , we might be led to conclude
that the complexity of obtaining the solution of (3.5) for the non-compact case where
f : Rn+1 → Rn is the same as when f is taken over a compact set [0,1]×B(0,1).
However this reasoning is incorrect, since M (and T ) is not fixed in this case and
must be uniformly computed from y, i.e., M = M(y(t)) = M(t). This is not a triv-
ial task since to compute y(t), we need to know M(t). On the other side, to know
M(t), we need to know max0≤u≤t ‖y(u)‖ and therefore we get into a circular argu-
ment where M(t) is needed to compute y(t) and vice versa. To better illustrate this
problem, consider the following system taken from [64]

y1(0)= 1
y2(0)= 1

. . .
yd(0)= 1


y′1(t)= y1(t)
y′2(t)= y1(t)y2(t)
. . .

y′d(t)= y1(t) · · ·yd(t)

The results of Section 3.3.1 show that for any fixed, compact I = [0,T ] the solution
y is polynomial-time computable since the ODE is analytic. On the other hand, this
system can be solved explicitly and yields:

y1(t) = et yi+1(t) = eyi(t)−1 yd(t) = ee.
. .

eet
−1

−1

One immediately sees that yd being a tower of exponentials prevents y from being
polynomial-time computable over R, since one might need (supra-)exponential time
just to write down an integer approximation of yd with precision 1/2 = 2−1 for d ≥
2. This example shows that the solution of an analytic IVP (or even of a polynomial
IVP) can be polynomial-time computable on any fixed compact set, while it may
not necessarily be polynomial-time computable over R.

A possible way to solve this problem is to analyze the complexity of (3.5) us-
ing a bound on the growth of the solution y as a parameter on the function used to
measure the complexity (this is an example of parametrized complexity), since the
problem of knowing how quickly y can grow is not generally well understood, even
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when f is constituted by polynomials. This approach is taken in [13] for the case of
polynomial IVPs (solutions of polynomial IVPs (3.5) where f is formed by poly-
nomials are sometimes called PIVP functions) and in [12] for the case of analytic
functions. The motivation for studying PIVPs is that the class of PIVP functions is
well behaved and includes many interesting functions. In particular it contains all
of the usual functions of analysis (exponential, trigonometric functions, polynomi-
als, their inverses) and is closed under the usual arithmetic operations, composition,
and ODE solving [21, 34]. It can also be shown that this class is exactly the class
of functions generated by Shannon’s General Purpose Analog Computer (GPAC)
[77, 35], which is the mathematical model for analog computers (differential an-
alyzers) used before the advent of digital computers [20] (see also the chapter “A
Survey on Analog Models of Computation” in this handbook). The following result
is from [13] and shows that the solution of a polynomial IVP can be computed in
polynomial time with respect to a bound of Y (t) = max0≤u≤t ‖y(u)‖.
Theorem 3.3.11. There exists an algorithm A which on any vector of polynomials
p with polynomial-time computable coefficients, µ ∈N, t ∈Q with t ≥ 0, and Y ∈Q
such that Y >max0≤u≤t ‖y(u)‖, satisfies

‖A (p,µ, t,Y )− y(t)‖
∞
6 2−µ

where y is the solution of (3.5). Furthermore A (p,µ, t,Y ) is computed in time poly-
nomial in the value of µ, t, and Y .

This result can be extended to IVPs where f is not necessarily a polynomial,
assuming polynomial-time computability of the higher derivatives of f and an ap-
propriate (polynomial) bound on the growth of those derivatives (see [13, Section
7]).

We note that Theorem 3.3.11 can be extended to the case where the initial con-
dition is of the form y(t0) = y0, where t0 ∈Q and y0 is polynomial-time computable
(and it is actually stated in this way in the original paper [13]). This result is proved
by using a variable-order method in which the solution of (3.5) is computed over
a succession of subintervals [ai,ai+1], with i = 0,1,2, . . . and a0 = 0, whose union
gives the maximal interval of definition of the solution y of (3.5). On each sub-
interval a Taylor approximation of the solution is computed, but using a variable-
order method: instead of using an approximation of fixed order for each subinterval
[ai,ai+1], the order of the approximation is allowed to change on each interval. Note
that the usual methods for numerical integrations (including basic Euler’s method,
etc.) fall in the general theory of n-order methods for some n. It was already sug-
gested in [79, Section 3] that fixed-order methods might only run in exponential
time when solving (3.5) for certain polynomial-time computable functions, but that
variable-order methods might solve the same problem in polynomial time. Variable-
order methods have also been used in certain contexts to solve IVPs, but usually
without complexity results or with complexity results valid only for compact sets,
see, e.g., [27, 45, 8, 1].

The previous result has the drawback that we need to know a bound Y >
max0≤u≤t ‖y(u)‖ (which is used as input) to be able to compute y(u) for u ∈ [0, t].
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This is improved in [64], where T and Y are replaced by a single parameter – the
length of the solution curve y, with the added benefit that this parameter is not
needed as an input to the algorithm. We recall that the length of the curve defined
by the graph of a function f between x = a and x = b is

length =
∫ b

a

√
1+( f ′(x))2dx

In the case of the solution of (3.5) where f = p is a vector of polynomials (i.e.,
each component of the vector p is a polynomial), we note that the derivative of the
solution y is given by p(y). If the degree of p is k (in the case where p has more than
one component, the degree of p is the maximum of the degrees of its components),
the length of the solution has a value which has an order of magnitude similar to the
following quantity

Len(t) =
∫ t

0
Σ pmax(1,‖y(u)‖)kdu

where Σ p denotes the sum of the absolute values of all the coefficients of p (or the
maximum of such sums taken over each component of p, if p has more than one
component). The following theorem is from [64].

Theorem 3.3.12. There exists an algorithm B such that if t0, t ∈R with t0≤ t, ε > 0,
and y satisfies (3.2) over [t0, t] and if

x = B(t0,y0, p, t,ε)

then ‖x− y(t)‖6 ε and the algorithm finishes in time

O((poly(k,Len(t0, t), log‖y0‖ , logΣ p,− logε))n)

where Len(t0, t) =
∫ t

t0 Σ pmax(1,‖y(u)‖)kdu, k is the degree of p, n is the number of
components of p, and poly(a1, . . . ,a j) means polynomial in a1, . . . ,a j.

More recently [85], [52] a similar result was established for IVPs with the form
(3.2), where f is analytic, using techniques similar to those of [13] (i.e., using
power series to compute the solution of the IVP). The authors also characterize
the complexity of solving (3.2) using parametrized complexity. In particular, if f
is polynomial-time computable in several input quantities (such as a bound for a
complex extension of f ; the inverse of the distance to a singularity; a bound on the
norm of the point where f is evaluated; the precision up to which f must be cal-
culated), then the solution of the IVP (3.2) is also polynomial-time computable on
those inputs. See [85, Theorem 4.4.1] for more details.

In [85], [54] the above result is applied to some classes of volume-preserving sys-
tems such as Hamiltonian systems. In particular, for some classes of such systems,
it can be shown that their average time complexity is polynomial-time computable,
provided that hard instances are relatively rare. The authors also apply this result
to show that the planar circular restricted three-body problem is polynomial-time
computable on average under certain assumptions.
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3.4 Computability of Qualitative Behaviors of Ordinary
Differential Equations

Qualitative analysis of asymptotic (long-term) behaviors is a key tool for explor-
ing ordinary differential equations because most ODEs do not have representation
formulas for their solutions and numerically computed solutions are usually limited
to the short term only. In some circumstances, in particular for hyperbolic systems,
qualitative analysis may also provide algorithmic descriptions, to various degrees,
of certain asymptotic behaviors. There are only a few results of this nature though,
which are mainly about computation of trajectory behaviors near a hyperbolic equi-
librium point.

We note that a statistical approach can also be used to obtain information about
the asymptotic behavior of a dynamical system. However, since this approach in-
volves measure theory, which is discussed in its own dedicated chapter of this book,
results of this nature are not discussed in this chapter.

The asymptotic behavior of a differential equation is captured by its limit sets,
which are the states the solutions reach after an infinite amount of time has passed.
A limit set can be a point, a finite set of points, a curve, a manifold, or even a
complicated set with a fractal structure known as a strange attractor. Limit sets are
well understood in dimensions one and two: in dimension one and for continuous
f in (3.1), the only possible limit sets are equilibrium points; in dimension two and
for C1 smooth f , a closed and bounded limit set other than a periodic orbit or an
equilibrium point consists of equilibria and solutions connecting them according
to the Poincaré-Bendixson Theorem, a celebrated result in the field of dynamical
systems. Structures of limit sets in dimensions greater than two become much richer
and more complex; for instance, strange attractors abound in R3.

An equilibrium point is the simplest type of limit set.

Definition 3.4.1. 1. A point ỹ ∈ Rn is called an equilibrium point of (3.1) if f (ỹ) =
0.

2. An equilibrium point ỹ is called hyperbolic if none of the eigenvalues of D f (ỹ)
has zero real part, where D f (ỹ) is the Jacobian of f at ỹ. If the real part of every
eigenvalue of D f (ỹ) is negative (positive, respectively), then ỹ is called a sink
(source, respectively).

The structure of solutions, also known as trajectories or orbits, near a hyperbolic
equilibrium is characterized by the Stable Manifold Theorem, which is one of the
most important results concerning the local qualitative theory of differential equa-
tions. From the perspective of computation, hyperbolicity ensures that D f does not
have a computational singularity near ỹ, an indication of the possible existence of
an algorithmic characterization for the orbit structure near ỹ. Note that D f presents
the directions of the trajectories. We recall that the condition x = 0 for computable
real numbers is considered a computational singularity because it cannot be decided
effectively. The following theorem is an effective version of the Stable Manifold
Theorem, which demonstrates that the trajectory structure near a hyperbolic equi-
librium is indeed computable.
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Theorem 3.4.2. [Effective Stable Manifold Theorem [37]] Assume that ỹ ∈Rn is a
hyperbolic equilibrium point of (3.1). Let φ(t,y0) (or φt(y0)) denote the solution of
(3.1) with the initial value y0 at t = 0. Then there is a (Turing) algorithm that com-
putes, on input ( f ,D f , ỹ), a k-dimensional manifold S⊂Rn, an (n−k)-dimensional
manifold U ⊂ Rn with 0 ≤ k ≤ n, both S and U containing ỹ, and three positive
rational numbers γ , ε , and δ such that

(i) For all y0 ∈ S, limt→+∞ φ(t,y0) = ỹ and for all y0 ∈U, limt→−∞ φ(t,y0) = ỹ;
(ii)|φ(t,y0)− ỹ| ≤ γ2−εt for all t ≥ 0 whenever y0 ∈ S and y0 ∈ B(ỹ,δ ); |φ(t,y0)−

ỹ| ≤ γ2εt for all t ≤ 0 whenever y0 ∈U and y0 ∈ B(ỹ,δ ).

Moreover, if k < n (k > 0), then a rational number η and a ball D centered at ỹ
can be computed from f such that for any solution φ(t,y0) to the equation (3.1) with
y0 ∈ D \ S, {φ(t,y0) : t ≥ 0} 6⊂ B(ỹ,η) (y0 ∈ D \U, {φ(t,y0) : t ≤ 0} 6⊂ B(ỹ,η),
respectively) no matter how close the initial value y0 is to ỹ.

The classical proof of the Stable Manifold Theorem relies on the Jordan canon-
ical form of A = D f (ỹ). To reduce A to its Jordan form, one needs to find a basis
of generalized eigenvectors. Since the process of finding eigenvectors from corre-
sponding eigenvalues is not continuous in general, it is a non-computable process.
Thus if one wishes to construct an algorithm that computes some S and U of (3.1)
at y0, a different method is needed. In [37] an analytic, rather than algebraic, ap-
proach to the eigenvalue problem is used to allow the computation of S and U with-
out calling for eigenvectors. The analytic approach is based on function-theoretical
treatment of resolvents (see, e.g., [84, 46, 47, 70]).

The local stable and unstable manifolds can be extended to the global stable and
unstable manifolds by taking

W s
f (y0) =

∞⋃
j=0

φ− j(S), W u
f (y0) =

∞⋃
j=0

φ j(U) (3.7)

respectively. Is the global stable or unstable manifold computable for a computable
hyperbolic equilibrium point? Since the global stable manifold of a sink s coincides
with the basin of attraction of s, a less ambitious question is whether the basin of
attraction of a computable sink is computable. The answer depends on the function
f in (3.1). It is known that for hyperbolic rational functions, there are (polynomial-
time) algorithms for computing basins of attraction and their complements (Julia
sets) with arbitrary precision [9]; in other words, basins of attraction and Julia sets of
hyperbolic rational functions are (polynomial-time) computable. On the other hand,
for more general but still well-behaved functions f , the answer can be negative,
even for computable and analytic functions (see [59, 100] for examples of non-
computable basins of attraction occurring in Ck- and C∞-systems). The following
theorem (taken from [33]) shows that the basin of attraction of a computable sink in
a computable and analytic system can be non-computable.
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Theorem 3.4.3. There exists an ODE (3.1) defined by an analytic and computable
function f which admits a computable hyperbolic sink s such that the global stable
manifold (basin of attraction) of s is not computable.

Although the basin of attraction constructed in the theorem above is not com-
putable, it is an r.e. open subset of Rn (see [100]); in other words, it can be filled
up by a computable sequence of open balls. In general, it can be shown (see [37,
Section 5]) that the degree of unsolvability of computing a global stable manifold is
essentially Σ 0

2 .
The proof of Theorem 3.4.3 is fairly complicated. It starts by encoding a well-

known non-decidable problem into the basin of a computable hyperbolic sink in a
discrete-time system; then this discrete-time system is embedded into a continuous-
time system. The standard suspension method (see Smale [78], Arnold and Avez [6])
for embedding a discrete-time system into a continuous-time system is not sufficient
for the construction; instead, a new method is developed for the embedding.

Another problem that is close in spirit to the Stable Manifold Theorem concerns
linearization of the flow of a nonlinear ODE (3.1) near a hyperbolic equilibrium
point. Poincaré originated the study and, later, a number of researchers contributed
to progress on related problems, which resulted in the Hartman-Grobman Theo-
rem (see, e.g., [63, Section 2.8]); the theorem asserts that near a hyperbolic equi-
librium point ỹ of a nonlinear ODE (3.1), there is a homeomorphism H such that
H ◦φ = L ◦H, where φ is the solution to the ODE (3.1) and L is the solution to its
linearization ẏ=D f (ỹ)y. In other words, near ỹ, the ODE (3.1) has the same qualita-
tive structure as its conjugated linear system. This theorem remains important, since
it shows the structural stability of hyperbolic equilibria in sufficiently smooth dy-
namical systems. The computability study of this linearization is motivated by one
of the seven open problems in the addendum to the book Computability in Analy-
sis and Physics by Pour-El and Richards [67], who asked, “What is the connection
between the computability of the original nonlinear operator and the linear operator
which results from it?” It is proved in [38] that the homeomorphism H that performs
the linearization is computable. The precise statement is given below.

For simplicity only the linearization near the origin is considered. Let AH denote
the set of all hyperbolic n× n matrices, where a matrix A is hyperbolic if all of
its eigenvalues have nonzero real part. The operator norm is used for A ∈ AH ; i.e.,
‖A‖ = sup|x|6=0 |Ax|/|x|. For Banach spaces X and Y , let Ck(X ;Y ) denote the set of
all continuously k-times differentiable functions defined on open subsets of X with
ranges in Y , and L (X ;Y ) the set of all bounded linear maps from X to Y . Let O
denote the set of all open subsets of Rn containing the origin of Rn, I the set of all
open intervals of R containing zero, and F the set of all functions f ∈C1(Rn;Rn)
such that the domain of f is in O , f (0) = 0, and D f (0) ∈ AH . In other words, for
any f ∈F , 0 is a hyperbolic equilibrium point of f .

Theorem 3.4.4. [Effective Hartman-Grobman Theorem [38]] There is a computable
map Θ : F → O ×O ×C(Rn;R)×C(Rn;Rn) such that for any f ∈ F , f 7→
(U,V,µ,H), where

(a) H : U →V is a homeomorphism ;
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(b) the unique solution y(t,y0) = y(y0)(t) to the initial value problem ẏ = f (y) and
y(0) = y0 is defined on (−µ(y0),µ(y0)) for all y0 ∈U; moreover, y(t,y0)∈U for
all y0 ∈U and −µ(y0)< t < µ(y0) ;

(c) H(y(t,y0)) = eD f (0)tH(y0) for all y0 ∈U and −µ(y0)< t < µ(y0) .

Recall that for any y0 ∈ Rn, eD f (0)ty0 is the solution to the linear problem ẏ =
D f (0)y, y(0) = y0. So the theorem shows that the homeomorphism H, computable
from f , maps trajectories near 0, a hyperbolic equilibrium point, of the nonlinear
problem ẏ = f (y) onto trajectories near the origin of the linear problem ẏ = D f (0)y.
In other words, H is a conjugacy between the linear and nonlinear trajectories near
the origin. Since the classical proofs of the Hartman-Grobman linearization theorem
are not constructive, the effective version of the theorem cannot be obtained from a
classical proof.

The results discussed so far are centered at hyperbolic equilibrium points. Evi-
dently, hyperbolicity and locality (in the spatial sense) are two key conditions for
obtaining algorithmic descriptions about asymptotic behaviors of trajectories of the
ODE (3.1) near an equilibrium; on the other hand, the role played by the structure f ,
near an equilibrium, of the ODE (3.1) turns out not to be as crucial, since the com-
putations for a local stable manifold, a local unstable manifold, and the conjugacy
H at a hyperbolic equilibrium are all uniform in f .

Equilibrium points are the simplest limit sets, and there are many limit sets other
than equilibrium points. What about computability of other limit sets, in particular,
those with complicated fractal structures such as strange attractors? The question is
largely open. There is however one type of strange attractors – geometric Lorenz
attractors – that has been proved to be computable recently. The Lorenz attractor is
perhaps the most famous strange attractor. It was introduced in 1963 by E.N. Lorenz
as one of the first examples of strange attractors (see, e.g., [41, 44] for a treatment
of the Lorenz attractor and [4] for a more in-depth analysis of Lorenz-like attrac-
tors). However, Lorenz’s research was mainly based on (non-rigorous) numerical
simulations and, until recently, the proof of the existence of the Lorenz attractor re-
mained elusive. To address that problem, Afraimovich, Bykov, and Shil’nikov [3],
and Guckenheimer and Williams [42] originated the study of flows satisfying a cer-
tain list of geometric properties based on the behavior observed in the numerical
simulations of the Lorenz equation. In particular, they proved that any such flow
must contain a strange attractor. These examples came to be known as geometric
Lorenz models, and the strange attractor contained in a geometric Lorenz flow is
called the geometric Lorenz attractor. In 2002 Tucker [86] used a combination of
normal form theory and rigorous numerics to provide a formal proof of the exis-
tence of the Lorenz attractor by showing that geometric Lorenz models do indeed
correspond to the Lorenz system for certain parameters. Since a geometric Lorenz
model supports a strange attractor, so does the Lorenz system. Recently, the follow-
ing result concerning computability of geometric Lorenz attractors was proved in
[40].
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Theorem 3.4.5. For any geometric Lorenz flow, if the data defining the flow are
computable, then its attractor is a computable subset of R3. Moreover, the physical
measure supported on this attractor is a computable probability measure.

We should also note that some related problems can be found in verification the-
ory. For example, in [24] the reachability problem is analyzed from a computability
perspective. The reachability problem consists of finding the set of all points which
can be reached in finite time from trajectories starting in an initial set. It is shown in
[24] that the reachable set is lower-computable for ODEs (or, more generally, dif-
ferential inclusions). However computability only holds under certain conditions.

3.5 Computability of Partial Differential Equations

The area of partial differential equations is vast and no general theory is known con-
cerning the solvability of all PDEs. In fact, most PDEs do not even have classical
solutions (a solution of a PDE of order k is classical if it is at least k times continu-
ously differentiable in the uniform norm). Instead, they may only be solvable in the
sense of weak or generalized solutions defined in some function spaces equipped
with an energy-type norm such as Sobolev spaces or in the space of generalized
functions. Computability theories of these spaces are established in [98, 101]. Many
modern approaches to the subject – energy methods within Sobolev spaces, the cal-
culus of variations, conservation laws, semigroups, etc. – are also useful tools in the
recursion-theoretic study of the subject; in particular, energy methods augmented
by a fixed-point argument.

An equation is exactly solvable if there is an explicit formula for its (classic or
weak) solution. Only a few solvable partial differential equations are exactly solv-
able. Pour-El and Richards have studied three important second-order linear ex-
actly solvable PDEs from the viewpoint of computability [67]: the heat equation,
Laplace’s equation, and the wave equation. They showed, by exploiting the solu-
tion formulas, that the heat equation and Laplace’s equation admit directly com-
putable classical solutions, at least in the case where good domains such as rectan-
gular regions with computable corners are considered. For the wave equation, they
demonstrated that a computable initial datum may generate a non-computable wave
propagation measured in the uniform norm (also see [66, 68]. A discussion of those
results can also be found in [31]); but in a more physically relevant setting, the wave
equation does admit computable solutions in the energy norm (see, for example,
[92, 88, 91]). This study indicates that computability of the solution operator of a
PDE, if the PDE is uniquely solvable, depends not only on the structure of the equa-
tion but also on the physical measurements used for the initial/boundary function(s)
and for the solution. Another notable fact revealed by the study is that the unique-
ness of solution of a computable initial value problem for a PDE doesn’t guarantee
the solution being computable – a significant distinction between the computabil-
ity theories of ODEs and PDEs. A related result can be found in [22], where the
difficulty of solving (ordinary and partial) differential equations is studied using in-
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dex sets. Several cases of differential equations are considered (e.g., equations with
locally computable solutions) and are shown to correspond to certain levels in the
arithmetical hierarchy, which depend on the particular problem being considered.
This type of results provides more precise characterizations of non-computability
results for differential equations presented in [65] and [66].

Since no general theory is known concerning the solvability of all partial differ-
ential equations, research in the field focuses on various particular PDEs which are
important for applications within and outside of mathematics; for example, the KdV
equation, the Schrödinger equation, and the Navier-Stokes equation. These impor-
tant equations also lie at the center of the computability study of nonlinear PDEs.
Indeed, as one of the seven open problems included in the Addendum in their 1989
book Computability in Analysis and Physics, Pour-El and Richards suggested: “A
third area of study is the recursion-theoretic study of popular nonlinear problems
of classical importance. Examples are the Navier-Stokes equation, the KdV equa-
tion, and the complex of problems associated with Feigenbaum’s constant.” The two
theorems below give partial answers to the open question.

The first result concerns the KdV equation, which is a mathematical model of
waves on shallow water surfaces. The initial value problem of the KdV equation
posed on the whole real line R:{

ut +uux +uxxx = 0, t,x ∈ R
u(x,0) = ϕ(x)

defines a nonlinear map (the solution operator) KR from the Sobolev space Hs(R)
to the space C(R;Hs(R)) for real numbers s ≥ 0, where u represents the ampli-
tude of the wave. It is shown in [94, 93] that for any integer s ≥ 3, the map
KR : Hs(R)→ C(R;Hs(R)) is Turing computable, which means that the solution
KR(ϕ) can be computed with arbitrary precision on Turing machines when suffi-
ciently good approximations to the initial function ϕ are available (in [30] a pre-
liminary computability result was presented for the periodic case). Note that the
solution operator KR is defined for real numbers s ≥ 0 while the computability of
KR is established only for integers s≥ 3 (the proof can be extended to real numbers
s ≥ 3 with some modifications). The stronger smoothness requirement is used for
ensuring that several derivatives in the construction of approximations remain com-
putable. It would be very interesting to know whether KR remains computable for
real numbers 0≤ s < 3.

We also note that computability results exist for similar PDEs. For example, in
[99] the initial and boundary value problem (IBVP){

ut +ux +uux +uxxx = 0, t,x≥ 0
u(x,0) = ϕ(x),u(0, t) = h(t)

is considered; it is shown that the operator which maps the initial and boundary data
to the solution of the IBVP is computable.

The (incompressible) Navier-Stokes Equation
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∂tu−4u+(u ·∇)u+∇P = f, ∇u = 0, u(0) = a, u
∣∣
∂Ω
≡ 0 (3.8)

describes the motion of a viscous incompressible fluid filling a rigid box Ω . The
vector field u = u(x, t) =

(
u(1),u(2), . . . ,u(d)

)
represents the velocity of the fluid,

P = P(x, t) is the scalar pressure, and f is a given external force. The question of
global existence and smoothness of solutions of Equation (3.8), even in the homo-
geneous case f ≡ 0, is one of the seven Millennium Prize Problems posted by the
Clay Mathematics Institute at the beginning of the twenty-first century. Local exis-
tence has been established, though, in various Lp settings [32], and uniqueness of
weak solutions in dimension 2, but not in dimension 3 [80, 14]. Nevertheless, nu-
merical solution methods have been devised in abundance, often based on pointwise
(or even uniform, rather than Lp) approximation and struggling with unphysical ar-
tifacts [62]. Thus, it becomes useful to know whether it is possible to compute a
local solution with arbitrary precision in a rigorous mathematical/physical setting.
A recent result provides a positive answer: it is shown in [83] that the solution op-
erator is indeed Turing computable. More precisely, it is shown that there exist a
computable map T ,

T : Lσ
2,0(Ω)×C([0,∞),Lσ

2,0(Ω))→ (0,∞),(a, f) 7→ T (a, f)

and a computable map S ,

S : Lσ
2,0(Ω)×C([0,∞),Lσ

2,0(Ω))→C([0,∞),Lσ
2,0(Ω)×L2(Ω))

such that for every a ∈ Lσ
2,0(Ω) and f ∈C([0,∞),Lσ

2,0(Ω)), the restriction

S (a, f) |[0,T (a,f)]= (u,P)

constitutes a (strong local) solution to Equation (3.8), where Ω = (−1,1)2 and
Lσ

2,0(Ω) is the set of all square-integrable, divergence-free and boundary-free func-
tions defined on Ω .

The proofs of both theorems make use of energy methods augmented by a fixed-
point argument by converting the PDE into an integral equation, assembling an it-
erate scheme, and then proving that the sequence generated by the iteration is com-
putable as well as effectively convergent and the unique limit is the computable
solution sought after. There are several typical difficulties in such constructions.
Firstly, there is often a need for some custom-designed representations for the
spaces of input and output functions, which are different from known canonical
ones. For example, the weak solution of the Navier-Stokes equation (3.8) defined
on a two-dimensional good region is a locally square-integrable, solenoidal (i.e.,
divergence-free), and boundary-free vector field. The canonical representation for
an Lp space using polynomials with rational coefficients is not rich enough to en-
code a boundary-free solenoid. Yet a strengthened representation for the boundary-
free solenoids must be sufficiently general and robust so that the information carried
by the representation won’t be destroyed by elementary analytical operations such
as (distributive) differentiation and (primitive) integration. The second challenging
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issue is that the iteration usually involves several operations, which may move back
and forth among different spaces. Additional care for representations may become
inevitable in order to keep the computations flowing in and out from one space to
another. Thirdly, the iterate sequence may (effectively) converge only in a special
subspace of the space where the sequence is defined, which may further complicate
matters. For instance, Bourgain’s space is needed in showing that the iterate se-
quence is contracting and therefore converges to the solution of the KdV equation.

In addition to particular equations, there are studies on computability aspects of
several classes of PDEs. One such class is linear parabolic equations. An initial
value problem of a linear parabolic equation can be written in the form:{

du(t)/dt +A u(t) = f (t), t > 0
u(0) = x, x ∈ X (3.9)

where f : [0,T ] → X is a continuous map and A is a strong elliptic operator,
bounded or unbounded, on a Banach space X . When X = L2(Rn), the solution to
the initial value problem (3.9) is given by the formula:

u(t) =W (t)x+
∫ t

0
W (t− s) f (s)ds

where W (t) is a C0 semigroup generated by the infinitesimal generator A . Thus if
the semigroup W is computable from A , then the solution operator K : (A , f ,x) 7→
u is computable uniformly from the data (A , f ,x) defining the problem. The study
concerning computability of semigroups is carried out in [96, 97]. It is shown in [96]
how to compute on Turing machines a uniformly continuous or strongly continuous
semigroup uniformly from its infinitesimal generator and vice versa.

Another class for which a master algorithm exists for computing (local) solutions
of any of its members is the class of general (nonlinear) first-order PDEs for scalar
functions with several independent variables. A problem in this class can be written
in the form:

F(Du,u,x) = 0 in U (3.10)

subject to the boundary condition

u = g on ∂U (the boundary of U) (3.11)

where x ∈U , U is an open subset of Rn, F : Rn×R×V → R and g : ∂U → R are
given, V is an open subset of Rn containing U , the closure of U , and u : U → R
is the unknown and Du is the gradient of u. A function u is called a (strong) so-
lution of the boundary value problem if it solves (3.10), (3.11). A special feature
of equation (3.10) is that it can, locally at least, be transformed into a system of
first-order ordinary differential equations, called the characteristic equations, as fol-
lows: to compute the solution u(x) at a point x ∈U , one finds some curve x(s) lying
within U , connecting x with a point x0 ∈ ∂U , such that along the curve x(s) the
boundary value problem for the PDE is reduced to an initial value problem for the
characteristic equations. As discussed in Section 3.2, a system of ODEs is in prin-
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ciple algorithmically uniformly solvable, sometimes quite explicitly. It is shown in
[82] that the method of characteristics can be used to compute local solutions of
(3.10), (3.11), at least for feasible instances and when the boundary ∂U is effec-
tively locally C1. In the same article, it is also shown that although the solution is
locally computable the maximal region of existence of a computable local solution
may not be computable. Moreover, the problem whether a boundary value problem
has a global solution is not algorithmically decidable. The negative results hold even
within the class of quasilinear equations defined by analytic computable functions
over particularly simple domains (quasilinear equations are among the simplest first-
order nonlinear partial differential equations). This fact shows that the algorithmic
unsolvability is intrinsic.

In [15] uniform computability results are given for some simple one-dimensional
elliptic boundary value problems. In particular, computability results are given for
problems with the following format: (i) −u′′+ u′+ u = f on [0,1], with u′(0) =
0 and u′(1) = 0; (ii) −u′′+ au′+ u = f on [0,1], with u(0) = u(1) = 0; and (iii)
−u′′ = f on [0,1], with u(0) = u(1) = 0. The computability of the solutions of these
problems follows from computable versions of the Fréchet-Riesz Theorem and the
Lax-Milgram Theorem, which are also proved in [15].

In [53] the computational complexity of the Dirichlet problem for Poisson’s
equation

∆u = f in Ω , u|∂Ω = g

is analyzed, where Ω ⊆ Rd is a domain, f : Ω → R and g : ∂Ω → R are given
functions, and ∆ is the Laplace operator. It is shown that, for fixed d and for Ω =
B(0,1) = {x ∈ Rd : ‖x‖ ≤ 1}, solving the Dirichlet problem for Poisson’s equation
is “complete” for the complexity class #P in the sense that FP = #P if and only if
the solution of the Dirichlet problem for Poisson’s equation on B(0,1) is computable
in polynomial time for any choice of polynomial-time computable functions f and
g.

In [95] (see also [89, 90]) the computability of the initial value problems for the
linear Schrödinger equation ut = i∆u+ φ and the nonlinear Schrödinger equation
iut =−∆u+mu+ |u|2u is studied and it is shown that the solution operator is com-
putable if the initial data are Sobolev functions but noncomputable in the linear case
if the initial data are Lp-functions and p 6= 2.

In [72] the authors study symmetric hyperbolic systems of PDEs of the form{
A ∂u

∂ t +∑
m
i=1 Bi

∂u
∂xi

= 0
u(x,0) = ϕ(x)

(3.12)

where A,B1, . . . ,Bm are computable constant symmetric n× n matrices, t ≥ 0, and
x∈ [0,1]m. There it is shown that if the matrices are fixed and if the first- and second-
order derivatives of the initial function ϕ are bounded, the operator which maps
the initial condition ϕ to the solution of the PDE is computable (see also [73] for
a correction and [74, Remark 5.5.3] for the statement given here, which removes
some unneeded assumptions used in the original formulation of [72]). Later it was
shown in [74, Theorem 5.3] that the operator which maps an initial condition and the
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matrices A,B1, . . . ,Bm to the solution of the PDE is uniformly computable, provided
the matrices satisfy some algebraic conditions.

More recently, the computational complexity of solving PDEs with the format
(3.12) was studied in [76, 75]. There the (uniform) complexity of this problem is
shown to be in EXPTIME in general and in PTIME under certain conditions.

The Dirichlet Problem was also analyzed in [16, 17, 18] using Bishop’s frame-
work of constructive mathematics. It is shown that weak solutions of the Dirichlet
Problem exist if certain conditions hold.

3.6 Some Open Problems

In this chapter, we have presented several results concerning the computability and
computational complexity of differential equations. However, the field of differen-
tial equations is vast, and many more problems in the field await exploration from
the perspectives of computable analysis. Here we merely give two open problems.

1. The first problem is to give general principles from which the computability or
noncomputability of limit sets of ODEs follows as corollaries. For example, it
has been shown that a basin of attraction of an ODE defined by a hyperbolic
rational function f is computable, uniformly in f ([9]); however, on the other
hand, if f is analytic, computable but non-hyperbolic, a basin of attraction is no
longer necessarily computable ([33]). It would be interesting to know whether
a computable, analytic and hyperbolic f ensures the computability of a basin of
attraction.

2. The second problem is to characterize the computational complexity of well-
known computable PDEs such as the KdV equation, the Schrödinger equation,
and the Navier-Stokes equation.
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Chapter 4
Computable Complex Analysis

Valentin V. Andreev and Timothy H. McNicholl

Abstract We give an introduction to the field of computable complex analysis and
survey results on conformal mapping, harmonic functions, infinite products, and
constants. We also suggest problems for further investigation.

4.1 Introduction

Computable analysis is the mathematical study of computation with continuous data
such as real numbers. In the appendix on open problems in their seminal text on the
subject, M. Pour-El and J. Richards remark:

Let us consider this issue from the viewpoint of complex analysis...Here, the crucial the-
orem is the Riemann Mapping Theorem...Two obvious questions are (1) If the mapping
is computable, is the region computable? (2) If the region is computable, is the mapping
computable? This in turn leads to the question of what we should mean by a computable
region in the plane....The resolution of this question might provide an interesting interplay
between plane set topology, complex analysis, and logic....For analytic aspects, we might
consider conformal mappings of multiply connected regions. [82]

Our goal here is to give a mostly self-contained survey of the developments in the
decades after the publication of their monograph. We in particular want to direct at-
tention to how the development of computable complex analysis led to precisely the
interesting interplay anticipated by Pour-El and Richards between classical analysis
and computability. In particular, work on effective versions of classical theorems
parallels in many cases the efforts in classical mathematics to establish constructive
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versions. In addition, progress on the effective theory leads in some cases to consid-
eration of new problems in classical analysis and is sometimes facilitated by recent
developments in complex and harmonic function theory.

We review work in the following broad areas: conformal mapping with particular
attention to the Riemann Mapping Theorem (in accordance with the direction set by
the above quote), harmonic functions, infinite products, and constants. Within the
broad area of conformal mapping we will also survey work on simply connected
domains, multiply connected domains, and boundary extensions.

The emphasis of Pour-El and Richards on the Riemann Mapping Theorem is
no doubt due to the fact that this theorem and its generalization, the Uniformization
Theorem, are probably the most profound theorems of complex analysis. Informally,
the Riemann mapping theorem says that every simply connected domain in the com-
plex plane with at least two boundary points is conformally equivalent to the open
unit disk, and the Uniformization Theorem says that every simply connected Rie-
mann surface is conformally equivalent to the open unit disk, the complex plane, or
the Riemann sphere. These theorems have been and continue to be the cornerstone
for the research of generations of mathematicians both in theoretical and applied
complex analysis.

While Riemann’s proof published in 1851 in his Inauguraldissertation was
flawed, his work inspired numerous proofs of the Riemann Mapping Theorem which
developed and employed different far-reaching methods, many of which were non-
constructive. Very early, mathematicians began to search for a constructive approach
to the theorem, the most notable of which were the discovery of the Schwarz-
Christoffel mapping by H. A. Schwarz and E. B. Christoffel in the 1870s and parts
of the proof of the Riemann mapping theorem by P. Koebe in 1912. The work we
are to describe can be seen as being in the spirit of these classical directions, but
sharpened with the precise mathematical theory of computability.

There are many important differences between conformal mapping of multiply
connected domains (i.e., domains that are not simply connected in the sense that they
have one or more ‘holes’) and simply connected domains. One is that where there is
exactly one canonical domain in the simply connected case (namely the unit disk),
there are many canonical domains in the multiply connected case. These challenges
led to several developments in the classical theory, and, as noted by Pour-El and
Richards, these lead to an interesting topic of investigation in computable analysis.
These inquiries also engender the development of the effective theory of harmonic
functions in the plane and boundary extensions of conformal maps.

Infinite products also play an important role in the development of the classical
theory and often lead to numerical methods that converge more quickly than the
corresponding series expansions. We will focus on Blaschke products, which play a
central role in the understanding of spaces of analytic functions (see, e.g., [31, 29]).

The study of constants such as Bloch’s constant, whose existence alone is sur-
prising, is one of the other important directions of the classical theory. Whereas the
decimal expansions of other constants in mathematics such as π and e can be com-
puted, usually only a few decimals of the constants of complex analysis are known.
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Thus, the study of the computability of these constants can be seen as a contribution
to the classical theory.

The paper is organized as follows.

• Section 4.2: Preliminaries from complex analysis.
• Section 4.3: Computability on the complex plane and extended complex plane.
• Section 4.4: Computable conformal mapping of simply connected domains.
• Section 4.5: Boundary extensions.
• Section 4.6: Harmonic functions.
• Section 4.7: Conformal mapping of multiply connected domains.
• Section 4.8: Infinite products.
• Section 4.9: Constants.
• Section 4.10: Open problems.

To make the paper as self-contained as possible, we present some necessary ideas
from complex analysis in Section 4.2 and a simple treatment of computability in the
complex and extended complex plane in Section 4.3.

In Section 4.4, after some historical notes on the proof of the Riemann Mapping
Theorem, we discuss the obstacles to the effectivization of the Koebe construction
of 1912 and the techniques employed by Cheng, Bishop, and Bridges for the con-
structive proof of the theorem as well as Hertling’s effective proof.

Section 4.5 is devoted to the question: under what conditions can a conformal
map between two domains be extended to a continuous or even homeomorphic map
of the closures of the domains. If such an extension exists, it is referred to as a
boundary extension. If the conformal map is computable, it is also natural to ask
whether its boundary extension is computable. We will survey the classical material
as well as computability results.

In Section 4.6, we consider computability questions related to harmonic conju-
gates, analytic extensions, and Dirichlet problems.

As we mentioned earlier, there are major differences between conformal map-
pings on simply connected domains and conformal mappings on multiply connected
domains. To begin with, in the simply connected case the unit disk plays an excep-
tional role due to the Riemann Mapping Theorem, while in the case of multiply
connected domains there is, for example, no single circular domain that plays the
role of a canonical domain for all circular domains of the same connectivity. These
differences will be discussed in depth in Section 4.7, after which we present the
Koebe circular domain construction and the work of Andreev and McNicholl on
the corresponding error estimates. We also discuss Schiffer’s approach, which was
employed by Andreev and McNicholl to show that the conformal maps of a finitely
connected domain onto the canonical slit domains can be computed uniformly from
the domain and its boundary.

Section 4.8 discusses the computability of the representation of an analytic func-
tion as a Blaschke product. In Section 4.9 we encapsulate recent results of R. Ret-
tinger on the computability of Bloch’s and Landau’s constants, and in the last section
we put forth some open problems which we hope will inspire further research.
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Again, to keep the paper as self-contained as possible, we begin each of Sections
4.4 through 4.9 with a synopsis of the related classical theory before delving into
the effective theory. In some cases we also discuss complexity results and work on
practical computation.

4.2 Preliminaries from Complex Analysis

We summarize here the fundamental material on complex analysis that supports
our later discussions and is found in the early chapters of standard sources such as
[19, 36, 33].

We denote the complex plane by C. We let D denote the unit disk; that is the
set of all complex numbers of modulus smaller than 1. Let H denote the right half-
plane; i.e., the set of all complex numbers with positive real part. Let D(z;r) denote
the open disk with center z and radius r.

A curve is a continuous function from the unit interval into the complex plane.
We generally identify curves with their ranges. A curve γ : [0,1]→ is a Jordan curve
if γ(s) = γ(t) if and only if s, t ∈ {0,1}. When viewing a Jordan curve as a set, such
a function γ is referred to as a parameterization.

Suppose γ is a Jordan curve. By the Jordan Curve Theorem, C− γ has two con-
nected components, one of which is bounded and one of which is not. The bounded
component is referred to as the interior of γ and will be denoted Int(γ). The un-
bounded component is referred to as the exterior of γ and will be denoted Ext(γ).

A domain is an open and connected subset of the complex plane. A domain is
a Jordan domain if each connected component of its complement is bounded by
a Jordan curve. A domain D is simply connected if D includes the interior of γ

whenever γ is a Jordan curve that is included in D; otherwise it is said to be multiply
connected.

When f :⊆ C→ C and z0 ∈ dom( f ), we say that f is differentiable at z0 if

lim
z→z0

f (z)− f (z0)

z− z0

exists, in which case the value of this limit is called the derivative of f at z0 and
is denoted f ′(z0). A function f :⊆ C→ C is analytic if it is differentiable and if
its domain of definition is open and connected. It follows from the Cauchy-Goursat
Theorem that every analytic function is infinitely differentiable. Furthermore, if f is
analytic and D(c;R)⊆ dom( f ), then

f (z) =
∞

∑
n=0

f (n)(c)
n!

(z− c)n

whenever |z− c| < R. That is, analytic functions have series expansions at each
point of their domain which are valid on the largest open disk possible. Conversely,
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every function defined on an open disk by a power series is analytic. Finally, if f
is analytic, and if γ is a piecewise smooth Jordan curve such that Int(γ)⊆ dom( f ),
then by the Cauchy Integral Formula

f (n)(c) =
n!

2πi

∫
γ

f (z) dz

whenever z0 belongs to the interior of γ .
The zeros of an analytic function have a number of remarkable features. One is

that they are isolated. That is, if f is a non-constant analytic function and f (z0) = 0,
then there is a positive number r such that f (z) 6= 0 whenever 0 < |z− z0| < r.
This in turn leads to the Identity Theorem: if two analytic functions on a domain
D agree on a set with an accumulation point in D, then they are in fact the same
function. In addition, each zero of a non-constant analytic function has an associated
multiplicity; i.e., if f is a non-constant analytic function and f (z0) = 0, then there
is a largest number m such that f (z) = (z− z0)

mφ(z) for some analytic function φ

with φ(z0) 6= 0. Finally, if f is an analytic function and if γ is a piecewise smooth
Jordan curve such that Int(γ) ⊆ dom( f )∩ f−1[C−{0}], then the number of zeros
of f inside γ is calculated by the integral

1
2πi

∫
γ

f ′(z)
f (z)

dz.

This is known as the Argument Principle.
An important consequence of the Argument Principle is the Open Mapping The-

orem: every analytic function is an open map. That is, if U is an open subset of the
domain of an analytic function f , then f [U ] is open.

When D is a domain, a function u : D→R is harmonic if it is twice continuously
differentiable and if it satisfies Laplace’s Equation:

∂ 2u
∂x2 +

∂ 2u
∂y2 = 0.

A simple but useful example of a harmonic function is u(z) = log |z|. In addition,
the composition of a harmonic function with an analytic function yields another
harmonic function.

If f is an analytic function, then its real and imaginary parts are harmonic and
satisfy the Cauchy-Riemann equations:

∂u
∂x

=
∂v
∂y

,

∂u
∂y

= −∂v
∂x

.
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Conversely, if D is a domain, and if the real and imaginary parts of a function f :
D→ C have continuous partials and satisfy the Cauchy-Riemann equations, then f
is analytic.

If u,v : D→ R are harmonic functions that satisfy the Cauchy-Riemann equa-
tions, then we say that v is a conjugate of u and write v = ũ. Note that conjugates
are not unique but they are unique up to an additive constant. Note also that not ev-
ery harmonic function has a harmonic conjugate on D; e.g., u(x,y) = 1

2 ln(x2 + y2).
However, if D is simply connected, then every harmonic function on D has a har-
monic conjugate on D. It is sometimes desired to build an analytic function on a
domain D by first constructing its real part and then a conjugate of its real part.
Accordingly, when u : D→ R is harmonic, an analytic extension of u is a function
of the form f = u+ iũ. We write f = û if f is an analytic extension of u. Again, a
harmonic function will have more than one analytic extension, but these extensions
all differ by a constant.

An analytic map is conformal if its derivative is never zero. It is an easy conse-
quence of the chain rule that such maps preserve angles between tangent lines of
curves. By the Schwarz Lemma, every conformal map f of the unit disk onto itself
has the form

f (z) = λ
z− z0

1− zz0

for some z0 ∈ D and λ ∈ ∂D.

4.3 Computability on the Complex Plane and Extended Complex
Plane

It is assumed that the reader is familiar with the rudiments of the classical com-
putability theory on discrete structures as expounded in [26, 90, 95, 20]. A compre-
hensive treatment of computability on continuous domains can be found in [101].
See also [14, 15, 37, 46, 47, 56, 57, 58, 82, 98]. Some of these approaches are
very general. In particular, the Type-Two Effectivity approach is capable of defining
computability on any second-countable T0 space [101]. For simplicity, we will limit
our scope to computability on the complex plane and the extended complex plane.
Our approach to computability on these domains is equivalent to what would be
obtained from any of the more general frameworks.

We begin with points and sequences. We say that a point z ∈ C is computable if
there is an algorithm that given any nonnegative integer k as input computes a ra-
tional point q ∈ C such that |z−q|< 2−k. (By a rational point we mean a complex
number whose real and imaginary parts are rational.) We think of q as an approxi-
mation of z and 2−k as an upper bound on the error in this approximation. So, less
formally, z is computable if we can compute arbitrarily good approximations of z. A
sequence of complex numbers {zn}∞

n=0 is computable if it is uniformly computable;
that is, if there is an algorithm that given n,k as input produces a rational point q
such that |q− zn|< 2−k.
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A real a is left-c.e. if its left Dedekind cut is computably enumerable.
We now turn to computability of functions. First of all, by a rational interval we

mean an interval whose endpoints are rational, and by a rational rectangle we mean
a cartesian product of two open rational intervals. Suppose f is a function that maps
complex numbers to complex numbers. We say that f is computable if there is an
algorithm P that satisfies the following two criteria.

• Approximation: Whenever P is given an open rational rectangle R1 as input, it
either does not halt or produces an open rational rectangle R2 such that f [R1] ⊆
R2.

• Convergence: If V is a neighborhood of f (z), then z belongs to an open rational
rectangle R1 such that on input R1 P produces an open rational rectangle R2 ⊆V .

These properties are illustrated in Figures 4.1 and 4.2. Less formally, the algo-
rithm P computes arbitrarily good approximations of values of f from sufficiently
good approximations of the corresponding arguments.

ALGORITHM

R1

R2

f [R1]

Fig. 4.1 The approximation property.

ALGORITHM

R1

V

R2

z f (z)

Fig. 4.2 The convergence property.

When we say that the algorithm is given a rational open rectangle as input, we
are of course being a little sloppy. We do not literally mean that the entire set of
points constituting the rational rectangle is provided as input. Instead, we mean that
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some finite representation of the rectangle, such as the quadruple of its vertices, is
provided as input and that such a finite representation is generated as output.

According to this definition, most functions one would expect to be computable,
and that are commonly computed in practice, are in fact computable. For example,
sin, cos, and exp are computable as can be seen by considering their power series
expansions and the bounds on the convergence of these series that can be obtained
from Taylor’s Theorem.

Instead of open rational rectangles, we could have used open rational disks; the
resulting class of computable functions would be the same. The rationale for this
choice is that disks provide additional intrinsic information in the sense that when
we say a point is not in a disk, we know that the distance from the point to the center
of the disk is at least equal to the radius of the disk.

We now turn our attention to computability of sets. We define an open set U ⊆C
to be c.e. open if the set of all rational rectangles R such that R ⊆U is computably
enumerable. We define a closed set C ⊆ C to be c.e. closed if the set of all ra-
tional rectangles that contain a point of C is computably enumerable. We define a
non-empty compact set K ⊆ C to be computably compact if there is an effective
enumeration of the set of all finite collections {R1, . . . ,Rk} of rational rectangles
such that K ⊆

⋃
j R j and K∩R j 6= /0 for each j.

We can extend these ideas to the extended complex plane C∞ = C∪{∞} as fol-
lows. Define a rational neighborhood of ∞ to be a set of the form C−D(0;r) where
r is a positive rational number. Then, define a rational neighborhood to be a set that
is either a rational rectangle or a rational neighborhood of infinity. We can then de-
fine computability of a function f :⊆ C∞→ C∞ by taking the above definition and
replacing ‘rational rectangle’ with ‘rational neighborhood’. We can define c.e. open
and c.e. closed subsets of C∞ analogously.

If γ is a computable Jordan curve, then it follows from the constructive work of
Gordon, Julian, Mines, and Richman that the interior and exterior of γ are c.e. open
[34].

When a theorem of analysis is known not to be effectively true, attention then
turns to pinning down the exact amount of extra information required to compute its
solution operator. To be more precise, a typical theorem of analysis (or even other
areas of mathematics) has the form

If a,b,c, . . . satisfy . . ., then there is an A such that A,a,b,c, . . . satisfies . . ..

The effective version of such a statement has the form

If a,b,c, . . . are computable and satisfy . . ., then there is a computable A such that A,a,b,c, . . .
satisfies . . ..

An extra parameter Pa,b,c,... is sufficient if

If a,b,c, . . . and Pa,b,c,... are computable, and if a,b,c . . . satisfy . . ., then there is a com-
putable A such that A,a,b,c, . . . satisfies . . ..

It is necessary if there is a reversal:
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If a,b,c, . . . and A are computable, and if A,a,b,c . . . satisfy . . . while a,b,c . . . satisfy . . .,
then Pa,b,c,... is computable.

In the remainder of this section we discuss computability of differentiation, series
expansions, zeros, and the Open Mapping Theorem.

4.3.1 Computability of Differentiation, Computably Analytic
Functions

As the following result of Myhill makes precise, differentiation is not a computable
operator.

Theorem 4.3.1 ([71]). There is a computable and continuously differentiable real-
valued function f on the unit interval whose derivative is incomputable.

However, differentiation of analytic functions with c.e. open domains is a com-
putable operator.

Theorem 4.3.2 ([41]). If f is a computable analytic function, and if the domain of
f is c.e. open, then f ′ is computable.

Furthermore, a code of a Turing machine that computes f ′ can be computed from
a code of a Turing machine that computes f .

Accordingly, we then define an analytic function f :⊆ C→ C to be computably
analytic if it is computable and if its domain is a c.e. open set. Note that we do not
have to specify any computability conditions on the derivative of f .

The proof of Theorem 4.3.2 turns on the observation that integration is a com-
putable operator (use upper and lower Riemann sums to get convergent upper and
lower estimates on the integral) and the ability of the Cauchy Integral Formula to
express differentiation of analytic functions in terms of integration.

4.3.2 Series

The following is an immediate consequence of Theorem 4.3.2.

Proposition 4.3.3. If f is a computably analytic function, and if z0 is a computable
point in the domain of f , then the Taylor series expansion of f at z0 can be computed.

Since every analytic function has a valid Taylor series expansion, we tend to
think of them as being completely described by power series. This works in the
realm of classical mathematics, but in the domain of effective mathematics the series
description of a function may fall quite short of providing the information necessary
to compute the function, as is illustrated by the following.
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Theorem 4.3.4 ([81]). There is a computable sequence {an}∞
n=0 of complex num-

bers such that the series ∑
∞
n=0 anzn converges everywhere but defines an incom-

putable function.

However, the function defined by the power series in Theorem 4.3.4 is at least
‘locally computable’.

Theorem 4.3.5 ([81]). If {an}n∈N is a computable sequence of complex numbers,
and if R is a computable real such that ∑

∞
n=0 anzn converges whenever |z|< R, then

∑
∞
n=0 anzn

0 is computable whenever z0 is a computable point such that |z0|< R.

The proof of Theorem 4.3.5 is a modification of the classical proof that a power
series converges uniformly on compact subsets of its disk of convergence. Thus,
it actually yields that if {an}∞

n=0 is a computable sequence of complex numbers,
and if r > 0 is a computable real that is smaller than the radius of convergence of
f (z) = ∑

∞
n=0 anzn, then f is computable on D(0;r). In light of Theorem 4.3.4, the

proof is necessarily non-uniform.

4.3.3 Zeros

In general, it is not possible to compute the zeros of a computable function, as
illustrated by the following result of E. Specker.

Theorem 4.3.6 ( [97]). If 0 < ε < 1, then there is a computable function f : [0,1]→
R that has no computable zeros and such that the Lebesgue measure of its zero set
is larger than ε .

However, since the zeros of a non-constant analytic function are isolated, we
have the following.

Proposition 4.3.7 (Folklore). Every zero of a computably analytic function is com-
putable.

Moreover, it follows from the Argument Principle that f−1[{0}] is a c.e. closed
set whenever f is a non-constant computably analytic function. That is, it is possible
to enumerate the rational rectangles that contain a zero of f . In general, it is only
possible to enumerate the rational open rectangles that do not contain a zero of a
computable function.

If f : D→ C is analytic, and if {an}∞
n=0 is a sequence of points in D, then let

us call {an}∞
n=0 a primary zero sequence of f if its terms are precisely the zeros of

f , and the number of times each zero of f is repeated is its multiplicity. Again, by
means of the Argument Principle we have the following.

Theorem 4.3.8 ([64]). If f is a non-constant computably analytic function with in-
finitely many zeros, then it has a computable primary zero sequence.

Furthermore, the proof of Theorem 4.3.8 is uniform.
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4.3.4 Open Mapping

The following effective version of the Open Mapping Theorem for analytic func-
tions is useful when studying computable conformal maps.

Theorem 4.3.9 (Effective Open Mapping Theorem [41]). If f is a computably
analytic function, and if U is a c.e. open subset of its domain, then f [U ] is c.e. open.

Again, the proof is uniform in that a code of a Turing machine that computes
an enumeration of the closed rational rectangles included in f [U ] can be computed
from codes of Turing machines that compute f and an enumeration of the closed
rational rectangles included in U .

M. Ziegler presents results on computable open mappings in real analysis in
[103].

4.4 Computable Conformal Mapping of Simply Connected
Domains

4.4.1 Classical Background

The history of the proofs of the Riemann Mapping Theorem provide part of the
motivation for analyzing its effective content. We begin with the modern statement
of Bernhard Riemann’s famous theorem published in his Inauguraldissertation in
1851.

Theorem 4.4.1 (Riemann Mapping Theorem). Suppose U is a simply connected
domain whose boundary contains at least two points. Then, for every z0 ∈U, there is
a unique conformal map φ of U onto the unit disk such that φ(z0)= 0 and φ ′(z0)> 0.

The map φ is called a uniformizing map or a Riemann map.
According to Gauss, who was the reviewer for the dissertation, “The whole is a

solid work of high quality, not merely fulfilling the requirements usually set for a
doctoral thesis, but far surpassing them” ([85], p. 183). Riemann’s original formu-
lation can be translated as follows: “Two given simply connected plane surfaces can
always be mapped onto one another in such a way that each point of the one corre-
sponds to a unique point of the other in a continuous way and the correspondence is
conformal; moreover, the correspondence between an arbitrary interior point and an
arbitrary boundary point of the one and the other may be given arbitrarily, but when
this is done the correspondence is determined completely” [35]. Riemann sketched a
proof for bounded domains with piecewise smooth boundaries based on the Dirich-
let boundary value problem, which he solved by means of the Dirichlet principle.
In 1870 Karl Weierstrass [100] constructed examples of simply connected domains
for which the Dirichlet principle is not valid. Later David Hilbert [42, 43] provided
a rigorous proof of the Dirichlet principle for the domains in Riemann’s work.
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Numerous mathematicians sought to find a correct proof, in the process devel-
oping new methods. Elwin Christoffel and Herman Schwarz developed integral for-
mulas for the conformal transformation of the upper half-plane or the unit disk onto
the interior of a polygon. Schwarz [94] and Carl Neumann [73] developed the alter-
nating method, which allows one to solve the Dirichlet problem for domains which
are the union of domains for which the Dirichlet problem can be solved. In 1887
A. Harnack [38] developed a different approach based on Green’s function, a spe-
cial kind of harmonic function which will be discussed in Section 4.6. H. Poincaré
proved the uniqueness of the mapping function [78].

In 1900 W. F. Osgood [74] established the existence of Green’s function for every
simply connected domain. If G(z,ζ ) is Green’s function for U and if p(z,ζ ) denotes
its analytic extension, then fζ (z) = exp p(z,ζ )(z−ζ ) is the Riemann mapping of U
onto the unit disk that maps ζ to the origin 0. Thus the Riemann mapping theorem
follows from Osgood’s work [99], but it “did not attract the attention it deserves”
[1].

H. Poincaré [77] and, independently, F. Klein [48] conjectured the uniformization
theorem for the Riemann surfaces of algebraic curves. The uniformization theorem
states that every simply connected Riemann surface is conformally equivalent to one
of the three Riemann surfaces: the open unit disk, the complex plane or the Riemann
sphere. The first rigorous proofs of the uniformization theorem were given in 1907
by Poincaré [79] and, independently, by P. Koebe [51, 50, 49].

Constantine Carathéodory [16] gave the first purely function-theoretic proof of
Riemann’s theorem in 1912. He proved the uniqueness of the mapping function,
a theorem due to Poincaré, using Schwarz’s lemma alone (Carathéodory was the
first to point out and name it). Carathéodory demonstrates the existence of the Rie-
mann mapping by proving the convergence of conformal mappings of a sequence
of domains. In a subsequent paper he proved that if U is a Jordan domain, then
the Riemann mapping can be extended continuously to the boundary such that the
extended function is a homeomorphism of Ū onto D̄ [17].

The first proof of Riemann’s theorem that gave some idea as to how to build
the uniformizing map was given by Paul Koebe [53], who called his method
Schmiegungsverfahren (osculation method). As this method is the basis for much
of the later work in constructive and computable analysis we will give a detailed
description of it in Subsection 4.4.2.

In 1922 L. Fejér and F. Riesz demonstrated that the Riemann mapping function
can be obtained as the solution of an extremal problem for the derivative. Their
proof was presented by T. Radó in [83].

4.4.2 Computability Results

The utility of conformal maps and the non-constructive nature of many of these
proofs leads to the question as to whether there is a truly constructive (in the spirit
of Bishop), or at least effective, proof of the Riemann Mapping Theorem. At first
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glance, it would appear that there is not. For, suppose a is a positive left-c.e. and
incomputable real. Let D denote the disk with center 0 and radius a. Then, D is c.e.
open. However, there is no computable conformal map of the unit disk onto D. For,
suppose φ were such a map. Then, ψ = 1

a φ is a conformal automorphism of the unit
disk. So, ψ has the form

ψ(z) = λ
z− z0

1− zz0

where |z0|< 1 and |λ |= 1. It follows that z0 is computable, and it then follows that
a is computable; a contradiction.

What this example (due to Pour-El and Richards [82]) shows is that the com-
putability of the domain U is insufficient information for the computation of a con-
formal map of U onto the unit disk. The question then becomes: what is a nec-
essary and sufficient parameter for the computation of a Riemann map of a non-
degenerate and simply connected domain? In 1999, P. Hertling showed that the an-
swer is knowledge of the boundary; that is, an enumeration of the rational rectangles
that contain a point of the boundary.

The journey toward this conclusion began in 1912 when P. Koebe described an
iterative method for constructing a conformal map of a non-degenerate simply con-
nected domain onto the unit disk [52]. As this method is the basis for later con-
structive work we describe it here. We begin with some intuition. To start, let U be
a non-degenerate simply connected domain. Without loss of generality, we can as-
sume U ⊆ D. We then make the simple observation that if the square root function
is iterated on a positive real, the results tend to 1. So, naively, we wish to iterate the
square root function on U so that the boundary of U will be gradually pulled out to
the boundary of the disk, and the sequence of iterates will thereby converge to a con-
formal map of U onto D. The problem of course is that there is no complex square
root function; there are merely analytic branches defined on simply connected do-
mains that omit 0. In particular, if the sequence of iterates of U is to converge to
the unit disk, then 0 must eventually belong to them. In fact, we can assume 0 ∈U .
So, one might try to fix this flawed approach by first applying a conformal automor-
phism of the disk so as to move 0 out of the domain U and then applying a branch of
square root for the resulting domain. But which conformal automorphism should be
applied? The answer, it turns out, is to pick the one that moves the origin to a point
on the boundary of U that is closest to the origin (among all points on the boundary
of U).

To summarize, the steps in the Koebe construction are as follows. Suppose 0 ∈
U ⊂ D is a non-degenerate and simply connected domain. Set U0 =U . Suppose Un
has been defined such that 0 ∈Un ⊂ D. Let zn be a boundary point of Un such that

|zn|= min{|z| : z ∈ ∂Un}.

Let:

µ1(z) =
z− zn

1− znz
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s = analytic branch of√ on µ1[U ]

µ2(z) =
z− s(zn)

1− s(zn)z
fn = µ2 ◦ s◦µ1

Un+1 = fn[Un].

If we let hn = fn ◦ fn−1 ◦ . . . ◦ f0, then the hn’s converge uniformly on compacta to
a conformal map f . It also follows that limn→∞ d(∂Un,∂D) = 1, and so f maps U
onto D.

It is in general not possible to compute zn ∈ ∂Un so as to minimize its distance
to the origin. For, as first observed by E. Specker, although it is possible to compute
the minimum and maximum value of a computable real-valued function on the unit
interval, it is not in general possible to compute where these maxima and minima
occur; specifically, there is a computable f : [0,1]→ R that does not achieve its
maximum or minimum at any computable point [97]. The solution to this obstacle is
that zn need not be as close as possible to the origin, just ‘close enough’. Specifically,
it suffices to choose zn such that

|zn|<
1
2
(1+d(∂Un,0)).

If the boundary of U is a c.e. closed set, then it follows that the boundary of each Un
is a c.e. closed set, and so such a boundary point of Un+1 can indeed be computed.
It is then possible to compute a modulus of uniform convergence. The key estimate
is the following, which is Corollary 7.5 of Chapter 5 of [12].

Theorem 4.4.2. Suppose U is an open subset of the plane and D(0;r) ⊆U, where
0 < r < 1. If f : U → C is a conformal map such that f (0) = 0, f ′(0) > 0, and
D(0;r)⊆ f [U ]⊆ D, then

| f (z)− z| ≤ 3
√

1− r
r2−|z|

whenever |z|< r2.

Via these techniques, Cheng [18] and Bishop and Bridges [12] proved the Rie-
mann Mapping Theorem constructively, and Hertling proved the following.

Theorem 4.4.3 (Effective Riemann Mapping Theorem [41]). Suppose U is a non-
degenerate and simply connected domain, and let z0 ∈U. If z0 is computable, and if
U, ∂U are c.e. open and closed respectively, then the unique conformal map φ of U
onto the unit disk such that φ ′(z0)> 0 is computable.

The proof of Theorem 4.4.3 is uniform. Theorem 4.4.3 establishes that the bound-
ary of U provides sufficient information for computing a conformal map of U onto
D. By means of the Koebe 1/4-estimate, Hertling also established the necessity of
this parameter.
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Theorem 4.4.4 (Effective Reverse Riemann Mapping Theorem [41]). Suppose
φ is a computable conformal map of a nondegenerate simply connected domain U
onto the unit disk. Then, U is c.e. open and its boundary is c.e. closed.

Again, the proof of Theorem 4.4.4 is uniform.
We note that prior to Hertling’s work, Q. Zhou proved an effective version of the

Riemann Mapping Theorem for so-called recursive open subsets of the plane [102]
which imposes computability conditions on the set and its complement. The class of
open sets considered by Hertling, which imposes computability conditions only on
the set and its boundary, is strictly larger, and Theorem 4.4.4 shows it is the largest
class of domains for which uniformizations can be computed.

4.4.3 Complexity Results

Theorems 4.4.3 and 4.4.4 pin down the exact information required to compute a
Riemann map. However, the iterative method of the proof of Theorem 4.4.3 may
converge very slowly in practice. We are thus led to consider complexity issues. That
is, how quickly can the uniformizing map of a domain be computed? Theorems 4.4.3
and 4.4.4 demonstrate that knowledge of the boundary is essential for computation
of these maps. So, it is natural to conjecture that the computational complexity of
the boundary of a domain should determine the computational complexity of its
uniformizing map.

The complexity of a computation is often influenced by the representation of
its input data. In [10], I. Binder, M. Braverman, and M. Yampolsky consider two
methods for representing the boundary of a bounded domain A:

1. A (code of a) Turing machine that computes a function f : N3 → N such that
f (n,k, j) = 1 whenever D(k2−n+ i j2−n;2−n)∩∂A 6= /0 and such that f (n,k, j) =
0 whenever D(k2−n + i j2−n;2 ·2−n)∩∂A = /0.

2. A set of O(22n) dyadic points S such that dH(S,∂A) < 2−n (where dH is the
Hausdorff distance).

In the first case, it is shown in the same paper that there is an algorithm that
computes the values of a uniformizing map φ of D in time 2O(n) with error at most
2−n provided the values are sufficiently far from the boundary of D (specifically
|φ(z)|< 1−2−n). R. Rettinger [87] showed that the lower bound is sharp. It is then
shown that in the second case, the values of φ can be computed with error at most
O(2−n) in time polynomial in 2n provided they are sufficiently far from the boundary
(again, specifically |φ(z)| < 1− 2−n). Fairly technical lower bound results are also
demonstrated. Roughly speaking, in the first case it is shown that the complexity
class #P is a lower bound, and in the second the circuit complexity class MAJn is
a lower bound. It is notable that in the latter case the time complexity is quite high
and is achieved via domains that are nevertheless fairly simple.

In terms of practical computation, one of the best-known algorithms is the Zip-
per algorithm, which was discovered independently by Kühnau [55] and Marshall
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in the early 1980s. Similarly to the second algorithm considered by Binder, Braver-
man, and Yampolsky, it assumes the input data are a sequence of pairwise tangent
disks that cover the boundary of D. Different versions of the algorithm were pre-
sented and convergence was discussed in [61]. The algorithm was discovered as an
approximate method for conformal welding; it can also be viewed as a discretiza-
tion of the Loewner differential equation. As noted in [10], the worst-case running
time of Zipper exceeds that of the algorithm produced by Binder, Braverman, and
Yampolsky. However, worst-case running time is not always the best method for
comparing algorithms.

4.5 Boundary Extensions

When a conformal map φ maps a domain D1 onto D2, it is natural to inquire whether
it extends to a continuous or even homeomorphic map of D1 onto D2. Such an
extension, if it exists, is referred to as a boundary extension. If φ is computable, it
is also natural to ask whether its boundary extension is computable. We will survey
the classical material on the first question and results on the second.

4.5.1 Classical Background

Conformal maps do not always have boundary extensions. For example, no confor-
mal map of the unit disk onto the domain in Figure 4.3 (obtained by removing all
line segments of the form {2−n}× [0, 1

2 ] from the interior of the unit square) has a
boundary extension.

Fig. 4.3 A fine-tooth comb domain.

However, boundary extensions do exist if each domain is a Jordan domain.
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Theorem 4.5.1 (Carathéodory Theorem). If D is a bounded and simply connected
Jordan domain, and if φ is a conformal map of D onto the unit disk, then φ extends
to a homeomorphism of D with the closed unit disk.

Recall that a topological space X is locally connected if for every p∈X and every
neighborhood U of p there is a connected open subset C of X such that p ∈C ⊆U .
If X is a continuum, this is equivalent to the following assertion: for every ε > 0
there is a δ > 0 such that whenever p ∈ X there is a connected subset C of X such
that D(p;δ )⊆C ⊆ D(p;ε). This condition is known as uniform local connectivity.

Theorem 4.5.2 (Generalized Carathéodory Theorem). If φ is a conformal map
of a bounded domain D onto the unit disk, and if the boundary of D is locally con-
nected, then φ extends to a continuous map of D onto the closed unit disk. Con-
versely, if a conformal map of D onto the unit disk has a boundary extension, then
the boundary of D is locally connected.

The converse is an immediate consequence of the Hahn-Mazurkiewicz Theorem
[44].

4.5.2 Computability Results

From our point of view, the natural questions to ask are whether boundary extensions
of computable conformal maps are computable, and if not then what is a sufficient
and necessary parameter for their computation? As it turns out, there is a computable
conformal map (onto a Jordan domain) whose boundary extension is incomputable
[102, 65]. So, the question turns to additional parameters. The following provides
an answer for Jordan domains.

Theorem 4.5.3 (Effective Carathéodory Theorem [65]). If γ is a computably pa-
rameterized Jordan curve, and if φ is a computable conformal map of the interior of
γ onto the unit disk, then the boundary extension of φ is computable. Furthermore,
if ψ is a computable conformal map of the interior of a Jordan domain D onto the
unit disk, and if the boundary extension of ψ is computable, then the boundary of D
has a computable parameterization.

Thus, Theorem 4.5.3 says that in the case of a simply connected Jordan domain, a
parameterization of the boundary provides both sufficient and necessary information
for the computation of the boundary extension.

We note that having a computable parameterization of a Jordan curve γ is much
more powerful than its computability as a closed or even as a compact set. For
it follows essentially from results of J. Miller that there is a computably compact
Jordan curve with no computable parameterization [70]; see also [102, 25]. While
there is a computable conformal map of the unit disk onto the interior of such a
curve, no such map has a computable boundary extension.
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When X ⊆C, a modulus of local connectivity for X is a function h : N→N such
that whenever k ∈ N and p,q are distinct points of X such that |p− q| ≤ 2−h(k), X
contains a path from p to q whose diameter is smaller than 2−k. It follows that a
compact and connected subset of the plane has a modulus of local connectivity if
and only if it is locally connected. (See, e.g., Theorem 3-13 of [44]; the proof is
essentially an application of the Lebesgue Number Theorem.) The essence of the
proof of Theorem 4.5.3 is to compute a modulus of local connectivity for γ from a
parametrization of γ , and then to use a length-area estimate to compute the boundary
extension. In fact, Theorem 4.5.3 follows from the following quantitative version of
Carathéodory’s Theorem. When D is a Jordan domain and ζ0 ∈ ∂D, let C(D;ζ0,r)
denote the connected component C of D(ζ0;r)∩D such that ζ0 ∈ ∂C.

Theorem 4.5.4 ([69]). Suppose φ is a conformal map of a Jordan domain D onto
the unit disk. Let ζ0 be a boundary point of D, and let ε > 0. Then, the diameter
of φ [C(D;ζ0,r0)] is smaller than ε whenever r0 is a positive number that is smaller
than

sup
0<l<ε

(
exp
(

8π2

l2− ε2

)
min

{
|ζ0−φ

−1(w)| : |w| ≤
√
(1− l)2 +

ε2− l2

4

})
.

(4.1)

When 0 < ε < 1 and l = ε

2 ,

7
16

< (1− l)2 +
ε2− l2

4
< 1.

Thus, (4.1) is positive when 0 < ε < 1. In other words, for all sufficiently small
ε > 0, there is a positive number r0 that is smaller than (4.1). Such a number can be
found via a search procedure.

From Theorem 4.5.4 we can also infer that the boundary extension of a com-
putable conformal map of the disk onto a Jordan domain D can be computed from a
modulus of local connectivity for the boundary of D. It is not difficult to show that
a modulus of local connectivity for a Jordan curve can be computed from any one
of its parameterizations. Thus, in the case of a Jordan domain, a modulus of local
connectivity for the boundary also provides a necessary and sufficient parameter for
the computation of its boundary extension.

More about computable moduli of local connectivity, other notions of effective
local connectivity, and applications to space-filling curves can be found in [25] and
[21].

We now turn to the computation of boundary extensions of conformal maps onto
non-Jordan domains. Suppose D is a c.e. non-degenerate and simply connected do-
main. Assume also that the boundary of D is locally connected. As has been noted,
it is quite possible that no conformal map of the unit disk onto D has a computable
boundary extension. So, once again the problem is to pin down a sufficient and nec-
essary parameter for their computation. In light of our discussion of Jordan domains,
one might expect that a modulus of local connectivity for the boundary provides the
right amount of extra information. Indeed, it provides a sufficient amount.
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Theorem 4.5.5 (Effective Boundary Extension Theorem [68]). If φ is a com-
putable conformal map of the unit disk onto a domain D whose boundary has a
computable modulus of local connectivity, then the boundary extension of φ is com-
putable.

The key estimate in the proof is the following.

Lemma 4.5.6. Suppose ζ , r0, r1, α1, α2, Ω are as in Figure 4.4. That is:

1. 0 < r0 < r1 < 1, and |ζ |= 1.
2. α1 and α2 are disjoint crosscuts of

{z ∈ D : r0 < |z−ζ |< r1}

that do not touch the boundary of D.
3. Ω consists of those points in the side of α1 that includes α2 that also belong to

the side of α2 that includes α1.

Then,

Area(φ [Ω ])≥ 1
π

din f (φ [α1],φ [α2])
2 ln
(

r1

r0

)
.

ζ

D
Dr0 (ζ )

Dr1 (ζ )

α1

α2

Ω

Fig. 4.4 Assumptions in Lemma 4.5.6.

However, in [63], it is shown that there is a computable conformal map φ of the
unit disk onto a domain D whose boundary extension is computable even though
the boundary of D does not have a computable modulus of local connectivity. Thus
a modulus of local connectivity does not provide a necessary extra parameter for
the computation of boundary extensions. However, by utilizing Wolff’s estimate
(see [80]), it can be shown fairly easily that a modulus of local connectivity for the
complement of D provides a sufficient extra parameter. That is, if φ is a computable
conformal map of the unit disk onto a domain D, and if C−D has a computable
modulus of local connectivity, then the boundary extension of φ is computable. By
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means of the estimate in Lemma 4.5.6, it can also be shown that a modulus of local
connectivity for the complement is a necessary extra parameter. That is, if φ is a
conformal map of the unit disk onto a domain D with a locally connected boundary,
and if the boundary extension of φ is computable, then the complement of D has a
computable modulus of local connectivity.

I. Binder, C. Rojas, and M. Yampolsky [11] obtained a necessary and sufficient
condition for the computability of φ using the Carathéodory modulus. They also
show that the Carathéodory modulus cannot be replaced by the modulus of local
connectivity. These results are presented in Chapter 5 of this volume.

4.6 Harmonic Functions

Before we consider conformal mapping of multiply connected domains, we will
first cover computability of harmonic functions; in particular conjugates, analytic
extensions, and Dirichlet problems. This is because the computation of these maps
can in some cases be reduced to the computation of solutions to Dirichlet problems.

4.6.1 Classical Background

4.6.1.1 Conjugates and Analytic Extensions

Suppose u is a harmonic function with domain D. If D(0;r) ⊆ D, then a harmonic
conjugate of u on D(0;r) is given by

ũ(z) =
∫ 2π

0
u(reiθ )

re−iθ z− reiθ z
|reiθ − z|2

dθ .

So, every harmonic function has a conjugate at least locally. If D is simply con-
nected, then a harmonic conjugate v of u is given by

v(ζ ) =
∫

ζ

ζ1

∂u
∂n

ds (4.2)

where ζ1 is a fixed point in D, ∂u
∂n denotes the normal derivative of u (that is, the

derivative of u in the direction that is normal to the path of integration), and ds is the
differential of arc length. Specifically, if the path of integration is a smooth curve
given by γ(t) = x(t)+ iy(t), then

∂u
∂n

(t) =
(

∂u
∂x

y′(t)− ∂u
∂y

x′(t)
)

1
|x′(t)+ iy′(t)|
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and ds = |x′+ iy′|dt. The Cauchy-Riemann equations can thus be rewritten as the
single equation ∂u

∂n = ∂v
∂ s .

If D is multiply connected, then the right-hand side of (4.2) may depend on the
path of integration. In this case, u is said to have a multi-valued harmonic conjugate.
Suppose D is a bounded domain and that its boundary consists of n Jordan curves
γ1, . . ., γn with γn being the outermost. The period of the conjugate of u around γ j is
defined to be

1
2π

∫
γ

∂u
∂n

ds

where γ ⊆ dom(u) is homotopic to γ j. It follows that u has a (single-valued) har-
monic conjugate if and only if its conjugate periods around γ1, . . . ,γn−1 are all 0 (for
then, the path of integration in (4.2) makes no difference).

If u does not have a conjugate, then there is a well-known procedure for ‘extend-
ing’ u so that it does; we describe it now. Let Pj denote the conjugate period of u
about γ j. It follows from the results discussed below on Dirichlet problems that for
each j there is a harmonic function ω(·,γ j,D) on D such that for each ζ ∈ ∂D,

lim
z→ζ

ω(z,γ j,D) =

{
1 z ∈ γ j,
0 z 6∈ γ j.

The function ω(·,γ j,D) is called the harmonic measure function of γ j. When context
makes other parameters clear we abbreviate ω(·,γ j,D) by ω j. More generally, a
harmonic measure function ω(·,E,D) exists for each Borel set E ⊆ ∂D; see, e.g.,
Chapter III of [32]. Let PD

k, j be the conjugate period of ω j about γk. It is well known
that the matrix (PD

k, j)k, j=1,...,n−1 (known as the Riemann matrix) is invertible. Thus,
there exist unique b1, . . . ,bn−1 such that

n−1

∑
j=1

PD
k, jb j =−Pk.

It follows that

u+
n−1

∑
j=1

b jω j

has period 0 around each of γ1, . . . ,γn−1. Thus, it has a harmonic conjugate, which
we denote by ũ. We let û = u+ iũ and refer to û as an analytic extension of u.

4.6.1.2 Dirichlet Problems

Suppose we are given a bounded domain D⊆C and a piecewise continuous function
f : ∂D→R. The resulting Dirichlet problem is to find a harmonic function on D, u,
such that

lim
z→ζ

u(z) = f (ζ ) (4.3)
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for all ζ ∈ ∂D at which f is continuous. It is well known that this Dirichlet problem
has a solution when the boundary of D consists of finitely many pairwise disjoint
Jordan curves. It then follows from the Generalized Carathéodory Theorem (The-
orem 4.5.2) that this Dirichlet problem has a solution when the boundary of D is
locally connected. Once the existence of u is demonstrated, uniqueness follows im-
mediately from the Maximum Principle for harmonic functions. That is, there is
exactly one harmonic function on D, u, for which Equation (4.3) holds. See, e.g.,
Chapters I and II of [32]. Accordingly, we denote this function u f . Dirichlet prob-
lems for other kinds of domains exist but will not be considered here.

When D is simply connected, that is when D is the interior of a Jordan curve, it is
fairly straightforward to prove the existence of u f . In particular, when D is the unit
disk D,

u f (z) =
1

2π

∫
∂D

f (ζ )P(z,ζ )dsζ , (4.4)

where

P(z,ζ ) =
1−|z|2

|z−ζ |2

and dsζ is the differential of the arc length with respect to the variable ζ . The func-
tion P is called the Poisson kernel, and Equation (4.4) is known as the Poisson
Integral Formula. Since the composition of a harmonic function with an analytic
function yields a harmonic function, the existence of u f for simply connected Jordan
domains now follows from the Riemann Mapping Theorem and the Carathéodory
Theorem. It then also follows for simply connected bounded domains with locally
connected boundary.

When D is bounded by more than one Jordan curve, there are at least two meth-
ods available to prove the existence of u f . One is an extreme-value argument as
in Section 6.4.2 of [1]. If one desires a constructive proof, a natural choice is the
Schwarz alternating method which is described in Section IV.2 of [23] and in Chap-
ter II of [32]. A sequence of harmonic functions u1 ≥ u2 ≥ u3 . . . that converges
to u is produced thereby. However, the proof does not give any information about
the rate of convergence, which is essential for computability considerations. In [67],
this approach is reworked more carefully so as to give an explicit rate of conver-
gence. Moreover, it is shown that the Schwarz alternating method can be recast as
an iterative construction so that convergence is proved via the Contraction Mapping
Theorem and yields a closed form for the solution of the form

u f (z) = h(z)+
∫

B2

K(z,ζ1)h(φ2(ζ1))dsζ1
.

The kernel K is obtained through kernel iteration
A harmonic function of particular interest is Green’s function, which is con-

structed as follows. Suppose D is a bounded domain whose boundary consists of
finitely many pairwise disjoint Jordan curves. For the moment, fix a point ζ1 ∈ D.
Let h(ζ ) = − log |ζ − ζ1| for all ζ on the boundary of D. Then, let GD(z;ζ ) =
uh(z)+ log |z− ζ1|. GD is known as Green’s function. One of its important proper-
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ties is that it yields a closed form for the solutions of the Dirichlet problem. Namely,

u f (z) =
1

2π

∫
∂D

∂G(z;ζ )

∂nζ

f (ζ )dsζ .

(See Chapter II of [32].)

4.6.1.3 Neumann Problems

Let D be a bounded domain with smooth boundary curves γ1, . . . ,γn. Let f be a
continuous function on the boundary of D, and suppose

∫
∂D f ds = 0. The resulting

Neumann problem is to find a harmonic function u on D such that

∂u
∂n

= f on ∂D, (4.5)∫
∂D

u ds = 0. (4.6)

Such solutions exist (see, e.g., Appendix B of [32]). Condition (4.6) ensures they
are unique. We then obtain the existence of the Neumann function of D, ND, which
is defined by the following conditions.

1. z 7→ ND(z,ζ )+ log |z−ζ | is harmonic.
2. ∂

∂nz
ND(z,ζ ) =− 2π

L on ∂D, where L is the length of ∂D.
3.
∫

∂D ND(z,ζ )dsz = 0.

4.6.2 Computability Results

The following is an immediate consequence of Theorem 4.3.2 and the local conju-
gate formula in Subsection 4.6.1.

Corollary 4.6.1 ([4]). If u is a computably harmonic function, then u′ is computable.

We now discuss computability of conjugates, analytic extensions, and Dirichlet
problems.

4.6.2.1 Conjugates and Analytic Extensions

Essentially by following the procedure outlined in Subsection 4.6.1, we obtain a
proof of the following.

Theorem 4.6.2 ([6]). Suppose u is a computable harmonic function defined on a
bounded domain D, and suppose the boundary of D consists of computable and
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computably differentiable smooth Jordan curves γ1, . . . ,γn of which γn is the outer-
most. Then, there exist computable b1, . . . ,bn−1 such that

u+
n−1

∑
j=1

b jω(·,γ j,D) (4.7)

has a harmonic conjugate.

Furthermore the proof of Theorem 4.6.2 is uniform. It follows that the analytic
extension of u can also be computed.

4.6.2.2 Dirichlet Problems

We begin with simply connected domains.

Theorem 4.6.3 ([65]). Suppose the unit circle is decomposed into computable arcs
γ1, . . . ,γn that intersect only at their endpoints. Suppose that f j is a computable
real-valued function on γ j for each j and that

f (ζ ) =
{

f j(ζ ) ζ ∈ γ j,ζ 6= γ j(0),γ j(1),
max j f j(ζ ) otherwise,

whenever |ζ | = 1. Then, the solution u f of the resulting Dirichlet problem is com-
putable. In addition, the extension of u f to D is computable except at the endpoints
of the arcs γ1, . . . ,γn.

When we say that the arcs γ1, . . . ,γn are computable, we mean that their endpoints
are computable. Note that the computability of u f follows from the Poisson Integral
Formula (Equation 4.4). Thus, the more significant part of Theorem 4.6.3 is the
computation of the boundary extension.

It now follows from the Effective Carathéodory Theorem and the Effective
Boundary Extension Theorem that Dirichlet problems on simply connected Jor-
dan domains and more generally simply connected domains with locally connected
boundary are computable.

In [10], the harmonic measure function for simply connected domains is shown
to be computable by means of a random walk argument based on a famous theorem
of Kakutani that gives a probabilistic interpretation of harmonic measure [45] (see
also Appendix F of [32]).

We now turn to multiply connected domains. The following can be proven via
the iterative method in [67] that was discussed in Subsection 4.6.1.

Theorem 4.6.4 (Computable Solution of Dirichlet Problems [4]). Suppose D is a
bounded domain whose boundary consists of finitely many pairwise disjoint Jordan
curves, and suppose f is a computable real-valued function on the boundary of
D. Then, the solution u f of the resulting Dirichlet problem is computable, as is its
continuous extension to D.
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Again, the proof of Theorem 4.6.4 is uniform.
The most general result has been proven by Binder, Braverman, Rojas, and Yam-

polsky [9]. An open and connected domain Ω ⊂ Ĉ is said to satisfy the capacity
density condition if there exists a constant C > 0 such that

Cap(B(x,r)∩∂Ω)≥Cr

for all x ∈ ∂Ω and r ≤ r0. Here Cap(·) denotes the logarithmic capacity as defined
in Section 2.3 of [9].

Theorem 4.6.5 (Computable Solution of Dirichlet Problems [9]). Let Ω ⊂ Ĉ be
the complement of a computable compact set K and x0 be a point in Ω . Suppose Ω is
connected and satisfies the capacity density condition. Then the harmonic measure
ωΩ ,x0 is computable with an oracle for x0.

They also present an example (Section 5.2 of [9]) of a computable closed set
with a non-computable harmonic measure of the complement, thus demonstrating
that the computability of the set K is not enough to ensure the computability of the
harmonic measure.

Theorem 4.6.5 is based (see Theorem 5.4 of [9]) on an earlier work of Binder and
Braverman [8], where they study the complexity of the Dirichlet problem (Corollary
1 of [8]) by a discretization of the continuous Dirichlet problem.

4.6.2.3 Neumann Problems

We conclude this section with the computability of Neumann problems. The follow-
ing was proven by Andreev and McNicholl in 2012 [6].

Theorem 4.6.6 (Computable solution of Neumann problems [6]). Suppose D is
a bounded domain whose boundary consists of finitely many pairwise disjoint com-
putable and computably differentiable Jordan curves. Suppose also that f is a com-
putable real-valued function on the boundary of D such that

∫
∂D f ds = 0. Then, the

solution of the resulting Neumann problem is computable.

The proof of Theorem 4.6.6 is uniform.

4.7 Conformal Mapping of Multiply Connected Domains

4.7.1 Classical Background

When considering conformal mapping of domains that are not simply connected, it
is convenient to move the domain of discourse to the extended complex plane. As in
the complex plane, a set D⊆C∞ is a domain if it is open and connected. Throughout
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this section, all domains are domains in the extended complex plane. A domain is
n-connected if its boundary has n connected components. Each of these components
is a continuum, and so we say a domain is degenerate if one of the components of
its boundary consists of a single point.

We note that if D ⊆ C is simply connected, then it is 1-connected as a domain
in C∞. But the class of 1-connected domains is larger than the class of simply
connected domains. For example, C∞−D is 1-connected. By inversion, every 1-
connected domain is conformally equivalent to a simply connected domain. We are
thus led to the following reformulation of the Riemann Mapping Theorem.

Theorem 4.7.1 (Riemann Mapping Theorem for C∞). If D is a non-degenerate
1-connected domain, then there is a conformal map of D onto D.

For theoretical and practical reasons, the unit disk became the standard domain
in the study of conformal mappings on 1-connected domains; hence it is also called
the canonical domain. When we discuss conformal maps on multiply connected
domains, we first ought to notice that since these maps are continuous, they will
preserve the connectivity of the domains. Thus, we have to introduce canonical
domains for each order of connectivity. But two non-degenerate n-connected do-
mains are not necessarily conformally equivalent, as the following example from
Nehari’s text shows [72]. Let A(c;r,R) denote the annulus with center c and inner
and outer radii r and R respectively. Suppose 0 < r < R < 1 and that f is a con-
formal mapping of the annulus A1 = A(0;r,1) onto the annulus A2 = A(0;R,1). Let
u(z) = logr log | f (z)| − logR log |z|. Thus, u is harmonic on A1, and by the Maxi-
mum Principle for harmonic functions, u is identically 0. However, if r 6= R, then
the conjugate period of u is nonzero, and so u has no conjugate; a contradiction.

It also follows from this argument that two annuli A(z0;r1,R1) and A(z0;r2,R2)
are conformally equivalent only if R1/r1 = R2/r2.

Any 2-connected domain A can be conformally mapped onto an annulus, and its
conformal type is completely determined by the ratio of the inner and outer radii,
which is called the modulus of A. The conformal type of a domain of connectivity
n > 2 is determined by 3n−6 real numbers called the moduli, or Riemann moduli,
of the domain. To see how the number 3n− 6, n > 2, of moduli is obtained, first
notice that rotation, shift, and dilation/contraction do not change the conformal type
of a domain. Consider a domain obtained by removing n−2 disks from an annulus
A(0;r,R) with r < 1 < R. By rotation and dilation/contraction we can place the
center of one of the disks at 1. Thus, this disk is described by one real parameter,
its radius. Each of the remaining disks is described by three real parameters: two
for the center and one for the radius. Hence, we need 3+ 3(n− 3) = 3n− 6 real
parameters to describe the conformal type.

As another example consider the domain obtained by removing n−2 concentric
arcs from an annulus A(z0;r,R) with r < 1<R. Of the two terminal points on the arc,
let the initial point be the point for which the arc is in counterclockwise direction
from this point. By rotation and dilation/contraction we can place the initial point
of one arc at 1. Thus to describe this arc we need to know only its length. For all
other arcs we need to know three real parameters: two for the initial point and one
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for its length. Hence again we need 3n− 6 real parameters. For another example,
see Nehari [72, Exercise 13, p. 354].

To bypass this cumbersome situation, the definition of a canonical domain is
based on its geometric character rather than on the moduli. A canonical domain
class is a class of domains with common geometric features such that every finitely
connected domain is conformally equivalent to at least one domain in the class. With
each canonical domain class K , there is thus the associated problem of finding a
conformal map of a finitely connected non-degenerate domain onto a domain in K .

P. Koebe described 39 canonical domains with connectivity n, n> 2, whose com-
mon geometric feature is that at least one boundary component is a circular arc, a
segment, a ray, or a straight line [54]. These are referred to as slit domains. We will
discuss these domains and classical techniques for constructing conformal maps
onto them below.

One notable absence from Koebe’s list are the circular domains. These are Jor-
dan domains whose boundary curves are all circles. These are quite singular for
several reasons. For one, whereas there are closed-form expressions for conformal
mappings onto the slit domains, there is no such formula for conformal maps onto
circular domains. In addition, while there are standard conformal maps between
many slit domains, there are no standard maps of slit domains onto circular do-
mains. These domains are the canonical domains in a number of recent studies of
the Schwarz-Christoffel formula for multiply connected domains, nonlinear prob-
lems in mechanics, and in aircraft engineering. See, for example, [3, 27, 24].

We now describe some of the slit domains and the circular domains and classical
work on their conformal mapping problems.

4.7.1.1 Slit Domains

A treatment of all 39 slit domains identified by Koebe is beyond the scope of this
survey. We confine ourselves to the following.

• Slit disk domains: These domains are obtained by removing finitely many arcs
from D. Each of these arcs must be an arc of a circle centered at the origin.

• Slit annulus domains:These domains are obtained by removing from an annulus
finitely many concentric circular arcs.

• Circular slit domains: These domains are obtained by removing from C∞ one or
more circular arcs each of which is centered at the origin.

• Radial slit domains: These domains are obtained by removing from C∞ one or
more line segments which do not pass through the origin. Each of these line
segments, when extended indefinitely in both directions, must yield a line that
passes through the origin.

• Parallel slit domains: These domains are obtained by removing from C∞ one or
more parallel line segments.

In an appendix to Courant’s book [22], Max Schiffer [93] applied the theory of
Green’s function to boundary value problems for multiply connected domains of



128 Valentin V. Andreev and Timothy H. McNicholl

the above type. We first discuss his construction of the slit disk map. Specifically,
let D be a domain bounded by n smooth curves, which can always be achieved by
preliminary transformations. Fix a point ζ1 ∈ D, and set

f (z) = exp(ĜD(z;ζ ))(z−ζ1).

It follows that f maps D onto a circular domain. The key point here is that the slit
disk map can be explicitly reduced to Green’s function for D.

We now consider the radial slit domains. Let u1(z) = ND(z,ζ ′0)−ND(z,ζ ′1) +
log |z−ζ ′0|− log |z−ζ ′1|. (Recall from Section 4.6 that ND is the Neumann function
for D.) Hence, u1 is harmonic in D. It also follows that each conjugate period of u1
is 0, so u1 has a single-valued harmonic conjugate v1. Let f1 = u1 + iv1, and let

g(z) = exp( f1(z))
z−ζ ′1
z−ζ ′0

.

It is shown in the proof of (A1.62) of [93] that g is the required conformal map of
D1 onto a radial slit domain.

Once the slit disk map and radial slit maps are known, many of the other slit
domain maps can be obtained explicitly. We refer the reader to Schiffer’s essay [93]
or to [6] for details.

4.7.1.2 Circular Domains

In 1910, Koebe suggested a way to construct the Riemann mapping from a multiply
connected planar domain to a circular domain of the same connectivity. Koebe’s
construction sidesteps many obstacles but the error estimates are based on data of
the image domain (i.e., the circular domain), which is not known at the start of the
process, rather than on data of the initial domain. Error estimates derived solely
from the geometry of the initial domain were discovered almost a hundred years
later by V. V. Andreev and T. H. McNicholl.

We describe Koebe’s construction as follows. Let D be an unbounded non-
degenerate n-connected domain. We define sequences {Dk}∞

k=0, {Dk,1}∞
k=0, . . .,

{Dk,n}∞
k=0, and { fk}∞

k=0 inductively as follows. To begin, let D0,1, . . . ,D0,n be the
connected components of C∞−D. Let D0 = D and let f0 = IdD. Let k ∈ N, and
suppose fk,Dk,Dk,1, . . . ,Dk,n have been defined. Let k′ ∈ {1, . . . ,n} be equivalent to
k+1 modulo n. Define fk+1 to be the conformal map of Ĉ−Dk,k′ onto a 1-connected
circular domain C such that fk+1(z) = z+O(z−1). We then set Dk+1 = fk+1[Dk]. Let
Dk+1, j = fk+1[Dk, j] when j 6= k′, and let Dk+1,k′ = Ĉ−C. Finally, let gk = fk◦ . . .◦ f0.
It is well-known (and quite surprising!) that limk→∞ gk = fD.

D. Gaier proved the convergence of this method and also obtained an upper
bound on the error in the Koebe construction which tends to zero as the iterations
progress [30]. However, the constants in this estimate are obtained from parameters
associated with the target circular domain, which is usually not known in advance
(and if it were there would be much easier methods for calculating the circular do-
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main map; just map the initial domain and the target circular domain to the same
slit domain). In [40], Henrici presents a modification of Gaier’s construction. But,
again, Henrici’s bounds use certain numbers associated with the circular domain C,
which usually is not known in advance. So, a central problem of the Koebe con-
struction is to find an error bound phrased entirely in terms of information about the
input domain D. Such an estimate can be obtained as follows.

Suppose D is an unbounded circular domain with boundary curves Γ1, . . . ,Γn, and
let

ER = min
j

exp

{
−

(
PD

j, j

ω(∞,Γj,D)2 +1

)
R2

}
(4.8)

for all R > 0. Fix j ∈ {1, . . . ,n}. We define a number λ D
j as follows. Let g be

a conformal map of the exterior of Γj onto the interior of Γj. Let E1 = g[D].
Let E2 be the unbounded domain whose boundary components are g[Γk], where
k ∈ {1, . . . ,n}− { j}. Hence, E2 is an (n− 1)-connected domain. Let h be a con-
formal map of E2 onto an unbounded circular domain normalized so that h(z) =
z + O(z−1), and let E3 = h[E1]. Therefore, E3 is bounded by the curves h[∂Γj],
hg[Γ1], . . . ,hg[Γj−1],hg[Γj+1], . . . ,hg[Γn]. The last n− 1 of these curves are circles.
Set

M = 2max{|z| : z ∈ E3}.

Thus, 1
M E3 ⊂ D. Let C1, . . . ,Cn−1 label the circles

1
M

hg[Γ1], . . . ,
1
M

hg[Γj−1],
1
M

hg[Γj+1], . . . ,
1
M

hg[Γn],

and set
λ

D
j = min

k1 6=k2
ρ(Ck1 ,Ck2), (4.9)

where ρ denotes the hyperbolic pseudometric on D.
Recent results by Ransford and Rostand on the computation of capacity led to

the following [84].

Theorem 4.7.2 ([5]). Suppose D is an unbounded circular domain and D2/R(z0)⊆
C∞−D ⊆ DR/2(0). Let g0,g1, . . . denote the finite compositions generated by the
Koebe construction, and let fD = lim j g j. Then, for all j ∈ N,

∥∥g j− fD
∥∥

∞
<

γ
+
D (µ+

D )b j/nc, where:

γ
+
D = 72R

[
1

E 2
R log(1+ 1

4E 3
R min{λ1,λ2})

+1

]
E 2

R min{λ1,λ2}+1
E 3

R min{λ1,λ2}

µ
+
D =

1
1+ 1

4E 3
R min{λ1,λ2}

.

Again, note that the estimates in Theorem 4.7.2 are obtained solely from geomet-
ric features of the starting domain D without prior knowledge of the corresponding
circular domain.
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We now turn to the computability results for these canonical domain classes.

4.7.2 Computability Results

4.7.2.1 Slit Domains

By means of the computability results on harmonic functions discussed in Section
4.6, we obtain the following two theorems.

Theorem 4.7.3 (Computability of slit disk mapping [6]). Suppose D is a finitely
connected and non-degenerate domain. Assume also that D is c.e. open and that
ζ0 ∈ D is computable.

1. If the boundary of D is c.e. closed, then there is a computable conformal map f of
D onto a slit disk domain with computable boundary curves such that f (ζ0) = 0.

2. If there is a computable conformal map of f onto a slit disk domain with com-
putable boundary curves, then the boundary of D is c.e. closed.

Theorem 4.7.4 (Computability of radial slit mapping [6]). Suppose D is a finitely
connected and non-degenerate domain. Assume also that D is c.e. open and that
ζ0,ζ1 ∈ D are distinct computable points.

1. If the boundary of D is c.e. closed, then there is a computable conformal map
f of D onto a radial slit domain with computable boundary curves such that
f (ζ0) = 0 and f (ζ1) = ∞.

2. Conversely, if there is a computable conformal map of D onto a radial slit domain
with computable boundary curves, then the boundary of D is c.e. closed.

Both proofs are uniform.

4.7.2.2 Circular Domains

By the Effective Riemann Mapping Theorem, all of the steps in the Koebe con-
struction can be carried out effectively. It follows from the results on computability
of harmonic functions in Section 4.6 that the constants ER in Equation 4.8 can be
computed. If we assume by way of induction that the circular domain maps are com-
putable for (n− 1)-connected domains, then the constants λ D

j defined in Equation
4.9 are computable as well. We thus have a uniform proof of the following.

Theorem 4.7.5 (Computability Circular Domain Map [4]). Suppose D is a non-
degenerate finitely connected domain. Assume that D is c.e. open and that ζ0 ∈D is
computable.

1. If the boundary of D is c.e. closed, then there is a computable conformal map f
of D onto an unbounded circular domain with computable boundary curves such
that f (ζ0) = ∞.
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2. Conversely, if there is a computable conformal map of D onto an unbounded
circular domain with computable boundary curves, then the boundary of D is
c.e. closed.

We note that Theorem 4.7.5 can be proven non-uniformly by taking either Gaier
or Henrici’s bound on the error in the Koebe construction and replacing the constants
therein with sufficiently close rational numbers.

Recently, Marshall gave a numerical implementation of conformal welding for
finitely connected domains using the geodesic Zipper algorithm for finding the Rie-
mann mapping between two simply connected domains and Koebe’s method for
computing conformal maps to circular domains [60]. Marshall then shows that if
one can find the welding homeomorphisms (by using the Koebe method, for exam-
ple), then one can apply the welding method to construct the maps. However, prior
knowledge of the target circular domain is required for the implementation of this
method.

R. Rettinger also treated the Riemann mapping theorem, its extension to multi-
ply connected domains, and uniformization of Riemann surfaces in [88]. The main
ingredient in his proof is the computational compactness of a certain class of formal
power series.

4.8 Infinite Products

It has been known since the Weierstrass Factorization Theorem that some analytic
functions can be expressed as infinite products of rational functions. Such factoriza-
tions may have great utility for computation as they typically converge more quickly
than series. The expression of a function as an infinite product is linked to the dis-
tribution of its zeros. Here we briefly describe the computability properties of a
certain kind of infinite product, the Blaschke products. We begin with a synopsis of
the classical material.

4.8.1 Classical Background

Roughly speaking, a Blaschke product is an infinite product of conformal automor-
phisms of the unit disk suitably normalized. To be more precise, when |a|< 1, let

ba(z) =
{ |a|

a
z−a
1−az a 6= 0,

z a = 0.

We call the function ba a Blaschke factor. If A = {an}∞
n=0 is a sequence of points in

the unit disk, we let:
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BA =
∞

∏
n=0

ban

ΣA =
∞

∑
n=0

1−|an|.

The function BA is called a Blaschke product, and the sum ΣA is the corresponding
Blaschke sum. If ΣA < ∞, we call A a Blaschke sequence.

An infinite product is said to converge if its partial products converge to a nonzero
number. It is well known (see, e.g., [92]) that if A is a Blaschke sequence, then BA
converges, except at the terms of A, to an analytic function on D and its partial
products converge uniformly on compact subsets of the unit disk. Conversely, if BA
converges at any point in the disk besides a term of A, then A is a Blaschke sequence.
Furthermore, if A is a Blaschke sequence, then the terms of A are precisely the zeros
of BA and each zero of BA is repeated in A according to its multiplicity.

4.8.2 Computability Results

Two questions naturally arise.

1. If A is a computable Blaschke sequence, does it follow that BA is a computable
function?

2. If BA is a computable function, does it follow that A is a computable Blaschke
sequence?

It follows from the results on zeros in Subsection 4.3.3 that the answer to the
second question is ‘yes’. However, the answer to the first question is ‘no’. For, by
a result of E. Specker [96] there is a computable sequence of rational numbers 1 >
r0 > r1 > .. . > 0 such that r := limn rn is incomputable. If we set an =

rn+1
rn

and
A = {an}∞

n=0, then BA(0) = r. It follows that A is a Blaschke sequence and that BA
is incomputable.

The question then turns to finding a sufficient and necessary parameter, and it
turns out that the Blaschke sum provides the exact additional information necessary
for computing BA from A. Namely, we have the following.

Theorem 4.8.1 ([62, 64]). Suppose A is a computable Blaschke sequence. Then, the
following are equivalent.

1. BA is computable.
2. ΣA is computable.
3. BA is computable at at least one computable point of the unit disk that is not a

term of A.

An interesting feature of Blaschke products is that their computability at a single
point can yield computability throughout their domain. When we contrast this result
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with Theorem 4.3.4, we see that with regards to computability Blaschke products
behave much better than power series.

More material on the computability of Blaschke products can be found in [66].

4.9 Constants

4.9.1 Classical Background

Let S denote the class of functions f that are analytic and univalent in the unit disk D
and normalized by the conditions f (0) = f ′(0)−1 = 0. For this class of functions,
Koebe [50] proved that there is a constant c such that the set

⋂
f∈S f (D) contains a

disk of radius strictly less than c. Later, Bieberbach [7] proved that c = 1
4 and this

result is known as Koebe’s 1
4 -Theorem. Bloch [13] and Landau [59] proved related

results for functions that are not necessary univalent (see p. 292 of [19]).

Theorem 4.9.1 (Bloch’s Theorem). If f is analytic in D and f (0) = f ′(0)−1 = 0,
then there is a disk S ⊂ D on which f is one-to-one and such that f (S) contains a
disk of radius 1/72.

Definition 4.9.2. Let F be the set of all functions f analytic on D and f (0) =
f ′(0)− 1 = 0. For each f ∈F , let β ( f ) be the supremum of all numbers b such
that there is a disk S ⊂ D on which f is one-to-one and such that f (S) contains a
disk of radius b (hence β ( f )≥ 1/72). Bloch’s constant is

B = inf{β ( f ) : f ∈F}. (4.10)

It has been shown that

0.43321...=

√
3

4
+

2
1014 ≤ B≤

Γ
( 1

3

)
Γ
( 11

12

)
(1+
√

3)1/2Γ
( 1

4

) = 0.4718617...

Ahlfors and Grunsky [2] conjectured that the upper bound is the exact value of
Bloch’s constant.

Theorem 4.9.3 (Landau’s Theorem). If f is analytic in D and f (0) = f ′(0)−1 =
0, then f (D) contains a disk of radius λ , where λ is an absolute constant.

Landau proved that λ ≥ 1/16.

Definition 4.9.4. Let F be the set of all functions f analytic on D and f (0) =
f ′(0)− 1 = 0. For each f ∈ F let λ ( f ) be the supremum of all numbers b such
that f (D) contains a disk of radius b (hence λ ( f )≥ 1/16). Landau’s constant is

L = inf{λ ( f ) : f ∈F}. (4.11)
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It has been shown that

1
2
< L≤

Γ
( 1

3

)
Γ
( 5

6

)
Γ
( 1

6

) = 0.5432589...

and it has been conjectured that the upper bound is the exact value of Landau’s
constant.

4.9.2 Computability Results

R. Rettinger proposed an algorithm for the computation of Bloch’s constant [86].
The main difficulty is that the infimum over all functions in F cannot be computed
in a finite number of steps. So he defines a subset of test functions T of F :

T = { f ∈F : ∀z ∈ D| f (z)| ≤ c1ρ(z)},

where c1 = .048 · 4√
3

and ρ(z) =
∫ z

0
1

1−|t|2 dt. He then shows that for every ε > 0
there is f ∈T such that |β ( f )−B|< ε and that for the Taylor coefficients of f the
inequality |an| ≤ c1ρ(ε)

εn holds. Utilizing the properties of the class T , it is shown
that for each precision only finitely many functions have to be considered and it is
shown how to compute the β ( f )’s of these functions. This leads to the following.

Theorem 4.9.5 ([86]). Bloch’s constant is computable.

Later Rettinger developed an algorithm for the computation of Landau’s con-
stant. While similar in spirit to the algorithm for Bloch’s constant, there are substan-
tial differences due to the different nature of the problem. Again, the main result is
as follows.

Theorem 4.9.6 ([89]). Landau’s constant is computable.

4.9.3 Complexity Results

The complexity bound of the algorithms for Bloch’s constant and Landau’s constant
is double exponential. The main obstacle to improving the time complexity of the
algorithms is that the functions can explode near the boundary of the unit disk and
the evaluations there can be quite time expensive.

4.10 Open Problems

Here we suggest a few directions for future inquiry.
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4.10.1 The Hayman-Wu Constant

In 1981, W. Hayman and J.M.G. Wu proved the following remarkable result.

Theorem 4.10.1 (Hayman-Wu Theorem). Suppose φ is a conformal map of the
unit disk onto a simply connected domain D. Then, there is a constant C such that
for every line L, the length of φ−1[L∩D] is no larger than C.

The smallest such constant C is called the Hayman-Wu constant, which we de-
note by CHW.

In 1992, K. Øyma gave an elegant three-page proof of the Hayman-Wu Theorem,
and showed that CHW ≤ 4π [75]. Roughly a year later he also proved that CHW ≥
π2 [76]. Approximately a decade later, S. Rohde proved that CHW < 4π [91]. Little
else is known about this constant. Can computability theory shed some light on this
situation? We are led to pose the following.

Problem 4.10.2. Is the Hayman-Wu constant computable?

4.10.2 Parameterized Complexity Riemann Mapping Theorem

As we have discussed, when it is known that a problem cannot be effectively solved,
one then turns to finding additional parameters that provide the exact additional
information necessary for the computation of solutions. Similarly, in complexity
theory one can search for additional parameters to effect computations in polyno-
mial time or other complexity classes. This is the field of parameterized complexity,
which is expounded in the text of Downey and Fellows [28]. In light of the com-
plexity results discussed in Section 4.4, we are led to the following.

Problem 4.10.3. Determine the parameterized complexity of the Riemann Mapping
Theorem.

4.10.3 Computability Conformal Mapping onto Infinitely
Connected Domains

In 1993, O. Schramm and Z.-X. He proved a remarkable extension of Koebe’s result
on circular domains.

Theorem 4.10.4 ([39]). If a non-degenerate domain has countably many boundary
components, then it is conformally equivalent to a circular domain.

In light of the results discussed in Section 4.7, this leads to the following.
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Problem 4.10.5. Suppose D is a non-degenerate domain with countably many
boundary components. If D is c.e. open, and if the boundary of D is c.e. closed,
does it follow that there is a computable conformal map of D onto a circular do-
main?
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49. Koebe, P.: Über die Uniformisierung beliebiger analytischer Kurven. Nachr. Ges. Wiss.
Göttingen, Math.-Phys. Kl. 1907, 191–210 (1907)
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Part II
Complexity, Dynamics, and Randomness



Chapter 5
Computable Geometric Complex Analysis and
Complex Dynamics

Cristóbal Rojas, Michael Yampolsky

Abstract We discuss computability and computational complexity of conformal
mappings and their boundary extensions. As applications, we review the state of the
art regarding computability and complexity of Julia sets, their invariant measures,
and external ray impressions.

5.1 Introduction

The purpose of this chapter is to survey the exciting recent applications of Com-
putable Analysis to Geometric Complex Analysis and Complex Dynamics. The first
effort at a systematic development of Computable Analysis was made by Banach
and Mazur [1] in 1937, only one year after the birth of Turing Machines and Post
Machines ([60, 54]). Interrupted by war, this work was further developed in the book
by Mazur [44], and followed in the mid-1950s by the works of Grzegorczyk [30],
Lacombe [38], and others. A parallel school of Constructive Analysis was founded
by A. A. Markov in Russia in the late 1940s. A modern treatment of the field can be
found in [35] and [61].

In the last two decades, there has been much activity both by theorists and by
computational practitioners in applying natural notions of computational hardness to
such complex-analytic objects as the Riemann Mapping, Carathéodory Extension,
the Mandelbrot set, and Julia sets. The goal of this survey is to give a brief summary
of the beautiful interplay between Computability, Analysis, and Geometry which
has emerged from these works.
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144 Cristóbal Rojas, Michael Yampolsky

5.2 Required Computability Notions

In this section we gather all the computability notions involved in the statements
presented in the survey; the reader is referred to [61] for the details. We note that in
what follows, N denotes the set of positive integers: N= {1,2, . . .}.

5.2.1 Computable Metric Spaces

Definition 5.2.1. A computable metric space is a triple (X ,d,S ) where:

1. (X ,d) is a separable metric space,
2. S = {si : i ∈ N} is a dense sequence of points in X ,
3. d(si,s j) are computable real numbers, uniformly in (i, j).

The points in S are called ideal.

Example 5.2.2. A basic example is to take the space X = Rn with the usual notion
of Euclidean distance d(·, ·), and to let the set S consist of points x̄ = (x1, . . . ,xn)
with rational coordinates. In what follows, we will implicitly make these choices of
S and d(·, ·) when discussing computability in Rn.

Definition 5.2.3. A point x is computable if there is a computable function f : N→
S such that

d( f (n),x)< 2−n for all n.

If x ∈ X and r > 0, the metric ball B(x,r) is defined as

B(x,r) = {y ∈ X : d(x,y)< r}.

Since the set B := {B(s,q) : s∈S ,q∈Q,q > 0} of ideal balls is countable, we can
fix an enumeration B = {Bi : i ∈ N}, which we assume to be effective with respect
to the enumerations of S and Q.

Definition 5.2.4. An open set U is called lower-computable if there is a computable
function f : N→ N such that

U =
⋃

n∈N
B f (n).

It is not difficult to see that finite intersections or infinite unions of (uniformly)
lower-computable open sets are again lower-computable.

Having defined lower-computable open sets, we naturally proceed to the follow-
ing definitions for closed sets.

Definition 5.2.5. A closed set K is called upper-computable if its complement is
a lower-computable open set, and lower-computable if the relation K ∩Bi 6= /0 is
semi-decidable, uniformly in i.



5 Computable Geometric Analysis and Dynamics 145

In other words, a closed set K is lower-computable if there exists an algorithm
A which enumerates all ideal balls which have non-empty intersection with K. To
see that this definition is a natural extension of lower-computability of open sets, we
note the following.

Example 5.2.6. The closure U of any open lower-computable set U is lower-com-
putable since Bi ∩U 6= /0 if and only if there exists s ∈ Bi ∩U , which is uniformly
semi-decidable for such U .

The following is a useful characterization of lower-computable sets.

Proposition 5.2.7. A closed set K is lower-computable if and only if there exists a
sequence of uniformly computable points xi ∈ K which is dense in K.

Proof. Observe that, given some ideal ball B = B(s,q) intersecting K, the relations
Bi ⊂ B, qi < 2−k and Bi∩K 6= /0 are all semi-decidable, so we can find an exponen-
tially decreasing sequence of ideal balls (Bk) intersecting K. Hence {x}= ∩kBk is a
computable point lying in B∩K.

The other direction is obvious.

Definition 5.2.8. A closed set is computable if it is lower and upper computable.

For compact sets, there is an alternative way to define computability. We will
write K b X to mean that K is a compact subset of X . Recall that the Hausdorff
distance between two nonempty compact sets K1, K2 is

distH(K1,K2) = inf
ε
{K1 ⊂Uε(K2) and K2 ⊂Uε(K1)},

where Uε(K) =
⋃

z∈K B(z,ε) stands for the ε-neighborhood of a set. The set of all
compact subsets of X equipped with the Hausdorff distance is a metric space which
we will denote by K (X). If X is a computable metric space, then K (X) inherits
this property; the ideal points in K (X) can be taken to be, for instance, finite unions
of closed ideal balls in X . We then have the following.

Proposition 5.2.9. A compact set K b X is computable if and only if it is a com-
putable point in K (X).

Proposition 5.2.10. Equivalently, a compact set K is computable if there exists an
algorithm A with a single natural input n which outputs a finite collection of closed
ideal balls B1, . . . ,Bin such that

distH(
in⋃

j=1

B j,K)< 2−n.

We introduce the following computable version of compactness.

Definition 5.2.11. A set K ⊆ X is called computably compact if it is compact
and there exists an algorithm A which on input (i1, . . . , ip) halts if and only if
(Bi1 , . . . ,Bip) is a covering of K.
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In other words, a compact set K is computably compact if we can semi-decide
the inclusion K ⊂ U , uniformly from a description of the open set U as a lower-
computable open set. It is not hard to see that when the space X is computably com-
pact, then the collection of subsets of X which are computably compact coincides
with the collection of upper-computable closed sets. As an example, it is easy to see
that a singleton {x} is a computably compact set if and only if x is a computable
point.

We end this section with the definition of a computable function between com-
putable metric spaces. Let X ′ be another computable metric space with ideal points
S ′ and ideal balls B′ = {B′i}.

Definition 5.2.12. A function f : X → X ′ is computable if the sets f−1(B′i) are
lower-computable open, uniformly in i.

An immediate corollary of the definition is as follows.

Proposition 5.2.13. Every computable function is continuous.

The above definition of a computable function is concise, yet not very transpar-
ent. To give its ε − δ version, we need another concept. We say that a function
φ : N→ N is an oracle for x ∈ X if

d(sφ(m),x)< 2−m.

An algorithm may query an oracle by reading the values of the function φ for an
arbitrary n ∈ N. We have the following (see, e.g., [61]).

Proposition 5.2.14. A function f : X → X ′ is computable if and only if there exists
an algorithm A with an oracle for x ∈ X and an input n ∈N which outputs s′n ∈S ′

such that d(s′n, f (x))< 2−n.

In other words, given an arbitrarily good approximation of the input of f it is
possible to constructively approximate the value of f with any desired precision.

5.2.2 Computability of Probability Measures

Let M (X) denote the set of Borel probability measures over a metric space X ,
which we will assume to be endowed with a computable structure for which it is
computably compact. We recall the notion of weak convergence of measures.

Definition 5.2.15. A sequence of measures µn ∈M (X) is said to be weakly conver-
gent to µ ∈M (X) if

∫
f dµn→

∫
f dµ for each f ∈C0(X).

It is well known that when X is a compact separable and complete metric space,
then so is M (X). In this case, weak convergence on M (X) is compatible with the
notion of Wasserstein-Kantorovich distance, defined by:
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W1(µ,ν) = sup
f∈1-Lip(X)

∣∣∣∣∫ f dµ−
∫

f dν

∣∣∣∣
where 1-Lip(X) is the space of Lipschitz functions on X having Lipschitz constant
less than one.

The following result (see [33]) says that the computable metric structure on X is
inherited by M (X).

Proposition 5.2.16. Let D be the set of finite convex rational combinations of Dirac
measures supported on ideal points of the computable metric space X. Then the
triple (M (X),W1,D) is a computable metric space.

Definition 5.2.17. A computable measure is a computable point in (M (X),W1,D).
That is, it is a measure which can be algorithmically approximated in the weak sense
by discrete measures with any given precision.

The following proposition (see [33]) brings the previous definition to a more
familiar setting.

Proposition 5.2.18. A probability measure µ on X is computable if and only if one
can uniformly compute integrals of computable functions.

We also note the following (see, e.g., [29]).

Proposition 5.2.19. The support of a computable measure is a lower-computable
set.

As examples of computable measures we mention Lebesgue measure in [0,1]n,
or any smooth measure in [0,1]n with a computable density function.

5.2.3 Time Complexity of a Problem

For an algorithm A with input w the running time is the number of steps A makes
before terminating with an output. The size of an input w is the number of dyadic
bits required to specify w. Thus for w ∈ N, the size of w is the smallest integer
l(w)≥ log2 w. The running time of A is the function

TA : N→ N

such that

TA (n) = max{the running time of A (w) for inputs w of size n}.

In other words, TA (n) is the worst-case running time for inputs of size n. For a
computable function f : N→ N the time complexity of f is said to have an upper
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bound T (n) if there exists an algorithm A with running time bounded by T (n)
that computes f . We say that the time complexity of f has a lower bound T (n) if
for every algorithm A which computes f , there is a subsequence nk such that the
running time

TA (nk)> T (nk).

5.2.4 Computational Complexity of Two-Dimensional Images

Intuitively, we say the time complexity of a set S⊂R2 is t(n) if it takes time t(n) to
decide whether to draw a pixel of size 2−n in the picture of S. Mathematically, the
definition is as follows.

Definition 5.2.20. A set T is said to be a 2−n-picture of a bounded set S⊂ R2 if:

(i) S⊂ T , and
(ii) T ⊂ B(S,2−n) = {x ∈ R2 : |x− s|< 2−n for some s ∈ S}.

Definition 5.2.20 means that T is a 2−n-approximation of S with respect to the
Hausdorff metric.

Suppose we are trying to generate a picture of a set S using a union of round
pixels of radius 2−n with centers at all the points of the form

(
i

2n ,
j

2n

)
, with i and j

integers. In order to draw the picture, we have to decide for each pair (i, j) whether to
draw the pixel centered at

(
i

2n ,
j

2n

)
or not. We want to draw the pixel if it intersects

S and to omit it if some neighborhood of the pixel does not intersect S. Formally, we
want to compute a function

fS(n, i/2n, j/2n) =

1, B((i/2n, j/2n),2−n)∩S 6= /0
0, B((i/2n, j/2n),2 ·2−n)∩S = /0
0 or 1, in all other cases

(5.1)

The time complexity of S is defined as follows.

Definition 5.2.21. A bounded set S is said to be computable in time t(n) if there is a
function f (n, ·) satisfying (5.1) which runs in time t(n). We say that S is poly-time
computable if there is a polynomial p such that S is computable in time p(n).

Computability of sets in bounded space is defined in a similar manner. There, the
amount of memory the machine is allowed to use is restricted.

To see why this is the “right” definition, suppose we are trying to draw a set S
on a computer screen which has a 1000× 1000 pixel resolution. A 2−n-zoomed in
picture of S has O(22n) pixels of size 2−n, and thus would take time O(t(n) ·22n) to
compute. This quantity is exponential in n, even if t(n) is bounded by a polynomial.
But we are drawing S on a finite-resolution display, and we will only need to draw
1000 ·1000 = 106 pixels. Hence the running time would be O(106 · t(n)) = O(t(n)).
This running time is polynomial in n if and only if t(n) is polynomial. Hence t(n)
reflects the ‘true’ cost of zooming in.
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5.3 Computability and Complexity of Conformal Mappings

Let D= {|z|< 1} ⊂ C. The celebrated Riemann Mapping Theorem asserts the fol-
lowing.

Riemann Mapping Theorem. Suppose W ( C is a simply connected domain in
the complex plane, and let w be an arbitrary point in W. Then there exists a unique
conformal mapping

f : D→W, such that f (0) = w and f ′(0)> 0.

The inverse mapping,
ϕ ≡ f−1 : W → D

is called the Riemann mapping of the domain W with base point w. The first com-
plete proof of the Riemann Mapping Theorem was given by Osgood [50] in 1900.
The first constructive proof of the Riemann Uniformization Theorem is due to
Koebe [36], and dates to the early 1900s. Formal proofs of the constructive na-
ture of the Theorem which follow Koebe’s argument under various computability
conditions on the boundary of the domain are numerous in the literature (see, e.g.,
[19, 9, 64, 31]).

The following theorem, due to Hertling [31], characterizes the information re-
quired from the domain W in order to compute the Riemann map.

Theorem 5.3.1. Let W ( C be a simply connected domain. Then, the following are
equivalent:

(i) W is a lower-computable open set, ∂W is a lower-computable closed set, and
w ∈W is a computable point.

(ii) The conformal bijection

f : D→W, f (0) = w, f ′(0)> 0; and its inverse ϕ ≡ f−1 : W → D,

are both computable.

We now move to discussing the computational complexity of computing the Rie-
mann map. For this analysis we assume the domain W is computable.

For w ∈W as above, the quantity 1/|ϕ ′(w)| is called the conformal radius of W
at w. In [6] it was shown that even if the domain we are uniformizing is very simple
computationally, the complexity of the uniformization can be quite high. In fact, it
might already be difficult to compute the conformal radius of the domain.

Theorem 5.3.2. Suppose there is an algorithm A that given a simply connected do-
main W with a linear-time computable boundary and an inner radius > 1

2 and a
number n computes the first 20n digits of the conformal radius r(W,0), then we can
use one call to A to solve any instance of #SAT(n) with a linear time overhead.

In other words, #P is poly-time reducible to computing the conformal radius of a
set.
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Fig. 5.1 An example of the work of “Zipper”. On the left: a standard Carleson grid on the disk.
On the right: the image of the Carleson grid by the conformal map to the interior of the inverted
snowflake and the image by the conformal map to the exterior of the snowflake. Both images taken
from D. Marshall’s web page [42].

Rettinger in [56] showed that this complexity bound is sharp.

Theorem 5.3.3. Assume that the boundary ∂W is given by an oracle (that is, we
can query an oracle for a function of the form (5.1)). Let us also have an oracle
access to w, and to another point z ∈W. Then the problem of computing ϕ(z) with
precision n is in #P(n).

This result of [56] improved that of [6], where the same statement was obtained
with complexity bound PSPACE. The statement of Theorem 5.3.3 (as well as its
predecessor in [6]) is not based on an explicit algorithm. Rather, the existence of A
is derived from derandomization results for random walks established in [2].

Computation of the mapping ϕ is important for applications, and numerous al-
gorithms have been implemented in practice; however, none of them reaches the
theoretical efficiency limit of #P. The most computationally efficient algorithm used
nowadays to calculate the conformal map is the “Zipper”, invented independently
by Marshall [42] and Kühnau [37]; for examples see Figure 5.1. The effectiveness
of this algorithm was studied by Marshall and Rohde in [43]. In the setting of The-
orem 5.3.3, it belongs to the complexity class EXP(n). It is reasonable to expect
then, that an algorithm can be found in the class #P which is more practically effi-
cient than “Zipper”.

5.4 Computable Carathéodory Theory

The theory of Carathéodory (see, e.g., [49, 53]) deals with the question of extending
the map f to the unit circle. It is most widely known in the case when ∂W is a locally
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connected set. We remind the reader that a Hausdorff topological space X is called
locally connected if for every point x ∈ X and every open set V 3 x there exists a
connected set U ⊂ V such that x lies in the interior of U . Thus, every point x ∈ X
has a basis of connected, but not necessarily open, neighborhoods. This condition
is easily shown to be equivalent to the (seemingly stronger) requirement that every
point x ∈ X has a basis of open connected neighborhoods. In its simplest form,
Carathéodory Theorem says the following.

Carathéodory Theorem for locally connected domains. A conformal mapping
f : D→W continuously extends to the unit circle if and only if ∂W is locally con-
nected.

A natural question from the point of view of Computability Theory is then the
following:

What information do we need about the boundary of the domain W in order to
compute the Carathéodory extension f : S1→ ∂W ?

Below we discuss a constructive Carathéodory theory, which, in particular, answers
this question.

5.4.1 Carathéodory Extension Theorem

We give a very brief account of the principal elements of the theory here, for details
see, e.g., [49, 53]. In what follows, we fix a bounded simply connected domain
W ⊂C, and a point w ∈W ; we will refer to such a pair as a pointed domain, and use
notation (W,w) (to adapt what follows to unbounded domains, one simply needs
to replace the Euclidean metric on C with the spherical metric on Ĉ). A crosscut
γ ⊂W is a homeomorphic image of the open interval (0,1) such that the closure γ

is homeomorphic to the closed interval [0,1] and the two endpoints of γ lie in ∂W .
It is not difficult to see that a crosscut divides W into two connected components.
Let γ be a crosscut such that w /∈ γ . The component of W \ γ which does not contain
w is called the crosscut neighborhood of γ in (W,w). We will denote it Nγ .

A fundamental chain in (W,w) is a nested infinite sequence

Nγ1 ⊃ Nγ2 ⊃ Nγ3 ⊃ ·· ·

of crosscut neighborhoods such that the closures of the crosscuts γ j are disjoint, and
such that

diamγ j −→ 0.

Two fundamental chains (Nγ j)
∞
j=1 and (Nτ j)

∞
j=1 are equivalent if every Nγ j contains

some Nτi and conversely, every Nτi contains some Nγ j . Note that any two fundamen-
tal chains (Nγ j)

∞
j=1 and (Nτ j)

∞
j=1 are either equivalent or eventually disjoint, i.e.,

Nγ j ∩Nτi = /0 for i and j sufficiently large.
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The key concept of Carathéodory theory is a prime end, which is an equivalence
class of fundamental chains. The impression I (p) of a prime end p is a compact
connected subset of ∂W defined as follows: let (Nγ j)

∞
j=1 be any fundamental chain

in the equivalence class p, then

I (p) = ∩Nγ j .

We say that the impression of a prime end is trivial if it consists of a single point. It
is easy to see (cf. [49]) the following.

Proposition 5.4.1. If the boundary ∂W is locally connected then the impression of
every prime end is trivial.

We define the Carathéodory compactification Ŵ to be the disjoint union of W
and the set of prime ends of W with the following topology. For any crosscut neigh-
borhood N let Ñ ⊂ Ŵ be the neighborhood N itself, and the collection of all prime
ends which can be represented by fundamental chains starting with N. These neigh-
borhoods, together with the open subsets of W , form the basis for the topology of
Ŵ . The above definition originated in [45].

Carathéodory Theorem. Every conformal isomorphism φ : W → D extends
uniquely to a homeomorphism

φ̂ : Ŵ → D.

The Carathéodory Theorem for locally connected domains is a synthesis of the
above statement and Proposition 5.4.1.

Let us note the following (see [49], p. 184).

Lemma 5.4.2. If f is a continuous map from a compact locally connected space X
onto a Hausdorff space Y , then Y is also locally connected.

Theorem 5.4.3. In the case when W is Jordan, the identity map W →W extends to
a homeomorphism between the Carathéodory compactification Ŵ and W.

In the Jordan case, we will use the notation φ for the extension of a conformal
map to the closure of W . Of course,

φ = ( f )−1.

The Carathéodory compactification of (W,w) can be seen as its metric comple-
tion for the following metric. Let z1, z2 be two points in W distinct from w. We will
define the crosscut distance distWC (z1,z2) between z1 and z2 as the infimum of the
diameters of curves γ in W for which one of the following properties holds:

• γ is a crosscut such that z1 and z2 are contained in the crosscut neighborhood Nγ ;
• γ is a simple closed curve such that z1 and z2 are contained in the bounded com-

ponent of the complement C\ γ and γ separates z1, z2 from w.

The following is easy to verify.
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Theorem 5.4.4. The crosscut distance is a metric on W \{w} which is locally equal
to the Euclidean one. The completion of W equipped with distC is homeomorphic to
Ŵ .

5.4.2 Computational Representation of Prime Ends

Definition 5.4.5. We say that a curve g : (0,1)→C is a rational polygonal curve if:

• the image of g is a simple curve;
• g is piecewise-linear with rational coefficients.

The following is elementary.

Proposition 5.4.6. Let Nγ j be a fundamental chain in a pointed simply connected
domain (W,w). Then there exists an equivalent fundamental chain Nτ j such that the
following holds. For every j there exists a rational polygonal curve t j : (0,1)→ C
with

t j(0.5) ∈ Nγ j \Nγ j+1 ,

and such that τ j ⊂ t j([0.01,0.99]). Furthermore, t j can be chosen so that

diam t j(0,1)−→
j→∞

0.

We call the sequence of polygonal curves t j as described in the above proposition
a representation of the prime end p specified by Nγ j . Since only a finite amount of
information suffices to describe each rational polygonal curve t j, the sequence t j can
be specified by an oracle. Namely, there exists an algorithm A such that for every
representation (t j) of a prime end there exists a function φ : N→ N such that given
access to the values of φ(i), i = 1, . . . ,n, the algorithm A outputs the coefficients of
the rational polygonal curves t j, j = 1, . . . ,mn with mn −→

n→∞
∞. We will refer to such

a φ simply as an oracle for p.

5.4.3 Structure of a Computable Metric Space on the Carathéodory
Compactification

Let K b C. We say that φ is an oracle for K if φ is a function from the natural
numbers to sets of finite sequences of triples (x j,y j,r j) of rational numbers with the
following property. Let

φ(n) = {(x j,y j,r j)}kn
j=1,

and let B j be the ball of radius r j about the point x j + iy j. Then
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distH(
kn⋃

j=1

B j,K)< 2−n.

Let (W,w) be a simply connected pointed domain. Then the following condi-
tional computability result holds (see [7]).

Theorem 5.4.7. The following is true in the presence of oracles for w and for ∂W.
The Carathéodory completion Ŵ equipped with the crosscut distance and with ra-
tional points in W as ideal points is a computable metric space. Moreover, this space
is computably compact.

5.4.4 Moduli of Locally Connected Domains

The following definition is standard.

Definition 5.4.8 (Modulus of local connectivity). Let X ⊂ R2 be a connected set.
Any strictly increasing function m : (0,a)→ R is called a modulus of local connec-
tivity of X if

• for all x,y ∈ X such that dist(x,y)< r < a there exists a connected subset L⊂ X
containing both x and y with the property diam(L)< m(r);

• m(r)↘ 0 as r↘ 0.

Of course, the existence of a modulus of local connectivity implies that X is
locally connected. Conversely, every compact connected and locally connected set
has a modulus of local connectivity.

We note that every modulus of local connectivity is also a modulus of path con-
nectivity.

Proposition 5.4.9. Let m(r) be a modulus of local connectivity for a connected set
X ⊂ R2. Let x,y ∈ X such that dist(x,y) < r. Then there exists a path ` between x
and y with diameter at most m(r).

For the proof, see Proposition 2.2 of [23]. The following notion was introduced
in [7].

Definition 5.4.10 (Carathéodory modulus). Let (W,w) be a pointed simply con-
nected domain. A strictly increasing function η : (0,a)→R is called a Carathéodory
modulus if for every crosscut γ with diam(γ)< r < a we have diamNγ < η(r).

We note (see, e.g., [7]) that this alternative modulus also allows one to character-
ize local connectivity.

Proposition 5.4.11. There exists a Carathéodory modulus η(r) such that η(r)↘ 0
when r↘ 0 if and only if the boundary ∂W is locally connected.



5 Computable Geometric Analysis and Dynamics 155

5.4.5 Computable Carathéodory Theory

To simplify the exposition, we present the results for bounded domains only. How-
ever, all the theorems we formulate below may be stated for general simply con-
nected domains on the Riemann sphere Ĉ. In this case, the spherical metric on Ĉ
would have to be used in the statements instead of the Euclidean one.

The following is shown in [7].

Theorem 5.4.12. Suppose (W,w) is a bounded simply connected pointed domain.
Suppose the Riemann mapping

φ : W → D with φ(w) = 0, φ
′(w)> 0

is computable. Then there exists an algorithm A which given a representation of a
prime end p ∈ Ŵ computes the value of φ̂(p) ∈ S1.

In view of Theorem 5.3.1, we have the following.

Corollary 5.4.13. Suppose we are given oracles for W as a lower-computable open
set, for ∂W as a lower-computable closed set, and an oracle for the value of w as
well. Given a representation of a prime end p ∈ Ŵ , the value φ̂(p) ∈ S1 is uniformly
computable.

To state a “global” version of the above computability result, we use the structure
of a computable metric space.

Theorem 5.4.14 ([7]). In the presence of oracles for w and for ∂W, both the
Carathéodory extension

φ̂ : Ŵ → D and its inverse f̂ ≡ φ̂
−1 : D→ Ŵ

are computable, as functions between computable metric spaces.

Remark 5.4.15. The assumptions of Theorem 5.4.14 are stronger than those of
Corollary 5.4.13: computability of ∂W implies lower-computability of W and ∂W ,
but not vice versa.

For the particular but important case when the domain W has a locally connected
boundary, it is natural to ask what boundary information is required to make the
extended map f : D→W computable. A natural candidate to consider is a descrip-
tion of the modulus of local connectivity. Indeed, as it was shown in [46, 47], a
computable local connectivity modulus implies computability of the Carathéodory
extension. Such a modulus of local connectivity, however, turned out to be unneces-
sary, as shown by the following two results proven in [7]. The first one says that the
right boundary information to consider is the Carathéodory modulus η(r), and the
second one tells us that the two moduli, although classically equivalent, are indeed
computationally different.
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Theorem 5.4.16. Suppose (W,w) is a pointed simply connected bounded domain
with a locally connected boundary. Assume that the holomorphic bijection

f : D→W with f (0) = w, f ′(0)> 0

is computable. Then the boundary extension

f : D→W

is computable if and only if there exists a computable Carathéodory modulus η(r)
with η(r)↘ 0 as r↘ 0.

Remark 5.4.17. With routine modifications, the above result can be made uniform
in the sense that there is an algorithm which from a description of f and η com-
putes a description of f , and there is an algorithm which from a description of f
computes a Carathéodory modulus η . See for example [31] for statements made in
this generality.

We note that the seemingly more “exotic” Carathéodory modulus cannot be re-
placed by the modulus of local connectivity in the above statement.

Theorem 5.4.18 ([7]). There exists a simply connected domain W such that ∂W
is locally connected and computable, and there exists a computable Carathéodory
modulus η(r)↘ 0, however, no computable modulus of local connectivity exists for
∂W.

Finally, we turn to computational complexity questions in the cases when φ or f
are computable. Intuitively, when the boundary of the domain has a geometrically
complex structure, one expects the Carathéodory extension to also be computation-
ally complex. Using this idea, the following is shown in [7].

Theorem 5.4.19. Let q : N→ N be any computable function. There exist Jordan
domains W1 3 0, W2 3 0 such that the following holds:

• the closures W 1, W 2 are computable;
• the extensions φ : W 1→ D and f : D→W 2 are both computable functions;
• the time complexity of f and φ is bounded from below by q(n) for large enough

values of n.

In other words, the computational complexity of the extended map can be arbi-
trarily high.

5.5 Computability in Complex Dynamics: Julia Sets

5.5.1 Basic Properties of Julia Sets

An excellent general reference for the material in this section is the textbook of
Milnor [49].
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The modern paradigm of numerical study of chaos (see, e.g., the article of J. Palis
[51]) can be briefly summarized as follows. While the simulation of an individual
orbit for an extended period of time does not make practical sense, one should study
the limit set of a typical orbit (both as a spatial object and as a statistical distribution).
One of the best-known illustrations of this approach is the numerical study of Julia
sets in Complex Dynamics. The Julia set J(R) is the repeller of a rational mapping
R of degree degR = d ≥ 2 considered as a dynamical system on the Riemann sphere

R : Ĉ→ Ĉ,

that is, it is the attractor for (all but at most two) inverse orbits under R

z0,z−1,z−2, . . . , where R(z−(n+1)) = z−n.

In fact, let δz denote the Dirac measure at z ∈ Ĉ. Denote

µn(z) =
1
dn ∑

w∈R−n(z)
δw.

These probability measures assign equal weight to the n-th preimages of z, counted
with multiplicity. Then for all points z except at most two, the measures µn(z)
weakly converge to the Brolin-Lyubich measure λ of R, whose support is equal
to J(R) [17, 39].

Another way to define J(R) is as the locus of chaotic dynamics of R, that is, the
complement of the set where the dynamics is Lyapunov-stable.

Definition 5.5.1. Denote by F(R) the set of points z ∈ Ĉ having an open neighbor-
hood U(z) on which the family of iterates Rn|U(z) is equicontinuous. The set F(R)
is called the Fatou set of R and its complement J(R) = Ĉ\F(R) is the Julia set.

Finally, when the rational mapping is a polynomial

P(z) = a0 +a1z+ · · ·+adzd : C→ C

an equivalent way of defining the Julia set is as follows. Obviously, there exists
a neighborhood of ∞ on Ĉ on which the iterates of P uniformly converge to ∞.
Denoting by A(∞) the maximal such domain of attraction of ∞ we have A(∞) ⊂
F(R). We then have

J(P) = ∂A(∞).

The bounded set Ĉ\A(∞) is called the filled Julia set, and denoted K(P); it consists
of points whose orbits under P remain bounded:

K(P) = {z ∈ Ĉ| sup
n
|Pn(z)|< ∞}.

Using the above definitions, it is not hard to make a connection between computabil-
ity questions for polynomial Julia sets, and the general framework of computable



158 Cristóbal Rojas, Michael Yampolsky

complex analysis discussed above. For instance, the Brolin-Lyubich measure λ on
the Julia set is the harmonic measure at ∞ of the basin A(∞); that is, the pull-back of
the Lebesgue measure on the unit circle by the appropriately normalized Riemann
mapping of the basin A(∞). We will discuss the computability of this measure be-
low. We will also see an even more direct connection to computability of a Riemann
mapping when we talk about computability of polynomial Julia sets.

For future reference, let us summarize in a proposition below the main properties
of Julia sets.

Proposition 5.5.2. Let R : Ĉ→ Ĉ be a rational function. Then the following prop-
erties hold:

• J(R) is a non-empty compact subset of Ĉ and completely invariant: R−1(J(R)) =
J(R);

• J(R) = J(Rn) for all n ∈ N;
• J(R) has no isolated points;
• if J(R) has non-empty interior, then it is the whole of Ĉ;
• let U ⊂ Ĉ be any open set with U ∩ J(R) 6= /0. Then there exists n ∈ N such that

Rn(U)⊃ J(R);
• periodic orbits of R are dense in J(R).

For a periodic point z0 = Rp(z0) of period p its multiplier is the quantity λ =
λ (z0) = DRp(z0). We may speak of the multiplier of a periodic cycle, as it is the
same for all points in the cycle by the Chain Rule. In the case when |λ | 6= 1, the
dynamics in a sufficiently small neighborhood of the cycle is governed by the Mean
Value Theorem: when |λ |< 1, the cycle is attracting (super-attracting if λ = 0), if
|λ | > 1 it is repelling. Both in the attracting and repelling cases, the dynamics can
be locally linearized:

ψ(Rp(z)) = λ ·ψ(z) (5.2)

where ψ is a conformal mapping of a small neighborhood of z0 to a disk around 0.
In the case when |λ | = 1, so that λ = e2πiθ , θ ∈ R, the simplest to study is the

parabolic case when θ = n/m ∈ Q, so λ is a root of unity. In this case Rp is not
locally linearizable and z0 ∈ J(R).

In the complementary situation, two non-vacuous possibilities are considered:
the Cremer case, when Rp is not linearizable, and the Siegel case, when it is. In
the first case, the periodic point z0 is called a Cremer point; in the second case it is
called a Siegel point. In the Siegel case, the linearizing map ψ from (5.2) conjugates
the dynamics of Rp on a neighborhood U(z0) to the irrational rotation by angle θ

(the rotation angle) on a disk around the origin. The maximal such neighborhood of
z0 is called a Siegel disk.

A connected component H of the Fatou set is called a Herman ring if f p(H) = H
for some p ∈ N, and f p restricted to H is conformally conjugate to an irrational
rotation of a round annulus {r < |z|< 1}.

Fatou showed that for a rational mapping R with degR = d ≥ 2 at most finitely
many periodic orbits are non-repelling. A sharp bound on their number depending
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on d has been established by Shishikura; it is equal to the number of critical points
of R counted with multiplicity.

Fatou-Shishikura Bound. For a rational mapping of degree d the number of non-
repelling periodic cycles taken together with the number of cycles of Herman rings
is at most 2d−2. For a polynomial of degree d the number of non-repelling periodic
cycles in C is at most d−1.

Therefore, the last statement of Proposition 5.5.2 can be restated as follows.

• repelling periodic orbits are dense in J(R).

To conclude the discussion of the basic properties of Julia sets, let us consider the
simplest examples of non-linear rational endomorphisms of the Riemann sphere, the
quadratic polynomials. Every affine conjugacy class of quadratic polynomials has a
unique representative of the form fc(z) = z2 + c; the family

fc(z) = z2 + c, c ∈ C

is often referred to as the quadratic family. For a quadratic map the structure of the
Julia set is governed by the behavior of the orbit of the only finite critical point 0. In
particular, the following dichotomy holds.

Proposition 5.5.3. Let K = K( fc) denote the filled Julia set of fc, and J = J( fc) =
∂K. Then:

• 0 ∈ K implies that K is a connected, compact subset of the plane with connected
complement, and J = ∂K is also connected;

• 0 /∈ K implies that K = J is a planar Cantor set.

The Mandelbrot set M ⊂C is defined as the set of parameter values c for which
J( fc) is connected.

A rational mapping R : Ĉ→ Ĉ is called hyperbolic if the orbit of every critical
point of R is either periodic, or converges to an attracting cycle. As easily follows
from the Implicit Function Theorem and considerations of the local dynamics of an
attracting orbit, hyperbolicity is an open property in the parameter space of rational
mappings of degree d ≥ 2.

Considered as a rational mapping of the Riemann sphere, a quadratic polynomial
fc(z) has two critical points: the origin, and the super-attracting fixed point at ∞. In
the case when c /∈M , the orbit of the former converges to the latter, and thus fc
is hyperbolic. A classical result of Fatou implies that whenever fc has an attracting
orbit in C, this orbit attracts the orbit of the critical point. Hence, fc is a hyperbolic
mapping and c ∈M . The following conjecture is central to the field of dynamics in
one complex variable.

Conjecture (Density of Hyperbolicity in the Quadratic Family. Hyperbolic pa-
rameters are dense in M .
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The Fatou-Shishikura Bound implies that a quadratic polynomial has at most one
non-repelling cycle in the complex plane. Therefore, we will call the polynomial fc
(the parameter c, the Julia set Jc) Siegel, Cremer, or parabolic when it has an orbit
of the corresponding type.

5.5.2 Occurrence of Siegel Disks and Cremer Points in the
Quadratic Family

Before stating computability/complexity results for Julia sets we need to discuss in
more detail the occurrence of Siegel disks in the quadratic family. For a number
θ ∈ [0,1) denote by [r1,r2, . . . ,rn, . . .], ri ∈ N∪ {∞} its possibly finite continued
fraction expansion:

[r1,r2, . . . ,rn, . . .]≡
1

r1 +
1

r2 +
1

· · ·+
1

rn + · · ·

(5.3)

Such an expansion is defined uniquely if and only if θ /∈Q. In this case, the rational
convergents pn/qn = [r1, . . . ,rn] are the closest rational approximants of θ among
the numbers with denominators not exceeding qn.

Inductively define θ1 = θ and θn+1 = {1/θn}. In this way,

θn = [rn,rn+1,rn+2, . . .].

We define the Yoccoz’s Brjuno function as

Φ(θ) =
∞

∑
n=1

θ1θ2 · · ·θn−1 log
1
θn

.

For an illustration see Figure 5.3. In 1972, Brjuno proved the following.

Theorem 5.5.4 ([16]). Let R be an analytic map with a periodic point z0 ∈ Ĉ of
period p. Suppose the multiplier of the cycle

λ = e2πiθ with Φ(θ)< ∞,

then the local linearization equation (5.2) holds.

This theorem generalized the classical result by Siegel [59] which established the
same statement for all Diophantine values of θ .

Note that a quadratic polynomial with a fixed Sigel disk with rotation angle θ

after an affine change of coordinates can be written as
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Pθ (z) = z2 + e2πiθ z. (5.4)

For an example of a Julia set of a quadratic polynomial Pθ see Figure 5.2. In 1987

Fig. 5.2 The Julia set of Pθ for θ = [1,1,1,1, . . .] (the inverse golden mean). This set is actually
computable (see [13]).

Yoccoz [62] proved the following converse to Brjuno’s Theorem.

Theorem 5.5.5 ([62]). Suppose that for θ ∈ [0,1) the polynomial Pθ has a Siegel
point at the origin. Then Φ(θ)< ∞.

In fact, the value of the function Φ is directly related to the size of the Siegel disk
in the following way.

Definition 5.5.6. Let P(θ) be a quadratic polynomial with a Siegel disk ∆θ 3 0.
Consider a conformal isomorphism φ : D 7→ ∆θ fixing 0. The conformal radius of
the Siegel disk ∆θ is the quantity

r(θ) = |φ ′(0)|.

For all other θ ∈ [0,∞) we set r(θ) = 0.

By the Koebe One-Quarter Theorem of classical complex analysis, the internal
radius of ∆θ is at least r(θ)/4. Yoccoz [62] has shown that the sum

Φ(θ)+ logr(θ)

is bounded from below independently of θ ∈ B. Buff and Chéritat have greatly
improved this result by showing the following.

Theorem 5.5.7 ([18]). The function υ : θ 7→ Φ(θ)+ logr(θ) extends to R as a 1-
periodic continuous function.

The following stronger conjecture exists (see [41]).
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Marmi-Moussa-Yoccoz Conjecture ([41]). The function υ : θ 7→Φ(θ)+ logr(θ)
is Hölder of exponent 1/2.

It is important to note that computability of the function υ : R→R would follow
from the above conjecture. More generally, let us state the following (see [14]).

Theorem 5.5.8 (Conditional). Suppose the function

υ : θ 7→Φ(θ)+ logr(θ)

has a computable modulus of continuity. Then it is uniformly computable on the
entire interval [0,1].

In view of the above, we formulate the following generalization of the Marmi-
Moussa-Yoccoz Conjecture.

Conjecture 5.5.9. The function

υ : θ 7→Φ(θ)+ logr(θ)

(see Figure 5.3) is uniformly computable on the interval [0,1].

Lemma 5.5.10 (Conditional). Suppose Conjecture 5.5.9 is true. Let θ ∈ [0,1] be
such that Φ(θ) is finite. Then there is an oracle Turing Machine Mφ

1 computing
Φ(θ) with oracle access to θ if and only if there is an oracle Turing Machine Mφ

2
computing r(θ) with oracle access to θ .

Fig. 5.3 The figure on the left is an attempt to visualize the function Φ by plotting the heights
of exp(−Φ(θ)) over a grid of Brjuno irrationals. On the right is the graph of the (conjecturally
computable) function υ(x).
Both figures courtesy of Arnaud Chéritat
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5.5.3 Computability of Julia Sets

When we address computability of a Julia set of a rational map R, it will always
be by a Turing machine Mθ with oracle access to the coefficients of the rational
map R. This corresponds to the numerical problem of drawing a Julia set when the
coefficients of the map R are given with an arbitrary finite precision.

The question of computability of polynomial Julia sets was first raised in a paper
of Zhong [63]. It was investigated exhaustively by Braverman and Yampolsky (see
the monograph [14] as a general reference) with surprising results. For simplicity of
exposition let us specialize to the case of the quadratic family.

Theorem 5.5.11 ([13]). The filled Julia set Kc is always computable by an oracle
Turing machine Mθ with an oracle for c.

The special case of this theorem when Kc has empty interior was addressed in
[5]. It is not hard to give an idea of the proof under this restriction. Indeed, the basin
A(∞) is clearly lower-computable: simply take a large enough R = R(c) such that
for |z|> R, we have | fc(z)|> 2R. Then the basin A(∞) is exhausted by the countable
union of the computable (with an oracle for c) open sets

f−n
c ({|z|> R})⊂ Ĉ ;n ∈ N.

On the other hand, Kc = Jc is a lower-computable closed set. It can be saturated by
a countable sequence of computable (again with an oracle for c) finite sets

Wk ≡ {repelling periodic orbits of fc with period ≤ k}, k ∈ N.

A simpler algorithm for lower-computing Jc, and something that is actually used
in practice, is to find a single fixed point p ∈ Jc (elementary considerations imply
that from the two fixed points of fc counted with multiplicity, at least one is either
repelling or parabolic) and then saturate Jc by the sequence

W ′k ≡ ∪ j≤k f− j
c (p).

The proof of the general case of Theorem 5.5.11 is rather more involved.
The next statements will directly relate computability of Julia sets with com-

putable Riemann mappings.

Theorem 5.5.12 ([12]). Suppose fc has a Siegel periodic point p and let ∆ 3 p be
the corresponding Siegel disk. Then Jc is computable by a Turing machine Mφ with
an oracle for c if and only if the conformal radius of ∆ is computable by a Turing
machine with an oracle for c.

Theorem 5.5.13 ([12]). Suppose fc has no Siegel points. Then the Julia set Jc is
computable by a Turing machine Mφ with an oracle for c.

Let us now specialize further to the case of the polynomials Pθ (z) = e2πiθ z+ z2

with a neutral fixed point at the origin. The main result of Braverman and Yampolsky
is the following.
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Theorem 5.5.14 ([13]). There exist computable values of θ (in fact, computable by
an explicit, although very complicated, algorithm) such that Jθ is not computable.

In view of Theorem 5.5.12, this is equivalent to the fact that the conformal ra-
dius rθ is not computable. Assuming Conjecture 5.5.9, this would also be equiva-
lent to the non-computability of the value of Φ(θ). In fact, computable values of
θ for which Φ(θ) cannot be computed (unconditionally) can also be constructed
(see [14]). In fact, assuming Conjecture 5.5.9, it is shown in [13] that θ in Theo-
rem 5.5.14 can be poly-time.

We thus observe a surprising scenario: for above values of θ a finite inverse orbit
of a point can be effectively, and possibly efficiently, computed with an arbitrary
precision. Yet the repeller Jθ cannot be computed at all. This serves as a cautionary
tale for applications of the numerical paradigm described above.

Fortunately, the phenomenon of non-computability of Jc is quite rare. Such val-
ues of c have Lebesgue measure zero. It is shown in [14] that assuming Conjec-
ture 5.5.9 they have linear measure (Hausdorff measure with exponent 1) zero – a
very meager set in the complex plane indeed. Furthermore, Conjecture 5.5.9 and
some high-level theory of Diophantine approximations ([14]) imply that such val-
ues of c cannot be algebraic, so even if they are easy to compute, they are not easy
to write down.

It is worth noting that in [15], Braverman and Yampolsky constructed computable
values of θ such that the quadratic Julia sets Jθ are not computable and locally
connected. In view of the above-discussed theory, for such maps, the basin of infinity
A(∞) = Ĉ\Kc is a natural example of a simply connected domain on the Riemann
sphere with locally connected boundary such that the Riemann map is computable,
but the Carathéodory extension is not (the boundary does not have a computable
Carathéodory modulus).

5.5.4 Computational Complexity of Julia Sets

While the computability theory of polynomial Julia sets appears complete, the study
of computational complexity of computable Julia sets offers many unanswered ques-
tions. Let us briefly describe the known results. As before, in all of them the Julia
set of a rational function R is computed by a Turing Machine Mφ with an oracle for
the coefficients of R.

The following theorem is independently due to Braverman [10] and Rettinger
[55].

Theorem 5.5.15. Every hyperbolic Julia set is poly-time.

We note that the poly-time algorithm described in the above papers has been
known to practitioners as Milnor’s Distance Estimator [48]. Specializing again to
the quadratic family fc, we note that Distance Estimator becomes very slow (exp-
time) for the values of c for which fc has a parabolic periodic point. This would
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appear to be a natural class of examples to look at for a lower complexity bound.
However, surprisingly, Braverman [11] proved the following.

Theorem 5.5.16. Parabolic quadratic Julia sets are poly-time.

The algorithm presented in [11] is again explicit, and easy to implement in prac-
tice – it is a major improvement over Distance Estimator.

On the other hand, Binder, Braverman, and Yampolsky [4] proved the following.

Theorem 5.5.17. There exist Siegel quadratics of the form Pθ (z)= e2πiθ z+z2 whose
Julia set have an arbitrarily high time complexity.

Given a lower complexity bound, such a θ can be produced constructively.
Another set of examples was recently constructed by Dudko and Yampolsky [28],

who showed that there exist quadratic polynomials with Cremer points whose Julia
sets have an arbitrarily high complexity. Cremer Julia sets are notoriously hard to
draw in practice, and no high-resolution pictures have been produced to this day. An
interesting possibility remains, however, that some of them may have low compu-
tational complexity, and be amenable to a clever algorithm, as the examples of [28]
are quite restrictive.

Let us further specialize to real quadratic family fc, c ∈ R. In this case, the fol-
lowing was recently proved by Dudko and Yampolsky [27].

Theorem 5.5.18. Almost every real quadratic Julia set is poly-time.

This means that poly-time computability is a “physically natural” property in real
dynamics. Conjecturally, the main technical result of [27] should imply the same
statement for complex parameters c as well, but the conjecture in question (Collet-
Eckmann parameters form a set of full measure among non-hyperbolic parameters)
while long established, is stronger than the Density of Hyperbolicity Conjecture,
and is currently out of reach.

It is also worth mentioning in this regard that most non-hyperbolic examples in
real dynamics are infinitely renormalizable quadratic polynomials. The archetypal
such example is the celebrated Feigenbaum polynomial. In a different paper, Dudko
and Yampolsky [26] showed the following.

Theorem 5.5.19. The Feigenbaum Julia set is poly-time.

The above theorems raise the natural question of whether all real quadratic Julia
sets are poly-time (the examples of [4] and [28] cannot have real values of c). That
was recently ruled out by Rojas and Yampolsky [58].

Theorem 5.5.20. There exist real quadratic Julia sets whose time complexity is ar-
bitrarily high.
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5.5.5 Computing Julia Sets in Statistical Terms

As we have seen above, there are instances when for a rational map R, d = degR≥ 2,
the set of limit points of the sequence of inverse images R−n(z) cannot be accurately
simulated on a computer even in the “tame” case when R ≡ fc with a computable
value of c. However, even in these cases we can ask whether the limiting statistical
distribution of the points R−n(z) can be computed. As we noted above, for all z ∈ Ĉ
except at most two, and every continuous test function ψ , the averages

1
dn ∑

w∈R−n(z)
ψ(w) −→

n→∞

∫
ψdλ ,

where λ is the Brolin-Lyubich probability measure [17, 39] with supp(λ ) = J(R).
We can thus ask whether the value of the integral on the right-hand side can be algo-
rithmically computed with arbitrary precision. Even if J(R) = Supp(λ ) is not a com-
putable set, the answer does not a priori have to be negative. Informally speaking, a
positive answer would imply a dramatic difference between the rates of convergence
in the following two limits:

limR−n(z) −→
Hausdorff

J(R) and lim
1
dn ∑

w∈R−n(z)
δw −→

weak
λ .

Indeed, the following was shown in [3].

Theorem 5.5.21. The Brolin-Lyubich measure of R is always computable by a TM
with an oracle for the coefficients of R.

Even more surprisingly, the result of Theorem 5.5.21 is uniform, in the sense that
there is a single algorithm that takes the rational map R as a parameter and computes
the corresponding Brolin-Lyubich measure. Using the analytic tools given by the
work of Dinh and Sibony [21], the authors of [3] also got the following complexity
bound.

Theorem 5.5.22. For each rational map R, there is an algorithm A (R) that com-
putes the Brolin-Lyubich measure in exponential time, given an oracle for the coef-
ficients of R.

The running time of A (R) will be of the form exp(c(R) ·n), where n is the pre-
cision parameter, and c(R) is a constant that depends only on the map R (but not on
n). Theorems 5.5.21 and 5.5.22 are not directly comparable, since the latter bounds
the growth of the computation’s running time in terms of the precision parameter,
while the former gives a single algorithm that works for all rational functions R.

As was pointed out above, the Brolin-Lyubich measure for a polynomial coin-
cides with the harmonic measure of the complement of the filled Julia set. In view
of Theorem 5.5.11, it is natural to ask what property of a computable compact set
in the plane ensures computability of the harmonic measure of the complement.
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We recall that a compact set K ⊂ Ĉ which contains at least two points is uniformly
perfect if the moduli of the ring domains separating K are bounded from above.
Equivalently, there exists some C > 0 such that for any x ∈ K and r > 0, we have

(B(x,Cr)\B(x,r))∩K = /0 =⇒ K ⊂ B(x,r).

In particular, every connected set is uniformly perfect. The following was shown in
[3].

Theorem 5.5.23. If a closed set K ⊂ C is computable and uniformly perfect, and
has a connected complement, then the harmonic measure of the complement is com-
putable.

It is well known [40] that filled Julia sets are uniformly perfect. Theorem 5.5.23
thus implies Theorem 5.5.21 in the polynomial case. Computability of the set K
is not enough to ensure computability of the harmonic measure: in [3] the authors
presented a counterexample of a computable closed set whose complement has non-
computable harmonic measure.

5.5.6 Applications of Computable Carathéodory Theory to Julia
Sets: External Rays and Their Impressions

Informally (see [14] and [3] for a more detailed discussion), the parts of the Ju-
lia set Jc which are hard to compute are “inward pointing” decorations, forming
narrow fjords of Kc. If the fjords are narrow enough, they will not appear in a finite-
resolution image of Kc, which explains how the former can be computable even
when Jc is not. Furthermore, a very small portion of the harmonic measure resides
in the fjords, again explaining why it is always possible to compute the harmonic
measure.

Suppose the Julia set Jc is connected, and denote by

φc : Ĉ\D→ Ĉ\Kc

the unique conformal mapping satisfying the normalization φc(∞) = ∞ and φ ′c(∞) =
1. Carathéodory Theory (see, e.g., [49] for an exposition) implies that φc extends
continuously to map the unit circle S1 onto the Carathéodory completion Ĵc of the
Julia set. An element of the set Ĵc is a prime end p of C \Kc. The impression I(p)
of a prime end is a subset of Jc which should roughly be thought as a part of Kc
accessible by a particular approach from the exterior. The harmonic measure ωc can
be viewed as the pushforward of the Lebesgue measure on S1 onto the set of prime
end impressions.

In view of the above-quoted results, from the point of view of computability,
prime end impressions should be seen as borderline objects. On the one hand, they
are subsets of the Julia set which may be non-computable; on the other they are
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“visible from infinity”, and as we have seen accessibility from infinity generally
implies computability.

It is thus natural to ask whether the impression of a prime end of Ĉ\Kc is always
computable by a TM with an oracle for c. To formalize the above question, we need
to describe a way of specifying a prime end. We recall that the external ray Rα of
angle α ∈ R/Z is the image under φc of the radial line {re2πiα : r > 1}. The curve

Rα = φc({re2πiα : r > 1})

lies in Ĉ\Kc. The principal impression of an external ray P(Rα) is the set of limit
points of φc(re2πiα) as r→ 1. If the principal impression of Rα is a single point z,
we say that Rα lands at z. External rays play a very important role in the study of
polynomial dynamics.

It is evident that every principal impression is contained in the impression of a
unique prime end. We call the impression of this prime end the prime end impression
of an external ray and denote it I(Rα). A natural refinement of the first question is
the following: suppose α is a computable angle; is the prime end impression I(Rα)
computable? As was shown in [8], the answer is emphatically negative.

Theorem 5.5.24. There exists a computable complex parameter c and a computable
Cantor set of angles C⊂ S1 such that for every angle α ∈C, the impression I(Rα)⊂
Jc is not computable. Moreover, any compact subset K b Jc which contains I(Rα)
is non-computable.

This statement illustrates yet again how subtle, and frequently counter-intuitive,
the answers to natural computability questions may be when it comes to Julia sets,
and, by extension, to other fractal invariant sets in low-dimensional dynamics.

5.5.7 On the Computability of the Mandelbrot Set

Let us recall that the Mandelbrot set M is defined to be the connectedness locus
of the family fc(z) = z2 + c, c ∈ C: the set of complex parameters c for which the
Julia set J( fc) is connected. The boundary of M corresponds to the parameters near
which the geometry of the Julia set undergoes a dramatic change. For this reason,
∂M is referred to as the bifurcation locus. As already discussed in Section 5.5.1,
J( fc) is connected precisely when the critical point 0 does not escape to infinity.
Therefore, M can be equivalently defined as

M = {c ∈ C : sup
n∈N
| f n

c (0)|< ∞}.

M is widely known for the spectacular beauty of its fractal structure, and an enor-
mous amount of effort has been made in order to understand its topological and
geometrical properties. It is easy to see that M is a compact set, equal to the closure
of its interior, and contained in the disk of radius 2 centered at the origin. Douady
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and Hubbard have shown [24] that M is connected and simply connected. In this
section we will discuss the computability properties of M , a question raised by
Penrose in [52]. Hertling showed the following in [32].

Theorem 5.5.25. The complement of the Mandelbrot set is a lower-computable
open set, and its boundary ∂M is a lower-computable closed set.

Proof. Note that
C\M =

⋃
n∈N
{c ∈ C : | f n

c (0)|> 2}.

Since f n
c (0) is computable as a function of c, uniformly in n, it follows that the open

sets {c ∈ C : | f n
c (0)| > 2} are uniformly lower-computable, which proves the first

claim. For the second claim, a simple way to compute a dense sequence of points in
∂M is by computing the so-called Misiurewicz parameters, for which the critical
point of fc is strictly pre-periodic. In other words, the union of sets

Wl,p = {c | f i
c(0) 6= 0 if i≤ l + p and f l+p

c (0) = f l
c(0)} for l, p ∈ N

is dense in ∂M .

In virtue of Theorem 5.3.1, we note the following.

Corollary 5.5.26. The Riemann map

φ : Ĉ\D→ Ĉ\M ,

sending the complement of the unit disk to the complement of the Mandelbrot set, is
computable.

It is unknown whether the whole of M is a lower-computable set. A positive
answer would imply computability of M . In fact, Hertling [32] also showed the
following.

Theorem 5.5.27. The Density of Hyperbolicity Conjecture implies that M is lower-
computable, and hence, computable.

Indeed, let Um be defined as the set of parameters c ∈ C such that fc has a point
p ∈ C with f m

c (p) = p and |D f m
c (p)| < 1. It is not hard to see that such a set is

lower-computable. Density of Hyperbolicity implies that the sets Um are dense in
M .

Note that the same statements hold for the n− 1 complex dimensional connect-
edness locus of the family of polynomials of degree n, with similar proofs. On the
other hand, it is possible to construct a one-parameter complex family of polynomi-
als in which the corresponding objects are not computable. In [20], Coronel, Rojas,
and Yampolsky have recently shown the following.

Theorem 5.5.28. There exists an explicitly computable complex number λ such that
the bifurcation locus of the one-parameter family
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fc(z) = λ z+ cz2 + z3

is not computable.

An interesting related question is the computability of the area of M . Since C\
M is a lower-computable set, it follows that the area of M is an upper-computable
real number. The following simple conditional implication holds.

Proposition 5.5.29. If the area of M is computable, then M is computable.

Proof. Since C\M is a lower-computable set, if the area of M were a computable
real number, by Proposition 2.3.1.1 from [57] the Lebesgue measure restricted to M
would be a computable measure. By Proposition 5.2.19, the support of this measure
is lower-computable. Since the support in this case is M , the result follows.

Let us also note another famous conjecture about the Mandelbrot set.

Conjecture (MLC). The Mandelbrot set M is locally connected.

MLC is known (see [22]) to be stronger than the Density of Hyperbolicity Con-
jecture, and thus also implies computability of M and of ∂M . In this case, by virtue
of Corollary 5.5.26 and Theorem 5.4.16, it would be natural to ask whether M ad-
mits a computable Carathéodory modulus. Some partial results in this direction are
known (see, e.g., [34]). In all of them, local connectedness is established at subsets
of points of M by providing a constructive Carathéodory modulus at these points.
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matiques. Société Mathématique de France (2007)

26. Dudko, A., Yampolsky, M.: Poly-time computability of the Feigenbaum Julia set. Ergodic
Theory and Dynamical Systems 36(8), 2441–2462 (2016)

27. Dudko, A., Yampolsky, M.: Almost every real quadratic polynomial has a poly-time com-
putable Julia set. Found. Comput. Math. 18(5), 1233–1243 (2018)

28. Dudko, A., Yampolsky, M.: On computational complexity of Cremer Julia sets. Fund. Math.
252(3), 343–353 (2021)

29. Galatolo, S., Hoyrup, M., Rojas, C.: Dynamics and abstract computability: computing invari-
ant measures. Discrete and Continuous Dynamical Systems. Series A 29(1), 193–212 (2011)

30. Grzegorczyk, A.: Computable functionals. Fundamenta Mathematicae 42, 168–202 (1955)
31. Hertling, P.: An effective Riemann Mapping Theorem. Theoretical Computer Science 219,

225–265 (1999)
32. Hertling, P.: Is the Mandelbrot set computable? Mathematical Logic Quarterly 51(1), 5–18

(2005)
33. Hoyrup, M., Rojas, C.: Computability of probability measures and Martin-Löf randomness
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Chapter 6
A Survey on Analog Models of Computation

Olivier Bournez and Amaury Pouly

Abstract We present a survey on analog models of computation. Analog can be
understood both as computing by analogy, or as working on the continuum. We
consider both approaches, often intertwined, with a point of view mostly oriented
by computation theory.

6.1 Introduction

There is a clear ambiguity about the sense of the word analog when talking about
analog computations. Nowadays, it is often understood as being the opposite of dig-
ital: the former is working on continuous quantities, while the latter is working over
discrete values, typically bits or words. However, historically, analog computation
got its name from computation by analogy, i.e., by systems built in such a way that
they evolve in exactly the same way as the system they were intended to model or
simulate [240, 326]. These two understandings are orthogonal and various machines
analog in both or one and not the other sense have been conceived [326]. Notice also
that even discrete versus continuous is not a clear dichotomy, and most of the analog
machines that were historically built were actually hybrid [326].

We will mainly focus on models of computation, with a point of view possi-
bly oriented by computation theory (computability, complexity, models of compu-
tation).

All considered models can be described as particular dynamical systems: a dy-
namical system is mathematically defined as the action of a subgroup T of R on
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a space X , i.e., by a function (a flow) φ : T ×X → X satisfying the following two
equations:

φ(0,x) = x (6.1)

φ(t,φ(s,x)) = φ(t + s,x). (6.2)

The function φ(t,x) is intended to give the position at time t of the system if
started at position x at time 0, and the above equations simply express expected
properties.

Subgroups T of R are known to be either dense in R or isomorphic to the inte-
gers. In the first case, the time is said to be continuous, in the latter case, discrete.

A dynamical system is often alternatively described by some space X and some
function f : X → X . Indeed, in the discrete-time case, giving φ is equivalent to
giving f : X→ X with f (x) = φ(1,x): the trajectory starting from some state x0 then
corresponds to the iterations of f on x0 from Equation (6.2). In the continuous-time
case, not all dynamical systems correspond to differential equations, but as soon as
φ is continuously differentiable, a case covering a very wide class of systems in
practice, we can write y′ = f (y) where f (y) = d

dt φ(t,y)
∣∣
t=0. Giving φ is then also

equivalent to giving a function f : X → X : the trajectory starting from some state x0
corresponds to the solution of the Initial Value Problem (IVP) y′ = f (y),y(0) = x0.

We can then classify models according to their space X : we will mainly focus in
this chapter on the case where the space X involves real numbers, i.e., is continuous.
Typically X = Rn or X = Rn×Nk or can be encoded naturally in similar spaces.
We will say that such a space is continuous, in contrast to spaces like Nk (or the
set of words over a given alphabet, or the set of configurations of a model such as
a Turing machine), which would correspond to a discrete space. Discrete time and
space corresponds to classical computability and complexity and we do not intend
to cover them in this chapter. We will nevertheless consider some unconventional
discrete-time and -space models, such as population protocols or chemical reaction
networks, as they are unconventional and turn out to be closely related to analog
models as shown by various recent results.

A classification of some of the models considered in this chapter according to
these discrete/continuous time/space dichotomies is provided by Figure 6.1. This
classification is not perfect and is debatable. For example, cellular automata (which
we will consider later on as a spatial model) are here considered as evolving over
a discrete space. But they may also be considered as evolving over {0,1}N (i.e.,
Baire’s space), and we agree that there is no fundamental difference between R
and {0,1}N. As another example, the discrete-space / continuous-time quadrant is
rather empty, but we agree that many models have an underlying semantics that
can be expressed in the language of continuous-time Markov chains, and for ex-
ample stochastic chemical reaction networks could also fall in this quadrant. Actu-
ally, many models come indeed in various flavors and could be turned into various
quadrants: for example, asynchronous cellular automata can arguably be considered
as being continuous-time and discrete-space, or continuous-time and continuous-
space.
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Space Discrete Continuous
Time
Discrete Turing machines Neural networks (Section 6.2.3)

Lambda calculus Deep learning models (Section 6.2.3)
Recursive functions Blum-Shub-Smale machines (Section 6.2.5)
Post systems Hybrid systems (Section 6.2.4)
Cellular automata Natural computing influence dynamics

(Section 6.2.6)
Stack automata Signal machines (Section 6.2.10.3)
Finite state automata Continuous automata (Section 6.5.3)

Population protocols (Section 6.2.8)
...

Chemical reaction networks
(Section 6.6.5)
Petri nets
...

Continuous Boolean difference equation models Shannon’s GPACs (Section 6.2.2.1)
Hopfield’s neural networks (Section 6.6.1)
Physarum computing (Section 6.2.6.2)
Reaction-diffusion systems (Section 6.2.11)
Hybrid systems (Section 6.2.4)
Timed automata (Section 6.2.4.1)
Large-population protocols (Section 6.2.8.1)
Black hole models (Section 6.2.9)
Computational fields (Section 6.2.10.1)
R-recursive functions (Section 6.5.2)
Spiking neuron models (Section 6.2.3)
...

Fig. 6.1 A tentative classification of some computational models, according to their space and
time.

Notice that many quantum models of computation can also be considered possi-
bly as analog and would fit this description: as we have to make choices, we decided
that they are out of the scope of the current chapter. Notice that analog models, in
particular models in the continuum, can be seen as fitting in some way in between
classical and quantum models. Several results about quantum models are deeply
depend upon the fact that the underlying space is the field C of complex numbers,
while analog models can sometimes emulate some of the constructions by working
over R2. Similarly, computations with quantum models sometimes assume mea-
surements to be possible at unit cost, while this is not considered to be possible in
most analog models. Discussing analog models in this spirit helps to distinguish the
aspects which are closely coupled to the quantum world from others.
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Since most of the other chapters of this book are dedicated to the computable
analysis framework, we will intentionally not discuss this approach in the current
chapter.

Previous surveys on the field of analog computation include Pekka Orponen’s
[267], Olivier Bournez and Manuel L. Campagnolo’s [64] focusing on continuous-
time computation, and Bruce J. MacLennan’s chapter on “Analog Computation”
of the Encyclopedia of Complexity and Systems Science. [240]. A very instructive
book about the history of analog machines has recently been published [326]. There
is also an extensive literature, mostly forgotten today, about analog machines dating
to the times where most machine programming was analog.

6.2 Various Analog Machines and Models

6.2.1 Historical Accounts

As we said, historically, analog computation was mainly referring to computation
by analogy. Very instructive quotations supporting this claim can be found in [326]
and [240].

Actually, several historical computers presented as among the first digital com-
puters ever built turn out to be primarily analog in the above sense. This includes
ENIAC, which interestingly stands for “Electronic Numerical Integrator and Com-
puter’’. ENIAC is often said to be “programmed” but the term “wired” would be
closer to reality, since this system mainly consisted of a large collection of arith-
metic machines.

It may also help to understand that the term computer historically referred to a
person who carried out calculations or computations. Only from the middle of the
twentieth century, did the word start to refer to a machine that carries out computa-
tions. Determining which systems can actually be considered to be computers is a
very intriguing question, related to deep philosophical questions out of the scope of
the present chapter.

However, we list here some of the first machines ever built that can be clas-
sified as analog: this includes Blaise Pascal’s 1642 Pascaline, as well as Johann
Martin Hermann’s 1814 Planimeter (a simple device to compute surfaces based on
Green’s theorem), and Bill Phillips’s 1949 MONIAC (Monetary National Income
Analogue Computer, a machine that was using fluidic logic to model the behavior
of an economy). The Antikythera mechanism, discovered close to the Greek island
of Antikythera in 1901, dated from earlier than 87 BC, whose purpose was to pre-
dict astronomical positions and phenomena, is also often considered to be an analog
computer. However, even if these machines were clearly computing various quanti-
ties or data and may or may not be called computers, we admit that even the question
of whether such machines can be classified as analog is debatable. Indeed, many ar-
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ticles or books consider them as such nowadays (see e.g. [326]), but these statements
conflict with the literature in the history of computing from historians.

However, with no contest, the first truly programmable (“general-purpose” us-
ing Shannon’s 1941 terminology) analog computer was Vannevar’s Bush 1931 Dif-
ferential Analyzer, which is the topic of the next section due to its historical and
fundamental importance.

Further detailed historical accounts about analog machines and computations can
be found in the recent monograph [326]. Its author, Bernd Ulmann, also maintains
an informative web site with instructive pictures and videos [1].

The history of analog computation and devices is also discussed by historians.
For general literature on the history of analog computers, we refer to [109], [249]
or [333]. For references related to history of analog instruments, see [168], [167].
The history of the Differential Analyzer is discussed in [269]. See also [198] and
[197] for national accounts on the developments of differential analyzers. Historical
accounts on the ENIAC can be found in [195]. Recently published accounts also in-
clude the monograph [290], and the analysis of the work of Douglas R. Hartree [157]
and Charles Babbage [154] and of particular devices or techniques [155, 156] before
differential analyzers.

6.2.2 Differential Analyzers

Probably the best-known universal continuous-time machine is the Differential An-
alyzer (DA), built for the first time in 1931 at MIT under the supervision of Vannevar
Bush [90]. The idea of assembling integrator devices to solve differential equations
dates back to Lord Kelvin in 1876 [321]. Kelvin was looking for a faster way to
compute the harmonics of a function using its Fourier transform, with applications
to tidal and meteorological observations. He came up with the idea of using a rotat-
ing disc-cylinder-globe system to compute the integral of a product: this is essen-
tially the fundamental operation of the Differential Analyzer, although it took over
50 years to solve the mechanical problems involved in this machine.

The first DAs were entirely mechanical, and later became electronic: see [80,
326]. Their primary purpose was to solve differential equations, especially the ones
coming from problems in engineering. By the 1960s, differential analyzers were
progressively discarded in favor of digital technology. Many accounts on the history
and applications of these machines can be found in [326].

6.2.2.1 A Mathematical Model of the Differential Analyzer: the GPAC

The General Purpose Analog Computer (GPAC) was introduced by Shannon in
1941 as a mathematical idealization of the Differential Analyzer [303], while he was
working on this machine at MIT to get money for his studies. A GPAC is basically
a circuit made up of a finite number of units, described in Figure 6.2, which are
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interconnected by wires, possibly with loops (retroactions) on some of the wires. A
function f : R→ R is said to be generated if it corresponds to the value read on
some of the wires of the circuit as a function of time.

The model was later refined in a series of papers [284, 227, 186, 184]. Indeed,
a GPAC circuit may not define a unique function (it could have no or several solu-
tions), which is problematic. An arguably more modern presentation of the GPAC is
to use ordinary differential equations instead of circuits. The equivalence of GPAC
circuits with polynomial ordinary differential equations will be discussed in Sec-
tion 6.7.1.

Rubel also introduced the Extended Analog Computer (EAC) as an extension of
the GPAC [293]. The EAC features a broader class of operations such as partial
differentiation and restricted limits, allowing it to solve boundary value problems.
Rubel’s motivation for introducing the EAC was that the GPAC was “a limited ma-
chine”. This claim has been somewhat changed since then (see Section 6.7.1) and
the EAC has seen few theoretical developments. Although Rubel envisioned the
EAC as a “purely conceptual machine”, there is ongoing research to implement it,
with some currently working prototypes [252, 254, 253].

k k

A constant unit

+ u+ v

An adder unit

u
v

× uv

A multiplier unit

u
v

∫
w =

∫
udv

An integrator unit

u
v

Fig. 6.2 Basic units used in a GPAC circuit.

6.2.3 Neural Networks and Deep Learning Models

In the 1980’s and 1990’s, artificial neural networks gave birth to a renewal of interest
in analog computations. This enthusiasm declined until recently when the success
of deep learning in several impressive applications in various fields of artificial in-
telligence, such as speech recognition, image recognition and natural language pro-
cessing emerged. The first machine able to beat all the best professional Go players
is based on deep learning technology.

Current deep learning models may have a rather complex architecture built from
various modules, but most of these modules are essentially artificial neural network
models. An artificial neural network (ANN) consists of many simple, connected
processors called neurons. The state of each neuron is given by some real num-
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ber called its activation value. Designated input neurons get their activation values
from the environment. All other neurons evolve by applying a composition of a cer-
tain one-variable function σ (usually a sigmoid) with an affine combination of the
activations of the neurons to which they are connected. Finally, specific neurons,
considered as output neurons, may trigger actions on the environment: see [54] for
an overview.

Most of the work related to (deep) artificial neural networks is nowadays devoted
to finding architectures and weights that make an ANN exhibit a desired behavior
in a given context of application A popular library to describe corresponding archi-
tectures is TensorFlow [2]. This is basically a library to describe such architectures,
and hence can be considered in many aspects as a library for particular analog com-
putations.

A very popular and successful method to determine suitable weights for solving
a given problem is backpropagation, which is a reinforcement learning technique
based on a gradient descent method applied to an error function expected to be
minimized over the learning set, see [54].

Applying any gradient descent method requires a differentiable error function
with respect to all involved parameters. The very large number of applications of
deep learning techniques have recently led to the emergence of various other ana-
log models of computation. All these models have in common that they are dif-
ferentiable end-to-end versions of models inspired by classical computability. This
includes the popular Long Short-Term Memory (LSTM) architecture [204], or the
so-called Differentiable Neural Computers [188], or the Neural Turing machines
[187]. The underlying principle of these constructions is to extend an artificial neu-
ral network by coupling it to an external memory resource. This external resource
can also be a stack as in the so-called Neural Network Pushdown Automata [318]
and Neural Stack machines [189].

The models discussed previously all work in discrete time, but models with a
continuous-time dynamics have also been considered, such as symmetric Hopfield
networks. The convergence behavior of these networks has been used in various
applications such as associative memory, or combinatorial optimization problems
after first applications in [210].

Models based on spiking neurons have been claimed to be biologically more
realistic [233]. Various coding methods exist to interpret the outgoing spike train as
a real-number value either relying on the frequency of spikes, or the timing between
spikes. This yields various ways of encoding information and the computational
power of spiking neuron models has been investigated in a series of papers: see
[309], [233] or [177] for surveys. Recent years have seen practical implementations
[246] as well as their use to solve practical problems efficiently [148].
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6.2.4 Models from Verification

The development of algorithms and techniques for verification or control of so-
called hybrid systems or cyberphysical systems have also generated several lines of
research related to analog computation. Hybrid and cyberphysical systems have in
common that they mix discrete evolutions, often a digitally engineered controller,
with continuous dynamics that often comes from the environment or from some
natural continuous variables that the controller acts upon.

There is an extensive literature on the hybrid automata modeling approach to de-
termine the exact frontier between decidability and non-decidability for reachability
properties, according to the type of dynamics, guards and resets allowed. The same
holds for the frontier about applicability of techniques coming from control to prove
properties about these systems such as stability. Providing a complete panorama on
this literature is out of the scope of the current chapter. Classical survey references
are [202, 14]. See also [64] for discussions.

This literature is the source of many dynamic undecidability results, to which we
will come back in Section 6.3.3.

Hybrid systems are known to exhibit the so-called Zeno phenomenon. In short,
they may happen to have an unbounded number of discrete transitions in a bounded
(continuous-) time. In this context, it is classical to distinguish various types of Zeno
behavior: Chattering Zeno versus Genuine Zeno, following [16]. The first type can
often be eliminated and corresponds more to an artifact of the model, which can
be avoided by considering an appropriate notion of solution, while the second is
more problematic to detect and harder to avoid in simulation [17]. We will come
back in Section 6.4.4 to Zeno’s phenomenon in the wider perspective of spacetime
contraction phenomena in analog systems.

Despite some promising early results in the field, open problems even for very
simple classes of systems still remain. In particular, the decidability of the reacha-
bility problem for piecewise affine maps on the real line is a famous open problem,
with some partial progress such as [221, 46]. Several other questions seem to be
closely related to that issue [31]. The decidability of point to hyperplane reacha-
bility for discrete-time linear systems, known as the Skolem problem, is famously
open. The continuous-time version of point to hyperplane has recently been shown
to be related to conjectures from transcendental number theory [121]. Hardness of
recurrent reachability for continuous linear dynamical systems of low dimensions
has been investigated in [122].

Several recent results have also focused on the hardness of bounded-time versions
of reachability problems. The complexity of the reachability problem has been char-
acterized for hybrid automata in [86], and for piecewise affine systems in [47] and
[38]. The complexity of problems or methods from control theory has also been
explicitly derived [11, 9, 10].

In relation to other chapters of this handbook, we mention that the recursive
analysis approach has also been explored. Computability of reachable and invariant
sets in the framework of computable analysis have been investigated for continuous-
time systems [125] and for hybrid systems [126].
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A method to approximate hybrid systems with a polynomial hybrid automaton,
i.e., a Taylor approximation, has also been proposed [223], as well as interval meth-
ods and Taylor model methods for ODEs [264]. There have been attempts to provide
a formal semantics to Simulink based on non-standard analysis tools [52]. More
generally, providing models of systems using ordinary differential equations is a
hard task in practice: see e.g. very instructive discussions in [224] about all the dif-
ficulties in modeling a simple system such as Newton’s pendulum.

6.2.4.1 Timed Automata

Timed automata [13] can be considered as a restricted version of hybrid systems for
which decidability of reachability holds. They can also be considered as an exten-
sion of finite automata with clocks. The model has clear practical applications and
is at the heart of several computer tools for verification: see e.g. recent survey [77].

From a more fundamental point of view, timed automata can be seen as language
recognizers [13], and there have been various attempts to generalize concepts from
finite automata theory to this framework. This includes closure properties of recog-
nized languages [13], pumping lemmas [40] as well as variants of Kleene’s theorem
[25, 26, 27, 78, 79, 28]. For a recent survey about timed automata, see [77].

6.2.5 Blum-Shub-Smale’s Model

The Blum-Shub-Smale (BSS) model [57] has been introduced as a discrete-time
model of computation over the reals in order to discuss hardness of problems in
algebraic complexity. In the initial presentation of the model, operations of the field
R are assumed to be realizable at unit cost, leading to classes such as PR and NPR,
with complete problems such as the existence of a real zero of a given polynomial.
Later, it has been generalized to other fields or rings with extended or restricted
operations [56], or to an abstract model over arbitrary logical structures [283]. No-
tice that classical discrete computability models have been generalized to abstract
structures in various ways in parallel, and also before [57]: see e.g. [172], [258] or
[323].

The obtained computability and complexity theory subsumes classical discrete
computation theory since the latter can be seen as the specific case of logical struc-
tures with a finite domain.

There is an extensive literature on the related computation theory. Many results
have been obtained in this model, mostly studying the corresponding complexity
classes and their relations with classical questions in computability theory, or pro-
viding lower or upper complexity bounds on various problems based in this frame-
work: see [56, 283].
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Recent results include non-trivial generalizations to this framework of Toda’s
theorem [35, 36] or the PCP theorem [34], interactive proofs [33], Ladner’s result
[243] as well as separation of degrees [176, 175].

The model is different in spirit from most others discussed in this section, as it is
usually not considered to be an attempt at modeling analog machines in a realistic
way, but rather as a mathematical tool. It has proven to be relevant for the discussion
of lower bounds in algebraic complexity, or for some classical questions from com-
plexity theory in a wider generalized setting, where sometimes complexity classes
such as P and NP can be separated. The model also has clear connections with the
generalized finite automata models discussed in Section 6.5.3.

6.2.6 Natural Computing

The interest in unconventional models of computation, and in particular in natural
computing, has revived interest in analog computing.

6.2.6.1 Dissipative Influence Dynamics

The framework of natural algorithms has motivated a series of works about mod-
els of influence systems and their computational capabilities. A manifesto in favor of
the fact that the study of natural systems can benefit from an algorithmic perspective
has been published in [114]. This has motivated the exploration of several models of
influence dynamics such as the Hegselmann-Krause’s model. In particular, bounds
on the time required by a group of birds to stabilize in a standard bird-flocking
model have been established in [115]. Turing completeness and almost sure asymp-
totic periodicity of diffusive influence systems have also been obtained in [117].
For a general discussion on the merits and challenges of an algorithmic approach to
natural algorithms, see [116].

6.2.6.2 Physarum Computing

Physarum polycephalum is a slime mold that has been shown to be able to solve
various natural problems: this includes realization of Boolean logic gates, imple-
mentation of delay in computing circuits, geometry computations such as Voronoi
diagrams or Delaunay triangulations, and computation of shortest paths [6]. Models
of various aspects of its behavior have been established. Convergence proofs and
complexity bounds for computing shortest paths have been investigated [41], based
on a mathematical model for the slime’s behavior proposed in the form of a coupled
system of differential equations [320]. Implementation of Kolmogorov-Uspensky
machines in a biological substrate has also been investigated [4]. For a survey about
these fields of research, see [6].
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6.2.6.3 DNA and Molecular Computing

Areas such as systems biology aim at understanding complex biological processes in
terms of their basic mechanisms at the molecular level. Many attempts to apply con-
cepts and tools from theoretical computer science to this framework (logic, algebra,
etc.) have been investigated, with a lot of success and concrete software systems:
see [163].

However, even if the primary purpose of these fields was to explain concrete
biological features, various approaches have considered computations by chemical
reactions as a programming tool. The idea is to consider computations by reactions
as programs to solve various tasks, as nature does in the context of cell biology,
but not restricted to this context. In particular, various attempts to relate this con-
cept of programming to computation theory have been proposed. In most of these
approaches, the underlying principle is to get inspiration from concrete chemical
phenomena in order to derive abstract models of computation which are potentially
usable. This includes the model of biomolecular computation [196], the Chemical
Abstract Machine [53], Membrane Computing models [271], Biochemical Ground
Form process algebra approaches [108], DNA-based computation models [285], and
Chemical Reaction Networks (CRN), discussed in Section 6.6.5.

Simulation of Turing machines has been demonstrated in several of the above-
mentioned articles, either at an abstract level or concretely. A very challenging ques-
tion is to compare the actual implementations in nature of some of the tasks to other
possibly more efficient ones that could be derived theoretically [164].

For a presentation of natural computing models and results not covered in this
chapter, see [291, 270]. In this chapter, we will only briefly discuss the case of DNA
computing (below) as well as that of CRNs (Section 6.6.5).

DNA computing started with a work [8] which proposed to solve the directed
Hamiltonian path problem on a graph using DNA as well as enzymes to implement
the computation. Molecular computation had been investigated in various ways be-
fore Adleman’s popular article (see e.g. [128]), including the idea of using DNA
computing to implement computations of formal language theory [199]. This was
later extended to other known NP-complete problems [228], even if the required re-
sources have been demonstrated to be unrealistic. Approaches to control resources
based on evolutionary computation have also been proposed [317]. The field devel-
oped meanwhile in many impressive ways. Visible facts include the development of
a programmable molecular computing machine [232], the demonstration of the use
of DNA as a digital storage medium encoding a 5.27-megabit book [123], or the
construction of the analog of a DNA transistor [60].

6.2.7 Solving Various Problems Using Dynamical Systems

Several authors have shown that certain, possibly discrete, decision or optimization
problems such as graph connectivity or linear programming can be solved by spe-
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cific continuous dynamical systems. Some examples and references can be found in
the papers [310, 327, 89, 166, 200, 49, 257, 55]. This is linked to various mechani-
cal computer models (e.g. “billard ball computers”) investigated by several papers in
the 1970s and 1980s, with discussions about physical limits on computations such
as thermodynamic reversibility [50, 171, 51, 241]. Relevant concepts have turned
out to be still important in quantum computing (e.g., Toffoli gates, etc.). This is also
related to discussions about various phenomena possibly capable of hypercomputa-
tion [242, 298]: see in particular Section 6.2.9 about Black Hole computations for
more recent references.

Observe that, if analog computation is to be understood in the sense of computing
by analogy, then almost any historical analog machine can be considered as falling
under this framework. In his monograph, Ulmann develops sometimes with great
and instructive details some of the machines for particular problems such as finding
zeros of a polynomial, linear algebra, optimization and simulation [326]. In more
than 70 pages various historical applications in about 20 fields such as Mathematics,
Physics, Mechanics, Geology and Economics are described.

The question of whether some of the discrete problems could actually be solved
faster using continuous methods is very intriguing: this is the object of Section 6.4.4.

Many dynamical systems of the form H ′ = [H, [H,N]], where the notation [B,L]
stands for BL− LB, have been shown to be continuously solving some particular
discrete problems [89, 88] such as sorting lists, diagonalizing matrices and linear
programming problems. One key property is that this equation is equivalent to some
gradient flow in the space of orthogonal matrices. Many examples in this spirit are
discussed in detail in [201]. More recently a system of nonlinear differential equa-
tions of a similar form to sort numbers fed to the input has been investigated [181].

Notice that several discrete-time algorithms or methods have some analog equiv-
alent. This includes Newton’s method, which leads to Newton’s flow dynamics for
finding roots. Gradient descent methods (this includes the very popular backpropa-
gation method for Neural Networks) can also be considered as the (explicit) Euler’s
discretization method of a continuous flow, the so-called gradient flow.

The use of analog methods for solving k-SAT problems has been investigated
in [159]: the problem is mapped to an ordinary differential equation about which
some properties are established, such as chaotic transience of trajectories above a
constraint density threshold and fractality of the boundaries between the basin of
attraction. The system is stated to always find solutions in polynomial continuous-
time, but at the expense of exponential fluctuations in its energy function [159]. An
attempt to physically implement this dynamic has been proposed [335]. Previous
statements that k-SAT can be formulated continuously can be found in [191, 263,
328].

Notice that polynomial-size continuous-time Hopfield nets have been proven able
to simulate PSPACE Turing machines [308]. This implies that even ODEs with Lya-
punov function-controlled dynamics can actually do much more than solving NP-
complete problems in some sense.
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6.2.7.1 Interior Point Methods

A particular class of methods falls very naturally into this framework: the so-called
interior point methods, which correspond to a particular class of algorithms for solv-
ing linear and nonlinear convex optimization problems. The principle, already pro-
posed by John von Neumann and very popular in the 1960s, is to build a continuous
system whose trajectories evolve in the interior of the feasible region. A common
method to guarantee evolution in the feasible regions was the use of barrier func-
tions acting as a potential energy. By making these functions tend to infinity on the
boundary, the evolution is guaranteed to remain feasible.

Later, these methods were mostly considered to be inefficient until Karmakar
triggered a revolution in the field of optimization by providing the second poly-
nomial-time algorithm for linear programming [215, 213]. It was then realized that
Karmakar’s algorithm is equivalent to a particular interior point method [178, 37].
Notice that, historically, the first polynomial-time algorithm for linear programming
is due to Khachiyan and is based on the ellipsoid method (which is not an interior
point method).

A very elegant presentation of Karmakar’s algorithm and the associated flow,
inspired from [23], can be be found in [257], including an elegant presentation of its
polynomiality based on ordinary differential equation arguments. Refer to [288] for
a general introduction to interior point methods.

6.2.8 Distributed Computing

Recent years have also seen the birth of new classes of models in distributed com-
puting. In particular, the model of population protocols consists of passively mobile
anonymous agents, with finitely many states, that interact in pairs according to some
rules, i.e., a given program [20]. Passively mobile means that agents have no con-
trol over the other agents with whom they will interact. The model was initially
introduced in the context of sensor networks, but it is nowadays considered to be a
fundamental model for large passively mobile populations of agents with resource-
limited anonymous mobile agents.

Most works on the model have considered these protocols as computing pred-
icates over multisets of states. Given some input configuration, the agents have to
decide whether this input satisfies a given predicate: the population of agents has
to eventually stabilize to a configuration in which every agent is in a particular ac-
cepting (respectively rejecting) state if and only if the predicate is true (resp. false).
The model is uniform: the program is assumed to be independent of the size of the
population.

The seminal work of Angluin et al. [21, 20] proved that predicates decided by
population protocols are precisely those on counts of agents definable by a first-
order formula in Presburger arithmetic – equivalently, this corresponds to semilinear
sets. An elegant proof of this result can be found in [160]. Note that this computa-
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tional power is rather restricted, as multiplication for example is not expressible in
Presburger arithmetic.

The model has been intensively investigated since its introduction. Several vari-
ants have been studied in order to strengthen it with additional realistic and imple-
mentable assumptions. This includes natural restrictions like modifying hypothe-
ses on interactions between agents (e.g., one-way communications [21], particular
interaction graphs [19]). This also includes probabilistic population protocols that
assume random interactions [20]. Fault tolerance has also been considered [144], in-
cluding self-stabilizing solutions [22]. For some introductory texts about population
protocols, see for instance [32, 248].

The model can be seen as a particular case of the (stochastic) chemical reaction
networks discussed in Section 6.6.5.

Here, we focus on models and results in the context of distributed computing, and
mainly discuss computability issues. Covering all works devoted to variants of pop-
ulation protocols in the distributed computing community is out of the scope of this
chapter: see [32, 248] for surveys. Among many variants of population protocols,
the passively mobile (logarithmic-space) machine model was introduced by Chatzi-
giannakis et al. [113]. In this model, each agent carries a bounded-space Turing
machine, instead of a finite state automaton. In an orthogonal way, community pro-
tocols, where each agent has a unique identifier and can only store O(1) other agent
identifiers, exclusively from agents that it has met, were introduced by Guerraoui
and Ruppert [192]. They proved, using results about the so-called storage modifica-
tion machines [302], that such protocols simulate Turing machines very efficiently.
A hierarchy between the two models has also been studied recently, by consider-
ing the case of homonyms, that is to say when several agents may share the same
identifier [66, 67].

The population protocols can also capture natural models of dynamics of some
opinion-spreading models by considering probabilistic rules of interactions: results
on the convergence and threshold properties of the so-called Lotka-Volterra popula-
tion protocol have been established [141].

Notice that many models coming from dynamics of rational agents in the context
of (learning equilibria in) Game Theory can also be considered as analog distributed
models of computation [329, 205].

6.2.8.1 Large-Population Protocols

When considering probabilistic interaction rules, as in the previously mentioned
settings, the underlying dynamical system is a Markov chain.

If the population of agents is large, the random process converges to its (deter-
ministic) limit continuous dynamic given by some ordinary differential equation
(also called its mean-field limit): this corresponds to the differential semantics dis-
cussed in Section 6.4.1 for chemical reactions.

These considerations led to the so-called Large-Population Protocols [70]: real
numbers which correspond to limit ratios of programmable dynamics by such mod-
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els have been demonstrated to correspond precisely to algebraic numbers [70]. This
result has many similarities with [211], obtained in the context of stochastic reaction
networks, but with a slightly different notion of computability.

A framework to translate certain subclasses of differential equations into proto-
cols for distributed systems has been proposed [193]. This is illustrated on several
examples either taken from distributed problematics (responsibility migration, ma-
jority selection) or from classical models of populations such as the Lotka-Volterra
model of competition.

6.2.9 Black Hole Models

Black Hole computation usually refers to the study of the validity of the Physical
Church Thesis (see Section 6.4.2) in the context of Einstein’s General Relativity
(GR). In other words, does GR allow for spacetimes where an observer can observe
in finite time an eternity of some other device. Informally, the setup is as follows:
some device (that we refer to as the computer) will try to solve some hard problem,
like checking the consistency of ZFC. As soon as the computer finds a counter-
example, it sends a signal to the observer, otherwise it keeps checking ZFC for
eternity (since there is an infinite number of formulas to check). In parallel, an ob-
server will manage to view the result of this infinite computation in finite time. More
precisely, the observer will have a spacetime location q, at which it can check for
the existence of the signal: if it receives a signal, then ZFC is inconsistent, other-
wise ZFC is consistent. Hogarth proved that such spacetimes, usually referred to as
Malament-Hogarth (MH), can exist in theory [209]. Note that in this setting, it is
crucial that q is known to the observer, so that after it has reached q, the observer
knows whether ZFC is consistent or not, and can use this information.

This question has received a lot of attention, especially concerning the physical
realization of such a setup [158, 206, 207, 161, 208]. It has since emerged that slowly
rotating Kerr black holes, and possibly Reissner-Nordström (RN) black holes, pro-
vide a plausible physical realization for these experiments. Two very good surveys
on the problems and solutions to the many obstacles encountered so far have been
published [265, 266]. We will mention some of these in the remainder of this sec-
tion. Another important question is to characterize the extent of hypercomputation
available in an MH spacetime. Hogarth originally showed that any Σ1 set could be
decided in the Kerr spacetimes. Recently, it was shown that MH (but not necessarily
Kerr) spacetimes can decide all hyperarithmetic predicates on integers, but not more
(under some assumptions) [331].

Without giving too many details, we now mention some aspects of the phys-
ical realization of black hole computation. An historical objection was that a
Schwarzschild black hole (non-rotating and non-charged) has a punctual singularity
to which any observer is attracted (in this setting, the observer is the one “jumping”
into the black hole whereas the computer stays outside), and eventually gets crushed
by the ever-growing tidal forces that tear it apart. However, both slowly rotating Kerr
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and RN black holes have negligible tidal forces. Furthermore, their singularity has
a shape of ring that the observer can avoid forever, meaning that the observer could
survive infinitely long within the black hole. In particular, astronomical evidence
suggests that such Kerr black holes exist and have a size roughly that of a solar sys-
tem. Another kind of objection was that this setup neglected quantum effects that do
not exist in pure GR, but many of these objections have been resolved, although the
details depend on whether the universe is expanding or not. To summarize with a
slightly exaggerated statement, the entire Earth population could jump into a black
hole, and continue living inside forever but now knowing whether ZFC is consistent
or not. Other spacetimes, such as the anti-de Sitter, theoretically allow the roles of
the observer and the computer to be exchanged, meaning that the observer could
stay out of the black hole and send the computer into the black hole, and get an
answer in finite time.

Finally, we mention some related work on Closed Timelike Curves (CTCs) that,
if they exist, would allow PSPACE problems to be solved very quickly but do not
allow for hypercomputation [3]. Another line of research is to build a logical ax-
iomatization of spacetime, that is, to build relativity theory as a theory in the sense
of first-order logic. For a survey on the subject, see [18].

6.2.10 Spatial Models

We now consider various spatial models, that is to say various models which share a
concept of computation based on the distribution of entities in some space and com-
munications between these entities. We agree that our classification is debatable:
some of the previous models can already be considered as such (see e.g. reaction-
diffusion systems), and some of the considered models can also be considered as
continuous space (see e.g., cellular automata that can be considered as acting over
Baire’s space {0,1}N homeomorphic to R).

6.2.10.1 Computational Fields

Computational fields are analog models of spatial massive parallelism. They are
motivated by the hypothesis that in various contexts it now makes sense to con-
sider that the number of processing elements is so large that it may conveniently be
considered as a continuous quantity [238, 236]. The theoretical functions of com-
putational fields, based on tools from functional analysis, have been studied [236].
Applications of computational fields have been explored and advocated in several
articles [240, 238, 237].
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6.2.10.2 Spatial Computing Languages

Previous computational field models fall naturally into the more general framework
of spatial computing: computation has become cheap enough and powerful enough
that a large number of computing devices can now be embedded into many environ-
ments. As a result, a whole spectrum of Domain Specific Languages (DSLs) have
emerged to narrow the gap between the application needs of users in various do-
mains (e.g., biology, reconfigurable computing), usually at a global level, and the
programming, usually at a local level, of the increasingly complex systems of in-
teracting computing devices. A common pattern in all those models and languages
is the close relationship between the computation and the arrangement of the com-
puting devices in space. For a survey and references, with discussions about many
related aspects, see [39].

6.2.10.3 Cellular Automata-Based Models

Cellular automata correspond to a particular class of spatial computing models. The
classical model is an abstract discrete-time and -space model, with a rather well-
studied computation theory. We will focus here on developments related to analog
models.

There exist several Cellular Automata (CA)-inspired models, usually built as a
abstraction of CA in the limit where cells are infinitely small.

One such model is based on an infinite tessellation of spacetime [301]. It has been
compared to classical models from computability theory and proven to be capable
of hypercomputations [301].

Smooth (continuous) versions of the Game of Life have been investigated [203],
yielding very elegant dynamics. More generally, the passage from cellular automata
to continuous dynamics (partial differential equations) has also been investigated in
[111].

Another model with several recent developments is that of Signal Machines (SM)
introduced in [152] where dimensionless signals are synchronously moving on a
continuous space, and local update rules are used to resolve collisions. The major
difference with CA is that both time and space are continuous (i.e., reals instead of
integers). A SM configuration is given by a partial mapping from R (the space) to a
finite set of meta-signals. Each SM comes with a finite set of collision rules. When
two or more signals meet, a collision happens: all incoming signals are destroyed
and the rule gives a list of outgoing signals that are created. Between collisions,
each signal moves in a direction at a certain speed that depends on its type. Thus
there are only finitely many different speeds. One can think of the speed of a signal
as the slope of its line in the 2D space-time diagram. Figure 6.3, illustrates this
process on a simple example. In a series of papers ([153] and onwards), Durand-
Lose and coauthors investigate the computation power of this model with various
restrictions. It is possible to embed Black Hole computations, Turing machines, BSS
machines and more into this model, depending on whether irrational numbers and
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accumulation points are allowed. Since the unrestricted model exhibits the Zeno
phenomenon, it is super-Turing powerful.

Name Speed
Add, Sub 1/3

A, E 1
O, W 0
−→
R 3
←−
R -3

(a) meta-signals
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R }

{
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R , W }
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(c) space-time diagram

Fig. 6.3 A signal machine that finds the middle between two input vertical signals. The process is
started by the arrival of the Add signal from the left. It triggers a sequence of collisions that results
in a vertical signal O that is positioned exactly halfway between the two W signals. It is possible
to generate the middle between the left W and O signal by sending another Add signal. It is also
possible to suppress the leftmost O signal by sending a Sub signal from the left. Finding the middle
is a key primitive in SM computations.

6.2.11 Various Other Models

In this chapter we do not intend to cover all models. Various other unconventional
computers can also be classified as spatial. This includes models based on propaga-
tion and interaction of waves (reaction-diffusion computers [300, 299, 7], soliton-
based computers), models based on propagation of pattern forms (slime mold com-
puters [5], plant root computers, crystallization computers), and models based on
propagation of swarms of creatures (e.g., crab gates). This also includes molecular
self-assembly models [162, 316].

The frontier between analog and non-analog models of computation is not so
clear, and some models are clearly at the frontier. This includes the optical models
of [334], or some quantum computation models such as [147, 190, 304, 216], and
finite two-dimensional coupled map lattices, which have been proven to be compu-
tationally universal [268].

Planar mechanisms were claimed to correspond to all finite algebraic curves by
Kempe [214]. The initial statements of Kempe had flaws that were corrected and ex-
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tended in [310]. Tractional motion machines constitute an extension of this model
with a rich and elegant theory discussed in [250, 251]. The fact that some functions
computable in this model are not GPAC computable has been established [250].
Some discussions on limitations of machines based on the historic concept of com-
pass and ruler constructions can be found in [259].

6.3 Dynamical Systems and Computations

6.3.1 Arbitrary Versus Rational/Computable Reals

Before delving into the core of the topic of dynamic undecidability, we would like
to point out a fundamental difference between discrete and continuous dynamical
systems: real numbers. Indeed, it is clear that many objects involved in discrete
computations (integers, rational numbers, graphs, etc) have a finite representation.
For example, one can represent an integer in base 2 by its bits. This property is no
longer true for real numbers, independently of the details of the representation. In
fact, for reasonable representations (see [330] for more on the theory of representa-
tions) of the real numbers, a single real number can turn out to be a very powerful
object. One such example is the real number, sometimes called the “Turing num-
ber”, whose nth bit is 1 if and only if the nth Turing machine halts1. Intuitively,
any powerful enough dynamical system that has access to this number can solve the
Halting problem for Turing machines in finite time, and is thus super-Turing pow-
erful. Other numbers, such that Ω of Chaitin [112], can turn out to be even more
powerful. A consequence of this fact is that dynamical systems are able to solve
(classically considered) uncomputable problems if one allows such numbers to ap-
pear in the system. This is why it is often important to restrict restrict our attention
to systems with computable or rational descriptions if one does not want to consider
models with some hypercomputational features.

Understanding the obtained computability theory, if this hypothesis is not as-
sumed, i.e., when arbitrary (possibly non-computable) reals are allowed in the de-
scription of systems, gave birth to a whole set of developments discussed in Sec-
tions 6.6.1 and 6.6.2.

In order to avoid the consideration of such classes of models, we assume for the
rest of this section that we restrict ourselves to rational or computable descriptions.

6.3.2 Static Undecidability

It is, however, often rather easy to get undecidability results about dynamical sys-
tems by observing that integers (or discrete sets) can be considered as particular

1 One needs to fix a particular enumeration of Turing machines.
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reals, and hence that all undecidability problems known over the integers have some
counterpart over the continuum [296]. This allows us to map well-known undecid-
ability questions of recursive analysis (e.g., testing whether a real is zero) or of
computability theory (e.g., testing whether a given polynomial with integer coeffi-
cients has an integer root) into the setting of dynamical systems. This is sometimes
known as static undecidability. For concrete simple examples of results obtained
in this vein, see [24, 296]. More elaborate examples are the proof that determining
whether a polynomial dynamical system has a Hopf bifurcation [137] or is chaotic
[138] is undecidable.

6.3.3 Dynamic Undecidability

Dynamic undecidability, as opposed to static undecidability [296], corresponds to
a proof technique that is often used with various models of dynamical systems. In
this case, the undecidability is obtained by proving that for every Turing machine,
one can build a dynamical system in the considered class that is able to simulate the
Turing machine step by step.

To be more concrete, let us informally describe an embedding of Turing machines
into dynamical systems with discrete time and continuous space. We can encode the
configuration of a Turing machine using a vector (l,q,r) where l,r ∈ [0,1] will
encode the tape (left and right side of the tape), and q ∈ [0,1] will encode the state,
for example the ith state is mapped to i

N where N is the number of states. To encode
the tape, we simply view the content of the tape as a list of digits. In the case of a
binary alphabet, a word w ∈ {0,1}∗ will be encoded by the real 0.w = ∑

|w|
i=1 wi2−i.

By convention, we will say that the symbol under the head is the first symbol on the
right tape.

To simulate one step of the machine, we need to perform tests on the state and
then apply the corresponding action. To find in which state we are, we need compar-
isons of the form q =? i

N . To find which symbol is under the head (the first symbol
of the right tape r), note that if r1 = 0 then 0.r < 1

2 , but if r1 = 1 then 0.r > 1
2 .

Thus we only need a test of the form r < 1
2 . To move the head of the machine, we

will only need addition and multiplication by a constant. For example, if we want
to move the tape to the right, then we perform the assignment r← σ+r

2 where σ is
the symbol written by the head, and l← 2(l−ρ) where ρ is the first symbol of the
left tape. Note that we can easily have access to ρ the same way we have access to
σ and we can make a case distinction between ρ = 0 and ρ = 1. Finally we assign
the new state with q← i′

N where i′ is the new state.
To summarize, in order to simulate a Turing machine with a discrete-time and

continuous-space machine, we need comparisons against fixed values (= x and < x),
assignment, addition and multiplication by a constant. Importantly, all the constants
involved are rational numbers. One may be worried that exact comparisons between
real values is an unrealistic assumption; there are two answers to this issue. First,
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analog models of computation are not necessarily concerned with realistic assump-
tions that come from the world of discrete computations (or from computable analy-
sis’s basic assumptions about computability): comparing two real numbers is a very
natural operation in several continuous models of computation.

Second, and more importantly, even if exact tests are not possible, this simulation
does not really require exact tests. Without going into too many details, notice that
on the state, there is gap of size 1

N between the encoding of two states, thus an
approximate test will suffice. Similarly for the tape, a classical trick is to encode
a binary tape in base 4, by 0.w = ∑

|w|
i=1 2wi4−i. This way, if r1 = 0 then 0.w 6 1

6
(the worst case is 0.02222 . . .) but if r1 = 1 then r > 1

2 , leaving again a constant gap
between the two options.

All the above settings provide the basic ingredients for the possibility to sim-
ulate any Turing machine by a discrete-time model. Similar static undecidabil-
ity constructions have been used in various models: general dynamical systems
[255, 294, 82, 296, 127], piecewise affine maps [218], sigmoidal neural nets [307],
closed-form analytic maps [219], which can be extended to be robust [185], and
one-dimensional restricted piecewise-defined maps [221].

If one wants to simulate a Turing machine by a continuous-time model, then sev-
eral techniques may be used. One is to build a continuous-time system such that the
crossing of the dynamics with a given hyperplane (its Poincaré map) corresponds to
a discrete-time system as above. Another one is to build a continuous-time system
such that its projections at discrete time t = 0,1, . . . (its stroboscopic view) is given
by a discrete-time system as above.

Usually such constructions rely on a suitable generalization of the idea of “con-
tinuous clocks” [82] for iterating functions over the integers. For simplicity, we will
use a reformulation of these original equations, based on [101]. The idea is to start
from the function f : R→ R, preserving the integers, and build the ordinary differ-
ential equation over R3

y′1 = c( f (r(y2))− y1)
3θ(sin(2πy3))

y′2 = c(r(y1)− y2)
3θ(−sin(2πy3))

y′3 = 1,

where r(x) is a rounding-like function that has value n whenever x ∈ [n− 1/4,n+
1/4] for some integer n, θ(x) is 0 for x≤ 0 and exp(−1/x) for x > 0, and c is some
suitable constant. A simple analysis of this dynamics shows that it basically alter-
nates y1← f (y2) and y2← y1. As a result, the stroboscopic view of this differential
equation is the discrete-time system y(n+1) = f (y(n)).

Indeed dynamic undecidability constructions have been used in various contin-
uous-time models, including piecewise constant maps [30], general dynamical sys-
tems [82] and polynomial ordinary differential equations [185].

Observe that dynamic undecidability has merits not covered by static undecid-
ability. Considering Turing machines as dynamical systems provides a view not
covered by the von Neumann picture [101]. This also shows that many qualitative
features of (analog or non-analog) dynamical systems, e.g., questions about basins



194 Olivier Bournez and Amaury Pouly

of attraction, chaotic behavior or even periodicity, are not computable [255] even
for a fixed dynamical system (corresponding for example to a universal Turing ma-
chine). Conversely, general questions traditionally related to dynamical systems are
brought by this into the realm of Turing machines and computability [64]. These
include, in particular, the relations between universality and chaos [24], necessary
conditions for universality [145], computability of entropy [217] and understanding
of the edge of chaos [225].

One may object that the above simulations require unrealistic hypotheses on sys-
tems. For example, that they require the ability to do computations with arbitrary
precision: O(2−n) precision corresponds roughly to size O(n) of the tape in the sim-
ulation above. But at this point, in order not to overinterpret such statements, we
believe that some digression about computational models would be clarifying. This
is the topic of the next section.

6.4 Philosophical, Mathematical and Physics-Related Aspects

6.4.1 Mathematical Models Versus Systems

While the use of dynamical systems is very common in the experimental sciences
(biology, physics, chemistry, etc.), it is important to remember that this is an ab-
stract (mathematical) view, and that the properties of those systems can actually be
different in many aspects from those of the initial system they intend to model.

In the literature, there are many accounts in various contexts about situations
where models behave very differently according to the levels of modelization. As an
illustrative example, we can mention the Lotka-Volterra equations discussed in [226,
220]. It is shown in these articles that no classical ordinary differential equation
method (unless biased on purpose) behaves as stated in classical studies of these
equations: no closed cyclic behavior is observed, for example, and “energy”-like
functions supposed to be preserved are not. While the continuous Lotka-Volterra
dynamic is usually presented as an abstraction of a discrete setting, these results can
be seen as a non-matching of behaviors between discrete and continuous models.

A context where various semantics have been discussed, with clearly stated vo-
cabulary, is that of chemical reactions. To a given formal set of chemical reactions,
a hierarchy of semantics can be associated at different levels of abstraction [163].

The most concrete (low-level) interpretation is provided by the Chemical Master
Equation (CME), which defines the probability of being in a state x at time t by
considering the system as a continuous-time Markov chain governed by propensity
of reactions over a discrete number of molecules, giving the rate of reactions of the
associated chain. The differential semantics describes the evolution of the system by
an ordinary differential equation (ODE). This ODE can be seen as the mean-field
view of the reactions, and can be considered as being derived from the CME by a
first-order approximation. Then the stochastic semantics is defined by considering a
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Continuous-Time Markov Chain (CTMC) over integer numbers of molecules (dis-
crete concentration levels). The very classical algorithm of Gillespie [180] provides
a method to efficiently simulate this CTMC from the reactions. If the simulation
provided by this algorithm is often similar to the ODE simulation for a large num-
ber of molecules, it may exhibit qualitatively different behaviors, in particular when
the number of molecules is small [163].

The abstraction of stochastic semantics by simply forgetting the probabilities also
yields the Petri net semantics of the reactions, where the discrete states define the
number of tokens in each place, and the transitions consume the reactant tokens and
produce the product tokens. The abstraction of the Petri net semantics into Boolean
semantics is then obtained by reasoning only on the absence/presence of a given
molecule.

All these discrete and stochastic trace semantics of reaction systems can be re-
lated by a Galois connection in the framework of abstract interpretations [165].
However, it is important to always remember that the behavior of a given seman-
tics can differ from the others in many ways.

The study of the relationship between the differential and the stochastic seman-
tics dates back to the seminal work of Boltzmann in the nineteenth century, who
created the domain of Statistical Physics. In this setting, the differential semantics
is obtained from the stochastic semantics by limit operations, where the number
of molecules tends to infinity and the time steps to zero, under several assump-
tions such as perfect diffusion [165]. More generally, there is a whole mathematical
theory justifying the passage from a stochastic dynamic over a (usually huge) pop-
ulation of agents to its first-order ordinary differential equation description [222].
However, hypotheses of mathematical theorems are not always valid in the context
of experimental science applications and concerns are sometimes very different.
Notice that the specific context of chemistry has been discussed in articles such as
[179].

All these discussions emphasize the difference between a system and its mod-
els, and even between the various levels of abstraction of a given system, and the
importance of stating explicitly the considered semantics in the coming discussions.

6.4.2 Church-Turing Thesis and Variants

A common statement of the Church-Turing Thesis is that every effective computa-
tion can be carried out by a Turing machine, and vice versa. However, it is often
misunderstood, and an instructive discussion demonstrating the improper semantic
shift from its initial statement and the way it is often misunderstood today can be
found in [133]. We repeat some of these elements here.

Following [133], “The Church-Turing thesis concerns the concept of an effective
or systematic or mechanical method in logic, mathematics and computer science.
“Effective” and its synonyms “systematic” and “mechanical” are terms of art in
these disciplines: they do not carry their everyday meaning.”
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A myth seems to have arisen progressively in several documents about the fact
that Alan Turing’s 1936 paper was establishing facts about limitations of mecha-
nisms [133]. The thesis that whatever can be calculated by a machine (working on
a finite data in accordance with a finite program of instructions) is Turing machine-
computable (sometimes referred to as the Physical Church-Turing thesis, or Thesis
M of [174]) is a very different statement from the Church-Turing thesis.

Thesis M itself admits two interpretations, according to whether the phrase can
be generated by a machine is taken in the sense can be generated by a machine that
conforms to the physical laws (without resource constraints) of the actual world,
or in a wide sense whether the considered machine could exist in the actual world
[133]. Under the latter interpretation, the thesis is clearly wrong, and hence not re-
ally interesting: see all examples of hypercomputations mentioned in the next sub-
section.

The discussion above suggests that it may also be important to distinguish ma-
chines from their models. The thesis that whatever can be calculated by a given
model of machines in model(s) of our physical world is Turing machine-computable
might still be one more different statement.

6.4.3 Are Analog Systems Capable of Hypercomputations?

Several results have shown that analog systems are capable of hypercomputations.
One classical way to do so is to consider non-computable reals in the machine (see
the previous discussion in Section 6.3.1 and coming Sections 6.6.1 and 6.6.2). An-
other classical way is to use Zeno’s phenomenon: the possibility of simulating an
unbounded number of discrete steps in bounded continuous-time (e.g., [29, 256, 61],
see Section 6.4.4). A presentation of various systems capable of hypercomputations,
with in particular some accounts on analog models of computations, can be found
in [319].

Such results may give some clues about the fact that the considered model or
systems are indeed very/super powerful. But, as already stated in [239], we believe
that the main interest of such results is not really to advocate models with hyper-
computational power, but rather a way to demonstrate that an extended definition
of computation and computability theory including alternative (especially analog)
models in addition to the Turing machines is needed [240, 239].

We also personally believe that all variants of the Church-Turing Thesis above are
actually about “reasonableness”: what is a reasonable notion of mechanical method
in mathematics and logic for the Church-Turing thesis, what is a reasonable machine
for Thesis M, or what is a reasonable model of the physics of our world for the last
variant. In a contrapositive way, establishing a hyper computability result is a way
to outline what should (possibly) be corrected in the model to make it reasonable
[63].

Notice that this has been used for example to advocate for corrections of models
from physics by Warren D. Smith in several papers [311, 312], taking the Church-
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Turing thesis as a postulate, or if one prefers in the context of physics, as a physical
law of our physical world.

For accounts on physical limitations against hypercomputational possibilities,
one can refer to [124].

6.4.4 Can Analog Machines Compute Faster?

All previous variants also have effective versions dealing with complexity, some-
times called the Effective Church-Turing Thesis or Strong Church-Turing Thesis
(SCTT). We now come to the question of whether analog machines satisfy these
versions.

In 1986, one of the first papers devoted to the explicit question of whether analog
machines can be more efficient than digital ones was published [327]. The authors
claim that the SCTT is provably true for continuous-time dynamical systems de-
scribed by any Lipschitzian ODE y′ = f (y). However, their proof assumes that the
time variable remains bounded. No clear argument is established for the general
case, and this was considered to be an open problem until very recently. Interesting
results and discussions on the subject can also be found in [55].

The question of whether analog machines satisfy the SCTT turns out to be deeply
related to the question on how resources such as time are measured. In short, the dif-
ficulty is that the naive idea of using the time variable of the ODE as a measure of
“time complexity” is problematic, since time can be arbitrarily contracted in a con-
tinuous system due to the “Zeno phenomenon”. For example, consider a continuous
system defined by an ODE y′ = f (y) where f : R→R and y : R→R. Now consider
the system {

z′ = f (z)u
u′ = u

where u,z : R→R. It is not difficult to see that this system rescales the time variable
and that its solution is given by u(t) = et and z(t) = y(et). Therefore, the second
ODE simulates the first, with an exponential acceleration.

In a similar manner, it is also possible to present an ODE which has a solution
with a component u : [0, π

2 )→ R such that u(t) = y(tan(t)), i.e., it is possible to
contract the whole real line into a bounded set. Thus any language computable by
the first system (or, in general, by a continuous system) can be computed by another
continuous system in time O(1). This problem has been observed or used in many
continuous models [294, 295, 256, 61, 62, 12, 100, 142, 130, 131].

Notice that in addition to time contraction, space contraction is also possible,
by considering changes on space variables. Note however, that space contractions
are more model-dependent and are not always possible. For example, one could
consider the system z(t) = y(t)e−t , which makes the system exponentially smaller.
However, doing so with a polynomial differential equation (for example) requires
one to add a variable u(t) = et to the system, thus making the contraction less useful,
if useful at all.
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Such time or space contraction phenomena seem, in many systems, to physically
correspond to some infinite energy. However, energy is not a mathematically uni-
versally defined concept, and defining a robust notion of “time complexity” in those
systems was an open problem until lately.

It has only recently been shown that analog systems satisfy the SCTT, if “time”
(as in “time complexity”) is measured by the length of the trajectory [72, 73], and if
considering polynomial ordinary differential equations. Since this class of ODEs is
very wide and covers in practice most reasonable classes, this can be considered to
be a definitive proof of the statement that many analog systems satisfy the SCTT.

Note that this does not cover all variants of the SCTT, since ODEs do not cover all
known physics. In particular, models that rely on quantum effects, General Relativ-
ity, and more generally models that rely on physical experiments (see Section 6.6.2
for example) do not fall into this class. In other words, this does not cover the “phys-
ical” variants of the SCTT.

6.4.5 Some Philosophical Aspects

Some of the previously mentioned results led to discussions in the context of phi-
losophy.

First, the consideration of systems that could realize hypercomputation gives rise
to the following philosophical question: since the physical construction of a hyper-
computational model is outside the framework of computability theory, answering
the hypercomputation thesis requires the construction of a physical model of hy-
percomputation. It has been argued that, even if such a model is built, it would be
impossible to verify that this model is indeed computing a function non-computable
by a Turing machine [169, 143]. However, it was pointed out that this objection
is not specific to hypercomputation since it is already not possible to verify that a
Turing computable function is correct in finite time in general [132]. Furthermore,
simply because there is no systematic way of computing the values of the halting
function does not mean that one could not (in principle) assign one mathematician
to each value and ask each of them to come up with a different method, therefore
bypassing the problem of uniformity of computation.

The possibility of new computational models which may be exponentially more
efficient than any previously known machine (in a wide context, including for ex-
ample models based on quantum mechanics) suggests alternative, empirical views
of complexity theory, usually considered as part of logic and computer science.
The arguments in favor of this view and its consequences have been discussed in
[273, 274]. It raises some fundamental questions such as whether the empirical lim-
its of computing are identical to limits of algorithms or, to put it differently, what is
the capability of symbolic processes to simulate empirical processes. This makes it
possible to study the epistemology of computations realized by a machine. In par-
ticular, the existence of a function computable by a machine but not by an algorithm
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would imply that some mathematical problems are solvable by empirical processes
without any mathematical method [272, 274].

The statement that there is no equivalent of the Church-Turing thesis for com-
putation over the reals (often relying on the non-convergence of formalisms, as for
discrete computations) is shown in [275] to confound the issue of the extension of
the notion of effective computation to the reals on the one hand, and the simula-
tion of analog computers by Turing machines on the other hand. It is possible in
both cases to argue in favor of a Church-Turing thesis over the reals [275]. It has
also been argued that the analog computation literature often mixes up the con-
cepts of continuous-valued computations and analog machines, and that a concept
called model-based computation can help to untangle the misconception, by offer-
ing a two-dimensional view of computation: one dimension concerns models and
the other the type of variables that are used [42].

Reflections on whether nature can be considered as computing and even about the
notion of computation have also been discussed [231] in light of new technologies in
physics and new ideas in computer science such as quantum computing, networks,
and non-deterministic algorithms.

Some original views on the Church-Turing thesis have also been expressed by
Dowek [151, 150]. The statement that all physically realized relations can be ex-
pressed by a proposition in the language of mathematics (which can be called the
Galileo thesis) can be considered as a consequence of the Physical Church Thesis
[151].

6.5 Theory of Analog Systems

We now review the various computational theories that have been developed for
analog systems.

6.5.1 Generic Formalizations of Analog Computations

There have been several approaches to formalize analog computations in a general
setting.

6.5.1.1 Formalization by Abstract State Machine

A formalization of generic algorithms covering both analog and classical, discrete-
and continuous-time algorithms has been proposed in [69]. This framework, ex-
tending [68], is based on an extension and reformulation of abstract state machines
(ASM) from Gurevich [194]. The notion of an analog ASM program is introduced,
and a completeness result is proven: any process satisfying the three postulates gen-
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eralizing those of [194] is demonstrated to correspond to some analog ASM program
[69]. This is intended to be a first step towards a formalization and a proof of an
equivalent of a Church-Turing thesis for analog continuous- and discrete-time sys-
tems in the spirit of what has been achieved for discrete-time models [58, 146, 59].

6.5.1.2 Formalization by Fixed-Point Techniques

An approach to define computations by analog models in general is to consider
networks of analog modules connected by channels [324], processing data from
a metric space A, and operating with respect to a global continuous clock T. The
inputs and outputs of the network are continuous streams (C = T→ A) and the
input-output behavior of the network, usually with external parameters, is modeled
by a function φ : Cr×Ap→Cq. The authors focus on the important case where the
modules are causal, that is the output at time t only depends on the inputs over [0, t].

Equational specifications of such circuits, as well as their semantics, are given
by fixed-points of operators over the space of continuous streams. Under suitable
hypotheses, this operator is contracting and an extension of the Banach fixed-point
theorem for metric spaces guarantees existence and uniqueness of the fixed point.
Moreover, that fixed-point can also be proven to be continuous and concretely com-
putable whenever the basic modules are.

A general framework to deal with fixed-point techniques in analog systems,
based on Fréchet spaces, has recently been developed in [282].

An abstract model of computability over data streams using a high-level pro-
gramming language, an extension of “while” programs, over abstract data-types
(multi-sorted algebras) has been considered in [325]. The authors analyze when
concrete and abstract models are equivalent.

6.5.1.3 Formalization and Proof Theory for Cyberphysical Systems

A whole theory for the analysis, logic and proofs for cyberphysical systems has
been developed [281]. Rich logical theories to cover both continuous differential
equation dynamics and discrete changes involved in cyberphysical or hybrid sys-
tems have been proposed and proven to be sound and complete [276, 278, 279].
These logical foundations, built incrementally in a series of articles, now form an
elegant proof-theoretical bridge aligning the theory of continuous systems with the
theory of discrete systems [277, 280]. They are the basis of theorem provers KeY-
maera and KeYmaera X, which have demonstrated their impact on various concrete
applications. For an overview of all the existing works along these lines of research
at both theoretical and practical levels, refer to [280, 281].
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6.5.2 R-recursion Theory

R-recursive functions were introduced as a theory of recursive functions on the reals
built in analogy with classical recursion theory to deal with conceptual analog com-
puters operating in continuous-time [256]. Moore considered the smallest class of
functions, which is obtained from the constants 0,1 and the projections and which
is closed under composition, integration and minimization. He demonstrated that
various non-recursively enumerable sets fall into the proposed hierarchy, defined
according to the number of minimizations involved.

The initial theory [256] suffers from some mathematical difficulties when con-
sidering several nested minimization operators, but its foundational ideas gave birth
to several lines of research, both at the computability and complexity level.

At the computability level, since minimization is the operation that gives rise to
uncomputable functions, and difficulties, a natural question is to ask whether it can
be replaced by some other natural and better defined operator of mathematical anal-
ysis. This can be done by replacing minimization by some limit operation [260]. In
addition, it is shown that the obtained hierarchy does not collapse [230, 229], which
implies that infinite limits and first-order integration are not interchangeable oper-
ations [135]. A presentation and overview of the obtained real recursive function
theory is presented in [136].

The algebra of functions built without the minimization operator only contains
analytic functions and is not closed under iteration [104]. Closure by bounded prod-
ucts, bounded sums and bounded recursion has also been investigated.

However, if an arbitrarily smooth extension θ to the reals of the Heaviside func-
tion is included in the set of basic functions, then extensions to the reals of all prim-
itive recursive functions are obtained. More generally, several authors studied ex-
tensions of the algebra of functions by considering an integration operator restricted
to linear differential equations, and considering that such an arbitrarily smooth ex-
tension θ was among the basic functions. The obtained class contains extensions to
the reals of all the elementary functions [101, 105, 102, 103]. By adding a suitable
basic exponential iterate, extensions to the reals of all the functions of the classes of
Grzegorczyk’s hierarchy can also be obtained.

Instead of asking which computable functions over N have extensions to R in
a given function algebra, one can consider classes of functions over R computable
according to recursive analysis, and characterize them precisely with function al-
gebras. This was done for elementarily computable functions [74], considering a
restricted limit schema, and for computable functions [75], considering a restricted
minimization schema.

A generic framework for presenting previous results, based on the notion of ap-
proximation, has been developed in [106].

At the complexity level, characterizations of complexity classes such as P and NP
using R-recursive algebra have been obtained [262]. This is done by ensuring that
at every step of the construction of a function in previous classes, each component
cannot grow faster than a quasi-polynomial. This allows one to transfer classical
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questions from complexity theory to the context of real and complex analysis [135,
262, 261].

6.5.3 Analog Automata Theories

Several lines of research have been devoted to adapting classical discrete automata
theory to analog domains or continuous-time.

Rabinovich and Trakhtenbrot have developed a continuous-time automata the-
ory in [287, 322, 286]. In this approach, automata are not considered as language
recognizers, but as computing operators on signals, that is on functions from the
non-negative real numbers to a finite alphabet, viewed as states of a channel. For a
presentation as well as extensions, see [170].

Another approach has been considered, where ODEs equipped with a tape-like
function memory are used to recognize sets of piecewise continuous functions,
yielding a Chomsky-like hierarchy [297].

A class of recognizable functions extending stochastic and quantum functions
and with a cut point theorem similar to the one for probabilistic automata theory
and with nice closure properties has been determined in [81].

Topological automata were introduced as a generalization of previous defini-
tions of probabilistic and quantum automata [212]: deterministic or nondetermin-
istic probabilistic and quantum automata are proven to recognize only regular lan-
guages with an isolated threshold. A topological theory of continuous-time automata
has also been developed [247]: the basic idea is to replace finiteness assumptions in
the classical theory of finite automata by compactness assumptions. Some existence
results and a Myhill-Nerode theorem are obtained in this framework covering both
finite automata and continuous automata.

Generalized finite automata working over arbitrary structures have been intro-
duced [173]. Structural properties of accepted sets as well as computational hard-
ness of classical questions for this model have been investigated [244]. A restricted
version of the model has also been considered [245]: it is demonstrated to satisfy a
pumping lemma, and to yield decidability results closer to what would be expected
for a notion of finite automata over arbitrary structures, such as the reals.

The abovementioned approaches are not easily connected, and are rather inde-
pendent views and models.
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6.6 Analyzing the Power and Limitations of Analog
Computations

6.6.1 Neural Networks

The computational power of artificial neural networks has been investigated inten-
sively in the 1990’s in many papers: see the instructive survey [309] and more re-
cently [91]. Finite analog recurrent networks with integer weights are known to be
essentially equivalent to finite automata, while finite analog recurrent networks with
rational weights can simulate arbitrary Turing machines step by step [307]. When
considering arbitrary real weights (possibly non-computable) one obtains the non-
uniform versions of the associated complexity and computability classes. In partic-
ular, one gets models that can decide predicates or sets that are not computable by
Turing machines [306]. For a full discussion, see [305]. Improvements on the map-
ping from a Turing machine to a recurrent artificial neural network have recently
been proposed [110]. It has also been proven that the question P =?NP relativizes
naturally to similar questions related to artificial neural networks with real weights
[134].

Previous results have been extended to the case of evolving recurrent neural net-
works, i.e., networks where the synaptic weights can be updated at each discrete
time step [92, 94]. Interactive recurrent neural networks have been considered in
[93, 96].

When subjected to some infinite binary input stream, the Boolean output cells
necessarily exhibit some attractor dynamics. A characterization of the expressive
power of several models of Boolean, sigmoidal deterministic, and sigmoidal nonde-
terministic first-order recurrent neural networks in relation to their attractor dynam-
ics has been established in [98, 97, 99]. This extends results about their expressive
power characterized in terms of topological classes in the Borel hierarchy over the
Cantor space [95].

The computational power of spiking neuron models has been investigated in a
series of papers: refer to [309, 233, 177] for surveys.

6.6.2 Physical Oracles

In a recent series of papers, started by [44], Beggs, Costa, Poças and Tucker con-
sider various dynamical systems doing computations involving discrete data and
physical experiments. Such systems can be modeled by Turing machines with ora-
cles that correspond to physical processes. A good summary of their results can be
found in [15]. They analyze the computational power of these machines and more
specifically the limits of polynomial-time computations. They show that for a broad
class of physical oracles, an upper bound on polynomial-time computations is the
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non-uniform complexity class2 BPP//log?, and that P/poly can be attained by using
non-computable analog-digital interface protocols.

Without giving too many details, in this model the Turing machine has access to
a physical oracle, such as [45]. Whenever the machine wants to call the oracle, it
writes some input on the oracle tape and enters a special oracle state. The machine
is then suspended and a physical experiment starts. Importantly, a time schedule
function T , usually a time-constructible function, is associated with each machine.
If the experiment finishes in time less than T (|z|), where z is the content of the oracle
tape, the machine resumes in one of finitely many states encoding the outcome of
the experiment (typically YES or NO). Otherwise, the experiment is stopped and the
machine resumes in a special state TIMEOUT.

The authors analyzed many kinds of physical oracles and identified three major
forms of experiments. In most cases, the experiment encodes a single real number
a and the oracle tape encodes a rational x. Each class of experiments specifies not
only the behavior of the experiment but also how long it takes to complete.

• Two-Sided Case: the experiment takes time t(x,a) = C/|x− a|d for x 6= a and
answers YES if x < a and NO if x > a. It always times out if a = x. A typical
example is a scale, where the time needed to detect movement to either side is
inversely exponential to the difference between the masses.

• Threshold Case: the experiment takes time t(x,a) = C/|x− a|d for x > a and
always answers YES. It always times out if x 6 a. Several examples including
the photoelectric effect and Rutherford scattering are given by the authors.

• Vanishing Case: the experiment can only detect that x 6= a and times out if x = a.
However, given two experiments x,x′, we can detect which of x and x′ is closer
to a. Informally, the reader can think of an experiment where we can measure
α(x−a)2 (with α some unknown parameter): we cannot detect the sign of x−a
but for two experiments x,x′, α is the same so we can compare α(x− a)2 to
α(x′−a)2. Examples include some modified Wheatstone bridge and Brewster’s
angle experiments.

Orthogonally to the type of physical experiment, the authors also study variants on
how precise the experiment is with respect to x. In the infinite-precision case, the
experiment is done exactly with x. In the unbounded-precision case, the experiment
is done with x′ ∈ [x− ε,x+ ε] (drawn uniformly at random and experiments are
independent) where ε is part of the input and can be arbitrarily small (but not zero).
In the fixed-precision case, ε is a constant of the experiment and cannot be changed.

2 Let B be a class of sets and F a class of functions. The advice class B/F is the class of
sets A such that there exists B ∈B and f ∈F such that for every word w, w ∈ A if and only if
〈w, f (|w|)〉 ∈ B. We use log to denote the class of functions f such that | f (n)|=O(logn) as n→∞.
We use poly to denote the class of functions f such that | f (n)|=O(nk) for some k as n→∞. Thus
P/poly corresponds to a non-uniform polynomial-size advise class. The class BPP//F? is the
class of sets A such that there is a probabilistic polynomial-time Turing machine M , a prefix
function f ∈F? (i.e., f (n) is a prefix of f (n+1)) and a constant γ < 1

2 such that for every word
w, on input 〈w, f (|w|)〉, M rejects with probability at most γ if w ∈ A, and accepts with probability
at most γ if w /∈ A. See [44] for more details on those classes.
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More recently, the authors have developed a hierarchy for BPP//log? based on
counting calls to a non-deterministic physical oracle modeled by a random walk on
a line [43].

A general framework for describing physical computations covering the above
approaches has been proposed in [332].

6.6.3 On the Effect of Noise on Computations

The invariant (ergodic) measure of dynamical systems has been proven to remain
computable even if a small amount of noise is introduced in the system [83]. This
demonstrates that while some dynamical systems have been proven to simulate Tur-
ing machines, the presence of noise forbids incomputability. Actually, when consid-
ering a compact domain, it has been proven that analog neural nets with Gaussian or
other common noise distributions cannot even recognize arbitrary regular languages
[234, 235].

Some tight bounds on the space complexity of computing the ergodic measure
of a low-dimensional discrete-time dynamical systems affected by Gaussian noise
have been obtained [84].

Previous results have implied some limitations on the ability of physical systems
to perform computations, namely on their ability to store information. Memory is
roughly defined as the maximal amount of information that the evolving system can
carry from one instance to the next, and is demonstrated not to be able to grow too
fast.

This offers support for the following postulate for physical computations. If a
physical system has memory s available to it, then it is only capable of performing
computations in the complexity class SPACE(poly(s)) even when provided with
unlimited time [85]. This has been proven to hold for several classes of dynamics
and noise models over a compact domain.

6.6.4 Complexity Theories for Analog Computations

There have been several attempts to build a complexity theory for continuous-time
systems (but not intended to cover generic ODEs).

This includes the theory where the global minimizers of particular energy func-
tions are supposed to give solutions of some problem [182, 183]. The structure of
such energy functions leads to the introduction of problem classes U and NU , with
the existence of complete problems for these classes.

Another attempt is focused on a very specific type of systems: dissipative flow
models [49]. This theory has been used in several papers from the same authors
to study a particular class of flow dynamics [48] for solving linear programming
problems.
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Neither of the previous two approaches is intended to cover generic ODEs, and
neither of them is able to relate the obtained classes to classical classes of computa-
tional complexity, unlike the approach presented in Section 6.7.

6.6.5 Chemical Reaction Networks

Recent years have seen important publications on the computational power of chem-
ical reaction networks (CRNs) [314, 129]. The model is built by analogy with con-
crete chemistry, see also [289] for a presentation. A program corresponds to a set
of chemical rules over a finite set of species, abstracting from the matter conser-
vation laws, considering well-mixed solutions, and ignoring spatial properties of
the molecules. They can be seen as natural extensions of the population protocols
discussed in Section 6.2.8: here reactions are not assumed to be between pairs of
agents/molecules, and reaction rates can possibly be considered.

One can distinguish various dichotomies of computations in CRNs [140, 313]:
the number of molecules can be considered to be either discrete or continuous. Com-
putations can be considered either uniform (the same CRN handles all inputs) or
non-uniform (for each input size, a different CRN is considered). In the determinis-
tic setting the output is considered to be guaranteed, while in the probabilistic setting
some probability of error is considered. The halting approach considers notions of
acceptance where agents irreversibly produce an answer, while in the stabilizing
approach the population eventually stabilizes to an answer, in the spirit of the ac-
ceptance criteria for population protocols.

CRNs have clear connections to various other models, including Petri nets and
vector addition systems [129]. These models can be classified as unordered with
respect to classical models of computability such as Turing machines where an order
on instructions is considered. The presence of reaction rates or probabilities is a
way to provide back some order on instructions, while forgetting order in classical
models of computability gives rise to similar models [129].

This abstract model is also motivated by concrete implementations using an ex-
perimental technique called DNA strand displacement [315, 107, 285, 120]. Imple-
mentations with proteins are also considered [164].

The computational power of CRNs over many of these variants has been stud-
ied in several papers [314, 118, 140]. It has been proven, using in particular the
strong technical result from [160], that chemical reaction networks turn out to be a
robust model from a computability point of view [87] in the sense that variations on
the notion of output conventions for error-free computations basically yield either
Turing machines or a model whose power is equivalent to the population protocols
discussed in Section 6.2.8, that is to say whose computational power is limited to
semi-linear sets.

Lower bounds on the time required to build rules that would act as a “timer”
have been obtained [149], answering the open question on the ability of population
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protocols to perform a fast leader election in the probabilistic settings, as well as
their ability to simulate arbitrary algorithms from a uniform initial state.

The case of the continuous setting with the usual natural semantics has been an
open problem before being solved very recently [164] using the theory discussed
in Section 6.7. The computational power of a variant where reaction rates are ab-
stracted was previously characterized [119].

6.7 Computations by Polynomial Ordinary Differential
Equations

Polynomial ordinary differential equations have been shown to be closely related to
the GPAC of Shannon discussed in Section 6.2.2.1 and to have a very rich theory. In
many respects, they may now be considered to play an equivalent role in continuous-
time models to that of Turing machines in discrete-time models.

6.7.1 GPAC and Polynomial Ordinary Differential Equations

The GPAC, presented in Section 6.2.2.1, can also be presented in terms of polyno-
mial ordinary differential equations. More precisely, y is generable by a GPAC if
and only if there exist functions z = (z1, . . . ,zn), a vector of polynomials p and an
initial condition z0 such that

y≡ z1, z(0) = z0, and z′ = p(z).

In other words, y is a component of the solution of a system of polynomial differen-
tial equations. Advantages of this presentation are that it eliminates all the problems
related to the domain of definition and that the solution is necessarily unique. In
particular, the solutions are always analytic functions.

This fact actually has a complicated history because of gaps in the proof found by
various authors and the refinements in the definition of the GPAC: Shannon, while
introducing his model [303], proved that any function y generated by a GPAC is
a solution of a polynomial Differential Algebraic Equation (pDAE), that is there
exists a polynomial p such that

p(y,y′, . . . ,y(n)) = 0 (6.3)

for some integer n. The converse inclusion was claimed by Shannon, which led
some authors to define the GPAC directly in terms of differential equations [284].
However this equivalence requires some care because of the domain of definition,
and furthermore, DAEs do not necessarily have a unique solution, which compli-
cates this approach. It was later realized that unary functions generated by a GPAC
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(with some restrictions to fix earlier problems) are exactly components of polyno-
mial Initial Value Problems (pIVP) [186]. Several variations on GPAC circuits were
explored and proven to be all equivalent, which essentially shows that the above
notion is robust and probably the right definition to consider [184].

A famous statement, due to Rubel [292], shows that polynomial Differential Al-
gebraic Equations (pDAEs) are universal for continuous functions. More precisely,
there is a universal pDAE of order 4 whose solutions can approximate any continu-
ous function with arbitrary precision [292]. This work has recently been improved
[139] to hold for order 3. It has been established very recently that this also holds
for polynomial ordinary differential equations [76].

6.7.2 GPAC Generable Functions

The class of generable functions is particularly robust because if f and g are gener-
able then f ±g, f g, f

g and f ◦g are also generable. Moreover, if f is generable and y
satisfies the differential equation y′ = f (y) then y is also generable. Shannon’s origi-
nal work was intended for circuits with several inputs, but this was never formalized.
Recent work provides a proper description of the class of generable functions over
multi-dimensional domains and shows that it also enjoys many closure properties
[71].

6.7.3 GPAC Computability

The fact that the functions generated by the GPAC (i.e., generable functions) are
analytic (or C∞ for the more relaxed models, without external inputs) has historically
been seen as a limitation of the GPAC.

This has been proven to be an artifact of the model and an alternative notion
of computability based on polynomials ODEs has been proposed [65]. In fact the
authors prove that the GPAC and Turing machines are equivalent. The fundamental
idea is that while generable functions correspond to “real-time computability” (i.e.,
the system computes the answer instantaneously), considering a notion similar to the
one used for Turing machines (i.e., the system evolves and “converges effectively”
to the answer) yields a computational power equivalent to that of Turing machines.

This equivalence between the GPAC and Computable Analysis can be reformu-
lated as follows.

Theorem 6.7.1 (Equivalence between GPAC and Computable Analysis, [65]).
A function f : [a,b]→ R is computable (in the sense of Computable Analysis) if
and only if there exists an integer d and a vector of polynomials p : Rd → Rd with
rational coefficients such that for any x ∈ [a,b], the unique solution y : R>0→Rd to

y(0) = (0, . . . ,0,x), y′(t) = p(y(t))
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satisfies that

| f (x)− y1(t)|6 y2(t) and y2(t)→ 0 as t→ ∞.

In other words, a function f is computable if there is a GPAC that, on input x, has
one of its components (y1) converge to f (x). Not only does it converge, but another
component (y2) gives a bound on the error between f (x) and y1.

This unexpected connection between Turing computability and the GPAC was
recently refined [72, 73] at the level of complexity, with a characterization of the
class P and polynomial-time computable real functions.

A difficult point in the context of analog computability, and in the GPAC in par-
ticular, is to define a notion of complexity that makes sense and is sufficiently robust:
see discussions in Section 6.4.4. In fact, the intuitive notion of measuring the com-
plexity based on the convergence rate (i.e., how fast y1(t)→ f (x)) does not work.

One recently proposed solution to this problem is to measure the complexity us-
ing the length of the curve y instead of time. This process is illustrated in Figure 6.4.
We recall that the length of a curve y∈C1(I,Rn) defined over some interval I = [a,b]
is given by leny(a,b) =

∫
I ‖y′(t)‖2 dt,

leny

f (x)

x

y1

e−0

L(0)

e−1

L(1)

Fig. 6.4 Graphical representation of analog computability (Theorem 6.7.2): on input x, starting
from initial condition (x,0, . . . ,0), the polynomial ordinary differential equation y′ = p(y) ensures
that y1(t) gives f (x) with accuracy better than e−µ as soon as the length of y (from 0 to t) is greater
than L(µ). Note that we did not plot the other variables y2, . . . ,yd and the horizontal axis measures
the length of y (instead of the time t).

Theorem 6.7.2 (Equivalence between GPAC and CA (Complexity), [73]). A
function f : [a,b]→R is computable in polynomial-time (in the sense of Computable
Analysis) if and only if there exists a polynomial L : R>0→R>0, an integer d and a
vector of polynomials p :Rd→Rd with coefficients in Q, such that for any x∈ [a,b],
the unique solution y : R>0→ Rd to

y(0) = (x,0, . . . ,0), y′(t) = p(y(t))
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satisfies for all t ∈ R>0:

• for any µ ∈ R>0, if leny(0, t)> L(µ) then | f (x)− y1(t)|6 e−µ ,
• ‖y′(t)‖ > 1.

In other words, the precision of y1 increases with the length of the curve. More
precisely, as soon as the length between 0 and t is at least L(µ), the precision is
at least e−µ . Notice how rescaling the curve would not help here since it does not
change the length of y. The second condition on the derivative of y prevents some
pathological cases and ensures that the curve has infinite length, and thus that y1
indeed converges to f (x). It is possible to extend this equivalence to multivariate
functions and unbounded input domains such as R, by making L take into account
the norm of x.

It also possible to define the class P directly in terms of differential equations,
by encoding words with rational numbers. Again the length plays a crucial role, but
since a differential equation does not “stop”, the component y1 is used to signal that
it accepts (y1 > 1) or rejects (y1 6−1). Figure 6.5 illustrates this process.

Theorem 6.7.3 (Analog characterization of P, [73]). A language L ⊆ {0,1}∗ be-
longs to P, the class of polynomial-time decidable languages, if and only if there
exist a polynomial L : N→N, an integer d and a vector of polynomials p : Rd→Rd

with coefficients in Q, such that for all words w ∈ {0,1}∗, the unique solution
y : R>0→ Rd to

y(0) = (0, . . . ,0, |w|,ψ(w)), y′(t) = p(y(t))

where ψ(w) = ∑
|w|
i=1 wi2−i, satisfies for all t ∈ R>0:

• if |y1(t)|> 1 then |y1(u)|> 1 for all u > t > 0 (and similarly for |y1(t)|6−1),
• if w ∈L (resp. /∈L ) and leny(0, t)> L(|w|) then y1(t)> 1 (resp. 6−1),
• ‖y′(t)‖ > 1.

One clear interest of the previous statements is that they provide a way to
define classical concepts from the theory of computation (computable function,
polynomial-time computable functions) only using concepts from analysis, namely
polynomial ordinary differential equations.
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=
∫ t

0 ‖y′‖ dt
`(t)= length of y

over [0, t]

1

−1

poly(|w|)

accept: w ∈L

reject: w /∈L

computing

forbidden

q(ψ(w))

y1(t)
y1(t)

y1(t)

y1(t)

Fig. 6.5 Graphical representation of the analog characterization of P (Theorem 6.7.3). The green
trajectory represents an accepting computation, the red a rejecting one, and the gray are invalid
computations. An invalid computation is a trajectory that is too slow (thus violating the technical
condition), or that does not accept/reject in polynomial length. Note that we only represent the first
component of the solution; the other components can have arbitrary behaviors.
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Chapter 7
Computable Measure Theory and Algorithmic
Randomness

Mathieu Hoyrup and Jason Rute

Abstract We provide a survey of recent results in computable measure and prob-
ability theory, from the perspectives of both computable analysis and algorithmic
randomness, and discuss the relations between them.

7.1 Introduction

The underlying topic of this chapter is computable probability theory, considered
from two angles. The first angle follows the traditional approach of computable
analysis, where the goal is to develop effective versions of classical notions and to
study the effectiveness of classical theorems. These notions and theorems mainly
come from measure theory, in which probability theory is grounded. Therefore, the
first part of this chapter is devoted to computable measure theory. The second direc-
tion is the algorithmic theory of randomness, whose goal was originally to define
what it means for an individual object to be random, using computability theory.
These two approaches have been developed in parallel for a long time, but their in-
teraction has recently become a fruitful research direction, surveyed in this chapter.

Let us give a quick overview of the typical questions that are studied in the vast
area of computable probability theory. A recurrent topic in computable analysis is
to investigate the effectiveness of existence theorems. Many theorems in probability
theory are convergence theorems. How to analyze such theorems from a computabil-
ity perspective? A theorem stating the convergence of a sequence can be presented
as an existence theorem: it asserts the existence of an index from which the terms
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of the sequence are close to the limit. This leads to the investigation of the com-
putability of the speed of convergence, i.e. of the aforementioned index given the
prescribed distance to the limit. It happens that many convergence theorems are not
computable in this way (for instance, martingale convergence theorems or ergodic
theorems). This was observed by Bishop in the context of constructive analysis, in
his Foundations of Constructive Analysis (p. 214 in [19]):

Certain parts of measure theory are hard to develop constructively, because limits that are
classically proved to exist simply do not exist constructively.

So it looks like it is the end of the story. However, there is another way of inter-
preting an almost sure convergence theorem as an existence theorem: it states the
existence of a set of full measure on which pointwise convergence holds. So the
computability problem amounts to studying the computability of this full-measure
set.

Some of the computable approaches to measure theory fail to provide useful
computability notions for full-measure sets: the full-measure sets are all computable
because they are all equivalent to the whole space. One needs a finer look into the
computability of those sets, and Algorithmic Randomness provides this.

Algorithmic Randomness starts with Martin-Löf’s seminal paper [85], where he
introduces a notion of effective null set, nowadays called a Martin-Löf null set. Such
a notion enables one to define what a random point is: it is a point that does not
belong to any effective null set, which makes sense as there are countably many such
sets hence their union is again a null set. Since then Algorithmic Randomness has
been studied in several directions. We will only present the part that interacts with
computable measure and probability theory and will not mention its interactions
with computability theory and Kolmogorov complexity, a large part of which can
be found in [82, 95, 32].

The goals of this chapter are to present the main results obtained in recent years,
a comprehensive bibliography as well as the basic definitions, tools and techniques
needed for this development. We include proofs of simple results, some of them
appearing nowhere explicitly, so that the reader can quickly understand how they
work and confidently use them. As for the deeper and more complicated results, we
refer to the corresponding research articles, where the proofs can be found. When
possible, we give an outline of the proof, or at least some intuition about how it
works.

7.2 Computable Measure Theory

7.2.1 Background from Computable Analysis

We assume familiarity with basic notions from computability theory (computable
set of natural numbers, computably enumerable (c.e.) set, computable function,
etc.). We give a couple of central notions from computable analysis. References
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will be given where needed. The standard reference for computability on countably
based spaces is [116].

A computable metric space is a triple (X ,d,S) where (X ,d) is a separable metric
space and S = (si)i∈N is a sequence of points of X , called simple points, such that
the reals numbers d(si,s j) are uniformly computable. A name of a point x ∈ X is
a function f : N→ N such that d(x,s f (i)) < 2−i for all i. A point is computable if
it has a computable name. The basic metric balls are the metric balls centered at
simple points with rational radii, and have a canonical indexing (Bi)i∈N. An open
set U ⊆ X is an effectively open set if U =

⋃
i∈E Bi for some c.e. set E ⊆ N. A func-

tion f : X → Y between computable metric spaces is computable if there is an oracle
Turing machine reading a name of x and outputting a name of f (x). Equivalently, f
is computable if for each basic ball B ⊆ Y the pre-image f−1(B) is an effectively
open subset of X , uniformly in the index of B.

A compact set K ⊆ X is an effectively compact set if there is a computable enu-
meration of the finite sets F ⊆ N such that K ⊆

⋃
i∈F Bi. Let K ⊆ X be an effec-

tively compact set. Its complement X \K is effectively open. If U is effectively open
then K \U is effectively compact. If f : K → Y is computable then f (K) is effec-
tively compact. If, moreover, f is one-to-one then f−1 : f (K)→ K is computable.

For instance, R with the Euclidean metric and a canonical enumeration (qi)i∈N of
the rational numbers is a computable metric space. We denote by R< the set of real
numbers with a different naming system, or representation. In that space, a name
of x ∈ R< is a function f : N→ N such that x = supi q f (i). A real number is lower
semicomputable or left-c.e. if it has a computable name in this sense.

7.2.2 Framework

The most general way of defining measures goes through the abstract notions of
ring, algebra, σ -ring, σ -algebra, outer measure, etc. Effective counterparts to this
development have been investigated and used in several articles [120, 121, 69, 70,
119, 118].

Another approach, less general but covering a wide range of applications, is to
restrict oneself to spaces with a structure (for instance a separable metric) on which
computable analysis is already settled, and to work with the measurable structure
induced by it (for instance the Borel σ -algebra generated by the open sets). Many
articles in the literature follow this approach, which we will adopt here for the fol-
lowing reasons.

The practical reason is that manipulating a computable measurable structure, in
addition to other structures, is rather heavy. The mathematical reason is that results
from ordinary measure and probability theory are often stated on spaces with more
structure than just a measurable structure, for instance a metric, and hold only on
such spaces. As a result, the computable structures from mainstream computable
analysis are usually sufficient to investigate computable measure theory. Finally, the
approach of working with a fixed ring shows its limits when the measure is not fixed
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and computable but is a variable object of the problem. This limitation manifests
itself in several ways. Each ring induces its own notion of computable measure,
even among the computable rings, so the underlying ring should evolve at the same
time as the measure. The topology induced by the representation of measures asso-
ciated with a fixed ring is not the important weak∗ topology. Intuitively, fixing a ring
and representing a measure by giving the weights of the ring elements introduces
artificial discontinuities, similarly to representing real numbers by their binary ex-
pansions.

For all these reasons we have chosen to follow the second approach by working
on computable metric spaces only and considering Borel measures. This avoids too
many additional definitions and it is sufficient for most purposes. Moreover we will
restrict our attention to probability measures for simplicity.

We are implicitly working in the framework of Type-Two computability and rep-
resented spaces, but there are other options. A complete approach to computable
measure theory has been developed by Edalat [33, 34] in the framework of domain
theory.

7.2.2.1 Representing and Computing with Probability Measures

Let X be a computable metric space. A Borel probability measure can be equiva-
lently represented as (see [49, 107] for instance) :

• A function O(X)→ R< mapping an open set U to µ(U),
• A function C (X , [0,1])→R mapping a bounded continuous function f to

∫
f dµ ,

• A function N→ R< mapping an index of a finite union of balls to its weight,
• A point in the computable metric space M1(X) of Borel probability measures

endowed with the Prokhorov metric.

Here R denotes the space of real numbers with the Euclidean topology while R< de-
notes the space of real numbers with the topology induced by the semi-lines (x,+∞).

In particular, we have the following.

Definition 7.2.1 (Computable measure). A Borel probability measure µ is com-
putable if the following equivalent conditions hold:

• The measure of a finite union of basic metric balls is uniformly lower semicom-
putable,

• The measure of an effectively open set is uniformly lower semicomputable,
• The integral of a bounded computable function h : X → [0,1] is uniformly com-

putable.

More generally, a finite measure µ is computable if µ(X) is a computable real
number and the normalized measure µ/µ(X) is a computable probability measure.
Computability of σ -finite or general measures can be defined in similar ways, with
variations.

If µ is a computable Borel probability measure then the measure of a basic
ball B(s,r) is lower semicomputable but is not necessarily computable. However,
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one can take a class of radii other than the rationals to make the measures of basic
balls computable. This is done by ensuring that µ(B(s,r)\B(s,r)) = 0 [21]. These
new balls are called µ-continuity balls.

A computable Riesz representation theorem is proved in [84, 71]: a measure can
be equivalently represented as the positive linear functional mapping continuous
real-valued functions with compact support to their integrals. The result is proved for
locally compact Hausdorff spaces satisfying computability assumptions, and Borel
regular measures.

A measure can alternatively be represented as a valuation on the lower semicon-
tinuous functions [33, 107].

7.2.2.2 Effectively Approximable Sets and Functions

The notion of a computable function expresses the intuitive idea of an algorithm
processing an input and producing an output. Computable functions being neces-
sarily continuous, this notion is sometimes too restrictive and one needs a weaker
notion, based on the idea that the algorithm performing the computation is allowed
to make mistakes on a small set of inputs, in a controlled way. This is the motiva-
tion underlying the notion of an effectively approximable function. This definition
was introduced by Ko [79] on Euclidean spaces and generalized to other topological
spaces by Bosserhoff [21].

Definition 7.2.2. Let X ,Y be computable metric spaces and µ a computable Borel
probability measure over X . A function f : X → Y is effectively µ-approximable if
there exists an oracle Turing machine that given a name of x∈ X and a rational ε > 0
outputs a name of f (x) for all x in a set of measure at least 1− ε .

One may require a weaker condition: given ε,δ , the machine computes f (x)
at precision δ for all x in a set of measure at least 1− ε . This apparently weaker
requirement is actually equivalent to the one given in the definition and is sometimes
simpler to prove. Moreover it is sufficient to check this condition only when δ = ε .

Example 7.2.3 (Random harmonic series). If a binary sequence s ∈ {0,1}N is ob-
tained by independently tossing a fair coin then the sum

f (s) = ∑
n≥1

(−1)sn

n

converges almost surely. Can the sum be computed from s? The function s 7→ f (s)
is not computable because it is obviously not continuous: knowing the n first values
of s gives no information about the limit, which can be any real number.

However one can easily prove that the function f is effectively approximable
w.r.t. the uniform measure over {0,1}N. Let δ ,ε be positive rational numbers.
For each m, consider the random variable Tm = ∑n>m(−1)sn/n, whose expected
value is E[Tm] = 0. Its variance E[T 2

m ] = ∑n>m 1/n2 converges effectively to 0
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as m grows, so by Chebyshev’s inequality P[|Tm| ≥ δ ] ≤ E[T 2
m ]/δ 2 can be taken

as small as we want, in particular smaller than ε , by taking m sufficiently large. The
sum ∑

m
n=1(−1)sn/n is then δ -close to f (s) for all s in a set of measure at least 1−ε ,

and that finite sum can be uniformly computed from s and ε,δ .

Example 7.2.4 (Pólya urn). In an urn starting with one black ball and one white ball,
at each round one draws a ball at random and puts it back into the urn together with
a new ball of the same color. The sequence of observed colors follows a probability
distribution µ over {0,1}N (interpreting 1 as black and 0 as white for instance)
defined by

µ([u]) =
(|u|0)! · (|u|1)!

(1+ |u|)!
,

where u ∈ {0,1}∗, |u|0 is the number of occurrences of 0 in u and |u|1 is the num-
ber of occurrences of 1 in u (0! evaluates to 1 here). For µ-almost every outcome
sequence s ∈ {0,1}N, the frequency of 1’s in the sequence converges to a real num-
ber p(s). Can p(s) be computed from s? Again the function p is heavily discontin-
uous hence not computable, but one can prove that it is effectively µ-approximable.
This can be done as in the previous example by showing that the speed of conver-
gence is effective (this will be formalized in Section 7.2.2.5), or by a more abstract
argument that will be presented in Examples 7.2.27 and 7.4.14.

The notion of effective approximability for functions has an immediate counter-
part for sets [79].

Definition 7.2.5. Let X be a computable metric space and µ a computable Borel
probability measure over X . A set A⊆ X is effectively µ-approximable if its charac-
teristic function 1A : X →{0,1} is effectively µ-approximable.

If A⊆ X is effectively µ-approximable then µ(A) is computable.

Example 7.2.6 (Smith-Volterra-Cantor set). The Smith-Volterra-Cantor set, which
is also known as the fat Cantor set, is a nowhere dense closed subset of [0,1] that
has positive Lebesgue measure. It is obtained by starting from [0,1] and by remov-
ing, at each stage n ≥ 1, subintervals of width 1/4n from the middle of each re-
maining interval. The limit set has Lebesgue measure 1/2. This set is effectively λ -
approximable, by the next observation.

Proposition 7.2.7 (Ko [79]). Let A be an effectively closed set or an effectively open
set. A is effectively µ-approximable if and only if µ(A) is computable.

If f : X → [0,+∞] is effectively µ-approximable and bounded then
∫

f dµ is
computable.

If f : X → [0,+∞] is effectively µ-approximable but is unbounded then
∫

f dµ is
not necessarily computable, but is always lower semicomputable.

Example 7.2.8 (Non-computable integral). Let (ni)i∈N be a computable sequence
enumerating a non-computable set A ⊆ N such as the halting set. The piecewise
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constant function f : [0,1]→ [0,+∞) defined by f (x) = 2−ni+i+1 on (2−i−1,2−i]
and f (0) = 0 is effectively λ -approximable (there is an algorithm that computes f
outside the null set {0}∪{2−i−1 : i ∈ N}) but its integral is ∑n∈A 2−n, which is not
a computable real number.

Composing effectively approximable functions can be done for an appropriate
choice of the involved measures. A measurable function f : X→Y pushes any mea-
sure µ over X to a measure over Y , denoted by µ f and called the push-forward of µ

under f . It is defined by µ f (A) = µ( f−1(A)) for all measurable sets A.

Proposition 7.2.9 (Bosserhoff [21]). If f : X → Y is effectively µ-approximable
then the push-forward measure µ f is computable. If g : Y → Z is effectively µ f -
approximable then g◦ f is effectively µ-approximable.

Proof. To prove that µ f is computable, we show that if h : Y → [0,1] is a bounded
computable function then

∫
hdµ f is computable, uniformly in h. By definition of µ f ,

one has
∫

hdµ f =
∫

h◦ f dµ . The function h◦ f is effectively µ-approximable (sim-
ply compose the algorithms for f and h) so

∫
h◦ f dµ is computable as h is bounded.

Everything is uniform in h.
If g is effectively µ f -approximable then the algorithms approximating f and g

can easily be composed to approximate g◦ f . �

The computational complexity of integration has been investigated by Ko [79]
and Kawamura [73] for continuous functions on [0,1] with the Lebesgue measure.
They essentially proved that the complexity of integration corresponds to the count-
ing class #P and is in some sense complete for this class. For other measures than the
Lebesgue measure, the dependence of the complexity of integration on the measure
has been investigated by Férée and Ziegler [35].

7.2.2.3 Effective Measurability

Computable functions can be seen as the effective version of continuous functions:
a function f is computable if and only if it is effectively continuous in the sense that
the pre-image of effectively open sets are effectively open sets, uniformly; also, a
function is continuous if and only if it is computable relative to some oracle.

In the same way, the weaker notion of effectively approximable function can be
interpreted as the effective counterpart of a classical notion, measurability. To this
end, we briefly present a notion of computability and a representation for measur-
able sets.

Let X be a computable metric space and µ a computable Borel probability mea-
sure over X . The set of Borel subsets of X can be endowed with a pseudomet-
ric dµ(A,B) = µ(A∆B). The quotient of this pseudometric space by the equivalence
relation A≡µ B ⇐⇒ dµ(A,B) = 0 is a separable metric space. We now show how
to choose a countable dense subset in order to make it a computable metric space.

The space X has a topological basis of sets whose measures are computable real
numbers. This basis is obtained by computing a sequence of positive real num-
bers (ri)i∈N that is dense in (0,∞), such that µ(B(s,ri)\B(s,ri)) = 0 for all i and s
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in the countable dense subset associated with X (see [21]). The ring R obtained by
taking the closure of this basis under finite unions and complements has a canoni-
cal numbering R = {Ri : i ∈ N}. One can then take R as a dense sequence in the
quotient space of measurable sets.

The computable metric space of (equivalence classes of) measurable sets in-
duces a representation and a notion of computability for measurable sets: A is repre-
sented by any Cauchy sequence of ring elements converging fast to A in the pseudo-
metric dµ . An equivalent representation consists in describing the sequence of real
numbers µ(A∩Ri).

The next definition and result appeared in [79] on R and in [21] on general spaces.

Definition 7.2.10. A set A is effectively µ-measurable if the following equivalent
conditions hold:

• Given a positive rational ε one can compute, uniformly in ε , a finite union Aε of
basic µ-continuity balls such that µ(A∆Aε)≤ ε ,

• Given i one can compute µ(A∩Ri) uniformly in i.

Proposition 7.2.11. A set is effectively µ-approximable if and only if it is effec-
tively µ-measurable.

For a proof, one can consult [79, 21]. Other ways of representing measurable sets
have been investigated on general measurable spaces with σ -finite measures [120,
119]. One can also define the notion of an effectively µ-measurable function and
prove that it is equivalent to effective µ-approximability. We do not include it here
as it would require some extra definitions and will not be used in this chapter. The
interested reader can consult [79, 118].

7.2.2.4 Lp-Spaces and Absolute Continuity

For each computable real number p, the space Lp(X ,µ) is a complete separable met-
ric space that is naturally a computable metric space. The finite linear combinations
with rational coefficients of characteristic functions of elements of R are dense and
their canonical numbering makes the metric

d( f ,g) = ‖ f −g‖p =

(∫
X
| f −g|p dµ

)1/p

computable. This structure induces a representation of the elements in Lp(X ,µ),
which are equivalence classes of functions under µ-almost everywhere coincidence,
and a notion of Lp(X ,µ)-computable function.

Definition 7.2.12. A measurable function f : X → R is Lp(X ,µ)-computable if its
equivalence class is a computable element of Lp(X ,µ).

Several characterizations of Lp-computable functions have been obtained [99,
122]. Lp-computability is not far away from effective approximability, as the next
result shows (an indirect proof appears in [66]).
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Proposition 7.2.13. A function f : X→R is Lp(X ,µ)-computable if and only if it is
effectively µ-approximable and ‖ f‖p is computable.

Any non-negative function in L1(X ,µ) induces a finite measure ν with density f
w.r.t. µ:

ν(A) =
∫

A
f dµ

(here we assume that ‖ f‖1 = 1 so that ν is a probability measure). The measure ν is
absolutely continuous w.r.t. µ , written ν � µ , which means that for every measur-
able set A, µ(A) = 0 implies ν(A) = 0. The Radon-Nikodym theorem asserts that
every absolutely continuous measure can be obtained this way. The function f is
called the Radon-Nikodym derivative of ν w.r.t. µ and is denoted by dν

dµ
.

The computability of the correspondence between absolutely continuous mea-
sures and densities in L1 has been investigated. We present a few results in this
direction.

Definition 7.2.14 (Effective absolute continuity). Let µ,ν be Borel probability
measures. We say that ν is effectively absolutely continuous w.r.t. µ if there exists a
computable function ϕ : N→N such that µ(A)≤ 2−ϕ(n) implies ν(A)≤ 2−n for all
Borel sets A.

In that case, the function mapping µ-measurable sets to ν-measurable sets
is well defined and computable: any µ-approximation of A at precision 2−ϕ(n)

is a ν-approximation of A at precision 2−n. It implies that every effectively µ-
approximable set A⊆ X or function f : X → Y is also effectively ν-approximable.

Observe that if ν ≤ cµ for some constant c then ν is effectively absolutely con-
tinuous w.r.t. µ and dν

dµ
is essentially bounded by c. The next result is indirectly

proved in [87].

Proposition 7.2.15. Let µ be a computable probability measure and f be a non-
negative L1(X ,µ)-computable function. The measure ν defined by dν

dµ
= f is com-

putable and effectively absolutely continuous w.r.t. µ .

Proof. In order to prove that ν is computable, we show that the integral
∫

hdν =∫
f hdµ of any computable bounded function h : X→ [0,1] is uniformly computable.

One has
∫

f dµ =
∫

f hdµ +
∫

f (1−h)dµ . Both f h and f (1− h) are effectively µ-
approximable, so their integrals are lower semicomputable. As their sum is com-
putable, they are computable as well.

We now show that ν is effectively absolutely continuous w.r.t. µ . Given ε , as f
is L1-computable one can effectively find a bounded computable function h : X→R
such that

∫
| f −h|dµ < ε/2. Let N be an upper bound on |h| and δ = ε/(2N).

If µ(A)≤ δ then

ν(A) =
∫

A
f dµ =

∫
A
( f −h)dµ +

∫
A

hdµ ≤ ε/2+Nµ(A)≤ ε. �

However, the Radon-Nikodym theorem is not computable, even assuming effec-
tive absolute continuity.
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Theorem 7.2.16 (Hoyrup, Rojas, Weihrauch [70]). There exists a computable
probability measure over [0,1], effectively absolutely continuous w.r.t. the Lebesgue
measure λ , whose Radon-Nikodym derivative is not L1([0,1],λ )-computable.

As often, the proof uses the technique appearing in the proof of Pour-El and
Richard’s First Main Theorem [100] stating that a certain class of discontinuous
operators do not preserve computability: the discontinuity can be used to encode the
halting problem.

Proof. The operator mapping f ∈ L1([0,1],λ ) to the measure ν with density f
is continuous (and even computable), but its inverse is not. For instance, the se-
quence fn(x) = 1+ sin(2πnx) does not converge to f∞(x) = 1 in L1 but the corre-
sponding measures νn converge to ν∞.

Now for n ∈ N, let t(n) ∈ N ∪ {∞} be the halting time of Turing machine
number n. The sought density function is f = ∑n≥1 2−n ft(n). One can easily see
that the corresponding measure ν = ∑n≥1 2−nνt(n) is computable because the map-
ping n 7→ νt(n) is computable. However, f is not L1-computable as

∫
| f −1|dλ =

2
π ∑n:Mn halts 2−n is not a computable real number.

Observe that | f | ≤ 2, so ν ≤ 2λ hence ν is effectively absolutely continuous
w.r.t. λ . �

Moreover the operator mapping an absolutely continuous measure to its derivative
is strongly Weihrauch equivalent to the operator lim; see the last chapter of this
handbook.

7.2.2.5 Effective Convergence

Many theorems in measure and probability theory are about convergence of func-
tions or random variables. There are many types of convergence, the most classical
ones being:

• Convergence in Lp-norm,
• Almost sure convergence,
• Convergence in probability,
• Convergence in distribution.

In order to carry out a computable analysis of convergence theorems, one has to
define effective versions of these notions. Usually a sequence converges to a limit
if for every prescribed precision one can find a rank from which the sequence is
close to the limit within that precision. This formulation has an immediate effective
version, where the rank can be uniformly computed from the given precision. This
is the approach we present here. We will see in Section 7.3 another way of analyz-
ing the computable content of almost sure convergence theorems, using algorithmic
randomness. The next definition appeared in [112].

Definition 7.2.17. Let µ be a probability measure over X and fn, f : X→R be mea-
surable functions. We say that fn converges effectively µ-almost surely to f if
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∀ε > 0,∃n, µ({x ∈ X : ∃p≥ n, | fp(x)− f (x)|> ε})≤ ε (7.1)

and n ∈ N can be uniformly computed from ε ∈Q.
We say that fn converges effectively in probability to f if

∀ε > 0,∃n,∀p≥ n, µ({x ∈ X : | fp(x)− f (x)|> ε})≤ ε (7.2)

and n ∈ N can be uniformly computed from ε ∈Q.

Observe that (7.1) is equivalent to the more usual formulation of µ-almost sure
convergence

µ({x ∈ X : fn(x) converge to f (x)}) = 1. (7.3)

As in the classical setting, these effective convergence notions are interrelated.

• Effective almost sure convergence implies effective convergence in probability,
• Effective convergence in Lp-norm implies effective convergence in probability,
• When the sequence is bounded by an Lp-computable function, effective conver-

gence in probability implies (therefore, is equivalent to) effective Lp-convergence.

We will see that many convergence theorems from probability theory are not
computable, in the sense that the convergence is not effective in any sense (Theo-
rems 7.2.21, 7.3.7, 7.3.8). Such negative results can often be proved by showing that
the limit is not effectively approximable, thanks to the following result, appearing
in [67].

Proposition 7.2.18. Let fn : X→R be uniformly effectively µ-approximable. If they
converge effectively in probability to f : X→R then f is effectively µ-approximable.

Proof. To compute f with probability of error δ and at precision ε , compute fn
at precision ε/2 with probability of error δ , where n is associated with ε/2 in the
effective convergence. �

The proof of this proposition is essentially the argument that we used to show
that the limit of the random harmonic series is effectively approximable (Example
7.2.3).

7.2.3 Results in Computable Measure and Probability Theory

Many results from measure theory have been investigated in computable analysis.
Some of them are about the computability of certain measures, others are about the
computability of convergence theorems.

The operation of conditioning a measure is a fundamental construct in measure
theory. Its (non-)computability has been investigated in [1, 2].

In addition to the results presented here, the computability of invariant measures
of dynamical systems has been investigated in [51, 56]. The problem of computing
pseudo-random points, i.e. points satisfying prescribed properties that hold almost
surely, has been investigated in [13, 52, 54].
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7.2.3.1 Conditioning

Conditioning is a fundamental concept in probability theory. Its (non-)computability
has been investigated by Ackerman, Freer and Roy [1, 2]. They prove that the opera-
tion of conditioning a probability measure is not computable in general. We present
a similar result, whose proof is based on the non-computability of the Radon-
Nikodym theorem (Theorem 7.2.16).

Let π is a Borel probability measure over a product space X ×Y and πX its
marginal measure over X defined by πX (A) = π(A×Y ) for Borel sets A ⊆ X . One
can define the conditional probability measures π(.|x) over Y for πX -almost all x ∈
X , such that π is a combination of these measures: π(A×B) =

∫
Aπ(B|x)dπX (x). The

function from X to M1(X) mapping x to π(.|x) is called a disintegration of π . It is
not unique, but two such disintegrations must agree πX -almost everywhere. Usually
these mappings are not continuous, so they cannot be computable. In [1] it is proved
that even when a disintegration is discontinuous on a set of measure 1, it need not be
computable on a set of measure 1. In [2] it is proved that even when there is a unique
continuous disintegration, it need not be computable. The non-computability is also
expressed in terms of Weihrauch degrees: the disintegration operator is strongly
Weihrauch equivalent to lim; see the last chapter of this handbook.

We present another example, based on the non-computability of the Radon-
Nikodym derivative. Indeed, conditional probabilities are usually constructed using
the Radon-Nikodym theorem, thus Theorem 7.2.16 immediately implies the non-
computability of conditional probabilities.

Theorem 7.2.19. Let X = [0,1] and Y = {0,1}. There is a computable measure π

over X ×Y whose disintegration x 7→ π(0|x) is not effectively πX -approximable,
where πX is the marginal measure over X (and is the Lebesgue measure λ here).

Proof. Let ν be the computable probability measure over [0,1] from the proof of
Theorem 7.2.16: ν � λ and even ν ≤ 2λ , but dν

dλ
is not L1(λ )-computable. As dν

dλ

is bounded by 2, dν

dλ
is not effectively λ -approximable.

As ν ≤ 2λ , one has λ = 1
2 (ν + µ) where µ is another computable probability

measure (µ is simply defined as 2λ − ν). Consider the measure π over X ×Y de-
fined by π(A×{0}) = 1

2 ν(A) and π(A×{1}) = 1
2 µ(A). π is a computable measure;

its marginal measures are the uniform measures over X and Y . The conditional ex-
pectation is π(0|x) = dν

dλ
(x) for λ -almost every x ∈ [0,1]. �

7.2.3.2 Birkhoff Ergodic Theorem

One of the most celebrated results in probability theory is the Birkhoff ergodic the-
orem generalizing the strong law of large numbers from independent random vari-
ables to stationary ones.

Ergodic theory is a branch of dynamical systems that focuses on the global prop-
erties of dynamical systems (we refer to the introductory book [25]). A (discrete-
time) dynamical system is just a set X and a function T : X → X acting on X .
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Points in X are the possible states of the system, and T (x) is the state of the
system at time t + 1 if x is the state at time t. The orbit of a point x is the se-
quence x,T (x),T 2(x), . . ., which is simply the evolution of the system over time
when starting in state x. Ergodic theory enables one to describe how the orbits of the
system are distributed over X .

To do this, one needs some structure on the set X . Assume that X is a mea-
surable space and µ is a probability measure over X . A measurable transforma-
tion T : X → X preserves µ if for every Borel set A, µ(T−1(A)) = µ(A). We can
alternatively say that µ is T -invariant. Intuitively, applying T to points of X does
not change their distribution over the space. The Birkhoff ergodic theorem states
that if T preserves µ then for µ-almost every x, the asymptotic distribution of the
orbit of x under T converges.

Theorem 7.2.20 (Birkhoff ergodic theorem). If T : X → X preserves µ then for
every f ∈ L1(X ,µ), the limit

f ∗(x) := lim
n→∞

1
n

n−1

∑
i=0

f ◦T i(x) (7.4)

exists for µ-almost all x ∈ X. Moreover f ∗ ∈ L1(µ) and
∫

f ∗ dµ =
∫

f dµ .

The averages in (7.4) are called the Birkhoff averages of f .
The case when f is the characteristic function of a measurable set A⊆ X is par-

ticularly suggestive: for µ-almost every x, the visiting frequency of its orbit in A
converges, so it is indeed about the distribution of its orbit in the space.

This is an almost sure convergence theorem. Computing or quantifying the speed
of convergence of this theorem has been a longstanding problem, already investi-
gated by ergodic theorists. Kakutani and Petersen [72] proved that there is no gen-
eral bound on the speed of convergence in the ergodic theorem, but their result does
not formally exclude the possibility of a computable speed. They construct very ir-
regular functions f making the convergence as slow as wanted, but it may happen
that for simple functions f , the speed of convergence can be estimated. Bishop [19]
informally argued that the ergodic theorem is nonconstructive, thus suggesting that
it is not computable in any sense. This was made precise by V’yugin [112], who
proved that the speed of convergence is indeed not computable in general.

V’yugin’s example is based on one of the simplest dynamical systems, the shift
operator from the Cantor space X = {0,1}N to itself mapping a sequence x0x1x2 . . .
to x1x2x3 . . ., the same sequence with the first bit removed. The function f : X → [0,1]
is very simply defined by f (x0x1x2 . . .) = x0.

Theorem 7.2.21 (V’yugin [112]). On the Cantor space X = {0,1}N, there is a
computable shift-invariant probability measure µ such that the convergence of the
Birkhoff averages of f : x 7→ x0 is not effective in any sense (almost sure, in proba-
bility, in L1-norm).

Proof. We give the proof because it motivates the next discussions. We present a
slight variant of V’yugin’s original proof. It again follows the argument of Pour-El
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and Richard’s First Main Theorem, already met in Theorem 7.2.16. Informally, the
operator mapping µ to f ∗ ∈ L1(X ,µ) is “not continuous”.

Given p ∈ [0,1], consider the measure µp over {0,1}N defined as the distribution
of the following random infinite binary sequence. Take x0 ∈ {0,1} uniformly at
random. Once xi has been drawn, let xi+1 = 1− xi with probability p, and xi+1 = xi
with probability 1− p.

If p= 0 then the sequence will contain only 0’s with probability 1/2, and only 1’s
with probability 1/2. If p > 0 then the sequence will almost surely contain infinitely
many blocks of 0’s and 1’s, very long if p is close to 0.

The discontinuity comes from the fact that f ∗ has µp-almost surely value 1
2

for p > 0 but has µp-almost surely values 0 and 1 for p = 0.
We can now encode the halting problem using this discontinuity. For n ∈ N,

let t(n) ∈ N∪ {∞} be the halting time of Turing machine number n. The sought
measure is

µ = ∑
n≥1

2−n
µ2−t(n) . (7.5)

One can easily see that µ is computable because the mapping n 7→ µ2−t(n) is com-
putable. However, f ∗ is not L1(X ,µ)-computable, which implies that the conver-
gence of the Birkhoff averages to f ∗ is not computable in any sense (see Proposition
7.2.18). Proving that f ∗ is not a computable element of L1(µ) is easy: otherwise it
would be effectively µ-approximable by Proposition 7.2.13, from which one derives
that the singleton {0000 . . .} is effectively µ-approximable, which is not possible
as µ({0000 . . .}) = ∑n:Mn does not halt 2−n is not a computable real number. �

In this argument one sees that the asymptotic distribution of the orbit of x depends
very much on x: the orbits of 0 and 1 are each concentrated in one point while the
orbits of other points are densely distributed in the space. The non-computability
comes from here, as one cannot computably distinguish between these different
behaviors.

The fact that several different distributions are possible is expressed as the system
being non-ergodic. More precisely, one says that the system (X ,µ,T ) is ergodic if
the only measurable sets A such that T−1(A) = A are trivial, i.e. have measure 0 or 1.
Note that such sets are stable under T , so orbits starting inside A or outside A may
have very different behaviors. When the system is ergodic, the limit function f ∗ is
constant µ-almost everywhere, which corresponds to the intuition that almost all the
orbits have the same distribution. If (X ,T ) is fixed, we say that µ is ergodic if the
system (X ,T,µ) is ergodic.

Let us go back to V’yugin’s result. The constructed measure µ is not ergodic,
notably because the limit function f ∗ is not constant µ-almost everywhere. This
is actually mandatory to make the convergence non-computable, as the next result
shows. Here X is a computable metric space, µ is a computable Borel probability
measure over X and T : X → X is computable and µ-invariant.

Theorem 7.2.22 (Avigad, Gerhardy, Towsner [8]). If the system (X ,µ,T ) is com-
putable and ergodic and f is a computable element of L1(µ) then the speed of
convergence of the Birkhoff averages of f is computable.
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They actually prove that in the general (i.e. non-ergodic) case, the speed of conver-
gence is always computable relative to the L2(µ)-norm of f ∗, assuming f ∈ L2(µ).
A simpler proof in the ergodic case can be found in [53].

7.2.3.3 Ergodic Decomposition

We saw that the ergodic systems are those systems for which almost all orbits have
the same distribution. If a system is not ergodic then two orbits may have very dif-
ferent asymptotic properties. But if one groups together all the points whose orbits
have a given distribution then these points form an ergodic subsystem. Indeed a non-
ergodic system can always be decomposed into disjoint ergodic subsystems. This is
expressed by the following result, which is an application of the Choquet theorem
from convex analysis [98].

Theorem 7.2.23 (Ergodic decomposition theorem). If µ is a T -invariant proba-
bility measure then there exists a unique probability measure m over the class of
measures such that:

• m gives measure 1 to the set of ergodic T -invariant measures
• µ is the barycenter of m, i.e. µ(A) =

∫
ν(A)dm(ν) for all measurable sets A.

The ergodic measures can be equivalently defined as the invariant measures that
cannot be expressed as combinations of invariant measures, except the trivial one
where m is the Dirac measure concentrated on µ .

For instance in V’yugin’s construction, the measure µ is a combination of count-
ably many ergodic measures: the Dirac measures δ000... and δ111... and for each t ∈N,
the measure with parameter p = 2−t . The decomposition (7.5) ∑n≥1 2−nµ2−t(n)

is computable, but is not the ergodic decomposition of µ: for t(n) = ∞, one
has µ2−t(n) = µ0 = 1

2 δ000... +
1
2 δ111..., which is not ergodic as it can be further de-

composed as a combination of two ergodic measures δ000... and δ111.... The cor-
responding ergodic decomposition of µ turns out to be non-computable, and this
is necessary and sufficient for the counterexample to work, as the following result
shows.

Proposition 7.2.24 (Hoyrup [64]). Let T be computable and µ be a computable T -
invariant measure. The following statements are equivalent:

• The µ-almost sure convergence of the Birkhoff averages of bounded computable
functions is effective,

• The ergodic decomposition m of µ is computable.

Observe that an invariant measure is usually decomposed into continuously many
ergodic measures. In V’yugin’s construction, the ergodic decomposition of µ is
countably infinite. Is it possible to build another example with a finite number of
ergodic measures only? The answer is positive, but one needs a very different argu-
ment.
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Theorem 7.2.25 (Hoyrup [65]). There exists a computable shift-invariant mea-
sure µ whose ergodic decomposition is µ = 1

2 µ0 +
1
2 µ1, where µ0 and µ1 are non-

computable ergodic measures.

The proof borrows a construction scheme from computability theory, namely the
priority method with finite injury.

There are interesting classes of invariant measures for which the ergodic decom-
position is computable [62].

Theorem 7.2.26. Let C ⊆M1(X) be an effectively compact class of ergodic mea-
sures. If µ is a computable measure which is a convex combination of measures in C
then the ergodic decomposition of µ is computable.

Proof. By the assumption on C , the class of Borel probability measures supported
in M1(C ) is effectively compact in the computable metric space M1(M1(X)) of
measures over M1(X). The combination operator mapping m∈M1(M1(C)) to µ ∈
M1(X) is computable and one-to-one, so its inverse is computable. �

Example 7.2.27 (Pólya urn continued). The class of Bernoulli measures over {0,1}N
is an example of an effectively compact class of ergodic measures. In the Pólya
urn model from Example 7.2.4, the measure µ is a combination of Bernoulli mea-
sures and is computable, so by Theorem 7.2.26 its decomposition is computable. As
a Bernoulli measure can be (computably) identified with its parameter in [0,1], it
means that the distribution of the function p(s) from Example 7.2.4 is a computable
measure over [0,1].

A Bernoulli measure over {0,1}N is the joint distribution of a sequence of i.i.d.
random variables in {0,1}. They can be generalized by considering the distribution
of a sequence of i.i.d. random variables in R. These distributions are exactly the
product measures ν∞ :=

⊗
i∈N ν , where ν is any probability measure over R. This

class of measures C = {ν∞ : ν ∈M1(R)} ⊆M1(RN) is no longer effectively com-
pact. However Freer and Roy proved a version of Theorem 7.2.26 for this class of
measures.

Theorem 7.2.28 (Freer, Roy [47]). If µ is a computable measure which is a com-
bination of measures in C then the decomposition of µ is computable.

De Finetti’s theorem states that the convex combinations of measures in C are
exactly the joint distributions of exchangeable sequences of random variables in R,
so Theorem 7.2.28 can be reformulated as follows: if the joint distribution µ of an
exchangeable sequence of random variables in R is computable, then the unique
measure m over C such that µ(A) =

∫
ν(A)dm(ν) is computable.

7.3 Algorithmic Randomness

Probability theory provides many important convergence theorems, notably almost
sure convergence theorems such as the strong law of large numbers, Birkhoff’s er-
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godic theorem, the martingale convergence theorems and the Lebesgue differentia-
tion theorem.

In this section, we will work in a probability space, but many of the ideas extend
to other types of measures. Recall that a sequence ( fn)n∈N of random variables con-
verges almost surely to f if fn(x) converges to f (x) for almost every x. How does
one approach the computability of such a result? The option adopted in Definition
7.2.17 is to use the following equivalent formulation:

∀ε > 0,∃n, P [∀p≥ n, | fp(x)− f (x)| ≤ ε]≥ 1− ε.

This is an existence statement, stating the existence of n given ε , and as such it
can be analyzed from a computability perspective. We already saw computability
results about almost sure convergence theorems, which happened to be negative for
the most part: one cannot in general compute the speed of convergence.

There is another way of formulating almost sure convergence as an existence
result:

∃A,P[A] = 1 and ∀x ∈ A, fn(x) converges to f (x). (7.6)

How does one investigate the computability of such a result? What does it mean
to compute the set A? As A has measure 1, it is trivially an effectively measurable set
in the sense of Section 7.2.2.3. Indeed, being effectively measurable is not about a
set of points, but about its equivalence class. As a result, one needs a finer effective
notion of measurable sets, in particular a notion of effective sets of full measure
and effective null sets. This is one of the successes of algorithmic randomness. The
reference books in this field are [82, 95, 32], where the theory is developed on
the Cantor space. For the extension to more general spaces, we refer the reader to
[58, 59, 49, 68, 88, 103, 104].

7.3.1 Effective Null Sets

A null set is a set of measure zero. As we are working with regular measures, another
way to characterize a null set is to say that a set N is null if and only if for every ε >
0, the set N can be covered by an open set of measure less than ε . Martin-Löf [85]
noticed that this characterization of null set can be effectivized.

We are working in any computable metric space X endowed with a computable
Borel probability measure µ over X . For short, we say that (X ,µ) is a com-
putable probability space. As is usual in probability theory, we sometimes write P[A]
for µ(A), where A⊆ X is any Borel set.

Definition 7.3.1. A Martin-Löf test is a sequence (Un)n∈N of uniformly effectively
open sets such that µ(Un)≤ 2−n. A set N is Martin-Löf null if N ⊆

⋂
n Un for some

Martin-Löf test. A point x is Martin-Löf random if it is not contained in any Martin-
Löf null set. The set of Martin-Löf random points is written ML.
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As the name suggests, Martin-Löf random points generally have “typical” or
“random” behavior. For example, consider a Martin-Löf random sequence in the
space of fair-coin tosses. Such a sequence will always satisfy standard randomness
criteria such as the strong law of large numbers and the law of the iterated log-
arithm. Indeed, it is difficult to come up with an almost sure property of random
coin flips which is not true of a Martin-Löf random sequence, and such proper-
ties are almost always computability-theoretic in nature. (For example, there is a
Martin-Löf random sequence which computes the halting problem.) In this defini-
tion we have assumed the measure µ to be computable. However it can be extended
to non-computable measures by requiring the sets Un to be effective with oracle µ

(we define it below, see Definition 7.3.16). When the measure µ is not clear from
the context, we speak about µ-tests, µ-null sets and µ-random points, whose set is
denoted by ML(µ).

Nonetheless, for good reasons other randomness notions have also been explored.
While there are many options, we give the six that are most connected to computable
measure theory. A 2-Martin-Löf test is the same as a Martin-Löf test except that
the sequence (Un)n∈N is allowed to be computable relative to the halting problem.
The corresponding notion of randomness is called 2-randomness. A weak 2-test
is a null Π 0

2 set, that is a null set which is the intersection of a sequence of uni-
formly effectively open sets. The corresponding randomness notion is called weak
2-randomness. Both of these are stronger notions than Martin-Löf randomness (also
known as 1-randomness).

The other three notions are weaker. A Schnorr test is a Martin-Löf test (Un)n∈N
where µ(Un) is computable uniformly in n. The corresponding notion of random-
ness is called Schnorr randomness. This definition is modeled after Brouwer’s defi-
nition of a constructive null set. While weaker than Martin-Löf randomness, Schnorr
randomness has a tight relationship with computable measure theory.

Computable randomness is a randomness notion that stands strictly between
Schnorr and Martin-Löf randomness. A test1 for computable randomness is a
Martin-Löf test (Un)n∈N which is “bounded” by some computable measure ν .
Specifically, µ(Un∩A)≤ ν(A) ·2−n for all Borel measurable sets A.

Finally, Kurtz randomness (or weak randomness) is the weakest randomness no-
tion of the six. A Σ 0

2 set is a computable union of effectively closed sets. A Kurtz
test is a null Σ 0

2 set. A set is effectively Kurtz null if it is a subset of a Kurtz test.
A point is Kurtz random if it is not contained in an effectively Kurtz null set. Kurtz
randomness is much weaker than Schnorr randomness, and many do not consider
it to be a true randomness notion. It does not satisfy the law of large numbers, and

1 On the Cantor space, tests are usually expressed in terms of computable martingales. On general
metric spaces, the equivalent definition given here is easier to express.
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it shares as many similarities with effective genericity as it does with randomness.2

Nonetheless, it is useful to consider Kurtz randomness.
To summarize, we have the following algorithmic randomness notions listed

from weakest to strongest: Kurtz, Schnorr, computable, Martin-Löf, weak 2- and
2-randomness. While the majority of the work in algorithmic randomness has fo-
cused on the Cantor space with the fair-coin (a.k.a. Lebesgue) measure (or in some
cases Bernoulli measures), all of these randomness notions naturally extend to other
computable metric spaces endowed with a Borel probability measure. One natural
candidate is Brownian motion.

7.3.1.1 Brownian Motion

Informally, Brownian motion is a process which resembles a continuous-time ran-
dom walk starting at the origin. More formally, one can represent d-dimensional
Brownian motion as a particular probability measure, called the Wiener measure,
on the space C ([0,1],Rd) (or C ([0,∞),Rd)) of continuous functions. This space
is a computable metric space under the sup norm. Also the Wiener measure is a
computable probability measure on this space. Algorithmically random Brownian
motion paths have been thoroughly studied by Fouché and others [5, 36, 37, 77, 38,
39, 28, 3, 40, 42, 41].

To give a sense of the techniques involved let us consider recurrence and tran-
sience of Brownian motion in two and three dimensions. (This theorem is sometimes
stated as “A drunk person will always find their way home, while a drunk bird never
will.”)

Theorem 7.3.2. Let B : [0,∞)→ Rd be a continuous function.

1. If d = 2 and B is Kurtz random, then B obeys the following recurrence result: for
every ε and every t0 ≥ 0, there is some t > t0 such that |B(t)|< ε .

2. If d ≥ 3 and B is Schnorr random, then B obeys the following transience result:
|B(t)| → ∞ as t→ ∞.

Proof. In both cases, our goal is to analyze the corresponding null set. Also, to avoid
“reinventing the wheel” we will use known results in Brownian motion, including
the classical theorems we are attempting to effectivize.

For (1), consider a non-recurrent function B in two dimensions. Then there are
natural numbers m and n such that |B(t)| ≥ 2−n for all t ≥m. By standard techniques

2 This claim that Kurtz randomness is not really a randomness notion can be made formal by
considering the relativized versions of the tests. Every null set is a Martin-Löf null set relative
to some oracle. Said another way, the only difference between the definition of a null set and
a Martin-Löf null set is computability. The same is true for 2-randomness, weak 2-randomness,
computable randomness and Schnorr randomness. However, this is not true for Kurtz randomness.
The relativized notion of a Kurtz null set is a null Fσ set. It is well known in measure theory that
there are null sets which are not contained in any null Fσ set. Indeed, every null Fσ set is meager,
which explains the connections with genericity. There still is a connection with analysis. Null Fσ

sets are the type of null set associated with Jordan-Peano measurable sets and Riemann integrable
functions, as opposed to Lebesgue measurable sets and Lebesgue integrable functions.
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in computable analysis this is a Σ 0
2 property, i.e. its complement is the intersection

of a sequence of uniformly effectively open sets. By the recurrence theorem on two-
dimensional Brownian motion, the set of such paths is null. Therefore, we have the
desired Kurtz null test.

For (2), consider a non-transient function B in three dimensions. If B is Kurtz
random, then by the same argument as in the recurrent case, |B(t)| is unbounded.
Therefore, for every 0 < r < R, there is a t0 > 0 such that |B(t0)| = R and a t1 > t0
such that |B(t1)| = r. Now we will use the following quantitative estimate from
probability theory:

P{B : ∃t1 > t0 > 0 [|B(t0)|> R and |B(t1)|< r]}︸ ︷︷ ︸
Ur,R

≤ rd−2

Rd−2 .

A quick observation is that Ur,R is effectively open uniformly in r and R (which we
can assume are rationals). Then

⋂
r,R Ur,R is a null Π 0

2 set. Therefore, every weak
2-random Brownian motion path is transient. We can do better. Since we have a
computable upper bound on P[Ur,R] by picking a sufficiently fast-shrinking/growing
set of pairs rn→ 0 and Rn→ ∞, we have a Martin-Löf test Un =Urn,Rn .

This is the point where most of the results in the literature stop. However, with
a little more work we can extend our result to Schnorr randomness by showing that
P[Ur,R] is computable in r and R. A common misconception is that we require an ex-
act formula here. Indeed, we only require an algorithm which converges to the value
of P[Ur,R]. We provide such an algorithm. Since Ur,R is effectively open, P[Ur,R] is
lower semicomputable. Therefore it remains to show that P[Ur,R] is upper semicom-
putable. Choose a large S > R and a small ε > 0. By transience, after |B(t)| = R,
then almost surely, eventually there is some t1 > t such that |B(t1)| > S. Let Vr,R,S
be the set of paths which after hitting R, hit S before r. This set is also effectively
open, and therefore P[Vr,R,S] is lower semicomputable.3 Now, almost every path is
in either Ur,R or Vr,R,S (or both!). However, the overlap of the two sets is small since
Ur,R∩Vr,R,S ⊂Ur,S. By choosing S large enough we can compute P[Ur,R] to any de-
sired precision. �

The previous proof is typical for this type of result. Most of the results for Martin-
Löf randomness in the literature of this type can be strengthened to Schnorr random-
ness with some additional work.4

3 Formally Vr,R,S = {B : ∃t0 < t1 [r < |B(t0)| < R ∧ S < B(t1) ∧ mint∈[t0,t1] |B(t)| > r]}.
This is effectively open since we are using < signs and since the the minimum of a continuous
function over a closed interval is computable. Also, if we replaced any of the < with ≤ it would
not change the measure of the set in this case.
4 By “this type of result”, we mean an almost everywhere result for some computable probability
space which does not explicitly refer to computable objects. Effective convergence results (see the
next section) explicitly refer to computable objects and may hold for Martin-Löf randomness but
not Schnorr randomness.
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7.3.2 Effective Convergence Theorems

As explained at the beginning of Section 7.3, algorithmic randomness provides a
way to analyze the computability of almost sure convergence theorems, by identi-
fying the notion of effective null set associated with each such theorem. There has
been increasing interest in the past few years in obtaining characterizations of almost
sure convergence theorems using notions of algorithmic randomness. We present
here some of the most prominent results in the literature, characterizing Martin-Löf,
computable and Schnorr randomness using Birkhoff’s ergodic theorem and differ-
entiation theorems, but there are other works calibrating the notions of randomness
to fit almost sure theorems with varying computability assumptions.

The first results in this direction were obtained very early by characterizing
algorithmic randomness notions in terms of convergence of martingales. On the
Cantor space, Schnorr proved that the Martin-Löf random points are exactly the
points where every lower semicomputable martingale is bounded. He introduced
computable random points as the points at which every computable martingale is
bounded. He also introduced what is now called Schnorr randomness, also origi-
nally expressed in terms of martingales. We do not give the details of these charac-
terizations, which can be found in the reference books [82], [95] or [32]. Schnorr’s
work on this topic appeared in his book [106].

7.3.2.1 Ergodic Theorems

As we saw in Section 7.2.3.2, Birkhoff’s ergodic theorem is not computable in gen-
eral, i.e. the convergence is not effective in any sense. What about the effectiveness
of the associated null set? In other words, for which class of random points does
Birkhoff’s ergodic theorem hold?

Bishop already observed that this theorem does not hold constructively. He pro-
posed a constructive proof whose conclusion is classically equivalent to almost sure
convergence, but has less constructive content. This statement involves so-called up-
crossing inequalities. This idea was later used by V’yugin to prove that the Birkhoff
ergodic theorem holds for Martin-Löf random points.

Theorem 7.3.3 (V’yugin [112]). Let X be a computable metric space, T : X→ X a
computable function, µ a T -preserving probability measure over X and f : X → R
a computable function. For every Martin-Löf µ-random point x, the limit

f ∗(x) := lim
n→∞

1
n

n−1

∑
i=0

f ◦T i(x)

exists.

In other words, the associated null set is a Martin-Löf null set. There has been
work investigating the classes of functions f to which Theorem 7.3.3 can be ex-
tended. It holds for all bounded continuous (not necessarily computable) func-



248 Mathieu Hoyrup and Jason Rute

tions f , just because computable functions are in a sense dense among them. It
was proved in [14, 43, 15] that it also holds when the system is ergodic and f : X →
[0,+∞] is lower semicomputable.

The result was used in [63] to prove another famous result from ergodic theory,
the Shannon-McMillan-Breiman theorem, for Martin-Löf random points. That re-
sult was already implicitly proved in [60] using upcrossing inequalities. We will
see in Section 7.4.5 that Theorem 7.3.3 can be extended to other classes of func-
tions T, f that are not continuous (layerwise computable functions). It is still open
whether that result holds for lower semicomputable f : X → [0,+∞] when the sys-
tem is not ergodic, and for upper semicomputable f : X → [0,+∞] (both for ergodic
and non-ergodic systems). It is proved in [89] that this result holds for a stronger
notion of randomness called Oberwolfach randomness.

A converse to Theorem 7.3.3 was later proved by Franklin and Towsner [44],
showing that Martin-Löf randomness is the right notion in that case.

Theorem 7.3.4 (Franklin, Towsner [44]). If x is not Martin-Löf λ -random then
there exists a computable λ -preserving map T : {0,1}N→{0,1}N and an effectively
open set A such that λ (A) is computable and such that the Birkhoff averages of 1A
do not converge at x.

In other words, if a class of effective null sets induces a notion of randomness that
is not stronger than Martin-Löf randomness (if for instance it is strictly weaker than
Martin-Löf randomness, like Schnorr or computable randomness), then the Birkhoff
ergodic theorem is not in general effective for this notion of null set.

We saw that in the ergodic case, the speed of convergence is computable. This
has a consequence on the corresponding randomness notion.

Theorem 7.3.5 (Gács, Hoyrup, Rojas [50]). Let X be a computable metric space
and µ a computable probability measure over X. A point x is Schnorr µ-random
if and only if for every µ-preserving computable T : X → X and every bounded
continuous f : X → R the limit

f ∗(x) := lim
n→∞

1
n

n−1

∑
i=0

f ◦T i(x)

exists.

In other words, if a class of effective null sets induces a notion of randomness
that is not stronger than Schnorr randomness then the Birkhoff ergodic theorem for
ergodic measures is not in general effective for this notion of null set.

7.3.2.2 Differentiation Theorems

In this section the underlying measure is the Lebesgue or uniform measure over the
real interval [0,1]. Let us start with a computable theorem, the Lebesgue differenti-
ation theorem.
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Theorem 7.3.6 (Pathak, Rojas, Simpson [97]; Freer, Kjos-Hanssen, Nies, Stephan
[45]). For a real x ∈ [0,1] the following statements are equivalent:

• x is Schnorr random,
• For every L1-computable function f : [0,1]→ R,

lim
r→0

1
λ (B(x,r))

∫
B(x,r)

f dλ exists.

As already mentioned, when considering almost sure convergence theorems one
quickly runs into non-computability results. The following theorems are not com-
putable in the sense that the almost sure convergence is not effective. How to dis-
tinguish between different types of non-computability? Again, algorithmic random-
ness allows for a finer look by providing several notions of randomness via several
notions of effective null sets.

Theorem 7.3.7 (Brattka, Miller, Nies [24]; Freer, Kjos-Hanssen, Nies, Stephan
[45]). For a real x ∈ [0,1] the following statements are equivalent:

• x is computably random,
• Every non-decreasing computable function f : [0,1]→ R is differentiable at x.
• Every computable Lipschitz function f : [0,1]→ R is differentiable at x.

Nies [96] proved that this theorem also holds for polynomial randomness and
polynomial-time computable functions f .

Theorem 7.3.8 (Demuth [29]; Brattka, Miller, Nies [24]). For a real x ∈ [0,1] the
following statements are equivalent:

• x is Martin-Löf random,
• Every computable function f : [0,1]→ R of bounded variation is differentiable

at x.

This result was obtained by Demuth [29] in the context of constructive analysis and
was reformulated in [24] in modern language.

These results highlight the non-computability of some theorems from real anal-
ysis. For instance the Jordan decomposition theorem states that every function of
bounded variation is a difference of two non-decreasing functions. The two previ-
ous theorems witness that this decomposition is not computable in general. These
results are also indirect proofs that the convergence in these theorems is not effec-
tive, otherwise convergence would occur at every Schnorr random point.

7.3.3 Randomness Preservation

While “almost sure” results are an important category of results in measure the-
ory, there are also many results which relate the behavior of random variables (or
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measurable sets) on one space to random variables (or measurable sets) on another
space. For example, in probability theory, a random variable representing a sequence
of independent fair coin flips can easily be transformed into a random variable rep-
resenting a random walk on a lattice or a normally distributed random variable. In
the context of algorithmic randomness, one wants to be sure that if x is random on
one space, then this transformation of x remains random in the corresponding space.
From the perspective of computable analysis, we are saying that these transforma-
tions preserve effective null sets. Here we give examples of such results.

Let X and Y be computable metric spaces and µ a computable Borel probability
measure over X . We recall from Section 7.2.2.2 that a function f : X → Y induces a
measure µ f over Y called the push-forward measure, defined by µ f (A)= µ( f−1(A))
for all Borel sets A⊆ Y . The next results are folklore results.

Theorem 7.3.9 (Randomness preservation). Let f : X→Y be a computable func-
tion. If x is Martin-Löf µ-random, then f (x) is Martin-Löf µ f -random.

This result is well known and holds for Kurtz, Schnorr, Martin-Löf, weak 2- and 2-
randomness. However, it does not hold for computable randomness (see Rute [103]).
There is also a partial converse to randomness preservation.

Theorem 7.3.10 (No-randomness-from-nothing). Let f : X → Y be a computable
function. If y is Martin-Löf µ f -random, then there exists a Martin-Löf µ-random x
such that f (x) = y.

No-randomness-from-nothing holds for computable, Martin-Löf, weak 2- and
2-randomness, but not for Schnorr randomness (see Rute [103]). Nonetheless, we
will see a result below (Theorem 7.3.18) that implies in most natural cases that
no-randomness-from-nothing holds for Schnorr randomness.

Observe that Proposition 7.2.9 implies that the measure µ f is computable. Propo-
sition 7.2.9 holds not only for computable functions, but for the larger class of effec-
tively µ-approximable functions. However, Theorems 7.3.9 and 7.3.10 cannot hold
for those functions: if f is in that class and x is Martin-Löf µ-random then f (x)
can be anything, unless µ({x}) > 0 ( f remains in the class when changing it at x
only). Here we see that one needs a notion of effectively measurable function that
is well behaved on algorithmically random points. Such a notion exists and is called
layerwise computability, presented in Section 7.4.5.

To give a specific application of these results, let us introduce the notion of a
random closed set.

Example 7.3.11 (Random closed sets). In the context of computability theory,
Barmpalias, Brodhead, Cenzer, Dashti and Weber [11] introduced the following
definition of a “(Martin-Löf) random closed set”. Every infinite tree T with no dead
ends on {0,1}∗ can be represented by a ternary sequence X in {0,1,2}N recursively
as follows. Start at the root of T . If at the root T branches to both the left and the
right, let X(0) = 0. If it only branches to the left, X(0) = 1 and if it only branches to
the right, X(0) = 2. Recursively, for each node of the tree, similarly define a value
of X to code how the tree branches at that node. If the sequence X is (Martin-Löf)
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random, then the set C ⊆ {0,1}N of paths through this tree is called a (Martin-Löf)
random closed set.

The space K (2N) of non-empty closed subsets of 2N forms a computable metric
space with the Hausdorff metric (the topology is called the Fell topology). More-
over, the map X 7→C which maps the representation for the tree T to its set of paths
is computable as a map from 3N to K (2N). If µ is the push-forward measure along
this map, then our above theorems tell us that a closed set C is Martin-Löf random
(in the specific sense that its encoding X is random) if and only if C is Martin-Löf µ-
random. Actually, since this map is computably invertible, this result will hold for
all of the major randomness notions listed in Section 7.3.1.

While this last example may seem simple, results such as these are key to working
with random structures in mathematics. In many cases, they can turn a long proof
into a short one. Here is an example.

Example 7.3.12 (Brownian motion). Consider a one-dimensional Martin-Löf ran-
dom Brownian motion B : [0,1]→ R. It is well known that the push-forward of the
map B 7→ B(1) induces the Gaussian measure on R. Therefore, it is natural to sus-
pect that for every random Brownian motion B, the value of B(1) is random (for the
Gaussian measure) and if a is (Gaussian) random then there is a random Brownian
motion such that B(1) = a. Indeed, for Martin-Löf randomness, the first fact follows
from randomness preservation and the second from no-randomness-from-nothing.
Observe that the Gaussian measure and the uniform measure on R have the same
Martin-Löf random points (we will see why in Example 7.4.7).

We will see in Section 7.4.5 other randomness preservation results where Theo-
rems 7.3.9 and 7.3.10 cannot be applied because the function involved is not con-
tinuous, but only measurable.

7.3.4 Product Spaces

It is well known that if one takes two independent sequences of independent identi-
cally distributed (i.i.d.) fair-coin flips A= (a0,a1,a2, . . .) and B= (b0,b1,b2, . . .) and
interleaves them, then the resulting sequence A⊕B = (a0,b0,a1,b1, . . .) is also an
i.i.d. sequence of fair-coin flips. The concept of independence is essential to proba-
bility theory, and its analogue in algorithmic randomness is relative randomness.

Definition 7.3.13 (Relative Martin-Löf randomness). Let (X ,µ) be a computable
probability space and Y a computable metric space. A uniform Martin-Löf test is a
computable sequence of effectively open sets (Un)n∈N on the product space X ×Y
such that for every y ∈ Y , we have µ{x ∈ X : (x,y) ∈Un} ≤ 2−n. Say that x ∈ X is
Martin-Löf random relative to y if (x,y) is not contained in

⋂
n Un.

Theorem 7.3.14 (Van Lambalgen [80]). Endow {0,1}N with the fair-coin mea-
sure. For A and B in {0,1}N the following are equivalent.
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1. A⊕B is Martin-Löf random,
2. A is Martin-Löf random and B is Martin-Löf random relative to A.

This result also extends to any computable product measure. Given two probabil-
ity spaces (X ,µ) and (Y,ν), the product measure µ ⊗ν is the probability measure
on X×Y given by (µ⊗ν)(A×B) = µ(A) ·ν(B). The product measure operation is
computable and we have the following version of van Lambalgen’s theorem.

Theorem 7.3.15 (Van Lambalgen for product measures). Let (X ,µ) and (Y,ν) be
two computable probability spaces. Let x ∈ X and y ∈ Y . The following are equiva-
lent.

1. (x,y) is Martin-Löf (µ⊗ν)-random,
2. x is Martin-Löf µ-random and y is Martin-Löf ν-random relative to x.

Finally, one may consider the case of an arbitrary probability measure on a prod-
uct space. We saw in Section 7.2.3.1 how a probability measure π over X ×Y can
be decomposed into its marginal measure πX over X , defined by πX (A) = π(A×Y ),
and conditional measures π(· · · | x). We saw that the mapping x 7→ π(· | x) is not al-
ways computable or effectively πX -approximable. However, when it is computable
one can prove a version of van Lambalgen’s theorem for conditional probabilities.

Definition 7.3.16. Let X be a computable metric space. A uniform Martin-Löf test
is a computable sequence of effectively open sets (Un)n ∈ N on the product space
M1(X)×X such that for every µ ∈M1(X), we have µ{x ∈ X : (µ,x) ∈Un} ≤ 2−n.
Say that x ∈ X is Martin-Löf µ-random if (µ,x) is not contained in

⋂
n Un.

One can naturally combine Definitions 7.3.13 and 7.3.16 to define Martin-Löf
randomness for a non-computable measure relative to a non-computable oracle. A
version of van Lambalgen’s theorem for conditional probabilities was proved by
Takahashi [109] on the Cantor space and holds on all computable metric spaces.

Theorem 7.3.17 (Van Lambalgen’s theorem for conditional probabilities). Let
X ,Y be computable metric spaces and π a computable measure over X×Y . Assume
that x 7→ π(· | x) is a computable function. The following are equivalent.

1. (x,y) is Martin-Löf π-random,
2. x is Martin-Löf πX -random and y is Martin-Löf π(· | x)-random relative to x.

In this result, the measure π(· | x) is computable relative to x, for all x ∈ X and
uniformly in x. Takahashi [110] extended this theorem by proving that the equiva-
lence holds for a single x as long as π(· | x) is computable relative to x (while π(· | x′)
may not be computable relative to x′ for x′ 6= x), still assuming that the measure π

is computable. Bauwens [12] showed that in general the equivalence in Theorem
7.3.17 fails when π(· | x) is not computable relative to x.

Now, let us turn to maps and random variables. Let (X ,µ) be a computable prob-
ability space and Y a computable metric space. Let T : X → Y be a computable
map. The push-forward measure µT is computable. Let µ(· | T = y) denote the
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conditional probability of x given that T (x) = y. Even if µT (y) = 0 for all y, the
conditional probability is well defined as a measurable function y 7→ µ(· | T = y). In
particular, y 7→ µ(· | T = y) is the µT -almost everywhere unique function satisfying

µ(A∩T−1(B)) =
∫

B
µ(A | T = y)dµT (y)

for all measurable sets A⊆ X and B⊆ Y .

Theorem 7.3.18 (Van Lambalgen’s theorem for maps). Let T : (X ,µ)→ Y be as
above and assume the conditional probability map y 7→ µ(· | T = y) is computable.
Then the following are equivalent.

1. x is Martin-Löf µ-random,
2. y := T (x) is Martin-Löf µT -random and x is Martin-Löf random w.r.t. µ(· | T =

y), relative to y.

Proof. We simply apply the previous theorem to the measure π over X ×Y defined
as the push-forward of µ along the map x 7→ (x,T (x)). That is, π is the measure
supported on the graph of T whose marginal measure is µ . Conditioning π on x is
given by π(· | x) = δT (x) and is computable, so (x,y) is π-random iff condition 1. is
satisfied (as T (x) is always δT (x)-random). Conditioning π on y is given by π(· | y) =
µ(· | T = y) and is computable by assumption, so (x,y) is π-random iff condition 2.
is satisfied. �

The abovementioned results can be extended in two natural ways. First, all of these
versions of Van Lambalgen’s theorem hold for Schnorr randomness under the cor-
rect notion of “relative Schnorr randomness”. See Miyabe and Rute [90] and Rute
[104] for details. Second, any theorem requiring that a map is “computable” can
be extended to a layerwise computable map (or in the case of Schnorr randomness,
a Schnorr layerwise computable map); see Definition 7.4.3. While the details are
more technical, this allows for a much more natural setting.

Example 7.3.19 (Brownian motion again). We have seen in Example 7.3.12 that
the values B(1) taken by Martin-Löf random Brownian paths B at time 1 are ex-
actly the Martin-Löf random reals w.r.t. the Gaussian measure, which coincide
with the Martin-Löf random reals w.r.t. the Lebesgue measure, as explained in Ex-
ample 7.4.7. The same result holds when replacing Martin-Löf randomness with
Schnorr randomness on both sides. Indeed, the conditional probability of the map
B 7→ B(1) conditioned on B(1) = a is known as a Brownian bridge landing at a.
Such objects are well studied in probability theory and the conditional probability
map is computable. Therefore, for Schnorr randomness, the result follows from Van
Lambalgen’s theorem for maps (see Rute [104] for the details of this result).
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7.4 Pointwise Computable Measure Theory

Let us take a step back regarding all the material developed so far. Computable
measure theory is somewhat separated from other branches of computable analysis
in several aspects:

• Computable analysis can usually be seen as computable topology. Indeed, the
core concept of computable function in computable analysis is very close to the
notion of continuous function, therefore it is appropriate on topological spaces
but not on measure spaces.

• In computable analysis, the fundamental notion of computable function is de-
fined in terms of a function mapping names of points to names of their images.
However, the convenient notion of effectively measurable function does not com-
ply with this definition.

• Computable analysis is generally about computing points or functions between
points, however individual points are completely ignored in the definitions of
effectively approximable and effectively measurable sets and functions.

We also saw that there is no unique way of investigating convergence theorems
in terms of computability and that computable measure theory and algorithmic ran-
domness give quite different insights on this problem. So it seems that we need to
reconcile computable measure theory with computable topology and to investigate
more precisely the relationship between the two parts of this chapter, computable
measure theory and algorithmic randomness. Let us draw inspiration from the fol-
lowing text written by Doob in his book Measure Theory ([31] p. 101), comparing
analysis before and after the advent of measure theory:

In many contexts, measure theory widened the class of admissible domains and functions
to the classes of measurable sets and measurable functions, and in so doing made it pos-
sible to apply the usual limiting procedures without leaving admissible classes. What was
unexpected was that, in a reasonable sense, most of the old concepts were very nearly still
present. Egorov’s theorem showed that uniform convergence was nearly present whenever
there was convergence. Lusin’s theorem showed that the new measurable functions were
nearly continuous. On the other hand, measure theory could be applied in abstract contexts
where topology was inappropriate.

This phenomenon has consequences in computable measure theory. We will see
that the “old concepts” from computable analysis can be used in computable mea-
sure theory, thanks to algorithmic randomness and more particularly Martin-Löf
randomness.

This is possible because algorithmic randomness is inherently a pointwise ap-
proach to computable probability theory. We will see that many computable versions
of results and constructs in measure and probability theory have a pointwise formu-
lation. We have already seen that independence of random variables has a pointwise
formulation, namely Van Lambalgen’s theorem. We will see that effective absolute
continuity of measures has a formulation in terms of randomness preservation, ef-
fective Egorov’s theorem can be formulated in terms of uniform convergence on
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random points, effective Lusin’s theorem can be expressed as a form of uniform
computability on random points, called layerwise computability, and so on.

The results in this section heavily rely on the important notion of randomness
deficiency.

7.4.0.1 Randomness Deficiency

One of the first main results about Martin-Löf randomness is the existence of a
universal Martin-Löf test, or a greatest Martin-Löf null set. More precisely there
exists a Martin-Löf test (Un)n∈N such that for every Martin-Löf test (Vn)n∈N there
exists c ∈ N such that Vn+c ⊆ Un for all n. We fix such a universal test and de-
fine MLn = X \Un. The set of Martin-Löf random points can then be decomposed
into levels ML =

⋃
nMLn with MLn ⊆MLn+1. If x is Martin-Löf random then the

minimal n such that x ∈MLn is called the randomness deficiency of x. There are ac-
tually many equivalent ways of tests for Martin-Löf randomness. In each case there
exists a universal test and its associated randomness deficiency notion. While these
different quantities are not equal, they are computably related and all the results in
this section remain true for these other notions.

The levels have large measures: µ(MLn) ≥ 1− 2−n and are effectively closed
sets, or Π 0

1 -sets. One can prove more, as we now show.

7.4.1 Effective Tightness

In a complete separable metric space, every Borel probability measure is tight, i.e.
assigns most of the weight to compact sets. This theorem is effective and witnessed
by the Martin-Löf random points and their deficiencies.

Proposition 7.4.1 (Effective tightness). Let X be a complete computable metric
space and µ a computable Borel probability measure over X. The sets MLn(µ) are
effectively compact, uniformly in n.

This result appeared in [67]. More generally, Martin-Löf random points witness
an effective version of Prokhorov’s theorem: if C ⊆M1(X) is an effectively com-
pact class of Borel probability measures then MLn(C ) :=

⋃
µ∈C MLn(µ) is effec-

tively compact [16]. For this, one needs to define Martin-Löf randomness for non-
computable measures (see Definition 7.3.16 above and [49, 68]).

Proposition 7.4.1 is fundamental as it enables one to apply “old concepts” from
computable analysis, involving effective compactness, to computable measure the-
ory. We will see for instance how the effectiveness of the Pólya urn (Example 7.2.4)
can easily be proved by a compactness argument rather than by probabilistic esti-
mates (see Example 7.4.14).

This result is useful in the study of Martin-Löf randomness of Brownian motion,
where the underlying space C ([0,1],Rd) is not compact, but the levels of Martin-
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Löf random paths are effectively compact. For instance, it implies that for any com-
putable Borel probability measure over C ([0,1],R), the Martin-Löf random func-
tions all have a computable modulus of uniform continuity. For the particular case
of the Wiener measure, an explicit formula is given by Lévy’s modulus of continuity
theorem, but the computability of the modulus holds for any computable measure.

7.4.2 Effective Egorov’s Theorem

If a point x is Martin-Löf random then it has a finite randomness deficiency, which
cannot usually be computed or even bounded from an access to x. Moreover, having
an upper bound on this deficiency gives important information about x that usually
cannot be recovered from x. For instance, Davie [27] showed how this additional
information can be used to compute the speed of convergence in the strong law of
large numbers or the law of the iterated logarithm, or to bound the number of events
in the Borel-Cantelli lemma. More generally, one can prove an effective version of
Egorov’s theorem, again involving Martin-Löf random points and their deficiencies
[67].

Proposition 7.4.2 (Effective Egorov’s theorem). Let fn, f : X → R be uniformly
computable functions. The following statements are equivalent:

1. fn converge effectively µ-almost surely to f ,
2. fn converge effectively uniformly to f on each MLk(µ), uniformly in k.

The second item means that given k,ε > 0, one can compute n such that

sup
x∈MLk(µ)

| fp(x)− f (x)|< ε

for all p≥ n.
Incidentally, this result relates more precisely the effective convergence notions

investigated in the previous two parts of this chapter: effective almost sure conver-
gence (Definition 7.2.17) and convergence on algorithmically random points. We
saw that the former implies the latter (even for Schnorr random points) but the con-
verse does not usually hold, and Proposition 7.4.2 shows the precise relationship.

7.4.3 Effective Lusin Theorem

We have just seen in Proposition 7.4.2 that if fn are computable and converge ef-
fectively almost surely to f then for an individual x, one can compute the speed of
convergence of fn(x) to f (x) simply from any upper bound on its randomness de-
ficiency. In particular, one can compute f (x) from x and such an upper bound. We
make this observation into a definition [68].
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Let (Y,δY ) be a set with a representation.

Definition 7.4.3. A function f : X → Y is µ-layerwise computable if for all k ∈ N
and all x ∈MLk(µ), f (x) is computable relative to x, uniformly in k,x.

This means that there is a type-two Turing machine taking as inputs k ∈ N and a
name of x ∈MLk(µ) and outputs a name of f (x).

The next result [66] shows that this notion is an alternative to the notions of
effectively approximable and effectively measurable functions. It is at the same time
an effective version of Lusin’s theorem, which states that every measurable function
is nearly continuous, i.e. continuous on a compact subset of measure arbitrarily
close to 1.

Proposition 7.4.4 (Effective Lusin theorem). Let f : X → Y . The following state-
ments are equivalent:

1. f is effectively µ-approximable,
2. f coincides µ-almost everywhere with a µ-layerwise computable function.

Note that a µ-layerwise computable function is computable hence continuous on
each MLk(µ), so this proposition is indeed an effective version of Lusin’s theorem.

There are good reasons to use the notion of layerwise computable function in
place of effectively measurable/approximable function. On the one hand it is much
better adapted to the study of Martin-Löf randomness. For instance, two layer-
wise computable functions that coincide almost everywhere actually coincide on
the Martin-Löf random points. Almost all the theorems about Martin-Löf random
points involving computable functions actually hold for layerwise computable func-
tions, thus this notion is a suitable notion of effectively measurable function that is
well behaved w.r.t. Martin-Löf randomness. On the other hand it enables one to use
“old concepts” from computable analysis in computable measure theory, because
they are instances of computable functions between represented spaces for a suit-
able representation (a random point is represented by a name and an upper bound
on its randomness deficiency), and they are almost like computable functions, with
some non-uniformity.

7.4.4 Effective Absolute Continuity

We have already seen randomness preservation theorems, which are theorems about
preservation of effective null sets. The question of the preservation of null sets
is naturally raised in another situation, when comparing two measures. We recall
that a measure ν is absolutely continuous w.r.t. a measure µ , written ν � µ , if ev-
ery µ-null set is also ν-null. It is natural to investigate effective versions, where null
sets are replaced by any notion of effective null sets. For a probability measure µ ,
let Sch(µ), CR(µ) and Ku(µ) denote the sets of Schnorr random, computably ran-
dom, and Kurtz random points respectively.
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Theorem 7.4.5 (Bienvenu, Merkle [17]). The following implications hold and are
tight:

CR(ν)⊆ CR(µ) =⇒ML(ν)⊆ML(µ)

Sch(ν)⊆ Sch(µ)

}
=⇒ ν � µ =⇒ Ku(ν)⊆ Ku(µ).

The implication ML(ν) ⊆ ML(µ) =⇒ ν � µ was independently proved by
Archibald, Brattka and Heuberger [4].

We have seen another effective version of absolute continuity in Definition
7.2.14. It is related to algorithmic randomness through a characterization that in-
volves randomness deficiency.

Proposition 7.4.6. The following statements are equivalent:

1. ν is effectively absolutely continuous w.r.t. µ ,
2. There exists a computable function ψ : N→ N such that MLn(ν)⊆MLψ(n)(µ).

Proof. 1. witnessed by ϕ implies 2. with ψ(n) = ϕ(n + c) for some c. Indeed,
as µ(MLϕ(n)(µ))≥ 1−2−ϕ(n), one has ν(MLϕ(n)(µ))≥ 2−n so there exists a con-
stant c ∈ N such that MLn(ν)⊆MLϕ(n+c)(µ) for all n.

2. implies 1. One can prove that if MLn(ν) ⊆ MLψ(n)(µ) for all n then ν is
effectively absolutely continuous w.r.t. µ with ϕ(n) = ψ(n)+c for some c∈N. The
argument is a refinement of the proof of Theorem 7.4.5 (Proposition 3.3 in [17]). �

In particular, if f is L1(X ,µ) computable and ν is the measure with density f
then ν is effectively absolutely continuous w.r.t. µ by Proposition 7.2.15 so ev-
ery Martin-Löf µ-random point is also Martin-Löf ν-random. This is also true for
Schnorr randomness.

Example 7.4.7 (Brownian motion continued). We have seen in Example 7.3.12 that
the values taken by Martin-Löf random paths B : [0,1]→ R at time 1 are exactly
the reals that are Martin-Löf random w.r.t. the Gaussian measure over R. The Gaus-
sian measure is equivalent to the Lebesgue measure, in the sense that they are both
absolutely continuous w.r.t. one another, moreover they are effectively absolutely
continuous w.r.t. one another. As a result they have the same Martin-Löf random
points. All in all, the set of values B(1) for Martin-Löf random paths B is exactly
the set of Martin-Löf random reals w.r.t. the Lebesgue measure. The remark follow-
ing Theorem 7.3.18 implies that the same result holds for Schnorr randomness.

7.4.5 Properties of Layerwise Computable Functions

It turns out that “naturally defined” effectively measurable functions are usually al-
ready layerwise computable. For instance, the fat Cantor set (Example 7.2.6), or
any effectively closed set or effectively open set whose measure is computable is
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not only effectively approximable (Proposition 7.2.7), but actually layerwise com-
putable. More generally, the effectively measurable sets in the sense of Edalat
[34] coincide with the layerwise computable sets. So layerwise computability is
a stronger notion that is in practice a handy substitute for effective approximability,
as it has stronger properties and behaves well w.r.t. Martin-Löf randomness.

Moreover layerwise computable functions are instances of computable functions
between represented spaces (for a suitable representation), contrary to effectively
measurable or approximable functions. Therefore, they mostly behave as usual com-
putable functions, with essentially the same proofs. We list a few simple closure
properties of the class of layerwise computable functions:

• If f ,g : X → R are µ-layerwise computable then so are f +g, f −g, f g, | f |, etc.
• If fn : X → [0,1] are uniformly µ-layerwise computable then so is ∑n 2−n fn,
• If fn : X→R are uniformly µ-layerwise computable and converge effectively µ-

almost surely, then their pointwise limit is µ-layerwise computable,
• If Y is another computable metric space and f : X→Y is µ-layerwise computable

and one-to-one then f−1 is µ f -layerwise computable.

The original goal of layerwise computability was to have an effective notion of
measurable function that behaves well on Martin-Löf random points. This is in-
deed the case, as most of the theorems about Martin-Löf random points involving
computable functions also hold for layerwise computable functions, with essentially
the same proof. For instance, in Birkhoff’s ergodic theorem for Martin-Löf random
points (Theorem 7.3.3), the functions T, f can be assumed to be µ-layerwise com-
putable only [67].

We have already seen that computable functions preserve randomness (Theorems
7.3.9 and 7.3.10), which has interesting consequences (Examples 7.3.11 and 7.3.12).
These results extend to the larger class of layerwise computable functions.

Theorem 7.4.8 (Hoyrup, Rojas [67]). Let f : X → Y be µ-layerwise computable.

• The push-forward measure ν = µ f = µ( f−1(.)) is computable, and

f (ML(µ)) =ML(ν). (7.7)

• If g : Y → Z is ν-layerwise computable then g◦ f is µ-layerwise computable.
• If f is moreover one-to-one then f−1 : Y → X is ν-layerwise computable.

Proof. The sets MLk(µ) are effectively compact, so their images f (MLk(µ)) are
also effectively compact, thus their complements Vk = Y \ f (MLk(µ)) are effec-
tively open. By definition of µ f , one has µ f ( f (MLk(µ))) = µ( f−1( f (MLk(µ))))≥
µ(MLk(µ))≥ 1−2−k. As a result, µ f (Vk)≤ 2−k so (Vk)k∈N is a Martin-Löf µ f -test.
If y is Martin-Löf µ f -random then y /∈Vk for some k, which means that y = f (x) for
some x ∈MLk(µ).

We give the proof of the last item, which is again a simple compactness argument
based on Proposition 7.4.1. If a continuous function defined on a compact set is
one-to-one, then its inverse is continuous. This is effective: if a computable function
defined on an effectively compact set is one-to-one then its inverse is computable,
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and this is uniform. The result is just a direct application of that result on each
level MLn(µ). �

The proof makes essential use of the effective compactness of the sets MLk(µ)
(Proposition 7.4.1).

Equality (7.7) is the version of Theorems 7.3.9 and 7.3.10 for measurable func-
tions (it is not true for effectively approximable/measurable functions). Observe that
in this case, an upper bound on the randomness deficiency of f (x) can easily be com-
puted from an upper bound on the randomness deficiency of x, as f (MLk(µ)) ⊆
MLk+c(ν) for some constant c ∈ N and all k ∈ N.

The last item calls for a few remarks. The class of layerwise computable func-
tions is closed under taking the inverse, so by Proposition 7.4.4, the same closure
property holds for effectively approximable functions, while a direct proof would
not be as simple. That last item also implies in particular that while the inverse of a
computable one-to-one function is not computable in general, it is always layerwise
computable.

7.4.6 Randomness via Encoding

Theorem 7.4.8 has an important application that we present now.
Originally Martin-Löf introduced his notion of randomness for infinite binary

sequences [85]. In the subsequent literature, there have been mainly two ways of
defining algorithmic randomness for other classes of objects. One way is to extend
Martin-Löf’s definition to other topological spaces and directly apply Definition
7.3.1 [58, 49, 68]. The other is to encode objects into more primitive objects like in-
finite binary sequences and then declare an object to be random if its code is random.
It often happens that these two approaches induce the same notion of randomness.
Moreover, when several non-equivalent encodings are possible, they often turn out
to give the same class of random objects.

In this section we give two results that explain this phenomenon, and are appli-
cations of Theorem 7.4.8. These results intuitively show that several representations
of objects which are non-computably equivalent are often computably equivalent on
the random objects, if they induce the same computable measure.

First observe that the algorithmic notions of randomness induced by an encoding
depend on two factors: the induced or push-forward measure, and the computability
properties of the encoding. If two encodings induce non-equivalent measures (mea-
sures that are not absolutely continuous w.r.t. each other), then they cannot induce
the same class of random objects, essentially by Theorem 7.4.5. For instance, the
signed-digit representation of real numbers induces a notion of randomness that is
disjoint from randomness w.r.t. the Lebesgue measure [4]. So we will assume that
the encodings induce the same measure.
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7.4.6.1 Semicomputable Representations

Usually the computability of the push-forward measure does not imply much about
the function, except for restricted classes of functions.

Proposition 7.4.9. Let f : X → R be lower semicomputable. f is µ-layerwise com-
putable if and only the push-forward µ f is computable.

Proof. We already saw that effectively µ-approximable, hence µ-layerwise com-
putable functions, have a computable push-forward measure.

In the other direction, if µ f is computable then there is a computable dense
sequence of real numbers (ri)i∈N such that µ f {ri} = 0 for all i. For each i, the
set f−1(ri,+∞) is effectively open and µ( f−1(ri,+∞)) = µ f (ri,+∞) is computable,
so it is a µ-layerwise computable set. In other words, given n ∈ N and x ∈MLn(µ),
one can decide for each i whether f (x)> ri, which enables one to compute f (x). �

The same argument can be applied to “semicomputable” functions into spaces
other than R.

For instance if f : X → {0,1}N is such that there is a machine enumerating f (x)
(identified with a subset of N) given x, and the push-forward µ f is computable (over
the Cantor space as a computable metric space), then f is µ-layerwise computable:
for each n, the set {x ∈ X : f (x) has a 1 at position n} is effectively open and has
computable measure so it is µ-layerwise computable, uniformly in n.

Example 7.4.10 (Random closed sets continued). We have already seen two equiv-
alent ways of defining Martin-Löf random closed subsets of the Cantor space, one
directly on the space of closed sets with the Hausdorff metric, the other by encoding
closed sets as binary trees without dead ends. There is yet another equivalent one
defined in [75] by generating a random tree by a Galton-Watson process as follows.
Start with the root node. For each node w ∈ {0,1}∗ added to the tree, independently
add its extensions w0 and w1 to the tree, each with probability 2/3. This tree does
have dead ends and can be encoded as a binary sequence. The function mapping
such a sequence to the closed set of infinite branches of the tree is not computable,
because one can never be sure that a node will have an infinite extension.

However this map is “semicomputable” in the sense that given a binary sequence
encoding a closed set, one can enumerate the cylinders that are disjoint from the
closed set. It happens that the push-forward of this map is a computable measure,
which is almost the same measure as the one from Example 7.3.11 (the difference
is that it gives positive weight to the empty set). By the argument of Proposition
7.4.9, this map is then layerwise computable, and the closed sets coded by Martin-
Löf random binary sequences are exactly the empty set and the Martin-Löf random
closed sets from Example 7.3.11. The equivalence was proved in [30] and [9].

7.4.6.2 Metric Representations

Here we show that different metrics often induce the same notion of Martin-Löf
random point and give the same information for those points. More precisely, we
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consider two metrics d,d′ such that d′ is weaker than d in the sense that the iden-
tity id : (X ,d)→ (X ,d′) is computable (equivalently, d′ : (X ,d)× (X ,d)→ R is
computable). Observe that its inverse id : (X ,d′)→ (X ,d) is not in general com-
putable unless (X ,d) is effectively compact, which we do not assume here.

Proposition 7.4.11. Let (X ,d) be a complete computable metric space endowed
with a computable probability measure µ . Let d′ be a metric over X such that d′ :
X ×X → R is computable. The Martin-Löf µ-random points are the same in the
spaces (X ,d) and (X ,d′). Moreover, the identity from (X ,d′) to (X ,d) is µ-layerwise
computable.

Proof. The identity from (X ,d) to (X ,d′) is computable, maps µ to µ and is one-
to-one, so by Theorems 7.3.9 and 7.3.10 it maps the set of Martin-Löf µ-random
points in (X ,d) exactly to the set of Martin-Löf µ-random points in (X ,d′), and its
inverse is µ-layerwise computable by Theorem 7.4.8. �

Example 7.4.12 (Representations of Brownian motion). We have already met the
Martin-Löf random elements of the computable metric space (C ([0,1]),‖·‖

∞
) en-

dowed with the Wiener measure. Another way of defining Martin-Löf random paths
considered in [37] is to code the values of a continuous function B : [0,1]→R at the
rational numbers into a binary sequence and considering a particular measure over
the Cantor space, and then say that a path is random if its encoding is random. It is
proved in [37] that the class of random paths is the same, and in [28] that the func-
tion mapping an encoding to the function, although not computable, is layerwise
computable.

This result is a direct application of Proposition 7.4.11, by considering the weaker
metric d′( f ,g) =∑i∈N 2−i| f (qi)−g(qi)|where (qi)i∈N is a computable enumeration
of the rational numbers. Proposition 7.4.11 tells us that the Martin-Löf random paths
are the same using the uniform distance and the metric d′, and that the values of f on
the rationals are sufficient to compute f at any real number, given an upper bound
on the randomness deficiency of f . Indeed, the randomness deficiency of f automat-
ically gives a modulus of uniform continuity of f (though the proof of Proposition
7.4.11 is more abstract).

7.4.7 Recovering a Distribution from a Sample

We now present concrete examples where layerwise computability is the right sub-
stitute for computability, in the absence of continuity.

According to Birkhoff’s ergodic theorem, for a measurable function T : X → X
and an invariant measure µ , for µ-almost every x the orbit of x under T has a limit
distribution µx in X . This means that for those x, for all “simple” sets A (sets in a
fixed countable family), one has

µx(A) = lim
n→∞

1
n

n−1

∑
i=0

1A ◦T i(x).
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What about the computability of the measure µx? Can it be computed given x as
oracle? Usually the function x 7→ µx is discontinuous so it cannot be computable.
It turns out that in many cases it is µ-layerwise computable, which adds another
equivalence to Proposition 7.2.24.

Proposition 7.4.13 (Hoyrup [62]). Let X be a complete computable metric space, µ

a computable Borel probability measure and T : X → X a µ-layerwise computable
function. The following statements are equivalent:

• The ergodic decomposition m of µ is computable,
• The mapping x 7→ µx is µ-layerwise computable.

In that case, ML(µ) =
⋃

ν∈ML(m)ML(ν) and for x ∈ML(µ), µx ∈ML(m) is ergodic
and x ∈ML(µx).

The proof of the direct implication heavily relies on the effective compactness of
the levels of Martin-Löf random points.

Example 7.4.14 (Pólya urn again). We already saw in Example 7.2.27 that the class
of Bernoulli measures over {0,1}N is effectively compact, which implies that the
decomposition of the measure µ into Bernoulli measures is computable. It also im-
plies by Proposition 7.4.13 that the mapping x 7→ µx is µ-layerwise computable.
But this mapping is essentially the function p(x) from Example 7.2.4, sending a
random sequence x to the limit frequency of occurrences of 1 in x. This function
is then not only effectively µ-approximable, but also µ-layerwise computable. It is
worth observing that the proof neither relies on the particularities of µ nor on prob-
ability estimates for the speed of convergence, but rather on an abstract effective
compactness argument.

Observe that in the case of Proposition 7.4.13, the ergodic measures are com-
putable from their random points. The more general case of a measure which can
be computed from its random points has been studied by Bienvenu and Monin [18],
who obtained a characterization which gives an answer to the following question:
which measures can be computed from all their Martin-Löf random points? When
one requires that the computation of the measure is effective in the randomness
deficiency of the random points, one gets a precise answer, as shown below.

We say that two measures are effectively orthogonal if they do not have Martin-
Löf random points in common. For instance, in a dynamical system two distinct
ergodic measures are pairwise effectively orthogonal.

Theorem 7.4.15 (Bienvenu, Monin [18]). Let X be an effectively compact com-
putable metric space and C ⊆M1(X) a class of Borel probability measures. The
following statements are equivalent:

• C is contained in an effectively compact class of pairwise effectively orthogonal
measures,

• There is a total computable function F : N×X→M1(X) such that for every µ ∈
C , every n ∈ N and every x ∈MLn(µ), F(n,x) = µ .
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This implies in particular that the function that for every µ ∈ C maps x ∈ML(µ)
to µ is well defined and µ-layerwise computable for all µ ∈ C . The algorithm is
moreover independent of µ and is defined everywhere.

Proof (outline). Assume that C is an effectively compact class of pairwise effec-
tively orthogonal measures. If x ∈ MLn(µ) then x /∈ MLn(ν) for all ν 6= µ in C
as ν and µ do not have common Martin-Löf random points. As a result, {µ} =
{ν ∈ C : x ∈MLn(ν)}, which is effectively compact relative to x as C is effectively
compact, so µ is computable relative to x. The argument is uniform in x and n,
which defines a computable function F(n,x). By the computable Tietze extension
theorem [117], F(n, .) can be computably extended outside

⋃
µ∈C MLn(µ), which is

effectively compact.
Conversely, given C and F , let K = {µ : ∀n ∈ N,∀x ∈MLn(µ),F(n,x) = µ}.

One can show that K is an effectively closed class of effectively orthogonal mea-
sures containing C . As X is effectively compact, so are M (X) and K . Totality of F
is essential here to make K effectively closed. �

Note that in Theorem 7.4.15 one requires the function F to be total. One can
extend this result, with essentially the same argument, to the case when F is just
defined on Martin-Löf random points, like layerwise computable functions.

Theorem 7.4.16. Let X be an effectively compact computable metric space and C ⊆
M1(X) a class of Borel probability measures. The following statements are equiva-
lent:

• C is contained in an effectively compact class K of measures such that ev-
ery µ ∈ C is effectively orthogonal with every ν ∈K , ν 6= µ ,

• There is a partial computable function F :⊆ N×X →M1(X) such that for ev-
ery µ ∈ C , every n ∈ N and every x ∈MLn(µ), F(n,x) = µ .

The second condition exactly says that the function that for every µ ∈C maps x∈
ML(µ) to µ is well defined and µ-layerwise computable for all µ ∈ C , with an
algorithm that is independent of µ .
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Chapter 8
Algorithmic Fractal Dimensions in Geometric
Measure Theory

Jack H. Lutz and Elvira Mayordomo

Abstract The development of algorithmic fractal dimensions in this century has had
many fruitful interactions with geometric measure theory, especially fractal geome-
try in Euclidean spaces. We survey these developments, with emphasis on connec-
tions with computable functions on the reals, recent uses of algorithmic dimensions
in proving new theorems in classical (non-algorithmic) fractal geometry, and direc-
tions for future research.

8.1 Introduction

In early 2000, classical Hausdorff dimension [32] was shown to admit a new charac-
terization in terms of betting strategies called martingales [51]. This characterization
enabled the development of various effective, i.e., algorithmic, versions of Haus-
dorff dimension obtained by imposing computability and complexity constraints on
these martingales. These algorithmic versions included resource-bounded dimen-
sions, which impose dimension structure on various complexity classes [52], the
(constructive) dimensions of infinite binary sequences, which interact usefully with
algorithmic information theory [53], and the finite-state dimensions of infinite bi-
nary sequences, which interact usefully with data compression and Borel normality
[19]. Soon thereafter, classical packing dimension [96, 94] was shown to admit a
new characterization in terms of martingales that is exactly dual to the martingale
characterization of Hausdorff dimension [1]. This led immediately to the develop-
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ment of strong resource-bounded dimensions, strong (constructive) dimension, and
strong finite-state dimension [1], which are all algorithmic versions of packing di-
mension. In the years since these developments, hundreds of research papers by
many authors have deepened our understanding of these algorithmic dimensions.

Most work to date on effective dimensions has been carried out in the Cantor
space, which consists of all infinite binary sequences. This is natural, because ef-
fective dimensions speak to many issues that were already being investigated in the
Cantor space. However, the classical fractal dimensions from which these effective
dimensions arose – Hausdorff dimension and packing dimension – are powerful
quantitative tools of geometric measure theory that have been most useful in Eu-
clidean spaces and other metric spaces that have far richer structures than the totally
disconnected Cantor space.

This chapter surveys research results to date on algorithmic fractal dimensions in
geometric measure theory, especially fractal geometry in Euclidean spaces. This is
a small fraction of the existing body of work on algorithmic fractal dimensions, but
it is substantial, and it includes some exciting new results.

It is natural to identify a real number with its binary expansion and to use this
identification to define algorithmic dimensions in Euclidean spaces in terms of their
counterparts in the Cantor space. This approach works for some purposes, but it
becomes a dead end when algorithmic dimensions are used in geometric measure
theory and computable analysis. The difficulty, first noted by Turing in his famous
correction [98], is that many obviously computable functions on the reals (e.g., ad-
dition) are not computable if reals are represented by their binary expansions [100].
We thus take a principled approach from the beginning, developing algorithmic di-
mensions in Euclidean spaces in terms of the quantity Kr(x) in the following para-
graph, so that the theory can seamlessly advance to sophisticated applications.

Algorithmic dimension and strong algorithmic dimension are the most exten-
sively investigated effective dimensions. One major reason for this is that these al-
gorithmic dimensions were shown by the second author and others [68, 1, 57] to
have characterizations in terms of Kolmogorov complexity, the central notion of al-
gorithmic information theory. In Section 8.2 below we give a brief introduction to
the Kolmogorov complexity Kr(x) of a point x in Euclidean space at a given preci-
sion r.

In Section 8.3 we use the above Kolmogorov complexity notion to develop the
algorithmic dimension dim(x) and the strong algorithmic dimension Dim(x) of each
point x in Euclidean space. This development supports the useful intuition that these
dimensions are asymptotic measures of the density of algorithmic information in
the point x. We discuss how these dimensions relate to the local dimensions that
arise in the so-called thermodynamic formalism of fractal geometry; we discuss the
history and terminology of algorithmic dimensions; we review the prima facie case
that algorithmic dimensions are geometrically meaningful; and we discuss what is
known about the circumstances in which algorithmic dimensions agree with their
classical counterparts. We then discuss the authors’ use of algorithmic dimensions to
analyze self-similar fractals [57]. This analysis gives us a new, information-theoretic
proof of the classical formula of Moran [73] for the Hausdorff dimensions of self-
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similar fractals in terms of the contraction ratios of the iterated function systems that
generate them. This new proof gives a clear account of “where the dimension comes
from” in the construction of such fractals. Section 8.3 concludes with a survey of the
dimensions of points on lines in Euclidean spaces, a topic that has been surprisingly
challenging until a very recent breakthrough by N. Lutz and Stull [63].

We survey interactive aspects of algorithmic fractal dimensions in Euclidean
spaces in Section 8.4, starting with the mutual algorithmic dimensions developed
by Case and the first author [13]. These dimensions, mdim(x : y) and Mdim(x : y),
are analogous to the mutual information measures of Shannon information theory
and algorithmic information theory. Intuitively, mdim(x : y) and Mdim(x : y) are
asymptotic measures of the density of the algorithmic information shared by points
x and y in Euclidean spaces. We survey the fundamental properties of these mutual
dimensions, which are analogous to those of their information-theoretic analogs.
The most important of these properties are those that govern how mutual dimen-
sions are affected by functions on Euclidean spaces that are computable in the
sense of computable analysis [100]. Specifically, we review the information pro-
cessing inequalities of [13], which state that mdim( f (x) : y) ≤ mdim(x : y) and
Mdim( f (x) : y) ≤Mdim(x : y) hold for all computable Lipschitz functions f , i.e.,
that applying such a function f to a point x cannot increase the density of algorithmic
information that it contains about a point y. We also survey the conditional dimen-
sions dim(x|y) and Dim(x|y) recently developed by the first author and N. Lutz [56].
Roughly speaking, these conditional dimensions quantify the density of algorithmic
information in x beyond what is already present in y.

It is rare for the theory of computing to be used to answer open questions in
mathematical analysis whose statements do not involve computation or related as-
pects of logic. In Section 8.5 we survey exciting new developments that do exactly
this. We first describe new characterizations by the first author and N. Lutz [56] of
the classical Hausdorff and packing dimensions of arbitrary sets in Euclidean spaces
in terms of the relativized dimensions of the individual points that belong to them.
These characterizations are called point-to-set principles because they enable one to
use a bound on the relativized dimension of a single, judiciously chosen point x in a
set E in Euclidean space to prove a bound on the classical Hausdorff or packing di-
mension of the set E. We illustrate the power of the point-to-set principle by giving
an overview of its use in the new, information-theoretic proof [56] of Davies’s 1971
theorem stating that the Kakeya conjecture holds in the Euclidean plane [20]. We
then discuss two very recent uses of the point-to-set principle to solve open prob-
lems in classical fractal geometry. These are N. Lutz and D. Stull’s strengthened
lower bounds on the Hausdorff dimensions of generalized Furstenberg sets [63] and
N. Lutz’s extension of the fractal intersection formulas for Hausdorff and packing
dimensions in Euclidean spaces from Borel sets to arbitrary sets. These are, to the
best of our knowledge, the first uses of algorithmic information theory to solve open
problems in classical mathematical analysis.

We briefly survey promising directions for future research in Section 8.6. These
include extending the algorithmic analysis of self-similar fractals [57] to other
classes of fractals, extending algorithmic dimensions to metric spaces other than
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Euclidean spaces, investigating algorithmic fractal dimensions that are more effec-
tive than constructive dimensions (e.g., polynomial-time or finite-state fractal di-
mensions) in fractal geometry, and extending algorithmic methods to rectifiability
and other aspects of geometric measure theory that do not necessarily concern frac-
tal geometry. In each of these we begin by describing an existing result that sheds
light on the promise of further inquiry.

Overviews of algorithmic dimensions in the Cantor space appear in [23, 69],
though these are already out of date. Even prior to the development of algorith-
mic fractal dimensions, a rich network of relationships among gambling strategies,
Hausdorff dimension, and Kolmogorov complexity was uncovered by reserach of
Ryabko [79, 80, 81, 82], Staiger [89, 90, 91], and Cai and Hartmanis [11]. A brief
account of this “prehistory” of algorithmic fractal dimensions appears in section 6
of [53].

8.2 Algorithmic Information in Euclidean Spaces

Algorithmic information theory has most often been used in the set {0,1}∗ of all
finite binary strings. The conditional Kolmogorov complexity (or conditional algo-
rithmic information content) of a string x ∈ {0,1}∗ given a string y ∈ {0,1}∗ is

K(x|y) = min{|π| |π ∈ {0,1}∗ and U(π,y) = x} .

Here U is a fixed universal Turing machine and |π| is the length of a binary “pro-
gram” π . Hence K(x|y) is the minimum number of bits required to specify x to U ,
when y is provided as side information. We refer the reader to any of the standard
texts [49, 23, 75, 87] for the history and intuition behind this notion, including its es-
sential invariance with respect to the choice of the universal Turing machine U . The
Kolmogorov complexity (or algorithmic information content) of a string x ∈ {0,1}∗
is then

K(x) = K(x|λ ),

where λ is the empty string.
Routine binary encoding enables one to extend the definitions of K(x) and K(x|y)

to situations where x and y range over other countable sets such as N, Q, N×Q, etc.
The key to “lifting” algorithmic information theory notions to Euclidean spaces

is to define the Kolmogorov complexity of a set E ⊆ Rn to be

K(E) = min{K(q) |q ∈Qn∩E } . (8.1)

(Shen and Vereshchagin [88] used a very similar notion for a very different purpose.)
Note that K(E) is the amount of information required to specify not the set E itself,
but rather some rational point in E. In particular, this implies that

E ⊆ F =⇒ K(E)≥ K(F).
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Note also that, if E contains no rational point, then K(E) = ∞.
The Kolmogorov complexity of a point x ∈ Rn at precision r ∈ N is

Kr(x) = K(B2−r(x)), (8.2)

where Bε(x) is the open ball of radius ε about x, i.e., the number of bits required
to specify some rational point q ∈ Qn satisfying |q− x| < 2−r, where |q− x| is the
Euclidean distance of q− x from the origin.

8.3 Algorithmic Dimensions

8.3.1 Dimensions of Points

We now define the (constructive) dimension of a point x ∈ Rn to be

dim(x) = liminf
r→∞

Kr(x)
r

(8.3)

and the strong (constructive) dimension of x to be

Dim(x) = limsup
r→∞

Kr(x)
r

. (8.4)

We note that dim(x) and Dim(x) were originally defined in terms of algorithmic
betting strategies called gales [53, 1]. The identities (8.3) and (8.4) were subsequent
theorems proven in [57], refining very similar results in [68, 1]. These identities
have been so convenient for work in Euclidean space that it is now natural to regard
them as definitions.

Since Kr(x) is the amount of information required to specify a rational point
that approximates x to within 2−r (i.e., with r bits of precision), dim(x) and Dim(x)
are intuitively the lower and upper asymptotic densities of information in the point
x. This intuition is a good starting point, but the fact that dim(x) and Dim(x) are
geometrically meaningful will only become evident in light of the mathematical
consequences of (8.3) and (8.4) surveyed in this chapter.

It is an easy exercise to show that, for all x ∈ Rn,

0≤ dim(x)≤ Dim(x)≤ n. (8.5)

If x is a computable point in Rn, then Kr(x) = o(r), so dim(x) = Dim(x) = 0. On the
other hand, if x is a random point in Rn (i.e., a point that is algorithmically random
in the sense of Martin-Löf [65]), then Kr(x) = nr−O(1), so dim(x) = Dim(x) = n.
Hence the dimensions of points range between 0 and the dimension of the Euclidean
space that they inhabit. In fact, for every real number α ∈ [0,n], the dimension level
set
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DIMα = {x ∈ Rn |dim(x) = α } (8.6)

and the strong dimension level set

DIMα
str = {x ∈ Rn |Dim(x) = α } (8.7)

are uncountable and dense in Rn [53, 1]. The dimensions dim(x) and Dim(x) can co-
incide, but they do not generally do so. In fact, the set DIM0∩DIMn

str is a comeager
(i.e., topologically large) subset of Rn [37].

Classical fractal geometry has local, or pointwise, dimensions that are useful,
especially in connection with dynamical systems. Specifically, if ν is an outer mea-
sure on Rn, i.e., a function ν : P(Rn)→ [0,∞] satisfying ν( /0) = 0, monotonicity
(E ⊆ F =⇒ ν(E)≤ ν(F)), and countable subadditivity (E ⊆∪∞

k=0Ek =⇒ ν(E)≤
∑

∞
k=0 ν(Ek)), and if ν is locally finite (i.e., every x ∈ Rn has a neighborhood N with

ν(N)< ∞), then the lower and upper local dimensions of ν at a point x ∈ Rn are

(dimloc ν)(x) = liminf
r→∞

log( 1
ν(B2−r (x))

)

r
(8.8)

and

(Dimloc ν)(x) = limsup
r→∞

log( 1
ν(B2−r (x))

)

r
, (8.9)

respectively, where log = log2 [25].
Until very recently, no relationship was known between the dimensions dim(x)

and Dim(x) and the local dimensions (8.8) and (8.9). However, N. Lutz recently
observed that a very non-classical choice of the outer measure ν remedies this. For
each E ⊆ Rn, let

κ(E) = 2−K(E), (8.10)

where K(E) is defined as in (8.1). Then κ is easily seen to be an outer measure on
Rn that is finite (i.e., κ(Rn) < ∞), hence certainly locally finite, whence the local
dimensions dimloc κ and Dimloc κ are well defined. In fact we have the following.

Theorem 8.3.1 (N. Lutz [60]). For all x ∈ Rn,

dim(x) = (dimloc κ)(x)

and
Dim(x) = (Dimloc κ)(x).

There is a direct conceptual path from the classical Hausdorff and packing di-
mensions to the dimensions of points defined in (8.3) and (8.4).

The Hausdorff dimension dimH(E) of a set E ⊆Rn was introduced by Hausdorff
[32] before 1920 and is arguably the most important notion of fractal dimension.
Its classical definition, which may be found in standard texts such as [93, 25, 7],
involves covering the set E by families of sets with diameters vanishing in the limit.
In all cases, 0≤ dimH(E)≤ n.
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At the beginning of the present century, in order to formulate versions of Haus-
dorff dimensions that would work in complexity classes and other algorithmic set-
tings, the first author [52] gave a new characterization of Hausdorff dimension in
terms of betting strategies, called gales, on which it is easy to impose computability
and complexity conditions. Of particular interest here, he then defined the construc-
tive dimension cdim(E) of a set E ⊆ Rn exactly like the gale characterization of
dimH(E), except that the gales were now required to be lower semicomputable [53].
He then defined the dimension dim(x) of a point x∈Rn to be the constructive dimen-
sion of its singleton, i.e., dim(x) = cdim({x}). The existence of a universal Turing
machine made it immediately evident that constructive dimension has the absolute
stability property that

cdim(E) = sup
x∈E

dim(x) (8.11)

for all x ∈ Rn. Accordingly, constructive dimension has since been investigated
pointwise. As noted earlier, the second author [68] then proved the characterization
(8.3) as a theorem.

Two things should be noted about the preceding paragraph. First, these early
papers were written entirely in terms of binary sequences, rather than points in Eu-
clidean space. However, the most straightforward binary encoding of points bridges
this gap. (In this survey we freely use those results from the Cantor space that do
extend easily to Euclidean space.) Second, although the gale characterization is es-
sential for polynomial time and many other stringent levels of effectivization, con-
structive dimension can be defined equivalently by effectivizing Hausdorff’s origi-
nal formulation [77].

8.3.2 The Correspondence Principle

In 2001, the first author conjectured that there should be a correspondence principle
(a term that Bohr had used analogously in quantum mechanics) assuring us that for
sufficiently simple sets E ⊆Rn, the constructive and classical dimensions agree, i.e.,

cdim(E) = dimH(E). (8.12)

Hitchcock [34] confirmed this conjecture, proving that (8.12) holds for any set E ⊆
Rn that is a union of sets that are computably closed, i.e., that are Π 0

1 in Kleene’s
arithmetical hierarchy. (This means that (8.12) holds for all Σ 0

2 sets, and also for
sets that are nonuniform unions of Π 0

1 sets.) Hitchcock also noted that this result
is the best possible in the arithmetical hierarchy, because there are Π 0

2 sets E (e.g.,
E = {z}, where z is a Martin-Löf random point that is ∆ 0

2 ) for which (8.12) fails.
By (8.11) and (8.12) we have

dimH(E) = sup
x∈E

dim(x), (8.13)
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which is a very nonclassical, pointwise characterization of the classical Hausdorff
dimensions of sets that are unions of Π 0

1 sets. Since most textbook examples of
fractal sets are Π 0

1 , (8.13) is a strong preliminary indication that the dimensions of
points are geometrically meaningful.

The packing dimension dimP(E) of a set E ⊆ Rn was introduced in the early
1980s by Tricot [96] and Sullivan [94]. Its original definition is a bit more involved
than that of Hausdorff dimension [25, 7] and implies that dimH(E)≤ dimP(E)≤ n
for all E ⊆ Rn.

After the development of constructive versions of Hausdorff dimension outlined
above, Athreya, Hitchcock, and the authors [1] undertook an analogous development
for packing dimension. The gale characterization of dimP(E) turns out to be exactly
dual to that of dimH(E), with just one limit superior replaced by a limit inferior. The
strong constructive dimension cDim(E) of a set E ⊆ Rn is defined by requiring the
gales to be lower semicomputable, and the strong dimension of a point x ∈ Rn is
Dim(x) = cDim({x}). The absolute stability of strong constructive dimension,

cDim(E) = sup
x∈E

Dim(x), (8.14)

holds for all E ⊆ Rn, as does the Kolmogorov complexity characterization (8.4).
All this was shown in [1], but a correspondence principle for strong constructive
dimension was left open. In fact, Conidis [16] subsequently used a clever priority
argument to construct a Π 0

1 set E ⊆ Rn for which cDim(E) 6= dimP(E). It is still
not known whether some simple, logical definability criterion for E implies that
cDim(E) = dimP(E). Staiger’s proof that regular ω-languages E satisfy this identity
is an encouraging step in this direction [92].

8.3.3 Self-Similar Fractals

The first application of algorithmic dimensions to fractal geometry was the authors’
investigation of the dimensions of points in self-similar fractals [57]. We give a
brief exposition of this work here, referring the reader to [57] for the many missing
details.

Self-similar fractals are the most widely known and best understood classes of
fractals [25]. Cantor’s middle-third set, the von Koch curve, the Sierpiński triangle,
and the Menger sponge are especially well known examples of self-similar fractals.

Briefly, a self-similar fractal in a Euclidean space Rn is generated from an initial
nonempty closed set D⊆ Rn by an iterated function system (IFS), which is a finite
list S = (S0,S1, . . . ,Sk−1) of k≥ 2 contracting similarities Si : D→D. Each of these
similarities Si is coded by the symbol i in the alphabet Σ = {0, . . . ,k−1}, and each
Si has a contraction ratio ci ∈ (0,1). The IFS S is required to satisfy Moran’s open set
condition [73], which says that there is a nonempty open set G ⊆ D whose images
Si(G), for i ∈ Σ , are disjoint subsets of G.
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For example, the Sierpiński triangle is generated from the set D⊆ R2 consisting
of the triangle with vertices v0 = (0,0), v1 = (1,0), and v2 = (1/2,

√
3/2), together

with this triangle’s interior, by the IFS S = (S0,S1,S2), where each Si : D→ D is
defined by

Si(p) = vi +
1
2
(p− vi)

for p∈D. Note that Σ = {0,1,2} and c0 = c1 = c2 = 1/2 in this example. Note also
that the open set condition is satisfied here by letting G be the topological interior
of D. Each infinite sequence T ∈ Σ ∞ codes a point S(T ) ∈ D that is obtained by
applying the similarities coded by the successive symbols in T in a canonical way.
(See Figure 8.1.) The Sierpiński triangle is the attractor (or invariant set) of S and
D, which consists of all points S(T ) for T ∈ Σ ∞.

Fig. 8.1 A sequence T ∈ {0,1,2}∞ codes a point S(T ) in the Sierpiński triangle (from [57]).

The main objective of [57] was to relate the dimension and strong dimension of
each point S(T ) ∈ Rn in a self-similar fractal to the corresponding dimensions of
the coding sequence T . As it turned out, the algorithmic dimensions in Σ ∞ had to
be extended in order to achieve this.

The similarity dimension of an IFS S = (S0, . . . ,Sk−1) with contraction ratios
c0, . . . ,ck−1 ∈ (0,1) is the unique solution sdim(S) = s of the equation

k−1

∑
i=0

cs
i = 1. (8.15)

The similarity probability measure of S is the probability measure on Σ that is im-
plicit in (8.15), i.e., the function πS : Σ → [0,1] defined by

πS(i) = csdim(S)
i (8.16)
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for each i ∈ Σ . If the contraction ratios of S are all the same, then πS is the uniform
probability measure on Σ , but this is not generally the case. We extend πS to the
domain Σ ∗ by setting

πS(w) =
|w|−1

∏
m=0

πS(w[m]) (8.17)

for each w ∈ Σ ∗. We define the Shannon S-self-information of each string w ∈ Σ ∗

to be the quantity

lS(w) = log
1

πS(w)
. (8.18)

Finally, we define the dimension of a sequence T ∈ Σ ∞ with respect to the IFS S to
be

dimS(T ) = liminf
j→∞

K(T [0.. j])
lS(T [0.. j])

. (8.19)

Similarly, the strong dimension of T with respect to S is

DimS(T ) = limsup
j→∞

K(T [0.. j])
lS(T [0.. j])

. (8.20)

The dimension (8.19) is a special case of an algorithmic Billingsley dimension
[6, 99, 12]. These are treated more generally in [57].

A set F ⊆ Rn is a computably self-similar fractal if it is the attractor of some D
and S as above such that the contracting similarities S0, . . . ,Sk−1 are all computable
in the sense of computable analysis.

The following theorem gives a complete analysis of the dimensions of points in
computably self-similar fractals.

Theorem 8.3.2 (J. Lutz and Mayordomo [57]). If F ⊆ Rn is a computably self-
similar fractal and S is an IFS testifying to this fact, then, for all points x ∈ F and
all coding sequences T ∈ Σ ∞ for x,

dim(x) = sdim(S)dimS(T ) (8.21)

and
Dim(x) = sdim(S)DimS(T ). (8.22)

The proof of Theorem 8.3.2 is nontrivial. It combines some very strong coding
properties of iterated function systems with some geometric Kolmogorov complex-
ity arguments.

The following characterization of continuous functions on the reals is one of the
oldest and most beautiful theorems of computable analysis.

Theorem 8.3.3 (Lacombe [45, 46]). A function f : Rn → Rm is continuous if and
only if there is an oracle A⊆ N relative to which f is computable.

Using Lacombe’s theorem it is easy to derive the classical analysis of self-similar
fractals (which need not be computably self-similar) from Theorem 8.3.2.
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Corollary 8.3.4 (Moran [73], Falconer [24]). For every self-similar fractal F ⊆Rn

and every IFS S that generates F,

dimH(F) = dimP(F) = sdim(F). (8.23)

Proof. Let F and S be as given. By Lacombe’s theorem there is an oracle A ⊆ N
relative to which S is computable. It follows by a theorem by Kamo and Kawamura
[41] that the set F is Π 0

1 relative to A, whence the relativization of (8.13) tells us
that

dimA
H(F) = sup

x∈F
dimA(x). (8.24)

We then have

dimH(F) ≤ dimP(F)

= dimA
P(F)

≤ cDimA(F)

= sup
x∈F

DimA(x)

(8.22)
= sup

T∈Σ∞

sdim(S)DimS,A(T )

= sdim(S)

= sup
T∈Σ∞

sdim(S)dimS,A(T )

(8.21)
= sup

x∈F
dimA(x)

(8.24)
= dimA

H(F)

= dimH(F),

so (8.23) holds. ut

Intuitively, Theorem 8.3.2 is stronger than its Corollary 8.3.4, because Theorem
8.3.2 gives a complete account of “where the dimension comes from”.

8.3.4 Dimension Level Sets

The dimension level sets DIMα and DIMα
str defined in (8.6) and (8.7) have been the

focus of several investigations. It was shown in [53, 1] that, for all 0≤ α ≤ n,

cdim(DIMα) = dimH(DIMα) = α

and
cDim(DIMα

str) = dimP(DIMα
str) = α.
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Hitchcock, Terwijn, and the first author [33] investigated the complexities of
these dimension level sets from the viewpoint of descriptive set theory. Following
standard usage [74], we write Σ

0
k and Π

0
k for the classes at the kth level (k ∈ Z+) of

the Borel hierarchy of subsets of Rn. That is, Σ
0
1 is the class of all open subsets of

Rn, each Π
0
k is the class of all complements of sets in Σ

0
k, and each Σ

0
k+1 is the class

of all countable unions of sets in Π
0
k. We also write Σ 0

k and Π 0
k for the classes of

the kth level of Kleene’s arithmetical hierarchy of subsets of Rn. That is, Σ 0
1 is the

class of all computably open subsets of Rn, each Π 0
k is the class of all complements

of sets in Σ 0
k , and each Σ 0

k+1 is the class of all effective (computable) unions of sets
in Π 0

k .
Recall that a real number α is ∆ 0

2 -computable if there is a computable function
f : N→Q such that limk→∞ f (k) = α .

The following facts were proven in [33].

1. DIM0 is Π 0
2 but not Σ

0
2.

2. For all α ∈ (0,n], DIMα is Π
0
3 (and Π 0

3 if α is ∆ 0
2 -computable) but not Σ

0
3.

3. DIMn
str is Π

0
2 and Π 0

3 but not Σ
0
2.

4. For all α ∈ [0,n), DIMα
str is Π

0
3 (and Π 0

4 if α is ∆ 0
2 -computable) but not Σ

0
3.

Weihrauch and the first author [59] investigated the connectivity properties of
sets of the form

DIMI =
⋃
α∈I

DIMα ,

where I ⊆ [0,n] is an interval. After making the easy observation that each of the
sets DIM[0,1) and DIM(n−1,n] is totally disconnected, they proved that each of the sets
DIM[0,1] and DIM[n−1,n] is path-connected. These results are especially intriguing in
the Euclidean plane, where they say that extending either of the sets DIM[0,1) or
DIM(1,2] to include the level set DIM1 transforms it from a totally disconnected set
to a path-connected set. This suggests that DIM1 is somehow a very special subset
of R2.

Turetsky [97] investigated this matter further and proved that DIM1 is a con-
nected set in Rn. He also proved that DIM[0,1) ∪DIM(1,2] is not a path-connected
subset of R2.

8.3.5 Dimensions of Points on Lines

Since effective dimension is a pointwise property, it is natural to study the dimension
spectrum of a set E ⊆ Rn, i.e., the set sp(E) = {dim(x) |x ∈ E }. This study is far
from obvious even for sets as apparently simple as straight lines. We review in this
section the results obtained so far, mainly for the case of straight lines in R2.

As noted in Section 8.3.4, the set of points in R2 of dimension exactly one is
connected, while the set of points in R2 with dimension less than 1 is totally dis-
connected. Therefore every line in R2 contains a point of dimension 1. Despite the
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surprising fact that there are lines in every direction that contain no random points
[55], the first author and N. Lutz have shown that almost every point on any line with
random slope has dimension 2 [56]. Still all these results leave open fundamental
questions about the structure of the dimension spectra of lines, since they don’t even
rule out the possibility of a line having the singleton set {1} as its dimension spec-
trum.

Very recently this latest open question has been answered in the negative. N. Lutz
and Stull [63] have proven the following general lower bound on the dimension of
points on lines in R2.

Theorem 8.3.5 (N. Lutz and Stull [63]). For all a,b,x ∈ R,

dim(x,ax+b)≥ dima,b(x)+min{dim(a,b),dima,b(x)}.

In particular, for almost every x ∈ R, dim(x,ax+b) = 1+min{dim(a,b),1}.

Taking x1 = 0 and x2 a Martin-Löf random real relative to (a,b), Theorem 8.3.5
gives us two points in the line, (0,b) and (x2,ax2 +b), whose dimensions differ by
at least one, so the dimension spectrum cannot be a singleton.

We briefly sketch here the main intuitions behind the (deep) proof of Theorem
8.3.5, fully based on algorithmic information theory. Theorem 8.3.5’s aim is to con-
nect dim(x,ax+ b) with dim(a,b,x) (i.e., a dimension in R2 with a dimension in
R3). Notice that in the case dim(a,b)≤ dima,b(x) the theorem’s conclusion is close
to saying dim(x,ax+b)≥ dim(a,b,x).

The proof is based on the property that says that under the following two condi-
tions

(i) dim(a,b) is small
(ii) whenever ux+ v = ax+b, either dim(u,v) is large or (u,v) is close to (a,b)

it holds that dim(x,ax+b) is close to dim(a,b,x).
There is an extra ingredient to finish this intuition.While condition (ii) can be

shown to hold in general, condition (i) can only be proven in a particular relativized
world whereas the conclusion of the theorem still holds for every oracle.

N. Lutz and Stull [62] have also shown that the dimension spectrum of a line is
always infinite, proving the following two results. The first theorem proves that if
dim(a,b) = Dim(a,b) then the corresponding line contains a length-1 interval.

Theorem 8.3.6 (N. Lutz and Stull [62]). Let a,b ∈ R satisfy that dim(a,b) =
Dim(a,b). Then for every s ∈ [0,1] there is a point x ∈R such that dim(x,ax+b) =
s+min{dim(a,b),1}.

The second result proves that all spectra of lines are infinite.

Theorem 8.3.7 (N. Lutz and Stull [62]). Let La,b be any line in R2. Then the di-
mension spectrum sp(La,b) is infinite.
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8.4 Mutual and Conditional Dimensions

Just as the dimension of a point x in Euclidean space is the asymptotic density of the
algorithmic information in x, the mutual dimension between two points x and y in
Euclidean spaces is the asymptotic density of the algorithmic information shared by
x and y. In this section, we survey this notion and the data processing inequalities,
which estimate the effect of computable functions on mutual dimension. We also
survey the related notion of conditional dimension.

8.4.1 Mutual Dimensions

The mutual (algorithmic) information between two rational points p ∈Qm and q ∈
Qn is

I(p : q) = K(p)−K(p|q).

This notion, essentially due to Kolmogorov [44], is an analog of mutual entropy
in Shannon information theory [86, 18, 49]. Intuitively, K(p|q) is the amount of
information in p not contained in q, so I(p : q) is the amount of information in p
that is contained in q. It is well known [49] that, for all p ∈Qm and q ∈Qn,

I(p : q)≈ K(p)+K(q)−K(p,q) (8.25)

in the sense that the magnitude of the difference between the two sides of (8.25) is
o(min{K(p),K(q)}). This fact is called symmetry of information, because it imme-
diately implies that I(p : q)≈ I(q : p).

The ideas in the rest of this section were introduced by Case and the first author
[13]. In the spirit of (8.1) they defined the mutual information between sets E ⊆Rm

and F ⊆ Rn to be

I(E : F) = min{I(p : q) | p ∈Qm∩E and q ∈Qn∩F } .

This is the amount of information that rational points p and q must share in order to
be in E and F , respectively. Note that, for all E1,E2 ⊆ Rm and F1,F2 ⊆ Rn,[

(E1 ⊆ E2) and (F1 ⊆ F2)
]
=⇒ I(E1 : F1)≥ I(E2 : F2).

The mutual information between two points x∈Rm and y∈Rn at precision r ∈N
is

Ir(x : y) = I(B2−r(x) : B2−r(y)).

This is the amount of information that rational approximations of x and y must share,
merely due to their proximities (distance less than 2−r) to x and y.

In analogy with (8.3) and (8.4), the lower and upper mutual dimensions between
points x ∈ Rm and y ∈ Rm are
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mdim(x : y) = liminf
r→∞

Ir(x : y)
r

(8.26)

and

Mdim(x : y) = limsup
r→∞

Ir(x : y)
r

, (8.27)

respectively.
The following theorem shows that the mutual dimensions mdim and Mdim have

many of the properties that one should expect them to have. The proof is involved
and includes a modest generalization of Levin’s coding theorem [47, 48].

Theorem 8.4.1 (Case and J. Lutz [13]). For all x ∈ Rm and y ∈ Rn, the following
hold.

1. mdim(x : y)≤min{dim(x),dim(y)}.
2. Mdim(x : y)≤min{Dim(x),Dim(y)}.
3. mdim(x : x) = dim(x).
4. Mdim(x : x) = Dim(x).
5. mdim(x : y) = mdim(y : x).
6. Mdim(x : y) = Mdim(y : x).
7. dim(x)+dim(y)−Dim(x,y)≤mdim(x : y)≤ Dim(x)+Dim(y)−Dim(x : y).
8. dim(x)+dim(y)−dim(x,y)≤Mdim(x : y)≤ Dim(x)+Dim(y)−dim(x : y).
9. If x and y are independently random, then Mdim(x : y) = 0.

The expressions dim(x,y) and Dim(x,y) in 7 and 8 above refer to the dimensions
of the point (x,y) ∈ Rm+n. In 9 above, x and y are independently random if (x,y) is
a Martin-Löf random point in Rm+n.

More properties of mutual dimensions may be found in [13, 14].

8.4.2 Data Processing Inequalities

The data processing inequality of Shannon information theory [18] says that, for
any two probability spaces X and Y , any set Z, and any function f : X → Z,

I( f (X);Y )≤ I(X ;Y ), (8.28)

i.e., the induced probability space f (X) obtained by “processing the information
in X through f ” has no greater mutual entropy with Y than X has with Y . More
succintly, f (X) tells us no more about Y than X tells us about Y . The data process-
ing inequality of algorithmic information theory [49] says that, for any computable
partial function f : {0,1}∗ → {0,1}∗, there is a constant c f ∈ N (essentially the
number of bits in a program that computes f ) such that, for all strings x ∈ dom f and
y ∈ {0,1}∗,

I( f (x) : y)≤ I(x : y)+ c f . (8.29)
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That is, modulo the constant c f , f (x) contains no more information about y than x
contains about y.

The data processing inequality for the mutual dimension mdim should say that
every nice function f : Rm→ Rn has the property that, for all x ∈ Rm and y ∈ Rk,

mdim( f (x) : y)≤mdim(x : y). (8.30)

But what should “nice” mean? A nice function certainly should be computable in
the sense of computable analysis [10, 43, 100]. But this is not enough. For example,
there is a function f : R→ R2 that is computable and space-filling in the sense that
[0,1]2⊆ range f [83, 17]. For such a function, choose x∈R such that dim( f (x)) = 2,
and let y = f (x). Then

mdim( f (x) : y) = mdim(y : y)

= dim(y)

= 2
> 1
≥ dim(x)

≥ mdim(x : y),

so (8.30) fails.
Intuitively, the above failure of (8.30) occurs because the function f is extremely

sensitive to its input, a property that “nice” functions do not have. A function
f : Rm→ Rn is Lipschitz if there is a real number c> 0 such that, for all x1,x2 ∈Rm,

| f (x1)− f (x2)| ≤ c|x1− x2|.

The following data processing inequalities show that computable Lipschitz func-
tions are “nice”.

Theorem 8.4.2 (Case and J. Lutz [13]). If f : Rm → Rn is computable and Lips-
chitz, then, for all x ∈ Rm and y ∈ Rk,

mdim( f (x) : y)≤mdim(x : y)

and
Mdim( f (x) : y)≤Mdim(x : y).

Several more theorems of this type and applications of these appear in [13].

8.4.3 Conditional Dimensions

A comprehensive theory of the fractal dimensions of points in Euclidean spaces
requires not only the dimensions dim(x) and Dim(x) and the mutual dimensions



8 Algorithmic Fractal Dimensions in Geometric Measure Theory 287

mdim(x : y) and Mdim(x : y), but also the conditional dimensions dim(x|y) and
Dim(x|y) formulated by the first author and N. Lutz [56]. We briefly describe these
formulations here.

The conditional Kolmogorov complexity K(p|q), defined for rational points p ∈
Qm and q ∈Qn, is lifted to the conditional dimensions in the following four steps.

1. For x ∈ Rm, q ∈Qn, and r ∈ N, the conditional Kolmogorov complexity of x at
precision r given q is

K̂r(x|q) = min{K(p|q) | p ∈Qm∩B2−r(x)} .

2. For x ∈ Rm, y ∈ Rn, and r,s ∈ N, the conditional Kolmogorov complexity of x
at precision r given y at precision s is

Kr,s(x|y) = max
{

K̂r(x|q) |q ∈Qn∩B2−s(y)
}
.

3. For x ∈ Rm, y ∈ Rn, and r ∈ N, the conditional Kolmogorov complexity of x
given y at precision r is

Kr(x|y) = Kr,r(x|y).

4. For x ∈ Rm and y ∈ Rn, the lower and upper conditional dimensions of x given
y are

dim(x|y) = liminf
r→∞

Kr(x|y)
r

and

Dim(x|y) = limsup
r→∞

Kr(x|y)
r

,

respectively.

Steps 1, 2, and 4 of the above lifting are very much in the spirit of what has
been done in Sections 8.2, 8.3.1, and 8.4.1 above. Step 3 appears to be problematic,
because using the same precision bound r for both x and y makes the definition seem
arbitrary and “brittle”. However, the following result shows that this is not the case.

Theorem 8.4.3 ([56]). Let s : N→ N. If |s(r)− r| = o(r), then, for all x ∈ Rm and
y ∈ Rn,

dim(x|y) = liminf
r→∞

Kr,s(r)(x|y)
r

and

Dim(x|y) = limsup
r→∞

Kr,s(r)(x|y)
r

.

The following result is useful for many purposes.

Theorem 8.4.4 (Chain rule for Kr). For all x ∈ Rm and y ∈ Rn,

Kr(x,y) = Kr(x|y)+Kr(y)+o(r). (8.31)
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An oracle for a point y ∈ Rn is a function g : N→ Qn such that, for all s ∈ N,
|g(s)−y| ≤ 2−s. The Kolmogorov complexity of a rational point p ∈Qm relative to
a point y ∈ Rn is

Ky(p) = max{Kg(p) |g is an oracle for y} ,

where Kg(p) is the Kolmogorov complexity of p when the universal machine has
access to the oracle g. The purpose of the maximum here is to prevent Ky(p) from
using oracles g that code more than y into their behaviors. For x ∈ Rm and y ∈ Rn,
the dimension dimy(x) relative to y is defined from Ky(p) exactly as dim(x) was
defined from K(p) in Sections 8.2 and 8.3.1 above. The relativized strong dimension
Dimy(x) is defined analogously.

The following result captures the intuition that conditioning on a point y is a
restricted form of oracle access to y.

Lemma 8.4.5 ([56]). For all x∈Rm and y∈Rn, dimy(x)≤ dim(x|y) and Dimy(x)≤
Dim(x|y).

The remaining results in this section confirm that conditional dimensions have
the correct information-theoretic relationships to dimensions and mutual dimen-
sions.

Theorem 8.4.6 ([56]). For all x ∈ Rm and y ∈ Rn,

mdim(x : y)≥ dim(x)−Dim(x|y)

and
Mdim(x : y)≤ Dim(x)−dim(x|y).

Theorem 8.4.7 (Chain rule for dimension [56]). For all x ∈ Rm and y ∈ Rn,

dim(x)+dim(y|x) ≤ dim(x,y)

≤ dim(x)+Dim(y|x)
≤ Dim(x,y)

≤ Dim(x)+Dim(y|x).

8.5 Algorithmic Discovery of New Classical Theorems

8.5.1 The Point-to-Set Principle

Many of the most challenging problems in geometric measure theory are prob-
lems of establishing lower bounds on the classical fractal dimensions dimH(E) and
dimP(E) for sets E ⊆Rn. Although such problems seem to involve global properties
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of the sets E and make no mention of algorithms, the dimensions of points have re-
cently been used to prove new lower bound results for classical fractal dimensions.
The key to these developments is the following pair of theorems of the first author
and N. Lutz.

Theorem 8.5.1 (Point-to-set-principle for Hausdorff dimension [56]). For every
E ⊆ Rn,

dimH(E) = min
A⊆N

sup
x∈E

dimA(x). (8.32)

Theorem 8.5.2 (Point-to-set-principle for packing dimension [56]). For every
E ⊆ Rn,

dimP(E) = min
A⊆N

sup
x∈E

DimA(x). (8.33)

The relativized dimensions dimA(x) and DimA(x) here are defined by substituting
KA

r (x) for Kr(x) in (8.3) and (8.4).
It is to be emphasized that these two theorems completely characterize dimH(E)

and dimP(E) for all sets E ⊆ Rn. These characterizations are called point-to-set
principles because they enable one to use a lower bound on the relativized dimen-
sion of a single, judiciously chosen point x ∈ E to establish a lower bound on the
classical dimension of the set E itself. More precisely, for example, Theorem 8.5.1
says that, in order to prove a lower bound dimH(E)≥ α , it suffices to show that, for
every oracle A⊆N and every ε > 0, there is a point x∈E such that dimA(x)≥α−ε .
In some cases, it can in fact be shown that, for every oracle A ⊆ N, there is a point
x ∈ E such that dimA(x) ≥ α . While the arbitrary oracle A is essential for the cor-
rectness of such proofs, the discussion below shows that its presence has not been
burdensome in applications to date.

8.5.2 Plane Kakeya Sets

The first application of the point-to-set principle was not a new theorem, but rather
a new, information-theoretic proof of an old theorem. We describe this proof here
because it illustrates the intuitive power of the point-to-set principle.

A Kakeya set in Rn is a set K ⊆ Rn that contains a unit segment in every direc-
tion. Sometime before 1920, Besicovitch [4, 5] proved the then-surprising existence
of Kakeya sets of Lebesgue measure 0 in Rn for all n≥ 2 and asked whether Kakeya
sets in R2 can have dimension less than 2 [20]. The famous Kakeya conjecture (in
its most commonly stated form) asserts a negative answer to this and the analo-
gous questions in higher dimensions. That is, the Kakeya conjecture says that every
Kakeya set in a Euclidean space Rn has Hausdorff dimension n. This conjecture
holds trivially for n = 1 and Davies [20] proved that it holds for n = 2. The Kakeya
conjecture remains an important open problem for n≥ 3 [101, 95].

Our objective here is to sketch the new proof by the first author and N. Lutz [56]
of Davies’s theorem, that the Kakeya conjecture holds in the Euclidean plane R2.
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This proof uses the following lower bound on the dimensions of points in a line
y = mx+b.

Lemma 8.5.3 (J. Lutz and N. Lutz [56]). Let m ∈ [0,1] and b ∈ R. For almost
every x ∈ [0,1],

dim(x,mx+b)≥ liminf
r→∞

Kr(m,b,x)−Kr(b|m)

r
. (8.34)

We do not prove this lemma here, but note that the proof relativizes, so the lemma
holds relative to every oracle A⊆ N.

To prove Davies’s theorem, let K⊆R2 be a Kakeya set. By the point-to-set prin-
ciple, fix A⊆ N such that

dimH(K) = sup
(x,y)∈K

dimA(x,y). (8.35)

Fix m ∈ [0,1] such that
dimA(m) = 1. (8.36)

(This holds for any m that is random relative to A.) Since K is Kakeya, there is
a unit segment L ⊆ K of slope m. Let (x0,y0) be the left endpoint of L, let q ∈
Q∩ [x0,x0 + 1/2], and let L′ be the unit segment of slope m whose endpoint is
(x0− q,y0). Then L′ crosses the y-axis at the point b = mq+ y0. By Lemma 8.5.3
(relativized to A), fix x ∈ [0,1/2] such that

dimA,m,b(x) = 1 (8.37)

and

dimA(x,mx+b)≥ liminf
r→∞

KA
r (m,b,x)−KA

r (b|m)

r
. (8.38)

(Such an x exists, because almost every x ∈ [0,1/2] satisfies (8.37) and (8.38).)
In the language of Section 8.5.1, our “judiciously chosen point” is (x+ q,mx+

b) ∈ L⊆ K, and the point-to-set principle tells us that it suffices to prove that

dimA(x+q,mx+b) = 2. (8.39)

But this is now easy. Since q is rational, (8.38) and two applications of the chain
rule (8.31) tell us that
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dimA(x+q,mx+b) = dimA(x,mx+b)

≥ liminf
r→∞

KA
r (m,b,x)−KA

r (b,m)+KA
r (m)

r

= liminf
r→∞

KA
r (x|b,m)+KA

r (m)

r

≥ liminf
r→∞

KA,m,b
r (x)

r
+ liminf

r→∞

KA
r (m)

r
= dimA,m,b(x)+dimA(m),

whence (8.36) and (8.37) tell us that (8.39) holds.
This information-theoretic proof of Davies can be summarized in very intuitive

terms: because K is Kakeya, it contains a unit segment L whose slope m has dimen-
sion 1 relative to A. A rational shift of L to a unit segment L′ crosses the y-axis at
some point b. Lemma 8.5.3 then gives us a point (x,mx+ b) on L′ that has dimen-
sion 2 relative to A. The point on L from which (x,mx+b) was shifted lies in K and
also has dimension 2 relative to A, so K has Hausdorff dimension 2.

The following two sections discuss recent uses of this method to prove new the-
orems in classical fractal geometry.

8.5.3 Intersections and Products of Fractals

We now consider two fundamental, nontrivial, textbook theorems of fractal geome-
try. The first, over thirty years old and called the intersection formula, concerns the
intersection of one fractal with a random translation of another fractal.

Theorem 8.5.4 (Kahane [40], Mattila [66, 67]). For all Borel sets E,F ⊆ Rn and
almost every z ∈ Rn,

dimH(E ∩ (F + z))≤max{0,dimH(E×F)−n}.

The second theorem, over sixty years old and called the product formula, con-
cerns the product of two fractals.

Theorem 8.5.5 (Marstrand [64]). For all E ⊆ Rn and F ⊆ Rn,

dimH(E×F)≥ dimH(E)+dimH(F).

In a recent breakthrough, algorithmic dimension was used to prove the following
extension of the intersection formula from Borel sets to all sets. We include the
simple (given the machinery that we have developed) and instructive proof here.

Theorem 8.5.6 (N. Lutz [61]). For all sets E,F ⊆ Rn and almost every z ∈ Rn,

dimH(E ∩ (F + z))≤max{0,dimH(E×F)−n}. (8.40)
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Proof. Let E,F ⊆Rn and z∈Rn. The theorem is trivially affirmed if F+z is disjoint
from E, so assume not. By the point-to-set principle, fix an oracle A⊆ N such that

dimH(E×F) = sup
(x,y)∈E×F

dimA(x,y). (8.41)

Let ε > 0. Since E ∩ (F + z) 6= /0, the point-to-set principle tells us that there is a
point x ∈ E ∩ (F + z) satisfying

dimA,z(x)> dimH(E ∩ (F + z))− ε. (8.42)

Now (x,x− z) ∈ E×F , so (8.41), Theorem 8.3.5, Lemma 8.4.5, and (8.42) tell us
that

dimH(E×F) ≥ dimA(x,x− z)

= dimA(x,z)

≥ dimA(z)+dimA(x|z)
≥ dimA(z)+dimA,z(x)

> dimA(z)+dimH(E ∩ (F + z))− ε.

Since ε is arbitrary here, it follows that

dimH(E ∩ (F + z))≤ dimH(E×F)−dimA(z).

Since almost every z ∈ Rn is Martin-Löf random relative to A and hence satisfies
dimA(z) = n, this affirms the theorem. ut

The paper [61] shows that the same method gives a new proof of the analog of
Theorem 8.5.6 for packing dimension. This result was already known to hold for
all sets E and F [26], but the new proof makes clear what a strong duality between
Hausdorff and packing dimensions is at play in the intersection formulas.

The paper [61] also gives a new, algorithmic proof of the following known ex-
tension of Theorem 8.5.5.

Theorem 8.5.7 (Marstrand [64], Tricot [96]). For all E ⊆ Rm and F ⊆ Rn,

dimH(E)+dimH(F) ≤ dimH(E×F)

≤ dimH(E)+dimP(F)

≤ dimP(E×F)

≤ dimP(E)+dimP(F).

This new proof is much simpler than previously known proofs of Theorem 8.5.7,
roughly as simple as previously known proofs of the restriction of Theorem 8.5.7
to Borel sets. The new proof is also quite natural, using the point-to-set principle to
derive Theorem 8.5.7 from the formally similar Theorem 8.4.7.
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8.5.4 Generalized Furstenberg Sets

For α ∈ (0,1], a plane set E ⊆ R2 is said to be of Furstenberg type with parameter
α or, more simply, α-Furstenberg, if, for every direction e ∈ S1 (where S1 is the unit
circle in R2), there is a line Le in direction e such that dimH(Le∩E)≥ α .

According to Wolff [101], the following well-known bound is probably due to
Furstenberg and Katznelson.

Theorem 8.5.8. For every α ∈ (0,1], every α-Furstenberg set E ⊆ R2 satisfies

dimH(E)≥ α +max{1/2,α}.

Note that every Kakeya set in the plane is 1-Furstenberg (since it contains a line
segment, which has Hausdorff dimension 1, in every direction e ∈ S1), so Davies’s
theorem follows from the case α = 1 of Theorem 8.5.8. It is an open question –
one with connections to Falconer’s distance conjecture [42] and Kakeya sets [101]
– whether Theorem 8.5.8 can be improved.

In 2012, Molter and Rela generalized α-Furstenberg sets in a natural way. For
α,β ∈ (0,1], a set E ⊆ R2 is (α,β )-generalized Furstenberg if there is a set J ⊆ S1

such that dimH(J) ≥ β and, for every e ∈ J, there is a line Le in direction e such
that dimH(Le∩E)≥ α . They then proved the following lower bound.

Theorem 8.5.9 (Molter and Rela [72]). For α,β ∈ (0,1], every (α,β )-generalized
Furstenberg set E ⊆ R2 satisfies

dimH(E)≥max{β/2,α +β −1}.

Note that every α-Furstenberg set is (α,1)-generalized Furstenberg, so Theorem
8.5.8 follows from the case β = 1 of Theorem 8.5.9.

Algorithmic dimensions were recently used to prove the following result, which
improves Theorem 8.5.9 when α,β ∈ (0,1) and β < 2α .

Theorem 8.5.10 (N. Lutz and Stull [63]). For all α,β ∈ (0,1], every (α,β )-
generalized Furstenberg set E ⊆ R2 satisfies

dimH(E)≥ α +min{β ,α}.

The proof of Theorem 8.5.10 uses the point-to-set principle and Theorem 8.3.5.

8.6 Research Directions

8.6.1 Beyond Self-Similarity

In previous sections we have analyzed the dimension of points in self-similar frac-
tals, but interesting natural examples need more elaborate concepts that combine
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self-similarity with random selection. In [31] Gu, Moser, and the authors started
the more challenging task of analyzing the dimensions of points in random frac-
tals. They focused on fractals that are randomly selected subfractals of a given self-
similar fractal.

Let F ⊆Rn be a computably self-similar fractal as defined in Section 8.3.3, with
S = (S0, . . . ,Sk−1) the corresponding IFS, and Σ = {0, . . . ,k− 1}. Recall that each
point x ∈ F has a coding sequence T ∈ Σ ∞, meaning that the point x is obtained by
applying the similarities coded by the successive symbols in T . We are interested in
certain randomly selected subfractals of the fractal F .

The specification of a point in such a subfractal can be formulated as the outcome
of an infinite two-player game between a selector that selects the subfractal and a
coder that selects a point within the subfractal. Specifically, the selector selects r out
of the k similarities and this choice depends on the coder’s earlier choices, that is, a
selector is a function σ : Γ ∗→ [Σ ]r where [Σ ]r is the set of all r-element subsets of
Σ , alphabet Γ = {0, . . . ,r−1}, and each element in Γ ∗ represents a coder’s earlier
history. A coder is a sequence U ∈ Γ ∞, that is, the coder selects a point in the
subfractal by repeatedly choosing a similarity out of the r previously picked by the
selector. Once a selector σ and a coder U have been chosen, the outcome of the
selector-coder game is a point determined by the sequence σ ∗U ∈ Σ ∞ that can be
precisely defined as

(σ ∗U)[t] = “the U [t]th element of σ(U [0..t−1])”

for all t ∈ N.
Each selector σ specifies (selects) the subfractal Fσ of F consisting of all points

with coding sequence T for which T is an outcome of playing σ against some coder,
Fσ = {S(σ ∗U) |U ∈ Γ ∞ }.

The focus of [31] is on randomly selected subfractals of F , by which we mean
subfractals Fσ of F for which the selector σ is random with respect to some prob-
ability measure. That is, we are interested in the case where the coder is playing a
“game against nature” (in order to make precise the idea of algorithmically random
selector each selector σ : Γ ∗ → [Σ ]r is identified with its characteristic sequence
χσ ∈ ([Σ ]r)∞).

Gu et al. determine the dimension spectra of a wide class of such randomly se-
lected subfractals, showing that each such fractal has a dimension spectrum that is a
closed interval whose endpoints can be computed or approximated from the param-
eters of the fractal. In general, the maximum of the spectrum is determined by the
degree to which the coder can reinforce the randomness in the selector, while the
minimum is determined by the degree to which the coder can cancel randomness
in the selector. This randomness cancellation phenomenon has also arisen in other
contexts, notably dimension spectra of random closed sets [2, 21] and of random
translations of the Cantor set [22]. The main result in [31] concerns subfractals that
are similarity random, that is, Fσ defined by a selector σ that is π̂S-random. Here
π̂S is the natural extension of πs, the similarity probability measure on Σ defined in
Section 8.3.3.
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Theorem 8.6.1 ([31]). For every similarity random subfractal Fσ of F, the dimen-
sion spectrum sp(Fσ ) is an interval satisfying[

s∗
log(k−1)− log(r−1+A(k− r))

log 1
a

,s∗
]
⊆ sp(Fσ )⊆

[
s∗

logk− logr
log 1

A

,s∗
]
,

where s∗ = sdim(S), a = min{πS(i) | i ∈ Σ}, and A = max{πS(i) | i ∈ Σ}.
In particular, if all the contraction ratios of F have the same value c, then ev-

ery similarity-random (i.e., uniformly random) subfractal Fσ of F has dimension
spectrum

sp(Fσ ) =

[
s∗(1− logr

logk
),s∗

]
,

where s∗ = sdim(S) = (logk)/(log 1
c ).

Many challenging open questions remain concerning the analysis of the dimen-
sion of points in more general versions of random fractals, both by extending the
results in [31] to random selectors for different probability measures and by consid-
ering generalizations such as self-affine fractals and fractals with randomly chosen
contraction ratios.

8.6.2 Beyond Euclidean Spaces

While Euclidean space has a very well-behaved metric based on a Borel measure
µ , where for instance s-Hausdorff measure coincides with µ for s = 1, this is not
the case for other metric spaces. Since both Hausdorff and packing dimension can
be defined in any metric space, the second author has considered in [70] the ex-
tension of algorithmic dimension to a large class of separable metric spaces, the
class of spaces with a computable nice cover. This extension includes an algorith-
mic information characterization of constructive dimension, based on the concept
of Kolmogorov complexity of a point at a certain precision, which is an extension
of the concept presented in Section 8.2 for Euclidean space.

8.6.3 Beyond Computability

Resource-bounded dimension, introduced in [52] by the first author, has been a very
fruitful tool in the quantitative study of complexity classes; see [35, 54] for the main
results. Many of the main complexity classes have a suitable resource bound for
which the corresponding dimension is adequate for the class, since it has maximal
value for the whole class.

The development of resource-bounded dimension was based on a characteri-
zation of Hausdorff dimension in terms of betting strategies, imposing different
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complexity constraints on those strategies to obtain the different resource-bounded
dimensions. Contrary to the case of computability constraints introduced in Sec-
tion 8.3, many important resource bounds such as polynomial-time dimension do
not have corresponding algorithmic information characterizations (although more
elaborate compression algorithm characterizations have been obtained in [50, 38]).

In fact the study of gambling under very low complexity constraints, finite-state
computability, has been studied at least since the 1970s [85, 27] and the correspond-
ing effective dimension, finite-state dimension, was studied by Dai, Lathrop, and the
two authors [19] where finite-state dimension is characterized in terms of finite-state
compression.

For the definition of resource-bounded dimension, a class of languages C is
represented via characteristic sequences as a set of infinite binary sequences C ⊆
{0,1}∞. Using binary representation each language can be seen as a real number
in [0,1] and resource-bounded dimension as a tool in Euclidean space. Resource-
bounded dimension has a natural extension Σ ∞ for other finite alphabets Σ and
the first question is therefore whether the choice of alphabet is relevant for the
study of Euclidean space. A satisfactory answer is given in [36] where it is proven
that polynomial-time dimension is invariant under base change, that is, for every
base b and set X ⊆ R the set of base-b representations of all elements in X has a
polynomial-time dimension independent of b.

Finite-state dimension is not closed under base change, but its connections with
number theory are deep. Borel introduced normal numbers in [8], defining a real
number α to be Borel normal in base b if for every finite sequence w of base-b dig-
its, the asymptotic, empirical frequency of w in the base-b expansion of α is b−|w|.
There is a tight relationship between Borel normality and finite-state dimension,
since a real number is normal in base b iff its base-b representation is a finite-state
dimension-1 sequence [85, 9]. It is known [15, 84] that there are numbers that are
normal in one base but not in another, so the nonclosure under base change property
of finite-state dimension is a corollary of these results. Absolutely normal numbers
are real numbers that are normal in every base, so they correspond to real num-
bers whose base-b representation has finite-state dimension 1 for every base b; this
characterization has been used in very effective constructions of absolutely normal
numbers [3, 58]. It is natural to ask whether there are real numbers for which the
finite-state dimension of their base-b representations is strictly between 0 and 1 and
does not depend on the base b.

8.6.4 Beyond Fractals

This chapter’s primary focus is the role of algorithmic fractal dimensions in fractal
geometry. However, it should be noted that fractal geometry is only a part of geo-
metric measure theory, and that algorithmic methods may shed light on many other
aspects of geometric measure theory.
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Many questions in geometric measure theory involve rectifiability [28]. The sim-
plest case of this classical notion is the rectifiability of curves. A curve in Rn is a
continuous function f : [0,1]→ Rn. The length of a curve f is

length( f ) = sup
a

k−1

∑
i=0
| f (ai+1)− f (ai)|,

where the supremum is taken over all dissections a of [0,1], i.e., all a = (a0, . . . ,ak)
with 0 = a0 < a1 < .. . < ak = 1. Note that length( f ) is the length of the actual
path traced by f , which may “retrace” parts of its range. (In fact, there are com-
putable curves f for which every computable curve g with the same range must do
unboundedly many such retracings [30].) A curve f is rectifiable if length( f )< ∞.

Gu and the authors [29] posed the fanciful question, “Where can an infinitely
small nanobot go?” Intuitively, the nanobot is the size of a Euclidean point, and its
motion is algorithmic, so its trajectory must be a curve f : [0,1]→ Rn that is com-
putable in the sense of computable analysis [100]. Moreover, the nanobot’s trajec-
tory f should be rectifiable. This last assumption, aside from being intuitively rea-
sonable, prevents the question from being trivialized by space-filling curves [83, 17].

The above considerations translate our fanciful question about a nanobot to the
following mathematical question. Which points in Rn (n≥ 2) lie on rectifiable com-
putable curves? In honor of an anonymous, poetic reviewer who called the set of
all such points “the beaten path”, we write BP(n) for the set of all points in Rn that
lie on rectifiable computable curves. The objective of [29] was to characterize the
elements of BP(n).

A few preliminary observations on the set BP(n) are in order here. Every com-
putable point in Rn clearly lies in BP(n), so BP(n) is a dense subset of Rn. It is also
easy to see that BP(n) is path-connected. On the other hand, the ranges of rectifiable
curves have Hausdorff dimension 1 [25] and there are only countably many com-
putable curves, so BP(n) is a countable union of sets of Hausdorff dimension 1 and
hence has Hausdorff dimension 1. Since n ≥ 2, this implies that most points in Rn

do not lie on the beaten path BP(n).
For each rectifiable computable curve f , the set range f is a computably closed,

i.e., Π 0
1 , subset of Rn. By the preceding paragraph and Hitchcock’s correspondence

principle (8.13), it follows that cdim(BP(n)) = 1, whence every point x ∈ BP(n) sat-
isfies dim(x) ≤ 1. This is a necessary, but not sufficient condition for membership
in BP(n), because the complement of BP(n) contains points of arbitrarily low dimen-
sion [29]. Characterizing membership in BP(n) thus requires algorithmic methods to
be extended beyond fractal dimensions.

The “analyst’s traveling salesman theorem” of geometric measure theory char-
acterizes those subsets of Euclidean space that are contained in rectifiable curves.
This celebrated theorem was proven for the plane by Jones [39] and extended to
high-dimensional Euclidean spaces by Okikiolu [76]. The main contribution of [29]
is to formulate the notion of a computable Jones constriction, an algorithmic version
of the infinitary data structure implicit in the analyst’s traveling salesman theorem,
and to prove the computable analyst’s traveling salesman theorem, which says that a
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point in Euclidean space lies on the beaten path BP(n) if and only if it is “permitted”
by some computable Jones constriction.

The computable analysis of points in rectifiable curves has continued in at least
two different directions. In one direction, Rettinger and Zheng have shown (answer-
ing a question in [29]) that there are points in BP(n) that do not lie on any computable
curve of computable length [78] and extended this to obtain a four-level hierarchy of
simple computable planar curves that are point-separable in the sense that the sets
of points lying on curves of the four types are distinct [102]. In another direction,
McNicholl [71] proved that there is a point on a computable arc (a set computably
homeomorphic to [0,1]) that does not lie in BP(n). In the same paper, McNicholl
used a beautiful geometric priority argument to prove that there is a point on a com-
putable curve of computable length that does not lie on any computable arc.

It is apparent from the above results that algorithmic methods will have a great
deal more to say about rectifiability and other aspects of geometric measure theory.
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B. Löwe, W. Merkle (eds.) CiE, Lecture Notes in Computer Science, vol. 5635, pp. 144–153.
Springer (2009)

22. Dougherty, R., Lutz, J.H., Mauldin, R.D., Teutsch, J.: Translating the Cantor set by a random
real. Transactions of the American Mathematical Society 366, 3027–3041 (2014)

23. Downey, R.G., Hirschfeldt, D.R.: Algorithmic Randomness and Complexity. Theory and
Applications of Computability. Springer, New York (2010)

24. Falconer, K.: Dimensions and measures of quasi self-similar sets. Proc. Amer. Math. Soc.
106, 543–554 (1989)

25. Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, 3rd edition.
John Wiley & Sons (2014)

26. Falconer, K.J.: Sets with large intersection properties. Journal of the London Mathematical
Society 49(2), 267–280 (1994)

27. Feder, M.: Gambling using a finite state machine. IEEE Transactions on Information Theory
37, 1459–1461 (1991)

28. Federer, H.: Geometric Measure Theory. Springer-Verlag (1969)
29. Gu, X., Lutz, J.H., Mayordomo, E.: Points on computable curves. In: 47th Annual IEEE

Symposium on Foundations of Computer Science, pp. 469–474. IEEE Computer Society
Press (2006), proceedings of FOCS 2006, Berkeley, CA, October 22–24, 2006

30. Gu, X., Lutz, J.H., Mayordomo, E.: Curves that must be retraced. Information and Compu-
tation 209(6), 992–1006 (2011)

31. Gu, X., Lutz, J.H., Mayordomo, E., Moser, P.: Dimension spectra of random subfractals of
self-similar fractals. Annals of Pure and Applied Logic 165(11), 1707–1726 (2014)
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Chapter 9
Admissibly Represented Spaces and Qcb-Spaces

Matthias Schröder

Abstract A basic concept of Type Two Theory of Effectivity (TTE) is the notion of
an admissibly represented space. Admissibly represented spaces are closely related
to qcb-spaces. The latter form a well-behaved subclass of topological spaces. In
this chapter we give a survey of basic facts about Type Two Theory of Effectivity,
admissibly represented spaces, qcb-spaces and effective qcb-spaces. Moreover, we
discuss the relationship of qcb-spaces to other categories relevant to Computable
Analysis.

9.1 Introduction

Computable Analysis investigates computability on real numbers and related spaces.
Type Two Theory of Effectivity (TTE) constitutes a popular approach to Com-
putable Analysis, providing a rigorous computational framework for non-discrete
spaces with cardinality of the continuum (cf. [43, 44]). The basic tools of this frame-
work are representations. A representation equips the objects of a given space with
names, giving rise to the concept of a represented space. Computable functions be-
tween represented spaces are those which are realized by a computable function on
the names. The ensuing category of represented spaces and computable functions
enjoys excellent closure properties.

Any represented space is equipped with a natural topology, turning it into a qcb-
space. Qcb-spaces form a subclass of topological spaces with a remarkably rich
structure. For example it is cartesian closed, hence products and function spaces can
be formed.

Admissibility is a notion of topological well-behavedness for representations.
The category of admissibly represented spaces and continuously realizable func-
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tions is equivalent to the category QCB0 of qcb-spaces with the T0-property. In par-
ticular, every qcb0-space can be equipped with an admissible representation. Qcb0-
spaces form exactly the class of topological spaces which can be handled appropri-
ately by the framework of Type Two Theory of Effectivity.

An important subcategory of admissibly represented spaces is the class of effec-
tive qcb-spaces. These are qcb-spaces endowed with representations that are admis-
sible in a computable sense. Computable metric spaces endowed with their Cauchy
representations yield important examples. The category EffQCB of effective qcb-
spaces and computable functions has nice closure properties. Therefore Type Two
Theory of Effectivity is applicable to a large class of important spaces occurring in
Analysis.

This paper is organised as follows. In Section 9.2 we recall basic notions of Type
Two Theory of Effectivity with emphasis on represented spaces and their closure
properties. Section 9.3 is devoted to the notion of an admissible representation for
general topological spaces. In Section 9.4 we present and discuss qcb-spaces. Fur-
thermore we summarise basic effectivity properties of effective qcb-spaces. Finally,
in Section 9.5 we compare the category QCB of qcb-spaces with other categories
relevant to Computable Analysis.

9.2 Represented Spaces

We present basic concepts of Type Two Theory of Effectivity (TTE), as developed
by K. Weihrauch ([43, 44]). TTE offers a model for rigorous computation for un-
countable spaces occurring in Analysis such as the real numbers, separable Banach
spaces and Silva spaces. The key idea is the notion of represented spaces and of
computable functions between them. We collect important properties of the ensuing
categories Rep and Repeff of represented spaces. Finally we mention the notion of
multirepresentations generalising ordinary representations.

9.2.1 Representations

In classical recursion theory, computability on a countable space is defined by lifting
the well-established notion of a computable natural number function via an appro-
priate numbering of X . A numbering ν of a set X is a partial surjection ν : N 99K X .
Partiality means that not every number is a representative of an element in X . For un-
countable sets X this approach fails, because the large cardinality precludes the exis-
tence of a numbering. The basic idea of Type Two Theory of Effectivity (TTE) is to
encode the objects of X by infinite words over a finite or countably infinite alphabet
Σ , i.e., by elements of the set ΣN = {p | p : N→ Σ}, and to compute on these names.
The corresponding partial surjection δ : ΣN 99K X mapping every name p∈ dom(δ )
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to the encoded element δ (p) is called a representation of X . If δ (p) = x then p is
called a name or representative of the element x ∈ X .

Example 9.2.1 (The decimal representation). A well-known representation of the
set R of real numbers is the decimal representation ρdec. As its alphabet Σdec it uses
{0, . . . ,9,-,.}. It is defined by

ρdec(a−k . . .a0.a1a2 . . .) :=+
∞

∑
i=−k

ai/10i ,

ρdec(-a−k . . .a0.a1a2 . . .) :=−
∞

∑
i=−k

ai/10i

for all k ∈ N and all digits a−k,a−k+1, . . . ∈ {0, . . . ,9}. ut

For establishing a simple framework of computability for general spaces it is
reasonable to restrict oneself to a single, countably infinite alphabet. We choose the
set N of natural numbers as our alphabet. So we use the Baire space NN as our
space of representatives. One might also use other spaces of representatives. For
example, representations of real numbers by elements of ZN were used by J. Hauck
in [21] and implicitly by A. Grzegorczyk in [20]. Moreover, J. Hauck employed
representations based on ZN to introduce computability for functions on topological
spaces with a recursive basis in [22]. M. Escardó used domains for his approach to
higher-order exact real number computation [19].

9.2.2 The Baire Space

The Baire space NN is a topological space that has all sequences of natural numbers
as its carrier set. Its topology is called Baire topology and is generated by the basic
opens

uNN := {p ∈ NN |u is a prefix of p} ,

where u ranges over the set N∗ of all finite strings over N. This base is countable,
hence NN is a countably based (= second-countable) topological space. Any open
set has the form

WNN := {p ∈ NN | p has a prefix in W} ,

where W is an arbitrary subset of N∗. The Baire space is separable: the elements
u0ω , where u0ω denotes the sequence with prefix u ∈ N∗ followed by infinitely
many 0’s, form a countable dense subset.

The basic open sets uNN are not only open, but also closed. Such sets are usu-
ally called clopen (abbreviating closed-and-open). Topological spaces having a basis
consisting of clopen sets are called zero-dimensional.

The Baire topology is induced by the metric dNN : NN×NN→ R≥0 defined by

dNN(p, p) = 0 and dNN(p,q) := 2−min{i ∈ N | p(i) 6= q(i)}
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for all p 6= q in NN. Note that topological continuity coincides with ε-δ -continuity
for functions between metrisable spaces. The metric dNN is complete, meaning that
every Cauchy sequence (pn)n has a limit p := limn→∞ pn. Therefore NN is a sepa-
rable completely metrisable topological space. Such spaces are referred to as Polish
spaces.

The Baire space NN is homeomorphic to its own binary product NN×NN and to
the countable product ∏i∈NNN of itself. A pairing function 〈·, ·〉 : NN×NN→ NN

for NN is given by

〈p,q〉(2n) := p(n) and 〈p,q〉(2n+1) := q(n) .

We denote the projections of its inverse by π1,π2 : NN→NN. Moreover, a countable
tupling function 〈·〉 : ∏i∈NNN→ NN is defined by

〈p0, p1, p2, . . .〉(k) := pfst(k)(snd(k)),

where fst,snd : N→ N are the computable projections of a canonical computable
pairing function on N. We denote by π∞,i : NN → NN the i-th projection of the
inverse. The pairing function 〈·, ·〉 on NN as well as the projection functions
π1,π2,π∞,0,π∞,1, . . . are computable in the sense of Subsection 9.2.3.

9.2.3 Computability on the Baire Space

Computability for functions on the Baire space NN can be defined either by com-
putable monotone string functions or by Type-2 machines. We present the first op-
tion.

A string function h : N∗→ N∗ is called monotone if it is monotone with respect
to the prefix orderv on the set N∞ :=N∗∪NN of finite and countably infinite strings
over N. A monotone string function h : N∗→ N∗ generates a partial function hω on
the Baire space defined by

dom(hω) :=
{

p ∈ NN ∣∣{h(u) |u is a prefix of p} is infinite
}

hω(p) := supv
{

h(u)
∣∣u is a prefix of p

}
for all p ∈ dom(hω). For example, the identity function on N∗ generates the identity
function on NN.

A partial function g : NN 99K NN is called computable if there is a computable
monotone function h : N∗ → N∗ generating g, i.e., g = hω . Computability of mul-
tivariate functions on NN is defined analogously. A computable element of NN is
just some p ∈ NN which is computable as a natural number function in the sense of
discrete computability theory.

Example 9.2.2. The pairing function 〈·, ·〉 and the projection functions π1,π2,π∞,i
from Subsection 9.2.2 are computable. ut
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Computable functions on NN are closed under composition.

Proposition 9.2.3 (Composition preserves computability).

1) Let f : (NN)k 99K NN and g1, . . . ,gk : (NN)` 99K NN be computable functions.
Then the composition f ◦ (g1× . . .×gk) is computable.

2) Let g be a partial computable function on NN and let p ∈ dom(g) be a com-
putable element of NN. Then g(p) is a computable element of NN.

The following key observation links computability theory with topology: any com-
putable function on the Baire space is continuous.

Proposition 9.2.4 (Computability implies continuity).
Any computable function g : NN× . . .×NN 99K NN is topologically continuous.

Proof. We restrict ourselves to the unary case. So there is a computable monotone
function h : N∗ → N∗ such that hω = g. Let wNN be a basic open (see Subsec-
tion 9.2.2) and let p ∈ dom(g) with p ∈ wNN. Then there is some u ∈ N∗ such that
u v p and w v h(u) v g(p). This implies that for all q ∈ dom(g) with u v q we
have g(q) ∈ wNN. Therefore p ∈ uNN∩dom(g)⊆ g−1[wNN]. We conclude that g is
topologically continuous. ut

Example 9.2.5 (An incomputable function on NN).
The test function is zero : NN→ NN defined by

is zero(p) :=
{
0ω if p = 0ω

1ω otherwise

is incomputable because it is discontinuous. ut

The set Fωω of all partial continuous functions on NN with a Gδ -domain can be
endowed with an “effective” representation η̄ which satisfies the computable utm-
Theorem, the computable smn-Theorem and the continuous smn-Theorem.

Proposition 9.2.6. There is a representation η̄ : NN→ Fωω such that:

1) The evaluation function (p,q) 7→ η̄(p)(q) is computable.
2) For every computable function g : NN×NN 99K NN there is a computable func-

tion s : NN→ NN satisfying η̄(s(p))(q) = g(p,q) for all p,q ∈ NN.
3) For every partial continuous function g : NN×NN 99K NN there is a continuous

function s : NN→ NN satisfying η̄(s(p))(q) = g(p,q) for all (p,q) ∈ dom(g).

Explicit constructions of η̄ can be found, e.g., in [4, 29, 33, 43]. The application
p�q := η̄(p)(q) induces on NN the structure of a partial combinatory algebra (pca),
cf. [3, 29]. The pair (NN,�) is often referred to as Kleene’s second algebra K2.
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9.2.4 Represented Spaces

A represented space is a pair X = (X ,δ ) such that X is a set and δ is a Baire space
representation of X , i.e., a partial surjection from NN onto X . The name ‘represented
space’ was coined by V. Brattka in [6].

9.2.5 Computable Elements of Represented Spaces

An element x of a represented space X = (X ,δ ) is called computable (or δ -com-
putable) if it has a computable name p ∈ NN. Similarly, a computable sequence
(xi)i in X is a sequence of points such that there exists a computable p ∈ NN such
that δ (π∞

i (p)) = xi for all i ∈ N. The reader should be warned that a sequence of
computable elements need not be a computable sequence of elements.

Example 9.2.7 (Computable real numbers).
The real numbers which are ρdec-computable are exactly those numbers x ∈ R for
which there is a computable sequence (zk)k of integers satisfying | zk

k+1 − x| ≤ 1
k+1

for all k ∈ N. The latter is the common definition of a computable real number
as introduced by A. Grzegorczyk (see [20]). Rational numbers and

√
2,π,exp(1)

are computable real numbers, whereas for any non-decidable subset M of natural
numbers, ∑i∈M 4−i is an incomputable real number. ut

Example 9.2.8 (Computable sequences of real numbers).
A sequence (xi)i of real numbers is called computable if, and only if, there is a
computable double sequence (qi,k)i,k of rational numbers such that |qi,k− xi| ≤ 2−k

for all i,k ∈ N. This is equivalent to saying that (xi)i is a computable sequence of
the represented space (R,ρdec). ut

9.2.6 Computable Realizability

A function f between two represented spaces X = (X ,δ ) and Y = (Y,γ) is called
computable if there is a partial computable function g : NN 99K NN realizing f ,
meaning that f δ (p) = γg(p) holds for all p ∈ dom( f δ ). This notion of computabil-
ity is also called (δ ,γ)-computability or computable realizability w.r.t. δ and γ .

That fact that a realizer g realizes a function f is usually visualised by a com-
muting diagram like the following:

X
f //

			

Y

NN

δ

OOOO

g
// NN

γ

OOOO
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We remark that this diagram is slightly imprecise, since it does not capture the
situation for p /∈ dom( f δ ): in particular g is not required to diverge on names
p ∈ dom(δ )\dom( f δ ). So a more precise commuting diagram looks like:

X
f //

			

Y

dom( f δ )

δ

OOOO

g
// NN

γ

OOOO

Computability of partial multivariate functions f : X1× . . .×Xk 99KY between rep-
resented spaces is defined via the existence of a computable realizer g : (NN)k 99K
NN.

By Proposition 9.2.4, any computable function between represented spaces maps
computable elements in the domain to computable elements in the image; more-
over composition of functions between represented spaces preserves computability.
Clearly the identity function on a represented space is computable. So the class of
represented spaces and the total computable functions between them forms a cate-
gory which we denote by Repeff.

Example 9.2.9 (Computability with respect to the decimal representation).
Real multiplication by 2 is computable with respect to the decimal representation
ρdec. By contrast, multiplication by 3 is not computable w.r.t. ρdec. This was already
observed by A. Turing in [42]. We present the simple, well-known proof. To fit into
our framework, we identify the symbols - and . with the numbers ten and eleven,
respectively, so that we can view Σdec as a subset of N and ρdec as a Baire space
representation.

Suppose for contradiction that h is a monotone computable function such that hω

realizes multiplication by 3 with respect to ρdec:

R x 7→ 3x //

			

R

{0, . . . ,9,-,.}N

ρdec

OOOO

hω
// {0, . . . ,9,-,.}N

ρdec

OOOO

The sequence p := 0.3333 . . . is a name of 1
3 . Hence hω(p) must be equal

to 0.999 . . . or to 1.000 . . . ; let us assume the first case. By the continuity
of hω , there is a finite prefix u = 0.33 . . .3 of p such that 0.33 . . .3 v q im-
plies 0.9 v hω(q). But then hω works incorrectly on the name p′ := u4000 . . . =
0.33 . . .34000 . . . , which represents a real number strictly larger than 1

3 . In the
other case we obtain a similar contradiction. We conclude that multiplication by 3
cannot be computable on (R,ρdec). ut

We obtain that the basic arithmetic operations +,−,∗,÷ on the reals are incom-
putable with respect to the decimal representation.
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9.2.7 The Cauchy Representation of the Real Numbers

We present a representation of the real numbers which induces a reasonable notion
of computability. It is known as the Cauchy representation for the reals. The Cauchy
representation ρR is defined by

ρR(p) = x :⇐⇒ ∀k ∈ N.|νQ(p(k))− x| ≤ 2−k,

where νQ is a canonical numbering1 of the rational numbers Q. So a name of a real
number is essentially a rapidly converging sequence of rationals.

We present an incomplete list of functions which are computable with respect to
the Cauchy representation.

Example 9.2.10 (Computable real functions).
The following (total or partial) real functions are computable with respect to the
Cauchy representation on their natural domain.

1) +, −, ∗, ÷
2)
√

x, y
√

x, exp, log
3) sin, cos, tan, arcsin, arccos, arctan
4) x 7→

∫ x
0 f dt for any computable function f : (R,ρR)→ (R,ρR). ut

These facts induce us to choose the following as the notion of computability on
the real numbers.

Definition 9.2.11. A total or partial real function f : Rk 99K R is called computable
if it is computable with respect to the Cauchy representation ρR. A real number x is
computable if it has a computable name p with ρR(p) = x.

This notion of computability is essentially the same as the one considered by
A. Grzegorczyk in [20], at least for functions with well-behaved domain. More in-
formation about real computability can be found, e.g., in [6, 7, 10, 11, 44].

9.2.8 The Signed-Digit Representation

We present an alternative representation of reals inducing the same notion of com-
putability as the Cauchy representation. It is called the signed-digit representation.

A straightforward version of the signed-digit representation uses the zero-dimen-
sional Polish space Z×{1̄,0,1}N as the space of representatives instead of the Baire
space NN, where the symbol 1̄ stands for the negative digit −1. It is defined by

1 A canonical numbering of Q can defined by νQ(n) := νZ(fst(n))
1+snd(n) , where fst,snd are the computable

projections of a computable pairing function for N and νZ is a canonical numbering of the integers
like the one in Subsection 9.2.8.
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ρ̃sd(z, p) := z+ ∑
i∈N

p(i)
2i+1

for all integers z ∈ Z and all p ∈ {1̄,0,1}N. The trick of using the negative digit 1̄
guarantees that the real numbers are encoded in a reasonable way.

We modify ρ̃sd to obtain a version of the signed-digit representation that fits better
into our framework, which uses the Baire space as the fixed representing space. We
employ the effective bijective numbering of the set Z of integers given by

νZ(n) :=

{
n+1

2 if n is odd
− n

2 otherwise.

So the sequence (νZ(n))n starts with the initial segment 0,1,−1,2,−2,3,−3. Now
we can define our version of the signed-digit representation ρsd : NN 99KR over the
Baire space by

dom(ρsd) :=
{

p ∈ NN ∣∣ p(i) ∈ {0,1,2} for all i≥ 1
}
,

ρsd(p) := νZ(p(0))+∑
i≥1

νZ(p(i))
2i .

Recall that 2 encodes the negative digit −1.
While inducing the same computability notion as the Cauchy representation (cf.

Example 9.2.14), the signed-digit representation has the advantage over the Cauchy
representation from Subsection 9.2.7 of being proper. This means that the preimage
of any compact subset of R under ρsd is compact (cf. [36, 44, 45]). This property
makes the signed-digit representation suitable for Type Two Complexity Theory.

9.2.9 Continuous Realizability

In Subsection 9.2.3 we have seen that every computable function on the Baire space
is continuous with respect to the Baire topology. Hence the notion of a continuously
realizable function plays an important role in investigating the question of which
representations of a space lead to a reasonable computability notion on that space.

A partial function f between two represented spaces X= (X ,δ ) and Y= (Y,γ) is
called continuously realizable (for short continuous) if there is a partial continuous
function g on the Baire space realizing f , meaning that γg(p) = f δ (p) holds for all
p ∈ dom( f δ ):

X
f //

			

Y

NN

δ

OOOO

g
// NN

γ

OOOO
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In this situation f is also called (δ ,γ)-continuous or continuously realizable with
respect to δ and γ . Continuous realizability of multivariate functions is defined simi-
larly. Since every computable function on NN is topologically continuous, we obtain
a new instance of the slogan: Computability implies Continuity.

Proposition 9.2.12. Any computable function between represented spaces is contin-
uous.

Hence continuous realizability can be viewed as a topological generalisation of com-
putable realizability. Computability with respect to an oracle is equivalent to con-
tinuous realizability.

9.2.10 Reducibility and Equivalence of Representations

Given two representations δ1 and δ2 of the same set X we say that δ1 is computably
reducible to (or computably translatable into) δ2 if there is a computable function g
on the Baire space translating δ1 into δ2 in the sense that the diagram

X

NN

δ1

			

77 77

g
// NN

δ2

OOOO

commutes, meaning δ1(p) = δ2(g(p)) for all p∈ dom(δ1). In this situation we write
δ1 ≤cp δ2. If δ1 ≤cp δ2 ≤cp δ1, then δ1 and δ2 are called computably equivalent,
which is written as δ1 ≡cp δ2. Some authors omit the subscript “cp”. Topological re-
ducibility (in symbols δ1 ≤t δ2) and topological equivalence (in symbols δ1 ≡t δ2)
is defined analogously by means of continuous rather than computable transla-
tor functions. Topological reducibility (equivalence) is also known as continuous
reducibility (equivalence). Obviously, ≤cp,≤t,≡cp,≡t are reflexive and transitive.
Computably equivalent representations induce the same notion of computability.

Proposition 9.2.13. Let δ1,δ2 : NN 99K X and γ1,γ2 : NN 99K Y be representations.
Let f : X 99K Y be a partial function.

1) If δ1 ≡cp δ2 and γ1 ≡cp γ2, then f is (δ1,γ1)-computable if, and only if, f is
(δ2,γ2)-computable.

2) If δ1 ≡t δ2 and γ1 ≡t γ2, then f is (δ1,γ1)-continuous if, and only if, f is (δ2,γ2)-
continuous.

3) If δ1 ≡cp δ2, then x ∈ X is δ1-computable if, and only if, x is δ2-computable.
4) If δ1≤cp δ2, γ1≤cp γ2 and f is (δ2,γ1)-computable, then f is (δ1,γ2)-computable.
5) If δ1 ≤t δ2, γ1 ≤t γ2 and f is (δ2,γ1)-continuous, then f is (δ1,γ2)-continuous.
6) If δ1 ≤cp δ2 and x ∈ X is δ1-computable, then x is δ2-computable.
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Example 9.2.14 (Comparison of representations of the reals).
The decimal representation ρdec is computably translatable into the Cauchy repre-
sentation ρR, but ρR is not even continuously translatable back to ρdec. Nevertheless,
computability of a real number with respect to ρdec is equivalent to its computability
with respect to the Cauchy representation ρR. The Cauchy representation is com-
putably equivalent to the signed-digit representation ρsd. So ρsd induces the same
notion of computability on the Euclidean space as ρR by Proposition 9.2.13. ut

9.2.11 The Category of Represented Spaces

The category of represented spaces comes in two versions, a continuous one and
an effective one. Both have as objects all represented spaces (X ,δ ). The continu-
ous version, Rep, has as morphisms all total continuously realizable functions be-
tween represented spaces. The effective category Repeff only uses all total com-
putable functions as morphisms. The category Rep is essentially equal to the cate-
gory Mod(NN) of modest sets over the Baire space (cf. [4]), whereas Repeff corre-
sponds to Mod(NN,NN

] ); see A. Bauer’s thesis [3] for further information.

9.2.12 Closure Properties of Represented Spaces

The category Rep as well as its subcategory Repeff are known to be cartesian closed
(even locally cartesian closed, cf. A. Bauer’s thesis [3]). We describe how to canon-
ically construct a binary product X×Y and a function space YX in Rep and identi-
cally in Repeff.

Let X = (X ,δ ) and Y = (Y,γ) be represented spaces. The carrier set of the binary
product X×Y is just the cartesian product X ×Y . The construction of the product
representation δ � γ employs the computable bijection 〈·, ·〉 : NN×NN → NN and
its computable projections π1,π2 : NN → NN from Subsection 9.2.2. One defines
δ � γ : NN 99K X×Y by

δ � γ〈p,q〉 :=
(
δ (p),γ(q)

)
,

which is a useful short form for

dom(δ � γ) := {r ∈ NN |π1(r) ∈ dom(δ ), π2(r) ∈ dom(γ)} ,
δ � γ(r) :=

(
δ (π1(r)),γ(π2(r))

)
for r ∈ dom(δ � γ).

Another familiar notation for δ � γ is [δ ,γ].
The carrier set of the exponential YX in Rep and in Repeff consists of the set

C(X,Y) of all total continuously realizable functions f : X→Y. Its canonical func-
tion space representation [δ → γ] is constructed with the help of the effective rep-
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resentation η̄ of all partial continuous endofunctions on NN with Gδ -domain from
Proposition 9.2.6. For all p ∈ NN and total continuous functions f : X→ Y one
defines

[δ → γ](p) = f :⇐⇒ the function η̄(p) realizes f .

The utm-Theorem for η̄ ensures that the evaluation function

eval : YX×X→ Y , eval( f ,x) := f (x)

is computable. The computable smn-Theorem guarantees currying of computable
functions: for any computable f : Z×X→ Y the function curry( f ) : Z→ YX de-
fined by (

curry( f )(z)
)
(x) := f (z,x) for all z ∈ Z and x ∈ X

is computable from Z to YX; in particular curry( f )(z) is indeed an element of
C(X,Y). Note that curry( f )(z) need not be a computable function from X to Y,
unless z is a computable element of Z. Likewise, the continuous smn-Theorem en-
sures that curry maps continuously realizable functions to continuously realizable
functions. Hence YX defined by (C(X,Y), [δ → γ]) is an exponential to X and Y
both in Rep and in Repeff. A total function h from X to Y is computable if, and only
if, h is a computable element of YX. We emphasise that the exponential of X and
Y in Repeff coincides with the one in Rep, so that its underlying set may contain
incomputable (albeit continuously realizable) functions.

In contrast to its subcategory Repeff, the category Rep has also countable products
and countable coproducts. Let ((Xi,δi))i∈N be a sequence of represented spaces.
One uses the computable projections π∞,i of the countable tupling function for NN

from Subsection 9.2.2 and defines representations �i∈N δi for the cartesian product
∏i∈N Xi and �i∈N δi for the disjoint sum

⋃
i∈N({i}×Xi) by

(�
i∈N

δi)(p) :=
(
δ0(π∞,0(p)),δ1(π∞,1(p)),δ2(π∞,2(p)), . . .

)
,

(�
i∈N

δi)(p) :=
(

p(0),δp(0)(p≥1)
)
,

where p≥1(i) := p(i+1). The ensuing represented spaces form a countable product
and a countable coproduct for ((Xi,δi))i∈N in Rep, but not necessarily in Repeff.
The represented space ({1}×X ∪{2}×Y,δ � γ) is a binary coproduct for X and
Y in both categories, where the binary coproduct representation δ � γ is defined
analogously to the countable coproduct representation.

We mention the useful notion of the meet of represented spaces ((Xi,δi))i. It has
the intersection

⋂
i∈N Xi as carrier set and the meet representation

∧
i∈N δi is defined

by
( ∧

i∈N
δi)(p) = x :⇐⇒ ∀i ∈ N.δi(π

∞
i (p)) = x .

The representation δ ∧ γ of the binary meet X∧Y is defined analogously.
Any subset M of a represented space X = (X ,δ ) has the corestriction δ |M as

natural representation which has δ−1[M] as domain and maps p∈ δ−1[M] to δ (p)∈
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M. This entails that both Rep and Repeff have equalisers and thus all finite limits.
Moreover, Rep has all countable limits because it is countably cartesian.

9.2.13 Multivalued Functions

A multivalued function (or operation or problem) is a triple F = (X ,Y,Graph(F)),
where Graph(F) is a relation between sets X and Y , written as F : X ⇒ Y . The set
X is called the source and Y the target of F . The intuition behind this definition is
that the elements of F [x] := {y ∈ Y |(x,y) ∈ F} are viewed as the legitimate results
for an input x under the multivalued function F . If the domain dom(F) := {x ∈
X |F [x] 6= /0} of F is equal to X , then F is called total. Ordinary total or partial
functions f : X 99K Y can be seen as multivalued functions such that the image f [x]
is a singleton for every x in the domain dom( f ) of f .

A multivalued function F between represented space X = (X ,δ ) and Y = (Y,γ)
is called computable (or computably realizable or (δ ,γ)-computable) if there is a
computable function g on NN such that

γ(g(p)) ∈ F [δ (p)] for every p ∈ dom(δ ) with δ (p) ∈ dom(F).

So a realizer g for F picks a possible result y∈F [x] for an input x which may heavily
depend on the input name p∈ δ−1[x]. From the point of view of logic, a computable
realizer for F can be interpreted as a computable realizer of the ∀∃-statement

∀x ∈ dom(F).∃y ∈ Y.(x,y) ∈ Graph(F) .

Similarly, F is called continuously realizable (for short continuous) if it has a con-
tinuous realizer g satisfying the above formula.

Example 9.2.15 (Unsharp tests).
A powerful computable multivalued function is the finite-precision test T : R3⇒ N
defined by

T [x,y,ε] := (x <ε y) :=

 {1} if x≤ y− ε

{0,1} if y− ε < x < y
{0} if x≥ y

for all x,y,ε ∈ R with ε > 0. This (ρR � ρR � ρR,ρN)-computable test (where
ρN(p) := p(0)) is a basic operation in P. Hertling’s and V. Brattka’s feasible real
random access machine (cf. [10]). By contrast, the ordinary precise test “x < y ?” is
incomputable because it is discontinuous.

In his package iRRAM for exact real number computation (cf. [31]), N. Müller
has implemented a similar multivalued test positive : R×Z⇒ N. It is defined by

positive[x,z] :=

 {1} if x > 2z

{0,1} if −2z ≤ x≤ 2z

{0} if x <−2z
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for all x ∈R, z ∈ Z. The multivalued function positive is (ρR�ρZ,ρN)-computable.
The unsharp positivity test can often be employed as a computable substitute for
the discontinuous, hence incomputable test “x > 0 ?”. For a further discussion of
unsharp tests we refer to [10, 31]. ut

From the computability point of view, the most appropriate definition of compo-
sition of two multivalued functions is given by

dom(G◦F) :=
{

x ∈ dom(F)
∣∣F [x]⊆ dom(G)

}
,

G◦F [x] :=
{

z
∣∣∃y ∈ F [x].z ∈ G[y]

}
for x ∈ dom(G◦F).

This definition guarantees that the class of computable multivalued functions is
closed under composition (see [8]). The seemingly more natural version of com-
position that has {x ∈ dom(F) |F [x]∩ dom(G) 6= /0} as domain does not preserve
computability of multivalued functions.

9.2.14 Multirepresentations

A multirepresentation δ of a set X is a partial multivalued function from the Baire
space to X which is surjective in the sense that for every x ∈ X there exists some
p ∈ NN such that x ∈ δ [p]. So multirepresentations generalise representations by
allowing any p ∈ NN to be a name of more than one element. Such a pair (X ,δ ) is
called a multirepresented space.

A partial function f : X 99K Y between multirepresented spaces X = (X ,δ ) and
Y = (Y,γ) is called computable or computably realizable or (δ ,γ)-computable if
there is a computable function g : NN 99K NN satisfying

x ∈ δ [p] & x ∈ dom( f ) =⇒ f (x) ∈ γ[g(p)] ;

similarly for multivariate functions. Continuous realizability w.r.t. multirepresen-
tations is defined via continuous realizers rather than computable realizers in the
spirit of Subsection 9.2.9. The category MRep of multirepresented spaces (X ,δ )
and continuously realizable total functions is equivalent to the category Asm(NN)
of assemblies [29] over the Baire space. Thus MRep is locally cartesian closed,
countably complete and countably cocomplete.

There exist constructors for forming canonical multirepresentations for products,
coproducts, meets and function spaces generalising those for representations pre-
sented in Subsection 9.2.4. Details can be found in [33].

Example 9.2.16 (The space of partial continuous functions).
Let X = (X ,δ ), Y = (Y,γ) and Z be (multi-)represented spaces. A canonical multi-
representation of the set of partial continuously realizable functions from X to Y is
defined by

f ∈ [δ99Kγ][p] :⇐⇒ ∀(r,x) ∈ Graph(δ ).
(
x ∈ dom( f ) =⇒ f (x) ∈ γ[η̄(p)(r)]

)
,
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where η̄ is taken from Proposition 9.2.6. We denote by P(X,Y) the ensuing multi-
represented space. The evaluation function eval : P(X,Y)×X 99KY is computable.
Moreover, [δ 99K γ] admits currying of the following kind: for all partial computable
functions h : Z×X 99K Y the total function curry(h) : Z→ P(X,Y) defined by

dom
(
curry(h)(z)

)
:= {x |(z,x) ∈ dom(h)},

(
curry(h)(z)

)
(x) := h(z,x)

is computable as well. ut

More information can be found in [33, 47].

9.3 Admissible Representations of Topological Spaces

We introduce and study admissibility as a notion of topological well-behavedness
for representations for topological spaces. This notion is a generalisation of a similar
notion introduced by C. Kreitz and K. Weihrauch in [26] which applies to represen-
tations of second-countable topological spaces.

9.3.1 The Topology of a Represented Space

Any represented space X = (X ,δ ) carries a natural topology, namely the final topol-
ogy or quotient topology induced by the partial surjection δ . The final topology is
defined as the family of sets

τδ :=
{

U ⊆ X
∣∣δ−1[U ] =W ∩dom(δ ) for some open subset W ⊆ NN} .

It is equal to the finest (= largest) topology on X such that δ is topologically contin-
uous. We denote by T (X ,δ ) the topological space that carries the final topology τδ

and call it the associated space. The following fact is crucial.

Proposition 9.3.1. Let X = (X ,δ ) and Y = (Y,γ) be represented spaces. Any total
continuously realizable function f : X → Y is topologically continuous with respect
to the final topologies of the respective representations.

Hence the operator T constitutes a forgetful functor T : Rep→ Top mapping con-
tinuously realizable functions to themselves. In Subsections 9.3.2 and 9.4.1 we will
see that T (X ,δ ) is a sequential topological space and even a qcb-space.

Proposition 9.3.2 (Computability implies continuity). Any total computable func-
tion between two represented spaces is topologically continuous with respect to the
topologies associated with the represented spaces.
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9.3.2 Sequential Topological Spaces

A sequential space (cf. [18, 15, 25]) is a topological space X such that every sequen-
tially closed subset of X is closed in X. A subset A of X is called sequentially closed
if A contains every limit x of every sequence (xn)n in A. Remember that (xn)n is
defined to converge in a topological space X to an element x (in symbols (xn)n→X x
or shorter (xn)n→ x) if any open set U 3 x contains (xn)n eventually, meaning that
there is some n0 ∈ N with xn ∈U for all n ≥ n0. The complements of sequentially
closed sets are called sequentially open.

Basic examples of sequential spaces are metrisable spaces and second-countable
spaces. The following fact is crucial.

Example 9.3.3 (Sequential spaces).
For any represented space X, the associated topological space T (X) is sequential.

ut

Neither forming the topological product X×Top Y nor taking the compact-open
topology on the family C(X,Y) of total topologically continuous functions from X
to Y nor taking a topological subspace preserve the property of being sequential.
For example, the compact-open topologies on C(NN,N) and on C(RR,R) are not
sequential.

A partial function f : X 99K Y between topological spaces is called sequen-
tially continuous if f preserves convergent sequences, i.e., (xn)n →X x implies
( f (xn))n →Y f (x) whenever the sequence (xn)n and its limit x are in the domain
of f . The map f is called topologically continuous if for every open set V in Y there
is some open set U in X such that f−1[V ] = U ∩ dom( f ). Topological continuity
implies sequential continuity, but not vice versa. Importantly, sequential continuity
coincides with topological continuity for total unary functions between sequential
spaces. The reader should be warned that this equivalence does not hold in general
for multivariate functions nor for non-total functions.

By Seq we denote the category of sequential topological spaces as objects and
total sequentially continuous functions as morphisms. This category is known to be
cartesian closed (see [18, 25]). By contrast, the category Top of topological spaces
and total topologically continuous functions fails to be cartesian closed.

9.3.3 Sequentialisation of Topological Spaces

The family of all sequentially open sets of a topological space X forms a (possibly)
finer topology on the carrier set of X. It is called the sequentialisation of the topology
of X. The topological space seq(X) carrying this topology is the unique sequential
space that has the same convergence relation on sequences as X. It is equal to X if,
and only if, X is sequential. The functor seq is right-adjoint to the inclusion functor
of Seq into the category Top of topological spaces (see [25]). So seq(X) is referred
to as the sequential coreflection of X.
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9.3.4 Topological Admissibility

Given represented spaces, the natural question arises of which functions are com-
putable between them. Conversely, one wants to know how to construct appropriate
representations that admit computability of a relevant family of functions and thus
have certain required effectivity properties.

Since computability w.r.t. given representations implies continuity w.r.t. these
representations, it is reasonable to consider two different kinds of effectivity proper-
ties, the topological ones and the purely computable ones. Many representations fail
to be appropriate simply by having unsuitable topological properties which prevent
some interesting functions from being at least continuously realizable. The prime
example is the notorious decimal representation ρdec: an inspection of the proof of
Example 9.2.9 shows that multiplication by 3 is in fact not even continuously real-
izable. So the misbehaviour of the decimal representation is of purely topological
nature.

Therefore we turn our attention to continuous realizability and identify those
representations of topological spaces which induce an appropriate class of continu-
ously realizable functions. This is done by introducing the property of admissibil-
ity for representations. It aims at guaranteeing that every topologically continuous
function is continuously realizable. Definition 9.3.4 generalises a previous notion of
admissibility introduced by C. Kreitz and K. Weihrauch (see [26, 44] and Subsec-
tion 9.3.6) which is tailor-made for topological spaces with a countable base.

Definition 9.3.4 (Admissible representations [35]).
A representation δ : NN 99K X is called admissible for a topological space X if

a) δ is continuous,
b) for every partial continuous function φ : NN 99K X there is a continuous function

g : NN 99K NN satisfying φ = δ ◦g, i.e., the diagram

X

dom(φ) g
//

φ

			

66 66

dom(δ )

δ

OOOO

commutes.

The condition b) is referred to as the maximality property of δ . It postulates that any
continuous representation of X can be translated into δ . Any admissible represen-
tation of X is maximal in the class of continuous representations of X with respect
to continuous reducibility≤t. Continuous reducibility (= topological reducibility) is
defined by: φ ≤t φ ′ iff there is a continuous g : dom(φ)→ NN with φ = φ ′ ◦g.

Proposition 9.3.5. Let δ be a representation of a topological space X. Then δ is
admissible if, and only if, it is≤t-maximal in the class of continuous representations
of X.
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Admissibility ensures the equivalence of mathematical continuity and continuous
realizability as desired.

Theorem 9.3.6. Let δ and γ be admissible representations of topological spaces X
and Y, respectively. Then a partial function f : X 99K Y is sequentially continuous
if, and only if, f : (X,δ ) 99K (Y,γ) is continuously realizable.

Recall that topological continuity implies sequential continuity, but not vice versa.
Admissibility is necessary only for the representation of the target space, whereas

the source representation is merely required to be a quotient representation (δ is
called a quotient representation of a topological space X if its final topology is
equal to the topology of X). We formulate this fact with the help of the notion of an
admissibly represented space: this is a represented space Y such that its representa-
tion is admissible for the associated topological space T (Y). A. Pauly coined this
notion in [32] using a different definition which is equivalent to the above definition
by Theorem 9.4.8.

Theorem 9.3.7. Let X be a represented space and let Y be an admissibly repre-
sented space. Then a total function f : X→Y is continuously realizable if, and only
if, f is topologically continuous between the associated topological spaces T (X)
and T (Y).

For partial functions and for multivariate functions we only get equivalence with
sequential continuity.

Theorem 9.3.8. Let Xi be represented spaces for i ∈ {1, . . . ,k} and let Y be an
admissibly represented space. Then a partial function f : X1× . . .×Xk 99K Y is
continuously realizable if, and only if, f is sequentially continuous between the as-
sociated topological spaces T (X1), . . . ,T (Xk) and T (Y).

Since the topological product of the spaces T (Xi) is not necessarily sequential,
continuous realizability only implies sequential continuity.

Admissible representations have the following quotient properties.

Proposition 9.3.9. Let δ be an admissible representation of a topological space X.

1) δ lifts convergent sequences, i.e., for every sequence (xn)n converging in X to
some x ∈X there is a sequence (pn)n converging in NN to some p∈NN such that
δ (pm) = xm for all m ∈ N and δ (p) = x.

2) δ is a quotient representation of X if, and only if, X is a sequential space.
3) δ is an admissible quotient representation of the sequential coreflection of X.

Although the decimal representation ρdec is a quotient representation of the Eu-
clidean space R, it does not lift convergent sequences. Hence it is not admissible for
R. By contrast, the Cauchy representation enjoys admissibility. This explains why
the latter induces a useful notion of computability, whereas the former fails to do so.
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Example 9.3.10. The Cauchy representation and the signed-digit representation are
admissible for the Euclidean space R, whereas the decimal representation is not.

ut

Proofs of this subsection can be found in [33].

9.3.5 Examples of Admissible Representations

We present admissible representations of some relevant spaces.

Example 9.3.11 (Admissible representations of relevant metric spaces).
1) The identity on NN is an admissible representation of NN.
2) For the discrete natural numbers N we use as canonical admissible representation

ρN the one defined by ρN(p) := p(0).
3) The one-point compactification N∞ has as carrier set N∪{∞}. Its topology has as

basis the sets {a} and {∞,n |n ≥ a} for all a ∈ N. An admissible representation
ρN∞

for N∞ is defined by

ρN∞
(p) :=

{
∞ if p = 0ω

min{n ∈ N | p(n) 6= 0} otherwise

for all p ∈ NN.
4) Any Polish space X has a total admissible representation. We briefly sketch a

construction. Let d : X×X→ R be a complete metric inducing the topology of
X, and let {ai | i ∈ N} be a dense subset of X. Using the continuous function
` : NN→ N∞ given by

`(p) := min
(
{∞}∪{m ∈ N |d(ap(m),ap(m+1))≥ 1/2m+1}

)
,

we define a total representation δ : NN→ X by

δ (p) :=

{
lim
i→∞

ap(i) if d(ap(m),ap(m+1))< 1/2m+1 for all m ∈ N
ap(`(p)) otherwise.

Since d(δ (p),ap(m))≤ 2−m holds for all p ∈ NN and m≤ `(p), δ is continuous.
The maximality property follows from the fact that the restriction of δ to `−1{∞}
is a version of the Cauchy representation of X similar to the admissible represen-
tation defined in [44, Definition 3.4.17]. ut

We turn our attention to non-Hausdorff examples.

Example 9.3.12 (Admissible representations of relevant non-Hausdorff spaces).

1) The Sierpiński space S has {⊥,>} as its carrier set and is topologised by the
family { /0,{>},{⊥,>}}. Note that the constant sequence (>)n converges both
to > and to ⊥. A total admissible representation ρS for S is defined by
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ρS(p) :=
{
⊥ if p = 0ω

> otherwise,

where 0ω denotes the constant sequence consisting of 0’s.
2) Scott’s graph model Pω is a prime example of a Scott domain. Its carrier set is the

power set of N ordered by set inclusion ⊆. A countable basis of the Scott topol-
ogy on Pω is given by the family of sets {M ⊆ N |E ⊆M}, where E varies over
the finite subsets of N. The enumeration representation En : NN → Pω defined
by

En(p) := {p(i)−1 | i ∈ N & p(i)> 0}

is an admissible representation of Pω viewed as a topological space endowed
with the Scott topology (cf. [44]).

3) The lower reals R< are endowed with the topology {(a;∞) |a ∈ R} ∪ { /0,R}.
An admissible representation δ< for R< is given by: δ<(p) = x :⇐⇒ En(p) =
{i |νQ(i)< x}, where νQ is a canonical numbering of the rational numbers.

4) Any second-countable T0-space X has an admissible representation (cf. [26]).
Given a countable subbase {βi | i∈N} with

⋃
i∈N βi = X , one defines δβ : NN 99K

X by
δβ (p) = x :⇐⇒ En(p) = {i ∈ N |x ∈ βi} .

So p is a name of x if, and only if, p lists all (indices of) subbasic sets which
contain x. Remember that T0-spaces are exactly those topological spaces Y such
that ηY : y 7→ {V open in Y |y ∈ V} is injective, ensuring that δβ is indeed well
defined. C. Kreitz and K. Weihrauch called δβ a standard representation for X in
[26] and showed that δβ is continuous and has the maximality property. Hence
δβ is admissible in the sense of Definition 9.3.4.

5) M. de Brecht has characterised the second-countable T0-spaces enjoying a total
admissible representation as the quasi-Polish spaces (see [13]). Quasi-Polishness
is a completeness notion for quasi-metric spaces. For example, Scott’s graph
model Pω is quasi-Polish. ut

9.3.6 The Admissibility Notion of Kreitz and Weihrauch

C. Kreitz and K. Weihrauch introduced a notion of admissible representations tailor-
made for representing T0-spaces X with a countable base. They call a representation
φ of X admissible if φ is topologically equivalent to the standard representation δβ

presented in Example 9.3.12. This notion of admissibility guarantees equivalence of
continuous realizability and topological continuity for partial multivariate functions
between second-countable T0-spaces. This equivalence is referred to as the Main
Theorem in [26, 43, 44]. Moreover, C. Kreitz and K. Weihrauch proved in [26]
that φ is topologically equivalent to δβ if, and only if, φ is continuous and has
the maximality property. Therefore this admissibility notion agrees with the one in
Definition 9.3.4 for representations of second-countable T0-spaces.



9 Admissibly Represented Spaces and Qcb-Spaces 325

9.3.7 Constructing Admissible Representations

In Subsection 9.2.12 we have seen how to form products, coproducts, meets and
function spaces in Rep. The corresponding constructions preserve admissibility.

Proposition 9.3.13. Let δi be an admissible representation of a topological space
Xi.

1) δ1�δ2 is an admissible representation of the topological product of X1 and X2.
2) �i∈N δi is an admissible representation of the Tychonoff product ∏i∈N Xi.
3) δ1�δ2 is an admissible representation of the binary coproduct X1]X2.
4) �i∈N δi is an admissible representation of the countable coproduct

⊎
i∈N Xi.

5) δ1∧δ2 is an admissible representation of the meet (X1∩X2,O(X1)∧O(X2)).
6) ∧i∈N δi is an admissible representation of the meet (

⋂
i∈N Xi,

∧
i∈N O(Xi)).

Here
∧

i∈N O(Xi) denotes the countable meet topology which is generated by the
basis {⋂k

i=0
Ui
∣∣k ∈ N, Ui open in Xi for all i≤ k

}
.

The binary meet topology O(X1)∧O(X2) is defined analogously.
For the function space representation to be admissible it suffices that the target

space representation is admissible, whereas the source space representation only
has to have appropriate quotient properties. This fact is crucial in showing that ev-
ery qcb0-space has an admissible representation (cf. Subsection 9.4.4). Recall that
any admissible representation lifts convergent sequences; moreover, it is a quotient
representation whenever the represented topological space is sequential (cf. Propo-
sition 9.3.9).

Proposition 9.3.14. Let γ be an admissible representation of a topological space Y.

1) Let δ be a quotient representation of a topological space X. Then [δ → γ] is
an admissible representation of the space of all total topologically continuous
functions from X to Y endowed with the compact-open topology.

2) Let δ be a continuous representation of a topological space X that lifts conver-
gent sequences. Then [δ → γ] is an admissible representation of the space of all
total sequentially continuous functions from X to Y endowed with the compact-
open topology.

Now we turn our attention to subspaces and sequential embeddings. A function
e : Z→ X is called a sequential embedding of Z into X if e is injective and satisfies
(zn)n→Z z⇐⇒ (e(zn))n→X e(z).

Proposition 9.3.15. Let δ be an admissible representation of a topological space X.

1) Let Y be a topological subspace of X. Then the corestriction δ |Y is an admissible
representation of Y.

2) Let e : Z→ X be a sequential embedding of a topological space Z into X. Then
ζ : NN 99K Z defined by ζ (p) = z :⇐⇒ e(z) = δ (p) is an admissible represen-
tation of Z.

For proofs we refer to [33, 35].
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9.3.8 Pseudobases

The class of topological spaces enjoying an admissible representation can be char-
acterised with the help of the notion of a pseudobase. A family B of subsets of a
topological space X is called a pseudobase for X if for every open set U in X and for
every sequence (xn)n converging to some element x ∈U there is a set B ∈B with

x ∈ B⊆U and xn ∈ B for almost all n≥ n0.

A family B of subsets such that its closure under finite intersection is a pseudobase
for X is called a pseudosubbase for X. Any base of a topological space is a pseu-
dobase; the converse is not true in general. Pseudobases become interesting when
they are countable. Given pseudobases for spaces X and Y, there exist canonical
constructions for forming pseudobases for product, coproduct, meet, exponentiation
and subspaces (cf. [18, 33, 35]).

Example 9.3.16 (Pseudobase generated by an admissible representation).
Let δ be an admissible representation of a topological space X. Then the sets
δ [uNN ∩ dom(δ )], where u varies over the finite strings over N, form a countable
pseudobase for X. ut

Together with the T0-property, the existence of a countable pseudobase charac-
terises the class of admissibly representable topological spaces.

Proposition 9.3.17 (Topological spaces with admissible representations).
1) A topological space has an admissible representation if, and only if, it has a

countable pseudobase and satisfies the T0-property.
2) A topological space has an admissible quotient representation if, and only if, it

is sequential, has a countable pseudobase and satisfies the T0-property.

Given a countable pseudobase {βi | i ∈ N} for a T0-space X, an admissible repre-
sentation θβ for X can be constructed by

θβ (p) = x :⇐⇒

{
En(p)⊆ {i ∈ N |x ∈ βi} &

∀U ∈ ηX(x).∃i ∈ En(p).βi ⊆U

where ηX(x) denotes the family of open sets containing x and En is the enumeration
numbering of {M |M ⊆ N} from Example 9.3.12. The T0-property guarantees that
at most one element x satisfies the right-hand side of the displayed formula. On the
other hand, a simple cardinality argument shows that the existence of an admissible
representation implies the T0-property.
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9.4 Qcb-Spaces

We discuss the class of qcb-spaces and their subclass of qcb0-spaces. Qcb0-spaces
are shown to be exactly the class of topological spaces that have an admissible quo-
tient representation. Their excellent closure properties identify them as an appropri-
ate topological framework for studying computability on spaces with cardinality of
the continuum. Moreover, we investigate computability properties of qcb-spaces us-
ing the notion of an effective qcb-space. Finally, we present quasi-normal spaces as
an important subclass of Hausdorff qcb-spaces suitable for studying computability
in Functional Analysis.

9.4.1 Qcb-Spaces

A topological space X is called a qcb-space (quotient of a countably based space)
if X can be exhibited as a topological quotient of a topological space W with a
countable base. This means that there exists a surjection q : W � X such that X
carries the finest (= largest) topology τq such that q is topologically continuous
(in this case q is called a quotient map). Clearly, this finest topology is equal to
{U ⊆ X |q−1[U ] open in W}. Because it is a topological quotient of a sequential
space, any qcb-space is sequential as well (cf. [15]). Recall that this implies that
a total unary function between qcb-spaces is topologically continuous if, and only
if, it is sequentially continuous. We write QCB for the category of qcb-spaces with
continuous functions as morphisms and QCB0 for the full subcategory of qcb0-
spaces, which are qcb-spaces satisfying the T0-property.

Clearly, any separable metrisable space is a qcb0-space because it is second-
countable and Hausdorff. Moreover, the topological space associated with a repre-
sented space is a qcb-space. So henceforth we consider the functor T from Subsec-
tion 9.3.1 as a functor from Rep to QCB.

The category QCB was first investigated in [33] under the acronym AdmSeq. In
[3], QCB was shown to be the same category as the category PQ of sequential spaces
with an ω-projecting cover. Later the name ‘qcb-space’ was coined by A. Simpson
in [40]. Further information about QCB can be found in [1, 18, 29].

9.4.2 Operators on Qcb-Spaces

The category QCB of qcb-spaces and its full subcategory QCB0 have excellent clo-
sure properties.

Theorem 9.4.1. The categories QCB and QCB0 are cartesian closed and have all
countable limits and all countable colimits.
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For short this means that we can form within QCB and QCB0 countable products,
function spaces, subspaces, countable coproducts and quotients.

We sketch how to construct qcb-spaces from others. Unless stated otherwise, the
respective operators preserve the T0-property, hence they apply both to QCB and
QCB0.

Example 9.4.2 (Construction of qcb-spaces).

1) Binary products: The QCB-product of X and Y is the sequential coreflection (see
Subsection 9.3.3) of the topological product X×Top Y.

2) Countable products: Similarly, the QCB-product ∏i∈N Xi of a sequence (Xi)i∈N
of qcb-spaces is the sequential coreflection of the Tychonoff product of these
spaces. The countable product ∏i∈N X of a single qcb-space X with itself is
homeomorphic to the QCB-exponential XN (see below), where N are the natural
numbers equipped with the discrete topology.

3) Exponentiation: Given two qcb-spaces X and Y, the carrier set of the QCB-
exponential, which we denote by YX, is the set C(X,Y) of all total continu-
ous functions f : X→ Y. The topology is given by the sequentialisation of the
compact-open topology on C(X,Y). The compact-open topology is generated by
the subbasic opens

〈K,V 〉 :=
{

f ∈ C(X,Y)
∣∣ f [K]⊆V

}
,

where K varies over the compact subsets of X and V over the open subsets of Y.
For YX to be a T0-space it suffices that Y has the T0-property. The convergence
relation on YX is continuous convergence: ( fn)n converges continuously to f if
( fn(xn))n converges in Y to f (x), whenever (xn)n is a sequence converging in X
to x ∈ X.

4) Subspaces: Given a qcb-space X and a subset Z of X, the subspace topology
on Z inherited from X is not necessarily sequential. Instead one has to consider
the subsequential topology on Z, which is defined as the sequentialisation of the
subspace topology. This topology is indeed a qcb-topology.

5) Equalisers: Let f ,g : X→ Y be continuous functions between X,Y ∈ QCB. The
set E := {x ∈ X | f (x) = g(x)} endowed with the subsequential topology along
with the continuous inclusion map forms an equaliser to f ,g in QCB.

6) Countable limits: Since QCB and QCB0 have countable products and equalisers,
both have all countable limits. Hence both categories are countably complete.

7) Meets: Given a sequence of qcb-spaces (Xi)i, their meet (or conjunction)
∧

i∈N Xi
is defined to have the intersection as its carrier set. The topology is the sequen-
tialisation of the meet topology which is generated by the basis{⋂k

i=0
Ui
∣∣k ∈ N, Ui open in Xi for all i≤ k

}
.

Since this is a countable limit construction,
∧

i∈N Xi is a qcb-space. The binary
meet X1∧X2 is defined analogously. Note that the Euclidean reals R arises as the
meet of the lower reals R< and the upper reals R>.
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8) Countable coproduct: The countable coproduct of a sequence (Xi)i∈N of qcb-
spaces is constructed as in the category Top of topological spaces. The carrier set
is the disjoint union

⋃
i∈N{(i,x)

∣∣x ∈ Xi}. A subset U is open if, and only if, for
every i ∈ N the set {x ∈ Xi |(i,x) ∈U} is open in Xi.

9) Quotients: For any qcb-space X and any quotient map q : X� Z the topological
space Z is a qcb-space as well. But in general Z does not have the T0-property,
even if X is T0.

10) Kolmogorov quotient (“T0-fication”): For a qcb-space X the equivalence relation
of topological indistinguishability is defined by x ≡X x′ :⇐⇒ ηX(x) = ηX(x′),
where ηX(x) denotes the neighbourhood filter {U open |x ∈ U} of x. The Kol-
mogorov quotient of a T0-space is just the space itself. If X is not T0, then the
Kolmogorov quotient KQ(X) of X consists of the equivalence classes of ≡X and
its topology is the quotient topology induced by the surjection [.]≡X

that maps x
to its equivalence class.

11) Coequalisers in QCB: Let f ,g : A→ X be continuous functions between A,X ∈
QCB. We consider the transitive hull ≈ of the reflexive relation{

(x,x)
∣∣x ∈ X

}
∪
{
( f (a),g(a))

∣∣a ∈ A
}
∪
{
(g(a), f (a))

∣∣a ∈ A
}
,

define Z as the space of equivalence classes of ≈ and endow Z with the quotient
topology induced by the surjection [.]≈ that maps x to its equivalence class. Then
Z and [.]≈ form a coequaliser to f ,g in QCB.

12) Coequalisers in QCB0: Given two continuous functions f ,g : A→ X between
spaces A,X ∈ QCB0, we first construct Z and [.]≈ as above. If Z is a T0-space,
then this pair is also a coequaliser in QCB0. Otherwise we take the Kolmogorov
quotient of Z together with the composition [.]≡Z

◦ [.]≈.
13) Countable colimits: Since QCB and QCB0 have countable coproducts and co-

equalisers, both have all countable colimits. Hence both categories are countably
cocomplete. ut

More information can be found in [1, 18, 33].

9.4.3 Powerspaces in QCB0

We discuss spaces of families of subsets of qcb-spaces, including open, closed, overt
and compact subsets.

9.4.3.1 Open subsets

Given a qcb-space X, we endow the family O(X) of open sets of X with the Scott-
topology on the complete lattice (O(X),⊆) and denote the resulting topological
space by O(X). A subset H ⊆ O(X) is called Scott open if H is upwards closed and
D∩H is non-empty for each directed subset D ⊆ O(X) with

⋃
(D) ∈ H. Since any
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qcb-space is hereditarily Lindelöf, the Scott topology coincides with the ω-Scott
topology. The ω-Scott topology consists of all upwards-closed subsets H such that
for all sequences (Ui)i∈N with

⋃
i∈NUi ∈H there exists some n such that

⋃n
i=0 Ui ∈H.

The space O(X) is homeomorphic to the QCB-exponential SX, where S denotes
the Sierpiński space (cf. Example 9.3.12). The homeomorphism is given by the
natural identification of an open set U with its continuous characteristic function
cf (U) : X→ S defined by cf (U)(x) => :⇐⇒ x ∈U .

Proposition 9.4.3. Let X be a qcb-space.

1) The space O(X) is a qcb0-space.
2) The space O(X) is homeomorphic to SX via the map cf : O(X)→ SX.
3) The Scott topology on O(X) is the sequentialisation of the compact-open topol-

ogy on O(X), which is generated by basic sets K⊆ := {U ∈O(X) |K ⊆U}, where
K varies over the compact subsets of X.

4) A sequence (Un)n converges to V in O(X) if, and only if,

Wk :=
⋂
n≥k

Un∩V is open for all k ∈ N and V =
⋃

n∈N
Wn.

5) Binary intersection ∩ : O(X)×O(X)→ O(X) is sequentially continuous.
6) Countable union

⋃
: ∏i∈NO(X)→ O(X) is sequentially continuous.

A space such that the Scott topology on its lattice of open subsets agrees with
the compact-open topology is called consonant. M. de Brecht has shown that quasi-
Polish spaces are consonant (cf. [14]), whereas the space of rational numbers is
known to be dissonant (= non-consonant).

Importantly, any qcb0-space X embeds sequentially into the space O(O(X)) via
the neighbourhood filter map ηX. Recall that this means that ηX is injective and
(xn)n converges to x in X if, and only if, (ηX(xn))n converges to ηX(x) in O(O(X)).

Proposition 9.4.4. Let X be a qcb0-space.

1) For every x∈X, the open neighbourhood filter ηX(x) := {U open |x∈U} is open
in O(X).

2) The map ηX : X→ O(O(X)) is a sequential embedding of X into O(O(X)).
3) The map ηX : X→ SSX defined by ηX(x)(h) := h(x) is a sequential embedding of

X into the QCB-exponential SSX .

Recall that O(O(X)) is homeomorphic to SSX . We remark that ηX is even a topolog-
ical embedding of X into SSX , meaning that ηX forms a homeomorphism between
X and its image endowed with the subspace topology. For more information see
[14, 36].
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9.4.3.2 Overt subsets

On the family of all subsets of X we consider the topology of overtness, which has
as subbasis all sets of the form ♦U := {M ⊆ X |M∩U 6= /0}, where U varies over
the open sets of X. By V (X) we denote the space all subsets of X equipped with the
sequentialisation of this topology.

Proposition 9.4.5. Let X be a qcb-space.

1) V (X) is a qcb-space.
2) For every subset M, η

♦
X (M) := {U open |M ∈ ♦U} is open in O(X).

3) Binary union on V (X) is sequentially continuous.
4) Binary intersection on V (R) is sequentially discontinuous.
5) Two subsets M1,M2 ⊆ X have the same neighbourhoods in V (X) if, and only if,

their topological closure agrees.

Overt subspaces were investigated by P. Taylor in [41].

9.4.3.3 Closed subsets

The upper Fell topology on the family of closed subsets of a qcb-space X is gen-
erated by the basic sets {A closed |A∩K = /0}, where K varies over the compact
subsets of X. This topology is not sequential, unless X is a consonant space. By
A−(X) we denote the space of closed subspaces equipped with the sequentialisa-
tion of the upper Fell topology. Clearly A−(X) is homeomorphic to O(X) via set
complementation. So A−(X) is a qcb0-space.

The lower Fell topology on A(X) has as subbasis all sets of the form ♦U :=
{A closed |A∩U 6= /0}. By A+(X) we denote the space of closed sets of X carrying
the sequentialisation of the lower Fell topology on X. This space is homeomorphic
to the Kolmogorov quotient of the space V (X) from Subsection 9.4.3.2.

Proposition 9.4.6. Let X be a qcb-space.

1) A+(X) is a qcb0-space.
2) The function η

♦
X : A+(X) 7→ O(O(X)) mapping A to {U open |A ∈ ♦U} is a

sequential embedding of A+(X) into O(O(X)).
3) Binary union on A+(X) is sequentially continuous.
4) Binary intersection on A+(R) is sequentially discontinuous.

Computability on closed subsets of computable metric spaces was studied by
V. Brattka and G. Presser in [12]. P. Hertling ([24]) and M. Ziegler ([49]) investi-
gated computability of regular closed subsets of Rd .
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9.4.3.4 Compact subsets

Several notions of compactness are studied in topology: a subset K of a topological
space is compact if every open cover of K has a finite subcover; K is called countably
compact if every countable cover of K has a finite subcover; K is called sequentially
compact if every sequence (xn)n in K has a subsequence that converges to some
element in K. For subsets of qcb-spaces, however, these three notions coincide (cf.
[2]).

The Vietoris topology on the family of all compact subsets of a topological
space X is generated by the subbasic open sets

�U := {K compact in X |K ⊆U} and ♦U := {K compact in X |K∩U 6= /0} ,

where U varies over the open subsets of X. By KViet(X) we denote the space of all
compact subsets of X equipped with the sequentialisation of the Vietoris topology.

The upper Vietoris topology on the family of compact sets is generated by the
basic open sets �U only. Unless X is a T1-space, the upper Vietoris topology does
not enjoy the T0-property. Therefore we restrict ourselves to the family of all satu-
rated compact subsets of X, on which the corresponding upper Vietoris topology is
indeed T0. A subset M is saturated if, and only if, it is equal to its saturation ↑M,
which is the intersection of all open sets containing M. In a T1-space the saturation
of a set yields the set itself. By K (X) we denote the space of compact saturated
subsets of X equipped with the sequentialisation of the upper Vietoris topology.

Proposition 9.4.7. Let X be a qcb0-space.

1) K (X) and KViet(X) are qcb0-spaces.
2) For every compact subset K, η�X (K) := {U open |K ∈�U} is open in O(X).
3) The map η�X yields a sequential embedding of K (X) into O(O(X)).
4) Binary union on K (X) and on KViet(X) are sequentially continuous.

Note that the intersection of two saturated compact sets need not be compact,
unless X is for example Hausdorff.

The idea to compute on compact subsets via their embedding into O(O(X)) was
independently developed by M. Escardó in [16, 17] and M. Schröder in [33]. V. Brat-
tka and G. Presser investigated computability on compact subsets of computable
metric spaces in [12].

9.4.4 Qcb-Spaces and Admissibility

Qcb0-spaces form exactly the class of sequential spaces that have an admissible
representation. For the proof, one first observes that any qcb0-space has a quotient
representation: if a T0-space X is a topological quotient space of a second-countable
space W, then X is also a topological quotient of the Kolmogorov quotient KQ(W)
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of W. By Example 9.3.12, KQ(W) has an admissible representation; its composition
with the quotient map KQ(W)� X yields a quotient representation of X.

Now we define an operator that converts a quotient representation δ into an ad-
missible representation. From Propositions 9.3.14, 9.3.15 and 9.4.4 we know for a
quotient representation δ of a T0-space X:

a) X embeds sequentially into the QCB0-exponential SSX via ηX.
b) [δ → ρS] is an admissible representation of SX, even if δ is not admissible.
c) Corestrictions of admissible representations are admissible again.

These observations motivate us to define an operator by

δ
S(p) = x :⇐⇒ ηX(x) = [[δ → ρS]→ ρS](p) .

The above facts imply that δS is admissible. In the case that the final topology τδ of
δ lacks the T0-property, it makes sense to generalise this definition by letting δS be
the representation of the Kolmogorov quotient KQ(X ,τδ ) given by the equivalence

δ
S(p) = [x]≡ :⇐⇒ η(X ,τδ )

(x) = [[δ → ρS]→ ρS](p) ,

where ≡ denotes the equivalence relation of topological indistinguishability (see
Example 9.4.2). In any case, the map δS is indeed an admissible representation.

Theorem 9.4.8 (Admissibility of δS).
Let δ be a representation of a set X.

1) δS is an admissible representation of (X ,τδ ) if τδ has the T0-property.
2) δS is an admissible representation of KQ(X ,τδ ).
3) If δ is a quotient representation of a T0-space X, then δS is an admissible repre-

sentation of X.

We obtain the following characterisation of admissible representations.

Theorem 9.4.9 (Characterisation of admissibility). A representation δ of a set X
is an admissible representation of (X ,τδ ) if, and only if, δ is topologically equiva-
lent to δS and τδ satisfies the T0-property.

Along with Propositions 9.3.9 and 9.3.17 we obtain the following characterisa-
tion.

Theorem 9.4.10 (Sequential spaces with admissible representation).

1) A sequential topological space has an admissible representation if, and only if, it
is a qcb0-space.

2) A topological space has an admissible quotient representation if, and only if, it
is a qcb0-space.

3) A topological space has an admissible representation if, and only if, its sequential
coreflection is a qcb0-space.
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From our previous characterisation in Proposition 9.3.17 we deduce that a se-
quential space is a qcb-space if, and only if, it has a countable pseudobase. We
remark that there are canonical ways to construct pseudobases for qcb-spaces that
are built by the operators considered in Example 9.4.2 and Subsection 9.4.3 (cf.
[33, 35]). Theorem 9.4.10 implies that the category of admissibly represented spaces
and continuously realizable functions is equivalent to QCB0 (cf. [2]). Proofs of this
subsection can be found in [33].

9.4.5 Effectively Admissible Representations

The basic observation in Theorem 9.4.9 that a representation δ is topologically ad-
missible if, and only if, it is topologically equivalent to δS leads one to call a repre-
sentation δ effectively admissible if δ is even computably equivalent to δS.

Proposition 9.4.11. Let δ ,γ be representations such that their final topologies
are T0.

1) Any (δ ,γ)-computable total function f is (δS,γS)-computable.
2) Any (δ ,γ)-continuous total function f is (δS,γS)-continuous.
3) The representations δS and γS are effectively admissible.
4) The signed-digit representation and the Cauchy representation of R are effec-

tively admissible.

We remark that Proposition 9.4.11(1) does not hold for partial functions: it is even
possible that a (δ ,γ)-computable partial function is not (δS,γS)-continuous.

Proposition 9.4.12. Let δ and γ be effectively admissible representations of qcb0-
spaces X and Y, respectively.

1) δ � γ is an effectively admissible representation of the QCB-product X×Y.
2) δ � γ is an effectively admissible representation of the QCB-coproduct X]Y.
3) [δ → γ] is an effectively admissible representation of the QCB-exponential YX.
4) δ ∧ γ is an effectively admissible representation of the QCB-meet X∧Y.
5) Let Z be a subsequential subspace of X.

Then the corestriction δ |Z is an effectively admissible representation of Z.
6) Let e : Z→ X be a sequential embedding of a sequential space Z into X.

Then e−1 ◦δ is an effectively admissible representation of Z.

To construct effectively admissible representations for the function space YX and
for the power spaces over X considered in Subsection 9.4.3, we only need a quotient
representation of X.

Proposition 9.4.13. Let δ be a quotient representation of a qcb0-space X.

1) Let γ be an effectively admissible representation of a qcb0-space Y.
Then [δ → γ] is an effectively admissible representation of YX.
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2) Let q : X→ Z be a quotient map. Then (q ◦ δ )S is an effectively admissible rep-
resentation of the Kolmogorov quotient of Z.

3) Define δO by δO(p) =U :⇐⇒ cf (U) = [δ → ρS](p).
Then δO is an effectively admissible representation of O(X).

4) Define δA− by δA−(p) = A :⇐⇒ cf (X \A) = [δ → ρS](p).
Then δA− is an effectively admissible representation of A−(X).

5) Define δA+ by δA+(p) = A :⇐⇒ η
♦
X (A) = [[δ → ρS]→ ρS](p).

Then δA+ is an effectively admissible representation of A+(X).
6) Define δK by δK (p) = K :⇐⇒ η�X (K) = [[δ → ρS]→ ρS](p).

Then δK is an effectively admissible representation of K (X).
7) Define δKViet by δKViet(p) = K :⇐⇒ δK (π1(p)) = K & δA+(π2(p)) = Cls(K),

where Cls(K) denotes the topological closure of K. Then δKViet is an effectively
admissible representation of KViet(X).

Proofs of this subsection can be found in [33].

9.4.6 Effective Qcb-Spaces

An effective qcb-space is a represented space X = (X ,δ ) such that τδ has the T0-
property and δ is an effectively admissible representation of the associated qcb-
space (X ,τδ ). The category EffQCB has effective qcb-spaces as its objects and total
computable functions as morphisms. So EffQCB is a full subcategory of Repeff.

A similar category was first investigated in [33, 34] under the acronym EffSeq,
but it comprises also effectively multirepresented qcb-spaces by dropping the T0-
condition. A. Pauly has investigated effective qcb-spaces under the name com-
putably admissible represented space (cf. [32]). However, we prefer the former
name, because there exist further classes of represented spaces enjoying other rea-
sonable effectivity properties. We will discuss this in Subsections 9.4.9 and 9.5.3.

Example 9.4.14 (Basic topological spaces as effective qcb-spaces).
The following are effective qcb-spaces.

1) (NN, idNN).
2) (R,ρR), where ρR is the Cauchy representation from Subsection 9.2.7.
3) (R,ρsd), where ρsd is the signed-digit representation from Subsection 9.2.8.
4) (N,ρN) with ρN(p) = p(0).
5) (S,ρS) with ρS(p) =⊥ :⇐⇒ p = 0ω and ρS(p) => :⇐⇒ p 6= 0ω . ut

Computable topological spaces in the sense of T. Grubba and K. Weihrauch are
effective qcb-spaces.

Example 9.4.15 (Computable topological spaces).
A computable topological space (cf. [47]) is a pair (X ,β ), where β is a partial
numbering of a base of a T0-topology such that there is a computably enumerable set
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J ⊆N3 satisfying βa∩βb =
⋃
{βk |(a,b,k) ∈ J} and the domain of β is computably

enumerable. The standard representation δβ from Example 9.3.12 defined by

δβ (p) = x :⇐⇒ En(p) = {i ∈ dom(β ) |x ∈ βi}

is effectively admissible. So (X ,δβ ) is an effective qcb-space. ut

Computable metric spaces can be viewed as computable topological spaces in
the sense of Example 9.4.15 and thus as effective qcb-spaces.

Example 9.4.16 (Computable metric space).
A computable metric space (cms) is a metric space (X ,d) together with a total num-
bering α of a dense subset A such that the function (i, j) 7→ d(αi,α j) is (ρN �
ρN;ρR)-computable. The latter is equivalent to saying that (d(αfst(k),αsnd(k)))k is
a computable sequence of real numbers, where fst,snd : N→ N denote the com-
putable projections of a canonical computable pairing function for N.

A canonical numbering β of a base of the topology generated by the metric d is
constructed by

βk := {x ∈ X |d(x,αfst(k))< 2−snd(k)} ,

The computability condition on α guarantees that (X ,β ) is a computable topological
space in the sense of Example 9.4.15. The Cauchy representation ρα : NN 99K X is
defined by

ρα(p) = x :⇐⇒ ∀k ∈ N.d(x,αp(k))≤ 2−k

for all p ∈ N and x ∈ X . The Cauchy representation is computably equivalent to
the standard representation δβ from Example 9.4.15. Hence (X ,ρα) is an effective
qcb-space.

The real numbers R together with the numbering νQ from Subsection 9.2.7 is
a prime example of a computable metric space. Another prominent example is the
infinite-dimensional separable Hilbert space `2 (cf. [9]). For more examples see
[11, 44]. ut

Propositions 9.4.12 and 9.4.13 tell us how to construct effectively admissible
qcb-spaces from given ones.

Proposition 9.4.17 (Construction of effective qcb-spaces).
Let X = (X ,δ ) and Y = (Y,γ) be effective qcb-spaces. The following are effective
qcb-spaces, where X and Y denote the qcb0-spaces associated with X and Y, re-
spectively.

1) X×Y := (X×Y,δ � γ).
2) X]Y := ({1}×X∪{2}×Y,δ � γ).
3) YX := (YX, [δ → γ]).
4) X∧Y := (X∧Y,δ ∧ γ).
5) O(X) := (O(X),δO).
6) A−(X) := (A−(X),δA−).
7) A+(X) := (A+(X),δ

A+).
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8) K (X) := (K (X),δK ).
9) KViet(X) := (KViet(X),δ

KViet).
10) X|Z := (Z,δ |Z) for Z ⊆ X, where δ |Z is the subspace representation.

In Proposition 9.4.17 we have deliberately used qcb-spaces rather than sets as first
component: by Propositions 9.4.12 and 9.4.13 they are the qcb-spaces associated
with the represented spaces in (1) to (9). The qcb-space associated with X|Z in (10)
carries the subsequential topology on Z. The category EffQCB has nice closure prop-
erties.

Theorem 9.4.18. The category EffQCB of effective qcb-spaces and total computable
functions is cartesian closed, finitely complete and finitely cocomplete.

9.4.7 Basic Computable Functions on Effective Qcb-Spaces

We present some basic computable functions on effective qcb-spaces. More can be
found in A. Pauly’s paper [32].

Proposition 9.4.19 ([32]).
Let X,Y,Z be effective qcb-spaces. The following functions are computable:

1) pr1 : X×Y→ X, (x,y) 7→ x, pr2 : X×Y→ Y, (x,y) 7→ y.
2) eval : YX×X→ Y, ( f ,x) 7→ f (x).
3) curry : YZ×X→ (YX)Z, (curry( f )(z))(x) := f (z,x).
4) uncurry : (YX)Z→ YZ×X, uncurry(h)(z,x) := h(z)(x).
5) join : XZ×YZ→ (X×Y)Z, join( f ,g)(z) := ( f (z),g(z)).
6) { : O(X)→A−(X), U 7→ X\U.
7) { : A−(X)→ O(X), A 7→ X\A.
8) ∩ : O(X)×O(X)→ O(X), (U,V ) 7→U ∩V .
9) ∪ : O(X)×O(X)→ O(X), (U,V ) 7→U ∪V .

10)
⋃

: O(X)N→ O(X), (Un)n 7→
⋃

n∈NUn.
11) ∪ : K (X)×K (X)→K (X), (K,L) 7→ K∪L.
12) ∪ : A+(X)×A+(X)→A+(X), (A,B) 7→ A∪B.
13) ∩ : K (X)×A−(X)→K (X), (K,A) 7→ K∩A.
14) × : O(X)×O(Y)→ O(X×Y), (U,V ) 7→U×V .
15) × : A−(X)×A−(Y)→A−(X×Y), (A,B) 7→ A×B.
16) ι : X→K (X), x 7→ ↑{x}.
17) ι : X→A+(X), x 7→ Cls{x}.
18) preimage : YX×O(Y)→ O(X), ( f ,V ) 7→ f−1[V ].
19) image : YX×K (X)→K (Y), ( f ,K) 7→ ↑ f [K].
20) ∀ : O(X×Y)×K (X)→ O(Y), (W,K) 7→ {y ∈ Y |∀x ∈ K.(x,y) ∈W}.
21) ∃ : O(X×Y)×A+(X)→ O(Y), (W,A) 7→ {y ∈ Y |∃x ∈ A.(x,y) ∈W}.

We emphasise that ∀(W,K) and ∃(W,A) are indeed open subsets of the qcb0-space
associated with Y. Related results can be found in [12, 16, 17, 44].
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9.4.8 Effective Hausdorff Spaces

Topological spaces X in which every converging sequence has a unique limit are
called sequentially Hausdorff. This condition is equivalent to sequential continuity
of the inequality test 6= : X×X→ S on X which is defined by 6=(x,y) => :⇐⇒ x 6=
y. Every Hausdorff space is sequentially Hausdorff; sequentially Hausdorff spaces
are T1. This gives rise to the notion of an effective Hausdorff space: this is an ef-
fective qcb-space such that its inequality test 6= is computable. A similar notion has
been investigated by A. Pauly in [32]: he calls a represented space X computably T2
if the inequality test is computable; its representation, however, is not required to be
effectively admissible. Any computable metric space forms an effective Hausdorff
space.

Proposition 9.4.20 ([32]). The following functions are computable for an effective
Hausdorff space X:

1) ∩ : K (X)×K (X)→K (X), (K,L) 7→ K∩L.
2) singleton : X→A−(X), x 7→ {x}.
3) convert : K (X)→A−(X), K 7→ K.
4) Graph: XZ→A−(Z×X), f 7→ {(z, f (z)) |z∈Z} is computable for any effective

qcb-space Z.

We emphasise that the above functions map indeed into the indicated sets, whenever
X is an effective Hausdorff space. Conversely, if X is an effective qcb-space such
that one of the functions listed in Proposition 9.4.20 is well defined and computable,
then the inequality test on X is computable, hence X is an effective Hausdorff space.
This was shown by A. Pauly in [32].

The reader should be warned that effective Hausdorff spaces exist which are not
Hausdorff in the topological sense, for example the one-point compactification of
the Baire space. Nevertheless, the arguably more precise notion “effective sequen-
tial Hausdorff spaces” seems too clumsy. For second-countable spaces, however,
sequential Hausdorffness coincides with Hausdorffness. K. Weihrauch has investi-
gated and compared several notions of computable Hausdorff separation for second-
countable computable topological spaces in [46].

9.4.9 Quasi-normal Qcb-Spaces

We present a subcategory of admissibly represented Hausdorff spaces that is partic-
ularly appropriate for investigating computability in Functional Analysis.

Normality2 has the disadvantage of not being preserved by exponentiation in
QCB. For example, the QCB-exponential R(RR) is not normal, although RR and R

2 A T1-space is called normal if any two disjoint closed sets A,B can be separated by two disjoint
open sets U,V in the sense that A⊆U and B⊆V holds.
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are even metrisable. So we introduce a substitute for normality in the realm of qcb-
spaces called quasi-normality. A quasi-normal space is defined to be the sequential
coreflection (see Subsection 9.3.3) of some normal Hausdorff space. We write QN
for the full subcategory of QCB consisting of all quasi-normal qcb-spaces. In con-
trast to normal qcb-spaces, QN has excellent closure properties.

Theorem 9.4.21 (Closure properties of quasi-normal spaces).
The category QN of quasi-normal qcb-spaces is an exponential ideal of QCB and
thus cartesian closed. Moreover, QN has all countable limits and all countable co-
limits. Countable limits and function spaces are inherited from QCB.

Hence the QCB-exponential R(RR) lives inside QN. Relevant examples for non-
metrisable QN-spaces are the space of test functions D and its dual D ′, which is
known as the space of distributions (= generalised functions). Computability on
distributions has been investigated by K. Weihrauch and N. Zhong in [48].

The famous Tietze-Urysohn Extension Theorem states that any real-valued func-
tion defined on a closed subspace of a normal topological space can be extended
to a continuous function defined on the whole space. Quasi-normal qcb-spaces ad-
mit continuous extendability of continuous functions defined on subspaces that are
functionally closed. Functionally closed subsets are exactly the preimages of 0 un-
der continuous real-valued functions. We state a uniform version.

Theorem 9.4.22 (Uniform Extension Theorem for QN-spaces).
Let X be a functionally closed subspace of a quasi-normal qcb-space Y. Then there
is a continuous functional E : RX→RY satisfying E( f )(x)= f (x) for all continuous
functions f : X→ R and all x ∈ X.

A qcb-space X is quasi-normal if, and only if, X embeds sequentially into R(RX)

via the embedding ηX,R : x 7→ (h 7→ h(x)). Hence R plays a similar role for quasi-
normal spaces as the Sierpiński space does for sequential spaces. Generalising the
ideas of Subsection 9.4.6, we call a represented space X = (X ,δ ) effectively quasi-
normal if τδ is a T0-topology and δ is computably equivalent to the representation
δR defined by

δ
R(p) = x :⇐⇒ η(X ,τδ ),R(x) = [[δ → ρR]→ ρR](p) .

The operator δ 7→ δR behaves like the operator δ 7→ δS from Subsection 9.4.4.

Proposition 9.4.23. Let δ and γ be quotient representations of QN-spaces X and Y,
respectively.

1) Any (δ ,γ)-computable total function is (δR,γR)-computable.
2) Any (δ ,γ)-continuous total function is (δR,γR)-continuous.
3) The spaces (X,δR) and (Y,γR) are effectively quasi-normal.
4) Any effective quasi-normal space is an effective qcb-space.
5) Any computable metric space equipped with its Cauchy representation gives rise

to an effective quasi-normal space.
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More information can be found in [38].
An interesting subclass of quasi-normal spaces is the class of co-Polish Haus-

dorff spaces. These are those Hausdorff qcb-spaces which have an admissible rep-
resentation with a locally compact domain. M. de Brecht has proven that co-Polish
Hausdorff spaces are exactly those Hausdorff qcb-spaces X for which O(X), the
lattice of open subsets equipped with the Scott topology (cf. Subsection 9.4.3.1),
is quasi-Polish [13]. This fact motivates the name “co-Polish”. D. Kunkle showed
that any Silva space is co-Polish (cf. [27]). Silva spaces (cf. [39]) form an important
subclass of locally convex vector spaces.

9.5 Relationship to Other Relevant Categories

There are several cartesian closed categories relevant to Computable Analysis into
which QCB0 embeds as a subcategory that inherits binary products and function
spaces. As examples we discuss represented spaces, equilogical spaces, limit spaces,
filter spaces, sequential spaces, compactly generated spaces and core compactly
generated spaces.

9.5.1 Represented Spaces

Assuming a mild axiom of choice, QCB0 embeds into Rep as a subccc (meaning
that QCB0 inherits the cartesian closed structure). The inclusion functor maps a
qcb0-space X to (X,δX), where δX is a chosen admissible representation of X. This
functor has a left adjoint (cf. [30]): it maps a represented space (Y,γ) ∈ Rep to the
Kolmogorov quotient of the qcb-space (Y,τγ), where τγ denotes the final topology.
Similarly, EffQCB is a full reflective subcategory of Repeff; the reflection functor
maps (Y,γ) to the effective qcb-space (KQ(Y,τγ),γ

S).

9.5.2 Equilogical Spaces

The category Top of topological spaces is well known not to be cartesian closed.
For example, there exists no exponential to the metrisable space RR and R. Note
that the QCB-exponential R(RR) does not form an exponential in the category Top,
because the evaluation function is not topologically continuous (albeit sequentially
continuous). However, there exist cartesian closed supercategories of Top. We men-
tion M. Hyland’s category of filter spaces (cf. [23, 25]) and D. Scott’s category Equ
of equilogical spaces (cf. [5]) as important examples.

An equilogical space is a topological T0-space together with an equivalence rela-
tion on that space. It is called countably based if the topological space has a count-
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able base. An equivariant map between two equilogical spaces is a function between
the induced equivalence classes of the equilogical spaces that is realized by a con-
tinuous function between the underlying topological spaces. The category Equ of
equilogical spaces and equivariant maps as well as its full subcategory ωEqu of
countably based equilogical spaces are locally cartesian closed [3, 5].

Equilogical spaces form a generalisation of represented spaces. Any represented
space (X ,δ ) can be seen as a countably based equilogical space: the underly-
ing topological space is just the domain of the representation and the equiva-
lence relation is given by p ≡ q :⇐⇒ δ (p) = δ (q). The ensuing inclusion functor
Rep ↪→ ωEqu has the disadvantage of not preserving function spaces (cf. [3, 4]).
However, composition with the functor QCB0 ↪→ Rep from Subsection 9.5.1 yields
an inclusion functor QCB0 ↪→ ωEqu that does preserve binary products and func-
tion spaces. So QCB0 lives inside ωEqu as a subccc. M. Menni and A. Simpson
have exhibited QCB0 as the largest common subcategory of ωEqu and Top that is
cartesian closed and contains all T0-spaces with a countable base (cf. [30]).

9.5.3 Limit Spaces

A reasonable notion of admissible representation exists for other classes of spaces
besides the classes of the topological spaces discussed before. We concentrate on
limit spaces as the most useful example. However, the largest class of spaces which
can be equipped with an admissible multirepresentation is the class of weak limit
spaces with a countable limit base (cf. [37]). The corresponding category ωWLim
is equivalent to the category ωPFil of proper filter spaces with a countable basis
studied by M. Hyland in [25].

A limit space ([28]) equips a set X with a convergence relation→ between se-
quences (xn)n and points x of X . If (xn)n→ x, then one says that (xn)n converges to
x in the space (X ,→) and that x is a limit of the sequence (xn)n. The convergence
relation of a limit space is required to satisfy the following properties:

1) any constant sequence (x)n converges to x;
2) any subsequence of a sequence converging to x converges to x;
3) a sequence converges to x whenever any of its subsequences has a subsequence

converging to x.

Clearly, the convergence relation of a topological space satisfies these axioms.
A partial function between limit spaces is called continuous if it preserves con-

vergent sequences (cf. Subsection 9.3.2). The category Lim of limit spaces and total
continuous functions is locally cartesian closed, in contrast to the category Seq of
sequential spaces, which is merely cartesian closed. Like Seq, it is countably com-
plete and countably cocomplete. The category Seq is a full reflective subcategory of
Lim (cf. [25]). The inclusion functor maps a sequential space Y to the limit space
that has the same convergence relation. The reflection functor sends a limit space X
to the sequential space that carries the topology of sequentially open subsets of X;
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these are exactly the complements of subsets closed under forming limits of con-
verging sequences (cf. Subsection 9.3.2). If the resulting sequential space induces
the same convergence relation as X, then X is called topological.

Example 9.5.1 (A limit space that is not topological).
We equip the set Z := {(1,0)}∪ ({2}×N)∪ ({3}×N) with the following conver-
gence relation→:

(zn)n→ (1,0) :⇐⇒ ∀m.∃ñ.∀n≥ ñ.zn ∈ {(1,0),(2, j) | j ≥ m}
(zn)n→ (2,a) :⇐⇒ ∀m.∃ñ.∀n≥ ñ.zn ∈ {(2,a),(3, j) | j ≥ m}
(zn)n→ (3,a) :⇐⇒ ∃n̄.∀n≥ ñ.zn = (3,a).

The resulting space Z is indeed a limit space. Any sequentially open subset V of
Z with (1,0) ∈ V contains the sequence (3,n)n eventually. Therefore the reflection
functor maps Z to a sequential space in which (3,n)n converges to (1,0). Hence Z
is not topological. ut

A multirepresentation δ for a limit space X is called continuous if for any se-
quence (pn,xn)n in Graph(δ ) such that (pn)n converges to p0 in NN the sequence
(xn)n converges to x0 in X. It is called admissible for X if it is continuous and every
continuous multirepresentation φ of X is continuously translatable into δ , meaning
that the identity function is (φ ,δ )-continuous. If two elements x 6= x′ have a common
name under a continuous multirepresentation, then both elements converge to each
other as constant sequences. An admissible multirepresentation of X is single-valued
(i.e., an ordinary representation) if, and only if, no such elements x 6= x′ exist in X.
This notion of admissibility extends topological admissibility from Definition 9.3.4
in the sense that a representation is topologically admissible for a qcb0-space Y if,
and only if, it is admissible for Y viewed as a limit space.

Example 9.5.2 (Lim-admissible representation).
An admissible representation ζ for the limit space Z in Example 9.5.1 is given by
ζ
(
0ω
)

:= (1,0), ζ
(
00a1ω

)
:= (2,a) =: ζ

(
(a+ 1)0ω

)
, ζ
(
(a+ 1)0b1ω

)
:= (3,b)

for all a,b ∈ N. ut

Like Lim, the full subcategory ωLim of limit spaces with an admissible multi-
representation is locally cartesian closed, countably complete and countably cocom-
plete. The category QCB is a full reflective subcategory of ωLim; the corresponding
reflection functor is just the restriction of the aforementioned functor from Lim to
Seq. On the other hand, ωLim is a full reflective subcategory of M. Hyland’s cate-
gory ωPFil of countably based proper filter spaces.

We now discuss the Λ -space, which plays the role of the Sierpiński space in the
realm of limit spaces.

Example 9.5.3 (The Λ -space).
The Λ -space L has as its underlying set {⊥,>,↑}. Its convergence relation is de-
fined by: (bn)n→L b∞ iff b∞ 6= > or bn 6= ⊥ for almost all n. Hence the restriction
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of L to {⊥,>} is the limit space version of the Sierpiński space S. An admissible
multirepresentation ρL for L is defined by

ρL[p] :=
{
{⊥,↑} if p = 0ω

{>,↑} otherwise

for all p ∈ NN. The Λ -space has the property that any limit space embeds into LLX

via the map ηX,L : x 7→ (h 7→ h(x)). Remember that any sequential space Y embeds
sequentially into SSY via an analogous map (cf. Proposition 9.4.4). ut

The Λ -space can be employed to introduce the notion of an effectively Lim-
admissible (multi-)representation for a limit space. The definition uses ideas similar
to the ones in Subsection 9.4.5. If δ lifts convergent sequences of X, then δL defined
by

δ
L[p] 3 x :⇐⇒ ηX,L(x) ∈ [[δ → ρL]→ ρL][p]

is an admissible multirepresentation of X. A multirepresented space X = (X ,δ ) is
called an effective limit space if δ is computably equivalent to δL (cf. [33, 34]).

Example 9.5.4 (Effective limit space).
For effective limit spaces X,Y, the space P(X,Y) of partial continuous functions
from X to Y from Example 9.2.16 is an effective limit space. But in general it is not
an effective qcb-space (even if one allowed multirepresentations in the notion of an
effective qcb-space). ut

A further advantage of effective limit spaces over effective qcb-spaces is that the
operator δ 7→ δL preserves computability even of partial functions.

Proposition 9.5.5. Let δ and γ be multirepresentations of limit spaces X,Y lifting
converging sequences.

1) Any (δ ,γ)-computable partial function is (δL,γL)-computable.
2) Any (δ ,γ)-continuous partial function is (δL,γL)-continuous.
3) The multirepresentations δL and γL are effectively Lim-admissible.
4) Any effective qcb-space constitutes an effective limit space.

The category EffLim of effective limit spaces and total computable functions is
locally cartesian closed and has finite limits and finite colimits. It contains EffQCB
as subccc.

More information can be found in [25, 29, 30, 33, 34].

9.5.4 Cartesian Closed Subcategories of Topological Spaces

Although the category Top of topological spaces is not cartesian closed, it contains
various subcategories which are cartesian closed. Several of them were investigated
by M. Escardó, J. Lawson and A. Simpson in [18]. Besides the category Seq of
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sequential spaces, we mention the categories kTop of compactly generated spaces
and CCG of core compactly generated spaces.

A topological space Z is called compactly generated (or a Kelley space) if any
subset U is open in Z, whenever p−1[U ] is open in K for every compact Haus-
dorff space K and every continuous function p : K→ Z. For example, any directed-
complete poset endowed with the Scott topology is compactly generated. Compactly
generated Hausdorff spaces are known as k-spaces and play an important role in al-
gebraic topology.

Even larger is the category CCG of core compactly generated spaces. Core com-
pactly generated spaces arise as all topological quotients of core compact (= ex-
ponentiable) topological spaces. None of the inclusion functors of these categories
into Top preserves finite products. The category QCB of qcb-spaces lives inside Seq,
kTop and CCG as a subccc. In fact, QCB, Seq, kTop and CCG form an increasing
chain of cartesian closed categories such that any smaller category inherits binary
products and function spaces from any larger one. Details can be found in [18].

Acknowledgements I thank Vasco Brattka, Matthew de Brecht, Peter Hertling and Thomas Strei-
cher for valuable discussions.
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Chapter 10
Bishop-Style Constructive Reverse Mathematics

Hannes Diener and Hajime Ishihara

Abstract We give a self-contained overview of the current state of Constructive
Reverse Mathematics.

10.1 Introduction

One of the reasons Bishop was able to develop large parts of analysis constructively
[13, 14] without getting drawn into philosophical arguments as Brouwer did before
him (“Grundlagenstreit”) was that he chose an agnostic approach to the principle
of excluded middle (PEM),1 and other principles Brouwer accepted, such as the
principle of continuous choice and bar induction. PEM, of course, states that for
every formula ϕ we have ϕ ∨¬ϕ . Over intuitionistic logic this is equivalent to
double negation elimination (DNE), which states that for every formula ϕ we have
¬¬ϕ→ϕ .

Working only over intuitionistic logic and not assuming any of Brouwer’s ad-
ditional principles meant that Bishop’s mathematics stayed compatible with both
classical mathematics (CLASS) as well as Brouwer’s intuitionism (INT) [37, 29].
More than that, as it later became clear [22], BISH is also compatible with Russian
Recursive Mathematics (RUSS) [51].

However, Bishop’s minimal approach meant that in his mathematics many com-
mon principles and theorems are neither provable nor is their negation provable. Of
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1 PEM is also often referred to as the “law of excluded middle” (LEM) or its Latin name “tertium
non datur”.
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course, since Gödel we know that such statements are basically always unavoidable,
however in BISH this happens not just for (arguably) artificial statements, but for
very basic ones. It is the goal of constructive reverse mathematics to find some order
in the multitude of principles and results that occupy this middle ground in BISH.

There are two similar reverse programs, which, while coming from very different
directions, result in a—at least in parts—similar hierarchy. Maybe the best-known and
most developed of all reverse approaches is “Simpson-style” reverse mathematics
[64] (initiated by Friedman [31]), whose goal is to examine which set existence
axioms need to be added to classical second-order arithmetic to prove theorems
in mathematics (where objects are coded by natural numbers). A much younger2

reverse approach is the theory of Weihrauch reducibility [15, 16]. The question there
is: “which theorems can be computably transformed into others?”

One aspect that contrasts (Bishop-style) constructive reverse mathematics with
these two other approaches is the fact that, as common in Bishop-style mathematics,
we assume the following axioms of choice throughout the paper.3

The axiom of countable choice (AC0):

∀n∃y ∈ YA(n,y)→∃ f ∈ Y N∀nA(n, f (n)) .

The axiom of dependent choice (DC):

∀x ∈ X∃y ∈ XA(x,y)

→∀x ∈ X∃ f ∈ XN [ f (0) = x∧∀nA( f (n), f (n+1))] .

The axiom of unique choice (AC!):

∀x ∈ X∃!y ∈ YA(x,y)→∃ f ∈ Y X∀x ∈ XA(x, f (x)) .

10.2 Preliminaries

Throughout this chapter, we follow the notational conventions in [67, 66]: m,n, i, j,k
are supposed to range over N, a, b, c over the set N∗ of finite sequences of N, and
α,β ,γ,δ over NN (Baire space). The empty sequence is denoted by 〈〉.

For α,β ∈ NN, let α # β⇔∃n(αn 6= βn), and let 0 = λx.0.

2 The initial idea and definition of Weihrauch reducibility can be traced back to unpublished papers
by Weihrauch in the 1990s.
3 There are some constructivists who have argued in favour of avoiding the axioms of countable
choice and dependent choice as much as possible, such as Richman [60]. As for constructive reverse
mathematics, there has been, mostly recently, more and more work [11, 43, 45] which treats choice
principles explicitly. That is, instead of showing that P1 and P2 are equivalent using countable choice,
they are of the form P1 is equivalent to P2 +AC′, where AC′ is some appropriate weakening of
choice.
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If a,b ∈ N∗ we denote the concatenation of the two sequences by a∗b. Similarly
we define a∗α for a ∈ N∗ and α ∈ NN.

Let |a| denote the length of a finite sequence a; a(n) and α(n) denote the initial
segments of a and α of length n, respectively, where n 6 |a|. We write a� b if a is
a prefix of b, that is if there is m 6 |b| such that b(m) = a. A tree is a subset T of
{0,1}∗ such that 〈〉 ∈ T and if b ∈ T and a� b, then a ∈ T for each a and b. A tree
is infinite if for each n there exists a ∈ T with |a|= n. We say that a sequence γ is a
branch of a tree T or that T has γ as a branch if γ(n) ∈ T for each n.

A formula ϕ is called decidable if ϕ ∨¬ϕ . In the absence of PEM not every
formula is decidable, and in particular set membership might not be. If A⊂ X is such
that ∀x ∈ X [x ∈ A∨ x /∈ A], however, we call A detachable from X . If the ambient
set X is clear from the context, we will sometimes call A decidable. Because of this
problem of membership possibly being not decidable, we also have to distinguish
between a set S being non-empty—that is ¬(S = /0), and a set being inhabited—
that is ∃x(x ∈ S). Being a positive notion, the latter is most commonly used by
constructivists.

Just as in traditional recursion theory, from which we also borrow the naming
convention, we are also interested in predicates which, while not fully decidable, still
have some sort of computational description. A predicate A on X is called Σ1 if there
exists a decidable predicate S on X×N such that

∀x ∈ X [A(x)↔∃n(S(x,n))] ;

A it is called Π1 if
∀x ∈ X [A(x)↔∀n(S(x,n))] .

A set A is countable if there is a surjection f : N→ A.
A real number is a sequence (pn)n>0 of rationals such that

∀mn
(
|pm− pn|< 2−m +2−n) .

We shall write R for the set of real numbers as usual. The ordering relation <
between real numbers x = (pn)n>0 and y = (qn)n>0 is defined by

x < y ⇐⇒ ∃n
(
2−n+2 < qn− pn

)
.

This ordering relation satisfies the usual properties such as

¬(x < y∧ y < x), and x < y→ x < z∨ z < y ,

for x,y,z ∈ R.
We define the apartness #, the equality =, and the ordering relation 6 between real

numbers x and y by x # y⇔ (x < y∨ y < x), x = y⇔¬(x # y), and x 6 y⇔¬(y < x).
It is straightforward to show that # is an apartness relation, that is, it satisfies

x # y↔ y # x and x # y→ x # z∨ z # y ,
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and that = is reflexive, symmetric, and transitive; that is, an equivalence relation.
A very basic result that allows one to jump between binary sequences and real

numbers, and which leads to matching characterisations of many of the principles in
Sections 10.3 and 10.4 is the following.

Lemma 10.2.1. For each α , there exists x ∈ R such that

α # 0↔ x # 0 .

Conversely, for each x ∈ R, there exists α such that

x # 0↔α # 0 .

This lemma might seem strange to a classically minded reader, who we would like to
remind that constructively apartness # is neither decidable for elements of R nor is it
decidable for elements of NN.

Let S be an inhabited subset of R. Then z ∈ R is an upper bound of S if s 6 z for
each s ∈ S; least upper bound of S if z is an upper bound and z 6 y for each upper
bound y of S, and we then write z = lubS; supremum of S if it is an upper bound of S
and for each ε > 0 there exists a real number s ∈ S with s > z− ε , and we then write
z = supS. One can show that an inhabited subset S of R that is bounded above has a
supremum if and only if for all a and b with a < b, either there exists s ∈ S such that
a < s or s < b for all s ∈ S. Notice that, even though the definition of a supremum
and that of a least upper bound are classically equivalent for the real line, being a
supremum is, constructively, a stronger requirement than being a least upper bound,
as one can see from Proposition 10.3.1. Lower bounds, greatest lower bounds (glb),
and infima (inf) are defined analogously.

A metric space is a set X equipped with a metric d : X×X → R such that

(M1) d(x,y) = 0↔ x = y,
(M2) d(x,y) = d(y,x),
(M3) d(x,y)6 d(x,z)+d(z,y),

for all x,y,z ∈ X . For x,y ∈ X , we write x # y for 0 < d(x,y).
A sequence (xn)n>0 of X converges to x ∈ X , or in symbols xn→ x if

∀k∃Nk∀n > Nk[d(xn,x)< 2−k] ,

and is a Cauchy sequence if

∀k∃Nk∀mn > Nk[d(xm,xn)< 2−k] .

A metric space is complete if every Cauchy sequence converges.
A metric space X is totally bounded if for all k there exist x0, . . . ,xn−1 ∈ X such

that
∀y ∈ X∃m < n[d(xm,y)< 2−k] ,

and compact if it is totally bounded and complete.
The closure S of a subset S of a metric space X is defined by
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S =
{

x ∈ X
∣∣∀k∃y ∈ S[d(x,y)< 2−k]

}
.

A subset S of a metric space X is closed if S = S. Note that a subset S of a metric
space X is closed if and only if x ∈ S whenever there exists a sequence (xn)n>0 of S
converging to x. As usual, a metric space X is separable if there exists a countable
set D⊂ X such that D = X .

A subset S of a metric space X is located if it is inhabited and

d(x,S) = inf{d(x,y) |y ∈ S}

exists for all x ∈ X .
There are various notions of continuity, which, unlike in CLASS, are not always

equivalent. Actually, many of the principles we consider exactly embody the jump
between these notions.

Definition 10.2.2. Let f be a mapping between metric spaces. Then f is

• strongly extensional if f (x) # f (y) implies x # y;
• sequentially continuous if xn→ x implies f (xn)→ f (x);
• discontinuous if there exist δ > 0 and a sequence (xn)n>0 converging to a limit x

such that d( f (xn), f (x))> δ for all n;
• nondiscontinuous if xn→ x and d( f (xn), f (x))> δ imply δ 6 0;
• (point-wise) continuous if

∀x ∈ X∀k∃Mk∀y ∈ X
[
d(x,y)< 2−Mk→d( f (x), f (y))< 2−k

]
;

• and uniformly continuous if

∀k∃Mk∀x,y ∈ X
[
d(x,y)< 2−Mk→d( f (x), f (y))< 2−k

]
.

A normed space is a linear space E equipped with a norm ‖·‖ : E→ R such that

(N1) ‖x‖= 0↔ x = 0,
(N2) ‖ax‖= |a|‖x‖,
(N3) ‖x+ y‖6 ‖x‖+‖y‖,

for all x,y ∈ E and a ∈ R. Note that a normed space E is a metric space with the
metric

d(x,y) = ‖x− y‖ .

A Banach space is a normed space which is complete with respect to the metric.
A mapping T between linear spaces E and F is linear if

1. T (ax) = aT x,
2. T (x+ y) = T x+Ty

for all x,y ∈ E and a ∈ R. A linear functional f on a linear space E is a linear
mapping from E into R. The kernel ker(T ) of a linear mapping T between linear
spaces E and F is defined by
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ker(T ) = {x ∈ E |T x = 0} .

A linear mapping T between normed spaces E and F is normable if

‖T‖= sup{‖T x‖|x ∈ E,‖x‖6 1}

exists.

10.3 Omniscience Principles: LPO, WLPO, and LLPO

The limited principle of omniscience (LPO, Σ1-PEM) is of the form

∀α[α # 0∨¬α # 0] ,

and the weak limited principle of omniscience (WLPO, Π1-PEM) is of the form

∀α[¬α # 0∨¬¬α # 0] .

They are both universal closures of instances of PEM for Σ1 and Π1 formulae,
respectively. Alternatively, we can view WLPO as the universal closure of WPEM
for Σ1 formulae.

LPO is a strong principle that enables us to show almost all theorems in (countable)
mathematics, and especially in analysis. The following equivalences are due to
Mandelkern [56], Ishihara [42], and Diener and Loeb [27].

Proposition 10.3.1. The following are equivalent.

1. LPO
2. ∀x,y ∈ R(x # y∨ x = y),
3. Every bounded monotone sequence of real numbers converges.
4. Every sequence of a compact metric space has a convergent subsequence.
5. Ascoli’s theorem.
6. Every countable subset S of R with an upper bound has a supremum,
7. Every countable subset of a metric space is located.
8. Every bounded linear functional on a separable normed space is normable.

The following equivalences are due to Mandelkern [55], and van Atten and van
Dalen [3].

Proposition 10.3.2. The following are equivalent.

1. WLPO
2. ∀x,y ∈ R(¬x = y∨ x = y) .
3. There exists a discontinuous mapping from NN into N.
4. Every countable subset S of R with an upper bound has a least upper bound.



10 Bishop-Style Constructive Reverse Mathematics 353

Interestingly enough, not just WLPO has notable equivalences, also its negation
does [40].

Proposition 10.3.3. The following are equivalent.

1. ¬WLPO
2. Every mapping from a complete metric space into a metric space is nondiscon-

tinuous.

The lesser limited principle of omniscience (LLPO, Σ1-DML) is of the form

∀α,β [¬(α # 0∧β # 0)→¬α # 0∨¬β # 0] ,

which is a universal closure of an instance of De Morgan’s law (DML) for Σ1
formulae A and B.

The following equivalences are due to Mandelkern [54, 55], Ishihara [38], Bridges
[18], and Hendtlass [34].

Proposition 10.3.4. The following are equivalent.

1. LLPO
2. ∀x,y ∈ R(x 6 y∨ y 6 x).
3. ∀x,y ∈ R(xy = 0→ x = 0∨ y = 0), that is R is an integral domain.
4. Every real number has a binary expansion.
5. The intermediate value theorem (IVT).
6. Weak Kőnig’s Lemma: every infinite, decidable tree has a branch (WKL).
7. Every sequence of located closed subsets of a compact metric space with the

finite intersection property has an inhabited interior (CIT).
8. Every real-valued uniformly continuous function on a compact metric space

attains its minimum (MIN).
9. The Hahn-Banach theorem: every nonzero bounded linear functional f on a

subspace of a separable normed space E, whose kernel is located in E, has an
extension g with ‖g‖= ‖ f‖.

10. Peano’s existence theorem for ordinary differential equations.4

11. Brouwer’s Fixed-Point theorem: every uniformly continuous function f : [0,1]n→
[0,1]n has a fixed-point.

It is straightforward to see that

LPO⇒WLPO⇒LLPO .

4 This is for the most direct interpretation of the classical statement. A weaker version of this
theorem is equivalent to UCT [28].
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10.4 Markov’s Principle and Related Principles: MP, WMP, and
MP∨

Markov’s principle (MP),5 which is accepted in RUSS, where it encapsulates the
idea of unbounded search, is of the form:

∀α[¬¬α # 0→α # 0] ,

which is equivalent to
∀α[¬α = 0→α # 0] .

It is a universal closure of instances of the double negation elimination for Σ1
formulae; see [65, 1.11.5] and [67, Section 4.5]. It is known that there are a couple
of principles which are weaker than MP. Ishihara [41] studied the weak versions of
MP, weak Markov’s principle (WMP):

∀α[∀β (¬¬(0 # β )∨¬¬β # α)→α # 0]

and disjunctive Markov’s principle (MP∨):

∀α,β [¬(¬α # 0∧¬β # 0)→¬¬α # 0∨¬¬β # 0] .

The principle MP∨ is a universal closure of DML for Π1 formulae.
Recently, the following principle, called IIIa or ∆1-PEM, which is even weaker

than MP∨, was found [32] and [50].

∀α,β [(α # 0↔¬β # 0)→α # 0∨¬α # 0] .

The following are either straightforward, or can be found in the aforementioned
[32, 41].

Lemma 10.4.1.

1. LPO⇒MP,
2. LLPO⇒MP∨,
3. WLPO+MP⇔LPO,
4. WMP+MP∨⇔MP,
5. MP∨⇒ IIIa.

We can sum up these relationships in the diagram in Figure 10.1.

Proposition 10.4.2.

1. MP⇔∀x,y ∈ R(¬x = y→ x # y),
2. MP∨⇔∀x,y,z ∈ R(¬x = y→¬x = z∨¬z = y),
3. WMP⇔∀x,y ∈ R(∀z ∈ R(¬x = z∨¬z = y)→ x # y).

5 Note that Markov’s principle is also often simply denoted by M.
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LPO

MP WLPO

LLPO

WMP MP∨

IIIa

Fig. 10.1 Markov’s principle and related principles.

The following proposition is due to Mandelkern [55].

Proposition 10.4.3.

1. MP∨⇔∀x,y ∈ R [¬x = y→{x,y} is closed],
2. WMP⇔∀x,y ∈ R [{x,y} is closed→ (¬x = y→ x # y)].

Remark 10.4.4. Mandelkern first considered weak Markov’s principle under the
names ASP and WLPE in [54] and [56], respectively. Originally, it was stated as
“Every pseudo-positive real number is positive,” or as a formula:

∀x ∈ R(∀y ∈ R(¬¬(0 < y)∨ (¬¬(y < x)))→ x > 0) .

Kohlenbach [48] showed that WMP is underivable in E-HAω +AC+CAω
¬ ; see also

[49, 7.1].

The following equivalences are due to Bridges and Ishihara [20].

Proposition 10.4.5. The following are equivalent.

1. MP
2. Every mapping between metric spaces is strongly extensional.
3. Every linear mapping between normed spaces is strongly extensional.

A subtle change happens, when we change our focus to complete spaces, as the
following theorem due to Ishihara [40] shows.

Proposition 10.4.6. The following are equivalent.

1. WMP
2. Every mapping from a complete metric space into a metric space is strongly

extensional.
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3. Every nondiscontinuous mapping from a complete metric space into a metric
space is sequentially continuous.

It is worth pointing out that in the case of linear maps there is no need to assume
any form of Markov’s principle, as shown in the result by Bridges and Ishihara [20].

Proposition 10.4.7. Every linear mapping from a Banach space into a normed space
is strongly extensional.

10.5 A Continuity Principle, the Fan Theorem, and Church’s
Thesis

The following principle is assumed in INT.

The principle of weak continuity for numbers (WC-N):

∀α∃nA(α,n)→∀α∃mn∀β ∈ α(m)A(β ,n) .

WC-N has some consequences which put its acceptance at odds with omniscience
principles such as LLPO [67, 40].6

Proposition 10.5.1. Assume WC-N. Then

1. ¬LLPO
2. ¬WKL
3. WMP

Brouwer’s name is also linked with bar induction and a consequence thereof: the
fan theorem, which formalises the idea of {0,1}N being cover compact.

The (full) fan theorem (FAN):

∀α ∈ {0,1}N∃nA(α(n))→∃n∀α ∈ {0,1}N∃k 6 nA(α(k)) .

Notice that Brouwer assumed the principle of continuous choice, which is even
stronger than WC-N, and which meant that the complexity of the predicate A in the
fan theorem did not matter. In the absence of continuous choice we do, however,
have to distinguish between different versions of the fan theorem. The weakest is the
one for decidable A and will be denoted by FAN∆ . There are also stronger versions
of the fan theorem in common use: FANc and FANΠ1

0
. These are the fan theorems

for c-bars, and for Π1-bars. Here a predicate A on {0,1}∗ is a c-predicate7 if there
exists a decidable B such that

6 Note that in [67] LLPO is called SEP.
7 In [8] Berger and Bridges give the following reason for using the prefix c in defining the analogous
notion for sets: “The letter c in the expression c-set should indicate that this notion of complexity is
related to continuity”.
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A(u)↔∀w ∈ {0,1}∗ B(u∗w) .

In this context, a bar A is a Π1-bar if there exists a decidable predicate S on {0,1}∗×N
such that

1. A(u)↔∀n ∈ N(S(u,n))
2. If S(u,n), then for any w ∈ {0,1}∗ also S(u∗w,n).

Notice that the second condition here is not implied by the name, but included for
technical reasons.

We have (UCT will be introduced below)

FANΠ1
0
⇒ UCT ⇒ FANc ⇒ FAN∆ .

All of these implications are straightforward, apart from, possibly, FANΠ1
0
⇒UCT,

which is proven in [27, Theorem 16].
Viewed through classical eyes the fan theorem(s) can be seen as the contrapositive

of the aforementioned WKL. However, viewed constructively the latter is stronger.
Since LLPO is equivalent to WKL, the following result is not surprising.

Proposition 10.5.2. LLPO ` FANc.8

A direct proof can be found in [7]. Since the (full) fan theorem holds in INT, yet
WKL fails there, there is no hope of proving the converse of this.

The following equivalences are due to Julian and Richman [47], Berger and
Ishihara [10], Diener [23], and Berger and Schuster [12].

Proposition 10.5.3. The following are equivalent.

1. FAN∆

2. Every infinite, decidable tree with at most one path has an infinite path (WKL!).9

3. Every uniformly continuous, real-valued function on a compact metric space
with at most one minimum point has a minimum point (MIN!).10

4. Every positive-valued function on [0,1] has a positive infimum (POS).
5. (A version of) the Heine Borel Theorem: every countable cover of [0,1] with

open intervals has a finite subcover.
6. Dini’s theorem: if ( fn)n>0 : [0,1]→ R is an increasing sequence of uniformly

continuous functions converging point-wise to a uniformly continuous f : [0,1]→
R, then the convergence is uniform.

The following equivalences are due to Berger [6], and Berger and Bridges [8, 9].

Proposition 10.5.4. The following are equivalent.

8 With a lot of technical effort one can also prove the stronger statement that LLPO ` UCT, as
shown in [25]. Since FAN∆ fails in RUSS, but MP∨ holds there, we cannot hope to weaken the
antecedent to MP∨ or IIIa
9 A tree T has at most one path if α 6= β implies α(n) 6∈ T ∨β (n) 6∈ T for some n.
10 A real-valued function f on a metric space X has at most one minimum point if x # y implies
f (z)< f (x) or f (z)< f (y) for some z ∈ X .
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1. FANc
2. Every (point-wise) continuous mapping {0,1}N→ N is uniformly continuous.
3. The Anti-Specker property: every sequence (xn)n>0 of reals that is eventually

bounded away from every point in [0,1] is eventually bounded away from the
entire set [0,1] (AS).

Notice that it is, to our best knowledge, unknown whether FANc is actually
equivalent to the stronger statement that every continuous mapping from a compact
metric space into a metric space is uniformly continuous (UCT).

We do however know the following [19].

Proposition 10.5.5. The following are equivalent.

1. UCT
2. Every (point-wise) continuous mapping [0,1]→ R is uniformly continuous.
3. Every (point-wise) continuous mapping [0,1]→ R is bounded.

There are some equivalences to FANΠ1
0

[8, 24], but they seem to be somewhat
less natural than the ones to FAN∆ , FANc, and UCT.

Related to the topic of the fan theorems, one can also consider a principle weaker
than FAN∆ which is obtained by weakening the conclusion of FAN∆ from requiring
“uniform blocking of sequences” to requiring that the ratio of sequences of a given
length which are “blocked” by the bar over those that are not approaches 1. This
principle is known as weak weak Kőnig’s lemma (WWKL), and some equivalences to
it have been investigated by Nemoto [58], and Diener and Hedin [26]. The principle
WWKL was first considered by researchers working in “Simpson-style” reverse
mathematics, who also coined the name. More recently, it has also been investigated
with respect to the Weihrauch lattice [17].

In the same way, and totally disregarding philosophical aspects, that we can view
INT as BISH plus assuming continuous choice and bar induction, we can view RUSS
as BISH plus the assumption of some form of Church’s thesis (CT), which states that
each sequence of natural numbers is computable. It can be expressed by an axiom as

∀α∃k∀n∃m(T (k,n,m)∧U(m) = α(n))

where T and U are Kleene’s T -predicate and the result-extracting function, respec-
tively. Combining this with a restricted form of AC:

∀n∃mB(n,m)→∃α∀nB(n,α(n)) ,

we have the arithmetical form of Church’s thesis (CT0):

∀n∃mB(n,m)→∃k∀n∃m[T (k,n,m)∧B(n,U(m))],

which has an extended form (ECT0):

∀n[A(n)→∃mB(n,m)]→∃k∀n[A(n)→∃m(T (k,n,m)∧B(n,U(m)))]



10 Bishop-Style Constructive Reverse Mathematics 359

where A is almost negative.11

Proposition 10.5.6. Assume CT0. Then

1. ¬LLPO
2. WMP
3. ¬WC-N
4. ¬FAN∆

5. There exists a bounded monotone sequence (qn)n>0 of rational numbers such
that for all x ∈ R

∃mk∀n > m(2−k < |x−qn|) .

6. There exists a continuous mapping from {0,1}N into N which is not uniformly
continuous.

Proposition 10.5.7. Assume ECT0. Then IIIa implies MP∨.

10.6 The Boundedness Principle: BD-N

Together with the aforementioned WMP there is one more principle that takes a
special place in constructive reverse mathematics, in that it holds in the three major
varieties of constructive mathematics CLASS, INT, and RUSS, but is not accepted
by practitioners of BISH. Before we can state this principle, we need a definition.

Definition 10.6.1. A subset S of N is pseudobounded if limn→∞ sn/n = 0 for each
sequence (sn)n>0 in S.

In [46, Lemma 3], it was shown that a set A of natural numbers is pseudobounded
if and only if for each sequence (an)n>0 in A, an < n for all sufficiently large n. A
few further characterisations can be found in [61].

Every bounded subset is trivially pseudobounded and, conversely, every inhabited,
decidable, and pseudobounded subset of N is easily seen to be bounded. However,
in the absence of decidability this is not guaranteed anymore, which motivates the
boundedness principle BD-N:

Every countable pseudobounded subset is bounded.

The following equivalences are due to Ishihara [39] and Ishihara-Yoshida [46],
Bridges-Ishihara [21], and Ishihara [44].

Proposition 10.6.2. The following are equivalent.

1. BD-N
2. Every sequentially continuous mapping from a separable metric space into a

metric space is point-wise continuous.

11 A formula is called almost negative if it has no ∨ and has ∃ only immediately preceding prime
formulae [4, p.155].
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3. The space of test functions D(R) is (sequentially) complete.12

4. (A version of) the open mapping theorem in functional analysis: If T is a nonzero
bounded linear mapping of a separable Hilbert space H into itself such that T ∗

exists and ran(T ) is complete, then T is open.
5. Every one-one self-adjoint sequentially continuous linear mapping from a Hilbert

space onto itself is bounded.
6. If (Tm)m>1 is a sequence of bounded linear mappings from a separable Banach

space E into a normed space F such that the set

{Tmx |m ∈ N}

is bounded for each x ∈ E, then (Tm)m>1 is equicontinuous.

Under the assumption of BD-N the hierarchy of fan theorems introduced in the
previous section somewhat collapses, as shown in [23, Chapter 4].

Proposition 10.6.3. BD-N ` FANc→FANΠ1
0

As mentioned before, BD-N is valid in both RUSS and INT. More precisely we
have the following [40].

Proposition 10.6.4. ECT0 +MP ` BD-N and WC-N ` BD-N

It is also trivial to see that LPO ` BD-N, whence the latter holds in CLASS.

Remark 10.6.5. Lietz and Streicher [52] showed that BD-N is underivable in E-HAω +
AC. Using topological models Lubarsky [53] has shown that BD-N is underivable
even in the presence of IZF+DC.

We would like to finish this section by pointing out that BD-N is the last puzzle
piece to a clean, axiomatic proof of the Kreisel-Lacombe-Shoenfield theorem (KLST)
that all real-valued functions on a complete, separable metric space are point-wise
continuous.13

Proposition 10.6.6. The following are equivalent.

1. ¬WLPO+WMP+BD-N
2. KLST

Proof. Let f : X → R be a real-valued function on a complete and separable metric
space X . Proposition 10.3.3 shows that ¬WLPO implies that f is nondiscontinuous.

12 The space of all test functions D(R) is the space of all infinitely differentiable functions f : R→R
with compact support together with a locally convex structure defined by the seminorms

pα,β ( f ) := sup
n

max
`6β (n)

sup
|x|>n

2α(n)| f (`)(x)| (α,β ∈ N→ N) .

13 Of course, this is talking about a constructive interpretation of KLST. However, using an appro-
priate realizability interpretation (or interpreted informally), the proof of the forward direction will
yield a proof in classical computability theory.
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The assumption of WMP now guarantees that f is therefore sequentially continuous,
by Proposition 10.4.6. Finally, BD-N implies that f is point-wise continuous by
Proposition 10.6.2.

The proof of the converse can be found in [40].

Thus, combining the previous theorem with the results in Sections 10.4 and 10.5,
we also have the following.

Corollary 10.6.7. ECT0 +MP ` KLST, and WC-N ` KLST.

10.7 Relationships Between Principles

The diagram in Figure 10.2 should give a good overview over the various principles
discussed, and in particular their relationships among each other. Arrows mean
implication, and an arrow from A to C and labelled by B means that A together with
B implies C.

PEM WPEM

LPO WLPO LLPO

WKL

MP∨ IIIa

MP

WMP

FANΠ1
0 UCT FANc FAN∆ WWKL

BD-N

Fig. 10.2 Relationships between principles.

10.8 Separation Techniques

The easiest and most convenient way to see that principle A does not imply principle
B, or, more generally, that theorem T is not provable in BISH is to show that theorem
T is false in CLASS, INT, or RUSS. These three varieties are all well understood so
they immediately show many separations between the principles we have discussed
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so far. For example MP does not imply FAN∆ , since the first one is true in RUSS,
whereas the second one is false there.

To obtain subtler separations between principles, such as the one between LPO
and WLPO, one needs more refined methods. Various approaches have been used.
Before describing some of these methods we should mention that, since BISH is
not formalised (in the same way that CLASS is not formalised), it is somewhat
problematic to speak of “models of BISH”. Of course, various formal systems
designed to capture BISH have been proposed over the years, such as Myhill’s
constructive set theory [57], Aczel’s Constructive ZF-style set theory CZF [1], or
Veldman’s BIM [68], and if one chooses one of these formalisations, one can then
formally show the separation of principles over these formal systems. The, in terms
of foundations, non-committal nature of BISH might seem like a big problem for
constructive reverse mathematics, however, in practice this is not really an issue.
Topological models, for example, are sound for intuitionistic ZF set theory (IZF) [35,
Theorem 16], which is a much stronger set theory than most constructivists need
for their mathematics and much stronger than the systems mentioned above. Thus a
separation shown with the help of topological models is enough evidence to treat the
respective principles as separate in constructive reverse mathematics.

There is one issue that is, indeed, problematic in this context and that is, again,
the issue of countable/dependent choice. Topological and realizability models do not
always validate these principles, so whether they hold or not needs to be checked sep-
arately. The specific topological models cited below all validate countable/dependent
choice, which makes the decision of whether one accepts these principles or not
independent of the separation results.

Topological models are a natural setting to interpret formalised intuitionistic
theories. By “intuitionistic” we mean theories using intuitionistic logic; it is worth
noting though, that topological models also have a distinct intuitionistic flavour
à la Brouwer. For example they all validate the full, unrestricted, fan theorem [30,
Theorem 3.2]. Topological models are actually just a special case of Heyting-valued
models which have a long history starting with several publications around 1970
[62, 63, 33, 30]. Topological models have been used to give models that do not satisfy
BD-N [53], separate LPO, WLPO, LLPO, MP, WMP, PEM, WPEM, and various
variations of these [36].

An approach which is very different from topological models is that of realiz-
ability models [59]. In these we extend the logical language by allowing witnesses
of statements to be attached to statements. This is, in particular, interesting in a
constructive context, where we want to attach computable objects (“realizers”) that
describe the computational content of a formula. There are many different ways to
fix details of how the logical connectives and quantifiers are handled, leading to very
different interpretations. Most realizability models have a distinct recursive flavour
and so we can say that, vaguely speaking, realizability models are to RUSS what
topological models are to INT. We will not go into any details and only point the
reader to [4, Chapter 7] and [59] for further details. As mentioned in the respective
section, realizability models have been used to show that BD-N is not derivable in
intuitionistic logic [52].
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Finally, one can also use various proof interpretations [49], which, vaguely speak-
ing, can also be seen as types of realizabilities, to separate principles. As already
mentioned, this was used to first show that WMP is not derivable [48], which implies
that WLPO does not imply MP.

Acknowledgements The second author thanks the Japan Society for the Promotion of Science
(JSPS), Core-to-Core Program (A. Advanced Research Networks) for supporting the research.
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Chapter 11
Weihrauch Complexity in Computable Analysis

Vasco Brattka, Guido Gherardi and Arno Pauly

Abstract We provide a self-contained introduction to Weihrauch complexity and its
applications to computable analysis. This includes a survey on some classification
results and a discussion of its relation to other approaches.

11.1 The Algebra of Problems

The Weihrauch lattice offers a framework to classify the uniform computational
content of problems and theorems from analysis and other areas of mathematics.
This framework can be seen as an attempt to create a calculus of mathematical
problems, very much in spirit of Kolmogorov’s interpretation of intuitionistic logic
[71].

We express mathematical problems with the help of partial multi-valued func-
tions f :⊆ X ⇒Y , which are just relations f ⊆ X×Y . It has turned out to be fruitful
for our approach to think of these relations as input-output-oriented multi-valued
functions f :⊆ X ⇒ Y . We consider dom( f ) = {x ∈ X : f (x) 6= /0} as the set of ad-
missible instances x of the problem f , and we consider the corresponding set of
function values f (x) ⊆ Y as the set of possible results. In the case of single-valued
f we identify f (x) with the corresponding singleton. An example of a mathematical
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problem that the reader can have in mind as a prototypical case is the zero problem.
Obviously, many problems in mathematics can be expressed in terms of solutions
of equations of the type f (x) = 0 with a continuous f : X → R. We formalize this
problem.

Example 11.1.1 (Zero problem). Let X be a topological space and let C (X) denote
the set of continuous f : X → R. The zero problem ZX :⊆ C (X)⇒ X , f 7→ f−1{0}
is the problem to find a solution x ∈ X of an equation of the type f (x) = 0, given
a continuous function f : X → R. The set dom(ZX ) of admissible instances of this
problem is the set of all continuous functions f with a non-empty zero set f−1{0}.
The set ZX ( f ) = f−1{0} of solutions is the set of all zeros of f .

Mathematical problems can be combined in various natural ways to obtain new
problems. The following definition lists a number of typical algebraic operations
that we are going to use. By X tY := ({0}×X)∪ ({1}×Y ) we denote the disjoint
union. By X∗ :=

⋃
∞
i=0({i}×X i) we denote the set of words over X , where X i :=

Xi
j=1 X stands for the i–fold Cartesian product of X with itself with X0 := {()}. Here

() stands for the empty tuple or word. By X := X ∪{⊥} we denote the completion
of X , where ⊥ 6∈ X . We use the set of natural numbers N= {0,1,2, ...}.

Definition 11.1.2 (Algebraic operations). Let f :⊆ X ⇒ Y , g :⊆ Z ⇒ W and
h :⊆ Y ⇒ Z be multi-valued functions. We define the following operations (for ex-
actly those inputs given by the specified domains):

1. h◦ f :⊆ X ⇒ Z, (h◦ f )(x) := {z ∈ Z : (∃y ∈ f (x)) z ∈ h(y)} and
dom(h◦ f ) := {x ∈ dom( f ) : f (x)⊆ dom(h)} (composition)

2. f ×g :⊆ X×Z ⇒ Y ×W,( f ×g)(x,z) := f (x)×g(z) and
dom( f ×g) := dom( f )×dom(g) (product)

3. f tg :⊆ X tZ ⇒ Y tW , ( f tg)(0,x) := {0}× f (x), ( f tg)(1,z) := {1}×g(z)
and dom( f tg) := dom( f )tdom(g) (coproduct)

4. f �g :⊆ X tZ ⇒Y ×W , ( f �g)(0,x) := f (x)×W , ( f �g)(1,z) :=Y ×g(z) and
dom( f �g) := dom( f )tdom(g) (box sum)

5. f ug :⊆ X×Z ⇒ Y tW,( f ug)(x,z) := f (x)tg(z) and
dom( f ug) := dom( f )×dom(g) (meet)

6. f +g :⊆ X×Z ⇒ Y ×W ,( f +g)(x,z) := ( f (x)×W )∪ (Y ×g(z)) and
dom( f +g) := dom( f )×dom(g) (sum)

7. f ∗ :⊆ X∗⇒ Y ∗, f ∗(i,x) := {i}× f i(x) and
dom( f ∗) := dom( f )∗ (finite parallelization)

8. f̂ :⊆ XN ⇒ YN, f̂ (xn)n := Xi∈N f (xi) and
dom( f̂ ) := dom( f )N (parallelization)

Here f i := Xi
j=1 f denotes the i–fold product of f with itself, where f 0 = idX0 .

It is important to point out that the appropriate definition of the domain of h ◦ f is
crucial. If x ∈ dom(h ◦ f ), then we require that all possible results y ∈ f (x) of f
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upon input of x are supported by h, i.e., f (x) ⊆ dom(h). This definition of compo-
sition corresponds to our understanding of multi-valued functions as computational
problems.1 We often write for short h f for the composition h◦ f .

The reader might notice some relations between the resource-oriented interpre-
tation of linear logic and the way we combine mathematical problems (see Sec-
tion 11.9.1). Indeed, the following intuitive interpretation of some of our algebraic
operations is useful:

1. The composition h◦ f applies both problems consecutively, first f and then h.
2. The product f ×g provides both problems f and g in parallel. For each instance

one obtains solutions of both f and g.
3. The coproduct f t g provides both problems f and g as alternatives. For each

instance one can select to obtain either a solution of f or a solution of g.
4. The meet f u g provides either f or g. For each instance one either obtains a

solution for f or a solution for g; one learns a posteriori which one it is, but one
cannot control in advance which one it will be.

5. The sum f +g provides two potential solutions for given instances of f and g, at
least one of which has to be correct.

6. The finite parallelization f ∗ allows arbitrarily many finite applications of f in
parallel, and with each instance one can select how many applications are to be
used in parallel.

7. The parallelization f̂ allows countably many applications of f in parallel.

Given the above list of operations we can derive other algebraic operations.

Definition 11.1.3 (Juxtaposition). For f :⊆ X ⇒ Y and g :⊆ X ⇒ Z we denote by
( f ,g) :⊆ X ⇒ Y × Z the juxtaposition of f and g, which is defined by ( f ,g) :=
( f ×g)◦∆X , where ∆X : X ⇒ X×X ,x 7→ (x,x) denotes the diagonal of X .

Given two problems f and g we want to express what it means that f solves g.

Definition 11.1.4 (Solutions). Let f ,g :⊆ X ⇒ Y be multi-valued functions. We
define f v g :⇐⇒ dom(g) ⊆ dom( f ) and (∀x ∈ dom(g)) f (x) ⊆ g(x). In this sit-
uation we say that f solves g, f is a strengthening of g and g is a weakening of
f .

Intuitively, f v g means that all instances of g are also instances of f , and on all
these common instances f yields a possible solution of g. It is clear that the relation
v yields a preorder, i.e., it is reflexive and transitive.

Many theorems give rise to mathematical problems. In general, a theorem of the
logical form

(∀x ∈ X)(x ∈ D =⇒ (∃y ∈ Y )P(x,y))

translates into the problem

1 The way we define composition turns the multi-valued functions into morphisms of a specific
category [96] that is not identical to the usual category of relations.
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F :⊆ X ⇒ Y,x 7→ {y ∈ Y : P(x,y)} with dom(F) := D.

That is, F plays the rôle of a multi-valued Skolem function for the statement of
the theorem. The problem F measures the difficulty of finding a suitable y, given
x, whereas the condition encapsulated in D is a purely classical premise that is not
meant to bear any constructive content. As an example we mention the intermediate
value theorem.

Example 11.1.5 (Intermediate value theorem). IVT :⊆C [0,1]⇒ [0,1], f 7→ f−1{0},
where dom(IVT) contains all f ∈ C [0,1] with f (0) · f (1)< 0, is called the interme-
diate value theorem. It is easy to see that Z[0,1] v IVT holds.

Bibliographic Remarks
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11.2 Represented Spaces

In this section we want to provide the data types that we will use for problems
f :⊆ X ⇒ Y . For a purely topological development of our theory it would be suf-
ficient to consider topological spaces X and Y . However, since we want to discuss
computability properties too, we need slightly more structure on the spaces X and
Y , and this structure is provided by representations.

Definition 11.2.1 (Represented spaces). A represented space (X ,δ ) is a set X to-
gether with a surjective partial function δ :⊆ NN→ X .

If δ (p) = x then we call p a name for x, and we reserve the word representation
for the map δ itself. We endow the Baire space NN with its usual product topology
of the discrete topology on N and we always assume that a represented space (X ,δX )
is endowed with the final topology O(X) induced by δX on X , which is the largest
topology on X that turns δX into a continuous map. In this situation δX is automat-
ically a quotient map. Typically, we will deal with admissible representations2 δX
that are not just quotient maps but they are even more closely linked to the topology
O(X). In the following we will often just write for short X for a represented space
if the representation is clear from the context or not needed explicitly. We can now
formally define problems.

2 See the chapter “Admissibly Represented Spaces and Qcb-Spaces” by Schröder in this book for
more details.
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Definition 11.2.2 (Problems). We call partial multi-valued functions f :⊆ X ⇒ Y
on represented spaces X ,Y problems, for short.

Properties of problems such as computability and continuity can easily be intro-
duced via realizers.

Definition 11.2.3 (Realizer). Given represented spaces (X ,δX ), (Y,δY ), a problem
f :⊆ X ⇒ Y and a function F :⊆ NN→ NN, we define F ` f :⇐⇒ δY F v f δX . In
this situation we say that F is a realizer of f .

In other words, F is a realizer of f if δY F solves f δX . Obviously, this concept
depends on the underlying represented spaces and the notation F ` f is only justified
when these are clear from the context.

On the Baire space NN it is clear what a continuous function F :⊆ NN → NN

is. Computability of such functions can be defined via Turing machines in a well-
known way. Such properties can now easily be transferred to problems via realizers.

Definition 11.2.4 (Computability and continuity). A problem f is called com-
putable (continuous) if it has a computable (continuous) realizer.

We warn the reader that the resulting notion of continuity for single-valued func-
tions is not automatically the topological notion of continuity that is induced by the
final topologies of the representations. However, every total single-valued function
f : X → Y on represented spaces that is continuous in our sense is also continuous
in the usual topological sense with respect to the final topologies, and in all our ap-
plications we will use admissible representations for which these two notions even
coincide.

Two representations δ1,δ2 of the same set X are called equivalent if the identity
id : (X ,δ1)→ (X ,δ2) and its inverse are computable. It is easy to see that equivalent
representations yield the same notion of computability and continuity.

By C (X ,Y ) we denote the set of continuous functions f : X → Y in terms of
Definition 11.2.4. The category of represented spaces is Cartesian closed, and the
same holds for the category of admissibly represented spaces. In particular, we have
canonical ways of defining product and function space representations.

In order to define those, we use pairing functions. We define a pairing func-
tion 〈,〉 : NN ×NN → NN by 〈p,q〉(2n) := p(n) and 〈p,q〉(2n + 1) := q(n) for
p,q ∈ NN and n ∈ N. We define a pairing function of type 〈,〉 : (NN)N → NN by
〈p0, p1, p2, ...〉〈n,k〉 := pn(k) for all pi ∈ NN and n,k ∈ N, where 〈n,k〉 is the stan-
dard Cantor pairing defined by 〈n,k〉 := 1

2 (n+ k+ 1)(n+ k)+ k. Finally, we note
that by np we denote the concatenation of a number n ∈N with a sequence p ∈NN.

We assume that we have some standard representation Φ of (a sufficiently large
class3) of continuous functions, i.e., for any such function f :⊆ NN→ NN there is a
p∈NN with f = Φp. For total functions this representation yields the exponential in
the category of (admissibly) represented spaces and satisfies natural versions of the

3 It suffices to consider all continuous functions f :⊆ NN → NN with Gδ –domain since any con-
tinuous function can be extended to such a function.
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utm- and smn-theorems. For computable p one obtains the computable functions
Φp with natural domains (see [116] for details). For p ∈ NN we denote by p− 1 ∈
NN∪N∗ the sequence or word that is formed by concatenation of p(0)−1, p(1)−1,
p(2)−1,... with the understanding that −1 = () is the empty word.

Definition 11.2.5 (Constructions on representation). Let (X ,δX ) and (Y,δY ) be
represented spaces. We define

1. δX×Y :⊆ NN→ X×Y , δX×Y 〈p,q〉 := (δX (p),δY (q))
2. δXtY :⊆ NN→ X tY , δXtY (0p) := (0,δX (p)) and δXtY (1p) := (1,δY (p))
3. δX∗ :⊆ NN→ X∗, δX∗(n〈p1, p2, ..., pn〉) := (n,(δX (p1),δX (p2), ...,δX (pn)))
4. δXN :⊆ NN→ XN, δXN〈p0, p1, p2, ...〉 := (δX (pn))n∈N
5. δC (X ,Y ) :⊆ NN→ C (X ,Y ) by δC (X ,Y )(p) = f :⇐⇒ Φp ` f
6. δX : NN→ X , δX (p) := δX (p−1) if p−1∈ dom(δX ) and δX (p) :=⊥ otherwise.

Many spaces that occur in analysis are actually computable metric spaces. For
the definition we assume that the reader knows the notion of a computable (double)
sequence of real numbers.

Definition 11.2.6 (Computable metric spaces and Cauchy representations).

1. A computable metric space (X ,d,α) is a separable metric space (X ,d) with met-
ric d : X×X→R and a dense sequence α :N→X such that d◦(α×α) :N2→R
is a computable double sequence of real numbers.

2. We define the Cauchy representation δX :⊆ NN→ X by δX (p) := limn→∞ α p(n)
and dom(δX ) = {p ∈ NN : (∀i > j) d(α p(i),α p( j))< 2− j}.

A standard numbering of the rational numbers Q and the Euclidean metric yields
the standard Cauchy representation δR of real numbers. Cauchy representations are
examples of admissible representations, and for such representations continuity in
the usual topological sense and continuity defined via realizers coincides. In partic-
ular, C (R) := C (R,R) is the usual set of continuous functions. In the following we
often consider N,R, [0,1],2N,NN and similar spaces as computable metric spaces
in the straightforward sense without further mentioning this fact. A computable Ba-
nach space is just a computable metric space that is additionally a Banach space and
such that the linear operations are computable. If the space is additionally a Hilbert
space, then it is called a computable Hilbert space.

A non-metrizable space that we occasionally need is the Sierpiński space S =
{0,1}, which is endowed with the topology O(S) = { /0,S,{1}}. By n̂ ∈ NN we
denote the constant sequence with value n ∈ N.

Definition 11.2.7 (Sierpiński space). Let δS : NN→ S be defined by δS(0̂) = 0 and
δS(p) = 1 for all p 6= 0̂.

We close this section with a discussion of computability properties of subsets.
The most important notion for us is that of a co-c.e. closed set. Given a computable
metric space (X ,d,α) we denote by B(x,r) := {y ∈ X : d(x,y) < r} the open ball
with center x ∈ X and radius r ≥ 0. More specifically, we denote by B〈n,〈i,k〉〉 :=
B(α(n), i

k+1 ) a basic open ball.
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Definition 11.2.8 (Co-c.e. closed subsets). Let X be a computable metric space.
Then A ⊆ X is called co-c.e. closed if X \ A =

⋃
n∈N Bp(n) for some computable

p ∈ NN.

For X = NN the co-c.e. closed subsets are also known as Π0
1–classes. By A (X)

we denote the set of closed subsets of a topological space X . The definition of co-
c.e. closed subsets of computable metric spaces X directly leads to a representation
ψ− of the set A (X) defined by ψ−(p) := X \

⋃
∞
n=0 Bp(n). We denote the represented

space (A (X),ψ−) for short by A−(X). We now formulate two equivalent charac-
terizations of co-c.e. closed sets. For every set A ⊆ X we denote its characteristic
function by χA : X → S, which is defined by χA(x) = 1 :⇐⇒ x ∈ A.

Proposition 11.2.9 (Co-c.e. closed sets). Let X be a computable metric space and
let A⊆ X. Then the following are equivalent:

1. A is co-c.e. closed,
2. A = f−1{0} for some computable f : X → R,
3. χX\A : X → S is computable.

These equivalences are uniform, i.e., the maps A−(X)→ C (X ,S),A 7→ χX\A and
C (X)→A−(X), f 7→ f−1{0} are computable and admit (in the second case multi-
valued) computable right inverses.

The third characterization has the advantage that it is the most general of these
three, and it works even for arbitrary represented spaces X . Hence, for such spaces
we define ψ− by ψ−(p) =A :⇐⇒ δC (X ,S)(p) = χX\A. We denote the corresponding
represented space (A (X),ψ−) also by A−(X). Due to Proposition 11.2.9 this nota-
tion is consistent with the special definition for computable metric spaces X above.
Besides the notion of a co-c.e. closed subset we also need the notion of a co-c.e.
compact subset.

Definition 11.2.10 (Computable compact subsets). Let X be a computable metric
space and let K ⊆ X be compact.

1. K is called co-c.e. compact if {〈〈n1, ...,nk〉,k〉 ∈ N : K ⊆
⋃k

i=1 Bni} is c.e.
2. K is called computably compact if K is co-c.e. compact and there exists a com-

putable sequence that is dense in K.

Obviously, a computable metric space is computably compact if and only if it is
co-c.e. compact. Similarly as in the case of closed sets we can derive a representa-
tion κ− of the set K (X) of compact subsets that is based on (1) and a representation
κ of compact sets that is based on (2). By K−(X) we denote the represented space
(K (X),κ−). Once again there is a more general representation that works for arbi-
trary represented spaces, but we will not formalize this representation here.
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11.3 The Weihrauch Lattice

We now want to define Weihrauch reducibility as a way to compare problems with
each other. The goal is that f ≤W g expresses the fact that f can be computed by
a single application of g. We will need two variants of such a reducibility. By
id : NN→ NN we denote the identity of the Baire space. For other sets X we usually
add an index X and write the identity as idX : X → X . For F,G :⊆ NN → NN we
define 〈F,G〉(p) := 〈F(p),G(p)〉.

Definition 11.3.1 (Weihrauch reducibility). Let f and g be problems. We define:

1. f ≤W g :⇐⇒ (∃ computable H,K :⊆ NN→ NN)(∀G ` g) H〈id,GK〉 ` f .
2. f ≤sW g :⇐⇒ (∃ computable H,K :⊆ NN→ NN)(∀G ` g) HGK ` f .

We say that f is (strongly) Weihrauch reducible to g, if f ≤W g ( f ≤sW g) holds.

The diagram in Figure 11.1 illustrates Weihrauch reducibility and its strong coun-
terpart. It is easy to see that f ≤sW g implies f ≤W g. It is also easy to see that ≤W
and ≤sW are preorders, i.e., they are reflexive and transitive. We denote the corre-
sponding equivalences by ≡W and ≡sW, respectively, and we use the symbols <W
and <sW for strict reducibilities, respectively. Similar reducibilities can be defined
if the notion of computability is replaced by continuity or other suitable categories.
A more categorical characterization of Weihrauch reducibility that mentions neither
realizers nor the Baire space is given by the following proposition.

Proposition 11.3.2. Let f :⊆ X ⇒ Y and g :⊆ Z ⇒W be problems. Then:

1. f ≤W g if and only if there are computable h :⊆V ×W ⇒Y and k :⊆ X ⇒V ×Z
for some represented space V such that h◦ (idV ×g)◦ k v f .

2. f ≤sW g if and only if there are computable h :⊆W ⇒ Y and k :⊆ X ⇒ Z such
that h◦g◦ k v f .

Even though the proof of Proposition 11.3.2 is elementary, there is a subtle point
in it. Namely, the proof requires a version of the axiom of choice. In fact, we are
freely using the axiom of choice, and mostly we invoke the following version.
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Fig. 11.1 Weihrauch reducibility and strong Weihrauch reducibility.

The axiom of choice for the Baire space: every problem f has a realizer F .

The fact that Weihrauch reducibility captures the idea of using g exactly once
in the course of the computation is stated in the following theorem that we only
formulate in intuitive terms here.

Theorem 11.3.3 (Generalized Turing oracles). f ≤W g holds if and only if f can
be computed on a (generalized) Turing machine that uses exactly one application of
g in the course of its computation.

We emphasize that f ≤W g actually requires that the oracle g is used once in the
course of the computation of f . Hence, using the oracle g can actually be an obstacle
if the domain of g contains only complicated points.

We note that a characterization of strong Weihrauch reducibility analogous to
Theorem 11.3.3 would require discarding all results that were obtained in the course
of the computation other than the result of the application of the oracle g. This would
be a rather unnatural way of using oracles, and it indicates why ordinary Weihrauch
reducibility is a more appropriate concept from this perspective.

The relation between strong and ordinary Weihrauch reducibility is similar to
the relation between one-one and many-one reducibility in classical computability
theory, and it can be expressed using the notion of a cylinder.

Definition 11.3.4 (Cylinder). A problem f is called a cylinder if id× f ≤sW f .

It is clear that f ≤sW id× f and id× f ≡W f hold for all problems f , whereas
id× f ≤sW f is a specific property of f that allows one to “feed the input through to
f .”

Proposition 11.3.5 (Cylinder). A problem f is a cylinder if and only if for all prob-
lems g the following holds: g≤W f ⇐⇒ g≤sW f .

It is important to mention that the definitions of ≤W and ≤sW are invariant under
the replacement of represented spaces by equivalent ones [18, Lemma 2.1]. The
equivalence classes induced by ≡W and ≡sW are called Weihrauch degrees and
strong Weihrauch degrees, respectively. The reducibilities ≤W and ≤sW naturally
extend to these degrees.
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Most algebraic operations defined in Definition 11.1.2 are monotone with respect
to (strong) Weihrauch reducibility. We say that a binary operation � on problems is
monotone with respect to≤W if for all problems f0, f1,g0 and g1 condition 1. holds,
and a unary operation � on problems is called a closure operator with respect to
≤W if for all problems f ,g condition 2. holds:

1. ( f0≤W f1 and g0≤W g1) =⇒ f0�g0≤W f1�g1 (monotone)
2. f ≤W f�, f��≤W f� and ( f ≤W g =⇒ f�≤W g�) (closure operator)

Analogously to monotone, we define antitone with a reversed order on one side.
Monotonicity and closure operators with respect to ≤sW are defined analogously.

Proposition 11.3.6 (Monotonicity and closure operators). We obtain:

1. The binary operations ×, t, u, � and + are all monotone with respect to ≤W
and ≤sW.

2. The unary operation ∗ is a closure operator with respect to ≤W and monotone
with respect to ≤sW.

3. The unary operation ̂ is a closure operator with respect to ≤W and ≤sW.

In particular, all the mentioned operations extend to operations on degrees.

It is an obvious question whether there is any least and any greatest Weihrauch
degree. The first question is easy to answer.

Definition 11.3.7 (Special Weihrauch degrees). By 0 we denote the (strong) Weih-
rauch degree of the nowhere-defined problems, and by 1 we denote the Weihrauch
degree of the identity id.

It is easy to see that 0 is exactly the class of all nowhere defined problems, and
it is the least (strong) Weihrauch degree. The class 1 characterizes the computable
problems in the sense that f ≤W 1 holds if and only if f is computable. In many
respects 0 and 1 behave algebraically like the numerical constants 0 and 1.

The question of whether there is a greatest Weihrauch degree is less straightfor-
ward to answer. If we do not accept the axiom of choice for the Baire space, then
the class of problems without realizer forms a natural top element. Since we are
accepting the axiom of choice, this natural top element is not available, and we can
only add an additional top element to the Weihrauch degrees.4

If one is not interested in classifying specific problems with general types X ,Y as
they appear in analysis, but if one rather wants to study the structure of Weihrauch
degrees as such, then it is sufficient to consider problems of the type f :⊆NN ⇒NN

on the Baire space. We make this slightly more precise.

Lemma 11.3.8 (Realizer version). Let (X ,δX ) and (Y,δY ) be represented spaces
and let f :⊆ X ⇒ Y be a problem. Then the realizer version f r :⊆ NN ⇒ NN of f is
defined by f r := δ

−1
Y ◦ f ◦δX . We have f r≡sW f .

4 See Brattka and Pauly [29] for a more detailed discussion.
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This means that every (strong) Weihrauch degree has a representative of type
f r :⊆ NN ⇒ NN. By W and Ws we denote the set of Weihrauch degrees and strong
Weihrauch degrees, respectively, both restricted to problems on the Baire space.5

Theorem 11.3.9 (Weihrauch lattice). The Weihrauch degrees (W ,≤W) form a
distributive lattice with supremum operation t, infimum operation u and bottom
element 0.

Also the strong Weihrauch degrees form a lattice structure, albeit a non-distributive
one with a different supremum operation.

Theorem 11.3.10 (Strong Weihrauch lattice). The strong Weihrauch degrees
(Ws,≤sW) form a non-distributive lattice with supremum operation �, infimum op-
eration u and bottom element 0.
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11.4 Algebraic and Topological Properties

In this section we discuss a number of algebraic and topological notions and their
interactions that turned out to be fruitful for the study of the Weihrauch lattice.
We mention that while f ≤W 1 characterizes the computable problems f , also the
relation 1≤W f bears some meaning.

5 We use the restriction to the Baire space for our formal definition of W and Ws, since the class
of all (strong) Weihrauch degrees of problems with arbitrary type does not form a set.
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Definition 11.4.1 (Pointedness). We call a problem f pointed if id≤W f holds.
Analogously, we can define strong pointedness with the help of ≤sW instead of
≤W.

It is easy to see that the pointed problems are exactly those with a computable
point in their domain. By definition f ∗ is always pointed since f 0 = id{()}. We intro-
duce some further terminology that can be expressed with the help of the algebraic
operations.

Definition 11.4.2 (Idempotency and parallelizability). Let f be a problem.

1. We call f idempotent if f × f ≡W f .
2. We call f parallelizable if f̂ ≡W f .

Analogously, we define strong idempotency and strong parallelizability with the
help of ≡sW instead of ≡W.

Whether or not a problem is idempotent or parallelizable might be hard to prove
in some instances. In the following example the first statement is relatively easy
to obtain, whereas the second one is harder to prove (see Theorems 11.7.34 and
11.7.35).

Example 11.4.3. ÎVT≡sW Z[0,1] and hence Z[0,1] is (strongly) parallelizable, but IVT
is not idempotent.

The following result captures some easy observations. Pointedness is involved
here, since f 0 = id{()} is pointed for every problem f .

Proposition 11.4.4 (Idempotency and parallelizability). Let f be a problem. Then:

1. f (strongly) parallelizable =⇒ f (strongly) idempotent.
2. f pointed and idempotent ⇐⇒ f ∗≡W f .
3. f strongly pointed and strongly idempotent ⇐⇒ f ∗≡sW f .

A less obvious result relates idempotency and parallelizability. In order to for-
mulate this result, we need another definition.

Definition 11.4.5 (Finite tolerance). A problem f :⊆ NN ⇒ NN is called finitely
tolerant if there is a computable partial function T :⊆ NN → NN such that for all
p,q∈ dom( f ) and k ∈N with (∀n≥ k)(p(n) = q(n)) it follows that r ∈ f (q) implies
T 〈r,k〉 ∈ f (p). More generally, a problem g :⊆ X ⇒Y can be called finitely tolerant
if there is some finitely tolerant f :⊆ NN ⇒ NN with f ≡W g.

Intuitively, finite tolerance means that for two almost identical inputs and a so-
lution for one of these inputs we can compute a solution for the other input. The
squashing theorem relates products g× f to parallelizations ĝ of problems.

Theorem 11.4.6 (Squashing theorem). For f ,g :⊆ NN ⇒ NN we obtain:

1. If dom( f ) = NN and f is finitely tolerant, then g× f ≤W f =⇒ ĝ≤W f .
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2. If dom( f ) = 2N and f is finitely tolerant, then g× f ≤sW f =⇒ ĝ≤sW f .

We obtain the following immediate corollary.

Corollary 11.4.7. Let f :⊆ NN ⇒ NN be finitely tolerant. Then we obtain:

1. For dom( f ) = NN: f idempotent ⇐⇒ f parallelizable.
2. For dom( f ) = 2N: f strongly idempotent ⇐⇒ f strongly parallelizable.

Another property that turned out to be quite useful is join-irreducibility. We recall
that a problem f is called join-irreducible in the lattice-theoretic sense if f ≤W gth
implies f ≤W g or f ≤W h for all problems g,h. We need a countable version of
this property. For this purpose we first need to define countable coproducts. For a
sequence (Xi)i∈N of sets we define the disjoint union by

⊔
∞
i=0 Xi :=

⋃
∞
i=0({i}×Xi).

Now we can define the countable coproduct.

Definition 11.4.8 (Countable coproduct). Let fi :⊆ Xi ⇒ Yi be problems for all
i ∈ N. Then we define

⊔
∞
i=0 fi :⊆

⊔
∞
i=0 Xi ⇒

⊔
∞
i=0 Yi by

⊔
∞
i=0 fi(n,x) := {n}× fn(x).

Now we are prepared to define countable irreducibility.

Definition 11.4.9 (Countable irreducibility). A problem f is called countably ir-
reducible if for every sequence (gi)i∈N of problems: f ≤W

⊔
∞
i=0 gi =⇒ (∃i) f ≤W gi.

Likewise we can define strong countable irreducibility with ≤sW in place of ≤W.

It is clear that every countably irreducible6 problem is join-irreducible. Another
notion that turned out to be fruitful in this context is the notion of a fractal. Roughly
speaking, a fractal is a problem that exhibits its full power even if we zoom arbitrar-
ily deep into its domain.

Definition 11.4.10 (Fractal). A problem f is called a fractal if there is a problem
F :⊆NN ⇒NN such that F≡W f and F |A≡W F holds for every clopen A⊆NN with
A∩ dom(F) 6= /0. Likewise we define a strong fractal with ≡sW instead of ≡W. A
total (strong) fractal is a (strong) fractal where F can be chosen to be total.

One reason why fractals are useful is captured in the following observation.

Proposition 11.4.11 (Fractals). Every (strong) fractal is (strongly) countably irre-
ducible.

Some natural problems in the Weihrauch lattice are densely realized in the fol-
lowing sense.

Definition 11.4.12 (Densely realized). Let (X ,δX ), (Y,δY ) be represented spaces.
A problem f :⊆ X ⇒Y is called densely realized if f r(p) = δ

−1
Y ◦ f ◦δX (p) is dense

in dom(δY ) for all p ∈ dom( f ◦δX ).

6 We note that countable irreducibility is not identical to what is sometimes called σ -join-
irreducibility since the countable coproduct is not necessarily a countable supremum, as we will
see in Theorem 11.5.1.
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We note that this notion depends on the representations chosen. It turns out that
all problems with discrete output below densely realized problems with totally rep-
resented output are computable.

Proposition 11.4.13 (Densely realized). Let f :⊆X ⇒Y be densely realized, where
Y is a represented space with total representation, and let g :⊆ Z ⇒N be a problem.
If g≤W f holds, then g is computable.
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11.5 Completeness, Composition and Implication

Another obvious question regarding the Weihrauch lattice is whether the lattice is
complete or, more generally, which suprema and infima exist. A mostly negative
answer is given by the following result.

Theorem 11.5.1 (Suprema and infima). No non-trivial countable suprema exist
in the Weihrauch lattice, i.e., a sequence ( fn)n∈N of problems has a supremum if
and only if this supremum is already a supremum of ( fn)n≤k for some k ∈ N. Some
non-trivial countable infima exist in the Weihrauch lattice, others do not exist.

In particular, the Weihrauch lattice is not complete in the lattice-theoretic sense.
We can also conclude that

⊔
∞
n=0 fn is typically not the supremum of { fn : n ∈ N}

unless it is already a supremum of
⊔k

n=0 fn for some k ∈ N.
However, it turns out that some important suprema and infima exist in the

Weihrauch lattice. We are particularly interested in composition and implication.
The composition f ◦g of problems as it has been defined in Definition 11.1.2 is not
an operation on degrees in the same sense in which the other algebraic operations
extend to degrees. It requires that the output type of g fits the input type of f , and
even if the types fit, the operation does not need to be monotone. On the other hand,
it is natural to consider a Weihrauch degree f ∗ g that captures exactly what can
be achieved when one first applies g, possibly followed by some computation, and
then one applies f . That the maximal Weihrauch degree that can be built in this way
always exists is the first statement of the following theorem. The second statement
captures the minimal degree (g→ f ) that is needed in advance of g in order to com-
pute f . In some sense (g→ f ) measures how much harder f is to compute than
g.
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Theorem 11.5.2 (Compositional product and implication). Let f and g be prob-
lems. The following Weihrauch degrees exist:

1. f ∗g := max≤W{ f0 ◦g0 : f0≤W f ,g0≤W g} (compositional product)
2. (g→ f ) := min≤W{h : f ≤W g∗h} (implication)

Maximum and minimum are understood with respect to ≤W. Only such f0 and g0
are considered that can be composed.

By definition, ∗ and→ are operations on degrees. It is easy to see that ∗ is even
a monotone operation, whereas→ is antitone in the first component and monotone
in the second component. In order to prove Theorem 11.5.2 it is useful to define a
specific representative of the degree f ∗g that we denote by f ?g. For F,G :⊆NN→
NN we define 〈F×G〉〈p,q〉 := 〈F(p),G(q)〉.

Definition 11.5.3 (Compositional product). Let f and g be problems. We define
f ?g :⊆ NN ⇒ NN by ( f ?g)〈p,q〉 := 〈id× f r〉 ◦Φp ◦gr(q) for all p,q ∈ NN.

This definition captures the intuition that in between g and f there is another
possible computation Φp. Of course, this definition does not have the same set-
theoretic flavor as the other operations in Definition 11.1.2, and it is not a definition
that we typically work with. It is mostly needed in order to prove Theorem 11.5.2,
and the working definition of the compositional product f ∗ g is the one given in
Theorem 11.5.2. The following result captures another interesting property of f ?g.

Proposition 11.5.4. f ∗ g≡W f ? g and f ? g is always a cylinder. If f and g are
fractals, then so is f ?g.

We can also define a strong version of the compositional product. This operation
has been studied less and is only known to exist in specific cases. In fact, since f ?g
is always a cylinder, we directly obtain the following corollary of Theorem 11.5.2
and Proposition 11.5.4.

Corollary 11.5.5. f ∗s g := max≤sW{ f0 ◦g0 : f0≤sW f ,g0≤sWg} exists for cylinders
f ,g.

The maximum f ∗s g exists also in some cases where f ,g are not cylinders, but
we do not claim that it exists in general. The following result summarizes some
algebraic properties of compositional products and implications.

Proposition 11.5.6 (Algebraic properties).

1. ∗ is associative but not commutative,→ is neither associative nor commutative.
2. ∗s is associative whenever all occurring degrees actually exist.

The operations +,u,�,t,× and ∗ are typically ordered as given.

Proposition 11.5.7 (Order of algebraic operations). We obtain:

1. f +g≤sW f ug≤sW f �g≤sW f tg and f ×g≤sW f ?g for all problems f ,g.



382 Vasco Brattka, Guido Gherardi and Arno Pauly

2. f tg≤W f ×g and f �g≤sW f ×g for all pointed problems f ,g.

The following result expresses in which way compositional product and implica-
tion are adjoints of each other.

Proposition 11.5.8 (Adjointness). f ≤W g∗h ⇐⇒ (g→ f )≤W h.

In the language of lattice theory this result can be expressed such that (W ,≥W,∗)
is right residuated, and the residual operation is exactly→. It follows from Exam-
ple 11.7.43 that (W ,≥W,∗) is not left residuated and that (W ,≥W,×) is not residu-
ated. The following result expresses that the Weihrauch lattice is not residuated with
respect to the lattice operations t,u.

Theorem 11.5.9 (Brouwer and Heyting algebras). The Weihrauch lattice W is
neither a Brouwer algebra nor a Heyting algebra.

Brouwer algebras can be seen as models of intermediate logics that are in be-
tween classical logic and intuitionistic logic.
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11.6 Limits and Jumps

A map of particular importance in the Weihrauch lattice is the limit map. Given a
Hausdorff space X , we define the limit map of the space X and the the limit map (of
the Baire space) by

1. limX :⊆ XN→ X ,(xn)n∈N 7→ limn→∞ xn,
2. lim :⊆ NN→ NN,〈p0, p1, p2, ...〉 7→ limn→∞ pn.

The domain of limX consists of all converging sequences in X . In the special case
of the Baire space, we use a tupling with pi ∈NN on the input side for mere reasons
of convenience. By lim∆ we denote the restriction of lim to eventually constant
sequences. It is easy to see that limN≡W lim∆ . It has been noticed that limit maps
can be used to characterize limit computable functions and functions computable
with finitely many mind changes.

Proposition 11.6.1 (Limit computability and finite mind change computabil-
ity). For problems f we obtain:
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1. f ≤W lim ⇐⇒ f limit computable.
2. f ≤W limN ⇐⇒ f computable with finitely many mind changes.

Limit computability and computability with finitely many mind changes can be
defined directly with Turing machines that allow two-way output tapes. In the case
of limit computable problems the Turing machine can change the content of each
output cell finitely many times before it has to stabilize; in the case of problems that
are computable with finitely many mind changes, the entire output has to stabilize
after finitely many changes. These concepts are well known from learning theory.

One might ask whether limX for other spaces X yields different classes of com-
putable problems, but for many spaces X this is not the case. We recall that a com-
putable metric space X is called rich if there is a computable embedding ι : 2N ↪→ X ,
i.e., ι is injective, and ι and its partial inverse ι−1 are computable.

Proposition 11.6.2 (Limits). limX≡sW lim for all rich computable metric spaces X.

Examples of rich computable metric spaces are 2N,NN,R,RN, [0,1], [0,1]N, etc.
This justifies also the more generic notation lim for the limit operation on the Baire
space. An interesting property of limX is its behavior under composition. The fol-
lowing result on limN can be proved with the help of Theorem 11.7.11, but is also
easy to see directly.

Proposition 11.6.3 (Composition). limN ∗ limN≡W limN, i.e., problems that are
computable with finitely many mind changes are closed under composition.

The situation for iterations of lim is very different. For a problem f we denote by
f [n] the n–fold iteration of the compositional product of f with itself, i.e., f [0]≡W id,
f [1]≡W f , f [2]≡W f ∗ f , etc. By iterations of lim one climbs up the Borel hierar-
chy with every further application of a limit. By Σ0

n we denote the corresponding
Borel class of subsets of NN, i.e., Σ0

1 is the class of open subsets, Σ0
2 is the class

of Fσ –subsets and so forth. A function F :⊆ NN → NN is called Σ0
n–measurable,

if preimages F−1(U) of open sets U are Σ0
n–sets relative to dom(F). Analogously,

F is effectively Σ0
n–measurable if the preimage can be uniformly computed from a

description of U . The Σ0
1–measurable functions F are exactly the continuous ones,

and the effectively Σ0
1–measurable functions F are exactly the computable ones. We

can transfer concepts of measurability to problems via realizers.

Definition 11.6.4 (Effective Borel measurability). Let n≥ 1. A problem f is called
(effectively) Σ0

n–measurable if it has a realizer with the same property.

It can be proved that for computable metric spaces X and Y and total functions
f : X → Y this yields just the usual (effectively) Σ0

n–measurable functions as they
are known in descriptive set theory [9]. The measurable problems can also easily be
characterized in the Weihrauch lattice.

Theorem 11.6.5 (Effective Borel measurability). f ≤W lim[n] ⇐⇒ f is effectively
Σ0

n+1–measurable, for all problems f and n ∈ N.
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This theorem can be relativized. We write f ≤p
W g if f is Weihrauch reducible to g

with respect to some oracle p ∈ NN, which means that the reduction functions H,K
are computable relative to p. Then f ≤p

W lim[n] holds for some p ∈ NN if and only
if f is Σ0

n+1–measurable. Theorem 11.6.5 shows that the Weihrauch lattice yields a
refinement of the effective Borel hierarchy very much in the same way as many-one
reducibility yields a refinement of the Kleene hierarchy. We summarize some of the
obvious algebraic properties of lim.

Proposition 11.6.6. lim is a cylinder, strongly parallelizable, strongly idempotent,
finitely tolerant, a strong fractal and (strongly) countably irreducible.

It is useful to know that there are many problems that are equivalent to lim. We
mention only a few. By J : NN→NN, p 7→ p′ we denote the Turing jump operation,
which is injective as a function on the Baire space. By EC : NN→ 2N we denote the
function that translates enumerations of sets into their characteristic functions, and
by LPO : NN→{0,1} we denote the limited principle of omniscience7:

EC(p)(n) :=
{

1 if (∃k ∈ N) p(k) = n+1
0 otherwise and LPO(p) :=

{
1 if (∃k) p(k) = 0
0 otherwise

We also use inf,sup :⊆ RN→ R. We obtain the following result that lists some
important members of the equivalence class of lim.

Theorem 11.6.7 (Limit). lim≡sW inf≡sW sup≡sW J≡sW EC≡sW L̂PO≡sW ̂limN.

We now use this limit operation to define the jump of a represented space.

Definition 11.6.8 (Jump of a represented space). Let (X ,δ ) be a represented
space. Then we define its jump (X ′,δ ′) by X ′ := X and δ ′ := δ ◦ lim. Likewise,
(X (n),δ (n)) denotes the n–fold jump.

That is, in the new represented space X ′ a name of x with respect to δ ′ is a se-
quence that converges to a name in the sense of δ . Hence, names in (X ′,δ ′) typically
carry less computably accessible information than names in (X ,δ ). Now the jump
of a problem is just the same problem but with the input space replaced by its jump.

Definition 11.6.9 (Jump of a problem). Let f :⊆ X ⇒ Y be a problem. Then its
jump f ′ :⊆ X ′⇒Y is defined to be the same problem with the modified input space
X ′. Likewise f (n) :⊆ X (n) ⇒ Y denotes the n–fold jump for n ∈ N with f (0) := f .

Since the jump f ′ has to work with a weaker type of input information, it is
typically harder to compute f ′ than f . The study of jumps provides one reason why it
is important to keep track of strong Weihrauch reductions. Jumps are monotone with
respect to strong Weihrauch reductions, but not with respect to ordinary Weihrauch
reductions in general.

7 LPO is also Weihrauch equivalent to the identity id : S→{0,1}.
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Proposition 11.6.10 (Monotonicity). For all problems f ,g the following hold:
f ≤sW f ′ and also f ≤sW g =⇒ f ′≤sW g′.

Trivial examples such as a constant function show that f ≡sW f ′ can happen. For
f ≤W g all possible reductions between f ′ and g′ can occur; the order can even be
reversed, i.e., g′<W f ′ can happen [22, Figure 2]. Surprisingly, there is also a certain
inverse of Proposition 11.6.10 that one can prove. We recall that by p′ we denote
the Turing jump of p. Using this concept we can phrase the following theorem.

Theorem 11.6.11 (Inverting jumps). f ′ ≤p
W g′ =⇒ f ≤p′

W g holds for all problems
f ,g and p∈NN. An analogous statement holds if Weihrauch reducibility is replaced
by strong Weihrauch reducibility in both occurrences.

The property that f ≤p
W g holds for some oracle p is equivalent to the continu-

ous version of Weihrauch reducibility, where the two reduction functions H,K just
need to be continuous. By Theorem 11.6.11 continuous separations are particularly
useful, since they automatically carry over to jumps.

The following result summarizes some algebraic properties of the jump.

Proposition 11.6.12 (Algebraic properties). We obtain f ′ × g′≡sW( f × g)′,
f̂ ′ ≡sW f̂ ′, f ′ug′≡sW ( f ug)′, f ′tg′≤sW( f tg)′ and f ′∗≤sW f ∗′ for all problems
f ,g.

One can see that coproducts do not commute with jumps in general, since jumps
are join-irreducible.

Proposition 11.6.13 (Finite tolerance and fractality). f ′ is finitely tolerant, a
strong fractal and (strongly) countably irreducible for every problem f .

Sometimes it is useful to have the following characterizations of the jump.

Proposition 11.6.14 (Cylinder). f ′≡sW f ∗s lim, and if f is a cylinder, then f ′ is a
cylinder and f ′≡W f ′× lim≡W f ∗ lim.

In particular, f ∗s lim always exists. We continue with a discussion of some in-
variant properties. We call a class P of problems invariant if f ≤W g and g ∈ P
implies f ∈ P. Likewise, we define strong invariance. We list a number of examples
of (strongly) invariant properties that easily follow from results of this section.

Corollary 11.6.15 (Invariance). The following properties of problems are (strongly)
invariant: continuity, computability, limit computability, (effective) Σ0

n–measurability,
computability with finitely many mind changes, non-uniform computability (i.e., the
class of problems that have some computable output for every computable input in
the domain).

Sometimes it is also useful to use numerical quantities that are preserved by
Weihrauch reducibility. Besides the level n of (effective) Σ0

n–measurability, we can
also use the number of mind changes that are required to compute a problem. Let
mind( f ) denote the minimal number n ∈ N that a Turing machine with two-way
output needs in order to compute f with at most n mind changes on all inputs (if
such a number exists). This property is invariant in the following sense.
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Proposition 11.6.16 (Mind changes). f ≤W g=⇒mind( f )≤W mind(g) for all prob-
lems f ,g for which mind( f ),mind(g) exist.

Another numerical quantity that is useful as an invariant for strong Weihrauch
reducibility is the cardinality of a problem.

Definition 11.6.17 (Cardinality). For every problem f :⊆ X ⇒ Y we denote by # f
the maximal cardinality (if it exists) of a set M ⊆ dom( f ) such that { f (x) : x ∈M}
contains pairwise disjoint sets.

It is easy to see that the following holds.

Proposition 11.6.18 (Cardinality). f ≤sW g =⇒ # f ≤ #g for all problems f ,g with
existing cardinality.

Every cylinder f needs to satisfy # f ≥ |NN|, since #id = |NN|, where |X | denotes
the cardinality of the set X . For instance, it is easy to see that # limN = |N| and
#lim∆ = |NN|. We obtain the following.

Example 11.6.19. limN≡W lim∆ and limN<sW lim∆ . Moreover, lim∆ is a cylinder,
whereas limN is not.

Next we mention that LPO is in a certain sense the weakest discontinuous prob-
lem among all single-valued problems.

Theorem 11.6.20 (Discontinuous single-valued problems). LPO ≤p
W f for some

oracle p ⇐⇒ f is discontinuous, for f : X →Y on computable metric spaces X ,Y .

We close this section with the following result that shows that for (certain well-
behaved) linear closed operators there is a dichotomy: either they are bounded and
computable or lim is reducible to them.

Theorem 11.6.21 (Linear operators). Let T :⊆ X → Y be a linear closed opera-
tor on computable Banach spaces X ,Y . Let (en)n∈N be a computable sequence in
dom(T ) whose linear span is dense in dom(T ) and such that (T (en))n∈N is com-
putable.

1. If T is bounded, then T is computable.
2. If T is unbounded, then lim≤W T .
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11.7 Choice

The choice problem CX of a given space X is the problem of finding a point in a
given closed A⊆X . By choosing appropriate spaces X one obtains several important
Weihrauch degrees.

Definition 11.7.1 (Choice). The problem CX :⊆A−(X)⇒X ,A 7→A with dom(CX )
:= {A : A 6= /0} is called the choice problem of the represented space X .

Here the description A 7→ A of the map is to be read such that on the input side
A ∈ A−(X) is a point of the input space, whereas on the output side it is a subset
A ⊆ X of possible results. Typically, X will be a computable metric space, and the
reader can think of closed sets being represented by enumerations of balls whose
union exhausts the complement, as described in the first item of Proposition 11.2.9.

Likewise, one can use the second characterization of Proposition 11.2.9 to define
a representation of closed sets via preimages of continuous functions f : X → R.
The uniformity statement in Proposition 11.2.9 yields the conclusion that the choice
problem is nothing but the zero problem that we introduced in Example 11.1.1.

Corollary 11.7.2. CX≡sW ZX for every computable metric space X.

Certain relations between spaces transfer to the corresponding choice problems.
We mention two such properties in the following result.

Proposition 11.7.3 (Subsets and surjections). Let X ,Y be represented spaces.

1. If A⊆ X is co-c.e. closed, then CA≤sW CX .
2. If there is a computable surjection s : X → Y , then CY ≤sW CX .

The choice problem has been studied in many variants that are typically restric-
tions to closed subsets with certain extra properties. We list a number of examples.

Definition 11.7.4 (Variants of choice).

1. UCX is CX restricted to singletons (unique choice)
2. CCX is CX restricted to connected sets (connected choice)
3. PWCCX is CX restricted to pathwise connected sets (pathw. connected choice)
4. XCX is CX restricted to convex sets (convex choice)
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5. PCX is CX restricted to sets with positive measure (positive choice)
6. AoUCX is CX restricted to sets of the form {x} or X (all-or-unique choice)
7. ACCX is CX restricted to sets of the form X \{x} or X (all-or-co-unique choice)
8. CFCX is CX restricted to co-finite sets (co-finite choice)

In some of these examples some additional structure is required on X . For in-
stance, for convex choice one would assume that X is a vector space, and for posi-
tive choice one would expect that X is endowed with a fixed Borel measure. In the
case of NN and R we assume that the product measure of the geometric probability
measure on N and the Lebesgue measure are used, respectively. In the case of UCX
and AoUCX we assume that X is a T1–space, and in the case of ACCX and CFCX
we assume that X is endowed with a discrete topology. The choice problem CX is a
fractal for many spaces X and often a total fractal for compact X .

Proposition 11.7.5 (Fractality).

1. CN,CR,PCR and CNN are fractals,
2. C2N ,PC2N ,CC[0,1] and XC[0,1]n+1 are total fractals for all n ∈ N.

In particular, all the mentioned problems are countably irreducible and hence join-
irreducible.

While it is easy to see that CX is a cylinder for many spaces X , it follows from the
fact that there are only countably many pairwise different sets of positive measure
that #PC2N = #PCR = #PCNN = #CN = |N|, and hence all the mentioned problems
are not cylinders. It requires more sophisticated arguments to show that CC[0,1] is
not a cylinder despite the fact that #CC[0,1] = |NN|.

Proposition 11.7.6 (Cylinders).

1. C2N ,CR,CNN are cylinders,
2. CN,PC2N ,PCR,PCNN and CC[0,1] are not cylinders.

We note that there is also a choice problem KX :⊆K−(X) ⇒ X ,K 7→ K that is
called compact choice. Unlike the other choice problems we do not just restrict CX
to compact sets here, but we also increase the input information, i.e., the input set K
is actually described as a compact set.

With the help of the choice problem CX for different spaces X we obtain sev-
eral important Weihrauch degrees. In the following result we indicate how the most
important choice problems appear naturally as upper bounds for certain topologi-
cal properties of the underlying space. We call X computably countable if there is
a computable surjection s : N→ X , and we say that a computable metric space is
computably σ–compact if there is a computable sequence (Ki)i∈N of compact sets
Ki ⊆ X such that X =

⋃
i∈N Ki.

Proposition 11.7.7 (Spaces). Let X be a computable metric space.

1. CX≤sW CNN if X is complete,
2. CX≤sW CR if X is computably σ–compact,
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limN≡sW CN

KN≡sW C∗2≡sW LLPO∗

WWKL≡sW PC2N

WKL≡sW C2N≡sW Ĉ2≡sW L̂LPO

IVT≡sW CC[0,1]

CR≡sW CN×C2N

PCR≡sW CN×PC2N

lim≡sW ĈN≡sW L̂PO

CNN

UCNN

C1 RCA∗0

BΣ0
1

IΣ0
1

ACA0

ATR0

WKL∗0

WKL∗0 + IΣ0
1

WWKL∗0 + IΣ0
1

WWKL∗0

compact

σ–compact

complete

countable

finite

Fig. 11.2 Basic choice problems together with corresponding reverse mathematics systems (see
Subsection 11.9.3) and topological properties (every arrow indicates a strong Weihrauch reduction;
no additional ordinary Weihrauch reductions hold besides those that follow from transitivity; the
arrows in the diagram point in the direction of computations and implicit logical implications and
hence in the inverse direction of the corresponding reductions).

3. CX≤sW C2N if X is computably compact,
4. CX≤sW CN if X is computably countable,
5. CX≤sW KN if X is finite.

We will discuss these cones in individual subsections below. The diagram in
Figure 11.2 displays several basic choice problems in the Weihrauch lattice. The
corresponding systems from reverse mathematics are discussed later in Subsec-
tion 11.9.3.

The reader who is mostly interested in classifications of theorems in analysis can
continue reading in Section 11.8 from here on. In the remainder of this section we
continue discussing systematically choice principles and their properties.



390 Vasco Brattka, Guido Gherardi and Arno Pauly

11.7.1 Composition and Non-determinism

In this section we discuss a different perspective on choice that can be seen as
a type conversion and that is related to non-determinism. Firstly, we define non-
deterministic computability with some advice space R.

Definition 11.7.8 (Non-deterministic computability). Let (X ,δX ), (Y,δY ) be rep-
resented spaces and R⊆NN. Then f :⊆ X ⇒Y is called non-deterministically com-
putable with advice space R if there exist computable functions F :⊆NN→NN and
S :⊆ NN→ S such that 〈dom( f δX )×R〉 ⊆ dom(S) and for each p ∈ dom( f δX ):

1. Rp := {r ∈ R : S〈p,r〉= 0} 6= /0,
2. r ∈ Rp =⇒ δY F〈p,r〉 ∈ f δX (p).

If R = 2N, then we say for short that f is non-deterministically computable. If in
this case we strengthen the first condition to µ(Rp) > 0 with the uniform measure
µ , then we say that f is Las Vegas computable.

Intuitively, the machine can access an arbitrary oracle r ∈ R besides the input
p. Here Rp is the set of successful oracles for input p. On input p together with
such successful oracles r ∈ Rp the computable realizer F produces a correct output.
On the other hand, the computable S eventually rejects unsuccessful oracles r, i.e.,
S〈p,r〉 = 1 for such r. The importance of non-determinism in our context is based
on the following observation.

Theorem 11.7.9 (Non-determinism). f ≤W CR ⇐⇒ f is non-deterministically
computable with advice space R, for every R⊆ NN.

In the case of R = N it is not too hard to see that we obtain exactly the func-
tions that are computable with finitely many mind changes. We summarize some
important classes of functions that can be characterized by an appropriate version
of choice.

Corollary 11.7.10 (Notions of computability). Let f be a problem. Then:

1. f ≤W CN ⇐⇒ f is computable with finitely many mind changes,
2. f ≤W C2N ⇐⇒ f is non-deterministically computable,
3. f ≤W PC2N ⇐⇒ f is Las Vegas computable.

In particular, all the given properties of f are invariant.

One benefit of characterizing the choice problem with the help of non-deter-
ministic computations is that it is very easy to consider compositions of non-
deterministic computations, and hence one obtains a simple proof of the following
result that is much harder to prove directly.

Theorem 11.7.11 (Independent choice). We obtain CR ∗CS≤W CR×S and PCR ∗
PCS≤W PCR×S for all R,S⊆ NN.
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In the case of positive choice one needs an invocation of Fubini’s theorem besides
the composition of the two non-deterministic computations. We obtain the following
important corollary that, in particular, shows that the notions of computability listed
in Corollary 11.7.10 are very natural.

Corollary 11.7.12 (Composition). CN,C2N ,CR,CNN ,UCNN ,PC2N ,PCR and PCNN

are closed under compositional product and hence, in particular, idempotent.

11.7.2 Choice on Natural Numbers

An important equivalence class is the class of choice on natural numbers. We sum-
marize some of its characterizations. In particular, we use the complementary mini-
mum function minc :⊆NN→N, p 7→min{n∈N : (∀k) p(k) 6= n} and the maximum
function max :⊆ NN→ N, p 7→max{p(n) : n ∈ N}.

Theorem 11.7.13 (Choice on N). UCN≡sWCN≡sWCQ≡sWlimN≡sWminc≡sWmax.

Here Q can be endowed with the discrete or the Euclidean topology. The ordinary
Weihrauch degree of CN has some further members that occasionally appear.

Theorem 11.7.14. CFCN≡W CN≡W lim∆ and CFCN<sW CN<sW lim∆ .

Here the strictness results follow from Proposition 11.6.18 since #CFCN = 1,
#CN = |N| and #lim∆ = |NN|.

An important result related to choice on natural numbers shows that it cannot
contribute anything to the computation of total fractals if it is applied first (possibly
followed by another problem).

Theorem 11.7.15 (Choice elimination). f ≤W g ∗CN =⇒ f ≤W g, for every total
fractal f and every problem g.

The proof of this theorem is based on the Baire category theorem. In light of
Proposition 11.7.5 we obtain the following corollary.

Corollary 11.7.16 (Separations). CC[0,1] 6≤W CN and PC2N 6≤W CN.

We use the identification n = {0,1, ...,n−1} for all n ∈ N, and we also consider
the finite choice problems Cn. It is clear that C0≡W 0 and C1≡W 1. The particular
case of C2 is related to LLPO, which is the counterpart of the lesser limited principle
of omniscience as it is known from constructive analysis.

LLPO :⊆ 2N ⇒ {0,1},LLPO(p) 3
{

0 ⇐⇒ (∀n) p(2n) = 0
1 ⇐⇒ (∀n) p(2n+1) = 0

with dom(LLPO) := {p ∈ 2N : p(k) 6= 0 for at most one k}.

Proposition 11.7.17 (Principles of omniscience). C2≡sW LLPO<W LPO<W CN.
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Likewise, one can define problems MLPOn that are equivalent to Cn and prob-
lems LPOn that are equivalent to ACCn. These yield an increasing and a decreasing
chain of problems, respectively.

Proposition 11.7.18 (Finite choice). For every n > 2 and every p ∈ NN we obtain
ACCN <p

W ACCn+1 <
p
W ACCn <

p
W ACC2 = C2 <

p
W Cn <

p
W Cn+1 <

p
W CN.

The mere fact that Cn+1 6≤W Cn holds follows since mind(Cn) = n−1 for all n≥
1. While the power of choice increases with the finite cardinality, we can compensate
cardinality by sufficiently many parallel copies of C2, as the following result shows.

Theorem 11.7.19 (Cardinality versus products). Cn+1≤sW Cn
2 for all n ∈ N.

It is easy to see that also Cn
2≤sW C2n holds. This implies the second equivalence

in the following result.

Proposition 11.7.20 (Compact choice). KN≡sW C∗2≡sW C∗n for all n≥ 2.

We note that C∗2<W CN, since CN is a fractal by Proposition 11.7.5 and hence
countably irreducible.

Corollary 11.7.21 (Compact versus closed choice). KN<W CN.

We use the minimum function min :⊆ NN→ N, p 7→min{p(n) : n ∈ N} in order
to express the last result of this subsection.

Proposition 11.7.22 (Minimum). LPO∗≡sW min.

11.7.3 Choice on the Cantor Space

Choice on the Cantor space 2N is closely related to weak Kőnig’s lemma, which
states that every infinite binary tree T ⊆ 2∗ has an infinite path p ∈ 2N (formally,
a binary tree is a subset of 2∗ closed downward with respect to the partial order
induced by the prefix relation). By Tr we denote the set of binary trees T ⊆ 2∗

(represented by their characteristic functions χT : 2∗→ 2), and by [T ] we denote
the set of infinite paths p ∈ 2N of T . Now we formalize weak Kőnig’s lemma as
the problem WKL :⊆ Tr ⇒ 2N,T 7→ [T ], where dom(WKL) consists of all infinite
binary trees.

It is well known that the map [.] : Tr→A−(2N),T 7→ [T ] is computable, surjective
and has a computable multi-valued right-inverse. This yields the first equivalence in
the following theorem.

Theorem 11.7.23 (Choice on the Cantor space). For every rich computably com-
pact computable metric space X: WKL≡sWC2N≡sW CX≡sW Ĉ2≡sW L̂LPO.
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In particular, C2N is parallelizable, and the problem of finding a path in a binary
tree can be reduced to countably many binary choices, i.e., WKL≤W Ĉ2. In the
following corollary we list the choice problem for some important examples of rich
computably compact computable metric spaces.

Corollary 11.7.24. C2N≡sW C[0,1]N≡sW C[0,1]n for all n≥ 1.

Similarly as for choice on natural numbers there is a choice elimination result for
C2N . This result can be proved using compactness properties.

Theorem 11.7.25 (Choice elimination). f ≤W C2N ∗g=⇒ f ≤W g for every single-
valued problem f : X → Y with a computable metric space Y and every g.

This result can also be generalized to admissibly represented spaces Y . We obtain
the following important special case.

Corollary 11.7.26 (Single-valuedness). f ≤W C2N =⇒ f computable, for all single-
valued problems f : X → Y with a computable metric space Y .

In particular this applies to f = UC2N . Since limN is a single-valued problem in
the equivalence class of CN, we also get the following conclusion.

Corollary 11.7.27 (Separation). CN 6≤W C2N .

The so-called weak weak Kőnig’s lemma WWKL is WKL restricted to trees T
such that µ([T ])> 0. It is easy to see that it is equivalent to PC2N .

Theorem 11.7.28 (Positive choice on the Cantor space).
WWKL≡sW PC2N≡sW PC[0,1].

One can use a result of Jockusch and Soare [64, Theorem 5.3] that essentially
shows that WKL cannot be computed with an advice set of positive measure, in
order to separate PC2N and C2N .

Proposition 11.7.29 (Positive choice versus choice). PC2N <W C2N .

Since C2≤W PC2N <W C2N≡W Ĉ2, it is clear that PC2N is not parallelizable.

Corollary 11.7.30 (Parallelizability). PC2N is not parallelizable and we obtain
P̂C2N≡sW C2N .

Also quantitative versions of WWKL have been considered, and by ε-WWKL for
ε ∈ (0,1) we denote WWKL restricted to trees with µ([T ])> ε .

Theorem 11.7.31 (Quantitative WWKL). ε-WWKL≤W δ -WWKL ⇐⇒ ε ≥ δ .

We continue with the discussion of further special versions of choice related to
C2N . It is not obvious at all that connected choice CC[0,1]n is in the same equivalence
class as C2N for dimension n≥ 2.
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Theorem 11.7.32 (Connected choice). CC[0,1]n≡sW PWCC[0,1]n+1≡sW C2N for n≥
2.

The map A 7→ (A× [0,1]×{0})∪ (A×A× [0,1])∪ ([0,1]×A×{1}) shows that
one can map each closed subset A ⊆ [0,1] to a pathwise connected closed subset
B⊆ [0,1]3, and given a point in the latter set one can reconstruct a point in the former
set. This proves the previous statement on PWCC[0,1]n and CC[0,1]n for n≥ 3. Only
the two-dimensional case needs a more sophisticated argument, and in the case of
PWCC[0,1]2 the Weihrauch degree is not known.

Problem 11.7.33 (Pathwise connected choice). Does PWCC[0,1]2≡W C2N hold?

The one-dimensional case of connected choice yields the degree of the interme-
diate value theorem.

Theorem 11.7.34 (Intermediate value theorem). CC[0,1]≡sW IVT.

We mention a fact that was already stated in Example 11.4.3.

Theorem 11.7.35 (Idempotency). CC[0,1] is not idempotent.

While connected choice is very stable with respect to the dimension of the space,
this is not so for convex choice as the following result shows.

Theorem 11.7.36 (Convex choice). XC[0,1]n <W XC[0,1]n+1 for all n ∈ N.

Convex choice is not closed under composition, as the following result shows.

Theorem 11.7.37 (Composition of convex choice). XC[0,1]n is not closed under
compositional product ∗ and XC[0,1] ∗XC[0,1] 6≤W XC[0,1]n for all n≥ 1.

We mention that compact choice KX does not lead to anything new on rich com-
putable metric spaces.

Theorem 11.7.38 (Compact choice). KX≡sW C2N for all rich computable metric
spaces X.

In particular, this implies K2N≡sW KR≡sW KNN≡sW C2N . We close this section
by mentioning that CC[0,1] and PC2N are both upper bounds of KN.

Proposition 11.7.39 (Upper bound of compact choice). KN≤W CC[0,1]uPC2N .

11.7.4 Choice on Euclidean Space

In this section we discuss CR and related problems. The basic observation is that
CR can be described with the help of C2N and CN in several different ways.
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Theorem 11.7.40 (Choice on Euclidean space). CR≡sW CRn≡sW C2N×N≡sW
C2N ×CN≡sW C2N ?CN≡sW CN ?C2N for all n≥ 1.

The results regarding ? follow with the help of Theorem 11.7.11. We have de-
liberately used the symbol ? and not ∗, since the degrees with ? are cylinders and
hence we obtain strong equivalences. Theorem 11.7.40 shows that Theorem 11.7.25
is applicable to CR, and we obtain the following conclusion.

Corollary 11.7.41 (Single-valuedness). f ≤W CR =⇒ f ≤W CN, for all single-val-
ued problems f : X → Y with a computable metric space Y .

This result applies in particular to UCR and implies UCR≡W CN. Now we dis-
cuss an important upper bound on CR. The low basis theorem of Jockusch and
Soare states that every computable infinite binary tree has a low path. We recall that
p ∈ NN is called low if p′≤T /0′ holds, i.e., if the halting problem relative to p is
not more difficult than the ordinary halting problem. Lowness is represented by the
problem L := J−1 ◦ lim since p is low if and only if there is a computable q such
that p = L(q). It is clear that L<W lim (since J−1 is computable and not every limit
computable p is low). The following result can be seen as a uniform version of the
low basis theorem.

Theorem 11.7.42 (Uniform low basis theorem). CR<sW L.

The strictness follows for instance from Corollary 11.7.41 since L is single-
valued. We mention an interesting algebraic example of how infima and suprema
of the degrees of CN and C2N interact.

Example 11.7.43. We obtain

1. (C2N uCN)∗ (C2N tCN)≡W(C2N uCN)× (C2N tCN)≡W C2N tCN.
2. (C2N tCN)∗ (C2N uCN)≡W C2N ∗CN≡W C2N ×CN.

We note that C2N tCN<W C2N ×CN≡W CR since the right-hand degree is join-
irreducible and since C2N and CN are incomparable. We formulate a counterpart of
Theorem 11.7.40 for PCR.

Theorem 11.7.44 (Positive choice on Euclidean space). PCR≡sW PC2N×N≡sW
PC2N ×CN≡W PC2N ∗CN≡W CN ∗PC2N for all n≥ 1.

We mention that in this case we cannot simply replace ∗ by ? and ≡W by ≡sW,
since PCR is not a cylinder. We note that CN<W CR<W lim≡W ĈN implies the
following.

Corollary 11.7.45 (Parallelizability). CR and PCR are not parallelizable, and we
obtain P̂CR≡sW ĈR≡sW lim.
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11.7.5 Choice on the Baire Space

Choice on the Baire space is the upper bound of all choice problems of complete
computable metric spaces. In fact, we obtain the following.

Theorem 11.7.46 (Non-σ -compact spaces). CNN ≡p
W CX for some oracle p ∈ NN

if X is a separable complete metric space that is not σ–compact.

We list a number of choice problems that fall into the equivalence class of CNN .
We assume that these spaces are represented as computable metric spaces in the
standard way.

Theorem 11.7.47 (Baire space). CNN≡sW CRN≡sW CR\Q≡sW C`p≡sW CC [0,1] for
all computable p≥ 1.

Also the single-valued problems below CNN have a very natural characterization.

Theorem 11.7.48 (Single-valuedness). f ≤W CNN ⇐⇒ f is effectively Borel mea-
surable, for f : X → Y on complete computable metric spaces.

Similarly to Theorem 11.6.5 this result can be relativized. We mention that it is
easy to see that CNN is parallelizable.

Proposition 11.7.49 (Parallelizability). CNN is strongly parallelizable.

We briefly mention UCNN , the unique version of choice on the Baire space. It is
easy to see that lim<W UCNN holds. It follows from a basis theorem of Kreisel that
UCNN is strictly weaker than CNN .

Proposition 11.7.50 (Unique choice). lim(n)<W UCNN <W CNN for all n ∈ N.

We close with the following characterization of positive choice on the Baire
space.

Theorem 11.7.51 (Positive choice). PCNN≡sW PCR.

11.7.6 Jumps of Choice

In order to characterize the jump of choice we need the cluster point problem
CLX :⊆ XN ⇒ X ,(xn)n∈N 7→ {x ∈ X : x is a cluster point of (xn)n∈N}. This problem
fully characterizes the jump of CX on computable metric spaces X . If we restrict
CLX to such sequences (xn)n∈N whose range {xn : n ∈ N} has a compact closure,
then we denote it by BWTX :⊆ XN ⇒ X since it can be seen as a problem that
realizes the Bolzano-Weierstraß theorem.

Theorem 11.7.52 (Jump of choice). C′X≡sW CLX and K′X≡sW BWTX for all com-
putable metric spaces X.
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BWT2 = CL2 is also known as the infinite pigeonhole problem. Many properties
of problems can be transferred to jumps. However, this is often not so for properties
that involve compositional products. We recall that by f [n] we denote the n–fold
compositional product of f with itself and by f (n) the n–fold jump.

Theorem 11.7.53 (Composition). We obtain:

1. C′N ∗C′N≡W C′N.
2. C′2N ∗C′2N≡W C′′2N and more generally C′2N

[n]≡W C(n)
2N for all n≥ 1.

3. PC′2N ∗PC′2N≡W PC′R ∗PC′R≡W PC′R.

It is perhaps surprising that compositions behave very differently in the proba-
bilistic case and in the non-probabilistic case. The difference between C2N and PC2N

is also underlined by the third statement in the following result that strengthens the
negative statement of Proposition 11.7.29.

Theorem 11.7.54 (Separations). We obtain for all n ∈ N:

1. C(n+1)
2 6≤W lim(n).

2. LPO(n) 6≤W C(n)
2N .

3. C2N 6≤W PC(n)
2N .

It follows from the first statement that C2≤W PC2N≤W C2N all climb up the
Borel hierarchy one step with every jump. This statement even holds relative to any
oracle, and hence C(n)

2 is not Σ0
n+1–measurable. We obtain the following alternating

hierarchies.

Theorem 11.7.55 (Alternating hierarchies). For all n ∈ N we obtain

1. C(n)
2 <W LPO(n)<W C(n+1)

2 ,

2. K(n)
N <W C(n)

N <W K(n+1)
N ,

3. C(n)
2N <W lim(n)<W C(n+1)

2N .

Analogous statements hold with ≤sW in place of ≤W.

Choice on the Baire space is an example of a choice problem that is stable under
jump.

Theorem 11.7.56 (Baire space). C′NN≡sW CNN and UC′NN≡sW UCNN .

The following example shows that a straightforward jump inversion theorem
does not hold in the Weihrauch lattice.

Example 11.7.57. lim<W C′2NtC′N, but there is no problem f with f ′≡W C′2NtC′N.

The latter holds since f ′ is join-irreducible and C′2N and C′N are incomparable.
While Theorem 11.7.54 shows that C2N has no jump of positive choice as upper
bound, this is different for CC[0,1] as the following result shows.
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Proposition 11.7.58 (Upper bounds). CC[0,1]tCN≤W PC′2N uC′N.

This result is contrasted by CC[0,1] 6≤W PC2N tCN, which holds because CC[0,1]
is not reducible to any of the problems on the right-hand side and since it is join-
irreducible by Propositions 11.7.5 and 11.4.11.

For 1
2 -WWKL we can improve the statement that follows from Corollary 11.7.26

by the following result, which can be proved with a majority vote argument.

Theorem 11.7.59 (Single-valuedness). f ≤W
1
2 -WWKL(n) =⇒ f computable, for

all single-valued problems f : X → Y with a computable metric space Y and n ∈ N.

We note that 1
2 -WWKL cannot be replaced by WWKL in this result, since

limN≤W WWKL′ holds as a consequence of Proposition 11.7.58.

11.7.7 All-or-Unique Choice

We briefly discuss all-or-unique choice in this section. The problem AoUC[0,1] is
located between LLPO and LPO and related to robust division, which is defined as
the problem RDIV : [0,1]× [0,1]⇒ [0,1] with RDIV(x,y) := { x

max(x,y)} if y 6= 0 and
RDIV(x,y) := [0,1] otherwise. We now obtain the following characterization.

Proposition 11.7.60 (All-or-unique choice). C2<W AoUC[0,1]≡sW RDIV<W LPO.

In some respects AoUC[0,1] is closer to C2 than to LPO, at least with respect to
the following upper bounds.

Theorem 11.7.61 (Upper bound). AoUC[0,1]≤W CC[0,1]uPC2N .

In the diagram in Figure 11.2 AoUC[0,1] would be in a similar position to
KN, however it is incomparable to KN since AoUC[0,1] is countably irreducible
and KN 6≤W LPO. We continue with a number of separation results that involve
AoUC[0,1].

Theorem 11.7.62 (Separation).

1. XC[0,1] ∗AoUC[0,1] 6≤W XC[0,1]n for all n ∈ N.
2. C2 ∗AoUC[0,1] 6≤W AoUC∗[0,1].
3. C2×AoUC[0,1] 6≤W CC[0,1].

These separation results have a number of interesting consequences. The first
statement implies Theorem 11.7.37, and the third statement implies Theorem 11.7.35.
Since C2≤W AoUC[0,1] we can conclude the following from the second statement.

Corollary 11.7.63 (Composition). AoUC∗[0,1] is not closed under compositional
product.

Surprisingly, a composition of AoUC∗[0,1] with itself yields a new problem that is
closed under compositional product.

Theorem 11.7.64 (Double composition). We obtain:
AoUC∗[0,1] ∗AoUC∗[0,1]≡W AoUC∗[0,1] ∗AoUC∗[0,1] ∗AoUC∗[0,1].
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11.8 Classifications

In this section we present results on the classification of theorems. Most of these
theorems originate from analysis. We interpret theorems as problems as explained
after Definition 11.1.4. For many theorems one can derive upper bounds using the
following observation.

Theorem 11.8.1 (Upper bounds). Let X ,Y be represented spaces and A ⊆ X ×Y
co-c.e. closed. If (∀x ∈ X)(∃y ∈Y ) (x,y) ∈ A holds, then the corresponding problem
F : X ⇒ Y,x 7→ {y ∈ Y : (x,y) ∈ A} satisfies F≤W CY .

In combination with Proposition 11.7.7 one can thus derive upper bounds on
theorems by exploiting topological properties of Y . We essentially group our classi-
fications according to related choice problems.

The equivalence class of choice on natural numbers contains many theorems that
are typically proved with the help of the Baire category theorem.

Theorem 11.8.2 (Choice on the natural numbers). The following are all Weih-
rauch equivalent to each other:

1. Choice on natural numbers CN.
2. The Baire category theorem BCT1.
3. Banach’s inverse mapping theorem BIM`2,`2 .
4. The open mapping theorem for `2.
5. The closed graph theorem for `2.
6. The uniform boundedness theorem on non-singleton computable Banach spaces.
7. The Lebesgue covering lemma for [0,1].
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8. The partial identity from continuous functions to analytic functions.

In most cases these theorems are interpreted as problems in a straightforward
way. We only provide some examples and refer the reader to the references for
exact definitions. For instance, Banach’s inverse mapping theorem on computable
Banach spaces X ,Y is formalized as BIMX ,Y :⊆ C (X ,Y )→ C (Y,X),T 7→ T−1, re-
stricted to bijective, linear, bounded T . We always obtain BIMX ,Y ≤W CN, and in the
case of X = Y = `2 the theorem actually attains the maximal complexity. For finite-
dimensional X ,Y it is, however, computable. Similar remarks apply in the cases
of the open mapping theorem and the closed graph theorem. The Baire category
theorem and the uniform boundedness theorem are even equivalent to CN for all
complete computable metric spaces and non-singleton computable Banach spaces,
respectively.

In the case of some theorems it can happen that one logical formulation of the
theorem and the contrapositive formulation carry different computational content. In
such a situation it might not always be clear which form is more natural, and perhaps
both forms have applications. Such an example is the Baire category theorem, which
we can formalize at least in two ways. By A◦ we denote the interior of the set A.

1. BCT0 :⊆A−(X)N ⇒ X ,(An)n∈N 7→ {x ∈ X : x 6∈
⋃

∞
n=0 An},

with dom(BCT0) := {(An)n∈N : A◦n = /0}.
2. BCT1 :⊆A−(X)N ⇒ N,(An)n∈N 7→ {n ∈ N : A◦n 6= /0},

with dom(BCT1) := {(An)n∈N : X =
⋃

∞
n=0 An}.

While BCT1 is in the equivalence class of CN, it is easy to see that BCT0 is
computable. Nevertheless the jump of BCT0 has interesting applications that we
mention below. Similarly to the Baire category theorem, also the Heine-Borel cov-
ering theorem can be formalized in at least two ways. Here O(X) denotes the set of
open subsets of X seen as the complements of the elements of A−(X), i.e., every
open set is represented by an enumeration of basic open balls whose union coincides
with the set.

1. HBC0 :⊆ O([0,1])N ⇒ N,(Un)n∈N 7→ {k ∈ N : [0,1]⊆
⋃k

n=0 Un},
with dom(HBC0) := {(Un)n∈N : [0,1]⊆

⋃
∞
n=0 Un}.

2. HBC1 :⊆ O([0,1])N ⇒ [0,1],(Un)n∈N 7→ {x ∈ [0,1] : x 6∈
⋃

∞
n=0 Un},

with dom(HBC1) := {(Un)n∈N : (∀k) [0,1] 6⊆
⋃k

n=0 Un}.

Once again, it is easy to see that HBC0 is computable, and HBC1 is in the equiv-
alence class of choice on the Cantor space.

Theorem 11.8.3 (Choice on the Cantor space). The following are all strongly
Weihrauch equivalent to each other:

1. Choice on the Cantor space C2N .
2. Weak Kőnig’s lemma WKL.
3. The Hahn-Banach theorem.
4. The Heine-Borel covering theorem HBC1.
5. The theorem of the maximum MAX.
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6. The Brouwer fixed-point theorem BFTn for dimension n≥ 2.
7. The Brouwer fixed-point theorem BFT∞ for the Hilbert cube [0,1]N.
8. Finding connectedness components of sets A⊆ [0,1]n for n≥ 1.
9. The parallelization ÎVT of the intermediate value theorem.

10. Determinacy of Gale-Stewart games in 2N with closed winning sets.

In the case of the Hahn-Banach theorem the underlying separable Banach space
is part of the input information. No space of maximal complexity is known in this
case. For certain spaces (such as computable Hilbert spaces) the Hahn-Banach the-
orem is computable. For two further theorems mentioned above we provide formal-
izations as problems.

1. MAX : C [0,1]⇒ R, f 7→ {x ∈ [0,1] : f (x) = max f ([0,1])}.
2. BFTn : C ([0,1]n, [0,1]n)⇒ [0,1]n, f 7→ {x ∈ [0,1]n : f (x) = x}.

The Brouwer fixed-point theorem of dimension n = 1 is equivalent to the inter-
mediate value theorem, i.e., BFT1≡sW IVT≡sW CC[0,1]. We note that classifications
such as the one in Theorem 11.8.3 lead to simple proofs of classically known non-
uniform results in computable analysis. We mention some examples.

Corollary 11.8.4 (Non-uniform results).

1. There exists an infinite binary tree without computable paths (Kleene [70]).
2. There is a computable function f : [0,1] → R that attains its maximum only

at non-computable points x ∈ [0,1] (Lacombe [77, Theorems VI and VII] and
Specker [109]).

3. There is a computable function f : [0,1]2→ [0,1]2 that has no computable fixed-
point x ∈ [0,1]2 (Orevkov [88] and Baigger [2]).

4. There is a computable sequence ( fn)n∈N of functions fn : [0,1] → R with
fn(0) · fn(1)< 0 for all n ∈N such that there is no computable sequence (xn)n∈N
with fn(xn) = 0 (Pour-El and Richards [101, Example 8a]).

Once one has one of these negative results, all the others follow immediately
by Theorem 11.8.3. On the other hand, also positive non-uniform results can be
derived from Theorem 11.8.3. For instance, every computable function f : [0,1]2→
[0,1]2 has a low fixed-point. Such non-uniform results hold analogously for other
classifications presented here, but we are not going to discuss them in detail.

A theorem that is often proved with the help of the Brouwer fixed-point theorem
is the Nash equilibria existence theorem. Its computational content is significantly
weaker than that of the Brouwer fixed-point theorem.

Theorem 11.8.5 (All-or-unique choice). The following are strongly Weihrauch
equivalent to each other:

1. The finite parallelization AoUC∗[0,1] of all-or-unique choice.
2. The Nash equilibria existence theorem NASH.
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Here NASHn,m :Rm×n×Rm×n ⇒Rn×Rm is the map that maps a bi-matrix game
(A,B) to a pair of strategies that form a Nash equilibrium of (A,B), and NASH :=⊔

n,m∈NNASHn,m.
The equivalence class of choice on Euclidean space contains a theorem that we

mention in the following result without further definitions.

Theorem 11.8.6 (Choice on Euclidean space). The following are Weihrauch
equivalent to each other:

1. Choice on Euclidean space CR.
2. Frostman’s lemma on the existence of measures.

The Vitali covering theorem is a theorem that has even been studied in three
different logical versions. We consider Int := (Q2)N as the set of sequences I =
(In)n∈N of rational intervals In = (a,b). We say that I is a Vitali cover of a set
A⊆R if for every x∈ A and ε > 0 there is some n∈N with x∈ In and diam(In)< ε .
We write J v I if J is a subsequence of I of pairwise disjoint intervals. We
consider the following three formalizations of the Vitali covering theorem:

1. VCT0 :⊆ Int ⇒ Int,I 7→ {J : J v I with µ([0,1] \
⋃

J ) = 0} and
dom(VCT0) contains all I ∈ Int that are Vitali covers of [0,1].

2. VCT1 :⊆ Int ⇒ [0,1],I 7→ [0,1] \
⋃

I and dom(VCT1) contains all I ∈ Int
that are Vitali covers of

⋃
I and without a J vI with µ([0,1]\

⋃
J ) = 0.

3. VCT2 :⊆ Int ⇒ [0,1],I 7→ {x ∈ [0,1] : (∃ε > 0)(∀n)(x 6∈ In or diam(In)≥ ε)}
and dom(VCT2) contains all I without a J vI with µ([0,1]\

⋃
J ) = 0.

It turns out that VCT0 is computable and VCT1 and VCT2 are equivalent to
different versions of positive choice.

Theorem 11.8.7 (Positive choice). The following are all strongly Weihrauch equiv-
alent to each other:

1. Positive choice on the Cantor space PC2N .
2. Weak weak Kőnig’s Lemma WWKL.
3. The Vitali covering theorem VCT1.

The following are strongly Weihrauch equivalent to each other:

1. Positive choice on Euclidean space PCR.
2. The Vitali covering theorem VCT2.

Convex choice is equivalent to the Browder-Göhde-Kirk fixed-point theorem,
which is formalized as BGKK :⊆ C (K,K) ⇒ K, f 7→ {x ∈ K : f (x) = x}, where
K ⊆ H is compact and convex, H is a computable Hilbert space and dom(BGKK)
consists of all non-expansive continuous maps f : K→ K. More general versions of
the theorem have been studied, but for simplicity we state only this basic result.

Theorem 11.8.8 (Convex choice). Let H be a computable Hilbert space and K⊆H
convex and computably compact. The following are Weihrauch equivalent to each
other:



11 Weihrauch Complexity in Computable Analysis 403

1. Convex choice XCK .
2. The Browder-Göhde-Kirk fixed-point theorem BGKK on K.

Another important equivalence class is that of the limit map.

Theorem 11.8.9 (The limit). The following are Weihrauch equivalent to each
other:

1. The limit map lim on the Baire space (or every other rich computable metric
space).

2. The monotone convergence theorem MCT :⊆ RN→ R,(xn)n∈N 7→ supn∈N xn.
3. The operator of differentiation d :⊆ C [0,1]→ C [0,1], f 7→ f ′.
4. The Fréchet-Riesz representation theorem for `2.
5. The Radon-Nikodym theorem.
6. The parallelization B̂IM of Banach’s inverse mapping theorem.
7. Finding a basis of a countable vector space.
8. Finding a connected component of a countable graph.
9. The partial identity from infinitely differentiable functions to Schwartz functions.

Of course, the Banach inverse mapping theorem can be replaced by any other
problem from Theorem 11.8.2. We mention that the reduction lim≤W d follows
easily with Theorem 11.6.21. Several theorems also fall into the equivalence class
of the jump of choice on the Cantor space. Here KL is defined as WKL but for
finitely branching trees T ⊆ N∗.

Theorem 11.8.10 (Jump of choice on the Cantor space). The following are all
strongly Weihrauch equivalent to each other:

1. The jump C′2N of choice on the Cantor space.
2. Kőnig’s lemma KL.
3. The Bolzano-Weierstraß theorem BWTR on Euclidean space.
4. The Arzelá-Ascoli theorem for functions f : [0,1]→ [0,1].
5. Determinacy of Gale-Stewart games in 2N with winning sets that are differences

of open sets.

A natural problem that is known to be equivalent to higher jumps of choice on
the Cantor space is the parallelization of Ramsey’s theorem. We summarize some
results on this theorem. RTk

n : k[N]
n
⇒ 2N denotes the problem that maps every col-

oring c : [N]n → k (of the n–element subsets of N with k colors) to an infinite set
H ⊆ N that is homogeneous for c.

Theorem 11.8.11 (Ramsey’s theorem). C(n)
2 <W RTn

k <W RTn
k+1<W C(n)

2N for all
n,k ≥ 2. The reductions also hold in the case n = 1, but the first one is not strict
in this case.

This result can be proved with the help of the squashing theorem (Theorem 11.4.6).
Since C(n)

2N is the parallelization of C(n)
2 we obtain the following corollary.
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Corollary 11.8.12 (Ramsey’s theorem). C(n)
2N ≡W R̂Tn

k for all n≥ 1 and k ≥ 2.

Higher levels of the Weihrauch lattices are not yet all too well explored. This is
currently a topic of further research, and we mention one result along these lines.

Theorem 11.8.13 (Choice on the Baire space). The following are Weihrauch equiv-
alent to each other:

1. Choice on the Baire space CNN .
2. The perfect subtree theorem.

At the end of this section we demonstrate how some problems from computabil-
ity theory can be classified in the Weihrauch lattice. We consider in particular the
following (for X ⊆N with at least two elements and a standard numbering ϕ p of the
computable functions on natural numbers relative to p):

1. DNCX : NN ⇒ NN, p 7→ {q ∈ XN : (∀n) ϕ
p
n (n) 6= q(n)}.

2. 1-GEN : 2N ⇒ 2N, p 7→ {q : q is 1–generic relative to p}.
3. MLR : 2N ⇒ 2N, p 7→ {q : q is Martin-Löf random relative to p}.
4. PA : 2N ⇒ 2N, p 7→ {q : q is of PA degree relative to p}.
5. COH : (2N)N ⇒ 2N,(Ri)i∈N 7→ {A : A is cohesive for (Ri)i∈N}.

The first observation is that DNCn is just the parallelization of ACCn.

Theorem 11.8.14 (Diagonal non-computability). DNCn≡sW ÂCCn for all n ≥ 2
and n = N.

The jump BCT′0 of the computable version of the Baire category theorem BCT0
is closely related to 1–genericity and the problem Π0

1G of Π0
1–genericity, which we

do not define here.

Theorem 11.8.15 (Genericity). 1-GEN<W BCT′0≡sW Π0
1G<W L.

We note that all the problems from computability theory mentioned here, except
DNCn, are densely realized. Hence we can apply Proposition 11.4.13.

Proposition 11.8.16. 1-GEN, MLR, PA, COH and BCT′0 are densely realized and
hence ACCN and C2 are not Weihrauch reducible to any of them.

This means that these problems are very different from all the theorems from
analysis mentioned above that are all above C2 in the Weihrauch lattice. Hence, it
is interesting that some of these densely realized problems can be characterized as
implications (i.e., as “quotients”) of problems above C2.

Theorem 11.8.17 (Randomness, Peano arithmetic, cohesiveness). We obtain:

1. MLR≡W(CN→WWKL)≡W(CN→ PC2N).
2. PA≡W(C′N→WKL)≡W(C′N→ C2N).
3. COH≡W(lim→ KL)≡W(lim→ C′2N).

We close this section by mentioning that one can apply results from computabil-
ity theory such as the theorem of van Lambalgen to conclude that some of the above-
mentioned problems are closed under composition.

Proposition 11.8.18. MLR and 1-GEN are closed under compositional product ∗.
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theorem of the maximum has been studied by Brattka [13] and the Fréchet-Riesz representation
theorem by Brattka and Yoshikawa [13, 33]. The classification of the Nash equilibria existence
theorem is due to Pauly [91, 93]. Frostman’s lemma was studied by Pauly and Fouché [99] and
Vitali’s covering theorem by Brattka, Gherardi, Hölzl and Pauly [20]. The Browder-Göhde-Kirk
fixed-point theorem was classified by Neumann [85]. The operator of differentiation was stud-
ied by von Stein [110], and the degrees of many operations on sets that are not mentioned here
were classified by Brattka and Gherardi [16]. The identities to analytic and Schwartz functions
have been classified by Pauly and Steinberg [100]. The analysis of the Radon-Nikodym theorem is
due to Hoyrup, Rojas and Weihrauch [60]. The problems of finding a basis of a countable vector
space and of finding a connected component of a countable graph were studied by Gura, Hirst
and Mummert [47, 59]. The Bolzano-Weierstraß theorem was studied by Brattka, Gherardi and
Marcone [21]. Kőnig’s lemma was studied by Brattka and Rakotoniaina [31] and Gale-Stewart
games by Le Roux and Pauly [80]. Ramsey’s theorem was studied in the Weihrauch lattice by
Dorais, Dzhafarov, Hirst, Mileti and Shafer [38, 40, 41], by Brattka and Rakotoniaina [31, 102],
by Patey [89] and by Hirschfeldt and Jockusch [58]. The uniform content of problems for par-
tial and linear orders that are closely related to Ramsey’s theorem for pairs was studied by Astor,
Dzhafarov, Solomon and Suggs [1]. The classification of the prefect subtree theorem was initi-
ated by Marcone [26], and the result mentioned here is unpublished. The results on problems
from computability theory including a systematic study of the Baire category theorem are due to
Brattka, Hendtlass and Kreuzer [22, 23] and Brattka and Pauly [29]. The problem of diagonally
non-computable functions was also studied by Higuchi and Kihara [54].

11.9 Relations to Other Theories

In this section we discuss very briefly the relation between Weihrauch complexity
and other theories and we provide some further references.

11.9.1 Linear Logic

There is an apparent similarity between some algebraic operations on problems and
the resource-oriented interpretation of some logical operations in (intuitionistic) lin-
ear logic that was noticed early on. Table 11.1 provides a dictionary on these rela-
tions.

However, it seems that other algebraic operations on problems, such as the com-
positional product ∗, do not have any obvious counterpart in the standard approach
to linear logic. The compositional product could be seen as a non-commutative
conjunction. There does not seem to be any straightforward interpretation of the
Weihrauch lattice as a model for (intuitionistic) linear logic.
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logical operation in linear logic algebraic operation on problems
⊗ multiplicative conjunction × product
& additive conjunction t coproduct
⊕ additive disjunction u infimum&

multiplicative disjunction + sum
! bang ̂parallelization, ∗ finite parallelization

Table 11.1 Linear logic versus the algebra of problems.

Several researchers have independently noticed that Gödel’s Dialectica interpre-
tation has some formal similarity to Weihrauch reducibility. This observation has
not yet been formally exploited.

11.9.2 Medvedev Lattice, Many-One and Turing Semilattices

The Medvedev lattice has also been considered as a calculus of problems. Here
problems are understood to be subsets A,B⊆ NN of the Baire space and A is called
Medvedev reducible to B, in symbols A ≤s B, if there exists a partial computable
function F :⊆ NN→ NN with B⊆ dom(F) such that F(B)⊆ A. The supremum op-
eration of this lattice is defined by A⊕B := 〈A,B〉 and the infimum operation by
A⊗B := 0A∪1B.

The relation between the Weihrauch lattice and the Medvedev lattice can be ex-
pressed from both perspectives:

1. The Medvedev lattice is a special case of the Weihrauch lattice for problems
f :⊆ NN ⇒ NN that are constant.

2. The Weihrauch lattice is a generalization of the Medvedev lattice for “rela-
tivized” problems Ap ⊆ NN that depend on a parameter p ∈ NN.

This point of view translates into a formal embedding of the Medvedev preorder
into the Weihrauch preorder (the first result mentioned in Theorem 11.9.1). In fact,
we can embed the Medvedev lattice also with order reversed into the Weihrauch
lattice, and we list both embeddings here.

Theorem 11.9.1 (Embedding the Medvedev lattice). Let A,B⊆ NN.

1. cA : NN ⇒ NN, p 7→ A satisfies A≤s B ⇐⇒ cA≤W cB with cA⊕B≡W cA× cB and
cA⊗B≡W cAu cB.

2. dA :⊆NN→NN, p 7→ 0̂ with dom(dA) := A satisfies A≤s B ⇐⇒ dB≤W dA with
dA⊕B≡W dAudB and dA⊗B≡W dAtdB.

In both cases all Weihrauch reductions and equivalences can be replaced by strong
ones, in which case t has to be replaced by � in 2.

The second, reverse embedding is even a lattice embedding since it preserves
suprema and infima in the reverse order. The first embedding is also a lattice embed-
ding if considered as an embedding into the parallelized Weihrauch degrees. These
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embeddings were studied by Brattka and Gherardi [18], Higuchi and Pauly [55] and
Dzhafarov [42]. Since the Turing degrees and the enumeration degrees can be em-
bedded into the Medvedev lattice, it follows that they can also be embedded into the
Weihrauch lattice via the abovementioned embeddings.

We note that the Medvedev lattice has been used by Downey, Greenberg, Jock-
usch, Milans, Lewis and others [39, 63] in order to study problems from computabil-
ity theory, such as MLR,1-GEN,PA and DNCn in their unrelativized form (for com-
putable inputs). The advantage of the Weihrauch lattice is that these problems can be
studied in this lattice together with problems such as WKL and WWKL that depend
on parameters (i.e., the input tree) in an essential way. Finally, we mention that the
Muchnik lattice, which is the non-uniform counterpart of the Medvedev lattice, has
also been used to classify problems, see Simpson [107] .

Also the many-one semilattice can be embedded into the Weihrauch lattice, albeit
in a slightly less natural way than the Turing semilattice. The construction starts
with a non-canonical choice of two Turing incomparable points. As usual we denote
many-one reducibility between sets A,B⊆N by≤m and we recall that A⊕B := {2n :
n ∈ A}∪{2n+1 : n ∈ B} is the supremum with respect to many-one reducibility.

Proposition 11.9.2 (Embedding of the many-one semilattice). Let p,q ∈ NN be
Turing incomparable and, for A ⊆ N, define mA : N→ {p,q} by mA(n) = p :⇐⇒
n∈A. Then we obtain A≤m B ⇐⇒ mA≤W mB and mA⊕B≡W mAtmB for all A,B⊆
N, i.e., A 7→ mA is a join-semilattice embedding.

11.9.3 Reverse Mathematics

Reverse mathematics is a proof-theoretic approach that aims to classify theorems
according to the axioms that are needed to prove these theorems in second-order
arithmetic [106]. Many theorems from various areas of mathematics have been clas-
sified in this approach. Most axiom systems that are used in reverse mathematics
have counterparts in the Weihrauch lattice (see also Figure 11.2):

• BΣ0
n (Σ0

n–boundedness): BΣ0
2 is equivalent to the regularity principle RΣ0

1 over
a very weak system [48], and it corresponds to K′N by Theorem 11.7.52. Hence
BΣ0

n can be seen as the counterpart of K(n−1)
N .

• IΣ0
n (Σ0

n–induction) is equivalent to the least number principle LΠ0
n over a very

weak system [48]. LΠ0
1 directly translates into minc as a problem and hence IΣ0

n

corresponds to C(n−1)
N by Theorem 11.8.2.

• RCA∗0 (recursive comprehension) stands for the usual system RCA0 but with IΣ0
0

instead of IΣ0
1. It corresponds to C1 (the computable problems).

• WKL∗0 and WWKL∗0, by which we mean RCA∗0 plus weak Kőnig’s lemma and
weak weak Kőnig’s lemma, respectively, correspond directly to the problems
WKL and WWKL.
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• ACA0 (arithmetic comprehension) corresponds to the problems lim (and its finite
compositions lim[n] with n ∈ N). Sometimes, a uniform version ACA′0 of ACA0

is used [57], which corresponds to
⊔

n∈N lim[n].
• ATR0 (arithmetical transfinite recursion) corresponds to UCNN and CNN (see

Theorem 11.8.13). This topic is still very much research in progress.

Counterparts in the Weihrauch lattice of higher systems such as Π1
1-CA0 (Π1

1–
comprehension) have not yet been systematically studied. By Theorem 11.7.55 we
have K(n)

N <W C(n)
N <W K(n+1)

N in analogy to BΣ0
n← IΣ0

n← BΣ0
n+1.

Reverse mathematics is based on a proof-theoretic approach, whereas classifica-
tions in the Weihrauch lattice are based on a computational approach. Besides this
we note the following distinguishing features:

1. Resource sensitivity: classifications in reverse mathematics do not distinguish
between a single application, a finite number of consecutive applications or a
finite number of parallel applications of a theorem, since classical logic is used
(as opposed to linear logic).

2. Uniformity: classifications in reverse mathematics only capture the non-uniform
content of problems, i.e., the way output parameters depend on input parameters
in the worst case. Again this is due to the usage of classical logic (as opposed to
intuitionistic logic).

For instance, a number of theorems that are non-uniformly computable in the sense
that there is a computable output for every computable input are provable over
RCA0 in reverse mathematics, even though they are not computable in a uniform
way. This includes the intermediate value theorem IVT, the Baire category theorem
BCT1 and others. Due to the lack of uniformity reverse mathematics also cannot dis-
tinguish between theorems and their contrapositive forms. For instance the version
HBC0 of the Heine-Borel covering theorem is computable, while HBC1≡W WKL.
In reverse mathematics, the Heine-Borel theorem is equivalent to WKL0 over RCA0
irrespectively of whether we consider the analogue of HBC0 or HBC1. In other
words: classifications in reverse mathematics automatically capture the most com-
plicated contrapositive form.

It is remarkable that despite these explicable differences most classifications
in the Weihrauch lattice can be seen as uniform and resource sensitive refine-
ments of classifications in reverse mathematics. This seems to confirm a “computa-
tions as proofs” paradigm (as opposed to the well-known “proofs as computations”
paradigm in intuitionistic logic).

11.9.4 Constructive Reverse Mathematics

Constructive reverse mathematics, as proposed by Ishihara [61], classifies problems
in the Bishop approach to constructive analysis, which is based on intuitionistic
logic. Due to the usage of intuitionistic logic this approach is fully uniform, but it is
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even less resource sensitive compared to classical reverse mathematics. This is due
to the fact that typically the axiom of countable choice can be used freely, which
amounts to a free usage of parallelization in the Weihrauch lattice. In this sense, the
Weihrauch complexity approach is closer to a hypothetical version of constructive
reverse mathematics with intuitionistic linear logic. The classifications in construc-
tive reverse mathematics are captured by their equivalence to certain constructively
unacceptable principles:

1. LLPO (the lesser limited principle of omniscience) is the theorem that corre-
sponds to our problem LLPO. In the presence of countable choice it corresponds
to WKL by Theorem 11.7.23.

2. LPO (the limited principle of omniscience) is the theorem that corresponds to our
problem LPO. In the presence of countable choice and due to the availability of
composition it corresponds to lim(n) with n ∈ N by Theorem 11.6.7 (and hence
to ACA0 in classical reverse mathematics).

3. MP (Markov’s principle), BD-N (the boundedness problem) and some other prin-
ciples that are rejected in constructive analysis correspond to computable (and
hence continuous) problems in the Weihrauch lattice.

In conclusion, this means that the Weihrauch complexity approach is finer than
constructive reverse mathematics in terms of resource sensitivity, but coarser when
it comes to distinctions that are based on computable principles such as MP and
BD-N. In order to translate these heuristic observations into formal theorems, one
needs to fix an axiomatic framework for constructive analysis. Some results in this
direction have been obtained by Kuyper [75], Fujiwara [43] and Uftring [112].

11.9.5 Other Reducibilities

Hirschfeldt and Jockusch [57, 58, 108] have introduced a number of further re-
ducibilities that are related to Weihrauch reducibility. For one, there are non-uniform
versions of Weihrauch reducibility and strong Weihrauch reducibility, which are
called computable reducibility and strong computable reducibility, in symbols ≤c
and ≤sc, as well as a reducibility ≤ω that is based on Turing ideals. On the other
hand, they introduced a concept of generalized Weihrauch reducibility that has a
built-in closure under composition. This operation can be formalized as a closure
operator f 7→ f � in the Weihrauch lattice. Likewise, Brattka and Gherardi [18] and
Higuchi and Pauly [55] studied variants of Weihrauch reducibility with a built-in
parallelization. These and further reducibilities allow one to interpolate between
Weihrauch complexity and reverse mathematics in the sense that one can choose
a reduction that captures a particular degree of uniformity and resource sensitivity
(see Figure 11.3).

Yet another related reducibility that originates from descriptive set theory is
Wadge reducibility, which is defined via preimages. Given A,B ⊆ NN, we say that
A is Wadge reducible to B, in symbols A≤W B, if there exists a continuous function
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f ≤sW g f ≤W g

f ≤c gf ≤sc g f ≤ω g

f ≤gW guniform

resource sensitive

non-uniform

closed under composition

Fig. 11.3 Implications between notions of reducibility.

f : NN→ NN such that A = f−1(B). Hence, Wadge reducibility is the (topological)
analogue of many-one reducibility on the Baire space. Weihrauch reducibility can
be seen as a (computable) analogue of this reduction for multi-valued functions.

In early work by Weihrauch [114, 115] and by Hertling [50] mostly the contin-
uous version of Weihrauch reducibility was considered. In particular, Hertling [50,
51] completely characterized continuous (strong) Weihrauch and Wadge degrees of
certain functions with discrete image in terms of preorders on labeled forests. Kudi-
nov, Selivanov and Zhukov [74] and Hertling and Selivanov [52] have studied the
decidability and complexity of some initial segments of these preorders. Such pre-
orders and versions of Weihrauch reducibility have also been used in descriptive set
theory, e.g., by Carroy [37].

11.9.6 Descriptive Set Theory

Descriptive set theory studies the complexity of subsets of and functions between
separable complete metric spaces. Wadge reducibility has been established as a crit-
ical tool here, and reasonable classes of subsets are typically closed downwards
under Wadge reducibility. For functions, Weihrauch reducibility can play the analo-
gous role. As demanded by Moschovakis [81], this treatment covers both the effec-
tive and the non-effective case simultaneously, with the former implying the latter
via relativization.

Many typical classes of functions even have complete problems under Weihrauch
reducibility. Theorem 11.6.5 provides an example; another one is related to
(Σ0

n+2,Σ
0
n+2)–measurability, which is defined such that preimages of Σ0

n+2–sets are
Σ0

n+2–sets (see Pauly and de Brecht [97] and Kihara [67]).

Theorem 11.9.3 (Effective (Σ0
n+2,Σ

0
n+2)–measurability). f ≤W C(n)

N ⇐⇒ f is ef-
fectively (Σ0

n+2,Σ
0
n+2)–measurable, for all f : X→Y on complete computable metric

spaces X ,Y with n = 0 and for f : NN→ NN with n ∈ N.

There is a subtle but crucial issue with relativization here: relativizing the theo-
rem covers the case where the preimage map of f from Σ0

n+2–sets to Σ0
n+2–sets is

continuous, rather than merely being well defined. For n ∈ {0,1} the theorem of
Jayne and Rogers [62] and a theorem by Semmes [105] show that these cases are
equivalent. For n > 1, the question of whether the cases are equivalent is open and
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equivalent to the generalized conjecture of Jayne and Rogers. This is discussed in
some more detail in [94].

Weihrauch complete problems for function classes correspond to game charac-
terizations in descriptive set theory. A general account of the latter is provided by
Motto Ros [82], and the link to Weihrauch reducibility is made by Nobrega and
Pauly [87].

More generally, the theory of Weihrauch degrees is closely linked to a pro-
gramme to extend descriptive set theory from Polish spaces to larger classes of
spaces, such as represented spaces. Such an endeavor was called for and started
by Selivanov [104]. De Brecht introduced the quasi-Polish spaces [34] and demon-
strated that many results from descriptive set theory remain valid in this setting. A
further extension is possible using the formalism of jump operators (de Brecht [35])
or computable endofunctors (Pauly and de Brecht [98]), both of which are closely
related to each other and to Weihrauch degrees.

11.9.7 Other Models of Computability

We have already seen in Sections 11.6 and 11.7 that other models of computability
can be characterized in the Weihrauch lattice. This includes the classes of prob-
lems that are computable with finitely many mind changes, limit computable, non-
deterministically computable and Las Vegas computable.

There are completely different algebraic models of computability such as the
Blum-Shub-Smale machines [4] (BSS machines). Due to their algebraic nature, the
class of functions computable by these machines lack certain completeness prop-
erties and cannot be characterized exactly in the Weihrauch lattice. However, some
tight upper bounds have been found by Neumann and Pauly [86].

Theorem 11.9.4 (Algebraic computation). If f :⊆ R∗ → R∗ is computable on a
BSS machine, then f ≤W CN and there is a function f :⊆R∗→R∗ that is computable
on a BSS machine and satisfies f ≡W CN.

Hertling and Weihrauch [53, 49] have studied how the number of tests that are
performed is related to degeneracies in computations. Yet a further class of machines
can be obtained if one allows infinite computation time of higher order. Weihrauch
computability was generalized to this context by Carl [36] and Galeotti and No-
brega [44].
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Arzelá-Ascoli theorem 403
Ascoli’s theorem 352
assembly 40
asymptotic density of information

lower 275
upper 275

attractor 279

B

backpropagation 179
Baire category theorem 399
Baire space 307
Banach’s inverse mapping theorem 399
barrier function 185
basin of attraction 86
basin of attraction, non-computability 86
basis of countable vector spaces 403
BD-N see boundedness principle
bifurcation locus 168

419© Springer Nature Switzerland AG 2021 

V. Brattka, P. Hertling (eds.), Handbook of Computability and Complexity in Analysis,  

Theory and Applications of Computability, https://doi.org/10.1007/978-3-030-59234-9

https://doi.org/10.1007/978-3-030-59234-9


420 Index

binary expansion 7
biochemical ground form 183
Birkhoff ergodic theorem 239

and randomness 247, 248
black hole computation 187
Blaschke product 131
Bloch’s constant 133
Bloch’s theorem 133
blow up in finite time 75
Blum-Shub-Smale model 181
Bolzano-Weierstraß theorem 396, 403
Boolean semantics 195
Borel code 44
Borel hierarchy 383
Borel isomorphism theorem 49
Borel measurable problem 383
boundary extension 116
boundedness principle 359, 407
boundedness problem 409
box sum of problems 368
Brolin-Lyubich measure 157
Brouwer fixed-point theorem 353, 401
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population protocol 185
positive choice on Euclidean space 395
positive choice problem 387, 402
positive choice problem on the Cantor space

393
powerspace 329
primary zero sequence 110
prime end impression of an external ray 168
principal impression of an external ray 168
problem 317, 367, 371
product formula 291
product of problems 368
pseudobase 326

Q

qcb-space 327, 332, 334, 340
quadratic family 159
quasi-normal space 339
quasi-Polish space 411

R

r.e. open subset 75
radial slit domain 127
Radon-Nikodym theorem 236, 403
Ramsey’s theorem 403
random

harmonic series 231
independently 285
real 13, 44

randomness
2- 244
computable 244
deficiency 255
for Brownian motion 245, 251, 253
for closed sets 250
Kurtz 244
Martin-Löf 243, 285, 404

relative 251
uniform 251, 252

Oberwolfach 248
preservation 250

and layerwise computable functions 259
Schnorr 244
weak 244
weak 2- 244

rational
interval 107
neighborhood 108
open ball 33
open set 34
point 106
rectangle 107

reachability problem 89
real-time computability 208
realizer 40, 310, 371
realizer version of a problem 376
rectifiable curve 297
recurrent reachability 180
recursive comprehension 407
reducibility

cd- 22
computable 409
convergence-dominated 22
extended Solovay 14
generalized Weihrauch 409
point-Turing 50
representation 50
Solovay 13, 14
strong computable 409
strong Weihrauch 374
Turing 8, 23
Wadge 409
Weihrauch 374

regularity principle 407
Reissner-Nordström black hole 187
representation 307, 319

admissible 321, 332, 333, 341, 342
Cauchy 39, 312, 335, 336, 372
completion 372
continuous functions 372
coproducts 372
polynomial-time decimal 7
products 372
quotient 322, 333
sequences 372
Sierpiński space 372
signed-digit 312, 335
words 372

represented space 39, 310, 313, 315, 340,
370

function space 42
hyperspace 40

resource sensitivity 408
reverse mathematics 407
Riemann map 111
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Riemann Mapping theorem 149
right computable real 7

S

Schwartz functions 403
Schwarzschild black hole 187
Scott ideal 50
selector 294
self-information 280
semi-computable real 7
semicomputable compact set 34, 41
semicomputable set 34, 55
sequential space 320, 344
sequentially continuous 320, 322
Siegel disk 158
Siegel point 158
Sierpiński space 42, 372
signal machine 189
simply connected 104
sink 85
slit annulus domain 127
slit disk domain 127
slowly rotating Kerr black hole 187
Smith-Volterra-Cantor set 232
Solovay property 14
solution of problems 369
source 85
space

closed subsets 373
compact subsets 373

space-filling function 286
spatial computing 189
spatial model 188
spiking neuron 179
squashing theorem 378
Stable Manifold theorem 85
Stable Manifold theorem, effective version

86
static undecidability 192, 193
statistical distribution 166
stochastic semantics 194
storage modification machine 186
strengthening of problems 369
stroboscopic view 193
Strong Church-Turing thesis 197
strong fractal 379
strong Weihrauch lattice 377
strongly ω-c.e. set 8
sum of problems 368
symmetric Hopfield network 179
symmetry of information 284
synthetic descriptive set theory 46
synthetic topology 43

systems biology 183

T

tensor flow 179
theorem of the maximum 400
thesis M 196
tightness of measures 255
time complexity of a set 148
timed automata 181
topological automata 202
topological space 319, 343
topologically continuous 320
tractional motion machine 191
Turing

degree 23
ideal 50
jump 37
number 191
reducibility 8, 23
semilattice 406

Type Two Theory of Effectivity 306

U

uniform boundedness theorem 399
uniform continuity theorem 358
uniform low basis theorem 395
uniformity 408
uniformizing map 111
uniformly perfect compact set 167
unique choice problem 387
upper-computable closed set 144

V

van Lambalgen theorem 251, 252
Vitali covering lemma 402

W

Wasserstein-Kantorovich distance 146
WCN see weak continuity for numbers
weak continuity for numbers 356
weak Kőnig’s lemma 353, 392
weak limited principle of omniscience 352
weak Markov’s principle 354
weak weak Kőnig’s lemma 358, 393, 402
weakening of problems 369
weakly convergent 146
weakly effectively convergence 9
Weihrauch lattice 377
WMP see weak Markov’s principle
word 368
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WPO see weak limited principle of
omniscience

WWKL see weak weak Kőnig’s lemma

Y

Yoccoz’s Brjuno function 160

Z

Zeno phenomenon 180
zero problem 368
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