
Christina Boucher
Sharma V. Thankachan (Eds.)

LN
CS

 1
23

03

27th International Symposium, SPIRE 2020
Orlando, FL, USA, October 13–15, 2020
Proceedings

String Processing
and Information Retrieval

Lecture Notes in Computer Science 12303

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this series at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Christina Boucher • Sharma V. Thankachan (Eds.)

String Processing
and Information Retrieval
27th International Symposium, SPIRE 2020
Orlando, FL, USA, October 13–15, 2020
Proceedings

123

Editors
Christina Boucher
CISE Department
University of Florida
Gainesville, FL, USA

Sharma V. Thankachan
Department of Computer Science
University of Central Florida
Orlando, FL, USA

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-59211-0 ISBN 978-3-030-59212-7 (eBook)
https://doi.org/10.1007/978-3-030-59212-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9509-9725
https://orcid.org/0000-0002-6852-1035
https://doi.org/10.1007/978-3-030-59212-7

Preface

The 27th International Symposium on String Processing and Information Retrieval
(SPIRE 2020), held October 13–15, 2020, was hosted online in a virtual way due to
COVID-19. SPIRE started in 1993 as the South American Workshop on String Pro-
cessing, therefore it was held in Latin America until 2000 when SPIRE traveled to
Europe. From then on, SPIRE meetings have been held in Australia, Japan, the UK,
Spain, Italy, Finland, Portugal, Israel, Brazil, Chile, Colombia, Mexico, Argentina,
Bolivia, and Peru. In this edition, we continued the long and well-established tradition
of encouraging high-quality research at the broad nexus of algorithms and data
structures for sequences and graphs, data compression, databases, data mining, infor-
mation retrieval, and computational biology. As per usual, SPIRE 2020 continues to
provide an opportunity to bring together specialists and young researchers working in
these areas.

This volume contains 21 papers, out of a total of 32 submissions accepted to be
presented at SPIRE 2020. Each submission received three or four reviews. We thank all
authors who submitted their work for consideration to SPIRE 2020. We also thank the
Program Committee and the external reviewers, whose many thorough reviews helped
us select the papers presented. The success of the scientific program is due to their hard
work. In addition to the accepted papers, the scientific program included three invited
lectures, given by Laxmi Parida (IBM, USA), Laura Dietz (University of New
Hampshire, USA), and Michael A. Bender (Stony Brook University, USA). We thank
the invited speakers for accepting our invitation and for their excellent presentations at
the conference.

To complete the event, this year for the fifth year running, SPIRE 2020 had a Best
Paper Award, sponsored by Springer, that was announced at the conference. Alongside
Springer, we thank the Web4Good board for their financial support.

October 2020 Christina Boucher
Sharma V. Thankachan

Organization

Steering Committee

Alistair Moffat The University of Melbourne, Australia
Berthier Ribeiro-Neto Federal University of Minas Gerais, Brazil
Gabriele Fici Università di Palermo, Italy
Gonzalo Navarro University of Chile, Chile
Marinella Sciortino Università di Palermo, Italy
Nieves R. Brisaboa University of A Coruña, Spain
Nivio Ziviani Federal University of Minas Gerais, Brazil
Ricardo Baeza-Yates NTENT and Universitat Pompeu Fabra, Spain
Rossano Venturini Università di Pisa, Italy
Simon J. Puglisi University of Helsinki, Finland
Travis Gagie Dalhousie University, Canada

General Co-chairs

Christina Boucher University of Florida, USA
Sharma V. Thankachan University of Central Florida, USA

Program Committee

Amihood Amir Bar-Ilan University, Israel
Lorraine Ayad King’s College London, UK
Golnaz Badkobeh Goldsmiths University of London, UK
Hideo Bannai Kyushu University, Japan
Djamal Belazzougui CERIST, Algeria
Philip Bille Technical University of Denmark, Denmark
Sankardeep Chakraborty RIKEN, Japan
Rayan Chikhi CNRS, France
Charles Clarke University of Waterloo, Canada
Simone Faro Università di Catania, Italy
Gabriele Fici Università di Palermo, Italy
Travis Gagie Dalhousie University, Canada
Arnab Ganguly University of Wisconsin-Whitewater, USA
Pawel Gawrychowski University of Wroclaw, Poland
Simon Gog Karlsruhe Institute of Technology, Germany
Wing-Kai Hon National Tsing Hua University, Taiwan
Tomohiro I Kyushu Institute of Technology, Japan
Shunsuke Inenaga Kyushu University, Japan
Giuseppe F. Italiano LUISS Guido Carli, Italy
Dominik Kempa University of California, Berkeley, USA

Tomasz Kociumaka Bar-Ilan University, Israel
Tsvi Kopelowitz Bar-Ilan University, Israel
Dominik Köppl Kyushu University and JSPS, Japan
M. Oguzhan Kulekci Istanbul Technical University, Turkey
Susana Ladra University of A Coruña, Spain
Thierry Lecroq University of Rouen, France
Inbok Lee Korea Aerospace University, South Korea
Moshe Lewenstein Bar-Ilan University, Israel
Zsuzsanna Lipták University of Verona, Italy
Veli Mäkinen University of Helsinki, Finland
Giovanni Manzini University of Eastern Piedmont, Italy
Camille Marchet CRIStAL, France
Juan Mendivelso Universidad Nacional de Colombia, Colombia
Laurent Mouchard University of Rouen, France
Gonzalo Navarro University of Chile, Chile
Yakov Nekrich Michigan Technological University, USA
Kunsoo Park Seoul National University, South Korea
Nadia Pisanti Università di Pisa, Italy
Solon P. Pissis CWI, The Netherlands
Nicola Prezza LUISS Guido Carli, Italy
Simon J. Puglisi University of Helsinki, Finland
Jakub Radoszewski University of Warsaw, Poland
Leena Salmela University of Helsinki, Finland
Srinivasa Rao Satti Seoul National University, South Korea
Marinella Sciortino Università di Palermo, Italy
Rahul Shah Louisiana State University, USA
Jouni Sirén University of California, Santa Cruz, USA
Jens Stoye Bielefeld University, Germany
Yasuo Tabei RIKEN, Japan
Rossano Venturini Università di Pisa, Italy
Bojian Xu Eastern Washington University, USA
Binhai Zhu Montana State University, USA

Additional Reviewers

Juliusz Straszyński
Michelle Sweering
Takaaki Nishimoto
Daniil Galaktionov
Wiktor Zuba
Gwenaël Richomme
Pascal Ochem
Giuseppe Romana
Shunsuke Kanda

Yuto Nakashima
Itai Boneh
Mikhail Rubinchik
Bastien Cazaux
Seungbum Jo
Taku Onodera
Frantisek Franek
Takuya Mieno
Manuela Montangero

viii Organization

Local Arrangements

Sumit Kumar Jha University of Central Florida, USA
Daniel Gibney University of Central Florida, USA
Sahar Hooshmand University of Central Florida, USA

Publicity Chair

Massimiliano Rossi University of Florida, USA

Organization ix

Contents

Data Structures

Contextual Pattern Matching. 3
Gonzalo Navarro

Navigating Forest Straight-Line Programs in Constant Time 11
Carl Philipp Reh and Kurt Sieber

Towards Efficient Interactive Computation of Dynamic Time
Warping Distance . 27

Akihiro Nishi, Yuto Nakashima, Shunsuke Inenaga, Hideo Bannai,
and Masayuki Takeda

Smaller Fully-Functional Bidirectional BWT Indexes. 42
Djamal Belazzougui and Fabio Cunial

Internal Quasiperiod Queries. 60
Maxime Crochemore, Costas S. Iliopoulos,
Jakub Radoszewski, Wojciech Rytter, Juliusz Straszyński,
Tomasz Waleń, and Wiktor Zuba

An Efficient Elastic-Degenerate Text Index? Not Likely 76
Daniel Gibney

Relative Lempel-Ziv Compression of Suffix Arrays. 89
Simon J. Puglisi and Bella Zhukova

Algorithms

Approximating the Anticover of a String . 99
Amihood Amir, Itai Boneh, and Eitan Kondratovsky

Multidimensional Period Recovery . 115
Amihood Amir, Ayelet Butman, Eitan Kondratovsky, Avivit Levy,
and Dina Sokol

Computing Covers Under Substring Consistent Equivalence Relations 131
Natsumi Kikuchi, Diptarama Hendrian, Ryo Yoshinaka,
and Ayumi Shinohara

Longest Square Subsequence Problem Revisited . 147
Takafumi Inoue, Shunsuke Inenaga, and Hideo Bannai

Adaptive Exact Learning in a Mixed-Up World: Dealing with Periodicity,
Errors and Jumbled-Index Queries in String Reconstruction 155

Ramtin Afshar, Amihood Amir, Michael T. Goodrich, and Pedro Matias

Information Retrieval

Pre-indexing Pruning Strategies. 177
Soner Altin, Ricardo Baeza-Yates, and B. Barla Cambazoglu

Measuring Controversy in Social Networks Through NLP 194
Juan Manuel Ortiz de Zarate, Marco Di Giovanni,
Esteban Zindel Feuerstein, and Marco Brambilla

Compression

On Repetitiveness Measures of Thue-Morse Words 213
Kanaru Kutsukake, Takuya Matsumoto, Yuto Nakashima,
Shunsuke Inenaga, Hideo Bannai, and Masayuki Takeda

Practical Random Access to SLP-Compressed Texts 221
Travis Gagie, Tomohiro I, Giovanni Manzini, Gonzalo Navarro, Hiroshi
Sakamoto, Louisa Seelbach Benkner,
and Yoshimasa Takabatake

A Comparison of Empirical Tree Entropies . 232
Danny Hucke, Markus Lohrey, and Louisa Seelbach Benkner

Efficient Enumeration of Distinct Factors Using Package Representations . . . 247
Panagiotis Charalampopoulos, Tomasz Kociumaka, Jakub Radoszewski,
Wojciech Rytter, Tomasz Waleń, and Wiktor Zuba

Combinatorics on Words

Lyndon Words, the Three Squares Lemma, and Primitive Squares 265
Hideo Bannai, Takuya Mieno, and Yuto Nakashima

Computational Biology

Efficient Construction of Hierarchical Overlap Graphs 277
Sung Gwan Park, Bastien Cazaux, Kunsoo Park, and Eric Rivals

Tailoring r-index for Document Listing Towards
Metagenomics Applications . 291

Dustin Cobas, Veli Mäkinen, and Massimiliano Rossi

Author Index . 307

xii Contents

Data Structures

Contextual Pattern Matching

Gonzalo Navarro(B)

CeBiB—Center for Biotechnology and Bioengineering,
Department of Computer Science, University of Chile,

Beauchef 851, Santiago, Chile
gnavarro@dcc.uchile.cl

Abstract. The research on indexing repetitive string collections has
focused on the same search problems used for regular string collections,
though they can make little sense in this scenario. For example, the basic
pattern matching query “list all the positions where pattern P appears”
can produce huge outputs when P appears in an area shared by many
documents. All those occurrences are essentially the same.

In this paper we propose a new query that can be more appropriate
in these collections, which we call contextual pattern matching. The basic
query of this type gives, in addition to P , a context length �, and asks to
report the occurrences of all distinct strings XPY , with |X| = |Y | = �.
While this query is easily solved in optimal time and linear space, we
focus on using space related to the repetitiveness of the text collection
and present the first solution of this kind. Letting r be the maximum of
the number of runs in the BWT of the text T [1..n] and of its reverse, our
structure uses O(r log(n/r)) space and finds the c contextual occurrences
XPY of (P, �) in time O(|P | log log n+c log n). We give other space/time
tradeoffs as well, for compressed and uncompressed indexes.

1 Introduction

About a decade ago, it was realized that many of the fastest-growing text col-
lections of the “data deluge” were highly repetitive [17]. Since then, a number
of research results have focused on developing indexes whose size is related to
some good measure of compressibility for highly repetitive string collections [21].
Today one can find indexes built on measures like the size of the Lempel-Ziv parse
[4,9,11,16], of a grammar generating only the text [8,25], of a string attractor
[7,23], the number of runs in the Burrows-Wheeler Transform (BWT) [6] of the
text [12,17], or the size of an automaton [5] recognizing text substrings [1,2].

All these indexes are devoted to the basic pattern matching query: given a
short pattern string P [1..m], output all the occ positions where it occurs in the
text T [1..n]. Some indexes have managed to solve this problem in optimal time,
O(m+occ), using space bounded by some function of the above measures [1,12],
whereas others have low polylogarithmic factors multiplying m or occ.

Supported in part by Fondecyt grant 1-200038 and Basal Funds FB0001, Chile.

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 3–10, 2020.
https://doi.org/10.1007/978-3-030-59212-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_1&domain=pdf
http://orcid.org/0000-0002-2286-741X
https://doi.org/10.1007/978-3-030-59212-7_1

4 G. Navarro

While very reasonable in general, this query can be pretty useless in a highly
repetitive text collection. A pattern P that appears inside a highly repeated
text area will be reported myriad times, wasting a lot of effort to produce and
to handle the result. We are not aware of many efforts to propose queries that
are better adapted to a scenario of high repetitiveness.

In this paper we make a first step in this direction. We propose a query called
contextual pattern matching which, in addition to P , gives a context length �.
We then want one element of output per distinct context where P appears, that
is, all the positions where P appears preceded by the same string X of length �
and followed by the same string Y of length � shall be reported only once.

Definition 1. The contextual pattern matching problem on a text T [1..n] is,
given a pair (P [1..m], �), return a position in T for each of the c distinct strings
XPY occurring in T , for all X,Y such that |X| = |Y | = �. For the occurrences
near the extremes of T , assume T is preceded and followed by � copies of the
special symbol $, which cannot appear in P .

It is not hard to solve this query in optimal time O(m + c) if we use linear
space, O(n), by using suffix trees [26] and other linear-space auxiliary structures.
We are interested, however, in using space related to a relevant repetitiveness
measure. We show that, if we call r the maximum of the number of equal-letter
runs in the BWT of T or its reverse, then a data structure using O(r log(n/r))
space can solve contextual pattern matching in time O(m log log n+ c log n). We
also show how any compressed text index can be extended with O(n) bits and
efficiently solve this query; this can be interesting for mildly repetitive texts.

2 Preliminaries

We index a text T [0..n] over alphabet [1..σ], where T [0] = T [n] = $ is a special
terminator smaller than all the other alphabet symbols. The suffix array [18]
SA[1..n] of T lists all the suffixes T [i..n] for i ≥ 1 in lexicographic order, and the
LCP array, LCP [1..n], gives the length of the longest common prefix between
consecutive suffix array entries, LCP [i] = lcp(T [SA[i]..n], T [SA[i − 1]..n]).

One relevant measure of repetitiveness is called r, the number of equal-letter
runs in the Burrows-Wheeler Transform (BWT) of T [1..n]. The BWT [6] is a
reordering of the symbols of T obtained by collecting the symbol preceding the
lexicographically sorted suffixes of T . That is, if SA[1..n] is the suffix array of T ,
then BWT [i] = T [SA[i] − 1]. For example, it is known that r = O(γ log2 n) [14],
where γ is the smallest attractor of T [15].

Gagie et al. [12] introduce data structures of size O(r) that can find the
suffix array range of any pattern P [1..m] in time O(m log log(σ + n/r)) ⊆
O(m log log n), and of size O(r log(n/r)) that can compute any entry SA[i],
SA−1[i], and LCP [i], in time O(log(n/r)). The O(log(n/r))-space data struc-
tures are binary context-free grammars of height O(log(n/r)) built on the dif-
ferential versions of the arrays, for example, DSA[i] = SA[i] − SA[i − 1] in the
case of the suffix array. The grammars exploit the fact that these differential
sequences inherit the repetitiveness of the text.

Contextual Pattern Matching 5

3 Our Solution

We present a suffix-array-oriented solution that solves a stronger variant of the
problem: we give the c suffix array ranges of all the distinct contexts XPY where
P occurs in T . We can then report one text position for each, but also determine
how many times each context occurs, and report its occurrences one by one.

We store the r-bounded data structures of Gagie et al. [12] for both T [0..n]
and its reverse T rev[0..n]. We call r the maximum of the number of equal-letter
runs in the BWT of T and of T rev, therefore the structures we use take space
O(r log(n/r)). The general strategy to solve a query (P [1..m], �) is as follows:

1. We first find, in O(m log log n) time, the suffix array range [rs..re] of P rev

(i.e., P read backwards) in the suffix array SA′ of T rev.
2. We then partition [rs..re] into k ≤ c maximal consecutive intervals [rsi, rei]

where the suffixes in each interval share their first m + � symbols, that is,
T rev[SA′[p]..SA′[p] + m + � − 1] = P revXrev

i for all rsi ≤ p ≤ rei.
3. We map each interval SA′[rsi, rei] to the interval SA[dsi..dei] corresponding

to the suffixes that start with XiP .
4. We partition each interval SA[dsi..dei] into ki maximal consecutive subinter-

vals SA[dsj
i ..dej

i] where the suffixes in each subinterval share their first m+2�

symbols, T [SA[p]..SA[p] + m + 2� − 1] = XiPYj for all dsj
i ≤ p ≤ dej

i .
5. We report the c =

∑k
i=1 ki resulting subintervals SA[dsj

i ..dej
i] and, if desired,

a text position SA[p] with dsj
i ≤ p ≤ dej

i for each.

We now solve the two nonobvious subproblems of our general strategy. The
first, in points 2 and 4, is to partition a suffix array interval into subintervals of
suffixes sharing their first t symbols. The second, in point 3, is how to map an
interval of the suffix array of T rev into the corresponding interval in the suffix
array of T . The solutions we find have a complexity of O(log n) per item output,
which leads to our promised result.

Theorem 1. Let T be a text of length n, and let r be the maximum of the
number of equal letter runs of its BWT and the BWT of its reverse. Then there
is a data structure of size O(r log(n/r)) that finds the c contextual occurrences
of (P [1..m], �) in time O(m log log n + c log n).

The data structures [12] can be built in O(n) time and space, or in O(n log n)
time and O(r log(n/r)) space, the same as the final space of the structures. The
extra data we add next do not change the space nor construction complexities.

Example. Figure 1 shows an example on the text T [0..17] = $alabaralalabarda$,
where we search for P = a with context length � = 1. Step 1 finds the
interval SA′[rs..re] = SA′[2..9] of all the occurrences of P rev = a on T rev.
Step 2 finds the places where LCP ′[p] < m + � = 2 (see Sect. 3.1), for
p ∈ [2..9], namely 2, 3, 5, 6, 9. These are the starting positions of the inter-
vals [rsi, rei] = [2, 2], [3, 4], [5, 5], [6, 8], [9, 9], and correspond to the contexts

6 G. Navarro

n 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
T $ a l a b a r a l a l a b a r d a $

SA 17 16 3 11 1 9 7 5 13 4 12 15 2 10 8 6 14
ds1de1
︸︷︷︸

ds2 de2
︸ ︷︷ ︸

ds3de3
︸︷︷︸

ds4 de4
︸ ︷︷ ︸

ds5de5
︸︷︷︸

$al
︸︷︷︸

bar
︸ ︷︷ ︸

da$
︸︷︷︸

lab
︸ ︷︷ ︸

lal
︸︷︷︸

ral
︸︷︷︸

LCP 0 0 1 4 1 6 3 1 2 0 3 0 0 5 2 0 1
↑$al ↑bar ↑da$ ↑lab ↑lal ↑ral

T rev $ a d r a b a l a l a r a b a l a $
SA′ 17 16 12 4 1 14 6 8 10 13 5 2 15 7 9 11 3

ersr
︸ ︷︷ ︸

rs1re1
︸︷︷︸

rs2 re2
︸ ︷︷ ︸

rs3re3
︸︷︷︸

rs4 re4
︸ ︷︷ ︸

rs5re5
︸︷︷︸

LCP ′ 0 0 1 5 1 1 3 3 1 0 4 0 0 2 2 0 6
↑a$ ↑ab ↑ad ↑al ↑ar

C – 5 8 9 2 3 4 6 7 10 11 12 13 14 15 16 17

Fig. 1. Example trace.

P revXrev
i = a$, ab, ad, al, ar. Step 3 maps those intervals to SA (see Sect. 3.2),

[dsi, dei] = [5, 5], [10, 11], [12, 12], [13, 15], [16, 16]; they retain the same order of
SA′ only because � = 1. Step 4 splits each interval at subintervals starting wher-
ever LCP [p] < m + 2� = 3, namely positions 5, 10, 12, 13, 15, 16. Therefore, the
resulting subintervals (i.e., the output) are [5, 5], [10, 11], [12, 12], [13, 14], [15, 15],
[16, 16], corresponding to the contexts al, bar, da, lab, lal, ral.

We also show the array C used in Sect. 3.3; note that each dsi corresponds
to mapping the minimum position of C in [rsi, rei].

3.1 Partitioning a Suffix Array Interval

Given a range [s..e] of the suffix array of a string S, and a length t, we must par-
tition it into maximal subranges [s1..e1], . . . , [sk..ek] where the suffixes starting
in each subrange share their first t symbols. Note that the positions s2, . . . , sk

are the values in [s..e] where LCP [i] < t, where LCP is the LCP array of S.
We store a binary grammar of height h = O(log n) on DLCP [i] = LCP [i] −

LCP [i − 1], with DLCP [1] = 0 [12]. For each grammar nonterminal A, expand-
ing to a sequence exp(A) of positive and negative integers of DLCP (and for
terminals A, assuming exp(A) = A), we store

– w(A) = |exp(A)|, the number of consecutive DLCP cells A expands to;
– s(A), the sum of the differential values in exp(A), s(A) =

∑w(A)
j=1 exp(A)[j].

– m(A), the minimum cumulative value reached inside exp(A), that is, m(A) =
min1≤i≤w(A)

∑i
j=1 exp(A)[j].

With w(A) and s(A), a standard procedure descends in time O(h) to the sth
and eth leaves in the parse tree of DLCP , finding both (1) the value of LCP [s]
and (2) the O(h) maximal nodes (regarding ancesorship) that cover DLCP [s..e]

Contextual Pattern Matching 7

in the parse tree. To reach the xth leaf, we descend from the root node and
move to the left child A if w(A) ≥ x, otherwise we move to the right child and
decrease x by w(A). To find (1) we add up the values s(A) of the left children A
every time we descend to the right child in the path to the sth leaf. To find (2)
we do the paths to the sth and eth leaves and, once they diverge at a node v,
we collect the right children when we go left in our path from v to the sth leaf,
and the left children when we go right in our path from v to the eth leaf.

Let Ai be the O(h) maximal parse tree nodes that cover DLCP [s..e]. They
start in [s..e] at positions p1 = s and pi+1 = pi + w(Ai). The LCP values at the
positions pi are l1 = LCP [s] and li+1 = li +s(Ai). Note then that each Ai where
li + m(Ai) < t contains at least one position sj where LCP [sj] < t; the others
can be discarded.

For each Ai where li + m(Ai) < t, we consider its rule Ai → BC. Note that
B and C start at p = pi and p′ = pi +w(B) and their first LCP values are l = li
and l′ = li + s(B), respectively. We recursively continue with B if l + m(B) < t
and with C if l′ + m(C) < t (we can continue by both). When we arrive at a
terminal grammar symbol, we can report its value p as a new position sj .

We then report the positions s2, . . . , sk in left-to-right order by considering
A1, A2, . . . in turn and considering B before C when Ai → BC. Since every time
we consider a node we know that it contains an answer, the total time is O(h)
plus O(h) for each of the k − 1 starting positions s2, . . . , sk. The total time is
then O(k h) ⊆ O(k log n), that is, O(log n) per range we output.

3.2 Mapping Suffix Array Intervals

Given the suffix array interval SA′[s′..e′] of T rev, consisting of all the suffixes
that start with a string of length t, we want to find the corresponding suffix array
interval SA[s..e] of T . With the suffix array SA′ of T rev and the inverse suffix
array SA−1 of T , we can translate any such suffix, say p = SA−1[n − SA′[s′] −
(m + � − 1)] (or p = SA−1[1] if n − SA′[s′] − (m + � − 1) ≤ 0). Our index stores
the structures to compute those in time O(log n) [12].

We know that s ≤ p ≤ e, so the task is to extend p in both directions: s ≤ p
is the largest position where LCP [s] < t and e ≥ p is the smallest position where
LCP [e + 1] < t. We show how to find e; the case of s is analogous.

Just as in Sect. 3.1, we compute LCP [p] and find the O(h) maximal nodes
A1, . . . that cover the area DLCP [p..n]. We then compute the values pi and li,
and scan A1, . . . for the first Ai such that li + m(Ai) < t. Then, if Ai → BC,
we continue by B if li + m(B) < t; otherwise we continue by C with values
p = pi + w(B) and l = li + s(B). In O(h) time we reach a terminal symbol,
whose position p is, precisely, e + 1. The total time is then O(h) = O(log n).

3.3 Running on Other Indexes

If we are willing to store uncompressed data structures of O(n) space, we can find
the interval of point (1) in RAM-optimal time O(m/ logσ n) using an enhanced
suffix tree [22] on T rev. The k intervals [rsi, rei] of point (2) can be found in O(k)

8 G. Navarro

time using range minimum queries on the LCP array of T rev, LCP ′: rmq(i, j) =
mini≤p≤j LCP ′[p]. We use the standard procedure for 3-sided queries: compute
p = rmq(rs, re) and, if LCP ′[p] < t, recurse on [rs, p − 1], report p, and recurse
on [p+1, re]. Queries rmq take constant time even using 2n+ o(n) bits of space
[10]. Each such interval SA′[rsi, rei] can then be mapped (point 3) to SA[dsi, dei]
by storing an array C[1..n] with C[i] = SA−1[n − SA′[i]] and building an rmq
data structure on C, so that dsi = SA−1[n − SA′[rmqC(rsi, rei)] − (m + � − 1)]
and dei = dsi +(rei −rsi). (Note that we build C on the values SA−1[n−SA′[i]],
not SA−1[n − SA′[i] − (m − � + 1)], because the latter depend on � and all the
suffixes in this range share their first m+� symbols anyway, so the lexicographic
comparison is the same.) Finally, point (4) on each SA[dsi, dsi] is solved as
for point (2), now on the LCP array of T . The total time is then the optimal
O(m/ logσ n + c).

Theorem 2. Let T be a text of length n over an alphabet of size σ. Then there
is a data of size O(n) that finds the c contextual occurrences of (P [1..m], �) in
time O(m/ logσ n + c).

More generally, if we have an index that finds the suffix array range [rs..re]
for P in T rev, and can extract any cell of SA, SA−1, and SA′, we can use it for
contextual reporting using our general solution. We need O(n) extra bits for the
various rmq data structures. Note we do not need to store C explicitly because
we can simulate it using SA′ and SA−1. Further, the arrays LCP ′ and LCP are
simulated with other 2n + o(n) bits if we have access to SA′ and SA [24]. We
then have the following result.

Theorem 3. Let T be a text of length n and an index on T rev using S bits of
space that finds the suffix array range of P [1..m] in time ts(m), and computes any
cell of SA, SA′, or SA−1 in time tSA, where SA and SA′ are the suffix arrays of T
and T rev, respectively. Then there is a data structure using S+O(n) bits of space
that finds the c contextual occurrences of (P [1..m], �) in time O(ts(m) + c tSA).

Building on an index [3] that uses nHk(T rev) + o(n log σ) + O(n) bits of
space for any k < α logσ n and constant 0 < α < 1, where Hk(S) < log σ is
the kth order empirical entropy of string S [19], we have ts(m) = O(m) and
tSA = O(log n). The index provides access to SA′ and (SA′)−1 by storing their
values at regular intervals of T rev, of length s = Θ(log n) in our case, and marking
the sampled positions of SA′ in a bitvector. It provides a way to move in constant
time from i such that SA′[i] = j to i′ = LF (i) such that SA′[i′] = j − 1. Thus,
if SA′[i] is not sampled, it can move s′ < s times until finding a sampled cell
SA′[LF s′

(i)] = j′, and then SA′[i] = j′+s′. The same LF function is used j′−j <
s times, for j′ = �j/s� · s, to find (SA′)−1[j], by starting from the sampled value
(SA′)−1[j′] and tracing it back to (SA′)−1[j] = LF j′−j((SA′)−1[j′]). Enhancing
it to computing values of SA and SA−1 (which correspond to T) requires to
store their sampled values as well, because T rev[j] = T [n − j]. Finally, because
Hk(T) = Hk(T rev) [20, Sec. 11.3.2], we have the following result.

Theorem 4. Let T be a text of length n over an alphabet of size σ, with kth
order empirical entropy Hk(T), for any k < α logσ n and constant 0 < α < 1.

Contextual Pattern Matching 9

Then there is a data structure of nHk(T) + o(n log σ) + O(n) bits that finds the
c contextual occurrences of (P [1..m], �) in time O(m + c log n).

We can speed up this index by using compact space, O(n log σ) bits (i.e.,
proportional to a plain representation of T). In this case, any cell of SA or SA−1

(and of SA′ by building the structures on T rev as well) can be computed in time
O(logε

σ n) for any constant ε > 0 [13]. Further, this index finds the suffix array
interval of P in almost RAM-optimal time, O(m/ logσ n + logε

σ n).

Theorem 5. Let T be a text of length n over an alphabet of size σ. Then there
is a data structure using O(n log σ) bits that finds the c contextual occurrences
of (P [1..m], �) in time O(m/ logσ n + (c + 1) logε

σ n), for any constant ε > 0.

4 Conclusions

We have proposed a query that should be more meaningful than standard pattern
locating in the case of highly repetitive text collections. Instead of simply locating
all the positions of T [1..n] where P [1..m] appears, we give a context length �
and ask for the occurrences of all the c distinct strings XPY in the text, for any
X,Y where |X| = |Y | = �. If P occurs inside a highly repeated substring, many
essentially identical occurrences will be reported one by one with the standard
locating, whereas we will report only a single suffix array range comprising all
the occurrences of the same context XPY .

While the query can be solved in O(n) space and RAM-optimal O(m/ logσ n+
c) time, we focus on using space proportional to the repetitiveness of T . We
use one such measure, the number r(S) of equal-letter runs of the Burrows-
Wheeler Transform of the string S. Within space O(r log(n/r)), where r =
max(r(T), r(T rev)), we solve the problem in time O(m log log n + occ log n). We
also show how to adapt our general strategy to any compressed text index.

This is a first step towards studying queries that make more sense on highly
repetitive text collections, possibly deviating from the classical ones used for
regular collections. Some relevant remaining questions are: Can the obtained
space/time tradeoffs be improved? Are there other relevant and challenging
queries that are better suited to highly repetitive text collections?

References

1. Belazzougui, D., Cunial, F.: Representing the suffix tree with the CDAWG. In:
Proceedings of the 28th CPM, pp. 7:1–7:13 (2017)

2. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite
repetition-aware data structures. In: Proceedings of the 26th CPM, pp. 26–39
(2015)

3. Belazzougui, D., Navarro, G.: Alphabet-independent compressed text indexing.
ACM Trans. Algorithms 10(4), Article no. 23 (2014)

4. Bille, P., Ettienne, M.B., Gørtz, I.L., Vildhøj, H.W.: Time-space trade-offs for
Lempel-Ziv compressed indexing. Theor. Comput. Sci. 713, 66–77 (2018)

10 G. Navarro

5. Blumer, A., Blumer, J., Haussler, D., McConnell, R.M., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578–595 (1987)

6. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical report 124, Digital Equipment Corporation (1994)

7. Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro, G., Prezza, N.:
Optimal-time dictionary-compressed indexes. CoRR 1811.12779 (2019)

8. Claude, F., Navarro, G.: Improved grammar-based compressed indexes. In:
Calderón-Benavides, L., González-Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE
2012. LNCS, vol. 7608, pp. 180–192. Springer, Heidelberg (2012). https://doi.org/
10.1007/978-3-642-34109-0 19

9. Ferrada, H., Kempa, D., Puglisi, S.J.: Hybrid indexing revisited. In: Proceedings
of the 20th ALENEX, pp. 1–8 (2018)

10. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

11. Gagie, T., Gawrychowski, P., Kärkkäinen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based
self-indexing with faster pattern matching. In: Pardo, A., Viola, A. (eds.) LATIN
2014. LNCS, vol. 8392, pp. 731–742. Springer, Heidelberg (2014). https://doi.org/
10.1007/978-3-642-54423-1 63

12. Gagie, T., Navarro, G., Prezza, N.: Fully-functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM 67(1), Article no. 2 (2020)

13. Grossi, R., Vitter, J.S.: Compressed suffix arrays and suffix trees with applications
to text indexing and string matching. SIAM J. Comput. 35(2), 378–407 (2006)

14. Kempa, D., Kociumaka, T.: Resolution of the Burrows-Wheeler Transform conjec-
ture. CoRR 1910.10631 (2019)

15. Kempa, D., Prezza, N.: At the roots of dictionary compression: string attractors.
In: Proceedings of the 50th STOC, pp. 827–840 (2018)

16. Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comput. Sci. 483, 115–133 (2013)

17. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comput. Biol. 17(3), 281–308 (2010)

18. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

19. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3), 407–
430 (2001)

20. Navarro, G.: Compact Data Structures - A Practical Approach. Cambridge Uni-
versity Press, Cambridge (2016)

21. Navarro, G.: Indexing highly repetitive string collections. CoRR abs/2004.02781
(2020)

22. Navarro, G., Nekrich, Y.: Time-optimal top-k document retrieval. SIAM J. Com-
put. 46(1), 89–113 (2017)

23. Navarro, G., Prezza, N.: Universal compressed text indexing. Theor. Comput. Sci.
762, 41–50 (2019)

24. Sadakane, K.: Compressed suffix trees with full functionality. Theory Comput.
Syst. 41(4), 589–607 (2007)

25. Takabatake, Y., Tabei, Y., Sakamoto, H.: Improved ESP-index: a practical self-
index for highly repetitive texts. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 338–350. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07959-2 29

26. Weiner, P.: Linear pattern matching algorithms. In: Proceedings of the 14th FOCS,
pp. 1–11 (1973)

https://doi.org/10.1007/978-3-642-34109-0_19
https://doi.org/10.1007/978-3-642-34109-0_19
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1007/978-3-319-07959-2_29
https://doi.org/10.1007/978-3-319-07959-2_29

Navigating Forest Straight-Line Programs
in Constant Time

Carl Philipp Reh(B) and Kurt Sieber

Universität Siegen, Siegen, Germany
{reh,sieber}@informatik.uni-siegen.de

Abstract. We present a data structure of linear size that allows
to perform navigation steps and subtree equality checks in grammar-
compressed forests in constant time. Navigation steps include going to
the parent, to the left/right neighbor or to the first/last child.

Keywords: Grammar-compressed forests · Forest straight-line
programs · Algorithms for compressed forests

1 Introduction

SLPs (straight-line programs) are context-free grammars that produce a single
string. They can use nonterminals to identify repetition and therefore be much
smaller than the string that they represent. For example, the SLP with A0 → ab
an d Ai+1 → AiAi for 1 ≤ i < 10 is a succinct representation of the string
(ab)1024. Compression algorithms try to find a succinct representation for a given
input string. Some of them produce SLPs directly, while the output of others can
be efficiently translated into SLPs [9]. Since SLPs can compress exponentially,
i.e. an SLP of size n might produce a string of size Θ(2n), answering a query
about the represented string by uncompressing the SLP has exponential runtime.
It is however often possible to implement algorithms that do better. A simple
example is to print the character at a given position, which can be easily done in
time O(h) where h is the height of the syntax tree of the SLP. Another example
is navigating on the string of an SLP: We can start at the first position, go to the
next position, go to the previous position or print the character at the current
position. Each of these operations takes constant time if we allow linear time
preprocessing. This was shown in [12], which extended a result from [8]. The
authors use the Word RAM model, i.e. operations on integers whose number of
bits is logarithmic in the length of the input (the SLP) require constant time,
which is also the model we assume throughout the paper.

SLPs have been extended to TSLPs (tree straight-line programs) which allow
to compress trees (see [11] for a survey). Instead of strings, a TSLP can store
trees and tree contexts, i.e. trees with a single hole x. For example, a very tall tree
a(· · · a(
︸ ︷︷ ︸

2n times

b) · · ·) can be compressed by first applying the tree context a(x) 2n times

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 11–26, 2020.
https://doi.org/10.1007/978-3-030-59212-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_2&domain=pdf
https://doi.org/10.1007/978-3-030-59212-7_2

12 C. P. Reh and K. Sieber

to itself, which requires n productions, and then replacing x with b. Navigation
has been extended to TSLPs in [12], where a navigation step can go to a specific
child, to the parent node, or print the character at the current node. Each of
these operations requires constant time after linear time preprocessing. Another
operation has also been introduced in [12]: After navigating to two (different)
nodes in the tree, we can ask if the subtrees at these nodes are equal. This
problem appears in several contexts, see for example [5]. Adding the ability to
do subtree equality checks however comes at a cost: First, the preprocessing time
is now polynomial instead of linear, but the data structure that is precomputed
still has linear size. Second, navigation steps now need to keep track of how
deep into the tree they went, which requires integers whose number of bits is
logarithmic in the tree size. We still refer to this as being constant time, which
was also done in [12] and [2]. Grammar-compressed multigraphs are another data
structure for which constant time traversal was implemented [13].

A shortcoming of TSLPs is that they can only compress vertically but not
horizontally. This is a limiting factor because a lot of tree-like documents (i.e.
Wikipedia articles) tend to be very wide but not very tall. A workaround is to
transform a tree into its fcns (first-child next-sibling) encoding. This is basi-
cally a head-tail representation of a tree, e.g. a tree a(bcd) is represented as
a(b(⊥, c(⊥, d(⊥,⊥))),⊥), where ⊥ means that there is no first child or next sib-
ling. This way, TSLP compression can work better because horizontal repetition
is turned into vertical repetition. However, it can be tricky to design algorithms
that try to answer queries on the original tree using only the TSLP for the tree’s
fcns encoding. For example, it is mentioned in [12] that using the fcns we can
support in constant time the navigation operations of going to the first child or
to the next sibling. But how we can go to the parent or to the last child (if it is
at all possible) in constant time is unclear. A better way to deal with arbitrar-
ily wide trees is to compress them more directly. An FSLP (forest straight-line
program), introduced in [7], is basically an extension of a TSLP: It can com-
press vertically using tree contexts like a TSLP can, but it can also compress
horizontally. For example, the tree a(c1024 · · · a(c1024(b)) · · ·), which is a slight
variation of the previous example, has a very direct succinct representation: We
can compress c1024 and thus also the contexts a(c1024x).

In this work, we first introduce FSLP navigation without subtree equality
checks, which only requires linear preprocessing time. The allowed operations
are: go to the first/last child, the next/previous sibling or to the parent node,
or print the current character. Then, we add an extension that allows subtree
equality checks but requires polynomial preprocessing time, while still producing
a structure of linear size. In both cases, we achieve the same results as the ones
previously shown for TSLPs in [12]. While implementing our data structures
and algorithms, we use SLP navigation as a black box instead of extending its
structure like it was done in [12].

Navigating Forest Straight-Line Programs in Constant Time 13

Another formalism for forest compression that is very similar to FSLPs are
Top Dags [1]. However, the most basic trees that can be represented with Top
Dags are of the form a(b) and the most basic contexts are a(b(x)). This leads
to cases where the smallest Top Dag is by a factor of the alphabet size larger
than the smallest FSLP [7]. Since it is also possible to transform Top Dags into
equivalent FSLPs in linear time [7], and we allow linear time preprocessing, all
the results of this paper basically extend to Top Dags.

2 Preliminaries

For a string w = a1 . . . an ∈ Θn with n ≥ 0 over some alphabet Θ we write
w[i] = ai for 1 ≤ i ≤ n, w[i : j] = ai . . . aj for 1 ≤ i ≤ j ≤ n, w[: i] = w[1 : i] and
w[i :] = w[i : n]. In [7] the authors unified the view of several SLP-like structures,
which we are also going to use in this work. What was formerly called SLP is now
called SSLP (string straight-line program) which frees up the name SLP to be
used for something else: An SLP can compress any expression by giving names
to common subexpressions. This unifies the view of SSLPs, TSLPs, FSLPs and
Top Dags.

2.1 Algebras and Straight-Line Programs

An algebra A = (U , I) consists of a universe (the carrier set) U and a set of
operations I, where each f ∈ I is a partial function f : Uk → U for some
k ∈ N. Instead of allowing partial functions we could also have defined multi-
sorted algebras (see for example [4]), but we feel that at least in this paper this
would have unnecessarily complicated the notation. The expressions E over A
consist of terms over the elements from I, i.e. if f ∈ I and f is k-ary then
f(e1, . . . , ek) ∈ E for all e1, . . . , ek ∈ E . Evaluating an expression e ∈ E is writ-
ten as [[e]]A and is defined in the usual way. For example, consider U = N

and I = {+, 1}, where +: N2 → N and 1 ∈ N, with the usual meaning. The
expressions are E = {1,+(1, 1),+(+(1, 1), 1),+(1,+(1, 1)), . . . }, and, for exam-
ple, [[+(+(1, 1), 1)]]A = (1 + 1) + 1 = 3.

For a set of variables V we write EV for the set of expressions with variables
over A. A variable can occur anywhere where a nullary function symbol can
occur. For example, if X,Y ∈ V then +(+(1,X), Y) ∈ EV .

A straight-line program (SLP for short) over A is a tuple G = (V, rhs), where
V is a finite set of variables and rhs : V → EV is the right-hand side mapping.
The relation {(A,B) ∈ V 2 | B appears in rhs(A)} must be acyclic. This way,
we can transform every expression from e ∈ EV into one from E by recursively
applying rhs. The result can then be evaluated in the algebra A, which we
denote with [[e]]G ∈ U . For example, if V = {X,Y } with rhs(X) = +(1, Y) and
rhs(Y) = +(1, 1), then [[+(X,Y)]]G = [[+(+(1,+(1, 1)),+(1, 1))]]A = 5. The size
of an expression is |f(e1, . . . , en)| = 1 + |e1| + · · · + |en|, where |A| = 1 for a
variable A, and the size of G is |G| =

∑

A∈V |rhs(A)|. The size of G in our
example is |G| = |+(1, Y)| + |+(1, 1)| = 3 + 3 = 6.

14 C. P. Reh and K. Sieber

2.2 String Straight-Line Programs

A string straight-line program (SSLP for short) over some alphabet Θ is an
SLP over the algebra (Θ∗, {ε, ◦} ∪ Θ), where ε evaluates to the empty string, ◦
is string concatenation, and every symbol from Θ is a constant that evaluates
to itself. Instead of v ◦ w we often simply write vw. Consider the SSLP G =
({A,B,C}, rhs) over {a, b} with rhs(A) = BB, rhs(B) = CCb and rhs(C) = aa,
then [[A]]G = aaaabaaaab.

2.3 Forest Straight-Line Programs

We fix an alphabet Σ for the rest of the paper that is used to label nodes in
forests. A forest is a list of trees t1 . . . tn (n ≥ 0), while a tree is of the form
a(f) where a ∈ Σ and f is a forest. Here, a is the root character and its children
are the roots of the forest f . The set of forests is denoted by F and the set of
trees by T . Forests with a hole are defined as follows: x is a forest with a hole,
and t1 . . . tn (n ≥ 1) is a forest with a hole if t1, . . . , ti−1, ti+1, . . . , tn are trees
and ti is a tree with a hole for some 1 ≤ i ≤ n. Here, x can be thought of as a
placeholder that appears exactly once in a forest with a hole. Trees with a hole
are of the form a(f), where a ∈ Σ and f is a forest with a hole. We write Fx for
the set of forests with a hole and Tx for the set of trees with a hole. The forest
algebra AF = (F ∪ Fx, IF) has the following operations IF :

– [[ε]]F = ε—the empty forest.
– [[x]]F = x—a single hole.
– [[fg]]F = [[f]]F [[g]]F—horizontal concatenation, only defined if [[f]]F /∈ Fx or

[[g]]F /∈ Fx.
– [[a]]F = a(x)—a single node with a hole.
– [[f〈g〉]]F = [[f]]F [[[g]]F]—substitution, only defined if [[f]]F ∈ Fx.

The notation f [g] means that x in f is replaced with g. The idea of forest algebras
goes back to [3].

An SLP F = (V, rhs) over AF is called a forest straight-line program or FSLP
for short. As a short-hand notation we write V0 = {A ∈ V | [[A]]F ∈ F} for the
variables that produce forests without a hole and V1 = {A ∈ V | [[A]]F ∈ Fx}
for the variables that produce forests with a hole. Normal form FSLPs were
introduced in [7], that restrict the rhs-forms that may be used. We are also going
to make use of this normal form, since it simplifies the upcoming constructions.
First, let V ⊥

0 ⊆ V0 be defined as

V ⊥
0 = {A ∈ V0 | rhs(A) = a〈C〉, a ∈ Σ, C ∈ V0}

∪ {A ∈ V0 | rhs(A) = B〈C〉, B ∈ V1, C ∈ V0}

Navigating Forest Straight-Line Programs in Constant Time 15

For a normal form FSLP we require the following:

– rhs(A) for every A ∈ V1 is of the form a〈LxR〉, where a ∈ Σ, L,R ∈ V0, or of
the form B〈C〉, where B,C ∈ V1.

– rhs(A) for every A ∈ V0 is of the form ε, or of the form BC, where B,C ∈ V0,
or of the form a〈C〉, where a ∈ Σ and C ∈ V0, or of the form B〈C〉, where
B ∈ V1 and C ∈ V ⊥

0 .

Note that [[A]]F ∈ T for all A ∈ V ⊥
0 and [[B]]F ∈ Tx for all B ∈ V1, i.e., only tree

contexts appear in a normal form FSLP instead of arbitrary forest contexts.

Lemma 1. An FSLP F = (V, rhs) can be transformed in linear time into an
FSLP F ′ that is in normal form such that [[A]]F = [[A]]F ′ for every A ∈ V0.

This was shown in [7]. Since we allow linear time preprocessing, we assume from
now on that every FSLP is in normal form.

Example 1. Suppose that a, b, c ∈ Σ and let n ∈ N. Let Fn = (V, rhs) with

V = {E,A�, Ar}∪{Ai, Bi | 0 ≤ i ≤ n}∪{Ck
i ,Dk

i , Gk
i ,Hk

i | k ∈ {�, r}, 0 ≤ i ≤ n},

and rhs(E) = ε, rhs(A�) = a〈E〉, rhs(Ar) = b〈E〉, rhs(A0) = A�Ar, rhs(B0) =
b〈ExE〉,

rhs(Ai+1) = AiAi for 0 ≤ i < n,

rhs(Bi+1) = Bi〈Bi〉 for 0 ≤ i < n,

rhs(C�
i) = c〈AixAr〉 for 0 ≤ i ≤ n,

rhs(Cr
i) = c〈A�xAi〉 for 0 ≤ i ≤ n,

rhs(Dk
i) = Bi〈Ck

i 〉 for k ∈ {�, r}, 0 ≤ i ≤ n,

rhs(Gk
i) = Ck

i 〈Dk
i 〉 for k ∈ {�, r}, 0 ≤ i ≤ n,

rhs(Hk
i) = Gk

i 〈Ak〉 for k ∈ {�, r}, 0 ≤ i ≤ n.

Fn is in normal form with V ⊥
0 = {A�, Ar} ∪ {Hk

i | 0 ≤ i ≤ n, k ∈ {�, r}}. For
0 ≤ i ≤ n we have [[Ai]]Fn

= (ab)2
i

and [[Bi]]Fn
= b(· · · b(

︸ ︷︷ ︸

2i

x) · · ·),

[[H�
i]]Fn

= [[G�
i〈A�〉]]Fn

= [[C�
i 〈D�

i 〈A�〉〉]]Fn
= [[C�

i 〈B�
i 〈C�

i 〈A�〉〉〉]]Fn

= c((ab)2
i

b(· · · b(
︸ ︷︷ ︸

2i

c((ab)2
i

ab)) · · ·)
︸ ︷︷ ︸

2i

b) and

[[Hr
i]]Fn

= c(a b(· · · b(
︸ ︷︷ ︸

2i

c(ab(ab)2
i

)) · · ·)
︸ ︷︷ ︸

2i

(ab)2
i

).

Note that the trees [[Hk
n]]Fn

, where k ∈ {�, r}, have both exponential width and
height in n. See Fig. 1 for an illustration.

16 C. P. Reh and K. Sieber

c

(ab)2n b

. . .

b

c

(ab)2n a b

b

2n

c

a b

. . .

b

c

a b (ab)2n

(ab)2n

2n

20

H�
0 21

H�
1 . . .

2n

H�
n Hr

n

Hr
1

Hr
0

Fig. 1. The trees [[H�
n]]Fn on the left and [[Hr

n]]Fn in the middle from Example 1, and
the tree tM from Example 4 on the right.

3 Navigation

The goal of this section is to prove the following theorem:

Theorem 1. Let F = (V, rhs) be an FSLP in normal form. We can in linear
time precompute some data structure of linear size in |F |, such that the following
operations work in constant time, where N (F) is the set of node representations,
that we will define later:

– r� : V0 → N (F)∪{⊥}: Return the root of the first tree in the forest represented
by an input variable.

– ↙ : N (F) → N (F) ∪ {⊥}: Return the first child of the current node.
– → : N (F) → N (F) ∪ {⊥}: Return the right sibling of the current node.
– r� : V0 → N (F)∪{⊥}: Return the root of the last tree in the forest represented

by an input variable.
– ↘ : N (F) → N (F) ∪ {⊥}: Return the last child of the current node.
– ← : N (F) → N (F) ∪ {⊥}: Return the left sibling of the current node.
– ↑ : N (F) → N (F) ∪ {⊥}: Return the parent of the current node.
– z : N (F) → Σ: Get the symbol at the current node.

The special value ⊥ is used to indicate that an operation may fail. For example,
going to the first child of a leaf node returns ⊥.

The implementation of these operations will make use of SSLP traversals,
that can already be done in constant time, which was proven in [12].

Lemma 2. Let G = (V, rhs) be an SSLP over some alphabet Θ. We can precom-
pute some data structure in linear time in |G|, such that the following operations
work in constant time, where N (G) is the set of positions:

Navigating Forest Straight-Line Programs in Constant Time 17

– � : V → N (G) ∪ {⊥}: Go to the first position in the string derived by a given
variable.

– � : V → N (G) ∪ {⊥}: Go to the last position in the string derived by a given
variable.

– z : N (G) → Θ: Get the symbol at the current position.
– → : N (G) → N (G) ∪ {⊥}: Go to the next position.
– ← : N (G) → N (G) ∪ {⊥}: Go to the previous position.

Each element γ ∈ N (G) represents a position in the string [[A]]G for a certain
variable A ∈ V . We denote this variable A by Sγ .

Like in [12], we first define the spine SSLP F� = (V�, rhs�) over Σ� by

Σ� = {a〈LxR〉 | rhs(A) = a〈LxR〉, A ∈ V }
∪ {a〈C〉 | rhs(A) = a〈C〉, A ∈ V },

V� = V1 ∪ V ⊥
0 ,

rhs�(A) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

BC if rhs(A) = B〈C〉, A ∈ V1,

a〈LxR〉 if rhs(A) = a〈LxR〉,
a〈C〉 if rhs(A) = a〈C〉,
rhs(B) if rhs(A) = B〈C〉, A ∈ V ⊥

0 .

The idea of the spine SSLP is that its symbols Σ� are exactly the rhs-expressions
of F where symbols from Σ occur. Navigating to one of the symbols in [[A]]F�

for A ∈ V ⊥
0 is essentially the same as navigating to a specific node in [[A]]F .

If rhs(A) = a〈C〉 this string only consists of a single symbol a〈C〉. If instead
rhs(A) = B〈C〉, the word [[A]]F�

is of the form a1〈L1xR1〉 . . . am〈LmxRm〉. Navi-
gating such a word left or right corresponds to navigating up or down in the tree
[[A]]F , while following the x position. Standing on the symbol ai〈LixRi〉 means
that the current node is labelled with ai. When we walk past the last element,
am〈LmxRm〉, we have to continue to navigate in [[C]]F . Let us thus define the
vertical navigation structure as V(F) = N (F�)+, which enables us to chain mul-
tiple navigations in F� together. We can then define the following navigation
steps, which we will later use to implement the actual navigation.

– � : V ⊥
0 → V(F): Go to the root node,

– ↑ : V(F) → V(F) ∪ {⊥}: Go to the parent node.
– ↓ : V(F) → V(F) ∪ {⊥}: Go to the child node at the x position.
– z : V(F) → Σ�: Get the current symbol.

Implementing these is straight-forward: We set �(A) = �(A) for A ∈ V ⊥
0 . Let

v ∈ N (F�)∗ and γ ∈ N (F�). We set z(vγ) = z(γ). The other two operations are
defined as follows:

↑(vγ) =

⎧

⎪
⎨

⎪
⎩

v ←(γ) if ←(γ) �= ⊥,

v if ←(γ) = ⊥ and v �= ε,

⊥ if ←(γ) = ⊥ and v = ε,

18 C. P. Reh and K. Sieber

↓(vγ) =

⎧

⎪
⎨

⎪
⎩

v →(γ) if →(γ) �= ⊥,

vγ �(C) if →(γ) = ⊥ and rhs(Sγ) = B〈C〉,
⊥ if →(γ) = ⊥ and rhs(Sγ) = a〈C〉.

Defining the operations on V(F) in isolation not only makes the definition of
the actual navigation easier, but it also provides the benefit that we only have
to change these when we add the ability to do subtree equality checks, while the
definition of the actual navigation will stay the same.

What is left to do is to add the ability to do horizontal navigations as well.
Horizontal navigations can happen on any of the L and R in a〈LxR〉 as well
as C in a〈C〉. For this, we define another auxiliary SSLP, called the rib SSLP
F� = (V�, rhs�) over Σ� by Σ� = {A | A ∈ V ⊥

0 }, V� = V0 and

rhs�(A) =

⎧

⎪
⎨

⎪
⎩

ε if rhs(A) = ε,

BC if rhs(A) = BC,

A if A ∈ V ⊥
0 .

We make a copy of all A ∈ V0 which we simply call A. This is because we actually
want an SSLP navigation on Σ� to end in a symbol from V ⊥

0 . Without making
the copy, we would not be able to assign an rhs value to such a symbol. Note
that for each A ∈ V0 we have [[A]]F� = A1 . . . An, where Ai ∈ V ⊥

0 . Thus [[Ai]]F
is the ith tree in the forest [[A]]F , i.e. [[A]]F = [[A1]]F · · · [[An]]F ∈ T n.

Example 2. Using Fn from Example 1, we have

Σ� = {b〈ExE〉, a〈E〉, b〈E〉} ∪ {c〈AixAr〉, c〈A�xAi〉 | 0 ≤ i ≤ n},

Σ� = {A�, Ar} ∪ {Hk
i | 0 ≤ i ≤ n, k ∈ {�, r}} and for example

[[H�
i]]F�

= c〈AixAr〉(b〈ExE〉)2ic〈AixAr〉 for 0 ≤ i ≤ n and

[[Ai]]F� = (A�Ar)2
i

for 0 ≤ i ≤ n.

For horizontal navigations, we have to remember if we started in an L or R in
a〈LxR〉 or in C in a〈C〉, which we record as �, r and m, respectively. Therefore,
the horizontal navigation structure is H(F) = {�,m, r} × N (F�). The idea for
the whole navigation is then to interleave navigations on F� with navigations
on F�, so we define N (F) = (H(F) × V(F))+.

We first introduce a short-hand notation to create a navigation on F� fol-
lowed by a navigation on F�. Let �d : V0 → (H(F) × V(F)) ∪ {⊥} for every
d ∈ {�,m, r} be defined by

�d(A) =

{

((d, �(A)),�(D)) if �(A) �= ⊥ and z(�(A)) = D,

⊥ if �(A) = ⊥.

Navigating Forest Straight-Line Programs in Constant Time 19

We are now going to implement the operations from Theorem 1. Suppose that the
current state is w((d, h), v) ∈ N (F), where w ∈ (H(F) × V(F))∗, (d, h) ∈ H(F),
so d ∈ {�,m, r} and h ∈ N (F�), and v ∈ V(F). To query the current symbol,
we define z(w((d, h), v)) = a if z(v) = a〈LxR〉 or z(v) = a〈C〉. To implement
↙, we have to consider the following cases: If we are on a symbol of the form
z(v) = a〈LxR〉 we can either have [[L]]F �= ε or [[L]]F = ε. In the first case we
go to the first symbol of [[L]]F� and record �. This symbol is of the form A,
where A ∈ V ⊥

0 , so we have to go to the root node of [[A]]F . We therefore append
��(L) = ((�, �(L)),�(A)). In case [[L]]F = ε we reach the x of a〈LxR〉, which
means that we have to move the current navigation on V(F) down one position,
i.e. we replace v with ↓(v). If we are on a symbol of the form a〈C〉 we can again
have that [[C]]F = ε, in which case there is nowhere to go. If [[C]]F �= ε we go to
the first symbol A of [[C]]F� , record m and again start a navigation to the root
of [[A]]F�

, so we append �m(C) = ((m, �(C)),�(A)). Altogether, the function is

↙(w((d, h), v)) =

⎧

⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎩

w((d, h), v) ��(L) if z(v) = a〈LxR〉 and ��(L) �= ⊥,

w((d, h), ↓(v)) if z(v) = a〈LxR〉 and ��(L) = ⊥,

w((d, h), v) �m(C) if z(v) = a〈C〉 and �m(C) �= ⊥,

⊥ if z(v) = a〈C〉 and �m(C) = ⊥,

The function ↘ is symmetric and is therefore omitted. Going to the left or
right neighbor is more involved. Since going to the right neighbor is basically
a mirrored version of going to the left neighbor, we will focus on the former.
We start by trying to move the current navigation on V(F) one position up, i.e.
replace v with ↑(v), because we need to know what is to the right of the current
node. If moving up succeeds, the current symbol is of the form a〈LxR〉, which
means that we were standing on the x position and thus the next tree we have
to go to is the first tree of [[R]]F if [[R]]F �= ε. We then go to the first symbol A
of [[R]]F� , record r, and go to the root node of [[A]]F , which means we append
�r(R) = ((r, �(R)),�(A)). If [[R]]F = ε, there is nowhere to go. If moving up
does not succeed, it means that v points to the root node. We are therefore on
an Ai of the previous horizontal navigation h, which is of the form A1 . . . An. If
i < n, then we move this navigation one to the right and go to the root node
of [[Ai+1]]F , so we replace ((d, h), v) with ((d,→(h)),�(Ai+1)). If i = n, then we
have to look at the current symbol of the last navigation from w. In case w = ε,
there is nowhere to go. Now suppose w ends in v′ ∈ V(F). Suppose that the
current symbol of v′ is of the form z(v′) = a〈LxR〉 and d = �. This means that
we left the navigation on L to the right and end up on x, so we have to move
the vertical navigation one position down, i.e. we replace v′ with ↓(v′). In case
d = r, we left the navigation on R to the right, so there is nowhere to go. If the
current symbol is instead of the form z(v′) = a〈C〉 there is also nowhere to go,
since we were on the last tree of [[C]]F . Altogether, we have the function

20 C. P. Reh and K. Sieber

→(w((d, h), v)) =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

w((d, h), u) �r(R) if ↑(v) = u, z(u) = a〈LxR〉
and �r(R) �= ⊥,

⊥ if ↑(v) = u, z(u) = a〈LxR〉
and �r(R) = ⊥,

w((d, h′),�(D)) if ↑(v) = ⊥, →(h) = h′ �= ⊥
and z(h′) = D,

w′((d′, h′), ↓(v′)) if ↑(v) = ⊥, →(h) = ⊥,

w = w′((d′, h′), v′),
w′ ∈ (H(F) × V(F))∗, (d′, h′) ∈ H(F),
v′ ∈ V(F) and d = �,

⊥ if ↑(v) = ⊥, →(h) = ⊥, w = ε

or d �= �.

Going to the parent node is straight-forward. We try to replace v with ↑(v). If
this is not possible, we remove (d, h) and v, if w �= ε. If w = ε, then there is
nowhere to go. Formally, this is

↑(w(((d, h), v)) =

⎧

⎪
⎨

⎪
⎩

w((d, h), ↑(v)) if ↑(v) �= ⊥,

w if ↑(v) = ⊥ and w �= ε,

⊥ if ↑(v) = ⊥ and w = ε,

For starting a navigation in S ∈ V0, we go to the first tree of [[S]]F and record m
in case [[S]]F �= ε. This navigation ends on a symbol A, and we go to the root node
of [[A]]F . Thus we start with r�(S) = �m(S) = ((m, �(S)),�(A)). If [[S]]F = ε
there is nowhere to go, so r�(S) = ⊥. Going to the last tree is symmetric.

Example 3. Consider Fn from Example 1. We have

r�(H�
n) = ((m, �(H�

n)),�(H�
n))

and since z(�(H�
n)) = c〈AnxAr〉, we obtain z(r�(H�

n)) = c. Now consider apply-
ing ↙ to this node: Since z(�(An)) = A�, we have

↙(r�(H�
n)) = ((m, �(H�

n)),�(H�
n))((�, �(An)),�(A�)).

Using z on this structure yields a, because z(�(A�)) = a〈E〉.

4 Navigation with Equality Checks

In this section we change our navigation structure, which we again call N (F),
to include subtree equality checks.

Navigating Forest Straight-Line Programs in Constant Time 21

Theorem 2. Using polynomial time preprocessing, we can precompute some
data structure of linear size in |F | such that in addition to the operations from
Theorem1 the following operation, which checks if two subtrees rooted at the
given input nodes are equal:

eq: N (F) × N (F) → {0, 1}.

We ensure that our FSLP is reduced which means that there are no A �= A′ ∈ V
such that [[A]]F = [[A′]]F , which can be tested using a result from [7]. We give
a similar characterization of equal subtrees as the one found in [12]. Let us
write A� instead of [[A]]F�

. We define V �

0 = {A ∈ V ⊥
0 | rhs(A) = B〈C〉}.

For A ∈ V �

0 with rhs(A) = B〈C〉 let the i’th subtree be defined as A�(i) =
[[B�[i]〈· · · B�[�(A)]〈C〉 · · ·〉]]F , where 1 ≤ i ≤ �(A) + 1 and �(A) = |B�|. Note
that A�(1) = [[A]]F and A�(�(A) + 1) = [[C]]F . Now let i ≥ 2 be the smallest
number such that there is a D ∈ V ⊥

0 with A�(i) = [[D]]F . We call i the split
index of A, written as si(A), and D the split variable of A, written as sv(A). Since
A�(�(A)+1) = [[C]]F and C ∈ V ⊥

0 , the split index and split variable always exist.
The idea to implement the navigation that also supports subtree equality checks
is to always stay below the split index. When we reach the split index, we simply
continue to navigate in the split variable, which preserves subtree equality. We
now only have to characterize the equal subtrees below split indices.

Lemma 3. Let t, t′ ∈ T , a, a′ ∈ Σ and L,L′, R,R′ ∈ V0, with

1. a〈LxR〉 �= a′〈L′xR′〉, and
2. [[a〈LxR〉]]F [t] = [[a′〈L′xR′〉]]F [t′].

Then there are D,D′ ∈ V ⊥
0 with [[D]]F = t′ and [[D′]]F = t.

Proof. Since F is in normal form, there are variables

{L1, . . . , Ln, R1, . . . , Rm, L′
1, . . . , L

′
n′ , R′

1, . . . , R
′
m′} ⊆ V ⊥

0

with [[L]]F = [[L1 . . . Ln]]F , [[R]]F = [[R1 . . . Rm]]F , [[L′]]F = [[L′
1 . . . L′

n′]]F and
[[R′]]F = [[R′

1 . . . R′
m′]]F . From Point 2 we obtain a = a′ and [[L]]F t [[R]]F =

[[L′]]F t′ [[R′]]F . From [[L]]F = [[L′]]F we would obtain t = t′ and [[R]]F = [[R′]]F
which is in contradiction to Point 1 because F is reduced. Hence we must have
[[L]]F �= [[L′]]F which implies that [[L1 . . . Ln]]F ∈ T n is a proper prefix of
[[L′

1 . . . L′
n′]]F ∈ T n′

or vice versa. In the first case we have t = [[L′
n+1]]F and

t′ = [[Rn′−n]]F , in the second case t′ = [[Ln′+1]]F and t = [[R′
n−n′]]F .

Lemma 4. Let A,A′ ∈ V �

0 , 1 ≤ i < si(A) and 1 ≤ i′ < si(A′). We have
A�(i) = A′

�(i′) if and only if

1. A�[i : si(A) − 2] = A′
�

[i′ : si(A′) − 2], and
2. [[A�[si(A) − 1]〈sv(A)〉]]F = [[A′

�
[si(A′) − 1]〈sv(A′)〉]]F .

22 C. P. Reh and K. Sieber

Proof. It is easy to see that Points 1 and 2 imply A�(i) = A′
�(i′). To prove the

opposite direction, we use induction on m = min{si(A) − i − 1, si(A′) − i′ − 1}.
Assume that A�(i) = A′

�(i′). Let m = 0, which means that either i = si(A) − 1
or i′ = si(A′) − 1. We assume that i = si(A) − 1 and show that i′ = si(A′) − 1.
By definition of si and sv we have [[A�[si(A) − 1]〈sv(A)〉]]F = A�(i). Since
A′

�(i′) = [[A′
�

[i′]]]F [A′
�(i′ + 1)], we obtain

[[A�[si(A) − 1]〈sv(A)〉]]F = [[A′
�

[i′]]]F [A′
�(i′ + 1)].

If A�[si(A)−1] = A′
�

[i′] we have [[sv(A)]]F = A′
�(i′+1). If A�[si(A)−1] �= A′

�
[i′],

then we obtain from Lemma 3 that there is a D ∈ V ⊥
0 with [[D]]F = A′

�(i′+1). In
both cases, there is a variable that evaluates to A′

�(i′ +1), and since i′ < si(A′),
we must have that i′ + 1 = si(A′) and A′

�(i′ + 1) = [[sv(A′)]]F . Therefore, we
obtain that A�[i : si(A) − 2] = ε, A′

�
[i′ : si(A′) − 2] = ε and

[[A�[si(A) − 1]〈sv(A)〉]]F = [[A′
�

[si(A′) − 1]〈sv(A′)〉]]F .

The symmetric case, in which i′ = si(A′) − 1, uses the same arguments. Now let
m > 0, so i < si(A) − 1 and i′ < si(A′) − 1. Since A�(i) = A′

�(i′) we obtain
that [[A�[i]]]F [A�(i + 1)] = [[A′

�
[i′]]]F [A′

�(i′ + 1)]. If A�[i] �= A′
�

[i′] we would
obtain from Lemma 3 that there are D,D′ ∈ V ⊥

0 with [[D]]F = A′
�(i′ + 1) and

[[D′]]F = A�(i + 1) which contradicts i < si(A) − 1 as well as i′ < si(A′) − 1.
Therefore, we must have A�[i] = A′

�
[i′]. From A�(i) = A′

�(i′) and this fact
we can conclude that A�(i + 1) = A′

�(i′ + 1). Therefore by induction we have
A�[i + 1 : si(A) − 2] = A′

�
[i′ + 1 : si(A′) − 2], as well as Point 2. Together with

A�[i] = A′
�

[i′] we also obtain Point 1.

To use Lemma 4 for equality checks, we still have to argue that we can implement
some data structure of linear size that allows to perform these checks in constant
time. To check Point 2 of Lemma 4 we do the following: Let

∼ = {(A,A′) ∈ V �

0 ×V �

0 | [[A�[si(A)−1]〈sv(A)〉]]F = [[A′
�

[si(A′)−1]〈sv(A′)〉]]F }.

This relation is an equivalence relation. We assign each equivalence class a nat-
ural number and precompute a mapping that takes an element to its equiv-
alence class, represented as this number. This mapping requires linear space
and we can test if two elements belong to the same equivalence class in con-
stant time. Let A,A′ ∈ V �

0 , 1 ≤ i < si(A) and 1 ≤ i′ < si(A′). We only have
to check Point 1 of Lemma 4 if Point 2 is true, so suppose that (A,A′) ∈ ∼.
We now have to test if A�[i : si(A) − 2] = A′

�
[i′ : si(A′) − 2]. This can only

be true if k := si(A) − 2 − i = si(A′) − 2 − i′. Let suff(A,A′) be the length
of the longest common suffix of A�[: si(A) − 2] and A′

�
[: si(A′) − 2], which

can be computed in polynomial time using a result from [14]. We then have
A�[i : si(A) − 2] = A′

�
[i′ : si(A′) − 2] if and only if k ≤ suff(A,A′). Storing suff

explicitly for all elements belonging to the same equivalence class M ∈ V �

0 /∼
requires quadratic space. Instead, we compute for each M a tree tM that has lin-
ear size in |M |, which we can use to query suff in constant time. In this tree, the

Navigating Forest Straight-Line Programs in Constant Time 23

elements from M are the leaves and the lowest common ancestor of two leaves
A �= A′ ∈ M is labelled with suff(A,A′). Lowest common ancestor queries can
be performed in constant time after linear time preprocessing, using the result
from [15].

The trees tM can be constructed as follows: We start with any A �= A′ ∈ M
and make A and A′ children of a node labelled with suff(A,A′). Now suppose
we have constructed a tree for some elements of M . To add a new A ∈ M to the
tree, we take a leaf A′ where suff(A,A′) is maximal. We then find the closest
ancestor node a of A′ whose parent p is labelled with m ≤ suff(A,A′), or in case
this does not exist then a is the root node. If m = suff(A,A′) then A becomes
a new child of a. If m < suff(A,A′) then we add a new node between a and p,
label it with suff(A,A′) and add A as its second child. If a is the root node then
we add a new parent to a, label it with suff(A,A′) and add A as its second child.

It remains to argue why we can precompute si and sv in polynomial time,
which we can do as follows: For every A ∈ V �

0 and A′ �= A ∈ V ⊥
0 we test if

there is an 1 < i ≤ �(A) with A�(i) = [[A′]]F , which is done as follows: Since
|A�(1)| > · · · > |A�(�(A))| we can use binary search to test if there is an
1 < i ≤ �(A) such that |A�(i)| = |[[A′]]F |. For a given i computing |A�(i)| can
be done in polynomial time because we can compute an FSLP G with variable
X such that [[X]]G = A�(i). This is done by removing a prefix of A�, which can
be done by cutting the syntax tree of A. Also, given a variable X of an FSLP
G it is easy to compute |[[X]]G|. Furthermore, we can test if A�(i) = [[A′]]F
because given two variables X,Y of an FSLP G we can test in polynomial time
if [[X]]G = [[Y]]G using a result from [7]. For a given A ∈ V �

0 we then take the
A′ ∈ V ⊥

0 with the smallest i such that A�(i) = [[A′]]F and set sv(A) = A′ and
si(A) = i. If no such i exists then we set sv(A) = C, where rhs(A) = B〈C〉, and
si(A) = �(A) + 1.

Example 4. Recall the definition of Fn from Example 1. Since [[C�
i 〈A�〉]]Fn

=
c((ab)2

i

xb)[a] = c(ax(ab)2
i

)[b] = [[C�
i 〈A�〉]]Fn

, we have H�
i �(2i+2) = Hr

i �(2i+2)
for 0 ≤ i ≤ n. We also have H�

i �
[j] = b〈ExE〉 = Hr

i �
[j] for all 2 ≤ j ≤ 2i + 1.

This implies that H�
i �(j) = Hr

i �(j) for all 2 ≤ j ≤ 2i + 1. Therefore, si(H�
i) =

si(Hr
i) = 2i + 3 and sv(Hk

i) = Ak for all 0 ≤ i ≤ n and k ∈ {�, r}. Since

[[H�
i �

[si(H�
i) − 1]〈sv(H�

i)〉]]Fn
= [[Hr

i �
[si(Hr

i) − 1]〈sv(Hr
i)〉]]Fn

we have H�
i ∼ Hr

i for all 0 ≤ i ≤ n, thus V ⊥
0 /∼ = {{H�

i ,H
r
i } | 0 ≤ i ≤ n}, and

suff(H�
i ,H

r
i) = 2i.

Let us change the definition of rhs(Dk
i) from rhs(Dk

i) = Bi〈Ck
i 〉 to rhs(Dk

i) =
Bi〈Ck

0 〉. We then have for 0 ≤ i ≤ n that

[[H�
i]]Fn

= c((ab)2
i

b(· · · b(
︸ ︷︷ ︸

2i

c(abab)) · · ·)
︸ ︷︷ ︸

2i

b) and

[[Hr
i]]Fn

= c(a b(· · · b(
︸ ︷︷ ︸

2i

c(abab)) · · ·)
︸ ︷︷ ︸

2i

(ab)2
i

).

24 C. P. Reh and K. Sieber

Since [[Cr
0〈Ar〉]]Fn

= c(axab)[b] = c(abxb)[a] = [[C�
0〈A�〉]]Fn

, we have

H�
i �(2i + 2) = Hr

i �(2i + 2) = H�
j �(2j + 2) = Hr

j �(2j + 2)

for all 0 ≤ i, j ≤ n. Thus Hk
i �(2i + 2 − m) = Hk′

j �(2j + 2 − m) for all k, k′ ∈
{�, r}, 1 ≤ i, j ≤ 2n and 0 ≤ m ≤ max{2i, 2j}. Therefore, V ⊥

0 /∼ = {M} consists
of the single equivalence class M = {Hk

i | 0 ≤ i ≤ n, k ∈ {�, r}}. See Fig. 1 for
the tree tM .

We now explain how we have to change our vertical navigation structure V(F)
and the operations on it to support the subtree equality check eq. We change
the V(F)-part of our navigation structure to V(F) = (N (F�) × N)+, where we
use the N component to count how many ↓ steps we made. The operations �,
↑ and z are straight-forward to implement. Let v ∈ (N (F�) × N)∗, γ ∈ N (F�)
and i ∈ N. We set z(v(γ, i)) = z(γ) and �(A) = (�(A), 1) for A ∈ V ⊥

0 and

↑(v(γ, i)) =

⎧

⎪
⎨

⎪
⎩

v(←(γ), i − 1) if ←(γ) �= ⊥,

v if ←(γ) = ⊥ and v �= ε,

⊥ if ←(γ) = ⊥ and v = ε,

For the implementation of ↓, let v(γ, i) ∈ V(F) be the current state, where
v ∈ (N (F�) × N)∗, γ ∈ N (F�) and i ∈ N. Suppose the navigation γ started
in �(A). This means that we are currently on A�[i] and want to navigate to
A�[i+1]. If A /∈ V �

0 , so rhs(A) is of the form a〈C〉, there is nowhere to go. Now
let A ∈ V �

0 . In case si(A) > i+1, we can stay on A�, so we replace γ with →(γ)
and i with i+1. In case si(A) = i+1, we have to continue to navigate in sv(A)�,
since A�(i + 1) = [[sv(A)]]F . Therefore, we append (�(sv(A)), 1). Formally, we
have

↓(v(γ, i)) =

⎧

⎪
⎨

⎪
⎩

v(→(γ), i + 1) if Sγ ∈ V �

0 and si(Sγ) > i + 1,

v(γ, i)�(sv(Sγ)) if Sγ ∈ V �

0 and si(Sγ) = i + 1,

⊥ if Sγ /∈ V �

0 .

With the new definition of N (F), the subtree equality check eq can easily
be implemented. Suppose the rightmost elements from N (F) are v(γ, i) and
v′(γ′, i′), where γ started with �(A) and γ′ with �(A′) for A,A′ ∈ V ⊥

0 . In
case rhs(A) = a〈C〉, so A ∈ V ⊥

0 \ V �

0 , then A�(i) = A′
�(i′) if and only if

rhs(A′) = a〈C〉. Now let A,A′ ∈ V �

0 , in which case we use Lemma 4 to test
whether A�(i) = A′

�(i′).

5 Discussion

We first implemented a data structure that can be precomputed in linear time
with which we can do navigation steps in constant time. Later we added the
ability to do subtree equality checks, again by precomputing a data structure

Navigating Forest Straight-Line Programs in Constant Time 25

of linear size. However, the precomputation time required is polynomial in this
case. It would be interesting to show a lower bound for the exponent. Since the
preprocessing requires equality checks for which the best known algorithm is
quadratic (see [10]), it would be surprising if this exponent was lower than 2.
Implementing all the algorithms of this work would also be interesting. In [6] it
was shown that using linear time we can transform an FSLP into an equivalent
one such that the height h(F) of its syntax tree is logarithmic in |F |. If we
can show that h(F) does not increase when using Lemma 1, and that the size
|X| of elements X ∈ N (F) is bounded by h(F), then we would obtain that
|X| ∈ O(log |F |).

References

1. Bille, P., Gørtz, I.L., Landau, G.M., Weimann, O.: Tree compression with top trees.
Inf. Comput. 243, 166–177 (2015). https://doi.org/10.1016/j.ic.2014.12.012

2. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Ran-
dom access to grammar-compressed strings and trees. SIAM J. Comput. 44(3),
513–539 (2015). https://doi.org/10.1137/130936889

3. Bojanczyk, M., Walukiewicz, I.: Forest algebras. In: Flum, J., Grädel, E., Wilke,
T. (eds.) Logic and Automata: History and Perspectives [in Honor of Wolfgang
Thomas]. Texts in Logic and Games, vol. 2, pp. 107–132. Amsterdam University
Press (2008)

4. Boneva, I., Niehren, J., Sakho, M.: Regular matching and inclusion on compressed
tree patterns with context variables. In: Mart́ın-Vide, C., Okhotin, A., Shapira, D.
(eds.) LATA 2019. LNCS, vol. 11417, pp. 343–355. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-13435-8 25

5. Cai, J., Paige, R.: Using multiset discrimination to solve language processing prob-
lems without hashing. Theor. Comput. Sci. 145(1&2), 189–228 (1995). https://doi.
org/10.1016/0304-3975(94)00183-J

6. Ganardi, M., Jez, A., Lohrey, M.: Balancing straight-line programs. In: Zucker-
man, D. (ed.) 60th IEEE Annual Symposium on Foundations of Computer Sci-
ence, FOCS 2019, Baltimore, Maryland, USA, 9–12 November 2019, pp. 1169–1183.
IEEE Computer Society (2019). https://doi.org/10.1109/FOCS.2019.00073

7. Gascón, A., Lohrey, M., Maneth, S., Reh, C.P., Sieber, K.: Grammar-based com-
pression of unranked trees. In: Fomin, F.V., Podolskii, V.V. (eds.) CSR 2018. LNCS,
vol. 10846, pp. 118–131. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-90530-3 11

8. Gasieniec, L., Kolpakov, R.M., Potapov, I., Sant, P.: Real-time traversal in
grammar-based compressed files. In: 2005 Data Compression Conference (DCC
2005), Snowbird, UT, USA, 29–31 March 2005, p. 458. IEEE Computer Society
(2005). https://doi.org/10.1109/DCC.2005.78

9. Hucke, D., Lohrey, M., Reh, C.P.: The smallest grammar problem revisited. In:
Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS, vol. 9954, pp. 35–
49. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46049-9 4

10. Jez, A.: Faster fully compressed pattern matching by recompression. ACM Trans.
Algorithms 11(3), 20:1–20:43 (2015). https://doi.org/10.1145/2631920

11. Lohrey, M.: Grammar-based tree compression. In: Potapov, I. (ed.) DLT 2015.
LNCS, vol. 9168, pp. 46–57. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21500-6 3

https://doi.org/10.1016/j.ic.2014.12.012
https://doi.org/10.1137/130936889
https://doi.org/10.1007/978-3-030-13435-8_25
https://doi.org/10.1007/978-3-030-13435-8_25
https://doi.org/10.1016/0304-3975(94)00183-J
https://doi.org/10.1016/0304-3975(94)00183-J
https://doi.org/10.1109/FOCS.2019.00073
https://doi.org/10.1007/978-3-319-90530-3_11
https://doi.org/10.1007/978-3-319-90530-3_11
https://doi.org/10.1109/DCC.2005.78
https://doi.org/10.1007/978-3-319-46049-9_4
https://doi.org/10.1145/2631920
https://doi.org/10.1007/978-3-319-21500-6_3
https://doi.org/10.1007/978-3-319-21500-6_3

26 C. P. Reh and K. Sieber

12. Lohrey, M., Maneth, S., Reh, C.P.: Constant-time tree traversal and subtree equal-
ity check for grammar-compressed trees. Algorithmica 80(7), 2082–2105 (2018).
https://doi.org/10.1007/s00453-017-0331-3

13. Maneth, S., Peternek, F.: Constant delay traversal of compressed graphs. In: Bilgin,
A., Marcellin, M.W., Serra-Sagristà, J., Storer, J.A. (eds.) 2018 Data Compression
Conference, DCC 2018, Snowbird, UT, USA, 27–30 March 2018, pp. 32–41. IEEE
(2018). https://doi.org/10.1109/DCC.2018.00011

14. Matsubara, W., Inenaga, S., Ishino, A., Shinohara, A., Nakamura, T., Hashimoto,
K.: Efficient algorithms to compute compressed longest common substrings and
compressed palindromes. Theor. Comput. Sci. 410(8–10), 900–913 (2009). https://
doi.org/10.1016/j.tcs.2008.12.016

15. Schieber, B., Vishkin, U.: On finding lowest common ancestors: simplification and
parallelization. SIAM J. Comput. 17(6), 1253–1262 (1988). https://doi.org/10.
1137/0217079

https://doi.org/10.1007/s00453-017-0331-3
https://doi.org/10.1109/DCC.2018.00011
https://doi.org/10.1016/j.tcs.2008.12.016
https://doi.org/10.1016/j.tcs.2008.12.016
https://doi.org/10.1137/0217079
https://doi.org/10.1137/0217079

Towards Efficient Interactive
Computation of Dynamic Time

Warping Distance

Akihiro Nishi1, Yuto Nakashima1 , Shunsuke Inenaga1,2(B) ,
Hideo Bannai3 , and Masayuki Takeda1

1 Department of Informatics, Kyushu University, Fukuoka, Japan
{yuto.nakashima,inenaga,takeda}@inf.kyushu-u.ac.jp

2 PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan
3 M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan

hdbn.dsc@tmd.ac.jp

Abstract. The dynamic time warping (DTW) is a widely-used method
that allows us to efficiently compare two time series that can vary in
speed. Given two strings A and B of respective lengths m and n, there is
a fundamental dynamic programming algorithm that computes the DTW
distance dtw(A, B) for A and B together with an optimal alignment in
Θ(mn) time and space. In this paper, we tackle the problem of inter-
active computation of the DTW distance for dynamic strings, denoted
D2TW, where character-wise edit operation (insertion, deletion, substi-
tution) can be performed at an arbitrary position of the strings. Let M
and N be the sizes of the run-length encoding (RLE) of A and B, respec-
tively. We present an algorithm for D2TW that occupies Θ(mN + nM)
space and uses O(m+n+#chg) ⊆ O(mN +nM) time to update a com-
pact differential representation DS of the DP table per edit operation,
where #chg denotes the number of cells in DS whose values change after
the edit operation. Our method is at least as efficient as the algorithm
recently proposed by Froese et al. running in Θ(mN + nM) time, and is
faster when #chg is smaller than O(mN +nM) which, as our preliminary
experiments suggest, is likely to be the case in the majority of instances.

1 Introduction

The dynamic time warping (DTW) is a classical and widely-used method that
allows us to efficiently compare two temporal sequences or time series that can
vary in speed. A fundamental dynamic programming algorithm computes the
DTW distance dtw(A,B) for two strings A and B together with an optimal
alignment in Θ(mn) time and space [12], where |A| = m and |B| = n. This
algorithm allows one to update the DP table D for dtw(A,B) in O(m) time
(resp. O(n) time) when a new character is appended to B (resp. to A).

In this paper, we introduce the “dynamic” DTW problem, denoted D2TW,
where character-wise edit operation (insertion, deletion, substitution) can be

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 27–41, 2020.
https://doi.org/10.1007/978-3-030-59212-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_3&domain=pdf
http://orcid.org/0000-0001-6269-9353
http://orcid.org/0000-0002-1833-010X
http://orcid.org/0000-0002-6856-5185
http://orcid.org/0000-0002-6138-1607
https://doi.org/10.1007/978-3-030-59212-7_3

28 A. Nishi et al.

performed at an arbitrary position of the strings. More formally, we wish to
maintain a (space-efficient) representation of D that can dynamically be modi-
fied according to a given operation. This representation should be able to quickly
answer the value of D [m,n] = dtw(A,B) upon query, together with an optimal
alignment achieving dtw(A,B). This kind of interactive computation for (a rep-
resentation of) D can be of practical merits, e.g. when simulating stock charts,
or editing musical sequences. Another example of applications of D2TW is a
sliding window version of DTW which computes dtw(A,B[j..j + d − 1]) between
A and every substring B[j..j + d − 1] of B of arbitrarily fixed length d.

Incremental/decremental computation of a DP table is a restricted version
of the aforementioned interactive computation, which allows for prepending a
new character to B, and/or deleting the leftmost character from B. A number
of incremental/decremental computation algorithms have been proposed for the
unit-cost edit distance and weighted edit distance: Kim and Park [9] showed an
incremental/decremental algorithm for the unit-cost edit distance that occupies
Θ(mn) space and runs in O(m+n) time per operation. Hyyrö et al. [7] proposed
an algorithm for the edit distance with integer weights which uses Θ(mn) space
and runs in O(min{c(m+n),mn}) time per operation, where c is the maximum
weight in the cost function. This translates into O(m + n) time under constant
weights. Schmidt [13] gave an algorithm that uses Θ(mn) space and runs in
O(n log m) time per operation for a general weighted edit distance. Hyyrö and
Inenaga [5] presented a space efficient alternative to incremental/decremental
unit-cost edit distance computation which runs in O(m + n) time per operation
but uses only Θ(mN + nM) space, where M and N are the sizes of run-length
encoding (RLE) of A and B, respectively. Since M ≤ m and N ≤ n always
hold, the mN + nM terms can be much smaller than the mn term for strings
that contain many long character runs. Later, Hyyrö and Inenaga [6] presented
a space-efficient alternative for edit distance with integer weights, which runs in
O(min{c(m + n),mn}) time per operation and requires Θ(mN + nM) space.

Fully-dynamic interactive computation for the (weighted) edit distance was
also considered: Let j∗ be the position in B where the modification has been
performed. For the unit cost edit distance, Hyyrö et al. [8] presented a rep-
resentation of the DP table which uses Θ(mn) space and can be updated in
O(min{rc(m + n),mn}) time per operation, where r = min{j∗, n − j∗ + 1}
and c is the maximum weight. They also showed that there exist instances that
require Ω(min{rc(m + n),mn}) time to update their data structure per oper-
ation. Very recently, Charalampopoulos et al. [3] showed how to maintain an
optimal (weighted) alignment of two fully-dynamic strings in Õ(n min{√

n, c})
time per operation, where m = n.

While computing longest common subsequence (LCS) and weighted edit dis-
tance of strings of length n can both be reduced to computing DTW of strings of
length O(n) [1,10], a reduction to the other direction is not known. It thus seems
difficult to directly apply any of the aforementioned algorithms to our D2TW
problem. Also, a conditional lower bound suggests that strongly sub-quadratic

Towards Efficient Interactive Computation of DTW Distance 29

DTW algorithms are unlikely to exist [1,2]. Thus, any method that recomputes
the nav̈e DP table D from scratch should take almost quadratic time per update.

Our Contribution. This paper takes the first step towards an efficient solution
to D2TW. Namely, we present an algorithm for D2TW that occupies Θ(mN +
nM) space and uses O(m + n + #chg) time to update a compact differential
representation DS for the DP table D per edit operation, where #chg denotes
the number of cells in DS whose values change after the edit operation. Since
#chg = O(mN + nM) always holds, our method is always at least as efficient
as the näıve method that recomputes the full DP table D in Θ(mn) time, or
the algorithm of Froese et al. [4] that recomputes another sparse representation
of D in Θ(mN + nM) time. While there exist worst-case instances that give
#chg = Ω(mN +nM), our preliminary experiments suggest that, in many cases,
#chg can be much smaller than the size of DS which is Θ(mN + nM).

Technically our algorithm is most related to Hyyrö et al.’s method [7,8] and
Froese et al.’s method [4], but our algorithm is not straightforward from these.

Omitted proofs can be found in a full version of this paper [11].

2 Preliminaries

We consider sequences (strings) of characters from an alphabet Σ of real num-
bers. Let A = a1, . . . , am be a string consisting of m characters from Σ. The
run-length encoding rle(A) of string A is a compact representation of A such
that each maximal run of the same characters in A is represented by a pair of
the character and the length of the run. More formally, let N denote the set
of positive integers. For any non-empty string A, rle(A) = ae1

1 · · · aeM
M , where

aI ∈ Σ and eI ∈ N for any 1 ≤ I ≤ M , and aI �= aI+1 for any 1 ≤ I < M .
Each aeI

I in rle(A) is called a (character) run, and eI is called the exponent of
this run. The size of rle(A) is the number M of runs in rle(A). E.g., for string
A = aacccccccbbabbbb of length 16, rle(A) = a2c7b2a1b4 and its size is 5.

Dynamic time warping (DTW) is a commonly used method to compare two
temporal sequences that may vary in speed. Consider two strings A = a1, . . . , am

and B = b1, . . . , bn. To formally define the DTW for A and B, we consider
an m × n grid graph Gm,n such that each vertex (i, j) has (at most) three
directed edges; one to the lower neighbor (i + 1, j) (if it exists), one to the
right neighbor (i, j + 1) (if it exists), and one to the lower-right neighbor
(i + 1, j + 1) (if it exists). A path in Gm,n that starts from vertex (1, 1) and
ends at vertex (m,n) is called a warping path, and is denoted by a sequence
(1, 1), . . . , (i, j), . . . , (m,n) of adjacent vertices. Let Pm,n be the set of all warp-
ing paths in Gm,n. Note that each warping path in Pm,n corresponds to an
alignment of A and B. The DTW for strings A and B, denoted dtw(A,B), is
defined by dtw(A,B) = minp∈Pm,n

√∑
(i,j)∈p(ai − bj)2.

The fundamental Θ(mn)-time and space solution for computing dtw(A,B),
given in [12], fills an m × n dynamic programming table D such that D [i, j] =
dtw(A[1..i], B[1..j])2 for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Therefore, after all the cells

30 A. Nishi et al.

Fig. 1. In this example where A = dcbbccda and B = acbeeaad, the values of Θ(mn)
cells of the DP table for dtw(A, B) change after the edit operation on B (here, the first
character B[1] = a of B was deleted).

of D are filled, the desired result dtw(A,B) can be obtained by
√

D [m,n]. The
value for each cell D [i, j] is computed by the following well-known recurrence:

D [1, 1] = (a1 − b1)2,
D [i, 1] = D [i − 1, 1] + (ai − b1)2 for 1 < i ≤ m,
D [1, j] = D [1, j − 1] + (a1 − bj)2 for 1 < j ≤ n,
D [i, j] = min{D [i, j − 1],D [i − 1, j],D [i − 1, j − 1]} + (ai − bj)2

for 1 < i ≤ m and 1 < j ≤ n.

(1)

In the rest of this paper, we will consider the problem of maintaining a
representation for D , each time one of the strings, B, is dynamically modified
by an edit operation (i.e. single character insertion, deletion, or substitution)
on an arbitrary position in B. We call this kind of interactive computation of
dtw(A,B) as the dynamic DTW computation, denoted by D2TW.

Let B ′ denote the string after an edit operation is performed on B, and D ′

denote the dynamic programming table D after it has been updated to corre-
spond to dtw(A,B ′). In a special case where the edit operation is performed
at the right end of B, where we have B ′ = Bc (insertion), B ′ = B[1..n − 1]
(deletion) or B ′ = B[1..n − 1]c (substitution) with a character c ∈ Σ, then D
can easily be updated to D ′ in O(m) time by simply computing a single column
at index j = n or j = n + 1 using recurrence (1).

As in Fig. 1, in the worst case, the values of Θ(mn) cells of the DP table for
dtw(A,B) can change after an edit on B. The following lemma gives a stronger
statement that updating D to D ′ in our D2TW scenario cannot be amortized:

Lemma 1. There are strings A, B and a sequence of k edits on B such that
Θ(kmn) cells in D ′ have different values in the corresponding cells in D.

3 Our D2TW Algorithm Based on RLE

We first explain the data structures which are used in our algorithm.

Towards Efficient Interactive Computation of DTW Distance 31

Differential Representation DR of D. The first idea of our algorithm is to
use a differential representation DR of D : Each cell of DR contains two fields that
respectively store the horizontal difference and the vertical difference, namely,
DR[i, j].U = D [i, j] − D [i − 1, j] and DR[i, j].L = D [i, j] − D [i, j − 1]. We let
DR[i, 1].L = 0 for any 1 ≤ i ≤ m and DR[1, j].U = 0 for any 1 ≤ j ≤ n. The
diagonal difference D [i, j]−D [i−1, j−1] can easily be computed from DR[i, j].U
and DR[i, j].L and thus is not explicitly stored in DR[i, j].

In our algorithm we make heavy use of the following lemma:

Lemma 2. For any 1 < i ≤ m,

DR[i, j].U =

{
(ai − b1)2 if j = 1,

z − DR[i − 1, j].L if 2 ≤ j ≤ n,

and for any 1 < j ≤ n,

DR[i, j].L =

{
(a1 − bj)2 if i = 1,

z − DR[i, j − 1].U if 2 ≤ i ≤ m,

where z = min{DR[i − 1, j].L, DR[i, j − 1].U, 0} + (ai − bj)2.

Proof. DR[i, 1].U = (ai − b1)2 and DR[1, j].L = (a1 − bj)2 are clear from recur-
rence (1). Now we consider 1 < i ≤ m and 1 < j ≤ n, and let d = D [i− 1, j − 1],
x = DR[i − 1, j].L, y = DR[i, j − 1].U , and d + z = D[i, j]. Then we have
D [i − 1, j] = d + x and D [i, j − 1] = d + y (see Fig. 2). It follows from the def-
inition of DR that DR[i, j].U = D [i, j] − D [i − 1, j] = z − x and DR[i, j].L =
D [i, j]−D [i, j −1] = z −y. Since D [i, j] = min{D [i−1, j −1],D [i−1, j],D [i, j −
1]}+(ai−bj)2 by recurrence (1), we obtain d+z = min{d, d+x, d+y}+(ai−bj)2

which leads to z = min{x, y, 0} + (ai − bj)2. ��
RLE-Based Sparse Differential Representation DS . The second key idea
of our algorithm is to divide the dynamic programming table D into “boxes”
that are defined by intersections of maximal runs of A and B. Note that D
contains M × N such boxes. Let rle(A) = Ak1

1 . . . AkM

M and rle(B) = Bl1
1 . . . BlN

N

be the RLEs of A and B. Let iIT =
∑I−1

i ki + 1, iIB =
∑I

i ki, jJL =
∑J−1

j lj + 1,
and jJR =

∑J
j lj . We define a sparse table DS for DR that consists only of the

rows and columns on the borders of the maximal runs in A and B. Namely,
DS is a sparse table that only stores the rows iIT, iIB (1 ≤ I ≤ M) and the
columns jJL , jJR (1 ≤ J ≤ N), of DR (see Fig. 3). Each row and column of DS is
implemented by a linked list as follows: each cell DS [i, j] has four links to the
upper, lower, left, and right neighbors in DS (if these neighbors exist), plus a
diagonal link to the right-lower direction. This diagonal link from DS [i, j] points
to the first cell DS [i + h, j + h] that is reached by following the right-lower
diagonal path from DS [i, j], namely, h ≥ 0 is the smallest integer such that
i + h = iIB or j + h = jJL . Clearly DS occupies Θ(mN + nM) space. DS can
answer dtw(A,B) = D [m,n] in O(m + n) time by tracing O(m + n) cells of DS
from (1, 1) to (m,n).

32 A. Nishi et al.

Fig. 2. Illustration for Lemma 2 which
depicts the corresponding cells of the
dynamic programming table D , where
D [i − 1, j − 1] = d, D [i − 1, j] = d + x,
D [i, j − 1] = d + y, and D[i, j] = d + z.

Fig. 3. Illustration for DS that consists
only of the cells of DR corresponding to
the maximal run boundaries of A and
B (white rows and columns). The gray
regions that are surrounded by the box
boundaries are not stored in DS .

For each 1 ≤ I < M and 1 ≤ J < N , we consider the region of DR that is
surrounded by the borders of the Ith and (I + 1)th runs of A, and the Jth and
(J + 1)th runs of B. This region is called a box for I, J , and is denoted by BI,J .
For ease of description, we will sometimes refer to a box BI,J also in D and DS .

3.1 Updating DS After an Edit Operation

Suppose that an edit operation has been performed at position j∗ of string B and
let B′ denote the edited string. Let D ′ denote the dynamic programming table
for dtw(A,B′), and DR′ the difference representation for D ′. As Fig. 4 shows,
the number of changed cells in DR′ can be much smaller than that of changed
cells in D ′ (see also Fig. 1).

Fig. 4. For the running example from Fig. 1, only the gray cells have different values
in the difference representations DR (left) and DR′ (right).

Towards Efficient Interactive Computation of DTW Distance 33

Let DS ′ denote the sparse table for DR′. Since DS consists only of the bound-
ary cells, the number of changed cells in DS ′ can even be much smaller. In what
follows, we show how to efficiently update DS to DS ′.

Because the prefix B[1..j∗−1] remains unchanged after the edit operation, for
any j < j∗ we have DR[i, j] = DR′[i, j] by Lemma 2 and recurrence (1). Hence,
we can restrict ourselves to the indices j ≥ j∗. We define � as a correcting offset
of string indices before and after the update: � = −1 if a character has been
inserted at position j∗ of B, � = 1 if a character has been deleted from position
j∗ of B, and � = 0 otherwise. Now, for any j ≥ j∗, B′[j] = B[j + �] and column
j in DR′ corresponds to column j + � in DR.

Let BI,J be any box on DS ′. For the the top row iIT of BI,J , we use a linked
list ΔI,J

T that stores the column indices j (jJL ≤ j ≤ jJR) such that DS [iIT, j+�] �=
DS ′[iIT, j], in increasing order. We also compute, in each element of the list, the
value for D ′[iIT, j] of the corresponding column index j. We use similar lists
ΔI,J

B , ΔI,J
L , and ΔI,J

R for the bottom row, left column, and right column of BI,J ,
respectively. We compute these lists when an edit operation is performed to
string B, and use them to update DS to DS ′ efficiently.

Let #chg denote the number of cells in our sparse representation such that
DS [i + �, j] �= DS ′[i, j]. In the sequel, we prove:

Theorem 1. Our D2TW algorithm updates DS to DS ′ in O(m+n+#chg) time.

Initial Step. Suppose that j∗ is in the Jth run of string B. Let BI,J be any
of the M boxes of DR that contain column j∗, where jJL ≤ j∗ ≤ jJR. Due to
Lemma 2, (1, j∗) is the only cell in the first row where we may have DS ′[1, j∗] �=
DS [1, j∗ +�]. DS ′[1, j∗] can be easily computed in O(1) time by Lemma 2. Then,
D ′[1, j∗] can be computed in O(j∗) ⊆ O(n) time by tracing the first row and
using DS ′[1, j].L for increasing j = 1, . . . , j∗. The list ΔI,J

T only contains j∗

(coupled with D ′[1, j∗]) if DS ′[1, j∗] �= DS [1, j∗ + �], and it is empty otherwise.
Editing string B at position j∗ incurs some structural changes to DS : (a)

BI,J gets wider by one (insertion of the same character to a run), (b) BI,J gets
narrower by one (deletion of a character), (c) BI,J is divided into 2M or 3M
boxes (insertion of a different character to a run, or character substitution).

In cases (a) and (b), the diagonal links of BI,J need to be updated. A crucial
observation is that the total number of such diagonal links to update is bounded
by m for all the M boxes B1,J , . . . , BM,J , since the destinations of such diagonal
links are within the same column of DS ′ (jJR + 1 in case (a), and jJR − 1 in case
(b)). For each box BI,J , if jJR − jJL ≥ iIT − iIB (i.e. BI,J is a square or a horizontal
rectangle), then we scan the top row iIT from right to left and fix the diagonal
links until encountering the first cell in iIT whose diagonal link needs no updates
(see Fig. 5). The case with jJR − jJL < iIT − iIB (i.e. BI,J is a vertical rectangle)
can be treated similarly. By the above observation, these costs for all boxes BI,J

that contain the edit position j∗ sum up to O(m).
In case (a), we shift the right column jJR of DS to the right by one position,

and reuse it as the right column jJR +1 of DS ′. This incurs two new cells (iIT, jJR)
and (iIB, jJR) in DS ′ (the gray cells in Fig. 5). We can compute DS ′[iIT, jJR] in O(1)

34 A. Nishi et al.

Fig. 5. Case (a) of the initial step. The
dashed arcs are the old diagonal links in
DS , and the sold arcs are the modified
diagonal links in DS ′. The gray cells
depict cells (iIT, jJR) and (iIB, jJR).

Fig. 6. Case (c) of the initial step,
where character substitution has been
performed at position j∗. The dashed
arcs are the old diagonal links in DS
from row iIT up to j∗, and the sold arcs
are the modified diagonal links from
new column j∗ in DS ′.

time using Lemma 2. Now consider to compute DS ′[i, jJR + 1] for the new right
column. Since this right column initially stores DS [i, jJR] for the old DS , using
Lemma 2, we can compute DS ′[i, jJR+1] in increasing order of i = 1, . . . , m, from
top to bottom, in O(1) time each. We can compute D ′[1, jJR+1] in O(jJR) time by
simply scanning the first row. Then, we can compute D ′[i, jJR + 1] for increasing
i = 2, . . . , m, using DS ′[i, jJR + 1], and construct ΔI,J

R . This takes a total of
O(jJR +m) ⊆ O(m+n) time. Finally, DS ′[iIB, jJR] is computed from D ′[iIB, jJR +1]
and DS ′[iIB, jJR + 1].L in O(1) time. Case (b) can be treated similarly.

For case (c), we consider a sub-case where a character substitution was per-
formed completely inside a run of B, at position j∗. This divides an existing box
BI,J into three boxes BI,J , BI,J+1, and BI,J+2. Thus, there appear three new
columns j∗ − 1, j∗, and j∗ + 1 in DS ′. Then, the diagonal links for these new
columns can be computed in O(1) time each, by scanning row iIT from j∗ + 1,
from right to left (see Fig. 6). The DS ′ values for the cells in these new columns,
as well as the D ′ values for column j∗ +1, can also be computed in similar ways
to cases (a) and (b). The other sub-cases of (c) can be treated similarly.

Updating Cells on Row iIT and Column jJL . In what follows, suppose that
we are given a box BI,J to the right of the edit position j∗, in which some
boundary cell values may have to be updated. For ease of exposition, we will
discuss the simplest case with substitution where the column indices do not
change between DS and DS ′. The cases with insertion/deletion can be treated
similarly by considering the offset value � appropriately.

Now our task is to quickly detect the boundary cells (i, j) of BI,J such that
DS [i, j] �= DS ′[i, j], and to update them. We assume that the boundary cell
values of the preceding boxes BI−1,J and BI,J−1 have already been computed.

We consider how to detect the cells on the top boundary row iIT and the cells
on the left boundary column jJL of box BI,J that need to be updated, and how

Towards Efficient Interactive Computation of DTW Distance 35

to update them. For this sake, we use the following lemma on the values of DR,
which is immediate from Lemma 2:

Lemma 3. Let 1 ≤ i ≤ m and 1 ≤ j ≤ n. Suppose that for any cell (i′, j′) with
i′ < i or j′ < j, the value of DR′[i′, j′] has already been computed. If DR[i, j] �=
DR′[i, j], then DR[i, j−1].U �= DR′[i, j−1].U or DR[i−1, j].L �= DR′[i−1, j].L.

Intuitively, Lemma 3 states that the cell (i, j) such that DR[i, j] �= DR′[i, j]
must be propagated from its left neighbor or its top neighbor. We use this lemma
for updating the boundaries of each box BI,J stored in DS . Recall that the values
on the preceding row iIT − 1 = iI−1

B and on the preceding column jJL − 1 = jJ−1
R

have already been updated. Then, the cells on iIT and jJL of box BI,J with
DS [i, j] �= DS ′[i′, j′] can be found in constant time each, from the lists ΔI−1,J

B

and ΔI,J−1
R maintained for the preceding row iIT−1 = iI−1

B and preceding column
jJL − 1 = jJ−1

R , respectively.
We process column indices ΔI−1,J

B in increasing order, and suppose that
we are currently processing column index ĵ ∈ ΔI−1,J

B in the bottom row iI−1
B

of the preceding box BI−1,J . According to the above arguments, this indicates
that the cells (iIT, j) in the top row iIT of BI,J that need to be updated (i.e.,
DS [iIT, j] �= DS ′[iIT, j]). We assume that, for any j′ with jJL ≤ j′ < ĵ, the value
of DS ′[iIT, j′] has already been computed. Also, we have maintained a partial list
for ΔI,J

T where the last element of this partial list stores the largest j′′ such that
jJL ≤ j′′ < ĵ and DS [iIT, j′′] �= DS ′[iIT, j′′], together with the value of D ′[iIT, j′′].
Now it follows from Lemma 2 that both DS ′[iIT, ĵ].U and DS ′[iIT, ĵ].L can be
respectively computed in constant time from DS ′[iIT−1, ĵ].L and DS ′[iIT, ĵ−1].U ,
and thus we can check whether DS [iIT, ĵ] �= DS ′[iIT, ĵ] in constant time as well.
In case DS [iIT, ĵ] �= DS ′[iIT, ĵ], we append ĵ to the partial list for ΔI,J

T . By
the definition of DS , we have D ′[iIT, ĵ] = D ′[iIT − 1, ĵ] − DS ′[iIT, ĵ].U . Since
D ′[iIT − 1, ĵ] = D ′[iI−1

B , ĵ] is stored with the current column index ĵ in the list
ΔI−1,J

B , D ′[iIT, ĵ] can also be computed in constant time.
Suppose we have processed cell (iIT, ĵ). We perform the same procedure as

above for the right-neighbor cells (iIT, ĵ + p) with p = 1 and increasing p, until
encountering the first cell (iIT, ĵ + p) such that (1) DS [iIT, ĵ + p] = DS ′[iIT, ĵ + p],
(2) ĵ +p ∈ ΔI−1,J

B , or (3) ĵ +p = jJR +1. In cases (1) and (2), we move on to the
next element of in ΔI−1,J

B , and perform the same procedure as above. We are
done when we encounter case (3) or ΔI−1,J

B becomes empty. The total number
of cells (iIT, ĵ + p) for all boxes in DS ′ is bounded by #chg.

In a similar way, we process row indices ΔI,J−1
R in increasing order, update

the cells on the left column jJL , and maintain another partial list for ΔI,J
L .

Updating Cells on Row iIB and Column jJR. Let us consider how to detect
the cells on the bottom row iIB and the cells on the right column jJR of box BI,J

that need to be updated, and how to update them.
The next lemma shows monotonicity on the values of D inside each BI,J .

36 A. Nishi et al.

Fig. 7. Diagonal propagation of
DR[i, j] �= DR′[i, j] inside box BI,J .

Fig. 8. Illustration for the case where
s > t in Lemma 6.

Lemma 4 [4]. For any (i, j) with 1 ≤ i ≤ m and jJL < j ≤ jJR, D [i, j] ≥
D [i, j − 1]. For any (i, j) with iIT < i ≤ iIB and 1 ≤ j ≤ n, D [i, j] ≥ D [i − 1, j].

The next corollary is immediate from Lemma 4.

Corollary 1. For any cell (i, j) with 1 ≤ i ≤ m and jJL < j ≤ jJR, DR[i, j].L ≥
0. Also, for any cell (i, j) with iIT < i ≤ iIB and 1 ≤ j ≤ n, DR[i, j].U ≥ 0.

Now we obtain the next lemma, which is a key to our algorithm.

Lemma 5. For any cell (i, j) with iIT + 1 < i ≤ iIB and jJL + 1 < j ≤ jJR,
DR[i, j] = DR[i − 1, j − 1].

Proof. By Corollary 1, DR[i−1, j].L ≥ 0 and DR[i, j−1].U ≥ 0 for iIT+1 < i ≤ iIB
and jJL + 1 < j ≤ jJR. Thus clearly min{DR[i − 1, j].L,DR[i, j − 1].U, 0} = 0.
Therefore, for the value of z in Lemma 2, we have z = (ai − bj)2, which leads to

DR[i, j].U = (ai − bj)2 − DR[i − 1, j].L (2)
DR[i, j].L = (ai − bj)2 − DR[i, j − 1].U (3)

By applying Eq. (3) to the DR[i − 1, j].L term of Eq. (2), we get

DR[i, j].U = (ai − bj)2 − ((ai−1 − bj)2 − DR[i − 1, j − 1].U).

Recall that ai = ai−1, since we are considering cells in the same box BI,J . Thus
DR[i, j].U = DR[i − 1, j − 1].U . By applying Eq. (2) to the DR[i, j − 1].U term
of Eq. (3), we similarly obtain DR[i, j].L = DR[i − 1, j − 1].L. ��

For any iIT + 1 < i ≤ iIB and jJL + 1 < j ≤ jJR, let � be the smallest positive
integer that satisfies i − � = iIT + 1 or j − � = jJL + 1. By Lemma 5, for any cell
(i, j) on the bottom row iIB or on the right column jJR, we have DS [i, j] = DR[i−
�, j − �] and DS ′[i, j] = DR′[i − �, j − �]. This means that DS [i, j] �= DS ′[i, j] iff
DR[i−�, j−�] �= DR′[i−�, j−�]. Thus, finding cells (i, j) with DS [i, j] �= DS ′[i, j]
on the bottom row iIB or on the right column jJR reduces to finding cells (i′, j′)
with DR[i′, j′] �= DR′[i′, j′] on the row iIT +1 or on the column jJL +1. See Fig. 7.

Towards Efficient Interactive Computation of DTW Distance 37

We have shown how to compute ΔI,J
T for the top row iIT and ΔI,J

L for the left
column jJL . We here explain how to use ΔI,J

T (we can use ΔI,J
L in a symmetric

manner). We process column indices in ΔI,J
T in increasing order, and suppose

that we are currently processing column index ĵ ∈ ΔI,J
T in the top row iIT of the

current box BI,J . We check whether DR[iIT+1, ĵ] �= DR′[iIT+1, ĵ]. For this sake,
we need to know the values of DR[iIT + 1, ĵ] and DR′[iIT + 1, ĵ]. Recall that, by
Lemma 5, DR[iIT+1, ĵ] is equal to DR[iIT+1+h, ĵ+h] (= DS [iIT+1+h, ĵ+h]) on
the bottom row iIB (if iIT +1+h = iIB) or on the right column jJR (if ĵ +h = jJR),
where h > 0. Since the cell (iIT + 1 + h, ĵ + h) can be retrieved in constant time
by the diagonal link from the cell (iIT, ĵ − 1) on the top row iIT, we can compute
DR[iIT + 1, ĵ] in constant time, applying Lemma5 to the upper-left direction.

Computing DR′[iIT + 1, ĵ] is more involved. By Lemma 2, we can compute
DR′[iIT + 1, ĵ] from DR′[iIT, ĵ].L and DR′[iIT + 1, ĵ − 1].U . Since (iIT, ĵ) is on the
top row iIT, DR′[iIT, ĵ].L = DS ′[iIT, ĵ].L has already been computed. Consider
to compute DR′[iIT + 1, ĵ − 1].U . Since DR′[iIT + 1, ĵ − 1].U = D ′[iIT + 1, ĵ −
1] − D ′[iIT, ĵ − 1], it suffices to compute D ′[iIT, ĵ − 1] and D ′[iIT + 1, ĵ − 1]. By
definition, D ′[iIT, ĵ −1] = D ′[iIT, ĵ]−DR′[iIT, ĵ].L. Since ĵ ∈ ΔI,J

T , we can retrieve
the value of D ′[iIT, ĵ] from the current element of the list ΔI,J

T , in O(1) time.
Since DR′[iIT, ĵ].L = DS ′[iIT, ĵ].L, we can compute D ′[iIT, ĵ − 1] in O(1) time.

What remains is how to compute D ′[iIT + 1, ĵ − 1]. We use the next lemma.

Lemma 6. For any cell (i, j) with iIT + 1 < i ≤ iIB and jJL + 1 < j ≤ jJR, let
s = j − jJL and t = i − iIT. Then,

D [i, j] = D [iIT + max{t − s, 0}, jJL + max{s − t, 0}] + min{s, t} · (ai − bj)2.

Proof. Consider the case where s > t. By applying Lemma 4 to recurrence (1),
we obtain D [i, j] = D [i − 1, j − 1] + (ai − bj)2. Since ai = ai′ and bj = bj′ for
iIT < i′ < i and jJL < j′ < j, by repeatedly applying Lemma4 to the above
equation, we get D [i, j] = D [iIT, jJL + (s − t)] + t · (ai − bj)2. See also Fig. 8. The
case s ≤ t is similar and we obtain D [i, j] = D [iIT +(t− s), jJL]+ s · (ai − bj)2. By
merging the two equations for s > t and s ≤ t, we obtain the desired equation.

��
Let k = ĵ − jJL . Since jJL + 1 < ĵ, k ≥ 2. Since s = ĵ − 1 − jJL = k − 1,

t = iIT + 1 − iIT = 1, and k ≥ 2, we get s ≥ t. Thus it follows from Lemma 6 that

D ′[iIT+1, ĵ−1]=D ′[iIT, jJL+(k−2)]+(A[iIT]−B[ĵ])2=D ′[iIT, ĵ−2]+(A[iIT]−B[ĵ])2.

Since the value D ′[iIT, ĵ] is already computed and stored in the corresponding
element of ΔI,J

T , we can compute, in O(1) time, D ′[iIT, ĵ − 2] by

D ′[iIT, ĵ − 2] = D ′[iIT, ĵ] − DR′[iIT, ĵ].L − DR′[iIT, ĵ − 1].L
= D ′[iIT, ĵ] − DS ′[iIT, ĵ].L − DS ′[iIT, ĵ − 1].L.

Thus, we can determine in O(1) time whether DR[iIT + 1, ĵ] �= DR′[iIT + 1, ĵ],
and hence whether DS [iIT + 1 + h, ĵ + h] �= DS ′[iIT + 1 + h, ĵ + h].

38 A. Nishi et al.

Suppose DS [iIT + 1 + h, ĵ + h] �= DS ′[iIT + 1 + h, ĵ + h]. Then we need to
compute D ′[iIT + 1 + h, ĵ + h]. This can be computed in constant time using
Lemma 6, by D ′[iIT + 1 + h, ĵ + h] = D ′[iIT, ĵ − 1] + (h + 1) · (A[iIT] − B[ĵ])2,
where D ′[iIT, ĵ − 1] = D ′[iIT, ĵ] − DR′[iIT, ĵ].L. We add the column index ĵ + h to
list ΔI,J

B if iIT + 1 + h = iIB, and/or add the row index iIT + 1 + h to list ΔI,J
R if

ĵ + h = jJR, together with the value of D ′[iIT + 1 + h, ĵ + h].
The above process of computing DR′[iIT+1, ĵ] is illustrated in Fig. 9. Suppose

we have processed cell (iIT+1, ĵ). We perform the same procedure as above for the
right-neighbor cells (iIT+1, ĵ+q) with q = 1 and increasing q, until encountering
the first cell (iIT +1, ĵ +q) such that (1) DR[iIT +1, ĵ +q] = DR′[iIT +1, ĵ +q], (2)
ĵ + q ∈ ΔI,J

T , or (3) ĵ + q = jJR + 1. In cases (1) and (2), we remove ĵ from ΔI,J
T

and move to the next element of in ΔI,J
T . We are done when we encounter case

(3) or ΔI,J
T becomes empty. By Lemma 5, the total number of cells (iIT +1, ĵ +q)

for all boxes in DS ′ is O(#chg).

Batched Updates. Our algorithm can efficiently support batched updates for
insertion, deletion, substitution of a run of characters.

Theorem 2. Let B ′ be the string after a run-wise edit operation on B, and let
n′ = |B ′|. DS can be updated to DS ′ in O(m + max{n, n′} + #′

chg) time where
#′

chg denotes the number of cells where the values differ between DS and DS ′.

Fig. 9. Illustration for the process of computing DR′[iIT + 1, ĵ]. The gray cells show
those for which both values of D ′ and DR′ are unknown, the vertically striped cells
show those for which only the value of D ′ is known, the horizontally striped cells show
those for which only the value of DR′ is known, and the white cells show those for which
both values of D ′ and DR′ are known. At the final step (lower-right), the desired value
DR′[iIT + 1, ĵ] has been computed.

Towards Efficient Interactive Computation of DTW Distance 39

Since n′ is the length of the string |B ′| after modification, #′
chg in Theorem 2

is bounded by O(mN + max{n′, n}M). Thus, we can perform a batched run-
wise update on our sparse table DS in worst-case O(m + max{n, n′} + #′

chg) ⊆
O(mN + max{n, n′}M) time. Let k be the total number of characters that are
involved in a run-wise batched edit operation from B to B ′ (namely, a run of k
characters is inserted, a run of k characters is deleted, or a run of k1 characters
is substituted for a run of k2 characters with k = k1 + k2). Then a näıve k-
time applications of Theorem1 to the run-wise batched edit operation requires
O(k(m + n + #chg)) ⊆ O(k(mN + nM)) time. Since n′ ≤ n + k, the batched
update of Theorem 2 is faster than the näıve method by a factor of k whenever
k ∈ O(n). We also remark that our batched update algorithm is at least as
efficient as building the sparse DP table of Froese et al.’s algorithm [4] from
scratch using Θ(mN + max{n, n′}M) time and space.

3.2 Evaluation of #chg

As was proven previously, our D2TW algorithm works in O(m+n+#chg) time
per edit operation on one of the strings. In this subsection, we analyze how large

Fig. 10. Comparisons of the values of #chg and the sizes of the sparse table DS on
two randomly generated strings A and B. Upper: With fixed RLE size N = M = 50
and varying lengths n = m from 50 to 500 (horizontal axis). Lower: With fixed length
n = m = 500 and varying RLE sizes N = M from 10 to 500 (horizontal axis).

40 A. Nishi et al.

the #chg would be in theory and practice. Although #chg = Θ(mN + nM) in
the worst case for some strings (Theorem 3), our preliminary experiments shown
below suggest that #chg can be much smaller than mN + nM in many cases.

Theorem 3. Consider strings A = Ak
1 · · · Ak

M and B = Bl
1 · · · Bl

N of RLE sizes
M and N , respectively, where |A| = m = kM and |B| = n = lN . We assume
lexicographical orders of characters as AI−1 > AI for 1 < I ≤ M , BJ−1 < BJ for
1 < J ≤ N , and AM > BN . If we delete B[1] from B, then #chg = Ω(mN+nM).

We have also conducted preliminary experiments to estimate practical values
of #chg, using randomly generated strings. For simplicity, we set m = n and
M = N for all experiments. We fixed the alphabet size |Σ| = 26 throughout
our experiments. In the first experiment, we fixed the RLE size M = N = 50,
randomly generated two strings A and B of varying lengths m = n from 50
to 500, and compared the values of #chg and the sizes of DS . For each m, we
randomly generated 50 pairs of strings A and B of length m each, and took the
average values for #chg and the sizes of DS when B[1] was deleted from B. In
the second experiment, we fixed the string length m = n = 500 and randomly
generated two strings A and B of varying RLE sizes M = N from 10 to 500. For
each M , we randomly generated 50 pairs of strings A and B of RLE size M , and
took the average values for #chg and the sizes of DS when B[1] was deleted from
B. The results are shown in Fig. 10. In both experiments, #chg is much smaller
than the size of DS . It is noteworthy that even when the values of M (= N)
and m (= n) are close, the value of #chg stayed very small. This suggests that
our algorithm can be fast also on strings that are not RLE-compressible.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers
JP18K18002 (YN), JP17H01697 (SI), JP20H04141 (HB), JP18H04098 (MT), and JST
PRESTO Grant Number JPMJPR1922 (SI).

References

1. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other
sequence similarity measures. In: FOCS 2015, pp. 59–78 (2015)

2. Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string
problems and dynamic time warping. In: FOCS 2015, pp. 79–97 (2015)

3. Charalampopoulos, P., Kociumaka, T., Mozes, S.: Dynamic string alignment. In:
CPM 2020, pp. 9:1–9:13 (2020)

4. Froese, V., Jain, B.J., Rymar, M., Weller, M.: Fast exact dynamic time warping
on run-length encoded time series. CoRR abs/1903.03003 (2020)

5. Hyyrö, H., Inenaga, S.: Compacting a dynamic edit distance table by RLE com-
pression. In: Freivalds, R.M., Engels, G., Catania, B. (eds.) SOFSEM 2016. LNCS,
vol. 9587, pp. 302–313. Springer, Heidelberg (2016). https://doi.org/10.1007/978-
3-662-49192-8 25

6. Hyyrö, H., Inenaga, S.: Dynamic RLE-compressed edit distance tables under gen-
eral weighted cost functions. Int. J. Found. Comput. Sci. 29(4), 623–645 (2018)

https://doi.org/10.1007/978-3-662-49192-8_25
https://doi.org/10.1007/978-3-662-49192-8_25

Towards Efficient Interactive Computation of DTW Distance 41

7. Hyyrö, H., Narisawa, K., Inenaga, S.: Dynamic edit distance table under a general
weighted cost function. In: van Leeuwen, J., Muscholl, A., Peleg, D., Pokorný,
J., Rumpe, B. (eds.) SOFSEM 2010. LNCS, vol. 5901, pp. 515–527. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-11266-9 43

8. Hyyrö, H., Narisawa, K., Inenaga, S.: Dynamic edit distance table under a general
weighted cost function. J. Discret. Algorithms 34, 2–17 (2015)

9. Kim, S.R., Park, K.: A dynamic edit distance table. J. Discret. Algorithms 2,
302–312 (2004)

10. Kuszmaul, W.: Dynamic time warping in strongly subquadratic time: algorithms
for the low-distance regime and approximate evaluation. In: ICALP 2019, pp. 80:1–
80:15 (2019)

11. Nishi, A., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Towards efficient
interactive computation of dynamic time warping distance. CoRR abs/2005.08190
(2020). https://arxiv.org/abs/2005.08190

12. Sakoe, H., Chiba, S.: Dynamic programming algorithm optimization for spoken
word recognition. IEEE Trans. Acoust. Speech Signal Process. 26(1), 43–49 (1978)

13. Schmidt, J.P.: All highest scoring paths in weighted grid graphs and their applica-
tion in finding all approximate repeats in strings. SIAM J. Comput. 27(4), 972–992
(1998)

https://doi.org/10.1007/978-3-642-11266-9_43
https://arxiv.org/abs/2005.08190

Smaller Fully-Functional Bidirectional
BWT Indexes

Djamal Belazzougui1 and Fabio Cunial2,3(B)

1 CAPA, DTISI, Centre de Recherche sur l’Information Scientifique et Technique,
Algiers, Algeria

dbelazzougui@cerist.dz
2 Max Planck Institute for Molecular Cell Biology and Genetics (MPI-CBG),

Dresden, Germany
cunial@mpi-cbg.de

3 Center for Systems Biology Dresden (CSBD), Dresden, Germany

Abstract. Burrows-Wheeler indexes that support both extending and
contracting any substring of the text T of length n on which they are
built, in any direction, provide substantial flexibility in traversing the
text and can be used to implement several algorithms. The practical
appeal of such indexes is contingent on them being compact, and current
designs that are sensitive to the compressibility of the input take either
O(e + e) words of space, where e and e are the number of right and left
extensions of the maximal repeats of T , or O(r log(n/r) + r log(n/r))
words, where r and r are the number of runs in the Burrows-Wheeler
transform of T and of its reverse. In this paper we describe a fully-
functional bidirectional index that takes O(m + r + r) words, where m
is the number of maximal repeats of T , as well as a variant that takes
O(r + r) words.

Keywords: BWT · Suffix tree · Suffix-link tree · BWT runs ·
Maximal repeats · Bidirectional index

1 Introduction

Data structures that allow appending characters both to the left and to the
right side of any substring of a text are called bidirectional indexes, and have
been used extensively in bioinformatics. Such indexes are called fully-functional
if they also support removing characters from both sides: this enables applica-
tions that slide over the text a window whose size can change dynamically, and
whose position can move in both directions, like variable-order Markov models
and bidirectional, variable-order de Bruijn graphs (see [3] for more details on
applications). It is well-known that several classes of sequence datasets in post-
genome bioinformatics are highly compressible, and that it is desirable to have
indexes whose size is sensitive to some measure of compressibility. To date, the
only fully-functional bidirectional index that is sensitive to such a measure takes

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 42–59, 2020.
https://doi.org/10.1007/978-3-030-59212-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-59212-7_4

Smaller Fully-Functional Bidirectional BWT Indexes 43

O(e+ e) words of space, where e (respectively, e) is the number of right (respec-
tively, left) extensions of the maximal repeats of the input string T of length n
(defined in Sect. 2), and it implements all operations in O(log log n) time [3].
Since Theorem 1 in [3] can be applied to any suffix tree representation that
provides the necessary operations, one could also set up a fully-functional bidi-
rectional index that takes O(r log(n/r) + r log(n/r)) words and answers queries
in O(log(n/min{r, r}) log σ) time, where r (respectively, r) is the number of
runs in the Burrows-Wheeler transform of T (respectively, of its reverse) and σ
is the size of the alphabet, by using two synchronized instances of the run-length
compressed suffix tree described in [10].

In this paper we describe a fully-functional bidirectional index that takes
O(m + r + r) words of space, where m is the number of maximal repeats of the
input, and that is much simpler than the data structures in [10]. It is well known
that max{m, r} ≤ e, that m/r can be Θ(n) in families of very compressible
strings (like anb), and that r/m can be Θ(n) in other families of strings (e.g. when
σ ∈ Θ(n)), so there are no dominance relations between m and r that hold for
all strings [4,10]. In practice m if often smaller than r, and both are often signif-
icantly smaller than e [4]. The query time of such index is O(log log n+ t), where
t can be O(max{h, h} log log σ), O(σ), O(rσ/m), or O(log σ/ log(m/(r log σ))),
depending on design choices (see Sect. 3 for details), and where σ is the size of
the alphabet and h (respectively, h) is the height of the maximal repeat subgraph
of T (defined in Sect. 2). Such heights are themselves related to the compress-
ibility of the input, and they can be smaller than the height of the full suffix
trees in practice. Our index is practical, and a similar setup has already been
implemented e.g. in [8]. We then remove the space dependency on m, describing
a fully-functional bidirectional index that takes just O(r + r) words, and that
supports queries in O(H2 log log n) time, where H ≥ max{h, h} is the length of
a longest maximal repeat of the text.

Our data structures combine the run-length encoded Burrows-Wheeler trans-
form with pruned versions of the suffix tree topology that are similar to those
introduced in [8]. We use runs in the Burrows-Wheeler transform to define a
new category of redundant maximal repeats, whose information can be recon-
structed from partial isomorphisms between subtrees of the suffix tree connected
by sequences of Weiner links.

2 Preliminaries

Let Σ = [1..σ] be an integer alphabet, let # = 0 be a separator not in Σ,
and let T ∈ [1..σ]n−1 be a string. We denote with W the reverse of a string
W ∈ [0..σ]∗, i.e. string W written from right to left. A repeat is a string that
occurs at least twice in T . We call the set of characters a ∈ [0..σ] such that
Wa occurs in T# the right-extensions of W , and we call right-maximal a repeat
with at least two distinct right-extensions. The right-saturation of a substring
W of T is the shortest right-maximal substring WV of T (where V ∈ [1..σ]∗).
Left-extensions, left-maximality and left-saturation are defined symmetrically.

44 D. Belazzougui and F. Cunial

It is well-known that T can have at most n − 1 right-maximal substrings and at
most n − 1 left-maximal substrings. A maximal repeat is a repeat that is both
left- and right-maximal. We denote with mT the number of maximal repeats
of T . A maximal repeat W is called right-frontier if it has at least one right-
extension Wa that is not left-maximal. A right-frontier maximal repeat W is
called rightmost if no right-extension Wa with a ∈ [0..σ] is left-maximal. Left-
frontier and leftmost maximal repeats are defined symmetrically.

We denote with STT the suffix tree of T#, and with STT the suffix tree of T#.
We assume the reader to be already familiar with the basics of suffix trees, which
we do not further describe here. We denote by �(v) the label of a node v of a suffix
tree, and we say that v is the locus of all substrings W [1..k] of T where |�(u)| <
k ≤ |�(v)|, u is the parent of v, and W = �(v). We use STT (v) (respectively,
STT (W)) to denote the subtree of STT rooted at node v (respectively, rooted
at the node w with �(w) = W), and we indicate that two subtrees of STT are
isomorphic by writing STT (v) � STT (w) (respectively, STT (V) � STT (W)).
It is well-known that a substring W of T is right-maximal (respectively, left-
maximal) iff W = �(v) for some internal node v of STT (respectively, for some
internal node v of STT). A suffix link is an arc (v, v′) such that v and v′ are
nodes of STT and �(v) = a · �(v′) for some a ∈ [0..σ]. Suffix links and internal
nodes of STT form a tree, called the suffix-link tree of T and denoted by SLTT ,
and inverting the direction of all suffix links yields the so-called explicit Weiner
links, whose label is the character that each suffix link removed. Given an internal
node v and a character a ∈ [0..σ], it might also happen that string a�(v) occurs
in T but is not right-maximal, i.e. it is not the label of any internal node of
STT : every such left extension of an internal node that ends in the middle of an
edge is called implicit Weiner link, and its label is character a. An internal node
v of STT can have more than one outgoing Weiner link, and all such Weiner
links have distinct labels: in this case, �(v) is a maximal repeat, as well as the
label of a node in STT . Since left-maximality is closed under prefix operation,
the maximal repeats of T are all and only the nodes of STT that lie on paths
that start from the root and that end at nodes labelled by rightmost maximal
repeats: we call this the maximal repeat subgraph of STT .

We assume the reader to be familiar with the Burrows-Wheeler transform of
T#, which we denote with BWTT (we use BWTT to denote the BWT of T#)
and we do not further describe here. A run of BWTT is a maximal substring of
BWTT that contains exactly one distinct character. We denote by rT and rT the
number of runs in BWTT and BWTT , respectively, and we call run-length encoded
BWT (RLBWTT) any representation of BWTT that takes O(rT) words of space
and that supports the well-known rank and select operations (see e.g. [13,14,18]).
It is easy to implement a version of RLBWTT that supports rank and select in
O(log log n) time (see e.g. [4] and references therein). Note that the maximal
repeat subgraph of STT can have unary paths, but a run-length encoding of its
balanced parentheses representation takes O(rT) space, since such unary paths
are compressed and every rightmost maximal repeat can be charged to a distinct
BWT run. We call fully-functional bidirectional index [3] a data structure that,

Smaller Fully-Functional Bidirectional BWT Indexes 45

given a constant-space descriptor id(W) of any substring W of T , supports the
following operations: extendRight(id(W), a) = id(Wa) if Wa occurs in T for
a ∈ [0..σ], or an error otherwise; contractRight(id(W)) = id(V) if W = V a
occurs in T , or an error otherwise; extendLeft and contractLeft are defined
symmetrically. We consider bidirectional indexes based on the BWT, and we
use id(W) = (I(W,T), I(W, T), |W |), where I(W,T) is the function that maps a
substring W of T to the interval of W in BWT, i.e. to the interval of all suffixes of
T# that start with W . A bidirectional index is called synchronous if it updates
both I(W,T) and I(W, T) after every operation, and asynchronous if it updates
just one such interval after every operation, but allows to reconstruct the other
interval when needed [6]. We call fully-functional unidirectional index a data
structure that supports extend and contract operations on just one side of W : in
this case id(W) is either (I(W,T), |W |) or (I(W, T), |W |). See e.g. [12,17,19,20]
for a sampler of bidirectional and unidirectional indexes that support extension.

A contractLeft operation from a right-maximal substring of T (i.e. a suffix
link) can be implemented using just BWTT and a compact representation of the
topology of STT , as follows (see e.g. [5,15]). Let [i..j] be the interval in BWTT

of the source node v of the suffix link, and let �(v) = aW where a ∈ [0..σ] and
W ∈ [0..σ]∗. We convert v to [i..j] by accessing the leftmost and rightmost leaves
in the subtree of v. Let aWX and aWY be the suffixes of T that correspond
to positions i and j in BWTT , respectively, for some strings X and Y . Note
that the position i′ of WX in BWTT is selecta(BWTT , i − C[a]), the position
j′ of WY in BWTT is selecta(BWT, j − C[a]), and W is the longest prefix of
the suffixes that correspond to positions i′ and j′ in BWTT

1. We convert i′ and
j′ to identifiers of leaves in STT by selecting the i′-th and j′-th leaves in the
topology, and we compute w by taking the lowest common ancestor (LCA) of
such leaves. Clearly j′ − i′ ≥ j − i, since the j − i + 1 contiguous suffixes of
interval [i..j] are projected to a set of not necessarily contiguous suffixes inside
interval [i′..j′], such projected suffixes correspond to all and only the occurrences
of character a in I(W), and [i′..j′] either coincides with I(W,T) or is a subinterval
of it (and in the latter case [i′..j′] does not coincide with the interval of any node
of STT). If j′ − i′ > j − i then W is left-maximal; otherwise, W is not necessarily
left-maximal and [i′..j′] does not necessarily coincide with a BWT run.

In the rest of the paper we drop T from all subscripts whenever it is clear
from the context.

3 Bidirectional Indexes in O(m + r + r) Space

In this section we describe bidirectional indexes whose space complexity depends
on the number of BWT runs, rather than on the number of extensions of maximal
repeats. We achieve this by using the following pruning of the suffix tree topology
of T , which we denote with RT in what follows: (1) For every node v of ST that
1 selecta(S, i) is the well-known select operation on string S with character a and

rank i, and C[a] for a ∈ [0..σ] contains the number of occurrences of all characters
smaller than a in lexicographic order.

46 D. Belazzougui and F. Cunial

corresponds to a maximal repeat, we compact into a single node every maximal
run of consecutive children of v, in lexicographic order, that are not left-maximal,
and such that all their BWT intervals contain the same character (see e.g. Fig. 1).
We call red such a compacted node w, and we store in field w.cardinality ≥ 1
the number of nodes of ST that were compacted into it. (2) We remove from the
topology of STT all internal nodes that are not left-maximal and that were not
compacted into a red node. We denote with ρ(v) the map that projects a node
v of ST onto a (possibly red) node v′ of R; we set ρ(v) = v for every maximal
repeat of T , and for every leaf v that was not compacted into a red node; we set
ρ(v) = null for every internal node that we removed. (3) We connect every leaf
v, which was not compacted into a red node, to the deepest node u′ /∈ {v, null}
of R such that u′ = ρ(u) and u is an ancestor of v in ST.

Note that a node v of ST can have multiple, non-consecutive red children
whose BWT intervals contain all the same character, and that a rightmost max-
imal repeat has at least two red children. If T has no maximal repeat of length
at least one, the pruning does not change the topology of ST. We denote with
RT the pruned topology built from STT , and we remove subscripts whenever T
is clear from the context. It is easy to see that the suffix link algorithm in Sect. 2
can be implemented using R rather than the full suffix tree topology:

Lemma 1. Let T be a string of length n, with m maximal repeats and r BWT
runs. There is an index that takes O(m + r) words of space and that imple-
ments the unidirectional contractLeft(id(aW)) = id(W) operation on BWT
in O(log log n) time for any substring W of T .

Proof. Assume first that aW is right-maximal: we implement suffixLink(v)
from the locus v of aW in ST, using R rather than ST and replacing BWT
with RLBWT. As in Sect. 2, we use [i..j] to denote I(aW, T), and [i′..j′] to
denote the projected interval that results from the select operations on i and j.
If j′ − i′ > j − i, then W is a maximal repeat, and we return the interval of the
LCA between the i′-th and j′-th leaf in R. If j′ − i′ = j − i, we know that all and
only the occurrences of a in the BWT interval of W belong to [i′..j′], thus we
take again the LCA v of the i′-th and j′-th leaves: if v is not red, we return its
interval, since this occurs only when [i′..j′] straddles the intervals of two children
of W , in which case v is the locus of W (Fig. 1a). If v is red, we compute its
BWT interval [i∗..j∗]: if [i′..j′] ⊂ [i∗..j∗], then W is not left-maximal, and its
locus is either one of the non left-maximal nodes of ST that were merged into
v, or it is a descendant of one such node: in both cases, the interval of the locus
of W is [i′..j′] itself. If [i′..j′] = [i∗..j∗], we return [i′..j′] if v.cardinality = 1,
otherwise we return the interval of the parent of v in R (Fig. 1b).

If aW is not right-maximal, we just run the algorithm described in [3] on R
rather than on ST: specifically, we take the suffix link (v, v′) from the locus v of
aW , as described above; we check whether v′ is a maximal repeat and, in the
positive case, we issue a weighted level ancestor query from it, where weights
are string depths. A data structure that supports such queries on the maximal
repeat subgraph of ST takes O(m) words. If v′ is not a maximal repeat, we

Smaller Fully-Functional Bidirectional BWT Indexes 47

CCTAAAAAAAAAAAAAAAAAGCCGGGG CCTAAAAAAAAAAAAAAAAAGCCGGGG

CCTTTAAAAAAAAAAAAATCGCCGGGG CCTTTAAAAAAAAAAAAATCGCCGGGG

W W

W W

(a)

(b)

BWT

BWT

Fig. 1. Illustrating Lemma 1. Circles: nodes in the full suffix tree; gray circles: maxi-
mal repeats; white circles: nodes that are not left-maximal; squares: red nodes in R.
Intervals below the BWT: possible values of [i′..j′] in the lemma. Left: full topology;
right: pruned topology R. The occurrences of A in the BWT interval of W can straddle
the intervals of left-maximal children of W (a), or they can coincide with the union of
the intervals of children of W that are not left-maximal (b).

move to the lowest ancestor v′′ of v′ that is a maximal repeat, by just taking the
parent of the corresponding red node of R, we measure |�(v′′)| (which we store
in every maximal repeat node of R), and if |�(v′′)| ≥ |W |, we issue a weighted
level ancestor query; otherwise, the locus of W is v′.

Note that a BWT run can be fragmented into multiple red nodes of R, but
every red node can be mapped either to a BWT run or to a frontier maximal
repeat, in such a way that every frontier maximal repeat and every run is used at
most twice in the mapping: thus we can represent R in O(m + r) words by run-
length encoding its balanced parentheses representation. We leave the details
of how to represent each data structure to the reader. Here we just mention
that we build a predecessor data structure on the sequence of first positions of
the intervals in which the BWT is partitioned by red nodes and leaves: such a
data structure takes O(m+ r) words. The claimed time complexity derives from
known bounds on each data structure: see e.g. [2,4,9,11,16,22]. ��

To implement contractLeft in a synchronous index, we also need to com-
pute I(W, T) from I(W,T) and I(aW, T). Note that we already know whether
W is left-maximal or right-maximal from Lemma 1. If W is not left-maximal,
I(W, T) = I(aW, T). Otherwise, if W is a maximal repeat, we can just move to
the lowest maximal-repeat ancestor of aW in R and derive its interval. If W is
left-maximal but not right-maximal, its locus WX in ST is a maximal repeat,
thus its locus in R is a maximal repeat as well, and we could store I(WX, T) in

48 D. Belazzougui and F. Cunial

such a maximal repeat. Since ST(WX) � ST(W), we could reconstruct I(W, T)
from I(aW, T) if we knew the offset of I(aWX, T) with respect to I(WX, T).

To compute such offset, we would need a unidirectional operation
extendLeft(id(WX), a) = id(aWX) that works on BWT: this is typically
implemented using operation countSmaller(i, j, a) on BWT, which returns all
characters in BWT[i..j] that are lexicographically smaller than a, for any choice
of i and j. The simplest way to implement countSmaller on RLBWT rather than
on BWT is probably by adding partial counts to the runs encoded as σ predeces-
sor data structures: this takes O(r) words of additional space and O(σ log log n)
query time. Alternatively, one could store σ words for every run, containing the
result of countSmaller up to that run: this takes O(rσ) words of additional space
and O(log log n) query time. This approach can be generalized to blocks of B con-
secutive runs, storing σ partial counts for each block and answering a query by
scanning a block: this takes O(σr/B) additional words and O(log log n+B) query
time, which become O(r) words and O(log log n + σ) time, or O(rσ/ log log n)
words and O(log log n) time, or O(m) words and O(log log n + rσ/m) time, by
suitable choices of B.

Alternatively, one could create an instance of the weighted 2D orthogonal
range counting problem, in which the horizontal dimension is the sequence of
runs, the vertical dimension is the alphabet, and the weight of a point is the
length of a run: then, a countSmaller query is a rectangle with a given range
in the horizontal dimension and with a lower half-space in the vertical dimen-
sion. This can be implemented with a range tree on the sequence of runs, in
which we additionally store a word for every bit of every bitvector: this takes
O(r log σ) additional words, and answers queries in O(log log n + log σ) time
[1,23]. This approach can be generalized by building a range tree of height i
and node degree 2log σ/i = σ1/i: this yields O(riσ1/i) words and O(log log n + i)
time, which become O(m) words and O(log log n+log σ/(log m

r log σ)) time (when
m ≥ 2r log σ), or O(r · log log n · 2log σ/ log log n) words and O(log log n) time.

In the following lemma we show yet another tradeoff that is specific to inter-
vals of maximal repeats, and that uses a pruning strategy similar to R:

Lemma 2. Let T be a string of length n on alphabet [1..σ], with m maximal
repeats and r runs in BWT. There is an index that takes O(m + r) words of
space, and that implements the unidirectional extendLeft(id(W), b) = id(bW)
operation on BWT in O(h log log σ) time from any maximal repeat W of T and
any b ∈ [0..σ], where h is the height of the maximal repeat subgraph of ST.

Proof. Since W labels a node of ST, to compute the interval of Wb in BWT we
could just store a map from character to offset inside the interval of W in BWT:
however, this would take space proportional to the number of left-extensions
of all maximal repeats. Instead, we store a map from character to relative first
and last position inside the interval of W , but just for the children of W in
ST that are maximal repeats, or whose interval in BWT is the beginning of a
run: we call such nodes the marked children of W . This takes O(m + r) words
overall. The only problematic case occurs when the intervals of at least two

Smaller Fully-Functional Bidirectional BWT Indexes 49

consecutive children of W in ST are contained in the same run of BWT, since
in this case we don’t store all their offsets inside the interval of W . Thus, let
Wb0X0,Wb1X1, . . . ,Wbk−1Xk−1 with k ≥ 2 be a maximal sequence of children
of W , in lexicographic order, whose intervals in BWT are all contained in the
same run of character a: we call such a sequence a run of children of W . Note
that W might have other runs of children with the same character a, as well
as with different characters, and that a run of children might be preceded or
followed by another run of children (for a different character) or by a maximal
repeat child of W . Given a character bq, we want to compute the sum of the sizes
of the intervals of WbiXi for all i < q. We can determine the run of children
of W to which bq belongs, by maintaining a predecessor data structure on the
marked children of W .

Clearly aW labels a node of ST, characters bi for all i ∈ [0..k − 1] label con-
secutive children aWb0X

′
0, aWb1X

′
1, . . . , aWbk−1X

′
k−1 of aW in lexicographic

order (with |X ′
i| ≥ |Xi| for each i), and the intervals of all such children have

the same size and relative order as the corresponding children of W (see e.g.
Fig. 2). However, the characters in the BWT intervals of such children of aW
are arbitrary, so, for example, a child of W might not correspond to any child
of aW (iff the interval of the child of W does not contain character a), aWbiX

′
i

might become a maximal repeat for some i, and a left-maximal child of W might
become a child of aW that is not left-maximal, so a run of children of W might
become embedded into a longer run of children of aW . Note that, if aW is not
left-maximal, the set of children and their intervals do not change if we add one
more character to the left of aW , thus from now on we assume that we are in the
left-saturation V W of W for some V ∈ Σ+, i.e. that V W is a maximal repeat,
and that we store pointers from W to V W , which are clearly within our space
budget.

We can also afford to store the offset of V Wb0X
′
0 inside the interval of V W ,

since we can charge it to a marked child of W . Thus, we query the map of
V W for character bq: if we find it, then we know the offset of the interval of
V WbqX

′
q inside the interval of V W , and we can derive its offset with respect

to V Wb0X
′
0. Otherwise, we use the predecessor data structure of V W to find

the closest marked child b′
0 of V W that is lexicographically smaller than bq;

note that b′
0 can be either lexicographically bigger or smaller than b0, thus we

might have to correct the current estimate of the offset with a negative value.
Finally, we compute the offset of the interval of V WbqX

′
q with respect to the

interval of V Wb′
0Y

′, by recurring on the run of children of V W to which b′
0 and

bq belong. Such a recursion corresponds to a descent from W along the maximal
repeat subgraph of ST, thus it takes O(h) steps, where h is the height of the
subgraph. Recursion must eventually yield the relative offset of character bq.
Assume by contradiction that we are at a rightmost maximal repeat W ∗, and
that the interval of bq is still inside a run of children of W ∗, say of character c:
then, by left-saturating cW ∗ we would get a maximal repeat that is deeper than
W ∗ in ST, a contradiction.

50 D. Belazzougui and F. Cunial

BWT

BWT

W

WV

AAAAAAAAAAAAAAAAAAGGCCGCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACCCCCCCCCCC

CCCCCCTTGCCCCCCCCCCCCCCCCCCCCCCCCCCTTGTTTTTTTTTTTTT

A

A

B

B

C

C

D E

E

F

F

G

G

H

H

I

I

J

J

K L

(a)

(b)

Fig. 2. Illustrating Lemma 2 on the topology of ST. Marked children are highlighted
with gray nodes and thick edges. For clarity, the first character of a parent-child label is
displayed inside the subtree of the child. (a) Assume that we want to know the offsets
of children G and J inside the interval of W : this reduces to computing the offsets of G

and J with respect to the end of E. (b) Recursion on V W , where the last character of
V is A. The intervals at the bottom show the results of the recursion. The dark triangle
is the position of the end of E inside the interval of V W , which can be stored in the
corresponding marked child of W .

We store the characters of the marked children of every maximal repeat in a
deterministic dictionary, which answers queries in constant time, and we build
a predecessor data structure on the marked children of every maximal repeat,
which answers queries in O(log log σ) time. All such data structures take O(m+r)
words of space. ��

The recursion along Weiner links of Lemma 2 is reminiscent of the recursion
along suffix links to reconstruct the label of an edge in the suffix tree or CDAWG
[7,21]. Lemmas 1 and 2 are clearly all we need to implement a synchronous, fully
functional bidirectional index:

Theorem 1. Let T be a string of length n on alphabet [1..σ], with m max-
imal repeats, r runs in BWT and r runs in BWT. Let h (respectively, h)
be the height of the maximal repeat subgraph of the suffix tree of T (respec-
tively, of the suffix tree of T). There is a fully-functional bidirectional index
that takes O(m + r + r) words of space, and that supports all operations in
O(log log n + max{h, h} log log σ) time.

In practice, if the target application never uses strings shorter than a thresh-
old known during construction, one could even prune the top part of all topolo-
gies, as noted in [3]. Note that a sequence of k synchronous extendLeft oper-
ations can be computed in overall O(k log log n + min{k, h′} · h log log σ) time,

Smaller Fully-Functional Bidirectional BWT Indexes 51

where h′ is the height of ST, since during such a sequence of operations we need
to update the interval in BWT only for left-maximal suffixes.

By symmetry, one might also want a unidirectional implementation of
contractRight that works on BWT. This can be useful, for example, to imple-
ment an asynchronous bidirectional de Bruijn graph, i.e. a de Bruijn graph that
the user needs to traverse in just one direction (specifically, from right to left)
in a session, but which allows switching to the other direction in another session
(and the user might afford to store just one BWT and related data structures
per session).

Lemma 3. Let T be a string of length n, with m maximal repeats and r BWT
runs. There is an index that takes O(m + r) words of space and that, given
the interval in BWT of a string Ua and of its longest left-maximal suffix V a,
computes the interval in BWT of all strings resulting from a sequence of c
contractRight operations, and of their longest left-maximal suffixes, in overall
O(max{c, |U | − |V |} · log log n) time.

Proof. We store RLBWT, the pruned topology R described above, and the max-
imal repeat subgraph of ST. In each node of the latter subgraph, we store a
pointer to the corresponding node of R, and a deterministic dictionary on the
characters that lead to its maximal repeat children; such data structures answer
queries in constant time and take O(m) words of space overall. Symmetrically, in
each maximal repeat node W of R we store a pointer to node W of the maximal
repeat subgraph of ST.

Assume WLOG that V a is a proper suffix of Ua. Let W be the maximal
repeat locus of V a in ST, and let b be the character that precedes V a in Ua.
Clearly ST(Ua) � ST(bW). Since we can access the string depth of W and of its
parent W ′ in ST using R, we know whether the locus of V is W or W ′. If the
locus of V is W , then I(U, T) = I(Ua, T), and the longest left-maximal suffix of
U is V . Otherwise, we do a top-down traversal of the maximal repeat subgraph
of ST, starting from W ′ and accessing the characters of U at specific string
depths, and stopping at the longest maximal repeat suffix V ′ of U . Let b′ be
the character that precedes V ′ in U , and let i ≤ j be, respectively, the starting
position of V ′ and of V inside Ua. We perform the same top-down traversal
from W as well, stopping at position i − 1: in this way, we can compute the
offset of I(b′U [i..j −1]V a) inside I(b′V ′), which is the same as the offset of I(Ua)
inside I(U) since ST(b′V ′) � ST(U). Clearly every operation can be charged to
a distinct position in [i..j − 1]. ��

It is also easy to keep up to date the BWT interval of the longest left-maximal
suffix W of the current string UbW after every unidirectional extendLeft oper-
ation on BWT. In a unidirectional de Bruijn graph of fixed order k, the time
complexity of moving from one k-mer to the next according to Lemma 3 becomes
thus O(k · log log n). However, when traversing a large number N 	 k of k-mers,
the characters added to the left side are consumed on the right side, thus the
cost of moving from one k-mer to the next amortizes to O(log log n).

52 D. Belazzougui and F. Cunial

Having the BWT interval of the longest left-maximal suffix W of the current
string UbW available at all times, enables also switching to the other direction
after any sequence of extendLeft and contractRight operations, by following
a pointer from the locus WV of W in ST (a maximal repeat) to the locus of
WV in ST, and taking the child of WV labeled with character b. This child
might not be left-maximal, so it might have been compressed into a red node
of R: in this case, we reconstruct its offset inside the interval of WV using the
technique in Lemma 2. This offset is the same as the offset of I(UbW, T) inside
I(W, T), thus we just need to compute I(W, T) by issuing |V | select operations
from each end of I(WV , T). The whole process takes O(h log log σ + λ log log n)
time, where λ is the maximum string length of an edge of ST that connects two
maximal repeats.

4 Bidirectional Indexes in O(r + r) Space

The pruned topology R described in Sect. 3 can be compressed further. We call
blue a maximal repeat W , with I(W,T) = [i..j], such that: (1) exactly one child
WV of W in ST is a maximal repeat: let I(WV, T) = [i′..j′] ⊂ [i..j]; (2) either
i′ = i, or BWT[i..x′] contains just one distinct character for some x′ ∈ [i′..j′]
(let x be the largest such x′); and symmetrically (3) either j′ = j or BWT[y′..j]
contains just one distinct character for some y′ ∈ [i′..j′] (let y be the smallest
such y′). We call black every maximal repeat that is not blue. Note that all
children of a blue node in R are red, except for one child which is either blue or
black. We call B a version of R in which: (1) we compact every maximal (unary)
path of blue nodes v1, . . . , vk into a single node v∗, which we mark as blue in B,
and in which we store I(v1, T), I(vk, T), |�(v1)|, |�(vk)|, and the x and y values
of vk defined above; (2) we compact into a single red node, the red children of
every vi that are located on the same side of path v1, . . . , vk, and we connect to
such a red child of v∗ all the leaves that were connected to a corresponding red
child of R. We denote with β(v) the map that projects a node v of ST onto a
(possibly null) node of B.

Note that the procedure that constructs B does not necessarily compact
every unary path of the maximal repeat subgraph of ST, i.e. the subgraph of B
induced by blue and black nodes can still contain unary paths of black nodes.
However, every black node in the union of all such unary paths can be charged
to a distinct boundary between runs of BWT. Rightmost maximal repeats are
mapped to deepest black nodes of B, and they can all be charged to distinct
boundaries between BWT runs as well. Thus, the number of black nodes of B
with at least two maximal repeat children is O(r). Every blue node of B can be
charged to a distinct black node of B, thus the total number of internal nodes of
B is O(r). Finally, it is still true that every red node of B can be mapped either
to a BWT run, or to a blue or black node of B, in such a way that every blue
and black node and every run is used at most twice in the mapping. Thus, B
with run-length-encoded leaves takes O(r) words of space.

Lemma 1 can be adapted to work on B rather than on R, by using a recursion
similar to Lemma 2:

Smaller Fully-Functional Bidirectional BWT Indexes 53

CCCCGGCAAAAAAAAAAAAAAAAAAAAAAGGGGGGGGGGGGGTTTAAACATTAATTTTTTTTTTTAAAAABWT

A

AA
G

G

(c) (b) (a)

Fig. 3. Illustrating Lemma 4 on the topology of ST. Circles: left-maximal (gray) and
non-left-maximal (white) nodes of ST. Thick gray arrows: Weiner links. (a) We want
to compute the BWT interval of the highest node with string depth at least λ1 inside
the blue path v1, . . . , vk, i.e. we want to compute offset δ1. (b) We take a Weiner link
with character A, we find the lowest left-maximal ancestor v′

h of v′
k, and we read its

interval and string depth. Since λ + 1 is bigger, we add δ2 to the output and we want
to compute δ3. To do so, we add to the output the number of non-G characters between
the end of v′

k and the end of v′
h, and (c) we compute δ4 by taking another Weiner

link from v′
h and v′

k with character G. If our query length were λ2, we would stop at
panel (b).

Lemma 4. Let T be a string of length n with r BWT runs. There is an
index that takes O(r) words of space and that implements the unidirectional
contractLeft(id(aW)) = id(W) operation on BWT in O(H log log n) time for
any substring W of T , where H is the length of a longest maximal repeat of T .

Proof. Assume that, after an LCA query of Lemma 1 on B, we reach a blue node
v of B: then we have to compute the BWT interval of one of the (unknown) blue
nodes v1, . . . , vk of ST such that β(vi) = v for i ∈ [1..k], and the blue node we
want is the lowest ancestor of vk in ST with string depth at most λ, where λ
is known from the contract algorithm. We denote this instance of the problem
with the triplet (I(v1), I(vk), λ), which we fully know from B.

Let x, y be the values defined above and stored in v. If none of the nodes
v1, . . . , vk has a right-extension whose BWT interval is fully contained inside
[y..j], where j is the last position of I(v1), then every node in the path has the
same last position as v1 (we can check this by comparing the last position of
I(v1) to the last position of I(vk)). Otherwise, consider a generic node vh in
the blue path: let I(vh) = [i..j], let b0 be its only right-extension that leads
to another maximal repeat node vh+1, let its right-extensions with characters
b1, . . . , bk have BWT intervals fully contained inside [y..j], with k ≥ 1, and
let BWT[p] = a for all p ∈ [y..j]. If we take the Weiner link in ST from vh

54 D. Belazzougui and F. Cunial

with character a (Fig. 3a, b), we reach a node v′
h with interval [i′..j′] (i.e. the

Weiner link is explicit), v′
h has the same right-extensions b0, b1, . . . , bk as vh, and

ST(�(v′
h) · bp) � ST(�(vh) · bp) for every p > 0. Moreover, since we are adding a

character to the left of �(vh), the sequence of children b0, b1, . . . , bk of v′
h is still

contiguous in lexicographic order. Thus, the offset between j and the known last
position of I(v1), is the same as the offset between j′ and the known last position
of I(v′

1), where v′
1 is the destination of the (explicit) Weiner link from v1. If vh

has no right-extension whose interval is fully contained in [y..j] (e.g. because
vh is a leftmost maximal repeat), the Weiner link with character a might be
implicit, but the offset between j and the last position of I(v1) is still the same
as the offset between j′ and the last position of I(v′

1) (see node ve in Fig. 3a for
an example).

Clearly left-maximality is not preserved by Weiner links, i.e. it might happen
that the destination nodes of Weiner links v′

1, . . . , v
′
k in ST are such that v′

q is
not left-maximal for all q ∈ [h+1..k] and some h (Fig. 3b). If v′

1 itself is not left-
maximal, we recur on instance (I(v′

1), I(v
′
k), λ + 1). By taking more Weiner links

from this instance, some left-maximality will eventually appear in the projected
path: indeed, there is at least one p ∈ [1..k] such that vp has a child whose
interval is fully contained in [y..q], where q is the last position of I(v1); this
implies that v′

p is right-maximal, thus a sequence of Weiner links will eventually
produce a maximal repeat when reaching the left-saturation of v′

p. Otherwise,
we find v′

h by issuing an LCA query in B from the ends of I(v′
k), and by moving

to the lowest maximal repeat ancestor w in B of the node returned by the LCA
query (note that the node returned by the LCA query might be red, since v′

k

might not be left-maximal). Assume that w is black: we access its string depth
(which we store inside every black node) and, if |�(w)| > λ + 1, we move to the
highest ancestor u of w in B with |�(u)| ≥ λ+1 (we set the string depth of a blue
node to the string depth of the deepest node of ST that was compacted onto it).
If u is black, we know its BWT interval and we return the offset between the
end of I(u) and the end of I(v′

1). If u is blue, let u1, . . . , up be the nodes of ST
such that β(uq) = u for q ∈ [1..p]. We check whether u1 is a descendant of node
β(v′

1) in B, using known BWT intervals: if this is the case, we add to the output
the offset between the last position of I(u1) and the last position of I(v′

1), and
we recur on instance (I(u1), I(up), λ + 1). If u is the blue node that contains v′

1,
we just recur on instance (I(v′

1), I(up), λ + 1). If |�(w)| < λ + 1, we add to the
output the offset between the end of I(w) and the end of I(v′

1), as well as the
number of occurrences of characters different from c in BWT[p + 1..q], where p
(respectively, q) is the last position of I(v′

k) (respectively, of I(w)), and c is the
only character in I(v′

k); then, we recur on instance (I(w), I(v′
k), λ+1). If w is blue

and corresponds to the blue path w1, . . . , wp in ST, we run a similar algorithm
using I(w1), I(wp), |�(w1)|, |�(wp)|, as well as a descriptor of the deepest wq that
is an ancestor of v′

k: this information can be stored in the blue node v of B we
are coming from, without affecting the space budget.

It could also happen that the Weiner link by character a projects
the blue path v1, . . . , vk of ST onto a subpath of a longer blue path
w′

1, . . . , v
′
1, . . . , v

′
k, . . . , w′

p of ST: this can be easily detected with B, and in this

Smaller Fully-Functional Bidirectional BWT Indexes 55

B A A A A B A A A AB A A A AB A A A A

AAA

BBB

BBB

BBB
BBB

AAA

AAA

AAA
BBB

BWT

AA

(d) (c) (b) (a)

Fig. 4. Running Lemma 4 on string T = AAAAB. (a) Compacted topology. The internal
node with thick border is blue, the other is black. (b-d) The suffix tree of T . Gray
nodes are maximal repeats; the nodes connected by thick edges are those compacted
onto the blue node of B. We want to reconstruct the BWT interval of substring A.

case we just recur on instance (I(v′
1), I(w

′
p), λ + 1). The projection of v1, . . . , vk

might also straddle v1, . . . , vk itself (see e.g. Fig. 4), or it might straddle multiple,
distinct blue paths; the former case is already handled by our algorithm, and
the second can be detected and handled with B as well: we leave the details to
the reader.

Note that the initial blue path v1, . . . , vk cannot be projected onto another
blue path by every step of the algorithm: indeed, after at most H Weiner links,
the projection of any maximal repeat must have lost its right-maximality, and
the fact that a node in some projected path loses its right-maximality after
a Weiner link, implies that the projected path did not entirely consist of blue
nodes. More generally, let vp be the node we are trying to compute the interval of,
inside the initial blue path v1, . . . , vk of ST. The algorithm considers a sequence
of instances (I(u), I(w), q) such that the length of the suffix tree path from node
u to the projection of vp by Weiner links is monotonically non-increasing at
every step. After at most H Weiner links, the projection of any node in the path
v1, . . . , vp of ST is not right-maximal any more, thus the algorithm eventually
ends and yields the interval of vp.

Assume instead that, after an LCA query of Lemma 1 on B from the ini-
tial interval [i..j], we reach a red node of B. If the red node is the child of a
black maximal repeat, we already have all the information we need to imple-
ment Lemma 1. If the red node is the child of a blue node v, we represent this
instance of the problem with the triplet (I(v1), I(vk), [i..j]), where v1, . . . , vk is
the maximal path of blue nodes of ST that were merged onto v, and where the
node of ST that we want to reconstruct is the deepest node vp in v1, . . . , vk such
that I(vp) contains both I(vk) and [i..j]. We take a backward step with the only
character a in BWT[i..j], reaching intervals I(v′

1), I(v
′
k) and [i′..j′], where v′

1 and
v′

k are nodes of ST. We compute the LCA in B of the ends of I(v′
k), and we find

its lowest maximal repeat ancestor w in B: such node can be either blue or black.

56 D. Belazzougui and F. Cunial

If w is black, we check whether [i′..j′] ⊂ I(w): if this is not the case, β(v′
p)

is an ancestor of w in B, where v′
p is the projection of vp by the Weiner link,

thus we compute the LCA in B of the i′-th and j′-th leaves (this might be a
maximal repeat), and then we take the LCA u in B between the resulting node
and w. Clearly u is a maximal repeat: if u is blue, we recur on problem instance
([e..f], I(uh), [i′..j′]), where u1, . . . , uh are the blue nodes of ST that were merged
onto u, and [e..f] is the smallest of I(v′

1) and I(u1). If u is black, let b0 be the
right-extension of u that contains I(v′

k): we know that the subtrees rooted at all
the children of u in ST that are lexicographically greater than b0 are isomorphic
to the corresponding subtrees of vp, thus we just need to know the total number
of such children and the sum of the lengths of all their BWT intervals. To access
such values, it suffices to store in u a predecessor data structure on the starting
positions of the BWT intervals of all its children in B, and to query such structure
with the last position of I(v′

k). If [i′..j′] ⊂ I(w), we check whether [i′..j′] is also
contained in the interval of the red child of w in B whose interval contains v′

k:
if so, both v′

k and [i′..j′] lie in a subtree of ST that is not left-maximal, thus we
take another backward step from I(w), I(v′

k) and [i′..j′] with the only character
in BWT[i′..j′], and we recur on the resulting problem instance. Otherwise w = v′

p

and all the information we need is stored in w.
If w is blue, let w1, . . . , wh be the maximal path of blue nodes of ST that were

merged onto w. If [i′..j′]
⊂ I(w1) we proceed as above. Otherwise we store, in the
red child of v we are coming from, the following information: a descriptor of the
lowest blue ancestor wq of v′

k in ST; a descriptor of the non-left-maximal child z
of wq in ST that is an ancestor of v′

k; the sum of the lengths of all BWT intervals
of children of wq that are lexicographically larger than z, and the number of such
children. If [i′..j′]
⊂ I(wq), we recur on problem instance ([e..f], I(wq), [i′..j′]),
where [e..f] is the smallest of I(v′

1) and I(w1), since the projection of vp by the
Weiner link is an ancestor of wq in ST. If [i′..j′] ⊂ I(z), we take a backward
step with the only character in [i′..j′], as described above. Otherwise, wq is the
projection of vp by the Weiner link, and all the information we need is stored in
the red node of B we are coming from.

Lemma 1 needs also weighted level ancestor queries on the string depth of
maximal repeats: this might require computing the interval of the highest blue
node vp of ST, in a blue path v1, . . . , vk that was compressed onto a blue node
of B, and that is the locus of a string of known length: this can be done with
the methods already described. ��

As mentioned in Sect. 3, to build a synchronous bidirectional index we also
need to compute the interval of W in BWT after a left-contraction from aW in
BWT. We still know from Lemma 4 whether W is left-maximal or right-maximal:
if W is not left-maximal, the interval of W is the same as the interval of aW ,
and if W is a maximal repeat we can just move to the deepest maximal repeat
ancestor of aW in B using the methods described above. If W is left-maximal
but not right-maximal, however, we cannot proceed as in Sect. 3, since we cannot
afford to store the mapping between all maximal repeats in the two directions.
Instead, we proceed as follows. If the locus of W in ST is mapped to a black node

Smaller Fully-Functional Bidirectional BWT Indexes 57

of B with label W ∗, we store in such a black node the interval [e..f] of W ∗ in
BWT. Since ST(W) � ST(W ∗), we call extendRight(id(W ∗), a) on BWT and
we apply the offsets of the interval we get to the interval of aW we started from.
If the locus of W in ST is mapped to a blue node v of B, with corresponding
blue path v1, . . . , vk in ST, we store in v the number |�(vk)| and the interval [i..j]
of �(vk) in BWT and, since we know |W |, we issue |�(vk)| − |W | contractRight
operations on BWT from �(vk): this takes O(H2 log log n) time.

Lemma 5. Let T be a string of length n on alphabet [1..σ] with r runs in BWT.
There is an index that takes O(r) words of space, and that implements the unidi-
rectional extendLeft(id(W), b) = id(bW) operation on BWT in O(H log log n)
time from any maximal repeat W of T and any b ∈ [0..σ], where H is the length
of a longest maximal repeat of T .

Proof. We implement the algorithm in Lemma 2 on B, recurring on Weiner links
as described in Lemma 4. Specifically, assume that the maximal repeat node vp

of ST we start from, of known length λ, is compacted onto a blue node v of
B with path v1, . . . , vk, and let x and y be the properties of v defined at the
beginning of Sect. 4. We don’t know whether the extension character b we need
lies on the left side of v1, . . . , vk, on the right side of the path, or along the path
itself. We assume first that it lies on the left side, i.e. we try to compute the offset
of the first position of I(�(vp)b) with respect to x, and we recur as described in
Lemma 4.

If the path v′
1, . . . , v

′
k projected by the Weiner link in ST is compacted onto

another blue node of B, character b still lies on the left side of the projected path,
and we recur on that problem instance. Assume instead that path v′

1, . . . , v
′
k

in ST is right-maximal up to some node v′
h. We can find w = β(v′

h) using B
and I(v′

k), as described previously. If w is black, we access its string depth: if
|�(w)| > λ + 1, we find the locus u of v′

p in B. If u is black, we continue as in
Lemma 2. Otherwise, b still lies on the left side of the path of u, and we recur on
this problem instance. If |�(w)| < λ + 1, v′

p is a non-right-maximal descendant
of v′

h, and we recur on problem instance (I(w), I(v′
k), left). If |�(w)| = λ + 1,

we continue from w as in Lemma 2. If w is blue, we perform similar operations
using the descriptor of node v′

h in ST, which we store in the blue node v we
came from. In addition to the information about v′

h described in Lemma 4, we
also store the right-extension of v′

h along which the blue path of ST compacted
to w continues: this is enough to recur on the correct instance of the problem.
While running Lemma 2, we might be in a black node z of B and we might take
a Weiner link from one of its marked children, ending up in a node z′ of ST
that has been compacted onto a blue node of B: in every such case, we store
a descriptor of z′, and the right-extension of z′ along which the path of β(z′)
continues. This is enough to recur on the correct instance of the problem.

The initial assumption that b lies on the left side of the path of v might
be wrong. Assume that I(v1) = [i..j], that BWT[i..x] contains just character a,
and that BWT[y..j] contains just character c
= a. If b actually lies on the right
side of the path, the first Weiner link we took added to the left of vp character

58 D. Belazzougui and F. Cunial

a, but a�(vp) is never followed by b in T . This might be detected as soon as
the recursion reaches a black node, in which case we restart the whole process
assuming that b lies on the right side of the path. Detecting the mistake might
still not be possible at the first black node, since b might fall inside a run of its
children. By the end of the recursion, however, the mistake will be detected: this
holds by the same criterion used in Lemma 2 to prove that the offset of b can
eventually be reconstructed. If b lies on the right side of the path and c = a,
and if this configuration continues to be true after several Weiner links, until vp

is eventually projected to a black node of B, then such node is the same that
we would have reached assuming that b lies on the right side of the path: thus,
making the wrong assumption does not affect the outcome of the recursion in this
case. If, after some Weiner links in the same configuration, we reach a blue node
in which the character c′ on the right side is different from the character a′ on
the left side, then recursion will eventually reach a maximal repeat V a′W�(vp),
for some V,W ∈ [1..σ]∗, such that V a′W�(vp)b does not occur in T , and this
will be detected by the end of the process. Finally, the case in which b lies along
the path of v is identical to the case in which b lies fully on the left side of the
path. ��

Lemmas 4 and 5 are clearly all we need to prove the main result of this
section:

Theorem 2. Let T be a string of length n, with r runs in BWT and r runs
in BWT. Let H be the length of a longest maximal repeat of T . There is a
fully-functional bidirectional index that takes O(r + r) words of space, and that
supports all operations in O(H2 log log n) time.

Acknowledgements. We thank Timothy Chan for insights on static weighted 2D
orthogonal range counting, and Gene Myers and the Myers’ lab for hosting and fruitful
discussions.

References

1. Alstrup, S., Stolting Brodal, G., Rauhe, T.: New data structures for orthogonal
range searching. In: Proceedings of the 41st Annual Symposium on Foundations of
Computer Science, pp. 198–207 (2000)

2. Amir, A., Landau, G.M., Lewenstein, M., Sokol, D.: Dynamic text and static pat-
tern matching. ACM Trans. Algorithms (TALG) 3(2), 19 (2007)

3. Belazzougui, D., Cunial, F.: Fully-functional bidirectional Burrows-Wheeler
indexes and infinite-order de Bruijn graphs. In: 30th Annual Symposium on Com-
binatorial Pattern Matching (CPM 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer
Informatik (2019)

4. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite
repetition-aware data structures. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.)
CPM 2015. LNCS, vol. 9133, pp. 26–39. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-19929-0 3

https://doi.org/10.1007/978-3-319-19929-0_3
https://doi.org/10.1007/978-3-319-19929-0_3

Smaller Fully-Functional Bidirectional BWT Indexes 59

5. Belazzougui, D., Cunial, F., Kärkkäinen, J., Mäkinen, V.: Versatile succinct repre-
sentations of the bidirectional Burrows-Wheeler transform. In: Bodlaender, H.L.,
Italiano, G.F. (eds.) ESA 2013. LNCS, vol. 8125, pp. 133–144. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40450-4 12

6. Cánovas, R., Rivals, E.: Full compressed affix tree representations. In: Data Com-
pression Conference (DCC 2017), pp. 102–111. IEEE (2017)

7. Crochemore, M., Epifanio, C., Grossi, R., Mignosi, F.: Linear-size suffix tries. The-
oret. Comput. Sci. 638, 171–178 (2016)

8. Cunial, F., Alanko, J., Belazzougui, D.: A framework for space-efficient variable-
order Markov models. Bioinformatics 35(22), 4607–4616 (2019)

9. Farach, M., Muthukrishnan, S.: Perfect hashing for strings: formalization and algo-
rithms. In: Hirschberg, D., Myers, G. (eds.) CPM 1996. LNCS, vol. 1075, pp. 130–
140. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61258-0 11

10. Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM 67(1), 1–54 (2020)

11. Hagerup, T., Miltersen, P.B., Pagh, R.: Deterministic dictionaries. J. Algorithms
41(1), 69–85 (2001)

12. Maaß, M.G.: Linear bidirectional on-line construction of affix trees. In: Giancarlo,
R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 320–334. Springer, Heidel-
berg (2000). https://doi.org/10.1007/3-540-45123-4 27

13. Mäkinen, V., Navarro, G.: Succinct suffix arrays based on run-length encoding. In:
Apostolico, A., Crochemore, M., Park, K. (eds.) CPM 2005. LNCS, vol. 3537, pp.
45–56. Springer, Heidelberg (2005). https://doi.org/10.1007/11496656 5

14. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comput. Biol. 17(3), 281–308 (2010)

15. Munro, J.I., Navarro, G., Nekrich, Y.: Space-efficient construction of compressed
indexes in deterministic linear time. In: Proceedings of the Twenty-Eighth Annual
ACM-SIAM Symposium on Discrete Algorithms, pp. 408–424. SIAM (2017)

16. Okanohara, D., Sadakane, K.: Practical entropy-compressed rank/select dictionary.
In: 2007 Proceedings of the Ninth Workshop on Algorithm Engineering and Exper-
iments (ALENEX), pp. 60–70. SIAM (2007)

17. Schnattinger, T., Ohlebusch, E., Gog, S.: Bidirectional search in a string with
wavelet trees and bidirectional matching statistics. Inf. Comput. 213, 13–22 (2012)

18. Sirén, J., Välimäki, N., Mäkinen, V., Navarro, G.: Run-length compressed indexes
are superior for highly repetitive sequence collections. In: Amir, A., Turpin, A.,
Moffat, A. (eds.) SPIRE 2008. LNCS, vol. 5280, pp. 164–175. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-89097-3 17

19. Stoye, J.: Affix trees. Master’s thesis, Universität Bielefeld (2000)
20. Strothmann, D.: The affix array data structure and its applications to RNA sec-

ondary structure analysis. Theoret. Comput. Sci. 389(1–2), 278–294 (2007)
21. Takagi, T., Goto, K., Fujishige, Y., Inenaga, S., Arimura, H.: Linear-size CDAWG:

new repetition-aware indexing and grammar compression. In: Fici, G., Sciortino,
M., Venturini, R. (eds.) SPIRE 2017. LNCS, vol. 10508, pp. 304–316. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-67428-5 26

22. Willard, D.E.: Log-logarithmic worst-case range queries are possible in space θ (n).
Inf. Process. Lett. 17(2), 81–84 (1983)

23. Willard, D.E.: New data structures for orthogonal range queries. SIAM J. Comput.
14(1), 232–253 (1985)

https://doi.org/10.1007/978-3-642-40450-4_12
https://doi.org/10.1007/3-540-61258-0_11
https://doi.org/10.1007/3-540-45123-4_27
https://doi.org/10.1007/11496656_5
https://doi.org/10.1007/978-3-540-89097-3_17
https://doi.org/10.1007/978-3-319-67428-5_26

Internal Quasiperiod Queries

Maxime Crochemore1 , Costas S. Iliopoulos1 , Jakub Radoszewski2 ,
Wojciech Rytter2 , Juliusz Straszyński2 , Tomasz Waleń2 ,

and Wiktor Zuba2(B)

1 Department of Informatics, King’s College London, London, UK
{maxime.crochemore,c.iliopoulos}@kcl.ac.uk

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
{jrad,rytter,jks,walen,w.zuba}@mimuw.edu.pl

Abstract. Internal pattern matching requires one to answer queries
about factors of a given string. Many results are known on answering
internal period queries, asking for the periods of a given factor. In this
paper we investigate (for the first time) internal queries asking for covers
(also known as quasiperiods) of a given factor. We propose a data struc-
ture that answers such queries in O(log n log log n) time for the shortest
cover and in O(log n(log log n)2) time for a representation of all the cov-
ers, after O(n log n) time and space preprocessing.

Keywords: Cover · Quasiperiodicity · Internal pattern matching ·
Seed · Run (maximal repetition)

1 Introduction

A cover (also known as a quasiperiod) is a weak version of a period. It is a
factor of a text T whose occurrences cover all positions in T ; see Fig. 1. The
notion of cover is well-studied in the off-line model. Linear-time algorithms for
computing the shortest cover and all the covers of a string of length n were
proposed in [2] and [23,24], respectively. Moreover, linear-time algorithms for
computing shortest and longest covers of all prefixes of a string are known; see [6]
and [22], respectively. Covers were also studied in parallel [5,7] and streaming [13]
models of computation. Definitions of other variants of quasiperiodicity can be
found in the survey [12]. In this work we introduce covers to the internal pattern
matching model [20].

In the internal pattern matching model, a text T of length n is given in
advance and the goal is to answer queries related to factors of the text. One
of the basic internal queries in texts are period queries, that were introduced
in [19] (actually, internal primitivity queries were considered even earlier [9,10]).

J. Radoszewski, T. Waleń and W. Zuba—Supported by the Polish National Science
Center, grant no. 2018/31/D/ST6/03991.
J. Straszyński—Partially supported by ERC Consolidator Grant 772346 TUgbOAT
and by the Polish National Science Center, grant no. 2018/31/D/ST6/03991.

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 60–75, 2020.
https://doi.org/10.1007/978-3-030-59212-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_5&domain=pdf
http://orcid.org/0000-0002-6024-1557
http://orcid.org/0000-0002-2477-1702
http://orcid.org/0000-0002-0067-6401
http://orcid.org/0000-0002-9162-6724
http://orcid.org/0000-0003-2207-0053
http://orcid.org/0000-0002-7369-3309
http://orcid.org/0000-0002-1988-3507
https://doi.org/10.1007/978-3-030-59212-7_5

Internal Quasiperiod Queries 61

T : a a a a a a a ab b b b b

Fig. 1. MinCover(T) = aba is the shortest cover of T and MinCover(T [2 . . 13]) =
baababa is the shortest cover of its suffix of length 12.

A period query requires one to compute all the periods of a given factor of T . It is
known that they can be expressed as O(log n) arithmetic sequences. The fastest
known algorithm answering period queries is from [20]. It uses a data structure
of O(n) size that can be constructed in O(n) expected time and answers period
queries in O(log n) time (a deterministic construction of this data structure was
given in [16]). A special case of period queries are two-period queries, which ask
for the shortest period of a factor that is known to be periodic. In [20] it was
shown that two-period queries can be answered in constant time after O(n)-time
preprocessing. Another algorithm for answering such queries was proposed in [3].

Let us denote by MinCover(S) and AllCovers(S), respectively, the length
of the shortest cover and the lengths of all covers of a string S. Similarly as in the
case of periods, it can be shown that the set AllCovers(S) can be expressed
as a union of O(log |S|) pairwise disjoint arithmetic sequences. We consider data
structures that allow to efficiently answer these queries in the internal model.

Internal quasiperiod queries

Input: A text T of length n

Query: For any factor S of T , compute MinCover(S) or
AllCovers(S) after efficient preprocessing of the text T

Recently [11] we have shown how to compute the shortest cover of each cyclic
shift of a string T of length n, that is, the shortest cover of each length-|T | factor
of T 2, in O(n log n) total time. This work can be viewed as a generalization of [11]
to computing covers of any factor of a string. It also generalizes the earlier works
on computing covers of prefixes of a string [6,22].

Our Results. We show that MinCover and AllCovers queries can be
answered in O(log n log log n) time and O(log n (log log n)2) time, respectively,
with a data structure that uses O(n log n) space and can be constructed in
O(n log n) time. In particular, the time required to answer an AllCovers query
is slower by only a poly log log n factor from optimal. Moreover, we show that any
m MinCover or AllCovers queries can be answered off-line in O((n+m) log n)
and O((n+m) log n log log n) time, respectively, and O(n+m) space. In particu-
lar, the former matches the complexity of the best known solution for computing
shortest covers of all cyclic shifts of a string [11], despite being far more general.
We assume the word RAM model of computation with word size Ω(log n).

Our Approach. Our main tool are seeds, a known generalization of the notion
of cover. A seed is defined as a cover of a superstring of the text [14]. A repre-
sentation of all seeds of a string T , denoted here SeedSet(T), can be computed

62 M. Crochemore et al.

in linear time [17]. We will frequently extract individual seeds from SeedSet(T);
each time such an auxiliary query needs O(log log n) time. Consequently, log log n
is a frequent factor in our query times related to internal covers.

We construct a tree-structure (static range tree) of so-called basic factors
of a string. For each basic factor F we store a compact representation of the
set SeedSet(F). The crucial point is that the total length of all these factors is
O(n log n) and every other factor can be represented, using the tree-structure, as
a concatenation of O(log n) basic factors. Representations of seed-sets of basic
factors are precomputed. Then, upon an internal query related to a specific factor
S, we decompose S into concatenation of basic factors F1, F2, . . . , Fk. Intuitively,
the representation of the set of covers or (in easier queries) the shortest cover will
be computed as a “composition” of SeedSet(F1),SeedSet(F2), . . . ,SeedSet(Fk),
followed by adjusting it to border conditions using internal pattern matching. To
get efficiency, when querying about covers of a factor S, we do not compute the
whole representation of SeedSet(S) (these representations are only precomputed
for basic factors).

Finally, several stringology tools related to properties of covers and string
periodicity are used to improve polylogn-factors in the query time that would
result from a direct application this approach.

2 Preliminaries

We consider a text T of length n over an integer alphabet {0, . . . , nO(1)}. If this is
not the case, its letters can be sorted and renumbered in O(n log n) time, which
does not influence the preprocessing time of our data structure.

For a string S, by |S| we denote its length and by S[i] we denote its ith letter
(i = 1, . . . , |S|). By S[i . . j] we denote the string S[i] . . . S[j] called a factor of S;
it is a prefix if i = 1 and a suffix if j = |S|. A factor that occurs both as a prefix
and as a suffix of S is called a border of S. A factor is proper if it is shorter than
the string itself. A positive integer p is called a period of S if S[i] = S[i + p]
holds for all i = 1, . . . , |S| − p. By per(S) we denote the smallest period of S. A
string S is called periodic if |S| ≥ 2per(S) and aperiodic otherwise. If S = XY ,
then any string of the form Y X is called a cyclic shift of S. We use the following
simple fact related to covers.

Observation 1. Let A, B, C be strings such that |A| < |B| < |C|.

(a) If A is a cover of B and B is a cover of C, then A is a cover of C.
(b) If B is a border of C and A is a cover of C, then A is a cover of B.

Below we list several algorithmic tools used later in the paper.

Queries Related to Suffix Trees and Arrays
A range minimum query on array A[1 . . n] requires to compute
min{A[i], . . . , A[j]}.

Lemma 2 ([4]). Range minimum queries on an array of size n can be answered
in O(1) time after O(n)-time preprocessing.

Internal Quasiperiod Queries 63

By lcp(i, j) (lcs(i, j)) we denote the length of the longest common prefix
of T [i . . n] and T [j . . n] (longest common suffix of T [1 . . i] and T [1 . . j], respec-
tively). Such queries are called longest common extension (LCE) queries. The
following lemma is obtained by using range minimum queries on suffix arrays.

Lemma 3 ([4,15]). After O(n)-time preprocessing, one can answer LCE queries
for T in O(1) time.

The suffix tree of T , denoted as T (T), is a compact trie of all suffixes of T .
Each implicit or explicit node of T (T) corresponds to a factor of T , called its
string label. The string depth of a node of T (T) is the length of its string label.

We use weighted ancestor (WA) queries on a suffix tree. Such queries, given
an explicit node v and an integer value � that does not exceed the string depth
of v, ask for the highest explicit ancestor u of v with string depth at least �.

Lemma 4 ([1,17]). Let T (T) be the suffix tree of T . WA queries on T (T) can
be answered in γn = O(log log n) time after O(n)-time preprocessing. Moreover,
any m WA queries on T (T) can be answered off-line in O(n + m) time.

Internal Pattern Matching (IPM)
The data structure for IPM queries is built upon a text T and allows efficient
location of all occurrences of one factor X of T inside another factor Y of T ,
where |Y | ≤ 2|X|.
Lemma 5 ([20]). The result of an IPM query is a single arithmetic sequence.
After linear-time preprocessing one can answer IPM queries for T in O(1) time.

A period query, for a given factor X of text T , returns a compact represen-
tation of all the periods of X (as a set of O(log n) arithmetic sequences).

Lemma 6 ([20]). After O(n) time and space preprocessing, for any factor of T
we can answer a period query in O(log n) time.

The data structures of Lemmas 5 and 6 are constructed in O(n) expected
time. These constructions were made worst-case in [16].

Static Range Trees
A basic interval is an interval [a . . a + 2i) such that 2i divides a − 1. We assume
w.l.o.g. that n is a power of two. We consider a static range tree structure whose
nodes correspond to basic subintervals of [1 . . n] and a non-leaf node has chil-
dren corresponding to the two halves of the interval. (See e.g. [18]). The total
number of basic intervals is O(n). Using the tree, every interval [i . . j] can be
decomposed into O(log n) pairwise disjoint basic intervals. The decomposition
can be computed in O(log n) time by inspecting the paths from the leaves cor-
responding to i and j to their lowest common ancestor. A basic factor of T is a
factor that corresponds to positions from a basic interval.

Seeds
We say that a string S is a seed of a string U if S is a factor of U and S is a
cover of a string U ′ such that U is a factor of U ′; see Fig. 2. The second point of
the lemma below follows from Lemma 4.

64 M. Crochemore et al.

a a a a a a a a a a ab b b b b b

a a a a a a a a a a ab b b b b b

Fig. 2. The strings aba, abaab are seeds of the given string (as well as strings
abaaba, abaababa, abaababaa).

Lemma 7 ([17]).

(a) All the seeds of T can be represented as a collection of a linear number of
disjoint paths in the suffix tree T (T). Moreover, this representation can be
computed in O(n) time if T is over an integer alphabet.

(b) After O(n) time preprocessing we can check if a given factor of T is a seed
of T in O(γn) time.

Our main data structure is a static range tree SeedSets(T) which stores all
seeds of every basic factor of T represented as a collection of paths in its suffix
tree. Actually, only seeds of length at most half of a string will be of interest;
see Fig. 3.

aabaababababaaba
seeds: aba

aabaabab
seeds: aba

aaba
seeds: ∅

aa
seeds: a

ba
seeds: ∅

abab
seeds: ab,ba

ab
seeds: ∅

ab
seeds: ∅

ababaaba
seeds: aba

abab
seeds: ab,ba

ab
seeds: ∅

ab
seeds: ∅

aaba
seeds: ∅

aa
seeds: a

ba
seeds: ∅

Fig. 3. A schematic view of tree SeedSets of T (in the real data structure, seeds are
stored on suffix trees of basic factors). For example, ba is a seed of T [5 . . 12] since
it is a seed of basic factors T [5 . . 8] and T [9 . . 12] and its occurrence covers T [8 . . 9]
(Lemma 10).

The sum of lengths of basic factors in T is O(n log n). Consequently, due
to Lemma 7, the tree SeedSets(T) has total size O(n log n) and can be computed
in O(n log n) time. (To use Lemma 7(a) we renumber letters in basic factors of T
via bucket sort so that the letters of a basic factor S are from {0, . . . , |S|O(1)}.)

3 Internal Cover of a Given Length

In this section we show how to use SeedSets(T) to answer internal queries related
to computing the longest prefix of a factor S of T that is covered by its length-�
prefix. We start with the following, easier queries.

Internal Quasiperiod Queries 65

Cover of a Given Length Query (IsCover(�, S))

Input: A factor S of T and a positive integer �

Query: Does S have a cover of length �?

The following three lemmas provide the building blocks of the data structure for
answering IsCover queries.

Lemma 8 (Seed of a basic factor). After O(n log n)-time preprocessing, for
any factor C and basic factor B of T such that 2|C| ≤ |B|, we can check if C is
a seed of B in O(γn) time.

Proof. Let |C| = c and B = T [a . . b]. We first ask an IPM query to find an
occurrence of C inside T [a . . a+2c−1]. If such an occurrence does not exist, then
C cannot be a seed of T [a . . b] as it is already not a seed of T [a . . a+2c−1] (there
must be a full occurrence to cover the middle letter, and a+2c−1 ≤ b). Otherwise,
we can use the occurrence to check if C is a seed of B with Lemma 7(b). ��

For strings C and S, by Cov(C,S) we denote the set of positions of S that
are covered by occurrences of C.

Lemma 9 (Covering short factors). After O(n)-time preprocessing, for any
two factors C and F of T such that |F |/|C| = O(1), the set Cov(C,F), repre-
sented as a union of maximal intervals, can be computed in O(1) time.

Proof. We ask IPM queries for pattern C on length-2|C| factors of F with step
|C|. Each IPM query returns an arithmetic sequence of occurrences that corre-
sponds to an interval of covered positions (possibly empty). It suffices to compute
the union of these intervals. ��

Lemma 10 (Seeds of strings concatenation). After O(n)-time preprocess-
ing, for any three factors C, F1 = T [i . . j] and F2 = T [j + 1 . . k] of T such that
2|C| ≤ |F1|, |F2| and C is a seed of both F1 and F2, we can check if C is also a
seed of F1F2 in constant time.

Proof. For a string C of length c being a seed of both T [i . . j] and T [j + 1 . . k]
to be a seed of T [i . . k], it is enough if its occurrences cover the string U =
T [j − c + 1 . . j + c]. We can check this condition if we apply Lemma 9 for C and
F = T [j − 2c + 1 . . j + 2c]. ��

Lemma 11. After O(n log n) time and space preprocessing of T , a query
IsCover(�, S) can be answered in O(log(|S|/�) γn + 1) time.

Proof. Let S = T [i . . j], |S| = s and C = T [i . . i + � − 1].
We consider a decomposition of S into basic factors, but we are only inter-

ested in basic factors of length at least 2� in the decomposition. Let F1, . . . , Fk be
those factors and T [i . . i′], T [j′ . . j] be the remaining prefix and suffix of length
O(�). Note that k = O(log(s/�)). Moreover, this decomposition can be computed

66 M. Crochemore et al.

in O(k + 1) time by starting from the leftmost and rightmost basic factors of
length 2b, where b = �log �� + 1, that are contained in S.

If C is a cover of S, it must be a seed of each of the basic factors F1, . . . , Fk.
We can check this condition by using Lemma 8 in O(kγn) total time.

Next we check if C is a seed of F1 · · · Fk in O(k) total time using Lemma 10.
Finally, we use IPM queries to check if occurrences of C cover all positions in
each of the strings T [i . . i′ + c−1], T [j′ − c+1 . . j] and if C is a suffix of T [i . . j],
using Lemma 9. This takes O(1) time.

The total time complexity is O(kγn + 1). ��

As we will see in the next section, IsCover queries immediately imply a
slower, O(log2 nγn)-time algorithm for answering MinCover queries. However,
they are also used in our algorithm for answering AllCovers queries. In the
efficient algorithm for MinCover queries we use the following generalization of
IsCover queries.

Longest Covered Prefix Query (CoveredPref(�, S))

Input: A factor S of T and a positive integer �

Query: The longest prefix P of S that is covered by S[1 . . �]

To answer these queries, we introduce an intermediate problem that is more
directly related to the range tree containing seeds representations.

SeededBasicPref(C, �, S) query

Input: A length-� factor C of T and a factor S being a concatenation
of basic factors of T of length 2p, where p = min{q ∈ Z : 2q ≥ 2�}
Output: The length m of the longest prefix of S which is a concatenation
of basic factors of length 2p such that C is a seed of this prefix

In other words, we consider only blocks of S which are basic factors of
length 2p = Θ(�). Everything starts and ends in the beginning/end of a basic
factor of length 2p. The number of such blocks in the prefix returned by
SeededBasicPref is O(result′/�), where result′ = SeededBasicPref(C, �, S),
and, as we show in Lemma 13, it can be computed in O(log(result′/�)γn+1) time.
This is how we achieve O(log(result/�) γn + 1) time for CoveredPref(�, S)
queries. In a certain sense the computations behind Lemma 13 can work in a
pruned range tree SeedSets(T).

Lemma 12. After O(n)-time preprocessing, a CoveredPref(�, S) query
reduces in O(1) time to a SeededBasicPref(C, �, S′) query with |S′| ≤ |S|.

Proof. First, let us check if the answer to CoveredPref(�, S) is small, i.e. at
most 4�, using Lemma 9. Otherwise, let p be defined as in a SeededBasicPref
query, C = S[1 . . �] and S′ be the maximal factor of S that is composed of basic

Internal Quasiperiod Queries 67

factors of length 2p (S′ can be the empty string, if |S| < 3 · 2p). Let S = T [i . . j]
and S′ = T [i′ . . j′]. Then

|(i′ + SeededBasicPref(C, �, S′)) − (i + CoveredPref(�, S))| < 2p;

see Fig. 4. Hence, knowing d = SeededBasicPref(C, �, S′), we check in O(1)
time, using Lemma 9 in a factor T [i′ + d − 2p . . i′ + d + 2p − 1] of length 2p+1,
what is the exact value of CoveredPref(�, S).

F1 F2 F3

S

C

Fig. 4. F1, F2, F3 are basic factors of length 2p. The answers to CoveredPref(�, S)
and SeededBasicPref(C, �, S′) queries are shown in bold. Note that C is a seed of
F1 and F2 and that it could be the case that C is also a seed of F3, even though it has
no further full occurrence.

We compute p using the formula p = 1 + �log ��. Then the endpoints of S′

can be computed from the endpoints of S in O(1) time using simple modular
arithmetic. The O(n) preprocessing is due to Lemma 9. ��

A proof of the following lemma is left for the full version.

Lemma 13. After O(n log n) time and space preprocessing of T , a
query SeededBasicPref(C, �, S) can be answered in O(log(result/�) γn + 1)
time, where result = |SeededBasicPref(C, �, S)|.

As a corollary of Lemma 12 and 13, we obtain the following result.

Lemma 14. After O(n log n) time and space preprocessing of T , a
query CoveredPref(�, S) can be answered in O(log(result/�) γn+1) time, where
result = |CoveredPref(�, S)|.

4 Internal Shortest Cover Queries

For a string S, by Borders(S) we denote a decomposition of the set of all
border lengths of S into O(log |S|) arithmetic sequences A1, . . . , Ak such that
each sequence Ai is either a singleton or, if p is its difference, then the borders
with lengths in Ai\{min(Ai)} are periodic with the shortest period p. Moreover,
max(Ai) < min(Ai+1) for every i ∈ [1 . . k − 1]. See e.g. [8]. The following lemma
is shown by applying a period query (Lemma6).

Lemma 15 ([16,20]). For any factor S of T , Borders(S) can be computed in
O(log n) time after O(n)-time preprocessing.

68 M. Crochemore et al.

4.1 Simple Algorithm with O(log2 n γn) Query Time

Let us start with a much simpler but slower algorithm for answering MinCover
queries using IsCover queries. We improve it in Theorem 17 by using
CoveredPref queries and applying an algorithm for computing shortest covers
that resembles, to some extent, computation of the shortest cover from [2].

Proposition 16. Let T be a string of length n. After O(n log n)-time pre-
processing, for any factor S of T we can answer a MinCover(S) query in
O(log2 n log log n) time.

Proof. Using Lemma 15 we compute the set Borders(S) = A1, . . . , Ak in O(log n)
time. Let us observe that the shortest cover of a string is aperiodic. This implies
that from each progression Ai only the border of length min(Ai) can be the
shortest cover of S. We use Lemma 11 to test each of the O(log n) candidates in
O(log nγn) time. ��

4.2 Faster Queries

Theorem 17. Let T be a string of length n. After O(n log n)-time preprocessing,
for any factor S of T we can answer a MinCover(S) query in O(log n log log n)
time.

Proof. Again we use Lemma 15 we compute the set Borders(S) = A1, . . . , Ak, in
O(log n) time. Let us denote the border of length min(Ai) by Ci and Ck+1 = S.
We assume that Ci’s are sorted in increasing order of lengths. Then we proceed
as shown in Algorithm 1. See also Fig. 5.

Algorithm 1: MinCover(S) query.

i := 1;
while true do

// Invariant: C1, . . . , Ci−1 are not covers of S
// Ci is an active border
P := CoveredPref(|Ci|, S);
if P = S then return |Ci|;
while |Ci| ≤ |P | do

i := i + 1;

To argue for the correctness of the algorithm it suffices to show the invariant.
The proof goes by induction.

The base case is trivial. Let us consider the value of i at the beginning of
a step of the while-loop. If P = S, then by the inductive assumption Ci is the
shortest cover of S and can be returned. Otherwise, Ci is not a cover of S.

Moreover, for each j such that |Ci| < |Cj | ≤ |P |, since Cj is a prefix of P , Ci

is a seed of Cj . Moreover, both Ci and Cj are borders of S, so Ci is a border of Cj .
Consequently, Cj cannot be a cover of T , as then Ci would also be a cover of T by
Observation 1. This shows that the inner while-loop correctly increases i.

Internal Quasiperiod Queries 69

CoveredPref

C1
C2
C3
C4
C5
C6
C7
C8

Fig. 5. If C3 is an active border, then the next active one is C7. We skip C4, C5, C6 as
candidates for the shortest cover.

The algorithm stops because at each point |P | ≥ |Ci| and i is increased.
Let c1, . . . , cp be equal to the length of an active border in the algorithm at the

start of subsequent outer while-loop iterations and let cp+1 = |S|.
Let us note that, for all j = 1, . . . , p, |CoveredPref(cj , S)| ≤ cj+1. By

Lemma 14, the total complexity of answering longest covered prefix queries in the
algorithm is at most

O

⎛
⎝p + γn

p∑
j=1

log cj+1
cj

⎞
⎠ = O(log n + γn(log cp+1 − log c1)) = O(log nγn).

The preprocessing of Lemmas 14 and 15 takes O(n log n) time. The conclusion
follows. ��

If MinCover queries are to be answered in a batch, we can use off-line WA
queries of Lemma 4 to save the γn-factor. We can also avoid storing the whole
data structure SeedSets by using an approximate version of CoveredPref
queries. Details are left for the full version.

Theorem 18. For a string T of length n, any m queries MinCover(T [i . . j])
can be answered in O((n + m) log n) time and O(n + m) space.

5 Internal All Covers Queries

In this section we refer to AllCovers(S) as to the set of lengths of all covers
of S. This set consists of a logarithmic number of arithmetic sequences since
the same is true for all borders. In each sequence of borders we show that it is
needed only to check O(1) borders to be a cover of S. Hence we start with an
algorithm testing any sequence of O(log n) candidate borders.

70 M. Crochemore et al.

5.1 Verifying O(log n) Candidates

Assume that B is an increasing sequence b1, . . , bk of lengths of borders of a given
factor S (not necessarily all borders), with bk = |S|. A chain in B is a maximal
subsequence bi, . . . , bj of consecutive elements of B such that S[1 . . bt] is a cover
of S[1 . . bt+1] for each t ∈ [i . . j). From Observation 1 we get the following.

Observation 19. The set of elements of a chain that belong to AllCovers(S)
is a prefix of this chain. Moreover, if the last element of a chain is not |S|, then
it is not a cover of S.

We denote by chains(B) and covers(B), respectively, the partition of B into
chains and the set of elements b ∈ B such that S[1 . . b] is a cover of S. For b ∈ B
by prev(b) we denote the previous element in its chain (if it exists). Moreover,
for C ⊆ B by nextC(b) we denote the smallest c ∈ C such that c > b.

Lemma 20. Let T be a string of length n. After O(n log n)-time preprocessing,
for any factor S of T and a sequence B of O(log n) borders of S we can compute
covers(B) in O(log n log log nγn) time.

Proof. We introduce two operations and use them in a recursive Algorithm2.

refine(B): removes the last element of each chain in B and every second element
of each chain, except |S| (see Fig. 6). Note that |refine(B)| ≤ |B|/2 + 1.

computeUsing(B,C): Assuming that we know the set C of all covers of S
among refine(B), for each element b of B\refine(B) we add it to C if prev(b) ∈
C and S[1 . . b] is a cover of S[1 . .nextC(b)]. The set of all elements that satisfy
this condition together with C is returned as covers(B).

b1 b2 b3 b4 b5 b6 b7 b8 b9

|S|

= refine
b1 b3 b6 b8 b9

|S|

=

Fig. 6. There is an arrow from bi to bi+1 iff S[1 . . bi] is a cover of S[1 . . bi+1]. Note that
all elements in the last chain b6, b7, b8, b9 are cover lengths of S, b5 is not, but some
prefix of b1, b2, b3, b4 may be.

Algorithm 2: covers(B)

Compute chains(B);
if B is a single chain (ending with |S|) then return B;
B′ := refine(B); // |B′| ≤ |B|/2 + 1
C := covers(B′);
return computeUsing(B,C);

If B = (b1, . . , bk), then chains(B) can be constructed in
O(

∑k−1
i=1 (log bi+1

bi
γn + 1)) = O(log nγn) time using Lemma 11. Similarly,

Internal Quasiperiod Queries 71

operation computeUsing(B,C) requires O(log nγn) time since the intervals
[b,nextC(b)] for b ∈ B\refine(B) such that prev(b) ∈ C are pairwise disjoint.
The depth of recursion of Algorithm 2 is O(log log n). This implies the required
complexity.

��

5.2 Computing Periodic Covers

Our tool for periodic covers are (as usual) runs. A run (also known as a maximal
repetition) is a periodic factor R = T [a . . b] which can be extended neither to
the left nor to the right without increasing the period p = per(R), i.e., T [a−1]
=
T [a + p − 1] and T [b − p + 1]
= T [b + 1] provided that the respective positions
exist. The following observation is well-known.

Observation 21. Two runs in T with the same period p can overlap on at most
p − 1 positions.

The exponent exp(S) of a string S is |S|/per(S). The Lyndon root of a string
S is the minimal cyclic shift of S[1 . . per(S)].

If S = T [a . . b] is periodic, then by run(S) we denote the run R with the same
period that contains S. We say that S is induced by R. A periodic factor of T
is induced by exactly one run [10]. The run-queries are essentially equivalent to
two-period queries. By R(T) we denote the set of all runs in a string T .

Lemma 22 ([3,10,21]).

(a) |R(T)| ≤ n and R(T) can be computed in O(n) time.
(b) After O(n)-time preprocessing, run(S) queries can be answered in O(1) time.
(c) The runs from R(T) can be grouped by their Lyndon roots in O(n) time.

The following lemma implies that indeed for any string S, AllCovers(S)
can be expressed as a union of O(log |S|) arithmetic sequences. It also shows a
relation between periodic covers and runs in S.

Lemma 23. Let S be a string, A ∈ Borders(S) be an arithmetic sequence with
difference p, A′ = A\{min(A)} and a′ = min(A′). Moreover, let x be the minimal
exponent of a run in S with Lyndon root being a cyclic shift of S[1 . . p].

(a) If a′
∈ AllCovers(S), then A′ ∩ AllCovers(S) = ∅.
(b) Otherwise, there exists c ∈ ((x − 2)p, xp] ∩ A′ such that

A′ ∩ AllCovers(S) = {a′, a′ + p, . . . , c}.

Proof. Part (a) follows from Observation 1. Indeed, assume that S has a cover
of length b ∈ A′, with b > a′. As S[1 . . a′] is a cover of S[1 . . b], we would have
a′ ∈ AllCovers(S).

We proceed to the proof of part (b). Let c be the maximum element of A′

such that C := S[1 . . c] is a cover of S. By the same argument as before, we have
that A′ ∩ AllCovers(S) = A′ ∩ [1, c]. It suffices to prove the bounds for c.

Let L be the minimum cyclic shift of S[1 . . p]. We consider all runs R1, . . . , Rk

in S with Lyndon root L. Each occurrence of C in S is induced by one of them.

72 M. Crochemore et al.

Each of the runs must hold an occurrence of C. Indeed, by Observation 21, no
two of the runs overlap on more than p− 1 positions, so the pth position of each
run cannot be covered by occurrences of C that are induced by other runs. The
shortest of the runs has length xp, so c ≤ xp.

Furthermore, let C ′ = S[1 . . c′] be a prefix of S of length c′ = c + p. If
p · exp(Ri) ≥ c′ + p − 1, then Ri induces an occurrence of C ′ and Cov(C ′, Ri) =
Cov(C,Ri). Hence, if px ≥ c′ + p − 1 would hold, C ′ would be a cover of S,
which contradicts our assumption. Therefore, px < c′ + p − 1 = c + 2p − 1, so
c > (x − 2)p. ��

Lemma 25 transforms Lemma 23 into a data structure. We use static dictio-
naries.

Lemma 24 (Ružić [25]). A static dictionary of n integers that supports O(1)-
time lookups can be stored in O(n) space and constructed in O(n(log log n)2)
time. The elements stored in the dictionary may be accompanied by satellite
data.

Lemma 25 (Computing O(log n) Candidates).
For any factor S of T we can compute in O(log n) time O(log n) borders of
S which are candidates for covers of S. After knowing which of these candi-
dates are covers of S, we can in O(log n) time represent (as O(log n) arith-
metic progressions) all borders which are covers of S. The preprocessing time is
O(n(log log n)2) and the space used is O(n).

Proof. It is enough to show that for any factor S of T and a single arithmetic
sequence A ∈ Borders(S) we can compute in O(1) time up to four candidate
borders. Then, after knowing which of them are covers of S, we can in O(1) time
represent (as a prefix subsequence of A) all borders in A which are covers of S.
We first describe the data structure and then the query algorithm.

Data Structure. Let T [a1 . . b1], . . . , T [ak . . bk] be the set of all runs in T with
Lyndon root L, with a1 < · · · < ak (and b1 < · · · < bk). The part of the data
structure for this Lyndon root consists of an array AL containing a1, . . . , ak, an
array EL containing the exponents of the respective runs, as well as a dictionary
on AL and a range-minimum query data structure on EL. Formally, to each
Lyndon root we assign an integer identifier in [1, n] that is retained with every
run with this Lyndon root and use it to index the data structures. We also
store a dictionary of all the runs. The data structure takes O(n) space and can
be constructed in O(n(log log n)2) time by Lemmas 2, 22 and 24. We also use
LCE-queries on T (Lemma 3).

Queries. Let us consider a query for S = T [i . . j] and A ∈ Borders(S). If
|A| = 1, we have just one candidate. Otherwise, A is an arithmetic sequence with
difference p. Let a = min(A), A′ = A\{a}, and a′ = min(A′). We select borders
of length a and a′ as candidates. If a′
∈ AllCovers(S), then Lemma 23(a)
implies that A ∩ AllCovers(S) ⊆ {a}. We also select borders of lengths in
A ∩ ((x − 2)p, xp] as candidates, where x is defined as in Lemma 23. Note that

Internal Quasiperiod Queries 73

there are at most two of them. Let c be the maximum candidate which turned
out to be a cover of S. Then A ∩ AllCovers(S) = A ∩ [1, c] by Lemma 23(b).

What is left is to compute x, that is, the minimum exponent of a run in S
with Lyndon root L that is a cyclic shift of S[1 . . p]. Since |A| ≥ 2, S has a prefix
run with Lyndon root L. Then � = min(p + d, |S|), where d = lcp(i, i + p), is
the length of the run. If � = |S|, then x = �/p and we are done. Otherwise, let
i′ = i + p + d. We make the following observation.

Claim. If a′ ∈ AllCovers(S), then T [i′ . . i′ +p] is contained in a run in T with
Lyndon root L.

Proof. We identify the run T [a . . b] with period p containing T [i′ . . i′ + p] by
asking lcp(i′, i′ +p) and lcs(i′, i′ +p) queries. This lets us recover the identifier of
its Lyndon root L. Similarly we compute the suffix run with Lyndon root L in
S and the previous run T [a′ . . b′] with Lyndon root L in T . Using the dictionary
on AL, we recover the range in the array that corresponds to elements from a
to a′. This lets us use a range minimum query on this range in EL and use it
together with the exponents of the prefix and suffix runs of S to compute x. ��

5.3 Main Query Algorithm

The main result of this section follows from Lemma 20 and Lemma 25.

Theorem 26. Let T be a string of length n. After O(n log n)-time preprocess-
ing, for any factor S of T we can answer a query AllCovers(S), with output
represented as a union of O(log n) pairwise disjoint arithmetic sequences, in
O(log n(log log n)2) time.

The transformation to the off-line model is similar as in Theorem 18.

Corollary 27. For a string T of length n, any m queries AllCovers(T [i . . j])
can be answered in O((n + m) log n log log n) time and O(n + m) space.

6 Final Remarks

We showed an efficient data structure for computing internal covers. However, a
similar problem for seeds, which are another well-studied notion in quasiperiod-
icity, seems to be much harder. We pose the following question.

Open Problem
Can one answer internal queries related to seeds in O(polylog n) time after
O(n · polylog n) time preprocessing?

74 M. Crochemore et al.

References

1. Amir, A., Landau, G.M., Lewenstein, M., Sokol, D.: Dynamic text and static pat-
tern matching. ACM Trans. Algorithms 3(2), 19 (2007). https://doi.org/10.1145/
1240233.1240242

2. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing
for strings. Inf. Process. Lett. 39(1), 17–20 (1991). https://doi.org/10.1016/0020-
0190(91)90056-N

3. Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.:
The “runs” theorem. SIAM J. Comput. 46(5), 1501–1514 (2017). https://doi.org/
10.1137/15M1011032

4. Bender, M.A., Farach-Colton, M.: The LCA problem revisited. In: Gonnet, G.H.,
Viola, A. (eds.) LATIN 2000. LNCS, vol. 1776, pp. 88–94. Springer, Heidelberg
(2000). https://doi.org/10.1007/10719839 9

5. Berkman, O., Iliopoulos, C.S., Park, K.: The subtree max gap problem with appli-
cation to parallel string covering. Inf. Comput. 123(1), 127–137 (1995). https://
doi.org/10.1006/inco.1995.1162

6. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44(6),
345–347 (1992). https://doi.org/10.1016/0020-0190(92)90111-8

7. Breslauer, D.: Testing string superprimitivity in parallel. Inf. Process. Lett. 49(5),
235–241 (1994). https://doi.org/10.1016/0020-0190(94)90060-4

8. Crochemore, M., et al.: The maximum number of squares in a tree. In: Kärkkäinen,
J., Stoye, J. (eds.) CPM 2012. LNCS, vol. 7354, pp. 27–40. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31265-6 3

9. Crochemore, M., Iliopoulos, C., Kubica, M., Radoszewski, J., Rytter, W., Waleń,
T.: Extracting powers and periods in a string from its runs structure. In: Chavez, E.,
Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 258–269. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-16321-0 27

10. Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Waleń,
T.: Extracting powers and periods in a word from its runs structure. Theor. Com-
put. Sci. 521, 29–41 (2014). https://doi.org/10.1016/j.tcs.2013.11.018

11. Crochemore, M., et al.: Shortest covers of all cyclic shifts of a string. In: Rahman,
M.S., Sadakane, K., Sung, W.-K. (eds.) WALCOM 2020. LNCS, vol. 12049, pp.
69–80. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-39881-1 7

12. Czajka, P., Radoszewski, J.: Experimental evaluation of algorithms for computing
quasiperiods. CoRR abs/1909.11336 (2019). http://arxiv.org/abs/1909.11336

13. Gawrychowski, P., Radoszewski, J., Starikovskaya, T.: Quasi-periodicity in streams.
In: Pisanti, N., Pissis, S.P. (eds.) 30th Annual Symposium on Combinatorial Pat-
tern Matching, CPM 2019. LIPIcs, Pisa, Italy, 18–20 June 2019, vol. 128, pp. 22:1–
22:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/
10.4230/LIPIcs.CPM.2019.22

14. Iliopoulos, C.S., Moore, D.W.G., Park, K.: Covering a string. Algorithmica 16(3),
288–297 (1996). https://doi.org/10.1007/BF01955677

15. Kärkkäinen, J., Sanders, P., Burkhardt, S.: Linear work suffix array construction.
J. ACM 53(6), 918–936 (2006). https://doi.org/10.1145/1217856.1217858

16. Kociumaka, T.: Efficient data structures for internal queries in texts. Ph.D. thesis,
University of Warsaw (2018). https://mimuw.edu.pl/∼kociumaka/files/phd.pdf

17. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A linear-time
algorithm for seeds computation. ACM Trans. Algorithms 16(2) (2020). https://
doi.org/10.1145/3386369

https://doi.org/10.1145/1240233.1240242
https://doi.org/10.1145/1240233.1240242
https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1137/15M1011032
https://doi.org/10.1137/15M1011032
https://doi.org/10.1007/10719839_9
https://doi.org/10.1006/inco.1995.1162
https://doi.org/10.1006/inco.1995.1162
https://doi.org/10.1016/0020-0190(92)90111-8
https://doi.org/10.1016/0020-0190(94)90060-4
https://doi.org/10.1007/978-3-642-31265-6_3
https://doi.org/10.1007/978-3-642-16321-0_27
https://doi.org/10.1016/j.tcs.2013.11.018
https://doi.org/10.1007/978-3-030-39881-1_7
http://arxiv.org/abs/1909.11336
https://doi.org/10.4230/LIPIcs.CPM.2019.22
https://doi.org/10.4230/LIPIcs.CPM.2019.22
https://doi.org/10.1007/BF01955677
https://doi.org/10.1145/1217856.1217858
https://mimuw.edu.pl/~kociumaka/files/phd.pdf
https://doi.org/10.1145/3386369
https://doi.org/10.1145/3386369

Internal Quasiperiod Queries 75

18. Kociumaka, T., Radoszewski, J., Rytter, W., Straszyński, J., Waleń, T., Zuba, W.:
Efficient representation and counting of antipower factors in words. In: Mart́ın-
Vide, C., Okhotin, A., Shapira, D. (eds.) LATA 2019. LNCS, vol. 11417, pp. 421–
433. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13435-8 31

19. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Efficient data structures
for the factor periodicity problem. In: Calderón-Benavides, L., González-Caro, C.,
Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 284–294. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-34109-0 30

20. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Internal pattern matching
queries in a text and applications. In: Indyk, P. (ed.) Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, 4–6 January 2015, pp. 532–551. SIAM (2015). https://doi.org/
10.1137/1.9781611973730.36

21. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear
time. In: 40th Annual Symposium on Foundations of Computer Science, FOCS
1999, New York, NY, USA, 17–18 October 1999, pp. 596–604. IEEE Computer
Society (1999). https://doi.org/10.1109/SFFCS.1999.814634

22. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1),
95–106 (2002). https://doi.org/10.1007/s00453-001-0062-2

23. Moore, D.W.G., Smyth, W.F.: An optimal algorithm to compute all the covers of
a string. Inf. Process. Lett. 50(5), 239–246 (1994). https://doi.org/10.1016/0020-
0190(94)00045-X

24. Moore, D.W.G., Smyth, W.F.: A correction to “An optimal algorithm to compute
all the covers of a string”. Inf. Process. Lett. 54(2), 101–103 (1995). https://doi.
org/10.1016/0020-0190(94)00235-Q

25. Ružić, M.: Constructing efficient dictionaries in close to sorting time. In: Aceto, L.,
Damg̊ard, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz,
I. (eds.) ICALP 2008. LNCS, vol. 5125, pp. 84–95. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-70575-8 8

https://doi.org/10.1007/978-3-030-13435-8_31
https://doi.org/10.1007/978-3-642-34109-0_30
https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1109/SFFCS.1999.814634
https://doi.org/10.1007/s00453-001-0062-2
https://doi.org/10.1016/0020-0190(94)00045-X
https://doi.org/10.1016/0020-0190(94)00045-X
https://doi.org/10.1016/0020-0190(94)00235-Q
https://doi.org/10.1016/0020-0190(94)00235-Q
https://doi.org/10.1007/978-3-540-70575-8_8

An Efficient Elastic-Degenerate Text
Index? Not Likely

Daniel Gibney(B)

University of Central Florida, Orlando, FL 32816, USA
daniel.j.gibney@gmail.com

http://cs.ucf.edu/~dgibney/

Abstract. Elastic-degenerate text provides a novel and effective method
for modeling collections of text that have local variations. Due to its
applicability in pan-genomics, an index for an elastic-degenerate text
which can efficiently report the occurrences of a given query pattern
is desirable. This paper attempts to dash our hopes for such an index,
one that is deterministic and has good worst-case query time. We do so
by providing conditional lower bounds based on the Orthogonal Vectors
Hypothesis (OVH) (and hence the Strong Exponential Time Hypothesis).
We show that, even with arbitrary polynomial preprocessing time, an
index for an elastic-degenerate text with n degenerate letters that can
perform queries on a pattern of length m in time O(nαmβ) for constants
α and β where α < 1 or β < 1 would violate OVH. Additionally, we
provide an elastic-degenerate text index with query time O(nm2), which
is independent of the size N (distinct from its length) of the elastic-
degenerate text. Finally, we investigate the hardness of matching elastic-
degenerate text to elastic-degenerate text.

Keywords: Elastic-degenerate text · Text indexing · Conditional
lower bounds

1 Introduction

Very recently, a useful new way of modeling collections of closely related strings
(or sequences) called Elastic-Degenerate Text (ED-text) has started receiving
attention. Introduced by Iliopoulos, Kundu, and Pissis in [18], ED-text arises
from the need to model collections of strings where there are regions of local
variation. ED-text models these collections in a natural and convenient repre-
sentation. It may be best to first look at an example. Accordingly, we have
provided this Mad-libs inspired instance of an ED-text:

{The} ◦
{

dog
moose
ostrich

}
◦

{
jumped

sat
washed

}
◦

{
ε

but not

}
◦ {before} ◦

{
dancing
baking

pontificating

}

Supported in part by the U.S. National Science Foundation (NSF) under CCF-1703489.

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 76–88, 2020.
https://doi.org/10.1007/978-3-030-59212-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-59212-7_6

An Efficient Elastic-Degenerate Text Index? Not Likely 77

One can see that within each matching pair of brackets, there is a set of ordinary
strings. This set of strings models the possible variants occurring within that
region. Each of these sets is referred to as a degenerate letter. In regions where
no variation is allowed, a degenerate letter will consist of a single string. Now,
having some intuition for the notion, let us formally define an ED-text.

Elastic-Degenerate Text (ED-text). A degenerate letter X is a non-empty
set of strings. This can include the empty string ε. An ED-text T̃ of length
n consists of n degenerate letters, that is T̃ = X[1] ◦ X[2] ◦ . . . ◦ X[n] where
X[i] refers to the ith degenerate letter in T̃ and ◦ denotes concatenation. Let
|X[i]| be the number of strings in X[i], X[i][j] the jth string in degenerate letter
X[i], and |X[i][j]| the length of the string X[i][j]. The size of T̃ is defined as
N =

∑n
i=1

∑|X[i]|
j=1 |X[i][j]|. We will use the term sub-ED-text of T̃ to refer

to a concatenation of degenerate letters that exist consecutively within T̃ . By
alphabet, we mean the symbols appearing within the strings. In our example,
n = 6 and N = 73 (including the space within ‘but not’), and the alphabet
could be {a,b,c,...,z, , ε} (not all used).

More than modeling Mad-Lib’s, the ability to model collections of related
strings has an important role in the field of pan-genomics [13,23,24]. One of the
most fundamental problems is having to find occurrences of a pattern (consisting
of just an ordinary string) within an ED-text.

Pattern Matching in ED-text. We let ◦ denote the concatenation of ordinary
strings, as well as degenerate letters. A pattern P of length m matches a sub-
ED-text X[s] ◦ . . . ◦ X[t] of T̃ if P can be written as P = P1 ◦ P2 ◦ . . . ◦ Pm′

where P1 �= ε and is a suffix of a string in X[s], Pi is equal to a string in X[i]
for s < i < t, and Pm′ �= ε and is a prefix of a string in X[t]. We say that this
match of P spans t − s + 1 degenerate letters and that P has a match in T̃ iff P
has a match with some sub-ED-text of T̃ . Returning to our example above, the
pattern P = “umpedbefor” is of length m = 10 and occurs as a match which
spans 5 − 3 + 1 = 3 degenerate letters. This work will be chiefly concerned with
the indexing version of this matching problem.

Problem 1 (Elastic-Degenerate Indexing (ED-Indexing)). Given an ED-text T̃
of length n and size N , construct an index that when given a query pattern P
reports whether P has a match in T̃ .

Background and Related Work. Elastic-Degenerate String Matching
(EDSM) was introduced recently in [18], however, related problems have been
considered before in the form of gapped strings [20]. Within [18], the authors
presented a solution using time O(αγnm + N), where α and γ represent the
maximum number of strings in any degenerate letter and γ the maximum span
of any occurrence of P in T̃ . Variants of this problem that allow for approxi-
mate matching, have appeared in [8], where the time complexity is parameter-
ized by the number of mismatches, or the edit-distance, allowed from an exact
match. Further results appearing in [7] give a randomized solution which runs
in expected time O(nm1.381 + N) by making use of fast matrix multiplication.

78 D. Gibney

The work of Grossi et al. [17] addresses the online version of this problem,
where preprocessing is done on the pattern, and the ED-text is provided online.
This is different from the version addressed here, which is the offline variant,
where the ED-text and pattern are provided as input. The authors present an
algorithm requiring O(m) space and O(nm2 + N) time after preprocessing, as
well as a fast bit-vector algorithm requiring time O(N�m

w �) with O(m�m
w �) pre-

processing time and space, where w is the size of the computer word. A different
solution for the online problem using time O(nm

√
m log m + N) was later pro-

vided in [5]. A generalization of the online problem to a set of patterns of total
length M was considered in [21]. There, an algorithm requiring time O(N�M

w �)
with O(M) pre-processing time and space was presented.

Also in [7], a lower bound was given. It states that a solution not making
use of fast matrix multiplication and running in time O(nm1.5−δ + N) for δ > 0
implies a strongly subcubic time algorithm for combinatorial Boolean Matrix
Multiplication (BMM). The proof in [7] is distinct from the ones provided here
in several ways: the reductions are from a different problem (Orthogonal vectors
versus BMM), and we allow the construction of an index using arbitrary poly-
nomial preprocessing time. Moreover, the alphabet sizes used in our reduction
is four, whereas the one used in [7] is polynomial in n.

Moving forward, the following problem is the basis for the conditional lower
bounds given here.

Problem 2 (Orthogonal Vectors (OV)). Given two sets of d-dimensional binary
vectors X,Y ⊆ {0, 1}d, determine whether there exist x ∈ X and y ∈ Y such
that their inner product x · y =

∑d
i=1 x[i] · y[i] = 0.

The Orthogonal Vectors Hypothesis (OVH) is a frequently used assumption
in fine-grained complexity. For examples, see [1–3,6,9–12,16,22,26]. It states
that for d = ω(log(|X| + |Y |)), there does not exist a solution to OV running
in time O((|X||Y |)1−ε) for any ε > 0. Due to a well-known reduction from k-
SAT, OVH being shown to be false would prove the Strong Exponential Time
Hypothesis [19] (SETH) false as well. The following extension of OV to indexing
problems, along with Lemma 1 appears in [15].

Problem 3 (OV-Indexing). Given a set of binary vectors X ⊂ {0, 1}d, construct
an index which, when given as a query a set of binary vectors Y ⊆ {0, 1}d, reports
whether there exist x ∈ X and y ∈ Y such that x and y are orthogonal.

Lemma 1 [15]. Under OVH, an index cannot support O(|X|α|Y |β)-time queries
for OV-indexing, for constant α < 1 or constant β < 1. This is even with
preprocessing of X that uses time dO(1)|X|O(1).

In the final section of this paper, we investigate the hardness of matching
ED-text to ED-text (see Sect. 4 for details). Previous work has been done in [4]
for degenerate (non-elastic) texts where each degenerate letter contains strings
of equal length. In this case, the authors gave a method for determining whether
the intersection of two collections of strings represented by degenerate text is
empty that runs in time O(N + M) for two degenerate texts of sizes N and M ,
respectively.

An Efficient Elastic-Degenerate Text Index? Not Likely 79

1.1 Our Contribution

Section 2 starts with a warm-up. The first reduction will help demonstrate one of
the main techniques used to identify orthogonal vectors, which is then expanded
upon in the next reduction.

Theorem 1. OV-Indexing on the vector sets X,Y ∈ {0, 1}d can be reduced to
ED-Indexing over an ED-text T̃ constructed from X, of length n = O(d|X|),
of size N = O(d|X|), and having a binary alphabet. At query time, |Y | query
patterns, each of length m = O(d), constructed from Y need to be used.

Based on Lemma 1 and Theorem 1, even with polynomial preprocessing of T̃ , a
significant improvement in query time over time linear in the length T̃ is not
possible under OVH.

Corollary 1. Over an alphabet of size two, a solution for ED-indexing that has
query time O(nαmO(1) + m) for constant α < 1 is not possible under OVH (and
hence SETH), even with arbitrary polynomial preprocessing.

Our second hardness result constructs larger query patterns, relating the
size of the query pattern to the lower bound. The proof of Theorem2 makes
use of (as far as the authors are aware) a new technique that we call phase-
shift keying, which may be useful in other pattern-matching-on-graph-related
reductions. Combining Corollaries 1 and 2, we obtain Theorem 3.

Theorem 2. OV-Indexing on vector sets X,Y ∈ {0, 1}d can be reduced to ED-
Indexing over a ED-text T̃ , constructed from X, of length n = O(d(|X| + |Y |)),
of size N = O(d(|X|2 + |Y |)), and having an alphabet of size four. One pattern
P needs to be given as a query, where P is constructed from Y and has length
m = O(d|Y ||X|).
Corollary 2. Over an alphabet of size four, an ED-index that has query time
O(nO(1)mβ + m) for constant β < 1 is not possible under OVH (and hence
SETH), even with arbitrary polynomial preprocessing.

Theorem 3. Over an alphabet of size four, an ED-index that has query time
O(nαmβ +m) for constants α and β where α < 1 or β < 1 is not possible under
OVH (and hence SETH), even with arbitrary polynomial preprocessing.

In Sect. 3 we provide an ED-index with O(nm2) query time. Lastly, in Sect. 4
we give a proof that matching two ED-texts is solvable in polynomial time when
empty strings are not allowed (see Sect. 4 for exact statements of the results).

2 Lower Bounds on ED-Text Index Queries

We will use ‘©t
i=1Si’ to denote the concatenation of t indexed degenerate letters

S1, ..., St, or strings S1, ..., St. For a symbol c and γ ≥ 1, we use cγ to denote c
repeated γ times. We also define c0 to be the empty string, ε. All arrays will be
indexed starting at 1.

80 D. Gibney

The

dog

moose

ostrich

jumped

sat

washed

ε

but not

before

dancing

baking

pontificating

Fig. 1. A representation of the ED-text from the introduction as a directed graph.

The representation of an ED-text as a directed graph, like in Fig. 1, is helpful.
Each degenerate letter can be represented as a set of edges between two vertices.
The aim in finding a match of a pattern P becomes finding a path (possibly
starting and ending mid-edge) whose concatenation of edge labels is the same
as P . We will sometimes refer to matching a particular text within a degenerate
letter with a portion of the query pattern as taking an edge. Note that our
problem can now be viewed as the string-to-graph matching problem, whose
algorithmic version as well as the indexing version were well studied from the
side of lower bounds [14,15]. However, the graphs we are considering are highly
restricted. Hence, these results do not apply here immediately.

For both reductions, we assume that we are given an instance of OV-Index
containing sets X and Y of binary vectors of dimension d is ω(log(|X|+ |Y |)) (a
standard assumption due to a reduction from k-SAT) where d is polylog(|X| +
|Y |). The vectors in X and Y are indexed from 1 to |X| and 1 to |Y | (resp), but
in no particular order.

2.1 Warm Up - Proof of Theorem 1 and Corollary 1.

The proof of Theorem1 is very simple. Nonetheless, the component and vector
gadgets introduced here will serve as a building blocks for the second reduction.

For a binary vector xi ∈ X, we define the following vector and component
gadgets,

V G(xi) = ©d
j=1CG1(xi[j]) where CG1(b) =

{
{00, 11} if b = 0
{11} if b = 1

Then, using the whole set X, we construct our ED-text as T̃ =
©|X|

i=1 (V G(xi) ◦ {010}).
Next, for a binary vector yi ∈ Y , we define the following pattern

Pi =
(©d

j=1CG2(yi[j])
) ◦ 010 where CG2(b) =

{
11 if b = 0
00 if b = 1

It is easy to see that a degenerate letter {010} in T̃ can only match with the
suffix 010 of Pj . And, that if the suffix 010 of Pj is matched with {010} in
V G(xi) ◦ {010}, then xi must be orthogonal to yj . From these observations we
obtain the following fact, which proves Theorem1.

An Efficient Elastic-Degenerate Text Index? Not Likely 81

Fact 1. For all yj ∈ Y and j ∈ [1, |Y |], pattern Pj has a match in T̃ iff xi·yj = 0.

Based on Fact 1, using |Y | queries to an ED-index for T̃ , we can determine
whether there exists an orthogonal pair of vectors. Also, note that the length
of T̃ is n = O(d|X|), and the length of each pattern is m = O(d). Hence, if we
could answer an ED-index query in time O(nαmO(1)) for constant α < 1 then in
time O(|Y |(d|X|)αdO(1)) we could answer an OV-index query. Using Lemma 1,
OVH would be proven false with such an ED-index. This completes the proof of
Corollary 1.

2.2 Proof of Theorem 2 and Corollary 2

In this section we will provide a reduction where m > n. By making m this large
we are able to obtain the desired results. In the previous section, since m = O(d)
obtaining these results was not possible.

To provide some intuition, let us start by giving the form of the final ED-text
and query pattern. The ED-text T̃ will be of the form:

T̃ = {$} ◦ U ◦ {$} ◦ . . . ◦ U ◦ {$}︸ ︷︷ ︸
|Y |−1 repetitions of U◦{$}

◦ T̃X ◦ {$} ◦ U ◦ {$} ◦ . . . ◦ U ◦ {$}︸ ︷︷ ︸
|Y |−1 repetitions of U◦{$}

And the pattern P will be of the form:

P = $ ◦ V GP (y1) ◦ $ ◦ V GP (y2) ◦ $ ◦ . . . ◦ $ ◦ V GP (y|Y |) ◦ $

The gadget U is constructed as a ‘universal’ gadget that accepts all vector
gadgets in P . The $’s are a new symbol added to the alphabet. In T̃ , the $’s
appear on both sides of universal vector gadgets, and nowhere within T̃X . They
also appear on both sides of vector gadgets within P . This causes exactly one of
the vector gadgets in P to form a match in T̃X iff P has a match in T̃ . Our main
task will be to design T̃X so that this is possible iff there exists an orthogonal
vector pair. For this, we will introduce the notion of phase-shift keying. Very
loosely, our goal will be to allow for the vector gadget in P to make an initial
choice but then enforce commitment. Intuitively, the vector gadget V GP (yj) that
ends up matching in T̃X gets to choose any vector gadget in T̃X upon entering
T̃X . However, once this choice is made, then V GP (yj) is ‘committed’ and can
only match degenerate letters (edges) within its choice of vector gadget.

To accomplish this, for each i ∈ [1, |X|] we will have to define a different
vector gadget. For a vector xi ∈ X, the ED-text is

V Gi(xi) = ©d
j=1CGi

1(xi[j])

where the component gadgets are defined differently for each index i from 1 to
|X|. Notice the 2’s within the component gadgets are shifted depending on i.

CGi
1(b) =

{
{2|X|−(i−1) ◦ 0 ◦ 2i−1, 2|X|−(i−1) ◦ 1 ◦ 2i−1, ε} if b = 0
{2|X|−(i−1) ◦ 1 ◦ 2i−1, ε} if b = 1

.

82 D. Gibney

The ED-text T̃X is defined as

T̃X = {ε, 2, 22, . . . , 2|X|−1} ◦
(
©|X|

i=1V Gi(xi)
)

◦ {ε, 2, 22, . . . , 2|X|−1}.

To have our vector gadgets within P choose their ‘phase-shift’, we have designed
our ED-text so that within the first degenerate letter of T̃X there exists several
choices of phase. This choice shifts the 2’s within the component gadgets in P
to the left by some amount, creating a matching ‘key’ for some vector gadget in
T̃X . After this point, the pattern can only match with degenerate letters that
have a matching phase-shift. See Fig. 2 for an illustration. The final degenerate
letter serves the purpose of absorbing any additional unnecessary 2’s.

ε

2
...

2|X|−1

2|X|0

2|X|1
ε

2|X|1

ε

. . . 2|X|−112

ε

2|X|−102

2|X|−112
ε

. . .

Choice of phase-shift V G1(x1) V G2(x2)

Fig. 2. Phase-shift keying: T̃X assuming x1 = [0, 1, . . .] and x2 = [1, 0, . . .]. The edge
choice in the left-most degenerate letter of T̃X determines which gadget in T̃X the
gadget in P can match with.

We next need a ‘universal’ vector gadget U that will accept all vector gadgets
in P . This can be accomplished with the following.

U =
{

2|X| ◦ 0, 2|X| ◦ 1
}

◦ . . . ◦
{

2|X| ◦ 0, 2|X| ◦ 1
}

︸ ︷︷ ︸
d repetitions

◦{2|X|}

To create the query pattern, we use the string

P = $ ◦ V GP (y1) ◦ $ ◦ V GP (y2) ◦ $ ◦ . . . ◦ $ ◦ V GP (y|Y |) ◦ $.

where the vector gadget V GP is defined as

V GP (yi) =
(
©d

j=1

(
2|X| ◦ CG2(yi[j])

))
◦2|X| where CG2(b) =

{
1 if b = 0
0 if b = 1

Lemma 2. The pattern P occurs as a match in T̃ if and only if there exists an
orthogonal pair of vectors xi, yj where xi ∈ X and yj ∈ Y .

Proof. First, suppose there exists such a pair of orthogonal vectors xi and yj .
We will match the substring V GP (yj) of P with the sub-ED-text T̃X as fol-
lows. Match the prefix 2i−1 of V GP (yj) with the edge labeled 2i−1 in the first

An Efficient Elastic-Degenerate Text Index? Not Likely 83

degenerate letter of T̃X . Next, traverse from left-to-right until the sub-ED-text
V Gi(xi) is reached in T̃X by taking only edges with label ε. Once the sub-ED-
text V Gi(xi) is reached, for each component h ∈ [1, d],

– if yj [h] = 0, take edge 2|X|−(i−1) ◦ 1 ◦ 2i−1, and match 2|X|−(i−1) ◦ 1 ◦ 2i−1 in
V GP (yj);

– if yj [h] = 1, take edge 2|X|−(i−1) ◦ 0 ◦ 2i−1 and match 2|X|−(i−1) ◦ 0 ◦ 2i−1 in
V GP (yj). Because xi[h] must be 0, we know this edge exists.

After matching all component gadgets in P for yj take ε labeled edges until the
last degenerate letter in T̃X is reached. On this last degenerate letter take the
edge 2|X|−(i−1). This completes matching the substring V GP (yj) to TX . The
prefix $ ◦ V GP (y1) ◦ $ ◦ . . . ◦ VP (vj−1)$ of P is matched to the sub-ED-text
{$} ◦ U ◦ {$} . . . {$} ◦ U ◦ {$} which directly precedes T̃X . This is possible since
the universal gadget U can match any vector gadget in P , and P has at most
|X| − 1 vector gadgets in this prefix. Similarly, we can match the suffix of P
following V GP (yj) to universal gadgets in T̃ directly following T̃X .

Next, suppose P has a match in the ED-text T̃ . Since there are only |X| − 1
universal gadgets on either side of T̃X , the match has to match $’s on either side
of T̃X . Hence, some vector gadget V GP (yj) in P must be matched within T̃X .
Dependent on which ever edge 2i−1 is taken within the first degenerate letter
of T̃X , the prefix 2|X|−(i−1)CG2(yj [1]) of the remaining unmatched portion of
V GP (yj) can only match edges within V Gi(xi) in T̃X . Moreover, once one of
these edges is taken, the substring 2|X|−(i−1) ◦ CG2(yj [2]) ◦ 2i−1 in V GP (yj)
is matched as well. Hence, it must again match an edge in V Gi(xi) with T̃X .
This happens for each of the d component gadgets in V GP (yj), forcing V GP (yj)
to match entirely against V Gi(xi) in T̃X . Because these two vector gadgets are
matched, xi and yj are orthogonal. �

Lemma 2 proves Theorem 2. For Corollary 2, the length of the pattern P
is m = O(d|Y ||X|). The lengths of U and V Gi(·) are both O(d) (recall the
definition of length of an ED-text does not include the length of edge labels),
and the length of T̃X is O(d|X|). Hence, n = O(|Y ||U |+ |Tx|) = O(d(|Y |+ |X|)).
Suppose |X| ≥ |Y | so that n = O(d|X|). An ED-index with query time O(nαmβ)
would imply an solution for OV-Index with query time O((d|X|)α(d|X||Y |)β) =
O(dα+β |X|α+β |Y |β). Lemma 1 implies that if β is a constant less than 1, we
would prove OVH false.

3 An ED-Index

One can demonstrate that, with preprocessing, an ED-index can answer queries
in time independent of N , the size of the ED-text T̃ . Recall that n is length of
T̃ and m the length of the query pattern.

Roughly, this is done by constructing generalized suffix trees (GST) [25] for
each degenerate letter and then inserting the pattern P into each GST during
query time. At each vertex in the graph-based representation of the ED-text, like

84 D. Gibney

in Fig. 1, a list of size O(m) is kept containing all partial matches with shortest-
span, one for each possible index in P . The left-most list is initially empty. We
then work from left-to-right creating a new list for vertex vi+1 based on the
list for vi. Using the GST we can complete partial matches that end within the
degenerate letter between vi and vi+1, extend partial matches that don’t end,
create new matches that start (and may end) during this degenerate letter, and
replace longer partial matches ending the same index as shorter partial matches.
Each of the O(m) partial matches in the list for vi can be processed in O(m)
time, resulting in O(m2) time for each of the O(n) vertices.

Fact 2. There exists an ED-index that can answer queries in time O(nm2).

Proof. Here is a more detailed description of how to build such an index:
Each vertex vj in the graph representation of the ED-text T̃ will maintain a

list list(vj) of at most m + 1 entries. Each entry in list(vj) consists of a tuple
(s, i, f) where i of an index in P such that P [1, i] has been matched so far,
s is a starting location of P [1, i] in T̃ (the degenerate letter, the text within
the degenerate letter, and starting index) where this match of P [1, i] spans the
minimum number of degenerate letters possible while also ending at vj , and f
is this minimum number of degenerate letters.

Let Fj,j+1 denote the degenerate letter between vj and vj+1. In preprocessing
we construct a generalized suffix tree STj,j+1 for Fj,j+1. Let size(u) be the size
of subtree in STj,j+1 rooted at u. Each node of ST will maintain a bit indicating
whether its subtree contains a leaf corresponding to an entire text in Fj,j+1, and
if it contains such a leaf, then a pointer to the corresponding text. At query
time, we can add P to STj,j+1 in O(m) time. Suppose we have fully matched
P up to vertex vj , and wish to acquire list(vj+1). For clarity, we will break this
into three phases, completion, extension, and creation/replacement.

– Completion: In this phase, any matches that become completed within this
degenerate letter will end the query by reporting a match. Iterating through
list(vj), for entry (s, i, f) we first obtain the leaf � corresponding to the suffix
P [i+1,m]. If �’s parent node has within its subtree a leaf for an entire string
within the degenerate letter we report a match and stop. After iterating
through list(vj), we next obtain the leaf � for P [1,m]. If the subtree size of
�’s parent is more than one, we report a match. This step takes time O(m)
in total.

– Extension: In this phase we will extend any unfinished matches to list(vj+1).
Iterating through list(vj), for entry (s, i, f), we find the leaf � corresponding
to the suffix P [i + 1,m] and check for each leaf �T corresponding to an entire
text T ∈ Fj,j+1 whether �T ’s parent lies on the path from root to �. This can
be done using lowest common ancestor (lca) queries. For T ∈ Fj,j+1 where
this does occur, we add (s, i + sd(lca(�, �T)), f + 1) to list(vj+1) where sd(u)
is the string depth of a node u in ST .
Alternatively, we can traverse up from � and check for each node on the path
from � to the root of ST whether it contains a leaf corresponding to the
end of a string in Fj,j+1. Since, this information is precomputed, each one of

An Efficient Elastic-Degenerate Text Index? Not Likely 85

these checks can be done in constant time. Combining, we can perform this
in O(min(size(Fj,j+1),m)) time per entry in list(vj) making the total time
O(m · min(size(Fj,j+1),m)) for this step.

– Creation/Replacement: This phase ensures that any matches that start
mid-degenerate letter get added to list(vj+1) and that we only keep the par-
tial matches for P spanning the smallest number of degenerate letters. Sort
list(vj+1) in decreasing order using the second component as the key. This
can be done in linear time since the keys are bounded by m. For each node u
in ST on the path from leaf � for P [1,m] to the root of ST , if the node u has
a leaf which corresponds to the suffix of a text T ∈ Fj,j+1 and sd(u) is not
a key(a second component) in list(vj+1), then add (s, sd(u), 1) to list(vj+1)
where s is a starting location for P [1, sd(u)] in T (if multiple such texts exist,
we take only one). If sd(u) is equal to a key ih in list(vj+1) then we replace
the existing entry (s, ih, f) in list(vj+1) with (s′, ih, 1) where s′ is the start-
ing location for P [1, sd(u)] in T . Because list(vj+1) is sorted by the ending
index of each partial match, and the string depth of the nodes on the path is
decreasing, this whole step can be done in O(m) time.

The time is dominated by the second step which requires O(m ·
min(size(Fj,j+1,m))) time. Summing over all degenerate letters, the total time
becomes O(m · min(N,mn)). The construction of the generalized suffix trees in
preprocessing can be done in O(n + N) time.

An improved solution can likely be obtained by applying techniques based
on the fast-Fourier transform such as those used [5]. Our purpose is simply to
illustrate that we can decouple the size N of the degenerate text from the query
time complexity. We leave further improvements for future research.

4 Matching Two Elastic-Degenerate Texts

We say an ED-text X[1] ◦ . . . ◦ X[t1] matches an ED-text Y [1] ◦ . . . ◦ Y [t2] if a
string S exists such that S can be decomposed as S = S1,1◦S1,2◦. . .◦S1,t1 where
S1,1 ∈ X[1], ..., S1,t1 ∈ X[t1] and also decomposed as S = S2,1 ◦ S2,2 ◦ ... ◦ S2,t2

where S2,1 ∈ Y [1], ..., S2,t2 ∈ Y [t2]. We say that ED-text T̃2 has a match in
T̃1 if T̃2 matches with some sub-ED-text of T̃1. We note that the two ED-texts
T1 and T2 are interchangeable in terms of this definition. Only as a matter of
convention will we say that T̃2 has a match within T̃1.

Problem 4 (ED-text to ED-text Matching). Given an ED-text T̃1 of length n1

and size N1, and ED-text T̃2 of length n2 and size N2, determine whether T̃2 has
a match in T̃1.

In [4] the authors provide a solution for computing whether two degenerate
(non-elastic) strings match. This is for the case where within each degenerate
letter all strings are of the same length (non-elastic). Their algorithm runs in
time in O(N1 +N2). It relies on the fact that the tries of these degenerate letters

86 D. Gibney

have a leveled structure. This gives us that the ED-text to ED-text matching
problem we defined above can easily be solved in linear time for such degenerate
strings.

In the case of elastic degenerate strings, this property no longer holds. How-
ever, we will show that when there are no empty strings within any degenerate
letters, the matching problem can still be solved in polynomial time.

Theorem 4. ED-text to ED-text Matching is solvable in polynomial time when
no degenerate letters contain the empty string.

Proof. We will first construct a DFA for T̃1. For the ith degenerate letter in T̃1

construct a compact trie Ti over all of its strings. Let si refer to the root of Ti.
Next, for each trie Ti bring each leaf into correspondence with a single vertex
ti. The resulting graph we denote as Gi. By bringing ti into correspondence
with si+1 for i ∈ [1, n − 1], and then making s1 the start state and tn the only
accepting state, we obtain a DFA for T̃1 of size N1.

We perform the same steps for T̃2, to form a DFA of size N2. Then the DFA
for the intersection of the two languages recognized by these DFAs can be done
with the standard Cartesian product technique, which results in a DFA of size
O(N1N2). Checking to see if the language of the resulting DFA is empty can
then be done in linear time.

Repeating this process across all starting and ending degenerate letter indices
in T̃1 results in a total time which is O(n2

1N1N2). �

We leave the following question open.

Open Question 1. Is the ED-text to ED-text Matching Problem solvable in
polynomial time when the empty string is allowed within degenerate letters?

References

1. Abboud, A., Backurs, A., Hansen, T.D., Williams, V.V., Zamir, O.: Subtree iso-
morphism revisited. ACM Trans. Algorithms 14(3), 27:1–27:23 (2018). https://
doi.org/10.1145/3093239

2. Abboud, A., Backurs, A., Williams, V.V.: Tight hardness results for LCS and other
sequence similarity measures. In: IEEE 56th Annual Symposium on Foundations
of Computer Science, FOCS 2015, Berkeley, CA, USA, 17–20 October 2015, pp.
59–78 (2015). https://doi.org/10.1109/FOCS.2015.14

3. Abboud, A., Bringmann, K., Dell, H., Nederlof, J.: More consequences of falsifying
SETH and the orthogonal vectors conjecture. In: Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2018, Los Angeles,
CA, USA, 25–29 June 2018, pp. 253–266 (2018). https://doi.org/10.1145/3188745.
3188938

4. Alzamel, M., et al.: Degenerate string comparison and applications. In: 18th Inter-
national Workshop on Algorithms in Bioinformatics, WABI 2018, 20–22 August
2018, Helsinki, Finland, pp. 21:1–21:14 (2018). https://doi.org/10.4230/LIPIcs.
WABI.2018.21

https://doi.org/10.1145/3093239
https://doi.org/10.1145/3093239
https://doi.org/10.1109/FOCS.2015.14
https://doi.org/10.1145/3188745.3188938
https://doi.org/10.1145/3188745.3188938
https://doi.org/10.4230/LIPIcs.WABI.2018.21
https://doi.org/10.4230/LIPIcs.WABI.2018.21

An Efficient Elastic-Degenerate Text Index? Not Likely 87

5. Aoyama, K., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Faster online
elastic degenerate string matching. In: Annual Symposium on Combinatorial Pat-
tern Matching, CPM 2018, Qingdao, China 2–4 July 2018, pp. 9:1–9:10 (2018).
https://doi.org/10.4230/LIPIcs.CPM.2018.9

6. Backurs, A., Indyk, P.: Edit distance cannot be computed in strongly subquadratic
time (unless SETH is false). SIAM J. Comput. 47(3), 1087–1097 (2018). https://
doi.org/10.1137/15M1053128

7. Bernardini, G., Gawrychowski, P., Pisanti, N., Pissis, S.P., Rosone, G.: Even faster
elastic-degenerate string matching via fast matrix multiplication. In: 46th Inter-
national Colloquium on Automata, Languages, and Programming, ICALP 2019,
Patras, Greece, 9–12 July 2019, pp. 21:1–21:15 (2019). https://doi.org/10.4230/
LIPIcs.ICALP.2019.21

8. Bernardini, G., Pisanti, N., Pissis, S.P., Rosone, G.: Approximate pattern matching
on elastic-degenerate text. Theor. Comput. Sci. 812, 109–122 (2020). https://doi.
org/10.1016/j.tcs.2019.08.012

9. Borassi, M., Crescenzi, P., Habib, M.: Into the square: on the complexity of some
quadratic-time solvable problems. Electron. Notes Theor. Comput. Sci. 322, 51–67
(2016). https://doi.org/10.1016/j.entcs.2016.03.005

10. Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string
problems and dynamic time warping. In: IEEE 56th Annual Symposium on Foun-
dations of Computer Science, FOCS 2015, Berkeley, CA, USA, 17–20 October 2015,
pp. 79–97 (2015). https://doi.org/10.1109/FOCS.2015.15

11. Chen, L.: On the hardness of approximate and exact (bichromatic) maximum inner
product. In: 33rd Computational Complexity Conference, CCC 2018, San Diego,
CA, USA, 22–24 June 2018, pp. 14:1–14:45 (2018). https://doi.org/10.4230/LIPIcs.
CCC.2018.14

12. Chen, L., Williams, R.: An equivalence class for orthogonal vectors. In: Proceedings
of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA
2019, San Diego, California, USA, 6–9 January 2019, pp. 21–40 (2019). https://
doi.org/10.1137/1.9781611975482.2

13. The computational pan-genomics consortium. Computational pan-genomics: sta-
tus, promises and challenges. Brief. Bioinform. 19(1), 118–135 (2018). https://doi.
org/10.1093/bib/bbw089

14. Equi, M., Grossi, R., Mäkinen, V., Tomescu, A.I.: On the complexity of string
matching for graphs. In: 46th International Colloquium on Automata, Languages,
and Programming, ICALP 2019, Patras, Greece, 9–12 July 2019, pp. 55:1–55:15
(2019). https://doi.org/10.4230/LIPIcs.ICALP.2019.55

15. Equi, M., Mkinen, V., Tomescu, A.I.: Graphs cannot be indexed in polynomial
time for sub-quadratic time string matching, unless seth fails (2020). http://arxiv.
org/abs/2002.00629

16. Gao, J., Impagliazzo, R.: Orthogonal vectors is hard for first-order properties on
sparse graphs. In: Electronic Colloquium on Computational Complexity (ECCC),
vol. 23, p. 53 (2016). http://eccc.hpi-web.de/report/2016/053

17. Grossi, R., et al.: On-line pattern matching on similar texts. In: 28th Annual Sym-
posium on Combinatorial Pattern Matching, CPM 2017, Warsaw, Poland, 4–6 July
2017, pp. 9:1–9:14 (2017). https://doi.org/10.4230/LIPIcs.CPM.2017.9

18. Iliopoulos, C.S., Kundu, R., Pissis, S.P.: Efficient pattern matching in elastic-
degenerate texts. In: Drewes, F., Mart́ın-Vide, C., Truthe, B. (eds.) LATA 2017.
LNCS, vol. 10168, pp. 131–142. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-53733-7 9

https://doi.org/10.4230/LIPIcs.CPM.2018.9
https://doi.org/10.1137/15M1053128
https://doi.org/10.1137/15M1053128
https://doi.org/10.4230/LIPIcs.ICALP.2019.21
https://doi.org/10.4230/LIPIcs.ICALP.2019.21
https://doi.org/10.1016/j.tcs.2019.08.012
https://doi.org/10.1016/j.tcs.2019.08.012
https://doi.org/10.1016/j.entcs.2016.03.005
https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.4230/LIPIcs.CCC.2018.14
https://doi.org/10.4230/LIPIcs.CCC.2018.14
https://doi.org/10.1137/1.9781611975482.2
https://doi.org/10.1137/1.9781611975482.2
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.1093/bib/bbw089
https://doi.org/10.4230/LIPIcs.ICALP.2019.55
http://arxiv.org/abs/2002.00629
http://arxiv.org/abs/2002.00629
http://eccc.hpi-web.de/report/2016/053
https://doi.org/10.4230/LIPIcs.CPM.2017.9
https://doi.org/10.1007/978-3-319-53733-7_9
https://doi.org/10.1007/978-3-319-53733-7_9

88 D. Gibney

19. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential
complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001). https://doi.org/10.1006/
jcss.2001.1774

20. Pissis, S.P.: MoTex-II: structured motif extraction from large-scale datasets. BMC
Bioinform. 15, 235 (2014). https://doi.org/10.1186/1471-2105-15-235

21. Pissis, S.P., Retha, A.: Dictionary matching in elastic-degenerate texts with appli-
cations in searching VCF files on-line. In: 17th International Symposium on Exper-
imental Algorithms, SEA 2018, L’Aquila, Italy, 27–29 June 2018, pp. 16:1–16:14
(2018). https://doi.org/10.4230/LIPIcs.SEA.2018.16

22. Polak, A.: Why is it hard to beat O(n2) for longest common weakly increasing
subsequence? Inf. Process. Lett. 132, 1–5 (2018). https://doi.org/10.1016/j.ipl.
2017.11.007

23. Sagot, M.-F., Viari, A., Pothier, J., Soldano, H.: Finding flexible patterns in a text:
an application to three-dimensional molecular matching. Comput. Appl. Biosci.
11(1), 59–70 (1995). https://doi.org/10.1093/bioinformatics/11.1.59

24. Sheikhizadeh, S., Schranz, M.E., Akdel, M., de Ridder, D., Smit, S.: Pantools: rep-
resentation, storage and exploration of pan-genomic data. Bioinformatics 32(17),
487–493 (2016). https://doi.org/10.1093/bioinformatics/btw455

25. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on
Switching and Automata Theory, Iowa City, Iowa, USA, 15–17 October 1973, pp.
1–11. IEEE Computer Society (1973). https://doi.org/10.1109/SWAT.1973.13

26. Vassilevska Williams, V.: Hardness of easy problems: basing hardness on popular
conjectures such as the strong exponential time hypothesis (invited talk). In: 10th
International Symposium on Parameterized and Exact Computation, IPEC 2015,
Patras, Greece, 16–18 September 2015, pp. 17–29 (2015). https://doi.org/10.4230/
LIPIcs.IPEC.2015.17

https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1006/jcss.2001.1774
https://doi.org/10.1186/1471-2105-15-235
https://doi.org/10.4230/LIPIcs.SEA.2018.16
https://doi.org/10.1016/j.ipl.2017.11.007
https://doi.org/10.1016/j.ipl.2017.11.007
https://doi.org/10.1093/bioinformatics/11.1.59
https://doi.org/10.1093/bioinformatics/btw455
https://doi.org/10.1109/SWAT.1973.13
https://doi.org/10.4230/LIPIcs.IPEC.2015.17
https://doi.org/10.4230/LIPIcs.IPEC.2015.17

Relative Lempel-Ziv Compression
of Suffix Arrays

Simon J. Puglisi and Bella Zhukova(B)

Department of Computer Science, Helsinki Institute for Information Technology
(HIIT), University of Helsinki, Helsinki, Finland
{simon.puglisi,bella.zhukova}@helsinki.fi

Abstract. We show that a combination of differential encoding, ran-
dom sampling, and relative Lempel-Ziv (RLZ) parsing is effective for
compressing suffix arrays, while simultaneously allowing very fast decom-
pression of arbitrary suffix array intervals, facilitating pattern match-
ing. The resulting text index, while somewhat larger (5-10x) than the
recent r-index of Gagie, Navarro, and Prezza (Proc. SODA ’18)—still
provides significant compression, and allows pattern location queries to
be answered more than two orders of magnitude faster in practice.

1 Introduction

The suffix array [18], SA[0..n−1], of a text (or string, or sequence) T of length n is
an array of integers containing a permutation of (0 . . . n−1), so that the suffixes
of T starting at the consecutive positions indicated in SA are in lexicographical
order: T[SA[i]..n] < T[SA[i+1]..n]. Because of the lexicographic ordering, all the
suffixes starting with a given substring P of T form an interval SA[s..e], which
can be determined by binary search in O(|P| log n) time. The suffix array is thus
an efficient data structure for returning all positions in T where a query pattern
Q occurs; once s and e are located for P = Q, it is simple to enumerate the
occ = e − s + 1 occurrences of Q.

An alternative to binary search is the so-called backward search method,
which locates the interval of the SA via 2|P| rank queries on the Burrow-Wheeler
transform (BWT) of T [6,7]. Backward search is the basis for compressed text
indexing, emplified by the FM-index family, which has been widely adopted in
practice, for example, in Bioinformatics [17]. The BWT is easily amenable to
compression (while still supporting rank queries), and so the challenge then has
been to reduce the space required for the SA below its trivial n log n-bit encoding,
for which a handful of techniques have emerged in the past two decades. The
most longstanding of these is to explicitly store the position of every bth suffix
in lexicographical (i.e., SA) order. With these samples in hand, rank queries
on BWT (a process called “LF mapping”) allow an arbitrary SA[i] value can
be determined in O(b) time, thus allowing all occurrences of a pattern to be
obtained in O(b · occ) time, with O(n/b) extra space used for the suffix samples.

This research is supported by Academy of Finland through grant 319454.

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 89–96, 2020.
https://doi.org/10.1007/978-3-030-59212-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-59212-7_7

90 S. J. Puglisi and B. Zhukova

Very recently, Gagie, Navarro, and Prezza [8,9], exploiting an ingenious obser-
vation, showed how this can be improved to O(occ · log log n) time. They call the
resulting data structure the r-index. Experiments in [8] show this improvement
is not only of theoretical interest: in practice the r-index is around two orders
of magnitude faster than indexes that use regular suffix sampling, and always
less space consuming. Another recent alternative is the succinct compact acyclic
word graph of Belazzougui, Cunial, Gagie, Prezza, and Raffinot [1], which in
practice can be significantly faster than the r-index, but is much bigger (albeit
much smaller than the n log n bits required by the plain SA).

Contribution. The contribution of this short paper is to show that, in practice
(at least), relative Lempel-Ziv parsing is an effective way to compress the suf-
fix array, and one that supports decompression of intervals especially fast. Our
starting point is the differentially encoded SA, denoted SAd, as first introduced
by Gonzalez and Navarro [11]. We then derive an RLZ dictionary, R, (usually
called the reference sequence [14]), by randomly sampling subarrays from SAd,
and parse SAd into phrases relative to R. Supporting random access is then a
matter of storing one original SA value for each phrase (to undo the differential
encoding) and storing the phrase starting points in a predecessor data structure.
Decompressing occ consecutive values from SA can then be performed in essen-
tially O(log log n + occ) time, and is very fast in practice: more than 100 times
faster than the r-index [8] and the CDAWG [1], which are the fastest published
methods. Depending on the dataset, our index uses 5–15 times more space than
the r-index, and less than the CDAWG.

We acknowledge our approach is uncomplicated, and is essentially a new com-
bination of known techniques: as noted above, dictionary compression of differ-
entially encoded SAs has been explored previously by Gonzalez and Navarro [11],
where they used the RePair grammar compressor [15] rather than RLZ (which
was undiscovered at the time). Furthermore, RLZ is widely known to support
fast random access to its underlying data, but to date has only been applied
to textual data, be it natural language [3,13,16] or genomic [3,14]. However,
as our experiments show, this combination turns out to be extremely effective,
representing a new point on the pareto curve, and seems to simply have been
overlooked to date. Another piece of related work is the relative suffix tree of
Farruggia et al. [5], in which one or more suffix arrays are compressed relative to
another suffix array, and pattern matching is supported on each individual SA.
That work is different to ours in that we deal with compression of a single SA.

Our own interest in SA compression comes from our recent work developing
fast indexes for gapped matching [2]. These indexes rely for their efficiency on
fast scans of suffix array intervals, which is easy on an uncompressed SA, but lose
significant throughput when current compressed SA implementations are used.
The RLZ-compressed suffix array we describe in this paper allows us to derive
compressed forms of our gapped-matching indexes that use much less space but
operate at comparable speed to uncompressed ones.

Relative Lempel-Ziv Compression of Suffix Arrays 91

Roadmap. In the following section we review the differentially encoded SA of
Navarro and Gonzalez [11,12] and the way it induces sequences containing repe-
titions, which can then be exploited by a dictionary compressor. We also review
relative Lempel-Ziv parsing [14], before describing our data structure and the
way in which it supports fast subarray access. We then report on an experimen-
tal comparison of a prototype of our index, dubbed rlzsa, with the r-index and
the CDAWG [1]—which represent, to our knowledge, the current state of the
art. Conclusions and reflections are then offered.

2 New Locate Index

SA contains a permutation of the integers (0 . . . n − 1) and so is not directly
amenable to dictionary compression in the same way that, say, the text T would
be—it contains no repeated elements. SA does contain repetitions of a differ-
ent nature, however. In particular, because of the lexicographical order on the
suffixes in SA if an interval of suffixes SA[x, y] are all preceded by the same sym-
bol c, then there must exist another interval SA[x′, x′ + (y − x) + 1] for which
SA[x] = SA[x′]+1,SA[x+1] = SA[x′+1]+1, . . . ,SA[y] = SA[x′x′+(y−x)+1]+1.
Navarro and Gonzalez [11] observed that these so-called self repetitions can be
turned into actual repetitions if one differentially encodes the suffix array as
SAd[0] = SA[0] and SAd[i] = (SA[i]−SA[i−1]+n) for i ≥ 1. Note that the “+n”
is for technical convenience, so that all values in SAd are positive.

Navarro and Gonzalez [11] (see also their later journal paper [12] apply a
grammar compressor to SAd, augmenting the grammar with additional pointers
to facilitate random access to values in SAd, and storing original SA values at
regular intervals so that the differential encoding can be reversed.

i 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
T a c t a g a c t a g a c t a g a c t a g a c t a g a c t a g a $

SA 31 30 25 20 15 10 5 0 28 23 18 13 8 3 26 21 16 11 6 1 29 24 19 14 9 4 27 22 17 12 7 2

SAd 31 31 27 27 27 27 27 27 60 27 27 27 27 27 55 27 27 27 27 27 60 27 27 27 27 27 55 27 27 27 27 27

reference 27 27 27 27 27 27 55 27 27 27 27 27 27 27 27 27

phrases 31 30 10 28 1 29 1 - 0 1 2 8 9 20 21 32

P S

Fig. 1. An example illustrating components of our data structure.

Figure 1 shows a small example illustrating the different components of our
data structure and the intermediate stages in their construction.

RLZ Parsing. A variant of the classic LZ77 parsing [21], RLZ parsing compresses
a sequence X relative to a second sequence R (the reference) by encoding X as
a sequence of substrings, or phrases, that occur in R. Our data structure is built

92 S. J. Puglisi and B. Zhukova

on an atypical form of RLZ parsing that is critical to support efficient access to
subarrays of the SA and which we now describe.

We derive our reference string R by randomly sampling substrings from SAd.
In Sect. 3 will return to the implementation details such as the number of samples
and the size of each sample, but for the time being let us assume R is in hand.
References built by random sampling have been shown to work well in practice
for compressing web corpora [13] and non-trival bounds on their size have also
since been proved [10].

We encode SA by parsing SAd into phrases—represented as integer pairs—
that either represent literal values from the original SA (literal phrases), or point
to substrings that occur in the reference sequence R (repeat phrases). The first
component of the pair is always the starting position in SAd (equivalently SA)
of the phrase. A literal phrase at position i is represented as (i,SA[i]). The first
phrase is always the literal phrase (0,SA[0]). Parsing begins at position 1 in SAd

and proceeds according to the following rule. If the parsing is up to a position i
in SAd, then the next phrase is either:

– a literal phrase (i,SA[i]), if the previous phrase was not a literal phrase or
SAd[i] does not occur in R; or

– the longest prefix of SAd[i, n] that occurs in R.

Observe that the parsing rule ensures that every repeat phrase is preceded by
a literal phrase. This allows us to easily recover the portion of the SA that
is covered by a repeat phrase. Let (i, pi) be a repeat phrase of length �i and
(i−1, x) be the preceding literal phrase in the parsing. Then SA[i] = SAd[i]+x =
R[pi] + x,SA[i + 1] = SAd[i + 1] + SA[i] = R[pi + 1] + SA[i], . . . ,SA[i + �i − 1] =
R[pi + �i − 1] + SA[i + �i − 2].

Data Structure. We store the parsing in two arrays, S and P , both of length z. S
contains the starting position in SAd of each phrase in ascending order. We build
and store a predecessor data structure for S. P contains either literal SA values
or positions in R as output by the parsing algorithm (the second components of
each pair). The length of the ith phrase can be determined as S[i + 1] − S[i].

Decoding a Subarray. We now describe how to decode an arbitrary interval
SA[s, e] using our data structure. The decoded subarray will be materialized in
an output buffer B of size e − s + 1. At a high level, we will decode the phrases
covering SA[s, e] and copy the decoded values that belong in SA[s, e] (some parts
of the first and last phrase may not) into B until it is full, at which point we are
done. To this end, we begin by finding the index in S of the predecessor of s. Let
x denote this index. If P [x] is a literal phrase, we copy its value to the output
buffer. Otherwise (P [x] is non-literal) P [x − 1] is by definition literal and we set
p = P [x − 1]. The length of the phrase is � = S[x + 1] − S[x]. Assuming for the
moment S[x] = s, to decode phrase x we access R[P [x]], copy (p + R[P [x]] − n)
to the output buffer, and then set p = (p+R[P [x]]−n), continuing then to copy
(p + R[P [x] + 1] − n) to B, and so on until either the whole phrase has been
decoded, or the output buffer is full. Note that if S[x] < s, then we first decode

Relative Lempel-Ziv Compression of Suffix Arrays 93

(as described) and discard the (s − P [x]) symbols of phrase x that are before
position s. After decoding phrase x, if the output buffer is not full, we continue
to decode phrase x + 1, and so on, until all e − s + 1 values have been decoded.

Implementation Details. In our practical implementation, P is an array of 32-bit
integers. We also limit the maximum phrase length to 216. For the predecessor
data structure, we use the following two-layered approach. We sample every bth
phrase starting position and store these in an array. In a separate array we store
a differential encoding of all starting positions. Because of the aforementioned
phrase length restriction, the array of differentially encoded starting positions
takes 16 bits per entry. Predecessor search for a position x proceeds by first
binary searching in the sampled array to find the predecessor sample at index i
of that array. We then access the differentially encoded array starting at index
ib and scan, summing values until the cummulative sum is greater than x, at
which point we know the predecessor.

3 Experimental Evaluation

In this section we compare the practical performance of our rlzsa index to other
leading compressed indexes, in particular the r-index of Gagie et al. [8] and the
cdawg of Belazzougui et al. [1]1. These indexes were selected because they are the
best current approaches for locate queries according to experiments in [8]2. We
provide results for two variants of rlzsa, which are labelled rlzsa-rand and rlzsa-
lz in the plots. The rlzsa-rand variant uses a reference constructed via random
sampling substrings from the datasets (parameters below). The rlzsa-lz variant
selects substrings for the reference based on a length-limited form of LZ77 pars-
ing, which we describe in the full version of this paper.

Mirroring the experiments in [8], we measured memory usage and locate
times per occurrence of all indexes on 1000 patterns of length 8 extracted from
four repetitive datasets:

– DNA, an artificial dataset of 629145 copies of a DNA sequence of length 1000
(Human genome) where each character was mutated with probability 10−3;

– boost, a dataset of concatenated versions of the GitHub’s boost library;
– einstein, a dataset of concatenated versions of Wikipedia’s Einstein page;
– world, a collection of all pdf files of CIA World Leaders from January 2003

to December 2009 downloaded from the Pizza&Chili corpus.

The average number of occurrences per pattern was 89453 (boost), 607750 (DNA),
31788 (einstein), 29781 (world).
1 The only implementation of cdawg works only for strings on {a,c,g,t}.
2 We also tried unsuccessfully to include the Locally Compressed Suffix Array (LCSA)

of Gonzalez, Navarro, and Farrada [12], which is based on differential encoding of the
SA and RePair grammar compression. After expending significant effort attempting
to get their code to work we discovered—in communication with the authors [4]—
that our failure was due to known bugs in the (dated) LCSA codebase.

94 S. J. Puglisi and B. Zhukova

Test Machine and Environment. We used a 2.10 GHz Intel Xeon E7-4830 v3
CPU equipped with 30 MiB L3 cache and 1.5 TiB of main memory. The machine
had no other significant CPU tasks running and only a single thread of execution
was used. The OS was Linux (Ubuntu 16.04, 64bit) running kernel 4.10.0-38-
generic. Programs were compiled using g++ version 5.4.0. All given runtimes were
recorded with the C++11 high resolution clock time measurement facility.

Results. The results of our experiments appear in Fig. 2. On all datasets, both
variants of our new rlzsa index are clearly the fastest, providing a newly relevant
point on the space-time curve. We locate occurrences always at least two orders
of magnitude faster than all other indexes: compared to r-index, from a minimum
of 120 times on world to a maximum of 160 times on DNA. On DNA we are 100
times faster than cdawg, which is the next fastest index, and is more than twice
the size of the rlzsa variants. The r-index is always the smallest index, from 5
times (world) to 14 times (DNA) smaller than rlzsa-rand.

We remark that in preliminary experiments, we observed rlzsa times to be
extremely stable, and quite invariant to reference size. In the plots the rlzsa-
rand variant used references size |R| of 106496 (boost), 28597248 (DNA), 6417408
einstein, 2760704 (world), with the reference sequence made up of substrings
of length 4096 (boost, world) or 3072 (DNA, einstein). Finally, the rlzsa-lz index
is noticeably smaller than the rlzsa-rand one on the boost dataset, but otherwise
the two rlzsa indexes are very close in size.

0 0.02 0.04 0.06 0.08 0.1
0

0.5

1

1.5

2

2.5

RSS (bits/symbol)

ti
m
e/
oc
c
(l
og

10
(n
s)
)

boost

0 2 4 6 8 10
0

0.5

1

1.5

2

2.5

RSS (bits/symbol)

DNA

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

RSS (bits/symbol)

einstein

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

RSS (bits/symbol)

world

rlzsa-lz rlzsa-rand r-index cdawg

Fig. 2. Locate time per occurrence and working space (in bits per symbol) of
the indexes. The vertical axis shows nanoseconds per reported occurrence and is
logarithmic.

4 Concluding Remarks

We have described and tested a compressed data structure—rlzsa—that repre-
sents the suffix array and allows fast decompression of arbitrary subarrays, facil-
itating indexed pattern matching. The speed of interval access comes from the
cache-friendly nature of RLZ decompression: after an initial predecessor query,
all subarray values are obtained by a (usually small) number of cache-friendly
copies from the reference sequence. Our index is also easy to construct.

Relative Lempel-Ziv Compression of Suffix Arrays 95

There a numerous avenues for future work. Firstly, although we may never
reach the impressively small size of the r-index, we believe the space usage of
the rlzsa can be significantly further reduced in practice by both simple repre-
sentational techniques (e.g., bit packing position values, using Elias-Fano for the
predecessor structure) and by adapting improved reference construction schemes
that work well for RLZ when compressing text [13,16,19,20]. Secondly, is there
a way to derive a hybrid of the rlzsa and r-index approaches that is smaller than
the former and faster than the latter? Finally, it may be possible to derive space
bounds for the rlzsa by combining the analysis of Gagie et al. [10], which relates
the size of RLZ under random sampling to grammar compression of T, with the
analysis of Gonzalez and Navarro [11], which relates grammar compression of
the differentially encoded SA to the kth order empirical entropy of T.

Acknowledgements. Our thanks go to Héctor Farrada, Nicola Prezza, and Daniel
Valenzuela for prompt responses to our queries.

References

1. Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite
repetition-aware data structures. In: Cicalese, F., Porat, E., Vaccaro, U. (eds.)
CPM 2015. LNCS, vol. 9133, pp. 26–39. Springer, Cham (2015). https://doi.org/
10.1007/978-3-319-19929-0 3

2. Cáceres, M., Puglisi, S.J., Zhukova, B.: Fast indexes for gapped pattern matching.
In: Chatzigeorgiou, A., Dondi, R., Herodotou, H., Kapoutsis, C., Manolopoulos,
Y., Papadopoulos, G.A., Sikora, F. (eds.) SOFSEM 2020. LNCS, vol. 12011, pp.
493–504. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38919-2 40

3. Deorowicz, S., Grabowski, S.: Robust relative compression of genomes with random
access. Bioinformatics 27(21), 2979–2986 (2011)

4. Farrada, H.: Personal Communication
5. Farruggia, A., Gagie, T., Navarro, G., Puglisi, S.J., Sirén, J.: Relative suffix trees.

Comput. J. 61(5), 773–788 (2018)
6. Ferragina, P., Manzini, G.: Opportunistic data structures with applications. In:

41st Annual Symposium on Foundations of Computer Science, FOCS 2000,
Redondo Beach, California, USA, 12–14 November 2000, pp. 390–398. IEEE Com-
puter Society (2000)

7. Ferragina, P., Manzini, G.: Indexing compressed text. J. ACM 52(4), 552–581
(2005)

8. Gagie, T., Navarro, G., Prezza, N.: Optimal-time text indexing in BWT-runs
bounded space. In: Proceedings of SODA, pp. 1459–1477. ACM-SIAM (2018)

9. Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM 67(1), 2:1–2:54 (2020)

10. Gagie, T., Puglisi, S.J., Valenzuela, D.: Analyzing relative Lempel-Ziv reference
construction. In: Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE 2016. LNCS,
vol. 9954, pp. 160–165. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-
46049-9 16

11. González, R., Navarro, G.: Compressed text indexes with fast locate. In: Ma, B.,
Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 216–227. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-73437-6 23

https://doi.org/10.1007/978-3-319-19929-0_3
https://doi.org/10.1007/978-3-319-19929-0_3
https://doi.org/10.1007/978-3-030-38919-2_40
https://doi.org/10.1007/978-3-319-46049-9_16
https://doi.org/10.1007/978-3-319-46049-9_16
https://doi.org/10.1007/978-3-540-73437-6_23

96 S. J. Puglisi and B. Zhukova

12. González, R., Navarro, G., Ferrada, H.: Locally compressed suffix arrays. ACM J.
Exp. Algorithmics, 19(1), article 1 (2014)

13. Hoobin, C., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv factorization for efficient
storage and retrieval of web collections. Proc. VLDB Endow. 5(3), 265–273 (2011)

14. Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv compression of genomes
for large-scale storage and retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010.
LNCS, vol. 6393, pp. 201–206. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16321-0 20

15. Larsson, N.J., Moffat, A.: Offline dictionary-based compression. Proc. IEEE
88(11), 1722–1732 (2000)

16. Liao, K., Petri, M., Moffat, A., Wirth, A.: Effective construction of relative Lempel-
Ziv dictionaries. In: Proceedings of 25th International Conference on the World
Wide Web (WWW), pp. 807–816 (2016)

17. Mäkinen, V., Belazzougui, D., Cunial, F., Tomescu, A.I.: Genome-Scale Algorithm
Design: Biological Sequence Analysis in the Era of High-Throughput Sequencing.
Cambridge University Press, Cambridge (2015)

18. Manber, U., Myers, G.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

19. Tong, J., Wirth, A., Zobel, J.: Compact auxiliary dictionaries for incremental com-
pression of large repositories. In: Proceedings of the 23rd ACM International Con-
ference on Conference on Information and Knowledge Management, CIKM 2014,
Shanghai, China, 3–7 November 2014, pp. 1629–1638. ACM (2014)

20. Tong, J., Wirth, A., Zobel, J.: Principled dictionary pruning for low-memory corpus
compression. In: The 37th International ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2014, Gold Coast, QLD, Australia,
06–11 July 2014, pp. 283–292. ACM (2014)

21. Ziv, J., Lempel, A.: A universal algorithm for sequential data compression. IEEE
Trans. Inf. Theory 23(3), 337–343 (1977)

https://doi.org/10.1007/978-3-642-16321-0_20
https://doi.org/10.1007/978-3-642-16321-0_20

Algorithms

Approximating the Anticover of a String

Amihood Amir, Itai Boneh(B), and Eitan Kondratovsky

Department of Computer Since, Bar Ilan University, Ramat Gan, Israel
amir@esc.biu.ac.il, itai.bone@live.biu.ac.il, kondrae@cs.biu.ac.il

Abstract. The k-anticover of a string S is a set of distinct k-length
substrings such that every index in S is contained in one of these sub-
strings. The existence of an anticover indicates a lack of structure in S.
It was recently proven by Alzamel et al. [2] that finding whether or not
a k-anticover exists is NP-Hard for k ≥ 3.

In this paper, we extend the definition to provide three optimization
versions for the k-anticover problem. We provide efficient approximation
algorithms for these problems.

Keywords: Anticover · NP-hardness · Approximation algorithms

1 Introduction

One of the challenges of stringology is finding regularities in a string. This task
leads the theoretical interest in string combinatorics [27]. Regularities also have
practical meaning. A very partial list is: palindromes play varied roles in Biol-
ogy [17,18,26,33], and periods and repeats are meaningful in Molecular Biology
and cyber detection [9,10,19,20,28,31,34].

Recently there has been growing interest in the “opposite” phenomenon,
i.e. strings that are far from regular. Fici et al. defined the concept of anti-
power [8,15]. Since periodicity is one of the most basic string regularities then,
naturally, antiperiodicity attracted attention [1]. For many phenomena, it is
desirable to broaden the definition of periodicity and study wider classes of
repetitive patterns in strings. One common such notion is that of a cover, defined
as follows.

Definition 1 [Cover]. A m-length substring C is said to be a cover of a n-
length string T , if n > m and every position of T lies within some occurrence of
C.

Note that by the definition of cover, the string C is both a prefix and a suffix
of the string T . For example, consider the string T = abaababaaba. Clearly, T
is “almost” periodic with period aba, however, as it is not completely periodic,
the algorithms that exploit repetitions cannot be applied to it. On the other

This work was partially supported by ISF grant 1475/18 and BSF grant 2018141.
This work is part of the second author’s Ph.D. dissertation.

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 99–114, 2020.
https://doi.org/10.1007/978-3-030-59212-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-59212-7_8

100 A. Amir et al.

hand, the string C = aba is a cover of T , which allows applying to T cover-based
algorithms. Quasi-periodicity was introduced by Ehrenfeucht in 1990 (according
to [5]). The earliest paper in which it was studied is by Apostolico, Farach and
Iliopoulos [7], which defined the quasi-period of a string to be the length of its
shortest cover and presented an algorithm for computing the quasi-period of
a given string in O(n) time and space. The new notion attracted immediately
several groups of researchers (e.g. [11,12,25,29,30]). An overview on the first
decade of the research on covers can be found in the surveys [5,21,32]. The cover
concept excited later research as well. Different variants of quasi-periodicity have
been introduced. These include seeds [23], maximal quasi-periodic substring [6],
the notion of k-covers [22], λ-cover [35], enhanced covers [16], partial cover [24].
reconstructing a string from the cover array [14], extensions to strings in which
not all letters are uniquely defined, such as indeterminate strings [4] or weighted
sequences [36], and cover recovery [3]. Some of the related problems are NP-hard
(see e.g., [4,13]).

Recently, Alzamel et al. [2] defined the concept of string k-anticover and
showed that for k ≥ 3 finding whether a k-anticover exists is NP-complete. In
this paper we give a few definitions of the k-anticover problem as optimization
problems and show approximation algorithms for them. The approximations
have an appeal in that they allow very fast detection of substrings that are
k-anticoverable. In reality, periodic strings are rare but the study of periodic
substrings (runs) has proven quite useful. Similarly, it may be interesting to find
the substrings that are very “unstructured”. Our algorithms allow this to be
approximated quite efficiently.

This paper is organized as follows. In Sect. 2, we define the basic notions and
various approximation problems that we tackle. Section 3 shows a linear-time
1/2-approximation of the number of indices that can be covered by a k-anticover.
In Sect. 4, we show a log2 n-approximation of the number of k-anticovers needed
for the given string, we also show that this problem is approximable but does
not have a PTAS. In Sect. 5 we show that finding the smallest k for which a k-
anticover exists is NP-hard and provide a 4-approximation and a lower bound
for the approximation ratio of this problem. We conclude with open problems.

2 Preliminaries

Let Σ be an alphabet. A string S over Σ is a finite sequence of letters from
Σ. By S[i], for 1 ≤ i ≤ |S|, we denote the ith letter of S. The empty string is
denoted by ε. By S[i..j] we denote the string S[i] . . . S[j] called a substring, or
factor of S (if i > j, then the substring is the empty string). A substring is called
a prefix if i = 1 and a suffix if j = |S|. The prefix of length j is denoted by S[..j].
While by S[i..] we denote the suffix which starts from index i in S. Denote by
Si the substring composed of i consecutive occurrences of S.

The following is the definition of k-anticover given in [2].
Definition 2 [anticover]. Given an integer k ≥ 2 and a string S of length
n ≥ k, let C = {i1, i2, ..., i�} be an ordered set of positions in S chosen from
{1, 2, ..., n − k + 1}. We say that C is a k-anticover of S if

Approximating the Anticover of a String 101

– Distinctness property: Any two substrings S[ij ...ij +k −1] and S[ih...ih +
k − 1] are different, for ij , ih ∈ C and ij �= ih.

– Coverability property: Every position in S is covered, namely, i1 = 1, i� =
n − k + 1, and ij+1 − ij ≤ k for 1 ≤ j ≤ � − 1.

Alzamel et al. proved that for k > 2, deciding whether a k-anticover of S
exists is NP-hard. We consider three optimization versions of the problem.

The MaxkAnticover problem tries to maximize the number of indices of S
that are covered by a k-anticover. In other words, we are seeking the largest
number of indices of S that are covered by a distinct set of substrings (satisfying
condition 2 of Definition 2). Formally.

Definition 3. The MaxkAnticover problem has as its input a string S. We
need to find a set C = {i1, ..., i�} of indices representing distinct substrings of
length k, {S[ij .. ij + k − 1] | j = 1, ..., �} where the number of indices in S
that are covered by C is maximized. We denote the maximal number of covered
indices by MaxkAnticover(S).

Clearly the MaxkAnticover problem is NP-hard, since MaxkAnticover(S)
= |S| if and only if S has a k-anticover.

The MinRepkAnticover problem insists on condition 2 of Definition 2, i.e. it
requires all indices to be covered. If this is not possible, we allow some substrings
starting at the indices of the k-anticover set, C, to repeat more than once. We
try to minimize the number of repetitions necessary to cover all indices. This
can also be viewed as using more than one k-anticover set. Each one may not
cover all indices but together they do. We seek the smallest number of such sets
necessary to cover S. Formally.

Definition 4. The MinRepkAnticover problem has as its input a string S. We
seek a set C = {i1, ..., i�} of indices representing a multiset of substrings of length
k, SC = {S[ij .. ij +k−1] | j = 1, ..., �} such that every index in S is covered by
one of the substring of SC, and where we minimize the largest number of occur-
rences of any substring in SC. Denote that number by MinRepkAnticover(S).

It is clear that the MinRepkAnticover problem is NP-hard, since
MinRepkAnticover(S) = 1 if and only if S has a k-anticover.

Finally, we consider the “inverse” of the k-anticover problem. In the k-
anticover problem, k given, and we are asking whether a k-anticover exists.
Clearly, if k = |S| there is a k-anticover for every S. Also, for k = 1, there is
a k-anticover only if all symbols of S are different. The question is, what is the
smallest k for which a k-anticover exists. Formally,

Definition 5 (MinAnticover).
Input: An n-length string S.
Output: Smallest natural number k such that S has a k-anticover.

It is not immediate that the MinAnticover problem is NP-hard due to the
lack of monotonicity. That is, a k-anticover might exist, but (k + 1)-anticover is

102 A. Amir et al.

not, or vice versa. For example, assume S = abcabc. {1, 3, 5} is 2-anticover of S,
where ab, ca, and bc are all distinct. But as for k = 3, S has a border of length
3, and thus there is no longer an anticover. In Sect. 5, we prove that this problem
is indeed NP-hard.

3 Approximating the Number of Covered Indices

In this section, we give a 1
2 -approximation for the MaxkAnticover problem

presented in Definition 3.

3.1 The Approximation Algorithm

Algorithm’s Idea: Start by a pool of all possible substrings of length k. Ini-
tially, each of these substrings, if chosen to the k-anticover, will cover k indices
of S.

Iteratively, choose a substring that covers the largest number of uncovered
indices in S and add it to the set CA that approximates the k-anticover. Now
remove from the candidate set all substrings that are equal to the chosen one.
Also, update for each remaining candidate substring the number of uncovered
indices that it would cover, if chosen next. Stop when there are no substrings
left. Formally:

Algorithm MKA:
Initialize Can = {1, ..., n − k + 1} as the set of candidates for the k-anticover.
Each index has a list of free indices, which initially is [i, ..., i + k − 1] for index i.

While Can �= ∅ do:

1. Choose j ∈ Can that has a maximal number of elements in its free list, and
add j to CA.

2. Remove from Can all indices i for which S[i..i + k − 1] = S[j..j + k − 1].
3. For every index i ∈ Can ∩ {j − k + 1, ..., j − 1, j + 1, ..., j + k − 1}, update i’s

free index list. This is done by deleting j’s free index list from i’s free index list.

Time: It is easy to implement the above algorithm in time O(nk). We show an
O(n) implementation (O(n log(min(n, σ))) for infinite alphabets, where σ is the
number of different symbols in S). The while loop of algorithm MKA iterates n
times. We need to show:

1. The free indices lists can be represented and maintained in space O(n).
2. We can find an element with a largest free index list in constant time (Step

1. in the loop).
3. Removing indices whose k-length substring is equal to the k-length substring

of candidate j amortises to O(n) (Step 2. in the loop).
4. Updating all free index lists amortises to O(n) (Step 3, in the loop).

The following observations solve the above four desiderata.

Approximating the Anticover of a String 103

Observation 1. The free list of candidate index i can be represented in constant
space.

Proof. The free list of index i is initialized as a consecutive list [i, ..., i + k − 1],
thus it can be represented as [i, i + k − 1]. Since all substrings in the k-anticover
are of length k, it can not happen that there will be “holes” in the middle of the
free index list. Therefore the free index list can only be of the form [�, r], where
� is the leftmost free index and r is the rightmost free index. ��

The next observation bounds the number of removals in Step 2 of Algorithm
MKA.

Observation 2. Since Can is initialized to n indices, then there are no more
than n deletions from Can.

We need to implement an efficient search for the indices i for which S[i..i +
k −1] = S[j..j +k −1], where j is the chosen candidate from Can. Such a search
can be easily done by constructing a compact trie of all substrings of length k.
This trie can be constructed in linear time for constant sized alphabets or integer
alphabet and O(n log(min(n,Σ))) for infinite alphabets, by pruning the suffix
tree of S and having a list of all indices at the last node of each (length k) path
in the trie. When an index j ∈ Can is chosen, all equal indices are immediately
accessible in the trie.

Finally, we need one last observation.

Observation 3. Algorithm MKA attempts to change the free index list of any
index i at most twice throughout its run.

Proof. Assume index j1 ∈ Can, j1 < i was chosen and its overlap with i caused
the leftmost index in the free list to change from i to i + d. There can not
be a j2, j1 < j2 < i that causes i’s leftmost index to change again without
completely deleting i, since i covers more free indices than j2, and therefore i
would be chosen by the algorithm before j2. If i’s and j2’s free lists are of the
same size and j2 was chosen, then, indeed i’s list is changed but i is deleted, so
we charge the change to the deletion. There can not be a j3, j3 < j1 < i that
would attempt to change the leftmost index of i, because, if that were the case,
j3 would have been chosen before j1. This is due to the fact that j3 is to the
left of j1 therefore covers more free indices. In the initial case where both cover
the same number of indices (k), j3 gets chosen first by the algorithm because
our algorithm implementation chooses the indices in the k-anticover from left to
right. Therefore, the left index of the free list can only be changed once during
the algorithm run.
An analogous analysis shows that the right index of the free index list can only
be changed once. ��

To conclude, we have the following data structures:

1. [List L:] A doubly linked list of all indices in Can, sorted by the index.

104 A. Amir et al.

2. [Trie T:] A trie of all substrings of length k that are still in Can.
3. [Buckets:] Up to k buckets of indices. Bucket � contains all the indices with

� elements in the free list. A bucket is implemented as a doubly linked list.
Only the non-empty buckets are kept, and the pointers to the bucket lists are
stored in a doubly linked list sorted from highest to lowest.

In addition, every index i ∈ S appears in all three above data structures, and
all its occurrences are linked.

The implementation is now clear. Initially, all indices are linked in list L,
trie T is constructed, all indices have free index list (interval) of length k, and
all indices are in bucket k, ordered from left to right. In addition, every index
occurrence in all three lists is linked. All this takes time O(n).

An index j is taken from the highest bucket, it checks in the trie and deletes
all occurrences of indices equal to it (from all lists), and updates the free lists
of the existing indices in proximity k to it, changing their bucket if necessary.
The time is proportional to the number of indices affected, which by the above
analysis is O(n).

Approximation Ratio:

Lemma 1. Let a be the number of indices of S covered by CA constructed by
Algorithm MKA, and opt the largest number of indices covered by any k-anticover
C of S. Then a ≥ 1

2opt.

Proof. Let b be the number of indices covered by C but not by CA. Clearly,
opt ≤ a + b.

Consider X, an interval of indices that is covered by substring j ∈ C but
not by CA. The reason CA did not choose j is that it chose another copy of
S[j..j +k−1], say at index �. But that means that � covered at least |X| indices,
otherwise CA would have chosen j. We conclude that a ≥ b. But this means that
opt ≤ b + a ≤ 2a, or 1

2opt ≤ a. ��
The approximation ratio that we proved is tight in the limit.

Lemma 2. Algorithm MKA can not approximate MaxkAnticover to a better
than 2k

2k−1 ratio.

Proof. Consider the examples: {anbn}. If MKA chooses index n − k + 1 and
index n + 1, then it covers 2k indices. The underlined symbols are in the chosen
substrings of CA: an−k ak bk bn−k. No other indices can be covered.

However, the optimum is choosing the indices: 1, n−k +2, n−k +3, ..., n−
1, 2n − k + 1. They cover 4k − 2 indices, making the ratio: 2k

4k−2 = k
2k−1 . In

Fig. 1a we see an example where n = 16 and k = 5. ��
We feel that a judicious “tiebreaker”, for choosing the next element of Can,

from among those with a maximum size free list, can lead to a better approxi-
mation ratio. The next section shows that experiments strengthen this belief.

Approximating the Anticover of a String 105

3.2 Simulation Results

We have run some extensive tests on actual strings and found that the approx-
imation ratio proven above indeed shows up in practice. We also experimented
with a heuristics that seems to improve the approximation, and it is a challenge
to prove better bounds.

Our experiments were constructed as follows.
Our Platform: MacBook Pro, 2.7 GHz Dual-Core Intel Core i5, 8 GB RAM,
using pyspark package with Python version 3.7.3. In the experiment, we fixed
k = 3, ..., 7, binary alphabet |Σ|, and n varying from 3 to 20. For every n-length
string we computed its optimal k-anticover (the number of covered indices) using
a naive exponential-time algorithm. We compared it to the approximation algo-
rithm MKA and computed the approximation ratio for each length.

We then introduced an additional heuristic. If two substrings cover the
same amount of free indices, we choose the one with the smaller lexicographic
order. The experiments show that a better approximation ratio is achieved using
the “infrequent” tie breaker. For the MKA algorithm, our experiments indeed
achieved a 1

2 -approximation, but the infrequent heuristic converged to a 2
3 -

approximation ratio. The exact numbers appear in the figures. In Fig. 1b we
have the results of running MKA. The y-axis is the simulation ratio, The x-axis
is the length of string S. The results for k = 3 − 7 are plotted. As can be seen,
the ratio converges to 0.5. In fact, the graph matches k

2k−1 .
In Fig. 1c we have the results of running MKA with the added heuristic of

choosing the least frequent substring that covers most uncovered indices. Again,
the y-axis is the simulation ratio, The x-axis is the length of string S. The results
for k = 3 − 7 are plotted. As can be seen, the ratio converges to 0.66. Here the
graph matches 2k

3k−1 .
All experiments were also run over alphabets of sizes 3, 4, and 5, with the

same results.

4 Approximating the Number of k-covers

We start with an observation on the lower bound for a polynomial approximation
for this problem

Observation 4. There is no polynomial approximation algorithm for MinRep-
kAnticover with an approximation ratio α < 2, unless P = NP.

Proof. Assume, to the contrary, that such an algorithm A exists. For strings that
have a k-Anticover, A must output a cover where the number of times that a
k-anticover substring is used is bounded by 1∗α < 2. Since the maximal number
of repetitions is an integer, that number is 1, which is a proper k-Anticover.
It follows that A can be used to recognize strings that have a k-Anticover in
polynomial time. ��

We define a generalization of Algorithm MKA denoted as SubsetMKA
(S,AC). SubsetMKA has an additional input AC, that is a set of substrings

106 A. Amir et al.

of length k in S. Let I be the set of indices that are not covered by the sub-
strings in AC. SubsetMKA will attempt to yield a k-anticover that maximizes
the amount of covered indices in I.

SubsetMKA runs exactly as MKA with one exception: for every i ∈ Can, the
free index list is initialized as [i..i + k] \ AC.

Algorithm MRA:
Initialize UC = {1, ..., n} as the set of uncovered indices.
Initialize the covering set C = ∅.

While UC �= ∅ do:

1. Use Algorithm SubsetMKA to obtain a k-anticover c of the remaining indices
UC.

2. Remove from UC all the indices that are covered by c.
3. Set C = C

⋃
c

Return C

Approximation Ratio: Let Ci be the set of new indices covered by the cover
obtained from Subset MKA in the ith iteration of Algorithm MRA. Let Copt be
a k cover of S that is optimal for MinRepkAnticover. Denote the maximal
amount of repetitions for a single k-length substring in Copt as m. Consider a
partition of Copt to m sets of distinct k-length substrings Si

opt for 1 ≤ i ≤ m.
Let the set of indices covered by Si

opt be Ci
opt The following lemma is the key to

proving the log2(n) approximation ratio achieved by algorithm MRA:

Lemma 3. The first m sets obtained from MRA (namely: Ci for 1 ≤ i ≤ m)
cover at least n

2 indices.

Proof. Denote as UCi the indices that remain uncovered by C in step i of the
algorithm after Ci is added (so UC0 = [1..n], UC1 = UC0 \ C1). For every
1 ≤ i ≤ m, partition Ci

opt into two distinct sets : Newi = Ci
opt

⋂
UCi and

Oldi = Ci
opt \ UCi. Since every Oldi is contained within I[1..n] \ UCm, it holds

that
⋃m

i=1 Oldi ⊆ ⋃m
i=1 Ci and |⋃m

i=1 Oldi| ≤ |⋃m
i=1 Ci| . Similar arguments

from the proof of Lemma 1 can be made to show that for every 1 ≤ i ≤ m,
|Ci| ≥ |Newi|. Since Ci are distinct, it follows that |⋃m

i=1 Ci| ≥ |⋃m
i=1 Newi|.

Putting the two inequalities together, we have 2|⋃m
i=1 Ci| ≥ |⋃m

i=1 Newi| +
|⋃m

i=1 Oldi|. Since Newi and Oldi are distinct and Newi
⋃

Oldi = Ci
ops we have

2|⋃m
i=1 Ci| ≥ |⋃m

i=1 Ci
opt|. Finally, since Ci

ops covers all the indices of S we have
|⋃m

i=1 Ci| ≥ n
2 . ��

Observation 5. Lemma3 can be generalized to make the following claim: for
every integer x ≥ 1 it holds that |UCxm| < n

2x .

Proof. By induction. x = 1 is simply Lemma 3. For x > 1, we assume that the
claim holds for x. Consider the set Cx = {Ci|x · m + 1 ≤ i ≤ (x + 1) · m}.

Approximating the Anticover of a String 107

Consider the following partition of Ci
opt into two distinct sets: Newi

x = Ci
opt ∩

UCx·m+i and Oldi
x = (Ci

opt \UCx·m+i)∩UCx·m. Notice that unlike the partition
in the proof of Lemma3 where Oldi ∪Newi = Ci

opt, With this partition we have
Oldi

x ∪ Newi
x = Ci

opt ∩ UCx·m. The same arguments as in the proof of Lemma 3
can be made to show that 2|⋃m

i=1 Cx·m+i| ≥ |⋃m
i=1 Newi

x| + |⋃m
i=1 Oldi

x|. It
follows that 2|⋃m

i=1 Cx·m+i| ≥ |⋃m
i=1(C

iopt ∩ UCx·m)| Since
⋃m

i=1 Ci
opt covers

every index in S, we are left with 2|⋃m
i=1 Cx·m+i| ≥ |UCx·m| which indicates

that Cx covers at least half of the remaining uncovered indices. The induction
hypothesis suggests that |UCx·n| < n

2x . The next m covers cover at least half of
UCx·nm, so UC(x+1)·m ≤ n

2x+1 . ��
The approximation ratio is derived from Observation 5. After m · log2(n)

iterations, there is at most 1 uncovered index. The next iteration will surely
cover it. Every iteration of Algorithm MRA increases the maximal repetition of
a single substring by at most 1, so the maximal repetition in the output is at
most m · log2(n) + 1. It follows directly from the approximation ratio that the
running time of Algorithm MRA is bounded by O(nm log(n)).

Definition 6. SubsetkAnticover(S, I) is the optimization problem of finding a
set A of distinct substrings in S of size k that maximizes the amount of indices
in I ⊆ [1..n] covered by any of A’s substrings.

Observation 6. Algorithm SubsetMKA is a 1
2 approximation for Subsetk-

Anticover(S, I).

Observation 6 can be proven via similar reasoning as in the proof of Obser-
vation 1. Let SAlg be an approximation algorithm for SubsetkAnticover(S, I)
with approximation ratio α.

Lemma 4. Replacing Algorithm subsetMKA with SAlg in Algorithm MRA
will yield a m

α ln n + 1 Approximation for MinRepkAnticover.

Proof. Let m be the optimal value for MinRepkAnticover. Let Copt =
C1

opt, C
2
opt..C

m
opt be a set of m distinct sets of strings that collectively cover every

index in S. The existence of such Copt suggests that for every subset of indices
I ⊆ [1..n] there exists a subset Ci

opt that covers at least |I|
m of I’s indices. Denote

the remaining indices in step i of Algorithm MRA as UCi. The existence of a
distinct set that covers |UCI |

m indices of UCi suggests that SAlg will cover at least
α
m |UCi| indices. Therefore, in every iteration UCi decreases by a multiplicative
factor of 1 − α

m . It follows that UCi is bounded by n(1 − α
m)i. For i = m

α ln n,
This expression is bounded by 1. The following iteration must cover the single
remaining index. ��

In our specific construction, we managed to prove an approximation ratio of
m log2(n)+1, which is tighter than the 2m ln(n)+1 approximation ratio derived
from Lemma 4. This may not be the case if we implement this construction with
another, possibly better, approximation algorithm.

108 A. Amir et al.

5 Approximating the Smallest k for Which a k-anticover
Exists

We start by proving a lower bound for the approximation ratio achieved by a
polynomial algorithm.

We present a construction that outputs a string S′ from an input string S,
where S′ has no 2-anticover, and it has a 3-anticover if and only if the original
S has a 3-anticover.

Jolly Character: We use the notation of a jolly character “�” as presented in [2].
Each instance of the symbol “�” in S represents a distinct unique character that
does not occur anywhere else in S. The jolly character has the useful property
that every substring containing it is unique, and therefore can be added to
the anticover without causing any substring repetition. This property makes
every symbol within a distance of at most k − 1 from the jolly symbol trivially
coverable by a k-anticover.

The Construction: Given a string S[1..n] of length at least 3. Let its last 2
symbols be S[n − 1..n] = σ2, σ3. Let x and y be two distinct symbols such that
x, y /∈ Σ. We construct S′ as follows: S′ = S · xx � yyyyy � (xσ2σ3xx�)3

Lemma 5. S′ does not have a 2-anticover.

Proof. Any string containing the substring yyyyy can not have a 2-anticover.
This is due to the fact that the y’s in the second and in the fourth places must
be covered by distinct instances of the substring yy. ��
Lemma 6. S′ has a 3-anticover if and only if S has a 3-Anticover.

Proof. If S has a 3-anticover then it can be extended to a 3-anticover of S′

as follows: The 2 instances of x concatenated at the end of the original S are
trivially covered. All the y’s are trivially covered apart from the middle one. In
order to cover it, add the middle instance of yyy to the 3-anticover. In the three
instances of xσ2σ3xx only the middle σ3 is not trivially covered. There are three
distinct substrings that can cover it: xσ2σ3,σ2σ3x and σ3xx. Add a different one
of these substrings for each instance of xσ2σ3xx to cover its respective σ3. Every
substring we added to the cover contained either x, y or a jolly character, so it
can neither appear in the original S nor in its 3-anticover. It follows that the
distinctness property remains in our extended 3-anticover.

If S′ has a 3-anticover, all the symbols of S are covered by distinct substrings.
We proceed to show that every symbols of S is covered by substrings of S, rather
than by a new substring that was added by our construction. The only two
substrings that we added and may cover symbols in S are the instances of σ2σ3x
and σ3xx appended immediately after S. But if any of these substrings is in the
3-anticover of S′, then the three instances of xσ2σ3xx can not be covered. This
is due to the fact that the σ3 in one of them must be covered by σ2σ3x, and in
one of the others by σ3xx. ��

Approximating the Anticover of a String 109

Finally, we show that a α < 4
3 approximation for MinAnticover can not

exist. Assume, to the contrary, the existence of a polynomial algorithm A that
approximates MinAnticover within a ratio of α < 4

3 . Given a string S, we can
construct S′ and use A to decide whether or not S′ has a 3-anticover as in
Observation 4. It is clear that S′ can be constructed in polynomial time.

We proceed to provide a 4-approximation for MinAnticover.

Definition 7. For a word w with |w| ≥ k, we define the k-covering set of w as
the set of distinct length k subwords of w. We denote the k-covering set of w as
Ck(w).

The following observation is the key for bounding the minimal possible size
of k such that a k-anticover exists.

Observation 7. Let S be a string. If there is a word w with size |w| ≥ 2k − 1,
where there is a set of more than |Ck(w)| occurrences of w in S, and every two
occurrences in the set start within a distance of at least k from each other, then
S does not have a k-anticover.

Proof. Consider the middle index of every occurrence of w in the set. If a k-
anticover exists, every one of these indices needs to be covered by a substring
from the set Ck(w). Since there is a distance of k between two occurrences -
every center must be covered by a different element of Ck(w). Since there are
more than |Ck(w)| instances, a substring of size k must be selected at least twice
to cover all of the centers. ��

Given S, it is easy to find, in polynomial time, the minimum k such that every
subword w with size |w| = 2k−1 has at most |Ck(w)| occurrences with a distance
of at least k from each other. In our approximation algorithm, we start by finding
this value, denoted as k from now on. Observation 7 guarantees that the value k∗

that we approximate is at least k. We proceed to find a (4k − 1)-anticover. For
simplicity, we start with the assumption that S[1..4k−1] �= S[n−(4k−1)+1..n].

Algorithm MAC:
Initialize C = {0, n− (4k −1)+1} as the currently selected indices for the 4k −1-
anticover. Initialize i = 4k as a pointer for the next index that needs to be covered.

While i < n − (4k − 1) + 1:

1. Choose an index j ∈ [i − (2k − 1)..i − (k − 1)] such that there does not exist
an index � in C such that S[�..� + (4k − 1)] = S[j..j + (4k − 1)].

2. Add j to C.
3. Set i to j + 4k.

Lemma 7. Algorithm MAC always terminates with a (4k − 1)-anticover.

Proof. We need to show that Step 1 never fails to choose a word starting in
[i− (2k−1)..i− (k−1)]. Assume that i is an index for which every word starting
in this interval has already been selected. Consider the word w = S[i−(k−1)..i+

110 A. Amir et al.

(k − 1)] with size |w| = 2k − 1. There are at least |Ck(w)| different words of size
4k − 1 starting in [i − (2k − 1)..i − (k − 1)]. According to our assumption, every
one of these words was selected before we reached i. Every one of these words
contain an instance of w starting within its first k indices. After we pick a word
in index j, the next index to cover will be j + 4k − 1, and the minimal starting
index of a word selected to cover this index will be j +4k−1− (2k−1) = j +2k.
It follows that the words we pick start within a distance of at least 2k from
each other. So the selected instances of the words from [i − (2k − 1)..i − (k − 1)]
corresponds to at least |Ck(w)| instances of w that are at least k indices apart
from each other. This is making S[i−(k−1)..i+(k−1)] the |Ck(w)|+1 instance
of w (also within a distance of at least k from the previous one), in contradiction
to our selection of k. It’s also possible that the suffix S[n− (4k −1)+1..n] is one
of the words that could cover i, but have been already selected. In this case, w
will be the |Ck(w)| occurrence and the suffix will be the |Ck(w)| + 1. It can be
easily verified that the suffix must also start within a distance of at least k from
its predecessor in the Anticover generated by MAC. ��
It is straightforward to implement Algorithm MAC in polynomial time.

As for the case in which S[1..4k−1] = S[n−(4k−1)+1..n], we run Algorithm
MAC with 4k rather than with 4k−1 to find a 4k-anticover. If we have S[1..4k] =
S[n− 4k +1..n] too, it means than S must have a prefix and a suffix of the form
σt with t ≥ 4k, making any k-anticover impossible for k ≤ t. In this case, we
run Algorithm MAC with t + 1 instead of 4k − 1 and it is guaranteed to find a
(t + 1)-anticover, which is optimal.

6 Conclusion and Open Problems

We defined three natural optimization versions for the k-Anticover problem and
provided upper and lower bounds for the approximation ratio achieved by a poly-
nomial time algorithm. There are a myriad open problems left. We don’t have
a lower bound for the approximation ratio of MaxkAnticover. In particular, it
would be interesting to prove the 2

3 ratio achieved by the experiments on the
change to algorithm MKA that involves choosing the most infrequent of the sub-
strings that cover the most indices. It is also not clear whether the problem has a
PTAS. In the MinRepAnticover problem, we showed a O(log n)-approximation
algorithm, and proved that no approximation algorithm can achieve a better
than 1

2 ratio. That gap needs to be closed. Finally, for the MinAnticover prob-
lem, the gap between the 4

3 lower bound on the approximation ratio and the
4-approximation algorithm still needs to be closed.

Approximating the Anticover of a String 111

7 Appendix

7.1 Figures

aaaaaaaaaaaaaaaabbbbbbbbbbbbbbbb

aaaaaaaaaaaaaaaabbbbbbbbbbbbbbbb

n=16, k=5

CA chosen by algorithm MKA.

Optimal k-anticover.

(a)

0

0.2

0.4

0.6

0.8

1

1.2

n 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

k=3
k=4
k=5
k=6
k=7

(b)

0

0.2

0.4

0.6

0.8

1

1.2

4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

k=3
k=4
k=5
k=6
k=7

(c)

Fig. 1. (a) An example for MKA’s approximation ratio lower bound. (b) Simulation
of MKA. (c) Simulation of MKA with least frequent heuristic

112 A. Amir et al.

7.2 The Experiment Results

See Table 1.

Table 1. Minimal ratio algorithm MKA (α) and minimal ratio algorithm infrequent
tiebreaker (β).

k n α β

3 3 1.0 0.1

4 1.0 1.0

5 1.0 1.0

6 1.0 1.0

7 0.8571428 0.857143

8 0.75 0.75

9 0.75 0.75

10 0.666666 0.75

11 0.6 0.75

12 0.6 0.75

13 0.6 0.75

14 0.6 0.714285

15 0.6 0.714285

16 0.6 0.733333

17 0.6 0.733333

4 4 1.0 1.0

5 1.0 1.0

6 1.0 1.0

7 1.0 1.0

8 1.0 1.0

9 0.888889 0.888889

10 0.8 0.8

11 0.727273 0.727273

12 0.727273 0.727273

13 0.666667 0.727273

14 0.615384 0.727273

15 0.571428 0.727273

16 0.571428 0.727273

5 5 1.0 1.0

6 1.0 1.0

7 1.0 1.0

8 1.0 1.0

9 1.0 1.0

10 1.0 1.0

11 0.909091 0.909091

12 0.833333 0.833333

13 0.769230 0.769230

14 0.714285 0.714285

15 0.714285 0.714285

16 0.666667 0.714285

17 0.625 0.714285

18 0.588235 0.714285

k n α β

6 6 1.0 1.0

7 1.0 1.0

8 1.0 1.0

9 1.0 1.0

10 1.0 1.0

11 1.0 1.0

12 1.0 1.0

13 0.923077 0.923077

14 0.857143 0.857143

15 0.8 0.8

16 0.75 0.75

17 0.705882 0.705882

18 0.705882 0.705882

19 0.666667 0.705882

20 0.631579 0.705882

7 7 1.0 1.0

8 1.0 1.0

9 1.0 1.0

10 1.0 1.0

11 1.0 1.0

12 1.0 1.0

13 1.0 1.0

14 1.0 1.0

15 0.933333 0.933333

16 0.875 0.875

17 0.823529 0.823529

18 0.777778 0.777778

19 0.736842 0.736842

20 0.7 0.7

21 0.7 0.7

22 0.666667 0.7

Approximating the Anticover of a String 113

References

1. Alamro, H., Badkobeh, G., Belazzougui, D., Iliopoulos, C.S., Puglisi, S.J.: Com-
puting the antiperiod(s) of a string. In: Pisanti, N., Pissis, S.P. (eds.) Proceedings
of 30th Combinatorial Pattern Matching, (CPM), LIPIcs, vol. 128, pp. 32:1–32:11.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

2. Alzamel, A., et al.: Finding the anticover of a string. In: Proceedings of 31st Com-
binatorial Pattern Matching (CPM), LIPIcs (2020, to appear)

3. Amir, A., Levy, A., Lewenstein, M., Lubin, R., Porat, B.: Can we recover the cover?
In: Proceedings of 28st Annual Symposium on Combinatorial Pattern Matching
(CPM), LIPICS (2017)

4. Antoniou, P., Crochemore, M., Iliopoulos, C.S., Jayasekera, I., Landau, G.M.:
Conservative string covering of indeterminate strings. In: Proceedings of Prague
Stringology Conference, pp. 108–115 (2008)

5. Apostolico, A., Breslauer, D.: Of periods, quasiperiods, repetitions and covers. In:
Mycielski, J., Rozenberg, G., Salomaa, A. (eds.) Structures in Logic and Computer
Science. LNCS, vol. 1261, pp. 236–248. Springer, Heidelberg (1997). https://doi.
org/10.1007/3-540-63246-8 14

6. Apostolico, A., Ehrenfeucht, A.: Efficient detection of quasiperiodicities in strings.
Theoret. Comput. Sci. 119(2), 247–265 (1993)

7. Apostolico, A., Iliopoulos, C., Farach, M.: Optimal superprimitivity testing for
strings. Inf. Process. Lett. 39, 17–20 (1991)

8. Badkobeh, G., Fici, G., Puglisi, S.J.: Algorithms for anti-powers in strings. Inf.
Process. Lett. 137, 57–60 (2018)

9. Bar-Noy, A., Nisgav, A., Patt-Shamir, B.: Nearly optimal perfectly periodic sched-
ules. Distrib. Comput. 15(4), 207–220 (2002). https://doi.org/10.1007/s00446-002-
0085-1

10. Benson, G.: Tandem repeats finder: a program to analyze DNA sequence. Nucleic
Acids Res. 27(2), 573–580 (1999)

11. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44, 345–
347 (1992)

12. Breslauer, D.: Testing string superprimitivity in parallel. Inf. Process. Lett. 49(5),
235–241 (1994)

13. Christodoulakis, M., Iliopoulos, C.S., Park, K., Sim, J.S.: Approximate seeds of
strings. J. Automata, Lang. Comb. 10, 609–626 (2005)

14. Crochemore, M., Iliopoulos, C.S., Pissis, S.P., Tischler, G.: Cover array string
reconstruction. In: Amir, A., Parida, L. (eds.) CPM 2010. LNCS, vol. 6129, pp.
251–259. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-13509-
5 23

15. Fici, G., Restivo, A., Silva, M., Zamboni, L.Q.: Anti-powers in infinite words. J.
Comb. Theory Ser. A 157, 109–119 (2018)

16. Flouri, T., et al.: Enhanced string covering. Theoret. Comput. Sci. 506, 102–114
(2013)

17. Fuglsang, A.: Distribution of potential type ii restriction sites (palindromes) in
prokaryotes. Biochem. Biophys. Res. Commun. 310(2), 280–285 (2003)

18. Gelfand, M.S., Koonin, E.V.: Avoidance of palindromic words in bacterial and
archaeal genomes: a close connection with restriction enzymes. Nucleic Acids Res.
25, 2430–2439 (1997)

19. Gfeller, B.: Finding longest approximate periodic patterns. In: Dehne, F., Iacono,
J., Sack, J.-R. (eds.) WADS 2011. LNCS, vol. 6844, pp. 463–474. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-22300-6 39

https://doi.org/10.1007/3-540-63246-8_14
https://doi.org/10.1007/3-540-63246-8_14
https://doi.org/10.1007/s00446-002-0085-1
https://doi.org/10.1007/s00446-002-0085-1
https://doi.org/10.1007/978-3-642-13509-5_23
https://doi.org/10.1007/978-3-642-13509-5_23
https://doi.org/10.1007/978-3-642-22300-6_39

114 A. Amir et al.

20. Han, J., Dong, G., Yin, Y.: Efficient mining of partial periodic patterns in time
series database. In: Proceedings of 15th International Conference on Data Engi-
neering (ICDE), pp. 106–115 (1999)

21. Iliopoulos, C.S., Mouchard, L.: Quasiperiodicity and string covering. Theoret.
Comput. Sci. 218(1), 205–216 (1999)

22. Iliopoulos, C.S., Smyth, W.F.: An on-line algorithm of computing a minimum set of
k-covers of a string. In: Proceedings of 9th Australian Workshop on Combinatorial
Algorithms (AWOCA), pp. 97–106 (1998)

23. Iliopoulus, C.S., Moore, D.W.G., Park, K.: Covering a string. Algorithmica 16(3),
288–297 (1996). https://doi.org/10.1007/BF01955677

24. Kociumaka, T., Pissis, S.P., Radoszewski, J., Rytter, W., Waleń, T.: Fast algorithm
for partial covers in words. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS,
vol. 7922, pp. 177–188. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38905-4 18

25. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1),
95–106 (2002). https://doi.org/10.1007/s00453-001-0062-2

26. Lisnic, B., Svetec, I.K., Saric, H., Nikolic, I., Zgaga, Z.: Palindrome content of the
yeast Saccharomyces cerevisiae genome. Curr. Genet. 47, 289–297 (2005). https://
doi.org/10.1007/s00294-005-0573-5

27. Lothaire, M. (ed.): Combinatorics on Words, 2nd edn. Cambridge University Press,
Cambridge (1997)

28. Loving, J., Scaduto, J.P., Benson, G.: An SIMD algorithm for wraparound tandem
alignment. In: Cai, Z., Daescu, O., Li, M. (eds.) ISBRA 2017. LNCS, vol. 10330, pp.
140–149. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59575-7 13

29. Moore, D., Smyth, W.F.: An optimal algorithm to compute all the covers of a
string. Inf. Process. Lett. 50(5), 239–246 (1994)

30. Moore, D., Smyth, W.F.: A correction to: an optimal algorithm to compute all the
covers of a string. Inf. Process. Lett. 54, 101–103 (1995)

31. Pellegrini, M., Renda, M.E., Vecchio, A.: TRStalker: an efficient heuristic for find-
ing fuzzy tandem repeats. Bioinformatics [ISMB] 26(12), 358–366 (2010)

32. Smyth, W.F.: Repetitive perhaps, but certainly not boring. Theoret. Comput. Sci.
249(2), 343–355 (2000)

33. Srivastava, S.K., Robins, H.S.: Palindromic nucleotide analysis in human T cell
receptor rearrangements. PLoS ONE 7(12), e52250 (2012)

34. Wexler, Y., Yakhini, Z., Kashi, Y., Geiger, D.: Finding approximate tandem repeats
in genomic sequences. In: RECOMB, pp. 223–232 (2004)

35. Zhang, H., Guo, Q., Iliopoulos, C.S.: Algorithms for computing the lambda-
regularities in strings. Fundamenta Informaticae 84(1), 33–49 (2008)

36. Zhang, H., Guo, Q., Iliopoulos, C.S.: Varieties of regularities in weighted sequences.
In: Chen, B. (ed.) AAIM 2010. LNCS, vol. 6124, pp. 271–280. Springer, Heidelberg
(2010). https://doi.org/10.1007/978-3-642-14355-7 28

https://doi.org/10.1007/BF01955677
https://doi.org/10.1007/978-3-642-38905-4_18
https://doi.org/10.1007/978-3-642-38905-4_18
https://doi.org/10.1007/s00453-001-0062-2
https://doi.org/10.1007/s00294-005-0573-5
https://doi.org/10.1007/s00294-005-0573-5
https://doi.org/10.1007/978-3-319-59575-7_13
https://doi.org/10.1007/978-3-642-14355-7_28

Multidimensional Period Recovery

Amihood Amir1, Ayelet Butman2, Eitan Kondratovsky1, Avivit Levy3(B),
and Dina Sokol4

1 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
2 Department of Computer Science, Holon Institute of Technology, Holon, Israel

3 Department of Software Engineering, Shenkar College, 52526 Ramat-Gan, Israel
avivitlevy@gmail.com

4 Department of Computer and Information Science,
Brooklyn College of the City University of New York, New York City, USA

Abstract. Multidimensional data are widely used in real-life applica-
tions. Intel’s new brand of SSDs, called 3D XPoint, is an example of
three-dimensional data. Motivated by a structural analysis of multidi-
mensional data, we introduce the multidimensional period recovery prob-
lem, defined as follows. The input is a d-dimensional text array, with
dimensions n1 × n2 × · · · × nd, that contains corruptions, while the orig-
inal text without the corruptions is periodic. The goal is then to report
the period of the original text. We show that, if the number of corrup-
tions is at most � 1

2+ε
�n1

p1
� · · · �nd

pd
��, where ε > 0 and p1 × · · · × pd are

the period’s dimensions, then the amount of possible period candidates
is O(log N), where N = Πd

i=1ni. The independency of this bound of the
number of dimensions is a surprising key contribution of this paper. We
present an O(Πd

i=1niΠ
d
i=1 log ni) algorithm, for any constant dimension

d, (linear time up to logarithmic factor) to report these candidates. The
tightness of the bound on the number of errors enabling a small size
candidate set is demonstrated by showing that if the number of errors is
equal to � 1

2�n1
p1

� · · · �nd
pd

��, a family of texts with Θ(N) period candidates
can be constructed for any dimension d ≥ 2.

1 Introduction

Periodicity is an important feature of strings suggesting a clean mathematical
formalization to describe cyclic phenomena in many fields such as astronomy,
geology, earth science, oceanography, meteorology, biological systems, genomics,
economics, and more.

Periodicity has been extensively studied over the years and linear time algo-
rithms for exploring the periodic nature of a string were presented (e.g. [15,
22,25]). Multidimensional periodicity [2,20,29] and periodicity in parameterized
strings [12] were also explored. In addition, periodicity has played a role in effi-
cient parallel [3,4,14,18] and dynamic string algorithms [5,6].

A. Amir—Partly supported by ISF grant 1475/18 and BSF grant 2018141.
D. Sokol—Partly supported by BSF grant 2018141.

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 115–130, 2020.
https://doi.org/10.1007/978-3-030-59212-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-59212-7_9

116 A. Amir et al.

However, realistic data may contain errors. These errors can happen because
of real data sampling or they may result from the representation of data as a
string. Hence, approximate periodicity has been explored from different angles
[10,26,27,30]. Recently, Amir et al. [7] presented an algorithm to construct an
approximate period in O(nk log log n) time, where n is the string length and k is
the minimal Hamming distance to the closest periodic string. For swap distance,
where the errors are the exchange of two adjacent symbols (with no symbol
participating in more than one exchange), their algorithm runs in O(n2) time.

The goal of this paper is to discover the original period of a periodic multi-
dimensional text. This problem has been termed period recovery. However, even
in strings, and even under a single error, there can be a few indistinguishable
candidates. For example, aaaabaaaaa has two indistinguishable periodic sources
aaaabaaaab and aaaaaaaaaa. Previous work on one-dimensional period recov-
ery [8] shows that for a reasonable bound on the number of errors, although the
original periodic behavior cannot be recovered by a single solution, there are at
most O(log n) possible solutions, where n is the input text length.

In this paper, we take a step forward in the area of period recovery studying
the problem for multi-dimensional text. For simplicity of exposition, we first
thoroughly discuss the two-dimensional definitions and techniques. We then show
that our techniques can be generalized multidimensional texts.

We begin by defining the two-dimensional (2D) period recovery problem for
a two-dimensional text with dimensions n×m. We then prove that for a reason-
able number of errors, there are O(log(nm)) possible candidate 2D periods of a
2D text. Proving this bound on the number of candidates is already a non-trivial
key contribution of this paper. Note that, the reduction of the two-dimensional
text to a one-dimensional text, which is the technique we use, results in a log-
arithmic factor in the candidates bound for the additional dimension. For the
d-dimensional case, it yields an O(logd N) bound. However, we are able to reduce
this bound to O(log N), which is independent of the number of dimensions.

Furthermore, for the two-dimensional case, we present an efficient KMR algo-
rithm for renaming rectangles. Our algorithm works in O(nm log n log m) time
and space and answers renaming queries in O(1) time. Moreover, we also provide
an example such that, if the number of errors is equal to � 1

2�n
p ��m

q ��, then there
are Θ(nm) false positive candidates, where p × q are the period’s dimensions.
That is, having a bigger number of errors makes it inefficient to search for the
original period within such a huge set of candidates. We finally generalize the
results on two-dimensional text to higher dimensions.

The Paper Contribution. The main contribution of this paper is:

– Proving that the logarithmic bound on the possible period candidates of [8]
for 1-dimensional text holds for multidimensional texts as well, and is inde-
pendent of the number of dimensions.

– Presenting an efficient period recovery algorithm for multidimensional texts.

Multidimensional Period Recovery 117

2 Background and Problem Definition

2.1 1D Periodicity

A string r is periodic if its longest proper prefix that is also a suffix is at least
half the length of r. A string s is primitive if it cannot be expressed in the form
s = uj , for some integer j > 1 and some prefix u of s. This notion of primitivity1

is derived from the study of squares, where xx is defined as a square if x is
primitive, otherwise it would be a run. A periodic string r can be expressed as
uju′, where j > 1 and u′ is a prefix of u for one unique primitive u, which is
called the period of r. The exponent e of r is defined as the rational number that
satisfies e = |r|

|u| , that is ue = r.
Every non-primitive string is periodic but not every periodic string is non-

primitive. For example, abc, abcab are both primitive and non-periodic, abcabc
is non-primitive (and hence periodic), while abcabca is primitive and periodic
with period abc.

2.2 2D Periodicity

We say that U is a horizontal prefix (resp. suffix) in rectangular array M if U
is an initial (resp. ending) sequence of contiguous columns in M . A horizontal
border of M is a proper horizontal prefix that is also a horizontal suffix of M .
We say that B is the longest horizontal border of M if it is the horizontal border
of M that spans the largest number of columns among the horizontal borders of
M . The horizontal period, or h-period, of a rectangular array M is n − b where
b is the number of columns contained in the longest horizontal border of M .

Definition 1 [16,28]. An n × m array M with h-period q is horizontally peri-
odic, or h-periodic, if q ≤ �m

2 �.
The h-period of an h-periodic array M is the least common multiple of the
periods that occur in the rows of M . Vertical periodicity and the vertical period
of a rectangular v-periodic array are defined analogously.

Definition 2 [11]. An n×m array M is a 2D repetition if M is h-periodic and
v-periodic.

Consider an n × m array M and rational numbers x > 0, y > 0. Mx,y is the
array constructed by repeating M x times vertically and y times horizontally,

yielding an �xn� × �ym� array. For example, M =
[
a b c
e f g

]

1 This notion should not be confused with other notions of primitivity in stringology,
such as in covers. The difference in the definition of primitivity for covers stems from
the fact that the string must end with a complete occurrence of a cover, which is
not the case for a period.

118 A. Amir et al.

M
5
2 , 73 =

⎡
⎢⎢⎢⎢⎣

a b c a b c a
e f g e f g e
a b c a b c a
e f g e f g e
a b c a b c a

⎤
⎥⎥⎥⎥⎦ M2, 83 =

⎡
⎢⎢⎣

a b c a b c a b
e f g e f g e f
a b c a b c a b
e f g e f g e f

⎤
⎥⎥⎦

Definition 3 [11,21]. An n×m array M is primitive if it cannot be partitioned
into more than one non-overlapping complete occurrence of some block P . M is
non-primitive if M can be expressed as M = P r,s for real numbers r, s such that
r > 1 is an integer or s > 1 is an integer.

The different basic configurations of a non-primitive rectangular array are:
P
P

P P
P P
P P

As in the string terminology, a 2D repetition can be either primitive or non-
primitive. In the above example, M

5
2 , 73 is both a 2D repetition and primitive,

while M2, 83 is a 2D repetition and non-primitive.

Definition 4 [9]. A primitive root P of 2D repetition M is a primitive sub-array
such that M = P r,s for rational numbers r, s. M begins with P at its upper
left corner and can be partitioned into non-overlapping replicas of P , possibly
including partial occurrences of P at its right and/or lower ends.

Lemma 1 [9]. Every 2D repetition M has a unique primitive root P such that
M = P r,s for rational numbers r, s.

Definition 5 [9]. Let M be a 2D repetition of dimensions n × m with primitive
root P of dimensions p × q. The exponent of M is a tuple (e1, e2), in which e1
and e2 are rational numbers, that satisfy e1 = n

p and e2 = m
q .

Note that by the definition, in a 2D repetition M =

P ... P P ′

...
P ... P P ′

P ′′ ... P ′′ P ′′′

there are at least two P -blocks horizontally and vertically. That is, the primitive
root P repeats both to the right and underneath its initial occurrence in M .

2.3 Problem Definition

The goal is to recover the original period of a periodic text that may be cor-
rupted by replacement errors, where their number is measured by the Hamming
distance. Clearly, if too many errors are introduced to the text, there is no hope
of recovering the original period. Intuitively, if 50% or more of the copies of
the original period are corrupted, a recovering process would not have a suf-
ficient information for candidate elimination. We prove that if the number of

Multidimensional Period Recovery 119

errors is smaller, the number of possible candidates can be significantly reduced,
regardless of the error distribution. The problem is formally defined below.

Period Recovery over the Hamming Distance: Given a n × m array T
defined over alphabet Σ and a real constant ε (ε > 0), find all primitive roots
P , with dimensions p × q, such that the Hamming distance between P n/p,m/q

and T is at most � 1
2+ε�n

p ��m
q ��.

3 The Bound on the Candidates Set Size

In this section we prove the bound on the number of errors that enables feasible
amount of approximate period candidates for any error distribution. For the
rest of the paper we choose the bound on the number of errors to be at most
� 1
2+ε�n

p ��m
q ��. Subsection 3.1 explains the intuition behind this bound.

3.1 The Intuition Behind the Bound on the Number of Errors

The recovery problem is to restore the source text, a text before any substitution
error has been applied, under the assumption that this source text is periodic.
There are cases in which it is impossible to distinguish between different source
texts without additional information. Even with only two substitution errors
there can be few indistinguishable source texts, as the following example shows.

Example 1. Let T =

⎡
⎢⎢⎣

abaa
aaaa
abaa
aaaa

⎤
⎥⎥⎦ be the input to the recovery problem. Assume

that T is the resulted text after a single substitution error occurred in some
unknown source text. The source text candidates (or candidates for short) are
the following.

C =

{⎡
⎢⎢⎣

aaaa
aaaa
aaaa
aaaa

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

abab
aaaa
abab
aaaa

⎤
⎥⎥⎦ ,

}
=

{ [
a
]4,4

,

[
ab
aa

]2,2
}

That is, it is not always possible to put the finger on a single source text
based on the periodicity property. Therefore, our recovery algorithm reports a
set of indistinguishable source text candidates. We reduce the candidates set
to a sublinear size by assuming a bound on the number of corruptions to the
input text. When the number of errors is unbounded, the number of candidates
is equal to Θ(|Σ|�n/2��m/2�). The lower bound comes from taking all matrices of
size �n/2�×�m/2� as a 2D-repetition of a period. The upper bound comes from
counting

∑x
i=1

∑y
j=1 |Σ|ij <= 4|Σ|xy by using sum of geometric progression

formula twice.

120 A. Amir et al.

Error and Approximation Models. Before introducing the chosen bound, we
describe the error model and the approximation model. In this paper we consider
substitution errors, which preserve the array dimensions. We focus on the worst
case model of errors, where there is no assumption about the errors distribution.
Thus, the recovery algorithm needs to handle any error distribution.

Even when restricting to cases where the period occurs in a constant number
of positions without any error, there can still be examples with a huge amount
of source text candidates. For example, if the text has a period occurring at least
c times with no corruptions, for some constant c, then it is possible to construct
O(n

c) source text candidates by concatenating n
c different periods each c times.

This amount is already huge to enable detection of the correct source text, as it
would be necessary to iterate over all these candidates.

When setting the error bound, we take into account the amount of uncor-
rupted period occurrences as a percentage of the overall occurrences. Observing
the case when half of the period occurrences are uncorrupted, it is possible to
provide an example with a huge candidates set size.

Example 2. The 1D string a2kba4k+1 with one error has n
6 periodic candidates,

where n = 6k + 2. The 2D text T is a replication of this string in m rows:

T =

⎡
⎢⎣

a2kba4k+1

...
a2kba4k+1

⎤
⎥⎦

The source text candidates are the following:

C =

{ ⎡
⎢⎢⎣

a2kb a2kb a2k

.

.

.

a2kb a2kb a2k

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

a2kba a2kba a2k−2

.

.

.

a2kba a2kba a2k−2

⎤
⎥⎥⎦ ,

⎡
⎢⎢⎣

a2kba2 a2kba2 a2k−4

.

.

.

a2kba2 a2kba2 a2k−4

⎤
⎥⎥⎦ , . . . ,

⎡
⎢⎢⎣

a2kbak a2kbak

.

.

.

a2kbak a2kbak

⎤
⎥⎥⎦

}

=

{ [
a2kb

]2+ 2k
2k+1 ,m

,
[
a2kba

]2+ 2k−2
2k+2 ,m

,
[
a2kba2]2+ 2k−4

2k+3 ,m
, . . . ,

[
a2kbak

]2,m }

Each such candidate text has different period’s dimensions and for each the
corruptions introduced are exactly in half of the period’s occurrences.

3.2 The Tightness of Our Bound

Example 2 (in Subsect. 3.1) presents a family of arrays that causes linear amount
of candidates. In this example, there are at most � 1

2�n1
p1

� · · · �nd

pd
�� errors, where

n1 × · · · × nd are the array’s dimensions, and p1 × · · · × pd are the period’s
dimensions. On the other hand, below we prove that if the number of errors is
at most � 1

2+ε�n1
p1

� · · · �nd

pd
��, then there is a logarithmic number of candidates.

We show that, for the right choice of ε, the bounds are tight.

Multidimensional Period Recovery 121

Lemma 2. For ε < 4
Πd

i=1ni
,

⌊
1
2

⌊
n1

p1

⌋
· · ·

⌊
nd

pd

⌋⌋
≥

⌊
1

2 + ε

⌊
n1

p1

⌋
· · ·

⌊
nd

pd

⌋⌋
≥

⌊
1
2

⌊
n1

p1

⌋
· · ·

⌊
nd

pd

⌋⌋
− 1

Proof. Let X = �n1
p1

� · · · �nd

pd
�. We wish to prove that,

⌊
X
2

⌋ ≥
⌊

X
2+ε

⌋
≥ ⌊

X
2

⌋ − 1.
The left inequality is always true for ε > 0. Therefore, the remaining part is to
show that, X

2+ε ≥ X
2 −1. Thus, 1 ≥ εX

4+2ε , which means that 4
ε ≥ X −2. We have

that: X ≤ Πd
i=1ni, thus, by choosing ε < 4

Πd
i=1ni

the condition holds. ��

3.3 The Candidate Set Size Bound

In this subsection, we present the lower bound on Ham(T1, T2) where T1 and T2

are periodic arrays of same dimensions, and explain its novelty. As a first step,
we intend to generalize the following lemma stated for one-dimensional (1D)
texts.

Lemma 3 [Amir et al. [8]]. Let T1 and T2 be two 1D n-length texts, with P1

of length p1 and P2 of length p2 their 1D primitive periods, respectively, where,
without loss of generality, assume that p1 ≥ p2. Then, Ham(T1, T2) ≥ � n

p1
�.

Using the same terms of Lemma 3 we deal with 2D arrays. Let T1 and T2 be
2D texts. We denote P1 and P2 to be the 2D periods of T1 and T2, respectively,
and assume, without loss of generality, that P1’s area is bigger than the area of
P2. The main difficulty in this type of proofs is handling the arrays’ dimensions.
That is, even if an array has a bigger area it does not mean that both dimensions
of the array are bigger. Let M and M ′ be a n × m-array and n′ × m′-array,
respectively. Without loss of generality, assume n · m ≥ n′ · m′. Then there are
several cases each of which requires different handling during proofs on two-
dimensional arrays of different dimensions sizes.

To overcome the above problem a pseudo renaming technique is used. Pseudo
renaming relies on an existence of a renaming process such that equal elements
are transformed into the same letter. We stress that the renaming process time
might not be bounded. For the sake of the bound theorem’s proof, only the
existence of such renaming needs to be assumed.

For proving our bound, a pseudo renaming on vertical sub-strings is applied to
reduce to the 1D-recovery problem. However, the heights of P1 and P2 might be
of different size not knowing which is smaller. Assume without loss of generality,
that the area of P1 is bigger than the area of P2. Thus, at least one of P1’s
dimensions is bigger than the corresponding dimension of P2. Assume without
loss of generality that P1 is wider than P2. Otherwise, if P1 is higher than P2,
applying transpose on the input and the arrays P1, P2 results in an analogous
problem, in which PT

1 is wider than PT
2 . That is, a transpose operation preserves

all other properties.

Lemma 4. Let T1 and T2 be two n × m 2D texts, with P1 and P2 their 2D
primitive periods, respectively. P1 is a p1 × q1 array and P2 is a p2 × q2 array.

122 A. Amir et al.

1. If q1 > q2, i.e., P1 is wider than P2 then, Ham(T1, T2) ≥ � n
p1

� · � m
q1

�.
2. If p1 > p2, i.e., P1 is higher than P2 then, Ham(T1, T2) ≥ � n

p1
� · � m

q1
�.

3. If P2 is wider or higher than P1, then, Ham(T1, T2) ≥ � n
p2

� · � m
q2

�.
Lemma 5. Let ε > 0, T an n×m 2D text, Let S be the set of candidate approx-
imate 2D primitive periods of T , i.e., S = {Pi|Ham(T, Ti) ≤ � 1

2+ε� n
pi

��m
qi

��},
where Pi has dimensions pi ×qi, and Ti is the n×m array that is a 2D repetition
of the primitive period Pi. Then, S has a nested rectangles structure, i.e., sorting
the candidates Pi by non-decreasing order of their areas results in the same order
of sorting them by non-decreasing order of any of their dimensions.

Proof. Let P1 and P2 be approximate 2D primitive periods of T in S. Without
loss of generality, assume that � n

p2
�� m

q2
� ≥ � n

p1
�� m

q1
�. For simplicity, denote b =

� n
p2

�� m
q2

� ≥ � n
p1

�� m
q1

� = a.
Assume to the contrary that p1 > p2 and q1 ≤ q2. The symmetric case,

where p1 ≤ p2 and q1 > q2, results in the same expressions. Lemma 4 requires
that either P1 is wider or higher than P2 or vise versa, thus, Ham(T1, T2) ≥
max{� n

p1
�� m

q1
�, � n

p2
�� m

q2
�} = max{a, b} = b. By the triangle inequality, we have:

Ham(T1, T) + Ham(T2, T) ≥ Ham(T1, T2). Therefore, we have that:

1

2 + ε

⌊
n

p1

⌋⌊
m

q1

⌋
+

1

2 + ε

⌊
n

p2

⌋⌊
m

q2

⌋
≥

⌊
1

2 + ε

⌊
n

p1

⌋⌊
m

q1

⌋⌋
+

⌊
1

2 + ε

⌊
n

p2

⌋⌊
m

q2

⌋⌋
≥

max
{⌊

n

p1

⌋⌊
m

q1

⌋
,

⌊
n

p2

⌋⌊
m

q2

⌋}

However, then we get:
1

2 + ε
a +

1
2 + ε

b ≥ b =⇒ 1
2 + ε

a ≥ 1 + ε

2 + ε
b =⇒ a ≥ (1 + ε)b,

which contradicts the fact that b = max{a, b}. Therefore, p1 ≥ p2 and q1 ≥ q2.
��

Lemma 6. Let ε > 0, T an n × m 2D text, P1 and P2 approximate 2D primi-
tive periods of T . Let T1 and T2 be the n × m arrays that are 2D repetitions of
the primitive periods P1 and P2, respectively. Assume that the number of mis-
matches between T1 and T and between T2 and T is less than � 1

2+ε� n
p1

�� m
q1

��,
� 1
2+ε� n

p2
�� m

q2
��, respectively. Without loss of generality, assume that � n

p2
�� m

q2
� ≥

� n
p1

�� m
q1

�. Then, � n
p2

�� m
q2

� ≥ (1 + ε) � n
p1

�� m
q1

�.
Proof. For simplicity, denote b = � n

p2
�� m

q2
� ≥ � n

p1
�� m

q1
� = a. By Lemma 5, we

have, without loss of generality, that p1 ≥ p2 and q1 ≥ q2. By the triangle
inequality, we have: Ham(T1, T) + Ham(T2, T) ≥ Ham(T1, T2). Therefore, we
get using Lemma 4:

1
2 + ε

a +
1

2 + ε
b ≥ a =⇒ 1

2 + ε
b ≥ 1 + ε

2 + ε
a =⇒ b ≥ (1 + ε)a

��
Corollary 1. Let T be an n × m text. Then, there are at most log1+ε(nm) + 1
different approximate periods P of T with at most � 1

2+ε�n
p ��m

q �� errors.

Multidimensional Period Recovery 123

4 Two-Dimensional KMR

In 1972, Karp, Miller and Rosenberg (KMR) [23] presented the one-dimensional
renaming problem. In this problem one aims to preprocess the text to answer the
renaming query, i.e., provide a name for a substring of the text, such that equal
substrings receive the same name. Assuming the RAM model in which words,
single cells of memory, are of size log n bits, the key idea is to give every substring
a name that is stored in a constant amount of words. The one-dimensional KMR
algorithm preprocess n-length text in O(n log n) time to answer the renaming
query in constant time.

In 1991, Crochemore and Rytter [17] extended this method to two-
dimensional squared sub-arrays, i.e., sub-arrays with equal amount of rows and
columns. Their algorithm works in O(N log N) time, where N is the input size,
i.e., a multiplication of its two dimensions. In this section, we describe our gen-
eralization of the KMR renaming to any two-dimensional sub-array.

Definition 6. [Two-Dimensional KMR Renaming]
Input: Two-dimensional text T with dimensions n × m.
Output: A data structure that answers the query Namer,q[i, j], the name of the
sub-array with dimensions r × q that starts at position i, j inside T , such that
two sub-arrays have the same name if and only if they are equal to each other.

Theorem 1. Let T be an array with dimensions n × m. After preprocessing T
in O(nm log n log m) time, we can answer Namer,q[i, j] queries in O(1) time.

In the one-dimensional KMR algorithm, the main observation is that it is
enough to only answer the queries of substrings whose length is a power of two.
Indeed, the name of every substring that is not a power of two can be built by
concatenating the names of its largest prefix and suffix, both of lengths that are
equal to the largest power of two that is smaller than the substring’s length.

The one-dimensional KMR algorithm has 	log n
 stages, where n is the text
length. The stages are numbered by index k, 0 ≤ k ≤ 	log n
 − 1. Such that
at the kth stage, we compute an array Name2k of size n, where the element at
index i is the name of the substring T [i..i + 2k]. Notice that, the text should be
padded with 2�log n�−1 − 1 special characters $ �∈ Σ, where Σ is the alphabet
of the text. Each stage of the renaming algorithm relies on the previous stage.
The use of BucketSort allows the algorithm to create names efficiently without
additional logarithmic factors. At the (k + 1)th stage the names Name2k [i] and
Name2k [i + 2k] are combined to create the name Name2k+1 [i] for the substring
T [i..i + 2k+1].

The same observation holds also for two-dimensional sub-arrays. In this case,
it is enough to support renaming queries only for sub-arrays with dimensions
2i × 2j , where 0 ≤ i ≤ 	log n
 − 1 and 0 ≤ j ≤ 	log m
 − 1. If the sub-array
has a dimension that is not a power of 2, then the algorithm considers the KMR
name to be the clockwise (starting from the top-left corner) concatenation of
the largest four named sub-arrays that cover it, starting from each of the four
corners.

124 A. Amir et al.

Let M be an n × m array. The generalization of KMR algorithm for the
two-dimensional case is done in the natural manner by first renaming the rows
using the one-dimensional renaming. That is, the rows are concatenated into nm-
length string. The output is 	log n
 arrays of names each of length nm. Note that,
we stop the KMR construction algorithm after 	log n
 iterations. These arrays
are then rearranged back to 2D arrays of dimensions n×m. Symmetrically, each
of these 	log n
 arrays is processed by using the one-dimensional renaming on
columns. The overall process results in 	log n
	log m
 arrays each containing the
names of sub-arrays of dimensions 2i × 2j . If nm is not a power of 2, then the
renaming for the nm-length requires �-length padded extension at its end, where
� ≥ 0 is chosen such that � + nm is the smallest power of 2, larger than nm.

5 The Recovery Algorithm

In the 2D period recovery problem, the input is a n×m 2D text T and a number
ε > 0. The output is the set of all primitive periods P with dimensions p × q,
such that the Hamming distance between T and P

n
p ,mq is at most � 1

2+ε�n
p ��m

q ��.
This section is organized as follows. We begin with some claims that reduce

the number of candidates for being an approximate period of the 2D text T .
We then show how to verify these candidates by two procedures: primitivity
check and Hamming distance calculation query to check whether the Hamming
distance is ≤ � 1

2+ε�n
p ��m

q ��.
Definition 7. Let T be a n×m 2D text, and P an approximate period candidate
for T with dimensions p × q. We call a position � in T an exact position with
respect to P if the occurrence of P in T at position � is not a partial occurrence,
i.e., where � ∈ {0, p, 2p, . . . , (�n

p � − 1)p} or � ∈ {0, q, 2q, . . . , (�m
q � − 1)q}.

Lemma 7. Let T be a n × m 2D text, and P an approximate period candidate
for T with dimensions p×q. Then, there are more than 1+ε

2+ε�n
p ��m

q � > 1
2�n

p ��m
q �

exact positions i, j in T with respect to P .

The above lemma follows immediately from the fact that for a solution P
with dimensions p × q, there are at most � 1

2+ε�n
p ��m

q �� mismatches between T

and P
n
p ,mq . In addition, since there are strictly more than 1

2�n
p ��m

q � exact copies
of sub-array P in T , at most one sub-array P can fulfill this requirement per
each period dimensions p × q. This leads to the following corollary.

Corollary 2. For each period’s dimensions p × q, there can be at most one
candidate for being an approximate primitive root of T .

Notice that, a sub-array P with dimensions p×q that has more than 1
2�n

p ��m
q �

exact copies in T is only a candidate sub-array for being an approximate primi-
tive root of T . The algorithm iterates over all possible dimensions p×q and looks
for the sub-array that occurs the majority of times. This sub-array is then to
be examined by the verification stage. The novelty of this idea is that by giving

Multidimensional Period Recovery 125

input : 2D array T of dimensions n × m
output: All approximate periods of T

for p ← 1 to n
2 do

for q ← 1 to m
2 do

/* Step 1: find candidate sub-array with dimensions p × q */

names ← EmptyList([])
for i ← 0 to �n

p
� − 1 do

for j ← 0 to �m
q

� − 1 do
names.Append(Namep×q[i, j])

end

end
P ← FindMajority (names)
if P occurs ≤ � 1

2�n
p
��m

q
�� in names then continue to next p, q

/* Step 2: check primitivity of the candidate P */

if ! PrimitivityCheck (P) then continue to the next p, q

/* Step 3: compute Hamming distance from T */

d ← HammingDistance (T, P
n
p

, m
q)

if d ≤ � 1
2+ε

�n
p
��m

q
�� then Report P as an approximate period of T

end

end
Algorithm 1: Period recovery over the Hamming distance

a single candidate per each possible dimensions of P , it is possible to save time
by applying a more expensive verification on a smaller number of candidates.
Similar idea was shown in [1].

Let p × q be some dimensions. Each sub-array with dimensions p × q that
is at exact positions is encoded by its KMR name. The majority algorithm [13]
then applied on these names. This algorithm uses O(1) space and requires two
passes over the names. The second pass verifies that we indeed find the majority
between the elements.

5.1 Computing the Hamming Distance

The Hamming distance between P
n
p ,mq and T must be at most � 1

2+ε�n
p ��m

q ��
for P to be a valid solution. We compute the Hamming distance between all the
possible positions for P in the text and the candidate array P . If the number
of mismatches is at most � 1

2+ε�n
p ��m

q ��, then P is an approximate period of T .
Note that, P can be represented in constant space by the position at which it
occurs in T as an uncorrupted occurrence.

Definition 8 [Hamming Distance between Sub-arrays]. Let M1, M2 be two-
dimensional arrays with dimensions n × m. In a sub-arrays Hamming distance
data structure the arrays are preprocessed to answer Ham(S1, S2) queries, where
S1 and S2 are sub-arrays of M1 and M2, respectively, having the same dimen-
sions p × q.

126 A. Amir et al.

Theorem 2. A sub-arrays Hamming distance data structure can be constructed
in O(nm min{log n, log m}) time and space with O(Δ) query time, where Δ =
Ham(S1, S2). Moreover, queries of the form “does Ham(S1, S2) ≤ δ?” can be
answered in time O(min{δ,Ham(S1, S2)}).

Assume without loss of generality, that n ≤ m. The idea is using the “Kan-
garoo Jumps” [19] to detect horizontal mismatches between the columns. Then
repeat the “Kangaroo Jumps” vertically to count the amount of mismatches.
There are at most Δ unequal columns, and the overall amount of mismatches
among these columns is Δ, where Δ = Ham(S1, S2). “Kangaroo Jumps” is a
one-dimensional technique that is based on lcp queries, which is a query that
inputs two suffixes i, j of 1D text T and outputs the length of their longest com-
mon prefix. By repeating the lcp query, we can calculate the Hamming distance
between any two 1D substrings in O(Δ), where Δ is the Hamming distance
between these substrings. It is also possible to stop if the Hamming distance
exceeds some threshold δ after spending O(δ) time. We apply the “Kangaroo
Jumps” structure on the KMR internal arrays for names of the form 2i × 1.

5.2 Primitivity Check

We only consider a sub-array P to be the approximate primitive root of T if P
is primitive. In order to decide whether a candidate sub-array is primitive, we
combine the 2-Period Queries algorithm presented by Kociumaka et al. [24] with
the 2D KMR renaming algorithm. The 2-Period Queries algorithm preprocesses
a one-dimensional text to answer the query of the form whether a substring A is
periodic and, if so, compute its shortest period. Once the period p of a substring
A is computed, the substring is non-primitive if the algorithm returns p < |A|
such that p | |A|, otherwise it is primitive. The algorithm preprocessing time is
linear with constant time query.

We process each of the KMR 2D arrays for 2-Period Queries by concatenating
the rows one after the other. Assume that we have a sub-array of dimensions
p × q and we wish to check its primitivity, horizontally and vertically. Without
loss of generality, assume that we want to check horizontal primitivity. If p is a
power of 2 (p = 2k), then directly from the KMR array that is related to names
of dimensions 2k × 1 we can check if a substring is primitive using the 2-Period
Queries. Otherwise, let k be the maximal integer such that 2k < p. That is, by
two 2-Period Queries we can check if the upper sub-array of P of dimensions
2k × q is primitive and similarly about the bottom sub-array of dimensions
2k × q. If one of them is primitive, then we finished and P is also horizontally
primitive. However, the case where S1 and S2 are both non-primitive requires
special verification. Let p1 and p2 be the periods of S1 and S2, respectively.
Then, the length of the period of P equals to the least common multiple (lcm)
between the p1 and p2. That is, if lcm(p1, p2) < q and lcm(p1, p2)|q, then P is
non-primitive. Otherwise, P is horizontally primitive.

Multidimensional Period Recovery 127

5.3 Time and Space Complexity

The KMR renaming is performed once in O(nm log n log m) time and space
by Theorem 1. The sub-array primitivity check is also performed once in
O(nm log n) time and space. In addition, O(log n) suffix trees are constructed on
the KMR arrays to support “Kangaroo Jumps” in O(nm log n) time and space
by Theorem 2.

In Step 1, for each period’s dimensions p × q, the procedure of finding a
candidate substring with dimensions p × q is done in O(nm

pq) time, as follows.
First, for pair of positions i ∈ {0, p, . . . , (�n

p �−1)p} and j ∈ {0, q, . . . , (�m
q �−1)q},

the name of the sub-array at position (i, j) is found and inserted to a list in
constant time. Then, the algorithm of [13] for finding the majority sub-array, P ,
is performed in linear time of the list size, which is equal to �n

p ��m
q �.

In Step 2, primitivity check costs constant time per candidate using the 2-
Period Queries of [24].

Finally, in Step 3, we compute the total number of mismatches between P
and the sub-array at positions i, j, where i = 0mod p and j = 0mod q (some P
occurrences might be partial). Note that this procedure runs at most in O(nm

pq)
time, since having more than � 1

2+ε�n
p ��m

q �� mismatches means that P is not a
valid solution.

This gives a total of
n∑

p=1

m∑
q=1

nm
pq = nm ·

n∑
p=1

1
p

m∑
q=1

1
q = O(nm log n log m) time

for finding all valid solutions in T . Thus, the total time and space complexity of
the algorithm is bounded by O(nm log n log m).

6 Multidimensional Generalization

In this section, we present the generalization of all the techniques that were
presented in this paper to the multidimensional case.

In Subsect. 3.3, we prove that for the 2D texts, with dimensions n×m, there
are at most O(log(nm)) approximate periods candidates. Here, we generalize the
techniques to work for the multidimensional case.

Lemma 8. Let T1 and T2 be two d-dimensional texts with dimensions n1×n2×
· · ·×nd. Let P1 and P2 be their d-dimensional primitive periods, respectively. P1

is a p1 × p2 × · · · × pd array and P2 is a q1 × q2 × · · · × qd array.

1. If there exists some index i such that pi > qi, then, Ham(T1, T2) ≥ �n1
p1

�·
�n2

p2
� · · · �nd

pd
�.

2. If there exists some index i such that pi < qi, then, Ham(T1, T2) ≥ �n1
q1

�·
�n2

q2
� · �nd

qd
�.

Proving the d-dimensional variations of Lemma 5 and Lemma 6 is done by
the redefinition of a and b as �n1

p1
� · · · �nd

pd
� and �n1

q1
� · · · �nd

qd
�, respectively. The

following corollary holds.

128 A. Amir et al.

Corollary 3. Let T be an n1 × n2 × · · · × nd text. Then, there are at most
log1+ε(Πd

i=1ni)+1 different approximate periods P of T with at most � 1
2+ε�n1

p1
� ·

�n2
p2

� · · · �nd

pd
�� errors.

Definition 9. [Multidimensional KMR Renaming]
Input: d-dimensional text T with dimensions n1 × n2 × · · · × nd.
Output: A data structure that answers the query Namep1,p2,...,pd

[i1, i2, . . . , id],
the name of the sub-array with dimensions p1 × p2 × · · · × pd that starts at
position i1, i2, . . . , id inside T , such that two d-dimensional sub-arrays have the
same name if and only if they are equal.

Theorem 3. Let T be an array with dimensions n1 × n2 × · · · × nd. After
preprocessing T in O(Πd

i=1niΠ
d
i=1log ni) time, we can answer in O(2d) time

Namep1,p2,...,pd
[i1, i2, . . . , id] queries.

Definition 10 [d-Dimensional Sub-arrays Hamming Distance Data Structure].
Let M1, M2 be d-dimensional arrays with dimensions n1 × · · · × nd. Preprocess
them to answer Ham(S1, S2) queries, where S1 and S2 are sub-arrays of M1 and
M2, respectively, having the same dimensions p1 × · · · × pd.

Theorem 4. Without loss of generality, assume that n1 ≤ n2 ≤ . . . ≤ nd. A
d-dimensional sub-arrays Hamming distance data structure can be constructed in
O(Πd

i=1niΠ
d−1
i=1 log ni) time and space to support queries in O(2d ·Δ) time, where

Δ = Ham(S1, S2). Moreover, queries of the form “does Ham(S1, S2) ≤ δ?” are
answered in O(2d · min{δ,Ham(S1, S2)}) time.

The multidimensional primitivity check problem is the following.

Definition 11. [Multidimensional Primitivity Check]
Input: d-dimensional text T with dimensions n1 × n2 × · · · × nd.
Output: A data structure for answering query if a sub-array P of T is primitive.

Theorem 5. Multidimensional primitivity check data structure can be con-
structed in O(Πd

i=1niΠ
d
i=1log ni) time and space to support query in O(d · 2d−1)

time.

7 Conclusion and Open Problems

We presented a recovery algorithm for 2D periodicity. In fact, our technique
generalizes to multidimensional, with d · 2d factor being a constant multiple in
our time complexity, where d is the number of dimensions. This overhead is
caused by the representation of the KMR names that is consuming O(2d) words.
It would be interesting to get rid of this overhead. As in 1D, it is of interest to
see whether a smaller number of allowed errors may lead to a smaller recovery
set. In addition, it is of interest to explore the concept of recovery in a 2D cover.

Multidimensional Period Recovery 129

References

1. Amir, A., Amit, M., Landau, G.M., Sokol, D.: Period recovery of strings over the
hamming and edit distances. Theor. Comput. Sci. 710, 2–18 (2018)

2. Amir, A., Benson, G.: Two-dimensional periodicity in rectangular arrays. SIAM J.
Comput. 27(1), 90–106 (1998)

3. Amir, A., Benson, G., Farach, M.: Optimal parallel two dimensional pattern match-
ing. In: Snyder, L. (ed.) Proceedings of the 5th Annual ACM Symposium on Par-
allel Algorithms and Architectures, SPAA 1993, Velen, Germany, 30 June–2 July
1993, pp. 79–85. ACM (1993)

4. Amir, A., Benson, G., Farach, M.: Optimal parallel two dimensional text searching
on a CREW PRAM. Inf. Comput. 144(1), 1–17 (1998)

5. Amir, A., Boneh, I.: Dynamic palindrome detection. CoRR, abs/1906.09732 (2019)
6. Amir, A., Boneh, I., Charalampopoulos, P., Kondratovsky, E.: Repetition detection

in a dynamic string. In: ESA, LIPIcs, vol. 144, pp. 5:1–5:18. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik (2019)

7. Amir, A., Eisenberg, E., Levy, A.: Approximate periodicity. Inf. Comput. 241,
215–226 (2015)

8. Amir, A., Eisenberg, E., Levy, A., Porat, E., Shapira, N.: Cycle detection and
correction. ACM Trans. Algorithms 9(1), 13:1–13:20 (2012)

9. Amir, A., Landau, G.M., Marcus, S., Sokol, D.: Two-dimensional maximal repeti-
tions. Theoret. Comput. Sci. 812, 49–61 (2019)

10. Amit, M., Crochemore, M., Landau, G.M.: Locating all maximal approximate runs
in a string. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol. 7922, pp. 13–
27. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38905-4 4

11. Apostolico, A., Brimkov, V.E.: Fibonacci arrays and their two-dimensional repeti-
tions. Theor. Comput. Sci. 237(1–2), 263–273 (2000)

12. Apostolico, A., Giancarlo, R.: Periodicity and repetitions in parameterized strings.
Discret. Appl. Math. 156(9), 1389–1398 (2008). General Theory of Information
Transfer and Combinatorics

13. Boyer, R.S., Moore, J.S.: MJRTY: a fast majority vote algorithm. In: Boyer, R.S.
(ed.) Automated Reasoning: Essays in Honor of Woody Bledsoe. Automated Rea-
soning Series, pp. 105–118. Kluwer Academic Publishers (1991)

14. Cole, R., et al.: Optimally fast parallel algorithms for preprocessing and pattern
matching in one and two dimensions. In: 34th Annual Symposium on Foundations
of Computer Science, Palo Alto, California, USA, 3–5 November 1993, pp. 248–258.
IEEE Computer Society (1993)

15. Crochemore, M.: An optimal algorithm for computing the repetitions in a word.
Inf. Process. Lett. 12(5), 244–250 (1981)

16. Crochemore, M., Gasieniec, L., Hariharan, R., Muthukrishnan, S., Rytter, W.: A
constant time optimal parallel algorithm for two-dimensional pattern matching.
SIAM J. Comput. 27(3), 668–681 (1998)

17. Crochemore, M., Rytter, W.: Usefulness of the Karp-Miller-Rosenberg algorithm
in parallel computations on strings and arrays. Theoret. Comput. Sci. 88(1), 59–82
(1991)

18. Galil, Z.: Optimal parallel algorithms for string matching. Inf. Control 67(1–3),
144–157 (1985)

19. Galil, Z., Giancarlo, R.: Improved string matching with k mismatches. SIGACT
News 17(4), 52–54 (1986)

https://doi.org/10.1007/978-3-642-38905-4_4

130 A. Amir et al.

20. Galil, Z., Park, K.: Alphabet-independent two-dimensional witness computation.
SIAM J. Comput. 25(5), 907–935 (1996)

21. Gamard, G., Richomme, G., Shallit, J., Smith, T.J.: Periodicity in rectangular
arrays. Inf. Process. Lett. 118, 58–63 (2017)

22. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the
tandem repeats in a string. J. Comput. Syst. Sci. 69(4), 525–546 (2004)

23. Karp, R.M., Miller, R.E., Rosenberg, A.L.: Rapid identification of repeated pat-
terns in strings, trees and arrays. In: Fischer, P.C., Zeiger, H.P., Ullman, J.D.,
Rosenberg, A.L. (ed.) Proceedings of the 4th Annual ACM Symposium on Theory
of Computing, Denver, Colorado, USA, 1–3 May 1972, pp. 125–136. ACM (1972)

24. Kociumaka, T., Radoszewski, J., Rytter, W., Walen, T.: Internal pattern matching
queries in a text and applications. In: Indyk, P. (ed.) Proceedings of the Twenty-
Sixth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2015, San
Diego, CA, USA, 4–6 January 2015, pp. 532–551. SIAM (2015)

25. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear
time. In: 40th Annual Symposium on Foundations of Computer Science, FOCS
1999, New York, NY, USA, 17–18 October 1999, pp. 596–604. IEEE Computer
Society (1999)

26. Kolpakov, R.M., Kucherov, G.: Finding approximate repetitions under hamming
distance. Theor. Comput. Sci. 303(1), 135–156 (2003)

27. Landau, G.M., Schmidt, J.P., Sokol, D.: An algorithm for approximate tandem
repeats. J. Comput. Biol. 8(1), 1–18 (2001)

28. Marcus, S., Sokol, D.: 2d Lyndon words and applications. Algorithmica 77(1),
116–133 (2017). https://doi.org/10.1007/s00453-015-0065-z

29. Régnier, M., Rostami, L.: A unifying look at d-dimensional periodicities and space
coverings. In: Apostolico, A., Crochemore, M., Galil, Z., Manber, U. (eds.) CPM
1993. LNCS, vol. 684, pp. 215–227. Springer, Heidelberg (1993). https://doi.org/
10.1007/BFb0029807

30. Sim, J.S., Iliopoulos, C.S., Park, K., Smyth, W.F.: Approximate periods of strings.
Theoret. Comput. Sci. 262(1), 557–568 (2001)

https://doi.org/10.1007/s00453-015-0065-z
https://doi.org/10.1007/BFb0029807
https://doi.org/10.1007/BFb0029807

Computing Covers Under Substring
Consistent Equivalence Relations

Natsumi Kikuchi(B), Diptarama Hendrian , Ryo Yoshinaka ,
and Ayumi Shinohara

Graduate School of Information Sciences, Tohoku University, Sendai, Japan
natsumi kikuchi@shino.ecei.tohoku.ac.jp,

{diptarama,ryoshinaka,ayumis}@tohoku.ac.jp

Abstract. Covers are a kind of quasiperiodicity in strings. A string
C is a cover of another string T if any position of T is inside some
occurrence of C in T . The shortest and longest cover arrays of T have the
lengths of the shortest and longest covers of each prefix of T , respectively.
The literature has proposed linear-time algorithms computing longest
and shortest cover arrays taking border arrays as input. An equivalence
relation ≈ over strings is called a substring consistent equivalence relation
(SCER) iff X ≈ Y implies (1) |X| = |Y | and (2) X[i : j] ≈ Y [i : j]
for all 1 ≤ i ≤ j ≤ |X|. In this paper, we generalize the notion of
covers for SCERs and prove that existing algorithms to compute the
shortest cover array and the longest cover array of a string T under
the identity relation will work for any SCERs taking the accordingly
generalized border arrays.

Keywords: String covers · Substring consistent equivalence relations ·
String regularities

1 Introduction

Finding regularities in strings is an important task in string processing due to
its applications such as pattern matching and string compression. Many variants
of regularities in strings have been studied including periods, covers, and seeds
[6,7,20]. One of the most studied regularities is periods due to their mathe-
matical combinatoric properties and their applications to string processing algo-
rithms [14]. The notion of periods has been generalized concerning various kinds
of equivalence relations. Apostolico and Giancarlo [8] studied periods on param-
eterized strings. Gourdel et al. [17] studied string periods on the order-preserving
model.

Covers are another kind of regularities that have extensively been studied.
For two strings T and C, C is a cover of T if any position of T is inside some
occurrences of C in T . For example, aba is a cover of T = abaababaababaaba

because all positions in T are inside occurrences of aba. The other covers of T
are abaaba, abaababaaba and T itself. Apostolico and Ehrenfeucht [6] called
c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 131–146, 2020.
https://doi.org/10.1007/978-3-030-59212-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_10&domain=pdf
http://orcid.org/0000-0002-8168-7312
http://orcid.org/0000-0002-5175-465X
http://orcid.org/0000-0002-4978-8316
https://doi.org/10.1007/978-3-030-59212-7_10

132 N. Kikuchi et al.

Table 1. The time complexity of computing border (Border), shortest cover (SCover)
and longest cover (LCover) arrays under SCERs, where n is the input length, Π is the
parameter set in parameterized equivalence, and k is the number of input strings in
permuted equivalence.

Equivalence relation Border SCover LCover

Identity equivalence O(n) [23] O(n) [10] O(n) [25]
Parameterized equivalence O(n log |Π|) [4] O(n log |Π|) O(n log |Π|)
Order-isomorphism O(n logn) [22, 24] O(n logn) O(n logn)
Permuted equivalence O(nk) [15, 18] O(nk) O(nk)

a string having a cover besides itself quasiperiodic and proposed an algorithm
that computes all maximal quasiperiodic substrings of a string. Later, Iliopoulos
and Mouchard [19] and Brodal and Pedersen [11] proposed O(n log n) time algo-
rithm for this task. Apostolico et al. [7] presented a linear-time algorithm to test
whether a string is quasiperiodic. Breslauer [10] proposed an online linear-time
algorithm that computes the shortest covers of all prefixes as the shortest cover
array of a string. Moore and Smyth [27,28] proposed a linear-time algorithm
to compute all covers of a string. Later, Li and Smyth [25] proposed an online
linear-time algorithm to compute the longest proper covers of all prefixes of a
string as the longest cover array. Amir et al. [2] defined the approximate cover
problem and showed its NP-hardness.

Recently, Matsuoka et al. [26] introduced the notion of substring consistent
equivalence relations (SCERs), which are equivalence relations ≈ on strings
such that X ≈ Y implies (1) |X| = |Y | and (2) X[i : j] ≈ Y [i : j] for all
1 ≤ i ≤ j ≤ |X|, where X[i : j] denotes the substring of X starting at i and
ending at j. Clearly the identity relation is an SCER. Moreover, many variants
of equivalence relations used in pattern matching are SCERs, such as parameter-
ized pattern matching [9], order-preserving pattern matching [22,24], permuted
pattern matching [21], and Cartesian tree matching [29]. Matsuoka et al. [26]
proposed an algorithm to compute the border array of an input string T under
an SCER, which can be used for pattern matching under SCERs.

In this paper, we generalize the notion of covers, which used to be defined
based on the identity relation, to be based on SCERs, and prove that both of
the algorithms for the shortest and longest cover arrays by Breslauer [10] and
Li and Smyth [25], respectively, work under SCERs with no changes: just by
replacing the input of those algorithms from the border array under the iden-
tity relation to the one under a concerned SCER, their algorithms compute
the shortest and longest cover arrays under the SCER. As a minor contribu-
tion, we present a slightly simplified version of Li and Smyth’s algorithm, with
a correctness proof. Table 1 summarizes implications of our results. The time
complexities for computing shortest and longest cover arrays based on various
SCERs are the same as those for border arrays. Moreover, if border arrays under
an equivalence relation can be computed online, e.g., parameterized equivalence
and order-isomorphism, these cover arrays can be computed online by computing
border arrays with existing online algorithms at the same time.

Computing Covers Under SCERs 133

2 Preliminaries

For an alphabet Σ, Σ∗ denotes the set of all strings over Σ, including the empty
string ε. The length of a string T ∈ Σ∗ is denoted as |T |. For 1 ≤ i ≤ j ≤ |T |,
T [i : j] denotes the substring of T that starts at i and ends at j. By T [: j] =
T [1 : j] we denote the prefix of T that ends at j and by T [i :] = T [i : |T |] the
suffix of T that starts at i.

Matsuoka et al. [26] introduced the notion of substring consistent equivalence
relations, generalizing several equivalence relations proposed so far in pattern
matching.

Definition 1 (Substring Consistent Equivalence Relation (SCER) ≈).
An equivalence relation ≈ ⊆ Σ∗ × Σ∗ is an SCER if for two strings X and Y ,

X ≈ Y implies (1) |X| = |Y | and (2) X[i : j] ≈ Y [i : j] for all 1 ≤ i ≤ j ≤ |X|.
By [X]≈ we denote the ≈-equivalence class of X.

For instance, matching relations in parameterized pattern matching [9], order-
preserving pattern matching [22,24], and permuted pattern matching [21] are
SCERs, while matching relations in abelian pattern matching [16], indeterminate
string pattern matching [5] and function matching [3] are not.

Definition 2 (Parameterized equivalence [9]). Two strings X and Y of
the same length are a parameterized match, denoted as X

pr≈ Y , if X can be
transformed into Y by applying a renaming bijection g from the characters of X
to the characters of Y .

Definition 3 (Order-isomorphism [22,24]). Two strings X and Y of the
same length over an alphabet with a linear order ≺ are order isomorphic, denoted
as X

op≈ Y , if X[i] ≺ X[j] ⇔ Y [i] ≺ Y [j] for all 1 ≤ i, j ≤ |X|.
Definition 4 (≈-occurrence [26]). For two strings T and P , a position 1 ≤
i ≤ |T | − |P | + 1 is an ≈-occurrence of P in T if P ≈ T [i : i + |P | − 1]. The set
of ≈-occurrence positions of P in T is denoted by OccP,T .

Definition 5 (≈-border [26]). A string B is a ≈-border of T if B ≈ T [:
|B|] ≈ T [|T | − |B| + 1 :]. We denote by Bord≈(T) the set of all ≈-borders of T .
A ≈-border B of T is called proper if |B| < |T |, and called trivial if B = ε.

Lemma 1 ([26]). (1) B ∈ Bord≈(S) and B′ ∈ Bord≈(B) implies B′ ∈
Bord≈(S). (2) B,B′ ∈ Bord≈(S) and |B′| ≤ |B| implies B′ ∈ Bord≈(B).

Based on Lemma 1, Matsuoka et al. [26] proposed an algorithm to compute
border arrays under SCERs, which are defined as follows.

Definition 6 (≈-border array). The ≈-border array BorderT of T is an
array of length |T | such that BorderT [i] = max{ |B| | B is a proper ≈
−border of T [: i] } for 1 ≤ i ≤ |T |.

134 N. Kikuchi et al.

Table 2. The =-border array, the shortest =-cover array, and the longest =-cover array
of T = abaababaabaababa.

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a b a a b a b a a b a a b a b a

BorderT 0 0 1 1 2 3 2 3 4 5 6 4 5 6 7 8

SCoverT 1 2 3 4 5 3 7 3 9 5 3 12 5 3 15 3

LCoverT 0 0 0 0 0 3 0 3 0 5 6 0 5 6 0 8

Table 3. The
pr≈-border array, the shortest

pr≈-cover array, and the longest
pr≈-cover array

of T = abaababaabaababa. Notice that SCoverT [i] = 1 for all i, for a
pr≈ b.

T 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

a b a a b a b a a b a a b a b a

BorderT 0 1 2 1 2 3 3 3 4 5 6 4 5 6 7 8

SCoverT 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

LCoverT 0 1 2 1 2 3 3 3 1 5 6 1 5 6 3 8

Tables 2 and 3 show examples of ≈-border arrays. We use the identity relation
in Table 2 and the parameterized equivalence (Definition 2) in Table 3.

The well-known property on =-borders (e.g., [1]) holds for ≈-borders, too.

Lemma 2. For any 1 < i ≤ n, BorderT [i − 1] + 1 ≥ BorderT [i].

3 Covers Under SCERs

In this section, we define covers under SCERs (≈-covers) and present some prop-
erties of ≈-covers, which prepares for the succeeding sections. Section 4 shows
that the algorithm to compute shortest cover arrays by Breslauer [10] will work
under SCERs with no change. Section 5 presents a slight variant of the algo-
rithm by Li and Smyth [25] for computing the longest cover arrays and proves
its correctness.

Definition 7 (≈-cover). We say that a string C of length c is an ≈-cover of
a string T of length n if there are x1, x2, . . . , xm ∈ OccC,T such that x1 = 1,
xm = n − c + 1 and xi−1 < xi ≤ xi−1 + c for all 1 < i ≤ m. Moreover, we
say that an ≈-cover C of T is proper if c < n. The set of all ≈-covers of T is
denoted by Cov≈(T). A string T is primitive1 if T has no proper ≈-cover.

By definition, Cov≈(T) ⊆ Bord≈(T). Below we observe that basic lemmas in [10]
on =-covers and =-borders hold for ≈-covers and ≈-borders.
1 In some references it is called superprimitive, reserving the term “primitive” for

strings that cannot be represented as Sk for some string S and integer k ≥ 2.

Computing Covers Under SCERs 135

Algorithm 1: Algorithm computing the shortest ≈-cover array
1 let Border be the ≈-border array of T ;
2 Reach[i] ← 0 for 1 ≤ i ≤ n;
3 for 1 ≤ i ≤ n do
4 if Border [i] > 0 and Reach[SCover [Border [i]]] ≥ i − SCover [Border [i]] then
5 SCover [i] ← SCover [Border [i]];
6 Reach[SCover [i]] ← i;

7 else
8 SCover [i] ← i;
9 Reach[i] ← i;

Lemma 3. If C ∈ Cov≈(T), B ∈ Bord≈(T), and |C| ≤ |B|, then C ∈ Cov≈(B).

Lemma 4. For any C,C ′ ∈ Cov≈(T) such that |C| ≤ |C ′|, C ∈ Cov≈(C ′).

Lemma 5. If C ∈ Cov≈(T) and C ′ ∈ Cov≈(C), then C ′ ∈ Cov≈(T).

Lemma 6. An ≈-cover C of T is primitive iff it is a shortest ≈-cover of T .

Lemma 7. For 0 ≤ i − 1 ≤ j ≤ |T |, Cov≈(T [: j]) ∩ Cov≈(T [i :]) ⊆ Cov≈(T).

Lemma 8. A string C of length c is a proper ≈-cover of T of length n iff
C ∈ Bord≈(T) and C ∈ Cov≈(T [: n − i]) for some 1 ≤ i ≤ c.

In the seaquel of this paper, we fix an input string T of length n.

4 Shortest ≈-cover array

In this section we prove that Algorithm 1 by Breslauer [10] computes the shortest
≈-cover array for an input string T based on the ≈-border array.

Definition 8 (Shortest ≈-cover array). The shortest ≈-cover array
SCoverT of T is an array of length n such that SCoverT [i] = min{ |C| | C ∈
Cov≈(T [: i]) } for 1 ≤ i ≤ n.

Tables 2 and 3 show examples of shortest ≈-cover arrays. Note that SCoverT [i]
is the length of the unique (modulo ≈-equivalence) primitive cover of T [: i] by
Lemma 6.

Algorithm 1 uses an additional array Reach to compute SCover . The algo-
rithm updates Reach and SCover incrementally so that Reach[j] shall be the
length of the longest prefix of T of which T [: j] is a ≈-cover and SCover shall
be the shortest ≈-cover array. More precisely, in each iteration i, the algorithm
updates Reach and SCover so that they satisfy the following properties at the
end of the i-th iteration.

R(i) Reach[j] = 0 if j > i or T [: j] is not primitive. Otherwise, Reach[j] =
max{ p | T [: j] is a ≈ −cover of T [: p] and p ≤ i }.

136 N. Kikuchi et al.

S(i) For 1 ≤ j ≤ i, SCover [j] = min{ |C| | C ∈ Cov≈(T [: j]) }.

If S(n) holds, we have SCover = SCoverT .

Theorem 1. Given the ≈-border array of text T of length n, Algorithm 1 com-
putes the shortest ≈-cover array SCoverT of T in O(n) time.

Proof. The linear time complexity is obvious.
We show the above invariants R(i) and S(i) by induction on i. Clearly the

invariant holds for i = 0, i.e., the initial values of Reach[j] = 0 for all j > 0
satisfy the invariant R(0). Vacuously S(0) is true.

Assume that R(i−1) and S(i−1) hold at the beginning of the i-th iteration.
Let b = Border [i] and c = SCover [b].

Suppose the if -condition of Line 4 is satisfied in the i-th iteration. By the
induction hypothesis on Reach[c], which is at least as large as i − c ≥ 1 at the
beginning of the i-th iteration, T [: c] is a primitive ≈-cover of T [: i − l] for
some 1 ≤ l ≤ c. Then the algorithm updates the value of Reach[c] to i ≥ 1,
which is still positive at the end of the i-th iteration. By T [: b] ∈ Bord≈(T [: i])
and T [: c] ∈ Cov≈(T [: b]) ⊆ Bord≈(T [: b]) (by S(i − 1)), Lemma 1 (1) implies
T [: c] ∈ Bord≈(T [: i]). Therefore, T [: c] is a proper ≈-cover of T [: i] by Lemma 8.
Thus, Reach[c] = i satisfies the invariant. On the other hand, the value Reach[i]
is not changed from its initial value 0, while we get SCover [i] = c. Indeed T [: i]
is not primitive as it has a ≈-cover T [: c]. That is, Reach[i] and SCover [i] satisfy
the invariants. Since T [: c] is the unique primitive ≈-cover prefix of T [: i], for
other j, Reach[j] need not be updated.

Suppose the if -condition is not satisfied in the i-th iteration, where both
Reach[i] and SCover [i] are set to be i. If b = 0, T [: i] has no proper ≈-cover.
Thus T [: i] is primitive and the lemma holds. Next, consider the case where
b
= 0 and Reach[c] < i − c. To show by contradiction that T [: i] is primitive,
assume that T [: i] has a primitive proper ≈-cover T [: k]. By T [: k] ∈ Cov≈(T [:
i]) ⊆ Bord≈(T [: i]) and Lemma 3, we have T [: k] ∈ Cov≈(T [: b]). Since T [: b]
has only one (up to ≈-equivalence) primitive ≈-cover by Lemma 6, we have
k = c, i.e., T [: c] ∈ Cov≈(T [: i]). By Lemma 8, T [: c] ∈ Cov≈(T [: i − j]) for
some 1 ≤ j ≤ c, which contradicts the fact Reach[c] < i − c with the induction
hypothesis. Therefore, T [: i] has no primitive proper ≈-cover and thus T [: i] is
primitive by Lemma 6. We conclude that Reach[i] = SCover [i] = i satisfies R(i)
and S(i) and Reach[j] need not be updated for other j. ��
Corollary 1. If BorderT can be computed in β(n) time, SCoverT can be com-
puted in O(β(n) + n) time.

5 Longest ≈-cover array

This section discusses computing the longest ≈-cover array of a text. Tables 2
and 3 show examples of longest ≈-cover arrays.

Computing Covers Under SCERs 137

Definition 9 (Longest ≈-cover array). The longest ≈-cover array LCoverT

of T is an array of length n such that for 1 ≤ i ≤ n, LCoverT [i] = max({ |C| |
C is a proper ≈ −cover of T [: i] } ∪ {0}).

Let LCover0
T [i] = i and LCoverq

T [i] = LCoverT [LCoverq−1
T [i]] for q ≥ 1. The

following lemma is a corollary to Lemmas 4 and 5.

Lemma 9. For any 1 ≤ j ≤ i, T [: j] ∈ Cov≈(T [: i]) iff j = LCoverq
T [i] for some

q ≥ 0.

Therefore, using the longest ≈-cover array, one can easily obtain all the ≈-covers
up to ≈-equivalence.

Li and Smyth [25] presented an online linear-time algorithm to compute the
longest =-cover array from the =-border array of a text T . We will present a
slight variant of theirs for computing the longest ≈-cover array. Our modification
is not due to the generalization. In fact their algorithm works for computing ≈-
covers as it is. We changed their algorithm just for simplicity. We will briefly
discuss the difference of their and our algorithms later.

Li and Smyth showed some properties of longest =-cover arrays, but not all
of them hold under SCERs. For instance, the longest ≈-cover array in Table 3 is
a counterexample to Theorems 2.2 and 2.3 in [25]. So it is not trivial that their
algorithm and our variant work under SCERs and we need to carefully check
the correctness of the algorithms.

Their algorithm involves an auxiliary array of length n based on the notion
of “live” prefixes. A prefix S of T is said to be live if T can be extended so that
S will be a cover of TU for some U ∈ Σ∗. This notion is also known as “left
seeds” [12,13]. We generalize the notion for SCERs as follows.

Definition 10 (left ≈-seed). For strings T of length n and S of length m, S
is said to be a left ≈-seed of T if there exist k and l such that k ≤ l < m,
S ∈ Cov≈(T [: n − k]) and S[: l] ≈ T [n − l + 1 :]. We denote by LSeed≈(T) the
set of all left ≈-seeds of T .

We remark that it is not necessarily true that LSeed≈(T) = {S | S ∈ Cov≈(TU)
for some U } according to the above definition, contrarily to the case of the iden-
tity relation. Consider the order-isomorphism

op≈ (Definition 3) on Σ = {a, b, c, d}
with a ≺ b ≺ c ≺ d. Then S = acb is a left

op≈-seed of T = adcbc, since S
op≈ T [: 3]

and S[: 2]
op≈ T [4 :]. However, for no character U ∈ Σ, we have S

op≈ (TU)[4 : 6],
since U needs to be a character bigger than b and smaller than c.

Clearly Cov≈(T) ⊆ LSeed≈(T). Moreover, S ∈ LSeed≈(T) implies S ∈
LSeed≈(T ′) for any prefix T ′ of T unless |S| > |T ′|. Being a left ≈-seed is a
weaker property than being an ≈-cover, but it is easier to handle in an online
algorithm, due to the monotonicity that T [: j] /∈ LSeed≈(T [: i − 1]) implies
T [: j] /∈ LSeed≈(T [: i]) for every j < i. The following series of lemmas investi-
gate the relation among left ≈-seeds and ≈-covers.

138 N. Kikuchi et al.

Lemma 10. If k ≤ l, then Cov≈(T [: n−k])∩LSeed≈(T [n−l+1 :]) ⊆ LSeed≈(T).

Proof. Suppose S ∈ Cov≈(T [: n − k]) ∩ LSeed≈(T [n − l + 1 :]). By S ∈
LSeed≈(T [n − l + 1 :]), there are k′, l′ such that k′ ≤ l′ < |S| ≤ l, S ∈
Cov≈(T [n−l+1 : n−k′]) and S[: l′] ≈ T [n−l′+1 :]. We have S ∈ Cov≈(T [: n−k′])
by S ∈ Cov≈(T [: n − k]), n − k ≥ n − l, and Lemma 7. Hence S ∈ LSeed≈(T [: i])
by Definition 10. ��

Lemma 11 says somewhat long prefixes are all left ≈-seeds, which we call
primary. Lemma 12 says shorter left ≈-seeds are ≈-covers of long left ≈-seeds.
As a corollary, we obtain Lemma 13, which corresponds to Lemma 2.5 in [25].

Lemma 11 (Primary left ≈-seeds). For any 1 ≤ i ≤ n and i−BorderT [i] ≤
j ≤ i, we have T [: j] ∈ LSeed≈(T [: i]).

Proof. Let b = BorderT [i], m = �(i − j)/(i − b)�, l = i − (m + 1)(i − b) and
xk = k(i − b) + 1 for k ≥ 0. It is enough to show that (a) {x0, . . . , xm} witnesses
T [: j] ∈ Cov≈(T [: xm+j−1]), (b) T [: l] ≈ T [i−l+1 : i], and (c) i−(xm+j−1) ≤
l < j. The equation (c) can be verified by simple calculation.

(a) Since xk+1 − xk = i − b ≤ j, it is enough to show xk ∈ OccT [:j],T [:i] for all
k ≤ m. Since T [: b] ≈ T [i − b + 1 : i], any “corresponding” substrings of
T [1 : b] and T [i−b+1 : i] are ≈-equivalent. In particular, T [xk : xk+j−1] ≈
T [xk+i−b : xk+i−b+j−1] = T [xk+1 : xk+1+j−1] for all 0 ≤ k < m. That
is, T [: j] ≈ T [xk : xk + j − 1] and thus xk ∈ OccT [:j],T [:i] for all 0 ≤ k ≤ m.

(b) The same argument for corresponding substrings of T [1 : b] and T [i−b+1 : i]
of length l establishes T [: l] ≈ T [xm : xm + l−1] ≈ T [xm+1 : xm+1 + l−1] =
T [i − l + 1 : i]. ��

Lemma 12. For any 1 ≤ i ≤ n, T [: j] for 1 ≤ j < i − BorderT [i] is a left
≈-seed of T [: i] iff T [: j] is the longest proper ≈-cover of a left ≈-seed of T [: i].

Proof. Let b = BorderT [i]. (=⇒) Assume that for 1 ≤ j < i − b, T [: j] ∈
LSeed≈(T [: i]), namely, there exist k and l such that k ≤ l < j, T [: j] ∈
Cov≈(T [: i − k]) and T [: l] ∈ Bord≈(T [: i]). Since T [: b] is the longest proper
≈-border of T [: i], k ≤ l ≤ b and j < i − b ≤ i − k. By Lemma 9, there
exists T [: m] ∈ Cov≈(T [: i − k]) such that j = LCoverT [m]. Moreover, since
j < m ≤ i − k and k ≤ l < m, we have T [: m] ∈ LSeed≈(T [: i]). Therefore T [: j]
is the longest proper ≈-cover of T [: m], which is a left ≈-seed of T [: i].

(⇐=) Assume there is a left ≈-seed prefix T [: m] of T [: i] that is properly
covered by T [: j]. By Definition 10, there exist k and l such that k ≤ l < m, T [:
m] ∈ Cov≈(T [: i−k]) and T [: l] ∈ Bord≈(T [: i]). Thus we have T [: j] ∈ Cov≈(T [:
i − k]) by Lemma 5. If j ≥ l, T [: j] ∈ Cov≈(T [: i − k]) and T [: l] ∈ Bord≈(T [: i]),
which implies T [: j] ∈ LSeed≈(T [: i]) by Definition 10. If j < l < m, T [: j] ∈
Cov≈(T [: m]) ⊆ LSeed≈(T [: m]) implies T [: j] ∈ LSeed≈(T [: l]). By Lemma 10,
T [: j] ∈ LSeed≈(T [: i]). ��
Lemma 13. For any 1 ≤ i ≤ n and 1 ≤ j ≤ i, T [: j] ∈ LSeed≈(T [: i]) iff there
exists k such that i − BorderT [i] ≤ k ≤ i and j = LCoverq

T [k] for some q ≥ 0.

Computing Covers Under SCERs 139

Proof. By Lemmas 9, 11 and 12. ��
Our algorithm involves an auxiliary array based on the following function

LongestLSeedCovT , which is updated by Lemma 15. The significance of this
function is shown as Lemma 14.

Definition 11 (LongestLSeedCovT (i, j)). For a string T , define

LongestLSeedCovT (i, j) = max({ l | T [: l] ∈ LSeed≈(T [: i])∩Cov≈(T [: j]) }∪{0}).

Lemma 14. For any 1≤ i≤ n, LCoverT [i] = LongestLSeedCovT (i,BorderT [i]).

Proof. It suffices to show Cov≈(T [: i]) \ [T [: i]]≈ = LSeed≈(T [: i]) ∩ Cov≈(T [: b])
for b = BorderT [i]. If C ∈ Cov≈(T [: i]) with |C|
= i, then obviously C ∈
Bord≈(T [: i]) ∩ LSeed≈(T [: i]). By Lemma 1, C ∈ Bord≈(T [: b]). Suppose S ∈
LSeed≈(T [: i]) ∩ Cov≈(T [: b]). There is k < |S| such that S ∈ Cov≈(T [: i − k]).
By k < |S| ≤ b and Lemma 7, we have S ∈ Cov≈(T [: i]). ��
Lemma 15. LongestLSeedCovT (i, j) = LongestLSeedCovT (i − 1, j) for 1 ≤ j ≤
BorderT [i]. Moreover, for j = BorderT [i], if T [: j] /∈ LSeed≈(T [: i − 1]), then
LongestLSeedCovT (i, j) = LongestLSeedCovT (i − 1,LCover [j]).

Proof. Let l = LongestLSeedCovT (i−1, j) and l′ = LongestLSeedCovT (i, j). Since
j ≤ BorderT [i] < i, we have l′ < i, which implies l′ ≤ l.

Suppose l = 0. This implies l′ = 0 and thus l′ = l holds. Suppose
in addition that j = BorderT [i] and T [: j] /∈ LSeed≈(T [: i − 1]). The
fact l = 0 means LSeed≈(T [: i − 1]) ∩ Cov≈(T [: j]) = ∅, which implies
LSeed≈(T [: i − 1]) ∩ Cov≈(T [: LCoverT [j]]) = ∅ by Lemmas 4 and 5. There-
fore, LongestLSeedCovT (i − 1, [2]LCoverT [j]) = 0. So the lemma holds.

Hereafter we assume l ≥ 1. Let bi = BorderT [i] ≥ 1. By T [: l] ∈ LSeed≈(T [:
i − 1]), there exists k < l such that T [: l] ∈ Cov≈(T [: i − 1 − k]). On the other
hand, by bi ≤ i − 1, T [: l] ∈ LSeed≈(T [: bi]) = LSeed≈(T [i − bi + 1 : i]). Since
k < l ≤ j ≤ bi, by Lemma 10, T [: l] ∈ Cov≈(T [: i−1−k])∩LSeed≈(T [i−bi+1 : i])
implies l ∈ LSeed≈(T [: i]). Thus l′ = l.

Suppose j = bi and T [: j] /∈ LSeed≈(T [: i − 1]). Since Cov≈(T [: j]) =
Cov≈(T [: LCoverT [j]])∪[T [: j]]≈ by Lemmas 4 and 5, T [: j] /∈ LSeed≈(T [: i − 1])
implies LongestLSeedCovT (i − 1,LCoverT [j]) = l = l′. ��

Algorithm 2 computes the longest ≈-cover array LCoverT of T as LCover
taking the ≈-border array BorderT as input. Following Li and Smyth [25], we
explain the algorithm using a tree formed by LCoverT , called the ≈-cover tree.
The ≈-cover tree consists of nodes 0, . . . , n. The root is 0 and the parent of j
= 0
is LCoverT [j]. By Lemma 9, T [: k] ∈ Cov≈(T [: j]) if and only if k
= 0 and k is
an ancestor of j (including the case where k = j) in the ≈-cover tree. Hereafter,
we casually use the index j to mean (any string ≈-equivalent to) the prefix
T [: j] of T , if no confusion arises. We use two additional arrays LSChildren and
LongestLSAnc, which have zero-based indices in accordance with the ≈-cover
tree’s nodes. LSChildren[j] counts the number of children of j that are left ≈-
seeds of T . LongestLSAnc[j] points at the lowest ancestor of j that is a left

140 N. Kikuchi et al.

Algorithm 2: Algorithm computing the longest ≈-cover array
1 let Border be the ≈-border array of T ;
2 LSChildren[i] ← 0, LongestLSAnc[i] ← i for 0 ≤ i ≤ n;
3 for 1 ≤ i ≤ n do
4 if LSChildren[Border [i]] = 0 and 0 < 2 · Border [i] < i then
5 LongestLSAnc[Border [i]] ← LongestLSAnc[LCover [Border [i]]];

6 LCover [i] ← LongestLSAnc[Border [i]];
7 LSChildren[LCover [i]] ← LSChildren[LCover [i]] + 1;
8 if i > 1 then
9 c1 ← i − Border [i];

10 c2 ← (i − 1) − Border [i − 1];
11 for j from c2 to c1 − 1 do
12 while LSChildren[j] = 0 do
13 LSChildren[LCover [j]] ← LSChildren[LCover [j]] − 1;
14 j ← LCover [j];

≈-seed of T . More precisely, the algorithm maintains them so that they satisfy
the following invariants at the end of the i-th iteration of the outer for loop.

1. LongestLSAnc[j] = j if LSChildren[BorderT [j]] > 0 or BorderT [j] ≥ i −
BorderT [i] or BorderT [j] = 0 for 0 ≤ j ≤ n.

2. LongestLSAnc[j] = LongestLSeedCovT (i, j) for 0 ≤ j ≤ BorderT [i].
3. LCover [j] = LCoverT [j] for 1 ≤ j ≤ i.
4. LSChildren[j] = |LSChildren(i, j)|, where

LSChildren(i, j) = { k | T [: k] ∈ LSeed≈(T [: i]) and j = LCoverT [k] } ,

for 0 ≤ j ≤ n. Note that LSChildren(i, j) = ∅ for j ≥ i.

Suppose we already have the ≈-cover tree for T [: i−1]. To update it for T [: i] by
adding a node i, we must determine the parent LCoverT [i] of i. By Lemma 14
and the invariant, we know that LCoverT [i] = LongestLSAnc[BorderT [i]]. The
array LongestLSAnc can be maintained by Lemma 15, where we must update
LongestLSAnc[j] when T [: j] /∈ LSeed≈(T [: i − 1]) for j = BorderT [i] >
BorderT [i − 1]. By Lemma 13, T [: j] ∈ LSeed≈(T [: i − 1]) iff i − 1 −BorderT [i −
1] ≤ j ≤ i−1 or LSChildren[j] > 0 assuming that LSChildren satisfies the invari-
ant for i − 1. Therefore, constructing the ≈-cover tree is reduced to maintaining
the array LSChildren. By Lemma 13, LSChildren[j] counts the number of chil-
dren of j that are ancestors of an element of the set Pi = { k | i − BorderT [i] ≤
k ≤ i }, which is the index range of primary left ≈-seeds. At the beginning of
the i-th iteration, LSChildren is based on Pi−1, and we must update LSChildren
to be based on Pi by the end of the i-th iteration. LSChildren[j] needs to be
updated only when j is an ancestor of some k in the difference of Pi−1 and Pi.
So, we first increment the value LSChildren[LCover [i]] by one as LCover [i] has
got a new child i ∈ Pi \ Pi−1. Since LCover [i] is a left ≈-seed of T [: i − 1],

Computing Covers Under SCERs 141

(a)

0 (1)

1 (1)

2 (2)

3 (1)

4 (0)

5 (0)

(b)

0 (1)

1 (2)

2 (2)

3 (1)

4 (0)

5 (0)

6 (0)

(c)

0 (1)

1 (2)

2 (2)

3 (1)

4 (0)

5 (0)

6 (0)

(d)

0 (1)

1 (2)

2 (1)

3 (0)

4 (0)

5 (0)

6 (0)

Fig. 1. Updating the
pr≈-cover tree of T [: 5] = abcac (a) for that of T [: 6] = abcacc (d).

LSChildren counts the numbers of children which are ancestors of some nodes drawn
as thick red circles. Those highlighted nodes represent primary left

pr≈-seeds {3, 4, 5} of
T [: 5] in (a) and those {5, 6} of T [: 6] in (d). Paths from highlighted nodes to the root
are highlighted, so that LSChildren[j] is the number of highlighted edges from j.

we need not increment LSChildren[j] for further ancestors j of LCover [i]. For
those k ∈ Pi−1 \Pi, we decrement LSChildren[LCover [k]] unless k is an ancestor
of Pi. If this results in LSChildren[LCover [k]] = 0, we recursively decrement
LSChildren[LCover2[k]], and so on.

Example 1. We consider the parameterized-equivalence
pr≈ (Definition 2) as an

SCER. Suppose we have computed the
pr≈-cover tree for T [: 5] = abcac as shown

in Fig. 1 (a). Our goal is to obtain the one for T [: 6] = abcacc shown in Fig. 1 (d).
Since LongestLSAnc[j] = j for all j throughout this example, we focus on updat-
ing LCover and LSChildren. In the figures, LSChildren is shown in parenthe-
ses beside each node. We have BorderT [5] = 2 and BorderT [6] = 1, so the
index sets of the primary left

pr≈-seeds of T [: 5] and T [: 6] are P5 = {3, 4, 5}
and P6 = {5, 6}, respectively. Since BorderT [6] = 1, Algorithm 2 first lets
LCover [6] = LongestLSAnc[Border [6]] = 1. In other words, a new node 6 is
added as a child of 1. It remains to update LSChildren, which is now based
on P5 = {3, 4, 5} but shall be based on P6 = {5, 6}. First we increment
LSChildren[LCover [6]] = LSChildren[1] by one, as illustrated in Fig. 1 (b). At
this moment, LSChildren[j] counts the number of children of j which are ances-
tors of some of P5 ∪ P6 = {3, 4, 5, 6}. The inner for-loop of Line 11 modifies
LSChildren so that it shall be based on {4, 5, 6} first and then on {5, 6}. Since
the node 3 is the parent of 4, the LSChildren arrays based on {3, 4, 5, 6} and
{4, 5, 6} are identical, as shown in Figs. 1 (b) and (c), respectively. To modify
LSChildren to be based on {5, 6}, we decrement LSChildren[j] if j has a child
which is an ancestor of 4 but not that of 5 or 6. Since the node 4 is such a child
of LCover [4] = 3 (4 is an ancestor of 4, and LSChildren[4] = 0 means that 4 is
not an ancestor of 5 or 6), so we decrement LSChildren[3] by one. This results
in LSChildren[3] = 0, by which we know that the node 3 is an ancestor of 4 but
not that of 5 or 6. Hence we decrement LSChildren[LCover [3]] = LSChildren[2].
This results in LSChildren[2] = 1, which means that the node 2 is an ancestor

142 N. Kikuchi et al.

of 4 and that of 5 or 6 at the same time. So, we stop the recursion and obtain
the ≈-cover tree with LSChildren based on P6 = {5, 6}, as shown in Fig. 1 (d).

We remark that Li & Smyth’s original algorithm maintains an array Dead
that represents whether j /∈ LSeed≈(T [: i]) in addition to the arrays used in
our algorithm. Our algorithm judges the property using two arrays Border
and LSChildren based on Lemmas 11 and 12. The reason why their algo-
rithm requires the additional array is that it performs the inner for loop of
Line 11 in the reverse order. If we perform the loop in the reverse order with-
out the auxiliary array, in the above example, in the iteration on j = 4, we
obtain the tree in Fig. 1 (d), and then in the iteration on j = 3, the value of
LSChildren[LCover [3]] = LSChildren[2] is decremented to 0 and further more
LSChildren[LCover [2]] = LSChildren[1] is decremented to 1. Their algorithm
stops iteration of the while loop at Line 12 if Dead [j] = True, to restrain
excessive decrement of LSChildren[j].

Theorem 2. Given the ≈-border array BorderT of T , Algorithm2 computes the
longest ≈-cover array LCoverT of T in O(n) time.

Proof. We prove the above invariants by induction on i. In the first iter-
ation, neither of the if antecedents are satisfied. At the end of the itera-
tion, we have LCover [1] = LongestLSAnc[Border [1]] = LongestLSAnc[0] = 0
and LSChildren[0] = 1. Together with the initialization, all the arrays satisfy
the above invariants. By Lemmas 16 and 17, finally the algorithm computes
LCoverT . The linear-time complexity is shown in Lemma 18. ��
Corollary 2. If BorderT can be computed in β(n) time, LCoverT can be com-
puted in O(β(n) + n) time.

Lemma 16. Suppose that all the invariants hold at the beginning of the i-th
iteration of the outer for loop. Then, at the end of the i-th loop, the invariants
on LongestLSAnc and LCover are satisfied.

Proof. Assume that LSChildren, LongestLSAnc, and LCover hold the above
properties at the end of the (i − 1)-th iteration. Let bi = Border [i] and bi−1 =
Border [i − 1].

We first show that the invariant on LongestLSAnc is satisfied. Concerning
the first claim on LongestLSAnc, the value of LongestLSAnc[j] can be altered
from its initial value j only when LSChildren[j] = 0, 0 < 2j < i and j = bi, in
which case, the invariant does not necessitate LongestLSAnc[j] = j. On the other
hand, by Lemma 2, if BorderT [j] < i − 1 − BorderT [i − 1], then BorderT [j] <
i − BorderT [i]. Therefore, once the value of LongestLSAnc[j] has been altered
from j, the invariant will never necessitate LongestLSAnc[j] = j.

Concerning the second claim on LongestLSAnc, suppose j ≤ bi. If j < bi,
then j ≤ bi−1 by Lemma 2. By the induction hypothesis on LongestLSAnc[j] and
Lemma 15, LongestLSAnc[j] = LongestLSeedCov(i − 1, j) = LongestLSeedCov
(i, j). It remains to show LongestLSAnc[bi] = LongestLSeedCov(i, bi).

Computing Covers Under SCERs 143

If bi = 0, LongestLSeedCovT (i, bi) = LongestLSeedCovT (i − 1, bi) = 0. Sup-
pose bi > 0 and T [: bi] /∈ LSeed≈(T [: i − 1]). Let m = LCover [bi], for
which m < bi ≤ bi−1 + 1. By Lemma 15 and the induction hypothesis on
LongestLSAnc[m], we have LongestLSeedCovT (i, bi) = LongestLSeedCovT (i −
1,m) = LongestLSAnc[m]. By Lemmas 11 and 12 and the induction hypoth-
esis, bi < i − 1 − bi−1 and LSChildren[bi] = 0. Thus, since 2bi ≤ bi + bi−1 + 1 <
i−1+1 = i, the algorithm lets LongestLSAnc[bi] = LongestLSAnc[m] in Line 5,
which fulfills the invariant on LongestLSAnc.

Suppose T [: bi] ∈ LSeed≈(T [: i − 1]). In this case, there is k < bi such that
T [: bi] ∈ Cov≈(T [: i−1−k]). By Lemma 7, T [: bi] ∈ Cov≈(T [: i]) ⊆ LSeed≈(T [: i])
and thus LongestLSeedCovT (i, bi) = bi. By Lemma 2, bi = bi−1 + 1 holds. By
Lemmas 11 and 12, either bi ≥ i−1−bi−1 or LSChildren[bi] > 0. The former case
implies 2bi ≥ i and thus in either case the algorithm does not execute Line 5.
By the induction hypothesis, LongestLSAnc[bi] = bi, which fulfills the invariant
on LongestLSAnc[bi].

The invariant on LCover is fulfilled in Line 6, which makes LCover [i] =
LongestLSAnc[bi] in accordance with Lemma 14. ��
Lemma 17. If the invariants hold at the beginning of the i-th iteration of the
outer for loop, the invariant on LSChildren holds at the end of the i-th loop.

Proof. Assume that at the end of the (i − 1)-th iteration, the invariants hold.
Let bi = Border [i], bi−1 = Border [i − 1], c1 = i − bi, and c2 = (i − 1) − bi−1.
Note that c1 ≥ c2 by Lemma 2.

First we discuss LSChildren[j] for j ≥ c1. For any k with c2 ≤ c1 ≤ k < i,
by Lemma 11, T [: k] ∈ LSeed≈(T [: i − 1]) ∩ LSeed≈(T [: i]). This means that for
any j with c2 ≤ c1 ≤ j ≤ i,

LSChildren(i, j) = LSChildren(i − 1, j) ∪ Ij

where Ij = {i} for j = LCoverT [i] and Ij = ∅ for j
= LCoverT [i]. Accordingly,
for those j ≥ c1, the algorithm realizes LSChildren[j] = |LSChildren(i − 1, j)| +
|Ij | = |LSChildren(i, j)|.

It remains to show the invariants on LSChildren[j] for j < c1. By Lemma 13,
LSChildren(i, j) can be rewritten as LSChildren(i, j) = rangeChildren(c1, i, j) for

rangeChildren(k, l, j) = LCover−1[j] ∩ {LCoverq[h] | k ≤ h ≤ l and q ≥ 0 }
where LCover−1[j] = {h | j = LCover [h] }. In terms of the ≈-cover tree,
LCover−1[j] is the set of children of j and rangeChildren(k, l, j) is the set of
children which have an element between k and l as a descendant (a node is
thought to be a descendant of itself). Note that 0 /∈ LCover−1[j] for any j ≥ 0.
After executing Line 7 of Algorithm 2, together with the induction hypothesis,
we have LSChildren[j] = |rangeChildren(c2, i, j)|. If c1 = c2, then the algorithm
does not go into the inner for loop of Line 11 and we have done the proof. If
c1 > c2, it is enough to show that at the end of each iteration of the inner for
loop of Line 11,

LSChildren[l] = |rangeChildren(j + 1, i, l)| (1)

144 N. Kikuchi et al.

for all l < c1. For j = c1 − 1, we have LSChildren[l] = |rangeChildren(c1, i, l)| =
|LSChildren(i, l)| for all l < c1. For this purpose, we show by induction on r that
at the end of the r-th iteration of the while loop (Line 12), we have

LSChildren[l] =
∣
∣rangeChildren(j + 1, i, l) ∪ (LCover−1[l] ∩ {LCoverq[j] | q ≥ r})

∣
∣

(2)

for all l < c1. Note that there always exists rj such that LCoverrj [j] = 0, for
which LCover−1[l] ∩ {LCoverq[j] | q ≥ rj} = ∅, i.e., Eq. (2) is equivalent to (1).

For r = 0, i.e., at the beginning of the first iteration of the while loop, Eq. (1)
for j −1 holds, i.e., LSChildren[l] = |rangeChildren(j, i, l)|, which is equivalent to
(2) with r = 0.

Assuming the induction hypothesis (2) for r holds, we show that it is the
case for r + 1. Increasing r by one never expands the set on the right hand of
(2). The set will lose an element h iff h = LCoverr[j], l = LCoverr+1[j] and

LCoverr[j] /∈ {LCoverq[k] | j < k ≤ i, q ≥ 0} . (3)

If LSChildren[LCoverr[j]]
= 0, the loop is not repeated. It is enough to show
that for any l < c1

LCover−1[l] ∩ {LCoverq[j] | q ≥ r} ⊆ rangeChildren(j + 1, i, l) , (4)

so that we establish (1). If LCoverr[j] = 0, LCover−1[l] ∩ {LCoverq[j] | q ≥
r} = ∅. Clearly (4) holds. Suppose LCoverr[j]
= 0. The assumption that
LSChildren[LCoverr[j]]
= 0 means, by induction hypothesis (2), there is

k ∈ rangeChildren(j + 1, i,LCoverr[j])

∪ (LCover−1[LCoverr[j]] ∩ {LCoverq[j] | q ≥ r}) .

By LCover−1[LCoverr[j]] ∩ {LCoverq[j] | q ≥ r} = ∅, k ∈ rangeChildren(j +
1, i,LCoverr[j]), which means k = LCovers[h] ∈ LCover−1[LCoverr[j]] for some
j < h ≤ i and s ≥ 0, i.e., LCovers+1[h] = LCoverr[j]. For 1 ≤ l ≤ c1, if
LCoverq[j] ∈ LCover−1[l] for some q ≥ r, then

LCoverq−r+s+1[h] = LCoverq[j] ∈ LCover−1[l].

That is, LCoverq[j] ∈ rangeChildren(j + 1, i, l), which shows (4) and thus (1).
Suppose LSChildren[LCoverr[j]] = 0. We show that (3) holds. By the induc-

tion hypothesis (2) for r, LSChildren[LCoverr[j]] = 0 means

rangeChildren(j + 1, i,LCoverr[j])

∪ (LCover−1[LCoverr[j]] ∩ {LCoverq[j] | q ≥ r}) = ∅.

If (3) did not hold, there were j′ and q such that LCoverr[j] = LCoverq[j′]
and j < j′ ≤ i, where q ≥ 1 by LCoverr[j] ≤ j < j′. Then LCoverq−1[j′] ∈
LCover−1[LCoverr[j]], which is a contradiction. So, the condition (3) holds. ��

Computing Covers Under SCERs 145

Lemma 18. Algorithm2 runs in O(n) time.

Proof. Let t(j) and f(j) be the numbers of times that the while condition on j
(Line 12) is judged true and false, respectively. Since

∑n
j=0 f(j) ≤ n+

∑n
j=1 t(j),

it is enough to show t(j) ≤ 1 for every j to establish the linear-time complexity.
Suppose that the algorithm finds LSChildren[j] = 0 at the while loop in the
i-th iteration of the outer for loop. We show that it happens for the least i > j
such that T [: j] /∈ LSeed≈(T [: i]). Note that the condition is checked only for
j < c1, where c1 = i − Border [i]. Therefore, LSChildren[j] = 0 implies T [: j] /∈
LSeed≈(T [: i]) by Lemma 12. Since T [: j] /∈ LSeed≈(T [: i]) implies T [: j] /∈
LSeed≈(T [: i′]) for any i′ > i, it is enough to show T [: j] ∈ LSeed≈(T [: i − 1]).
For c2 = i − 1 − Border [i − 1], by the algorithm, j = LCoverq[k] for some
c2 ≤ k < c1 and q ≥ 0. If q = 0, i.e., c2 ≤ j = k < c1, by Lemma 11, T [: j] ∈
LSeed≈(T [: i − 1]). If q ≥ 1, the value LSChildren[j] is decremented in the q-th
iteration of the while loop, just before deciding LSChildren[j] = 0. Moreover,
T [: j] /∈ LSeed≈(T [: i]) implies j
= LCover [i], and hence LSChildren[j] was
strictly positive at the end of the (i − 1)-th iteration of the outer for loop. By
the invariant, LSChildren(i − 1, j)
= ∅, which means T [: j] ∈ LSeed≈(T [: i − 1]).

��

References

1. Aho, A.V., Hopcroft, J.E.: The design and analysis of computer algorithms. Pear-
son Education India (1974)

2. Amir, A., Levy, A., Lubin, R., Porat, E.: Approximate cover of strings. Theor.
Comput. Sci. 793, 59–69 (2019). https://doi.org/10.1016/j.tcs.2019.05.020

3. Amir, A., Aumann, Y., Lewenstein, M., Porat, E.: Function matching. SIAM J.
Comput. 35(5), 1007–1022 (2006)

4. Amir, A., Farach, M., Muthukrishnan, S.: Alphabet dependence in parameterized
matching. Inf. Process. Lett. 49(3), 111–115 (1994). https://doi.org/10.1016/0020-
0190(94)90086-8

5. Antoniou, P., Crochemore, M., Iliopoulos, C., Jayasekera, I., Landau, G.: Conser-
vative string covering of indeterminate strings. In: Prague Stringology Conference
2008, pp. 108–115 (2008)

6. Apostolico, A., Ehrenfeucht, A.: Efficient detection of quasiperiodicities in strings.
Theor. Comput. Sci. 119(2), 247–265 (1993). https://doi.org/10.1016/0304-
3975(93)90159-Q

7. Apostolico, A., Farach, M., Iliopoulos, C.S.: Optimal superprimitivity testing for
strings. Inf. Process. Lett. 39(1), 17–20 (1991). https://doi.org/10.1016/0020-
0190(91)90056-N

8. Apostolico, A., Giancarlo, R.: Periodicity and repetitions in parameterized strings.
Discrete Appl. Math. 156(9), 1389–1398 (2008). https://doi.org/10.1016/j.dam.
2006.11.017

9. Baker, B.S.: Parameterized pattern matching: algorithms and applications. J. Com-
put. Syst. Sci. 52(1), 28–42 (1996). https://doi.org/10.1006/jcss.1996.0003

10. Breslauer, D.: An on-line string superprimitivity test. Inf. Process. Lett. 44(6),
345–347 (1992). https://doi.org/10.1016/0020-0190(92)90111-8

https://doi.org/10.1016/j.tcs.2019.05.020
https://doi.org/10.1016/0020-0190(94)90086-8
https://doi.org/10.1016/0020-0190(94)90086-8
https://doi.org/10.1016/0304-3975(93)90159-Q
https://doi.org/10.1016/0304-3975(93)90159-Q
https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1016/0020-0190(91)90056-N
https://doi.org/10.1016/j.dam.2006.11.017
https://doi.org/10.1016/j.dam.2006.11.017
https://doi.org/10.1006/jcss.1996.0003
https://doi.org/10.1016/0020-0190(92)90111-8

146 N. Kikuchi et al.

11. Brodal, G.S., Pedersen, C.N.S.: Finding maximal quasiperiodicities in strings.
In: Giancarlo, R., Sankoff, D. (eds.) CPM 2000. LNCS, vol. 1848, pp. 397–411.
Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-45123-4 33

12. Christou, M., Crochemore, M., Guth, O., Iliopoulos, C.S., Pissis, S.P.: On left and
right seeds of a string. J. Discrete Algorithms 17, 31–44 (2012)

13. Christou, M., et al.: Efficient seed computation revisited. Theor. Comput. Sci. 483,
171–181 (2013). https://doi.org/10.1016/j.tcs.2011.12.078

14. Crochemore, M., Rytter, W.: Jewels of Stringology. World Scientific Publishing
Co., Pte. Ltd. (2002). https://doi.org/10.1142/9789812778222

15. Diptarama, Ueki, Y., Narisawa, K., Shinohara, A.: KMP based pattern matching
algorithms for multi-track strings. In: Proceedings of Student Research Forum
Papers and Posters at SOFSEM2016, pp. 100–107 (2016)

16. Ehlers, T., Manea, F., Mercaş, R., Nowotka, D.: k-abelian pattern matching. J.
Discrete Algorithms 34, 37–48 (2015)

17. Gourdel, G., Kociumaka, T., Radoszewski, J., Rytter, W., Shur, A., Waleń, T.:
String periods in the order-preserving model. Inf. Comput. 270(104463), 1–22
(2020). https://doi.org/10.1016/j.ic.2019.104463

18. Hendrian, D., Ueki, Y., Narisawa, K., Yoshinaka, R., Shinohara, A.: Permuted
pattern matching algorithms on multi-track strings. Algorithms 12(4), 73:1–20
(2019). https://doi.org/10.3390/a12040073

19. Iliopoulos, C., Mouchard, L.: Quasiperiodicity: from detection to normal forms. J.
Autom. Lang. Comb. 4, 213–228 (1999)

20. Iliopoulos, C.S., Moore, D.W.G., Park, K.: Covering a string. Algorithmica 16(3),
288–297 (1996). https://doi.org/10.1007/BF01955677

21. Katsura, T., Narisawa, K., Shinohara, A., Bannai, H., Inenaga, S.: Permuted pat-
tern matching on multi-track strings. In: SOFSEM 2013: Theory and Practice of
Computer Science, pp. 280–291 (2013). https://doi.org/10.1007/978-3-642-35843-
2 25

22. Kim, J., Eades, P., Fleischer, R., Hong, S.H., Iliopoulos, C.S., Park, K., Puglisi,
S.J., Tokuyama, T.: Order-preserving matching. Theor. Comput. Sci. 525, 68–79
(2014). https://doi.org/10.1016/j.tcs.2013.10.006

23. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977)

24. Kubica, M., Kulczyński, T., Radoszewski, J., Rytter, W., Waleń, T.: A linear
time algorithm for consecutive permutation pattern matching. Inf. Process. Lett.
113(12), 430–433 (2013). https://doi.org/10.1016/j.ipl.2013.03.015

25. Li, Y., Smyth, W.F.: Computing the cover array in linear time. Algorithmica 32(1),
95–106 (2002). https://doi.org/10.1007/s00453-001-0062-2

26. Matsuoka, Y., Aoki, T., Inenaga, S., Bannai, H., Takeda, M.: Generalized pattern
matching and periodicity under substring consistent equivalence relations. Theor.
Comput. Sci. 656, 225–233 (2016). https://doi.org/10.1016/j.tcs.2016.02.017

27. Moore, D., Smyth, W.: An optimal algorithm to compute all the covers of a
string. Inf. Process. Lett. 50(5), 239–246 (1994). https://doi.org/10.1016/0020-
0190(94)00045-X

28. Moore, D., Smyth, W.: A correction to “an optimal algorithm to compute all the
covers of a string”. Inf. Process. Lett. 54(2), 101–103 (1995). https://doi.org/10.
1016/0020-0190(94)00235-Q

29. Park, S.G., Amir, A., Landau, G.M., Park, K.: Cartesian tree matching and index-
ing. In: 30th Annual Symposium on Combinatorial Pattern Matching (CPM 2019),
pp. 16:1–16:14 (2019). https://doi.org/10.4230/LIPIcs.CPM.2019.16

https://doi.org/10.1007/3-540-45123-4_33
https://doi.org/10.1016/j.tcs.2011.12.078
https://doi.org/10.1142/9789812778222
https://doi.org/10.1016/j.ic.2019.104463
https://doi.org/10.3390/a12040073
https://doi.org/10.1007/BF01955677
https://doi.org/10.1007/978-3-642-35843-2_25
https://doi.org/10.1007/978-3-642-35843-2_25
https://doi.org/10.1016/j.tcs.2013.10.006
https://doi.org/10.1016/j.ipl.2013.03.015
https://doi.org/10.1007/s00453-001-0062-2
https://doi.org/10.1016/j.tcs.2016.02.017
https://doi.org/10.1016/0020-0190(94)00045-X
https://doi.org/10.1016/0020-0190(94)00045-X
https://doi.org/10.1016/0020-0190(94)00235-Q
https://doi.org/10.1016/0020-0190(94)00235-Q
https://doi.org/10.4230/LIPIcs.CPM.2019.16

Longest Square Subsequence Problem
Revisited

Takafumi Inoue1, Shunsuke Inenaga1,2(B) , and Hideo Bannai3

1 Department of Informatics, Kyushu University, Fukuoka, Japan
2 PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan

inenaga@inf.kyushu-u.ac.jp
3 M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan

hdbn.dsc@tmd.ac.jp

Abstract. The longest square subsequence (LSS) problem consists of
computing a longest subsequence of a given string S that is a square,
i.e., a longest subsequence of form XX appearing in S. It is known
that an LSS of a string S of length n can be computed using O(n2)
time [Kosowski 2004], or with (model-dependent) polylogarithmic speed-
ups using O(n2(log log n)2/ log2 n) time [Tiskin 2013]. We present the
first algorithm for LSS whose running time depends on other parameters,
i.e., we show that an LSS of S can be computed in O(rmin{n,M} log n

r
+

n + M log n) time with O(M) space, where r is the length of an LSS of
S and M is the number of matching points on S.

1 Introduction

Subsequences of a string S with some interesting properties have caught much
attention in mathematics and algorithmics. The most well-known of such kinds
is the longest increasing subsequence (LIS), which is a longest subsequence of
S whose elements appear in lexicographically increasing order. It is well known
that an LIS of a given string S of length n can be computed in O(n log n) time
with O(n) space [9]. Other examples are the longest palindromic subsequence
(LPS) and the longest square subsequence (LSS). Since an LPS of S is a longest
common subsequence (LCS) of S and its reversal, an LPS can be computed by
a classical dynamic programming for LCS, or by any other LCS algorithms.

Computing an LSS of a string is not as easy, because a reduction from LSS
to LCS essentially requires to consider n − 1 partition points on S. Kosowski [6]
was the first to tackle this problem, and showed an O(n2)-time O(n)-space LSS
algorithm. Computing LSS can be motivated by e.g. finding an optimal partition
point on a given string so that the corresponding prefix and suffix are most sim-
ilar. Later, Tiskin [10] presented a (model-dependent) O(n2(log log n)2/ log2 n)-
time LSS algorithm, based on his semi-local string comparison technique applied
to the n−1 partition points (i.e. n−1 pairs of prefixes and suffixes.) Since strongly
sub-quadratic O(n2−ε)-time LSS algorithms do not exist for any ε > 0 unless
the SETH is false [2], the aforementioned solutions are almost optimal in terms
of n.
c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 147–154, 2020.
https://doi.org/10.1007/978-3-030-59212-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_11&domain=pdf
http://orcid.org/0000-0002-1833-010X
http://orcid.org/0000-0002-6856-5185
https://doi.org/10.1007/978-3-030-59212-7_11

148 T. Inoue et al.

In this paper, we present the first LSS algorithm whose running time depends
on other parameters, i.e., we show that an LSS of S can be computed in
O(r min{n,M} log n

r + n + M log n) time with O(M) space, where r is the
length of an LSS of S and M is the number of matching points on S. This
algorithm outperforms Tiskin’s O(n2(log log n)2/ log2 n)-time algorithm when
r = o(n(log log n)2/ log3 n) and M = o(n2(log log n)2/ log3 n).

Our algorithm is based on a reduction from computing an LCS of two strings
of total length n to computing an LIS of an integer sequence of length at most
M , where M is roughly n2/σ for uniformly distributed random strings over
alphabets of size σ. We then use a slightly modified version of the dynamic LIS
algorithm [3] for our LIS instances that dynamically change over n− 1 partition
points on S. A similar but more involved reduction from LCS to LIS is recently
used in an intermediate step of a reduction from dynamic time warping (DTW)
to LIS [8]. We emphasize that our reduction (as well as the one in [8]) from LCS
to LIS should not be confused with a well-known folklore reduction from LIS to
LCS.

Soon after the submission of this paper, independently to this work,
Russo and Francisco [7] showed a very similar algorithm to solve the
LSS problem, also based on a reduction to LIS. Their algorithm runs in
O(r min{n,M} log min{r, n

r } + rn + M) time and O(M) space.

2 Preliminaries

Let Σ be an alphabet. An element S of Σ∗ is called a string. The length of a
string S is denoted by |S|. For any 1 ≤ i ≤ |S|, S[i] denotes the ith character
of S. For any 1 ≤ i ≤ j ≤ |S|, S[i..j] denotes the substring of X beginning at
position i and ending at position j.

A string X is said to be a subsequence of a string S if there exists a
sequence 1 ≤ i1 < · · · < i|X| ≤ |S| of increasing positions of S such that
X = S[i1] · · · S[i|X|]. Such a sequence i1, . . . , i|X| of positions in S is said to be
an occurrence of X in S.

A non-empty string Y of form XX is called a square. A square Y is called a
square subsequence of a string S if square Y is a subsequence of S. Let LSS(S)
denote the length of a longest square subsequence (LSS) of string S. This paper
deals with the problem of computing LSS(S) for a given string S of length n.

For strings A,B, let LCS(A,B) denote the length of the longest common
subsequence (LCS) of A and B. For a sequence T of numbers, a subsequence X
of T is said to be an increasing subsequence of T if X[i] < X[i+1] for 1 ≤ i < |X|.
Let LIS(T) denote the length of the longest increasing subsequence (LIS) of T .

A pair (i, j) of positions 1 ≤ i < j ≤ |S| is said to be a matching point if
S[i] = S[j]. The set of all matching points of S is denoted by M(S), namely,
M(S) = {(i, j) | 1 ≤ i < j ≤ |S|, S[i] = S[j]}. Let M = |M(S)|.

Longest Square Subsequence Problem Revisited 149

3 Algorithm

We begin with a simple folklore reduction of computing LSS(S) to computing
the LCS of n − 1 pairs of the prefix and the suffix of S.

acbabc cabacbc

a
c
b
a
b
c

c a b a c b

A

B

1 7 13A B

7
8
9
10
11
12
13

10 8 13 11 7 12T =S = 9 10 8 12 9 13 11 7

c

6

7 13

1

6

Fig. 1. Correspondence between an LCS of A = acbabc, B = cabacbc and an LIS of T .

Lemma 1 [6]. LSS(S) = 2max1≤p<n LCS(S[1..p], S[p + 1..n]).

Following Lemma 1, one can use the decremental LCS algorithm by Kim
and Park [5] for computing LSS(S). Given two strings A and B of length n, Kim
and Park proposed how to update, in O(n) time, an O(n2)-space representation
for the dynamic programming table for LCS(A,B) when the leftmost character
is deleted from B. Since their algorithm also allows to append a character to
A in O(n) time, it turns out that LSS(S) can be computed in O(n2) time and
space. Kosowski [6] presented an O(n2)-time Θ(n)-space algorithm for computing
LSS(S), which can be seen as a space-efficient version of an application of Kim
and Park’s algorithm to this specific problem of computing LSS(S). Tiskin [10]
also considered the problem of computing LSS(S), and showed that using his
semi-local LCS method, LSS(S) can be computed in O(n2(log log n)2/ log2 n)
time. We remark that the log-shaving factor is model-dependent (i.e., Tiskin’s
method uses the so-called “Four-Russian” technique).

Let A = S[1..p], A′ = S[1..p + 1], B = S[p + 1..n] and B′ = S[p + 2..n]. For
ease of explanations, suppose that the indices on B and B′ begin with p + 1
and p + 2, respectively. Next, we further reduce computing LCS(A′, B′) from (a
representation of) LCS(A,B), to computing an LIS of a dynamic integer sequence
of length at most M = |M(S)|.

For any integer pairs (u, v) and (x, y), let (u, v) ≺ (x, y) if (i) u < x, or (ii)
u = x and v < y. Consider the following integer sequence T : Let P be the set
of integer pairs (i, n − j) such that S[i] = A[i] = B[p + j] = B[|A| + j] = S[j].
Then, we set T [q] = j iff the integer pair (i, n − j) is of rank q in P w.r.t. ≺.
See Fig. 1 for an example. Intuitively, T is an integer sequence representation of
the (transposed) matching points between A and B, obtained by scanning the

150 T. Inoue et al.

matching points between A and B from the bottom row to the top row, where
each row is scanned from right to left. Clearly, the length of the integer sequence
T is bounded by M .

Lemma 2. Any common subsequence of A and B corresponds to an increasing
subsequence of T of the same length. Also, any increasing subsequence of T
corresponds to a common subsequence of A and B of the same length.

Proof. For any common subsequence C of A and B, let i1 < · · · < i|C| and
j1 < · · · < j|C| be occurrences of C in A and B, respectively. For any 1 ≤ k < |C|,
let qk and qk+1 be the ranks of integer pairs (ik, n − jk) and (ik+1, n − jk+1) in
the set P w.r.t. ≺. By the definition of T , qk < qk+1 and T [qk] < T [qk+1] hold.
Hence, C corresponds to an increasing subsequence of T of the same length.

For any increasing subsequence I in T , let t1 < · · · < t|I| be an occurrence
of I in T . For any 1 ≤ k < |I|, let (ik, n − jk) and (ik+1, n − jk+1) be the integer
pairs corresponding to I[k] = T [tk] and I[k + 1] = T [ik+1], respectively. Since
jk = T [tk] < T [tk+1] = jk+1, we have

n − jk+1 < n − jk. (1)

Since (ik, n − jk) ≺ (ik+1, n − jk+1), either (i) ik < ik+1 or (ii) ik = ik+1 and
n − jk < n − jk+1 must hold. By inequality (1), (ii) cannot hold, and thus (i)
holds. Hence A[ik]A[ik+1] = B[jk]B[jj+1] is a common subsequence of A and B.
Hence, I corresponds to a common subsequence of A and B of the same length.

��
By Lemma 2, computing LCS(A,B) can be reduced to computing LIS(T).

Let T ′ be the integer sequence for A′ and B′ defined analogously to T for
A and B. Now the task is how to compute LIS(T ′) from (a data structure that
represents) LIS(T). See Fig. 2 for an example. Observe that when the leftmost
character is deleted from B (upper part of Fig. 2), then the lowest points are
deleted from the 2D plane, and thus all the elements with minimum value are
deleted from T . Also, when the leftmost character of B is appended to A (upper
part of Fig. 2), which gives us A′ = S[1..p+1], then a new point for every j with
A′[|A′|] = B′[j] is inserted to the right end of the 2D plane in decreasing order
of j, and thus j is appended to the right end of T in decreasing order of j, one
by one. Thus, computing LCS(A′, B′) from LCS(A,B) reduces to the following
sub-problem:

Problem 1. For a dynamic integer sequence T , maintain a data structure that
supports the following operations and queries:

– Insertion: Insert a new element to the right-end of T ;
– Batched Deletion: Delete all the elements with minimum value from T ;
– Query: Return LIS(T).

We can use Chen et al.’s algorithm [3] for insertions. Let � = LIS(T). Their
algorithm supports insertions at the right-end of T in O(log |T |) time each. Since
|T | ≤ M ≤ n2, insertions at the right-end can be done in O(log n) time.

Longest Square Subsequence Problem Revisited 151

B’

A’

deletion insertion

a
c
b
a
b
c

c a b a c b

A

Bc

a
c
b
a
b
c

a b a c b c

c

Fig. 2. Illustration on how points in the 2D plane (and elements in T) are to be deleted
or inserted when A and B are updated to A′ and B′, respectively.

Next, let us consider batched deletions. Chen et al. [3] showed that an inser-
tion or deletion of a single element at an arbitrary position of T can be supported
in O(� log |T |

�) ⊆ O(� log n
�) time each. However, since our batched deletion may

contain O(|T |) ⊆ O(M) characters in the worst case, a näıve application of a
single-element deletion only leads to an inefficient O(�|T | log n

�) ⊆ O(�M log n
�)

batched deletion. In what follows, we show how to support batched deletions in
O(� log n

�) time each, using Chen et al.’s data structure.
For any position 1 ≤ t ≤ |T | in sequence T , let l(t) denote the length of an

LIS of T [1..t] that has an occurrence i1 < · · · < il(t) = t, namely, an occurrence
that ends at position t in T . The following observations are immediate:

Lemma 3 [3]. Let q be the second to last position of any occurrence of a length-
l(t) LIS of T [1..t] ending at position t. Then, l(q) = l(t) − 1.

Lemma 4 [3]. If q < t and l(q) = l(t), then T [q] ≥ T [t].

7

8

9

10

11

12

13

10 8 13 11 7 12T = 9 10 8 12 9 13 11 7

L1

L2 L3 L4
L5

Fig. 3. Lists Lk for pairs 〈t, T [t]〉.

For any 1 ≤ k ≤ �, let Lk be a
list of pairs 〈t, T [t]〉 such that l(t) = k,
sorted in increasing order of the first
elements t. See Fig. 3 for an example.
It follows from Lemma 4 that this list
is also sorted in non-increasing order
of the second elements T [t]. It is clear
that LIS(T) = max{k | Lk
= ∅}. It is
also clear that for any k > 1, if Lk
= ∅,
then Lk−1
= ∅. Thus, our task is to

152 T. Inoue et al.

maintain a collection of the non-empty lists L1, . . . , L� that are subject to
change when T is updated to T ′. As in [3], we maintain each Lk by a balanced
binary search tree such as red-black trees [4] or AVL trees [1].

The following simple claim is a key to our batched deletion algorithm:

Lemma 5. The pairs having the elements of minimum value in T are at the
tail of L1.

Proof. Since the list L1 is sorted in non-increasing order of the second elements,
the claim clearly holds. ��
Lemma 6. We can perform a batched deletion of all elements of T with mini-
mum value in O(� log n

�) time, where � = LIS(T).

Proof. Due to Lemma 5, we can delete all the elements of T with minimum value
from the list L1 by splitting the balanced search tree into two, in O(log |L1|) time.

The rest of our algorithm follows Chen et al.’s approach [3]: Note that the
split operation on L1 can incur changes to the other lists L2, . . . ,L�. Let l′(t) be
the length of an LIS of T ′[1..t] that has an occurrence ending at position t in T ′,
and let L′

k be the list of pairs 〈t, T ′[t]〉 such that l′(t) = k sorted in increasing
order of the first elements t. Let Q1 be the list of deleted pairs corresponding to
the smallest elements in T , and let Qk = {t | l(t) = k, l′(t) = k − 1} for k ≥ 2.
Then, it is clear that L′

k = (Lk \ Qk) ∪ Qk+1. Chen et al. [3] showed that Qk+1

can be found in O(log |Lk+1|) time for each k, provided that Qk has been already
computed. Since Qk is a consecutive sub-list of Lk (c.f. [3]), the split operation
for Lk \Qk can be done in O(log |Lk|) time, and the concatenation operation for
(Lk\Qk)∪Qk+1 can be done in O(log |Lk|+log |Lk+1|) time, by standard split and
concatenation algorithms on balanced search trees. Thus our batched deletion
takes O(

∑
1≤k≤� log |Lk|) = O(log(|L1| · · · |L�|)) time, where � = LIS(T). Since∑

1≤k≤� |Lk| = |T | and log(|L1| · · · |L�|) is maximized when |L1| = · · · = |L�|,
the above time complexity is bounded by O(� log |T |

�) ⊆ O(� log n
�) time. ��

We are ready to show our main theorem.

Theorem 1. An LSS of a string S can be computed in O(r min{n,M} log n
r +n+

M log n) time with O(M) space, where n = |S|, r = LSS(S), and M = |M(S)|.
Proof. By Lemma 1 and Lemma 2, it suffices to consider the total number of
insertions, batched deletions, and queries of Problem 1 for computing an LIS of
our dynamic integer sequence T . Since each matching point in M(S) is inserted
to the dynamic sequence exactly once, the total number of insertions is exactly
M . The total number of batched deletions is bounded by the number n − 1 of
partition points p that divide S into S[1..p] and S[p + 1..n]. Also, it is clearly
bounded by the number M of matching points. Thus, the total number of batched
deletions is at most min{n,M}. We perform queries n−1 times for all 1 ≤ p < n.
Each query for LIS(T) can be answered in O(1) time, by explicitly maintaining

Longest Square Subsequence Problem Revisited 153

and storing the value of LIS(T) each time the dynamic integer sequence T is
updated. Thus, it follows from Lemma 6 that our algorithm returns LSS(S) in
O(r min{n,M} log n

r + M log n) time. By keeping the lists Lk for a partition
point p that gives 2� = r = LSS(S), we can also return an LSS (as a string) in
O(r log n

r) time, by finding an optimal sequence elements from L�, L�−1, . . . , L1.
The additive n term in our O(r min{n,M} log n

r +n +M log n) time complexity
is for testing whether the input string S consists of n distinct characters (if so,
then we can immediately output r = 0 in O(n) time).

The space complexity is clearly linear in the total size of the lists L1, . . . L�,
which is |T | ∈ O(M). ��

When r = o(n(log log n)2/ log3 n) and M = o(n2(log log n)2/ log3 n), our
O(r min{n,M} log n

r + n + M log n)-time algorithm outperforms Tiskin’s solu-
tion that uses O(n2(log log n)2/ log2 n) time [10]. The former condition r =
o(n(log log n)2/ log3 n) implies that our algorithm can be faster than Tiskin’s
algorithm (as well as Kosowski’s algorithm [6]) when the length r of the LSS of
the input string S is relatively short. For uniformly distributed random strings
of length n over an alphabet of size σ, we have M ≈ n2/σ. Thus, for alphabets of
size σ = ω(log3 n/(log log n)2), the latter condition M = o(n2(log log n)2/ log3 n)
is likely to be the case for the majority of inputs.

Acknowledgments. This work was supported by JSPS KAKENHI Grant Num-
bers JP17H01697 (SI), JP20H04141 (HB), and JST PRESTO Grant Number
JPMJPR1922 (SI).

References

1. Adelson-Velsky, G., Landis, E.: An algorithm for the organization of information.
Proc. USSR Acad. Sci. 146, 263–266 (1962). (in Russian). English translation by
Myron J. Ricci in Soviet Mathematics - Doklady, 3:1259–1263, 1962

2. Bringmann, K., Künnemann, M.: Quadratic conditional lower bounds for string
problems and dynamic time warping. In: FOCS 2015, pp. 79–97 (2015). https://
doi.org/10.1109/FOCS.2015.15, full version https://arxiv.org/abs/1502.01063

3. Chen, A., Chu, T., Pinsker, N.: Computing the longest increasing subsequence of a
sequence subject to dynamic insertion. CoRR abs/1309.7724 (2013). http://arxiv.
org/abs/1309.7724

4. Guibas, L.J., Sedgewick, R.: A dichromatic framework for balanced trees. In: FOCS
1978, pp. 8–21 (1978)

5. Kim, S.R., Park, K.: A dynamic edit distance table. J. Discrete Algorithms 2,
302–312 (2004)

6. Kosowski, A.: An efficient algorithm for the longest tandem scattered subsequence
problem. In: Apostolico, A., Melucci, M. (eds.) SPIRE 2004. LNCS, vol. 3246,
pp. 93–100. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30213-
1 13

7. Russo, L.M.S., Francisco, A.P.: Small longest tandem scattered subsequences.
CoRR abs/2006.14029 (2020). https://arxiv.org/abs/2006.14029

https://doi.org/10.1109/FOCS.2015.15
https://doi.org/10.1109/FOCS.2015.15
https://arxiv.org/abs/1502.01063
http://arxiv.org/abs/1309.7724
http://arxiv.org/abs/1309.7724
https://doi.org/10.1007/978-3-540-30213-1_13
https://doi.org/10.1007/978-3-540-30213-1_13
https://arxiv.org/abs/2006.14029

154 T. Inoue et al.

8. Sakai, Y., Inenaga, S.: A reduction of the dynamic time warping distance to the
longest increasing subsequence length. CoRR abs/2005.09169 (2020). https://arxiv.
org/abs/2005.09169

9. Schensted, C.: Longest increasing and decreasing subsequences. Can. J. Math. 13,
179–191 (1961). https://doi.org/10.4153/CJM-1961-015-3

10. Tiskin, A.: Semi-local string comparison: algorithmic techniques and applications.
CoRR abs/0707.3619 (2013). http://arxiv.org/abs/0707.3619

https://arxiv.org/abs/2005.09169
https://arxiv.org/abs/2005.09169
https://doi.org/10.4153/CJM-1961-015-3
http://arxiv.org/abs/0707.3619

Adaptive Exact Learning in a Mixed-Up
World: Dealing with Periodicity, Errors
and Jumbled-Index Queries in String

Reconstruction

Ramtin Afshar1, Amihood Amir2, Michael T. Goodrich1 ,
and Pedro Matias1(B)

1 Department of Computer Science, University of California Irvine, Irvine, USA
{afsharr,goodrich,pmatias}@uci.edu

2 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
amir@cs.biu.ac.il

Abstract. We study the query complexity of exactly reconstructing
a string from adaptive queries, such as substring, subsequence, and
jumbled-index queries. Such problems have applications, e.g., in com-
putational biology. We provide a number of new and improved bounds
for exact string reconstruction for settings where either the string or the
queries are “mixed-up”.

Keywords: Exact learning · String reconstruction · Jumbled-index
queries · Periodicity · DNA sequencing · Stringology · Substrings ·
Hybridization · Information security

1 Introduction

Exact learning involves asking a series of queries so as to learn a configuration
or concept uniquely and without errors, e.g., see [12]. For example, imagine a
game where a player, Alice, is trying to exactly learn a secret string, S, such
as S = "rumpelstiltskin", which is known only to a magic fairy. Alice may
ask the fairy questions about S, but only if they are in a form allowed by the
fairy, such as “Is X a substring of S?”. Any allowable question that Alice asks
must be answered truthfully by the fairy. Alice’s goal is to learn S by asking
the fewest number of allowable questions. Her strategy is adaptive if her ques-
tions can depend on the answers to previous queries. This exact-learning string-
reconstruction problem might at first seem like a contrived game, but it actually
has a number of applications. For instance, in interactive DNA sequencing, the
fairy’s string is an unknown DNA sequence, S, and allowable queries are “Is X a
substring of S?” Each such question can be answered by a hybridization exper-
iment that exposes copies of S to a mixture containing specific primers to see

The full version of this paper is available in [5].

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 155–174, 2020.
https://doi.org/10.1007/978-3-030-59212-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_12&domain=pdf
http://orcid.org/0000-0002-8943-191X
http://orcid.org/0000-0003-0664-9145
https://doi.org/10.1007/978-3-030-59212-7_12

156 R. Afshar et al.

which ones bind to S, e.g., see [73]. Thus, we are interested in the exact-learning
complexity of adaptively learning an unknown string via queries of various given
types, that is, for exactly reconstructing a string from queries. Formally, we
are interested in minimizing a query-complexity measure, Q(n), which, in our
case, is the number of queries of certain types needed in order to exactly learn
a string, S. This query-complexity concept comes from machine-learning and
complexity theory, e.g., see [3,12,18,25,32,76,83].

1.1 Related Work

Motivated by DNA sequencing, Skiena and Sundaram [73] were the first to study
exact string reconstruction from adaptive queries. For substring queries, of the
form “Is X a substring of S?”, they give a bound for Q(n) of (σ −1)n+2 log n+
O(σ), where σ is the alphabet size. For subsequence queries, of the form “Is
X a subsequence of S?”, they prove a bound for Q(n) of Θ(n log σ + σ log n).
Recently, Iwama et al. [44] study the problem for binary alphabets, which
removes the additive logarithmic term in this case. These papers do not consider
“mixed-up” strings, however, such as strings that are periodic or periodic with
errors. The abundance of repetitions and periodic runs in genomic sequences is
well known and has been exploited in the last decades for biologic and medical
information (see e.g. [15,16,30,33,35,53,65,66,74,82]). It is somewhat surprising
that this phenomenon has not been used to achieve more efficient algorithms.
Margaritis and Skiena [60] study a parallel version of exact string reconstruc-
tion from queries, which are hybrids of adaptive and non-adaptive strategies,
showing, e.g., that a length-n string can be reconstructed in O(log2 n) rounds
using n substring queries per round. Tsur [77] gives a polynomial approximation
algorithm for the 1-round case. As in [73], these papers do not consider bounds
for Q(n) based on properties of the string such as its periodicity. Cleve et al. [28]
study string reconstruction in a quantum-computing model, showing, for exam-
ple, that a sublinear number of queries are sufficient for a binary alphabet. This
result does not seem to carry over to a classical computing model, however,
which is the subject of our paper.

Another type of query we consider is the jumbled (or histogram)-index
query, first considered in [20,21,26,37] and studied more recently in, e.g. [4,7,
9,10,52,62]. Jumbled indexing has many applications. It can be used as a tool
for de novo peptide identification (as in e.g. [45,50,51]), and has been used as a
filter for searching an image database [27,31,75,81,85]. In this query, which has
received much study of late, but has not been studied before for adaptive string
reconstruction, one is given a Parikh vector, i.e., a vector of frequency counts for
each character in an alphabet, and asked if there is a substring of the reference
string, S, having these frequency counts and, if so, where it occurs in S. Such
reconstruction may aid in narrowing down peptide identification, or focusing on
image retrieval.

Another model for string reconstruction, tangential to ours and studied
extensively, is the one defined by a non-adaptive oracle, e.g., see [1,2,13,14,19–
22,24,26,29,34,36–38,40–43,47–49,54,56,58,59,63,64,67–72,78,79,84]. In this

Adaptive Exact Learning in a Mixed-Up World 157

model we are given a set of answers to queries in advance, and we aim to under-
stand sufficient and necessary conditions on the answers that enable the exact
reconstruction of the string. This model differs from the adaptive one consid-
ered in this paper in that it focuses on the study of combinatorial properties
of strings, rather than on minimizing the number of queries. We review existing
literature for non-adaptive string reconstruction in more detail in the full version
of the paper [5].

1.2 Our Results

We provide new and improved results for exactly reconstructing strings from
adaptive substring, subsequence, and jumbled-index queries. For example, we
believe we are the first to characterize query complexities for exactly recon-
structing periodic strings from adaptive queries, including the following results
for reconstructing a length-n periodic (i.e., “mixed-up”) string, S = pkp′, of
smallest period p, where p′ is a prefix of p and the alphabet has size σ:

– It requires at least |p| lg σ substring or subsequence queries.
– It can be done with σ|p| + �lg |p|� substring queries, if n is known.
– It can be done with O(σ|p| + lg n) substring queries, if n is unknown.
– It can be done with σ�lg n� + 2|p|�lg σ� subsequence queries, for known n.
– It can be done with 2σ�lg n�+2|p|�lg σ� subsequence queries, if n is unknown.

Perhaps our most technical result is that we show that we can reconstruct
a length-n string, S, within Hamming distance d of a periodic string S′ = pkp′,
of smallest period p, using O(min(σn, dσ|p| + d|p| lg n

d+1)) substring queries, if
n is unknown. We also show that we can exactly reconstruct a general length-n
string, S, using 2σ�lg n� + n�lg σ� subsequence queries, if n is unknown. Such
queries are another “mixed-up” setting, since there can be multiple subsequence
matches for a given string. Our bound improves the previous best, decades-old
result, by Skiena and Sundaram [73], who prove a query complexity of 2σ lg n +
1.59n lg σ + 5σ for this case. If n is known, then σ�lg n� + n�lg σ� subsequence
queries suffice. We believe we are the first to study string reconstruction using
jumbled-index queries, which are yet another “mixed-up” setting, since they
simply count the frequency of each character occurring in a substring. We prove
the following results:

– We can reconstruct a length-n string with O(σn) yes/no extended jumbled-
index queries, which include a count for an end-of-string character, $.

– For jumbled-index queries that return an index of a matching substring, string
reconstruction is not possible if this index is chosen adversarially, but is pos-
sible using O(σ + n lg n) queries if it is chosen uniformly at random.

1.3 Preliminaries

We consider strings over the alphabet Σ = {a1, a2, . . . , aσ} of σ letters. The size
of a string X is denoted by |X|. We use X[i] to denote the ith letter of X and

158 R. Afshar et al.

X[i..j] to refer to the substring of X starting at its ith and ending at its jth

letter (e.g., X = X[1..|X|]). We may ignore i when expressing a prefix X[..j] of
X. Similarly, X[i..] is a suffix of X. Occasionally, we will express concatenation
of strings X and Y by X ·Y (instead of XY) to emphasize some property of the
string. A string X concatenated with itself k (resp. infinitely many) times can
be expressed as Xk (resp. X∞). The reversal of a string X is denoted by XR.

A string, S, has period p if S = pkp′, such that k > 0 is an integer and p′ is
a (possibly empty) prefix of p. Further, a string S is periodic if it has a period
that repeats at least twice, i.e. S = pkp′ and k > 11. The following is a well
known result concerning the periodicity of a string, due to Fine and Wilf [39],
which we will need later on.

Lemma 1 (Periodicity Lemma [39]). If p, q are periods of a string X of
length |X| ≥ |p| + |q| − gcd(|p|, |q|), then X also has a period of size gcd(|p|, |q|).

A doubling search is the operation used to determine a number n from a
(typically unbounded) range of possibilities. It involves doubling a query value,
m, until it is greater than n, followed by a binary search to determine n itself.
Its time complexity is 2�lg n� + 12.

Due to space constraints, we defer proofs of Lemmas and Theorems marked
with � to the full version of the paper [5], where we also include pseudo-code
for our algorithms.

2 Substring Queries

In this section, we study query complexities for a string, S, subject to yes/no
substring queries, IsSubstr, i.e. queries of “Is X a substring of S?”. We focus
on the cases where S corresponds to an originally periodic string, that may have
lost its periodicity property due to error corruption. The nature of the errors
is context-dependent. For example, corruption may be caused by transmission
errors or measurement errors.

There are multiple ways to model errors in strings (see [8,11,23,46,55,57,
80]). In this paper, we consider Hamming distance. We say that S is a d-
corrupted periodic string if there exists a periodic string S′ of period p,
such that |S| = |S′| and δ(S′, S) ≤ d, where δ is the Hamming distance. We
refer to p as an approximate period of S. Notice that, depending on d, there
might exist multiple possible strings S′ that originate S.

Our main result in this section is the following.

1 Our algorithms assume that S is periodic (k > 1), while the Periodicity Lemma (1)
only requires a string to have a period (k > 0).

2 A more sophisticated version of this procedure exists (see [17]) that actually improves
the constant in the time complexity, but for simplicity, we use the traditional algo-
rithm, which is asymptotically equivalent.

Adaptive Exact Learning in a Mixed-Up World 159

Theorem 1. We can reconstruct a length-n d-corrupted periodic string S using

O

(
min

(
σn, dσ|p| + d|p| lg n

d + 1

))
queries,

for known d, unknown |p|, regardless of whether we know n, where p is a smallest
approximate period of S.

The algorithm of Theorem 1 is a more elaborate version of a reconstruction
algorithm for the special case of d = 0, i.e. when no errors occurred and S = S′,
and when n is not known in advance.

Theorem 2. We can reconstruct a length-n periodic string, S = pkp′, of small-
est period p, using O(σ|p| + lg n) substring queries, assuming both n and |p| are
unknown in advance.

The algorithm of Theorem 2, in turn, builds from a simple reconstruction
algorithm that handles the case where n is known in advance and d = 0.

For clarity, we will present our results in increasing order of complexity, from
the least general result of d = 0 and known n, to the most general result of
arbitrary d and unknown n.

2.1 Uncorrupted Periodic Strings of Known Size

We first give a simple algorithm to reconstruct a periodic string S = pkp′ of
smallest period p and known size with query complexity O(σ|p|), and then
show how to improve this algorithm to have query complexity σ|p| plus lower-
order terms. Our algorithms use a primitive developed by Skiena and Sun-
daram [73], which we call “append (resp., prepend) a letter.” In the append
(resp., prepend) primitive, we start with a known substring q of S, and we ask
queries IsSubstr(qai) (resp., IsSubstr(aiq)), for each ai ∈ Σ. Note that if we know
that one of the qai (resp., aiq) strings must be a substring, we can save one
query, so that appending or prepending a letter uses at most σ − 1 queries in
this case.

In our simple algorithm3, we iteratively grow a candidate period, q, using
the append primitive until qg(q)−1 is a substring, where g(x) = �n/|x|�. Notice
that q may be an “unlucky” cyclic rotation of p, which only repeats g(p) − 1
times, and we need to account for this possibility. Thus, once we get a substring
corresponding to qg(q)−1, we then append/prepend letters until we recover all
of S.

Theorem 3. � We can reconstruct a length-n periodic string S = pkp′, of
smallest period p, using O(σ|p|) substring queries, assuming n is known in
advance and |p| is unknown.

3 Pseudo-code can be found in the full version of the paper [5], where the number of
queries is also shown for each step involving queries.

160 R. Afshar et al.

With a little more effort, we can improve the constant factor in the query
complexity, by showing that, for k = �n/|p|� > 3, the following implication
holds: if qg(q)−1 is a substring, then q must be a cyclic rotation of p.

Theorem 4. � We can reconstruct a length-n periodic string S = pkp′, of
smallest period p, using at most σ|p| + �lg |p|� substring queries, assuming that:
n is known in advance, k > 3 and |p| is unknown.

Notice that any reconstruction algorithm requires at least |p| lg σ queries.

Theorem 5. Reconstructing a length-n string, S = pkp′, of smallest period p,
requires at least |p| lg σ IsSubstr queries, even if n and |p| are known.

Proof. There are σ|p| possible periods for S. Since each period corresponds to a
different output of a reconstruction algorithm, A, and each query is binary, we
can model any such algorithm, A, as a binary decision tree, where each internal
node corresponds to an IsSubstr query. Each of the σ|p| possible periods must
correspond to at least one leaf of A; hence, the minimum height of A is lg(σ|p|).

	

2.2 Uncorrupted Periodic Strings of Unknown Size

As in Sect. 2.1, we iteratively grow a candidate period q and attempt to recover
S by concatenating q with itself in the appropriate way. The difficulty when n
is unknown is that we can no longer confidently predict g(q). Thus, we can no
longer issue a single query to test if q is the right period. An immediate solution is
to use a doubling search. Unfortunately, this introduces a multiplicative O(lg n)
term into the query complexity. To avoid it, we show how we can take advantage
of the Periodicity Lemma (1) to amortize the extra work needed to recover S.

Let us describe the algorithm4. We start with an empty candidate period q.
At each iteration, we add a letter to q, using the append primitive and, using
a doubling search, determine the run-length t of q, i.e. the maximum integer
t such that qt is a substring of S. If t = 1, we advance to the next iteration
and repeat this process. If, on the other hand, t > 1, we use q to determine the
largest substring T that has a period of size |q|. This can be done efficiently,
using doubling searches, by determining the largest suffix l of q and the largest
prefix r of q, such that IsSubstr(l ·qt ·r). Once T is determined, we check whether
it corresponds to S by checking if there is any letter preceding and succeeding
T . If T corresponds to S, we output it. Otherwise, we update q to be any largest
substring of T whose size is assuredly less than |p|: using Periodicity Lemma (1),
we argue in Lemma 2 below that, if q is not a cyclic rotation of p, then p must
be as large as almost the entire substring T ; more specifically, it must be the
case that |p| > |T | − |q| + 1. Thus, we update q to be a length-(|T | − |q| + 1)
prefix of T (any other substring of T would also work). We use this fact to get

4 Pseudo-code can be found in the full version of the paper [5], where the number of
queries is also shown for each step involving queries.

Adaptive Exact Learning in a Mixed-Up World 161

a faster convergence to a cyclic rotation of p, while making sure that we do not
overshoot |p|. Indeed, this observation will enable us to incur a O(lg n) additive
factor, instead of a multiplicative one. After updating q, we advance to the next
iteration, where a new letter is appended to q, and repeat this process until
T = S.

Lemma 2. Let T be the largest proper substring of S = pkp′, of smallest period
p, such that: |q| is the length of the smallest period of T . Then, |p| > |T |−|q|+1.

Proof. Let us assume, by contradiction, that |p| ≤ |T | − |q| + 1. Then, |T | ≥
|q|+ |p|− 1 and, thus, |T | ≥ |q|+ |p|− gcd(|q|, |p|). In addition, if p is a period of
S, then T must have a period of size |p|. So, by the Periodicity Lemma (1), T also
has a period of size gcd(|q|, |p|). Moreover, since T is the largest proper substring
of S, |p| is not a multiple of |q|. Therefore, T must have a period shorter than
|q|, a contradiction. 	

Let q1, q2, . . . , qm be the sequence of m candidate periods of increasing length,
each of which is the result of the append/prepend primitive at the beginning of
every iteration, e.g. |q1| = 1. In addition, let us use ti to denote the run-length
of qi. Correctness of our algorithm follows from the following two lemmas.

Lemma 3. The algorithm successfully returns S = pkp′, of smallest period p, if
there exists an iteration i ∈ {1, 2, . . . ,m}, such that qi is a cyclic rotation of p.

Proof. If ti > 1, then it is easy to see that the string T computed at iteration i,
must correspond to S. If fi = 1, then the algorithm essentially switches to the
letter-by-letter algorithm, appending or prepending letters until the end, when
qm = S. 	

Lemma 4. There exists an iteration i ∈ {1, 2, . . . ,m}, such that qi is a cyclic
rotation of p.

Proof. Let us assume that there is no such iteration i. Then, since all the qi’s
are increasing in length, it must be the case that there exists an iteration j ∈
{1, 2, . . . ,m − 1}, such that: |qj | < |p|, but |qj+1| > |p|. However, it follows from
Lemma 2 (when ft > 1) and the fact that we add a single letter to qj (when
ft = 1) that p must be at least as large as qj+1, a contradiction. 	

The following lemma shows that we can charge the logarithmic factors,
incurred in each iteration j, to the work that would have been required to find
the letters introduced in qj+1. This establishes the amortization in query com-
plexity.

Lemma 5. � The number of queries performed in the jth iteration is at most
σ(|qj+1| − |qj |) + O(σ), for j < m, or O(σ + lg n), for j = m.

Theorem 2 follows from Lemmas 3 to 5. A detailed proof can be found in the
full version of the paper [5].

162 R. Afshar et al.

2.3 Corrupted Periodic Strings

Let us assume throughout the remainder of this section that S is a d-corrupted
periodic string of approximate period p. Again, the main idea of the algorithm
described in this section consists of: (1) determining a cyclic rotation of a true
period (in this case, there might be multiple true periods), by iteratively growing
a candidate period q, and (2) using q to recover S accordingly. However, in the
presence of errors, each of these steps becomes more difficult to realize efficiently.
For example, in the first step, we might be growing a candidate period q that
includes an error. So, in order to rightfully reject the hypothesis that q is at
most as large as some approximate period p, our algorithm should be able to
tell the difference between (i) |p| = |q| and q includes an error and (ii) |p| > |q|.
Otherwise, the algorithm will keep on growing q until it is equal to S, possibly
incurring σn queries. In addition, the second step of using q to determine S
requires more work, since the presence of errors discards the possibility of simply
concatenating q with itself the required number of times. Because of these issues,
it is crucial that our algorithm understands when a candidate period is or not
free of errors. Thus, the algorithm relies on the following.

Lemma 6. Let A be any length-(2d + 1)|p| substring of a d-corrupted periodic
string S of approximate period p, corresponding to the concatenation of length-
|p| substrings q1, q2, . . . , q2d+1. Then, a cyclic rotation of p must be the only
substring qj appearing at least d + 1 times in q1, q2, . . . , q2d+1.

Proof. Clearly, there is some qi that is a cyclic rotation of p. Moreover, there is
some qj that appears at least d + 1 times in q1, q2, . . . , q2d+1, or the number of
errors would exceed d, by the pigeonhole principle. If i �= j, then each occurrence
of qj , contributes at least 1 error, resulting in at least d+1 errors, a contradiction.
Finally, qj must be the only string with d + 1 appearances in q1, q2, . . . , q2d+1,
by the pigeonhole principle. 	

Let us give the details for our algorithm5, which is able to recover S, even
when its size n is unknown. We maintain an initially empty substring, A, of S, by
extending it with 2d + 1 letters in each iteration, using the append and prepend
primitives (as described in Sect. 2.1), potentially incurring an extra σ queries for
detecting a left or right endpoint of S. In the case that n = |S| < |p|(2d+1), the
last iteration requires only min(2d + 1, |S| − |A|) new letters. Thus, after adding
letters to A in the ith iteration, A is a substring of S of size at most i(2d + 1).
Before advancing to the next iteration, we determine the only possible length-
i candidate period q that could have originated A with at most d errors (by
Lemma 6). At this point we do not know if some approximate period p has size
|p| = i, so we try to use q to recover the rest of the string, halting whenever the
total number of errors exceeds d, in which case we advance to the next iteration
and repeat this process for a new candidate period of size i + 1. This logic is in

5 Pseudo-code can be found in the full version of the paper [5], where the number of
queries is also shown for each step involving queries.

Adaptive Exact Learning in a Mixed-Up World 163

the subroutine Expand(q), described next(See footnote 5). It initializes a string
T to q and expands it by doing the following at each iteration:

1. Appending to T the largest periodic substring of period −→q , where −→q is the
appropriate cyclic rotation of q that aligns with the right-endpoint of T .
This can be done efficiently by determining the maximum value of x, using a
doubling search, for which

IsSubstr(T · (−→q ∞[.. x])),

incurring 2�lg x� + 1 queries. The cyclic rotation −→q can be determined with
no additional queries, by maintaining the value x′, which is the value of x in
the previous iteration, i.e. −→q is the cyclic rotation of q starting at the index
(x′ mod |q| + 2) of q.

2. Prepending to T the largest periodic substring of period ←−q , where ←−q is
the appropriate cyclic rotation of q that aligns with the left-endpoint of T .
This can be done efficiently by determining the maximum value of y, using a
doubling search, for which

IsSubstr(((←−q R)∞[.. y])R · T),

incurring 2�lg y� + 1 queries. The cyclic rotation ←−q can be determined with
no additional queries in a similar fashion to −→q .

3. Determining, if they exist, the letters immediately to the left and to the right
of T , using 2σ queries, and adding them to T .

The expansion process in Expand(q) halts when either the total number of
errors with respect to q, δ(T, q∞[..|T |]), exceeds d (in which case we advance to
the next iteration), or when T = S (in which case we return T).

Remark 1. Expand(q) successfully returns S if and only if q is a cyclic rotation
of some approximate period.

Lemma 7. The number of queries performed during any call to Expand is
O(dσ + d lg n

d+1).

Proof. Each call to Expand uses at most 2(d + 1)σ queries to determine the
corrupted letters, as well as the left/right endpoints of S – the total number of
iterations of the while loop in Expand is d + 1, since every iteration except the
last introduces at least 2 errors in T , and each iteration incurs 2σ queries.

In addition, the number of queries used by Expand(q) during the doubling
searches is

|q|∑
j=1

(2�lg xj� + 2�lg yj� + 2) ,

where xj and yj denote, respectively, the lengths of the substrings determined
via doubling searches in steps 1 and 2, during the jth call to Expand. Since the

164 R. Afshar et al.

total number of iterations is d + 1, there is at most d + 2 such xj ’s and yj ’s.
Moreover, the above summation is maximized when all the xj ’s and yj ’s have
the same average value of at most (n − d)/(d + 1). This follows from Jensen’s
inequality and concavity of log. Thus, the overall time complexity is

O

(
dσ + d lg

n

d + 1

)
.

	

Correctness and query complexity of our algorithm follows from Remark 1

and Lemmas 6 and 7, giving us:

Theorem 6. � We can reconstruct a length-n d-corrupted periodic string S
using O(dσ|p| + d|p| lg n

d+1) queries, for known d, unknown |p|, regardless of
whether we know n, where p is a smallest approximate period of S.

If n is known, we could save the queries used to check the left and right
endpoints of S, but this does not alter the query complexity asymptotically.

We assume a small enough number of errors, following [6]. In particular, if
d = O(k/(1 + lg n)), our algorithm is an improvement to the O(σn) letter-
by-letter algorithm of Skiena and Sundaram [73] for general strings, where
k = �n/|p|�. Thus, our algorithm performs better if there is, on average, at
most 1 error in every other O(1 + lg n)th non-overlapping occurrence of p. If the
number of errors is not small enough, then one should run the letter-by-letter
algorithm intercalated with ours, to get an upper bound of O(σn) queries, giving
us Theorem 1, introduced at the beginning of this section.

3 Subsequence Queries

We study the query complexity for a length-n string, S, subject to yes/no sub-
sequence queries, IsSubseq, i.e., queries of the form “Is X a subsequence of S?”
We begin with a simple lower bound.

Theorem 7. � Reconstructing a length-n periodic string, S = pkp′, of smallest
period p, requires at least |p| lg σ IsSubseq queries, even if n and |p| are known.

Let us next describe an algorithm for reconstructing a periodic length-n
periodic string, S = pkp′, of smallest period p. We begin by performing either
binary searches (if n is known) or doubling search (if n is unknown), using queries
of the form IsSubseq(ai) to determine the number of a’s in S, for each a ∈ Σ.
From all of these queries, we can determine the value of n if it was previously
unknown. This part of our algorithm requires either σ�lg n� or 2σ�lg n� queries
in total, depending on whether we knew n at the outset.

If the number of a’s in S is n, for any a ∈ Σ, then we are done, so let us
assume the number of a’s in S is less than n, for each a ∈ Σ. Thus, when we
complete all our doubling/binary searches, for each letter, a ∈ Σ that occurs

Adaptive Exact Learning in a Mixed-Up World 165

a nonzero number of times in S, we have a maximal subsequence, Sa, of S,
consisting of a’s. Moreover, since S is periodic with a period that repeats k
times, each Sa is periodic with a period that repeats k times. Unfortunately,
at this point in the algorithm, we may not be able to determine k. So next we
create a binary merge tree, T , with each of its leaves associated with a nonempty
subsequence, Sa, much in the style of the well-known merge-sort algorithm, so
that T has height �lg σ�. We then perform a bottom-up merge-like procedure in
T using IsSubseq queries, as follows.

Let v be an internal node in T , with children x and y for which we have
inductively determined periodic subsequences, Sx and Sy, respectively, of S. Let
nx = |Sx| and ny = |Sy|. To create the subsequence, Sv, for v, we need to
perform a merge procedure to interleave Sx and Sy. To do this, we maintain
indices i and j in Sx and Sy, respectively, such that we have already determined
an interleaving, Sv[..i + j], of Sx[..i] and Sy[..j]. Initially, i = j = 0. We then
perform the query IsSubseq(Sv[..i+j]·Sx[i+1]·Sy[j+1..ny]). Suppose the answer
to this query is “yes”. In this case, we set Sv[..i+j +1] = Sv[..i+j] ·Sx[i+1] and
we increment i. If, on the other hand, the answer to the above query is “no”,
then we set Sv[..i + j + 1] = Sv[..i + j] · Sy[j + 1], because in this case we know
that IsSubseq(Sv[..i+j] ·Sy[j +1] ·Sx[i+1..nx]) would return “yes”. If this latter
condition occurs, then we increment j.

Let qv denote this new interleaving prefix, Sv[..i + j], and let k̂ = �n/|qv|�.
If qv

k̂qv
′ is a plausible interleaving of Sx and Sy, where qv

′ is a prefix of qv,
then we next ask the query IsSubseq(qv

k̂qv
′). If the answer is “yes”, then we set

Sv = qv
k̂qv

′ and this completes the merge. Otherwise, we continue incrementally
interleaving Sx and Sy, using the current values of i and j, by iterating the
procedure described above. Clearly, this merge procedure asks at most 2|qv|
queries in total.

Theorem 8. � We can determine a length-n periodic string, S = pkp′, of small-
est period p of unknown size, using 2σ�lg n� + 2|p|�lg σ� IsSubseq queries, if n is
unknown. If n is known, then σ�lg n� + 2|p|�lg σ� IsSubseq queries suffice.

A simple modification of our algorithm also implies the following.

Theorem 9. � We can determine a length-n string, S, using 2σ�lg n�+n�lg σ�
IsSubseq queries, without knowing the value of n in advance. If n is known, then
σ�lg n� + n�lg σ� IsSubseq queries suffice.

This latter theorem improves a result of Skiena and Sundaram [73], who
prove a query bound of 2σ lg n + 1.59n lg σ + 5σ when n is unknown.

4 Jumbled-Index Queries

Jumbled-indexing involves preprocessing a given string, S, so as to determine
whether there exists a substring of S whose letter frequencies match the given
Parikh vector , i.e., a vector ψ = (f1, . . . , fσ) such that fi is the number of

166 R. Afshar et al.

occurrences in S of ai ∈ Σ, e.g., see [4,7,9,10,52,62]. In this section, we study
the query complexity for reconstructing an unknown length-n string, S, using
jumbled-index queries. As observed by Acharya et al. [1,2], strings and their
reversals have the same “composition multiset”. This immediately implies the
following negative result.

Lemma 8. � If S is not a palindrome, then S cannot be reconstructed by yes/no
jumbled-index queries, which return whether there is a substring in S with a given
Parikh vector.

Given that simple yes/no jumbled-index queries are not sufficient for string
reconstruction, let us consider an extended type of yes/no jumbled-index query.

– Jumbled-Indexing with End-of-string symbol “$” (JIE): given an
extended Parikh vector, ψ = (f1, . . . , fσ, f$), for the letters in Σ and an end-
of-string symbol, $, which is not in Σ, this query returns a yes/no response
as to whether there is a substring of S$ with extended Parikh vector ψ.

Unlike the yes/no jumbled-index queries, this variant enables full reconstruction.

Theorem 10. We can reconstruct a length-n string, S, using (σ − 1)n JIE
queries, if n is known, or σ(n + 1) JIE queries, if n is unknown.

Proof. Our method is to use a letter-by-letter reconstruction algorithm via an
adaption of the prepend-a-letter primitive for substring queries. Suppose n is
unknown. Let ψ be an extended Parikh vector for a known suffix, s, of S$;
initially, ψ = (0, 0, . . . , 0, 1) and s = $. Then we perform a jumbled-index query
for ψi, for each ai ∈ Σ, where ψi = ψ except that ψi adds 1 to the fi value
in ψ. If one of these, say, ψi, returns “yes”, then we prepend ai to our known
suffix and we repeat this procedure using ψi for ψ. If all of these queries return
“no”, then we are done. If n is known, on the other hand, then we can skip this
last test of all-no responses and we can also save at least one query with each
iteration, with the algorithm otherwise being the same. 	

We can also consider jumbled-index queries that return an index of a match-
ing substring for a given Parikh vector, if such a substring exists. Though related,
notice that this type of query is not subsumed by the query studied in Acharya
et al. [1,2], which returns the number of occurrences (instead of position) of
matching substrings in S. There is some ambiguity, however, if there is more
than one matching substring; hence, we should consider how to handle such
multiple matches. For example, if a jumbled-index query returns the indices of
all matching substrings, then σ queries are clearly sufficient to reconstruct any
length-n string, for any n, without knowing the value of n in advance. Thus, let
us consider two more-interesting types of jumbled-index queries.

– Adversarial Jumbled-Indexing (AJI): given a Parikh vector, ψ =
(f1, . . . , fσ), this query returns, in an adversarial manner, one of the starting
indices of a matching substring, if such a string exists. If there is no matching
substring, this query returns False.

Adaptive Exact Learning in a Mixed-Up World 167

– Random Jumbled-Indexing (RJI): given a Parikh vector, ψ = (f1, . . . , fσ),
this query returns, uniformly at random, one of the indices of a substring with
Parikh vector ψ if such a substring exists in S. If there is no such substring,
this query returns False.

Unfortunately, for the AJI variant, there are some strings that cannot be fully
reconstructed, but this is admittedly not obvious. In fact, the unreconstructabil-
ity characterization of [1,2] fails for AJI queries, because the symmetry property
used in their construction of pairwise “equicomposable” strings inherently yields
matching substrings with symmetric (e.g. different) positions in S.

Nevertheless, we give a construction of an infinite family of pairwise undis-
tinguishable strings, i.e. two strings such that, for every possible query, there
exists an answer (positive or negative) that is common to both strings. Clearly,
the adversarial strategy is to output these common answers when given either
of these strings. In particular, for all b ≥ 1, consider the two binary strings of
length 4b + 14 given below, which differ only in the middle section, consisting of
01 in the first string and 10 in the second:

S1 = 101101(10)b01(10)b010010

S2 = 101101(10)b10(10)b010010

Theorem 11. � The strings S1 and S2 cannot be distinguished using AJI
queries, for b ≥ 1.

In contrast, the query variant RJI can be used to reconstruct any length-n
string, S, without knowing the value of n in advance. In particular, it is possible
to reconstruct any length-n string, S, using O(σ +n log n) RJI queries with high
probability. Our algorithm for doing this involves a reduction to a multi-window
coupon-collector problem.

Let ψi be a Parikh vector that is all 0’s except for a count of 1 for the letter
ai ∈ Σ. Note that an RJI query using ψi will return one of the ni locations in S
with an ai uniformly at random (if ni > 0). If ni = 0, for any i = 1, 2, . . . , σ, we
learn this fact immediately after one RJI query for ψi, so let us assume, w.l.o.g.,
that ni > 0, for all i = 1, 2, . . . , σ, after performing an initial σ number of RJI
queries.

Recall that in the coupon-collector problem, a collector visits a coupon
window each day and requests a coupon from an agent, who chooses one of n
coupons uniformly at random and gives it to the collector, e.g., see [61]. The
expected number of days required for the collector to get al.l n coupons is nHn,
where Hn is the nth Harmonic number. But this assumes the collector knows
when they have received all n coupons (i.e., the collector knows the value of n).

In a coupon-collector formulation of our reconstruction problem, we instead
have σ coupon windows, one for each letter ai ∈ Σ, where each window i has
ni coupons that differ from the coupons for the other windows, and we do not
know the value of any ni. Each day the collector must choose one of the coupon

168 R. Afshar et al.

windows, i, and request one of its coupons (corresponding to an RJI query
for ψi), which is chosen uniformly at random from the ni coupons for window
i. We are interested in a strategy and analysis for the collector to collect all
n = n1 + n2 + · · · + nσ coupons, with high probability (i.e., with probability at
least 1 − 1/n).

Note that although we do not know the value of any ni, we can nonetheless
test whether the collector has collected all n coupons. In particular, suppose we
have received RJI responses for all indices, 1, 2, . . . , n, for letters in S, and let
ni be the number of ai’s we have found so far. Let ψ′ = (n1, n2, . . . , nσ), and let
ψ′

i be equal to ψ′ except that we increment ni by 1. If an RJI query for each ψ′
i

returns False, then we know we have fully reconstructed S. Thus, if n = 1, then
we can determine this and S after 2σ RJI queries, so let us assume that n ≥ 2.
Further, we can assume we have a bound, N ≥ 2, which is at least n and at
most twice n, by a simple doubling strategy, where we double N any time a test
for n fails and we set N equal to any RJI query response that is larger than N .
Therefore, the remaining problem is to solve the multi-window coupon-collector
problem.

Our strategy for the multi-window coupon-collector problem is simply to visit
the coupon windows in phases, so that in phase i we repeatedly visit window i
until we are confident we have all of its ni coupons, for which the following
lemma will prove useful.

Lemma 9. � Let Ti be the number of trips to window i needed to collect all its
ni ≥ 1 coupons. Then, for any real number β:

Pr (Ti > βni ln N) ≤ ni

Nβ
.

Our strategy, then, is to let β ≥ 2 be constant, and in phase i, implement a
doubling strategy where we perform βNi log N RJI queries for ψi, such that Ni

is an upper bound estimate for ni, which we double each time we get more than
Ni distinct responses to our queries in this phase. So by the end of the phase i,
ni ≤ Ni ≤ 2ni. This gives us:

Theorem 12. � A string, S, of unknown size, n, can be reconstructed using
O(σ + n log n) RJI queries, with high probability.

5 Conclusion and Open Questions

We have studied the reconstruction of strings under the following settings, by
giving efficient reconstruction algorithms and proving lower bounds: (i) periodic
strings of known and unknown sizes, with and without mismatch errors, using
substring queries; (ii) periodic strings of known and unknown sizes, using sub-
sequence queries and (iii) general strings, using variations of jumbled-indexing
queries. For the non-optimal algorithms given here, it would be nice to know
whether there exist matching lower bounds, or whether there exist faster algo-
rithms. We mention additional possible future work in the full version of the
paper [5].

Adaptive Exact Learning in a Mixed-Up World 169

Acknowledgments. This research was funded in part by the U.S. National Science
Foundation under grant 1815073. Amihood Amir was partly supported by BSF grant
2018141 and ISF grant 1475-18.

References

1. Acharya, J., Das, H., Milenkovic, O., Orlitsky, A., Pan, S.: Quadratic-backtracking
algorithm for string reconstruction from substring compositions. In: 2014 IEEE
International Symposium on Information Theory, Honolulu, HI, USA, 29 June–
4 July 2014, pp. 1296–1300. IEEE (2014). https://doi.org/10.1109/ISIT.2014.
6875042

2. Acharya, J., Das, H., Milenkovic, O., Orlitsky, A., Pan, S.: String reconstruction
from substring compositions. SIAM J. Discrete Math. 29(3), 1340–1371 (2015).
https://doi.org/10.1137/140962486

3. Afshani, P., Agrawal, M., Doerr, B., Doerr, C., Larsen, K.G., Mehlhorn, K.: The
query complexity of finding a hidden permutation. In: Brodnik, A., López-Ortiz,
A., Raman, V., Viola, A. (eds.) Space-Efficient Data Structures, Streams, and
Algorithms. LNCS, vol. 8066, pp. 1–11. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40273-9 1

4. Afshani, P., van Duijn, I., Killmann, R., Nielsen, J.S.: A lower bound for jumbled
indexing. In: 2020 ACM-SIAM Symposium on Discrete Algorithms (SODA), pp.
592–606 (2020). https://doi.org/10.1137/1.9781611975994.36

5. Afshar, R., Amir, A., Goodrich, M.T., Matias, P.: Adaptive exact learning in
a mixed-up world: dealing with periodicity errors, and jumbled-index queries in
string reconstruction. arXiv preprint arXiv:2007.08787 (2029). https://arxiv.org/
abs/2007.08787

6. Amir, A., Eisenberg, E., Levy, A., Porat, E., Shapira, N.: Cycle detection and
correction. ACM Trans. Alg. 9(1) (2012). Article no. 13

7. Amir, A., Apostolico, A., Hirst, T., Landau, G.M., Lewenstein, N., Rozenberg, L.:
Algorithms for jumbled indexing, jumbled border and jumbled square on run-length
encoded strings. Theor. Comput. Sci. 656, 146–159 (2016). https://doi.org/10.
1016/j.tcs.2016.04.030. http://www.sciencedirect.com/science/article/pii/S030439
751630069X

8. Amir, A., et al.: Pattern matching with address errors: rearrangement distances.
J. Comput. Syst. Sci. 75(6), 359–370 (2009). https://doi.org/10.1016/j.jcss.2009.
03.001

9. Amir, A., Butman, A., Porat, E.: On the relationship between histogram
indexing and block-mass indexing. Philos. Trans. Roy. Soc. Math. Phys.
Eng. Sci. 372(2016) (2014). https://doi.org/10.1098/rsta.2013.0132. https://
royalsocietypublishing.org/doi/abs/10.1098/rsta.2013.0132

10. Amir, A., Chan, T.M., Lewenstein, M., Lewenstein, N.: On hardness of jumbled
indexing. In: Esparza, J., Fraigniaud, P., Husfeldt, T., Koutsoupias, E. (eds.)
ICALP 2014. LNCS, vol. 8572, pp. 114–125. Springer, Heidelberg (2014). https://
doi.org/10.1007/978-3-662-43948-7 10

11. Amir, A., Hartman, T., Kapah, O., Levy, A., Porat, E.: On the cost of interchange
rearrangement in strings. In: Arge, L., Hoffmann, M., Welzl, E. (eds.) ESA 2007.
LNCS, vol. 4698, pp. 99–110. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-75520-3 11

12. Angluin, D.: Queries and concept learning. Mach. Learn. 2(4), 319–342 (1988).
https://doi.org/10.1023/A:1022821128753

https://doi.org/10.1109/ISIT.2014.6875042
https://doi.org/10.1109/ISIT.2014.6875042
https://doi.org/10.1137/140962486
https://doi.org/10.1007/978-3-642-40273-9_1
https://doi.org/10.1007/978-3-642-40273-9_1
https://doi.org/10.1137/1.9781611975994.36
http://arxiv.org/abs/2007.08787
https://arxiv.org/abs/2007.08787
https://arxiv.org/abs/2007.08787
https://doi.org/10.1016/j.tcs.2016.04.030
https://doi.org/10.1016/j.tcs.2016.04.030
http://www.sciencedirect.com/science/article/pii/S030439751630069X
http://www.sciencedirect.com/science/article/pii/S030439751630069X
https://doi.org/10.1016/j.jcss.2009.03.001
https://doi.org/10.1016/j.jcss.2009.03.001
https://doi.org/10.1098/rsta.2013.0132
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2013.0132
https://royalsocietypublishing.org/doi/abs/10.1098/rsta.2013.0132
https://doi.org/10.1007/978-3-662-43948-7_10
https://doi.org/10.1007/978-3-662-43948-7_10
https://doi.org/10.1007/978-3-540-75520-3_11
https://doi.org/10.1007/978-3-540-75520-3_11
https://doi.org/10.1023/A:1022821128753

170 R. Afshar et al.

13. Arratia, R., Martin, D., Reinert, G., Waterman, M.S.: Poisson process approxima-
tion for sequence repeats and sequencing by hybridization. J. Comput. Biol. 3(3),
425–463 (1996). https://doi.org/10.1089/cmb.1996.3.425

14. Batu, T., Kannan, S., Khanna, S., McGregor, A.: Reconstructing strings from
random traces. In: Munro, J.I. (ed.) Proceedings of the Fifteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana,
USA, 11–14 January 2004, pp. 910–918. SIAM (2004). http://dl.acm.org/citation.
cfm?id=982792.982929

15. Benson, G.: Tandem repeats finder: a program to analyze DNA sequence. Nucleic
Acids Res. 27(2), 573–580 (1999)

16. Benson, G., Waterman, M.: A method for fast database search for all k-nucleotide
repeats. Nucleic Acids Res. 22, 4828–4836 (1994)

17. Bentley, J.L., Yao, A.C.: An almost optimal algorithm for unbounded search-
ing. Inf. Process. Lett. 5(3), 82–87 (1976). https://doi.org/10.1016/0020-
0190(76)90071-5

18. Bernasconi, A., Damm, C., Shparlinski, I.: Circuit and decision tree complexity of
some number theoretic problems. Inf. Comput. 168(2), 113–124 (2001). https://
doi.org/10.1006/inco.2000.3017. http://www.sciencedirect.com/science/article/pi
i/S0890540100930177

19. Bresler, G., Bresler, M., Tse, D.: Optimal assembly for high throughput shotgun
sequencing. BMC Bioinform. 14(2013). Article number. S18. https://doi.org/10.
1186/1471-2105-14-S5-S18

20. Burcsi, P., Cicalese, F., Fici, G., Lipták, Z.: Algorithms for jumbled pattern match-
ing in strings. Int. J. Found. Comput. Sci. 23(2), 357–374 (2012). https://doi.org/
10.1142/S0129054112400175

21. Butman, A., Eres, R., Landau, G.M.: Scaled and permuted string matching. Inf.
Process. Lett. 92(6), 293–297 (2004). https://doi.org/10.1016/j.ipl.2004.09.002

22. Carpi, A., de Luca, A.: Words and special factors. Theor. Comput. Sci. 259(1–2),
145–182 (2001). https://doi.org/10.1016/S0304-3975(99)00334-5

23. Cayley, A.: LXXVII. Note on the theory of permutations. Lond. Edinb. Dublin
Philos. Mag. J. Sci. 34(232), 527–529 (1849)

24. Chang, Z., Chrisnata, J., Ezerman, M.F., Kiah, H.M.: Rates of DNA sequence
profiles for practical values of read lengths. IEEE Trans. Inf. Theory 63(11), 7166–
7177 (2017). https://doi.org/10.1109/TIT.2017.2747557

25. Choi, S.S., Kim, J.H.: Optimal query complexity bounds for finding graphs.
Artif. Intell. 174(9), 551–569 (2010). https://doi.org/10.1016/j.artint.2010.02.003.
http://www.sciencedirect.com/science/article/pii/S0004370210000251

26. Cicalese, F., Fici, G., Lipták, Z.: Searching for jumbled patterns in strings. In:
Holub, J., Zdárek, J. (eds.) Proceedings of the Prague Stringology Conference
2009, Prague, Czech Republic, 31 August–2 September 2009, pp. 105–117. Prague
Stringology Club, Department of Computer Science and Engineering, Faculty of
Electrical Engineering, Czech Technical University in Prague (2009). http://www.
stringology.org/event/2009/p10.html

27. Cieplinski, L.: MPEG-7 color descriptors and their applications. In: Skarbek, W.
(ed.) CAIP 2001. LNCS, vol. 2124, pp. 11–20. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-44692-3 3

28. Cleve, R., et al.: Reconstructing strings from substrings with quantum queries. In:
Fomin, F.V., Kaski, P. (eds.) SWAT 2012. LNCS, vol. 7357, pp. 388–397. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-31155-0 34

29. Dakic, T.: On the turnpike problem. Simon Fraser University BC, Canada (2000)

https://doi.org/10.1089/cmb.1996.3.425
http://dl.acm.org/citation.cfm?id=982792.982929
http://dl.acm.org/citation.cfm?id=982792.982929
https://doi.org/10.1016/0020-0190(76)90071-5
https://doi.org/10.1016/0020-0190(76)90071-5
https://doi.org/10.1006/inco.2000.3017
https://doi.org/10.1006/inco.2000.3017
http://www.sciencedirect.com/science/article/pii/S0890540100930177
http://www.sciencedirect.com/science/article/pii/S0890540100930177
https://doi.org/10.1186/1471-2105-14-S5-S18
https://doi.org/10.1186/1471-2105-14-S5-S18
https://doi.org/10.1142/S0129054112400175
https://doi.org/10.1142/S0129054112400175
https://doi.org/10.1016/j.ipl.2004.09.002
https://doi.org/10.1016/S0304-3975(99)00334-5
https://doi.org/10.1109/TIT.2017.2747557
https://doi.org/10.1016/j.artint.2010.02.003
http://www.sciencedirect.com/science/article/pii/S0004370210000251
http://www.stringology.org/event/2009/p10.html
http://www.stringology.org/event/2009/p10.html
https://doi.org/10.1007/3-540-44692-3_3
https://doi.org/10.1007/3-540-44692-3_3
https://doi.org/10.1007/978-3-642-31155-0_34

Adaptive Exact Learning in a Mixed-Up World 171

30. Deininger, P.: SINEs: short interspersed repeated DNA elements in higher eukary-
otes. In: Berg, D., Howe, M. (eds.) Mobile DNA, Chap. 27, pp. 619–636. American
Society for Microbiology (1989)

31. Deselaers, T., Keysers, D., Ney, H.: Features for image retrieval: an experimental
comparison. Inf. Retrieval 11(2), 77–107 (2008). https://doi.org/10.1007/s10791-
007-9039-3

32. Dobzinski, S., Vondrak, J.: From query complexity to computational complexity.
In: Proceedings of the Forty-Fourth Annual ACM Symposium on Theory of Com-
puting, STOC 2012, pp. 1107–1116. ACM, New York (2012). https://doi.org/10.
1145/2213977.2214076

33. Domaniç, N.O., Preparata, F.P.: A novel approach to the detection of genomic
approximate tandem repeats in the levenshtein metric. J. Comput. Biol. 14(7),
873–891 (2007)

34. Dud́ık, M., Schulman, L.J.: Reconstruction from subsequences. J. Comb. Theory
Ser. A 103(2), 337–348 (2003). https://doi.org/10.1016/S0097-3165(03)00103-1

35. Dudley, J., Lin, M.T., Le, D., Eshleman, J.R.: Microsatellite instability as a
biomarker for PD-1 blockade. Clin. Cancer Res. 22(4), 813–820 (2016)

36. Elishco, O., Gabrys, R., Médard, M., Yaakobi, E.: Repeat-free codes. In: IEEE
International Symposium on Information Theory, ISIT 2019, Paris, France, 7–12
July 2019, pp. 932–936. IEEE (2019). https://doi.org/10.1109/ISIT.2019.8849483

37. Eres, R., Landau, G.M., Parida, L.: Permutation pattern discovery in biosequences.
J. Comput. Biol. 11(6), 1050–1060 (2004). https://doi.org/10.1089/cmb.2004.11.
1050

38. Fici, G., Mignosi, F., Restivo, A., Sciortino, M.: Word assembly through minimal
forbidden words. Theor. Comput. Sci. 359(1–3), 214–230 (2006). https://doi.org/
10.1016/j.tcs.2006.03.006

39. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math.
Soc. 16(1), 109–114 (1965)

40. Gabrys, R., Milenkovic, O.: The hybrid k-Deck problem: reconstructing sequences
from short and long traces. In: 2017 IEEE International Symposium on Information
Theory, ISIT 2017, Aachen, Germany, 25–30 June 2017, pp. 1306–1310. IEEE
(2017). https://doi.org/10.1109/ISIT.2017.8006740

41. Gabrys, R., Milenkovic, O.: Unique reconstruction of coded sequences from multiset
substring spectra. In: 2018 IEEE International Symposium on Information Theory,
ISIT 2018, Vail, CO, USA, 17–22 June 2018, pp. 2540–2544. IEEE (2018). https://
doi.org/10.1109/ISIT.2018.8437909

42. Ganguly, S., Mossel, E., Rácz, M.Z.: Sequence assembly from corrupted shot-
gun reads. In: IEEE International Symposium on Information Theory, ISIT 2016,
Barcelona, Spain, 10–15 July 2016, pp. 265–269. IEEE (2016). https://doi.org/10.
1109/ISIT.2016.7541302

43. Holenstein, T., Mitzenmacher, M., Panigrahy, R., Wieder, U.: Trace reconstruction
with constant deletion probability and related results. In: Teng, S. (ed.) Proceed-
ings of the Nineteenth Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2008, San Francisco, California, USA, 20–22 January 2008, pp. 389–398.
SIAM (2008). http://dl.acm.org/citation.cfm?id=1347082.1347125

44. Iwama, K., Teruyama, J., Tsuyama, S.: Reconstructing strings from substrings:
optimal randomized and average-case algorithms (2018)

45. Jeong, K., Bandeira, N., Kim, S., Pevzner, P.A.: Gapped spectral dictionaries and
their applications for database searches of tandem mass spectra. Mol Cell Pro-
teomics (2011). https://doi.org/10.1074/mcp.M110.002220

https://doi.org/10.1007/s10791-007-9039-3
https://doi.org/10.1007/s10791-007-9039-3
https://doi.org/10.1145/2213977.2214076
https://doi.org/10.1145/2213977.2214076
https://doi.org/10.1016/S0097-3165(03)00103-1
https://doi.org/10.1109/ISIT.2019.8849483
https://doi.org/10.1089/cmb.2004.11.1050
https://doi.org/10.1089/cmb.2004.11.1050
https://doi.org/10.1016/j.tcs.2006.03.006
https://doi.org/10.1016/j.tcs.2006.03.006
https://doi.org/10.1109/ISIT.2017.8006740
https://doi.org/10.1109/ISIT.2018.8437909
https://doi.org/10.1109/ISIT.2018.8437909
https://doi.org/10.1109/ISIT.2016.7541302
https://doi.org/10.1109/ISIT.2016.7541302
http://dl.acm.org/citation.cfm?id=1347082.1347125
https://doi.org/10.1074/mcp.M110.002220

172 R. Afshar et al.

46. Jerrum, M.: The complexity of finding minimum-length generator sequences.
Theor. Comput. Sci. 36, 265–289 (1985). https://doi.org/10.1016/0304-
3975(85)90047-7

47. Kalashnik, L.: The reconstruction of a word from fragments. In: Numerical Math-
ematics and Computer Technology, pp. 56–57 (1973)

48. Kannan, S., McGregor, A.: More on reconstructing strings from random traces:
insertions and deletions. In: Proceedings of the 2005 IEEE International Sympo-
sium on Information Theory, ISIT 2005, Adelaide, South Australia, Australia, 4–9
September 2005, pp. 297–301. IEEE (2005). https://doi.org/10.1109/ISIT.2005.
1523342

49. Kiah, H.M., Puleo, G.J., Milenkovic, O.: Codes for DNA sequence profiles. IEEE
Trans. Inf. Theory 62(6), 3125–3146 (2016). https://doi.org/10.1109/TIT.2016.
2555321

50. Kim, S., Bandeira, N., Pevzner, P.A.: Spectral profiles: a novel representation of
tandem mass spectra and its applications for de novo peptide sequencing and
identification. Mol. Cell. Proteomics 8, 1391–1400 (2009)

51. Kim, S., Gupta, N., Bandeira, N., Pevzner, P.A.: Spectral dictionaries: integrating
de novo peptide sequencing with database search of tandem mass spectra. Mol.
Cell. Proteomics 8(1), 53–69 (2009)

52. Kociumaka, T., Radoszewski, J., Rytter, W.: Efficient indexes for jumbled pattern
matching with constant-sized alphabet. In: Bodlaender, H.L., Italiano, G.F. (eds.)
ESA 2013. LNCS, vol. 8125, pp. 625–636. Springer, Heidelberg (2013). https://doi.
org/10.1007/978-3-642-40450-4 53

53. Kolpakov, R., Kucherov, G.: mreps: efficient and flexible detection of
tandem repeats in DNA. Nucleic Acids Res. 31, 3672–3678 (2003).
http://www.loria.fr/mreps/

54. Krasikov, I., Roditty, Y.: On a reconstruction problem for sequences. J. Comb.
Theory Ser. A 77(2), 344–348 (1997). https://doi.org/10.1006/jcta.1997.2732

55. Levenshtein, V.I.: Binary codes capable of correcting, deletions, insertions and
reversals. Soviet Phys. Dokl. 10, 707–710 (1966)

56. Levenshtein, V.I.: Efficient reconstruction of sequences. IEEE Trans. Inf. Theory
47(1), 2–22 (2001). https://doi.org/10.1109/18.904499

57. Lowrance, R., Wagner, R.A.: An extension of the string-to-string correction prob-
lem. J. ACM 22(2), 177–183 (1975). https://doi.org/10.1145/321879.321880

58. Manvel, B., Meyerowitz, A., Schwenk, A.J., Smith, K., Stockmeyer, P.K.: Recon-
struction of sequences. Discrete Math. 94(3), 209–219 (1991). https://doi.org/10.
1016/0012-365X(91)90026-X

59. Marcovich, S., Yaakobi, E.: Reconstruction of strings from their substrings spec-
trum. CoRR abs/1912.11108 (2019). http://arxiv.org/abs/1912.11108

60. Margaritis, D., Skiena, S.S.: Reconstructing strings from substrings in rounds. In:
IEEE 36th Symposium on Foundations of Computer Science (FOCS), pp. 613–620,
October 1995. https://doi.org/10.1109/SFCS.1995.492591

61. Mitzenmacher, M., Upfal, E.: Probability and Computing: Randomized Algo-
rithms and Probabilistic Analysis, 2nd edn. Cambridge University Press, Cam-
bridge (2017)

62. Moosa, T.M., Rahman, M.S.: Indexing permutations for binary strings. Inf.
Process. Lett. 110(18), 795–798 (2010). https://doi.org/10.1016/j.ipl.2010.06.012.
http://www.sciencedirect.com/science/article/pii/S0020019010002012

63. Motahari, A.S., Bresler, G., Tse, D.N.C.: Information theory of DNA shotgun
sequencing. IEEE Trans. Inf. Theory 59(10), 6273–6289 (2013). https://doi.org/
10.1109/TIT.2013.2270273

https://doi.org/10.1016/0304-3975(85)90047-7
https://doi.org/10.1016/0304-3975(85)90047-7
https://doi.org/10.1109/ISIT.2005.1523342
https://doi.org/10.1109/ISIT.2005.1523342
https://doi.org/10.1109/TIT.2016.2555321
https://doi.org/10.1109/TIT.2016.2555321
https://doi.org/10.1007/978-3-642-40450-4_53
https://doi.org/10.1007/978-3-642-40450-4_53
http://www.loria.fr/mreps/
https://doi.org/10.1006/jcta.1997.2732
https://doi.org/10.1109/18.904499
https://doi.org/10.1145/321879.321880
https://doi.org/10.1016/0012-365X(91)90026-X
https://doi.org/10.1016/0012-365X(91)90026-X
http://arxiv.org/abs/1912.11108
https://doi.org/10.1109/SFCS.1995.492591
https://doi.org/10.1016/j.ipl.2010.06.012
http://www.sciencedirect.com/science/article/pii/S0020019010002012
https://doi.org/10.1109/TIT.2013.2270273
https://doi.org/10.1109/TIT.2013.2270273

Adaptive Exact Learning in a Mixed-Up World 173

64. Motahari, A.S., Ramchandran, K., Tse, D., Ma, N.: Optimal DNA shotgun
sequencing: noisy reads are as good as noiseless reads. In: Proceedings of the 2013
IEEE International Symposium on Information Theory, Istanbul, Turkey, 7–12 July
2013, pp. 1640–1644. IEEE (2013). https://doi.org/10.1109/ISIT.2013.6620505

65. Parisi, V., Fonzo, V.D., Aluffi-Pentini, F.: STRING: finding tandem repeats in
DNA sequences. Bioinformatics 19(14), 1733–1738 (2003)

66. Pellegrini, M., Renda, M.E., Vecchio, A.: TRStalker: an efficient heuristic for find-
ing fuzzy tandem repeats. Bioinformatics [ISMB] 26(12), 358–366 (2010)

67. Sala, F., Gabrys, R., Schoeny, C., Mazooji, K., Dolecek, L.: Exact sequence recon-
struction for insertion-correcting codes. In: IEEE International Symposium on
Information Theory, ISIT 2016, Barcelona, Spain, 10–15 July 2016, pp. 615–619.
IEEE (2016). https://doi.org/10.1109/ISIT.2016.7541372

68. Scott, A.D.: Reconstructing sequences. Discrete Math. 175(1–3), 231–238 (1997).
https://doi.org/10.1016/S0012-365X(96)00153-7

69. Shomorony, I., Courtade, T.A., Tse, D.N.C.: Do read errors matter for genome
assembly? In: IEEE International Symposium on Information Theory, ISIT 2015,
Hong Kong, China, 14–19 June 2015, pp. 919–923. IEEE (2015). https://doi.org/
10.1109/ISIT.2015.7282589

70. Shomorony, I., Kamath, G.M., Xia, F., Courtade, T.A., Tse, D.N.C.: Partial DNA
assembly: a rate-distortion perspective. In: IEEE International Symposium on
Information Theory, ISIT 2016, Barcelona, Spain, 10–15 July 2016, pp. 1799–1803.
IEEE (2016). https://doi.org/10.1109/ISIT.2016.7541609

71. Simon, I.: Piecewise testable events. In: Brakhage, H. (ed.) GI-Fachtagung 1975.
LNCS, vol. 33, pp. 214–222. Springer, Heidelberg (1975). https://doi.org/10.1007/
3-540-07407-4 23

72. Skiena, S., Smith, W.D., Lemke, P.: Reconstructing sets from interpoint distances
(extended abstract). In: Seidel, R. (ed.) Proceedings of the Sixth Annual Sympo-
sium on Computational Geometry, Berkeley, CA, USA, 6–8 June 1990, pp. 332–339.
ACM (1990). https://doi.org/10.1145/98524.98598

73. Skiena, S., Sundaram, G.: Reconstructing strings from substrings. J. Comput. Biol.
2(2), 333–353 (1995). https://doi.org/10.1089/cmb.1995.2.333

74. Sokol, D.: TRedD - a database for tandem repeats over the edit distance.
Database J. Biol. Databases Curation 2010(baq003) (2010). https://doi.org/10.
1093/database/baq003

75. Tan, K., Ooi, B.C., Yee, C.Y.: An evaluation of color-spatial retrieval techniques
for large image databases. Multimed. Tools Appl. 14(1), 55–78 (2001). https://
doi.org/10.1023/A:1011359607594

76. Tardos, G.: Query complexity, or why is it difficult to separate NPA ∩ coNPA

from PA by random oracles A? Combinatorica 9(4), 385–392 (1989). https://doi.
org/10.1007/BF02125350

77. Tsur, D.: Tight bounds for string reconstruction using substring queries. In:
Chekuri, C., Jansen, K., Rolim, J.D.P., Trevisan, L. (eds.) APPROX/RANDOM
-2005. LNCS, vol. 3624, pp. 448–459. Springer, Heidelberg (2005). https://doi.org/
10.1007/11538462 38

78. Ukkonen, E.: Approximate string matching with q-grams and maximal matches.
Theor. Comput. Sci. 92(1), 191–211 (1992). https://doi.org/10.1016/0304-
3975(92)90143-4

79. Viswanathan, K., Swaminathan, R.: Improved string reconstruction over insertion-
deletion channels. In: Teng, S. (ed.) Proceedings of the Nineteenth Annual ACM-
SIAM Symposium on Discrete Algorithms, SODA 2008, San Francisco, California,

https://doi.org/10.1109/ISIT.2013.6620505
https://doi.org/10.1109/ISIT.2016.7541372
https://doi.org/10.1016/S0012-365X(96)00153-7
https://doi.org/10.1109/ISIT.2015.7282589
https://doi.org/10.1109/ISIT.2015.7282589
https://doi.org/10.1109/ISIT.2016.7541609
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1007/3-540-07407-4_23
https://doi.org/10.1145/98524.98598
https://doi.org/10.1089/cmb.1995.2.333
https://doi.org/10.1093/database/baq003
https://doi.org/10.1093/database/baq003
https://doi.org/10.1023/A:1011359607594
https://doi.org/10.1023/A:1011359607594
https://doi.org/10.1007/BF02125350
https://doi.org/10.1007/BF02125350
https://doi.org/10.1007/11538462_38
https://doi.org/10.1007/11538462_38
https://doi.org/10.1016/0304-3975(92)90143-4
https://doi.org/10.1016/0304-3975(92)90143-4

174 R. Afshar et al.

USA, 20–22 January 2008, pp. 399–408. SIAM (2008). http://dl.acm.org/citation.
cfm?id=1347082.1347126

80. Wagner, R.A.: On the complexity of the extended string-to-string correction prob-
lem. In: Rounds, W.C., Martin, N., Carlyle, J.W., Harrison, M.A. (eds.) Proceed-
ings of the 7th Annual ACM Symposium on Theory of Computing, Albuquerque,
New Mexico, USA, 5–7 May 1975, pp. 218–223. ACM (1975). https://doi.org/10.
1145/800116.803771

81. Wang, J., Hua, X.: Interactive image search by color map. ACM Trans. Intell. Syst.
Technol. 3(1), 12:1–12:23 (2011)

82. Wexler, Y., Yakhini, Z., Kashi, Y., Geiger, D.: Finding approximate tandem repeats
in genomic sequences. In: RECOMB, pp. 223–232 (2004)

83. Yao, A.C.C.: Decision tree complexity and Betti numbers. In: Proceedings of the
Twenty-Sixth Annual ACM Symposium on Theory of Computing, STOC 1994,
pp. 615–624. ACM, New York (1994). https://doi.org/10.1145/195058.195414

84. Zenkin, A., Leont’ev, V.K.: On a non-classical recognition problem. USSR Comput.
Math. Math. Phys. 24(3), 189–193 (1984)

85. Zhou, W., Li, H., Tian, Q.: Recent advance in content-based image retrieval: a
literature survey. CoRR abs/1706.06064 (2017). http://arxiv.org/abs/1706.06064

http://dl.acm.org/citation.cfm?id=1347082.1347126
http://dl.acm.org/citation.cfm?id=1347082.1347126
https://doi.org/10.1145/800116.803771
https://doi.org/10.1145/800116.803771
https://doi.org/10.1145/195058.195414
http://arxiv.org/abs/1706.06064

Information Retrieval

Pre-indexing Pruning Strategies

Soner Altin1(B) , Ricardo Baeza-Yates1,2 , and B. Barla Cambazoglu3

1 Web Science and Social Computing Research Group, DTIC, Universitat Pompeu
Fabra, Barcelona, Spain

sonersukru.altin01@estudiant.upf.edu
2 Khoury College of Computer Sciences, Northeastern University at Silicon Valley,

San Jose, USA
3 RMIT University, Melbourne, Australia

Abstract. We explore different techniques for pruning an inverted index
in advance, that is, without building the full index. These techniques pro-
vide interesting trade-offs between index size, answer quality and query
coverage. We experimentally analyze them in a large public web collec-
tion with two different query logs. The trade-offs that we find range from
an index of size 4% and 35% of precision@10 to an index of size 46% and
90% of precision@10, with respect to the full index case. In both cases we
cover almost 97% of the query volume. We also do a relative relevance
analysis with a smaller private web collection and query log, finding that
some of our techniques allow a reduction of almost 40% the index size
by losing less than 2% for NDCG@10.

Keywords: Web search · Inverted index · Index pruning · Search
efficiency

1 Introduction

Commercial web search engines evaluate queries by processing a very large
inverted index built using pages crawled from the Web. Storing and maintaining
such an index as well as providing low-latency query processing requires a large
amount of hardware investments. Therefore, performance optimization in the
context of web search engine indexes has been a very active research area in the
last couple of decades.

Among the possible optimizations, a relatively well studied one is static index
pruning. The main idea behind this optimization is to create a so-called pruned
inverted index which stores less information than the full web index while attain-
ing the search result quality obtained with a full index as much as possible. A
pruned index has lower space requirements and leads to faster query processing
since fewer postings are stored and processed. The main challenge is to pre-
vent degradation in search quality and query coverage due to the absence of
potentially useful indexed content in the pruned index.

All existing approaches so far assume the presence of a full web index to
facilitate the construction of the pruned index. That is, a pruned index is created
c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 177–193, 2020.
https://doi.org/10.1007/978-3-030-59212-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_13&domain=pdf
http://orcid.org/0000-0003-3896-6559
http://orcid.org/0000-0003-3208-9778
http://orcid.org/0000-0003-2192-3819
https://doi.org/10.1007/978-3-030-59212-7_13

178 S. Altin et al.

104 105 106 107
104

105

106

107

Unique Queries

U
R
L
s

Fig. 1. Relation between unique URLs and unique queries and the simple model found.

by removing postings from the inverted lists in the full web index, entirely or
selectively, by using statistical techniques, with the objective of maintaining the
search quality. In certain scenarios, however, the resource constraints are really
tight (e.g., a low-budget web search engine), and it may not be feasible to build
and/or store the full web index. Therefore, pruning decisions need to be made
without constructing a full web index first, perhaps even at crawling time to
reduce the storage requirements. Hence, how much we lose if we decide a priori
which documents or parts of them should be indexed?

Another motivation comes from [4], that studied the minimal set of URLs U
from a web inverted index that are needed to cover a maximal number of unique
queries. They consider that a query is covered if at least one clicked top-k result
for that query belongs to U (for k varying from 10 to 1,000). To find U they
only used queries with a minimal frequency ranging from 5 to 50 occurrences
and pairs (query, clicked result) that appeared at least 5 to 20 times in a period
ranging from one day to six months. This setup generated 91 different data sets
reaching up to 10 million queries and 50 million URLs. Using these data sets
characteristics we can find a simple model between the relation of unique queries
and unique clicked URLs given by U = 2.308 Q0.987 with R = 0.986 where U is
the number of unique URLs and Q is the number of unique queries (see Fig. 1).

Although the model is simple, the error is low, and says that U grows almost
linearly with Q, but for all practical purposes, always there are more URLs
than queries (e.g., for 1B unique queries we have 1.76B unique clicked URLs).
As unique long tail queries grow, this implies that the index grows even faster.
Hence, it makes sense to select documents that cover more queries than others,

Pre-indexing Pruning Strategies 179

because as query coverage follows a power law, with a small fraction of documents
we can cover an even larger fraction of queries. This is even more important in
the long tail as the coverage there is lower. Indeed, in [4] they found that 0.7% of
the web pages covered 25% of the queries. Although this result was for a static set
of queries, in [5] they found that the correlation of query terms for segments of
3 weeks across a period of 15 weeks was above 0.995. That is, query distribution
changes slowly in time. On the other hand, the former result can only be found
if the whole index is available. Hence, can a similar result be achieved without
having the full index?

Motivated by the aforementioned scenarios, here we design document prun-
ing strategies which do not require the presence of a full web index. That is, the
pruning decisions are made in a document-centric manner, i.e., the indexed con-
tent is determined as the documents flow in the ingestion pipeline (the sequence
of software modules that convert crawled documents to an indexable form). We
propose various heuristics to exclude documents’ content, partially or entirely,
from the index based on the size of the documents, their query-independent
summaries, and query terms statistics.

We perform experiments using a public web collection of 50M pages and
a private web collection of 18M pages as well as three different search query
logs, one public and two private. As main evaluation metrics, we report the
reduction attained in the index size, the loss in search quality with respect to a
search system relying on a full web index as well as the unique and overall query
coverage. To measure search quality we use precision@10 and NDCG@10 with
respect to the full index.

The obtained results are encouraging as the index size can be significantly
reduced without hurting the search quality too much and without having to
build the full index. The trade-offs that we find range from an index of size 4%
and 35% of precision@10 to an index of size 46% and 90% of precision@10, with
respect to the full index case. In both cases we cover 83% of all unique queries
and almost 97% of the query volume. In the case of NDCG@10, some techniques
loose less than 2% providing almost 40% reduction in the index size.

Summarizing, our contributions are two fold: (1) we introduce a new pruning
method based in summarization, which performs better than most traditional
pruning methods (detailed in Sect. 3.2); and (2) we perform a thorough experi-
mental comparison of all known pre-indexing pruning techniques.

The rest of the paper is organized as follows. Section 2 gives an overview of the
related work. The pruning heuristics are described in Sect. 3. The experimental
setup is explained in Sect. 4 while the results of the experiments are presented
in Sect. 5. Section 6 gives our conclusions and future work.

2 Related Work

Unlike this work, which assumes that the content of the documents are pruned
(partially or entirely) without constructing a full index, a number of works
in literature considered making the pruning decisions after constructing such

180 S. Altin et al.

an index. This line of research is known as static index pruning. The earliest
work belongs to Carmel et al. [12], who adopted a term pruning approach where
an inverted list is entirely removed from the full index if the score contribution of
the corresponding term is lower than a certain threshold. Three different strate-
gies are evaluated to determine the threshold: a uniform thresholding strategy
that applies to all list entries and two others, list-specific thresholding strategies.
De Moura et al. [14] argue that the techniques used by Carmel et al. [12] are
not very effective when queries are processed in conjunctive mode or contain
phrases. To alleviate this issue, they exploit the occurrence of terms in impor-
tant sentences in pages. A page entry is preserved in the pruned index only if
the respective term for the list appears in at least one of the important sen-
tences of the page. Büttcher et al. [10] use a language model to determine each
page’s most important terms and keep them in the pruned index. Blanco and
Barreiro [8] prune entire inverted lists based on the informativeness of their cor-
responding terms. Ntoulas et al. [17] evaluate three different approaches, where
pruned items are entire inverted lists, all inverted list entries belonging to a
page, or selected inverted list entries only. Some of those approaches provide
correctness guarantees, i.e., the search results obtained by evaluating the query
on the pruned index are identical to those that would be obtained from the full
index. Blanco and Barreiro [9] apply the probability ranking principle to static
index pruning. Thota et al. [21] exploit the entropy measure to come up with a
document-centric pruning approach. Altingovde et al. [1] make use of term and
page access statistics in query logs to guide the pruning process. In a relatively
recent study, Chen and Lee [13] argue that the earliest pruning approach, pro-
posed by Carmel et al. [12], is superior to other pruning approaches in web-scale
settings. Skobeltsyn et al. [20] investigate the interplay between search result
caching and static index pruning.

Apart from static index pruning, there are other architectural optimizations,
such as tiering [6,16,19] and selective search [3,15,18]. Another line of research
with a vast number of works includes dynamic index pruning, where the inverted
lists are pruned at query processing time. We do not cover them here as they
are orthogonal to static index pruning. A good survey of efficiency optimizations
related to search engines can be found in [11].

Other related problems include document selection in federated search and
other types of distributed search (see Chap. 10 of [7]).

3 Pruning Heuristics

Based on the granularity at which document content is pruned, we propose three
types of heuristics: document-, sentence, and term-level pruning. Document-level
pruning heuristics include or exclude the entire document without investigating
its constituting syntactical units. Sentence-level heuristics select a (potentially
empty) set of sentences to be pruned from the document content. Finally, term-
level heuristics deal with individual terms statistics taken from query logs or

Pre-indexing Pruning Strategies 181

consider removing/transforming specific sets of words, providing the finest gran-
ularity of pruning. All the strategies presented in this section are summarized in
Table 1.

3.1 Document-Level Pruning

Document Size. Very large documents may take too much space in the index.
Yet, their contribution to search quality is often not likely to be very different
from medium-size documents. Based on this idea, we exclude largest L% of doc-
uments in the collection from the index and we index the remaining documents.
The size of a document is determined based on the number of bytes in the textual
content that remains after removing the document’s boilerplate.

Set Cover. Documents vary in their likelihood of being a good match to a web
query. Also, indexing certain documents is relatively more important as they may
match many queries, while certain documents are relatively less important since
they are seldom queried. The set cover heuristic which was previously proposed
in [2] exploits this idea. Essentially, this heuristic tries to select a minimal subset
D of documents from a given collection such that the number of queries whose
ideal top k results (obtained using a full web index) contain at least one document
from D is maximized. In other words, this heuristic tries to minimize the number
of queries whose top-k results (obtained using a pruned index) do not contain
any ideal results. Once we find a set cover D, we index all documents in D.

Access-Based Document-Centric Pruning. Altingovde et al. [1] proposed an
access based pruning strategy to prune documents directly from the collection.
Documents with low access count are removed from the collection until a fraction
of pruned documents is reached.

3.2 Sentence-Level Pruning

Summarization. Certain sentences in a document are relatively more important
or represent the document better than the others. It may be more beneficial to
index such sentences as they are more likely to be of interest to users and match
their queries. To this end, we apply the Textteaser summarizer1 to the content
of documents to obtain the most important or representative S sentences and
then index only the terms occurring in those sentences. If the document contains
less than S sentences, we do not apply summarization, i.e., we index all of the
terms in the document.

3.3 Term-Level Pruning

Query Terms Popularity. It is usually important to index terms that often
appear in web queries. In this heuristic, we extract the set of terms occurring
in a web query log to obtain a representative set of such useful terms. When
processing documents, we index only the terms which appear in this set.
1 https://github.com/MojoJolo/textteaser.

https://github.com/MojoJolo/textteaser

182 S. Altin et al.

Table 1. Properties of the heuristics.

Uses training Uses training

Index Queries Documents Index Queries Documents

Full No No TermPopularity Yes No

DocumentSize No No Stemming No No

SetCover Yes Yes Stopwords No No

aDCP Yes Yes StemStop No No

Summarization No No

Stopword Removal and Stemming. We also considered these standard term pro-
cessing operations as baseline cases for term-level pruning. We have three cases,
just stopwords, just stemming, or use both of them.

4 Experimental Setup

4.1 Document Collection

As web document collection, we mostly use the open source web collection pro-
vided by Common Crawl, CC, in November 2017.2 In total, the CC collection
takes 4 TB of disk space when compressed. The full web index constructed using
this collection contains 50.3M English documents (see end of next section). The
average document size is 3.5 KB before parsing the HTML content, and after
processing the average number of sentences and terms in a document is around
26 and 628, respectively. This collection is quite diverse in that it contains pages
crawled from more than 1.3M different web domains.

For the relevance evaluation we use an ad-hoc web collection A of almost
19M English web documents, also crawled in 2017. This collection is even more
diverse as it contains content from 1.6M different domains.

4.2 Document Processing

Before indexing, we have a document processing pipeline that includes HTML
parsing, boilerplate extraction, sentence extraction, summarization, tokeniza-
tion, and language detection. For consistency, we apply the same pipeline to
documents and queries.

We first use the open-source Boilerpipe library to remove the boilerplate
of the web document (e.g., headers, footers, menus, and ads in the document).3

Accurate removal of the boilerplate is important since failure to remove the boil-
erplate may affect the quality of the succeeding text processing steps, such as lan-
guage detection or summarization. We then use the Jsoup library to extract the
2 Common Crawl web collection, http://commoncrawl.org/2017/11/november-2017-

crawl-archive-now-available/.
3 Boilerpipe, https://github.com/robbypond/boilerpipe.

http://commoncrawl.org/2017/11/november-2017-crawl-archive-now-available/
http://commoncrawl.org/2017/11/november-2017-crawl-archive-now-available/
https://github.com/robbypond/boilerpipe

Pre-indexing Pruning Strategies 183

textual content of the document from the remaining HTML content as well as the
document’s title. For sentence extraction and tokenization, we use OpenNLP’s
English models.4 To identify the language of a document, we use Fasttext’s open-
source language detection model, which has support for 176 languages.5 We use
only documents whose language is detected as English and when the likelihood
estimated by the model is larger than 0.8.

4.3 Indexing

We index documents using an open source version of Elasticsearch.6 The docu-
ments are indexed in an incremental fashion. All indexes were created with 15
shards with a replication factor of 3. Full is the full index constructed using
the entire collection for comparison purposes. Most of the evaluation metrics
computed are relative to this index.

We used Elasticsearch’s built-in stopword remover and its built-in stemmer,
which removes only possessive suffixes, to obtain our three baselines: Stemming,
Stopwords, and StemStop). In all other cases, we do not perform stopword
removal nor stemming.

For the DocumentSize heuristic, we set L to 1% and 10%. These thresholds
result in pruning of documents that are larger than 7 KB and 33 KB, respectively.
In the SetCover heuristic, we set the C parameter to 1, 5, or 10, resulting in
approximately 3.1, 1.7 and 1.3 million documents being indexed, respectively. In
the Summarization heuristic, we set the S parameter to 10, 20, 40, 80, and 160.
For the aDCP heuristic, we set the µ parameter to 0.1, 0.2 and 0.3 resulting in 5,
10 and 15 million documents being indexed, respectively. In the case of the Term
Popularity index, we prune all terms which do not appear in a given query log.

Table 2 summarizes the size properties of the constructed indexes.

4.4 Ranking

We use two different ranking techniques in the experimental comparison. The
simplest one just uses the well-known BM25 technique (see [7], Section 3.5.1)
which is native to ElasticSearch, as it is one of the best baselines based just in
textual content. A more sophisticated version uses a two phase ranking approach,
first using BM25 to obtain a pool of 2,000 candidates and then using learning-
to-rank (LTR), LambdaMart [22], to do the final ranking. The LTR variant
uses more than 200 features that include query-document similarity (44%), link
analysis (20%), query-document relevance (16%), URL name features (10%) and
textual content (10%) features.

4 http://opennlp.sourceforge.net/models-1.5/.
5 https://fasttext.cc/docs/en/language-identification.html.
6 https://www.elastic.co/products/elasticsearch.

http://opennlp.sourceforge.net/models-1.5/
https://fasttext.cc/docs/en/language-identification.html
https://www.elastic.co/products/elasticsearch

184 S. Altin et al.

4.5 Query Logs

In most experiments, we use a public query log A, which contains 7.3 million
queries submitted in 2006. The query log is split, in temporal order, into training
and test sets, which contain 6.4 million and 900K queries, respectively. The
training set is used to compute the set cover as well as terms’ query frequencies.
The test queries are used for evaluation.

Table 2. Index sizes and corresponding pruning ratios (PR) shown as percentages.

Index Parameter Size (GB) PR (%)

Full – 180.200 0.00

DocumentSize (DS#) L = 1% 54.147 69.95

DocumentSize L = 10% 32.226 82.12

SetCover (SC#) C = 1 9.400 94.78

SetCover C = 5 7.000 96.12

SetCover C = 10 6.600 96.34

aDCP (aDECP#) µ = 0.1 22.900 87.29

aDCP µ = 0.2 31.600 81.90

aDCP µ = 0.3 41.100 77.19

Summarization (S#) S = 10 23.725 86.83

Summarization S = 20 32.930 81.73

Summarization S = 40 42.526 76.40

Summarization S = 80 50.713 71.86

Summarization S = 160 82.58 54.17

TermPopularity (TP) – 52.014 71.14

Stemming (ST) – 69.791 61.27

Stopwords (SW) – 64.338 64.30

StemStop (BOTH) – 60.907 66.20

To measure the relevance of the results as well as the temporal robustness of
them, we also use two newer (2017) but smaller query logs, B1 and B2, obtained
from a commercial search engine. Query log B1 contains about 300K queries
with relevance judgments for the top 50 results of our LTR model, where 125K
queries are used for training the model and the 175K others are left for relevance
evaluation. Query log B2 contains almost 2.7M queries and they are used to study
how sensitive are our pruning techniques to a query log from a different search
engine and from a different time (notice that the year of this query log matches
the year of the web collection).

Pre-indexing Pruning Strategies 185

4.6 Evaluation

To evaluate the proposed pruning strategies, we use the Elasticsearch API to
submit each of the two test sets of queries sequentially, to compute the metrics
detailed below. In all experiments, we set k to 100, unless otherwise stated.

Pruning Ratio (PR). For each index, we compute the ratio of its size to the
size of the Full index (in bytes) and subtract this ratio from 1 as follows PR =
1 − S(I)

S(IFull)
, where S(I) denotes the size of index I in bytes. In the rest of the

paper this ratio is shown as a percentage.

Average Precision (AP@k). For each query, we compute the precision as the
fraction of relevant results within the retrieved top-k results set. We assume
that the top-k results obtained by processing the full web index constitute our
relevant results. We then average the precision values over all queries (see Table 3,
first column) where Rq(I, k) is the set of top-k retrieved results from the pruned
index I for a given query q. IFull is the full web index and m is the number of
queries in the test query sample.

Table 3. Evaluation metrics for query relevance and similarity.

AP@k AR@k ARS@k
∑m

q=1
Rq(I,k)∩Rq(IFull,k)

Rq(I,k)

m

∑m
q=1

Rq(I,k)∩Rq(IFull,k)
Rq(IFull,k) ,

m

∑m
q=1

|Rq(I,k)∩Rq(IFull,k)|
|Rq(I,k)∪Rq(IFull,k)|

m

Average Recall (AR@k). For each query, we compute the recall as the fraction of
retrieved relevant results (full index case) and then average them over all queries
(see Table 3, second column).

Average Result Similarity (ARS@k). This metric measures the similarity of
result sets retrieved for all the queries in the test set between the pruned
index and the full index, using the Jaccard similarity metric (see Table 3, third
column).

Query Coverage (QC@k). This is the ratio between the number of unique test
queries which have at least one relevant result in its top-k results set and the
total number of unique queries in the test set, QC@k = u

U , where u and U are
the number of unique queries that are covered and the total number of unique
queries in the test set, respectively.

186 S. Altin et al.

Query Volume Coverage (QVC@k). This is the ratio between the number of test
queries which have at least one relevant result in its top-k results set and the
total number of queries in the test, QV C@k = v

V , where v and V denote the
volume of queries that are covered and the total volume of queries in the test
set, respectively.

Normalized Discounted Cumulative Gain (NDCG). NDCG is the most used mea-
sure to evaluate relevance for web search (see [7], Section 4.3.4) and we measure
it for the first ten results, NDCG@10.

5 Experimental Results

5.1 Common Crawl and BM25

In this section we present most of the evaluation measures using the CC collection
with the BM25 baseline ranking for query logs A and C.

Table 4. Evaluation metrics in percentages (CC collection, BM25, query log A).

Index Parameter PR AP@k AR@k ARS@k QC@k QV C@k

Full 100 100 100 82.91 96.54

DocumentSize L = 1% 69.95 78.91 94.59 75.21 78.56 95.66

DocumentSize L = 10% 82.12 58.84 87.27 51.76 72.54 94.19

SetCover C = 1 94.78 41.95 51.99 34.07 82.80 96.53

SetCover C = 5 96.12 36.27 47.46 29.63 82.79 96.52

SetCover C = 10 96.34 35.34 46.62 28.99 82.78 96.52

aDCP µ = 0.1 87.29 51.92 53.19 40.53 82.15 96.15

aDCP µ = 0.2 81.90 63.32 53.86 51.52 82.52 96.33

aDCP µ = 0.3 77.19 64.97 64.09 52.28 82.69 96.43

Summarization S = 10 86.83 39.99 65.94 31.31 70.90 93.57

Summarization S = 20 81.73 52.01 75.19 43.14 73.81 94.46

Summarization S = 40 76.40 64.27 83.91 56.64 76.21 95.11

Summarization S = 80 71.86 73.83 90.22 68.22 78.08 95.54

Summarization S = 160 54.17 89.75 97.21 87.90 82.91 96.54

TermPopularity 71.14 71.57 79.85 61.39 79.69 95.60

Stemming 61.27 66.13 58.42 49.94 85.92 97.13

Stopwords 64.30 93.70 93.64 88.86 82.91 96.55

StemStop 66.20 64.47 56.73 47.64 85.92 97.13

Pre-indexing Pruning Strategies 187

Table 5. Evaluation metrics in percentages (CC collection, BM25, query log B2).

Index Parameter PR AP@k AR@k ARS@k QC@k QV C@k

Full 100 100 100 73.43 78.09

DocumentSize L = 1% 69.95 75.16 81.36 69.03 67.39 75.96

DocumentSize L = 10% 82.12 56.05 66.86 45.99 59.81 72.89

SetCover C = 1 94.78 44.39 47.82 34.08 72.15 77.41

SetCover C = 5 96.12 40.02 43.94 30.55 71.97 77.27

SetCover C = 10 96.34 39.33 43.31 30.10 71.95 77.24

aDCP µ = 0.1 87.29 54.53 55.51 43.65 72.92 77.79

aDCP µ = 0.2 81.90 63.97 64.37 52.73 73.15 77.92

aDCP µ = 0.3 77.19 64.69 64.78 53.59 73.27 77.99

Summarization S = 10 86.83 41.61 51.01 30.91 59.37 72.58

Summarization S = 20 81.73 51.48 59.92 40.55 62.16 73.73

Summarization S = 40 76.40 61.87 69.33 52.01 64.74 74.75

Summarization S = 80 71.86 70.44 76.98 62.53 67.01 75.66

Summarization S = 160 54.17 84.75 84.39 78.82 73.43 78.09

TermPopularity 71.14 69.18 73.12 58.17 69.21 75.80

Stemming 61.27 63.97 60.49 50.91 77.14 79.45

Stopwords 64.30 90.56 90.51 84.65 73.44 78.09

StemStop 66.20 61.55 58.04 47.79 77.15 79.45

Pruning Ratio. Table 2 shows the size of each index we created and the corre-
sponding pruning ratios. According to this table, the most aggressive pruning
strategy is the SetCover strategy, which prunes 96% of the full web index, when
C = 10. Even when C is set to 1, the pruning ratio remains around 95% with this
strategy. The remaining strategies are relatively less aggressive and the pruning
ratio remains over 60% (excluding the Summarization strategy with S = 160).

Precision, Recall, and Result Similarity. As expected, less aggressive prun-
ing strategies tend to yield the highest precision values. For example, with
query log A (Table 4), the highest precision value (90%) is obtained using the
Summarization strategy with S = 160, while the lowest value (35%) is obtained
using the SetCover strategy with C = 10. In terms of the recall and result sim-
ilarity metrics, we observe very similar values. The metrics obtained by using
the query log B2 (Table 4) confirm the validity of the results since they exhibit
similar behavior.

Query Coverage. Coverage metrics are relatively high for all strategies (Table 4).
The worst performing strategy (Summarization with S = 10) results in 71% of
unique test queries being covered. For the same strategy, the coverage goes up to

188 S. Altin et al.

almost 94% when the query volume is considered. Certain strategies attain the
same coverage value attained by the full web index or very close values (e.g.,
Summarization with S = 160 or the SetCover strategy). We observe similar
behavior when query log B2 is used (Table 5). Since the aDCP heuristic uses the
most popular documents, it is very successful, as expected, with query volume
coverage, but still cannot beat the largest summarization index. The best volume
coverage is for aDCP using µ = 0.3 with 96%. On the other hand, aDCP is not
as good for unique query coverage.

Table 6. Relevance results (collection A, LTR, query log B2).

Index Parameter Size (GB) PR (%) NDCG@10 (%) ΔNDCG@10 (%)

Full 172.1 0.00 100 0

Summarization S = 40 133.9 22.19 98.97 −1.02

Summarization S = 20 119.6 30.50 98.63 −1.36

Summarization S = 10 107.5 37.53 98.46 −1.53

aDCP µ = 0.3 47.2 72.57 79.59 −20.41

DocumentSize L = 1% 145.6 15.39 69.98 −30.02

TermPopularity 95.4 44.56 30.21 −69.79

SetCover C = 1 1.3 99.24 11.54 −88.46

5.2 Relevance

To understand the relevance loss due to the pruned indexes, here we use the web
collection A with our LTR ranking variant and the test queries from query log
B1. Based on the results of the previous section, we analyze only the heuristics
with higher precision score. For example, DocumentSize with L = 1%.

We make an exception in the case of the Summarization heuristics, to under-
stand better its effect in relevance. In total we try seven cases and we evaluate
relevance using NDCG with respect to the full index version. We do not include
stemming nor stopwords removal in this case, because the LTR variant has these
functionality embedded during the feature extraction process.

The results for this experiment are given in Table 6 and Fig. 2. For the sum-
marization heuristics, the relevance loss is marginal, while for the other tech-
niques there is a significant NDCG loss, from 20% to 89%. We observe that
NDCG loss is much higher for the heuristics that uses document pruning (aDCP
and Set Cover). Nevertheless, this effect is also augmented by the fact that the
relevance judgments do not cover the whole collection.

Pre-indexing Pruning Strategies 189

20 40 60 80 100

20

40

60

80

100 S-10S-20S-40

aDCP

DS

TP

SC

PR (%)

N
D
C
G
@
10

(%
)

Fig. 2. Pruning ratio versus NDCG@10 (collection A, LTR, query log B1).

50 60 70 80 90 100

40

60

80

100
SW

aDCP-0.3

S-160

DS-1%

TP
STBOTHDS-10%

S-40

SC-1S-10
SC-10

PR (%)

A
P
@
k
(%

)

Fig. 3. Pruning ratio vs. precision (CC collection, BM25, query log A).

5.3 Trade-Off Analysis

Figure 3 shows the trade-off between the pruning ratio and the precision attained
by different pruning strategies. In general, as the pruning ratio increases the pre-
cision is observed to decrease, as expected. The Summarization strategy (with
S = 160) can be seen to cut the index size by half with around only 10% decrease
in precision with respect to the full web index. Therefore, search engines, for

190 S. Altin et al.

50 60 70 80 90 100
92

94

96

98

100

BOTHST
SW

aDCP-0.3

SC-1 SC-10

DS-1%

DS-10%

TP

S-160

S-40

S-10

PR (%)

Q
V
C

(%
)

Fig. 4. Pruning ratio vs. query volume coverage (CC collection, BM25, query log A).

which quality is vital, can use this technique to achieve drastic reduction in the
hardware needed for storing and processing the web index. The SetCover strat-
egy, on the other hand, results in significant quality loss (around 60%), but can
yield huge resource savings (around 95%). Therefore, commercial search engines
that operate with very limited resources can employ these strategy to cut their
operational costs.

Figure 4 shows a similar trade-off between the pruning ratio and query vol-
ume coverage. The Summarization strategy (with S = 160) results in high query
volume coverage, again, under the same pruning ratio. The SetCover strategy,
however, achieves almost the same query volume coverage (around 96.5%), with
a drastic reduction in index size. Therefore, a search engine, which aims to sat-
isfy as many queries as possible (rather than the aggregate performance over
many queries) may adopt SetCover as its pruning strategy.

Regarding relevance, the summarization technique allows to keep parts of
all the documents, leading to a marginal NDCG@10 drop, with a reasonable
index size reduction. So clearly they are very competitive. The differences that
appear in the pruning ratios for some heuristics, such as Summarization and
Documentsize, can be explained by the fact that collection A is of better qual-
ity (that is, has much less web spam as has been curated) and also is more
homogeneous and hence the fraction of documents removed diminishes.

One way to do a fair comparison of all the cases is to normalize by the index
size in percentage. That is, compute the power factor gain of each measure
dividing by the index size (the factor would be 1 for the full index in most
cases). Larger the power factor, more you gain per space unit used. In Fig. 5 we
show these values for the average precision (maximum factor of almost 10), the

Pre-indexing Pruning Strategies 191

1 10 100
1

10 SC-10

aDCP-0.1

S-10

ST

SC-10

aDCP-0.1

TP

S-160
ST

SC-1

S-40

Index Size (%)

P
ow

er
Fa

ct
or

APP
QVCP
RP

Fig. 5. Power factor for average precision, query volume coverage and NDCG@10.

query volume coverage (maximum factor over 26), and NDCG@10 (maximum
factor over 15), using a log-log graph. In both cases, smaller the index, larger the
power factor, which is expected given the power law shown in [4] (few documents
answers many queries). In this sense, almost all the strategies are similar as there
are almost no real outliers. One interesting fact is that the quality measures (APP
and RP) are almost in a line while QVCP is almost a perfect line showing an
underline power law for this power factor.

6 Conclusions

We have shown different index pruning strategies that aim to reduce the index
size significantly, while keeping the search quality and query coverage as similar
as possible to the case of the full web index. We conducted large-scale experi-
ments demonstrating the feasibility of these approaches. Our results show that
there is no clear dominant technique for different query sets and surely the same
is true for different web document collections. We have not included the gains in
query processing time, but in all the techniques we get significant faster process-
ing times, from 50% more throughput for S160 to almost a 10 times improvement
for the most aggressive pruning techniques.

In practice, each search application has different use cases and different hard-
ware resources. So, we believe that constructing an index that will satisfy all
kinds of use cases is not feasible in practice. However, we can recommend different
index pruning techniques for different use cases. For example, if we do not have
large amounts of hardware and the quality of results is not critical, SetCover
or Summarization with a small S parameter (e.g., S = 10) can be a good fit.
If we have lots of hardware and search quality is vital, then the Summarization

192 S. Altin et al.

strategy with a large S parameter (e.g., S = 80) or the DocumentSize strategy
with a small L parameter (e.g., L = 1%) might be good options.

References

1. Altingovde, I.S., Ozcan, R., Ulusoy, O.: Static index pruning in web search engines:
combining term and document popularities with query views. ACM Trans. Inf.
Syst. 30(1):2:1–2:28 (2012)

2. Anagnostopoulos, A., Becchetti, L., Leonardi, S., Mele, I., Sankowski, P.: Stochastic
query covering. In: Proceedings of the Fourth ACM International Conference on
Web Search and Data Mining, WSDM 2011, pp. 725–734. ACM, New York (2011)

3. Arguello, J., Callan, J., Diaz, F.: Classification-based resource selection. In Pro-
ceedings of the 18th ACM Conference on Information and Knowledge Management,
pp. 1277–1286. ACM, New York (2009)

4. Baeza-Yates, R., Boldi, P., Chierichetti, F.: Essential web pages are easy to find.
In: Proceedings of the 24th International Conference on World Wide Web, WWW
2015, Florence, Italy, 18–22 May, 2015, pp. 97–107 (2015)

5. Baeza-Yates, R., Gionis, A., Junqueira, F., Murdock, V., Plachouras, V., Silvestri,
F. Design trade-offs for search engine caching. TWEB 2(4):20:1–20:28 (2008)

6. Baeza-Yates, R., Murdock, V., Hauff, C.: Efficiency trade-offs in two-tier web search
systems. In: Proceedings of the 32nd International ACM SIGIR Conference on
Research and Development in Information Retrieval, pp. 163–170. ACM, New York
(2009)

7. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts
and Technology Behind Search. Addison-Wesley, Pearson (2011)

8. Blanco, R., Barreiro, Á.: Static pruning of terms in inverted files. In: Amati,
Giambattista, Carpineto, Claudio, Romano, Giovanni (eds.) ECIR 2007. LNCS,
vol. 4425, pp. 64–75. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-
540-71496-5 9

9. Blanco, R., Barreiro, A.: Probabilistic static pruning of inverted files. ACM Trans.
Inf. Syst. 28(1), 1:1–1:33 (2010)

10. Büttcher, S., Clarke, C.L.A.: A document-centric approach to static index pruning
in text retrieval systems. In: Proceedings of the 15th ACM International Conference
on Information and Knowledge Management, pp. 182–189. ACM, New York (2006)

11. Cambazoglu, B.B., Baeza-Yates, R.: Scalability Challenges in Web Search Engines.
Morgan & Claypool Publishers, San Rafael (2015)

12. Carmel, D., Cohen, D., Fagin, R., Farchi, E., Herscovici, M., Maarek, Y.S., Soffer,
A.: Static index pruning for information retrieval systems. In: Proceedings of the
24th Annual International ACM SIGIR Conference on Research and Development
in Information Retrieval, pp. 43–50. ACM, New York (2001)

13. Chen, R.-C., Lee., C.-J.: An information-theoretic account of static index pruning.
In: Proceedings of the 36th International ACM SIGIR Conference on Research and
Development in Information Retrieval, pp. 163–172. ACM, New York (2013)

14. de Moura, E.S., dos Santos, C.F., Fernandes, D.R., Silva, A.S., Calado, P., Nasci-
mento, M.A.: Improving web search efficiency via a locality based static pruning
method. In: Proceedings of the 14th International Conference on World Wide Web,
pp. 235–244. ACM, New York (2005)

https://doi.org/10.1007/978-3-540-71496-5_9
https://doi.org/10.1007/978-3-540-71496-5_9

Pre-indexing Pruning Strategies 193

15. Kulkarni, A., Tigelaar, A.S., Hiemstra, D., Callan, J.: Shard ranking and cutoff
estimation for topically partitioned collections. In: Proceedings of the 21st ACM
International Conference on Information and Knowledge Management, pp. 555–
564. ACM, New York (2012)

16. Leung, G., Quadrianto N., Tsioutsiouliklis, K., Smola, A.J.: Optimal web-scale
tiering as a flow problem. In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel,
R., Culotta, A. (eds.) Advances in Neural Information Processing Systems 23, pp.
1333–1341. Curran Associates Inc. (2010)

17. Ntoulas, A., Cho, J.: Pruning policies for two-tiered inverted index with correctness
guarantee. In: Proceedings of the 30th Annual International ACM SIGIR Confer-
ence on Research and Development in Information Retrieval, pp. 191–198. ACM,
New York (2007)

18. Puppin, D., Silvestri, F., Perego, R., Baeza-Yates, R.: Tuning the capacity of search
engines: load-driven routing and incremental caching to reduce and balance the
load. ACM Trans. Inf. Syst. 28(2), 1–36 (2010)

19. Risvik, K.M., Aasheim, Y., Lidal, M.: Multi-tier architecture for web search
engines. In: Proceedings of the 1st Conference on Latin American Web Congress,
p. 132. IEEE Computer Society, Washington (2003)

20. Skobeltsyn, G., Junqueira, F., Plachouras, V., Baeza-Yates, R.: ResIn: a com-
bination of results caching and index pruning for high-performance web search
engines. In: Proceedings of the 31st Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, pp. 131–138. ACM, New
York (2008)

21. Thota, S.L., Carterette, B.: Within-document term-based index pruning with sta-
tistical hypothesis testing. In: Clough, Paul, Foley, Colum, Gurrin, Cathal, Jones,
Gareth J.F., Kraaij, Wessel, Lee, Hyowon, Mudoch, Vanessa (eds.) ECIR 2011.
LNCS, vol. 6611, pp. 543–554. Springer, Heidelberg (2011). https://doi.org/10.
1007/978-3-642-20161-5 54

22. Wu, Q., Burges, C.J.C., Svore, K.M., Gao, J.: Adapting boosting for information
retrieval measures. Inf. Retrieval 13(3), 254–270 (2010)

https://doi.org/10.1007/978-3-642-20161-5_54
https://doi.org/10.1007/978-3-642-20161-5_54

Measuring Controversy in Social
Networks Through NLP

Juan Manuel Ortiz de Zarate1(B) , Marco Di Giovanni2 ,
Esteban Zindel Feuerstein1 , and Marco Brambilla2

1 Universidad de Buenos Aires, C1053 Buenos Aires, Argentina
{jmoz,efeuerst}@dc.uba.ar

2 Politecnico di Milano, Milan 20133, Italy
{marco.digiovanni,marco.brambilla}@polimi.it

Abstract. Nowadays controversial topics on social media are often
linked to hate speeches, fake news propagation, and biased or misinfor-
mation spreading. Detecting controversy in online discussions is a chal-
lenging task, but essential to stop these unhealthy behaviours.

In this work, we develop a general pipeline to quantify controversy on
social media through content analysis, and we widely test it on Twitter.

Our approach can be outlined in four phases: an initial graph build-
ing phase, a community identification phase through graph partition-
ing, an embedding phase, using language models, and a final controversy
score computation phase. We obtain an index that quantifies the intuitive
notion of controversy.

To test that our method is general and not domain-, language-,
geography- or size-dependent, we collect, clean and analyze 30 Twitter
datasets about different topics, half controversial and half not, chang-
ing domains and magnitudes, in six different languages from all over the
world.

The results confirm that our pipeline can quantify correctly the notion
of controversy, reaching a ROC AUC score of 0.996 over controversial and
non-controversial scores distributions. It outperforms the state-of-the-art
approaches, both in terms of accuracy and computational speed.

Keywords: Controversy · Polarization · NLP · Social networks

1 Introduction

Controversy in social networks is a phenomenon with a high social and polit-
ical impact. Interesting analysis have been performed about presidential elec-
tions [44], congress decisions [21], hate spread [9], and harassing [31]. This phe-
nomenon has been broadly studied from the perspective of different disciplines,
ranging from the seminal analysis of conflicts within the members of a karate
club [54] to political issues in modern times [1,3,10,13,36].

J. M. O. de Zarate and M. Di Giovanni—Equal contribution.

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 194–209, 2020.
https://doi.org/10.1007/978-3-030-59212-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_14&domain=pdf
http://orcid.org/0000-0002-0291-1997
http://orcid.org/0000-0001-7705-4478
http://orcid.org/0000-0003-2985-810X
http://orcid.org/0000-0002-8753-2434
https://doi.org/10.1007/978-3-030-59212-7_14

Measuring Controversy in Social Networks Through NLP 195

The irruption of digital social networks [17] gave raise to new ways of inten-
tional intervention for taking advantages [9,44]. Moreover, highly contrasting
points of view in groups tend to provoke conflicts that lead to attacks from
one community to the other, such as harassing, “brigading”, or “trolling” [31].
The existing literature reports a huge number of issues related to controversy,
ranging from the splitting of communities and the biased information spread, to
the increase of hate speeches and attacks between groups. For example, Kumar,
Srijan, et al. [31] analyze many defense techniques from attacks on Reddit1 while
Stewart, et al. [44] insinuate that there was external interference in Twitter dur-
ing the 2016 US presidential elections to benefit one candidate.

As shown in [30,33], detecting controversy also provides the basis to improve
the “news diet” of readers, offering the possibility to connect users with different
points of view by recommending them personalized content to read [37]. Other
studies on “bridging echo chambers” [19] and the positive effects of inter group
dialogue [4,38] suggest that direct engagement is effective for mitigating conflicts.

An accurate and automatic classifier of controversial topics, therefore, helps
to develop quick strategies to prevent miss-information, fights and biases. More-
over, the identification of the main viewpoints and the detection of semantically
closer users is also useful to lead people to healthier discussions. Measuring con-
troversy is even more powerful, as it can be used to establish controversy levels.
For this purpose, we propose a content-based pipeline to measure controversy
on social networks, collecting posts’ content about a fixed topic (an hashtag or
a keyword) as root input.

Controversy quantification through vocabulary analysis also opens several
research avenues, such as the analysis whether polarization is being created,
maintained or augmented through community’s way of talking.

Our main contribution can be summarized as the design of a controversy
detection pipeline and the its application to 30 heterogeneous Twitter datasets.
We outperform the state-of-the-art approaches, both in terms of accuracy and
computational speed.

Our method is tested on datasets from Twitter. This microblogging platform
has been widely used to analyze discussions and polarization [36,39,46,50,53].
It is a natural choice for this task, as it represents one of the main fora for
public debate [50], it is a common destination for affiliative expressions [23] and
it is often used to report and read news about current events [43]. An extra
advantage is the availability of real-time data generated by millions of users.
Other social media platforms offer similar data-sharing services, but few can
match the amount of data and the documentation provided by Twitter. One
last asset of Twitter for our work is given by retweets (sharing a tweet created
by a different user), that typically indicate endorsement [6] and hence they help
to model discussions as they can signal “who is with who”.

Our paper is organized as follows: in Sect. 2 we list and summarize
other works about controversy and polarization on social networks, in Sect. 3
we present the datasets collected for this study, while Sect. 4 contains the

1 https://www.reddit.com/.

https://www.reddit.com/

196 J. M. O. de Zarate et al.

step-by-step description of our pipeline. In Sect. 5 we show the results and we
conclude with Sect. 6.

2 Related Work

Due to its high social importance, many works focus on polarization measures
in online social networks and social media [2,10,11,20,22]. The main charac-
teristic that connects these works is that the measures proposed are based on
the structural characteristics of the underlying social-graph. Among them, we
highlight the work of Garimella et al. [20] that presents an extensive comparison
of controversy measures, different graph-building approaches and data sources,
achieving a state-of-the-art performance. We use this approach as a baseline to
compare our results.

In [20] the authors propose many metrics to measure polarization on Twit-
ter. Their techniques, based on the structure of the endorsement graph, can
successfully detect whether a discussion (represented by a set of tweets), is con-
troversial or not, regardless of the context and, most importantly, without the
need of domain expertise. They also include two methods to measure controversy
based on the analysis of the posts’ contents, both failing. The first of these meth-
ods starts with the embedding of tweets in vectors, the clustering of these vectors
into two groups and a final computation of KL divergence2 as a distance measure
between clusters, and of I2 measure [27] to quantify the cluster heterogeneity.
The second method is based on sentiment analysis. Their hypothesis is that con-
troversial discussions have a higher variance than non-controversial ones. This
approach is limited to the fact that it is dependent on language-specific tools
that do not work reliably for languages other than English.

Matakos et al. [35] also develop a polarization index with a graph-based app-
roach, not including text related features, modelling opinions as real numbers.
Their measure successfully captures the tendency of opinions to concentrate in
network communities, creating echo-chambers.

Other recent works [34,41,45] prove that communities may express them-
selves with different terms or ways of speaking, and use different jargon, which
can be detected with the use of text-related techniques. Ramponi et al. [40,41]
build very efficient classifiers and predictors of account membership within a
given community by inspecting the vocabulary used in tweets, for many het-
erogeneous Twitter communities, such as chess players, fashion designers and
members and supporters of political parties [15]. In [45] Tran et al. found that
language style, characterized using a hybrid word and part-of-speech tag n-gram
language model, is a better indicator of community identity than topic, even for
communities organized around specific topics. Finally, Lahoti et al. [34] model
the problem of learning the liberal-conservative ideology space of social media
users and media sources as a constrained non-negative matrix-factorization prob-
lem. They validate their model and solution on a real-world Twitter dataset
2 Kullback–Leibler divergence is a measure of how a probability distribution is different

from a reference probability distribution.

Measuring Controversy in Social Networks Through NLP 197

consisting of controversial topics, and show that they are able to separate users
by ideology with over 90% purity.

Other works for controversy detection through content have been made over
Wikipedia [16,26] showing that text contents are good indicatives to estimate
polarization. These works are heavily dependent on Wikipedia and can not be
extrapolated to social networks.

In her thesis [25], Jang explains controversy via generating a summary of two
conflicting stances that build the controversy. Her work shows that a specific
sub-set of tweets is enough to represent the two opposite positions in a polarized
debate.

A first approach to content-based controversy detection was made in [55].
The main difference between this work and [55] is that the techniques presented
here are less dependent on the graph structure. Our new content-based pipeline
introduces the possibility of defining and detecting concepts like the “seman-
tic frontier” of a cluster. This opens new ways to activate interventions in the
communities, such as the investigation of users lying near that frontier to facil-
itate a healtier interaction between the communities, or the analysis of users
far away from the frontier to understand which aspects establish the real differ-
ences. Improvements on [55] (used as a second baseline in this work), include a
wider comparison of NLP models and distance measures, a higher heterogeneity
of datasets used, and results in better performances both in terms of AUC ROC
scores and computational times.

3 Datasets

To test our approach, we collect 30 Twitter datasets in six languages. Each
dataset corresponds to a manually selected topic among the trending ones. The
collection is performed through the official Twitter API.

3.1 Topic Definition

In the literature, a topic is often defined by a single hashtag. We believe that
this might be too restrictive since some discussions may not have a defined
hashtag, but they are about a keyword that represents the main concept, i.e. a
word or expression that is not specifically an hashtag but it is widely used in
the discussion. For example during the Brazilian presidential elections in 2018,
we collected tweets mentioning to the word Bolsonaro, the principal candidate’s
surname. Thus, in our approach, a topic is defined as a specific hashtag or key-
word, depending on the discussion. For each topic we collect all the tweets that
contain its hashtag or keyword, posted during a selected observation window.
We also check that each topic is associated with a large enough activity volume.

3.2 Description of the Datasets

We collected 30 discussions (50% more than the baseline work [20]) that took
place between 2015 and 2020, half of them controversial and half not. We selected

198 J. M. O. de Zarate et al.

discussions in six languages: English, Portuguese, Spanish, French, Korean and
Arabic, occurring in five regions over the world: South and North America,
Western Europe, Central and Southern Asia. The details of each discussion are
described in Table 2. We have chosen discussions clearly recognizable as contro-
versial or not to have an evident groundtruth. Blurry discussions will be analyzed
in future works. The encoded datasets are available on github3.

Since our models require a large amount of text and since a tweet contains no
more than 240 characters, we established a threshold of at least 100000 tweets
per topic. Topics containing a lower number of tweets were discarded. To select
discussions and to determine if they are controversial or not we looked for topics
widely covered by mainstream media that have generated ample discussion, both
online and offline. For non-controversial discussions we focused both on “soft
news” and entertainment, and on events that, while being impactful and/or dra-
matic, did not generate large controversies. On the other side, for controversial
debates we focused on political events such as elections, corruption cases or jus-
tice decisions. We validate our intuition by manually checking random samples
of tweets.

To furtherly establish the presence or absence of controversy of our datasets,
we visualized the corresponding networks through ForceAtlas2 [24], a widely used
force-directed layout. This algorithm has been recently found to be very useful at
visualizing community interactions [49], as it represents closer users interacting
among each other, and farther users interacting less. Figure 1 shows examples of
how non-controversial and controversial discussions respectively look like with
ForceAtlas2 layout. As we can see in these figures, in a controversial discussion
the layout shows two well separated groups, while in a non-controversial one it
generates one big cluster.

More information on the datasets is given in Table 2 in Appendix A.

4 Methodology

Our approach to measure controversy can be outlined into four phases, namely
graph building phase, community identification phase, embedding phase and con-
troversy score computation phase. The final output of the pipeline is a positive
value that measures the controversy of a topic, with higher values corresponding
to lower degrees of controversy.

Our hypothesis is that using the embeddings generated by an NLP model, we
can distinguish different ways of speaking; the more controversial the discussion
is, the better differentiation we obtain.

4.1 Graph Building Phase

Firstly, our purpose is to build a conversation graph that represents activities
related to a single topic of discussion. For each topic, we build a retweet-graph
3 Code and datasets used in this work are available here: https://github.com/

jmanuoz/Measuring-controversy-in-Social-Networks-through-NLP.

https://github.com/jmanuoz/Measuring-controversy-in-Social-Networks-through-NLP
https://github.com/jmanuoz/Measuring-controversy-in-Social-Networks-through-NLP

Measuring Controversy in Social Networks Through NLP 199

(a) Kavanaugh nomi-
nation (b) Brazilian presi-

dential election
(c) Mentions to
Argentinian ex-
president

(d) Halsey concert

(e) Pop star birthday

(f) New album of
EXO band

Fig. 1. ForceAtlas2 layout for different discussions. (a), (b) and (c) are controversial
while (d), (e) and (f) are non-controversial.

G where each user is represented by a vertex, and a directed edge from node u
to node v indicates that user u retweeted a tweet posted by user v.

Retweets typically indicate endorsement [6]: users who retweet signal endorse-
ment of the opinion expressed in the original tweet by propagating it further.
Retweets are not constrained to occur only between users who are connected
in Twitter’s social network, but users are allowed to retweet posts generated
by every other user. As typically in the literature [7,9,18,32,36,44] we establish
that one retweet among a pair of users is enough to define an edge between them.
We do not use “quotes” to build the graph since, due to their nature, they can
both signal endorsement and opposition, allowing users to comment the quoted
tweet.

We remark that the “retweet information” is included in the tweets extracted,
allowing us to build the graph without increasing the number of twitter API
requests needed. This makes this stage faster than, for example, building a fol-
lower graph, another popular alternative.

4.2 Community Identification Phase

To identify the jargon of the community we need to be very accurate at defining
its members. If we, in our will of finding two principal communities, force the

200 J. M. O. de Zarate et al.

partition of the graph in that precise number of communities, we may be adding
noise in the jargon of the principal communities that are fighting each other.
Thus, we decide to cluster the graph using Louvain [8], one of the most popular
graph-clustering algorithms. It is a greedy technique that can run over big net-
works without memory or running time problems, and does not detect a fixed
number of clusters. Its output depends on the Modularity Q optimization, result-
ing in less “noisy” communities. In a polarized context there are two principal
sides covering the whole discussion, thus we take the two biggest communities
identified by Louvain and use them for the following steps. Since to have con-
troversy in a discussion there must be “at least” two sides, if the principal sides
are more than two, discarding the smallest ones will not impact the final result.
In future work we will investigate these more complex situations. Up to here the
approach we follow is the same as in [55].

4.3 Embedding Phase

In this phase, our purpose is to embed each user into a corresponding vec-
tor. These vectors encode syntactic and semantic proprieties of the posts of the
corresponding accounts. They will be used in the next phase to compute the
controversy score, since we need fixed dimension semantically significant vectors
to perform the following computations.

Firstly, tweets belonging to the users of the two principal communities
selected in the previous stage are grouped by user and sanitized. We remove
duplicates and, from each tweet, we remove user names, links, punctuation, tabs,
leading and lagging blanks, general spaces and the retweet keyword “RT”, the
string that points that a tweet is in fact a retweet. Many sentence embedding
techniques have been developed in the literature, ranging from simple bag-of-
words models to complex deep language models. To perform this step we selected
two models among the most advanced ones, namely Fasttext and BERT, that
embed texts into fixed dimension vectors encoding semantically significance and
meaning.

Fasttext [28]. This is a tool based on the skipgram model, where each word is
represented as a bag of character n-grams. A vector representation is associated
to each character n-gram; words being represented as the sum of these repre-
sentations. This is a fast method that allows to quickly train models on large
corpora and to compute word representations also for words that do not appear
in the training data. We train this model with tagged data, accordingly to the
output of Louvain (previous stage), representing the community of the user. To
define the values of the hyper-parameters we use the findings of [52], where the
authors investigate the best hyper-parameters to train word embedding models
using Fasttext and Twitter data. We use the trained model to compute the text
embedding.

Measuring Controversy in Social Networks Through NLP 201

BERT. Bidirectional Encoder Representations from Transformers (BERT) [14]
is a deep state-of-the-art language representation model based on Transform-
ers [48] pretrained in an unsupervised way on the entire Wikipedia dump for
more than 100 languages. The model is designed for transfer learning, so it has
to be finetuned for a few epochs for a specific tasks, inserting an additional
fully-connected layer on the top, without any substantial task-specific architec-
ture modifications. We use the BASE version of BERT (12 layer, 768 hidden
dimension, 12 heads per layer, for a total of 110M parameters).

Given a dataset of tweets labeled accordingly to the output of Louvain (pre-
vious stage), we finetune BERT on a 2-classes classification task for 6 epochs
(learning rate set to 10−5). Since our goal is to obtain embeddings of tweets,
after the training procedure we remove the fully-connected layer and we use the
outputs of BERT as embeddings. In detail, BERT firstly split a sentence into
tokens, adding the [CLS] token at the beginning. Then, it embeds each token
into a 786-dimensional vector. Since we need a single vector of fixed length to
compute our score, we select as aggregator the embedding of the [CLS] token.
This is the same strategy selected during the fine-tuning step. We perform this
stage using bert-as-service GitHub repository [51].

To train Fasttext and BERT in a supervised way, we need to create a training
set with its labels. We label each user with its community, namely with tags C1

and C2, corresponding respectively to the biggest (Community 1) and second
biggest (Community 2) groups. It is important to note that, to prevent bias in the
model, we take the same number of users from each community, downsampling
the first principal community to the number of users of the second one.

4.4 Controversy Score Computation Phase

To compute the controversy score, we select some users as the best represen-
tatives of each side’s main point of view. We run the HITS algorithm [29] to
estimate the authoritative and hub score of each user. We take the 30% of the
users with the highest authoritative score and the 30% with the highest hub
score and we call them central users.

Finally, we compute the controversy score r, using the embeddings of the
central users xi ∈ R

k and the labels yi ∈ {1, 2}, imposing their belonging to
cluster C1 or C2, computed during the community identification phase.

We compute the centroids of each cluster j with Eq. 1, where |Cj | is the
magnitude of cluster Cj , and a global centroid cglob with Eq. 2.

cj =
1

|Cj |
∑

i:yi=j

xi (1)

cglob =
1

|C1| + |C2|
∑

i

xi (2)

We define Dj as the sum of distances between the embeddings xi and their
centroids cj using Eq. 3 for j = 1, 2, where dist is a generic distance function.

202 J. M. O. de Zarate et al.

Similarly, Dglob is the sum of distances between all the embeddings and the
global centroid.

Dj =
∑

i:yi=j

dist(xi, cj) (3)

Because of the curse of dimensionality [5], measuring distances over big num-
ber of dimensions is not a trivial task and the usefulness of a distance measure
depends on the sub-spaces that the problem belongs to [42]. For this reason, we
select and test four distance measure: L1 (Manhattan), L2 (Euclidean), Cosine
and Mahalanobis [12] distance (particularly useful when the embedding space is
not interpretable and not homogeneous, since it takes into account also correla-
tions of the dataset and reduces to Euclidean distance if the covariance matrix
is the identity matrix).

The controversy score r is defined in Eq. 4.

r =
D1 + D2

Dglob
(4)

Intuitively, it represents how much the clusters are separated. We expect
that, if the dataset is a single cloud of points, this value should be near 1 since
the two centroids c1 and c2 will be near each other and near the global centroid
cglob. On the contrary, if the embeddings successfully divide the dataset in two
clearly separated clusters, their centroids will be far apart and near to the points
that belong to their own clusters. Note that r is, by definition, positive, since
D1, D2 and Dglob are positive too.

The datasets and the full code is available on github4 and the results discussed
in the following section are fully reproducible.

5 Results

In this section we collect the results obtained with the different techniques
described above and we compare them to the state-of-the-art structured-based
method “RW” [20] and our previous work “DMC” [55], a structure and text-
based approach. In Fig. 2 we show the distributions of scores of Fasttext and
BERT, using the four different distances described before, compared to the base-
lines “RW” and “DMC”. We plot them as beanplots with scores of controversial
datasets on the left side and non-controversial ones on the right side. Note that,
since by definition “DMC” approach gives higher scores for controversial datasets
and lower scores for non-controversial ones, the two distributions are reversed.

The less the two distributions overlap, the better the pipeline works. Thus,
to quantify the performance of different approaches, we compute the ROC AUC.
By definition, this value is between 0 and 1, where 0.5 means that the curves are
perfectly overlapped (i.e. random scoring), while values of 0 and 1 correspond to

4 https://github.com/jmanuoz/Measuring-controversy-in-Social-Networks-through-
NLP.

https://github.com/jmanuoz/Measuring-controversy-in-Social-Networks-through-NLP
https://github.com/jmanuoz/Measuring-controversy-in-Social-Networks-through-NLP

Measuring Controversy in Social Networks Through NLP 203

Fig. 2. Scores distributions comparison

perfectly separated distributions. The comparison among the different distance
measures is reported in Table 1. As we can see, the best score (the highest
value) is obtained by Fasttext model with cosine distance, outperforming the
state-of-the-art methods [20,55].

Table 1. ROC AUC scores comparison

Method L1 L2 Cosine Mahalanobis Baseline

FastText 0.987 0.987 0.996 0.991 –

BERT 0.942 0.947 0.942 0.964 –

DMC – – – – 0.982

RW – – – - 0.924

Even if BERT reached many state-of-the-art results in different NLP
tasks [14], FastText suits better in our pipeline. Analyzing the wrongly scored
cases we observe that BERT fails mainly with the non-controversial datasets,
for example Feliz Natal dataset (0.51 controversy score). Our hypothesis is that,
since BERT is a bigger and more complex model than FastText, sometimes
it overfits the data. BERT is able to separate the two communities’ ways of
speaking even when they are very similar, not opposite sides of a controversy,
exploiting differences that we are not able to perceive. To qualitatively check
this behaviour we plot the embeddings produced by each technique by reducing
their dimension to 2 with t-SNE algorithm [47] for visualization purposes.

In Fig. 3 we show the reduced embeddings obtained by each method for two
non-controversial datasets Jackson’s birthday and Feliz Natal. The first dataset
is correctly predicted as non-controversial by both methods and we can see that
their embeddings are highly mixed, as expected. However Feliz Natal embbed-
ings are mixed when Fasttext is used, while BERT is still able to split them in
two separate clusters. This shows that, for the Feliz Natal case, BERT is still
differentiating two ways of speaking.

204 J. M. O. de Zarate et al.

(a) Fasttext embeddings of Kingjack-
sonday dataset

(b) BERT embeddings of Kingjackson-
day dataset

(c) Fasttext embeddings of Feliz Natal
dataset

(d) BERT embeddings of Feliz Natal
dataset

Fig. 3. t-SNE reduced embeddings produced by Fasttex and Bert

Computational Time. Figure 4 shows the boxplots over the 30 datasets of
the total computational times (in seconds) of our two best algorithms, from
the beginning (graph building stage) to the end (controversy score computation
stage), compared to the baselines. Our approaches are faster than the baseline
graph-based method (RW), while DMC approach is only faster than our BERT
variant. Fastext approach outperforms both the baselines, allowing a quicker
analysis when used in a real-time perspective, since intervention could be neces-
sary for prevention of malicious behaviours, already described in Sect. 1.

Fig. 4. Computational time comparison

Measuring Controversy in Social Networks Through NLP 205

6 Conclusions

In this work we designed an NLP-based pipeline to measure controversy. We test
some variants, such as two embedding techniques (using Fasttext and BERT lan-
guage models) and four distance measures. We applied these approaches on 30
heterogeneous Twitter datasets, and we compared the results. Our best app-
roach, using FastText and cosine distance, outperforms not only the state-of-
the-art graph-based method [20], where the authors state that content based
techniques do not perform as well as structure based ones, but also our previous
work [55], in terms of ROC AUC score and speed, due to the lower dependence
on the graph structure and the insertion of a semantic contribute.

Our pipeline involves FastText, a fast model to encode sentences, or BERT,
a more accurate language model, slower due to the complex finetuning process
required. Fasttext obtains the best performance overall, reaching a ROC AUC
score of 0.996. As we reported in the previous section, this is probably because
BERT is so strong that it could differentiate ways of speaking even when they are
not in controversy. Due to the nature of our pipeline, Fasttext performs better
having also a much faster computing time. These results open to a whole new
social network analysis to help people participate in healthier discussions, since
these approaches allow us to detect faster and better the different points of view.

Since this approach on controversy detection shares similarities with previous
works [20,55], we share some limitations too: Evaluation, difficulties to estab-
lish the ground-truth, Multisided controversies, controversy with more than two
sides, Choice of data, manual collection of topics, and Overfitting, small set of
experiments, although now we have 10 more discussions, it is still not big enough
from a statistical point of view.

Our language-based approach has other limitations. Firstly, training an NLP
model that can have a good performance requires significant amount of text,
therefore our method works only for “big” enough discussions. However, most
interesting controversies are those that have consequences at a society level, in
general big enough for our method. Secondly, our findings are based on datasets
coming from Twitter. While this is certainly a limitation, Twitter is one of the
main venues for online public discussion, and one of the few for which data is
easily available. Hence, Twitter is a natural choice. However, Twitter’s character-
istic limit of 280 characters per message (140 till short time ago) is an intrinsic
limitation. We believe that our method, applied to other social networks like
Facebook or Reddit, could perform even better, since having more text per user
could redound on a more accurate computation of the controversy score.

Future work will involve also user-related analysis, such as the detection of
users that are in the “semantic border”, on controversial cases, and how they
behave over time. This could be useful to find whether there are actors that may
help to prevent polarization. We will also analyze which users lay on opposite
semantic sides to quickly detect the main differences between two communities.

Finally, we will also detect and analyze the behaviours of users performing
mixed interventions on a polarized debate, e.g. posting opinions of both sides of
the controversy.

206 J. M. O. de Zarate et al.

Appendix A Details on the discussions

Table 2. Datasets statistics, the top group represent controversial topics, while the
bottom one represent non-controversial ones

Hashtag/Keywords #Lang #Tweets Description and collection period

#LeadersDebate EN 250 000 Candidates debate, Nov 11–21,2019

pelosi EN 252 000 Trump Impeachment, Dec 06,2019

@mauriciomacri ES 108 375 Macri’s mentions, Jan 1–11,2018

@mauriciomacri ES 120 000 Macri’s mentions, Mar 11–18,2018

@mauriciomacri ES 147 709 Macri’s mentions, Mar 20–27,2018

@mauriciomacri ES 309 603 Macri’s mentions, Apr 05–11,2018

@mauriciomacri ES 254 835 Macri’s mentions, May 05–11,2018

Kavanaugh EN 260 000 Kavanaugh’s nomination, Oct

03,2018

Kavanaugh EN 259 999 Kavanaugh’s nomination, Oct

05,2018

Kavanaugh EN 260 000 Kavanaugh’s nomination, Oct

08,2018

Bolsonaro PT 170 764 Brazilian elections, Oct 27,2018

Bolsonaro PT 260 000 Brazilian elections, Oct 28,2018

Bolsonaro PT 260 000 Brazilian elections, 30-10-2018

Lula PT 250 000 Mentions to Lula the day of Moro

chats news, Jun 11-10,2019

Dilma PT 209 758 Roussef impeachment, 06-11-2015

EXODEUX EN 179 908 EXO’s new album, Nov 07,2019

Thanksgiving EN 250 000 Thanksgiving day, Nov 28,2019

#Al-HilalEntertainment AR 221 925 Al-Hilal champion, Dec 01,2019

#MiracleOfChristmasEve KO 251 974 Segun Woo singer birthday,

23-12-2019

Feliz Natal PT 305 879 Happy Christmas wishes, Dec

24,2019

#kingjacksonday EN 186 263 popstar’s birthday, Mar 24–27,2019

#Wrestlemania EN 260 000 Wrestlemania event, Apr 08,2019

Notredam FR 200 000 Notredam fire, Apr 16,2019

Nintendo EN 203 992 Nintendo’s release, May 19–28,2019

Halsey EN 250 000 Halsey’s concert, Jun 07–08,2019

Bigil EN 250 000 Vijay’s birthday, Jun 21–22,2019

#VanduMuruganAJITH EN 250 000 Ajith’s fans, Jun 23,2019

Messi ES 200 000 Messi’s birthday, Jun 24,2019

#Area51 EN 178 220 Jokes about Area51, Jul 13,2019

#OTDirecto20E ES 148 061 Event of a Music TV program in

Spain, Jan 20,2020

Measuring Controversy in Social Networks Through NLP 207

References

1. Adamic, L.A., Glance, N.: The political blogosphere and the 2004 US election:
divided they blog. In: Proceedings of the 3rd International Workshop on Link
Discovery, pp. 36–43. ACM (2005)

2. Akoglu, L.: Quantifying political polarity based on bipartite opinion networks. In:
Eighth International AAAI Conference on Weblogs and Social Media (2014)

3. Al-Ayyoub, M., Rabab’ah, A., Jararweh, Y., Al-Kabi, M.N., Gupta, B.B.: Studying
the controversy in online crowds’ interactions. Appl. Soft Comput. 66, 557–563
(2018)

4. Allport, G.W., Clark, K., Pettigrew, T.: The Nature of Prejudice. Addison-Wesley,
Reading (1954)

5. Bellman, R.: Dynamic programming. Science 153(3731), 34–37 (1966)
6. Bessi, A., Caldarelli, G., Del Vicario, M., Scala, A., Quattrociocchi, W.: Social

determinants of content selection in the age of (mis)information. In: Aiello, L.M.,
McFarland, D. (eds.) SocInfo 2014. LNCS, vol. 8851, pp. 259–268. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-13734-6 18

7. Bild, D.R., Liu, Y., Dick, R.P., Mao, Z.M., Wallach, D.S.: Aggregate characteri-
zation of user behavior in Twitter and analysis of the retweet graph. ACM Trans.
Internet Technol. (TOIT) 15(1), 1–24 (2015)

8. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech: Theory Exp. 2008(10), P10008
(2008)

9. Calvo, E.: Anatomı́a poĺıtica de Twitter en argentina. Tuiteando# Nisman. Capital
Intelectual, Buenos Aires (2015)

10. Conover, M.D., Ratkiewicz, J., Francisco, M., Gonçalves, B., Menczer, F., Flam-
mini, A.: Political polarization on Twitter. In: Fifth International AAAI Conference
on Weblogs and Social Media (2011)

11. Dandekar, P., Goel, A., Lee, D.T.: Biased assimilation, homophily, and the dynam-
ics of polarization. Proc. Natl. Acad. Sci. 110(15), 5791–5796 (2013)

12. De Maesschalck, R., Jouan-Rimbaud, D., Massart, D.L.: The mahalanobis distance.
Chemometr. Intell. Lab. Syst. 50(1), 1–18 (2000)

13. Del Vicario, M., Zollo, F., Caldarelli, G., Scala, A., Quattrociocchi, W.: Mapping
social dynamics on Facebook: the Brexit debate. Soc. Netw. 50, 6–16 (2017)

14. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidi-
rectional transformers for language understanding. CoRR abs/1810.04805 (2018).
http://arxiv.org/abs/1810.04805

15. Di Giovanni, M., Brambilla, M., Ceri, S., Daniel, F., Ramponi, G.: Content-based
classification of political inclinations of Twitter users. In: 2018 IEEE International
Conference on Big Data (Big Data), pp. 4321–4327 (2018)

16. Dori-Hacohen, S., Allan, J.: Automated controversy detection on the web. In: Han-
bury, A., Kazai, G., Rauber, A., Fuhr, N. (eds.) ECIR 2015. LNCS, vol. 9022, pp.
423–434. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16354-3 46

17. Easley, D., Kleinberg, J., et al.: Networks, Crowds, and Markets, vol. 8. Cambridge
University Press, Cambridge (2010)

18. Feng, W., Wang, J.: Retweet or not?: personalized tweet re-ranking. In: Proceedings
of the Sixth ACM International Conference on Web Search and Data Mining, pp.
577–586. ACM (2013)

19. Garimella, K., De Francisci Morales, G., Gionis, A., Mathioudakis, M.: Reducing
controversy by connecting opposing views. In: Proceedings of the Tenth ACM
International Conference on Web Search and Data Mining, pp. 81–90. ACM (2017)

https://doi.org/10.1007/978-3-319-13734-6_18
http://arxiv.org/abs/1810.04805
https://doi.org/10.1007/978-3-319-16354-3_46

208 J. M. O. de Zarate et al.

20. Garimella, K., Morales, G.D.F., Gionis, A., Mathioudakis, M.: Quantifying con-
troversy on social media. ACM Trans. Soc. Comput. 1(1), 3 (2018)

21. Grčar, M., Cherepnalkoski, D., Mozetič, I., Kralj Novak, P.: Stance and influence
of Twitter users regarding the Brexit referendum. Comput. Soc. Netw. 4(1), 1–25
(2017). https://doi.org/10.1186/s40649-017-0042-6

22. Guerra, P.C., Meira Jr., W., Cardie, C., Kleinberg, R.: A measure of polarization on
social media networks based on community boundaries. In: Seventh International
AAAI Conference on Weblogs and Social Media (2013)

23. Hong, S.: Online news on Twitter: newspapers’ social media adoption and their
online readership. Inf. Econ. Policy 24(1), 69–74 (2012)

24. Jacomy, M., Venturini, T., Heymann, S., Bastian, M.: ForceAtlas2, a continuous
graph layout algorithm for handy network visualization designed for the Gephi
software. PLoS One 9(6), e98679 (2014)

25. Jang, M.: Probabilistic models for identifying and explaining controversy (2019)
26. Jang, M., Foley, J., Dori-Hacohen, S., Allan, J.: Probabilistic approaches to con-

troversy detection. In: Proceedings of the 25th ACM International on Conference
on Information and Knowledge Management, pp. 2069–2072 (2016)

27. Jeh, G., Widom, J.: SimRank: a measure of structural-context similarity. In: Pro-
ceedings of the Eighth ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 538–543. ACM (2002)

28. Joulin, A., Grave, E., Bojanowski, P., Mikolov, T.: Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759 (2016)

29. Kleinberg, J.M.: Authoritative sources in a hyperlinked environment. J. ACM
(JACM) 46(5), 604–632 (1999)

30. Kulshrestha, J., Zafar, M.B., Noboa, L.E., Gummadi, K.P., Ghosh, S.: Character-
izing information diets of social media users. In: Ninth International AAAI Con-
ference on Web and Social Media (2015)

31. Kumar, S., Hamilton, W.L., Leskovec, J., Jurafsky, D.: Community interaction
and conflict on the web. In: Proceedings of the 2018 World Wide Web Conference
on World Wide Web, pp. 933–943. International World Wide Web Conferences
Steering Committee (2018)

32. Kupavskii, A., et al.: Prediction of retweet cascade size over time. In: Proceed-
ings of the 21st ACM International Conference on Information and Knowledge
Management, pp. 2335–2338. ACM (2012)

33. LaCour, M.: A balanced news diet, not selective exposure: evidence from a direct
measure of media exposure. In: APSA 2012 Annual Meeting Paper (2015)

34. Lahoti, P., Garimella, K., Gionis, A.: Joint non-negative matrix factorization for
learning ideological leaning on Twitter. In: Proceedings of the Eleventh ACM Inter-
national Conference on Web Search and Data Mining, pp. 351–359. ACM (2018)

35. Matakos, A., Terzi, E., Tsaparas, P.: Measuring and moderating opinion polariza-
tion in social networks. Data Min. Knowl. Disc. 31(5), 1480–1505 (2017). https://
doi.org/10.1007/s10618-017-0527-9

36. Morales, A., Borondo, J., Losada, J.C., Benito, R.M.: Measuring political polar-
ization: Twitter shows the two sides of Venezuela. Chaos: Interdisc. J. Nonlinear
Sci. 25(3), 033114 (2015)

37. Munson, S.A., Lee, S.Y., Resnick, P.: Encouraging reading of diverse political
viewpoints with a browser widget. In: Seventh International AAAI Conference
on Weblogs and Social Media (2013)

38. Pettigrew, T.F., Tropp, L.R.: Does intergroup contact reduce prejudice? Recent
meta-analytic findings. In: Reducing Prejudice and Discrimination, pp. 103–124.
Psychology Press (2013)

https://doi.org/10.1186/s40649-017-0042-6
http://arxiv.org/abs/1607.01759
https://doi.org/10.1007/s10618-017-0527-9
https://doi.org/10.1007/s10618-017-0527-9

Measuring Controversy in Social Networks Through NLP 209

39. Rajadesingan, A., Liu, H.: Identifying users with opposing opinions in Twitter
debates. In: Kennedy, W.G., Agarwal, N., Yang, S.J. (eds.) SBP 2014. LNCS,
vol. 8393, pp. 153–160. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
05579-4 19

40. Ramponi, G., Brambilla, M., Ceri, S., Daniel, F., Di Giovanni, M.: Vocabulary-
based community detection and characterization. In: Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing. SAC 2019, pp. 1043–1050.
Association for Computing Machinery, New York (2019). https://doi.org/10.1145/
3297280.3297384

41. Ramponi, G., Brambilla, M., Ceri, S., Daniel, F., Giovanni, M.D.: Content-based
characterization of online social communities. Inf. Process. Manag., 102133
(2019). https://doi.org/10.1016/j.ipm.2019.102133, http://www.sciencedirect.
com/science/article/pii/S0306457319303516

42. Sapienza, F., Groisman, P.: Distancia de fermat y geodesicas en percolacion
euclidea:teoriaa y aplicaciones en machine learning. M.sc. thesis (2018). http://
cms.dm.uba.ar/academico/carreras/licenciatura/tesis/2018/Sapienza.pdf

43. Shearer, E., Gottfried, J.: News use across social media platforms 2017. Pew
Research Center 7 (2017)

44. Stewart, L.G., Arif, A., Starbird, K.: Examining trolls and polarization with a
retweet network. In: Proceedings of the ACM WSDM, Workshop on Misinforma-
tion and Misbehavior Mining on the Web (2018)

45. Tran, T., Ostendorf, M.: Characterizing the language of online communities and
its relation to community reception. arXiv preprint arXiv:1609.04779 (2016)

46. Trilling, D.: Two different debates? Investigating the relationship between a politi-
cal debate on TV and simultaneous comments on Twitter. Soc. Sci. Comput. Rev.
33(3), 259–276 (2015)

47. Van Der Maaten, L.: Accelerating t-SNE using tree-based algorithms. J. Mach.
Learn. Res. 15(1), 3221–3245 (2014)

48. Vaswani, A., et al.: Attention is all you need. CoRR abs/1706.03762 (2017). http://
arxiv.org/abs/1706.03762

49. Venturini, T., Jacomy, M., Jensen, P.: What do we see when we look at networks.
An introduction to visual network analysis and force-directed layouts. An intro-
duction to visual network analysis and force-directed layouts, 26 April 2019 (2019)

50. Weller, K., Bruns, A., Burgess, J., Mahrt, M., Puschmann, C.: Twitter and Society,
vol. 89. Peter Lang, Bern (2014)

51. Xiao, H.: Bert-as-service (2018). https://github.com/hanxiao/bert-as-service
52. Yang, X., Macdonald, C., Ounis, I.: Using word embeddings in Twitter election

classification. Inf. Retrieval J. 21(2–3), 183–207 (2017). https://doi.org/10.1007/
s10791-017-9319-5

53. Yardi, S., Boyd, D.: Dynamic debates: an analysis of group polarization over time
on Twitter. Bull. Sci. Technol. Soc. 30(5), 316–327 (2010)

54. Zachary, W.W.: An information flow model for conflict and fission in small groups.
J. Anthropol. Res. 33(4), 452–473 (1977)

55. de Zarate, J.M.O., Feuerstein, E.: Vocabulary-based method for quantifying con-
troversy in social media. arXiv preprint arXiv:2001.09899 (2020)

https://doi.org/10.1007/978-3-319-05579-4_19
https://doi.org/10.1007/978-3-319-05579-4_19
https://doi.org/10.1145/3297280.3297384
https://doi.org/10.1145/3297280.3297384
https://doi.org/10.1016/j.ipm.2019.102133
http://www.sciencedirect.com/science/article/pii/S0306457319303516
http://www.sciencedirect.com/science/article/pii/S0306457319303516
http://cms.dm.uba.ar/academico/carreras/licenciatura/tesis/2018/Sapienza.pdf
http://cms.dm.uba.ar/academico/carreras/licenciatura/tesis/2018/Sapienza.pdf
http://arxiv.org/abs/1609.04779
http://arxiv.org/abs/1706.03762
http://arxiv.org/abs/1706.03762
https://github.com/hanxiao/bert-as-service
https://doi.org/10.1007/s10791-017-9319-5
https://doi.org/10.1007/s10791-017-9319-5
http://arxiv.org/abs/2001.09899

Compression

On Repetitiveness Measures
of Thue-Morse Words

Kanaru Kutsukake1, Takuya Matsumoto1, Yuto Nakashima1 ,
Shunsuke Inenaga1,2 , Hideo Bannai3(B) , and Masayuki Takeda1

1 Department of Informatics, Kyushu University, Fukuoka, Japan
{kutsukake.kanaru,matsumoto.takuya,

yuto.nakashima,inenaga,takeda}@inf.kyushu-u.ac.jp
2 PRESTO, Japan Science and Technology Agency, Kawaguchi, Japan

3 M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
hdbn.dsc@tmd.ac.jp

Abstract. We show that the size γ(tn) of the smallest string attractor
of the n-th Thue-Morse word tn is 4 for any n ≥ 4, disproving the
conjecture by Mantaci et al. [ICTCS 2019] that it is n. We also show
that δ(tn) = 10

3+24−n for n ≥ 3, where δ(w) is the maximum over all
k = 1, . . . , |w|, the number of distinct substrings of length k in w divided
by k, which is a measure of repetitiveness recently studied by Kociumaka
et al. [LATIN 2020]. Furthermore, we show that the number z(tn) of
factors in the self-referencing Lempel-Ziv factorization of tn is exactly
2n.

Keywords: String attractors · Thue-Morse words

1 Introduction

Measures which indicate the repetitiveness in a string is a hot and important
topic in the field of string compression. For example, given string w, the size
g(w) of the smallest grammar that derives solely w [5], the number z(w) of
factors in the Lempel-Ziv factorization [13], the number r(w) of runs in the
Burrows-Wheeler transform [4] (RLBWT), and the size b(w) of the smallest bidi-
rectional scheme (or macro schemes) [19]. Recently, Kempa and Prezza proposed
the notion of string attractor [11], and showed that the size γ(w) of the smallest
string attractor of w is a lower bound on the size of the compressed representation
for these dictionary compression schemes. While z(w) and r(w) are known to be
computable in linear time, it is NP-hard to compute g(w), b(w), γ(w) [7,11,19].

To further understand these measures, Mantaci et al. [14] studied the size of
the smallest string attractor in several well-known families of strings. In partic-
ular, they showed a size-2 string attractor for standard Sturmian words which
is the smallest possible. They further showed a string attractor of size n for the
n-th Thue-Morse word tn, and conjectured it to be the smallest.

In this paper, we continue this line of work, and investigate the exact values
of various repetitive measures of the n-th Thue-Morse word tn. More specifically,
c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 213–220, 2020.
https://doi.org/10.1007/978-3-030-59212-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_15&domain=pdf
http://orcid.org/0000-0001-6269-9353
http://orcid.org/0000-0002-1833-010X
http://orcid.org/0000-0002-6856-5185
http://orcid.org/0000-0002-6138-1607
https://doi.org/10.1007/978-3-030-59212-7_15

214 K. Kutsukake et al.

we show that the size γ(tn) of the smallest string attractor of tn is 4 for n ≥ 4,
disproving Mantaci et al.’s conjecture. Furthermore, we give the exact value
δ(tn) = 10

3+24−n for n ≥ 3, of the repetitiveness measure recently studied by
Kociumaka et al. [12], and the size z(tn) = 2n of the self-referencing LZ77
factorization.

We note that for any standard Sturmian word s, z(s) = Θ(log |s|) [1], while
the size r(s) of the RLBWT is always constant [15]. On the other hand, z(tn) and
r(tn) are both Θ(n), i.e., logarithmic in the length |tn| (the former due to [1] as
well as this work, and the latter due to [3]). This shows that Thue-Morse words
are an example where the size of smallest string attractor is not a tight lower
bound on the size of the smallest of the known efficiently computable dictio-
nary compressed representations, namely, min{z(w), r(w)}. We also conjecture
that b(tn) = Θ(n), which would seem to imply that the size of the smallest
string attractor is not a tight lower bound for all currently known dictionary
compression schemes.

Let �(w) denote the size of the Lyndon factorization [6] of w. It is known
that for any w, �(w) = O(g(w)) [8] and �(w) = O(z(w)) [10,21], although it can
be much smaller. Interestingly, it is also known that �(tn) = Θ(n) (Theorem 3.1,
Remark 3.8 of [9]). Thus, if b(tn) = Θ(n), then �(tn) would be an asymptotically
tight lower bound for the smallest size of known dictionary compression schemes
for tn, while γ(tn) is not.

Table 1 summarizes what we know so far.

Table 1. Repetitiveness measures for the n-th Thue-Morse word tn.

Measure Description Value Reference

z(tn) Size of Lempel-Ziv
factorization with
self-reference

2n [1], this work

r(tn) Number of same-character
runs in BWT

2n [3]

�(tn) Size of Lyndon
factorization

⌊3n − 2

2

⌋
[9]

b(tn) Size of smallest
bidirectional scheme

Open N/A

γ(tn) Size of smallest string
attractor

4 (n ≥ 4) This work

δ(tn) Maximum of subword
complexity divided by
subword length

10

3 + 24−n
(n ≥ 3) This work

On Repetitiveness Measures of Thue-Morse Words 215

2 Preliminaries

Let Σ denote a set of symbols called the alphabet. An element of Σ∗ is called a
string. For any k ≥ 0, let Σk denote the set of strings of length exactly k. For any
string w, the length of w is denoted by |w|. For any 1 ≤ i ≤ |w|, let w[i] denote
the ith symbol of w, and for any 1 ≤ i ≤ j ≤ |w|, let w[i..j] = w[i]w[i+1] · · · w[j].

If w = xyz for strings x, y, z ∈ Σ∗, then x, y, z are respectively called a prefix,
substring, suffix of w. We denote by Substr(w), the set of substrings of w.

In this paper, we will only consider the binary alphabet Σ = {a, b}. For
any string w ∈ Σ∗, let w denote the string obtained from w by changing all
occurrences of a (resp. b) to b (resp. a).

Definition 1. (Thue-Morse Words [16,17,20]). The n-th Thue-Morse word
tn is a string over a binary alphabet {a, b} defined recursively as follows: t0 = a,
and for any n > 0, tn = tn−1tn−1.

It is a simple observation that |tn| = 2n for any n ≥ 0.
Below, we define the repetitiveness measures used in this paper:

String attractors [11]. For any string w, a set Γ of positions in w is a string
attractor of w, if, for any substring x of w, there is an occurrence of x in w
that contains a position in Γ . For any string w, we will denote the size of a
smallest string attractor of w as γ(w).

δ [12,18]
For any string w,

δ(w) = max
k=1,..,|w|

(|Σk ∩ Substr(w)|/k
)
.

LZ factorization [13]. For any string w, the LZ factorization of w is the
sequence f1, . . . , fz of non-empty strings such that w = f1 · · · fz, and for
any 1 ≤ i ≤ z, fi is the longest prefix of fi · · · fz which has at least two
occurrences in f1 · · · fi, or, |fi| = 1 otherwise. We denote the size of the LZ
factorization of string w as z(w).

It is known that δ(w) ≤ γ(w) ≤ z(w), r(w) for any w [7,11].

3 Repetitive Measures of Thue-Morse Words

3.1 γ(tn)

Mantaci et al. [14] showed the following explicit string attractor of size n for the
n-th Thue-Morse word.

Theorem 1. (Theorem 8 of [14]). A string attractor of the n-th Thue Morse
word, with n ≥ 3 is

{
2n−1 + 1

} ∪ {3 · 2i−2 | i = 2, . . . , n}.

216 K. Kutsukake et al.

To prove our new upperbound of 4 for the smallest string attractor of tn for
n ≥ 4, we first show the following lemma.

Lemma 1. Let

Nn = {tn−1tn−1} ∪
(

n−2⋃

k=0

{tktk, tktk}
)

.

Then, for any substring w ∈ Substr(tn) and n ≥ 2, there exists s ∈ Nn such that
the occurrence of w in s contains the center of s (i.e., position |s|/2).

Proof. Consider the recursively defined perfect binary tree with tn as the root,
with tn−1 and tn−1 respectively as its left and right children (See Fig. 1). The
leaves consist of either t0 or t0, each corresponding to a position of tn. If |w| = 1,
then, we can choose t1 = t0t0 = ab for a and t2 = t1t1 = abba for b. For any
substring w = tn[i..j] of length at least 2, consider the lowest common ancestor of
leaves corresponding to tn[i] and tn[j]. Each node of the tree is tn = tn−1tn−1 if it
is the root, or otherwise, either tk+1 = tktk or tk+1 = tktk for some 0 ≤ k ≤ n−2.
Since w is a substring that starts in the left child and ends in the right child of
the lowest common ancestor, the occurrence of w must contain the center, and
the lemma holds. ��

Fig. 1. A representation of tn as a perfect binary tree (shown to depth 4) introduced in
the proof of Lemma 1. For each level where segments are labeled with tk, non-labeled
segments represent tk. The black circles depict the four positions in Kn defined in
Theorem 2, at the node at which the center of the parent coincides with the position.

Theorem 2. For any n ≥ 4, the set

Kn =
{
2n−2, 3 · 2n−3, 2n−1, 3 · 2n−2

}

is a string attractor of tn.

On Repetitiveness Measures of Thue-Morse Words 217

Proof. Let w be an arbitrary substring of tn. From Lemma 1, it suffices to show
that any element in Nn has an occurrence in tn whose center coincides with
a position in Kn. tn−1tn−1, tn−2tn−2, tn−2tn−2, and tn−3tn−3 each have an
occurrence whose center coincides respectively with position 2n−1, 2n−2, 3 ·2n−2,
and 3 · 2n−3 which are all elements of Kn (see Fig. 1). Furthermore, there is an
occurrence of tn−3tn−3 whose center coincides with that of tn−1tn−1, and thus
with an element of Kn. More generally, for any 2 ≤ k ≤ n−2, each occurrence of
tktk implies an occurrence of tk−2tk−2 whose centers coincide. This is because

tktk = tk−1tk−1tk−1tk−1

= tk−1tk−2tk−2tk−2tk−2tk−1.

The same argument holds for tk−2tk−2 by considering tktk. The theorem follows
from a simple induction. ��
Theorem 3. γ(tn) = 4 for any n ≥ 4.

Proof. Theorem 2 implies γ(tn) ≤ 4. From Theorem 4 shown in the next subsec-
tion, we have δ(tn) > 3 for n ≥ 6. Since γ(tn) is an integer which cannot be
smaller than δ(tn), it follows that γ(tn) ≥ 4 for n ≥ 6. For n = 4, 5, it can be
shown by exhaustive search that there is no string attractor of size 3. ��

3.2 δ(tn)

Brlek [2] investigated the number of distinct substrings of length m in tn, and
gave an exact formula. Below is a summary of his result which will be a key to
computing δ(tn).

Lemma 2 (Proposition 4.2, Corollary 4.2.1, Proposition 4.4 of [2]). The
number Pn(m) of distinct substrings of length m ≥ 3 in tn (n ≥ 3) is:

Pn(m) =

⎧
⎪⎨

⎪⎩

2n − m + 1 2n−2 + 1 ≤ m ≤ 2n

6 · 2q−1 + 4p 3 ≤ m ≤ 2n−2, 0 < p ≤ 2q−1

8 · 2q−1 + 2p 3 ≤ m ≤ 2n−2, 2q−1 < p ≤ 2q

where p, q are values uniquely determined by m = 2q + p + 1 and 0 < p ≤ 2q.

Theorem 4.

δ(tn) =

⎧
⎪⎨

⎪⎩

1 n = 0
2 n = 1, 2

10
3+24−n n ≥ 3

Proof. We only consider n ≥ 3 below. The number of distinct substrings of
length 1 and 2 in tn, are respectively 2 and 4. For 2n−2 + 1 ≤ m ≤ 2n,

max
2n−2+1≤m≤2n

Pn(m)
m

= max
2n−2+1≤m≤2n

{
2n + 1

m
− 1

}
=

2n + 1
2n−2 + 1

−1 =
3

1 + 22−n
.

218 K. Kutsukake et al.

For 3 ≤ m ≤ 2n−2 and fixed q, it is easy to verify that Pn(m)/m is increasing
when 0 < p ≤ 2q−1, and non-increasing when 2q−1 < p ≤ 2q, because

(
6 · 2q−1 + 4p

2q + p + 1

)′
=

4(2q + p + 1) − (6 · 2q−1 + 4p)
(2q + p + 1)2

=
2q + 4

(2q + p + 1)2
> 0

and
(

8 · 2q−1 + 2p

2q + p + 1

)′
=

2(2q + p + 1) − (8 · 2q−1 + 2p)
(2q + p + 1)2

=
(2 − 4 · 2q−1)
(2q + p + 1)2

≤ 0.

Also note that 6 · 2q−1 +4p = 8 · 2q−1 +2p when p = 2q−1. Therefore, for a fixed
q, the maximum value of Pn(m)

m is obtained when p = 2q−1, i.e., 6·2q−1+4·2q−1

2q+2q−1+1 =
10·2q−1

3·2q−1+1 = 10
3+21−q . Since this is increasing in q, we have that max3≤m≤2n−2

Pn(m)
m

is obtained by choosing the largest possible q = n − 3 (where p = 2q−1 = 2n−4,
and thus m = 2n−3 + 2n−4 + 1 = 3 · 2n−4 + 1 ≤ 2n−2), which gives us the final
result δ(tn) = max{ 2

1 , 4
2 , 10

3+24−n , 3
1+22−n } = 10

3+24−n . ��

3.3 LZ77

We consider the size z(tn) of the LZ factorization. Although Berstel and
Savelli [1] have given a complete characterization of the LZ factorization for
the infinite Thue-Morse word, we show an alternate proof in terms of the n-th
Thue-Morse word. Below is an important lemma, again by Brlek, we will use.

Lemma 3 (Corollary 4.1.1 of [2]). The word tn has one and only one occur-
rence of every factor w such that |w| ≥ 2n−2 + 1.

Theorem 5. For any n ≥ 1, z(tn) = 2n.

Proof. Clearly, z(t1) = 2. Since tk = tk−1tk−1 = tk−2tk−2tk−2tk−2, it is easy
to see that z(tk) ≤ z(tk−1) + 2, because tk−2 and tk−2 respectively have earlier
occurrences in tk. Thus, z(tn) ≤ 2n. On the other hand, Lemma3 implies that
the substring tk[2k−1..3 · 2k−2] of length 2k−2 + 1 cannot be a single LZ factor,
implying that position 2k−1(= |tk−1|) and position 3 · 2k−2(> |tk−1|) belong to
different factors. Similarly, the substring t[3 · 2k−2..2k] of length 2k−2 +1 cannot
be a single LZ factor, implying that position 3 · 2k−2 and position 2k belong to
different factors. Thus, z(tk) ≥ z(tk−1) + 2, implying z(tn) ≥ 2n. ��

Acknowledgments. This work was supported by JSPS KAKENHI Grant Numbers
JP18K18002 (YN), JP17H01697 (SI), JP16H02783, JP20H04141 (HB), JP18H04098
(MT), and JST PRESTO Grant Number JPMJPR1922 (SI).

References

1. Berstel, J., Savelli, A.: Crochemore factorization of Sturmian and other infinite
words. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp.
157–166. Springer, Heidelberg (2006). https://doi.org/10.1007/11821069 14

https://doi.org/10.1007/11821069_14

On Repetitiveness Measures of Thue-Morse Words 219

2. Brlek, S.: Enumeration of factors in the Thue-Morse word. Discrete Appl. Math.
24(1), 83–96 (1989). https://doi.org/10.1016/0166-218X(92)90274-E

3. Brlek, S., Frosini, A., Mancini, I., Pergola, E., Rinaldi, S.: Burrows-Wheeler trans-
form of words defined by morphisms. In: Colbourn, C.J., Grossi, R., Pisanti, N.
(eds.) IWOCA 2019. LNCS, vol. 11638, pp. 393–404. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25005-8 32

4. Burrows, M., Wheeler, D.J.: A block-sorting lossless data compression algorithm.
SRC Research Report 124 (1994)

5. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005). https://doi.org/10.1109/TIT.2005.850116

6. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus, IV. The quo-
tient groups of the lower central series. Ann. Math. 68(1), 81–95 (1958).
http://www.jstor.org/stable/1970044

7. Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro, G., Prezza, N.:
Optimal-time dictionary-compressed indexes (2019). http://arxiv.org/abs/1811.
12779v6

8. I, T., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: Faster Lyndon factor-
ization algorithms for SLP and LZ78 compressed text. In: Kurland, O., Lewenstein,
M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 174–185. Springer, Cham
(2013). https://doi.org/10.1007/978-3-319-02432-5 21

9. Ido, A., Melançon, G.: Lyndon factorization of the Thue-Morse word and its rela-
tives. Discrete Math. Theor. Comput. Sci. 1(1), 43–52 (1997). http://dmtcs.episci
ences.org/233

10. Kärkkäinen, J., Kempa, D., Nakashima, Y., Puglisi, S.J., Shur, A.M.: On the size
of Lempel-Ziv and Lyndon factorizations. In: Vollmer, H., Vallée, B. (eds.) 34th
Symposium on Theoretical Aspects of Computer Science, STACS 2017. LIPIcs,
Hannover, Germany, 8–11 March 2017, vol. 66, pp. 45:1–45:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2017). https://doi.org/10.4230/LIPIcs.STACS.
2017.45

11. Kempa, D., Prezza, N.: At the roots of dictionary compression: string attractors. In:
Diakonikolas, I., Kempe, D., Henzinger, M. (eds.) Proceedings of the 50th Annual
ACM SIGACT Symposium on Theory of Computing (STOC 2018), pp. 827–840.
ACM (2018). https://doi.org/10.1145/3188745.3188814

12. Kociumaka, T., Navarro, G., Prezza, N.: Towards a definitive measure of repeti-
tiveness. In: Proceedings of the 14th Latin American Symposium on Theoretical
Informatics (LATIN) (2020, to appear). https://arxiv.org/abs/1910.02151

13. Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory
22(1), 75–81 (1976). https://doi.org/10.1109/TIT.1976.1055501

14. Mantaci, S., Restivo, A., Romana, G., Rosone, G., Sciortino, M.: String attractors
and combinatorics on words. In: Proceedings of the 20th Italian Conference on
Theoretical Computer Science (ICTCS 2019), pp. 57–71 (2019). http://ceur-ws.
org/Vol-2504/paper8.pdf

15. Mantaci, S., Restivo, A., Sciortino, M.: Burrows-Wheeler transform and Sturmian
words. Inf. Process. Lett. 86(5), 241–246 (2003). https://doi.org/10.1016/S0020-
0190(02)00512-4

16. Morse, M.: Recurrent geodesics on a surface of negative curvature. Trans. Am.
Math. Soc. 22, 84–100 (1921)

17. Prouhet, E.: Mémoire sur quelques relations entre les puissances des nombres. CR
Acad. Sci. Paris Sér. 133, 225 (1851)

https://doi.org/10.1016/0166-218X(92)90274-E
https://doi.org/10.1007/978-3-030-25005-8_32
https://doi.org/10.1109/TIT.2005.850116
http://www.jstor.org/stable/1970044
http://arxiv.org/abs/1811.12779v6
http://arxiv.org/abs/1811.12779v6
https://doi.org/10.1007/978-3-319-02432-5_21
http://dmtcs.episciences.org/233
http://dmtcs.episciences.org/233
https://doi.org/10.4230/LIPIcs.STACS.2017.45
https://doi.org/10.4230/LIPIcs.STACS.2017.45
https://doi.org/10.1145/3188745.3188814
https://arxiv.org/abs/1910.02151
https://doi.org/10.1109/TIT.1976.1055501
http://ceur-ws.org/Vol-2504/paper8.pdf
http://ceur-ws.org/Vol-2504/paper8.pdf
https://doi.org/10.1016/S0020-0190(02)00512-4
https://doi.org/10.1016/S0020-0190(02)00512-4

220 K. Kutsukake et al.

18. Raskhodnikova, S., Ron, D., Rubinfeld, R., Smith, A.D.: Sublinear algorithms for
approximating string compressibility. Algorithmica 65(3), 685–709 (2013). https://
doi.org/10.1007/s00453-012-9618-6

19. Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM
29(4), 928–951 (1982). https://doi.org/10.1145/322344.322346

20. Thue, A.: Über unendliche zeichenreihen. Norske vid. Selsk. Skr. Mat. Nat. Kl. 7,
1–22 (1906)

21. Urabe, Y., Nakashima, Y., Inenaga, S., Bannai, H., Takeda, M.: On the size of
overlapping Lempel-Ziv and Lyndon factorizations. In: 30th Annual Symposium
on Combinatorial Pattern Matching (CPM 2019), pp. 29:1–29:11 (2019). https://
doi.org/10.4230/LIPIcs.CPM.2019.29

https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1007/s00453-012-9618-6
https://doi.org/10.1145/322344.322346
https://doi.org/10.4230/LIPIcs.CPM.2019.29
https://doi.org/10.4230/LIPIcs.CPM.2019.29

Practical Random Access
to SLP-Compressed Texts

Travis Gagie1(B) , Tomohiro I2 , Giovanni Manzini3 , Gonzalo Navarro4 ,
Hiroshi Sakamoto2 , Louisa Seelbach Benkner5 ,

and Yoshimasa Takabatake2

1 Dalhousie University, Halifax, Canada
travis.gagie@dal.ca

2 Kyushu Institute of Technology, Fukuoka, Japan
3 University of Eastern Piedmont, Alessandria, Italy
4 CeBiB & DCC, University of Chile, Santiago, Chile

5 University of Siegen, Siegen, Germany

Abstract. Grammar-based compression is a popular and powerful app-
roach to compressing repetitive texts but until recently its relatively
poor time-space trade-offs during real-life construction made it imprac-
tical for truly massive datasets such as genomic databases. In a recent
paper (SPIRE 2019) we showed how simple pre-processing can dramati-
cally improve those trade-offs, and in this paper we turn our attention to
one of the features that make grammar-based compression so attractive:
the possibility of supporting fast random access. This is an essential
primitive in many algorithms that process grammar-compressed texts
without decompressing them and so many theoretical bounds have been
published about it, but experimentation has lagged behind. We give a
new encoding of grammars that is about as small as the practical state
of the art (Maruyama et al., SPIRE 2013) but with significantly faster
queries.

1 Background

It is widely acknowledged that we now have more data than we can properly
handle, and one possible solution is to compress it in such a way that we can
later process it quickly without decompressing it. Since many of our largest
and most important datasets—such as genomic databases—are highly repeti-
tive texts, grammar-based schemes offer excellent compression ratios while still
admitting algorithms for many natural problems that run in times polynomial
in the sizes of the compressed representations.

Probably the most popular such schemes are those producing straight-line
programs (SLPs), which are context-free grammars in Chomsky normal form
that each generate exactly one string; we refer the reader to Lohrey’s [23] and
Navarro’s [25] surveys for more details of SLPs, SLP algorithmics, SLP-based
data structures, and related techniques. Since many algorithms that process
SLPs depend on random access to the compressed texts as a primitive operation,
c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 221–231, 2020.
https://doi.org/10.1007/978-3-030-59212-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_16&domain=pdf
http://orcid.org/0000-0003-3689-327X
http://orcid.org/0000-0001-9106-6192
http://orcid.org/0000-0002-5047-0196
http://orcid.org/0000-0002-2286-741X
http://orcid.org/0000-0002-3470-9187
http://orcid.org/0000-0002-3204-3801
http://orcid.org/0000-0002-4566-8974
https://doi.org/10.1007/978-3-030-59212-7_16

222 T. Gagie et al.

there have been several important theoretical papers written about supporting
it, which we review in Appendix A.

Unfortunately, there have not been as many breakthroughs about supporting
random access to SLP-compressed texts in practice. Block trees [3] are practical,
and resemble SLPs in many ways with similar theoretical bounds, but they
are not SLPs nor even context-free grammars and so researchers studying SLP
algorithmics may wish to avoid them. Variant call format [8] and relative Lempel-
Ziv [21] are also practical but even less like SLPs.

In the real world, users still rely on Larsson and Moffat’s [22] RePair algo-
rithm, even though the SLPs it produces are not optimal in the worst case and it
is not known if they are even always close to optimal.1 Similarly, users who need
random access to SLP-compressed strings often just augment the SLPs produced
by RePair and näıvely encode them even though, as far as we are aware, there
are no good bounds on their heights and thus no good bounds on the access
times (unless we modify the SLPs at the risk of making them impractical). The
best encoding we know of is due to Maruyama et al. [24], which is significantly
smaller than the näıve encoding but also significantly slower.

Practitioners’ main concern about RePair seems to be the large constants in
its time-space trade-offs for construction. For example, Navarro’s implementation
of RePair2 compresses a 3.0 GB file containing copies of human chromosome 19
from 50 distinct genomes into 23 MB and a 5.9 GB file containing copies from
100 genomes into 24 MB, but on a commodity computer it takes 84 min and 11
GB of workspace for the former and 11 hours and 18 GB of workspace for the
latter [13]. Although several alternatives have been proposed [4,11,16,26,30],
until recently the most practical option for files of more than a few gigabytes
was SOLCA [33], which compresses the 3.0 GB file into 40 MB using 11 min and
310 MB of workspace, and the 5.9 GB file into 45 MB using 22 min and 310 MB of
workspace, respectively. In addition to achieving noticeably worse compression
than RePair, even SOLCA took over 3.6 h to compress a 59 GB file containing
copies of chromosome 19 from 1000 genomes, although it used only 783 MB of
workspace and produced an SLP of only 129 MB.

In a recent paper [13] we showed how simple pre-processing with context-
triggered piecewise hashing (CTPH) can dramatically improve the trade-offs for
both RePair and SOLCA. For CTPH, we run a relatively short sliding win-
dow over the text and insert a phrase break whenever the Karp-Rabin hash
of the window’s contents is 0 modulo some parameter p.3 Although it works
poorly in the worst case even on repetitive texts—for example, the string an is
either parsed into a single phrase or into nearly n of them—in practice on most
1 RePair is probably most commonly used in natural-language processing, where it is

viewed as an implementation of Gage’s [12] byte-pair encoding and used for word
segmentation in neural machine translation [31]; we refer readers to Gallé’s [14]
recent survey for more discussion.

2 https://users.dcc.uchile.cl/∼gnavarro/software/repair.tgz.
3 We realized after [13] went to press that the worst-case approximation ratios in

Theorems 1 and 2 should be multiplied by the length of the sliding window, but this
does not affect our approach’s correctness or practicality.

https://users.dcc.uchile.cl/~gnavarro/software/repair.tgz

Practical Random Access to SLP-Compressed Texts 223

repetitive texts CTPH produces a dictionary of distinct phrases and a parse that
are, together, much smaller than the text. We note in passing the similarity of
the high-level ideas behind prefix-free parsing and string synchronizing sets [19],
which have good worst-case bounds and seem practical for small files [9] but may
not scale as easily to tens or hundreds of gigabytes.

We first experimented with CTPH for building Burrows-Wheeler Transforms
(BWT) for massive texts [6,20], because we can quickly build the run-length
compressed BWT from the dictionary and the parse in workspace bounded in
terms of their combined size. It then occurred to us that, if we build SLPs for the
dictionary and the parse, with the SLP for the dictionary restricted such that
each phrase is the complete expansion of some non-terminal, then we can easily
combine those SLPs to obtain an SLP for the text: we replace each terminal
in the SLP for the parse—which is a phrase identifier—by the non-terminal in
the SLP for the dictionary whose expansion is that phrase. For example, on the
same commodity computer, applying RePair to the dictionary and parse of the
59 GB file containing 1000 copies of chromosome 19, compressed it by a factor
of 1000 in 21 min using 7.0 GB of workspace, and applying SOLCA compressed
it by a factor of over 400 in 44 min using only 4.6 MB of workspace.

Now that grammar-based compression itself is reasonably scalable, it is time
to turn our attention to making SLP algorithmics practical, and an obvious
starting place is improving the practicality of random access.

2 Design of the New Grammar Encoding

Random access to an SLP-compressed text works by descending the parse tree
and computing the expansion sizes of the non-terminals we visit. In particular,
at each non-terminal, we compute the expansion sizes of its children, in order to
know to which we should descend. The main idea of our new encoding is that
symbols’ expansion sizes can tell us a lot about their identities, so we should
tightly integrate how we encode these two kinds of information.

If the non-terminals (excluding the start symbol, unless it expands to two
symbols in one step) in an SLP have d distinct expansion sizes, then we build
a minimal perfect hash function (MPHF) h that maps those sizes bijectively to
the numbers in [0, d− 1]. In this paper we use Esposito, Graf and Vigna’s recent
RecSplit [10] MPHF implementation, which occupies only about 1.56d bits. We
note that we cannot recover the d sizes from the MPHF—given any other size, it
will still return a hash value in the range [0, d − 1]—so in our algorithm we will
be careful to query the MPHF only with numbers we know are non-terminals’
expansion sizes in our SLP.

We group the non-terminals by their expansion sizes; sort the groups by the
hash values of the expansion sizes of the non-terminals in them; and replace each
non-terminal by a triple consisting of the expansion size of its left child, and the
offsets of its children in their groups (or, if they are terminals, their offsets in
the alphabet). If the start symbol expands to more than one symbol in one step,
then we store a bitvector indicating the lengths of the expansions of the symbols

224 T. Gagie et al.

V

A T

G

W

Z

X

T A

V

A T

G

W A

V

A T

C

Y $

V

A T

G

W

Z

X

T A

A

V

A T

G

W

V

A T

C

Y

S S → ZWAY$ZYAW
Z → WX
Y → CV
X → TA
W → GV
V → AT

Fig. 1. An SLP (right) for GATTAGATACAT$GATTACATAGAT and its parse tree
(left).

it expands to in one step, and we store the offset of each of those symbols in its
group (or its offset in the alphabet if it is a terminal).

The random access to the input text T works as follows. Suppose we know
T [i] is the jth character in the expansion of the kth non-terminal, say X, in the
group of non-terminals with expansion size �. Using some small auxiliary data
structures, we can

1. look up X’s left child’s expansion size �′;
2. compute X’s right child’s expansion size �′′ = � − �′;
3. look up X’s left child’s offset k′ in the group of non-terminals with expansion

size �′ (or its offset in the alphabet if �′ = 1 so it is a terminal);
4. look up X’s right child’s offset k′′ in the group of non-terminals with expan-

sion size �′′ (or its offset in the alphabet if �′′ = 1 so it is a terminal);
5. if j ≤ �′ then set j′ = j and recursively find the j′th character in the expansion

of the k′th non-terminal in the group of non-terminals with expansion size �′

(or just return the character if it is a terminal);
6. otherwise, j > �′ and we set j′′ = j−�′ and recursively find the j′′th character

in the expansion of the k′′th non-terminal in the group of non-terminals with
expansion size �′′ (or just return the character if it is a terminal).

Since T [i] is the (i + 1)st character in the expansion of the only non-terminal
with expansion size n, we can descend down the parse tree in time proportional
to its height. If we push the offsets and expansion sizes on a stack as we do
so, then we can traverse the parse tree starting from the (i + 1)st leaf and thus
extract subsequent characters of T in constant amortized time per character.

Encoding Example. Consider the SLP for GATTAGATACAT$GATTACATA-
GAT that is shown with its parse tree in Fig. 1. The 3 distinct sizes of the non-
terminals’ expansions (excluding S) are 5 (for Z), 3 (for W and Y) and 2 (for
V and X). If we use an MPHF h with h(5) = 1, h(3) = 2 and h(2) = 0, then
we can sort the non-terminals into the order V, X; Z; W, Y, with semicolons
showing the divisions between the groups.

Assuming the alphabet is {$,A,C,G,T}, we replace the non-terminals by
the triples (1, 1, 4), (1, 4, 1); (3, 0, 1); (1, 3, 0), (1, 2, 0), with the semicolons again
showing the divisions between the groups. For example non-terminal V is rep-
resented by (1, 1, 4) since its left child, the terminal A, has expansion size 1,
and its offset among the terminals is 1, while the second child, the terminal T,
has offset 4. Finally, we encode the rule involving the initial symbol S as the

Practical Random Access to SLP-Compressed Texts 225

bitvector 0000100110011000010011001, which is the concatenation of the unary
representations of the expansion sizes of the symbols on the rule’s right-hand
side, and the sequence 0, 0, 1, 1, 0, 0, 1, 1, 0 giving the offset of each symbol in its
group.

To extract the 17th character of the text, we start by performing a rank
query and two select queries on the bitvector for S, which together tell us that
the 17th character is the 4th character in the expansion of the 6th symbol on
the right-hand side of the rule for S, and that symbol expands into 5 characters.
Checking the sequence for S, we see that the 6th symbol on the right-hand side of
the rule for S has rank 0 among all the non-terminals that expand to 5 characters
(note there is only one such non-terminal, Z).

We compute h(5) = 1 and check the triple with rank 0 in the group with rank
1—i.e., (3, 0, 1)—which tells us that Z’s left child expands into 3 characters, so
its right child X expands into 2 characters and the 4th character in the expansion
of Z is the 1st character in the expansion of X, and that X has rank 1 among
the non-terminals that expand into 2 characters. Note that we never actually
learn or use the identifiers Z or X in the actual data structure: we use them here
just to ease the presentation. We compute h(2) = 0 and check the triple with
rank 1 in the group with rank 0—i.e., (1, 4, 1)—which tells us that X’s left child
expands into 1 character, so it is a terminal, and it has rank 4 in the alphabet,
meaning it is a T.

Admittedly, for this small example we do not save space compared to the
näıve encoding, but our experiments show that it pays to carefully integrate our
encodings of the symbols in the parse and its shape.

3 Experiments

We compared our encoding with the näıve encoding and the state-of-the-art
encoding by Maruyama et al. [24]; we refer to these as OURS, NAIVE and MTSS,
respectively. For the näıve encoding of an SLP for a string of length n with r
rules, we store the following information in plain arrays:

1. the right-hand sides of rules in 2r lg(r + σ) bits,
2. the expansion length for every non-terminal in r lg n bits.

To support random access to the triples in our encoding and to store the bitvec-
tor for the start rule, we used SD bitvectors from the SDSL 2.0 library4. Our
experiments ran on a Xeon E5-1650V3 (6core/12thread 3.5 GHz) machine with
32 GB memory.

In this section we describe only our main experimental results; additional
results can be found in AppendixB. For our main experiments, we used the
same 59 GB file containing 1000 copies of chromosome 19 that we used in our
previous work [13], downloaded from the 1000 Genomes Project [34]; the effective
alphabet size was 5. When we compress the dictionary and parse with Navarro’s

4 https://github.com/simongog/sdsl-lite.

https://github.com/simongog/sdsl-lite

226 T. Gagie et al.

Table 1. Extraction times in microseconds with the three encodings and various sub-
string length.

substring length NAIVE (217 MB) MTSS (86 MB) OURS (81 MB)

1 1.8 25.9 6.9

10 2.2 29.6 9.3

100 5.2 63.5 31.7

1000 31.6 394.6 249.6

implementation of RePair combined with CTPH, as described in Sect. 1, the
resulting 59 MB SLP contains almost 13 million rules with almost 120 000 dis-
tinct expansion lengths and almost 4.5 million symbols on the right-hand side
of the start rule; the height of the parse tree is 43.

Table 1 shows our main experimental results: for each of the given substring
lengths and each of the encodings, we extracted that many consecutive charac-
ters from 10000 pseudo-randomly chosen positions in the compressed file and
averaged the extraction times. The näıve encoding is obviously the largest but
also the fastest: it takes 217 MB, access to a single character taking 1.8µs, and
access to ten consecutive characters taking 2.2µs. Maruyama et al.’s encoding
takes 86 MB—much closer to the size of the unaugmented SLP—but access
to one character takes 26µs and access to ten takes 30µs. We encode the aug-
mented grammar in 81 MB—even less than Maruyama et al.—with access to one
character taking 6.9µs and access to ten taking 9.3µs. Although our encoding
is still significantly slower than the näıve encoding, it is only a little more than
a third of the size. The size difference is particularly pronounced if we compare
how much larger the näıve encoding and ours are than the unaugmented SLP:
217/59 ≈ 3.7 versus 81/59 ≈ 1.4. Building our encoding is also reasonably fast,
taking only 18 seconds with the source code we have made publicly available at
https://github.com/itomomoti/ShapedSlp.

For some applications, we are interested in processing many queries at once,
which offers us the opportunity to exploit parallelism. Figure 2 shows the average
speedup using up to 8 threads. Since the scale makes it difficult to discern the
height of the rightmost points, we note that NAIVE, MTSS and OURS with 8
threads use 0.38, 6.56 and 1.41µs for length 1; 0.41, 7.01 and 1.86 for length 10;
and 0.78, 13.47 and 7.07 for length 100.

Acknowledgements. TG was partly funded by NSERC RGPIN-2020-07185, Canada,
and Basal Funds FB0001, Chile. TI, HS and YT were partly funded by JSPS KAKENHI
grants 19K20213, 17H01791 and 18K18111, respectively. GM was partly funded by
MIUR-PRIN grant 2017WR7SHH. GN was partly funded by Basal Funds FB0001 and
Fondecyt grant 1-200038, Chile. LSB was partly funded by DFG project LO 748/10-2
(QUANT-KOMP) and received travel funds from the EU’s Horizon 2020 MSC RISE
program (grant 690941).

https://github.com/itomomoti/ShapedSlp

Practical Random Access to SLP-Compressed Texts 227

A Theoretical Bounds

Charikar et al. [7] and Rytter [28,29] independently showed how, given a text T of
length n over an alphabet of size σ whose smallest SLP has g∗ rules, in O(n log σ)
time we can build an SLP for T with O(g∗ log(n/g∗)) rules and height O(log n).
We can augment the non-terminals of this SLP with the sizes of their expansions
to obtain an O(g∗ log(n/g∗))-space data structure supporting access to any �
consecutive characters of T in O(log n+�) time. Bille et al. [5] showed how we can
take any SLP for T with g rules, regardless of height, and build a data structure
of size O(g) (measured in words of bit length log n) that also supports access
to any � consecutive characters in O(log n + �) time, while Verbin and Yu [35]
proved we generally cannot support O(log1−ε n)-time random access to T with a
poly(g)-space data structure. Belazzougui et al. [2] showed how we can support
O(log n/ log log n)-time random access to T with an O(g logε n)-space grammar.
Prezza [27] sidestepped Verbin and Yu’s lower bound to obtain constant-time
random access to T with an O(gnε)-space grammar (after Belazzougui et al. [3]
achieved that tradeoff with block trees). Recently, Ganardi, Jeż and Lohrey [15]
showed how we can turn any SLP for T with g rules into an SLP for T with
O(g) rules and height O(log n), thus simplifying many previous proofs.

Regarding SLPs produced with RePair, Charikar et al. [7] showed they can
be an Ω(log1/2 n) factor larger than the smallest possible SLPs, and Hucke, Jeż
and Lohrey [1,18] improved that lower bound to Ω(log n/ log log n). Charikar
et al. showed they are always within an O((n/ log n)2/3)-factor of the smallest
SLPs and this is still the best upper bound known, although Hucke [17] showed
they are within a log2 3-factor for unary strings.

B Additional experimental results

We are mainly interested in compressing human DNA but we performed experi-
ments with other datasets to check our approach’s robustness: 11264 Salmonella
genomes (salx11264) from the GenomeTrakr project [32], and two repetitive files
from the Pizza & Chili corpus5 (einstein.en.txt and kernel).

As can be seen from Tables 2 and 3 below and comparing Fig. 2 to Fig. 3, our
results are not as good for the other datasets as for chr19x1000 but our general
conclusions are supported: MTSS and OURS are about the same size and several
times smaller than NAIVE; NAIVE is by far the fastest to build, with MTSS
slower by almost an order of magnitude and OURS slower even than that by a
factor of 4 to 7; NAIVE is also the fastest to answer queries, followed by OURS
and then MTSS. Since the scale again makes it difficult to discern the height of
the rightmost points, we note that NAIVE, MTSS and OURS with 8 threads use
0.53, 9.34 and 3.76µs for salx11264; 0.15, 6.16 and 1.84 for einstein.en.txt; and
0.53, 22.18 and 12.84 for kernel.

5 http://pizzachili.dcc.uchile.cl/.

http://pizzachili.dcc.uchile.cl/

228 T. Gagie et al.

Fig. 2. Average time to answer an expansion query using multiple threads.

Table 2. Statistics of our datasets: name, alphabet size, length (in bytes), number of
symbols on the right-hand side of the start rule, number of rules, number of distinct
expansion lengths, and height of the grammar.

dataset σ n s r d h

chr19x1000 5 59125115010 4495360 12898128 118889 43

salx11264 4 57033515255 32579379 199121788 332808 18658

einstein.en.txt 139 467626544 62473 100611 17343 1353

kernel 160 257961616 69427 1057914 48453 5820

Table 3. Sizes of the encodings and construction times.

Dataset Size (bytes) Construction time (ms)

NAIVE MTSS OURS NAIVE MTSS OURS

chr19x1000 217418909
(0.37%)

86362255
(0.15%)

80629662
(0.14%)

524 4576 17649

salx11264 2896264885
(5.1%)

799395665
(1.4%)

956575138
(1.7%)

5457 53147 370175

einstein.en.txt 1896040
(0.41%)

674979
(0.14%)

631698
(0.14%)

3 22 92

kernel 12964629
(5.0%)

4473636
(1.7%)

5044020
(2.0%)

30 158 866

Fig. 3. Average time to answer an expansion query with expansion length 10 using
multiple threads.

Practical Random Access to SLP-Compressed Texts 229

References

1. Bannai, H., et al.: The smallest grammar problem revisited. CoRR, abs/1908.06428
(2019)

2. Belazzougui, D., Cording, P.H., Puglisi, S.J., Tabei, Y.: Access, rank, and select in
grammar-compressed strings. In: Bansal, N., Finocchi, I. (eds.) ESA 2015. LNCS,
vol. 9294, pp. 142–154. Springer, Heidelberg (2015). https://doi.org/10.1007/978-
3-662-48350-3 13

3. Belazzougui, D., et al.: Queries on LZ-bounded encodings. In: 2015 Data Compres-
sion Conference, pp. 83–92. IEEE (2015)

4. Bille, P., Li Gørtz, I., Prezza, N.: Space-efficient re-pair compression. In: 2017 Data
Compression Conference (DCC), pp. 171–180. IEEE (2017)

5. Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Ran-
dom access to grammar-compressed strings and trees. SIAM J. Comput. 44(3),
513–539 (2015)

6. Boucher, C., Gagie, T., Kuhnle, A., Langmead, B., Manzini, G., Mun, T.: Prefix-
free parsing for building big BWTs. Algorithms Mol. Biol. 14(1), 13 (2019).
https://doi.org/10.1186/s13015-019-0148-5

7. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory
51(7), 2554–2576 (2005)

8. Danecek, P., et al.: The variant call format and VCFtools. Bioinformatics 27(15),
2156–2158 (2011)

9. Dinklage, P., Fischer, J., Herlez, A., Kociumaka, T., Kurpicz, F.: Practical perfor-
mance of space efficient data structures for longest common extensions. In: Pro-
ceedings of the Twenty-Eighth European Symposium on Algorithms (ESA) (2020,
to appear)

10. Esposito, E., Graf, T.M., Vigna, S.: RecSplit: minimal perfect hashing via recur-
sive splitting. In: 2020 Proceedings of the Twenty-Second Workshop on Algorithm
Engineering and Experiments (ALENEX), pp. 175–185. SIAM (2020)

11. Furuya, I., Takagi, T., Nakashima, Y., Inenaga, S., Bannai, H., Kida, T.: MR-
RePair: grammar compression based on maximal repeats. In: Data Compression
Conference. DCC 2019, Snowbird, UT, USA, 26–29 March 2019, pp. 508–517 (2019)

12. Gage, P.: A new algorithm for data compression. C Users J. 12(2), 23–38 (1994)
13. Gagie, T., I, T., Manzini, G., Navarro, G., Sakamoto, H., Takabatake, Y.: Rpair:

rescaling RePair with Rsync. In: Brisaboa, N.R., Puglisi, S.J. (eds.) SPIRE 2019.
LNCS, vol. 11811, pp. 35–44. Springer, Cham (2019). https://doi.org/10.1007/978-
3-030-32686-9 3

14. Gallé, M.: Investigating the effectiveness of BPE: the power of shorter sequences.
In: Inui, K., Jiang, J., Ng, V., Wan, X. (eds.) Proceedings of the 2019 Conference
on Empirical Methods in Natural Language Processing and the 9th International
Joint Conference on Natural Language Processing, EMNLP-IJCNLP 2019, Hong
Kong, China, 3–7 November 2019, pp. 1375–1381. Association for Computational
Linguistics (2019)

15. Ganardi, M., Jeż, A., Lohrey, M.: Balancing straight-line programs. In: 60th IEEE
Annual Symposium on Foundations of Computer Science. FOCS 2019, Baltimore,
Maryland, USA, 9–12 November 2019, pp. 1169–1183 (2019)

16. Gańczorz, M., Jeż, A.: Improvements on re-pair grammar compressor. In: 2017
Data Compression Conference (DCC), pp. 181–190. IEEE (2017)

17. Hucke, D.: Approximation ratios of RePair, LongestMatch and Greedy on unary
strings. In: Brisaboa, N.R., Puglisi, S.J. (eds.) SPIRE 2019. LNCS, vol. 11811, pp.
3–15. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32686-9 1

https://doi.org/10.1007/978-3-662-48350-3_13
https://doi.org/10.1007/978-3-662-48350-3_13
https://doi.org/10.1186/s13015-019-0148-5
https://doi.org/10.1007/978-3-030-32686-9_3
https://doi.org/10.1007/978-3-030-32686-9_3
https://doi.org/10.1007/978-3-030-32686-9_1

230 T. Gagie et al.

18. Hucke, D., Jeż, A., Lohrey, M.: Approximation ratio of RePair. CoRR,
abs/1703.06061 (2017)

19. Kempa, D., Kociumaka, T.: String synchronizing sets: sublinear-time BWT con-
struction and optimal LCE data structure. In: Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, pp. 756–767 (2019)

20. Kuhnle, A., Mun, T., Boucher, C., Gagie, T., Langmead, B., Manzini, G.: Efficient
construction of a complete index for pan-genomics read alignment. In: Cowen, L.J.
(ed.) RECOMB 2019. LNCS, vol. 11467, pp. 158–173. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-17083-7 10

21. Kuruppu, S., Puglisi, S.J., Zobel, J.: Relative Lempel-Ziv compression of genomes
for large-scale storage and retrieval. In: Chavez, E., Lonardi, S. (eds.) SPIRE 2010.
LNCS, vol. 6393, pp. 201–206. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-16321-0 20

22. Jesper Larsson, N., Moffat, A.: Offline dictionary-based compression. In: Data
Compression Conference. DCC 1999, Snowbird, Utah, USA, 29–31 March 1999,
pp. 296–305 (1999)

23. Lohrey, M.: Algorithmics on SLP-compressed strings: a survey. Groups Complex.
Cryptol. 4(2), 241–299 (2012)

24. Maruyama, S., Tabei, Y., Sakamoto, H., Sadakane, K.: Fully-online grammar com-
pression. In: Kurland, O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS,
vol. 8214, pp. 218–229. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
02432-5 25

25. Navarro, G.: Indexing highly repetitive string collections. CoRR, abs/2004.02781
(2020)

26. Ohno, T., Goto, K., Takabatake, Y., I, T., Sakamoto, H.: LZ-ABT: a practical
algorithm for α-balanced grammar compression. In: Iliopoulos, C., Leong, H.W.,
Sung, W.-K. (eds.) IWOCA 2018. LNCS, vol. 10979, pp. 323–335. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-94667-2 27

27. Prezza, N.: Optimal rank and select queries on dictionary-compressed text. In:
Pisanti, N., Pissis, S.P. (eds.) 30th Annual Symposium on Combinatorial Pattern
Matching. CPM 2019, volume 128 of LIPIcs, Pisa, Italy, 18–20 June 2019, pp.
4:1–4:12. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

28. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theoret. Comput. Sci. 302(1–3), 211–222 (2003)

29. Rytter, W.: Grammar compression, LZ-encodings, and string algorithms with
implicit input. In: Dı́az, J., Karhumäki, J., Lepistö, A., Sannella, D. (eds.) ICALP
2004. LNCS, vol. 3142, pp. 15–27. Springer, Heidelberg (2004). https://doi.org/10.
1007/978-3-540-27836-8 5

30. Sakai, K., Ohno, T., Goto, K., Takabatake, Y., I, T., Sakamoto, H.: RePair in
compressed space and time. In: 2019 Data Compression Conference (DCC), pp.
518–527. IEEE (2019)

31. Sennrich, R., Haddow, B., Birch, A.: Neural machine translation of rare words with
subword units. In: Proceedings of the 54th Annual Meeting of the Association for
Computational Linguistics. ACL 2016. Volume 1: Long Papers, Berlin, Germany,
7–12 August 2016. The Association for Computer Linguistics (2016)

32. Stevens, E.L., et al.: The public health impact of a publically available, environ-
mental database of microbial genomes. Front. Microbiol. 8, 808 (2017)

33. Takabatake, Y., I, T., Sakamoto, H.: A space-optimal grammar compression. In:
25th Annual European Symposium on Algorithms. ESA 2017, Vienna, Austria,
4–6 September 2017, pp. 67:1–67:15 (2017)

https://doi.org/10.1007/978-3-030-17083-7_10
https://doi.org/10.1007/978-3-642-16321-0_20
https://doi.org/10.1007/978-3-642-16321-0_20
https://doi.org/10.1007/978-3-319-02432-5_25
https://doi.org/10.1007/978-3-319-02432-5_25
https://doi.org/10.1007/978-3-319-94667-2_27
https://doi.org/10.1007/978-3-540-27836-8_5
https://doi.org/10.1007/978-3-540-27836-8_5

Practical Random Access to SLP-Compressed Texts 231

34. The 1000 Genomes Project Consortium: A global reference for human genetic
variation. Nature 526, 68–74 (2015)

35. Verbin, E., Yu, W.: Data structure lower bounds on random access to grammar-
compressed strings. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS, vol.
7922, pp. 247–258. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38905-4 24

https://doi.org/10.1007/978-3-642-38905-4_24
https://doi.org/10.1007/978-3-642-38905-4_24

A Comparison of Empirical Tree
Entropies

Danny Hucke, Markus Lohrey(B), and Louisa Seelbach Benkner

University of Siegen, Siegen, Germany
{hucke,lohrey,seelbach}@eti.uni-siegen.de

Abstract. Whereas for strings, higher-order empirical entropy is the
standard entropy measure, several different notions of empirical entropy
for trees have been proposed in the past, notably label entropy, degree
entropy, conditional versions of the latter two, and empirical entropy
of trees (here, called label-shape entropy). In this paper, we carry out
a systematic comparison of these entropy measures. We underpin our
theoretical investigations by experimental results with real XML data.

1 Introduction

In the area of string compression the notion of higher order empirical entropy
yields a well established measure for the compressibility of a string. Roughly
speaking, the kth-order empirical entropy of a string is the expected uncertainty
about the symbol at a certain position, given the k-preceding symbols. In fact,
except for some modifications (as the kth-order modified empirical entropy from
[19]) the authors are not aware of any other empirical entropy measure for strings
(“empirical” refers to the fact that the entropy is defined for the string itself and
not a certain probability distribution on strings). For many string compressors,
worst-case bounds on the length of a compressed string in terms of the kth-
order empirical entropy are known [11,19,20]. For further aspects of higher-order
empirical entropy see [8].

If one goes from strings to trees the situation becomes different. Let us first
mention that the area of tree compression (and compression of structured data in
general) is currently a very active area, which is motivated by the appearance of
large tree data in applications like XML processing. Common tree compression
techniques are based on succinct tree encodings [5,6,12,17,21], grammar-based
tree compressors [9,13,14,18], directed acyclic graphs [3,7] and top dags [1,2]. In
recent years, several notions of empirical tree entropy have been proposed with
the aim of quantifying the compressibility of a given tree. Let us briefly discuss
these entropies in the following paragraphs (all entropies below are unnormalized;
the corresponding normalized entropies are obtained by dividing by the tree size).

This work was supported by the DFG research project LO 748/10-2 (Quantitative
Aspekte Grammatik-basierter Kompression).

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 232–246, 2020.
https://doi.org/10.1007/978-3-030-59212-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_17&domain=pdf
https://doi.org/10.1007/978-3-030-59212-7_17

A Comparison of Empirical Tree Entropies 233

Ferragina et al. [5,6] introduced the kth-order label entropy H�
k(t) of a node-

labeled unranked1 tree t. Its normalized version is the expected uncertainty
about the label of a node v, given the so-called k-label-history of v, which contains
the k first labels on the path from v’s parent node to the root. The kth-order
label entropy is not useful for unlabeled trees since it ignores the tree shape.

In [17], Jansson et al. introduce the degree entropy Hdeg(t), which is the
(unnormalized) 0th-order empirical entropy of the node degrees occurring in the
unranked tree t. Degree entropy is mainly made for unlabeled trees since it
ignores node labels, but in combination with label entropy it yields a reasonable
measure for the compressibility of a tree: every node-labeled unranked tree of size
n in which σ many different node labels occur can be stored in H�

k(t)+Hdeg(t)+
o(n+n log σ) bits if σ is not too big; see Theorem 2. Note that the (unnormalized)
degree entropy of a binary tree with n leaves converges to 2n−o(n) since a binary
tree with n leaves has exactly n − 1 nodes of degree 2.

Recently, Ganczorz [12] defined relativized versions of kth-order label entropy
and degree entropy: the kth-order degree-label entropy Hdeg,�

k (t) and the kth-
order label-degree entropy H�,deg

k (t). The normalized version of Hdeg,�
k (t) is the

expected uncertainty about the label of a node v of t, given (i) the k-label-history
of v and (ii) the degree of v, whereas the normalized version of H�,deg

k (t) is the
expected uncertainty about the degree of a node v, given (i) the k-label-history of
v and (ii) the label of v. Ganczorz [12] proved that every node-labeled unranked
tree of size n can be stored in H�

k(t) + H�,deg
k (t) + o(n + n log σ) bits as well as

in Hdeg(t) + Hdeg,�
k (t) + o(n + n log σ) bits (again assuming σ is not too big);

see Theorem 2. Note that for unlabeled trees t, we have H�
k(t) + H�,deg

k (t) =
Hdeg(t) + Hdeg,�

k (t) = Hdeg(t), which for unlabeled binary trees is equal to the
information theoretic upper bound 2n − o(n) (with n the number of leaves).

Motivated by the inability of the existing entropies for measuring the com-
pressibility of unlabeled binary trees, we introduced in [14] a new entropy for
binary trees (possibly with labels) that we called kth-order empirical entropy
Hk(t). In order to distinguish it better from the existing tree entropies we pre-
fer the term kth-order label-shape entropy in this paper. The main idea is to
extend k-label-histories in a binary tree by adding to the labels of the k prede-
cessors of a node v also the k last directions (0 for left, 1 for right) on the path
from the root to v. We call this extended label history simply the k-history of
v. The normalized version of Hk(t) is the expected uncertainty about the pair
consisting of the label of a node and the information whether it is a leaf or an
internal node, given the k-history of the node. The main result of [14] states that
a node-labeled binary tree t can be stored in Hk(t) + o(n + n log σ) bits using
a grammar-based code building on tree straight-line programs. We also defined
in [14] the kth-order label-shape entropy of an unranked node-labeled tree t by
taking the kth-order label-shape entropy of the first-child next-sibling encoding
of t.

1 Unranked means that there is no bound on the number of children of a node. More-
over, we only consider ordered trees, where the children of a node are linearly ordered.

234 D. Hucke et al.

Hk

Hdeg + Hdeg,�
k H�

k + H�,deg
k

∀ ≥

∃ o

∃ o∃ o ∃ o
∃ o

Hdeg + H�
k

∀Θ

Fig. 1. Comparison of the entropy notions for unranked node-labeled trees. The mean-
ing of the red and green arrows is explained in the main text.

The goal of this paper is to compare the entropy variants H�
k(t) + Hdeg(t),

H�
k(t)+H�,deg

k (t), Hdeg(t)+Hdeg,�
k (t), and Hk(t). Our results for unranked node-

labeled trees are summarized in Fig. 1. Let us explain the meaning of the arrows
in Fig. 1: For two entropy notions H and H ′, an arrow H

∃ o−−→ H ′ means that
there is a sequence of unranked node-labeled trees tn (n ≥ 1) such that (i) the
function n �→ |tn| is strictly increasing and (ii) H(tn) ≤ o(H ′(tn)) (in most
cases we prove an exponential separation). The meaning of the arrow with label
∀ ≥ is that Hdeg(t) + Hdeg,�

k (t) ≥ H�
k(t) + H�,deg

k (t) for every unranked node-
labeled tree t, whereas the edge with label ∀Θ means that Hdeg(t) + Hdeg,�

k (t)
and Hdeg(t) + H�

k(t) are equivalent up to fixed multiplicative constants (which
are 1 and 2).

We also investigate the relationship between the entropies for node-labeled
binary trees and unranked unlabeled trees (the case of unlabeled binary trees
is not really interesting as explained above). An unranked unlabeled tree t of
size n can be represented with Hdeg(t) + o(n) bits [17]. Here, we prove that
Hk(t) ≤ 2Hdeg(t) + 2 log2(n) + 4 for every unranked unlabeled tree t.

Finally, we underpin our theoretical results by experimental results with real
XML data from XMLCompBench (http://xmlcompbench.sourceforge.net). For
each XML document we consider the corresponding tree structure t (obtained by
removing all text values and attributes) and compute H�

k(t) + Hdeg(t), H�
k(t) +

H�,deg
k (t), Hdeg(t)+Hdeg,�

k (t), and Hk(t). The results are summarized in Table 1
on page 14. Our experiments indicate that the upper bound on the number of
bits needed by the compressed data structure in [14] is the strongest for real
XML data since the kth-order label-shape entropy (for k > 0) is significantly
smaller than all other entropy values for all XMLs that we have examined.

Let us remark that Ganczorz’s succinct tree representations [12] that achieve
(up to low-order terms) the entropies H�

k(t)+H�,deg
k (t) and Hdeg(t)+Hdeg,�

k (t),
respectively, allow constant query times for a large number of tree queries. For
the entropy Hk(t) such a result is not known. The tree representation from [14]
is based on tree straight-line programs, which can be queried in logarithmic time
(if we assume logarithmic height of the grammar, which can be enforced by [10]).

Missing proofs can be found in the long version [16].

http://xmlcompbench.sourceforge.net

A Comparison of Empirical Tree Entropies 235

2 Preliminaries

With N we denote the natural numbers including 0. Let w = a1 · · · al ∈ Γ ∗ be a
word over an alphabet Γ . With |w| = l we denote the length of w. Let ε denote
the empty word. We use the standard O-notation. If b > 1 is a constant, then
we write O(log n) for O(logb n). Moreover, terms logb n with b ≥ 1 are implicitly
replaced by logb′ n for b′ = max{2, b}. We make the convention that 0 · log(0) = 0
and 0 · log(x/0) = 0 for x ≥ 0. The well-known log-sum inequality (see e.g. [4,
Theorem 2.7.1]) states:

Lemma 1 (Log-Sum inequality). Let a1, a2, . . . , al, b1, b2, . . . , bl ≥ 0 be real
numbers. Moreover, let a =

∑l
i=1 ai and b =

∑l
i=1 bi. Then

a log2

(
b

a

)

≥
l∑

i=1

ai log2

(
bi

ai

)

.

2.1 Unranked Trees

Let Σ denote a finite alphabet of size |Σ| = σ ≥ 1. Later, we need a fixed,
distinguished symbol from Σ that we denote with � ∈ Σ. We consider Σ-labeled
unranked ordered trees, where “Σ-labeled” means that every node is labeled by
a symbol from the alphabet Σ, “ordered” means that the children of a node are
totally ordered, and “unranked” means that the number of children of a node
(also called its degree) can be any natural number. In particular, the degree of
a node does not depend on the node’s label or vice versa. Let us denote by
T (Σ) the set of all such trees. Formally, the set T (Σ) is inductively defined as
the smallest set of expressions such that if a ∈ Σ and t1, . . . , tn ∈ T (Σ) then
also a(t1 · · · tn) ∈ T (Σ). This expression represents a tree with an a-labeled root
whose direct subtrees are t1, . . . , tn. Note that for the case n = 0 we obtain the
tree a(), for which we also write a. The size |t| of t ∈ T (Σ) is the number of
occurrences of labels from Σ in t, i.e., a(t1 · · · tn) = 1+

∑n
i=1 |ti|. We identify an

unranked tree with a graph in the usual way, where each node is labeled with a
symbol from Σ. Let V (t) denote the set of nodes of a tree t ∈ T (Σ). We have
|V (t)| = |t|. The label of a node v ∈ V (t) is denoted with �(v) ∈ Σ. Moreover,
we write deg(v) ∈ N for the degree of v. An important special case of unranked
trees are unlabeled unranked trees: They can be considered as labeled unranked
trees over a singleton alphabet Σ = {a}.

For a node v ∈ V (t) of a tree t, we define its label-history h�(v) ∈ Σ∗

inductively: for the root node v0, we set h�(v0) = ε and for a child node w of
a node v of t, we set h�(w) = h�(v) �(v). In other words: h�(v) is obtained by
concatenating the node labels along the unique path from the root to v. The
label of v is not part of the label-history of v. The k-label-history h�

k(v) of a tree
node v ∈ V (t) is defined as the length-k suffix of �kh�(v), where � is a fixed
dummy symbol in Σ. This means that if the depth of v in t is greater than k,
then h�

k(v) lists the last k node labels along the path from the root to node v.

236 D. Hucke et al.

If the depth of v in t is at most v, then we pad its label-history h�(v) with the
symbol � such that h�

k(v) ∈ Σk. For z ∈ Σk, a ∈ Σ and i ∈ N we set

nt
z = |{v ∈ V (t) | h�

k(v) = z}|, (1)
nt

i = |{v ∈ V (t) | deg(v) = i}|, (2)
nt

z,i = |{v ∈ V (t) | h�
k(v) = z and deg(v) = i}|, (3)

nt
z,a = |{v ∈ V (t) | h�

k(v) = z and �(v) = a}|, (4)

nt
z,i,a = |{v ∈ V (t) | h�

k(v) = z, �(v) = a and deg(v) = i}|. (5)

In order to avoid ambiguities in these notations we should assume that Σ∩N = ∅.
Moreover, when writing nt

z,i (resp., nt
z,a) then, implicitly, i (resp., a) always

belongs to N (resp., Σ).

2.2 Binary Trees

An important subset of T (Σ) is the set B(Σ) of labeled binary trees over the
alphabet Σ. A binary tree is a tree in T (Σ), where every node has either exactly
two children or is a leaf. Formally, B(Σ) is inductively defined as the smallest set
of terms over Σ such that (i) Σ ⊆ B(Σ) and (ii) if t1, t2 ∈ B(Σ) and a ∈ Σ, then
a(t1t2) ∈ B(Σ). An unlabeled binary tree can be considered as a binary tree over
the singleton alphabet Σ = {a}. The first-child next-sibling encoding (or shortly
fcns-encoding) transforms a tree t ∈ T (Σ) into a binary tree t ∈ B(Σ). We define
it more generally for an ordered sequence of unranked trees s = t1t2 · · · tn (a so-
called forest) inductively as follows (recall that � ∈ Σ is a fixed distinguished
symbol in Σ): fcns(s) = � for n = 0 and if n ≥ 1 and t1 = a(t′1 · · · t′m) then
fcns(s) = a(fcns(t′1 · · · t′m) fcns(t2 · · · tn)). Thus, the left (resp. right) child of a
node in fcns(s) is the first child (resp., right sibling) of the node in s or a �-
labeled leaf, if it does not exist.

For the special case of binary trees, we extend the label history of a node to
its full history, which we just call its history. Intuitively, the history of a node v
records all information that can be obtained by walking from the root of the tree
straight down to the node v. In addition to the node labels this also includes the
directions (left/right) of the descending edges. For an integer k ≥ 0 let

Lk = (Σ{0, 1})k = {a1i1a2i2 · · · akik | aj ∈ Σ, ij ∈ {0, 1} for 1 ≤ j ≤ k}.

For a node v of a binary tree t, we define its history h(v) ∈ (Σ{0, 1})∗ inductively
as follows: For the root node v0, we set h(v0) = ε. For a left child node w of
a node v of t, we set h(w) = h(v)�(v)0 and for a right child node w of v, we
set h(w) = h(v)�(v)1 (recall that �(v) is the label of v). That is, in order to
obtain h(v), while descending in the tree from the root node to the node v,
we alternately write down the current node label from Σ and the direction into
which we descend (0 if we descend to a left child, 1 if we descend to a right child).
Note that the symbol that labels v is not part of the history h(v). The k-history
of a node v is then defined as the length-2k suffix of the word (�0)kh(v), where

A Comparison of Empirical Tree Entropies 237

� is again a fixed dummy symbol in Σ. This means that if the depth of v in
t is greater than k, then hk(v) describes the last k directions and node labels
along the path from the root to node v. If the depth of v in t is at most k, then
we pad the history of v with �’s and zeroes such that hk(v) ∈ Lk. For a node
v of a binary tree we define λ(v) = (�(v),deg(v)) ∈ Σ × {0, 2}. For z ∈ Lk and
ã ∈ Σ × {0, 2}, we finally define

mt
z = |{v ∈ V (t) | hk(v) = z}|, (6)

mt
z,ã = |{v ∈ V (t) | hk(v) = z and λ(v) = ã}|. (7)

3 Empirical Entropy for Trees

In this section we formally define the various entropy measures that were men-
tioned in the introduction. Note that in all cases we define so-called unnormalized
entropies, which has the advantage that we do not have to multiply with the size
of the tree in bounds for the encoding size of a tree. Note that in [5,6,12,17] the
authors define normalized entropies. In each case, one obtains the normalized
entropy by dividing the corresponding unnormalized entropy by the tree size.

Label Entropy. The first notion of empirical entropy for trees was introduced
in [5]. In order to distinguish notions, we call the entropy from [5] label entropy. It
is defined for unranked labeled trees t ∈ T (Σ): the kth-order label entropy H�

k(t)
of t is defined as follows, where nt

z and nt
z,a are from (1) and (4), respectively:

H�
k(t) =

∑

z∈Σk

∑

a∈Σ

nt
z,a log2

(
nt

z

nt
z,a

)

. (8)

We remark that in [5], it is not explicitly specified how to deal with nodes, whose
label-history is shorter than k. There are three natural variants: (i) padding
label-histories with a symbol � ∈ Σ (this is our choice), (ii) padding label-
histories with a fresh symbol � /∈ Σ, or equivalently, allowing label-histories
of length smaller than k, and (iii) ignoring nodes whose label-history is shorter
than k. However, similar considerations as in the appendix of [15] show that these
approaches yield the same kth-order label entropy up to an additional additive
term of at most m<(1 + 1/ ln(2) + log2(σ|t|/m<)), where m< is the number of
nodes at depth less than k in t.

Degree Entropy. Another notion of empirical entropy for trees is the entropy
measure from [17], which we call degree entropy. Degree entropy is primarily
made for unlabeled unranked trees, as it completely ignores node labels. Nev-
ertheless the definition works for trees t ∈ T (Σ) over any alphabet Σ. For a
tree t ∈ T (Σ), the degree entropy Hdeg(t) is the 0th-order entropy of the node
degrees (nt

i is from (2)):

Hdeg(t) =
|t|∑

i=0

nt
i log2

(
|t|
nt

i

)

.

For the special case of unlabeled trees the following result was shown in [17]:

238 D. Hucke et al.

Theorem 1 ([17, Theorem 1]). Let t be an unlabeled unranked tree. Then t can
be represented with Hdeg(t) + O(|t| log log(|t|)/ log |t|) bits.

Label-Degree Entropy and Degree-Label Entropy. Recently, two com-
binations of the label entropy from [5] and the degree entropy from [17] were
proposed in [12]. We call these two entropy measures label-degree entropy and
degree-label entropy. Both notions are defined for unranked node-labeled trees.
Let t ∈ T (Σ) be such a tree. The kth-order label-degree entropy H�,deg

k (t) of
t from [12] is defined as follows, where nt

z,a and nt
z,i,a are from (4) and (5),

respectively:

H�,deg
k (t) =

∑

z∈Σk

∑

a∈Σ

|t|∑

i=0

nt
z,i,a log2

(
nt

z,a

nt
z,i,a

)

.

The kth-order degree-label entropy Hdeg,�
k (t) of t from [12] is defined as follows,

where nt
z,i and nt

z,i,a are from (3) and (5), respectively:

Hdeg,�
k (t) =

∑

z∈Σk

|t|∑

i=0

∑

a∈Σ

nt
z,i,a log2

(
nt

z,i

nt
z,i,a

)

.

In order to deal with nodes whose label-history is shorter than k one can again
choose one of the three alternatives (i)–(iii) that were mentioned after (8). In
[12], variant (ii) is chosen, while the above definitions correspond to choice (i).
However, as for the label entropy one can show that these variants only differ
by a small additive term of at most m<(1/ ln(2) + log2(σ|t|/m<)) in the case of
the degree-label entropy, respectively, m<(1/ ln(2) + log2 |t|) in the case of the
label-degree entropy, where m< is the number of nodes at depth less than k.

By [12], the following inequalities hold:

Lemma 2. For every t ∈ T (Σ), H�,deg
k (t) ≤ Hdeg(t) and Hdeg,�

k (t) ≤ H�
k(t).

Moreover, one of the main results of [12] states the following bounds:

Theorem 2 ([12, Theorem 12]). Let t ∈ T (Σ), with σ ≤ |t|1−α for some α > 0.
Then t can be represented in

H + O
(

|t|k log σ + |t| log logσ |t|
logσ |t|

)

,

bits, where H is one of Hdeg(t)+H�
k(t), H�

k(t)+H�,deg
k (t), or Hdeg(t)+Hdeg,�

k (t).

Label-Shape Entropy. Another notion of empirical entropy for trees which
incorporates both node labels and tree structure was recently introduced in [14]:
Let us start with a binary tree t ∈ B(Σ). The kth-order label-shape entropy
Hk(t) of t (in [14] it is simply called the kth-order empirical entropy of t) is

Hk(t) =
∑

z∈Lk

∑

ã∈Σ×{0,2}
mt

z,ã log2

(
mt

z

mt
z,ã

)

, (9)

A Comparison of Empirical Tree Entropies 239

where mt
z and mt

z,ã are from (6) and (7), respectively. Now let t ∈ T (Σ) be an
unranked tree and recall that fcns(t) ∈ B(Σ). The kth-order label-shape entropy
Hk(t) of t is defined as

Hk(t) = Hk(fcns(t)). (10)

The following result is shown in [14] using a grammar-based encoding of trees:

Theorem 3. Every tree t ∈ T (Σ) can be represented within the following bound
(in bits):

Hk(t) + O
(

k|t| log σ

logσ |t|

)

+ O
(

|t| log logσ |t|
logσ |t|

)

+ σ.

Note that for binary trees, there are two possibilities how to compute the label-
shape entropy Hk(t). The first is to compute the label-shape entropy as defined
in (9), the second is to consider the binary tree as an unranked tree and compute
the label-shape entropy of its first-child next-sibling encoding as defined in (10).
The following lemma from [15] states that if we consider the first-child next-
sibling encoding of the binary tree instead of the binary tree itself, the kth-order
label-shape entropy does not increase if we double the value of k:

Lemma 3. Let t ∈ B(Σ) be a binary tree with first-child next-sibling encoding
fcns(t) ∈ B(Σ). Then H2k(fcns(t)) ≤ Hk−1(t) for 1 ≤ k ≤ n.

In contrast to Lemma 3, there are families of binary trees tn where Hk(tn) ∈
Θ(n − k) and Hk(fcns(tn)) ∈ Θ(log(n − k)) [15].

4 Comparison of the Empirical Entropy Notions

As we have seen in Theorems 2 and 3, entropy bounds for the number of
bits needed to represent an unranked labeled tree t are achievable by Hk(t),
H�

k(t) + H�,deg
k (t), Hdeg(t) + Hdeg,�

k (t), and Hdeg(t) + H�
k(t), where in all cases

we have to add a low-order term. The term Hdeg(t) + H�
k(t) is lower-bounded

by H�
k(t) + H�,deg

k (t) and Hdeg(t) + Hdeg,�
k (t) by Lemma 2. For the special

case of unlabeled unranked trees, Hdeg(t) (plus low-order terms) is an upper
bound on the encoding length (see Theorem1) as well. Let us also remark that
Hk′(t) ≤ Hk(t) for k < k′ and analogously for H�

k, H�,deg
k , and Hdeg,�

k .

4.1 Binary Trees

Let us start with unlabeled binary trees, i.e., trees t ∈ B({a}) over the unary
alphabet Σ = {a}. As Σ = {a}, the fixed dummy symbol used to pad k-histories
and k-label-histories is � = a. The following lemma follows from the fact that
every binary tree of size 2n − 1 consists of n nodes of degree 0 and n − 1 nodes
of degree 2:

240 D. Hucke et al.

Lemma 4. Let t be an unlabeled binary tree with n leaves and thus |t| = 2n−1.
Then Hdeg(t) = H�,deg

k (t) = (2 − o(1))n.

For the following lower bound one can take for tn a left-degenerate chain of
height n (formally: t1 = a and tn = a(tn−1 a) for n ≥ 2).

Lemma 5. There exists a family of unlabeled binary trees (tn)n≥1 such that
|tn| = 2n − 1 and Hk(tn) ≤ log2(en) for all n ≥ 1 and 1 ≤ k ≤ n.

Lemmas 4 and 5 already indicate that all entropies considered in this paper
except for the label-shape entropy are not interesting for unlabeled binary trees.
For every unlabeled binary tree t with n leaves (and 2n − 1 nodes) we have:
H�

k(t) = Hdeg,�
k = 0, as every node of t has the same label, and H�

k(t)+H�,deg
k (t) =

Hdeg(t) + Hdeg,�
k (t) = H�

k(t) + Hdeg(t) = Hdeg(t), and these values are lower
bounded by 2n(1 − o(1)) (Lemma 4). In contrast, the label-shape entropy (9)
is able to capture regularities in unlabeled binary trees (and attains different
values for different binary trees of the same size).

Let us now look at binary trees t ∈ B(Σ), where Σ is arbitrary. As in the
special case of unlabeled binary trees, we find that Hdeg(t) = 2n(1 − o(1)) for
every binary tree t of size 2n − 1 (the node labels do not influence Hdeg(t)),
which implies Hdeg(t) + Hdeg,�

k (t) ≥ 2n(1 − o(1)). The following lemma shows
that Hk(t) is always bounded by H�

k(t)+H�,deg
k (t) and Hdeg(t)+Hdeg,�

k (t) (and
hence also H�

k(t) + Hdeg(t)) for t ∈ B(Σ).

Lemma 6. Let t ∈ B(Σ) be a binary tree. Then (i) Hk(t) ≤ H�
k(t) + H�,deg

k (t)
and (ii) Hk(t) ≤ Hdeg(t) + Hdeg,�

k (t).

Proof. We start with proving statement (i): We have

Hk(t) =
∑

z∈Lk

∑

a∈Σ

∑

i∈{0,2}
mt

z,(a,i) log2

(
mt

z

mt
z,(a,i)

)

=
∑

z∈Lk

∑

a∈Σ

(
mt

z,(a,0) + mt
z,(a,2)

)
log2

(
mt

z

mt
z,(a,0) + mt

z,(a,2)

)

+
∑

z∈Lk

∑

a∈Σ

∑

i∈{0,2}
mt

z,(a,i) log2

(
mt

z,(a,0) + mt
z,(a,2)

mt
z,(a,i)

)

≤
∑

z∈Σk

∑

a∈Σ

nt
z,a log2

(
nt

z

nt
z,a

)

+
∑

z∈Σk

∑

a∈Σ

∑

i∈{0,2}
nt

z,i,a log2

(
nt

z,a

nt
z,i,a

)

= H�
k(t) + H�,deg

k (t),

where the inequality in the second last line follows from the log-sum inequality
(Lemma 1) and the last equality follows from the fact that in a binary tree, every
node is either of degree 0 or 2. Statement (ii) can be shown in a similar way:

Hk(t) =
∑

z∈Lk

∑

a∈Σ

∑

i∈{0,2}
mt

z,(a,i) log2

(
mt

z

mt
z,(a,i)

)

A Comparison of Empirical Tree Entropies 241

=
∑

z∈Lk

∑

i∈{0,2}

(
∑

a∈Σ

mt
z,(a,i)

)

log2

(
mt

z∑
a∈Σ mt

z,(a,i)

)

+
∑

z∈Lk

∑

a∈Σ

∑

i∈{0,2}
mt

z,(a,i) log2

(∑
a∈Σ mt

z,(a,i)

mt
z,(a,i)

)

≤
∑

i∈{0,2}
nt

i log2

(
|t|
nt

i

)

+
∑

z∈Σk

∑

a∈Σ

∑

i∈{0,2}
nt

z,i,a log2

(
nt

z,i

nt
z,i,a

)

= Hdeg(t) + Hdeg,�
k (t),

where the inequality follows again from the log-sum inequality. �

4.2 Unlabeled Unranked Trees

In this subsection, we consider unranked trees t ∈ T (Σ) over the unary alphabet
Σ = {a}. As Σ = {a}, the fixed dummy symbol used to pad k-histories and k-
label-histories is � = a. Moreover, note that in order to compute Hk(t) for an
unranked tree t ∈ T (Σ), we have to consider fcns(t), which is an unlabeled
binary tree (we must take � = a by our conventions for the dummy symbol;
hence the fresh �-labeled leaves in fcns(t) are labeled with a, too). As in the case
of unlabeled binary trees, we observe that some entropy measures, in particular
those that involve labels, only attain trivial values for unranked unlabeled trees.
More precisely, for every tree t ∈ T ({a}) we have H�

k(t) = Hdeg,�
k (t) = 0, as

every node has the same label a, and Hdeg(t) = H�,deg
k (t), as every node has the

same k-label-history and the same label. Moreover, we get H�
k(t) + H�,deg

k (t) =
Hdeg(t) + Hdeg,�

k (t) = Hdeg(t) + H�
k(t) = Hdeg(t). By this observation, we only

compare Hk(t) with Hdeg(t) for t ∈ T ({a}) in this subsection. By Lemmas 4
and 5, there exists a family of unlabeled trees (tn)n≥1 such that |tn| = Θ(n) and
for which Hk(tn) is exponentially smaller than Hdeg(tn). For general unranked
unlabeled trees, we have the following result; see [16] for the proof.

Theorem 4. For every unlabeled unranked tree t with |t| ≥ 2 and integer k ≥ 1,
we have Hk(t) ≤ 2Hdeg(t) + 2 log2(|t|) + 4.

As Hdeg(t) = H�
k(t) + H�,deg

k (t) = Hdeg(t) + Hdeg,�
k (t) for every tree t ∈ T ({a})

and k ≥ 0, we obtain the following corollary from Theorem4:

Corollary 1. For every unlabeled unranked tree t ∈ T ({a}) with |t| ≥ 2 and
integer k ≥ 1, we have Hk(t) ≤ 2(Hdeg(t) + Hdeg,�

k (t)) + 2 log2(|t|) + 4, and
Hk(t) ≤ 2(H�

k(t) + H�,deg
k (t)) + 2 log2(|t|) + 4.

We note that there exist families of unranked trees over a non-unary alphabet, for
which the degree entropy is exponentially smaller than the kth-order label-shape
tree entropy. This is not very surprising as the label-shape entropy incorporates
the node labels, while the degree entropy does not.

242 D. Hucke et al.

4.3 Labeled Unranked Trees

In this section, we consider general unranked labeled trees t ∈ T (Σ) over arbi-
trary alphabets Σ. The entropies to be compared are Hk(t), Hdeg(t)+Hdeg,�

k (t),
H�

k(t) + H�,deg
k (t) and Hdeg(t) + H�

k(t). Somewhat surprisingly it turns out that
H�

k(t) + H�,deg
k (t) is at most Hdeg(t) + Hdeg,�

k (t) for every tree t:

Theorem 5. Let t ∈ T (Σ). Then H�
k(t) + H�,deg

k (t) ≤ Hdeg(t) + Hdeg,�
k (t).

Proof. We have

H�
k(t) + H�,deg

k (t)

=
∑

z∈Σk

∑

a∈Σ

nt
z,a log2

(
nt

z

nt
z,a

)

+
∑

z∈Σk

∑

a∈Σ

|t|∑

i=0

nt
z,i,a log2

(
nt

z,a

nt
z,i,a

)

=
∑

z∈Σk

∑

a∈Σ

|t|∑

i=0

nt
z,i,a log2

(
nt

z

nt
z,a

)

+
∑

z∈Σk

∑

a∈Σ

|t|∑

i=0

nt
z,i,a log2

(
nt

z,a

nt
z,i,a

)

=
∑

z∈Σk

∑

a∈Σ

|t|∑

i=0

nt
z,i,a log2

(
nt

z

nt
z,i,a

)

=
∑

z∈Σk

∑

a∈Σ

|t|∑

i=0

nt
z,i,a log2

(
nt

z

nt
z,i

)

+
∑

z∈Σk

∑

a∈Σ

|t|∑

i=0

nt
z,i,a log2

(
nt

z,i

nt
z,i,a

)

=
∑

z∈Σk

|t|∑

i=0

nt
z,i log2

(
nt

z

nt
z,i

)

+
∑

z∈Σk

∑

a∈Σ

|t|∑

i=0

nt
z,i,a log2

(
nt

z,i

nt
z,i,a

)

≤ Hdeg(t) + Hdeg,�
k (t),

where the final inequality follows from the log-sum inequality (Lemma1). �

As a corollary of Lemma 2 and Theorem 5 it turns out that Hdeg(t) + Hdeg,�
k (t)

and H�
k(t) + Hdeg(t) are equivalent up to constant factors.

Corollary 2. Let t ∈ T (Σ). Then

Hdeg(t) + Hdeg,�
k (t) ≤ Hdeg(t) + H�

k(t) ≤ 2Hdeg(t) + Hdeg,�
k (t).

In the rest of the section we present three examples showing that in all cases
that are not covered by Theorem 5 we can achieve a non-constant (in most cases
even exponential) separation between the corresponding entropies.

Lemma 7. (i) |tn| = 2n + 1,
(ii) Hk(tn) ≤ log2(e) + log2

(
n −

⌊
k−1
2

⌋)
+ 2,

(iii) Hdeg,�
k (tn) = 2n and hence Hdeg(tn) + Hdeg,�

k (tn) ≥ 2n, and
(iv) H�

k(tn) ≥ 2n and hence H�
k(tn) + H�,deg

k (tn) ≥ 2n.

A Comparison of Empirical Tree Entropies 243

a

b

d d d

c

d

e

d

e

d

e

a

b a

d c

a d

a d

a a

d a

e

a a

d

e

a a

d

e

a a

a

Fig. 2. The binary tree t3 from Lemma 8 (left) and its first-child next-sibling encoding
fcns(t3) (right).

a

b1,2

c1 c2 c1 c2 c1 c2

b2,1

c2 c1 c2 c1 c2 c1

b1,3

c1 c3 c1 c3 c1 c3

b3,1

c3 c1 c3 c1 c3 c1

b2,3

c2 c3 c2 c3 c2 c3

b3,2

c3 c2 c3 c2 c3 c2

Fig. 3. The tree t3,2 from Lemma 9.

For the tree tn in Lemma 7 one can take tn = a(bcbc · · · bc) with n occurrences
of b (respectively, c). Lemma 7 shows that there are not only families of binary
trees, but also families of unranked (non-binary) trees (tn)n≥1 (for which we have
to compute Hk(tn) via the fcns-endcoding) such that |tn| = Θ(n) and Hk(tn) is
exponentially smaller than Hdeg(tn) + Hdeg,�

k (tn) and H�
k(tn) + H�,deg

k (tn).

Lemma 8. There exists a family of unranked trees (tn)n≥1 such that for all
n ≥ 1 and 1 ≤ k ≤ n:

(i) |tn| = 3n + 3,
(ii) Hk(tn) ≥ 2(n − k + 1),
(iii) Hdeg(tn) + Hdeg,�

k (tn) ≥ 2n and
(iv) H�

1(tn) + H�,deg
1 (tn) = 3 log2(3).

For the tree tn in Lemma 7 one can take tn = a(b(dd · · · d) c(d(e)d(e) · · · d(e)))
with 2n occurrences of d. The tree t3 is shown in Fig. 2. Note that we clearly
need Ω(log n) bits to represent this tree (since we have to represent its size). This
does not contradict Theorem 2 and the O(1)-bound for H�

1(tn) + H�,deg
1 (tn) in

Lemma 8, since we have the additional additive term of order o(|t|) in Theorem 2.
In the following lemma, nk = n(n − 1) · · · (n − k + 1) is the falling factorial.

244 D. Hucke et al.

Lemma 9. There exists a family of unranked trees (tn,k)n≥1, where k(n) ≤ n
may depend on n, such that for all n ≥ 1:

(i) |tn,k| = 1 + nk + k · n · nk,
(ii) Hdeg(tn,k) + H�

1(tn,k) ≤ O(n · nk · k · log k) and
(iii) Hk−1(tn,k) ≥ Ω(n · nk · k · log(n − k + 1)).

The label set of the tree tn,k is {a} ∪ {bu | u ∈ [n]k} ∪ {ci | 1 ≤ i ≤ n},
where [n]k = {(i1, i2 . . . , ik) | 1 ≤ i1, . . . , ik ≤ n, ij �= il for j �= l}. For
u = (i1, i2, . . . , ik) ∈ [n]k define the tree tu = bu((ci1ci2 · · · cik

)n); then tn,k

is a(tu1tu2 · · · tum
), where u1, u2, . . . , um is an arbitrary enumeration of the set

[n]k (hence, m = nk). The tree t3,2 is shown in Fig. 3.
If k ∈ (log n)O(1) then the trees tn,k from Lemma 9 satisfy

Hdeg(tn,k) + H�
1(tn,k)

Hk−1(tn,k)
≤ O

(
log k

log(n − k + 1)

)

= o(1).

This yields a relatively weak separation between Hdeg(t) + H�
1(t) and Hk(t). In

contrast, in Lemmas 7 and 8 we achieved an exponential separation. It remains
open, whether such an exponential separation is also possible for H�

1 +Hdeg and
Hk. In other words, does there exist a family of trees tn such that Hk(tn) ∈ Ω(n)
and Hdeg(tn) + H�

1(tn) ∈ O(log n)?

5 Experiments

We finally complement our theoretical results with experimental data. We com-
puted the entropies Hdeg, Hk, H�

k, H�,deg
k and Hdeg,�

k (for k ∈ {0, 1, 2, 4}) for
13 XML files from XMLCompBench (http://xmlcompbench.sourceforge.net).
Table 1 shows the values for Hk, Hdeg + H�

k, H�
k + H�,deg

k and Hdeg + Hdeg,�
k

(which can be achieved up to lower order terms by compressors). It turns out
that for all XML trees used in this comparison the kth-order label-shape entropy
(for k > 0) from [14] is significantly smaller than the entropies from [12]. In
the full version [16, Table 2] the reader finds also the values for H�

k, H�,deg
k and

Hdeg,�
k (divided by the tree size so that the table fits on the page). Addition-

ally, we computed in [16] the label-shape entropy Hk for a modified version of
each XML tree where all labels are replaced by a single dummy symbol, i.e., we
considered the underlying, unlabeled tree as well (in [16, Table 2] this value is
denoted by H ′

k). Note again that the label-shape entropy Hk is the only measure
for which this modification is interesting. In the setting of unlabeled trees, our
experimental data indicate that neither the label-shape entropy nor the degree
entropy (which is the upper bound on the number of bits needed by the data
structure in [17] ignoring lower order terms; see also Theorem 1) is favorable.

http://xmlcompbench.sourceforge.net

A Comparison of Empirical Tree Entropies 245

Table 1. Values of the four entropies compared in this paper for various XML trees.

XML k Hk Hdeg + H�
k H�

k + H
�,deg
k

Hdeg + H
deg,�
k

BaseBall 0 202 568.08 153 814.94 146 066.64 146 066.64

1 6 348.08 145 705.73 137 957.42 145 323.26

2 2 671.95 145 705.73 137 957.42 145 323.26

4 1 435.11 145 705.73 137 957.42 145 323.26

DBLP 0 18 727 523.44 14 576 781.00 12 967 501.16 12 967 501.16

1 2 607 784.68 12 137 042.56 10 527 690.38 12 076 935.39

2 2 076 410.50 12 136 974.71 10 527 595.96 12 076 845.69

4 1 951 141.63 12 136 966.29 10 527 586.31 12 076 836.82

EXI-Array 0 1 098 274.54 962 858.05 649 410.59 649 410.59

1 4 286.39 387 329.51 73 882.05 387 304.76

2 4 270.18 387 329.51 73 882.05 387 304.76

4 4 263.82 387 329.51 73 882.05 387 304.76

EXI-factbook 0 530 170.92 481 410.05 423 012.12 423 012.12

1 11 772.65 239 499.01 181 101.08 204 649.84

2 5 049.98 239 499.01 181 101.08 204 649.84

4 4 345.42 239 499.01 181 101.08 204 649.84

EnWikiNew 0 2 118 359.59 1 877 639.22 1 384 034.65 1 384 034.65

1 243 835.84 1 326 743.94 833 139.36 1 095 837.20

2 78 689.86 1 326 743.94 833 139.36 1 095 837.20

4 78 687.51 1 326 743.94 833 139.36 1 095 837.20

EnWikiQuote 0 1 372 201.38 1 229 530.04 894 768.55 894 768.55

1 156 710.30 871 127.39 536 365.91 717 721.09

2 51 557.50 871 127.39 536 365.91 717 721.09

4 51 557.31 871 127.39 536 365.91 717 721.09

EnWikiVersity 0 2 568 158.43 2 264 856.93 1 644 997.36 1 644 997.36

1 278 832.56 1 594 969.93 975 110.35 1 311 929.24

2 74 456.55 1 594 969.93 975 110.35 1 311 929.24

4 74 456.41 1 594 969.93 975 110.35 1 311 929.24

Nasa 0 3 022 100.11 2 872 172.41 2 214 641.55 2 214 641.55

1 292 671.36 1 368 899.76 701 433.91 1 226 592.72

2 168 551.10 1 363 699.16 696 194.53 1 221 474.16

4 147 041.08 1 363 699.16 696 194.53 1 221 474.16

Shakespeare 0 655 517.90 521 889.47 395 890.85 395 890.85

1 138 283.88 370 231.89 244 047.64 347 212.36

2 125 837.77 370 061.20 243 843.87 347 041.31

4 123 460.80 370 057.77 243 838.09 347 037.86

SwissProt 0 18 845 126.39 16 063 648.44 13 755 427.39 13 755 427.39

1 3 051 570.48 11 065 924.67 8 757 703.61 10 238 734.83

2 2 634 911.88 11 065 924.67 8 757 703.61 10 238 734.83

4 2 314 609.48 11 065 924.67 8 757 703.61 10 238 734.83

Treebank 0 16 127 202.92 15 669 672.80 12 938 625.09 12 938 625.09

1 7 504 481.18 12 301 414.61 9 482 695.67 9 925 567.44

2 5 607 499.40 11 909 330.06 9 051 186.33 9 559 968.40

4 4 675 093.61 11 626 935.89 8 736 301.14 9 285 544.85

USHouse 0 36 266.08 34 369.06 28 381.43 28 381.43

1 10 490.44 24 249.78 17 968.41 19 438.19

2 9 079.97 24 037.34 17 569.59 19 216.99

4 6 308.98 23 634.87 16 830.00 18 783.36

XMark1 0 1 250 525.41 1 186 214.34 988 678.93 988 678.93

1 167 586.81 592 634.17 394 639.43 523 996.29

2 131 057.35 592 625.76 394 565.79 523 969.97

4 127 157.34 592 037.39 393 770.73 523 432.87

246 D. Hucke et al.

References

1. Bille, P., Gawrychowski, P., Gørtz, I.L., Landau, G.M., Weimann, O.: Top tree
compression of tries. In: Proceedings of the ISAAC 2019, LIPIcs, vol. 149, pp.
4:1–4:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019)

2. Bille, P., Gørtz, I.L., Landau, G.M., Weimann, O.: Tree compression with top trees.
Inf. Comput. 243, 166–177 (2015)

3. Bousquet-Mélou, M., Lohrey, M., Maneth, S., Noeth, E.: XML compression via
DAGs. Theory Comput. Syst. 57(4), 1322–1371 (2015)

4. Cover, T.M., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley,
Hoboken (2006)

5. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Structuring labeled trees
for optimal succinctness, and beyond. In: Proceeding of the FOCS 2005, pp. 184–
196. IEEE Computer Society (2005)

6. Ferragina, P., Luccio, F., Manzini, G., Muthukrishnan, S.: Compressing and index-
ing labeled trees, with applications. J. ACM 57(1), 4:1–4:33 (2009)

7. Flajolet, P., Sipala, P., Steyaert, J.-M.: Analytic variations on the common subex-
pression problem. In: Paterson, M.S. (ed.) ICALP 1990. LNCS, vol. 443, pp. 220–
234. Springer, Heidelberg (1990). https://doi.org/10.1007/BFb0032034

8. Gagie, T.: Large alphabets and incompressibility. Inf. Process. Lett. 99(6), 246–251
(2006)

9. Ganardi, M., Hucke, D., Lohrey, M., Benkner, L.S.: Universal tree source coding
using grammar-based compression. IEEE Trans. Inf. Theory 65(10), 6399–6413
(2019)

10. Ganardi, M., Jez, A., Lohrey, M.: Balancing straight-line programs. In: Proceedings
of the FOCS 2019, pp. 1169–1183. IEEE Computer Society (2019)

11. Ganczorz, M.: Entropy bounds for grammar compression. CoRR, abs/1804.08547
(2018)

12. Ganczorz, M.: Using statistical encoding to achieve tree succinctness never seen
before. In: Proceedings of the STACS 2020, LIPIcs, vol. 154, pp. 22:1–22:29. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2020)

13. Gascón, A., Lohrey, M., Maneth, S., Reh, C.P., Sieber, K.: Grammar-based com-
pression of unranked trees. Theory Comput. Syst. 64(1), 141–176 (2020)

14. Hucke, D., Lohrey, M., Benkner, L.S.: Entropy bounds for grammar-based tree
compressors. In: Proceedings of the ISIT 2019, pp. 1687–1691. IEEE (2019)

15. Hucke, D., Lohrey, M., Benkner, L.S.: Entropy bounds for grammar-based tree
compressors. CoRR, abs/1901.03155 (2019)

16. Hucke, D., Lohrey, M., Benkner, L.S.: A comparison of empirical tree entropies.
CoRR, abs/2006.01695 (2020)

17. Jansson, J., Sadakane, K., Sung, W.-K.: Ultra-succinct representation of ordered
trees with applications. J. Comput. Syst. Sci. 78(2), 619–631 (2012)

18. Lohrey, M., Maneth, S., Mennicke, R.: XML tree structure compression using
RePair. Inf. Syst. 38(8), 1150–1167 (2013)

19. Manzini, G.: An analysis of the Burrows-Wheeler transform. J. ACM 48(3), 407–
430 (2001)

20. Ochoa, C., Navarro, G.: RePair and all irreducible grammars are upper bounded
by high-order empirical entropy. IEEE Trans. Inf. Theory 65(5), 3160–3164 (2019)

21. Prezza, N.: On locating paths in compressed cardinal trees. CoRR, abs/2004.01120
(2020)

https://doi.org/10.1007/BFb0032034

Efficient Enumeration of Distinct Factors
Using Package Representations

Panagiotis Charalampopoulos1,2 , Tomasz Kociumaka3 ,
Jakub Radoszewski2 , Wojciech Rytter2 , Tomasz Waleń2 ,

and Wiktor Zuba2(B)

1 Department of Informatics, King’s College London, London, UK
panagiotis.charalampopoulos@kcl.ac.uk

2 Institute of Informatics, University of Warsaw, Warsaw, Poland
{jrad,rytter,walen,w.zuba}@mimuw.edu.pl

3 Department of Computer Science, Bar-Ilan University, Ramat Gan, Israel
kociumaka@mimuw.edu.pl

Abstract. We investigate properties and applications of a new compact
representation of string factors: families of packages. In a string T , each
package (i, �, k) represents the factors of T of length � that start in the
interval [i, i + k]. A family F of packages represents the set Factors(F)
defined as the union of the sets of factors represented by individual pack-
ages in F . We show how to efficiently enumerate Factors(F) and showcase
that this is a generic tool for enumerating important classes of factors of
T , such as powers and antipowers. Our approach is conceptually simpler
than problem-specific methods and provides a unifying framework for
such problems, which we hope can be further exploited.

We also consider a special case of the problem in which every occur-
rence of every factor represented by F is captured by some package in F .
For both applications mentioned above, we construct an efficient package
representation that satisfies this property.

We develop efficient algorithms that, given a family F of m packages
in a string of length n, report all distinct factors represented by these
packages in O(n log2 n+m log n+ |Factors(F)|) time for the general case
and in the optimal O(n + m + |Factors(F)|) time for the special case.
We can also compute |Factors(F)| in O(n log2 n + m log n) time in the
general case and in O(n + m) time in the special case.

In particular, we improve over the state-of-the-art O(nk4 log k log n)-
time algorithm for computing the number of distinct k-antipower factors,
by providing an algorithm that runs in O(nk2) time, and we obtain an
alternative linear-time algorithm to enumerate distinct squares.

P. Charalampopoulos—Partially supported by ERC grant TOTAL under the EU’s
Horizon 2020 Research and Innovation Programme (agreement no. 677651).
T. Kociumaka—Supported by ISF grants no. 1278/16 and 1926/19, by a BSF grant
no. 2018364, and by an ERC grant MPM under the EU’s Horizon 2020 Research and
Innovation Programme (grant no. 683064).
J. Radoszewski, T. Waleń and W. Zuba—Supported by the Polish National Science
Center, grant no. 2018/31/D/ST6/03991.

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 247–261, 2020.
https://doi.org/10.1007/978-3-030-59212-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_18&domain=pdf
http://orcid.org/0000-0002-6024-1557
http://orcid.org/0000-0002-2477-1702
http://orcid.org/0000-0002-0067-6401
http://orcid.org/0000-0002-9162-6724
http://orcid.org/0000-0002-7369-3309
http://orcid.org/0000-0002-1988-3507
https://doi.org/10.1007/978-3-030-59212-7_18

248 P. Charalampopoulos et al.

Keywords: Square in a string · Antipower · Longest previous factor
array · String synchronising set

1 Introduction

There are many interesting subsets of factors of a given string T of length n which
can be described very concisely (sometimes in O(n) space, even for subsets of
quadratic size). In this paper, we consider compact descriptions, called package
representations, defined in terms of weighted intervals: each interval [i, i + k]
gives starting positions of factors and the weight � gives the common length of
these factors. Formally, F is a set of triples (i, �, k).

By Factors(F) we denote the set of factors in a given text T of length n that
are represented by packages from F . More formally,

Factors(F) = {T [j . . j + �) : j ∈ [i, i + k] and (i, �, k) ∈ F}.

A package representation F is called special if it represents all occurrences of
Factors(F). Formally, F is special if for every factor F ∈ Factors(F) and for every
occurrence T [j . . j + �) = F , there is a triple (i, �, k) ∈ F such that j ∈ [i, i + k].
Special representations describe all occurrences of factors with a given property.

We consider the following subsets of factors.

Powers. A square is a string of the form X2. In general, for an integer k > 1, a
k-power is a string of the form Xk. This notion can be generalized to rational
exponents γ > 1, setting Xγ = XkX[1 . . r] for γ = k + r/|X|, where k and
r < |X| are non-negative integers.

Antipowers. A k-antipower (for an integer k ≥ 2) is a concatenation of k pair-
wise distinct strings of the same length. Antipowers were introduced in [15]
and have already attracted considerable attention [1,2,4,14,25].

Example 1. Consider a string T = abababababa. The squares in T can be rep-
resented by a set of packages F = {(1, 4, 7), (1, 8, 3)}. The package (1, 4, 7) rep-
resents all the squares of length 4 and the package (1, 8, 3)—those of length 8.

Our problem can be related to computing the subword complexity of the
string T ; see, e.g., [31]. Let us recall that the subword complexity is a function
which gives, for every � ∈ [1, n], the number of different factors of T of length �.
The subword complexity of a given string can be computed using the suffix tree
in linear time. Our algorithm can be easily augmented to determine, for each
length �, the number of length-� factors in Factors(F).

Our results. We compute |Factors(F)| in O(n log2 n+m log n) time in the gen-
eral case and in O(n + m) time in the special case, both for any length-n string
T over an integer alphabet. The solution to the general case uses string synchro-
nising sets and runs, whereas the solution to the special case is based on the
longest previous factor array. Our algorithms for special package representations

Efficient Enumeration of Distinct Factors Using Package Representations 249

yield new simple algorithms for reporting and counting powers and antipowers.
In particular, we present the first linear-time algorithms to count and enumer-
ate distinct γ-powers for a given rational constant γ > 1; Crochemore et al. [11]
showed how to do this for integer γ only. For k-antipowers, we improve the
previously known best time complexity.

2 Algorithms for Special Package Representations

Let T = T [1] · · · T [n]. The longest previous factor array LPF [1 . . n] is defined as

LPF [i] = max{� ≥ 0 : T [i . . i + �) = T [j . . j + �) for some j ∈ [1, i − 1]}.

This array can be computed in O(n) time [9,10]. Let

U� = { j ∈ [1, n] : LPF [j] ≥ � }
Pairs(F) =

⋃

(i,�,k)∈F
{(j, �) : j ∈ [i, i + k] \ U�}.

The algorithms are based on the following crucial observation that links the
solution to the special case with the LPF table.

Observation 2. If F is a special package representation, then Factors(F) =
{T [j . . j + �) : (j, �) ∈ Pairs(F) } and |Factors(F)| = |Pairs(F)|.

2.1 Reporting Distinct Factors

Due to Observation 2, reporting all distinct factors reduces to computing the
set Pairs(F). We can assume that packages representing factors of the same
length are disjoint; this can be achieved by merging overlapping packages in a
preprocessing step that can be executed in O(n) time using radix sort.

The definition of Pairs(F) yields the following (inefficient) algorithm. It con-
structs the sets U� for all � = n, . . . , 1 and, for each of them, generates all
elements of the set Pairs(F) with the second component equal to �.

Algorithm 1: High-level structure of the algorithm.
U := ∅; P := ∅
for � := n down to 1 do

U := U ∪ {j : LPF [j] = �} // U = U�

foreach (i, �, k) ∈ F do
foreach j ∈ [i, i + k] \ U do

P := P ∪ {(j, �)} // Ultimately, P = Pairs(F)

Next, we describe an efficient implementation of Algorithm 1 based on the
union-find data structure. In our algorithm, the elements of the data structure
are [1, n+1] and the sets stored in the data structure always form intervals. The

250 P. Charalampopoulos et al.

operation Find(i) returns the rightmost element of the interval containing i, and
the operation Union(i) joins the intervals containing elements i and i − 1.

Algorithm 2: Implementation of Algorithm 1.
P := ∅
for i := 0 to n + 1 do Create set {i}
for � := n down to 1 do

foreach j such that LPF [j] = � do Union(j)
foreach (i, �, k) ∈ F do

j := Find(i − 1) + 1
while j ≤ i + k do

P := P ∪ {(j, �)}
j := Find(j) + 1

Theorem 3. In the case of special package representations, all elements of
Factors(F) can be reported (without duplicates) in O(n+m+ |Factors(F)|) time.

Proof. We use Algorithm 2. The set U� is stored in the union-find data structure
so that for each interval [i, j] in the data structure, i /∈ U� and [i + 1, j] ⊆ U�.

The elements of F are sorted by the second component using radix sort. The
union-find data structure admits at most n union operations and m+|Factors(F)|
find operations. We use a data structure for a special case of the union-find
problem, where the sets of the partition have to form integer intervals at all
times, so that each operation takes O(1) amortized time [18]. �	

2.2 Counting Distinct Factors

Let us start with a warm-up algorithm. Recall that, in a preprocessing, we made
sure that packages representing factors of the same length are disjoint.

By Observation 2, for each (i, �, k) ∈ F , it suffices to count the number of
elements in LPF [i . . i+k] that are smaller than �. This can be done using range
queries in time O((n + m)

√
log n).

Let us proceed to a linear-time algorithm. We start with a simple fact.

Fact 4. For every length-n text T , we have
∑n−1

i=1 |LPF [i+1]−LPF [i]| = O(n).

Proof. The claim follows from the fact that LPF [i+1] ≥ LPF [i]−1 for i ∈ [1, n−
1]. To prove this inequality, let � = LPF [i]. We have T [i . . i + �) = T [j . . j + �)
for some j < i. Hence, T [i+1 . . i+ �) = T [j +1 . . j + �), so LPF [i+1] ≥ �−1. �	

We reduce the counting problem to answering off-line a linear number of
certain queries. The off-line structure of the computation is crucial for efficiency.

Theorem 5. In the case of special package representations, |Factors(F)| can be
computed in O(n + m) time.

Efficient Enumeration of Distinct Factors Using Package Representations 251

Proof. Consider the following queries:

Q(i, �) = | [1, i] \ U� | = |{j ∈ [1, i] : LPF [j] < �}|.

Then, the counting version of our problem reduces to efficiently answering such
queries. Indeed, by Observation 2, we have

|Factors(F)| =
∑

(i,�,k)∈F
Q(i + k, �) − Q(i − 1, �).

Thus, we have to answer O(m) queries of the form Q(i, �). An off-line algorithm
answering q queries in O(n + q) time would be sufficient for our purposes.

We maintain an array A[1 . . n] such that during the ith phase of the algo-
rithm:

A[�] =

{
i − Q(i, �) if � > LPF [i],
Q(i, �) otherwise.

Since LPF [1] = 0, the array needs to be filled with 1’s for the first phase. Next,
we observe that i + 1 − Q(i + 1, �) = i − Q(i, �) if � > max(LPF [i + 1],LPF [i])
and Q(i + 1, �) = Q(i, �) if � ≤ min(LPF [i + 1],LPF [i]). Hence, in the transition
from the ith phase to the (i + 1)th phase, we only need to update O(|LPF [i +
1] − LPF [i]|) entries of A. By Fact 4, the cost of maintaining the array A for
i = 1 to n is O(n) in total. Each query Q(i, �) can be answered in O(1) time
during the ith phase.

Consequently, we can answer off-line q queries Q(i, �) in O(n+q) time, assum-
ing that the queries are sorted by the first component. Sorting can be performed
in O(n + q) time using radix sort. �	

3 Applications

In this section, we show three applications of special package representations.

3.1 Squares

It is known that a string of length n contains at most 11
6 n distinct squares [12,17],

and the same bound hold for γ-powers with γ ≥ 2. Moreover, all the distinct
square factors in a string over an integer alphabet can be reported in O(n)
time [6,11,20]. The algorithm from [11] can report distinct string powers of a
given integer exponent using a run-based approach via Lyndon roots. Hence, it
can report distinct squares and cubes in particular. We show that our generic
approach—which is also much simpler—applies to this problem.

A generalised run in a string T is a triple (i, j, p) such that:

– T [i . . j] has a period p (not necessarily the shortest) with 2p ≤ j − i + 1,
– T [i − 1] �= T [i − 1 + p] if i > 1, and T [j + 1] �= T [j + 1 − p] if j < n.

252 P. Charalampopoulos et al.

A run is a generalised run for which p is the shortest period of T [i . . j]. The
number of runs and generalised runs is O(n) and they can all be computed in
O(n) time; see [5,30].

Proposition 6. All distinct squares in a string of length n can be computed in
O(n) time.

Proof. A generalised run (i, j, p) induces squares T [k . . k + 2p) for all k ∈ [i,
j − 2p + 1]. Moreover, each occurrence of a square is induced by exactly one
generalised run. For every generalised run (i, j, p), we add package (i, 2p, j −
2p − i + 1) to F ; see Fig. 1. Then, we solve the factors problem using Theorem 3.

�	

b
1

a
2

b
3

a
4

b
5

a
6

b
7

a
8

b
9

a
10

a
11

a
12

b
13

a
14

a
15

a
16

b
17

a
18

b
1

a
2

b
3

a
4

b
5

a
6

b
7

a
8

b
9

a
10

b
1

a
2

b
3

a
4

b
5

a
6

b
7

a
8

b
9

a
10

a
10

a
11

a
12

a
14

a
15

a
16

a
8

b
9

a
10

a
11

a
12

b
13

a
14

a
15

a
16

b
17

a
18

Fig. 1. Four runs (presented at the top) generate a package representation (below)
of all squares as a set of five packages: {(1, 8, 2), (1, 4, 6), (10, 2, 1), (14, 2, 1), (8, 8, 3)}.
One of the runs induces two generalised runs: with periods 2 and 4.

3.2 Powers with Rational Exponents

Proposition 6 can be easily generalised to powers of arbitrary exponent γ ≥ 2. For
exponents γ < 2, however, we need α-gapped repeats apart from the generalised
runs. An α-gapped repeat (for α ≥ 1) in a string T is a quadruple (i1, j1, i2, j2)
such that i1 ≤ j1 < i2 ≤ j2, and the factors T [i1 . . j1] = T [i2 . . j2] = U and
T [j1 + 1 . . i2 − 1] = V satisfy |UV | ≤ α|U |. The two occurrences of U are called
the arms of the α-gapped repeat and |UV | is called the period of the α-gapped
repeat. In other words, a gapped repeat is a string S = T [i1 . . j2] associated with
one of its periods larger than 1

2 |S|. Consequently, the same factor T [i1 . . j2] can
induce many α-gapped repeats.

An α-gapped repeat is called maximal if its arms cannot be extended simul-
taneously with the same character to either direction. The number of maximal
α-gapped repeats in a string of length n is O(nα) and they can all be computed
in O(nα) time assuming an integer alphabet [19].

Efficient Enumeration of Distinct Factors Using Package Representations 253

Theorem 7. For a given rational number γ > 1, all distinct γ-powers in a
length-n string can be counted in O(γ

γ−1n) time and enumerated in O(γ
γ−1n +

output) time.

Proof. Each γ-power Xγ with γ < 2 is a 1
γ−1 -gapped repeat with period |X|,

and therefore it is contained in a maximal 1
γ−1 -gapped repeat or in a generalised

run with the same period; see [29]. Moreover, each γ-power Xγ with γ ≥ 2 is
contained in a generalised run with period |X|.

In other words, to generate all γ-powers, for each generalised run and 1
γ−1 -

gapped repeat (if γ < 2) with period p, we need to consider all factors contained
in it of length γp, provided that γp is an integer; see Fig. 2.

a
1

a
2

b
3

b
4

a
5

b
6

a
7

a
8

b
9

b
10

a
11

b
12

a
13

b
14

a
15

a
16

b
17

b
18

a
19

b
20

a
21

a
22

a
23

run
maximal 2-gapped repeat

arm arm

a
1

a
2

b
3

b
4

a
5

b
6

a
7

a
8

b
9

b
10

a
11

b
12

a
13

b
12

a
13

b
14

a
15

a
16

b
17

b
18

a
19

b
20

a
21

a
22

Fig. 2. A string with a (generalised) run with period 6 and a maximal 6
5 -gapped repeat

(hence, also a maximal 1.5-gapped repeat) with period 6. The run and the gapped
repeat generate 1.5-powers of length 9. Equal 1.5-powers are drawn with the same color;
in total, the string contains 6 distinct 1.5-powers of length 9. (Color figure online)

We proceed as follows. For each generalised run (i, j, p), if γp is an integer
and j − i + 1 ≥ γp, then we insert (i, γp, j − i + 1 − γp) to F . Moreover, if γ < 2,
then for each maximal 1

γ−1 -gapped repeat (i1, j1, i2, j2) with period p = i2 − i1,
if γp is an integer, then we insert (i1, γp, j2 − i1 + 1 − γp) to F . By the above
discussion, the constructed family F is a special package representation of all
γ-powers. The claim follows by Theorems 3 and 5. �	
Remark 8. For every fixed rational number γ < 2, strings of length n may con-
tain Ω(n2) distinct γ-powers. Specifically, if γ = 2− x

y , where x and y are coprime

positive integers, then the number of γ-powers in ambam is Θ(m2x
y2) [28].

3.3 Antipowers

In [25], it was shown how to report all occurrences of k-antipowers in O(nk log k+
output) time and count them in O(nk log k) time. In [26], it was shown that the
number of distinct k-antipower factors in a string of length n can be computed
in O(nk4 log k log n) time. Below, we show how to improve the latter result.

254 P. Charalampopoulos et al.

A6

b b a b b a b b a a b a b

b b a b b a

b a b b a b

a b b a b b

b b a b b a

b a b b a a

a b b a a b

b b a a b a

b a a b a b

Fig. 3. Here, we consider 3-antipowers of length � = 6. The set of their starting posi-
tions is A6 = [1, 5] ∪ [7, 7]. Note that the first and the fourth antipower are the same,
so we have only 5 distinct 3-antipowers of length 6. Interestingly A� = ∅ for � �= 6.
Hence, the total number of distinct 3-antipowers equals 5.

Theorem 9. All distinct k-antipower factors of a string of length n can be
reported in O(nk2 + output) time and counted in O(nk2) time.

Proof. The interval representation of a set A ⊆ [1, n] is a collection of all maximal
intervals in A. Let A� be the interval representation of the set of k-antipower
factors of T of length � (it can be non-empty only if k divides �); see Fig. 3. In [25,
Lemma 13], it was shown that the total size of the interval representations of
sets A1, . . . , An is O(nk2). Moreover, they can be computed in O(nk2) time.

For each � and each interval [i, j] ∈ A�, we insert (i, �, j − i) to F . The
conclusion follows by Theorems 3 and 5. �	

4 Enumerating General Package Representations

For most of this section, we will focus on computing |Factors(F)|. In the end, we
will briefly explain how our solution can be adapted to enumerate Factors(F).

We consider highly periodic and non-highly-periodic factors separately (a pre-
cise definition follows). In both cases, we will employ the solution of Kociumaka
et al. [26] for the so-called Path Pairs Problem, which we define below.

We say that T is a compact tree if it is a rooted tree with positive integer
weights on edges. If an edge weight is e > 1, this edge contains e − 1 implicit
nodes. A path in a compact tree is an upwards or downwards path that connects
two explicit nodes.

Path Pairs Problem

Input: Two compact trees T and T ′ containing up to N explicit nodes each,
and a set Π of M pairs (π, π′) of equal-length paths, where π is a path going
downwards in T and π′ is a path going upwards in T ′.
Output: |⋃(π,π′)∈Π Induced(π, π′)|, where by Induced(π, π′) we denote the
set of pairs of (explicit or implicit) nodes (u, u′) such that, for some i, the
ith node on π is u and the ith node on π′ is u′.

Efficient Enumeration of Distinct Factors Using Package Representations 255

Lemma 10 ([26]). The Path Pairs Problem can be solved in time O(N +
M log N) assuming that the weighted heights of the input trees do not exceed N .

4.1 Non-Highly-Periodic Factors

Our solution uses the string synchronising sets recently introduced by Kempa
and Kociumaka [22].

Informally, in the simpler case that T is cube-free, a τ -synchronising set of T
consists in a small set of positions of T , called here synchronisers, such that each
length-τ fragment of T contains at least one synchroniser, and the synchronisers
within two long enough matching fragments of T are consistent.

Formally, for a string T and a positive integer τ ≤ 1
2n, a set S ⊆ [1, n−2τ +1]

is a τ -synchronising set of T if it satisfies the following two conditions:

1. If T [i . . i + 2τ) = T [j . . j + 2τ), then i ∈ S if and only if j ∈ S.

2. For i ∈ [1, n−3τ +2], S∩[i . . i+τ) = ∅ if and only if per(T [i . . i+3τ −2]) ≤ 1
3τ .

Theorem 11 ([22]). Given a string T of length n over an integer alphabet and
a positive integer τ ≤ 1

2n, one can construct in O(n) time a τ -synchronising set
of T of size O(n

τ).

As in [22], for a τ -synchronising set S, let succS(i) := min{j ∈ S ∪ {n− 2τ +
2} : j ≥ i} and predS(i) := max{j ∈ S ∪ {0} : j ≤ i}.

Lemma 12 ([22]). If a factor U of T with |U | ≥ 3τ −1 and per(U) > 1
3τ occurs

at positions i and j in T , then succS(i) − i = succS(j) − j ≤ |U | − 2τ .

By UR we denote the reversal of a string U . We show the following result.

Lemma 13 (Aperiodic Lemma). Assume that we are given a text T of length
n, a positive integer x ≤ 1

3n, and a family F of m packages that represent factors
of lengths in [3x, 9x) and shortest periods greater than 1

3x. Then, |Factors(F)|
can be computed in O((n + m) log n) time.

Proof. We compute an x-synchronising set S of T in O(n) time using Theorem 11
and build the suffix trees T and T ′ of T and TR, respectively, in O(n) time [13].

Let us now focus on all packages representing factors of a fixed length �. By
relying on Lemma 12, we will intuitively assign each factor to its first synchro-
niser.

Let us denote A� =
⋃{[i, i + k] : (i, �, k) ∈ F}. For each j ∈ A�, let s =

succS(j) and consider Pj = T [j . . s] and Qj = [s + 1 . . j + �); see Fig. 4.
Note that, by Lemma 12, s − j ≤ x and, as j ≤ n − � + 1, we have s ≤

n − 2x + 1. Thus, s ∈ S. Hence, Lemma 12 implies that, for any j, j′ ∈ A� such
that T [j . . j + �) = T [j′ . . j′ + �), we have Pj = Pj′ and Qj = Qj′ . Consequently,
our problem reduces to computing the size of the set P� = {(Pj , Qj) : j ∈ A�}. In
turn, in our instance of the Path Pairs Problem, we want to count the pairs
of nodes u ∈ T ′, v ∈ T such that (L(u)R,L(v)) ∈ P�, where L(u) is the label

256 P. Charalampopoulos et al.

T
∗ ∗ ∗ ∗ ∗∗j

Pj Qj

�

Fig. 4. The elements of an x-synchronising set S of string T are denoted by asterisks.
The position j is an element of [i, i + k] for some package (i, �, k). The red asterisk
denotes the synchroniser s = succS(j). (Color figure online)

of the path from the root to the node u. It remains to show how to compute
path pairs that induce exactly these pairs of nodes. To this end, we design a
line-sweeping algorithm.

We initialize an empty set Π that will eventually store the desired pairs of
paths. We will scan the text T in a left-to-right manner with two fingers: fp

for packages and fs for synchronisers, both initially set to 0. We maintain an
invariant that fp ≤ fs. Whenever fp −1 = fs ≤ n−2x, we set fs = succS(fs +1).

The finger fp is repeatedly incremented until it reaches fs. For each maximal
interval [i, j] ⊆ A� that fp encounters, we do the following: If j > fs, we split
the interval into [i, i + fs] and [fs + 1, j] and consider the first of them as [i, j].
Let

X1 = T [i . . fs], X2 = T [j . . fs], Y1 = T [fs + 1 . . i + �), Y2 = T [fs + 1 . . j + �).

For k = 1, 2, let uk be the locus of XR
k in T ′ and vk be the locus of Yk in T . If

either of these loci is an implicit node, we make it explicit. Finally, we add to Π
the pair of paths u1-to-u2 in T ′ and v1-to-v2 in T .

Let us denote the number of packages representing factors of length � by m�.
As there are O(n

x) synchronisers, the line-sweeping algorithm can be performed
in O(n

x + m�) time. Thus, the number of paths (and extra explicit nodes) that
we introduce in the two suffix trees is also O(n

x + m�).
Over all � ∈ [3x, 9x), we have

O
(

x · n

x
+

9x−1∑

�=3x

m�

)
= O(n + m)

pairs of paths. The only operations that we need to explain how to perform
efficiently are (a) computing the loci of strings in T and T ′ and (b) making all
of them explicit. Part (a) can be implemented using an efficient algorithm for
answering a batch of weighted ancestor queries from [24]. In part (b), we process
the weighted ancestors in an order of non-decreasing weights, after globally sort-
ing them using radix sort. The whole construction works in O(n + m) time. We
obtain an instance of the Path Pairs Problem with N,M = O(n + m). The
suffix trees are of weighted height O(n), so Lemma 10 completes the proof. �	

Efficient Enumeration of Distinct Factors Using Package Representations 257

4.2 Highly Periodic Factors

A string U is called periodic if 2 ·per(U) ≤ |U | and highly periodic if 3 ·per(U) ≤
|U |.

The Lyndon root of a periodic string U is the lexicographically smallest rota-
tion of its length-per(U) prefix. If L is the Lyndon root of a periodic string U ,
then U can be uniquely represented as (L, y, a, b) for 0 ≤ a, b < |L| such that
U = L[|L| − a + 1 . . |L|]LyL[1 . . b]. We call this the Lyndon representation of U .

In O(n) time, one can compute the Lyndon representations of all runs [11].
The unique run that extends a periodic factor of T can be computed in O(1)
time after O(n)-time preprocessing [5,27]. This allows computing its Lyndon
representation in O(1) time.

For highly periodic factors, we will use Lyndon roots instead of synchronisers.
The rest of this subsection is devoted to proving the following lemma.

Lemma 14 (Periodic Lemma). Given a text T of length n and a set F of
m packages of highly periodic factors, |Factors(F)| can be computed in O((n +
m) log n) time.

Proof. For each (i, �, k) ∈ F and j ∈ [i, i + k], the fragment T [j . . j + �) has a
(unique) Lyndon representation (L, y, a, b) for some Lyndon root L. Let

Pj,� = L[|L| − a + 1 . . |L|] and Qj,� = LyL[1 . . b]

Our problem consists in computing the size of the set

P = {(Pj,�, Qj,�) : j ∈ [i, i + k], (i, �, k) ∈ F}

Let T and T ′ be the suffix trees of T and TR, respectively. Then, we want to
compute the number of pairs of nodes u ∈ T ′ and v ∈ T with (L(u)R,L(v)) ∈ P
We will show how this reduces to an instance of the Path Pairs Problem.

We have to appropriately define pairs of paths over T and T ′. Let us note
that all the factors that each package of F represents have the same Lyndon
root, since two strings with different periods at most 1

3� cannot overlap on � − 1
positions by the Fine and Wilf’s periodicity lemma [16].

We initialize an empty set Π that will store pairs of paths. Let us consider
a package (i, �, k) ∈ F such that T [i . . i + k + �) is represented by (L, y, a, b).
By periodicity, we may focus on the factors starting in the first (at most) |L|
positions of T [i . . i + k + �).

To this end, let t = min{|L|, k + 1}. We will insert at most two paths to Π,
specified below:

– Let X1 be the suffix of L of length a, X2 be the suffix of L of length a′ =
max{a − t, 0}, Y1 = L∞[1 . . � − a] and Y2 = L∞[1 . . � − a′].

– If t > a, let X ′
1 be the suffix of L of length |L| − 1 and X ′

2 be the suffix of L
of length d = |L| + a − t, Y ′

1 = L∞[1 . . � − |L| + 1] and Y ′
2 = L∞[1 . . � − d].

258 P. Charalampopoulos et al.

X1 X ′
2· · · · · ·T

i

�

t = k + 1

|L|

a

Fig. 5. The shaded part of the text denotes T [i . . i+k+�), which can be represented as
(L, y, a, b), for some package (i, �, k) ∈ F�. X1 is shaded in red, while X2 is the empty
string. We are in the case that t = k + 1 > a; X ′

2 is shaded in green. (Color figure
online)

See Fig. 5 for an illustration. It can be readily verified that these pairs of paths
induce exactly the required pairs of nodes.

For k = 1, 2, let uk be the locus of XR
k in T ′ and vk be the locus of Yk in T .

If either of these loci is an implicit node, we make it explicit. Finally, we add to
Π the pair of paths u1-to-u2 in T ′ and v1-to-v2 in T . Similarly for X ′

ks and Y ′
ks.

Let us consider the time complexity of the algorithm. The suffix trees T and
T ′ can be computed in O(n) time [13]. Computing the loci of strings and making
them explicit can be performed in O(n + m) time as in the proof of Lemma 13.
We obtain an instance of the Path Pairs Problem with N = O(n + m) and
M ≤ 2m. Lemma 10 completes the proof. �	

4.3 Wrap-Up

Let F� be the set of triples from F with the second component �. Note that one
can easily compute the contributions of all packages representing factors whose
length is bounded by 2 in O(n) time using radix sort; we can thus assume that
all packages represent factors of length at least 3.

We will iterate over x = 3j for all integers j ∈ [1,
log3 n� − 1]. For each
� ∈ [3x, 9x), we want to replace F� by two—not too large—sets of packages:

– Fp
� representing factors with shortest period at most x/3, and

– Fa
� representing factors with shortest period greater than x/3,

such that Factors(F�) = Factors(Fp
�) ∪ Factors(Fa

�).
Our aim is to decompose each package in F� in pieces (i.e., decompose [i, i+k]

into subintervals), such that all factors represented by each piece either have
shortest period at most x/3 or none of them does. We then want to group the
resulting pieces into the two sets.

Let Rx denote the set of runs of T with length at least 3x and period at most
x/3. As shown in [23, Section 4.4], |Rx| = O(n/x). Further, Rx can be computed
in O(n) time, by filtering out the runs that do not satisfy the criteria.

Lemma 15. Given Rx, we can compute sets Fp
� and Fa

� in O(n/x+ |F�|) time.

Efficient Enumeration of Distinct Factors Using Package Representations 259

Proof. Initially, let I = ∅. For each run R = T [a . . b] with per(R) ≤ x/3 and
|R| ≥ �, we set I := I ∪ [a, b − � + 1]. There are O(n/x) such runs and hence our
representation of I consists of O(n/x) intervals.

Recall that packages are pairwise disjoint. We decompose a package (i, �, k) ∈
F� as follows.

For each maximal interval [r, t] in [i, i + k] ∩ I we insert (r, �, t − r) to Fp
� ,

while for each maximal interval [r′, t′] in [i, i+k]\I we insert (r′, �, t′ −r′) to Fa
� .

This can be done in O(n/x+ |F�|) time with a standard line-sweeping algorithm.
�	

Now, let us put everything together. First of all, we compute Rx for each
x ∈ [1,
log3 n� − 1] in O(n log n) total time. Then, for each �, we replace F� by
Fp

� and Fa
� in O(n/� + |F�|) time, employing Lemma 15.

We process all Fp
� ’s together, as each factor U represented by them must be

highly periodic; since per(U) ≤ x/3 and |U | ≥ 3x for some x, we surely have

3 ·per(U) ≤ |U |. The total size of these sets is
n∑

�=3

O(n/�+ |F�|) = O(n log n+m),

and hence a call to Lemma 14 requires O(n log2 n + m log n) time.
Then, we make a call to Lemma 13 for each x ∈ [1,
log3 n� − 1], and the

union of sets Fa
� for � ∈ [3x, 9x). Again by Lemma 15, for each such �, we have

|Fa
� | = O(n/x + |F�|).
The total time complexity required by the calls to Lemma13 is:

�log3 n�−1∑

x=1

O
(

n log n +
9x−1∑

�=3x

|F�| log n

)
= O(n log2 n) +

n∑

�=3

O(|F�| log n)

= O(n log2 n + m log n).

We have thus proved the main result of this section.

Theorem 16. |Factors(F)| can be computed in O(n log2 n + m log n) time.

4.4 Reporting Factors

The reporting version of the Path Pairs Problem, where one is to output⋃
(π,π′)∈Π Induced(π, π′), can be solved in O(N + M log N + output) time by a

straightforward modification of the proof of Lemma10.1 We can also retrieve a
pair of paths inducing each pair of nodes within the same time complexity (in
order to be able to represent the relevant string as a factor of T).

Theorem 17. All elements of Factors(F) can be reported (without duplicates)
in O(n log2 n + m log n + output) time.

1 The workhorse of Lemma 10 is computing the size of the union of certain 1D-intervals.
For the reporting version, we simply have to report all elements of this union.

260 P. Charalampopoulos et al.

5 Final Remarks

Another natural representation of factors consists in a set of intervals I, such
that each [i, j] ∈ I represents all factors of T [i . . j]. This problem is very closely
related to the problem of property indexing [3,7,8,21]. Employing either of the
optimal property indexes that were presented in [7,8], one can retrieve the (num-
ber of) represented factors in optimal time.

References

1. Alamro, H., Badkobeh, G., Belazzougui, D., Iliopoulos, C.S., Puglisi, S.J.: Com-
puting the antiperiod(s) of a string. In: 30th Annual Symposium on Combina-
torial Pattern Matching (CPM 2019). LIPIcs, vol. 128, pp. 32:1–32:11. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.4230/LIPIcs.
CPM.2019.32

2. Alzamel, M., et al.: Online algorithms on antipowers and antiperiods. In: Brisaboa,
N.R., Puglisi, S.J. (eds.) SPIRE 2019. LNCS, vol. 11811, pp. 175–188. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-32686-9 13

3. Amir, A., Chencinski, E., Iliopoulos, C.S., Kopelowitz, T., Zhang, H.: Property
matching and weighted matching. Theor. Comput. Sci. 395(2–3), 298–310 (2008).
https://doi.org/10.1016/j.tcs.2008.01.006

4. Badkobeh, G., Fici, G., Puglisi, S.J.: Algorithms for anti-powers in strings. Inf.
Process. Lett. 137, 57–60 (2018). https://doi.org/10.1016/j.ipl.2018.05.003

5. Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.:
The “runs” theorem. SIAM J. Comput. 46(5), 1501–1514 (2017). https://doi.org/
10.1137/15M1011032

6. Bannai, H., Inenaga, S., Köppl, D.: Computing all distinct squares in linear time for
integer alphabets. In: 28th Annual Symposium on Combinatorial Pattern Matching
(CPM 2017). LIPIcs, vol. 78, pp. 22:1–22:18. Schloss Dagstuhl - Leibniz-Zentrum
für Informatik (2017). https://doi.org/10.4230/LIPIcs.CPM.2017.22

7. Barton, C., Kociumaka, T., Liu, C., Pissis, S.P., Radoszewski, J.: Indexing weighted
sequences: neat and efficient. Inf. Comput. 270 (2020). https://doi.org/10.1016/j.
ic.2019.104462

8. Charalampopoulos, P., Iliopoulos, C.S., Liu, C., Pissis, S.P.: Property suffix array
with applications in indexing weighted sequences. ACM J. Exp. Algorithm. 25(1)
(2020). https://doi.org/10.1145/3385898

9. Crochemore, M., Hancart, C., Lecroq, T.: Algorithms on Strings. Cambridge Uni-
versity Press (2007)

10. Crochemore, M., Ilie, L.: Computing longest previous factor in linear time and
applications. Inf. Process. Lett. 106(2), 75–80 (2008). https://doi.org/10.1016/j.
ipl.2007.10.006

11. Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Waleń,
T.: Extracting powers and periods in a word from its runs structure. Theor. Com-
put. Sci. 521, 29–41 (2014). https://doi.org/10.1016/j.tcs.2013.11.018

12. Deza, A., Franek, F., Thierry, A.: How many double squares can a string contain?
Discrete Appl. Math. 180, 52–69 (2015). https://doi.org/10.1016/j.dam.2014.08.
016

13. Farach, M.: Optimal suffix tree construction with large alphabets. In: 38th Annual
Symposium on Foundations of Computer Science (FOCS 1997), pp. 137–143. IEEE
Computer Society (1997). https://doi.org/10.1109/SFCS.1997.646102

https://doi.org/10.4230/LIPIcs.CPM.2019.32
https://doi.org/10.4230/LIPIcs.CPM.2019.32
https://doi.org/10.1007/978-3-030-32686-9_13
https://doi.org/10.1016/j.tcs.2008.01.006
https://doi.org/10.1016/j.ipl.2018.05.003
https://doi.org/10.1137/15M1011032
https://doi.org/10.1137/15M1011032
https://doi.org/10.4230/LIPIcs.CPM.2017.22
https://doi.org/10.1016/j.ic.2019.104462
https://doi.org/10.1016/j.ic.2019.104462
https://doi.org/10.1145/3385898
https://doi.org/10.1016/j.ipl.2007.10.006
https://doi.org/10.1016/j.ipl.2007.10.006
https://doi.org/10.1016/j.tcs.2013.11.018
https://doi.org/10.1016/j.dam.2014.08.016
https://doi.org/10.1016/j.dam.2014.08.016
https://doi.org/10.1109/SFCS.1997.646102

Efficient Enumeration of Distinct Factors Using Package Representations 261

14. Fici, G., Postic, M., Silva, M.: Abelian antipowers in infinite words. Adv. Appl.
Math. 108, 67–78 (2019). https://doi.org/10.1016/j.aam.2019.04.001

15. Fici, G., Restivo, A., Silva, M., Zamboni, L.Q.: Anti-powers in infinite words. J.
Comb. Theory Ser. A 157, 109–119 (2018). https://doi.org/10.1016/j.jcta.2018.02.
009

16. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math.
Soc. 16(1), 109–114 (1965). https://doi.org/10.2307/2034009

17. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb.
Theory Ser. A 82(1), 112–120 (1998). https://doi.org/10.1006/jcta.1997.2843

18. Gabow, H.N., Tarjan, R.E.: A linear-time algorithm for a special case of disjoint
set union. J. Comput. Syst. Sci. 30(2), 209–221 (1985). https://doi.org/10.1016/
0022-0000(85)90014-5

19. Gawrychowski, P., I, T., Inenaga, S., Köppl, D., Manea, F.: Tighter bounds and
optimal algorithms for all maximal α-gapped repeats and palindromes. Theory
Comput. Syst. 62(1), 162–191 (2017). https://doi.org/10.1007/s00224-017-9794-5

20. Gusfield, D., Stoye, J.: Linear time algorithms for finding and representing all the
tandem repeats in a string. J. Comput. Syst. Sci. 69(4), 525–546 (2004). https://
doi.org/10.1016/j.jcss.2004.03.004

21. Hon, W., Patil, M., Shah, R., Thankachan, S.V.: Compressed property suffix trees.
Inf. Comput. 232, 10–18 (2013). https://doi.org/10.1016/j.ic.2013.09.001

22. Kempa, D., Kociumaka, T.: String synchronizing sets: sublinear-time BWT con-
struction and optimal LCE data structure. In: 51st Annual ACM SIGACT Sympo-
sium on Theory of Computing (STOC 2019), pp. 756–767. ACM (2019). https://
doi.org/10.1145/3313276.3316368

23. Kociumaka, T.: Efficient data structures for internal queries in texts. Ph.D. thesis,
University of Warsaw (2018). https://mimuw.edu.pl/∼kociumaka/files/phd.pdf

24. Kociumaka, T., Kubica, M., Radoszewski, J., Rytter, W., Waleń, T.: A linear-time
algorithm for seeds computation. ACM Trans. Algorithms 16(2) (2020). https://
doi.org/10.1145/3386369

25. Kociumaka, T., Radoszewski, J., Rytter, W., Straszyński, J., Waleń, T., Zuba, W.:
Efficient representation and counting of antipower factors in words. In: Mart́ın-
Vide, C., Okhotin, A., Shapira, D. (eds.) LATA 2019. LNCS, vol. 11417, pp. 421–
433. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-13435-8 31

26. Kociumaka, T., Radoszewski, J., Rytter, W., Straszyński, J., Waleń, T., Zuba, W.:
Efficient representation and counting of antipower factors in words (2020). https://
arxiv.org/abs/1812.08101v3

27. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: Internal pattern matching
queries in a text and applications. In: 26th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA 2015), pp. 532–551. SIAM (2015). https://doi.org/10.
1137/1.9781611973730.36

28. Kociumaka, T., Radoszewski, J., Rytter, W., Waleń, T.: String powers in trees.
Algorithmica 79(3), 814–834 (2017). https://doi.org/10.1007/s00453-016-0271-3

29. Kolpakov, R.: Some results on the number of periodic factors in words. Inf. Comput.
270 (2020). https://doi.org/10.1016/j.ic.2019.104459

30. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in lin-
ear time. In: 40th Annual Symposium on Foundations of Computer Science
(FOCS 1999), pp. 596–604. IEEE Computer Society (1999). https://doi.org/10.
1109/SFFCS.1999.814634

31. Lothaire, M.: Algebraic Combinatorics on Words. Cambridge University Press
(2002). https://doi.org/10.1017/cbo9781107326019

https://doi.org/10.1016/j.aam.2019.04.001
https://doi.org/10.1016/j.jcta.2018.02.009
https://doi.org/10.1016/j.jcta.2018.02.009
https://doi.org/10.2307/2034009
https://doi.org/10.1006/jcta.1997.2843
https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1016/0022-0000(85)90014-5
https://doi.org/10.1007/s00224-017-9794-5
https://doi.org/10.1016/j.jcss.2004.03.004
https://doi.org/10.1016/j.jcss.2004.03.004
https://doi.org/10.1016/j.ic.2013.09.001
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1145/3313276.3316368
https://mimuw.edu.pl/~kociumaka/files/phd.pdf
https://doi.org/10.1145/3386369
https://doi.org/10.1145/3386369
https://doi.org/10.1007/978-3-030-13435-8_31
https://arxiv.org/abs/1812.08101v3
https://arxiv.org/abs/1812.08101v3
https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1137/1.9781611973730.36
https://doi.org/10.1007/s00453-016-0271-3
https://doi.org/10.1016/j.ic.2019.104459
https://doi.org/10.1109/SFFCS.1999.814634
https://doi.org/10.1109/SFFCS.1999.814634
https://doi.org/10.1017/cbo9781107326019

Combinatorics on Words

Lyndon Words, the Three Squares
Lemma, and Primitive Squares

Hideo Bannai1(B) , Takuya Mieno2,3 , and Yuto Nakashima2

1 M&D Data Science Center, Tokyo Medical and Dental University, Tokyo, Japan
hdbn.dsc@tmd.ac.jp

2 Department of Informatics, Kyushu University, Fukuoka, Japan
{takuya.mieno,yuto.nakashima}@inf.kyushu-u.ac.jp

3 Japan Society for the Promotion of Science, Tokyo, Japan

Abstract. We revisit the so-called “Three Squares Lemma” by
Crochemore and Rytter [Algorithmica 1995] and, using arguments based
on Lyndon words, derive a more general variant which considers three
overlapping squares which do not necessarily share a common prefix. We
also give an improved upper bound of n log2 n on the maximum number
of (occurrences of) primitively rooted squares in a string of length n, also
using arguments based on Lyndon words. To the best of our knowledge,
the only known upper bound was n logφ n ≈ 1.441n log2 n, where φ is the
golden ratio, reported by Fraenkel and Simpson [TCS 1999] obtained via
the Three Squares Lemma.

1 Introduction

Periodic structures of strings have been and still are one of the most important
and fundamental objects of study in the field of combinatorics on words [4],
and the analysis and exploitation of their combinatorial properties are a key
ingredient in the development of efficient string processing algorithms [17,18].

In this paper, we focus on squares, which are strings of the form u2 (=
uu) for some string u, which is called the root of the square. A well known
open problem concerning squares is on the maximum number of distinct squares
that can be contained in a string. Fraenkel and Simpson [13] showed that the
maximum number of distinct square substrings of a string of length n is at most
2n. Although slightly better upper bounds of 2n − Θ(log n) [16] and 11

6 n [10]
have been shown, it is conjectured that it is at most n [13], with a best known
lower bound of n − o(n) [13].

The “Three Squares Lemma” by Crochemore and Rytter [9] was the key
lemma used by Fraenkel and Simpson to obtain the upper bound of 2n.

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 265–273, 2020.
https://doi.org/10.1007/978-3-030-59212-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_19&domain=pdf
http://orcid.org/0000-0002-6856-5185
http://orcid.org/0000-0003-2922-9434
http://orcid.org/0000-0001-6269-9353
https://doi.org/10.1007/978-3-030-59212-7_19

266 H. Bannai et al.

Lemma 1 (Three Squares Lemma (Lemma 10 of [9]1)). Let u2, v2, w2 be
three prefixes of some string such that w is primitive and |u| > |v| > |w|. Then,
|u| ≥ |v| + |w|.
Crochemore and Rytter further showed that the lemma implies that the number
of primitively rooted squares that can start at any given position of a string is
bounded by logφ |x|, where φ = (1+

√
5)/2 is the golden ratio (Theorem 11 of [9]).

Thus, it follows that the maximum number psq(n) of occurrences of primitively
rooted squares in a string of length n is less than n logφ n ≈ 1.441n log2 n.

The original proof of the Three Squares Lemma by Crochemore and Ryt-
ter was based on the well known “Periodicity Lemma” by Fine and Wilf [11].
Concerning a similar problem on the maximum number of “runs” (maximally
periodic substring occurrences such that the smallest period is at most half its
length) that can be contained in a string, the Periodicity Lemma was also the
tool of choice in its analysis [6,19,23,24]. However, this changed when Bannai
et al. [1,2] applied arguments based on Lyndon words [22] to solve, by a very
simple proof, a longstanding conjecture that the maximum number of runs in
a string of length n is at most n. Using the same technique, the upper bound
on the number of runs was further improved to 0.957n for binary strings [12].
Bannai et al. also showed a new algorithm for computing all runs in a string,
which paved the way for algorithms with improved time complexity for general
ordered alphabets to be developed [7,15,20].

In this paper, we take the first steps of investigating to what extent Lyndon
words can be applied in the analysis of squares. We first give an alternate proof of
the Three Squares Lemma by arguments based on Lyndon words, and extend it
to show a more general variant which considers three overlapping squares which
do not necessarily share a common prefix. Furthermore, we show a significantly
improved upper bound of n log2 n on the maximum number of occurrences of
primitively rooted squares.

2 Preliminaries

Let Σ be an alphabet. An element of Σ is called a symbol. An element of Σ∗ is
called a string. The length of a string w is denoted by |w|. The empty string ε
is the string of length 0. For any possibly empty strings x, y, z, if w = xyz, then
x, y, z are respectively called a prefix, substring, suffix of w. They are a proper
prefix, substring, or suffix if they are not equal to w. For any 1 ≤ i ≤ j ≤ |w|,
w[i..j] denotes the substring of w starting at position i and ending at position
j. We assume that w[0], w[|w| + 1] �= w[i] for any 1 ≤ i ≤ |w|. For any string x,
let x1 = x, and for any integer k ≥ 2, let xk = xk−1x. If there exists no string x
and integer k ≥ 2 such that w = xk, w is said to be primitive.

1 In [9], u, v, w are all assumed to be primitive and |u| > |v| + |w| was claimed, but it
was noted in [13] that only primitivity of w is required, and that |u| ≥ |v| + |w| is
the correct relation, giving u = 01001010, v = 01001, and w = 010 as an example
when |u| = |v| + |w|.

Lyndon Words, the Three Squares Lemma, and Primitive Squares 267

A non-empty string w is said to be a Lyndon word [22] if w is lexicographically
smaller than any of its non-empty proper suffixes. An important property of
Lyndon words is that they cannot have a border, i.e., a non-empty substring
that is both a proper suffix and prefix. Also, notice that whether a string is a
Lyndon word or not depends on the choice of the lexicographic order. Unless
otherwise stated, our results hold for any lexicographic order. However, we will
sometimes require a pair of lexicographic orders <0 and <1, the former induced
by an arbitrary total order on Σ, and the other induced by the opposite total
order, i.e., for any a, b ∈ Σ, a <0 b if and only if b <1 a.

An integer 1 ≤ p ≤ |w| is a period of string w if w[i] = w[i + p] for all
i = 1, . . . , |w| − p. A string is a repetition if its smallest period p is at most half
of its length. An occurrence w[i..j] = v of a repetition v with smallest period p
is a maximal repetition (or a run) in w, if the smallest periods of both w[i−1..j]
and w[i..j + 1] are not p.

For any repetition v, an L-root [8] λv is a substring of v that is a Lyndon
word whose length is equal to the smallest period of v. It is easy to see that
an L-root of a repetition always exists and is unique. We also define the L-root
interval rv in v as the substring corresponding to the maximal integer power
in v of λv. Any repetition v can be written as v = xrvy where x (resp. y) is a
possibly empty proper suffix (resp. prefix) of the L-root λv. Notice that for any
square u2, |ru2 | ≥ |u|. Also, for any square u2, it can be shown that the smallest
period pu of u2 is a divisor of |u| and is equal to |λu2 |, which implies that it is
also the smallest period of ru2 and a divisor of |ru2 |.

The next lemma shows that a Lyndon word can only occur in a run as a
substring of the L-root of the run.

Lemma 2. For any Lyndon word v, there is no Lyndon word w = xyz for
strings x, y, z such that x (resp. z) is a non-empty suffix (resp. prefix) of v.

Proof. If such w exists, v ≤ x < xyz = w < z ≤ v, a contradiction. �	

3 Squares and L-Roots

We first prove a lemma concerning two squares.

Lemma 3. Let u2 and v2 be squares where v2 is a proper prefix of u2. Then,
the L-root interval ru2 of u2 is not a substring of v2, and either rv2 is a prefix
of ru2 , or rv2 ends before ru2 starts.

Proof. Let pu and pv respectively be the smallest periods of u2 and v2. If ru2

is a substring of v2, then, v2 = xru2y = wrv2z for some suffix x of λu2 , some
prefix y of λu2 , some suffix w of λv2 , and some prefix z of λv2 . If pu �= pv, then
ru2 �= rv2 must hold since pu and pv are respectively their smallest periods. This
implies either |x| �= |w| or |y| �= |z|. However, that would contradict Lemma 2.
If pu = pv, then it must be that ru2 = rv2 due to their maximality. Since u is
longer than v, and pu = pv must also be a divisor of their lengths, u2 must be at

268 H. Bannai et al.

least 2pu longer than v2. However that would contradict the maximality of ru2 ,
since at least one more copy of λu2 would fit inside u2.

Next, suppose that rv2 overlaps with ru2 , and is not a prefix of ru2 . Since ru2

cannot be a substring of v2 in which rv2 is a substring, ru2 starts in v2, and ends
after the end of v2. There are two cases: (1) rv2 starts after the beginning of ru2

and ends in ru2 (Fig. 1) or (2) rv2 starts before ru2 , and ends in ru2 (Fig. 2).

Fig. 1. Case (1) of Lemma 3. Fig. 2. Case (2) of Lemma 3.

Case (1) implies that ru2 = xrv2y for some non-empty proper suffix x of λv2

and some suffix y of ru2 . Let rv2 = x′z where |x′| = |x|. Since |x′| < pv, we
have x > rv2 > x′, and thus, ru2 = xrv2y > x′zy. This can hold only if |x| is a
multiple of pu, but this also implies x = x′ which is a contradiction.

Case (2) implies that a suffix of rv2 overlaps with a prefix of ru2 . Let rv2 = xy,
ru2 = yz where y is the overlap, and observe that |x| < pu due to the maximality
of ru2 . Notice that since u2 has period pu which is a divisor of |ru2 |, x must also
be a suffix of ru2 , so we can write ru2 = wx for some w. From Lemma 2, x must
be an integer power of λv2 , since otherwise, there would be an occurrence of λv2

crossing the boundary of x and y. Thus, ru2 contains the Lyndon word λv2 of
length pv as a prefix and suffix, which can only hold if pu = pv. However, this
contradicts the maximality of ru2 . �	

To prove Lemma 1, we use the previous lemma, together with the following
lemma used in the proof of the “runs” theorem [2] which connects L-roots of
runs and longest Lyndon words starting at each position.

Lemma 4 (Lemma 3.3 of [2]). For any run w[i..j] with period p, consider
the lexicographic order <∈ {<0, <1} such that w[j +1] < w[j +1−p]. Then, any
occurrence of the L-root of the run w[i..j] is the longest Lyndon word starting at
that position.

It is easy to see that for any repetition, there is a unique run with the same small-
est period and L-root in which the repetition is contained. For any occurrence
of a repetition in a string, we will refer to the lexicographic order considered in
Lemma 4 as the lexicographic order of the repetition.

Proof (of Lemma 1). Consider the lexicographic order of w2, i.e., L-root λw2 is
a longest Lyndon word starting at the first position of rw2 . From Lemma 3, the
starting positions bw2 , bv2 , bu2 respectively of rw2 , rv2 , ru2 are non-decreasing.
There are four cases: (1) bw2 < bv2 < bu2 , (2) bw2 < bv2 = bu2 , (3) bw2 = bv2 <

Lyndon Words, the Three Squares Lemma, and Primitive Squares 269

bu2 , and (4) bw2 = bv2 = bu2 , where inequality of the starting positions implies
the disjointness of the L-root intervals.

Case (1): It follows that rw2 , rv2 , ru2 occur disjointly in u2. Therefore, 2|u| ≥
|rw2 |+|rv2 |+|ru2 |. Since |rw2 | ≥ |w|, |rv2 | ≥ |v|, |ru2 | ≥ |u|, we have |u| ≥ |w|+|v|.

Case (2): It follows that rw2 occurs disjointly before ru2 , and rv2 is a prefix
of ru2 . Since rv2 ≥ |v|, rw2 is a substring of v and thus also of u. Due to u2 and
v2, there are two other occurrences of rw2 respectively |u| and |v| positions to
the right. Since w is primitive, the smallest period of rw2 is |λw2 | = |w|, and thus
the two occurrences of rw2 must be at least |w| apart. Therefore, |w| ≤ |u| − |v|,
which implies |u| ≥ |v| + |w|.

Case (3): By the assumption of the lexicographic order, λw2 is the longest
Lyndon word starting at bw2 and thus |λw2 | ≥ |λv2 |. Since rw2 is a prefix of rv2 ,
it must hold that λw2 = λv2 due to Lemma 2. Since |v| > |w| = |λw2 | = |λv2 |
and |v| is a multiple of |λv2 |, we have |v| ≥ 2|λv2 |. This implies |rv2 | ≥ |v|+ |λv2 |.
Also, since ru2 occurs disjointly with rv2 in u2, we have 2|u| ≥ |rv2 |+ |ru2 |, which
implies |u| ≥ |rv2 | since |ru2 | ≥ |u|. Then, |u| ≥ |rv2 | ≥ |v| + |λv2 | = |v| + |w|.

Case (4): Analogously to the previous case, we have λw2 = λv2 = λu2 . This
implies that |u|, |v| are multiples of |λw2 | and since |u| > |v|, we have |u| ≥
|v| + |λv2 | = |v| + |w|. �	

We note that actually, the proof of Lemma3 does not require v2 to be a
prefix of u2, but only that v2 is a substring of u2 that starts before ru2 , so
slightly stronger statements hold.

Corollary 1. Let u2 and v2 be squares such that v2 is a proper substring of u2

that starts before the L-root interval ru2 of u2. Then, ru2 is not a substring of
v2, and either the L-root interval rv2 of v2 is a prefix of ru2 , or rv2 ends before
ru2 starts.

Corollary 2. Let u2, v2, and w2 be squares such that v2 is a proper substring
of u2 that starts before ru2 , and w2 is a proper substring of v2 that starts before
ru2 and rv2 , where ru2 , rv2 are respectively the L-root intervals of u2, v2 with
respect to the lexicographic order of w. If w is primitive, then |u| ≥ |v| + |w|.

4 Tighter Upper Bound for psq(n)

There can be Θ(n2) occurrences of non-primitively rooted squares in a string
of length n (e.g. a unary string). However, as mentioned in the introduction,
Lemma 1 implies an upper bound of n logφ n
 1.441n log2 n for psq(n), i.e.,
the maximum number of occurrences of primitively rooted squares in a string
of length n. On the other hand, the best known lower bound is given by
Fibonacci words, which contain 2(3−φ)

5 log2 φFn log2 Fn + O(Fn) occurrences of prim-
itive squares [14], where Fn is the length of the n-th Fibonacci word, φ is the
golden ratio, and 2(3−φ)

5 log2 φ ≈ 0.7962. Below, we prove a significantly improved
upper bound for psq(n).

270 H. Bannai et al.

Theorem 1. psq(n) ≤ n log2 n.

Each primitively rooted square of w is a substring of a run of w. Let runs(w)
denote the set of runs in w. Conversely, each run ρ ∈ runs(w) with length �ρ and
period pρ contains exactly �ρ − 2pρ + 1 primitively rooted squares as substrings.
Let λρ be an L-root of a run ρ with respect to the lexicographical order of ρ.
If we consider the rightmost occurrence of λρ in ρ, there exist strings xρ, yρ

such that ρ = xρλρyρ and yρ is a possibly empty proper prefix of λρ. Since
|λρ| ≥ |yρ| + 1, the number of primitively rooted squares in ρ is �ρ − 2pρ + 1 =
|xρ| + |λρ| + |yρ| − 2|λρ| + 1 ≤ |xρ|. Thus, the total sum of |xρ| for all runs in w
gives an upper bound on the number of occurrences of primitively rooted squares
in w. We will show that this total sum is bounded by n log2 n for any string w
of length n, which will yield Theorem 1.

To this end, we use the notion of Lyndon trees [2,3]. The Lyndon tree of a
Lyndon word w is an ordered full binary tree defined recursively as follows2: If
|w| = 1, then the Lyndon tree of w is a single node labeled w, and if |w| ≥ 2, then
the root is labeled w, and the left and right children of w are respectively the
Lyndon trees of u and v, where w = uv and v is the lexicographically smallest
proper suffix of w. Note that this is known as the standard factorization of
w [5,21], and u, v are guaranteed to be Lyndon words.

From Lemma 4 and Lemma 5 below, we have that for any string w, the right
nodes of the two Lyndon trees of w with respect to <0 and <1 contain all L-roots
of all runs in w.

Lemma 5 (Lemma 5.4 of [2]). Let w be a Lyndon word. For any interval
[i..j] except for [1..|w|], [i..j] corresponds to a right node of the Lyndon tree if
and only if w[i..j] is the longest Lyndon word that starts at i.

Thus, as before, we have that ρ = xρλρyρ = x′
ρλ

k
ρyρ, where λk

ρ = rρ is the
L-root interval of ρ, x′

ρ is a possibly empty proper suffix of λρ, and that each
occurrence of λρ corresponds to a right node in one the Lyndon trees. Now, |xρ| =
|x′

ρ|+(k −1)|λρ|, and we distribute this sum among each of the k occurrences of
the L-root as follows: |x′

ρ| for the leftmost occurrence (i.e., the periodicity only
extends |x′

ρ| symbols to the left of the occurrence), or |λρ| otherwise (i.e., the
periodicity extends at least |λρ| symbols to the left of the occurrence).

Next, consider how long the periodicity can extend to the left of each occur-
rence of λρ by looking at the Lyndon tree. Since λρ corresponds to a right node,
wρ = zρλρ for some Lyndon words wρ and zρ. When |zρ| ≤ |λρ|, zρ cannot be a
suffix of λρ, since that would imply that wρ = zρλρ < λρ < zρ, a contradiction.
Thus, for the occurrence of L-root λρ in wρ, the periodicity can extend at most
|zρ| symbols (more precisely, |zρ| − 1 symbols).

Let S(n) denote the maximum of the total sum of all |xρ| for all potential L-
roots λρ that correspond to a right node in a (single) Lyndon tree for any string of
length n. From the above arguments, we have S(n) = 0 if n = 1, and otherwise,

2 If w is not a Lyndon word, we simply consider the Lyndon word obtained by prepend-
ing to w a symbol smaller than any symbol in w.

Lyndon Words, the Three Squares Lemma, and Primitive Squares 271

S(n) ≤ max{S(n1) + S(n2) + min{n1, n2} | n1, n2 > 0 and n1 + n2 = n}. We
can show by induction that S(n) can be bounded by n

2 log2 n.

Lemma 6. S(n) ≤ n
2 log2 n.

Proof. Clearly, when |n| = 1, 0 = S(n) ≤ 1
2 log2 1 = 0. For n ≥ 2, assume that

the lemma holds for any value less than n. Then,

S(n) ≤ max {S(n1) + S(n2) + min{n1, n2} | n1, n2 �= 0 and n1 + n2 = n}
≤ max

{
n − kn

2
log2(n − kn) +

kn

2
log2 kn + kn

∣∣∣∣ 1 ≤ kn ≤ n

2

}

=
1
2

max
{

((n − kn) log2(n − kn) + kn log2 kn + 2kn)
∣∣∣ 1 ≤ kn ≤ n

2

}

≤ 1
2

((
n − n

2

)
log2

(
n − n

2

)
+

n

2
log2

n

2
+ n

)

=
1
2

(
n log2

n

2
+ n

)
=

n

2
log2 n.

The third inequality follows since the second derivative of the above function is
positive and thus the function is maximized when kn = n/2. �	
Now, since any occurrence of an L-root corresponds to a right node in one of the
two Lyndon trees, we have

psq(n) ≤ max
w∈Σn

∑
ρ∈runs(w)

|xρ| ≤ 2 · S(n) ≤ n log2 n.

Acknowledgments. We would like to thank the anonymous reviewers for pointing
out and correcting errors in the submitted version of the paper.

This work was supported by JSPS KAKENHI Grant Numbers JP20H04141 (HB),
JP20J11983 (TM), and JP18K18002 (YN).

References

1. Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.:
A new characterization of maximal repetitions by Lyndon trees. In: Indyk, P.
(ed.) Proceedings of the Twenty-Sixth Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2015), San Diego, CA, USA, 4–6 January 2015, pp. 562–571.
SIAM (2015). https://doi.org/10.1137/1.9781611973730.38

2. Bannai, H., Tomohiro, I., Inenaga, S., Nakashima, Y., Takeda, M., Tsuruta, K.:
The “runs” theorem. SIAM J. Comput. 46(5), 1501–1514 (2017). https://doi.org/
10.1137/15M1011032

3. Barcelo, H.: On the action of the symmetric group on the free Lie algebra and the
partition lattice. J. Comb. Theory Ser. A 55(1), 93–129 (1990). https://doi.org/
10.1016/0097-3165(90)90050-7

4. Berstel, J., Perrin, D.: The origins of combinatorics on words. Eur. J. Comb. 28(3),
996–1022 (2007). https://doi.org/10.1016/j.ejc.2005.07.019

https://doi.org/10.1137/1.9781611973730.38
https://doi.org/10.1137/15M1011032
https://doi.org/10.1137/15M1011032
https://doi.org/10.1016/0097-3165(90)90050-7
https://doi.org/10.1016/0097-3165(90)90050-7
https://doi.org/10.1016/j.ejc.2005.07.019

272 H. Bannai et al.

5. Chen, K.T., Fox, R.H., Lyndon, R.C.: Free differential calculus, IV. The quotient
groups of the lower central series. Ann. Math. 68(1), 81–95 (1958). https://doi.
org/10.2307/1970044

6. Crochemore, M., Ilie, L.: Maximal repetitions in strings. J. Comput. Syst. Sci.
74(5), 796–807 (2008). https://doi.org/10.1016/j.jcss.2007.09.003

7. Crochemore, M., et al.: Near-optimal computation of runs over general alphabet
via non-crossing LCE queries. In: Inenaga, S., Sadakane, K., Sakai, T. (eds.) SPIRE
2016. LNCS, vol. 9954, pp. 22–34. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-46049-9 3

8. Crochemore, M., Iliopoulos, C.S., Kubica, M., Radoszewski, J., Rytter, W., Walen,
T.: Extracting powers and periods in a word from its runs structure. Theor. Com-
put. Sci. 521, 29–41 (2014). https://doi.org/10.1016/j.tcs.2013.11.018

9. Crochemore, M., Rytter, W.: Squares, cubes, and time-space efficient string search-
ing. Algorithmica 13(5), 405–425 (1995). https://doi.org/10.1007/BF01190846

10. Deza, A., Franek, F., Thierry, A.: How many double squares can a string contain?
Discrete Appl. Math. 180, 52–69 (2015). https://doi.org/10.1016/j.dam.2014.08.
016

11. Fine, N.J., Wilf, H.S.: Uniqueness theorems for periodic functions. Proc. Am. Math.
Soc. 16(1), 109–114 (1965). https://doi.org/10.1090/S0002-9939-1965-0174934-9

12. Fischer, J., Holub, Š., I, T., Lewenstein, M.: Beyond the runs theorem. In: Iliopou-
los, C., Puglisi, S., Yilmaz, E. (eds.) SPIRE 2015. LNCS, vol. 9309, pp. 277–286.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-23826-5 27

13. Fraenkel, A.S., Simpson, J.: How many squares can a string contain? J. Comb.
Theory Ser. A 82(1), 112–120 (1998). https://doi.org/10.1006/jcta.1997.2843

14. Fraenkel, A.S., Simpson, J.: The exact number of squares in Fibonacci words.
Theor. Comput. Sci. 218(1), 95–106 (1999). https://doi.org/10.1016/S0304-
3975(98)00252-7

15. Gawrychowski, P., Kociumaka, T., Rytter, W., Walen, T.: Faster longest common
extension queries in strings over general alphabets. In: Grossi, R., Lewenstein, M.
(eds.) 27th Annual Symposium on Combinatorial Pattern Matching (CPM 2016),
27–29 June 2016, Tel Aviv, Israel. LIPIcs, vol. 54, pp. 5:1–5:13. Schloss Dagstuhl
- Leibniz-Zentrum für Informatik (2016). https://doi.org/10.4230/LIPIcs.CPM.
2016.5

16. Ilie, L.: A note on the number of squares in a word. Theor. Comput. Sci.
380(3), 373–376 (2007). https://doi.org/10.1016/j.tcs.2007.03.025. (Combinatorics
on Words)

17. Kempa, D., Kociumaka, T.: String synchronizing sets: sublinear-time BWT con-
struction and optimal LCE data structure. In: Charikar, M., Cohen, E. (eds.) Pro-
ceedings of the 51st Annual ACM SIGACT Symposium on Theory of Computing
(STOC 2019), Phoenix, AZ, USA, 23–26 June 2019, pp. 756–767. ACM (2019).
https://doi.org/10.1145/3313276.3316368

18. Knuth, D.E., Morris Jr., J.H., Pratt, V.R.: Fast pattern matching in strings. SIAM
J. Comput. 6(2), 323–350 (1977). https://doi.org/10.1137/0206024

19. Kolpakov, R.M., Kucherov, G.: Finding maximal repetitions in a word in linear
time. In: 40th Annual Symposium on Foundations of Computer Science (FOCS
1099), 17–18 October 1999, New York, NY, USA, pp. 596–604. IEEE Computer
Society (1999). https://doi.org/10.1109/SFFCS.1999.814634

20. Kosolobov, D.: Computing runs on a general alphabet. Inf. Proc. Lett. 116(3),
241–244 (2016). https://doi.org/10.1016/j.ipl.2015.11.016

https://doi.org/10.2307/1970044
https://doi.org/10.2307/1970044
https://doi.org/10.1016/j.jcss.2007.09.003
https://doi.org/10.1007/978-3-319-46049-9_3
https://doi.org/10.1007/978-3-319-46049-9_3
https://doi.org/10.1016/j.tcs.2013.11.018
https://doi.org/10.1007/BF01190846
https://doi.org/10.1016/j.dam.2014.08.016
https://doi.org/10.1016/j.dam.2014.08.016
https://doi.org/10.1090/S0002-9939-1965-0174934-9
https://doi.org/10.1007/978-3-319-23826-5_27
https://doi.org/10.1006/jcta.1997.2843
https://doi.org/10.1016/S0304-3975(98)00252-7
https://doi.org/10.1016/S0304-3975(98)00252-7
https://doi.org/10.4230/LIPIcs.CPM.2016.5
https://doi.org/10.4230/LIPIcs.CPM.2016.5
https://doi.org/10.1016/j.tcs.2007.03.025
https://doi.org/10.1145/3313276.3316368
https://doi.org/10.1137/0206024
https://doi.org/10.1109/SFFCS.1999.814634
https://doi.org/10.1016/j.ipl.2015.11.016

Lyndon Words, the Three Squares Lemma, and Primitive Squares 273

21. Carpi, A., D’Alessandro, F.: On the commutative equivalence of bounded semi-
linear codes. In: Mercaş, R., Reidenbach, D. (eds.) WORDS 2019. LNCS, vol.
11682, pp. 119–132. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
28796-2 9

22. Lyndon, R.C.: On Burnside’s problem. Trans. Am. Math. Soc. 77(2), 202–202
(1954). https://doi.org/10.2307/1990868

23. Puglisi, S.J., Simpson, J., Smyth, W.: How many runs can a string contain? Theor.
Comput. Sci. 401(1), 165–171 (2008). https://doi.org/10.1016/j.tcs.2008.04.020

24. Rytter, W.: The number of runs in a string: improved analysis of the linear upper
bound. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp.
184–195. Springer, Heidelberg (2006). https://doi.org/10.1007/11672142 14

https://doi.org/10.1007/978-3-030-28796-2_9
https://doi.org/10.1007/978-3-030-28796-2_9
https://doi.org/10.2307/1990868
https://doi.org/10.1016/j.tcs.2008.04.020
https://doi.org/10.1007/11672142_14

Computational Biology

Efficient Construction of Hierarchical
Overlap Graphs

Sung Gwan Park1 , Bastien Cazaux2,3 , Kunsoo Park1(B) ,
and Eric Rivals3

1 Seoul National University, Seoul, Korea
{sgpark,kpark}@theory.snu.ac.kr

2 University of Helsinki, Helsinki, Finland
bastien.cazaux@lirmm.fr

3 LIRMM, Univ Montpellier, CNRS, Montpellier, France
rivals@lirmm.fr

Abstract. The hierarchical overlap graph (HOG for short) is an over-
lap encoding graph that efficiently represents overlaps from a given set
P of n strings. A previously known algorithm constructs the HOG in
O(||P || + n2) time and O(||P || + n × min(n, max{|s| : s ∈ P})) space,
where ||P || is the sum of lengths of the n strings in P . We present a
new algorithm of O(||P || log n) time and O(||P ||) space to compute the
HOG, which exploits the segment tree data structure. We also propose
an alternative algorithm using O(||P || logn

log logn
) time and O(||P ||) space

in the word RAM model of computation.

Keywords: Hierarchical overlap graph · Segment tree · Word RAM
model

1 Introduction

Genome sequencing is limited by sequencing technologies that yield sequenc-
ing reads which are orders of magnitude shorter than the entire genome. Hence,
obtaining a whole genome sequence from sequencing reads resorts to DNA assem-
bly. This problem consists in recovering the target sequence from the overlaps
of reads by inferring their order and relative positions in the target sequence. It
translates into seeking a maximal path in a graph that encodes suffix-prefix over-
laps between pairs of reads [7,22,25,26]. The development of DNA sequencing
goes along with several proposals of overlap encoding graphs, usually classified
into two categories of digraphs:

S. G. Park and K. Park—Supported by Institute for Information & communications
Technology Promotion(IITP) grant funded by the Korea government (MSIT) (No.
2018-0-00551, Framework of Practical Algorithms for NP-hard Graph Problems).
E. Rivals—ER thanks funding Labex NUMEV, GEM project (ANR 2011-LABX-076).

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 277–290, 2020.
https://doi.org/10.1007/978-3-030-59212-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_20&domain=pdf
http://orcid.org/0000-0002-3255-9752
http://orcid.org/0000-0002-1761-4354
http://orcid.org/0000-0001-5225-0907
http://orcid.org/0000-0003-3791-3973
https://doi.org/10.1007/978-3-030-59212-7_20

278 S. G. Park et al.

– Overlap Graph [25] and its variants (like String Graph [22]), in which each
input read is a node and an arc connecting a pair of reads represents the
longest overlap between them, and

– “assembly” de Bruijn Graph [26], in which for a length k, each node represents
a k-long substring (termed k-mer) and an arc connects two k-mers whenever
the suffix of one matches the prefix of the other over length k − 1.

The overlap relation is not symmetrical, which explains why directed, rather
than undirected, graphs should be used in DNA assembly. Moreover, a pair of
reads can have several overlaps (in the same direction), in which case a shorter
overlap is necessarily nested into a longer one.

Recently, Cazaux and Rivals [8,9] proposed an alternative graph in which the
input reads and substrings corresponding to suffix-prefix overlaps are nodes in
the graph. This digraph, called Extended Hierarchical Overlap Graph (EHOG),
encodes both the longest suffix relationship and the longest prefix relationship
between nodes by using two kinds of arcs. To compact the EHOG even more,
the Hierarchical Overlap Graph (HOG) which includes only maximal overlaps
between reads was defined. A maximal overlap is a longest overlap for at least one
pair of reads. By definition, therefore, the HOG is a subgraph of the EHOG. See
Fig. 1 for examples of EHOG and HOG. Even if the EHOG and the HOG can be
identical for some instances, the ratio of the EHOG size over the HOG size (in the
number of nodes) can tend to infinity for some families of instances [9]. Thus,
efficient algorithms to build the HOG are important from both practical and
theoretical viewpoints. The advantages of the HOG/EHOG for storing overlaps
compared to other graphs are discussed in [9].

Given a set of strings, the shortest superstring problem is the problem of find-
ing a shortest superstring of the given strings. The shortest superstring problem
has applications in DNA assembly and data compression [6,29]. Since the prob-
lem is MAX SNP-hard, there has been extensive research to get better approxi-
mation ratios, e.g., 3 in [6], 22

3 in [3], 21
2 in [29], and more recently 211

23 [21] and
2 11
30 [23]. These approximation algorithms are based on the overlap graph (or

equivalent distance graph). In the overlap graph (or the distance graph), many
distinct arcs may encode the same overlap, but this fact is not specified in the
graph. In the HOG, all identical overlaps are encoded into a unique node, i.e.,
this fact is specified. Hence, the HOG has structurally more information than
the overlap graph, and thus it has a great potential in studying DNA assembly
and the shortest superstring problem.

Suppose that an input instance P consists of n strings, where no string is
a substring of another. The norm of P , denoted by ||P ||, is defined as the sum
of lengths of the strings in P . Computing an overlap graph from P is equiv-
alent to solving the all-pair suffix-prefix problem, which is studied extensively
[12,14,20,27]. The best asymptotic bound for this problem is O(||P || + n2) [14],
which is optimal. Computing the EHOG from P takes linear time in the norm
of P [9]. However, further limiting the set of overlap nodes to maximal overlaps,
which enables us to build the HOG, is more challenging. A previously known
algorithm achieves O(||P ||+n2) time with O(||P ||+n×min(n,max{|s| : s ∈ P}))

Efficient Construction of Hierarchical Overlap Graphs 279

space [9], which has the same time complexity as the all-pair suffix-prefix prob-
lem. The question of an optimal algorithm for computing the HOG remains open.
In this paper we present an algorithm taking O(||P || log n) time with O(||P ||)
space in the standard RAM model, which exploits the segment tree data struc-
ture (Sect. 3). We also propose an alternative algorithm using O(||P || logn

log log n)
time and O(||P ||) space in the word RAM model of computation [15] (Sect. 4).
Throughout the paper, we assume that the size of the alphabet is constant.

2 Preliminaries

In this paper we consider strings over a finite alphabet Σ. Given a string s, the
length of s is denoted by |s|. For any two integers 1 ≤ i ≤ j ≤ |s|, the substring
of s which starts from i and ends at j is denoted by s[i..j]. Substring s[i..j] is a
prefix of s if i = 1, and a suffix of s if j = |s|. A prefix (suffix) of s is a proper
prefix (suffix) of s if it is different from s. Given two strings s and t, string u is
an overlap from s to t if u is a proper suffix of s and also a proper prefix of t. The
longest overlap from s to t is denoted by ov(s, t). Given a set P = {s1, s2, ..., sn}
of strings, the sum of |si|’s is denoted by ||P ||.

2.1 Hierarchical Overlap Graph

We use definitions of extended hierarchical overlap graph and hierarchical overlap
graph in [9].

Definition 1. Given a set P = {s1, s2, . . . , sn} of strings, let Ov+(P) be the
set of all overlaps from si to sj for 1 ≤ i, j ≤ n. The Extended Hierarchical
Overlap Graph of P , denoted by EHOG(P), is a directed graph (V +, E+) where
V + = P ∪Ov+(P)∪{ε} and E+ = E+

1 ∪E+
2 , where E+

1 = {(x, y) ∈ V +×V + | x
is the longest proper prefix of y} and E+

2 = {(x, y) ∈ V + × V + | y is the longest
proper suffix of x}.

Definition 2. Given a set P = {s1, s2, . . . , sn} of strings, let Ov(P) be the set of
the longest overlap from si to sj for 1 ≤ i, j ≤ n. The Hierarchical Overlap Graph
of P , denoted by HOG(P), is a directed graph (V,E) where V = P ∪Ov(P)∪{ε}
and E = E1 ∪ E2, where E1 = {(x, y) ∈ V × V | x is the longest proper prefix of
y} and E2 = {(x, y) ∈ V × V | y is the longest proper suffix of x}.

For example, Fig. 1 from [9] shows an Aho-Corasick trie [1], EHOG, and
HOG built with P = {aabaa, aacd, cdb}. Note that EHOG is a contracted form
of the Aho-corasick trie and HOG is a contracted form of EHOG, as described
in [9]. Consequently, both EHOG and HOG, without failure links, are trees.

By definitions of EHOG and HOG, each node u in a graph represents a string,
which is the concatenation of labels on the path from the root to u. If (u, v) is
a tree arc (an edge in E+

1 or E1, solid line in Fig. 1) in an EHOG (resp. HOG),
the string represented by u is the longest proper prefix of the string represented
by v in the EHOG (resp. HOG). If (u, v) is a failure link (an edge in E+

2 or E2,

280 S. G. Park et al.

u1

u2

u4

u6 u7

u8

u3

u5

1

2

3

a

a

b

a

a

c

d

c

d

b

u1

u2 u5

u4 3

1 2

a

a

baa cd

cd

b

u1

u4 u5

aa cd

1 2

baa cd

3

b

(a) (b) (c)

Fig. 1. Data structures built with P = {aabaa, aacd, cdb}. Dotted lines represent failure
links of the nodes. (a) Aho-Corasick tri.e. (b) Extended hierarchical overlap graph. (c)
Hierarchical overlap graph.

dotted line in Fig. 1) in an EHOG (resp. HOG), the string represented by v is the
longest proper suffix of the string represented by u in the EHOG (resp. HOG).
In this paper we use term ‘node’ to mean a node in EHOG or HOG, or a string
represented by the node.

We can build an EHOG of P = {s1, s2, ..., sn} in O(||P ||) time and
space [9]. Furthermore, if we know EHOG(P) and Ov(P), we can compute
HOG(P) in O(||P ||) time and space [9]. Therefore, the bottleneck of com-
puting HOG(P) is to compute Ov(P), which costs O(||P || + n2) time and
O(||P || + n × min(n,max{|si|})) space in [9].

3 Main Algorithm

In this section we describe an algorithm to compute HOG from the given set
P = {s1, s2, . . . , sn} of strings in O(||P || log n) time.

3.1 New Approach to Compute HOG

First, we build an Aho-Corasick trie of P and renumber the strings (i.e., leaves)
in lexicographic order. This can be done in O(||P ||) time, assuming that the
size of the alphabet is constant. Next, we build EHOG(P) in O(||P ||) time [9].
Furthermore, for each node u in EHOG(P), we define an interval I(u) that
contains every leaf node that is in the subtree of u (i.e. I(u) = {i ∈ [1..n] | u is
a prefix of si}). Since P is renumbered in lexicographic order, we can see that
I(u) forms one interval.

Efficient Construction of Hierarchical Overlap Graphs 281

Algorithm 1. Computing HOG using interval encoding
1: procedure Build-HOG-Interval-Encoding(EHOG(P))
2: for i ← 1 to n do
3: Initialize B[1..n] to false

4: u ← leaf corresponding to si in EHOG(P)
5: Mark u as included in HOG(P)
6: while u �= root do
7: u ← failure link of u in EHOG(P)
8: if ∃ j ∈ I(u) such that B[j] is false then
9: Mark u as included in HOG(P)

10: for j ∈ I(u) do
11: B[j] ← true

12: Build HOG(P) with marked nodes

Given EHOG(P), we compute Ov(P) by discarding nodes that are not
longest overlaps. If a string s is included in Ov(P), s is a proper suffix of si
and a proper prefix of sj for some i and j by definition of Ov(P). To compute
all longest overlaps from si, we start from the i-th leaf si, follow the failure links
repeatedly up to the root, and check whether the node we are looking at is the
longest prefix of sj for some j. (Note that every overlap between two strings in
P is represented as a node in EHOG(P), and thus we can iterate through all
overlaps from si by following the failure links starting from si.) While traversing
the nodes through failure links (namely v0 = i-th leaf → v1 → · · · → vk =
root), vx (1 ≤ x ≤ k) is ov(i, j) if and only if vx is the first node that is a prefix
of sj during the traversal. More specifically, vx should be the prefix of sj and
vy’s (1 ≤ y < x) should not be the prefixes of sj . To check whether there exists
such j efficiently, we maintain a bit vector B of length n defined as follows. At
the end of the iteration with vx (1 ≤ x ≤ k), B[j] = true if and only if there
exists 1 ≤ y ≤ x such that vy is a prefix of sj . We can maintain B as defined
by marking B[j] for every j ∈ I(vx) as true during the iteration with vx. Note
that v0 is always included in HOG(P) by definition and is not considered.

We can check whether vx should be included in HOG(P) by using B. Suppose
that there exists j such that B[j] = false and j ∈ I(vx) at the beginning of the
iteration with vx. By the definition of B[j] and I(vx), vx = ov(i, j) and it should
be included in HOG(P). On the other hand, if B[j] = true at the beginning of
the iteration with vx, there exists a longer overlap from si to sj than vx and it
should not be included in HOG(P). If we do this process for every leaf node,
we can get the list of nodes that we should include in HOG(P). Algorithm 1
describes an algorithm to compute HOG(P).

For example, let’s consider the example in Fig. 1(b). First, we consider the
case with i = 1 in line 2. After we mark leaf 1 to be included in HOG(P) in line
5, we begin the loop with u = u4, which is the failure link of leaf 1. We consider
I(u4) = {1, 2} in array B. Since B[1] and B[2] are false, we mark u4 to be
included in HOG(P) and set B[1] and B[2] as true. We continue the loop with
u = u2 by following the failure link. Since there is no j ∈ I(u2) = {1, 2} such

282 S. G. Park et al.

A[1..6]

A[1..3] A[4..6]

A[1..2] A[3..3] A[4..5] A[6..6]

A[1..1] A[2..2] A[4..4] A[5..5]

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 1
add = 1

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 1
add = 1

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 1
add = 0

min = 0
add = 0

min = 1
add = 1

min = 1
add = 1

min = 1
add = 0

min = 0
add = 0

min = 0
add = 0

min = 0
add = 0

min = 1
add = 1

min = 1
add = 1

(a) (b)

(d)(c)

Fig. 2. Segment tree structure with n = 6. (a) The intervals that each node represents.
(b) The values min and add that each node initially stores. (c) The values that each
node stores after query 2 on A[1..5]. (d) The values that each node stores after query
1 on A[3..4]. Red arrows show that add values of the nodes are propagated to min and
add values of their children. (Color figure online)

that B[j] is false, we don’t include u2 in HOG(P). We continue the loop with
u = u1. We consider I(u1) = {1, 2, 3} in array B. Since B[3] is false, we mark
u1 to be included in HOG(P) and set B[3] as true. Since u = u1 is the root, we
finish the loop.

3.2 Improvement Using Segment Tree

To speed up Algorithm 1, we have to process these two types of queries efficiently.

i) Given an interval [a..b], check whether there is any index j ∈ [a..b] such that
B[j] = false (Lines 8–9).

ii) Given an interval [a..b], set B[j] as true for every j ∈ [a..b] (Lines 10–11).

In order to process these queries, let’s consider the following two types of queries
on an integer array A. For an index j, A[j] > 0 means that B[j] = true, while
A[j] = 0 means that B[j] = false.

1. Given an interval [a..b], compute the minimum value among A[a..b] (and check
whether it is zero or not).

2. Given an interval [a..b], add 1 to each element of A[a..b].

We can see that one could use queries 1 and 2 to solve queries i and ii,
respectively.

Efficient Construction of Hierarchical Overlap Graphs 283

Algorithm 2. Computing minimum of an interval using segment tree
1: procedure SegTree-Min(cnode, cinterval)
2: if cnode.int ⊆ cinterval then
3: return cnode.min

4: if cnode.int ∩ cinterval = ∅ then
5: return ∞
6: left, right ← two children of cnode

7: left.min += cnode.add, left.add += cnode.add

8: right.min += cnode.add, right.add += cnode.add

9: cnode.add = 0
10: return min(SegTree-Min(left, cinterval), SegTree-Min(right,

cinterval))

Algorithm 3. Add 1 to an interval using segment tree
1: procedure SegTree-Update(cnode, cinterval)
2: if cnode.int ⊆ cinterval then
3: cnode.min += 1, cnode.add += 1
4: return
5: if cnode.int ∩ cinterval = ∅ then
6: return
7: left, right ← two children of cnode

8: left.min += cnode.add, left.add += cnode.add

9: right.min += cnode.add, right.add += cnode.add

10: cnode.add = 0
11: SegTree-Update(left, cinterval)
12: SegTree-Update(right, cinterval)
13: cnode.min = min(left.min, right.min)
14: return

Let A be an integer array of length n. We use the segment tree data structure
[5] to process queries 1 and 2 on A. The segment tree is a binary tree, which
has n leaf nodes (they are 1, 2, ..., n) and has O(log n) height. Each leaf node
represents one element, and each internal node represents an interval of elements.
Figure 2(a) shows a segment tree for n = 6. For each node u in the segment tree,
we define u.int as the interval that u represents. In Fig. 2(a), for instance, u.int
for the root node is [1..6].

While processing the queries, each node u stores both the minimum value
among the elements in u.int (denoted by u.min) and an added value to u.int
(denoted by u.add). Since A should be initialized to zero, every value in the
segment tree is also initialized to zero. Figure 2(b) shows an initial state of the
segment tree.

Algorithms 2 and 3 show the algorithms to perform queries 1 and 2, respec-
tively, in the segment tree, which use the lazy propagation technique in [19],
though in [19] one computes the sum, while here we compute the minimum. If
query 1 occurs, we follow the nodes recursively from top to down, starting from
the root. Consider a node u during the recursion. If u.int is included in the

284 S. G. Park et al.

query interval, we return u.min. If u.int is disjoint with the query interval, we
return ∞ to indicate that there are no values to be considered in u.int. Other-
wise, we propagate an added value to the child nodes, continue the process with
the child nodes and return the minimum among them. Query 2 can be done in
a similar way, but in this case we have to recompute the minimum value of a
node after updating its child nodes, as shown in line 13 of Algorithm 3.

Figures 2(c) and 2(d) show an example of processing two queries, query
2 on A[1..5] and query 1 on A[3..4]. In Fig. 2(c), we can see that two nodes
representing A[1..3] and A[4..5] are updated in the segment tree. Note that min
and add values of the descendant nodes are not updated yet. In Fig. 2(d), we
access the two nodes representing A[3..3] and A[4..4] to compute the minimum
value among A[3..4]. Note that add values in A[1..3] and A[4..5] are propagated
to their children to ensure that appropriate min values are stored in A[3..3] and
A[4..4].

We now prove the correctness of Algorithms 2 and 3. To the best of our
knowledge, this is the first correctness proof for the folklore lazy propagation
technique in [19]. The proof is non-trivial because Algorithms 2 and 3 work
together, but their recursive structures differ. First, we need an invariant that
holds for both algorithms, i.e., Invariant 1 below. Moreover, since Algorithm 2
makes recursive calls at the end, we need a top-down sub-invariant for Algo-
rithm 2. In contrast, Algorithm 3 makes recursive calls in the middle, and thus
we have to come up with a bottom-up sub-invariant for Algorithm 3.

Each node u in the segment tree maintains the following invariant while
processing queries 1 and 2.

min
i∈u.int

A[i] = u.min +
∑

v

{v.add : v is an ancestor of u}, (1)

where A is the conceptual array in the definitions of queries 1 and 2, and u is
not an ancestor of itself.

Lemma 1. Invariant 1 holds after Algorithm 2 or 3 is called with cnode = root
and cinterval = [a..b] for query 1 or 2, respectively.

Proof. We prove the lemma by induction. Initially, Invariant 1 holds because
A[i] = 0 for every index i, and u.min = 0 and u.add = 0 for every node u in the
segment tree.

First we show that Invariant 1 holds after Algorithm 2 is called for query 1.
The left-hand side (LHS) of Invariant 1 is unchanged since Algorithm 2 performs
a query on A, but does not change it. However, the propagation of the add values
in the segment tree may update the min and add values of other nodes in it. So
we must prove that the right-hand side (RHS) of Invariant 1 remains the same
too. When Algorithm 2 is called with cnode = root, it recurses through nodes
in the segment tree (i.e., it goes down) until it reaches the base cases of recursion
(which are handled in lines 2 and 4), and then it goes up by computing minima
(in line 10). When Algorithm 2 goes down, we will show inductively that the RHS
of Invariant 1 remains the same for every node in the segment tree after each

Efficient Construction of Hierarchical Overlap Graphs 285

execution of lines 6–9 (i.e., top-down sub-invariant for Algorithm 2). Consider
one execution of lines 6–9. Since left, right, and cnode have their min and add
changed, we show that the RHS of Invariant 1 remains the same for every node
u in the subtree rooted at cnode.

– If u = cnode, cnode.min is not changed, and so the RHS of Invariant 1
remains the same.

– If u = left (similarly for u = right), left.min is increased as much as
cnode.add is decreased, so the RHS of Invariant 1 remains the same.

– If u is a descendant of left (similarly for a descendant of right), left.add
is increased as much as cnode.add is decreased. Since both left and cnode
are u’s ancestors, the RHS of Invariant 1 remains the same.

Therefore, the RHS of Invariant 1 remains the same for every node u in the
segment tree when Algorithm 2 goes down.

When Algorithm 2 goes up (including the base cases of recursion), the RHS
of Invariant 1 does not change for any node in the segment tree. Therefore,
Invariant 1 holds after Algorithm 2 is called for query 1.

Now we show that Invariant 1 holds after Algorithm 3 is called for query 2.
When Algorithm 3 is called with cnode = root, it goes down by recursion and
then it goes up, like Algorithm 2. When Algorithm 3 goes down, one can show
inductively that the RHS of Invariant 1 does not change after each execution of
lines 7–10, in a way similar to Algorithm 2.

When Algorithm 3 goes up, we will show inductively that Invariant 1
holds for every node in the subtree rooted at cnode at the moment when
SegTree-Update (cnode, cinterval) returns (i.e., bottom-up sub-invariant
for Algorithm 3). We first consider two base cases which are handled in lines 2
and 5.

– If cnode.int ⊆ cinterval, SegTree-Update(cnode, cinterval) performs
line 3 and returns in line 4. After line 3 is done, the RHS of Invariant 1 for
cnode and its descendants increases by 1. Since every A[i] for i ∈ cnode.int
increases by 1, the LHS of Invariant 1 for them also increases by 1 and Invari-
ant 1 holds.

– If cnode.int ∩ cinterval = ∅, SegTree-Update(cnode, cinterval) does
nothing and returns in line 6, and thus the RHS of Invariant 1 remains the
same for cnode and its descendants. Since every A[i] for i ∈ cnode.int
remains the same, Invariant 1 holds.

Next, we consider the induction step, where we assume that Invariant 1 holds
for left, right and their descendants by the bottom-up sub-invariant. Now we
need to show that Invariant 1 holds for cnode when SegTree-Update(cnode,
cinterval) executes line 13 and returns. Suppose that left.min ≤ right.min
(similarly for the case left.min > right.min). Consider Invariant 1 for left
and right. Since left and right share the same ancestors, the summation parts
of Invariant 1 for left and right are the same. So if left.min ≤ right.min,

286 S. G. Park et al.

Algorithm 4. Algorithm to compute HOG in O(||P || log n) time
1: procedure Build-HOG(EHOG(P))
2: for i ← 1 to n do
3: Initialize the segment tree
4: u ← leaf corresponding to si in EHOG(P)
5: Mark u as included in HOG(P)
6: while u �= root do
7: u ← failure link of u in EHOG(P)
8: if SegTree-Min(root, I(u)) = 0 then
9: Mark u as included in HOG(P)

10: SegTree-Update(root, I(u))

11: Build HOG(P) with marked nodes

min
i∈left.int

A[i] ≤ min
i∈right.int

A[i] holds. Since cnode.int = left.int ∪ right.int,

the LHS of Invariant 1 for cnode is the same as that of left. The RHS of
Invariant 1 for cnode is also the same as that of left because cnode.min =
left.min by line 13 and cnode.add = 0 by line 10.

Therefore, Invariant 1 holds for every node in the segment tree after Algo-
rithm 3 is called with cnode = root.

Using Lemma 1, we can show the correctness of Algorithms 2 and 3 to solve
queries 1 and 2.

Theorem 1. For any sequences of Algorithms 2 and 3 called with
cnode = root and cinterval = [a..b], Algorithm 2 (i.e., SegTree-Min(root,
cinterval)) returns a correct answer for query 1 with the given interval [a..b].

Proof. By Lemma 1 Invariant 1 holds after every call on Algorithm 2 or 3.
Furthermore, if we access node u by recursion in Algorithm 2, v.add = 0 for
every ancestor v of u due to line 9 in Algorithm 2. Therefore, at the moment we
access u, min

i∈u.int
A[i] = u.min always holds from Invariant 1.

Since Algorithm 2 computes the minimum of u.min for every u whose interval
is included in the given interval [a..b], it is equal to the minimum value among
A[a..b]. Therefore, Algorithm 2 returns a correct answer for query 1.

Given the EHOG, Algorithm 4 describes how to compute the HOG using
queries on the segment tree data structure. Algorithm 4 is almost identical to
Algorithm 1. First, the condition (∃j ∈ I(u) such that B[j] is false) on line 8
of Algorithm 1 is now performed by (SegTree-Min(root, I(u)) = 0) on line 8
of Algorithm 4. Second, the update for loop of lines 10–11 in Algorithm 1 is per-
formed using a single query on line 10 of Algorithm 4: SegTree-Update(root,
I(u)).

Since any interval [a..b] can be represented by O(log n) nodes with a segment
tree [5], Algorithms 2 and 3 can be done in O(log n) time. By using them,
we can get an O(||P || log n) time algorithm to compute HOG(P), as shown in

Efficient Construction of Hierarchical Overlap Graphs 287

Algorithm 4. Since HOG(P) and the segment tree take O(||P ||) and O(n) space,
respectively, the space complexity of building the HOG is O(||P ||).

4 Improvement Using the word RAM model

By using the word RAM model of computation [15] with w-bit machine words,
where w ≥ log n, we show that we can compute the HOG from the given set P
of n strings in O(‖P‖ logn

log log n) time.
Indeed, by using bitwise operations, we can improve queries 1 and 2 from

O(log n) to O(logw n) = O(loglogn n) = O(logn
log log n). To do so, we introduce the

w-segment tree, which is the w-ary version of the segment tree as in [2,11].

4.1 Algorithms with Bitwise Operations

Unlike the original segment tree which is a binary tree, we define the w-segment
tree as a tree with n leaves, a height of O(logw n), and each node having at most
w children. As in the segment tree, each internal node represents an interval
of elements of P (i.e., 1, 2, . . . , n), and each leaf contains a single element (the
interval of a node u is denoted by u.int). But, instead of storing for a node u
the minimum value u.min and the added value u.add, we store two bit vectors
of length w (v.Vmin and v.Vadd) for every internal node v. If a node u is the
j-th child of its parent p, the j-th value of p.Vmin is true if u.min ≥ 1; false
if u.min = 0 (same for Vadd).

To compute query 1 for a node u and an interval [a, b], we begin by comparing
the interval [L,R] = u.int with [a, b]:

– If [L,R] ⊆ [a, b], we return the j-th bit of p.Vmin, where u is the j-th child
of its parent p.

– If [L,R] ∩ [a, b] = ∅, we return true.
– Otherwise, we compute the positions ia and ib corresponding to a and b in

[0, w − 1]:
ia =
 (a−L)w

R−L+1 � and ib =
 (b−L)w
R−L+1�.

If the j-th position of p.Vadd is equal to 1, all the values of u.Vmin and
u.Vadd become 1, and the j-th position of p.Vadd becomes 0.
At the end, we recursively call the function on Childia and Childib and
return the minimum of two recursive calls and the values of u.Vmin between
positions ia + 1 and ib − 1, where the minimum of the corresponding values
of u.Vmin is computed as the following Boolean value:

(u.Vmin AND (2ib − 2ia+1)) = (2ib − 2ia+1).

In a similar way, we can compute query 2 by using bitwise operations.

288 S. G. Park et al.

4.2 Using a Table for a Compressed space

Instead of a tree structure, we can use two tables to simulate the segment tree.
Let

h =
w�logw n�−1 − 1

w − 1
+

⌈ n

w

⌉

denote the size of these tables, and let Tmin[0..h − 1] and Tadd[0..h − 1] be two
tables of w-bit words initialized to [0, . . . ,0]. We store Vmin’s and Vadd’s of
Section 4.1 into Tmin and Tadd, respectively, in the BFS order of the w-segment
tree (i.e., top to bottom, left to right) and run the algorithm described in Sect. 4.1
(see Algorithm 5). In the same way, we can build the algorithm corresponding
to query 2 with bitwise operations.

Algorithm 5. Computing minimum of an interval using w-segment tree
1: procedure SegTreeMinRam(k, [a, b])
2: d ←
logw((w − 1)k + 1)� � Depth of node k

3: x ← k − wd−1
w−1

� Node k is the x-th node with depth d

4: Y ← w�logw n�−d � Node k represents an interval of length Y
5: L ← xY + 1
6: R ← (x + 1)Y
7: p ←
 k−1

w
� � p is parent of node k

8: j ← (k − 1) mod w � Node k is the j-th child of p

9: ia ← max(
 (a−L)w
Y

�, 0)

10: ib ← min(
 (b−L)w
Y

�, w − 1)
11: if (a ≤ L) ∧ (R ≤ b) then
12: return (Tmin[p] AND 2j) = 2j

13: if (R < a) ∨ (b < L) then
14: return true

15: if (Tadd[p] AND 2j) = 2j then
16: Tmin[k] ← 2w − 1
17: Tadd[k] ← 2w − 1
18: Tadd[p] ← Tadd[p] AND (2w − 1 − 2j)

19: return SegTreeMinRam(wk + 1 + ia, [a, b])
∧ SegTreeMinRam(wk + 1 + ib, [a, b])
∧ (Tmin[k] AND (2ib − 2ia+1) = (2ib − 2ia+1))

By using a table to simulate the tree, we do not need to store the interval of
each node and we can store the segment tree by using O(n) bits.

Indeed, the tables Tmin and Tadd are of size h. As
⌈
n
w

⌉ ≤ 2n
w and

w�logw n�−1−1
w−1 ≤ 2 × w�logw n�−2 ≤ 2n

w , we need at most w × 4 × n
w = 4n bits

to store each table.
That is, the space for the segment tree is reduced to O(n) bits (i.e., O(n

log n)
words) by using the two tables, but the space complexity of building the HOG
remains O(||P ||) due to the size of the HOG itself.

Efficient Construction of Hierarchical Overlap Graphs 289

5 Conclusion

We have presented a new algorithm to compute the HOG in O(||P || log n) time
and linear space, which improves upon an earlier solution, and a version of our
algorithm using bitwise operations in the word RAM model of computation.

Several interesting questions concerning the HOG and EHOG deserve future
work. The reverse engineering of indexing data structures, also termed infer-
ence or recognition problem, has attracted a lot of interest. The question is, for
instance, given a tree, can one decide whether it is the suffix tree of some string
or not? The reverse engineering problem has been studied, e.g., for the suffix
tree [16] or the longest-common-prefix array [18]. In 2014, Gevezes and Pitsoulis
investigated the reverse engineering of overlap graphs [10]: given a weighted
directed graph G, find an instance P such that the overlap graph of P equals G.
Clearly this question can be applied to the EHOG and HOG, where the weight
on an arc (which is the length of the label on the arc) may or may not be given.

The sizes of the EHOG and HOG (in the number of nodes) can be equal, but
they may differ considerably [9]. An average case analysis of their sizes could
help understand their differences, and predict the memory required for storing
them. Some results connected to this question exist in the literature, e.g., [24]
for tries. The notion of clusters of word occurrences [4,13,17,28] can be helpful
in investigating the number of nodes of the EHOG and HOG for a random set
of words.

References

1. Aho, A.V., Corasick, M.J.: Efficient string matching: an aid to bibliographic search.
Commun. ACM 18(6), 333–340 (1975). https://doi.org/10.1145/360825.360855

2. Arge, L., Brodal, G.S., Georgiadis, L.: Improved dynamic planar point location.
In: 47th Proceedings of FOCS, pp. 305–314 (2006). https://doi.org/10.1109/FOCS.
2006.40

3. Armen, C., Stein, C.: A 2 2
3
-approximation algorithm for the shortest superstring

problem. In: CPM, pp. 87–101 (1996). https://doi.org/10.1007/3-540-61258-0 8
4. Bassino, F., Clement, J., Nicodeme, P.: Counting occurrences for a finite set of

words: combinatorial methods. ACM Trans. Algorithms 8(3), 31:1–31:28 (2012).
https://doi.org/10.1145/2229163.2229175

5. Berg, M., Kreveld, M., Overmars, M., Schwarzkopf, O.: Computational Geometry:
Algorithms and Applications, 3rd edn. Springer, Berlin (2008). https://doi.org/10.
1007/978-3-540-77974-2

6. Blum, A., Jiang, T., Li, M., Tromp, J., Yannakakis, M.: Linear approximation
of shortest superstrings. J. ACM 41(4), 630–647 (1994). https://doi.org/10.1145/
179812.179818

7. Cazaux, B., Juhel, S., Rivals, E.: Practical lower and upper bounds for the shortest
linear superstring. In: SEA, pp. 18:1–18:14 (2018). https://doi.org/10.4230/LIPIcs.
SEA.2018.18

8. Cazaux, B., Rivals, E.: A linear time algorithm for shortest cyclic cover of strings.
J. Discrete Algorithms 37, 56–67 (2016). https://doi.org/10.1016/j.jda.2016.05.001

9. Cazaux, B., Rivals, E.: Hierarchical overlap graph. Inf. Process. Lett. 155, 105862
(2020). https://doi.org/10.1016/j.ipl.2019.105862

https://doi.org/10.1145/360825.360855
https://doi.org/10.1109/FOCS.2006.40
https://doi.org/10.1109/FOCS.2006.40
https://doi.org/10.1007/3-540-61258-0_8
https://doi.org/10.1145/2229163.2229175
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1145/179812.179818
https://doi.org/10.1145/179812.179818
https://doi.org/10.4230/LIPIcs.SEA.2018.18
https://doi.org/10.4230/LIPIcs.SEA.2018.18
https://doi.org/10.1016/j.jda.2016.05.001
https://doi.org/10.1016/j.ipl.2019.105862

290 S. G. Park et al.

10. Gevezes, T.P., Pitsoulis, L.S.: Recognition of overlap graphs. J. Comb. Optim.
28(1), 25–37 (2013). https://doi.org/10.1007/s10878-013-9663-3

11. Giora, Y., Kaplan, H.: Optimal dynamic vertical ray shooting in rectilinear pla-
nar subdivisions. ACM Trans. Algorithms 5(3) (2009). https://doi.org/10.1145/
1541885.1541889

12. Gonnella, G., Kurtz, S.: Readjoiner: a fast and memory efficient string graph-based
sequence assembler. BMC Bioinform. 13(1), 82 (2012). https://doi.org/10.1186/
1471-2105-13-82

13. Guibas, L.J., Odlyzko, A.M.: Periods in strings. J. Comb. Theory Ser. A 30(1),
19–42 (1981). https://doi.org/10.1016/0097-3165(81)90038-8

14. Gusfield, D., Landau, G.M., Schieber, B.: An efficient algorithm for the all pairs
suffix-prefix problem. Inf. Process. Lett. 41(4), 181–185 (1992). https://doi.org/
10.1016/0020-0190(92)90176-V

15. Hagerup, T.: Sorting and searching on the word RAM. In: Morvan, M., Meinel, C.,
Krob, D. (eds.) STACS 1998. LNCS, vol. 1373, pp. 366–398. Springer, Heidelberg
(1998). https://doi.org/10.1007/BFb0028575

16. Tomohiro, I., Inenaga, S., Bannai, H., Takeda, M.: Inferring strings from suffix
trees and links on a binary alphabet. Discret. Appl. Math. 163, 316–325 (2014).
https://doi.org/10.1016/j.dam.2013.02.033

17. Jacquet, P., Szpankowski, W.: Autocorrelation on words and its applications: anal-
ysis of suffix trees by string-ruler approach. J. Comb. Theory Ser. A 66(2), 237–269
(1994). https://doi.org/10.1016/0097-3165(94)90065-5

18. Karkkainen, J., Piatkowski, M., Puglisi, S.J.: String inference from longest-
common-prefix array. In: ICALP. LIPIcs, vol. 80, pp. 62:1–62:14 (2017). https://
doi.org/10.4230/LIPIcs.ICALP.2017.62

19. Laaksonen, A.: Guide to Competitive Programming. UTCS. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72547-5

20. Lim, J., Park, K.: A fast algorithm for the all-pairs suffix-prefix problem. Theoret.
Comput. Sci. 698, 14–24 (2017). https://doi.org/10.1016/j.tcs.2017.07.013

21. Mucha, M.: Lyndon words and short superstrings. In: SODA, pp. 958–972. SIAM
(2013). https://doi.org/10.1137/1.9781611973105.69

22. Myers, E.W.: The fragment assembly string graph. Bioinformatics 21(Suppl. 2),
ii79–ii85 (2005). https://doi.org/10.1093/bioinformatics/bti1114

23. Paluch, K.: Better approximation algorithms for maximum asymmetric traveling
salesman and shortest superstring (2014). https://arxiv.org/abs/1401.3670

24. Park, G., Hwang, H., Nicodeme, P., Szpankowski, W.: Profiles of tries. SIAM J.
Comput. 38(5), 1821–1880 (2009). https://doi.org/10.1137/070685531

25. Peltola, H., Soderlund, H., Tarhio, J., Ukkonen, E.: Algorithms for some string
matching problems arising in molecular genetics. In: IFIP Congress, pp. 53–64
(1983)

26. Pevzner, P.A., Tang, H., Waterman, M.S.: An eulerian path approach to DNA
fragment assembly. Proc. Natl. Acad. Sci. 98(17), 9748–9753 (2001). https://doi.
org/10.1073/pnas.171285098

27. Rachid, M.H., Malluhi, Q.: A practical and scalable tool to find overlaps between
sequences. BioMed Res. Int. 2015 (2015). https://doi.org/10.1155/2015/905261

28. Robin, S., Rodolphe, F., Schbath, S.: DNA, Words and Models. Cambridge Uni-
versity Press, Cambridge (2005)

29. Sweedyk, Z.: A 2 1
2
-approximation algorithm for shortest superstring. SIAM J.

Comput. 29(3), 954–986 (2000). https://doi.org/10.1137/S0097539796324661

https://doi.org/10.1007/s10878-013-9663-3
https://doi.org/10.1145/1541885.1541889
https://doi.org/10.1145/1541885.1541889
https://doi.org/10.1186/1471-2105-13-82
https://doi.org/10.1186/1471-2105-13-82
https://doi.org/10.1016/0097-3165(81)90038-8
https://doi.org/10.1016/0020-0190(92)90176-V
https://doi.org/10.1016/0020-0190(92)90176-V
https://doi.org/10.1007/BFb0028575
https://doi.org/10.1016/j.dam.2013.02.033
https://doi.org/10.1016/0097-3165(94)90065-5
https://doi.org/10.4230/LIPIcs.ICALP.2017.62
https://doi.org/10.4230/LIPIcs.ICALP.2017.62
https://doi.org/10.1007/978-3-319-72547-5
https://doi.org/10.1016/j.tcs.2017.07.013
https://doi.org/10.1137/1.9781611973105.69
https://doi.org/10.1093/bioinformatics/bti1114
https://arxiv.org/abs/1401.3670
https://doi.org/10.1137/070685531
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1073/pnas.171285098
https://doi.org/10.1155/2015/905261
https://doi.org/10.1137/S0097539796324661

Tailoring r-index for Document Listing
Towards Metagenomics Applications

Dustin Cobas1 , Veli Mäkinen2 , and Massimiliano Rossi3(B)

1 CeBiB — Center for Biotechnology and Bioengineering, Department of Computer
Science, University of Chile, Santiago, Chile

dcobas@dcc.uchile.cl
2 Department of Computer Science, University of Helsinki, Helsinki, Finland

veli.makinen@helsinki.fi
3 Department of Computer and Information Science and Engineering,

University of Florida, Gainesville, USA
rossi.m@ufl.edu

Abstract. A basic problem in metagenomics is to assign a sequenced
read to the correct species in the reference collection. In typical appli-
cations in genomic epidemiology and viral metagenomics the reference
collection consists of a set of species with each species represented by
its highly similar strains. It has been recently shown that accurate read
assignment can be achieved with k-mer hashing-based pseudoalignment :
a read is assigned to species A if each of its k-mer hits to a reference
collection is located only on strains of A. We study the underlying prim-
itives required in pseudoalignment and related tasks. We propose three
space-efficient solutions building upon the document listing with frequen-
cies problem. All the solutions use an r-index (Gagie et al., SODA 2018)
as an underlying index structure for the text obtained as concatenation
of the set of species, as well as for each species. Given t species whose con-
catenation length is n, and whose Burrows-Wheeler transform contains r
runs, our first solution, based on a grammar-compressed document array
with precomputed queries at non terminal symbols, reports the frequen-
cies for the ndoc distinct documents in which the pattern of length m
occurs in O(m + log(n)ndoc) time. Our second solution is also based
on a grammar-compressed document array, but enhanced with bitvec-
tors and reports the frequencies in O(m + ((t/w) logn + log(n/r))ndoc)
time, over a machine with wordsize w. Our third solution, based on the
interleaved LCP array, answers the same query in O(m+ log(n/r)ndoc)
time. We implemented our solutions and tested them on real-world and
synthetic datasets. The results show that all the solutions are fast on
highly-repetitive data, and the size overhead introduced by the indexes
are comparable with the size of the r-index.

Keywords: Metagenomics · r-index · Document listing.

c© Springer Nature Switzerland AG 2020
C. Boucher and S. V. Thankachan (Eds.): SPIRE 2020, LNCS 12303, pp. 291–306, 2020.
https://doi.org/10.1007/978-3-030-59212-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59212-7_21&domain=pdf
http://orcid.org/0000-0001-6081-694X
http://orcid.org/0000-0003-4454-1493
http://orcid.org/0000-0002-3012-1394
https://doi.org/10.1007/978-3-030-59212-7_21

292 D. Cobas et al.

1 Introduction

Metagenomics is the study of genomic material recovered directly from envi-
ronmental samples. Thus, conversely to genomic samples, metagenomic samples
consist of genome sequences of a community of organisms sharing the same envi-
ronment, highlighting the microbial diversity in the environmental samples. The
samples of genome sequences are collected using shotgun sequencing. This cre-
ates a mixture of genome fragments from all organisms in the environment. One
important step in metagenomics is to assign each fragment to its owner, allowing
to identify and quantify species. This step is called read assignment [19], and
it is the basic step in most metagenomic analysis workflows such as in genomic
epidemiology [25], and viral epidemiology [6].

Read assigners were first implemented using computationally expensive read
aligners [19,23,38]. In [37] the authors showed that similar results are achieved
replacing the read aligners with the computationally less expensive k-mer hash-
ing methods. Read assigners based on k-mer set indexing are referred to as pseu-
doaligners. Efficient indexing of k-mer sets, including colored de Bruijn graphs
[20], has been deeply investigated and we refer the reader to the survey [27]
for further reading. Pseudoaligners such as Kallisto [4], MetaKallisto [34], and
Themisto [25] use colored de Bruijn graphs and are based on the following pseu-
doalignment criterion. Given a set of references T1, . . . , Tt (representing t distinct
species), and read P , the read P is pseudoaligned with Ti if there exists a k-mer
of P that occurs in Ti and for all other k-mers u of P , either u occurs in Ti or
u does not occur in T1, . . . , Tt. This approach is motivated by the fact that the
species are usually quite dissimilar, but the strains inside the species are highly
similar.

In this paper, we study some basic primitives that are required in different
variations of the pseudoalignment criteria. We argue that the specific criterion
given above is just one example of a family of criteria, and it is important to study
the general framework rather than tailoring the methods to a very narrow setting.
Towards this goal of obtaining general results, instead of studying directly k-mers
of a pattern, we focus here on searching the complete pattern. We continue the
discussion in Sect. 6 on how to integrate the results with k-mer based criteria.

We modelled this read assignment problem as a document listing with fre-
quencies problem, where the set of species is a collection and each species is a
document formed by the concatenation of its strains. Given a pattern P we want
to report all documents where P occurs, and their frequencies. This problem was
first introduced in [35] and further refined in [3] and [15] (details in Sect. 3). We
propose three solutions. All solutions use an r-index [14] as text index for the
concatenation of all documents. The first solution is an extension to frequencies
of the solution proposed in [9] in which a grammar-compressed document array
is used, and for each non terminal node, precomputed answers are stored. The
second and the third solution are based on the term frequency approach pre-
sented in [33] which uses an additional index for all documents. The key idea
is to find the leftmost and rightmost occurrence of the pattern P in the index
of each document, by searching the pattern in the index of the concatenation

Tailoring r-index for Document Listing 293

of all documents. To do this, the second solution uses the grammar-compressed
document array of [9] enhanced with bitvectors at non terminal nodes marking
which descendant contains the leftmost and rightmost occurrence of the pattern
in each document. The third solution relies on a modified version of the inter-
leaved longest common prefix array [13]. We implemented our solutions and we
tested them using real-world and synthetic datasets.

2 Basics

A string S[1..n] is a sequence of n characters over an alphabet Σ of size σ = |Σ|.
A document T is a string terminated by a special symbol $ /∈ Σ that is lexico-
graphically smaller than all characters in Σ. A collection D = {T1, T2, . . . , Tt}
is a set of t documents, which is usually represented as the concatenation of its
documents, i.e. D[1..n] = T1T2 · · · Tt. When it is clear from the context, we will
refer to Ti as document i. Given a string S[1..n], let rankc(S, i) be the number
of occurrences of symbol c in S[1..i], and let selectc(S, j) be the position of
the j-th symbol c in S[1..n]. When string S is from alphabet {0, 1}, we call it a
bitvector. For bitvector S it holds rank0(S, i) = i − rank1(S, i).

Given a string S over an alphabet σ, the suffix array [26] SA[1..n] of S is
an array of integers providing the starting position of the suffixes of S sorted in
lexicographic order. The inverse suffix array ISA[1..n] of S is an array of integers
that, for each suffix of S, provides the position of the suffix in the suffix array.
In particular we have that for all 1 ≤ i ≤ n, SA[ISA[i]] = i.

A compressed suffix array [31] CSA[1..n] is a space-efficient representation of
the suffix array whose size |CSA| in bits is usually bounded by O(n log σ). We
denote by tsearch(m) the time to find the interval of the suffix array correspond-
ing to all occurrences of P [1..m], while by tlookup(n) the time necessary to access
any value SA[i].

The r -index [14] is a compressed text index whose main components are a
run-length encoded Burrows-Wheeler transform (BWT) [5] and the sample of
the suffix array at the beginning and at the end of each run of the BWT. We
denote by r the number of equal character runs of the BWT. The r-index of
the document T [1..n] can be computed in O(n) time and occupies O(r log(n/r))
space. We can find all occurrences of a given pattern P [1..m] in the document
T [1..n] in time O(m + occ) time. The r-index supports SA and ISA queries in
O(log(n/r)) time and O(r log(n/r)) space1.

Given a collection D = {T1, . . . , Tt} of t documents and its concatenation
D = T1T2 · · · Tt of length n, the document array [28] DA[1..n] stores in each
position i the index of the document which the suffix SA[i] belongs to.

Given a document T [1..n], the longest common prefix array LCPT [1..n] stores
in each position 2 ≤ i ≤ n the length of the longest common prefix between the
two strings T [SA[i − 1]..n] and T [SA[i]..n].

1 Throughout the paper, we report the space in words, where not otherwise specified.

294 D. Cobas et al.

Given a collection D = {T1, . . . , Tt} whose concatenation is D[1..n], the inter-
leaved longest-common-prefix array ILCP[1..n] is defined in [13] as the interleav-
ing of the LCP arrays of the documents T1, . . . , Tt in the order they appear
in the suffix array of D, i.e., if SA[i] is the lexicographically j-th suffix of the
k-th document, ILCP[i] = LCPk[j]. Let the ILCP array be run-length encoded in
ρ runs. Then, it can be represented using two arrays: LILCP[1..ρ] contains the
prefix sums of the lengths of the ρ runs; VILCP[1..ρ] contains the values of these
runs. Furthermore, the LILCP array can be replaced by a sparse bitvector L[1..n]
such that LILCP[i] = select1(L, i).

Given a string S[1..n], a straight line grammar for S is a context-free grammar
G that uniquely generates the string S. We denote by T the parse tree of S.
Given a node t ∈ T , t is a terminal node if t has no children, t is a non terminal
node otherwise. Each node t ∈ T uniquely identifies an interval of S denoted
by S[�t..rt]. For the ease of explanation we say that a character c occurs in t by
meaning that the character c occurs in S[�t..rt]. The parse tree T is binary if its
maximum arity is 2, and T is balanced if every substring is covered by O(log n)
maximal nodes, which are the highest nodes of the tree whose expansions form
a partition of the substring. Computing the smallest grammar is an NP-hard
problem [22], but various O(log(n/G∗))-approximation exists. We consider those
that are binary and balanced [7,21,32].

3 Related Work

In this section we define three problems and report solutions and techniques
from the literature that are used in our approach. For a complete overview we
refer the reader to the survey [29].

Problem 1 (Document listing). Given a collection D = {T1, T2, . . . , Tt}, and a
pattern P , return the set of documents L ⊆ D where P occurs.

Muthukrishnan [28] proposed the first solution to Problem 1 in optimal time
and linear space. He defined the document array DA and used a suffix tree [36] to
find all occurrences of the pattern P represented as an interval [sp..ep]. Then, he
proposed a recursive algorithm to find all distinct documents ndoc in DA[sp..ep]
in optimal time O(ndoc).

Sadakane [33] replaced the suffix tree with a compressed suffix array CSA
and the document array with a bitvector marking the starting position of each
document in text order. He also replaced the data structures to find all distinct
documents ndoc in DA[sp..ep] with a succinct version using only O(n) bits. With
this solution, Problem 1 can be solved in O(tsearch(m) + ndoctlookup(n)) using
a data structures of |CSA| + O(n) bits.

Gagie et al. [13] introduced the ILCP array whose property stated in Lemma 1
allows to apply almost verbatim the technique used by Sadakane to find distinct
elements in DA[sp..ep]. The solution uses a run-length compressed suffix array
RLCSA [24] which allows to answer the queries of Problem 1 in O(tsearch(m) +
ndoctlookup(n)) time.

Tailoring r-index for Document Listing 295

Claude and Munro [8] proposed the first grammar-based document listing
later improved by Navarro in [30]. Cobas and Navarro [9], later proposed a
practical variant in which they store the document array as a binary balanced
straight line grammar. Then, they precompute and store the answers for all non
terminal nodes of the grammar. The queries are answered by using a CSA to find
the interval DA[sp..ep] and merging the precomputed answers for the O(log n)
non terminal symbols covering DA[sp..ep]. This leads to a solution that solves
Problem 1 in O(tsearch(m) + ndoc log n) time.

Problem 2 (Term frequency). Given D = {T1, T2, . . . , Tt}, and a pattern P , for
each document T ∈ D return the number of occurrences of P in T .

Sadakane [33], addressed also the term frequency problem. The solution to
Problem 1 is enhanced building a compressed suffix array CSA for each docu-
ment. Given the interval [sp..ep] of all occurrences of the pattern P , he uses the
data structure to find the distinct documents in DA[sp..ep] and their leftmost and
rightmost occurrences. Those positions are then mapped into an interval in the
CSA of the document. The sizes of these intervals represent the frequencies of the
documents. This approach solves Problem 2 in O(tsearch(m) + ndoctlookup(n))
time.

Problem 3 (Document listing with frequencies). Given D = {T1, T2, . . . , Tt}, and
a pattern P , return the set of documents where P occurs and their frequencies.

Välimäki and Mäkinen [35] first proposed Problem 3 and showed that the
document listing problem can be solved using a rank and select data struc-
ture on the document array, to simulate Muthukrishnan’s [28] solution. In addi-
tion, after locating the interval SA[sp..ep] of all occurrences of P in D, the fre-
quencies for each distinct document in DA[sp..ep] are computed using a rank
array on the document array, i.e., the number of occurrences of P in document
Ti are ranki(DA, se) − ranki(DA, sp − 1). Using a wavelet tree [18] to repre-
sent the document array, given a pattern P [1..m], Problem 3 can be solved in
O(tsearch(m) + ndoc log t) time.

Belazzougui et al. [3] built a monotone minimum perfect hash function [1]
on the document array. Combining Muthukrishnan’s [28] and Sadakane’s [33]
approaches, it is possible to find the leftmost and rightmost occurrence of the
pattern P in the i-th document. Using the constant time rank on the document
array, Problem 3 can be solved in O(tsearch(m) + ndoc) time.

Gagie et al. [15] proposed a solution based on wavelet trees [18], that does not
rely on Muthukrishnan’s [28] solution. The idea is to use the range quantile [16]
problem to find the i-th smallest value in the range DA[sp..ep]. Then, retrieve
its frequency as the length of the interval corresponding to [sp..ep] in its leaf in
the wavelet tree. With this approach Problem 3 can be solved in O(tsearch(m)+
ndoc log t) time.

296 D. Cobas et al.

4 The Document Listing with Frequencies

We are now ready to describe our document listing with frequencies approaches.
We propose three different solutions, which rearrange and adapt different con-
cepts of previous work. The first solution is based on the solution for the docu-
ment listing proposed in [9]. We grammar compress DA, and for all non terminal
nodes, we precompute and store the results of document listing with frequencies
queries. The second solution combines Sadakane’s approach [33] for the term
frequency problem, with the grammar compressed document array. We enhance
the grammar compressed document array with bitvectors in each non terminal,
to locate the leftmost and rightmost occurrences of each document in the corre-
sponding interval in the document array. The third solution combines Sadakane’s
approach [33] for the term frequency problem with the ILCP array. In this case we
use two copies of the ILCP array to locate the leftmost and rightmost occurrences
of each document in the corresponding interval in the document array.

As a common step in all three approaches, given a collection D =
{T1[1..n1], . . . , Tt[1..nt]}, we build one r -index for the concatenation of the doc-
uments D. Given the pattern P [1..m], in order to find the frequencies of the
occurrences of the pattern in each document, we first find all occurrences of the
pattern P in the concatenation of all documents D using the r -index in O(m)
time and O(r log(n/r)) space. All occurrences of the pattern P are identified as
an interval in the suffix array of D, i.e. SA[sp..ep].

For the second and the third approach we also build an r -index for each doc-
ument Ti, for 1 ≤ i ≤ t. The r -index for T1, . . . , Tt can be built in O(

∑t
i=1 ni) =

O(n) time and occupying O(
∑t

i=1 ri log(ni/ri)) = O(Rt log(n/rk)) space,
where ri is the number of runs in the BWT of Ti, R =

∑t
i=1 ri, and k =

argmin(r1, . . . , rt).

4.1 Precomputed Document List with Frequencies

Following the ideas for the document listing problem proposed in [9], we grammar
compress DA producing a binary and balanced grammar of ν non-terminals,
that can be stored in O(r log(n/r)) space [14]. Let T be the parse tree of the
document array DA[1..n], given a non terminal node nt ∈ T let DA[snt..ent] be
its expansion. For all non terminal nodes nt ∈ T , we precompute and store the
list Dnt of the distinct documents in DA[snt..ent] with their frequencies. The
lists are stored in ascending order.

Query. Given the range [sp..ep] of all occurrences of P , we find maximal nodes
of the parse tree T that cover DA[sp..ep]. Since the grammar is binary and
balanced, the number of maximal non terminal nodes covering DA[sp..ep] is
O(log n). Those nodes can be found in O(log n) time traversing the parse tree
T from the root towards the interval DA[sp..ep]. We use an atomic heap [12]
to merge the O(log n) lists and compute the frequencies of the documents, by
inserting the head of each list in the heap; extracting the minimum and inserting

Tailoring r-index for Document Listing 297

the next element from the same list. While extracting the document, we compute
the frequencies for each document. The atomic heap allows to insert end extract
the minimum in constant amortized time, thus the total time to compute the
output is O(ndoc log n) since each document can appear in each list.

Summarizing, we can answer to Problem 3 in O(m + ndoc log n) time, using
O(r log(n/r) + t × ν) space.

4.2 Grammar-Compressed Document Array with Bitvectors

Let T be the parse tree of the document array DA[1..n] with ν non-terminals.
For each non terminal node nt ∈ T we store if the i-th document occurs in the
expansion of nt and, if so, whether the leftmost (resp. rightmost) occurrence is
in the left child or in the right child of nt. Let � and r be the left child and right
child of nt, respectively. The above information can be stored into two bitvectors
Lnt and Rnt of length t, such that for all documents i = 1, . . . , t, Lnt[i] = 0 if the
leftmost occurrence of the i-th document is in �, and 1 otherwise, and Rnt[i] = 1
if the rightmost occurrence of the i-th document is in r, and 0 otherwise. Note
that if Lnt[i] > Rnt[i], then the i-th document does not occur in nt.

For the i-th document it holds that Lnt[i] = L�[i] ∧ R�[i] and Rnt[i] =
Lr[i] ∨ Rr[i] where x is 1 − x. We compute Lnt and Rnt for each non terminal
node in a bottom up fashion and we store them. Considering that non terminal
nodes associated to the same non terminal symbol have the same subtree, we
can compute the Lnt and Rnt bitvectors only once for each non terminal sym-
bol. Thus, the whole running time of the algorithm is O((t/w) × ν) using bit
parallelism on words of w bits.

Query. Let t1, . . . , tk be the k = O(log n) maximal non terminals that cover
the interval corresponding to DA[sp..ep]. We build a binary tree T ′ having as
leaves the nodes corresponding to t1, . . . , tk. Each internal node stores a pair of
bitvectors L and R, computed using the rules described above. The height of
T ′ is O(log log n). To retrieve the leftmost and rightmost occurrences of each
document, we start from the root of T ′, for each document present in the root,
we descend the tree, using the information stored in the bitvectors, to find first
the leftmost, and then the rightmost occurrence of the document.

We perform exactly two traversals of the tree for each document that occurs
at least once in the interval, since the L and R bitvectors store the information
that a document does not appear in the interval of the node. Using bit parallelism
on words of size w, we can find the leftmost and rightmost occurrence of each
document in O(ndoc(t/w)(log n + log log n)) time.

Once we have computed the leftmost and rightmost occurrences �i and ri for
each document i, we use random access to SA of the r -index to find their corre-
sponding suffix values SA[�i] and SA[ri] in the concatenation of the documents.
We, then, find the corresponding suffix values in the document Ti, and, using
random access to ISA we find the leftmost and rightmost occurrence �′

i and r′
i

in the suffix array of the document Ti. The size of this interval is the number of
occurrences of the pattern P in Ti, i.e. r′

i − �′
i + 1.

298 D. Cobas et al.

Keeping all together, we can answer queries to Problem 3 in O(m +
((t/w) log n+log(n/r))ndoc) time, using O(r log(n/r)+Rt log(n/rk)+(t/w)×ν)
space.

4.3 Double Run-Length Encoded ILCP

We first introduce a variation of the interleaved LCP array (ILCP) introduced
in [13] called double run-length encoded ILCP, denoted by ILCP�. The ILCP� is
composed by the array VILCP� storing the values of the runs, and the array
LILCP� storing their lengths. Given the run-length encoded ILCP array for the
collection D = {T1, T2. . . . , Tt} we merge together consecutive runs whose ele-
ments are from the same document, keeping the smallest value as the value of the
run. Formally, let ρ be the number of runs of ILCP, let �1 = 1 and r1 = LILCP[1],
and for all i = 2, . . . , ρ let �i =

∑i−1
j=1 LILCP[j] and ri = �i + LILCP[i] − 1.

Moreover, for all 1 ≤ i ≤ j ≤ n, let |DA[i..j]| = |{DA[k] | i ≤ k ≤ j}| .

Definition 1. Let us assume that we have computed the run-length encoding
up to position i of VILCP, the next run of ILCP� is defined as follows. Let � =
max{k | |DA[�i..rk]| = 1} if |DA[�i..ri]| = 1 and 0 otherwise. Then VILCP�[j] =
min{VILCP[i..i + �]}, and LILCP�[j] =

∑i+�
k=i LILCP[k].

The ILCP has a nice property described in [13] that we are going to recall.

Lemma 1 ([13, Lemma 1]). Given a collection D = {T1, . . . , Tt} whose concate-
nation is D[1..n], let SA be its suffix array, and let DA be its document array.
Let SA[sp..ep] be the interval corresponding to the occurrences of the pattern
P [1..m] in D. Then, the leftmost occurrences of the distinct document identi-
fiers in DA[sp..ep] are in the same positions as the values strictly less than m in
ILCP[sp..ep].

Extending Lemma 1 to ILCP� we have that:

Lemma 2. Given a collection D = {T1, . . . , Tt} whose concatenation is D[1..n],
let SA be its suffix array, and let DA be its document array. Let SA[sp..ep] be the
interval corresponding to the occurrences of the pattern P [1..m] in D. Then, the
leftmost occurrences of the distinct document identifiers in DA[sp..ep] are in the
same positions as the values strictly less than m in ILCP�[sp..ep]. If there are
two values smaller than m for one document, we consider the leftmost one.

Proof. For the runs of ILCP� that are also runs of ILCP, the property of Lemma 1
holds. We have to show that the same property holds also for runs of values from
the same document.

Let [sp..ep] be the interval of all occurrences of P in the text. If a same-
document run has value greater than or equals to m, then all occurrences in the
run have ILCP value larger than or equals to m, hence by Lemma 1 the property
is satisfied. If the considered run has value strictly smaller than m we have to
consider three cases. The first case to consider is if the run is entirely included in

Tailoring r-index for Document Listing 299

ILCP[sp..ep], than the head of the run is the value strictly less than m, otherwise
the head of the run would not be in the interval ILCP[sp..ep]. The second case
to consider is if the run is not entirely included in ILCP[sp..ep], and the run is
broken by the left boundary of the interval, then, the leftmost occurrence of the
document is in sp. The last case is if the run is broken by the right boundary
of the interval, then, if there is another run containing a value smaller than m
for document i, by Lemma 1 the leftmost occurrence is the head of the other
run, otherwise the leftmost occurrence is the head of the run crossing the right
boundary.

Thus, considering the last run in the interval as a special case, we can apply
the same approach as in [13]. Then we consider the last run, checking if it is
a same-document run or not, and if it is, we check if the same document has
already been found by the algorithm.

We build the double run-length encoded LCP array on D. We, then, build
a range minimum query data structure [11] on VILCP� and a bitvector L[1..n]
such that LILCP�[i] = select1(L, i). This allows, together with Lemma 2, to
use Sadakane’s approach to find distinct documents to VILCP�. This allows us
to retrieve the leftmost occurrences of the distinct documents. To retrieve the
rightmost occurrence, we build the ILCP array using the right LCP, i.e. the LCP
array defined as follows. We store in each position 1 ≤ i ≤ n−1 the length of the
longest common prefix between the two strings T [SA[i]..n] and T [SA[i + 1]..n].
In this case, we have that the rightmost occurrences of the distinct documents in
DA[sp..ep] correspond to values of the ILCP strictly smaller than m. In particular,
all properties that apply to the ILCP array also apply to the ILCP array defined
array using the right LCP. We, then, also double run-length encode it.

Query. Given the interval [sp..ep], as in [13], we apply Sadakane’s technique
to find distinct elements in DA, to find distinct values in both the double run-
length encoded ILCP arrays. Provided the positions of the leftmost and rightmost
occurrences of each document, we then use the r -index to find the corresponding
value of the suffix array. We map those positions back in the original document,
and, using random access to ISA of the document, we obtain the interval [s′

p..e
′
p]

in the suffix array of the document, whose size corresponds to the frequency of
the document.

Keeping all together, we can answer queries to Problem 3 in O(m +
log(n/r)ndoc) time, using O(r log(n/r)+Rt log(n/rk)+ |ILCP�s|) space, where
|ILCP�s| is the size of both the ILCP� arrays.

5 Experimental Result

We implemented the data structures and measured their performance on real-
world datasets. Experiments were performed on a server with Intel(R) Xeon(R)
CPU E5-2407 processors @ 2.40 GHz and 250 GiB RAM running Debian Linux
kernel 4.9.0-11-amd64. The compiler was g++ version 6.3.0 with -O3 -DNDEBUG

300 D. Cobas et al.

Table 1. Statistics for document collections (small, medium, and large variants): Col-
lection name; Size in megabytes; R-Index bits per symbol (bps); Docs, number of
documents; Seqs, average number of sequences (or versions) per each document; num-
ber of Patterns; For the synthetic collections (second group), we sum-up variants that
use 10 or 100 base documents with the different mutation probabilities.

Collection Size R-Index Docs Seqs Patterns

Species 105 11.79 3 10 7658

631 3.15 3 60 20 536

Page 110 0.60 60 147 7658

641 0.38 190 164 14 286

Concat 95 10 1000 7538–10 832

95 100 100 10 614–13 165

options. Runtimes were recorded with Google Benchmark framework2. The
source code is available online at: github.com/duscob/dret

Datasets. To evaluate our proposals, we experimented on different real and
synthetic datasets. We used a variation of the dataset described by Mäklin et
al. [25], and some of the datasets tested by Cobas and Navarro [9]. These are
available at zenodo.org and jltsiren.kapsi.fi/RLCSA, respectively. Table 1
summarizes some statistics on the collections and patterns used in the queries.

Real Datasets. We used two repetitive datasets from real-life scenarios: Species
and Page. Species collection is composed of sequences of Enterococcus fae-
calis3, Escherichia coli4 and Staphylococcus aureus5 species. We created three
documents, one per species, containing sequences of different strains of the cor-
responding species. We created two variants of Species dataset with 10 and
60 strains per document. Page is a collection composed of pages extracted from
Finnish-language Wikipedia. Each document groups an article and all its previ-
ous revisions. We tested on two variants of Page collection of different sizes: the
smaller composed of 60 pages and 8834 revisions, and the bigger with 190 pages
and 31208 revision.

Synthetic Datasets. Synthetic collections allow us to explore the performance of
our solutions on different repetitive scenarios. We experimented on the Concat
datasets, very similar to Page. Each Concat collection contains d = {10, 100}
documents. Each document groups a base document and 10000/d versions of
this. We generate the different versions of a base document with a mutation

2 github.com/google/benchmark.
3 DOI: 10.5281/zenodo.3724100.
4 DOI: 10.5281/zenodo.3724112.
5 DOI: 10.5281/zenodo.3724135.

http://github.com/duscob/dret
http://www.github.com/google/benchmark

Tailoring r-index for Document Listing 301

probability R. Notice that we have a Concat dataset for each combination of
d = {10, 100} and R = {0.001, 0.003, 0.01, 0.03}. A mutation is a substitution
by a different random symbol. The base documents sequences of 1000 symbols
randomly extracted from English file of Pizza&Chili [10].

Queries. The query patterns for Species collections are substrings of lengths
m = {8, 12, 16} extracted from the dataset. In the case of Page datasets, the
patterns are Finnish words of length m ≥ 5 that appears in the collections. For
Concat collections, the queries are terms selected from an MSN query log. See
Gagie et al. [13] for more details.

Implementation Details. All our implementations use the r -index as text
index. We use the implementation of [14] available at github.com/nicolaprezza/
r-index. Since the implementation does not support random access to the suffix
array SA and to the inverse suffix array ISA, we used a grammar-compressed
differential suffix array and differential inverse suffix array—the differential ver-
sions store the difference between two consecutive values of the array —. Mäkinen
et al. [24] show that SA of repetitive collections contains large self-repetitions
which are suitable to be compressed using a grammar compressor like balanced
Re-Pair.

Since we use the random access to SA and ISA to retrieve the frequencies of
the distinct documents, we implemented also a variant using a wavelet tree on the
document array, as in [35], to support the rank functionalities over the document
array DA. For our experiments, we use the sdsl-lite [17] implementation of
the wavelet tree.

Algorithms. We plugged-in our proposal with two different approaches to cal-
culate the frequencies from the occurrences. All implementations marked with
-ISA uses the random access to SA and ISA to retrieve the frequencies, while the
one marked with -WT uses the wavelet tree.

– GCDA-PDL: Grammar-Compressed Document Array with Precomputed Doc-
ument Lists. Solution described in Sect. 4.1, using balanced Re-Pair6 for DA
and sampling the sparse tree as in [9].

– GCDA: Grammar-Compressed Document Array. Solution described in
Sect. 4.2, using balanced Re-Pair for DA and bit-vectors stored in the non-
terminals. We implemented the variants: GCDA-ISAs and GCDA-WT.

– ILCP: Interleaved Longest Common Prefix. Solution described in Sect. 4.3,
using ILCP array (not double run-length encoded). We implemented the vari-
ants: ILCP-ISAs and ILCP-WT.

– ILCP�: double run-length encoded Interleaved Longest Common Prefix. Solu-
tion described in Sect. 4.3, using ILCP� array. We implemented the variants:
ILCP�-ISAs and ILCP�-WT.

6 www.dcc.uchile.cl/gnavarro/software/repair.tgz.

http://github.com/nicolaprezza/r-index
http://github.com/nicolaprezza/r-index
http://www.dcc.uchile.cl/gnavarro/software/repair.tgz

302 D. Cobas et al.

Fig. 1. Document listing with frequencies on Species and Page datasets. The x axis
shows the total size of the index in bits per symbol (bps). The broken y axis shows the
average time per query.

– Sada: Sadakane. The algorithm proposed in [33]. We provide the variants:
Sada-ISAs and Sada-WT.

– R-Index: r-index. Bruteforce algorithm that scans all occurrences of the pat-
tern, counting the frequencies.

Note that in all our algorithms we do not use the random access to SA and
ISA of the r -index, thus we do not need to store the samples. The only exception
is R-Index which needs the samples to compute the frequencies.

Results. Figure 1 contains our experimental results for document listing with
frequencies on real datasets. We show the trade-off between time and space for
all tested indexes on different variants of the collections Species and Page.

The two variants of Species collections are composed of few large docu-
ments (only three, one per species). In this scenario, GCDA-PDL proves to be
the best solution, finding the document frequencies in 27–36µs (μsec) per each
pattern in average, and requiring only 1.5–3.5 bits per symbol (bps). GCDA-PDL
is the fastest and smallest index, requiring even less space than R-Index, since
GCDA-PDL does not store the samples. The large size of the sampling scheme
for collections with low repetitiveness has also been observed in [14]. The best

Tailoring r-index for Document Listing 303

Fig. 2. Document listing with frequencies on synthetic collection Concat. The x axis
shows the total size of the index in bits per symbols (bps). The y axis shows the average
time per query. R-index is omitted from the plots due to its excessively high time.

competitor is ILCP�-WT, being almost as fast (30–36 µs per query) as GCDA-
PDL, but requiring 1.85–2.4 times more space. In these collections, -WT indexes
perform better than -ISAs solutions. They can answer the queries at least 1.45
times faster, while they are 2–7 times smaller. In terms of space, GCDA-WT
represents a good option, improving even the space required by R-Index in some
cases, but much slower than GCDA-PDL and ILCP�-WT.

Page collections that contain more documents than Species collections: 60
documents in its small version and 190 in the bigger one. Again GCDA-PDL
turns up as the best index. It uses less than 1.05 bps and answers the queries in
17–22 µs. R-Index requires the least space among the solutions, 0.38–0.60 bps,
but is 15.86–40.35 times slower. The second overall-best index is ILCP�-ISAs,
with 1.80–2.69 bps and query times of 37–95 µs, closely followed by GCDA-ISAs.
On the Page variants, -WT indexes are faster than its counterparts -ISAs, but
1.47–4.05 times bigger.

On real datasets GCDA-PDL outperforms the rest of the competitors, but the
ILCP�-variants are also relevant solutions obtaining a good space/time tradeoff.

The comparison of the indexes on synthetic collections Concat are shown in
Fig. 2. These kinds of collections allow us to observe the indexes’ behavior as the
repetitiveness varies. Each plot combines the results for the different mutation
probabilities of a given collection and number of base documents. The plots show
the increasing mutation rates using variations of the same color, from lighter to
darker.

GCDA-PDL outperforms all the other indexes. For the collections composed
of 10 base documents, our index obtains the best space/time tradeoff, requiring
1.22–3.84 bps with a query time of 16–19 µs. Only GCDA-WT and ILCP�-WT
obtain competitive query times, but they are 2.20–4.20 times bigger. R-Index
requires the least space for lower mutation rates, but it is 79–83 times slower
than GCDA-PDL (note that the R-Index data for this collection is not shown in
Fig. 2 due to its high query times). In the case of the collections composed of
100 base documents, GCDA-PDL dominates the space/time map.

304 D. Cobas et al.

6 Discussion

Future work includes the integration of the results with real pseudoaligners. A
trivial approach for such integration is to query each k-mer of a pattern with
our methods, and check if a single document (species) receives positive term
frequency. This approach multiplies the O(m) part of the running time with
O(k), in addition to affecting the output-sensitive part of the running time.
To avoid the O(k) multiplier, we need to maintain the frequencies in a sliding
window of length k through the pattern. Such solution requires the techniques
of the fully-functional bidirectional BWT index [2] extended to work on the r-
index. However, one could also modify the pseudoalignment criterion into looking
at maximal runs of k-mer hits, in the order of the (reverse) pattern. For this,
our methods are readily applicable: just do backward search with the pattern P
until obtaining an empty interval with suffix P [i..m]. Report term frequency of
P [i+1..m] if m− i ≥ k. Continue analogous process backward searching P [1..i].
If all the maximal runs of k-mer hits report a single document (species) Ti,
assign P to Ti. The O(m) part of the running time remains unaffected, and the
output-sensitive part remains smaller than with the sliding window approach.

Acknowledgments. We wish to thank Antti Honkela and Tommi Mäklin for intro-
ducing us the need for better solutions to the pseudo-alignment problem. Some initial
solutions were discussed during summer 2019 with Jarno Alanko, Travis Gagie, and
Gonzalo Navarro at the Dagstuhl seminar: 25 Years of the Burrows-Wheeler Transform.
This led to the plan of tackling this problem during the visits (supported by the EU’s
Horizon 2020 research and innovation programme under Marie Sk�lodowska-Curie grant
agreement No 690941 (BIRDS) and the Academy of Finland (grant 309048)) of DC and
MR to Helsinki. MR is supported by the National Science Foundation (NSF) IIS (Grant
No. 1618814). DC is supported by the National Agency for Research and Development
(ANID)/Scholarship Program/DOCTORADO BECAS CHILE/2020-21200906 and by
Google’s Latin America Research Awards 2019. We also wish to thank the anonymous
reviewers for their insightful comments and suggestions.

References

1. Belazzougui, D., Boldi, P., Pagh, R., Vigna, S.: Monotone minimal perfect hash-
ing: searching a sorted table with O(1) accesses. In: Proceedings of the Twentieth
Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2009, pp. 785–794.
SIAM (2009)

2. Belazzougui, D., Cunial, F.: Fully-functional bidirectional Burrows-Wheeler
indexes and infinite-order de Bruijn graphs. In: 30th Annual Symposium on Com-
binatorial Pattern Matching, CPM 2019. LIPIcs, vol. 128, pp. 10:1–10:15. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik (2019)

3. Belazzougui, D., Navarro, G., Valenzuela, D.: Improved compressed indexes for
full-text document retrieval. J. Discrete Algorithms 18, 3–13 (2013)

4. Bray, N.L., Pimentel, H., Melsted, P., Pachter, L.: Near-optimal probabilistic RNA-
Seq quantification. Nat. Biotechnol. 34(5), 525–527 (2016)

5. Burrows, M., Wheeler, D.: A block sorting lossless data compression algorithm.
Technical report 124, Digital Equipment Corporation (1994)

Tailoring r-index for Document Listing 305

6. Carroll, D., et al.: The global virome project. Science 359(6378), 872–874 (2018)
7. Charikar, M., et al.: The smallest grammar problem. IEEE Trans. Inf. Theory

51(7), 2554–2576 (2005)
8. Claude, F., Munro, J.I.: Document listing on versioned documents. In: Kurland,

O., Lewenstein, M., Porat, E. (eds.) SPIRE 2013. LNCS, vol. 8214, pp. 72–83.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-02432-5 12

9. Cobas, D., Navarro, G.: Fast, small, and simple document listing on repetitive
text collections. In: Brisaboa, N.R., Puglisi, S.J. (eds.) SPIRE 2019. LNCS, vol.
11811, pp. 482–498. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
32686-9 34

10. Pizza & Chili repetitive corpus: http://pizzachili.dcc.uchile.cl/repcorpus.html.
Accessed 16 April 2020

11. Fischer, J., Heun, V.: Space-efficient preprocessing schemes for range minimum
queries on static arrays. SIAM J. Comput. 40(2), 465–492 (2011)

12. Fredman, M.L., Willard, D.E.: Trans-dichotomous algorithms for minimum span-
ning trees and shortest paths. J. Comput. Syst. Sci. 48(3), 533–551 (1994)

13. Gagie, T., et al.: Document retrieval on repetitive string collections. Inform.
Retrieval J. 20(3), 253–291 (2017)

14. Gagie, T., Navarro, G., Prezza, N.: Fully functional suffix trees and optimal text
searching in BWT-runs bounded space. J. ACM 67(1), 2:1–2:54 (2020)

15. Gagie, T., Navarro, G., Puglisi, S.J.: New algorithms on wavelet trees and appli-
cations to information retrieval. Theor. Comput. Sci. 426, 25–41 (2012)

16. Gagie, T., Puglisi, S.J., Turpin, A.: Range quantile queries: another virtue of
wavelet trees. In: Karlgren, J., Tarhio, J., Hyyrö, H. (eds.) SPIRE 2009. LNCS,
vol. 5721, pp. 1–6. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-03784-9 1

17. Gog, S., Beller, T., Moffat, A., Petri, M.: From theory to practice: plug and play
with succinct data structures. In: Gudmundsson, J., Katajainen, J. (eds.) SEA
2014. LNCS, vol. 8504, pp. 326–337. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-07959-2 28

18. Grossi, R., Gupta, A., Vitter, J.S.: High-order entropy-compressed text indexes. In:
Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algo-
rithms, 12–14 January 2003, Baltimore, Maryland, USA, pp. 841–850. ACM/SIAM
(2003)

19. Huson, D.H., Auch, A.F., Qi, J., Schuster, S.C.: Megan analysis of metagenomic
data. Genome Res. 17(3), 377–386 (2007)

20. Iqbal, Z., Caccamo, M., Turner, I., Flicek, P., McVean, G.: De novo assembly and
genotyping of variants using colored de Bruijn graphs. Nat. Genet. 44(2), 226–232
(2012)

21. Jez, A.: A really simple approximation of smallest grammar. Theor. Comput. Sci.
616, 141–150 (2016)

22. Lehman, E., Shelat, A.: Approximation algorithms for grammar-based compres-
sion. In: Proceedings of the Thirteenth Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp. 205–212. Society for Industrial and Applied Mathematics
(2002)

23. Lindner, M.S., Renard, B.Y.: Metagenomic abundance estimation and diagnostic
testing on species level. Nucleic Acids Res. 41(1), e10–e10 (2013)

24. Mäkinen, V., Navarro, G., Sirén, J., Välimäki, N.: Storage and retrieval of highly
repetitive sequence collections. J. Comput. Biol. 17(3), 281–308 (2010)

https://doi.org/10.1007/978-3-319-02432-5_12
https://doi.org/10.1007/978-3-030-32686-9_34
https://doi.org/10.1007/978-3-030-32686-9_34
http://pizzachili.dcc.uchile.cl/repcorpus.html
https://doi.org/10.1007/978-3-642-03784-9_1
https://doi.org/10.1007/978-3-642-03784-9_1
https://doi.org/10.1007/978-3-319-07959-2_28
https://doi.org/10.1007/978-3-319-07959-2_28

306 D. Cobas et al.

25. Mäklin, T., Kallonen, T., Alanko, J., Mäkinen, V., Corander, J., Honkela, A.:
Genomic epidemiology with mixed samples. BioRxiv (2020). Supplement: Pseu-
doalignment in the mGEMS pipeline

26. Manber, U., Myers, E.W.: Suffix arrays: a new method for on-line string searches.
SIAM J. Comput. 22(5), 935–948 (1993)

27. Marchet, C., Boucher, C., Puglisi, S.J., Medvedev, P., Salson, M., Chikhi, R.: Data
structures based on k-mers for querying large collections of sequencing datasets.
bioRxiv p. 866756 (2019)

28. Muthukrishnan, S.: Efficient algorithms for document retrieval problems. In: Pro-
ceedings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms
(SODA), pp. 657–666. Society for Industrial and Applied Mathematics (2002)

29. Navarro, G.: Spaces, trees, and colors: the algorithmic landscape of document
retrieval on sequences. ACM Comput. Surv. (CSUR) 46(4), 52 (2014)

30. Navarro, G.: Document listing on repetitive collections with guaranteed perfor-
mance. Theoret. Comput. Sci. 772, 58–72 (2019)

31. Navarro, G., Mäkinen, V.: Compressed full-text indexes. ACM Comput. Surv.
39(1), 2 (2007)

32. Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1–3), 211–222 (2003)

33. Sadakane, K.: Succinct data structures for flexible text retrieval systems. J. Dis-
crete Algorithms 5(1), 12–22 (2007)

34. Schaeffer, L., Pimentel, H., Bray, N., Melsted, P., Pachter, L.: Pseudoalignment for
metagenomic read assignment. Bioinform. 33(14), 2082–2088 (2017)

35. Välimäki, N., Mäkinen, V.: Space-efficient algorithms for document retrieval. In:
Ma, B., Zhang, K. (eds.) CPM 2007. LNCS, vol. 4580, pp. 205–215. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-73437-6 22

36. Weiner, P.: Linear pattern matching algorithms. In: 14th Annual Symposium on
Switching and Automata Theory, Iowa City, Iowa, USA, 15–17 October 1973, pp.
1–11. IEEE Computer Society (1973)

37. Wood, D.E., Salzberg, S.L.: Kraken: ultrafast metagenomic sequence classification
using exact alignments. Genome Biol. 15(3), R46 (2014)

38. Xia, L.C., Cram, J.A., Chen, T., Fuhrman, J.A., Sun, F.: Accurate genome rela-
tive abundance estimation based on shotgun metagenomic reads. PloS one 6(12),
e27992 (2011)

https://doi.org/10.1007/978-3-540-73437-6_22

Author Index

Afshar, Ramtin 155
Altin, Soner 177
Amir, Amihood 99, 115, 155

Baeza-Yates, Ricardo 177
Bannai, Hideo 27, 147, 213, 265
Belazzougui, Djamal 42
Benkner, Louisa Seelbach 232
Boneh, Itai 99
Brambilla, Marco 194
Butman, Ayelet 115

Cambazoglu, B. Barla 177
Cazaux, Bastien 277
Charalampopoulos, Panagiotis 247
Cobas, Dustin 291
Crochemore, Maxime 60
Cunial, Fabio 42

de Zarate, Juan Manuel Ortiz 194
Di Giovanni, Marco 194

Feuerstein, Esteban Zindel 194

Gagie, Travis 221
Gibney, Daniel 76
Goodrich, Michael T. 155

Hendrian, Diptarama 131
Hucke, Danny 232

I, Tomohiro 221
Iliopoulos, Costas S. 60
Inenaga, Shunsuke 27, 147, 213
Inoue, Takafumi 147

Kikuchi, Natsumi 131
Kociumaka, Tomasz 247
Kondratovsky, Eitan 99, 115
Kutsukake, Kanaru 213

Levy, Avivit 115
Lohrey, Markus 232

Mäkinen, Veli 291
Manzini, Giovanni 221
Matias, Pedro 155
Matsumoto, Takuya 213
Mieno, Takuya 265

Nakashima, Yuto 27, 213, 265
Navarro, Gonzalo 3, 221
Nishi, Akihiro 27

Park, Kunsoo 277
Park, Sung Gwan 277
Puglisi, Simon J. 89

Radoszewski, Jakub 60, 247
Reh, Carl Philipp 11
Rivals, Eric 277
Rossi, Massimiliano 291
Rytter, Wojciech 60, 247

Sakamoto, Hiroshi 221
Seelbach Benkner, Louisa 221
Shinohara, Ayumi 131
Sieber, Kurt 11
Sokol, Dina 115
Straszyński, Juliusz 60

Takabatake, Yoshimasa 221
Takeda, Masayuki 27, 213

Waleń, Tomasz 60, 247

Yoshinaka, Ryo 131

Zhukova, Bella 89
Zuba, Wiktor 60, 247

	Preface
	Organization
	Contents
	Data Structures
	Contextual Pattern Matching
	1 Introduction
	2 Preliminaries
	3 Our Solution
	3.1 Partitioning a Suffix Array Interval
	3.2 Mapping Suffix Array Intervals
	3.3 Running on Other Indexes

	4 Conclusions
	References

	Navigating Forest Straight-Line Programs in Constant Time
	1 Introduction
	2 Preliminaries
	2.1 Algebras and Straight-Line Programs
	2.2 String Straight-Line Programs
	2.3 Forest Straight-Line Programs

	3 Navigation
	4 Navigation with Equality Checks
	5 Discussion
	References

	Towards Efficient Interactive Computation of Dynamic Time Warping Distance
	1 Introduction
	2 Preliminaries
	3 Our D2TW Algorithm Based on RLE
	3.1 Updating DS After an Edit Operation
	3.2 Evaluation of #chg

	References

	Smaller Fully-Functional Bidirectional BWT Indexes
	1 Introduction
	2 Preliminaries
	3 Bidirectional Indexes in O(m+r+r) Space
	4 Bidirectional Indexes in O(r+r) Space
	References

	Internal Quasiperiod Queries
	1 Introduction
	2 Preliminaries
	3 Internal Cover of a Given Length
	4 Internal Shortest Cover Queries
	4.1 Simple Algorithm with O(log2 n n) Query Time
	4.2 Faster Queries

	5 Internal All Covers Queries
	5.1 Verifying O(logn) Candidates
	5.2 Computing Periodic Covers
	5.3 Main Query Algorithm

	6 Final Remarks
	References

	An Efficient Elastic-Degenerate Text Index? Not Likely
	1 Introduction
	1.1 Our Contribution

	2 Lower Bounds on ED-Text Index Queries
	2.1 Warm Up - Proof of Theorem 1 and Corollary 1.
	2.2 Proof of Theorem 2 and Corollary 2

	3 An ED-Index
	4 Matching Two Elastic-Degenerate Texts
	References

	Relative Lempel-Ziv Compression of Suffix Arrays
	1 Introduction
	2 New Locate Index
	3 Experimental Evaluation
	4 Concluding Remarks
	References

	Algorithms
	Approximating the Anticover of a String
	1 Introduction
	2 Preliminaries
	3 Approximating the Number of Covered Indices
	3.1 The Approximation Algorithm
	3.2 Simulation Results

	4 Approximating the Number of k-covers
	5 Approximating the Smallest k for Which a k-anticover Exists
	6 Conclusion and Open Problems
	7 Appendix
	7.1 Figures
	7.2 The Experiment Results

	References

	Multidimensional Period Recovery
	1 Introduction
	2 Background and Problem Definition
	2.1 1D Periodicity
	2.2 2D Periodicity
	2.3 Problem Definition

	3 The Bound on the Candidates Set Size
	3.1 The Intuition Behind the Bound on the Number of Errors
	3.2 The Tightness of Our Bound
	3.3 The Candidate Set Size Bound

	4 Two-Dimensional KMR
	5 The Recovery Algorithm
	5.1 Computing the Hamming Distance
	5.2 Primitivity Check
	5.3 Time and Space Complexity

	6 Multidimensional Generalization
	7 Conclusion and Open Problems
	References

	Computing Covers Under Substring Consistent Equivalence Relations
	1 Introduction
	2 Preliminaries
	3 Covers Under SCERs
	4 Shortest -cover array
	5 Longest -cover array
	References

	Longest Square Subsequence Problem Revisited
	1 Introduction
	2 Preliminaries
	3 Algorithm
	References

	Adaptive Exact Learning in a Mixed-Up World: Dealing with Periodicity, Errors and Jumbled-Index Queries in String Reconstruction
	1 Introduction
	1.1 Related Work
	1.2 Our Results
	1.3 Preliminaries

	2 Substring Queries
	2.1 Uncorrupted Periodic Strings of Known Size
	2.2 Uncorrupted Periodic Strings of Unknown Size
	2.3 Corrupted Periodic Strings

	3 Subsequence Queries
	4 Jumbled-Index Queries
	5 Conclusion and Open Questions
	References

	Information Retrieval
	Pre-indexing Pruning Strategies
	1 Introduction
	2 Related Work
	3 Pruning Heuristics
	3.1 Document-Level Pruning
	3.2 Sentence-Level Pruning
	3.3 Term-Level Pruning

	4 Experimental Setup
	4.1 Document Collection
	4.2 Document Processing
	4.3 Indexing
	4.4 Ranking
	4.5 Query Logs
	4.6 Evaluation

	5 Experimental Results
	5.1 Common Crawl and BM25
	5.2 Relevance
	5.3 Trade-Off Analysis

	6 Conclusions
	References

	Measuring Controversy in Social Networks Through NLP
	1 Introduction
	2 Related Work
	3 Datasets
	3.1 Topic Definition
	3.2 Description of the Datasets

	4 Methodology
	4.1 Graph Building Phase
	4.2 Community Identification Phase
	4.3 Embedding Phase
	4.4 Controversy Score Computation Phase

	5 Results
	6 Conclusions
	Appendix A Details on the discussions
	References

	Compression
	On Repetitiveness Measures of Thue-Morse Words
	1 Introduction
	2 Preliminaries
	3 Repetitive Measures of Thue-Morse Words
	3.1 (tn)
	3.2 (tn)
	3.3 LZ77

	References

	Practical Random Access to SLP-Compressed Texts
	1 Background
	2 Design of the New Grammar Encoding
	3 Experiments
	A Theoretical Bounds
	B Additional experimental results
	References

	A Comparison of Empirical Tree Entropies
	1 Introduction
	2 Preliminaries
	2.1 Unranked Trees
	2.2 Binary Trees

	3 Empirical Entropy for Trees
	4 Comparison of the Empirical Entropy Notions
	4.1 Binary Trees
	4.2 Unlabeled Unranked Trees
	4.3 Labeled Unranked Trees

	5 Experiments
	References

	Efficient Enumeration of Distinct Factors Using Package Representations
	1 Introduction
	2 Algorithms for Special Package Representations
	2.1 Reporting Distinct Factors
	2.2 Counting Distinct Factors

	3 Applications
	3.1 Squares
	3.2 Powers with Rational Exponents
	3.3 Antipowers

	4 Enumerating General Package Representations
	4.1 Non-Highly-Periodic Factors
	4.2 Highly Periodic Factors
	4.3 Wrap-Up
	4.4 Reporting Factors

	5 Final Remarks
	References

	Combinatorics on Words
	Lyndon Words, the Three Squares Lemma, and Primitive Squares
	1 Introduction
	2 Preliminaries
	3 Squares and L-Roots
	4 Tighter Upper Bound for psq(n)
	References

	Computational Biology
	Efficient Construction of Hierarchical Overlap Graphs
	1 Introduction
	2 Preliminaries
	2.1 Hierarchical Overlap Graph

	3 Main Algorithm
	3.1 New Approach to Compute HOG
	3.2 Improvement Using Segment Tree

	4 Improvement Using the word RAM model
	4.1 Algorithms with Bitwise Operations
	4.2 Using a Table for a Compressed space

	5 Conclusion
	References

	Tailoring r-index for Document Listing Towards Metagenomics Applications
	1 Introduction
	2 Basics
	3 Related Work
	4 The Document Listing with Frequencies
	4.1 Precomputed Document List with Frequencies
	4.2 Grammar-Compressed Document Array with Bitvectors
	4.3 Double Run-Length Encoded ILCP

	5 Experimental Result
	6 Discussion
	References

	Author Index

