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Chapter 7
Travels with Epsilon in Sign and Space

Louis H. Kauffman

�Introduction

This paper is about the relationship of diagrams with mathematics.
Mathematics is replete with diagrams of all kinds such as the classical diagrams 

of Euclidean Geometry and the wilder diagrams of topology. Indeed, symbolisms in 
mathematics such as the Leibniz notations for integration and differentiation are 
themselves diagrams indicating the very processes that they represent.
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What is less obvious is how certain forms can exhibit shape that links different 
areas of mathematics via a common structure that lives in the diagrams.

We study the linking of mathematical fields in this paper by examining first a 
magical diagrammatic for vector calculus, and then showing how it works and why 
it works by relating that formalism to the question of coloring maps and graphs in 
and out of the plane. In the course of this journey we shall have a trivalent vertex 
that we call the epsilon. Different ways of viewing the way the epsilon works and 
behaves shed light on the structure of dot products of vectors, cross products of vec-
tors, multiple cross products, the structure of the quaternions and edge coloring 
problems for graphs that are equivalent to the Four Color Theorem. Once one has 
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taken this journey, neither graphs and colorings nor vectors and their algebra are 
ever the same again. It all pivots on the epsilon.

The second journey in this paper is into diagrammatic knot theory. There we 
show how the diagrams of knot theory, decorated shadows of projections from three 
dimensions, are intimately related to non-associative algebras called quandles. The 
simplest quandle involves three colors and is, in its structure, very close to the color-
ing problems we have considered earlier in the paper. But now the associations are 
with topology and how the algebra helps uncover hidden topological properties.

The third journey examines the resolution of a diagrammatic singularity and 
finds a generalized epsilon and the Jacobi identity for Lie algebras hidden in the 
diagrams.

A longer tale can be told here, but we hope that this introduction to the ways of 
diagrams gives the reader a taste of this way to imagine the roots of mathematics.

In the first part of the paper. The author is in dialogue wth a fictional mathemati-
cican named RosePen. Professor RosePen is a figment of the author’s imagination, 
influenced by the ideas, discoveries and inventions of Roger Penrose, John H 
Conway, George Spencer-Brown, Charles Sanders Peirce, Lewis Carroll and other 
great contributors to the diagrammatic interfaces in the making of sign and space.

Acknowledgement  Kauffman’s work was supported by the Laboratory of 
Topology and Dynamics, Novosibirsk State University (contract no. 14.Y26.31.0025 
with the Ministry of Education and Science of the Russian Federation.)

�A Magic Calculus of Vectors

I went to the CMF last year. That’s the Convention on Mathematical Fictions. 
Sometimes we call it the CFM, the Convention on Fictional Mathematics. Well, call 
it what you will, we were still meeting in person then and sitting down to scraps of 
paper and scribbling funny geometries and strange equations. You remember how it 
was. And I met this guy RosePen and he sits me down and says. Look. You have to 
learn my graphical rules. They will change your life. I says - yeah, really? And he 
says Really! So I sat down at the bar with him in the Atlanta Ritz Carlton and he 
takes out a sheet of paper, a bit crumpled.

He makes the drawing you see in the figure below, and he says this is a vector.

 

I says, it looks like a blob with a line hanging on it. Yep! He says. That’s a vector. 
And here is the dot product of two vectors. He draws two of his vectors and joins 
their arcs together like this .
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I says. Hmm... I guess you are going to tell me that if a blob has no hanging 
strings, then it is a scalar? Right! He says. How did you know? I says, look you told 
me that thing there is a scalar product (dot product) and so I figured you joined those 
arcs to get rid of them. Well. He says. You are absolutely right! Can you figure out 
what would be the vector cross product?

Aw, I says. Well, you have to combine two vectors to get a vector. I gather your 
vectors just have one arc attached to the blob. So I wager you need a trivalent node 
like this

 

and you can run the arcs from your vector into two of the three lines on the tri-node 
and you will have a new blob with one arc! That’s my guess for the cross product.

I couldn’t help myself. I continued. I says: Look. You are gonna have to have that.
A x A is zero and that A x B is perpendicular to A and to B. And you are gonna 

need that A x B = − B x A. So there is a lot of work to be done here. I think we better 
start with A x B = − B x A. This is what you need!

 

That twisted thing is B x A and you really need your trivalent vertex to satisfy the 
same identity!!

 

Twist two legs of that trivalent vertex of yours and thing changes sign. Now its 
ok because we will have A x A = − A x A and so A x A = 0. No sweat!
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He looks at me with slitted eyes, a bit suspicious you know. And he says. You are 
exactly right. Nobody ever got this before. Are you from the CIA? Maybe I should 
just stop talking right here. Naw, I says. I never talk to the Cantorian Infinite Adepts. 
They are too theological for me.

But look, I says, your system works too well! Look at (A x B).C where I use a 
period for the dot product. We get a clear proof that

	
AxB C A BxC� � � � �. .

	

by just deforming your diagrams. Ha!

 

You catch on fast, he says. But now I will tell you the secret. We call the trivalent 
node our epsilon. And here is the epsilon identity.

 

I shall initiate you into its vectorial secrets. You mean, I says, you can derive 
other identities from this secret identity. He smiled. A co-conspirator, I thought. 
Well, I decided to play along. So I says, Ok wise-guy lets try the notorious. Vector 
Triple Product: (A x B) x C. What will your smart diagrams do with this stumper? 
Here, don’t tell me. I’ll do it! There it is.

 

I look and look at this. And then I remember his epsilon identity and it re-forms 
in my mind, slightly deformed:
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And I say, why not! You told me I could do this and I know you don’t care if I 
deform it a little. Now I will put the blobs back on top. Aha! There it is. Yes!

 

I put the blobs back and the epsilon identity became that familiar formula

	
AxB xC A BC A C B� � � � � � � �– . .

	

from our beloved vector calculus. And I says to RosePen. What the heck. How did 
you do that? That is a complicated geometrical formula and your diagrams make it 
fall out of nowhere. What is going on here. Are vectors really something other than 
what I thought they were? What planet are you from?

Then I decided to try something simpler. I says to RosePen what about the fact 
that A x B is perpendicular to A and to B? Can we see that? I know. I know. You are 
going to say that perpendicularity of V and W is defined by the eq. V.W = 0. Ok. 
Then I am supposed to prove that (A x B). A = 0. Oh wait. I don’t even need the 
diagram. After all I just did show that A x A = 0 for any A. So (A x B). A = − (B x 
A). A = − B. (A x A) = 0 and we are done. Ok I am satisfied. Lets go back to your 
special epsilon identity. What about A x (B x C). We can do that and find that A x (B 
x C) = −A (B.C) + (A.C)B.

 

So I get this beautiful difference formula

	
AxB xC Ax BxC A BC A B C� � � � � � � � � � �– . . .

	

And this shows very explicitly how the vector cross product operation is not 
associative.

 

RosePen intervened and said. Why don’t you try for associativity? Can you make 
an associative product from these materials? I said. Wait. I remember the definition 
of quaternion multiplication. It is
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	 UV A B AxB� � �. . 	

You almost do cross product multiplication, but you add that scalar product.
Why don’t you try it? He says.
Ok. I will says I. I will define.

 

And quaternions are four dimensional vectors, so if U and V are three dimen-
sional, then a quaternion is of the form a + V where a is a scalar. So we have

	
a U b V ab aV bU UV ab aV bU U V UxV�� � �� � � � � � � � � �– . ,

	

quite a mixture of scalar and vector products. It is no wonder that after the “quater-
nion wars” in the nineteenth century most applied mathematicians wanted to work 
separately with scalars, vectors, scalar products and vector products. But the quater-
nions get around, and they are really fundamental for understanding three and four 
dimensional space. Note that, from our formula above, we have that UU = -U.U, and 
so if U has length 1 we have UU = −1. We have a whole sphere’s worth of square 
roots of minus one!

Well. In this case I won’t bore you with the calculation showing that quaternion 
multiplication is associative. You’ll see that it works out. If I, J and K are three per-
pendicular vectors of unit length so that II = J.J = K.K = 1, so we have

	 II JJ KK IJK� � � � �1, 	

the famous formula for the quaternions discovered by Sir William Rowan Hamilton 
in 1843. You know what he said about it:

…an under-current of thought was going on in my mind, which gave at last a result, whereof 
it is not too much to say that I felt at once the importance. An electric circuit seemed to 
close; and a spark flashhed forth, the herald (as I foresaw, immediately) of many long years 
to come of definitely directed thought and work, by myself if spared, and at all events on the 
part of others, if I should even be allowed to live long enough distinctly to communicate the 
discovery. Nor could I resist the impulse - unphilosophical as it may have been - to cut with 
a knife on a stone of Brougham Bridge, as we passed it, the fundamental formula with the 
symbols, i, j, k; namely, ii = jj = kk = ijk = - 1 which contains the Solution of the Problem… 
(Altmann 1986)

And I stopped for moment and then I said. Wow! Look at this one!!
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I turned to RosePen and I said. You had better explain what is going on here.

�RosePen’s Explanation

In order to explain this to you, RosePen said, I have to tell you about a problem that 
does not seem to have anything to do with three dimensional space or vectors or dot 
products. The problem I am concerned about is a problem of coloring the edges of 
a network with trivalent nodes, using three colors: red (r), blue (b) and purple (p). It 
is very convenient for me to think of purple as a superposition of red and blue and 
so I will write p = rb and make drawings like this.

 

In this drawing you see that I color a red line red and a blue line blue, but I color 
a purple line by a combination of red and blue. The RULE for my coloring problem 
is that there must be three distinct colors at each node in the network. Thus at a tri-
valent node drawn in the plane, you will see the cyclic order of rbp or rpb, and I can 
make my drawings as illustrated using only red, blue and the superposition of red 
and blue that I call purple. Then the solution to a coloring problem looks like this.

 

I can indicate the solution to a coloring problem by putting letters on the edges 
of the graph (the network),or I can color the edges. When I color them I have a 
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collection of blue loops and red loops. The blue loops do not touch each other and 
the red loops do not touch each other. Red and blue loops can share segments of arc 
that correspond to purple edges in the network. Here is a more complex example.

 

It is from this coloring problem that I conceived of the epsilon identity, for you 
see that the parallel and crossed arcs arise naturally when one looks at the color 
interactions of two nodes.

 

If the cyclic permuations of colors are opposite on the two nodes, then we can 
pull the purple superposition apart and get nearby uncrossed blue and red curves. If 
the cyclic permutations are the same, then we have a red arc crossing a blue arc. 
These are the only two structural possibilities for the color interaction of two nodes. 
Of course we have singled out purple for the sake of emphasis, but the same remarks 
would apply if the middle line were another color. So I label the case of parallel arcs 
with a minus sign to indicate that the two permutations are of opposite sign! And we 
get the epsilon identity as an expression of the coloring possiblitiies. I think of the 
identity in color like this:
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And I discovered a most remarkable fact. If I place a square root of negative 
unity at each node of the network and then expand the edges by the epsilon identity 
I can count the number of colorings of the net.

I says, to RosePen. If you put an i (with ii = −1) at every node, then you can just 
reverse the sign of the terms in the epsilon identity.

He says. Yes. That is what happens and I get a formula like this.

 

In applying this formula you erase an edge in two copies of the graph, and you 
replace the edge by two parallel arcs in one copy and by two crossed arcs in the 
other copy.

And here are two examples of color counts.

 

In the first case there are indeed six ways to color this graph. In the second case 
the graph is not colorable and the formula gives the correct answer zero. This graph 
is planar but it can be disconnected by removing an edge. There is a famous Theorem 
called the “Four Color Theorem” and it is equivalent to the statement:

Theorem  A planar trivalent graph G that cannot be disconnected by removing an 
edge can be colored with three colors on its edges so that every node receives three 
distinct colors.

This means that the formula [G] will always be non-zero for any such graph G.
The Theorem does not have a simple proof. I am hoping that an analysis of this 

formula will yield a simple proof of the Theorem.
So I says. Ok. I see how you found the epsilon identity, but it is still a mystery to 

me what it has to do with three dimensional space. Is this some mysticism about 
your three colors?

RosePen replies. I had better say a few more words about coloring before we to 
back to vectors. Look at this diagram.

7  Travels with Epsilon in Sign and Space



100

 

I have illustrated how each node of a coloring is assigned +i or –i according to 
the epsilon gives it +1 or − 1. Notice what happens when we have a red arc crossing 
a blue arc (or vice versa). Then one corner gets I and the the other gets –i. The prod-
uct of (+i) and (−i) is (−1). So each time a red curve and a blue curve cross, my 
bookkeeping registers a negative one. If there is a bounce (no crossing) as shown in 
the figure, then we get a minus i and a plus i, so the product is one. Thus bounces 
contribute a + 1. Therefore if we have a coloring of a planar graph and we take the 
product of all my +i and –i contributions it will equal one – because curves in the 
plane intersect one another an even number of times (by the Jordan Curve Theorem). 
Here is an example for you to look at. This is why my sum [G] must always count 
one for each coloring of a plane trivalent graph.

 

Now lets look more closely at the epsilon identity. I will make definitions. I let 
ε[rst] be a a text symbol for the epsilon node with some specific assignment of val-
ues for r,s,t from among the colors r, b and p. Then I will define

	

� � �
� � �
rbp bpr prb

rpb pbr brp

� � � � � � � � �
� � � � � � � � � �

1

1
	

And ε[rst] = 0 if any two of these labels are equal to one another. These are rules 
we have used in coloring.

 

Then the epsilon identity becomes an algebraic statement about the values of the 
epsilon. It looks like this.
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You have to stare at this formula for a while to see that it is actually very simple. 
The deltas are what we call Kronecker Deltas, delta[x,y] = 1 only if x = y and it is 0 
otherwise. The sum on t in the formula above just amounts to taking the value dif-
ferent from both r and s or from t and u because our epsilon vanishes where there 
are equal indices and we only have three indices to work with. I will illustrate the 
actual cases for you below.

 

The upshot of this way of thinking of the epsilon identity in terms of indices is 
that we can interface it with vectors. What is a vector? I told you earlier to think of 
a vector as a blob with an arc hanging down, but the usual way to think of a vector 
is as a triple of numbers such as a = (a1, a2, a3). You can think of the line for the 
blob as a place to write the index so that for example:

 

Then the dot product follows once we use the rule that you must sum over all the 
possible index values for an arc that has no free ends.
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I hope you now see how our arc-connection diagram corresponds to the dot prod-
uct. Just so, our diagram for the cross product is actually a definition for the cross 
product. I will calculate one component for you below and you will see that it is 
working!

 

In fact, he says, you see that the epsilon gives us the determinant just like this.

 

So we have that DET(a,b,c) = a.(b x c).

 

And there is a well known formula for the vector cross product that would for-
mally put the perpendicular unit direction vectors I, J and K in the first row.

 

Well, I thought about that, and I worked out the other two components of the 
vector cross product and it was all logically clear. So we really had proved all those 
identities and more by just drawing topological diagrams and using the diagram-
matic epsilon identity. But it still seemed to me as mysterious as ever. Why should 
something like this work? I had never thought of vectors as topological before. 
Before this conversation with RosePen, I always thought of vectors as rigid arrows 
that could make angles with each other and that they were the underpinning of a 
corresponding geometry of lines and planes and sharp directions. So I asked him 
more questions.

I said. Well Professor RosePen, I still do not quite understand what is going 
on here.
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Do you mean to tell me that properties of vectors are behind the questions about 
coloring graphs? Or do you mean that the properties of graph colorings are the 
subtle structure of vectors?

He smiled and said “Yes.”

�An Intermediate Epilogue

I had to go. And I am still puzzling about this connection to this day. Just yesterday 
I ran across a paper by Kauffman (Kauffman 1990) entitled “Map Coloring and the 
Vector Cross Product”. I could almost imagine what that might be about. I read it 
and continued to think about this colorful and disturbing way to look at vectors and 
vector calculus.

I have to tell you about this. Kauffman reformulated the coloring problem entirely 
in terms of the vector cross product! He turned it into some arcane property of per-
pendicularities. And I still don’t understand anything! You’ll see. Lets go back to I 
and J and K, ok? And we are looking at the cross product algebra so that I x I = J x 
J = K x K = 0, but I x J = K and J x I = − K and all that. It is just a way to talk about 
epsilon by now. But this is a weird algebra. It is not associative.

	
I x J x J K x J I� � � � � ,

	

	
Ix J x J I x� � � �0 0.

	

So Kauffman poses this problem. Suppose you take a product of some variables, 
any number of variables, like X, Y, Z, W and you associate it in two ways and write 
the equation stating that the result of the multiplication is the same for both associa-
tions. For example, you could write

	
XxY x ZxW Xx Yx ZxW� � � � � � �� �.

	

Kauffman then asks you to solve this equation, using only I or J or K for the 
values. You get to use a value for more than one variable, but ony get to use I 
or J or K.

Neither side of your solution can be zero. You have to produce two equal non-
zero products. Can you solve it for this example? Well in the example an answer is 
X = I, Y = J, Z = J, W = K. Try it! Kauffman claims to be able to solve all such 
equations in any number of variables.

It seems to be a tricky problem about combinations of perpendicularities. But 
that isn’t how Kauffman solves these problems. He uses the graphical calculus. 
Then we have:
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He puts them together in one graph by taking the mirror image of one expression 
and tying it to the other.

 

Then you color the graph using r,b,p and read out a solution to the vector cross 
product equation by taking I for r, J for b and K for p. I kid you not. Since we have 
chosen a proper coloring of the graph of the two tied trees, all the partial products in 
the vector cross products will be non-zero. But this means that we can view these 
products as quaternion products (since in the quaternions the non-zero products of 
I and J and K are the same as the vector cross products). Thus the two associated 
products have to be equal because the quaternions are associative, and we are done! 
You can check that indeed

	
I x J x J xK I x J x J xK� � � � � � �� �.

	

It turns out that the full coloring problem for arbitrary planar trivalent graphs is 
implied by the coloring of tied trees. This makes the Four Color Theorem (Appel 
and Haken 1977; Apprl et al. 1977; Heawood 1890) equivalent to this property of 
solutios to equations involving associated vector cross products. At this stage in 
mathematics we do not fully understand why maps can be colored (although there 
is a complex proof) and we do not fully understand the relationships among graphs, 
vector cross products and the quaternions. There is much to learn in this domain. 
Perhaps it will all become clear one day and we shall understand the whole story. 
For now, it is a fascinating ground for research. The relationship of particular math-
ematics with the geometry and topology of diagrams will become ever more impor-
tant to the unity of mathematics and for the gesture that it makes to the unity of 
the world.

L. H. Kauffman
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�Knots

Diagrams are often tied to specific contexts and so the best way to indicate the wider 
generality behind the examples of mathematical connection that we have drawn in 
this paper is to give another example of the phenomenon. In this case, I want to 
show, how by following the diagrams one can see a deep connection between knot 
theory and the mathematics certain algebras. I shall be a brief as possible, and start 
with the knot theory. In knot theory we use diagrams like this.

 

The diagram represents a curve in three dimensional space that goes under and 
over itself in the weaving pattern of the drawing. The diagram uses the well-known 
drawing convention that a broken line is a projection from space such that the 
unbroken arc that crosses the broken part is higher than the “broken arc” that pro-
ceeds underneath. We can represent topological movenments of knots (called isto-
pies) by changes in the diagrams. For example, view the diagram below.

 

It should be clear to you that the complicated curve on the left can be undone and 
transformed to the unknotted loop on the right. In fact there is a system of moves on 
the diagrams that can accomplish this aim. The basic moves are shown below. These 
are called the Reidemeister Moves after Kurt Reidemeister, who wrote the first book 
on the theory of knots.

 

Here are two examples of unknotting and unlinking using the moves.
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In the first case, we use the II move and then the I move to unknot this single 
curve. In the second case we use a III move to simplify the rings, and then three II 
moves to undo them completely. The second example is interesting because it actu-
ally needs the III move to be undone.

Now I will show you a way to related algebra to these diagrams. We will have a 
way to “multiply” elements a and b, denoted ab. And we shall label arcs in the knot 
and link diagrams by these elements. When an arc a under-crosses another arc b, 
then the exiting arc will be labeled by the product ab as shown below.

 

See the diagrams below.

 

We want the labeling to respect the Reidemeister moves and this leads to alge-
bra rules:

	1.	 aa = a.
	2.	 (ab)b = a
	3.	 (ab)c = (ac)(bc).

L. H. Kauffman
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An algebra that satisfies these rules is called a quandle. Here is a very simple 
example of a quandle. We shall have three algebra elements a,b and c. And we shall 
have the rules aa = a, bb = b, cc = c and ab = ba = c, ac = ca = b, bc = cb = a. In other 
words, any single element combines with itself to produce itself. And two distinct 
element combine to produce the third element. Indeed this algebra is similar to our 
colring rules for r,b and p but there the colors combine with themselves by differ-
ent rules.

Note that (ab)c = cc = c while (ac)(bc) = ba = c. So we have (ab)c = (ac)(bc) as 
desired for the third Reidemeister move. You can check the other cases easily. For 
example, (aa)b = ab = c and (ab)(ab) = cc = c. We will use this three color algebra 
{a,b,c} to color knots and links! Here is a coloring of the trefoil knot.

 

The trefoil is correctly colored by our rules and this means that any diagram 
obtained from the trefoil by Reidemeister moves will inherit a coloring from this 
coloring that still has all three colors. (Think about this and you will see that it is 
so!). But this means that the trefoil can not be unknotted. For if it could then we 
would have transformed it to the unknot, and the unknot can only be colored with 
one color. So we have proved that the trefoil knot is knotted by using coloring.

Not every knot can be three-colored. For example, the figure eight knot cannot be 
so colored as the diagram below demonstrates. We start the coloring with two dis-
tinct colors a and b, propagate a c. Then the c interacts with a b and produces an a 
on a line already labeled with b. This contradiction shows that the figure eight knot 
cannot be three colored. This means that we have just proved that the figure eight 
knot is not isotopic to the trefoil knot, but we shall have to work harder to prove that 
the figure eight knot is actually knotted!

 

This can be done by using five colors and a more complex quandle but that is a 
story for another time.

I will end with one more kind of conclusion that we can draw from uncolorabil-
ity. Consider the famous Borommean Rings as shown below. They are a link of 
three components. If you remove one of the rings, the other two come apart. We 
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want to prove that the three rings cannot come apart. To do this, I give you an exer-
cise. Prove that the Borommean Rings cannot be colored with three colors! You can 
verify this in a fashion similar to what we did with the figure eight knot. Now I will 
assume that you did this exercise and you are convinced that there is no way to color 
the rings.

 

But if the rings could come apart, then there would be a sequence of Reidemeister 
moves from the Borommean Rings to three unlinked rings. You can color each one 
of three unlinked rings with one of three different colors. The moves that got you 
from the Borormmean rings to the unlinked rings could be reversed and you would 
have a sequence of Reidemeister moves from the three unlinked rings to the 
Borommean rings. Each move would result in a three colored link,starting from the 
three unlinked colored rings. So in the end you would have to find a three coloring 
of the Borommean rings. That is a contradiction. Therefore the Borommean rings 
are linked. Is this not an amazing argument? (Nanyes 1993; Adams 1994).

Algebra and diagrams and their mathematical interpretaions interact in a multi-
tude of ways that give rise to new ways to think about geometry, topology, algebra, 
combinatorics and indeed the entire mathematical universe.

�The Roots of Lie Algebra

And now we return to the form of the epsilon. Let be given a trivalent vertex with 
sign change under permutation as we have had it from the beginning.

 

And following our penchant to look at algebra in relation to diagrams let there be 
an algebra L so that the product of elements of L is indicated by the vertex.
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Now contemplate a singular vertex as show below. In this singular vertex two 
arcs meet at a singular point along the arrow base-line.

 

There are three natural resolutions of this singularity and we have put them into 
a diagrammatic equation below.

 

This way to put the resolutions of this singularity into an equational pattern tells 
a nice algebraic story. In the algebra story we see that the equation is

	
ab c ac b a bc� � � � � � �–

	

and that this can be changed by using b(ac) = −(ac)b to

	
ab c b ac a bc� � � � � � � �. 	

This is called the Jacobi Identity.

 

An algebra that satisfies the Jacobi Identity and the anticommutativity of ab = −
ba for all a and b in the algebra, is called a Lie Algebra. Lie algebras (Kauffman 
2012; Bourbaki 1989) are ubiquitous in mathematics and indeed very closely related 
to the original epsilon of our paper and with the quandles in the knot theory, and 
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more generally to knot theory in fundamental ways. It is quite surprising to meet the 
Jacobi identity as an expression of the resolution of a simple graphical singularity. 
Another story relates this combinatorics with the Reidemeister Moves (Kauffman 
2012), but we will tell that tale another time.

But we cannot resist ending where we began and recount a little more of that 
conversation between RosePen and myself at the bar in the Ritz-Carlton. RosePen 
says to me: Are you familiar with Lie algebras? And I say, only a little. I know that 
the vector cross products form a Lie algebra and they satisfy the Jacobi Identity:

	
a x bx c a x b x c bx a x c� � � � � � � �. 	

Well. He says. You can verify that Jacobi Identity by using the epsilon identity. I 
would not want to spoil the fun of it for you. Do it when you get back to your hotel 
room and before the rope tricks start this evening. I did, and I am sure the reader 
would like to do this as well. Once this exercise is completed the reader will see 
clearly that, enticing as it is, the epsilon is just the tip of the iceberg of a pattern to 
continues into Lie algebras, group theory, symmetry and beyond.

�Epilogue

Some references may be useful to the reader. Much of the material in this paper can 
be found in the author’s book “Knots and Physics” (Kauffman 2012) and in his 
papers (Kauffman 1990, 1992, 2005, 2016). The origin of the diagrammatics of vec-
tors can be found in the work of Roger Penrose (Penrose 1971) and certain key 
insights and their diagrams are in the work of G. Spencer-Brown (Spencer-Brown 
1979, 1997). For the coloring problem the reader can consult (Appel and Haken 
1977; Kauffman 1990, 2016; Penrose 1971; Spencer-Brown 1979; Heawood 1890). 
For Lie algebras, a good start is (Stillwell 2008).

In this paper Professor RosePen is a fictional character who takes on some of the 
ideas and mathematical attitudes of Roger Penrose, George Spencer-Brown, John 
Horton Conway and the Author.

I have included some of my favorite mathematical tricks in this paper. The intent 
however is to go beyond tricks and ask about the nature of the sort of relationships 
that we have seen here. There are many more relationships of this kind. My field, 
topology, is full of them, and I am sure that other mathematicians in other fields 
would have many examples of their own. All of these examples use a diagram or 
some geometry to pivot between one conceptual domain and another. These dia-
grams give us an excuse to shift from one point of view to another and to find that 
the two points of view are related by the structure of the diagram and the meanings 
that are associated with it.

One can think about this situation as an allegory for a search for relationship that 
is mediated by a special place where the meeting can be accomplished. That place, 
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the place of the diagram, is a multiplicity that is a unity where the multiplicity 
resides in the many interpretations that the diagram can receive, and the unity 
resides in the act of making the diagram, a making that can be accomplished and 
reenacted by any one who wishes to come to the understanding that the diagram 
offers. It is in the making that the many becomes the one and the one becomes 
the many.
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