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Chapter 12
Procedural Steps, Conceptual Steps, 
and Critical Discernments: A Necessary 
Evolution of School Mathematics 
in the Information Age

Martina Metz and Brent Davis

 Introduction

Early in 2010, the Organization for Economic Cooperation and Development 
(OECD) published an online document in which it distinguished among “formal,” 
“informal,” and “non-formal” education. Many elements of this typography were 
predictable. Of the three, for example, only formal learning was identified to involve 
certified teachers, accredited curricula, and institutionalized settings. But there were 
also some unexpected elements. In particular, not many educational leaders expected 
a prominent—but unexplained and unjustified—statistic asserting that 75–85% of 
one’s learning is other than formal.

That sort of datum is hard to contest. In fact, it would seem reasonable to argue 
that it is grossly underestimated. While not fully explained in the report, one can 
infer that the number to indicate the portion of an average life not dominated by 
attending school. That is, it was intended to emphasize the importance of lifelong 
learning. If that was the purpose, the point is simultaneously important and trivial. 
And that is perhaps why some in the educational establishment viewed the statistic 
with suspicion, as a not-so-veiled move to diminish schooling’s long-held authority 
in matters of defining, offering, and certifying learnings.

In this regard, the technological context of the OECD’s pronouncement is sig-
nificant. It was a statement on learning in the Information Age. With advancements 
in and ubiquity of communication and storage technologies, traditional schools can 
no longer maintain a pretense of guardians of and gatekeepers to cultural knowl-
edge. While broad awareness of that pretense has not yet contributed to substantial 
transformation in the institution, it would seem reasonable to expect that formal 
learning—that is, schooling—is on the threshold of significant transformation. In 
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this chapter, we muse on possible meanings and consequences of that realization, 
specifically as it pertains to mathematics education.

The social and cultural conditions of this potential transformation are not with-
out precedent. Indeed, there are striking social and technological parallels between 
current circumstances and the historical moment that saw the original invention of 
public schooling. At the risk of oversimplification, key motivations for the creation 
of mass formal education in the western world included a dramatic shift in access to 
craft and scientific knowledge (enabled by printing presses and postal services), an 
associated convulsion in knowledge production (enabled by the co-amplifying 
influences of research institutions and business), an exponential growth of wealth, 
and the creation of legal systems that gave new rights to the disadvantaged as it 
recognized the dangers of increasingly inequitable distributions of that new wealth.

The modern school was partly a response to and partly a contributor to these 
intertwined convulsions. Simultaneously controlling and enabling, mandatory mass 
education was imposed as much to protect children from an exploitative labor mar-
ket as it was to equip them with the basic tools needed to contribute effectively to 
that market. From the start, these basics were identified as the abilities to decode 
written texts, transcribe simple dictations, and perform uncomplicated calcula-
tions—or, more colloquially, “readin’, ‘ritin’, and ‘rithmetic.” That is, the word 
“basics” originally signalled minimal necessary skills for workers. It pointed to 
some disciplines, but it said nothing about those disciplines themselves. 
Unfortunately, as the school became an entrenched and integral aspect of modern 
culture, the original, context-sensitive meaning of basics was lost. Thus, as society 
evolved, the basics remained stubbornly resilient. This detail is especially evident in 
school mathematics where, in the popular arena, “basics” is now typically assumed 
to refer to adding, subtracting, multiplying, and dividing—that is, not as a set of 
needs fitted to a particular context at a particular time, but as a reference to an 
assumed-to-be-natural foundation to mathematics. Indeed, the phrase “learning the 
basics” is often treated synonymously to “learning simple arithmetic.”

Consequently, the construct of basics has become an albatross around the neck 
of mathematics education. As we develop in this chapter, for example, the notion 
was as the epicentre of multiple twentieth-century “reform” efforts, which sought to 
replace the traditionalist emphasis on mastery of procedural steps with a focus on 
conceptual steps—that is, to reframe mathematical competence in terms of progress 
toward deep understanding rather than mastery of technical procedures. That shift 
was tethered to dramatic developments in psychology and philosophy that contrib-
uted to new understandings of learning, which in turn revealed that the beliefs that 
oriented the original design of public schooling are plainly indefensible. (Even so, 
they still prevail.)

Profound and consequential insights into learning continue to emerge, now 
driven principally by the cognitive sciences. In this chapter, we use the notion of 
critical discernments to draw together some provocative emerging ideas and to 
explore their educational relevance against the now-popular contrast of procedural 
steps and conceptual steps. In the process, we also attempt to interrupt the contem-
porary meaning of “basics” by illustrating our discussions with concepts that we 
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assert are basic to this era, but that are currently given minor attention in most for-
mal curricula. On that matter, we (the authors) are unaware of any mathematics 
curriculum revision or mathematics teaching reform effort within our lifetimes—
anytime, anywhere—that has not been stymied by demands to attend to the “basics.” 
Our hope is that giving heed to matters of basic to whom, when, and where might 
contribute to efforts toward change.

Companion considerations are the conceptions of “learning” and “teaching” that 
arose alongside and continue to function in symbiotic relationship with the original 
notion of basics. Our suspicion, rooted in decades of engaging with classroom 
teachers, curriculum developers, and policy makers, is that a reason that the ten-
dency to conflate “basics” and “mathematics” is so pervasive and so resistant is that 
that the assumed relationship is part of a grander flock of associations—that is, of 
mutually confirming assumptions of the nature of knowledge, the processes of 
learning, and the mechanics of teaching. In that regard, it appears that efforts to 
conceive of a mathematics education that is fitted to the moment are complex: A 
revisionist conception must simultaneously address matters of appropriate content 
and defensible practice. That is, it must engage with three sets of questions, seeking 
to understand the conditions of learning (who, when, where, why?), to identify and 
situate content (what?), and to define classroom practices based on current knowl-
edge of human cognition (how?).

We attempt to take on all three of these matters in this chapter, but in differenti-
ated ways. We start by taking on the how—an entrance point that is more intended 
to uncover some of the intricate web of associations that have over recent decades 
hobbled intelligent and action-oriented engagements with the other two matters. 
After that reframing, we turn illustration-based engagements with the conditions 
and content questions, moving on the conviction that actual experience with a new 
form of mathematics pedagogy is likely to be more compelling than an academic 
argument.

 Learning: From “Getting” to “Constructing” 
to “Differentiating”

“Learning” is one of those phenomena that is intimately familiar, but shallowly 
understood. This point is cogently illustrated through the website, Discourses on 
Learning in Education (https://learningdiscourses.com), which describes, contrasts, 
and clusters over nearly 900 (at the time of this writing) perspectives on—that is, 
metaphors for, definitions of, theories on, strategies of—learning that are repre-
sented in the current education literature.

One of those discourses is popularly known as “twenty-first-century learning” or 
“Deeper Learning”—which, as first hearing, might seem an obvious alignment with 
the themes of this chapter. A blend of several prominent contemporary discourses, 
Deeper Learning is explicitly concerned with transforming formal education in 
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ways that fit with emergent personal, social, cultural, technological, and economic 
conditions. While there are many varieties of the discourse, they tend to cluster 
around the same set of educational goals (e.g., robust academic outcomes, higher- 
level thinking skill, positive attitudes, technological proficiency, honed social skills) 
and to be defined by a specific cluster of teaching strategies (e.g., centered on real- 
world issues, oriented toward problems that are relevant to learners, choice-rich 
tasks, access to diverse tools and resources, frequent formative assessments, flexible 
and frequent opportunities to collaborate).

On the surface, then, Deeper Learning sounds like a movement that is hard to 
critique. However, even a shallow examination of the discourse reveals that, in fact, 
it rests on pretty much the same assumptions on knowledge, learning, and education 
as the traditional, shallower approach to schooling that it is presumed to critique.

The learningdiscourses.com site was motivated by this sort of realization. It is 
designed to assist in making sense of and sorting through competing and comple-
mentary perspectives. The project is informed by contemporary research in the cog-
nitive sciences, a transdisciplinary domain that brings together psychology, 
linguistics, computer science, neuroscience, anthropology, philosophy, and other 
realms of inquiry. The cognitive sciences focus on the tools and strategies used by 
humans to make sense of the world, including especially tactics employed to main-
tain illusions of certainty against a reality of gaping holes in information, frequent 
flaws in logic, inevitable errors in recall, and implicit prejudices in perception. 
“Metaphor” figures centrally in these discussions, as both a means and a focus of 
analysis.

That emphasis is grounded in the twentieth-century realization that human 
thought is mainly analogical/associative rather than logical/deductive. Much of cog-
nitive science research is thus trained on how metaphoric associations across 
domains of experience can orient perception, prompt action, bias interpretation, and 
infuse justifications. That focus turns out to be useful to sort through current discus-
sions in education. As mentioned, the Discourses on Learning in Education site 
reviews and relates more than 900 currently active perspectives. That number is 
daunting. Somewhat less daunting, however, is that the number of core metaphors 
used across these discourses is much smaller (certainly under 50), and fewer than a 
dozen have any significant traction. As well, major educational movements tend to 
be associated with specific metaphors.

For example, traditional education is strongly reliant on metaphors through 
which knowledge is characterized as some sort of stable object, by which learning 
comes to be understood as getting that object. The intertwined notions are evident 
in such phrases as “collections of facts,” “gathering of information,” “tossing around 
ideas,” “picking things up,” “holding a belief,” “getting it,” “getting to,” and “learn-
ing stuff.” Ancient in origin (see Ong 1982), the grounding knowledge-as-object 
metaphor can be taken to suggest that there is a real truth, out there, stable, eternal, 
independent of knowers, untainted, and benign. The cultural priority of these quali-
ties was later amplified in the first scientific revolution, as the ideal of objective 
truth, and further amplified as a nascent global capitalism found ways to commodify 
knowledge, creating a marketable thing.

M. Metz and B. Davis

http://learningdiscourses.com


189

As a means to understand the manner in which humans experience their truths, 
the knowledge-as-object metaphor has its value. However, as a principle for struc-
turing formal learning, it is lacking. Nevertheless, the cluster of associations that 
have arisen around this figurative notion has long served as a grounding principle in 
public education. When knowledge is understood as a set of objects, then it makes 
sense to conceive of curriculum development in terms of selecting the most-worthy 
objects and formatting encounters with them. It also makes sense to approach their 
study as a systematic mastery of their parts. It renders learning a matter of picking 
things up, packing them in, and bouncing them back. It enables the interpretation of 
intelligence as how much one can hold—and that highly troublesome notion under-
girds a multi-billion-dollar industry focused on measuring these imagined capaci-
ties. Ultimately, an uncritical embrace of the knowledge-as-object metaphor defines 
both learner and teacher, the former as a vessel or recipient, and the latter as a con-
veyer or deliverer.

The poverty of this cluster of notions was a major focus of psychological research 
in the early-twentieth century. To bring the issue to the fore, researchers test-drove 
a variety of new metaphors for learning, with associating and constructing figuring 
most prominently. Efforts were made to conceive of learning as an iterative cycle of 
interpretation, by which one’s knowledge was framed as a coherent-but-evolving 
web of associations. The associated rise of “constructivist” theories among educa-
tors in the last half of the twentieth century represented an attempt to format the 
conversation for educators. Around school mathematics, constructivisms served as 
the main theoretical engines in major reform efforts, as they were used to alert edu-
cators to the problems associated with entrenched-but-invisible object-based meta-
phors and to the possibilities of taking up action-based metaphors. Problem-solving, 
personal strategies, learning from errors, talk-aloud protocols, manipulative-based 
explorations, and a grabbag other constructivism-influenced emphases were soon 
taken up. One of the popular memes used to collect these new ideas, and to distin-
guish them with entrenched notions, was a distinction proposed by Skemp (1976) 
between procedural and conceptual. Procedural was used to tag traditionalist 
emphases on acquisition and mindless mastery, and conceptual signalled shifts 
toward construction and making meaning.

Unfortunately, the shift didn’t have the impact that theorists hoped. Our suspi-
cion is that the ease with which notions of “constructing” can be blended with 
notions of “acquiring” proved to be debilitating. That is, the proposed new cloud of 
associations was perhaps not sufficiently distinct, and so more often than not they 
were subsumed into established practices and structures. Indeed, even some leading 
mathematics education researchers seemed to miss the point. Consider Sfard’s 
(1998: 5) conclusion as she contrasted object-based and action-based conceptions 
of knowledge and learning:

Concepts are to be understood as basic units of knowledge that can be accumulated, gradu-
ally refined, and combined to form ever richer cognitive structures. The picture is not much 
different when we talk about the learner as a person who constructs meaning.
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Further to the surrounding issues, perhaps no one should be surprised that efforts 
to reform mathematics curriculum have been no more impactful than efforts to 
reform mathematics teaching. The miscontrual of basics continues in force, a linear-
ized trajectory through prespecified content still dominates.

Enter the cognitive sciences. In recent decades, some educators have started to 
move to a much more distinct set of metaphors that frame learning in terms of dif-
ferentiating—a two-layered action of noticing aspects of one’s experiences and 
noticing/construing associations among those noticings. This idea is part of the 
growing appreciation that humans aren’t especially logical. In fact, sapiens are bad 
at deductive reasoning—and, left to their own devices, tend to fall back on situation- 
specific and opportunistic tactics to get through situations that would be better man-
aged through systematic thought. Humans extrapolate from past events, they seek 
patterns in the moment, they impose familiar metaphors, they re-enact established 
scripts. Thankfully, humans have also learned to off-load the demands of logical 
thought onto mechanical tools—except, for some reason, in contexts such as most 
public schools, where there remains an insistence that learners attempt to master 
mechanical processes that no longer need to be mastered. (To be clear about the 
point here: We believe that, to learn mathematics, learners must master concepts. 
But, as we develop, that sort of mastery is quite distinct from the mastery of multi- 
step procedures.)

What’s particularly interesting about the metaphor of learning as differentiating 
(i.e., noticing and knitting noticings) is its utility for revealing the intellectual pov-
erty of so many educational practices. For example, an immediate consequence of 
taking this metaphor seriously is that one must be especially attentive to what, 
exactly, learners are supposed to differentiate, how to channel attentions, how to 
organize experiences to increase the likelihood of useful associations, and so on. 
That is, the notion of learning as differentiating takes us immediately to a different 
model of teaching—one that simultaneously reveals the incoherence of many con-
temporary educational obsessions while offering a frame for alternative attitudes 
toward teaching and curriculum. We develop this and associated ideas in the last 
half of this chapter. But, before getting there, we must take on our second question, 
on the nature of mathematics. How does the differentiating metaphor prompt us to 
look at mathematics, and what does mathematical knowledge tell us about how it 
should be learned?

 Mathematics: From “Building” to “Structure” to “Network”

Through the history of modern education, mathematics teaching practice has been 
consistent with prevailing beliefs about the discipline. For instance, a prominent, 
and likely dominant, belief is that mathematics is like a building. It has foundations. 
It has levels, and those levels are ordered. Hence, teaching and curriculum should be 
attentive to establishing solid foundations and tracing out its levels in logical order. 
That is, not only is mathematics an object, it is a specific sort of object that dictates 
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topics and orders. Variations on these themes have defined school mathematics 
since the 1600s, in no small part because they are so compatible with the knowledge- 
as- object and learning-as-getting metaphors.

The realization that assumptions about the discipline affords an alternative char-
acterization of many efforts to reform school mathematics in the twentieth century. 
In particular, in the last half of the century, a large number of teachers and research-
ers who embraced a constructivist sensibility lined up behind a new definition of 
mathematics—namely, as what mathematicians do. Circularity of logic notwith-
standing, this shift in definition meshed with constructivist principles of learner 
agency, inseparability of knower and known, and gradual unfolding of possibility. It 
also shone a light on appropriate teaching emphases. In that regard, mathematicians 
were seen to be principally focused on solving problems. Authentic problems. Real 
problems. Sometimes open-ended problems. This shift in emphasis tied in nicely 
with progressivist emphases on authenticity and relevance, among other foci. It also 
fit with emerging sentiments and sensibilities that were later to evolve into Deeper 
Learning, as described in the previous section.

The move also set up what came to be known as the “Math Wars”—an ongoing, 
mainly North American-based tension between, in simplest terms, believers in 
back-to-basics sorts and proponents of problem-solving. Since the late 1980s, the 
Math Wars have dominated discussions of math teaching practice. For our purposes 
here, the critical detail is not the explicit tension, but that the Math Wars are enabled 
and perpetuated by two incompatible sensibilities—that is, two grand flocks of 
implicit association, each of which is internally consistent, but neither of which is 
especially defensible. The first of these found its anchor in the assumption that 
mathematics is an object that exists independent of humanity. In this flock, math 
learning is about faithfully reconstituting a fixed reality. The second flock swirls 
around the conviction that mathematics is an evolving structure—a hallmark of 
human creativity that emerges when logic is a defining quality. In terms of prag-
matic consequences, the structure metaphor grounded criticisms of linear curricula, 
overly parsed concepts, isolated skills, and procedural steps while it prompted atten-
tions to rich problems, meaningful contexts, flexible sequencing, and concep-
tual steps.

Yet, somehow, most efforts to enact these notions have not gone well. Somewhat 
ironically, a likely reason for the failure was anticipated by the person most com-
monly associated with problem-based learning. Noticing the tendency of humans to 
frame differences in terms of polarities, more than a century ago John Dewey (1910) 
cautioned that seeing differences in terms of polar opposites might compel debaters 
to think that those opposites must bookend all possibilities. That assumption, Dewey 
(1910: 9) worried, constrained thinking rather than enabling it, as he concluded that, 
“in fact intellectual progress usually occurs through sheer abandonment of those 
questions together with both of the alternatives they assume…We don’t solve them: 
we get over them.”

For instance, it might be tempting to think that the full spectrum of possibility for 
school mathematics is captured between “traditional” and “reform” sensibilities. On 
the one hand, mathematics is seen as pre-determined and pristinely organized—that 
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is, it is regarded as something discovered. On the other hand, mathematics is viewed 
as contingent and subject to human interest and whim—that is, something created. 
Surely the continuum defined by “something discovered” and “something created” 
encompasses everything.

In fact, however, almost everyone who has framed their thinking with the dyad 
of “something discovered” and “something created” has missed a blindingly obvi-
ous detail: both elements of the dyad assume a something. Both are indexed to an 
assumption that mathematics is a thing—and, not somewhat ironically, this detail 
shows up most powerfully around the notion of discovery. As mentioned, among 
Traditionalists, mathematics is usually seen as out there, in the real word, and there-
fore discovered. Once discovered, however, it makes sense to convey it. Among 
Reformists, mathematics is most often assumed to be created, but somehow that 
conviction leads to strong recommendations for discovery-oriented teaching—
revealing that object-based assumptions on mathematics have not been jettisoned at 
all. Perhaps that is why, even though Reformists managed to awaken educators to 
learner agency by attending to what mathematicians do, the contents and outcomes 
of most mathematics curricula are scarcely discernible from pre-reform versions, 
even after a half-century of Reformist influence.

Getting over the Math Wars, then, may be dependent on a compelling and defen-
sible alternative to the implicit-but-pervasive knowledge-as-object metaphor that 
continues to undergird almost all discussions of school mathematics. Fortuitously, 
many alternatives have been developed, especially over the past few decades. One 
that we find especially useful is the metaphor that knowledge is systemic coherence 
across levels of organization, from which it follows that learning might be associ-
ated with making and acting on differentiations that enable systemic coherence. 
That is, learning is about noticing and knitting noticings—and, in turn, that blend 
sets up a model of school mathematics that aligns with neither side of the Math 
Wars. And it doesn’t land between them either.

Over the past few decades, in efforts to understand the nature of their discipline, 
many mathematics researchers have turned its tools onto the discipline itself. A 
consistent conclusion is that mathematics is a complex system (e.g., Foote 2007). 
Consequently, mathematics has a decentralized network structure. Other phenom-
ena that have this structure include cultures, ecosystems, and brains. More point-
edly, mathematics is not an object—and, with that, the premises of the Math Wars 
crumble. As do both Traditionalist and Reformist teaching.

So, how might an educator approach mathematics when knowledge is under-
stood as systemic coherence across levels of organization? To answer that question, 
we focus not on the elements of mathematics but on how the elements of mathemat-
ics might be made available in learners’ experiences. A decentralized network com-
prises both nodes and links—which, in the case of mathematics, have been associated 
with “principles” (i.e., stable aspects of existence, such as patterns and forms) and 
“logics” (i.e., different means of combining principles into systems of interpreta-
tion). Learning mathematics, then, is about differentiating—that is, becoming aware 
of principles (i.e., noticing) and applying logics (i.e., knitting noticings). 
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Correspondingly, teaching comes to be about channeling attentions and juxtaposing 
experiences to support appropriate linking.

And that takes us to a model of mathematics teaching informed by “Variation 
Theory,” which we argue is fitted to this Information Age.

 Why Variation Theory?

As the Math Wars have continued to polarize discussions regarding the best ways to 
teach math (Schoenfeld 2004), it is clear that we have not yet adequately answered 
Chazan and Ball’s (1999) call to go “beyond being told not to tell.” Marton’s theory 
of variation (Marton and Booth 1997; Marton and Tsui 2004; Marton 2015) offers 
powerful insights that allow a clear alternative to both telling and discovering—and 
to the knowledge-as-object metaphors upon which they are based. While it is impos-
sible to “transmit” understanding or “process” the products of perception, it is pos-
sible to offer deliberate contrasts that dramatically increase the likelihood that 
learners will perceive intended principles and relationships in a particular way. In 
addition to effective prompting techniques, this requires careful attention to both 
short and long-term structuring—which we describe with the contronym, ravel-
ing—of mathematical ideas to which we might prompt. Neither effective prompting 
nor long-term raveling feature prominently in discussions of traditional vs. reform 
approaches, which has likely contributed to the longevity of the Math Wars. 
Traditional methods can work. So can reform methods. But the alleged reasons they 
work (or reasons the other does not) may have more to do with elements of peda-
gogy that do not even enter the conversation; further complicating matters, success 
may be misattributed to one or other “contemporary obsession” (Preciado-Babb 
et al. 2020).

In this part, we further develop the key ideas underlying variation theory and 
relate them to principles of variation pedagogy developed independently in China 
(Gu et al. 2004; Huang and Leung 2004; Lai and Murray 2014). Following that, 
below we offer an interpretation of variation theory that integrates Marton’s theo-
retical principles and Chinese pedagogical principles into a nested set of variation 
types that we’ve found helpful for designing short and long-term pedagogical 
sequences that support fractal awareness consistent with the nature of mathematics.

 Learning as Differentiation

Marton’s theory is based on the premise of learning as differentiation, which might 
be contrasted with learning as enrichment; i.e., that perception is always necessarily 
partial, depending on what we separate from an undifferentiated whole. Emerging 
from this is a distinctive principle that lies at the heart of Marton’s work: The 
Principle of Difference states that we discern new ideas when they are contrasted 
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against a constant background. Highlighting difference to prompt distinction- 
making is itself clarified by contrasting it with the common practice of (attempting 
to) highlight similarity to promote association-making. While association-making 
is indeed important to learning, Marton argued that we do not discern new meanings 
by perceiving similarities among examples that otherwise differ—i.e., through 
induction. If we can’t perceive something in one place, we won’t see it in two, or 
three, or a hundred. We can, however, generalize similarity among previously dis-
cerned examples (we also make metaphorical associations, but we will take that up 
a bit later).

Distinguishing generalizing from induction is essential to understanding and 
effectively using variation. This can be tricky, because often the patterns of variation 
used to prompt generalization are the same ones we might be tempted to offer in the 
hope of prompting induction. But order matters: Once separated through contrast, 
ideas become perceptible and can then be generalized. The examples may be the 
same, but the manner in which associations are assumed to be made is not. What can 
be highlighted via contrast is also constrained by prior knowledge, but in a different 
manner: We can’t simply prompt attention to advanced mathematical ideas unless 
the necessary contrasts have themselves been sufficiently prompted. Thus, mathe-
matical ideas must be carefully “raveled” so that we prompt attention at a level 
where learners are able to make sense of offered contrasts. It turns out that the levels 
can themselves be usefully described in more general terms, which is an important 
elaboration of the variation types that we discuss below.

 The Principle of Difference: Induction vs. Generalization

The Principle of Difference is both less intuitive and more powerful than often 
appears at first glance. When we are trying to explain something that is familiar to 
us, it can seem as though multiple examples should support deeper insight. This is 
likely because once something has been discerned, multiple examples can add clar-
ity through expansion of the example space associated with that idea (Watson and 
Mason 2005, 2006). Again, however, this is about generalizing existing understand-
ing. If the particular something hasn’t yet been discerned, it’s impossible to simply 
induce what the many examples are examples of: We can’t induce meaning from 
similarity if a unifying feature is unavailable.

Mason, Burton, and Stacey (1982/2010) recommended “generalizing and spe-
cializing” as a way of seeking deeper insight; it is through exploring variations of a 
particular case that we often find insight into both that case and a more general class 
of cases to which it belongs. Importantly, however, this is not about finding similari-
ties among varied examples, but about finding the perturbations under which the 
broader category remains intact (which may itself be influenced by the particular 
conditions of investigation).

In some cases, a single contrast can provide the necessary insight for generaliz-
ing a particular feature, which is why sometimes it’s possible to “see the general in 
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the specific” (Mason and Pimm 1984; Watson and Mason 2006): Doing so involves 
seeing certain parameters of a problem as variable, which provides the necessary 
contrast for generalizing. In summary: separation (through contrast, not induction) 
must precede generalization; further, the very same examples that are inadequate 
for separation are ideal for generalization. Once separated and generalized, different 
features may be simultaneously varied, or fused.

 Separating, Generalizing, and Fusing

What exactly does it mean to separate through contrast? If we want to highlight the 
meaning of, for example, apple, highlighting difference would involve contrasting 
an apple with other things that are like apples in as many ways as possible but differ 
with respect to some essential feature. At the moment of discerning, both apple and 
the broader whole from which it has been separated (Food? Fruit? Spherical 
objects?) become namable, but these namable “things” are less important than the 
un-namable difference that defines them. In other words, the notion of difference is 
essential to transcending the knowledge-as-object metaphor that has proved so 
intransigent over decades of attempts to improve math education.

Once the notion of apple has been separated from a background—say of food, or 
fruit, or spherical objects (i.e., once apple becomes a discernible and thus name- 
able difference)—we may then generalize to a broader class of apples. Although 
this class may be defined in terms of what all apples have in common, it is generated 
and bounded through expansion of allowable differences (Can it still be an apple if 
it has pink flesh?). To generalize, we hold the notion of apple constant and consider 
the permissibility of particular variations of apple—which looks just like the pattern 
of induction mentioned above, except that we’re using difference (not similarity) to 
test the limits of our definition of apple. In other words, generalizing is about per-
ceiving differences between differences (i.e. variations of apple, which is itself dis-
tinct from non-apple)—and thus could be considered the sort of level change that 
lies at the heart of the hierarchy we are proposing.

According to Marton (2015), new ideas must be prompted in a manner such that 
what is general and what is specific are discerned simultaneously. When distin-
guishing apple from non-apple, it may be that a learner becomes aware of the cate-
gory fruit of which apple is a particular type; Marton would call such a category a 
critical aspect. If apple is the first fruit to be so separated from the broader category, 
both fruit (as a category) and apple (as one member of that category) are perceived 
at the same time. In this case, the contrast highlights both the apple and a hierarchi-
cal structure involving apples and fruit (i.e., both the critical aspect fruit and the 
critical feature apple). Thus, “What is general and what is specific are discerned 
simultaneously when a new meaning is appropriated. There cannot be any features 
experienced without the awareness of the aspect that unites them, nor can there be 
any aspect experienced without the awareness of features that belong to it. 
Differences and features that differ cannot exist without each other” (Marton 2015: 
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48). Once apple and fruit have been thus separated, we might be moved to lay out 
the particular criteria we see as essential to each. Having done so, we might hold up 
new examples to those criteria and thereby classify them as fruit, apple, or both. 
Classification is distinct from generalizing in that it sets particular features of a 
particular example against an articulated definition; generalizing, on the other hand, 
takes particular features of a particular example and identifies a space of possibility 
bounded by the constraints of the experiential context as opposed to by the defined 
criteria of a definition.

Watson and Mason (2005) helpfully referred to critical aspects in terms of dimen-
sions of possible variation and critical features in terms of range of permissible 
change. To highlight allowable variations of apple, apple becomes the critical 
aspect, which can be generalized according to variation in (familiar) features such 
as color, shape, size, and flavor. In doing so, it is helpful to contrast and vary fea-
tures one at a time: Apples can be various shades of yellow, green, or red. They 
range from quite round (Macintosh) to a bit lumpy (Red Delicious). They can be 
smaller than a tennis ball (crab-apple) or as big as a softball (Fuji). They can range 
from quite sour (Granny Smith) to very sweet (Fuji). Color, shape, size, and flavor 
are critical features (of the critical aspect apple), and each can be varied within 
certain parameters. Similarly, “yellow, green, and red” are features of the aspect 
color, but discerning color itself isn’t the focus at this time; in the context of the 
apple, color is assumed as prior knowledge.

Even when critical features have been carefully named in an attempt to separate 
them for attention, teachers and resources frequently attempt to prompt attention to 
the named thing rather than to relevant differences—differences which might then 
be given a name. This is how easily Marton’s induction insinuates itself into peda-
gogies where the metaphor of knowledge-as-object has not been interrupted.

To offer a simple example, “practice rounding” tends to involve practice sets that 
cluster varied numbers to be rounded to nearest ten, then numbers to be rounded to 
the nearest hundred, and so on. Direct contrast between rounding to the nearest ten 
and nearest hundred is thus not easily perceived. Alternatively, the pattern of varia-
tion in Fig. 12.1 offers direct juxtaposition of rounding to the nearest ten, hundred, 
thousand, and ten-thousand—and requires learners to round the same number to 
varied place values (note that it’s important that students are prompted to work from 
top to bottom, as moving left to right offers the same pattern of variation we’re hop-
ing to interrupt). These contrasts offer meaningful information about the impact of 
rounding. More carefully chosen variation of fewer examples can be very powerful, 
because learners must practice making key discernments rather than merely practice 

Fig. 12.1 Rounding
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a procedure. The contrasts between selected numbers and between successive charts 
are also carefully chosen, but these differences between differences can only make 
sense if the first order of difference has been successfully prompted. If we treat the 
first level of difference as a thing rather than a difference, every level thereafter 
becomes inaccessible. In this sense, first-order differences become the essential cri-
terion for what is truly basic to structurally coherent mathematics pedagogy.

Similarly, when learning to add multi-digit numbers, learners may be asked first 
to add without regrouping, then to add with regrouping. A key discernment in doing 
so, however, is recognition that tens in the ones’ place can be re-grouped. In other 
words, re-grouping can only be perceived in contrast to not re-grouping (and vice 
versa). When examples and practice sets separate adding with and without re- 
grouping, such contrast is far less obvious. Alternatively, if varied tens in the ones’ 
place are directly juxtaposed (and include no tens), particularly in a manner that 
highlights those tens, the meaning of re-grouping is more likely to be perceived see 
Fig. 12.2). At the very least, learners should have to decide whether or not to re- 
group (zero tens or one ten). In practice sets where every example involves trading 
a single ten, we have observed learners go through the entire set and placing a “1” 
in the box for trades. They are not distinguishing between trades and no trades (or 
between one ten and other numbers of tens); they are merely performing a step that 
is highly limited to the particular context of that practice set. Note that in the last 
example, the lack of color-coding, slight mixing of the ten pairs, and inclusion of an 
extra one introduce elements that widen the space in which learners are expected to 
make appropriate discernments. Depending on learners’ background and confi-
dence, these features might be introduced one at a time.

To summarize: Once an idea is separated through contrast, essential features 
may also be highlighted by varying them against a constant background and gener-
alized by identifying non-essential features. They may also be fused by co-varying 
previously discerned (and possibly generalized) features. Returning to the apple, 

Fig. 12.2 Re-grouping tens
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eventually, we recognize apple even when multiple features co-vary and even when 
those features co-vary in ways that produce novel situations. Even if we were sud-
denly confronted with a crab-apple-sized, Red Delicious-shaped, yellow-coloured 
apple, we would likely recognize it as an apple. Similarly, we can learn to add multi- 
digit numbers that involve re-grouping into any place value and with any number 
remaining in each place value. More significantly than what we can do, however, is 
that we may now recognize the very idea of re-grouping tens in a more broadly 
generalized sense that makes it available in a wide variety of other contexts, includ-
ing all of the other so-called “basic” operations. Note that it’s not the operations 
themselves that are basic, but the critical discernments upon which the traditional- 
defined basics need to be based.

While separating, generalizing, and fusing have to do with discerning the effects 
of multiple co-varying features, they do not fully account for how we generate 
mathematics or how we learn mathematics: Mathematical knowledge also expands 
both through abduction and through the integration of different ideas.

 Abduction

If mathematical knowing has to do with organizing information into accurate hier-
archies and identifying the logical implications implied by those structures, it may 
seem that mathematics is inherently a logical endeavour. But the formation of those 
hierarchies is an abductive—or more specifically, an analogical—process, which is 
not surprising considering that such hierarchies are created by analogical minds. 
Here, the similarity we decried in the context of induction assumes a prominent 
role, though difference is still essential to prompting new meaning. We generalize 
when we compare examples and decide whether identified differences are consis-
tent with pre-specified criteria; we abduct when we transfer explanatory structure 
(consciously or unconsciously) between that which we perceive as similar. We anal-
ogize when we consider the appropriateness of transfer and do so (or refrain from 
doing so) intentionally.

To continue with our fruit example, it may be that a learner has already discerned 
apples and oranges but not considered their relationship. Doing so may simply 
involve combining them into a single category based on specified and familiar cri-
teria; as noted about, this is classification. However, it may involve consideration of 
whether recognized shared features allow transfer of explanatory structure from one 
to the other. If so, we are talking not just about classification, but about abduction. 
Although difference is required to separate new ideas, the human mind is adept at 
perceiving similarities among previously discerned ideas. Abduction is not about 
seeing something new—it’s about recognizing something familiar in a different 
context. From there, it is possible to consider whether what is known about each 
context may usefully or accurately be brought to bear on the other, though this 
aspect of abducting appears much less intuitive. Humans are deeply prone to jump-
ing to conclusions based on perceived similarities. In any case, difference can only 
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be perceived between ideas that have been previously discerned; i.e., differences 
can only be perceived between previously perceived differences. This would imply 
infinite regress if we assumed a blank-state infant mind, but we know that humans 
come into the world already attuned to particular differences from which all others 
eventually evolve (Lakoff and Núñez 2000).

Separating, generalizing, and fusing contribute to effective knowledge hierar-
chies. Marton (2015) addressed the importance of such hierarchies (particularly in 
the context of writing). Watson and Mason (2006) further emphasized the fractal 
nature of those hierarchies and highlighted the role of abstraction—which is consis-
tent with what we’re calling abduction—in their formation:

However, to make mathematical progress the results of the images, models, and generaliza-
tions thus created have to become tools for more sophisticated mathematics. We see gener-
alization as sensing the possible variation in a relationship, and abstraction as shifting from 
seeing relationships as specific to the situation, to seeing them as potential properties of 
similar situations. (Watson and Mason 2006: 94)

Taken together, the rejection of induction and the articulation of the role of dif-
ference in generalizing and abducting further support the importance of abandoning 
mental things. Doing so also helps resolve an apparent paradox highlighted by 
Watson (2017): If much of mathematics is defined in terms of similarities (defined 
by dependency relationships among variables) how can we use difference to prompt 
to similarity? One way of looking at this is that similarity is always between similar 
differences; if not, we couldn’t have perceived them in the first place.

 Integration

When used with well-raveled content, variation theory can offer powerful insights 
that contribute to effective variation pedagogy. To do so effectively, we must of 
course be clear about what we want to prompt attention to. But this is not as straight-
forward or intuitive as it might seem, particularly in the context of mathematics 
education. Marton (2015: 176) emphasized that “the object of learning that is used 
as a lens for inspecting the teaching may or may not be identical with the intended 
object of learning (i.e., the learning that the teacher had hoped to contribute to).” In 
mathematics it is frequently the case that instrumental learning is mistaken for rela-
tional learning (Skemp 1976). Carefully generated patterns of variation intended to 
teach particular mathematical ideas will ultimately fail if those ideas are defined 
only in instrumental terms; i.e., as things rather than differences.

Many who focus on step-based approaches emphasize that they do focus on the 
meaning of those steps. Even when the focus is on the underlying conceptual mean-
ing of those steps, however, a procedure does not always offer an effective means of 
raveling the mathematical ideas required to make sense of that procedure. Many 
procedures require the integration of multiple ideas that, if not previously discerned 
and generalized, are very difficult to integrate (see Fig. 12.3).
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One of the obstacles that some seem to have with understanding critical discern-
ments is that they think so long as steps are explained conceptually, they qualify as 
critical discernments. This ignores the importance of raveling: Often explaining a 
step in an algorithm involves multiple discernments (see Fig. 12.4), which is why 
many learners don’t follow the conceptual explanation and beg to simply be given a 
list of steps. Critical discernments are raveled over time so that learners have made 
the necessary discernments that allow them to make sense of each new 
discernment.

Fig. 12.3 Procedural steps vs. conceptual steps (long division)

Fig. 12.4 Conceptual steps vs. critical discernments (division)
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Sometimes raveling algorithms involves integrating seemingly unrelated under-
standings that come together due to their role in the solution to a problem, but a 
well-raveled sequence should also have elements of progressive differentiation. In 
math, this often shows up in the form of seeing something as a special case of a 
broader principle. For example, the long division algorithm is a special case of 
separating-to-divide (CD #2 in Fig. 12.4), which itself is a refinement of the dis-
tributive property. Contrasting different ways of separating a number to divide 
opens “ways of separating” as a dimension of possible variation while simultane-
ously expanding the example space consisting of those ways.

Once again, generalizing and specializing emerge as two sides of the same coin. 
We generalize by varying and identifying boundaries for variation, not by looking 
for similarity among multiple examples. Nonetheless, it remains important to 
remain attentive to implications of such insights on both (or multiple) levels of the 
hierarchy and to how they might be elaborated; i.e., to what can be articulated in 
general terms and to the specific cases that comprise, limit, or extend articulated 
generalizations (Mason et al. 1982/2010).

This manner of viewing generalizing and specializing has implications for the 
current obsession with multiple strategies (Preciado-Babb et al. 2020). Rather than 
learning a variety of different ways to divide and then considering how they’re alike 
(Marton’s induction), we can progressively refine critical discernments about the 
nature of multiplication, division, and the distributive property. Each of the typical 
methods for division emerge from these critical discernments and are thus already 
connected. Again: The general is recognized at the same moment that the particular 
is differentiated; we see the general in the particular (Mason and Pimm 1984) pre-
cisely when the particular emerges through differentiation. Or, as Marton (2015: 
48) put it: “There cannot be any new features experienced without the awareness of 
the aspect that unites them, nor can there be any aspect experienced without the 
awareness of features that belong to it. Differences and features that differ cannot 
exist without each other.”

The distinction between procedural and conceptual steps is perhaps even more 
striking in the case of relating prime factors and factors (see Fig. 12.5). Offering a 
conceptual explanation of the procedural steps listed here would be grossly insuffi-
cient for most learners, because they would require a sub-ravel (and a sub-ravel of 
the sub-ravel) for each step before such an explanation could make sense.

Integrating multiple ideas is distinct from both fusion and from discerning 
dependency relationships among variables. It has to do with bringing diverse math-
ematical ideas to bear on a single context or problem, as in modeling and problem 
solving. Elsewhere, we have used a braiding metaphor (Preciado-Babb et al. 2020) 
to describe this difficulty: Learners need to braid the strands (i.e., each of the critical 
discernments on the right) before they can effectively attend to the rope itself. In 
other words, they would have to braid the strands at the same time that they’re braid-
ing the rope. This is also true of the discernments pertaining to long division, but the 
layers of sub-ravel requiring attention for the unknown to become perceptible may 
seem less daunting.
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 Conceptual and Procedural Variation

While there is value in talking about the theory of variation more generally, it is 
illuminating to consider how its principles are specifically implicated in the teach-
ing of mathematics. In China, variation pedagogy particular to mathematics (Gu 
et al. 2004, 2017; Huang and Leung 2004; Lai and Murray 2014) was originally 
developed independently of Marton’s theory, though collaboration among research-
ers from the two traditions has become common as researchers have recognized 
their complementarities. Nonetheless, there are some notable differences in empha-
sis (Huang et al. 2016; Pang et al. 2016; Watson 2017). In particular, Chinese varia-
tion pedagogy includes an explicit focus on sameness as well as difference (Gu et al. 
2004). Watson (2017: 85) emphasized that much of mathematics takes invariant 
“dependency relationships” as its object of learning; in other words, similarity is, in 
fact, essential to mathematics. But earlier we insisted that humans are attuned to 
difference, not similarity, and that induction does not work. What’s going on? We 
have found that the manner in which sameness is prompted is consistent with 
Marton’s principle of difference, but it’s important to consider more closely what it 
means to use difference to prompt attention to similarity—or more specifically, to 
the underlying dependency relations that generate that similarity. Prompting to 
relationship is much different than prompting to pattern (Hewitt 1992).

Gu et al. (2004) distinguished two types of variation important to teaching math-
ematics: (a) conceptual variation (CV) and (b) procedural variation (PV). Here, 
“conceptual” and “procedural” are used differently than is typical in Western con-
texts, where conceptual is roughly synonymous with Skemp’s (1976) “relational,” 
and “procedural” is roughly synonymous with his “instrumental.” Both conceptual 
and procedural variation are about sense-making, and they are neither opposed nor 
competing. According to Gu, Huang, and Marton, conceptual variation offers 

Steps vs. Discernments
How do prime factors determine number of factors?

Procedural Steps
1. Find the prime factors of the 

number.

2. Write the prime factors with 
exponential notation.

3. Add 1 to each exponent from 
Step 2. Multiply those numbers 
together to find the number of 
factors.

Critical Discernments
CD#1: Every number can be written as the product of prime factors. 

CD#2: Every number has a single prime factorization.

CD#3: Every number has a unique prime factorization. 

CD#4: Prime factors combine to make factors.

CD#5: The number of factors a number has is determined by the number of 
ways you can combine its prime factors.

CD#6: If a number has one prime factor, repeated multiple times, the 
combinations are varying numbers of that factor. 

CD#7: If a number has two or more prime factors, clusters of one prime 
multiplied by clusters of the other(s) create new factors of that number.

CD#8: The number of factors can be found by multiplying the number of 
possibilities for each prime factor in a number’s prime factorization.

Fig. 12.5 How do prime factors determine the number of factors?
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examples, non-examples/counter-examples, and non-standard examples of a con-
cept; thus, conceptual variation is roughly akin to Marton’s contrast and generaliza-
tion and to Watson and Mason’s (2005, 2006) “example spaces.” Conceptual 
variation offers the initial differences that bound a context for learning; it is con-
cerned with clarifying and broadening the space of variation encompassed by a 
particular idea. Hewitt’s (1999, 2001a, b) consideration of what is arbitrary and 
what is necessary in mathematics further highlights the importance of distinguish-
ing what can and cannot be relationally defined and of teaching in ways that are 
consistent with this distinction. Even what is arbitrary, however, must be separated 
by prompting to difference; a particular definition or premise may be arbitrarily 
chosen, but once chosen, it cannot be arbitrarily prompted.

Procedural variation is further differentiated into three sub-categories: (a) vary-
ing the features of a problem (PV1); (b) comparing methods for solving a problem 
(PV2); and (c) considering how a single method can be applied to similar prob-
lems (PV3).

The procedural variations are collectively described as “progressively unfolding 
mathematics activities” (Gu et  al. 2004: 319): “[P]rocedural variation intends to 
pave the way to help students establish the substantive connections between the new 
object of learning and the previous knowledge” (Gu et al. 2004: 340–341). In this 
way, successive examples may be experienced as “easier,” but this is a particular 
kind of easier: They make it easier to make significant mathematical discernments, 
not just easier to complete a practice set or do a certain type of question. While some 
might see repetitive practice in a set of tasks designed with procedural variation in 
mind, it in fact involves deliberate change against a constant background; i.e., it’s 
not the repetitive practice of a procedure but a way of highlighting relationships 
between particular mathematical variables. Lai and Murray (2014) argued convinc-
ingly that failure to distinguish between these two types of repetition likely lies at 
the heart of the perceived “Chinese paradox” (Huang and Leung 2004), whereby 
Western observers have sometimes struggled to make sense of how allegedly weak 
Chinese pedagogy consistently produces such strong results.

Differences based on logical hierarchy are also an important consideration when 
considering effective patterns of variation. A lesson (or a text) is experienced chron-
ologically, but for learning to be effective, ideas offered within that chronology must 
be structured hierarchically; doing so involves prompting awareness of particular 
hierarchical relationships and how they are woven into increasingly dense and elab-
orated webs of association. Marton (2015) reported on several studies (outside of 
mathematics) where each new awareness was connected to a broader context. In 
such cases, learning was more effective than in cases where teaching was structured 
in linear sequence.

The different forms of variation can be seen in terms of a natural hierarchy with 
the potential to support the sort of meaningful long-term structuring of mathematics 
envisioned by Dienes (1960). Typically, however, descriptions of variation peda-
gogy often involve unrelated examples used to exemplify types of variation 
(Kullberg et  al. 2017; Sun 2011; Wong 2008). While such studies are useful for 
prompting attention to the significance of fine-grained variation, it is not easy (a) to 
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see the distinguishing features of different types of variation or (b) to see how they 
might be used to progressively elaborate an idea beyond the immediate context of a 
question set or a lesson. In China, coherent long-term raveling may be more clearly 
supported by carefully developed teaching resources, but elsewhere this is not 
always the case (Jianhua 2004; Bajaj 2013). Ma (1999) found that Chinese teachers, 
even those with less formal education than their counterparts elsewhere, showed 
more profound understanding of the elementary math they were teaching. In such 
cases, it is particularly vital that progressions highlighting hierarchical structure be 
embedded in quality resources that support both teachers and students in discerning 
complex webs of relationships.

 Summary

We opened this part by noting that mathematics education has yet to articulate and 
put into broad practice a meaningful response to Chazan and Ball’s (1999) observa-
tion that we need to offer teachers more than a directive not to “tell.” Variation the-
ory offers a way out of the apparent contradictions that emerge from many of the 
traditional vs. reform debates. It is not without potential pitfalls, however. Particular 
contradictions emerge when we attempt to use variation theory in conjunction with 
the knowledge-as-object. In such cases, variation theory tends to be distorted in one 
of two ways, depending whether the distortion occurs in a Traditionalist context or 
in a Reformist context.

Traditionalists may take variation as a means of offering gentler progressions 
and minimizing cognitive load. In other words, the subtle changes between ques-
tions are seen primarily in terms of gentle steps rather than in terms of meaningful 
contrasts deliberately chosen to make particular differences visible. While it is 
indeed important to attend to the limits of working memory, effective variation is 
about increasing clarity, not about making things easier. In fact, attempts to simplify 
by focusing on one thing at a time often result in the loss of the very contrasts neces-
sary for effective prompting through variation.

Reformists working with the hope that learners will independently discover rel-
evant knowledge-objects often fail to consider the hierarchy of differences required 
to make necessary contrasts perceptible in the first place. Open problems can offer 
spaces in which the variation of critical features assumes relevance (Runesson 
2005), and learners can indeed take responsibility for generating their own patterns 
of variation emerging from those features (Watson and Mason 2005)—if they’ve 
discerned relevant dimensions of possible variation, if they have appropriate math-
ematical tools (developed through their own ravel) to manage that variation, and if 
they are not expected to weave the strands they are braiding, so to speak. Not all 
“paths” in the Reformists’ journey follow a sequence that effectively supports atten-
tion to necessary differences, the fusion of multiple variables or the integration of 
prior knowledge.
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When variation theory is paired with the metaphor of knowledge as a decentral-
ized network, however, the importance of separating relevant features from an inte-
grated whole and then re-integrating them in a manner that highlights an appropriate 
web of associations is much easier to talk about; i.e., the metaphor invokes both 
relationships and language that productively enable thinking and communicating 
about learning. Here, the significance of the particular ways in which mathematical 
ideas are raveled assumes prominence: Careful contrasts and wide spaces of varia-
tion typically open rich spaces of conceptual variation that subsequent procedural 
variations may continue to elaborate.

We have found it somewhat challenging to highlight how such hierarchies unfold 
in a longer-term ravel. To focus on the fine-grained distinctions significant at a par-
ticular level makes it harder to step back and focus on the relationships between 
levels in the hierarchy. To do so, we do not offer the same level of detail within each 
level that we might otherwise do, though we hope that the particular examples 
we’ve chosen sufficiently highlight the importance of fine-grained distinctions. 
Once again, the need to simultaneously attend to an intricate web of understanding 
at both the immediate and the long-term level fuels our insistence that a carefully 
developed resource is essential to the coherent, long-term elaboration of mathemati-
cal ideas.

 Mathematics as Levels of Variation

We have found it helpful to conceptualize types of variation in terms of levels of 
variation defined by varied interactions among successive levels of difference (see 
Fig. 12.6). Level 1 separates and bounds key ideas with which we wish to work. 
This typically invokes what Hewitt (1999, 2001a, b) deemed the arbitrary. Levels 
2–5 involve qualitatively different interactions among identified parts, each of 
which involves necessary implications (as opposed to arbitrary definitions) of the 
ideas established at Level 1. Levels 1–4 form a hierarchy of types: Level 1 uses 

Fig. 12.6 Levels of variation
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contrast to separate and generalize key features, Level 2 explores co-variation of 
those features, Level 3 contrasts relationships among different ways of co-varying 
(sometimes in the form of sequences and strategies), and Level 4 contrasts relation-
ships among relationships. Level 5 focuses on interactions among previously identi-
fied features and relationships, including those that go beyond the object of learning 
identified in Levels 1–4.

Consistent with our claim that seeing knowledge as a decentralized network sig-
nificantly influences how we make sense of teaching and learning, these levels 
might be helpfully compared with Bateson’s articulation of logical types pertaining 
to the development of living things:

 1. The parts of any member of Creatura [i.e., living things] are to be compared with 
other parts of the same individual to give first-order connections.

 2. Crabs are to be compared with lobsters or men with horses to find similar rela-
tions between parts (i.e., to give second-order connections).

 3. The comparison between crabs and lobsters is to be compared with the compari-
son between man and horse to provide third-order connections (Bateson 
1979/2002: 10).

If we substitute ideas for organisms, we come very close to the framework we are 
attempting to describe. Hence we move from what Bateson referred to as serial 
homology (where each part within a particular organism is constrained during 
embryonic development by the previous parts) and phylogenetic homology (where 
new developments are constrained by shared evolutionary history) to what might be 
considered parallel homology, where parts do not act directly upon one another but 
may yet act in similar ways due to a history of evolving to meet similar evolutionary 
constraints. The three points above correspond to our Levels 2–4. Within and 
between each level, information is defined by difference, which is precisely why it 
can’t be a thing. Difference exists in the space between. Each of the levels (1–5) are 
however, bounded—by what Bateson referred to as context and described in terms 
of a story, or pattern through time, that links varying elements in a space of shared 
relevance: “Any A is relevant to any B if both A and B are parts of components of 
the same ‘story’” (p. 14).

 Change and Choice

Before we articulate the levels themselves, it’s important to take a closer look at the 
importance of change and choice. Teaching involves prompting attention to relevant 
differences, which are themselves essential for prompting attention to associations. 
Prompting has two key elements: what we offer (change) and what we invite learn-
ers to distinguish (choice). We must offer relevant contrasts and invite particular 
noticings, and to do so, we must offer tasks that require learners to make relevant 
distinctions. Attention to “change and choice” in this manner has a profound impact 
on what we call “practice:” Most of what gets called practice is “practice doing,” but 
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good practice is “practice discerning.” In addition, examples and tasks must each 
use appropriate and sufficient contrast; i.e. they should be sufficiently different, 
uncluttered by distractors, and clearly juxtaposed in both time and space.

Finally, it is essential to acknowledge learners’ roles in making themselves 
receptive to change: It is by moving our heads that our eyes receive differential 
signals regarding the position of objects in space and that we may thus perceive 
depth; this is also how our ears receive differential signals regarding the direction of 
sound, that we may thus perceive the direction from which a particular sound ema-
nated; and it is by dragging our fingers over a surface that we may perceive differ-
ences that alert us to the shape or texture of whatever we are touching. Teachers may 
prompt to the significance of difference by inviting attention to relevant contrasts, 
but as learners come to expect such differences in the sequence of examples and 
tasks they are offered, they learn to do the mental equivalent of moving their head 
or dragging their finger, now over a set of ideas, but still with the aim of detecting 
the differences that contain relevant information. In the remainder of this section, 
we illustrate the five levels in a manner that we hope offers an abbreviated experi-
ence of relevant differences. A more elaborate sequence with many more opportuni-
ties for engagement may be found in Unit 3 of the Math Minds Online Course (Math 
Minds 2020).

 Level 1: Bounding and Naming Differences

Level 1 defines the nature and limits of what we want to work with; i.e., to the par-
ticular aspects and features with which we wish to work. Level 1 is akin to concep-
tual variation in Gu et al.’s (2004) description of Chinese pedagogy and to separating 
in Marton’s (2015) theory of variation.

The nature of Level 1 boundaries may be arbitrary in that there are infinitely 
many ways experience may be bounded, but they nonetheless define the premises 
from which necessary implications may be derived. It is here that the illusion of 
acquire-able “things” emerges. When we give differences a name, they appear as 
objects—as a “this” instead of a “this-as-opposed-to-that” or the conceptual “space- 
between- this-and-that”. But if we lose sight of the difference that the name points 
to, we put ourselves and our students in a position from which no further insight is 
possible.

We take as our starting point exponents as a special case of repeated multiplica-
tion in which all multiplicands are the same. Prior experience with varied interpreta-
tions of multiplication will be assumed (see Fig. 12.7) as the starting point from 
which further differentiation may be prompted.

The new features to be developed through the full Level 1–5 sequence are (a) the 
extension from three multiplicands to an infinite number of addends, which has dif-
ferent implications for different interpretations of multiplication (Davis 2015), but 
which we wish to generalize to numerical laws, (b) the repetitive nature of multipli-
cation when working with exponents, and (c) the mathematical notation used to 
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describe varied configurations of repeated multiplication. The decision to bound the 
multiplicands in such a way that they all match and the use of exponential notation 
to describe the possibilities that emerge in that space is arbitrary (Hewitt 1999), but 
clear contrasts are useful in prompting attention to these boundaries (see Figs. 12.8 
and 12.9). We define what exponents are through contrast through what they are 
not, then generalize to less standard or more complex cases. Level 1 can often be 
characterized in terms of “yes-no-also,” as in Fig. 12.9.

Fig. 12.7 How is 23 like/unlike 2 × 3 × 5?

Fig. 12.8 Level 1 variation: What is repeated multiplication?
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 Level 2: Varying Features

Having thus defined the space in which we wish to work, we may now focus on 
variation of those apparent “things” or features. This puts us at Level 2, differences 
between differences, which has much in common with Marton’s generalization and 
with the first type of procedural variations (PV1) described by Lai and Murray 
(2014); i.e., variation of problem conditions. This is highlighted in Fig. 12.10, which 
also attempts to clarify the difference between an inductive approach to varying 

What Are Exponents? 
(Level 1 Varia�on)

Exponents define number of mul�plica�ve repeats (star�ng at 1). 

YES

20 = 1

21 = 2 

23 = 2 × 2 × 2 = 8

25 = 2 × 2 × 2 × 2 × 2 = 32

100 = 1

101 = 10

102 = 10 × 10 = 100

105 = 10 × 10 × 10 × 10 × 10 = 10,000

NO

25 ≠ 2 × 5 

25 ≠ 10 

105 ≠ 10 × 5

10,000 ≠ 50

25 ≠ 52

32 ≠ 25

ALSO: (?)3 = ? × ? × ? 

(6 + 2)3 = (6 + 2)× (6 + 2) × (6 + 2) = 8 × 8 × 8 = 512 

(6 - 2)3 = (6 - 2) × (6 - 2) × (6 - 2) = 4 × 4 × 4 = 64 

(6 × 2)3 = (6 × 2) × (6 × 2) × (6 × 2) = 12 × 12 × 12 = 1728 

(6 ÷ 2)3 = (6 ÷ 2) × (6 ÷ 2) × (6 ÷ 2) = 3 × 3 × 3 = 27 
((6 ÷ 2)2)3 

= (6 ÷ 2)2  × (6 ÷ 2)2 × (6 ÷ 2)2

= 32 × 32 × 32

= 9 × 9 × 9 
= 729

((6 ÷ 2)3)2 

= (6 ÷ 2)3  × (6 ÷ 2)3

= 33  × 33

= 27 × 27 
= 729

Fig. 12.9 Level 1 variation: What are exponents?

Varying Problem Features
Level 2 Varia
on: Which column prompts* more effec�vely?
How Alike? (Induction)
What do all have in common?
a)      35 × 32

= (3 × 3 × 3 × 3 × 3) × (3 × 3)
= 37 

b)      46 × 42 

= (4 × 4 × 4 × 4 × 4 × 4) × (4 × 4)
= 48

c)       72 × 73 

(7 × 7) × (7 ×7 ×7) 
= 75

d)      612 × 63 

(6 × 6 × 6 × 6 × 6 × 6 × 6 × 6 × 6 × 6 × 6 × 6) × (6 × 6 × 6)
= 615

How Different? (Generalization)
What happens if I change…?
a)      34 × 33 

(3 × 3 × 3 × 3) × (3 × 3 × 3)
= 37 

b)     84 × 83 

(8 × 8 × 8 × 8) × (8 × 8 × 8)
= 87

c)     84 × 85

(8 × 8 × 8 × 8) × (8 × 8 × 8 × 8 × 8)
= 89

d)    84 × 95 

(8 × 8 × 8 × 8) × (9 × 9 × 9 × 9 × 9)
= 84 × 95 (can’t be combined)

*Note this is just the first part of the prompt—learners would then engage in a similar set of practice prompts.

3 × 3 × 3)

4 × 4 × 4) × (4 × 4)

× (7 ×7 ×7) 

Fig. 12.10 Level 2 variation: Varying base, exponent
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problem conditions (not recommended) and an approach focused on difference 
(recommended).

Already in Fig. 12.9, variations of “yes” and “no” were offered, but the primary 
purpose of given contrasts was to identify relevant features (base, exponent) and to 
highlight the rules for interpreting exponential notation. At Level 2, we start to 
explore the implications of varying features identified at Level 1. In short, from 
Level 1 to Level 2, the goal shifts from defining boundaries to exploring implica-
tions of change. Importantly, changing one feature (A) has a resultant change on 
another (B), and the focus of attention shifts to this relationship, which might be 
seen as a sort of difference between A and B, and which we will call C. It’s important 
that first one feature varies, then another, and then both together—Marton’s fusion. 
Changing which feature is known and which is unknown can deepen understanding 
of the relationship between identified variables.

On the left side of Fig. 12.10, several examples are given in which learners must 
add exponents to get an answer. However, each question uses new bases and new 
exponents, which can make it harder to see the impact of change. In such cases, it is 
easy to fall into the trap of the teacher asking learners to “guess what is in my mind” 
(Mason 2010). While what is the same may seem obvious to the teacher, there are, 
in fact, a variety of features that are the same, and it’s not always easy for learners 
to zone in on the intended one. In cases like this, teachers typically end up giving the 
rule, then ask learners to apply it in multiple cases. In so doing, it essentially gets 
reduced to a procedure rather than a generalized relationship.

The examples on the right are also cases where learners must add exponents, but 
now only one feature changes in each question, which makes it easier both to iden-
tify the intended feature and to see the impact of each change. Whether we are vary-
ing within a particular law or between multiple laws, we can limit variation to all 
but one feature, then observe the impact of changing that feature. Note that exam-
ples we’ve highlighted primarily focus on the “change” aspect of “change and 
choice.” Through careful questioning as varied examples are offered and through 
appropriate follow-up tasks, it is also important that the teacher require learners to 
make relevant distinctions.

 Level 3: Varying Relationships

If relationships within a particular exponent law are the focus, then it makes sense 
to vary features of that law—one feature at a time—and to observe the effect of 
doing so. By highlighting those changes—and their impact—the focus of attention 
shifts to relationships. However, distinguishing among different exponent laws 
should also become a focus fairly quickly (see Fig. 12.11). To do so, it is helpful to 
contrast the laws themselves while holding as many features constant as possible. In 
the set on the right, the bases and exponents are kept constant, while the operations 
change. Again, instead of doing several examples that all require adding exponents 
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and then identifying what they have in common, here the focus is on impact 
of change.

This pattern or variation may still be seen in terms of Lai and Murray’s PV1 
(changing features), but there are also elements of PV2, or changing strategies. In 
our case, this doesn’t show up in the sense of multiple strategies to solve the same 
problem but through the manner in which both Level 3 and PV2 prompt to contrast-
ing relationships. In fact, Level 3 may be seen as a version of PV2 that varies the 
relationship against a constant background instead of varying the representation or 
context against a constant relationship. This isn’t to say that there isn’t value in 
comparing carefully selected multiple strategies (Durkin et al. 2017), but for rea-
sons that we explain a bit later, doing so is better described by Level 5 (integration) 
in our scheme.

 Level 4: Abstraction

At Level 4, the relationships among relationships themselves become the focus of 
attention through contrast with other situations that partially share explanatory 
structure; meaning may move in both directions, but it’s helpful when at least one 
situation is clearly understood. The example we offer in Fig. 12.12 may seem like 
an application rather than an abstraction, but the point is that it offers a space where 
the structure of relevant relationships may be contrasted in ways that allow transfer 
of meaning.

Contras�ng Rela�onships
Level 3 Varia�on: From difference within to difference between

Difference Within (Level 2)
a) 34 × 33 

= (3 × 3 × 3 × 3) × (3 × 3 × 3)         
= 3 × 3 × 3 × 3     × 3 × 3 × 3
= 37 

b)        84 × 83 

= 8 × 8 × 8 × 8     × 8 × 8 × 8
= 87

c)        84 × 85

= 8 × 8 × 8 × 8     × 8 × 8 × 8 × 8 × 8
= 89

d)       84 × 95 

= 8 × 8 × 8 × 8     × 9 × 9 × 9 × 9 × 9
= 84 × 95 (can’t be reduced)

Difference Between (Level 3)
a) 32 × 36

= 3 × 3    × 3 × 3 × 3 × 3 × 3 × 3 
= 32+6    =   38

b) (32)6

= (3 × 3)6

= 3 × 3    × 3 × 3    × 3 × 3   × 3 × 3   × 3 × 3   × 3 × 3
= 36x2    =   312

c) 36 ÷ 32 = 34

=  3 × 3    × 3 × 3    × 3 × 3 =   36 - 2    =    34

3 × 3

d) 36 ÷ 34 = 32

=  3 × 3    × 3 × 3 × 3 × 3 =    36 - 4     =    32

3 × 3 × 3 × 3

Fig. 12.11 Level 3 variation: Contrasting exponent laws
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The variables in the chain letter (i.e., number of people you send the letter to, 
number of people on the list, number of people who break the chain) could be seen 
in terms of variable bases and exponents, but recognizing this as a possibility and 
considering the appropriateness of transfer is key to making sense of the task. 
Consideration of combination locks with variable numbers of both numbers (or 
other symbols) on the lock and numbers (or other symbols) in the combination 
would serve a similar purpose. The variations described here are partially consistent 
with Lai and Murray’s PV3, which involves “multiple applications of a method by 
applying the same method to a group of similar problems” (p. 8). Again, however, 
our emphasis is not on whether the task offers an application but on whether the 
similarity between problems affords transfer of explanatory structure (which is con-
sistent with the examples offered by Lai and Murray).

Lest it seem that we are contradicting ourselves in recommending another strat-
egy that explicitly focuses on identifying similarity, note that mapping an analogy 
differs from induction in essential ways. Induction inappropriately focuses on per-
ception of similarity in that it requires learners to find commonalities among fea-
tures they have not yet discerned. Earlier, we highlighted how generalization focuses 
on similarity between previously discerned features; here, we highlight how 
abstraction focuses on similarity between previously discerned relationships.

 Level 5: Integration

Level 5 focuses on the use of tasks that require the integration of seemingly unre-
lated concepts that become enmeshed in the “same story” and thereby assume rel-
evance to one another. In doing so, Level 5 incorporates all levels of the Level 1–4 

Fig. 12.12 Level 4 variation—Contrasting relationship contrasts: Making sense of exponential 
structure
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hierarchy without adding another layer of differences among differences; it does so 
by bringing together ideas previously formed through their own progressions. We 
distinguish integration from abstraction in that where abstraction focuses on the 
transfer of meaning between two at least partially familiar situations, integration 
requires the combining of familiar ideas to solve a problem. Integration, then, does 
not fit into the same hierarchical structure described in Levels 1–4.

The rope metaphor we used to describe the importance of integrating prior 
knowledge that is well-understood—of taking care not to ask students not to braid 
the strands of a rope at the same time that they’re asked to braid those strands into a 
rope—is key to Level 5. If raveled appropriately, the “How Many Factors” task we 
introduced earlier (Fig. 12.5) may be seen as a Level 5 task: It requires and therefore 
integrates ideas developed in multiple Level 1–4 progressions, including the one 
pertaining to exponents developed here. Thus, it might be considered a Level 5 task 
in a variety of progressions, depending on the order in which topics were intro-
duced. The key point is that each of the components has been previously developed 
before we ask learners to integrate them.

Again, it may seem that integration is mere application. Both abstraction and 
integration, may (but need not) overlap with applications, but the notion of applica-
tion doesn’t seem to be a particularly useful distinction when considering how a 
problem or task set prompts to meaning. Similarly, the use of multiple strategies to 
solve a problem (and considering how they’re related) may focus either on varying 
relationships (Level 3) or on integrating diverse ideas, which we argue is an impor-
tant distinction.

 A Brief Note on Problem Solving

Various notions of problem solving assume relevance in different places within the 
hierarchy we’ve developed here, particularly those that focus on general heuristics 
and those that emphasize transfer to novel situations. A clear focus on the ongoing 
structuring of knowledge engages learners directly with the sorts of ideas typically 
highlighted in lists of problem solving strategies, and the dynamic structures thus 
developed lend themselves metaphoric transfer. Further, Levels 1–3 focus on what 
is sometimes referred to as “working systematically.” Here, working systematically 
is focused neither on procedural steps with clear worked examples nor “rich tasks” 
with a focus on “mathematical process.”

Teaching with variation models working systematically (with structured varia-
tion) and weaves together mathematical ideas that support working systematically 
(e.g., identifying combinations, graphical representation, algebraic representation). 
In other words, ideas are raveled into co-amplifying ideas that serve each other. As 
learners become more familiar with using structured variation and more aware of 
dimensions that are vary-able, they can take greater responsibility for creating the 
variations that prompt to new meaning. Working systematically typically gets short- 
changed in one of two ways: (1) When it’s seen as only a process for approaching 
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other content, it doesn’t get adequately raveled in its own right and (2) when it’s 
seen only as an isolated body of content, the important role it does play in making 
sense of other content gets overlooked. Both matter—and both are borne of the 
same artificial process-content dichotomy.

Levels 4 and 5 address problem solving as application, but application is divided 
into two categories that differ in terms of the ways they support structuring mean-
ing: Level 4 is about recognizing structural similarity among diverse problems, 
while Level 5 is requires decomposing complex problems into manageable sub- 
problems (here “manageable” includes requisite prior knowledge). In other words, 
Levels 4 and 5 draw from and elaborate the structured knowledge developed in 
Levels 1–3. Various conceptions of modeling might similarly be categorized accord-
ing to their role in structuring meaning.

While various discourses on mathematical problem solving (English and 
Gainsburg 2016; Liljedahl et al. 2016) acknowledge the role of prior knowledge, 
they focus less on the long-term structuring of that knowledge than on the immedi-
ate actions (or non-actions) taken in the hopes of calling forth or generating a fruit-
ful combination of ideas relevant to a particular problem situation. While 
problem-solving heuristics may support mathematical creativity, discovery, and 
invention, they can easily lend themselves to an air of mystique that perpetuates the 
myth that mathematics is primarily the realm of those with a particular type of abil-
ity or even genius. We hope that our emphasis on long-term structuring helps create 
rich ground from which all learners may share in the powerful a-has that accompany 
moments of illumination and insight.

 Summary

Most reports of variation pedagogy focus on a short-term ravel, likely with the 
assumption that what is well-integrated locally will also be well-integrated on a 
broader scale. As we observe variation pedagogy being taken up outside of China, 
this does not seem to be a well-grounded assumption. Collections of isolated les-
sons, even when well-varied internally (i.e., even when the focus is on mathematical 
structure and not merely on procedures), do little to prompt to the broader integrated 
structure of mathematics, and most curricula and resources are grossly insufficient 
in supporting such coherence (Bajaj 2013).

It is a monumental undertaking to build an effective sequence of effectively var-
ied lessons. Even when thoughtfully designed, such lessons inevitably change when 
they meet students—not just to suit the idiosyncrasies of individual students, but in 
ways that gradually become more consistent with the phenomenographic space of 
possibility defined by the affordances of human perception. It is not reasonable to 
expect individual teachers to take on the task of re-inventing and refining effective 
long-term mathematical sequences. Even when teachers have sufficient pedagogical 
content knowledge relevant to their grade level, there is much that can be offered in 
the form of a well-raveled resource that takes into account both the structure of 
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mathematics, common patterns of interaction between learners and mathematics, 
and long-term coherence between grades. With this in place, teachers are simultane-
ously supported in making sense of the long-term ravel and freed to attend to the 
fine-grained variations relevant to their moment-by-moment interactions with 
students.

 Conclusion

As both teachers and researchers, we must confess to a frustration with the field of 
education. At times it feels as though there is no other domain of human engage-
ment that is more resistant to well-structured theory (e.g., exposing the metaphoric 
substrate of entrenched activity) and validated evidence (e.g., year-over-year 
improvements in learner engagement and understanding). When presented with 
such ideas and evidence, more often than not, the system finds ways to reject or 
minimize it—often by characterizing a new insight as reflective of the other “camp” 
in whatever skirmish is happening at the moment.

It’s thus that we have experienced criticisms and rejections from teachers and 
policy makers positioned at both poles in the Math Wars. For instance, Traditionalists 
balk at the assertions that all learners can become adept at mathematics, that gaps in 
understanding are attributable to missed noticings, and that perceived differences in 
learner ability have more to do with flawed pedagogy than flawed learners. On the 
other side, Reformists have a strong tendency to see a well-deconstructed concept 
in terms of the much-hated step-based approach to teaching rather than an equity- 
informed noticing approach. Absences are another favorite focus of their criticisms. 
Limited group work, few open-ended problems, and no heed to personalized strate-
gies—notwithstanding that the evidence supporting such emphases is dubious at 
best—are lobbed as reasons to reject the model entirely. We actually take these 
rejections by both staunch Traditionalists and staunch Reformists as positive indica-
tors, emboldened by Dewey’s (1990: 9) observation regarding oppositional think-
ing, noted earlier: “We don’t solve them: we get over them.”

Part of that “getting over” is hinged to rethinking the relationship between teach-
ers and resources. As we hope is evident in the preceding discussion, a well- 
structured inquiry involves high levels of knowledge and extensive effort. Each of 
our lessons has pulled in the expertise of mathematicians, logicians, teachers, and 
educational researchers. Flatly stated, there is no way that solitary teachers in iso-
lated classrooms might be reasonably expected to design such lessons on their own.

It is thus that we frame fitted-to-the-Information-Age approach to mathematics 
teaching in terms of a partnership in which each aspect is associated with differenti-
ated obligations. Principal responsibility for the Ravel—that is, discerning the criti-
cal discernments involved in a concept, appreciating their relationships to one 
another, and so on—sits with the resource. Responsibility for the Prompt is more 
shared, with the resource providing suggestions and that teacher selecting and 
adapting those suggestions according to knowledge of experiences, established 
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competencies, and interests of those present. The contingencies associated with 
Interpreting means that that element is almost entirely the responsibility of the 
teacher, and Deciding what to do next is a shared responsibility that sits across the 
teacher’s knowledge of what’s happening and the resource’s advice on what might 
happen next. Conceived as a partnership, the RaPID model is neither a step- 
following (Traditionalist) script nor an open-ended (Reformist) exploration.

To state this point more emphatically, we see the next moment in the necessary 
evolution of school mathematics in the Information Age to be about a much- 
expanded and formalized partnership between teachers and resources, each having 
obligations to the other.

That suggestion is heresy within much of the current educational establishment. 
It strikes against two principles that are held by Traditionalist and Reformist alike: 
firstly, a conviction on the sanctity of teacher autonomy and, secondly, a belief that 
the best response to learner difference is differentiated experience. We question 
those ideals. In an era of massive connectivity (in which there can be genuine, mutu-
ally beneficial influences between teachers and resource developers) and better 
understandings of knowledge and cognition (that point to flawed assumptions in 
differentiated models of instruction), new possibilities for school mathematics are 
not just afforded, they are required.
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