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Preface

Changes in information technologies lead to concomitant changes in social group-
think. This was a principle put forth by the Canadian communications theorist 
Marshall McLuhan. His most famous exemplification of this principle was the 
invention of the alphabet, around 1000 BCE, which allowed for information to be 
preserved and thus used over and over, modified, and elaborated. He called this the 
first true paradigm shift in human consciousness. Although he passed away before 
the current era, aptly called the Information Age, there is little doubt that he would 
say that a second paradigm shift, based on computer technologies, has taken place. 
This bears many important implications for everything we do and how we think 
about things.

The Information Age impels all of us to become more involved with one another, 
no matter what language we speak or what culture we come from. This has engen-
dered new perceptions of what knowledge and education are or should be, leading 
to new ways of learning and researching, such as crowdsourcing and other collab-
orative modes of interacting. This is certainly true of mathematics. In a relevant 
book, Math bytes (Princeton: Princeton University Press, 2014), Tim Chartier 
argues how some ideas, like Google’s algorithms, are changing how people now 
view mathematics. So, are the traditional ways of doing and teaching mathematics 
still viable? This collection of essays deal with this main question from various 
angles. These look at both the “positives” and the “negatives” and how to reconcile 
the past with the present in mathematics education.

The opening chapter by Costa, Danesi, and Martinovic provides an overview of 
how mathematics is practiced and taught in the Information Age. The authors look 
at crowdsourced mathematics and its implications for mathematics education. 
Because of technology, mathematicians have a powerful new socially based way to 
do mathematics, called “massively collaborative mathematics,” and this has had 
significant implications for mathematics education. In Chap. 3, Krpan and Sahmbi 
make a similar kind of cogent plea for reviving argumentation and reasoning skills 
in the elementary classroom. In Chap. 9, Gollish makes a plea for restoring “fun” in 
learning mathematics by blending traditional and new ways of teaching. Amidst all 
the enthusiasm for new technologies, new mathematical techniques, etc., the 
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“basics” and the “traditional” methods of proof are probably more necessary today 
than in the past, given that they have receded to the margins of the elementary math-
ematics classroom. Without these, the development of a deeper knowledge required 
to grasp mathematics might never crystallize in learners. In Chap. 12, Metz and 
Davis outline what it means to teach mathematics in the Information Age, constitut-
ing a kind of overview of the various pedagogical themes of the book. The psycho-
social implications of the technology revolution are thus applied to the mathematics 
classroom.

Popular culture, social media, and mathematics (education) are the themes of 
Chaps. 2, 4, and 6. In Chap. 4, Danuser looks at the role of women in STEM sub-
jects and why women continue to be underrepresented, despite all their achieve-
ments in these subjects. Using concepts from the field of visual rhetoric, Danuser 
decodes the Ad Council’s “She Can STEM” campaign, which promotes STEM to 
young women. She shows how the campaign materials aim to subvert the culturally 
dominant stereotype that science is a masculine endeavor. She also looks at the 
shortcomings in the campaign. In Chap. 6, Nuessel looks at how mathematics is not 
only part of modern sports but also intrinsic to understanding them. In this over-
view, Nuessel derives pedagogical implications for incorporating the simple use of 
statistics in sports into mathematical pedagogy. Although well known, the relevant 
statistical techniques in sports are summarized here and related to an overall 
approach to teaching that involves the use of this sector of popular culture as a plat-
form on which to introduce ideas. The second chapter, by Dan Vilenchik, looks at 
how to make sense of the massive data that are automatically collected from online 
platforms such as online social media or e-learning platforms. He puts forward two 
main methods of finding patterns in the data in an unsupervised manner: clustering 
and low-dimensional approximation, covering both the theoretical aspects of each 
one and providing real-data examples. The chapter has implications for how social 
media are perceived and used.

The topic of diagrams and graphs in mathematics is covered in three chapters. In 
Chap. 5, Costa examines STEM subjects from the point of view of how information 
is represented graphically in them and how graphical literacy should not be assumed 
but taught explicitly. In Chap. 7, Kauffman shows how diagrams link mathematical 
fields, examining diagrammatic aspects of the vector calculus and then showing 
how and why they work by relating them to the question of coloring maps and 
graphs in and out of the plane. He also provides an in-depth treatment of knot theory 
diagrams, showing how theory is related to non-associative algebras called quan-
dles. In the first part of the chapter, Kaufmann uses a fictional dialogue format to 
present difficult ideas conversationally, making them easier to follow. Of special 
interest is Kaufmann’s illustration of how diagrammatic principles apply to the clas-
sic Four-Color Theorem. In Chap. 11, Kiryushenko explains the power of diagrams 
in mathematical discovery, using the Existential Graphs of Charles Peirce to make 
his case. These have become intrinsic to many aspects of set theory today. 
Kiryushenko also shows how mathematical thinking is a visual Gestalt, rather than 
a purely linguistic-logical one. The implications for mathematics education are also 
discussed in a generic way.

Preface
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In Chap. 8, Danesi looks at the emergence of experimental mathematics as a 
branch of both mathematics and computer science, tracing its origins and discussing 
its value to both the practice of mathematics today and the pedagogical implications 
that “automated mathematics” harbors for the contemporary mathematics class-
room. In Chap. 10, Francis et al. deal with the use of curated robotics in the math-
ematics classroom, thus expanding and applying the idea of incorporating machines 
in the classroom as devices to enhance learning. They show how a well-structured 
robotics inquiry allows students to discern critical features of a concept via multiple 
instantiations of the concept. Finally, in Chap. 13, Logan provides a cogent argu-
ment that language and mathematics are intertwined cognitively and representation-
ally. His excursus into the origins of both faculties is persuasive, providing a basis 
on which to understand how language and mathematics cannot be separated in any 
real way.

Today, there is great enthusiasm and optimism about technology. However, as in 
any paradigm shift, there are a number of disadvantages, leading to a consideration 
of caveats. The chapters in this book, overall, look at these as well from different 
angles. In his book, The age of missing information (New York: Random House, 
1992), journalist Bill McKibben issued an overall caveat at the dawn of the 
Information Age that is worth repeating here, since it is a subtext in various chapters 
of this book:

We believe that we live in the ‘age of information,’ that there has been an information 
‘explosion,’ an information ‘revolution.’ While in a certain narrow sense that is the case, in 
many more important ways just the opposite is true. We also live at a moment of deep igno-
rance, when vital knowledge that humans have always possessed about who we are and 
where we live seems beyond our reach. An unenlightenment. An age of missing information 
(p. 9).

This book is part of a series of projects undertaken at the Fields Institute for 
Research in Mathematical Sciences under the aegis of its Cognitive Science 
Network: Empirical Study of Mathematics and How It Is Learned. The goal of the 
Network is to investigate mathematics from different theoretical and practical 
angles. The studies in this book fall into this interdisciplinary paradigm. We sin-
cerely hope they provide insights into how mathematics is practiced and learned in 
the Information Age to both mathematicians and mathematics educators.

Toronto, ON, Canada� Stacy A. Costa
 � Marcel Danesi 
Windsor, ON, Canada� Dragana Martinovic

Preface
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Chapter 1
The Information Age, Mathematics, 
and Mathematics Education

Stacy A. Costa, Marcel Danesi, and Dragana Martinovic

�Introduction

Mathematical texts from across time indicate that the needs of the societies of dif-
ferent eras and different places have guided practices in mathematics itself and in 
how it was taught at school, responding to the needs and exigencies of each age. In 
some cases, even new discoveries were seen as part of a collaborative effort, rather 
than the product of individuals—the classic example being the Pythagoreans, who 
worked as a group to do mathematics (Heath 1921). A similar social attitude has 
emerged in the current Information Age, as evidenced by projects such as PolyMath, 
spearheaded by renowned mathematician Tim Gowers—a worldwide project 
involving mathematicians from all over the globe collaborating through the Internet 
to solve problems (Nielsen 2012). PolyMath started in 2009 when Gowers posted a 
famous problem on his blog, the density version of the Hales-Jewett theorem, ask-
ing people to help him find a proof for it. Seven weeks later, Gowers wrote that the 
problem had probably been solved, thanks to the many suggestions he had received. 
Since then, the PolyMath project has become a global collaborative project, recall-
ing not only the ancient Pythagoreans but, in recent times, the Nicolas Bourbaki 
group of French mathematicians, who initially wanted to design updated textbooks 
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for teaching contemporary mathematics in the post-World War II era under this 
pseudonym, rather than under the name of any one individual.

Like the Bourbaki project, the findings, proofs, and discoveries of the PolyMath 
collaborators are published under a pseudonym, D. H. J. Polymath. Other projects 
similar to the PolyMath example have emerged, creating opportunities for new gen-
erations of mathematicians to work together and for students to develop their skills 
through collaborative ventures. At the same time, the discipline of computer science 
has come forth to provide new ways of doing mathematics, leading to a partnership 
between the two that is now a solid one.

These developments have brought about a paradigm shift in how mathematics is 
viewed, practiced, and taught. This chapter provides an overview of current 
Information Age mathematics, focusing specifically on: (1) how mathematics is 
evolving as a discipline on digital platforms (crowdsourced mathematics); (2) the 
implications of the partnership it has contracted with computer science (computer 
mathematics); and (3) what such trends imply for mathematics education today and 
possibly beyond. Our purpose is not just descriptive, but also analytical, since the 
break with previous traditions is a radical one and thus needs, at the very least, some 
cautious reflection. As the PolyMath project has shown, mathematics has found a 
powerful new socially-based way to do mathematics, called “massively collabora-
tive mathematics,” and this has had significant implications for mathematics educa-
tion, which also require a critical assessment (Gowers and Nielsen 2009).

�Crowdsourced Mathematics

On his blog, Gowers (2009) claims that progress in mathematics could be ensured 
more rapidly if mathematicians would work together. He puts it as follows:

Why would anyone agree to share their ideas? Surely we work on problems in order to be 
able to publish solutions and get credit for them. And what if the big collaboration resulted 
in a very good idea? Isn’t there a danger that somebody would manage to use the idea to 
solve the problem and rush to (individual) publication? Here is where the beauty of blogs, 
wikis, forums, etc. comes in: they are completely public, as is their entire history…If the 
problem eventually got solved, and published under some pseudonym like Polymath, say, 
with a footnote linking to the blog and explaining how the problem had been solved, then 
anybody could go to the blog and look at all the comments. And there they would find your 
idea and would know precisely what you had contributed. There might be arguments about 
which ideas had proved to be most important to the solution, but at least all the evidence 
would be there for everybody to look at. (Para. 8–9)

The PolyMath project envisions mathematics as social practice, rather than the 
efforts of individuals working alone. This view is ancient as the many anonymous 
ideas and proofs from antiquity attest. The difference today is that computers and 
the Internet have made it easy for collaboration to occur in a massive way. One 
example of this is through remote, and time shifting allowing for collaborative prac-
tices to occur anytime. The first such massive online collaboration is the Great 

S. A. Costa et al.
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Internet Mersenne Prime Search (GIMPS), started by computer programmer George 
Woltman in 1996, whereby volunteers from across the globe search for larger and 
larger Mersenne primes, sharing information and insights. In addition to finding 
larger primes, which is a feat in itself, the project has provided a public forum for 
primality testing into which anyone can participate.

As Pease et al. (2020) have remarked, such online projects “provide us with a 
novel, rich, searchable, accessible and sizeable source of data for empirical investi-
gations into mathematical practice,” but also present various limitations associated 
with this approach, so-called crowdsourced mathematics, which is an example of 
what has come to be known as a social machine, defined as a combination of people 
and computers working on problems and projects as an entity. Similar to Star Trek’s 
Borg Nation, consisting of cyborgs who are sharing a collective consciousness, as 
Shadbolt et al. (2019) have amply illustrated this has the potential to permanently 
change the way people do mathematics, and to transform the reach and impact of 
mathematics research.

As it is developing today in the Information Age, mathematics can be viewed 
from three main perspectives (Pease et al. 2020):

	1.	 individual versus collaborative;
	2.	 connected intelligence; and
	3.	 human-computer interactions.

Mathematics has always been a deeply social discipline, as mentioned (Hersh 
1998, 2014). The proofs of significant theorems have relied on the work of many 
mathematicians working alone, together, and in parallel. So, point (1) above is a 
moot one, since mathematicians have always collaborated, discussed, and debated 
proofs and solutions—the difference is that, in the past, the collaboration occurred 
slowly and in a scattered fashion via personal communication, usually in person and 
occasional group meetings and only in the last 200 years or so did it include math-
ematics journals and the responses they garnered. Nowadays, we witness a collabo-
ration that is both massive and rapid. As Martin and Pease (2013: 1) point out, 
network collaborations through the Internet provide “a novel and rich source of data 
for empirical investigation of mathematical practice,” and have provided us with 
“new ways to think about the roles of people and machines in creating new mathe-
matical knowledge.”

Point (2) encapsulates why the change in attitude towards mathematical practice 
has emerged. The notion of connected intelligence was elaborated in the mid-1990s 
by communications scholar Derrick de Kerckhove, referring to the effects of elec-
tronic environments on mindset (Kerckhove 1997). De Kerckhove argued that the 
Internet has allowed us to step outside the linearity of the previous print-literate 
brain. For de Kerckhove (1999), the electronically-connected world in which almost 
all of us live has provided a critical mass for the emergence of a connected form of 
intelligence, which means that the sum total of people’s ideas is vastly more impor-
tant than those of any one individual. He speculates that through this process we are 
undergoing one of the greatest evolutionary leaps in the history of our species. The 
architecture of connected intelligence resembles that of a huge brain whose cells 

1  The Information Age, Mathematics, and Mathematics Education
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and synapses are encoded in software and hardware that facilitate the assemblage of 
minds. Because of this, individual brains in the connectivity are able to see more, 
hear more, and feel more; but they also recede into the background. In this environ-
ment, experts are just members of the collective mind, whose ideas are carried by 
software and hardware systems that overlap with them and with relevant data and 
information. In effect, the emergence of connected intelligence is a result of living 
in an electronic age in which thoughts can travel through ether, and where “intelli-
gence exists outside individuals and becomes pertinent once shared” (Kerckhove 
1997: 4). As Marshall McLuhan (1998: 27) so aptly put it: “Man in the electronic 
age has no possible environment except the globe and no possible occupation except 
information-gathering.”

Actually, this was anticipated both by Peter Russell in his 1983 book, The global 
brain, and even before that by philosopher Pierre Teilhard de Chardin in 1945. De 
Chardin’s term for what is now “the Internet” and its connected intelligence struc-
ture, was the noosphere, a state of mind by which it would no longer be practicable 
to individuate the congeners of ideas or to assign importance to them. De Chardin 
saw this as part of the evolution of human consciousness, whereby individuals and 
collectivities are critical entities that are interconnected. The cliché “two heads are 
better than one” translates in this framework to “all heads are better than one.”

It is important to note that De Chardin and McLuhan saw a danger in this col-
lectivization force—namely, the loss of critical notions such as free will and the 
human spirit. So, they issued a warning that technological advances are human cre-
ations. They shape, not determine, how we communicate, interact, learn, and per-
ceive ourselves; but they do not eliminate free will and the ability of the imagination 
to change things constantly. In other words, they judiciously warned that technology 
is our servant, not our leader. It was Spanish sociologist Manuel Castells (1996) who 
introduced the term Information Age broadly in his three-volume The information 
age, published between 1996 and 1998. Castells also argued that the digital technol-
ogy and computer science revolutions have brought about unprecedented changes in 
the history of civilization, including a new form of collaboration that knows no 
traditional boundaries of geography, culture, or language, but at the same time has 
created conditions for exploitation of the individual and the loss of importance in 
individual choice.

Crowdsourced mathematics is a powerful new way to do mathematics, but it 
does not preclude the individual’s participation in it as such, whether the person is 
named or not. Also, it cannot enhance mathematical creativity by default. One never 
knows when and to whom the spark will come. Consider a well-known anecdote 
that Henri Poincaré himself recounted in his book, Science and method (1908). 
Poincaré had been puzzling over an intractable mathematical problem, leaving it 
aside for a little while to embark on a geological expedition. As he was about to get 
onto the bus, the crucial idea came to him in a flash of insight. He claimed that 
without it, the solution would have remained buried somewhere, possibly forever. In 
effect, one cannot claim that one way (crowdsourcing) or the other (individual cre-
ativity) will bring about a discovery any better. As history shows, both are required.

S. A. Costa et al.
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�Computer Mathematics

The second main area that has characterized mathematics in the Information Age is 
its partnership with computer science—point (3) above. Among the various accom-
plishments of this partnership, several stand out: (1) the creation of theorem-proving 
programs, (2) the use of computers by mathematicians to carry out proofs, (3) the 
use of computers to determine if a problem is provable and how quickly it can be 
solved, and (4) the use of computers to examine mathematical structures. Point (1) 
refers to automated theorem proving (ATP), which began in the mid-1950s with so-
called first-order theorem provers, early computer programs designed to carry out 
proofs. One of the early first-order systems was able to prove 38 of the first 52 theo-
rems of the Russell and Whitehead’s, Principia Mathematica (Davis 2001). The 
idea of such programs was to emulate human proof-making. The objective of work 
on higher-order theorem provers was to devise programs that are not mimetic, but 
themselves innovative. Without going into details here, ATP aims to establish logi-
cal consequence at increasingly higher levels of proof using a computer. An ATP 
system is a powerful one if it can show that a theorem statement is (or is not) a logi-
cal consequence of the axioms or the propositional input. For an ATP system to be 
useful, it must also not be possible for it to prove non-logical consequences.

Point (2) refers to a heuristic use of computers to prove something. The first 
example of such a proof is the one for the four-color conjecture. As is well known, 
in its simplest form, this reads as follows: Is four the least possible number of colors 
needed to fill in any map, so that neighboring countries are always colored differ-
ently? The proof remained elusive for over a century when in 1976 at the University 
of Illinois at Urbana-Champaign, two mathematicians, Kenneth Appel and Wolfgang 
Haken (1977), put forward a proof that did not employ any of the traditional meth-
ods, but rather a computer program that could examine any map for the conjecture. 
The program found no map that required more than four tints to color distinctively 
and no exception to it has ever appeared. It has been called proof by exhaustion, 
because the computer algorithm devised for it has never produced an exception to 
the conjecture. The Haken-Appel proof constituted a true innovation in mathemati-
cal method.

Point (3) is a derivative of the previous two. As Fortnow (2013) argues, the prob-
lem of provability versus complexity, is a key one in computer mathematics. If one 
solves a 9-by-9 Sudoku puzzle, the task is a fairly simple one. The letter P is used to 
refer to this type of problem. The complexity arises when solving, say, a 1000-
by-1000 puzzle. In this case, the symbol used is NP, which means that it would take 
more time for the computer to determine a solution and if it works. Computer algo-
rithms can easily solve many complex Sudoku puzzles, but have difficulty as the 
degrees of complexity increase. The goal is to devise algorithms to find the shortest 
route to solving complex problems. If P were equal to NP then problems that are 
complex (involving large amounts of data) could be tackled easily as the algorithms 
become more efficient. The P = NP problem is the most important open problem in 
computer science, if not all of logic and mathematics. It seeks to know whether 
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every problem whose solution can be quickly checked by computer can also be 
quickly solved by computer in polynomial time, where time is a simple polynomial 
function of the size of the input. It is becoming evident that even a sophisticated 
computer would take hundreds of years to solve some NP questions. Indeed, to 
prove P = NP one would have to use, ironically, one or more of the classic methods 
of proof.

An answer to the P = NP question would be to ascertain whether problems that 
can be verified in polynomial time can also be solved in polynomial time. Many 
problems can be checked quickly, but are slow to solve. One such example is finding 
prime factors of a large number. To check a solution, it is enough to multiply the 
prime factors, but to solve the problem—to find the prime factors of very big num-
bers—is very difficult, which is the basis for claiming that RSA (Rivest–Shamir–
Adleman) encryption is considered to be secure.

Research has shown that a fast solution to a specific problem in NP can be used 
to build a quick solution to any other problem in NP—called NP-completeness. So 
far, it is not known if a fast solution will ever be found for NP-complete problems. 
This type of problem was mentioned by Kurt Gödel in a letter he sent to John von 
Neumann in 1956, asking him whether an NP-complete problem could be solved in 
quadratic or linear time (Fortnow 2013). The formal articulation of the problem 
came in a 1971 paper by Stephen Cook (and independently, a few years later by 
Leonid Levin 1973). Quadratic time refers to the fact that the running time of an 
algorithm increases quadratically if the size of the input is doubled. That is, as we 
scale the size of the input by a certain amount, we also scale the running time by the 
square of that amount. If we were to plot the running time against the size of the list, 
we would get a quadratic function.

Point (4) above (that is, the use of computers to examine mathematical struc-
tures) refers to writing a computer to model or simulate some solution, proof, or 
theory. It begins with a complete description of the operation that the computer is 
intended to model. This tells us what information must be inputted, what system of 
instructions and types of computing processes are involved, and what form the 
required output should take. The initial step is to prepare a model that represents the 
steps needed to complete the task. If the computer cannot handle a certain problem, 
the implication is that the problem would need to be studied further using other 
ideas and operations. In other words, if a model is inconsistent, the computer would 
be able to detect the inconsistency, because the program would go into a loop that 
lacks an exit routine. This is called retroactive data analysis—a method whereby 
efficient modifications are made to an algorithm and its correlative model that do 
not generate some output or at least do not correspond to the input data (see, for 
example, Demaine et al. 2004). The modifications can take the form of insertions in 
the model, deletions, or updates with new information and techniques. When noth-
ing works, then the program has identified something that may be faulty in the 
model or, on the other hand, that may be unique to the phenomenon and thus non-
computable, that is, beyond the possibilities of algorithmic modeling.

To summarize the foregoing discussion in a phrase, mathematics and computer 
science have formed a singular theoretical paradigm. The Information Age is a 
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Cybernetic Age. The term cybernetics was put forth in a 1948 book, Cybernetics, or 
control and communication in the animal and machine, by mathematician Norbert 
Wiener. For Wiener, certain mechanisms in machines serve the same purpose that 
aspects of the nervous system in humans serve, coordinating information to deter-
mine which actions will be performed. Their functions may differ, but their underly-
ing structure is the same. It is relevant to note that Termini (2006) presents the 
history of cybernetics as one that fell short from developing into a full-fledged dis-
cipline. While cybernetics posed some excellent and quite novel questions that chal-
lenged the way people looked at humans and machines, its results were quickly 
appropriated by other disciplines. In that way, one super-discipline, that was meant 
to have a multidisciplinary core, was left without direction, losing ground to its 
disciplinary allies as they were gaining in visibility—Artificial Intelligence was 
adopted by Computer Science, Automata Theory and Formal Languages by 
Mathematics, and Control Theory by Engineering, as Termini (2006: 836) puts it:

Cybernetics was unable to provide the deep unification it was aiming at; …This failure is so 
radical in so far as Cybernetics was meant not only to be a specific discipline (e.g. the sci-
ence of control) but also a unifying paradigm. More precisely, it was seen as a new para-
digm of scientific reason, as a unifying frame for other, already existing disciplines.

The Information Age can also be called the Computer Age, for obvious rea-
sons—an age in which the computer has greatly amplified human capacities. It was 
Marshall McLuhan (1964) who suggested that all technologies are amplifications of 
human abilities. McLuhan framed this notion in the context of his Four laws of 
media (reported in McLuhan and McLuhan 1988)—amplification, obsolescence, 
reversal, and retrieval. A new technology or invention will at first amplify some 
sensory, intellectual, or other human psycho-biological faculty. While one area is 
amplified, another is lessened or rendered obsolete, until it is used to maximum 
capacity whence it reverses its characteristics and is retrieved in another medium.

A well-known, and now classic, example given by McLuhan (1962) is that of 
print technology. Initially, it amplified the concept of individualism because the 
spread of print materials encouraged private reading, and this led to the view that the 
subjective interpretations of texts was a basic right of all people, thus rendering 
group-based understanding obsolete until it changed from a single printed text to 
mass produced texts, leading to mutual readings, albeit typically displaced in time 
and space. This allowed for the retrieval of a quasi or secondary communal form of 
identity—that is, reading the same text connected readers in an imaginary way. This 
framework certainly seems to apply to the Computer Age, whereby the computer 
has greatly amplified the ability of mathematicians to do mathematics, while simul-
taneously making previously strict methods of proof obsolescent. Nonetheless, indi-
vidual mathematicians continue to rely on classic methods as well to ply their 
profession, thus retrieving some of the historical precedents that have made mathe-
matics the discipline that it is today.

1  The Information Age, Mathematics, and Mathematics Education
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�Mathematics Education

The Information Age has had many implications for how mathematics education is 
delivered, given that the computer and the Internet have created conditions to 
amplify how mathematics is learned. Both crowdsourced and computer mathemat-
ics have now become virtually routine as methods for teaching mathematics. 
Because of these shifts, the “walls” of the past have started to crumble, with the 
mathematics classroom becoming increasingly a “wall-less” place, as McLuhan 
(1960) called it already in the late 1950s, since the computer can reach out beyond 
its traditional walled-in structure, both physical and academic. Mathematics can 
now be built upon and innovated with new methods all easily accessible and avail-
able to all.

Growing up in the Information Age, a typical student will see the partnership 
between mathematics and the computer as normal, rather than exceptional. McLuhan 
believed that the Industrial-Age model of mass education, with its walled-in class-
rooms, had passed, since the world was moving swiftly into a new era based on 
electronics and information, encouraging mutual involvement learning, while at the 
same time increasing individual creativity. McLuhan and Leonard (1967: 25) put it 
as follows:

When computers are properly used, in fact, they are almost certain to increase individual 
diversity. A worldwide network of computers will make all of mankind’s factual knowledge 
available to students everywhere in a matter of minutes or seconds. Then, the human brain 
will not have to serve as a repository of specific facts, and the uses of memory will shift in 
the new education, breaking the timeworn, rigid chains of memory may have greater prior-
ity than forging new links. New materials may be learned just as were the great myths of 
past cultures-as fully integrated systems that resonate on several levels and share the quali-
ties of poetry and song.

It is mindboggling to consider that these words were written in 1967. The Internet 
has indeed made diversity of thought a concrete possibility, aiding us all in explor-
ing and interacting with others in a global environment. We are all now expected to 
be “an explorer, a researcher, a huntsman who ranges through the new educational 
world of electric circuitry and heightened human interaction just as the tribal hunts-
man ranged the wilds” (McLuhan and Leonard 1967: 25).

With crowdsourcing possibilities, high school and college students now have an 
opportunity to collaborate creatively in ways that would have been unthinkable in 
the past—to interact with others outside their classroom to grasp certain mathemati-
cal concepts, to work with expert and authoritative sources, to collaborate on 
research projects and learning tasks with mentors and peer groups across the globe, 
etc. Also, with computer mathematics, the classic mathematical problems can now 
be easily studied through modeling, which is itself a powerful mode of deconstruct-
ing a problem and putting it back together. Consider, as a case-in-point, Alcuin’s 
classic river-crossing problem, which he included in his medieval instructional 
manual, Propositiones ad acuendos juvenes, for training medieval youths in math-
ematics and logical thinking (Hadley and Singmaster 1992). There were actually 
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four river-crossing problems in the manual, but the main one is the following, which 
is worth revisiting here for the sake of illustrating how it can be analyzed in terms 
of computer mathematics:

A certain farmer needed to take a wolf, a goat and a head of cabbage across a river. However, 
he could only find a boat which would carry two of these [at a time], including himself. 
Thus, what rule did he employ to get all of them across unharmed, given that if he left the 
wolf alone with the goat, the wolf would eat the goat, and if he left the goat alone with the 
cabbage, the goat would eat the cabbage?

Alcuin had a pedagogical goal in mind when he created this problem. But little 
did he know the implications it harbored. The solution hinges on grasping the 
graphical structure involved in decision-making. The farmer cannot start with the 
cabbage, since the wolf would eat the goat if the two were left alone; nor the wolf, 
since the goat would eat the cabbage. So, his only choice is to start with the goat. 
Once this critical decision is made, the rest of the puzzle is solved easily. He goes 
across, drops off the goat, and comes back alone. When he gets back to the original 
side, he could pick up either the wolf or the cabbage. Let’s go with the cabbage. He 
goes across with the cabbage to the other side, drops it off, but goes back to the 
original side with the goat (to avoid disaster). Back on the original side, he drops off 
the goat and goes over to the other side with the wolf. When there, he drops off the 
wolf to stay safely with the cabbage. He travels back alone to pick up the goat. He 
then travels to the other side with the goat and, together with the wolf and cabbage, 
continues on his journey. The graph presenting the solution to this problem is shown 
in Fig. 1.1:

The intellectual seeds of graph theory can be traced to this problem (Csorba et al. 
2008). As Ito et al. (2012: 235) have shown, it has also implications for the P = NP 
problem, given that it is:

NP-hard if the boat size is three, and a large class of sub-problems can be solved in polyno-
mial time if the boat size is two. It’s also conjectured that determining whether a river cross-
ing problem has a solution without bounding the number of transportations, can be solved 
in polynomial time even when the size of the boat is large.

The problem thus lends itself in many ways to algorithm constructions, which 
bring out what it entails mathematically. In sum, this is an example of computer-
based mathematics education. Given how much computers are now intrinsic to most 
people’s lives, this approach also reflects discovery-based mathematics education, 
which allows students to grasp principles, such as graph-theoretic ones hidden 
within the river-crossing problem, by modeling them computationally.

McLuhan wrote in 1960 that the classroom of the future (from his times), would 
be a technologically-shaped one that is designed to open up the learning experience 
beyond the constrained environment of the traditional classroom, with tools that 
allow for self-sustained exploration on the part of the student. In the Information 
Age, this has certainly come about, as students and teachers alike use computers for 
various pedagogical purposes, and also communicate with others through cyber-
space on a routine basis (Danesi 2016). Among the aspects that current mathematics 
education has amplified are the following:

1  The Information Age, Mathematics, and Mathematics Education
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•	 Networking with other students and other teachers;
•	 Decentralization of methods and materials used;
•	 Increase in the speed and range of activities;
•	 Access to connected intelligence systems and crowdsourced mathematics; and
•	 Previous restrictions of time and space are eliminated.

Of course, even in previous ages, print materials allowed for access to, and shar-
ing of, ideas beyond the classroom. But printed ideas move slowly since books and 
journals must be obtained, read, and then discussed, annotated, and studied in class 
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Fig. 1.1  Graph of Alcuin’s problem
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or through further publication and perhaps via letter correspondence. So, while 
outside-the-classroom interaction was much slower, selective, and thus more 
remote, compared to current forms of interaction, it still allowed people to make 
contact constructively. The implication is clear—we must certainly keep moving 
more and more into the social structure of the Information Age, but we must do it 
judiciously, not with unbridled enthusiasm whereby anything from the past is con-
sidered essentially passé. Looking to the future, as McLuhan (1960) also pointed 
out, means looking to the past at the same time. While crowdsourcing, computer 
mathematics, and the like are exciting ways to learn, teach, and research mathemat-
ics, one should not forget history or break with it radically.

�Concluding Remarks

The last comment leads us to Lewis Carroll. In his 1879 book, Euclid and his mod-
ern rivals (Carroll 1879), which takes the form of a comedic play, Carroll wanted to 
show the importance of Euclid in a century when non-Euclidean geometries were 
taking a foothold in mathematics.  It is Carroll’s defense of Euclid’s Elements as the 
best textbook in geometry for a general audience, and an entry point into mathemat-
ics education itself. He encapsulates his objective in his introduction as follows 
(Carroll 1879: 1):

The object of this little book is to furnish evidence, first, that it is essential, for the purpose 
of teaching or examining in elementary Geometry, to employ one textbook only; secondly, 
that there are strong a priori reasons for retaining, in all its main features, and specially in 
its sequence and numbering of Propositions and in its treatment of Parallels, the Manual of 
Euclid; and thirdly, that no sufficient reasons have yet been shown for abandoning it in 
favour of any one of the modern Manuals which have been offered as substitutes…In fur-
therance of the great cause which I have at heart—the vindication of Euclid’s masterpiece—
I am content to run some risk; thinking it far better that the purchaser of this little book 
should read it, though it be with a smile, than that, with the deepest conviction of its serious-
ness of purpose, he should leave it unopened on the shelf.

Carroll’s advice is still a valid one today, albeit more as a warning than anything 
else. The question is not whether or not to insert Euclid’s Elements in the curriculum 
as a means for grasping mathematics; but rather, for being wary of new trends in 
themselves. As mathematics education continues to change in the Information Age, 
it must also keep an eye on the past and not amputate it—a term McLuhan used to 
great effect. Studying Euclid today would not be anachronistic if the Elements are 
inserted into an eclectic mathematics curriculum. There is a real danger that the 
modern world may be amputating the past more and more. Bringing the past into the 
present and future is easily accomplished, as the river-crossing problem above was 
meant to illustrate. Together with current technologies, its use in the classroom 
allows for such amalgamation of the past and present:

	1.	 Modeling: The puzzle provides a means to experiment with its structure through 
computer modeling.

1  The Information Age, Mathematics, and Mathematics Education
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	2.	 Generalization: It opens up opportunities for connection with others online so as 
to go beyond the puzzle itself and seek ways to generalize its structure.

	3.	 Extension: Connecting with others online will allow learners to explore other 
implications of the puzzle.

	4.	 Amalgamation: This involves amalgamating various solutions, perspectives, 
models, etc. of the puzzle into a mini-treatise of its implications.

	5.	 Multiplicity: This entails discriminating and grasping multiple perspectives on 
the puzzle and its mathematical structure.

	6.	 Transmedia navigation: This entails knowing how to follow the flow of ideas, 
events, and information across multiple media sites based on the puzzle.

	7.	 Judgment: This means developing the ability to discern what is legitimate or not.
	8.	 Collective Intelligence: This involves understanding how to pool knowledge and 

collaborate with others towards common objectives.

While all of these aspects of learning existed somewhat in previous epochs, the 
revolution in connective technology has brought about a new sense that understand-
ing and communicating can no longer be constrained to the printed page or the tra-
ditional walled-in classroom. And this has had enormous repercussions, as McLuhan 
(1996: 275) predicted decades ago:

We now live in a technologically prepared environment that blankets the earth itself. The 
humanly contrived environment of electric information and power has begun to take prece-
dence over the old environment of nature. Nature, as it were, begins to be the content of our 
technology.

If we keep this in mind, it is obvious that the Information Age has led to a new 
stage in the study of mathematics and its teaching. It has indeed made diversity of 
thought a concrete possibility, aiding us all in exploring and interacting with others 
in a global environment. We are all now expected to be “an explorer, a researcher, a 
huntsman who ranges through the new educational world of electric circuitry and 
heightened human interaction” as McLuhan and Leonard (1967: 25) pointed out, 
rather prophetically, decades ago. Only time will tell if the Internet of today has 
brought us closer to noosphere, which de Chardin envisioned as driven by generos-
ity and friendship, or if it has brought about the loss of free will and human spirit as 
in the Borg nation. Despite the encouraging examples that we have mentioned here, 
we should not forget that people can get lost in a crowd, and individual voices may 
not be heard among a multitude of shouters, and that our youth may lose direction 
when confronted with too many choices (Noveck 2000). It may be up to educators 
to realize the full potential of increasingly networked societies and to stand at the 
forefront of a movement that will shape our future (Martinovic and Magliaro 2007).
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Chapter 2
An Unsupervised Approach to User 
Characterization in Online Learning 
and Social Platforms

Dan Vilenchik

�A Short History of User Characterization

Making sense of data that is automatically collected from online platforms such as 
online social media or e-learning platforms is a challenging task: the data is mas-
sive, multidimensional, noisy, and heterogeneous (composed of differently behav-
ing individuals). In this chapter we focus on a central task common to all on-line 
social platforms and that is the task of user characterization. For example, automati-
cally identify a spammer or a bot on Twitter, or a disengaged student in an e-learning 
platform.

Understanding the nature and patterns of interaction between members of a 
social network is a long standing research topic. Back in the 1950s (Katz and Felix 
Lazarsfeld 1957) studied the problem of identifying influential people in social net-
works. Two decades later, Freeman’s seminal work (Freeman 1978) coined three 
key indices of centrality: degree (the number of friends), closeness (the average 
number of hops from a user to all other users in the network) and betweenness (the 
fraction of shortest paths that have to go through this user), fueling a torrent of theo-
retical and experimental work in the area. The subject became even more attractive 
to researchers and industry as the role of online social networks (OSNs) increased 
dramatically in recent years, with new business opportunities for marketeers.

The task of characterizing users of OSNs is typically approached as a supervised 
learning classification problem. A target variable is defined, e.g. the ethnicity and 
political affiliation of a user (Pennacchiotti and Popescu 2011), gender, age, regional 
origin (Rao et al. 2010), occupational class (Preotiuc-Pietro et al. 2015), etc. Next, 
data is collected from the network (typically using some sort of crawling proce-
dure), and relevant features are extracted from each user account. Finally, one of a 
host of machine learning algorithms is trained to perform the task.
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The task of characterizing types of students in e-learning systems shares many 
similarities with that of users of OSNs. One central type of characterization is the 
level of engagement of a student with the system. This is a challenging task as the 
nature of students’ engagement in self-directed e-learning systems is in general 
quite variable. Students may return to the system after prolonged periods of absence 
and vary widely in the types of activities they choose, and in their level of compe-
tence. Some works partition users to engagement types according to predefined 
notions such as course completion rate or time spent in the system (Cocea and 
Weibelzahl 2007; Lloyd et al. 2007). Others have viewed student engagement as a 
multidimensional construct, that involves different factors such as student generated 
content, social interaction and their learning outcomes (Ramesh et al. 2013, 2014). 
Significant attention in the literature has been attributed to modeling disengagement 
in online education systems by tracking how student performance changes over 
time and by predicting dropouts (Crossley et al. 2016; Lykourentzou et al. 2009; 
Yang et al. 2013).

One drawback of using a supervised learning approach is that obtaining labeled 
data for training a classifier may be highly non-trivial or costly, both in e-learning 
systems and in online social platforms. Furthermore, when deciding the target vari-
able upfront, a relatively narrow view of the platform and its users is obtained. For 
example, if one is to classify engagement, then one has to commit upfront to a cer-
tain definition of engagement (time in the system? performance? throughput?) For 
those reasons, the capacity of unsupervised learning algorithms for user character-
ization was studied as well. There are two main methods of finding patterns in data 
in an unsupervised manner: clustering and low-dimensional approximation meth-
ods such as Principal Component Analysis (PCA). The latter, will be our focal point. 
In this chapter we discuss in detail how PCA may be used to characterize users of 
both OSNs and e-learning platforms. We cover both the theoretical tenets of the 
methodology and two in-depth real-data examples. Finally, we discuss a surprising 
Simpson-like paradox which in some cases is coupled with the PCA-based method.

�Methodology: Using PCA to Characterize Users

For completeness we start with a brief overview of PCA and how it is used to char-
acterize users.

�Notation

We shall use bold lower-case letters, e.g. x, to signify vectors, and non-bold lower-
case letters, e.g. x, to signify scalars. Upper-case letters are reserved for matrices. 
We consider all vectors as column vectors. We let p be the number of features col-
lected for each user, n the number of users in the sample and X the resulting 
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n × p data matrix. We let Σ̂ =
1

n
X XT  be a sample covariance matrix of the design 

matrix X.

�A Crash Course on PCA

Principal components analysis (PCA) is the mainstay of modern machine learning 
and statistical inference, with a wide range of applications involving multivariate 
data, in both science and engineering. PCA is mostly used as a tool in exploratory 
data analysis, allowing visualization of the data by projecting it into a carefully 
chosen lower-dimensional space.

Recalling the derivation of PCA, which can be found for example in (Anderson 
1962), the first PC is the direction (unit vector) v1 ∈ ℝp in which the variance of X is 
maximal. Standard algebraic manipulations show that v1 is also the leading eigen-
vector of ‘s covariance matrix, Σ̂ . This gives a convenient algorithmic way to com-
pute v1. The remaining PCs, v2, …,vp are defined in a similar way and together they 
form an orthonormal basis of ℝp. Some additional algebraic manipulations give that 
the percentage of variance explained by vi is simply 

λ λi
j

p

j/
=
∑











1

, where λi is the 
eigenvalue associated with vi.

Under various reasonable assumptions, when n, the number of samples, is much 
larger than p, the number of features, then the PCs indeed point at the “true” direc-
tion of variance (true in the sense that it fits the latent underlying distribution accord-
ing to which the data is distributed) (Anderson 1962; Muirheads 2005). This is 
indeed the typical case both in OSNs and e-learning platforms.

�Characterizing Users with PCA

Suppose, for simplicity of presentation, that every data point is represented using 
two features f1, f2. In other words, every data point x may be expressed as x = (f1, f2
) = f1 · (1, 0) + f2 · (0, 1). Thus, the features f1, f2 correspond to the standard axes 
(1,0) and (0,1) of ℝ2. Every PC vi is in particular a vector vi = ( ) = ( ) + ( )v v v vi i i i1 2 1 2

1 0 01, , ,· · .
Thus, the PCs are linear combinations of the original set of features. As such they 
may be interpreted as a new set of complex features, forming a new set of axes along 
which the data is redrawn. The value of each data point x in the new coordinate 
system is given by the scalar product 〈vi, x〉 along the i th axis. In this manner the 
PCs induce a soft classification of the users. For example, if the leading PC v1 is a 
linear combination of features that indicate that the user is popular (say, the number 
of retweets of that user’s posts, the number of likes the user receives, etc.), then the 
larger a user’s projection on v1 the more popular the user is.
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For a PCA-based characterization scheme to work, the directions at which the 
PCs point, need to be amicable for semantic interpretation. How such an interpreta-
tion process is typically carried out? Ideally, one first looks at the features fi where 
the weight in the linear combination is non-zero (we will call this set the support of 
v and denote it by supp(v)). Take all the features that were selected and see if a natu-
ral label/quality can be assigned to them, e.g. “spammer”, “bot”, “highly-engaged 
student”, etc. Unfortunately, every PC v will typically satisfy supp(v) = {1, …, p}, 
yet because numerical reasons, making it impossible to interpret any of the PCs. 
One popular solution is the widely-used “interpret-by-top- k” rule. The rule says 
first to sort the PC vector entries in descending order of absolute values, then assign 
the PC its label according to the top k features, ignoring entries with smaller values. 
While this practice is useful in many cases, the choice of k is subjective and may 
affect the interpretation. In addition, choosing smaller k values makes interpretation 
easier, as fewer features are involved, but possibly at the cost of semantic validity. 
We refer the interested reader to (Vilenchik et al. 2019) for a detailed discussion.

To interpret the PCs, We follow the framework suggested in (Vilenchik 2020), 
which is a “safe” variant of the “interpret-by-top- k”, circumventing the caveat of 
choosing the right k. For simplicity of presentation assume that the features that 
were collected fall into two categories, not necessarily disjoint, that may be cap-
tured by two qualities Q1, Q2 (e.g. Q1 is the quality of being popular and Q2 the 
property of being a spammer). For every PC vi we define its energy in the direction 
of Q1 and Q2 as follows:

	

α βi
r Q

i
r Q

r r= [ ]( ) = [ ]( )
∈ ∈
∑ ∑

1 2

2 2
v vi i, .

	

(2.1)

The total energy of every vi is 1 as it is a unit vector. Hence αi, βi ∈ [0, 1]. The 
ideal scenario with respect to interpretability is equivalent to requiring that for every 
PC vi, either αi = 1 or βi = 1. We may replace this ideal requirement by the relaxed 
requirement that α α

i x≥ 0 975.  and β β
i x≤ 0 025.  or vice versa, where x0 975.

α  is the 
97.5%-percentile of the α value had the vector vi been a random p-dimensional vec-
tor on the unit sphere. We call this the (α, β)-separation property. The choice of 
0.975 and 0.025 is somewhat arbitrary, and in general the closer the percentiles are 
to 100% or 0% the closer we are to the ideal setting. Finally, every PC that satisfies 
this property, may safely be classified as Q1 (if α > β) or Q2 (if β > α).

Typically, only PCs that explain a significant percentage of the variance are con-
sidered for interpretation, while the rest are being ignored. This is commonly known 
as the Kaiser-Guttman criterion (Yeomans and Golder 1982). We discuss it in more 
detail in the next sections where we present concrete examples.
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�Using PCA in a Dynamic Fashion

So far we have seen how PCA is used in a static way, namely, the PCs are computed, 
and users are characterized by the extent of their projection along each PC. However, 
the axes provided by PCA can be used to generate a dynamic time-dependent view 
from which yet more patterns may be obtained. We follow (Hershcovits et al. 2020) 
in the description of this dynamic framework.

A time series for user u consists of projections of its accumulated data on a fixed 
PC at a fixed frequency. Formally, with every user u at time t, a vector ut is associ-
ated, which consists of the current value of the p features that are measured for each 
user. For every user u and PC vi, a time series Su

i
t
i

t
i( ) ( ) ( )= …{ }α α

1 2
, , is produced, 

where α t
i

j

( )  is the projection of ut j
 in the direction of vi. The time-series are then 

labeled according to the trend of their graph. We will soon see how this labelling is 
anchored in a theory of education:

•	 Fixed if all α t
i

j

( )  are the same
•	 Monotone Up if α αt

i
t
i

j j

( ) ( )<
+1

 for all time stamps. Monotone Down is defined 
symmetrically.

•	 Variable if it is neither fixed nor monotone.

The users are then clustered according to some assignment rule which is a func-
tion of the labels assigned to their time series. For example, all users whose time-
series on the leading PC v1 is Fixed or Monotone belong to cluster A. All users with 
a variable time-series for v1 are in cluster B. Finally, one would assign a meaningful 
quality to each cluster, thus obtaining user characterization.

Let’s continue our example and take for concreteness some e-learning domain, 
and the quality will be the level of engagement of a student as measured by the 
total time spent in the system. The relevant working hypothesis is that diverse 
use of the system leads to prolonged student engagement. This notion is sup-
ported by studies in e-learning showing that varying the pedagogical challenges 
posed to students, and skills requires to meet the challenges, positively contrib-
utes to students’ motivation and retention (Pearce 2005; Rodrıguez-Ardura and 
Meseguer-Artola 2017). Using the variability of a student’s time-series trajec-
tory as a proxy for diverse engagement, cluster A of the Fixed and Monotone 
series will be labeled as the less engaged students, and cluster B of Variable, will 
be labeled as the highly engaged. In the next section we repeat this example with 
the complete detail.
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�Example 1: Using PCA to Characterize Students 
in an e-Learning Platform

Let us now turn to see how the methodology that we discussed so far is implemented 
on real data. Our first example is based on (Hershcovits et al. 2020), where the inter-
ested reader may find the full details.

The data, 18,979 users who were active in the system between June 2015 and 
January 2016, was collected from an online math learning platform for K-9 educa-
tion. The platform is available on the web and hand-held devices and used through-
out the world. It is based on a set of interactive games, called episodes. Each episode 
is a game for practicing a mathematical skill (e.g. counting) and consists of 5–6 
questions. The platform contains over a thousand episodes, each tagged with a math 
skill and suitable grade level, designed to convey mathematical concepts to students 
in a way that promotes self-discovery and skill acquisition. Students choose epi-
sodes at will, or have episodes from a particular skill set or grade level assigned to 
them at random.

Despite the success in registering new users to the system, it exhibits a high attri-
tion rate. More than 11% of users did not complete a single question, 37% of users 
completed ten or less questions; 67% of the users spent less than 100  min in 
the system.

The raw data from the system consists of logs for the following events: a user 
opening and closing an episode, submitting a response for a question in an episode, 
time taken to submit response, whether the response was correct. 17 features were 
designed based on these events; Table 2.1 below provides the feature map.

Table 2.1  Description of features collected for every user in the e-learning platform (Hershcovits 
et al. 2020)

Feature name Description

EpisodeMaxDiff Most difficult episode that the user opened
EpisodeAvgDiff Average episode difficulty for that user
EpisodeStdDiff Standard deviation of EpisodeAvgDiff
QuestionFalseRate Percentage of incorrect question responses
NumQuestions Total number of questions solved by the user.
CompletionRate Percentage of episodes that were completed
NumEpisodes Total number of episodes opened by the user
RepetitionRate The percentage of episodes opened twice consecutively by the user
MostRecentCorrect Boolean value, true if most recent answer was correct
EpisodeMinDiff The easiest episode that the user opened
AvgResponseTime Average time between responses to consecutive questions in an episode
STDResponseTime Standard deviation of AvgResponseTime
STDLagTimeEpisodes Standard deviation of AvgLagTimeEpisodes
LastReponseTime Response time to the last question in the last episode
AvgLagTimeEpisodes Average time between completion of episode and beginning of next.
DistinctEpisodesRate Fraction of distinct episodes that were opened
AbandonRate The percentage of episodes that were opened but not completed
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�PCA: A Static View

First, PCA was computed for the 17 × 17 covariance matrix of the roughly 19,000 
users. Only the top five PCs explain more than 1/p = 1/17- fraction (around 5%) of 
the variance, the rest are ignored the Kaiser-Guttman criterion (Yeomans and Golder 
1982). Table 2.2 gives the top three PCs weights (aka loadings) with respect to every 
feature.

Let us now demonstrate how the top three PC’s may be interpreted. We defer the 
exact computation of energy, using Eq. (2.1), to the next example, and instead pro-
vide here a more intuitive description.

The features providing the largest contribution to the support of the leading PC 
v1 are the maximum and average difficulty of the episodes opened by the user, the 
standard deviation of the difficulty of the episodes (both in positive sign), the aban-
don rate and the distinct episode rate (in negative sign). From this we may conclude 
that the quality that v1 points to are students that solve episodes with a variety of 
difficulty levels and make multiple attempts to solve the episodes.

For concreteness, we examine a user from the database whose projection on 
v1 was in the 90%-percentile. This user opened 19 episodes, but only 11 of these 
episodes were distinct episodes (58% distinct rate, compared to 88% on average for 
all users). This user experienced with different level of episodes’ difficulties (stan-
dard deviation difficulty rate of 20% vs. 9% SD averaged over all the users), with 
max difficulty of 79%, min of 18% and average of 37%. The user’s abandon rate 
was 21% (compare to 31% in average).

Table 2.2  Loadings for top three PCs v1, v2 and v3 in the e-learning system (Hershcovits et al. 2020)

Feature v1 v2 v3

EpisodeMaxDiff 0.42 0.04 −0.11
EpisodeAvgDiff 0.36 0.35 −0.18
EpisodeStdDiff 0.33 −0.08 −0.042
QuestionFalseRate 0.27 0.24 −0.17
NumQuestions 0.25 −0.48 −0.01
CompletionRate 0.25 −0.04 0.10
NumEpisodes 0.24 −0.48 −0.01
RepetitionRate 0.21 −0.07 −0.08
MostRecentCorrect 0.18 0.03 0.12
EpisodeMinDiff 0.13 0.50 −0.17
AvgResponseTime 0.12 0.14 0.58
STDResponseTime 0.11 0.06 0.56
STDLagTimeEpisodes 0.11 −0.09 −0.013
LastReponseTime 0.08 0.09 0.45
AvgLagTimeEpisodes 0.06 −0.01 −0.02
DistinctEpisodesRate −0.27 0.19 0.078
AbandonRate −0.34 −0.13 −0.07
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Moving on to v2, the top largest entries correspond to the episode difficulty rate 
(minimum and average), the false rate (in positive sign), the number of questions 
and the number of episodes played (in negative sign). Therefore, the quality that v2 
points to are students that attempt to solve hard episodes, have a high false rate in 
these episodes, and a low throughput in the system. Indeed, the quality suggested by 
v2 is very different than that of v1. To illustrate, we look at a user with whose projec-
tion on v2 was in the 99%-percentile. This user answered only 8 questions (com-
pared to 61 on average for all users), in 4 episodes opened (compare to 13 on 
average). The user chose very difficult episodes (in the 90%-percentile), and had 
false rate of nearly 100%.

Finally, looking at v3, the largest entries are only positive and correspond to the 
aspect of time: the average response time, the standard deviation of the response 
time and the last response time. Hence v3 points at the quality of a student that 
spends more time answering questions, but with large variation in response times.

Now we take a user with a small projection on v3, below the 10%-percentile. The 
user answered 12 question, with average response time (normalized) of 0.25 (com-
pared to 0.91 on average), and standard deviation of 0.08 (compare to 0.97 on aver-
age). In addition, the user’s false rate was 17% which is quite similar to the average 
of 22%, therefore it might be that the user was mainly guessing the answers.

�PCA: A Dynamic View

The next type of patterns which may be drawn from the PCs come from the geomet-
ric trends of the time-series. In this specific example, for every user three time series 
were generated, one for each of the top three PCs. The sample rate was every 10 min.

Table 2.3 summarizes the percentage of users that belong to each of the four 
trajectory labels, the total time in the system and the net activity time for each label. 
Indeed, the table corroborates the working hypothesis: diverse use of the system 
leads to prolonged user engagement. To see how this working hypothesis manifests 
concretely, let us portray various possibilities for time-series along v1. The PC v1 is 
mainly supported by features that correspond to question difficulty and variability 
in difficulty. The Fixed label captures users that did not solve any episodes (and the 
projection is fixed to 0) or solved one episode before quitting. Their time in the 
system is the lowest, and their activity is least diverse. There are several possibilities 
for a Monotone Down trajectory: either the user starts with difficult questions and 
gradually lowers the difficulty. Another option is that the abandon rate increases. We 
can summarize this trajectory as a user that fails to calibrate on a suitable level of 
difficulty and drops from the system. Monotone Up users experience exactly the 
opposite: they solve harder and harder episodes, and experience with various levels 
of difficulty. We see that their average time in the system is almost 7 times higher 
than Monotone Down. Users in the Variable trajectory experience with various lev-
els of difficulty, which may suggest a successful calibration of difficulty level. As a 
result, they stay the longest in the system (4 times more than Monotone Up).
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�Clustering Users

The different shapes of the time series may be used to assign users into clusters 
(or cohorts). The assignment rule depends on some domain expert knowledge. 
In our example, it’s the working hypothesis that diversity of use leads to pro-
longed engagement.

Here is a possible assignment rule that is consistent with the hypothesis: if the 
time series is Fixed or Monotone assign A, and if Variable assign B. This rule dif-
ferentiates between what’s known in the literature as Early droppers vs. Intermediate/
Fully adopters. Furthermore, other, more sophisticated, rules may be used for clus-
tering, for example, assign B only if the variability level (say, measured as the num-
ber of times the time series graph changes trend) exceeds a certain threshold.

A natural question that arises is how to validate the usefulness of a clustering 
rule? One possible validation test is the following. Collect data on all users up to a 
certain time T. Apply the clustering rule only according to the data collected up to 
time T. Then, check what percentage of users that were assigned to cluster A are 
indeed early droppers, namely they dropped out of the system before or shortly after 
time T, and what percentage of cluster B users are fully adopters, namely the stayed 
in the system considerably longer than time T.

The results of this validation experiment, once with T1 = 10 min (sampling at a 
1-min frequency) and second with T2 = 5 days (sampling at 10 min frequency) are 
summarized in Table  2.4. Three versions of the aforementioned assignment rule 
were examined (PCA_v1,PCA_v2,PCA_v3), each rule with a different variability 
level threshold. In addition, standard off-the-shelf supervised-learning classifiers 
were trained to obtain a baseline for comparison.

Table 2.3  Breakout of users according to trajectory type of time-series generated for v1 (top), v2 
(middle) and v3 (bottom)

v1 Percentage Time in system (hours) Net activity time (min)
Fixed 36% 0.11 1.8
Monotone up 17.3% 81.3 17.6
Monotone down 5.3% 12.1 11.2
Variable 41.4% 363.5 107.8
v2 Percentage Time in system (hours) Activity time (min)
Fixed 36% 0.12 1.8
Monotone up 6% 15.2 14.2
Monotone down 17.7% 95.3 19.1
Variable 40.3% 365.6 109.2
v3 Percentage Time in system (hours) Activity time (min)
Fixed 36% 0.12 1.8
Monotone up 23% 23.9 15.1
Monotone down 10.4% 74.6 11.9
Variable 44.5% 348.4 102.5

In addition, the total time and the net activity time are presented (Hershcovits et al. 2020)
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As customary in unbalanced classification problems (i.e. the two classes differ 
significantly in size), the AUC is taken as the gold standard criteria. Table 2.4 pres-
ents the AUC value of the PCA-based classifier alongside the supervised-learning 
classifiers. The performance of the PCA-based classifiers is similar (if not better) 
than the supervised learning algorithms. However, there are two major benefits in 
using the time-series PCA-based prediction. The first, obviously, is the fact that no 
labeled data is required to train the classifier. The second is the fact that the decision 
about engagement type is based on domain-specific theories (like the working 
hypothesis that we presented) rather than a decision made by a black-box classifier.

�Example 2: Using PCA to Characterize Users in OSNs

Our next example draws on various results that were obtained in recent years where 
PCA was used to characterize users in a variety of online social platforms, in a very 
similar manner to what we have just presented for the e-learning platform. So far in 
OSNs, PCA was only used in its static form and not as a basis for a time-series 
clustering.

We start by explaining how typically OSN-data is obtained. The network is 
crawled in a snowball approach, which is commonly used in the literature (Mislove 
et al. 2007). Crawling starts from a list of randomly selected users and proceeds in 
a BFS manner. At each step the crawler pops a user v from the queue, explores its 
outgoing links and adds them to the queue. In Twitter for example, there is a link 
from v to w if v follows w. In other networks, Facebook for example, the friendship 
relationship is symmetric.

Our example builds on the data that was collected in two papers (Canali et al. 
2012; Vilenchik et  al. 2019). Six OSNs were crawled: YoutTube, Flickr (Canali 
et al. 2012), Twitter, Instagram, Flickr and Steam (Vilenchik et al. 2019). For each 
platform, between 9 and 15 features were collected. The features vary from plat-
form to platform, but in general they include two categories of features. Feedback 
features, which included for example the number of users following me, the number 
of retweets of my tweets by others, the number of likes I received or comments left 
on my pictures.

The second category is Activity features, which included the volume of activity 
(e.g. posts per day, total number of posts), activity types (e.g. percentage of video vs 
pictures, urls vs. pure text), social activity (number of friends, number of likes I 

Table 2.4  AUC for the two prediction tasks using tenfold cross validation

RF LDA NB PCA_v1 PCA_v2 PCA_v3

Task 1 81.1% 81.5% 77.5% 73.9% 80.5% 81.2%
Task 2 68.8% 72.2% 69.3% 65.5% 69.6% 69.1%

Task 1: Cutoff at T = 10 min, Task 2: cut-off at T = 5 days. The best two classifiers are highlighted 
(Hershcovits et al. 2020)
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gave, number of tweets I retweeted). Similar features were collected for example in 
(Eirinaki et al. 2012) to find influential users in MySpace and Facebook. The com-
plete set of features can be found in the two aforementioned papers. We included 
Tables 2.5 and 2.6 from (Vilenchik et al. 2019) for completeness, and they detail the 
features of Twitter and Steam respectively.

We selected to explore in depth two platforms, Twitter and Steam (an on-line 
gaming platform), as they exemplify to antipodal scenarios of a PCA-based charac-
terization scheme: In Twitter the PCs could be usefully interpreted while in Steam 
no interpretation could be assigned to any of the top PCs.

Table 2.7 details the percentage of variance that each PC explains, and the PCs 
that explain more than 1/p-fraction of the variance (the Guttman-Kaiser criterion 
(Yeomans and Golder 1982)) can be observed. Next, similarly to the e-learning 
example, we look at the PC loadings table, Table 2.8 for Twitter and Table 2.9 for 
Steam, and see if the energy of the PCs is centered on a specific quality: Feedback, 
which we may identify with popularity, or Activity.

Tables 2.10 and 2.11 summarize the percentage of energy that each quality pos-
sesses in each of the six OSNs. We see that some PCs are pure and some are not. In 
the next section we discuss what does it mean that in some platforms, all PCs are 
pure, and in some none. But for now, let us go back to Twitter and interpret the lead-
ing top three PCs according to the loadings table and the energy table.

The leading PC v1 is pure Feedback, supported by the three features 
NumOfFollowers, NumOfOtherRT and LikesGivenToMe, which all count feedback. 
To corroborate that v1 is a popularity measure one may also look at the crawl sam-
ple, and consider the users with the largest projection on that PC. Indeed, one finds 
A-list celebrities. As the projection diminishes, the A-list celebrities make room to 
local ones.

Table 2.5  The description of 
features that were collected 
from Twitter

Twitter | Attribute Description

NumOfFollowers Total number of users following me
NumOfOtherRT #retweets of my tweets by others *
LikesGivenToMe #likes my tweets received
NumOfTweets Total number of tweets
NumOfFollowing Total number of users I follow
LikesGivenToOthers Number of tweets that I like
NumOfTxt #tweets with only text *
NumOfUrl # tweets that contain URLs *
NumOfMyRT #tweets that I re-tweet *
TweetsPerDay #tweets divided by lifetime (days)
NumOfUserMent #users mentioned tweets *
NumOfHashTag #hashtags referenced in tweets *

* The measure is computed over the recent 150 tweets 
(Vilenchik 2020)
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The second PC v2 in Twitter is purely Activity. The negatively signed features in 
v2 are indicators of robot/spam behaviour: NumOfUrl and NumOfHashtag. Indeed, 
the main way of spamming in Twitter is by hashtags (how? Simply include a trend-
ing hashtag in your tweet and anyone who clicks the trending topic will see your ad, 
for free) and URLs, which appear in shortened form on Twitter and make it impos-
sible to know where the URL is leading. The most significant positively singed 
feature in v2 is NumOfTxt, the number of messages containing only text, and it is 
typical of benign behaviour. Therefore we may identify v2 with a quality of Spam 
Activity. Indeed, v2 was used as a linear model for spam detection on the set of 
accounts collected in (Gulec and Khan 2014) with 95% precision and recall rate.

v3 in Twitter is also purely Activity but its support is dominated by other activity 
features. The main features of v3 others, and the number of other users mentioning. 
These attributes measure the extent to which a user is a content provider. In addi-
tion, the feature of retweets from other users appears in an opposite sign to the for-
mer, which excludes content providers that don’t generate content but just share it. 
The top accounts in v3-measure in the sample include news provider littlebytesnews, 
video gaming support XboxSupport, and an American teen content provider 
ChelseaaMusic.

Table 2.6  The description of 
features that were collected 
from Steam (Vilenchik 2020)

Steam | Attribute Description

NumOfFriends Number of friends
CommentsCount # comments on user’s profile
Groups Number of Groups
ReviewsCount Number of reviews created by user
Games Number of Games owned by user
hoursOnRecord Number of hours the user played
SteamXP Experience (calculated by Steam)
SummaryLen Length of user’s summary
ScreenshotsCount # screenshots created by user
Badges Number of Badges owned by user
SummaryURL does the user publish URL in his 

summary (binary)

Table 2.7  The percentage of explained variance per PC

PC1 PC2 PC3 PC4 PC5 p

Twitter 18.15% 16.2% 13% 10% (8%) 12
Instagram 29% 19.1% 10.15% (9%) (8%) 11
LinkedIn 25.1% 11.7% 10.3% 7.1% 6.8% 15
Steam 27% 13.6% 10.5% 9.7% (8%) 11
YouTube 29% 19% 12% (8%) (7%) 11
Flickr 26.4% 19.7% 14.3% 12.1% (8.7%) 9

Parenthesized numbers correspond to variance below 1/p. The last column gives the number of 
features, p. (Vilenchik 2020)
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Turning to Steam, and looking at Tables 2.9 and 2.11 we see that none of the four 
PCs are pure. In other words, PCA cannot be used to characterize users in Steam, or 
at least, no easy interpretation of the PCs is at hand. For example, looking at users 
with large projection on v1 reveals both heavy gamers that have a narrow social 
circle and low feedback (e.g. a user that played 230 h in the past 2 weeks, earned 
4000 badges, but has only 421 friends and received 164 comments on his profile) 
and light gamers that have a wide social circle and high feedback (e.g. a user that 
played merely 32 h in the past 2 weeks, but has 1677 friends and received 2300 
comments on his profile), and the spectrum in between.

Table 2.8  Loadings of the top three PCs for Twitter data

Twitter PC1 PC2 PC3

NumOfFollowers 0.38 0 0.06
NumOfOtherRT 0.65 0.041 0.09
LikesGivenToMe 0.65 0.04 −0.09
NumOfTweets 0.02 0.32 0.39
NumOfFollowing 0.07 0.06 0.22
LikesGivenToOthers −0.01 0.31 0.13
NumOfTxt −0.04 0.55 −0.08
NumOfUrl 0.05 −0.45 0.35
NumOfMyRT −0.06 0.22 −0.32
TweetsPerDay 0.01 0.35 0.4
NumOfUserMention 0.02 0.16 0.41
NumOfHashtag 0.05 −0.26 0.43

Table 2.9  Loadings of the top three PCs for Steam data

Steam PC1 PC2 PC3

NumOfFriends 0.33 0.32 0.3
CommentsCount 0.24 0 0.32
Groups 0.31 0.20 −00.3
ReviewsCount 0.25 0.08 −0.55
Games 0.37 −0.23 −0.24
HoursOnRecord 0.16 0.34 0.4
SteamXP 0.42 −0.37 0.2
SummaryLen 0.17 0.44 −0.09
ScreenshotsCount 0.21 0.12 −0.46
Badges 0.46 −0.37 0.1
SummaryURL 0.22 0.44 −0.07
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�Semantic Shattering

In the previous section we have seen that in Twitter one can easily assign semantic 
meaning to the PCs and use them to characterize users. Similarly, in Instagram and 
in YouTube, the top PCs may all be easily interpreted (Table 2.10). On the other 
hand, in Steam, Flickr and LinkedIn the majority of PCs cannot be interpreted as 
their energy is spread over Activity and Feedback (Table 2.11). Is this a random 
phenomenon? Or is there some underlying principal that is responsible for this sep-
aration of platforms. In this section we examine this phenomenon in detail.

The key observation to understand what is going on is summarized in the follow-
ing lemma, which in simple words says that the scores (projections) of a data set X 
on two different PCs are not correlated. Recall that we use X for the n × p data 
matrix (n is the number of samples and p the number of features) and Σ̂ =

1

n
X XT  

for the sample covariance matrix. We use bold font for vectors, and consider them 
as column vectors.

Lemma 2.1  Let vi, vj be two PCs of Σ̂  with i ≠ j. The scores yi = Xvi and yj = Xvj 
satisfy y y =i

T
j 0 , i.e. they are uncorrelated.

Table 2.10  The values of α (Feedback) and β (Activity) were computed for each PC using 
Eq. (2.1)

Twitter α α avg β β avg
PC1 0.98 0.93 ± 0.09 0.02 0.07 ± 0.08
PC2 0.013 0.014 ± 0.08 0.997 0.96 ± 0.08
PC3 0.02 0.02 ± 0.01 0.98 0.98 ± 0.01
PC4 0.006 0.006 ± 0.008 0.994 0.99 ± 0.02
Percentiles 0.025 0.25 0.75 0.975
α 0.022 0.121 0.351 0.627
β 0.379 0.648 0.882 0.978
Instagram α α avg β β avg
PC1 0.996 0.99 ± 0.01 0.004 0.01 ± 0.03
PC2 2e-05 0.001 ± 0.002 0.99998 0.99 ± 0.003
PC3 0.003 0.01 ± 0.02 0.997 0.99 ± 0.02
YouTube α α avg β β avg
PC1 0.92 0.08
PC2 0.003 0.997
PC3 0.35 0.65
Percentiles 0.025 0.25 0.75 0.975
α 0.055 0.213 0.490 0.751
β 0.235 0.506 0.783 0.943

The average is taken over 100 random subsamples each of size 5000–10,000 users (depending on 
the social network). The percentiles were empirically computed over a sample of 10,000 random 
unit vectors (Vilenchik 2020)
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Proof  The proof follows immediately from definitions.

	
y y v v v v v v v vi
T

j i j i
T

j i
T

j i
T

j= ( ) ( ) = ( )( ) = ( ) =X X X X X X n
T T T ˆ .Σ

	

Since vj is an eigenvector of Σ̂  we can substitute Σ̂v j  with λjvj and obtain:

	
n n nj jv v v v v vi

T
j i

T
j i

T
j

ˆ .Σ = = =λ λ 0
	

(2.2)

The last equality is due to the orthonormality of the eigenvectors. Figure 2.1 illus-
trates how no-correlation, given by Lemma 2.1, looks like in the Twitter dataset.

Why should we care about this property? Well, if one PC points in the direction 
of Activity, and another in the direction of Popularity, then Lemma 2.1 may entail 
that Activity and Popularity are not correlated. This is a very counter-intuitive 

Table 2.11  The values of α (Feedback) and β (Activity) were computed for each PC using 
Eq. (2.1)

LinkedIn α α avg β β avg
PC1 0.32 0.36 ± 0.16 0.68 0.64 ± 0.17
PC2 0.6 0.42 ± 0.23 0.4 0.57 ± 0.23
PC3 0.09 0.11 ± 0.09 0.91 0.92 ± 0.08
PC4 0.08 0.08 ± 0.07 0.92 0.9 ± 0.1
PC5 0.08 0.09 ± 0.08 0.92 0.91 ± 0.09
Percentiles 0.05 0.25 0.75 0.94
α 0.092 0.2 0.44 0.6
β 0.387 0.638 0.852 0.897
Steam α α avg β β avg
PC1 0.16 0.18 ± 0.03 0.84 0.81 ± 0.03
PC2 0.1 0.11 ± 0.03 0.9 0.88 ± 0.03
PC3 0.2 0.15 ± 0.06 0.8 0.85 ± 0.06
PC4 0.11 0.13 ± 0.05 0.89 0.88 ± 0.04
Percentiles 0.025 0.25 0.75 0.975
α 0.005 0.062 0.264 0.550
β 0.442 0.734 0.938 0.994
Flickr α α avg β β avg
PC1 0.58 0.42
PC2 0.999 0.001
PC3 0.09 0.91
PC4 0.025 0.975
Percentiles 0.05 0.25 0.75 0.95
α 0.11 0.28 0.60 0.81
β 0.19 0.40 0.72 0.89

The average is taken over 100 random subsamples each of size 2000–10,000 users (depending on 
the social network). The percentiles were empirically computed over a sample of 10,000 random 
unit vectors (Vilenchik 2020)
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conclusion. A healthy life-cycle in online social platforms consists of three funda-
mental elements, producing content: posting opinions, questions, answers, photos, 
videos; consuming content: viewing videos, reading posts; giving feedback: liking, 
retweeting, sharing. Producing enables consuming, consuming leads to feedback, 
which in turn encourages producing.

Such counter-intuitive observations were already made, for example the “Million 
Followers Fallacy”, a term coined by (Avnit 2009), who pointed to anecdotal evi-
dence that some users follow others simply because it is polite to follow someone 
who is following you. As a result, the OSN contains supposedly-central users with 
a huge amount of followers who nobody reads their posted content. Cha et al. (2010) 
confirmed the “Million Followers Fallacy” in Twitter by showing that a user’s num-
ber of followers and his influence (measured as the ability to spread popular news 
topics) were not correlated. Other works noted as well that various statistics that one 
would naturally assume to be good indicators of one’s influence and centrality were 
found to be not so, e.g. (Green 2008; Trusov et al. 2010).

The term semantic shattering, coined in Vilenchik (2020), generalizes 
Lemma 2.1 and provides a wide multidimensional framework to detect semantic 
inconsistencies in the data, such as the one pointed by the Million Followers 
Fallacy. More formally, suppose that data is collected over m features f1, …, fm 
and that there are r qualities or aspects of interest Q1, …, Qr, which are defined 
using these features. We say that a dataset D semantically shatters if there exist 
two qualities Qi and Qj which are not correlated. For example, in the Million 
Followers Fallacy setting we have f1 the number of followers, f2 the number of 
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Fig. 2.1  A projection of 285,000 Twitter users on two PCs: v1 (Feedback) and v2 (Activity)

D. Vilenchik



31

re-tweets of one’s tweets, Q1 is the quality of Popularity measured using f1 and 
Q2 is the aspect of Influence measured using f2.

Clearly there are qualities that naturally do not correlate, such as age and the 
average number of a’s in ones posts. Semantic shattering is interesting when quali-
ties that one naturally assumes to be correlated – shatter, such as Popularity and 
Influence, or Activity and Feedback as found in (Vilenchik 2018).

Theorem 2.2 sets up the formal framework to measure correlation between quali-
ties. It contains three easily-computable sufficient conditions for a dataset D to 
exhibit semantic shattering. For a vector v, we use the notation supp(v) for the sup-
port of v, namely supp(v) = {r : v[r] ≠ 0}. Abusing notation, we use Qi also for the 
set of features that define this quality.

Theorem 2.2 (Vilenchik 2020)  Let v1, …, vp be the PCs of the covariance matrix 
of a p-dimensional dataset D. Let Q1, …, Qp be the qualities spanned by the p fea-
tures. If there exist two qualities Qs, Qt that satisfy the following conditions, then D 
exhibits semantic shattering.

	1.	 Qs ∩ Qt = ∅
	2.	 Let A = …{ }v vi ia1

, , be the set of PCs that satisfy supp(v)  ⊆  Qs and let 

B = …{ }v vj jb1
, ,  

be those that satisfy supp(v) ⊆ Qt. Furthermore, A ≠ ∅ and 
B ≠  ∅ .

	3.	 For every k = 1, …, p, either vk ∈ A ∪ B or supp(vk) ∩ (Qs ∪ Qt) =  ∅ .

Proof  The third condition implies that all the information in the dataset regarding 
qualities Qs, Qt is in the vector space spanned by A ∪ B. Therefore vectors vk ∉ A ∪ B 
may be ignored. The first and second conditions imply that the vector space spanned 
by A contains all the information about Qs and similarly the vector space spanned by 
B contains Qt. Lemma 2.1 applied to all the pairs vi ∈ A and vj ∈ B characterizes the 
manner in which Qs and Qt are uncorrelated.

Note that Theorem 2.2 implicitly assumes that every feature is relevant to at most 
one quality.

�Relaxing Theorem 2

As we have already pointed out in previous sections, the setting of Theorem 2.2 is 
too “clean” to be relevant for real data. A major obstacle is that every PC v will typi-
cally satisfy supp(v) = {1, …, p}, yet because numerical reasons, making it impos-
sible to meet the condition of the theorem. Therefore, in order for the framework to 
be useful it needs to be relaxed. The relaxation suggested in (Vilenchik 2020) is the 
following. For simplicity of presentation we focus on two qualities Q1, Q2. The 
extension to the general case is straightforward.

Recall Eq. (2.1) that defined For every PC vi its energy in the direction of Q1 and 
Q2. The total energy of every vi is 1 as it is a unit vector, therefore αi + βi = 1. The 
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conditions of Theorem 2.2 are equivalent in this case to requiring that for every PC 
vi, either αi = 1 or βi = 1. As in previous sections, this requirement may be relaxed 
by demanding that α α

i x≥ 0 975.  and β β
i x≤ 0 025.  or vice versa or vice versa, where 

x0 975.
α  is the 97.5%-percentile of the α value had the vector vi been a random 

p-dimensional vector on the unit sphere. In the same manner all the other percentiles 
are defined. Recall that this property was named the (α, β)-separation property. The 
choice of 0.975 and 0.025 is somewhat arbitrary, and in general the closer the per-
centiles are to 1 or 0 the closer we are to the setting of Theorem 2.2.

The second issue is PCs that explain incidental variance (what is informally 
called noise). Ignoring such PCs is a common practice, known as the Guttman-
Kaiser (GK) criterion (Yeomans and Golder 1982), where a PC is considered infor-
mative only if it explains more than 1/p-fraction of the variance. However even 
among the PCs that pass the GK-criterion, some may fail to satisfy the (α, β)− sepa-
ration property. If they are border-line with respect to the GK-criterion and their α 
and β values fall in the inter-quartile regime, the will be classified as Neutral as well, 
since intuitively their energy is spread between Q1 and Q2 as one would expect from 
a random vector. To summarize the PC classification, a PC vi is:

•	 Purely Q1 if α
α

i x> 0 975. and β
βi x< 0 025.

•	 Purely Q2 if β
β

i x> 0 975. and α α
i x< 0 025.

•	 Neutral if α α α
i x x∈  0 25 0 75. .,  and β β β

i x x∈  0 25 0 75. .,  and vi  explains roughly 1/ 
p-fraction of the variance.

•	 Mixed in all other cases.

A dataset D exhibits semantic shattering if:

•	 All the PCs of its covariance matrix that pass the GK-criterion are either purely 
Q1, purely Q2, or Neutral.

•	 There exists at least one pure PC for every quality.

Otherwise, i.e. if there exists a mixed PC or at least one of the pure types is miss-
ing, then we declare that the framework was unable to detect semantic shattering.

�Shattering in Online Social Media

After surveying in detail the semantic shattering framework, let us see how it applies 
to each of the six online platforms that we discuss above.

Table 2.10 summarizes the statistics of the α and β values of the PCs that passed 
the GK-criterion for Twitter, Instagram and YouTube. We conclude that in Twitter v1 
is purely Feedback, v2, v3 and v4 are purely Activity. There are no Mixed or Neutral 
PCs. Hence we confirm semantic shattering. Similarly, in Instagram, v1 is purely 
Feedback and v2 and v3 are purely Activity. No Neutral or Mixed PCs, and again we 
confirm semantic shattering. In YouTube v1 is purely Feedback and v2 purely 
Activity. v3 explains 12% of the variance, slightly more than 1/ p = 1/11 ≈ 9%, and 
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both its α, β-values fall in the inter-quartile regime. Therefore, we classify it as 
Neutral, and confirm shattering.

Looking at Table 2.11 we see that in LinkedIn, Steam and Flickr the leading PC 
is Mixed, namely neither pure Activity nor pure Feedback. This is a dead-end in 
terms of the semantic shattering framework hence shattering cannot be confirmed. 
Nevertheless, we see that in LinkedIn v2 is purely Feedback and v3,v4,v5 are purely 
Activity. In Flickr v2 is purely Feedback and v3,v4 are purely Activity. Therefore, 
these pure PCs may be used for user characterization, as discussed in the previous 
section. In Steam, as we’ve already mentioned, all fours PCs are Mixed.

�Discussion

In this chapter we have seen how PCA may be used for the task of user characteriza-
tion in on-line platforms, may it be an e-learning platform for practicing mathemat-
ics, or an on-line social network. The main advantage of using PCA is that labeled 
data is not required (unsupervised learning). Labeled data is especially non-trivial 
to obtain in e-learning platforms where concepts such as “level of engagement” eas-
ily evade standards and definitions.

PCA may be used in a static fashion, in which case the PCs are assigned semantic 
meaning according to the sum of prominent features in their support. Then, users 
are characterized by the size of their projection on each PC. Sometimes there is no 
natural interpretation for a PC, in which case it does not take part in this scheme. 
PCA may be used also in a dynamic fashion. In this case, a time-series is generated 
for every user by projecting the data on a certain PC in a given frequency. The char-
acterization of the user is then derived from the trends of the series: monotone up? 
fixed? variable? The underlying working hypothesis is that the more diverse the 
geometry of the time-series the more diverse are the patterns of usage of the system. 
And diverse usage leads to more meaningful engagement and in particular a pro-
longed dwell in the system.

Finally, we have seen a somewhat paradoxical phenomenon: when the PCs are 
pure, namely amicable for interpretation, then semantic shattering lurks. We have 
seen a curious partition to platforms where semantic shattering occurs and others 
where it doesn’t. We now try to surmise what stands behind this partition. The two 
groups of platforms are also separated in their niche-level and in the typical amount 
of effort it takes to produce content in that network. Twitter, Instagram and YouTube 
are in some sense “multipurpose” or “generic” OSNs in which content is “virtual” 
and easily produced. LinkedIn, Flickr and Steam are more thematic-niche and the 
content shared by a user reflects activities that require considerably larger effort: 
gaming, semi-professional photography and one’s career and education. The niche 
level and the amount of effort may control the level of commitment that the users 
feel towards each other. Indeed, sociologists typically use the concept of 
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commitment when they are trying to account for the fact that people engage in a 
consistent manner (Becker 1960).

Taking a closer look at the types of statistics that were collected, and led to the 
semantic shattering in some platforms, we see that they all fall under what one may 
call simple statistics. As there is no standard definition for this term, it may be 
defined by example and common sense. As a rule of thumb, simple statistics involve 
straightforward bookkeeping and counting. For example, the number of users fol-
lowing a certain user on Twitter, the number of posts per day of a certain user on 
Facebook, the number of views of one’s videos on YouTube, the number of badges 
a Steam user owns, the average length of one’s posts, etc. What may not be consid-
ered as simple statistics? As a rule of thumb – latent features. For example, statistics 
that involve text analysis such as the dominant sentiment in one’s tweets (happy, 
sad, complaining), sociolinguistic features (Macaulay 2007) such as what emoji 
does one use. More complicated statistics require human evaluation such as estimat-
ing how provocative is a certain picture or statistics derived from questioners about 
one’s experience when using the platform, e.g. (Bayer et al. 2016).

One important take home message that comes out of this discussion, is that using 
simple statistics is indeed attractive, the features are easy to compute, and in many 
cases they lead to a useful user characterization scheme. However, if one measures 
users using only simple statistics, then Simpson’s-type paradoxes may appear in the 
form of semantic shattering. Indeed, if one looked on sub-communities of Twitter, 
say a group of extreme mountain climbing aficionados that post pictures from their 
travels, then one would probably won’t see a decoupling between Activity and 
Feedback. But, to identify such a community one needs to use features which are 
not simple statistics.
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Chapter 3
Argumentation Is Elementary: The Case 
for Teaching Argumentation in Elementary 
Mathematics Classrooms

Cathy Marks Krpan and Gurpreet Sahmbi

�Introduction

Navigating the information age successfully requires that consumers of data assess 
and critique the validity of its content and in doing so, create a logical argument that 
supports or refutes its truth. Furthermore, the skill sets and qualifications expected 
of the workforce no longer consist of following simple routines, but necessitate 
problem solving and the understanding of complex systems through constructing, 
describing, explaining, manipulating, and predicting (English et al. 2013). These 
skills are central to mathematics, and we believe that, more specifically, the devel-
opment of strong argumentation and reasoning skills in mathematics enables learn-
ers to navigate the complexities and the increasing volume of information they 
encounter. In this chapter, we contend that argumentation needs to play a more 
significant role in elementary mathematics and that its implementation can enable 
learners to develop key skill sets that are essential for deep mathematical thinking 
and reasoning skills.

This chapter offers a rationale for the use of argumentation in elementary math-
ematics classrooms. The authors present an overview of the term argumentation 
(and its related mathematical counterpart, proof), its implementation in mathemat-
ics classrooms, including benefits and examples of effective use, and challenges 
teachers face. We contend that argumentation as a mathematical process supports 
students not just in the development of deeper content knowledge, but in developing 
the twenty-first century skills of critical discourse, problem solving, and logic build-
ing that are necessary for success.
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�Argumentation in Elementary Classrooms

There is much debate in the mathematics community about the appropriate use of 
the terms “argumentation” and “proof” in mathematics (Balacheff 2002; Cirillo 
et  al. 2015; Weber 2014). As Hanna and de Villiers (2008: 331) note, “Some 
researchers see mathematical proof as distinct from argumentation, whereas others 
see argumentation and proof as parts of a continuum rather than as a dichotomy.” 
Because of this confusion, many believe that the mathematics community needs to 
refine the meaning of these terms in research and curriculum documents (Cai and 
Cirillo 2014). Balacheff (2002: 2) explains that “Our epistemology of proof is the 
first deadlock to figure out and to cope with when entering our research field.” We 
use the terms “argumentation” and “proof” in the context of this chapter to refer to 
mathematical thinking that learners use to prove or disprove mathematical claims. 
This includes mathematical thinking that serves as a precursor to developing a for-
mal proof, in addition to student argumentation that conclusively proves and gener-
alizes mathematics. Both terms, “proof” and “argumentation” will be used 
interchangeably in this chapter.

In the mathematical community, people hold different ideas about the role of 
proof and its key elements (Hanna 2000). The notion of argumentation in mathe-
matics can include the examination of a mathematical conjecture or claim, and it 
can include the development of a logical, sound argument to demonstrate whether it 
is true or false (Marks Krpan and Sahmbi 2019). Argumentation in mathematics 
involves creating claims, providing evidence to support those claims, and evaluating 
evidence to assess their validity (Knudsen et  al. 2014). As Solar et  al. (2020): 1 
describe, “[argumentation] is used to convince oneself and others of the validity of 
a line of reasoning.” Thus, the goal of creating mathematical arguments is to deter-
mine the truth of mathematical statements (Knudsen et al. 2014). Some consider 
argumentation as the key component of inquiry-based classrooms in which students 
are expected to “propose and defend mathematics ideas and conjectures” (Goos 
2004: 259). In essence, argumentation in mathematics helps us to determine why 
things work (Stylianides et al. 2013).

The development of a sound argument is less about the application of the ele-
ments of the proof and more about using the act of proving to deepen one’s knowl-
edge about mathematics (Marks Krpan 2018; Marks Krpan and Sahmbi 2020). As 
Sowder and Harel (1998: 297) point out “The goal [of proving] is to help students 
define their own conception of what constitutes justification in mathematics.” 
Mathematical argumentation can also support the development of a student’s con-
ceptual understanding in mathematics (Rumsey 2012). Hanna (2000: 7) describes 
the role of mathematical proofs as promoting mathematical understanding, reflect-
ing that, “It became clear to me that a proof, valid as it might be in terms of formal 
derivation, actually becomes more convincing and legitimate to a mathematician 
only when it leads to real mathematical understanding.” She notes that proofs should 
have a prominent place in the mathematics curriculum, pointing out that the key role 
of educators is to understand the role of proofs in mathematics in order to enhance 
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their implementation (Hanna 2000). Ball et al. (2002: 907) also believe that proof 
should play a significant role in mathematics stating that “proof is central to math-
ematics and as such, should be a key component of mathematics education. This 
emphasis can be justified not only because proof is at the heart of mathematical 
practice, but also mathematical understanding.”

In addition to requiring students to explain their mathematical solutions and/or 
strategies, mathematical argumentation engages the learner in deepening their 
thinking as they try to convince others of their reasoning (Francisco and Maher 
2005; Marks Krpan 2018). When demonstrating that a conjecture is true or untrue, 
the learner needs to apply their own mathematical knowledge to support or refute a 
claim. In many cases, students apply their mathematical knowledge in ways that 
they did not formally learn in math class (Marks Krpan and Sahmbi 2020). The 
learner makes connections between the mathematics they know and the argument 
they are trying to make. It is a process through which students may develop an argu-
ment about a mathematical concept and rationalize its truth or untruth through 
mathematical reasoning (Stylianides et al. 2013). Stylianides (2007a: 291) provides 
the following definition of proof in elementary classrooms along with three key ele-
ments he believes are critical:

Proof is a mathematical argument, a connected sequence of assertions for or against a 
mathematical claim, with the following characteristics:

	1.	 It uses statements accepted by the classroom community (set of accepted state-
ments) that are true and available without further justification;

	2.	 It employs forms of reasoning (modes of argumentation) that are valid and known 
to, or within the conceptual reach of, the classroom community; and

	3.	 It is communicated with forms of expression (modes of argument representation) 
that are appropriate and known to, or within the conceptual reach of, the classroom 
community.

Criteria like these can serve as a practical and usable guide for teachers as they 
implement argumentation in their classrooms (Marks Krpan 2018).

Argumentation is a social activity, as the very nature of creating an argument 
requires that one engages in mathematical discourse with others in order to share 
and debate different mathematical claims related to proving or disproving mathe-
matical ideas (Marks Krpan 2018). The act of proving requires many skills such as 
conjecturing, justifying, and organizing mathematical ideas in a logical, clear man-
ner to elucidate one’s reasoning to others (Knudsen et al. 2014; Marks Krpan 2018). 
It is critical that students have opportunities to build off of and respond to each 
other’s ideas (Knudsen et al. 2014). During the sharing process, students may edit 
and clarify their ideas based on the feedback they receive from others, developing 
an awareness of their own thinking and that of others (Marks Krpan 2018; Marks 
Krpan and Sahmbi 2020). As students share mathematical arguments, they must 
also assess and evaluate the credibility of the arguments of their peers (Marks Krpan 
and Sahmbi 2020). Ayalon and Even (2014) note that mathematics is intrinsically 
connected to argumentation as it requires that the learner justify claims and generate 
conjectures which are critical elements of doing and communicating mathematics.
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While there is significant research in the area of proof and proving at the second-
ary and university levels, there is much less research on argumentation and its 
implementation in elementary classrooms (Hanna 2000; Stylianides 2007b, 2016; 
Yackel and Hanna 2001). Though students are often expected to understand the 
concept of a proof, and produce proofs at secondary and post-secondary levels, 
students are rarely introduced to this kind of thinking at the elementary level 
(Stylianides 2007b). The absence of proof-building is often evident in the mathe-
matics resources teachers use. Bieda et al. (2014) found that the average percentage 
of reasoning-and-proving tasks was 3.7% of the total tasks in elementary textbooks 
they examined. Thus, it is common for students to encounter proof for the first time 
in secondary or post-secondary schooling, where they will have had little to no 
background in formalizing their understanding or skills prior to advanced mathe-
matics courses.

Proofs are often associated with strong mathematical rigor and formality and as 
a result, proofs are usually introduced later in school, and/or university (Francisco 
and Maher 2005). Sowder and Harel (1998: 674) note that “To delay exposure to 
reason giving until the secondary-school geometry course, and to then expect an 
instant appreciation for more sophisticated mathematical justifications is an unrea-
sonable expectation.” Consequently, Ball et al. (2002: 908) strongly advocate for “a 
culture of argumentation in the mathematics classroom from the primary class-
rooms all the way up through to college.”

Stylianides (2016) acknowledges how the view that proofs should only be taught 
at the secondary and post-secondary levels in education has changed. He points out 
that in 1989, the National Council of Teachers of Mathematics’ (NCTM) Curriculum 
and Evaluation Standards, which serves as a framework for curriculum develop-
ment in mathematics, suggests that proofs be explored solely by high-school stu-
dents who are college bound, while the updated version of this document, published 
in 2000 (NCTM 2000) stresses that reasoning and proof are “fundamental” ele-
ments for all learners of mathematics of all ages. Francisco and Maher’s (2005) 
longitudinal study on problem solving further supports this view, finding that stu-
dents can readily engage in “proof making” in the early years of education. Yackel 
(2001: 10) also believes that young learners can fully participate in development of 
mathematical arguments stating, “I have documented that children as young as sec-
ond grade engage in sophisticated forms of explanation and justification and that 
their understanding of explanation advances as the school year progresses.”

The value of introducing proofs in elementary classrooms is underscored by 
Hanna and de Villiers’ (2008: 329) research in which they explore the concept of 
“developmental proofs” which they describe as a “precursor to formal proofs that 
grows in sophistication as the learner matures towards more coherent conceptions.” 
They stress that proof and proving in elementary classrooms have the potential to 
facilitate the development of more formal proofs in mathematics. If an emphasis on 
mathematical argumentation can be fostered in the elementary grades, encouraging 
students to justify and think deeply about mathematics, students can be prepared for 
writing proofs in secondary mathematics (Cervantes-Barraza et al. 2020; Hoffman 
et al. 2009). Rumsey (2013: 121) stresses that “We need information about early 
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reasoning and proof if we are to help students transition along the continuum from 
early mathematics and informal proof toward grade levels requiring formal proof.” 
Yet, in spite of current literature, argumentation is still considered an area of math-
ematics that is more conducive to secondary and/or university mathematics (Bieda 
et al. 2014; Stylianides et al. 2013; Stylianides 2007b). This view often limits its 
implementation in elementary classrooms (Marks Krpan and Sahmbi 2019; 
Stylianides 2016).

�Implementation of Argumentation

Though influential recommendations such as the NCTM’s Curriculum and 
Evaluation Standards (2000) have encouraged the use of argumentation and proof-
building in elementary mathematics, implementation has been and is currently 
highly variable. Research suggests that successful implementation of argumentation 
in mathematics classrooms hinges on the ability of a teacher to cultivate and sustain 
a classroom culture that is conducive to proving mathematical ideas. More specifi-
cally, teachers must foster an environment that supports student collaboration and 
discussion as it pertains to mathematics (Civil and Hunter 2015).

�Creating a Classroom Culture for Proving

The classroom environment plays a critical role in facilitating mathematical discus-
sions and the sharing of mathematical ideas (Cervantes-Barraza and Cabañas-
Sánchez 2018; Marks Krpan 2013). In order for students and teachers to successfully 
engage in the act of proving and the development of argumentations, there must be 
opportunities for student collaboration and exploration (Civil and Hunter 2015; 
Marks Krpan 2018; Marks Kpran and Sahmbi 2020; Rumsey and Langrall 2016). In 
addition, the classroom culture needs to foster and support student risk taking 
(Marks Krpan 2018). For example, Makar et al. (2015) note that for argumentation 
to successfully take place, students need to be encouraged to think without worrying 
about having a correct or complete answer related to their argumentations. This 
opportunity to think aloud can encourage students to take what the authors describe 
as “intercultural risks to share emergent and incomplete ideas” (Makar et  al. 
2015: 1116).

Schwarz et al. (2010: 108) remind us that “for many influential researchers in 
mathematics education, argumentation is seen as the way meaning-making and 
understanding develop[s] in classroom discussions.” In order to deepen their rea-
soning skills and make meaning, students need opportunities where they can defend 
their mathematical claims and respond to the argumentation of their peers (Goos 
2004). It is through whole class and small group discussions that students engage in 
mathematical argumentation and justify their thinking to others (Marks Krpan 2018; 
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Marks Krpan and Sahmbi 2020; Whitenack and Yackel 2002). In addition, these 
mathematical discussions are critical to the argumentation process as they enable 
students to learn from each other (Marks Krpan 2018; Marks Krpan and 
Sahmbi 2020).

Beyond deepening their understanding of mathematics, class discussions can 
enable students to discover new ways of reasoning mathematically (Civil and 
Hunter 2015; Marks Krpan and Sahmbi 2020; Rumsey et al. 2019; Whitenack and 
Yackel 2002). New learning can originate from individual student argumentations 
which in turn can inform whole class discussions. (Civil and Hunter 2015; Marks 
Krpan 2001; Marks Krpan and Sahmbi 2020; Whitenack and Yackel 2002). 
Furthermore, students can improve their mathematical content and concept knowl-
edge as they explore ideas through mathematical discussions (Mercer 2010; 
Solomon 2009). By encouraging students to share their insights with each other, 
teachers provide opportunities for students to rehearse their thinking and link ideas 
together (Zolkower and Shreyar 2007). These argumentation discussions enable 
teachers to have access to the diversity of student reasoning and argumentation 
skills (Reid et al. 2011).

The act of proving engages the learner in a social process in which they share 
their mathematical insights and try to convince others of their reasoning (Rumsey  
2013; Marks Krpan 2018). Solar et al. (2020: 24) note that “communication strate-
gies, such as giving students opportunities to participate, managing error, and ask-
ing deliberate questions have proven to be highly relevant in supporting 
argumentation among students and incorporating contingencies into classroom dis-
cussions,” In addition, student engagement (Kazemi and Stipek 2009; Turner and 
Meyer 2004) and self-directed learning (Francisco and Maher 2011) can improve 
when learners have opportunities to share, compare and justify their ideas to 
each other.

Collective argumentation can support and guide collaborative engagement and 
student discourse in mathematics as students engage in the act of proving (Brown 
2017; Cervantes-Barraza et al. 2020; Lin and Tsai 2012). It is characterized by a set 
of interactions that takes place among students as they convince each other of their 
mathematical arguments and arrive at a solution within whole class discussions 
facilitated by the teacher (Krummheuer 2015). Brown (2017: 186) believes that col-
lective argumentation can have a positive impact on learning in primary classrooms. 
He describes collective argumentation based on five principles: generalizability 
(students communicate their own thinking about a task), objectivity (ideas can only 
be rejected by using logical arguments); consistency (ideas make sense); consensus 
(all students in the group understand, agree and can explain their argumentation); 
and recontextualization (students present their ideas to the class for discussion and 
validation). Brown found that implementation of these principals not only increased 
student engagement but also improved the overall quality of teaching and learning.

The teacher plays a critical role in facilitating and orchestrating mathematical 
discussions by establishing classroom norms for interaction (Marks Krpan 2018; 
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McCrone 2005). In a classroom environment that encourages respectful discourse, 
students can work collaboratively and gain a collective understanding when work-
ing on argumentation tasks (Civil and Hunter 2015). Yackel (2004: 6) advocates for 
classroom discussions in her description of the social norms necessary for the devel-
opment of argumentation skills:

Social norms that characterized classroom interactions […] include that students are 
expected to develop personally-meaningful solutions to problems, to explain and justify 
their thinking and solutions, to listen to and attempt to make sense of each others interpreta-
tions of and solutions to problems, and to ask questions and raise challenges in situations of 
misunderstandings and disagreement.

Accountable talk c.an only take place when students understand that they are 
expected to listen to others, build on each other’s ideas, provide explanations and 
justifications for their ideas, and challenge the thinking of others when necessary 
(Michaels et  al. 2008).Establishing expectations of interactions such as how to 
actively listen and disagree in a respectful manner can improve student learning and 
create a supportive learning culture (Marks Krpan 2011, 2013).

Expectations that delineate what collaborative behaviours in mathematics “look 
like,” “sound like,” and “feel like,” can enhance student interactions (Marks Krpan 
2011). Yackel (2001) points out that in mathematics we need to stress the impor-
tance of “social norms” (expectations developed in the classroom) and “sociomath-
ematical norms” (related to interactions specific to mathematics) in the context of 
promoting explanation, justification, and argumentation. She uses the term “group 
think” to refer to collective argumentation in which students reason interactively 
through whole group and small group contexts. Yackel (2001: 15) argues that “the 
reason that group think is so powerful for students’ learning is that it emphasizes 
what most mathematicians and mathematics educators consider to be the essence of 
mathematics – mathematical reasoning and argumentation.”

Another example that stresses the role of expectations for engagement can be 
found in McCrone’s (2005) work. In her study, a grade 5 teacher read a story about 
three characters who arrived at different solutions to a mathematics problem about 
money. Students were invited to work in pairs to determine which of the three solu-
tions they agreed with and come up with ways to convince their classmates of their 
answer. At first, students engaged mostly in parallel discussions when working with 
their partners, not realizing that commenting on their classmate’s work was also part 
of their role. McCrone (2005) noted the importance of the teacher establishing 
expectations for engagement and modelling active listening for her students which 
assisted students in reflecting on their own thinking when listening to classmates 
describe theirs. By the end of the study, students took on more of a responsibility in 
understanding the reasoning of others and were more able to make sense of each 
other’s thinking.
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�Implementation of Argumentation in Elementary  
Classrooms: Some Examples

There are a variety of teaching approaches that can be used to explore argumenta-
tion in the elementary grades (Knudsen et al. 2014; Marks Krpan and Sahmbi 2019). 
It is critical that teachers have access to teaching strategies that are easy to imple-
ment and enable their students to fully engage in the creation of meaningful argu-
mentations (Marks Krpan 2018; Marks Krpan and Sahmbi 2020).

In a recent study by Rumsey and Langrall (2016), teachers taught number sense 
through argumentation tasks. Students were provided with a claim such as “any 
number multiplied by 0 will equal a larger number than 100” and were asked to 
complete “language frames” which included prompts such as “I agree because…” 
or “I disagree because…” (Rumsey and Langrall 2016: 414).They found that the 
language frames supported the development of discourse related to argumentation 
and assisted students in sharing ideas which led to rich whole-class discussions. The 
authors also noted that organizing small and whole-class discussions were benefi-
cial, as some students preferred to share in smaller group settings.

Journal writing can also be used to assist students in developing argumentation 
skills. Bostiga et al. (2016) investigated the use of debate journals with grade 3 and 
5 students to help them develop and assess mathematical arguments through writ-
ing. Like Rumsey and Langrall (2016), they utilized prompts to guide student think-
ing. The journal prompts included correct or incorrect statements, based on common 
student misconceptions. For example, one prompt (with images provided) asked, 
“When asked to shade 4 tenths, Corey shaded 4 rows and David shaded 4 squares. 
Do you agree with Corey or David?” (Bostiga et  al. 2016: 550). Students were 
invited to explain in writing with which statement they agreed with and why. 
Teachers discussed the statements with the whole class beforehand and then invited 
students to solve them on their own and compare their answers with their class-
mates. Bostiga et  al. (2016) found that the debate journals immensely improved 
both students’ mathematical writing and their argumentation skills.

Existing textbook content can be modified to include more argumentation oppor-
tunities for students. Rumsey (2013) modified textbook lessons related to properties 
of multiplication by including more opportunities for argumentation and justifica-
tion. Modifications to the textbook lessons included adding additional problems and 
counter-examples, emphasizing the language of argumentation, promoting discus-
sions about number properties and including true/false and open number sentences. 
Rumsey (2013: 10) found that “even without prior instruction emphasizing argu-
mentation, students were able to bring relevant knowledge regarding arguments to 
the discussion that could be used to help them transition to more formal proof.”

Some researchers have examined collective argumentation tasks as a way to 
implement argumentation in elementary classrooms. Cervantes-Barraza et  al. 
(2020) investigated a collective argumentation task in which they invited grade 5 
students to prove the theorem that opposite angles of a vertex were equal. The struc-
ture of the task, like Brown’s (2017), was based on a set of principles to guide the 
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learning process. Cervantes-Barraza et al. (2020), based their task on Lin and Tsai’s 
(2012) principles of mathematical proof in which students are encouraged to ana-
lyze the problem and find patterns, build a conjecture based on their observations, 
transform their observations into generalizations and then reflect on the generaliza-
tion they made and validity of their proof. Cervantes-Barraza et al. (2020) noted that 
collective argumentation enabled students to make generalizations about opposite 
angles. They also concluded that collective participation played a critical role in the 
development of proofs as it fostered interest and curiosity among the students and 
also provided opportunities for engagement for students who did not usually partici-
pate in mathematics discussions.

The authors of this chapter have also explored argumentation tasks with grade 2, 
3 4 and 5 students who had not previously engaged in any formal argumentation 
tasks (Marks Krpan and Sahmbi 2020). Students were presented with number state-
ments that the classroom community already knew to be false. The argumentation 
task involved providing students with a number statement such as 10 + 10 = 12 or 
6 × 4 = 25 (depending on the grade level) and inviting students to argue, using visu-
als, numeric notation, or written explanations, why it was false. Teachers noted that 
not only did students apply mathematics concepts and strategies they had learned 
from past mathematics lessons, but also applied previously learned mathematics 
content in novel ways. Teachers observed that students modified the use of number 
lines in their counter arguments from how they were used in the teaching. For exam-
ple, when disproving the statement 6 × 4 = 25 one group of students compared two 
different number lines side by side while another group showed jumps of 4 on their 
number line and in addition, noted the accumulative total of each jump on the same 
number line. This, the teachers noted was different from how they used number 
lines in their teaching. Even though the students’ work did not represent formal 
mathematical generalizations, their work demonstrated high-level mathematical 
thinking and included solid counter arguments (Marks Krpan and Sahmbi 2020). 
Our findings indicate that this teaching approach is an effective precursor to the 
development of formal proofs and enables learners of all ages to have access to 
develop critical argumentation skills.

�Challenges in Implementation

While there is a plethora of evidence suggesting the benefits of argumentation in 
elementary classroom (Marks Krpan 2018; Mercer 2010; Rumsey 2012; Solomon 
2009), including studies that illustrate examples (Bostiga et al. 2016; Cervantes-
Barraza et al. 2020; Rumsey and Langrall 2016), there remains a dearth of imple-
mentation in practice. It is evident that teachers play a critical role in weaving 
argumentation into their practice. Consequently, teacher uptake of this strategy is a 
determining factor in the pervasiveness and effectiveness of argumentation in the 
elementary classroom (Stylianides 2016). Studies have shown that teachers feel 
there are significant challenges that impede their ability to consistently and 
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effectively use argumentation in their mathematics classrooms (Ayalon 2019; Flegas 
and Charalampos 2013). Most commonly, this centres around the following: (1) 
lack of teacher knowledge of proof and argumentation (Bieda 2010); (2) difficulty 
facilitating mathematical discourse (Conner et al. 2014); and (3) limited time and 
resources (Staples and Newton 2016).

Shulman (1986) discusses the concepts of subject content knowledge and peda-
gogical content knowledge (PCK) as two areas of teaching that work in tandem to 
support effective learning experiences for students. Briefly, subject content knowl-
edge is knowledge of the discipline (mathematical content knowledge [MCK]), and 
PCK is knowledge of how to teach said discipline, or various topics within that 
discipline. There is extensive research on the importance of both content knowledge 
and pedagogical content knowledge in mathematics (Ball et al. 2008; Krauss et al. 
2008) that suggests both these types of knowledge are critical for effective teaching. 
For local context, formal proof and argumentation are virtually absent in the ele-
mentary curriculum expectations in Ontario (Ontario Ministry of Education 2005a), 
and only briefly touched upon in the secondary curriculum documents (Ontario 
Ministry of Education 2005b, 2007). Thus, it is unsurprising that research indicates 
that teachers tend to be hindered in their implementation of argumentation in class-
rooms due, in part, to low PCK and MCK as it relates to proof and argumentation 
(Ayalon 2019; Ayalon and Hershkowitz 2018; Bieda 2010). Indeed, Bieda (2010: 
353) notes, “teachers’ knowledge of proof and their beliefs about teaching proof 
may also constrain their ability to teach proof effectively.”

Teachers and students, alike, are typically unfamiliar with argumentation tasks or 
proving in mathematics (Goulding et al. 2002; Knuth 2002; Stylianides et al. 2013). 
Several studies indicate that low levels of teacher comfortability with the concept of 
proof is a major hurdle in implementing proof and argumentation in mathematics 
classrooms (Stylianides 2007a). In a study examining the uptake of logical reason-
ing and proof in a grade 6 mathematics classroom, Flegas and Charalampos (2013) 
found that challenges arose for the teacher as they tried to develop effective peda-
gogical knowledge of how to teach using proof. Notably, the teacher’s PCK for 
proof acted as a barrier to their consistent implementation of this form of mathemat-
ics. Even at the secondary level, where proof is more widely understood, Ayalon 
(2019: 190) argues that “teachers are not adequately trained to identify and enhance 
argumentation opportunities.” and consequently, they “may have difficulties engag-
ing students in constructing and responding to arguments” (p. 192). This suggests 
limitations in PCK that hinder teachers’ ability to compensate for limited resources 
(discussed later), and effectively engage students in argumentation.

Proof and argumentation as mathematical concepts present additional chal-
lenges, as they are existing and central tenets of formal mathematics (Hanna and 
Jahnke 1996). Thus, they are not simply pedagogical strategies that are used to 
understand other mathematical concepts but are part of the discipline of mathemat-
ics itself. Consequently, teachers must understand this fundamental part of mathe-
matics as well as the mathematical concepts they aim to teach to their students. 
Indeed, Ayalon and Hershkowitz (2018: 163) state that teachers require knowledge 
of “the kinds of justifications accepted in mathematics, students’ common 
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tendencies and difficulties, and the conditions essential to establish a classroom 
environment that fosters argumentation.” This suggests that teachers are tasked with 
the traditional issues of MCK and PCK as well as specific understandings of the 
theoretical basis of proof and argumentation if they are to be effective in implement-
ing proof and argumentation in their classrooms. Hence, it is evident that “teachers’ 
knowledge of proof and their beliefs about proof may also constrain their ability to 
teach proof effectively” (Bieda 2010: 352).

Fundamental to effective implementation of argumentation in the elementary 
mathematics classroom is a teacher’s comfortability and agility with facilitating 
mathematical discourse. Though the benefits of promoting mathematical discourse 
in the classroom have been discussed in the literature for many years (Ball 1991; 
NCTM 2000), several studies have found that teachers find it challenging to effec-
tively implement this type of pedagogy (Bieda 2010; Stylianides et al. 2013). In a 
study focused on secondary mathematics teachers’ implementation of mathematical 
argumentation in everyday coursework, Kosko et al. (2014) observed that unfamil-
iarity with questioning techniques impeded teachers’ ability to effectively develop 
strong mathematical discourse in their classrooms. They noted, “Teachers may not 
have a clear understanding of what effective questioning strategies look like or how 
to implement them” and suggested that “more explicit instruction for teachers in 
how to facilitate mathematical argumentation and discussion” is critical (Kosko 
et al. 2014: 474). Teachers often struggle to withhold the “correct answer” from 
students while they work through their arguments (Conner et  al. 2014), and the 
worry that students will stray far from the target concepts results in discomfort. 
Further, and specific to proof and argumentation, Stylianides (2007b: 17) explains 
that teachers have the additional challenge of not just facilitating mathematical dis-
cussions, but of establishing “socially accepted rules of discourse relevant to prov-
ing that are compatible with those of wider society.” This alludes to the broader 
context of proof as a mathematical language with axioms and structure agreed upon 
by mathematics communities, and the layers of difficulty this presents when teach-
ers are newly engaging in mathematical discourse in this domain.

All these challenges are further compounded by the issue of limited resources 
available to elementary teachers that explicitly support argumentation tasks (Bieda 
et al. 2014; McCrory and Stylianides 2014). Bieda et al. (2014) found in their inves-
tigation of elementary mathematics textbooks that opportunities to explore mathe-
matical concepts using argumentation were sparse, suggesting a lack of resources 
readily available for elementary teachers. This finding was corroborated in the same 
year by researchers who noted that there was a dearth of explicit resources available 
that focused on argumentation-like tasks or reasoning and proving (McCrory and 
Stylianides 2014). Consequently, even if teachers wish to use argumentation in ele-
mentary mathematics, they often have little outside help on which to rely.

Additionally, while teachers in numerous studies see the conceptual benefits to 
using argumentation in their classrooms, many noted that the time investment 
required to actively and effectively use argumentation was a major hindrance in 
implementation (Bieda 2010; Brodahl and Wathne 2018; Brown 2017). The pres-
sure of curriculum demands in schools imposes restrictions on teachers’ time and 
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ability to pursue argumentation in their classrooms. Staples and Newton (2016: 
299) explain:

In the context of K–12 schools, with clear content demands and assessment procedures, 
teachers may have fewer opportunities (real or perceived) to (a) organize lessons that pro-
vide opportunities for participation in argumentation, where the purpose is not conceptual 
development, but deliberate inquiry into the truth of various claims; and (b) take advantage 
of such opportunities should they arise.

Whether “real or perceived”, the issue of time has tangible effects on teacher 
implementation. Further, teachers find that developing argumentation tasks and 
framing their classrooms as inquiry spaces where students often misunderstand 
tasks and hence, can go off-topic, can be time consuming (Brodahl and Wathne 
2018). Even in instances where students were successful in using argumentation to 
engage with primary mathematics, the time for implementation and student discus-
sion was seen as a major challenge (Brown 2017).

�Summary

In spite of its many benefits, argumentation is not widely used in elementary class-
rooms. The reasons for this are complex and cannot be isolated to one factor. 
Teachers strive to ensure that their students develop key mathematics skills through 
a variety of tasks and teaching approaches. It is critical that teachers have the oppor-
tunity to learn about the role that argumentation can play in supporting student 
learning in mathematics. The importance of implementing argumentation tasks at 
the elementary level cannot be overstated. Essential mathematical skills such as 
communication, justification and reasoning are developed through the act of argu-
mentation and proving. Students in elementary schools are capable of exploring 
argumentation tasks and engaging in the act of proving. Indeed, there are meaning-
ful ways to infuse argumentation into elementary mathematics programs while sup-
porting all students. However, strong teacher pedagogical knowledge and content 
knowledge, related to argumentation, are needed in order for teachers to be able to 
facilitate insightful discussions, and create classroom cultures in which mathemati-
cal argumentations can be shared and explored successfully.

Not only will experience with argumentation tasks help students to become bet-
ter mathematical thinkers, it will also provide them with the foundation necessary to 
engage in more complex proofs at the secondary and university levels. More impor-
tantly, the teaching of argumentation in elementary grades can strengthen students’ 
thinking and reasoning skills which are essential for life-long learning. As students 
explore their own arguments and those of others, they will develop a deep under-
standing not only of the mathematical content they are learning, but of complexities 
of ideas and how others may understand and represent them differently.

Some of the key challenges of implementing argumentation tasks are teachers’ 
unfamiliarity with argumentation and its implementation, and limited time and 
material resources. We believe that in order to mediate these challenges, 
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argumentation needs to take a prominent place in all elementary mathematical cur-
riculums, including detailed explanations of what argumentation entails and exam-
ples of implementation. Moreover, we recommend more professional development 
for teachers in which they can collaboratively explore the nature of argumentation, 
its benefits, and how it can be implemented in their mathematics classrooms. In 
addition, we advocate for continued research in the area of elementary argumenta-
tion in order for the mathematical community to gain further insight about its imple-
mentation and impact on student learning. Only when these recommendations for 
the implementation of argumentation in elementary classrooms are put into prac-
tice, do we believe that students will be able to have access to the key skillsets of 
mathematics which are essential to becoming strong, critical thinkers in the infor-
mation age.
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Chapter 4
Subverting Stereotypes: Visual Rhetoric 
in the #SheCanSTEM Campaigns

Deborah J. Danuser

�Introduction

Research shows that young girls like STEM subjects—science, technology, engi-
neering and math—but, as they get older, they start to feel that STEM isn’t for them 
based on outdated stereotypes (Ad Council 2018a).

On the homepage of SheCanSTEM.com in the spring of 2019, visitors are 
greeted by a photograph of seven adult women positioned shoulder to shoulder, and 
confidently looking directly at the viewer. The caption below this “hero image” tells 
visitors, “#SheCanSTEM.  Meet the women changing the world with Science, 
Technology, Engineering and Mathematics. The future will be built by women in 
STEM.” The smiling women in the ad are the faces of the 2018 Ad Council’s public 
service announcement (PSA) campaign, “She Can STEM,” which promotes the sci-
ence, technology, engineering, and mathematics (STEM) fields to tween girls 
(11–15  years-old). According to the campaign’s webpage on AdCouncil.org, the 
campaign is designed to inspire “middle school girls to stay in STEM by showcas-
ing female role models across a variety of STEM fields” (Ad Council 2018b). As 
such, the stars of the campaign are not professional models hired for a photoshoot, 
but are seven women “currently dominating the world of STEM” (She Can 
STEM 2019).

But why is such a campaign needed? Ryan Noonan writes in the executive sum-
mary of the U.S. Department of Commerce’s report, Women in STEM: 2017 Update 
(2–17: 1): “While women continue to make gains across the broader economy, they 
remain underrepresented in STEM jobs and among STEM degree holders.” The 
report goes on to list the following statistics:
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•	 Women filled 47% of all U.S. jobs in 2015 but held only 24% of STEM jobs. 
Likewise, women constitute slightly more than half of college-educated workers 
but makeup only 25% of college-educated STEM workers.

•	 Women with STEM degrees are less likely than their male counterparts to work 
in a STEM occupation; they are more likely to work in education or healthcare.

•	 Women with STEM jobs earned 35% more than comparable women in non-
STEM jobs – even higher than the 30% STEM premium for men. As a result, the 
gender wage gap is smaller in STEM jobs than in non-STEM jobs. Women with 
STEM jobs also earned 40% more than men with non-STEM jobs (Noonan 
2017: 1).

These statistics demonstrate how women are underrepresented in receiving 
STEM degrees and working in STEM jobs, despite the increased earning potential 
of STEM jobs.

This overall lack of women in STEM, combined with the fact women with STEM 
degrees are consigned to the educational and health fields, creates a dearth of role 
models for young girls interested in STEM. “As girls look around for female role 
models, they don’t see anyone who looks like they do. If we want girls to succeed 
in STEM, we have to show them it’s possible” (Ad Council 2018c: 2). “She Can 
STEM aims to challenge obsolete stereotypes and help middle school girls over-
come their perceptions of what STEM isn’t by surprising them with what it is” (Ad 
Council 2018e: 1).

Drawing upon theories of visual rhetoric and images in advertising, this research 
looks at how the Ad Council’s “She Can STEM” campaign promotes STEM to 
girls. First, I contend that the campaign materials actively strive to subvert culturally-
dominant stereotypes that science is a masculine endeavor by avoiding the stereo-
types’ most common tropes in the campaign’s images. Second, I examine select 
“She Can STEM” campaign images via Birdsell and Groarke’s (2007) modes of 
visual meaning. Third, I identify shortcomings in the campaign that arise from strip-
ping its role models of all visual cues that they are scientists, as well as its exclusion 
of role models from the academic and government sectors.

�Prevailing (Visual) Stereotypes of Scientists

When it comes to the images and ideas Americans associate with scientists (and 
STEM), research has shown that we hold complex, multilayered feelings. Mead and 
Métraux’s (1957) landmark findings presented researchers with the first insights 
into ideas held by the public regarding science. These positive, negative, and shared 
images collected by Mead and Métraux about scientists have served as the founda-
tion for almost every study that has followed. Their pilot study analyzed essays 
written by high school students on what they think about scientists and what kind of 
scientist he would or would not like to be. It is relevant to note that in the Mead and 
Métraux’s study, female high school students were not asked what type of scientist 
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they themselves would like to be, but rather what type of scientist their husband 
would probably like to be. Specifically, their research found the high school stu-
dents held shared, neutral images of scientists that revolve around the scientists’ 
appearance and physical surroundings. The positive side of scientists begins to 
emerge when students described some aspects of the personality, characteristics, 
and motivation of scientists. Good scientists are intelligent, benevolent, hard-
working, and focused men working to better the world by understanding it. However, 
the scientists’ negative side described by the students stem from the same concepts 
(i.e. intelligence, motivation, dedication, etc.) that are articulated in the positives, 
but the students associate a decidedly different value to them. These scientists are 
powerless, alienated, selfish and obsessive men unable to concern themselves with 
non-science things.

Drawing on the stereotypes Mead and Métraux articulated, Chambers (1983) 
developed another major contribution to the area of scientific stereotypes research—
the “Draw-a-Scientist-Test (DAST).” The test consisted of having a regular class-
room teacher ask elementary students to “draw a scientist” without any previous 
discussion or working collectively. The drawings were then analyzed and scored 
based upon seven previously chosen indicators of the standard image of a scientist: 
(1) labcoat, (2) eyeglasses, (3) facial hair, (4) symbols of research (scientific instru-
ments and laboratory equipment), (5) symbols of knowledge (books and filing cabi-
nets), (6) technology (the products of science), and (7) relevant captions of formulas, 
taxonomic classifications, etc. (Chambers 1983: 258). Chambers found students 
began to incorporate the elements of a stereotypical scientist starting in the second 
grade. As the children neared the end of elementary school, the more stereotypical 
their images became.

Finson et al. (1995) expanded Chambers’ 7 indicators to 16 categories to create 
the DAST-Checklist. Finson et  al’s DAST-Checklist records additional common 
images appearing in the drawings of scientists. Categories 1–7 are identical to 
Chambers’ DAST indicators, but the DAST-Checklist adds (8) male gender, (9) 
white, (10) indications of danger, (11) presence of light bulbs, (12) mythic stereo-
types (Frankenstein creatures, Jekyll/Hyde figures, etc.), (13) indications of secrecy 
(signs saying “private, keep out, top secret,” etc.), (14) scientists doing work indoors, 
(15) middle-aged or older scientist, and (16) open comments (dress items, neckties/
necklaces, hair style/grooming, smile or frown, stoic expression, bubbling liquids, 
type of scientist, etc.) (Finson et al. 1995: 199).

Various versions of the DAST and DAST-Checklist have often been repeated 
using different subject groups ranging from elementary school students to college 
students and adults (Boylan et al. 1992; Finson et al. 1995; Huber and Burton 1995; 
Mason et  al. 1991; Miele 2014; Rahm and Charbonneau 1997; Rosenthal 1993; 
Rubin et al. 2003; Sumrall 1995; Thomas et al. 2006). The results, even the ones 
drawn by scientists, consistently yield the same dominant image of a scientist 
learned as a child—a white male, wearing glasses and a white labcoat, who works 
alone in a laboratory surrounded by chemistry equipment. However, studies have 
shown that the older DAST participants were the more likely to draw alternate 
images of scientists (female, working outdoors, minority, etc.). They were also less 
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likely to use mythic stereotypes. However, these few alternate-image drawings were 
usually created by minority group members, females, scientists, or by participants 
of science education intervention programs designed to breakdown stereotypes and 
make science more accessible to minorities.

One reason for the pervasiveness of the stereotypical image may be because it 
“reflects reality perhaps in part, but certainly not in totality” (Rahm and Charbonneau 
1997: 777). Rahm and Charbonneau (1997) conducted an informal visual survey of 
an atmospheric research center to look for stereotypical characteristics in real scien-
tists. They found 42% of the scientists wore glasses and 38% had facial hair/extrav-
agant hairstyles in comparison to their DAST results of 70% and 52% for each 
figure respectively. However, computers and/or workstations were seen in 98% of 
the visual survey while they appeared in only 4% of the DAST drawings.

Whether positive, negative or neutral, the stereotypes and misconceptions that 
shroud science are established at an early age and linger throughout life. The devel-
opment of stereotypical science images by the end of elementary school (Chambers 
1983) coincides with the retreat of girls and minorities from science in secondary 
school (Kelly 1982). Kelly cites three main reasons girls withdraw from science, but 
they can be applied to ethnic minorities as well—lack of self-confidence and fear 
that it is too difficult, the masculine image of science, and the apparent remoteness 
of science from everyday concerns. Ultimately, the underlying issue of self-image 
is key; if a child’s idea of self doesn’t match his or her image (and the images pro-
vided by home, school, and the media) of a scientist, then his or her interest in sci-
ence isn’t proper or appropriate (Steinke 1998).

�Visual Rhetoric and Advertising

Birdsell and Groarke (2007: 103) argue that visual arguments can be “understood 
and assessed” through Aristotle’s rhetorical proofs (ethos, pathos and logos) just as 
traditional verbal arguments. They also list five functions that visual images can 
perform in a visual argument: flags, demonstrations, metaphors, symbols and arche-
types. Flags are “used to attract attention to a message conveyed to some audience” 
(Birdsell and Groarke 2007: 104). Images act as demonstrations by conveying 
“information which can best be presented visually” and serve as metaphors by com-
municating “some claim figuratively, by portraying someone or something as some 
other thing” (p. 105). Symbols exhibit “strong associations that allow them to stand 
for something they represent,” while archetypes are symbols that derive meaning 
from “popular narratives” (p. 105).

These five functions can be applied to visual advertisements (such as those found 
in print, television and online mediums) as well. For example, Henrik Dahl, as cited 
in Visual persuasion: The role of images in advertising (Messaris 1996: 5), states 
that a fundamental aspect of advertising is that it is normally an “unwanted com-
munication.” This is because consumers do not actively seek out advertisements and 
commercials for consumption. Therefore, a critical role of an advertisement is to 
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flag (attract and maintain) the attention of customers. An organization’s logo—a 
distinctive signature, motto, image, or trademark—taps into the metaphor, symbols 
and archetypes functions.

Once the viewers’ attention is attained via the flag, Messaris argues the next step 
is to elicit emotions from the viewers. This can be done in a number of ways, includ-
ing via Messaris’s three major roles images play in advertising: (1) images as simu-
lated reality, or iconicity; (2) images as evidence, or indexicality; and (3) images as 
an implied selling proposition or syntactic indeterminacy. Iconicity is critical in 
advertising because it allows advertisers to simulate, as well as violate, reality. 
Messaris (1996: xiii) argues this is important for the following reason:

When we look at the real world that surrounds us, the sights we see do not register in our 
brains as neutral, value-free data. Rather, each visual feature, from the smallest nuances of 
people’s facial expressions to the overall physical appearance of people and places, can 
come with a wealth of emotional associations. These associations stem from the unique 
experiences of each individual in addition to the common, shared influence of culture.

Whether it is simulating or violating reality, viewers of an image assign mean-
ings, emotions and values to what they see. In this way, iconicity also can evoke 
pathos in the viewer. “Indexicality is a critical ingredient in the process of visual 
persuasion whenever a photographic image can serve as documentary evidence or 
proof of an advertisement’s point” (Messaris 1996: xvi). For example, a commercial 
featuring a celebrity drinking a Pepsi communicates more than a written description 
of the video, or a drawing/animation of the celebrity enjoying the soda. Due to the 
inherent nature of photo/videography to “capture” reality, viewers are more likely to 
believe that the celebrity actually drank the soda.

The third role touches upon the syntactic indeterminacy of images. Messaris 
(1996: xi) describes the difference between verbal and visual syntaxes as follows:

[A] distinctive characteristic of verbal language is the fact that it contains words and sen-
tence structures (a prepositional syntax) that allows the user to be explicit about what kind 
of connection is being proposed in such statements. An equally distinctive characteristic of 
visual images is the fact they do not have an equivalent of this type of syntax.

While it is tempting to view a lack of specificity when it comes to visual syntax 
as a negative, Messaris (1996: xxii) argues that it is precisely because of its lack of 
specificity that visual arguments have an open-ended nature that lends itself to an 
“adaptability to the meaning of persuasive images.”

Beasley and Danesi (2002: 12) state that two primary practices in advertising—
positioning and image creation—go “about creating … messages and anchoring 
them firmly into social discourse. “Positioning is the placing or targeting of a prod-
uct for the right people,” while image creation results in “fashioning a ‘personality’ 
for the product.” For example, Mountain Dew soda is positioned primarily towards 
men as the majority of its advertisements feature male leads and the image it has 
crafted appeals to competitive male teenagers and young adults interested in com-
puter/video games and extreme sports. Beasley and Danesi (2002: 15) also state that 
“advertising has become entrenched into social discourse by virtue of its widespread 
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diffusion throughout society.” Advertising’s ability to tap into the everchanging, 
ephemerality of social discourse allows it to (Beasley and Danesi 2002: 16):

•	 Guarantee that newness and faddishness can be reflected in the product through 
adaptive change in…commercials, or in the meanings embedded in its logo, 
package design, etc.;

•	 Ensure that any changes in social trends…also be reflected in ads, commercials, 
logos, design, etc.;

•	 Ensure that the product’s identity keeps in step with the times by renaming it, 
redesigning its appearance, changing its advertising textuality, etc.;

•	 Guarantee that the consumer’s changing needs and perceptions be built into the 
textuality (form and content) of [the] brand…, thus creating a dynamic interplay 
between advertising and changing modalities of social life, whereby one influ-
ences the other through a constant synergy.

Essentially, advertisements are so deeply integrated into our society, that popular 
culture takes up messages, images, themes, etc. from commercials and weaves them 
into itself (consumers across America saying “Whassup” after seeing Budweiser’s 
commercials), and commercials assimilate popular culture elements like hit songs, 
“hip” celebrities, fashion trends, etc.

�Breaking Down the “She Can STEM” Campaign

Unlike many previous Ad Council PSA campaigns, “She Can STEM” does not rely 
on print, radio or television components to spread its message. Instead, the cam-
paign is focused on online media elements, such as banner ads, social media graph-
ics, online videos, etc., that can be embedded in other websites or shared on social 
media. For the purposes of this chapter, I am limiting my scope of research to the 
seven social [media] graphics1 produced for the campaign, which each feature a dif-
ferent campaign spokeswoman.

The design and composition of the social graphics are almost identical. When 
you look at all seven graphics, the only design differences are in the colors and 
which direction the woman is facing. Each one is square-shaped, which optimizes 
its display in some social media feeds, such as Instagram. The primary focus in the 
social graphics is a headshot of one of the women, which takes up approximately 
two-thirds of the space. In the remaining third, the letters S, T, E, M are placed in 
individual square boxes arranged vertically. Two of the boxes are always smaller 
than the others, and in the larger boxes we are able to see what the letter represents 
(S is for science). The two larger boxes always represent the two elements of STEM 
most associated with the featured woman’s job. The design of letter boxes mimics 

1 From the “She Can STEM” campaign by the Ad Council, 2018. Retrieved April 9, 2019, from 
http://shecanstem.adcouncilkit.org/spread-the-word/. Copyright 2018 by the Ad Council.
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that of the periodic table of elements, an iconic image found in science classrooms 
around the world. All but two of the women have an enlarged T in their boxes. They 
also are the two women who are not employed by corporate campaign partners. The 
M is also enlarged in only two images. The S is enlarged three times and the E 
four times.

Underneath the STEM boxes, the Ad Council logo appears in light gray so it can 
clearly brand the campaign without distracting from its core messages. In the bot-
tom fourth of the square, there is a blue, orange or yellow box that contains an 
inspirational tagline from the woman in the ad to the campaign’s target audience. 
Below are the taglines (Ad Council 2018d):

•	 You have the power to bring new worlds to life.
•	 Do what you love and you’ll always be successful.
•	 If you can imagine it, it’s possible.
•	 Ever wonder if there’s life on other planets?
•	 Don’t just solve the problem, write the code.
•	 We need girls like you in STEM.
•	 You are the generation that will be stepping foot on Mars.

Also written in the boxes, directly underneath the inspirational sentence, we find 
the featured woman’s name and credentials written in a smaller font size. Nowhere 
in the design of the social graphics does the name of the campaign, its slogans, or 
references to additional information (such as a hashtag, URL address, etc.) appear.

The women were photographed in front of a solid, white background. They are 
making direct eye contact with the camera (and therefore the viewers) and are smil-
ing. The camera’s angle is perpendicular to the subjects and not shot using high or 
low angles. The images are cropped to include the head, shoulders, torso and occa-
sionally, the waist. Many of the women are posed similarly in their headshots. Some 
have their arms crossed in front of their chests. One is posed with both her hands on 
her hips, while another has only one hand on her hip. The arms of another woman 
are at her sides, but her hands are laying on top of one another in a manner that sug-
gests they are resting on something just out of frame. The women are wearing either 
casual attire (a long-sleeved t-shirt, a denim shirt, or a motorcycle jacket with a 
V-neck t-shirt) or business-casual attire (dress blouses with and without jackets). 
They are all wearing subtle make-up, and none of them have their hair pulled back. 
One woman’s hair color is noticeable as it is dyed a soft pink while the rest of the 
campaign spokeswomen’s hair colors appear natural.

To better analyze these visuals, I modified the DAST-Checklist created by Finson 
et al. to create the Visual Stereotypes of Scientists Checklist (VSSC). The VSSC 
streamlines some aspects of the DAST-Checklist (such as putting relevant captions 
of formulas and taxonomic classifications within the symbols of knowledge cate-
gory), while moving others out of the “open comments” section into their own cat-
egory (such as stoic expression). These changes make it easier to score images of 
scientists based on how many of the following 15 visual stereotypes occur:
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•	 Visual presents as male
•	 Visual presents as white
•	 Stoic expression present
•	 Facial hair is present (if male) or long hair is pulled back (if female)
•	 Appears to be a middle-age or older adult
•	 Eyeglasses are worn
•	 Specialized attire or clothing (labcoats, goggles, clean suits, protective gloves, 

etc.) is worn
•	 Appearance is disheveled (messy hair, clothing askew, etc.)
•	 Mythic stereotypes (Frankenstein creatures, Jekyll/Hyde figures, Albert Einstein, 

etc.) are present
•	 Set indoors
•	 Symbols of research (scientific instruments and laboratory equipment) appear.
•	 Symbols of knowledge (books, filing cabinets, lightbulbs, relevant captions of 

formulas, taxonomic classifications, etc.) appear
•	 Technology (the products of science and engineering, such as comput-

ers) is present
•	 Indications of danger are visable
•	 Indications of secrecy appear

For example, there is one telling image of a scientist taken from a stock photog-
raphy website2, which scores an 11 on the VSSC—male, white, facial hair, middle-
age/senior adult, eyeglasses, specialized attire/clothing (labcoat, goggles, protective 
gloves), disheveled appearance (specifically his unkempt hair), working indoors, 
symbols of research (beakers, mixing chemicals, etc.), symbols of knowledge (for-
mulas on the chalkboard, pen and paper for taking notes, etc.), and indication of 
danger (gas mask for filtering out dangerous fumes and protective gloves for cor-
rosive chemicals). Even a less cartoonish stock photo3 scores a 9 on the VSSC.

�Implications

As previously mentioned, the goal of the “She Can STEM” campaign is to keep 
girls interested in STEM by providing girls with female role models that do not 
reflect outdated stereotypes. The predominant stereotypical image of a scientist is 
an older, white male with facial hair and wild, unkempt hair that is wearing glasses 
and a labcoat. He stoically works indoors surrounded by scientific instruments (such 

2 “Mad scientist conducts chemistry experiment in his lab” by J. McRight, 2019. Retrieved from 
https://www.shutterstock.com/image-photo/mad-scientist-conducts-chemistry-experiment- 
his-113472703https://.
3 “Scientist using microscope in a modern laboratory” by caracterdesign, 2019. Retrieved from 
https://www.gettyimages.com/detail/photo/scientist-using-microscope-royalty-free- 
image/181892523.
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as a microscope) and chemical laboratory equipment. As such, the advertising pro-
fessionals who worked on the “She Can STEM” campaign actively subvert this 
stereotype by eliminating as many of these characteristics as possible from its cam-
paign materials.

In stark contrast to the culturally-dominant stereotype, the role models in the 
“She Can STEM” campaign are all women who look to be in their 30s and are wear-
ing casual or business-casual attire. Their relative youth and lack of specialized 
attire help make the women more accessible and relatable to the campaign’s target 
audience of tween girls. The plain white background and lack of props in the photos 
also removes stereotypical symbols from the campaign materials. This encourages 
girls to imagine what the women’s work environments looks like and to place the 
women in an environment of their choosing.

The campaign images are so a-stereotypical that the five of the seven social 
graphics examined scored a 2 on the VSSC while the remaining two scored a 1 (see 
Table 4.1). All seven graphics earned a point for “working indoors” as the plain 
white background implies an interior environment. The subsequent points earned by 
each graphic depended on if the woman was white (5 of 7 were). 

Another function of the white background in the social graphics is that it helps 
attract the viewer’s eye. Or as Birdsell and Groarke (2007) would reason, the white 
space functions as a flag. Another function of visual argument performed by the 
images in the graphics is demonstration. The photographic images of real women 
who work in prestigious STEM jobs demonstrate that STEM isn’t just the domain 
of men; women can and do succeed in STEM careers. Similarly, these images of 
women also evoke Messaris’s concepts of iconicity and indexicality as they simulate 
reality and offer proof of success in STEM.

Table 4.1  Visual stereotypes of scientists checklist (VSSC) scores for 9 figures

Stereotype 1 2 3 4 5 6 7 8 9

Male 1 1
White 1 1 1 1 1 1 1
Stoic expression 1
Facial hair 1 1
Middle-age, older adult 1 1
Eyeglasses 1 1
Specialized attire/clothing 1 1
Disheveled appearance 1
Mythic stereotypes
Working indoors 1 1 1 1 1 1 1 1 1
Symbols of research 1 1
Symbols of knowledge 1
Technology
Indication of danger 1
Indication of secrecy
SCORE 2 2 2 2 1 2 1 11 9
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An aspect of the campaign that is notable is its purposeful avoidance of symbols 
and archetypes. The women are not holding, nor are surrounded by, any props or 
workplace imagery symbolically associated with STEM. The lack of symbols, com-
bined with the gender and youth of the women, effectively avoids the archetypes of 
science. In fact, the images score so low on the VSSC that if it was not for the 
accompanying text/copy in the social graphics, viewers would not know that the 
women work in STEM. It could be said that the STEM boxes in the campaign mate-
rials act as symbols since their design reminds viewers of the periodical table and 
present the STEM acronym. However, I argue that the STEM boxes alone do not 
definitively link the women in the pictures to STEM jobs.

The accompanying copy tells us that these women work for IBM, Google, 
Microsoft, Verizon, Boeing, GE and the Adler Planetarium. All of these employers 
are multinational corporations except the Adler Planetarium, which is a non-profit 
organization. Five of the seven employers are brand partners of the campaign (IMB, 
Google, Microsoft, Verizon and GE). Representative of the women who work in 
academic and government STEM sectors are conspicuously absence. This is sur-
prising as approximately 30% of the STEM workforce is employed by the education 
and government sectors (National Science Board 2018).

Since advertisements are unwanted communications, flagging (and retaining) the 
attention of the target audience must be immediate. As previously stated, I believe 
the large amounts of white space in the campaign materials act as a flag, but the lack 
of science symbols does not give the tweens interested in STEM a reason to linger 
on the campaign’s social graphic. The STEM boxes may help increase the target 
audience’s attention, but ultimately, the brain must decide in a fraction of a second 
if the combination of the white space, the image of a woman, and the nearby STEM 
boxes is enough to make the viewer stop and read the ad’s copy. If it is not compel-
ling enough to the viewer, the brain will filter out the ad as background noise like it 
does to most ads.

The campaign strips away all of the visual cues that these women are scientists 
and instead relies on text/body copy to convey that information. In actively striving 
to subvert culturally-dominant visual stereotypes of scientists, the campaign is actu-
ally ignoring a whole sector of women who work in STEM—the women that do 
wear labcoats, work with microscopes, monitor chemical reactions, etc. The cam-
paign does not show women doing “stereotypical” science that may be associated 
with the government and academic sectors. Instead, it showcases tech-based jobs 
found at its (corporate) brand partners. In short, we lose the immediate recognition 
that she is a scientist because the campaign overcompensates to ensure that image is 
not stereotypical. This could have been avoided by giving the women simple props 
to interact with during the photoshoot. For example, the woman astronomer, could 
be leaning on a backyard-sized telescope. Another woman could be holding a video 
game controller since she heads the Halo Game Studio at Microsoft. Instead of 

D. J. Danuser



63

standing in front of a white background, a third woman could be standing in front 
of computer code, as she tells girls, “Don’t just solve the problem, write the code.”

Another shortcoming of the campaign’s social graphics is that they do not include 
any references to the campaign’s slogan (“She can STEM, so can you”), its primary 
hashtag (#SheCanSTEM), website URL (SheCanSTEM.com) or its Instagram 
account handle (@SheCanSTEM). I suspect this is because text appearing in a pic-
ture cannot be hyperlinked, so even if the image included #SheCanSTEM, users 
could not click on it to follow a link. However, the lack of the campaign information 
as problematic as “She Can STEM” is designed to be primarily an online campaign. 
Not including references to where the campaign lives online places the burden of 
sharing that information on the social media user. If the user doesn’t include 
#SheCanSTEM, @SheCanSTEM, or SheCanSTEM.com, then viewers of the post 
do not know it is a part of a large campaign.

�Conclusion

Advertisements play critical role in our culture as they attempt to persuade us buy a 
particular product or take a particular action. The visual arguments created by the 
images in advertisements serve as a flag, demonstration, symbol, archetype and/or 
metaphor for the viewers (Birdsell and Groarke 2007) and can elicit emotion by 
evoking iconicity, indexicality, and syntactic indeterminacy (Messaris 1996). 
Successful advertising campaign both become part of our social discourse, as well 
as influence it (Beasley and Danesi 2002).

The Ad Council has a rich history of producing memorable public service cam-
paigns, including Smoky the Bear, the Crash-Test Dummies (who remind us to 
“Don’t be a dummy, buckle your seat belt,”), and more. The Ad Council’s 2018 
“She Can STEM” campaign was created to address the fact that girls start to lose 
interest in STEM in middle school due in part to a cultural belief that STEM is a 
masculine endeavor. The campaign sought to counter this narrative by showcasing 
real women who work in STEM as role models for tween girls.

The campaign’s materials, specifically its social graphics, successfully subvert 
the majority of scientist stereotypes in order to present tween girls with contempo-
rary role models. However, it subverts to the point there are no visual cues that the 
featured women are scientists and the audience must rely on accompanying copy to 
understand their connection to STEM. The social graphics also fail to include rele-
vant online information (i.e., URLs, hashtags, handles), which is troubling as the 
campaign is designed to be a social media campaign. Finally, the campaign ignores 
STEM careers in the academic and government sectors. Instead, it relies almost 
exclusively on corporate campaign partners.
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Chapter 5
Graphical Literacy, Graphicacy, 
and STEM Subjects

Stacy A. Costa

�Introduction

Ever since Descartes invented analytic geometry, graphs have become integral to 
mathematics and science. Graphic literacy is even more important today, as students 
are exposed continuously to graphic artifacts; as a result, discerning between all 
kinds of graphs and scientific ones is a critical skill, given that the latter is intrinsic 
to STEM subjects. Therefore, equipping them with graphical literacy is a first step 
in providing students with knowledge methods to leverage, demonstrate, and apply 
their creative endeavours and to approach and solve hard problems. Within the 
(STEM) realm, students should, in a phrase, be visualizing certain facts or phenom-
ena in terms of how they are represented graphically. While there are opportunities, 
even if few, throughout STEM classrooms to develop graphical literacy, typically, it 
is assumed to emerge spontaneously. Nevertheless, this is not necessarily the case. 
By practising and reinforcing graphical literacy concretely, students are given the 
opportunities required to extract structural and unstructured information correctly 
and meaningfully from graphical representations.

This chapter will consider why these opportunities are essential to promote pro-
ficient learners in STEM subjects. Furthermore, it examines problematic and com-
mon misconceptions about graphs, as well as inaccuracies related to creating them. 
Students should be able to utilize graphs in varied ways to understand the data, to be 
able to reason, communicate, and to make predictions.
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�Graphs in Education

Students need to be able to read graphs not only as part of mathematical learning but 
also to identify trends in their subject areas. Larkin and Simon (1987: 98) suggest 
that graphs and diagrams are superior to verbal descriptions since they “support a 
large number of perceptual inferences, group information through location and 
avoid textual searching.” While graphs are essential, they are not always so simply 
presented. Most diagrammatic representations consist of standardized icons, which 
are designed to aid general understanding visually.  However, less obvious, non-
iconic, information may be hidden in the visual form, and this would require inter-
pretation and inference in terms of higher-order thinking, allowing the student to 
observe trends or patterns that need intrepretation. If students can only read a graph 
at a surface level by understanding, say, the role of the x- and y-axes, but are not 
provided with additional insights related to how graphs provide information by 
visual techniques, they may miss the importance of a graph in terms of its represen-
tational power. Diagrams in general, allow us to make all kinds of generalizations. 
Moreover, it is vital to understand, that when reading or creating a graph, what is 
represented and what we want to represent may not exactly match. The clarity in 
representation is always an objective to be achieved in any pedagogical context. The 
ability to see below the graphic text to decode what they may contain in terms of 
assumptions is too.

Graphs can be problematic, and misconceptions can easily arise because students 
assume that they contain all the information required objectively. They need to see 
implications in the graphic structure and thus assess what kinds of empirically-
based and argumentative claims are involved. A graph is, at one level, a tool used to 
communicate relevant scientific-mathematical ideas visually. In principle, it should 
consist of reliable information synthesized graphically so that decisions about 
something can be made realistically and empirically. Graphs can, of course, be 
mathematically sophisticated, but even so, for most practical purposes, they should 
be clear and effective in their representational formats. However, this is not always 
the case. Distinguishing between representation and misrepresentation thus requires 
the development of graphical literacy, which is not only based solely on understand-
ing the objective of the representation, but also on what inherent knowledge beliefs 
are implicit in the graphic design. If we expect students to be multi-literate citizens 
today, they certainly need to make sense of graphs, given their ubiquity, decoding 
any potential hidden beliefs, and how these are shaped by specific graphics, visuals, 
numerical, and spatial dimensions.
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�Graphical Literacy

Graphical literacy can be defined simply as the ability to interpret and construct 
graphs. Fry (1981) located the development of such literacy within the field of 
mathematics, seeing a graph as a complex mathematical text, consisting of lan-
guage, numbers, symbols, visual shapes, etc. which cohere into a holistic meaning 
system. However, today, graphs are found beyond this domain, constituting a visual 
language that is everywhere. They are psychologically powerful because they have 
the ability to represent data in a holistic way that induces specific kinds of interpre-
tations. Graphs are now part of a broader human-computer interactive mode of pro-
cessing large quantities of data into a visual narrative structure.

The importance of graphical literacy cannot be overstated; and it cannot be 
assumed tha a graph’s meaning is self-evident. Graphical literacy cannot be linked 
simply to vision; like any language, graphs bear ideological and knowledge-specific 
subtexts. Therefore, graphical literacy, like verbal language literacy, is a skill that 
needs to be developed in the classroom, inhering in the ability to unpack the com-
plex information inherent in graphical representations.

As students now have access to technological devices and all kinds of informa-
tion at their fingertips, they are being constantly exposed to digital content ranging 
from text, video, visual guides, and audio. Faced with this technological melange on 
a daily basis, it is little wonder that students have become accustomed unconsciously 
to the visual mode of information conveyance. They can find an answer in seconds 
and access millions of texts to further gain relevant information. To avoid the crys-
tallization of habituated thinking in this domain, students need to be involved in 
developing higher-order thinking skills when processing information through 
appropriate pedagogy. Graphical literacy in particular should be part of this peda-
gogy, given that graphics which are easily accessible online may be overlooked for 
what they entail.

Graphical literacy is especially critical in the domain of STEM subjects and how 
they encode knowledge. Students need to enhance their graphical literacy in order 
to filter and decipher what information is relevant and verifiable, before coming to 
an informed decision as to what a graph implies, especially since graphics can be 
created to be visually pleasing, and also designed to convey a false picture of spe-
cific information. Additionally, students need to acquire the ability to create graphs 
to represent scientific information clearly and meaningfully. Jonassen and Carr 
(2000) discovered that students found it challenging to represent their understand-
ing in multiple graphic ways. So, while students may be engaged with information 
at a basic level, they typically cannot represent it at higher abstract levels of graphi-
cality. By instructing students on how to translate concepts into visual-multimodal 
texts, they enhance their awareness of the concepts involved in the representational 
translation. Graphical literacy is thus a central skill to be acquired by STEM learn-
ers (Gebre 2018). It requires planning, a conscious understanding of the role of 
design layout, method of colour use, space, annotation, and so on.
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�Graphicacy

The term graphicacy was introduced by Balchin and Coleman (1965) as the ability 
to communicate spatial concepts that cannot be communicated by words or num-
bers alone. Wilmot (1999) defined graphicacy as the understanding of spatial con-
cepts in terms of graphic symbolism. Fingeret (2012) argued that such competence 
involves the ability to shift from visual symbols alone to multimodal representations 
that include a plethora of graphical techniques. These range from infographics, 
charts, diagrams, maps, illustrations, and timelines to various subject-specific visual 
symbols. Teaching graphicacy today involves how to make sense of these tech-
niques and how to extract relevant meanings from them, especially in STEM sub-
jects which rely extensively on graphicacy as part of their modus operandi.

In STEM subjects, graphs are not optional devices, as they may be in the human-
ities; they are intrinsic, and students must learn how to utilize them as cognitive 
tools for both representing information and fleshing any hidden beliefs that are non-
scientific. Needless to say, graphicacy has always been a pedagogical instrument in 
these fields, but it has largely been assumed that students can easily read graphs. 
However, this cannot be taken for granted, especially given the increasingly visual 
nature of communication in the current information age, and the vast amount of data 
and trends that are communicated visually through automated systems, including 
apps and other software. From this visual morass, students need to know how to sift 
from it what is relevant from what is not. They also need to understand the mathe-
matical notions behind the softwares, which can be applied diversely for various 
purposes. Graphicacy requires, above all else, the ability to envision relationships 
among variables in graphical structure, much like syntax in language. In STEM 
subjects, this includes how variables relate to each other along graphical axes or 
dimensions.

Milner-Bolotin and Nashon (2012) found that biology students enhanced their 
knowledge after developing visual-graphic literacy, suggesting that this type of 
competence should be the basis for developing advanced reasoning skills, arguing 
that these actually fit in with a constructivist frame of knowledge acquisition 
(Vygotsky 1978; Piaget 1926). Visual literacy and critical thinking in this frame-
work are intertwined and complementary to linguistic literacy. All types of literacy 
involve the ability to extract relevant meaning from information, as well as the 
awareness of how we construct texts. Some now claim that visual literacy is part of 
general “discursive fluency” (Airey and Linder 2009; Offerdahl et al. 2017), which 
is critical to how we communicate through various modalities of representation. 
While students may have fluency in one modality or other, they may not be able to 
integrate the separate modalities into an overall discursive-cognitive multimodal 
system. Moreover,  this means going beyond traditional assumptions of what stu-
dents bring to the classroom.

Soloways and Norris (2017) found that within the elementary classroom, stu-
dents spent 90% of their time with text-based materials and only 10% with imaged 
based materials. However, outside of the classroom, the opposite was true. The 
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researchers used the term “picting” in reference to how students today grasp and 
communicate information digitally, which stands in contrast to “writing.” This has 
obvious pedagogical implications for tapping into the student’s picting competence 
and transforming it into a more traditional writing-reflexive form of cognition. This 
can be done with cooperation between STEM and the humanities, such as the use of 
artistic and technical drawings in tandem, whereby students can begin to translate 
their picting competence into a broader graphicacy-literacy competence.

�Interpretation

Graphicacy is an intrinsic part of relaying and representing information in all the 
sciences. As mentioned, though, it cannot be assumed that it is more comprehensi-
ble than concepts expressed in verbal language. Galesic and Garcia-Retamero 
(2011: 451) found that graphic comprehension “is not entirely intuitive but requires 
a certain level of meta-knowledge about graphs acquired through formal education.” 
Pinker (1990) used the term “graph schema” in a similar fashion to describe the 
meta-knowledge of a graph. Whatever term we use, it is obvious that graphicacy 
cannot be assumed in students—a common pedagogical assumption. Graphicacy is 
intrinsic to complex mathematical or scientific representations (Rosenblatt 2004; 
Sierschynski et  al. 2014). Bolotin (2015) argues that while many students can 
acquire visual literacy skills in courses such as fine art, they do not necessarily 
transfer them to the STEM field, and vice versa. Yet, without it, research is showing 
that divergent thinking and problem-solving skills required by STEM subjects are 
hampered (Tytler 2016).

Shah and Hoeffner (2002) found that systematic errors emerge when visual texts 
are not explicitly created to represent specific information. Students rarely describe 
the true intentions of the graphs accurately. For example, students might misinter-
pret a graph representing the speed of a race-car to mean the race-car’s position on 
a track (Janvier 1981). This error is particularly common in contexts for which 
iconic interpretation is implied, especially when the graph is meant to represent 
change (such as growth or speed) in terms of some dimension (such as height, 
growth, location, speed). Shah and Hoeffner (2002) found that issues such as dis-
tance between graph lines, devices such as bar orientation in a graph, and quantified 
variables might be interpreted as literal “pictures” of the situation rather than 
abstractions.

Moreover, like linguistic styles, there are graphic styles that require particular 
kinds of interpretive skills. For example, a pie chart would typically be used to com-
pare parts of a whole and not the difference between them. So, if students were 
looking at the separate entities, without some knowledge of how they are interre-
lated, errors in interpretation might emerge. A bar graph would be a better option for 
showing the differences between elements. Another problematic area is how graphs 
compress or scale information, which requires a specific kind of discernment. For 
example, showing data points on a graph of only a few months out of 1 year may 
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imply an upward trend. However, a much broader data range might reveal a differ-
ent picture. So, if scaling is too expanded or too compressed, the representation may 
lead to skewed interpretations. Axis style is also operative in producing misinterpre-
tations. For example, if we start the vertical axis at 100, but the data points are 100, 
150, and 120, the difference appears to be dramatic and significant, even though this 
may not be the case. By starting a vertical axis at zero, a more accurate depiction of 
the data is possible. Axis style is the simplest way to misrepresent the data, but it is 
also easily remedied.

On the positive side, Galesic and Garcia-Retamero (2011) found that graphical 
devices can assist students with low numeracy. Nevertheless, while their findings 
assess understanding of graphical formats, not all their subjects understood the 
visual displays, emphasizing again that graphical literacy requires some meta-
knowledge. Overall, Costa (2017) found that students benefit from incorporating 
graphical and visualization as part of their mathematical learning, and can use them 
to explain their understanding of mathematical materials better. As Garcia-Retamero 
and Cokely (2013: 392) also discovered, unless graphical aids are “transparent, with 
well-defined elements, they only can represent relevant information marking part-
to-whole relationships allows for improved comprehension.” As Shah and Hoeffer 
(2002) argue, this implies that graphs can describe familiar relationships or unfamil-
iar relationships in concrete ways.

�Conclusion

Piaget’s (1926) notion of cognitive disequilibrium implies that previous knowledge 
schemas need to be updated continuously as the mind seeks to gain an equilibrium. 
Students who are engaging with graphical literacy are adopting new ways to update 
their schemas of understanding, leading to an equilibrium of knowledge. As Scaife 
and Rogers (1996) point out, this means that a more integrated teaching approach is 
required—one that links external and internal representations with prior knowledge; 
as well as creating conditions which facilitate making connections between the two. 
This has been called transliteracy (Liu 2012), and is defined as the ability to negoti-
ate the varied and fragmented informational world of the Internet, extending tradi-
tional conceptions of literacy while enabling students to work more consistently and 
effectively with information. As Buuren et al. (2015) suggest, this implies providing 
students with opportunities to “express their own conceptual understanding and 
develop a more qualitative conceptual reasoning and analogical reasoning through 
the visual representations within graphical modes.”

Future pedagogical study of graphical literacy should examine the methodology 
of how internal and external forms of graphicacy can be amalgamated and shown to 
have differential cognitive uses. Students may be bombarded with false information 
through automated and curated technologies and believe it to be true. Classroom 
pedagogy must therefore be able to get students to sift the misrepresentations from 
the graphical forms and this requires concrete instruction in graphicacy.
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Chapter 6
Mathematics, Statistics, and Sports

Frank Nuessel

�Introduction

In Learning and teaching mathematics in the global village, Danesi (2016: vii) 
points out that:

It cannot be denied that technology today is reshaping the world, including the academy. It 
has also taken the academy into the world. Math is now a common theme in popular forms 
of entertainment (in movies, in television programs, and so on) and this incorporation into 
the popular imagination […] can be turned to the advantage of classroom pedagogy. The 
extension of the math classroom into the world of pop culture is another example of how the 
wall-less classroom can unfold.

A sizeable body of literature documents Danesi’s assertion (Nuessel 2012). 
Many of these studies verify the intermingling of popular culture and the academy 
as an enticing resource for the teaching of mathematics and statistics. The biblio-
graphic references section of several representative studies on this significant matter 
contains a sizeable list of this type of research.

The first part of this chapter defines and discusses several basic terms related to 
the topic of teaching mathematics and statistics. These include the following: math-
ematics, mathematics pedagogy, statistics, statistics pedagogy, mathematics and 
statistics, mathematics anxiety and statistics anxiety, information, pop culture and 
its relationship to mathematics and statistics, games, sports, sports wagering, and 
most popular sports in North America with a brief historical overview of American 
football, basketball, and major league ball. The second part will discuss how sports 
information or data can provide the basis for mathematical and statistical problem-
solving from the realm of popular culture to create Danesi’s (2016: 82–83, 137) 
“wall-less” academy through the use of the vast amount of information from aspects 
of everyday life—an approach that will have great appeal to students. This chapter 
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will provide selected examples of mathematical and statistical pedagogical prob-
lems from American football, baseball, and basketball.

�Mathematics

What is mathematics? Berggren et al. (2020) define it as:

The science of structure, order, and relation that has evolved from elemental practices of 
counting, measuring, and describing the shape of objects. It deals with logical reasoning, 
quantitative calculation, and its development has involved an increasing degree of idealiza-
tion and abstraction of its subject matter. Since the 17th century, mathematics has been an 
indispensable adjunct to the physical sciences and technology, and in more recent times it 
has assumed a similar role in the quantitative aspects of the life sciences.

Devlin (2000: 5) describes mathematics simply as “the science of patterns” 
(emphasis in original). He goes on to say that (2000: 8):

The patterns studied by the mathematician can be either real or imagined, visual, or mental, 
static or dynamic, qualitative or quantitative, utilitarian or recreational. They arise from the 
world around us, from the depths of space and time, and from the workings of the human 
mind. Different kinds of patterns give us different branches of mathematics. For example, 
number theory studies (and arithmetic uses) the patterns of number and counting; geometry 
studies the patterns of shape; calculus allows us to handle patterns of motion; logic studies 
the pattern of reasoning; probability theory deals with patterns of chance; topology studies 
patterns of closeness and position.

�Mathematical Pedagogy

What is mathematical pedagogy? Danesi (2016: 1) provides a historical and infor-
mative account of math education from its Greek origins to today, pointing out that 
Elements by Euclid (mid-fourth century BCE to mid-third century BCE) was the 
first theoretical treatise on mathematics that served as a textbook. In that era, of 
course, the word “textbook” meant a hand copied document on parchment that 
required a considerable amount of time and effort by the scribes who reproduced 
these texts. With the advent of Johannes Gutenberg’s printing press, textbooks 
became available in multiple copies, and, ultimately, facilitated mass education. 
This world order is what Marshall McLuhan called the Gutenberg Galaxy (McLuhan 
1962). Danesi (2016: 52–57) subsequently introduces the term “Digital Galaxy” to 
refer to electronic media that provides open access to information via the World 
Wide Web (WWW) developed by Tim Berners-Lee in the early 1990s. This 
electronic-digital tool has resulted in a resource that provides immense amounts of 
data and information that can be updated and corrected regularly. In essence, it is an 
information search tool that permits interactive research communication. The World 
Wide Web is essentially a massive source of information for the public—one that 
must be used with care and discrimination in order to avoid false or inaccurate infor-
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mation. This digital tool provides teachers and students with vast data bases that 
facilitate easy access to a wide array of information, which can serve as stimulating 
resources that can engage students of mathematics and statistics with tantalizing 
applications of theory to practice. This virtual space is where the World Wide Web 
and the classroom converge to enthuse students and teachers alike in a mutually 
engaging arena for acquiring the knowledge of necessary to understand mathematics.

�Statistics

What is statistics? Lexico (2020) defines statistics as “the practice or science of col-
lecting and analyzing numerical data in large quantities, especially for the purpose 
of inferring proportions in a whole from those in a representative sample.” Williams, 
Anderson, and Sweeney (2020) refer to statistics as “the science of collecting, ana-
lyzing, presenting, and interpreting data.” The purpose of statistics is to provide 
meaningful information about specific matters in a particular field. Statistics 
includes several subdomains, namely, probability and stochastic processes, or ran-
dom variables.

�Statistical Pedagogy

What is statistical pedagogy? It is a set of procedures that instructors should intro-
duce in their statistics courses to facilitate the organized teaching and learning of 
this discipline. By following these simple methods and techniques, students will 
acquire the basic elements of statistics through individual and collaborative 
approaches. Cobb’s (1992: 15–18) detailed overview of the teaching of statistics 
allows for several observations and recommendations, which continue to be true, 
and are summarized here.

Recommendation I: Emphasize statistical thinking
The need for data.
The importance of data production
The omnipresence of variability
The quantification and explanation of variability

Recommendation II: More data and concepts: Less theory, fewer recipes

Recommendation III: Foster active learning
Group problem solving and discussion
Lab exercises
Demonstrations based on class-generated data
Written and oral presentations
Projects, either group or individual
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�Mathematics and Statistics

What is the relationship between mathematics and statistics? Some scholars argue 
that mathematics is a pure theoretical science while statistics is an applied science. 
In their essay on the tension between mathematics and statistics, Moore and Cobb 
(2000: 615) present the following working hypothesis “statistics has cultural 
strength that might greatly assist mathematics, while mathematics has organiza-
tional strengths that provide shelter for academic statistics, shelter that may be 
essential for its survival.”

Cobb and Moore (1997: 801) capture some of the fundamental differences 
between mathematics and statistics when they state that:

Statistics is a methodological discipline. It exists not for itself but rather to offer to other 
fields of study a coherent set of ideas and tools for dealing with data. The need for such a 
discipline arises from the omnipresence of variability. Individuals vary. Repeated measure-
ments of the same individual vary […]. The focus on variability naturally gives statistics a 
particular content that sets it apart from mathematics. Statistics represents a different kind 
of thinking, because data are not just numbers, they are numbers in context. (emphasis in 
original)

Cobb and Moore (1997: 803) further note the distinctions between mathemati-
cians and statisticians in the following way:

Although mathematicians often rely on applied context both for motivation and as a source 
of problems for research, the ultimate focus in mathematical thinking is on abstract pat-
terns: the context is part of the irrelevant detail that must be boiled off over the flame of 
abstraction in order to reveal the previously hidden crystal of pure structure. In mathemat-
ics, context obscures structure. Like mathematicians, data analysts also look for patterns, 
but ultimately, in data analysis whether the patterns have meaning, and whether they have 
value, depends on how the threads of those patterns interweave with the complementary 
threads of the story line. In data analysis, context provides meaning. (emphasis in 
original)

Moore and Cobb (2000: 623) point out that “[s]tatistics […] values mathematical 
understanding as a means to an end, not as an end in itself [. . .] statistics has a sub-
ject matter of its own, quite apart from mathematics. These same statisticians argue 
for a cooperative synergy between the two disciplines for the following reasons:

•	 Despite intellectual differences, mathematics and statistics both depend on the 
process of working from the concrete to the abstract, and can learn from each 
other’s successes and failures in teaching this process to undergraduates.

•	 Statistics can benefit from embracing more openly the importance of mathemati-
cal thinking (Moore and Cobb 2000: 625–626).

�Mathematics Anxiety and Statistics Anxiety

What is mathematics anxiety and what is statistics anxiety? Phobic reactions to the 
study of mathematics and statistics are so common that many scholars at various 
universities have written about this topic and they have provided useful suggestions 
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for overcoming this fear. McCrone (2002: 266) labels it “dyscalculia”, i.e. a neuro-
logical deficit. Rossman (2006) notes that this type of anxiety occurs in elementary 
education. In terms of math anxiety, Iossi (2013) cites Richardson and Suinn (1972: 
551, Richardson and Woolfolk 1980), who described the phenomenon of math pho-
bia in the following way nearly half a century ago “[m]athematics anxiety involves 
feelings of tension and anxiety that interfere with the manipulation of numbers and 
the solving of mathematical problems in a wide variety of ordinary life and aca-
demic situations.” That now classic article also proposed a Mathematical Anxiety 
Rating Scale (MARS). In this same vein, Perry (2004) notes that as many as 85% of 
students enrolled in introductory math classes experience some math phobia. Iossi 
(2013: 30–31, Bradley 2010) describes some of the strategies for dealing with math 
phobia. First, there are curricular approaches (retesting, self-paced learning, dis-
tance education, single-sex classes, and math anxiety courses). Second, there are 
instructional approaches (manipulatives, technology, self-regulation techniques, 
and communication). Finally, there are non-instructional approaches (relaxation 
therapy, and psychological treatment). To be sure, awareness of math anxiety has 
received academic attention for at least half a century. The recognition of this phe-
nomenon has resulted in a wide variety of techniques and strategies to address this 
paranoiac reaction to the study of mathematics.

Statistics also produces anxiety in students, and there is a significant number of 
studies about this type of angst among students. Nearly thirty years ago, Zeidner 
(1991: 319) offered the following definition of statistics anxiety:

Statistics anxiety may be construed as a particular form of performance anxiety character-
ized by extensive worry, intrusive thoughts, mental disorganization, tension, and physiolog-
ical arousal. Statistics anxiety arises in people who when exposed to statistics content 
problems, instructional situations, or evaluative contexts, and is commonly claimed to 
debilitate performance in a wide variety of academic situations by interfering with the 
manipulation of statistics data and solution of statistics problems.

Zeidner (1991: 321) developed a Statistics Anxiety Inventory (SAI) to determine 
issues in four areas: (1) statistical procedures or activities, (2) solving of quantita-
tive problems, (3) situations related to the study of statistics (enrolling in a statistics 
class, picking up a statistics textbook), and (4) evaluation of performance in statis-
tics (exams, quizzes, and studying for a test in statistics. The content of the SAI 
sought to elicit information about content and performance in statistics. It was pat-
terned after the MARS instrument (Richardson and Suinn 1972; Richardson and 
Woolfolk 1980). In his concluding remarks, Zeidner (1991: 327) points out that 
prior negative experiences with math and a low sense of math-efficacy are anteced-
ents to statistics anxiety. Onwuegbuzie et al. (1997) also provide a detailed exami-
nation of statistics anxiety, which offers instructors useful guidelines for dealing 
with this phobia.

Pan and Tang’s (2005: 212–214) list of references and Chew and Dillon’s (2014: 
205–208) bibliography attest to an anxiety-ridden response to this subject by stu-
dents enrolled in statistics classes. Pan and Tang (2005: 205) employ Onwuegbuzie, 
DaRos, and Ryan’s (1997) definition of statistics anxiety to describe this experi-
ence, namely, “anxiety that occurs as a result of encountering statistics in any form 
at any level.” Pan and Tang (2005: 209) note that there are several factors that lead 
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to statistics anxiety (math phobia, lack of connection to daily life, pace of instruc-
tion, instructor’s attitude). However, several instructional strategies offer practical 
ways to address statistics phobia (practical application, real-world example carried 
through, orientation prior to class, multiple evaluation criteria, flexible availability 
of assistance). Chew and Dillon (2014: 196) highlight the significance of statistics 
in daily life by citing Wallman’s (1993: 1) call for statistical literacy which she 
defines as “the ability to understand and critically evaluate statistical results that 
permeate our daily lives–coupled with the ability to appreciate the contributions that 
statistical thinking can make in public and private, professional and personal 
decisions”.

Chew and Dillon (2014: 197) hasten to point out that statistics anxiety is not the 
same as mathematical anxiety. It was widely assumed that they are similar because 
they are related areas of study. This commonly held belief changed when Cruise, 
Cash and Bolton (1985) developed their Statistical Anxiety Rating Scale (STARS) 
to account for the differences between mathematics and statistics and their distinct 
types of anxiety. Subsequently, Chew and Dillon (2014: 229) provided the follow-
ing definition of statistics anxiety as:

a negative state of emotional arousal experienced by individuals as a result of encountering 
statistics in any form and at any level; this emotional state is preceding by negative attitudes 
towards statistics and is related to but distinct from mathematics anxiety.

Ultimately, there is a distinction to be made between mathematics anxiety and 
statistics anxiety. Nevertheless, both academic domains can create discomfort and 
distress in a significant portion of students who take course work in both subjects. 
For this reason, it is important to find ways to reduce, or, ideally, eliminate this 
negative reaction to both areas of inquiry.

One source of math anxiety is its use of language. Freeman and her associates 
Freeman et al. 2016: 283–284) make the following observations about the differ-
ences between formal writing in mathematics and ordinary language:

Formal writing in mathematics is a precise language that requires accuracy in its expres-
sion, especially at higher levels of mathematics study […], though it also constitutes a large 
part of K-12 education: in the classroom, in textbooks, and on assessments. The language 
of mathematics contains mathematical statements (hypotheses, conjectures, axioms, and 
theorems), linguistic forms and properties, grammar (connectors, combinators), and sym-
bols. This language is often information-dense and abstract […]. It is also vastly different 
than language used in social conversation […], as is the vocabulary of mathematics with 
mathematical meanings being much more exact and nuanced than their ordinary 
definitions.

The above statement is equally applicable to the distinct nature of statistical writ-
ing and ordinary language, which may lead to statistics anxiety.

One way to accomplish this goal is to make use of what Danesi (2016: 82) calls 
the “Wall-less” Classroom, i.e.:

The classroom today is becoming more and more one without walls…It is both individual-
ist (book-based) and communal (social media-based). It thus amplifies learning and 
retrieves previous modes of pedagogy. This has concrete pedagogical implications, the 
most important one being that social media are the means through which the walls are being 
taken down.
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Danesi (2016: 83) illustrates how social media are breaking down the classroom 
walls, namely, by.

	1.	 setting homework assignments or clarifying them outside the classroom
	2.	 exchanging ideas and solutions to classroom problems and tests
	3.	 informing the classroom community of relevant events, such as math 

competitions
	4.	 writing actual lessons for specific topics that can be shared broadly and modified 

according to responses–constituting an extended PolyMath Project (the project 
originated in a blog by Timothy Bowers in 2009 under the pseudonym D. H. 
J. Polymath to address unsolved mathematical problems through massive col-
laboration on the Internet; Nielson 2011) applied to math education.

�Information

What is information? The Merriam-Webster Dictionary (2020) defines it as “knowl-
edge obtained from investigation, study, or instruction.” That same dictionary 
defines it as “a quantitative measure of information.”

Gibson (2013: 349) provides a superb overview of the notion of information 
when she states that:

Information is a concept with ancient roots that translates across multiple fields of inquiry. 
Use of a general model of information allows scholars to share ideas and describe informa-
tion phenomena across the spectrum of academic disciplines. Information has often been 
defined in relation to distinct but related concepts: data, facts, knowledge, and intelligence. 
Information is organized data presented context, a coherent collection of messages or cues 
structured in a way that has meaning or use for human beings. Data may be described as a 
set of discrete, objective facts about events, that become information when assigned mean-
ing or value. Facts involve information that is true, that actually exists, or can be verified 
according to an established standard of evaluation. Knowledge can be seen as information 
in context, together with an understanding of how to use that information; it is a mix of 
information, experience, and values that provides a framework for assessing and incorpo-
rating new information. Knowledge can be either explicit (a person is able to make this 
information available for introspection) or tacit (the person is not able to make the informa-
tion available for introspection). Intelligence refers to the quality of the information (e.g., 
information concerning crucial facts, military intelligence, a secret) or the capacity of a 
sentient being to combine data, facts, information, and knowledge with insight and acuity. 
Information may therefore be defined as facts and data organized to describe a particular 
situation or problem and information is what people share with each other when they com-
municate. (emphasis in original)

In his discussion of “the information society,” Danesi (2013: 354, emphasis in 
original) points out that this term “is used in cyberculture and media studies to refer 
to the economic system based primarily on the retrieval, processing, and manage-
ment of information, in opposition to an economic system based on the production 
of the production of material goods. The latter is known as an industrial society.” 
Danesi (2016: 103) further notes that the concept that today’s world is the first infor-

6  Mathematics, Statistics, and Sports



80

mation society is false, i.e., as he points out, every age is an information society. The 
dissemination of information in the past has assumed different formats and modes 
of distribution, e.g., oral communication in non-literate societies, hand written texts, 
and multiple copies of document with the invention of the printing press. Today, 
however, information may be stored electronically, thereby, allowing individuals 
access to and manipulation of vast stores of information through the use of com-
puter programs designed to make those data available to scientists and others to 
meaning to these vast stores of knowledge. The electronic storage of information or 
data now facilitates research and teaching by making available enormous amounts 
of mathematical and statistical facts that can be searched with various computer 
programs to ascertain trends or glean meaningful information that enhances our 
knowledge of the world. The ease of access to these data facilitates the ever-
expanding wall-less mathematical and statistical classroom.

�Pop Culture and Its Relationship to Mathematics 
and Statistics

What is pop culture? Danesi (2019c: 4) makes the following observations about pop 
culture:

There is little doubt that pop culture trends, like commodities, have fleeting value. But it is 
also true that pop culture constitutes an open social forum in which creativity can be 
expressed and displayed by virtually anyone. It is empowering, allowing common people to 
laugh at themselves, to gain recreation through music, dance, stories, and other forms of 
expression. Before the advent of pop culture as a mass form of entertainment, people sought 
recreational outlets through carnivals and various other public spectacles, which have typi-
cally existed alongside religious feasts since at least the medieval period. Pop culture is also 
a source of recreation that appeals to our fun-loving side. It is thus a modern-day descen-
dant of carnivals. Admittedly, as most pop culture critics have suggested, most pop culture 
is a commodity culture. It takes place in a marketplace that is at once economic and artistic, 
thus appearing in short-lived and era-specific forms.

Danesi (2019c) provides specific examples of popular culture that include print 
culture (books, newspapers, magazines, comic books), radio culture (radio broad-
casting, talk shows, Internet radio), music culture (pop music, rock and roll, hip-
hop, independent music), cinema and video culture (motion pictures, video games, 
HBO®, Netflix®, Hulu®), television culture (sitcoms, reality TV, web TV), adver-
tising culture (ad campaigns, placement, advertising art), pop language culture 
(slang, spelling style, emoji), and on line pop culture (YouTube®, Facebook®, 
Twitter®, memes [Danesi 2019b]).

It should also be noted that Danesi has written extensively about puzzles and 
problem-solving, which are forms of recreational mathematics. In one of his earliest 
books on this topic (Danesi 2002: ix), he talked about the “puzzle instinct,” which 
he describes as a specific trait of homo sapiens—a unique propensity to solve puz-
zles, brain-teasers, and enigmas for the sheer delight in finding a solution. Danesi 
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(2019a: 115) goes on to state that “[p]erhaps in no other area of human intelligence 
have puzzles played as large a significant role than in mathematics.” He notes that 
math puzzles can be traced back to the Ahmes Papyrus, which contains eighty-four 
difficult mathematical puzzles, and is one of the earliest sources of ancient mathe-
matics. This type of “recreational mathematics” saw its popularity grow with the 
publication of Claude-Gaspar Bachet de Mézirac’s extensive collection of math 
puzzles entitled Problèmes plaisans et délectables qui se font pare les nombres in 
1612 (Bachet de Mézirac 1984). These early examples of mathematics designed to 
engage and amuse the public may be seen as early efforts to engage the public in the 
wonders of the science of math.

To this list, I would add the mathematics and statistics inherent in competitive 
sports. According to Sports in the United States (2020), the three most popular 
sports in the U.S. in terms of revenue production are: (1) American football (National 
Football League), (2) basketball (National Basketball Association), and (3) baseball 
(Major League Baseball). Other popular sports in the US are: Ice hockey, soccer, 
tennis, golf, wrestling, auto racing, arena football, lacrosse, box lacrosse, and vol-
leyball. The top three professional sports (American football, basketball, major 
league ball) permeate every aspect of pop culture. We may view these games in 
person at the various stadia across North America. We listen to them on radio or on 
the Internet. We purchase sports apparel with the name and number of our favorite 
player from our favorite team. We also purchase other sports memorabilia (cards, 
equipment with team logos). We purchase books about our favorite sports heroes 
and teams and their records since their beginnings. Because of the popularity of 
sports in North American society by young and old alike, mathematical and statisti-
cal activities, exercises, and problems appeal to students enrolled in these classes. In 
fact, many sports have video games associated with them so that the fan can engage 
in virtual realistic competition similar to that of the professional athletes in 
many sports.

�Games

What are the essential elements of a game? Palmer and Rodgers (1983: 3) note that 
games have the following components:

	1.	 Games are competitive, i.e., a person competes against another individual, time, 
personal performance, or a goal.

	2.	 Games are rule-governed, i.e., principles determine the acceptable or unaccept-
able actions or behavior.

	3.	 Games are goal-defined, i.e., these activities have their recognized and agreed 
upon objectives.

	4.	 Games have closure. i.e., the participants know when the activity is completed 
according to pre-determined criteria.
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	5.	 Games are engaging, i.e., these pastimes are fun and the interactants derive 
amusement and stimulation from engaging in them. (emphasis in original)

�Sports

What is a sport? The Cambridge English Dictionary (2020) defines sport as “a 
game, competition, or similar activity, done for enjoyment or as a job, that takes 
physical effort and skill and is played or by following particular rules.” A sport 
includes a wide range of games including, but not limited to, baseball, basketball, 
American football, ice hockey, soccer, and many similar competitive pastimes. To 
be sure, all of the sports just mentioned follow the principles enumerated in Palmer 
and Rodgers (1983: 3), i.e., they are competitive, rule-governed, goal-defined, have 
closure, and they are engaging. These are the attributes that appeal to fans of all 
sports. Sports enthusiasts love their particular teams and they engage in arguments 
about which team is the best. Some sports, however, allow ties, which clearly cre-
ates a problem for those who wants a definitive winner and loser. Game rules never-
theless, have established ways to address the issue of ties through total wins and 
losses with another team that seeks to participate in post-season playoffs in an 
attempt to win a championship.

�Sports Wagering

What is sports wagering? According to Wikipedia (Sports Betting 2019), wagering 
on sports is “the activity of predicting sports results and placing a wager on the 
outcome.” Gambling on the outcome of sports games has a long tradition. In the 
U.S., it may be legal, i.e., bets are placed with duly licensed companies. At this writ-
ing, nineteen states (Arkansas, Colorado, Delaware, Illinois, Indiana, Iowa, 
Mississippi, Montana, Nevada, New Hampshire, New Jersey, New Mexico, 
New York, North Carolina, Oregon, Pennsylvania, Rhode Island, Tennessee, and 
West Virginia) allow legal betting. Sports wagering is also legal in the District of 
Columbia. As a result of the incipient legalization of sports betting in the U.S., an 
entire industry has arisen, e.g., FanDuel®, DraftDay®, and PlayOn®.

The four major U.S. sports leagues (American football, baseball, basketball, and 
ice hockey) had held a position against sports gambling. However, the National 
Basketball Association (NBA) and Major League Ball (MLB) have advocated for a 
change in their previous stance against this practice. The National Hockey League 
(NHL) has not taken a position. At this juncture, only the National Football League 
(NFL) continues its oppositions to sports betting.

Sports scandals have occurred in various sports over the years, in part, because 
gambling was illegal. As a result, there have been various scandals caused by crimi-
nals who sought to influence the outcome of a game. One infamous case of such a 
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crime occurred in Major League Baseball a little over a century ago. It involved the 
World Series of 1919 (Chicago White Sox versus the Cincinnati Reds). Because it 
damaged the reputation of what some have called America’s sport, it came to be 
known as the “Black Sox Scandal” in which the White Sox deliberately lost 5 games 
in a nine games series. This scandal became a famous 1988 movie Eight Men Out 
based on a book by Eliot Asinof’s Eight Men Out: The Black Sox Scandal and the 
1919 World Series (1963) Another film, The Field of Dreams (1989) based on the 
novel Shoeless Joe by W. P. Kinsella (1982), also deals with this scandal.

�Most Popular Sports in North America

What are the most popular sports in North America? According to Sports in the 
United States (2020), the three most popular sports in the U.S. in terms of revenue 
production are: (1) American football (National Football League), (2) basketball 
(National Basketball Association), and (3) baseball (Major League Baseball). Other 
popular sports in the US are: Ice hockey, soccer, tennis, golf, wrestling, auto racing, 
arena football, lacrosse, box lacrosse, and volleyball. The top three sports are also 
the most lucrative in terms of revenue through a variety of venues (ticket sales, 
products with specific logos, television and radio broadcast rights, and so forth).

�American Football

American football has its origins in rugby football. Walter Camp (1859–1925) is 
widely regarded as the father of American football. Its early period, when it was 
developing rules and procedures, was 1869–1875. The intercollegiate period 
occurred from 1876 to 1893. The creation of a rules committee and athletic confer-
ences (groups of colleges that participate regularly in intercollegiate games) dates 
from 1892 to 1934. The modernization of the game took place from 1933 to 1969. 
Modern intercollegiate football started in 1970.

Professional American football began in 1892 and various cities developed their 
own teams. The National Football League began in 1920 with organized and regular 
schedules. From 1933 to 1969, there was a period of stability and slow but steady 
growth. The development of a rival and competitive league, the American Football 
League in 1959. Ultimately, there was a merger of the two leagues in 1970, and the 
two leagues (NFL, AFL) compete annually in the Super Bowl to determine the win-
ner for a given season.
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�Basketball

The game of basketball was invented in Springfield, Massachusetts by the Canadian 
James Naismith (1861–1939). He authored the first rule book for basketball on 
December 21, 1891. The first known intercollegiate basketball game took place on 
February 9, 1895 between Hamline University and Minnesota AandM. Naismith 
subsequently created the University of Kansas basketball team, and became its head 
coach (1898–1907).

The Basketball Association of American became the National Basketball 
Association was founded on June 6, 1946 in New York. In 1949, it merged with the 
National Basketball League. Subsequently, the American Basketball Association 
was founded in 1967. By 1976, it merged with the NBA.

�Baseball

The origins of baseball derive from various games played in Europe. Immigrants 
brought early versions of the game to the US. In 1871, the National Association of 
Professional Base Ball Players was founded. In 1876, the National League was 
founded. In 1901, the American League came into being. Shortly thereafter, a World 
Series between the two leagues started in 1903. By 1905, the series became an 
annual event. It is known as the national sport of the US.

�American Football, Basketball, and Major League Ball: Their 
Use as a Pedagogical Resource for Mathematical 
and Statistical Problems

In part II of this paper, the three most popular professional sports in North America 
(American football, basketball, and major league baseball) will be used to illustrate 
selected exemplary mathematical and statistical problems in each sport to demon-
strate how these pop cultural sports manifestations may serve to provide a useful 
and engaging resource for teaching mathematics and statistics. All three sports 
(American football, basketball, and major league ball) maintain precise information 
about every game and every player in sports. All of these data are easily available on 
the Internet, so access is at one’s finger tips. The examples provided in the following 
three sections involve the arithmetical functions of addition, multiplication, and 
division. To be sure, these are simple operations. Nevertheless, more complex math-
ematical procedures are required for certain types of information gleaned from the 
three sports discussed in this paper.
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�American Football

The famed Chicago Bears Super Bowl XX team is considered one of the best 
National Football squads of all time. They dominated in every area. That team pro-
duced five NFL Hall of Fame players (Richard Dent, Dan Hampton, Walter Payton, 
Mike Singletary, and head coach Mike Ditka). The Super Bowl itself was played in 
New Orleans, Louisiana at the Louisiana Superdome on January 26, 1986. Their 
opponent was the New England Patriots. The final score was 46–10. The time of 
possession (TOP) of the football for Chicago was 39.15 min while New England 
had the ball for 20.45  min (Super Bowl XX, 2020). This statistic is significant 
because it means that the team with the greatest time of possession has the best 
opportunity to score points and achieve more points than the opposing team.

A regulation football game lasts 1 h (60 min). One minute has 60 s. The simple 
formula for determining the total number of seconds in a regulation football game is:

	 60 60 3600min× =s s 	

In Super Bowl XX, the Bears had possession of the football for 39.15 min. To 
determine the total number of seconds, it is necessary to multiply 39 × 60 equals 
2340 s and add 15 s. The total time of possession was 2355. Based on that equation, 
the New England Patriots had possession for 20.45 min. The same arithmetic opera-
tion involves multiplying 20 min × 60, which equals 1200 s. Then the additional 
45 s must be added for the total (= 1245 s). The final step to determine total percent-
age of time of possession by the Bears is to divide 3600 by 2340, which equals 
65.41666%. The New England Patriots had possession for 1245  s. By using the 
same arithmetical operations, the Patriots had possession of the ball 34.58333% of 
the time. This is a substantial percentage, and it explains the lopsided final score 
(46–10). Three arithmetical calculations are necessary to determine the per cent 
time of possession of the football by the Bears in Super Bowl XX: addition, multi-
plication, and division.

�Basketball

Michael Jordan, known by his initials “MJ” and his nickname “Air Jordan”, played 
for the Chicago Bulls from 1984 to 1993 and 1995–1998. After a three-year retire-
ment, he played two more years for the Washington Wizards (2001–2003). He 
played in a total of 1072 games over 15 seasons. During his career, he scored 32,292 
points (Jordan 2020). Many people consider him to be the greatest basketball player 
of all time. This assertion, of course, can lead to disputes among those who believe 
that another player is the best. These disagreements can be resolved through math-
ematics and statistics. In terms of scoring, Michael Jordan’s average was 30.123134 
per game. The next best in that category was Wilt Chamberlain, whose nickname 
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was “Wilt the Stilt” because of his height (7  feet, 1 inch). Jordan was a scoring 
guard and a small forward, while Chamberlain was a center. He played 16 seasons 
for several different teams including his final five seasons for the Los Angeles 
Lakers. He participated in 1045 games during his career with a point total of 31,419. 
His scoring average was 30.066028 rounded out to the next highest number, i.e., 
31.1 (Chamberlain 2020).

To determine the scoring average of a basketball player, the following formula 
must be used:

	
SA Scoring Average PTS Total Career Points G Total Games ( ) = ( ) ÷ PPlayed( ) 	

Arriving at this particular statistic requires two arithmetical operations: addition 
and division. First, it is necessary to add up all of the games played by each player. 
Then, that number must be divided by the total number of points scored by each 
player. Because the scores of each player are rounded off to the next highest num-
ber, it would appear that each player had the same number of points (30.1) over their 
respective careers. However, if the two players are compared numerically through 
arithmetic, it is clear that Michael Jordan had a slightly better scoring percentage 
based on the formula use to determine this type of statistical information.

The use of scoring average, however, is just one way to compare two players. 
Thus, it is possible to compare two players based on very specific aspects of the 
game, e.g., field goals per game (FG), field goal attempts (FGA), field goal percent-
age (FG%), three point goals per game (3P), three point field goal attempts per 
game (3P%), two point field goals per game (2P), two point attempts per game 
(2PA), two point percentage (2P%), effective field goal percentage (eFG%), free 
throws per game (FT), free throw attempts per game (FTA), free throw percentage 
(FT%), offensive rebounds per game (ORB), defensive rebounds per game (DRB), 
total rebounds per game (TRB), assists per game (AST), steals per game (STL), 
blocks per game (BLK), turnovers per game (TOV), personal fouls per game (PF), 
and points per game (PTS). Thus, a comparison of two players can result in multiple 
statistics. Each of these statistics requires a formula to determine with precision a 
given player’s actual performance based on at least two dozen parameters. Each one 
of these provides subtle insights into an individual’s strengths and weakness. As a 
result, students of mathematics and statistics can fine tune their arithmetic skills as 
well as make arguments for and against the quality of a specific player.

�Major League Baseball

Baseball aficionados love to assess their favorite players by comparing their num-
bers or stats. This type of information includes batting average, homeruns scored, 
runs batted in, runs scored, stolen bases. While it is quite easy to memorize these 
bits of information. A determination of the mathematical and statistical processes 
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employed to arrive at these data requires some knowledge of the procedures required 
to arrive at these facts and figures (Martin and Guengerich 2004; Ross 2007).

Frank Thomas (1968-), whose nickname was “The Big Hurt”, played for the 
Chicago White Sox for most of his career (1990–2005) and for two other teams dur-
ing his last three seasons (Thomas 2020). He was elected to the Baseball Hall of 
Fame on his initial year of eligibility in 2014. His batting average and his slugging 
percentage provide an excellent way to teach some basic arithmetic concepts, 
namely, addition and division. To determine a baseball player’s batting average, the 
following formula is used:

	
Batting Average Hits At Bats= ÷( ) 	

Frank Thomas had 8199 at bats and 2468 hits. It is necessary to divide his total 
number of at bats by his total hits. This produces a batting average of .3010123. On 
the other hand, to calculate a baseball player’s slugging percentage (SLG) involves 
the following formula: TB (Total Bases)  =  1B (First Base)  +  2  ×  2B (Second 
Base) + 3 × 3B (Third Base) + 4 × HR (Home Runs). This may be formulated as 
follows. The World Wide Web now has a Slugging Percentage Calculator (2020), 
but its use would not allow a student to engage in the necessary mathematical cal-
culations to internalize the procedures to carry out the SLG.

	
SLG

B B B HR

AB
=
( ) + ×( ) + ×( ) + ×( )1 2 2 3 3 4

	

The translation of this formula is Total Number of Bases = 1B (the number of 
singles) + 2 × 2B (the number of doubles) + 3 × 3B (the number of triples) + 4 × HR 
(the number of home runs). Thus, the slugging percentage (SLG) is as follows.

SLG = (TB ÷ AB).

In the case of Frank Thomas, he had 2468 total bases during his career. Likewise, 
he had 1440 singles, 495 doubles, 12 triples, and 521 home runs. It is necessary to 
multiply the singles by 1 (= 1440) + two times the number of doubles (= 990) + three 
times the number of triples (= 36) + four times the number of home runs (= 2084). 
This totals 4550. Next, this sum must be divided by the total number of at bats (= 
8199). The slugging percentage (SLG) is .5549457. The SLG measures the quality 
of a batter’s hits, while the batting average measures the number of times on base. 
Frank Thomas’s SLG of .554 is outstanding.

Frank Thomas’s batting average and slugging percentage represent only a small 
part of any baseball player’s total skill. Other factors include runs batted in (RBI), 
stolen bases (SB), caught stealing (CS), bases on bats/walks (BB), strikeouts (SO), 
times hit by a pitch (HPB), sacrifice hits/bunts (SH), sacrifice flies (SF), and inten-
tional bases on balls (IBB). All of these game dynamics play a part in the assess-
ment of the total value of an individual baseball player. The arithmetical computations 
needed to ascertain Frank Thomas’s batting average requires a knowledge of addi-
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tion and division. Likewise, his slugging percentage requires a knowledge of addi-
tion, multiplication, and division. Danesi (2008: 40–77) offers a very useful semiotic 
perspective to teach these basic arithmetical operations.

Furthermore, the example of selected numbers related to Frank Thomas’s batting 
performance demonstrates how baseball managers make decisions based on statisti-
cal information. In the cases of hits and at bats, batting average is less important 
than slugging percentage because the latter clearly measures the quality of the hits 
versus the number of on base hits made. It must be remembered that a winning team 
in baseball must have more home runs than the opponent. This fact accounts for the 
significance of certain statistics in this sport.

�Concluding Remarks

This chapter has addressed the significance of a popular cultural phenomenon (pro-
fessional sports) and how they can be used to engage students in learning about 
mathematics and statistics by means of bringing mathematics and statistics into the 
world and bringing the world into the classroom. Danesi (2016: 137) points out that 
the “wall-less classroom […] can now be defined not as a replacement of, but as an 
extension of, the traditional classroom–that is why the critical components of the 
latter are still in the picture (so to speak). The main feature of education is still the 
teacher-student relationship.”

The first part provided definitions and discussions of key concepts (mathematics, 
mathematics pedagogy, statistics, statistics pedagogy, mathematics and statistics, 
mathematics anxiety and statistics anxiety, information, pop culture and its relation-
ship to mathematics and statistics, games, sports, sports wagering, and sports in 
North America). The second part provided selected examples of the use of mathe-
matics and statistics to in the three most popular sports in North America (American 
football, basketball, major league baseball). Particular examples from these sports 
demonstrated how the use of these popular cultural manifestations can teach stu-
dents how to apply basic mathematical and statistical notions from real world data 
located on the Internet. The latter is a cornucopia of information, i.e., big data, 
which, in sports provides reliable data gathered over a player’s career.
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Chapter 7
Travels with Epsilon in Sign and Space

Louis H. Kauffman

�Introduction

This paper is about the relationship of diagrams with mathematics.
Mathematics is replete with diagrams of all kinds such as the classical diagrams 

of Euclidean Geometry and the wilder diagrams of topology. Indeed, symbolisms in 
mathematics such as the Leibniz notations for integration and differentiation are 
themselves diagrams indicating the very processes that they represent.

	

0

x

f t dt F x

dF x dx f x

� � � � � �

� � � � �/
	

What is less obvious is how certain forms can exhibit shape that links different 
areas of mathematics via a common structure that lives in the diagrams.

We study the linking of mathematical fields in this paper by examining first a 
magical diagrammatic for vector calculus, and then showing how it works and why 
it works by relating that formalism to the question of coloring maps and graphs in 
and out of the plane. In the course of this journey we shall have a trivalent vertex 
that we call the epsilon. Different ways of viewing the way the epsilon works and 
behaves shed light on the structure of dot products of vectors, cross products of vec-
tors, multiple cross products, the structure of the quaternions and edge coloring 
problems for graphs that are equivalent to the Four Color Theorem. Once one has 
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taken this journey, neither graphs and colorings nor vectors and their algebra are 
ever the same again. It all pivots on the epsilon.

The second journey in this paper is into diagrammatic knot theory. There we 
show how the diagrams of knot theory, decorated shadows of projections from three 
dimensions, are intimately related to non-associative algebras called quandles. The 
simplest quandle involves three colors and is, in its structure, very close to the color-
ing problems we have considered earlier in the paper. But now the associations are 
with topology and how the algebra helps uncover hidden topological properties.

The third journey examines the resolution of a diagrammatic singularity and 
finds a generalized epsilon and the Jacobi identity for Lie algebras hidden in the 
diagrams.

A longer tale can be told here, but we hope that this introduction to the ways of 
diagrams gives the reader a taste of this way to imagine the roots of mathematics.

In the first part of the paper. The author is in dialogue wth a fictional mathemati-
cican named RosePen. Professor RosePen is a figment of the author’s imagination, 
influenced by the ideas, discoveries and inventions of Roger Penrose, John H 
Conway, George Spencer-Brown, Charles Sanders Peirce, Lewis Carroll and other 
great contributors to the diagrammatic interfaces in the making of sign and space.

Acknowledgement  Kauffman’s work was supported by the Laboratory of 
Topology and Dynamics, Novosibirsk State University (contract no. 14.Y26.31.0025 
with the Ministry of Education and Science of the Russian Federation.)

�A Magic Calculus of Vectors

I went to the CMF last year. That’s the Convention on Mathematical Fictions. 
Sometimes we call it the CFM, the Convention on Fictional Mathematics. Well, call 
it what you will, we were still meeting in person then and sitting down to scraps of 
paper and scribbling funny geometries and strange equations. You remember how it 
was. And I met this guy RosePen and he sits me down and says. Look. You have to 
learn my graphical rules. They will change your life. I says - yeah, really? And he 
says Really! So I sat down at the bar with him in the Atlanta Ritz Carlton and he 
takes out a sheet of paper, a bit crumpled.

He makes the drawing you see in the figure below, and he says this is a vector.

 

I says, it looks like a blob with a line hanging on it. Yep! He says. That’s a vector. 
And here is the dot product of two vectors. He draws two of his vectors and joins 
their arcs together like this .
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I says. Hmm... I guess you are going to tell me that if a blob has no hanging 
strings, then it is a scalar? Right! He says. How did you know? I says, look you told 
me that thing there is a scalar product (dot product) and so I figured you joined those 
arcs to get rid of them. Well. He says. You are absolutely right! Can you figure out 
what would be the vector cross product?

Aw, I says. Well, you have to combine two vectors to get a vector. I gather your 
vectors just have one arc attached to the blob. So I wager you need a trivalent node 
like this

 

and you can run the arcs from your vector into two of the three lines on the tri-node 
and you will have a new blob with one arc! That’s my guess for the cross product.

I couldn’t help myself. I continued. I says: Look. You are gonna have to have that.
A x A is zero and that A x B is perpendicular to A and to B. And you are gonna 

need that A x B = − B x A. So there is a lot of work to be done here. I think we better 
start with A x B = − B x A. This is what you need!

 

That twisted thing is B x A and you really need your trivalent vertex to satisfy the 
same identity!!

 

Twist two legs of that trivalent vertex of yours and thing changes sign. Now its 
ok because we will have A x A = − A x A and so A x A = 0. No sweat!
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He looks at me with slitted eyes, a bit suspicious you know. And he says. You are 
exactly right. Nobody ever got this before. Are you from the CIA? Maybe I should 
just stop talking right here. Naw, I says. I never talk to the Cantorian Infinite Adepts. 
They are too theological for me.

But look, I says, your system works too well! Look at (A x B).C where I use a 
period for the dot product. We get a clear proof that

	
AxB C A BxC� � � � �. .

	

by just deforming your diagrams. Ha!

 

You catch on fast, he says. But now I will tell you the secret. We call the trivalent 
node our epsilon. And here is the epsilon identity.

 

I shall initiate you into its vectorial secrets. You mean, I says, you can derive 
other identities from this secret identity. He smiled. A co-conspirator, I thought. 
Well, I decided to play along. So I says, Ok wise-guy lets try the notorious. Vector 
Triple Product: (A x B) x C. What will your smart diagrams do with this stumper? 
Here, don’t tell me. I’ll do it! There it is.

 

I look and look at this. And then I remember his epsilon identity and it re-forms 
in my mind, slightly deformed:
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And I say, why not! You told me I could do this and I know you don’t care if I 
deform it a little. Now I will put the blobs back on top. Aha! There it is. Yes!

 

I put the blobs back and the epsilon identity became that familiar formula

	
AxB xC A BC A C B� � � � � � � �– . .

	

from our beloved vector calculus. And I says to RosePen. What the heck. How did 
you do that? That is a complicated geometrical formula and your diagrams make it 
fall out of nowhere. What is going on here. Are vectors really something other than 
what I thought they were? What planet are you from?

Then I decided to try something simpler. I says to RosePen what about the fact 
that A x B is perpendicular to A and to B? Can we see that? I know. I know. You are 
going to say that perpendicularity of V and W is defined by the eq. V.W = 0. Ok. 
Then I am supposed to prove that (A x B). A = 0. Oh wait. I don’t even need the 
diagram. After all I just did show that A x A = 0 for any A. So (A x B). A = − (B x 
A). A = − B. (A x A) = 0 and we are done. Ok I am satisfied. Lets go back to your 
special epsilon identity. What about A x (B x C). We can do that and find that A x (B 
x C) = −A (B.C) + (A.C)B.

 

So I get this beautiful difference formula

	
AxB xC Ax BxC A BC A B C� � � � � � � � � � �– . . .

	

And this shows very explicitly how the vector cross product operation is not 
associative.

 

RosePen intervened and said. Why don’t you try for associativity? Can you make 
an associative product from these materials? I said. Wait. I remember the definition 
of quaternion multiplication. It is
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	 UV A B AxB� � �. . 	

You almost do cross product multiplication, but you add that scalar product.
Why don’t you try it? He says.
Ok. I will says I. I will define.

 

And quaternions are four dimensional vectors, so if U and V are three dimen-
sional, then a quaternion is of the form a + V where a is a scalar. So we have

	
a U b V ab aV bU UV ab aV bU U V UxV�� � �� � � � � � � � � �– . ,

	

quite a mixture of scalar and vector products. It is no wonder that after the “quater-
nion wars” in the nineteenth century most applied mathematicians wanted to work 
separately with scalars, vectors, scalar products and vector products. But the quater-
nions get around, and they are really fundamental for understanding three and four 
dimensional space. Note that, from our formula above, we have that UU = -U.U, and 
so if U has length 1 we have UU = −1. We have a whole sphere’s worth of square 
roots of minus one!

Well. In this case I won’t bore you with the calculation showing that quaternion 
multiplication is associative. You’ll see that it works out. If I, J and K are three per-
pendicular vectors of unit length so that II = J.J = K.K = 1, so we have

	 II JJ KK IJK� � � � �1, 	

the famous formula for the quaternions discovered by Sir William Rowan Hamilton 
in 1843. You know what he said about it:

…an under-current of thought was going on in my mind, which gave at last a result, whereof 
it is not too much to say that I felt at once the importance. An electric circuit seemed to 
close; and a spark flashhed forth, the herald (as I foresaw, immediately) of many long years 
to come of definitely directed thought and work, by myself if spared, and at all events on the 
part of others, if I should even be allowed to live long enough distinctly to communicate the 
discovery. Nor could I resist the impulse - unphilosophical as it may have been - to cut with 
a knife on a stone of Brougham Bridge, as we passed it, the fundamental formula with the 
symbols, i, j, k; namely, ii = jj = kk = ijk = - 1 which contains the Solution of the Problem… 
(Altmann 1986)

And I stopped for moment and then I said. Wow! Look at this one!!
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I turned to RosePen and I said. You had better explain what is going on here.

�RosePen’s Explanation

In order to explain this to you, RosePen said, I have to tell you about a problem that 
does not seem to have anything to do with three dimensional space or vectors or dot 
products. The problem I am concerned about is a problem of coloring the edges of 
a network with trivalent nodes, using three colors: red (r), blue (b) and purple (p). It 
is very convenient for me to think of purple as a superposition of red and blue and 
so I will write p = rb and make drawings like this.

 

In this drawing you see that I color a red line red and a blue line blue, but I color 
a purple line by a combination of red and blue. The RULE for my coloring problem 
is that there must be three distinct colors at each node in the network. Thus at a tri-
valent node drawn in the plane, you will see the cyclic order of rbp or rpb, and I can 
make my drawings as illustrated using only red, blue and the superposition of red 
and blue that I call purple. Then the solution to a coloring problem looks like this.

 

I can indicate the solution to a coloring problem by putting letters on the edges 
of the graph (the network),or I can color the edges. When I color them I have a 
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collection of blue loops and red loops. The blue loops do not touch each other and 
the red loops do not touch each other. Red and blue loops can share segments of arc 
that correspond to purple edges in the network. Here is a more complex example.

 

It is from this coloring problem that I conceived of the epsilon identity, for you 
see that the parallel and crossed arcs arise naturally when one looks at the color 
interactions of two nodes.

 

If the cyclic permuations of colors are opposite on the two nodes, then we can 
pull the purple superposition apart and get nearby uncrossed blue and red curves. If 
the cyclic permutations are the same, then we have a red arc crossing a blue arc. 
These are the only two structural possibilities for the color interaction of two nodes. 
Of course we have singled out purple for the sake of emphasis, but the same remarks 
would apply if the middle line were another color. So I label the case of parallel arcs 
with a minus sign to indicate that the two permutations are of opposite sign! And we 
get the epsilon identity as an expression of the coloring possiblitiies. I think of the 
identity in color like this:
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And I discovered a most remarkable fact. If I place a square root of negative 
unity at each node of the network and then expand the edges by the epsilon identity 
I can count the number of colorings of the net.

I says, to RosePen. If you put an i (with ii = −1) at every node, then you can just 
reverse the sign of the terms in the epsilon identity.

He says. Yes. That is what happens and I get a formula like this.

 

In applying this formula you erase an edge in two copies of the graph, and you 
replace the edge by two parallel arcs in one copy and by two crossed arcs in the 
other copy.

And here are two examples of color counts.

 

In the first case there are indeed six ways to color this graph. In the second case 
the graph is not colorable and the formula gives the correct answer zero. This graph 
is planar but it can be disconnected by removing an edge. There is a famous Theorem 
called the “Four Color Theorem” and it is equivalent to the statement:

Theorem  A planar trivalent graph G that cannot be disconnected by removing an 
edge can be colored with three colors on its edges so that every node receives three 
distinct colors.

This means that the formula [G] will always be non-zero for any such graph G.
The Theorem does not have a simple proof. I am hoping that an analysis of this 

formula will yield a simple proof of the Theorem.
So I says. Ok. I see how you found the epsilon identity, but it is still a mystery to 

me what it has to do with three dimensional space. Is this some mysticism about 
your three colors?

RosePen replies. I had better say a few more words about coloring before we to 
back to vectors. Look at this diagram.
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I have illustrated how each node of a coloring is assigned +i or –i according to 
the epsilon gives it +1 or − 1. Notice what happens when we have a red arc crossing 
a blue arc (or vice versa). Then one corner gets I and the the other gets –i. The prod-
uct of (+i) and (−i) is (−1). So each time a red curve and a blue curve cross, my 
bookkeeping registers a negative one. If there is a bounce (no crossing) as shown in 
the figure, then we get a minus i and a plus i, so the product is one. Thus bounces 
contribute a + 1. Therefore if we have a coloring of a planar graph and we take the 
product of all my +i and –i contributions it will equal one – because curves in the 
plane intersect one another an even number of times (by the Jordan Curve Theorem). 
Here is an example for you to look at. This is why my sum [G] must always count 
one for each coloring of a plane trivalent graph.

 

Now lets look more closely at the epsilon identity. I will make definitions. I let 
ε[rst] be a a text symbol for the epsilon node with some specific assignment of val-
ues for r,s,t from among the colors r, b and p. Then I will define

	

� � �
� � �
rbp bpr prb

rpb pbr brp

� � � � � � � � �
� � � � � � � � � �

1

1
	

And ε[rst] = 0 if any two of these labels are equal to one another. These are rules 
we have used in coloring.

 

Then the epsilon identity becomes an algebraic statement about the values of the 
epsilon. It looks like this.
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You have to stare at this formula for a while to see that it is actually very simple. 
The deltas are what we call Kronecker Deltas, delta[x,y] = 1 only if x = y and it is 0 
otherwise. The sum on t in the formula above just amounts to taking the value dif-
ferent from both r and s or from t and u because our epsilon vanishes where there 
are equal indices and we only have three indices to work with. I will illustrate the 
actual cases for you below.

 

The upshot of this way of thinking of the epsilon identity in terms of indices is 
that we can interface it with vectors. What is a vector? I told you earlier to think of 
a vector as a blob with an arc hanging down, but the usual way to think of a vector 
is as a triple of numbers such as a = (a1, a2, a3). You can think of the line for the 
blob as a place to write the index so that for example:

 

Then the dot product follows once we use the rule that you must sum over all the 
possible index values for an arc that has no free ends.
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I hope you now see how our arc-connection diagram corresponds to the dot prod-
uct. Just so, our diagram for the cross product is actually a definition for the cross 
product. I will calculate one component for you below and you will see that it is 
working!

 

In fact, he says, you see that the epsilon gives us the determinant just like this.

 

So we have that DET(a,b,c) = a.(b x c).

 

And there is a well known formula for the vector cross product that would for-
mally put the perpendicular unit direction vectors I, J and K in the first row.

 

Well, I thought about that, and I worked out the other two components of the 
vector cross product and it was all logically clear. So we really had proved all those 
identities and more by just drawing topological diagrams and using the diagram-
matic epsilon identity. But it still seemed to me as mysterious as ever. Why should 
something like this work? I had never thought of vectors as topological before. 
Before this conversation with RosePen, I always thought of vectors as rigid arrows 
that could make angles with each other and that they were the underpinning of a 
corresponding geometry of lines and planes and sharp directions. So I asked him 
more questions.

I said. Well Professor RosePen, I still do not quite understand what is going 
on here.
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Do you mean to tell me that properties of vectors are behind the questions about 
coloring graphs? Or do you mean that the properties of graph colorings are the 
subtle structure of vectors?

He smiled and said “Yes.”

�An Intermediate Epilogue

I had to go. And I am still puzzling about this connection to this day. Just yesterday 
I ran across a paper by Kauffman (Kauffman 1990) entitled “Map Coloring and the 
Vector Cross Product”. I could almost imagine what that might be about. I read it 
and continued to think about this colorful and disturbing way to look at vectors and 
vector calculus.

I have to tell you about this. Kauffman reformulated the coloring problem entirely 
in terms of the vector cross product! He turned it into some arcane property of per-
pendicularities. And I still don’t understand anything! You’ll see. Lets go back to I 
and J and K, ok? And we are looking at the cross product algebra so that I x I = J x 
J = K x K = 0, but I x J = K and J x I = − K and all that. It is just a way to talk about 
epsilon by now. But this is a weird algebra. It is not associative.

	
I x J x J K x J I� � � � � ,

	

	
Ix J x J I x� � � �0 0.

	

So Kauffman poses this problem. Suppose you take a product of some variables, 
any number of variables, like X, Y, Z, W and you associate it in two ways and write 
the equation stating that the result of the multiplication is the same for both associa-
tions. For example, you could write

	
XxY x ZxW Xx Yx ZxW� � � � � � �� �.

	

Kauffman then asks you to solve this equation, using only I or J or K for the 
values. You get to use a value for more than one variable, but ony get to use I 
or J or K.

Neither side of your solution can be zero. You have to produce two equal non-
zero products. Can you solve it for this example? Well in the example an answer is 
X = I, Y = J, Z = J, W = K. Try it! Kauffman claims to be able to solve all such 
equations in any number of variables.

It seems to be a tricky problem about combinations of perpendicularities. But 
that isn’t how Kauffman solves these problems. He uses the graphical calculus. 
Then we have:
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He puts them together in one graph by taking the mirror image of one expression 
and tying it to the other.

 

Then you color the graph using r,b,p and read out a solution to the vector cross 
product equation by taking I for r, J for b and K for p. I kid you not. Since we have 
chosen a proper coloring of the graph of the two tied trees, all the partial products in 
the vector cross products will be non-zero. But this means that we can view these 
products as quaternion products (since in the quaternions the non-zero products of 
I and J and K are the same as the vector cross products). Thus the two associated 
products have to be equal because the quaternions are associative, and we are done! 
You can check that indeed

	
I x J x J xK I x J x J xK� � � � � � �� �.

	

It turns out that the full coloring problem for arbitrary planar trivalent graphs is 
implied by the coloring of tied trees. This makes the Four Color Theorem (Appel 
and Haken 1977; Apprl et al. 1977; Heawood 1890) equivalent to this property of 
solutios to equations involving associated vector cross products. At this stage in 
mathematics we do not fully understand why maps can be colored (although there 
is a complex proof) and we do not fully understand the relationships among graphs, 
vector cross products and the quaternions. There is much to learn in this domain. 
Perhaps it will all become clear one day and we shall understand the whole story. 
For now, it is a fascinating ground for research. The relationship of particular math-
ematics with the geometry and topology of diagrams will become ever more impor-
tant to the unity of mathematics and for the gesture that it makes to the unity of 
the world.
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�Knots

Diagrams are often tied to specific contexts and so the best way to indicate the wider 
generality behind the examples of mathematical connection that we have drawn in 
this paper is to give another example of the phenomenon. In this case, I want to 
show, how by following the diagrams one can see a deep connection between knot 
theory and the mathematics certain algebras. I shall be a brief as possible, and start 
with the knot theory. In knot theory we use diagrams like this.

 

The diagram represents a curve in three dimensional space that goes under and 
over itself in the weaving pattern of the drawing. The diagram uses the well-known 
drawing convention that a broken line is a projection from space such that the 
unbroken arc that crosses the broken part is higher than the “broken arc” that pro-
ceeds underneath. We can represent topological movenments of knots (called isto-
pies) by changes in the diagrams. For example, view the diagram below.

 

It should be clear to you that the complicated curve on the left can be undone and 
transformed to the unknotted loop on the right. In fact there is a system of moves on 
the diagrams that can accomplish this aim. The basic moves are shown below. These 
are called the Reidemeister Moves after Kurt Reidemeister, who wrote the first book 
on the theory of knots.

 

Here are two examples of unknotting and unlinking using the moves.
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In the first case, we use the II move and then the I move to unknot this single 
curve. In the second case we use a III move to simplify the rings, and then three II 
moves to undo them completely. The second example is interesting because it actu-
ally needs the III move to be undone.

Now I will show you a way to related algebra to these diagrams. We will have a 
way to “multiply” elements a and b, denoted ab. And we shall label arcs in the knot 
and link diagrams by these elements. When an arc a under-crosses another arc b, 
then the exiting arc will be labeled by the product ab as shown below.

 

See the diagrams below.

 

We want the labeling to respect the Reidemeister moves and this leads to alge-
bra rules:

	1.	 aa = a.
	2.	 (ab)b = a
	3.	 (ab)c = (ac)(bc).
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An algebra that satisfies these rules is called a quandle. Here is a very simple 
example of a quandle. We shall have three algebra elements a,b and c. And we shall 
have the rules aa = a, bb = b, cc = c and ab = ba = c, ac = ca = b, bc = cb = a. In other 
words, any single element combines with itself to produce itself. And two distinct 
element combine to produce the third element. Indeed this algebra is similar to our 
colring rules for r,b and p but there the colors combine with themselves by differ-
ent rules.

Note that (ab)c = cc = c while (ac)(bc) = ba = c. So we have (ab)c = (ac)(bc) as 
desired for the third Reidemeister move. You can check the other cases easily. For 
example, (aa)b = ab = c and (ab)(ab) = cc = c. We will use this three color algebra 
{a,b,c} to color knots and links! Here is a coloring of the trefoil knot.

 

The trefoil is correctly colored by our rules and this means that any diagram 
obtained from the trefoil by Reidemeister moves will inherit a coloring from this 
coloring that still has all three colors. (Think about this and you will see that it is 
so!). But this means that the trefoil can not be unknotted. For if it could then we 
would have transformed it to the unknot, and the unknot can only be colored with 
one color. So we have proved that the trefoil knot is knotted by using coloring.

Not every knot can be three-colored. For example, the figure eight knot cannot be 
so colored as the diagram below demonstrates. We start the coloring with two dis-
tinct colors a and b, propagate a c. Then the c interacts with a b and produces an a 
on a line already labeled with b. This contradiction shows that the figure eight knot 
cannot be three colored. This means that we have just proved that the figure eight 
knot is not isotopic to the trefoil knot, but we shall have to work harder to prove that 
the figure eight knot is actually knotted!

 

This can be done by using five colors and a more complex quandle but that is a 
story for another time.

I will end with one more kind of conclusion that we can draw from uncolorabil-
ity. Consider the famous Borommean Rings as shown below. They are a link of 
three components. If you remove one of the rings, the other two come apart. We 
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want to prove that the three rings cannot come apart. To do this, I give you an exer-
cise. Prove that the Borommean Rings cannot be colored with three colors! You can 
verify this in a fashion similar to what we did with the figure eight knot. Now I will 
assume that you did this exercise and you are convinced that there is no way to color 
the rings.

 

But if the rings could come apart, then there would be a sequence of Reidemeister 
moves from the Borommean Rings to three unlinked rings. You can color each one 
of three unlinked rings with one of three different colors. The moves that got you 
from the Borormmean rings to the unlinked rings could be reversed and you would 
have a sequence of Reidemeister moves from the three unlinked rings to the 
Borommean rings. Each move would result in a three colored link,starting from the 
three unlinked colored rings. So in the end you would have to find a three coloring 
of the Borommean rings. That is a contradiction. Therefore the Borommean rings 
are linked. Is this not an amazing argument? (Nanyes 1993; Adams 1994).

Algebra and diagrams and their mathematical interpretaions interact in a multi-
tude of ways that give rise to new ways to think about geometry, topology, algebra, 
combinatorics and indeed the entire mathematical universe.

�The Roots of Lie Algebra

And now we return to the form of the epsilon. Let be given a trivalent vertex with 
sign change under permutation as we have had it from the beginning.

 

And following our penchant to look at algebra in relation to diagrams let there be 
an algebra L so that the product of elements of L is indicated by the vertex.
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Now contemplate a singular vertex as show below. In this singular vertex two 
arcs meet at a singular point along the arrow base-line.

 

There are three natural resolutions of this singularity and we have put them into 
a diagrammatic equation below.

 

This way to put the resolutions of this singularity into an equational pattern tells 
a nice algebraic story. In the algebra story we see that the equation is

	
ab c ac b a bc� � � � � � �–

	

and that this can be changed by using b(ac) = −(ac)b to

	
ab c b ac a bc� � � � � � � �. 	

This is called the Jacobi Identity.

 

An algebra that satisfies the Jacobi Identity and the anticommutativity of ab = −
ba for all a and b in the algebra, is called a Lie Algebra. Lie algebras (Kauffman 
2012; Bourbaki 1989) are ubiquitous in mathematics and indeed very closely related 
to the original epsilon of our paper and with the quandles in the knot theory, and 
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more generally to knot theory in fundamental ways. It is quite surprising to meet the 
Jacobi identity as an expression of the resolution of a simple graphical singularity. 
Another story relates this combinatorics with the Reidemeister Moves (Kauffman 
2012), but we will tell that tale another time.

But we cannot resist ending where we began and recount a little more of that 
conversation between RosePen and myself at the bar in the Ritz-Carlton. RosePen 
says to me: Are you familiar with Lie algebras? And I say, only a little. I know that 
the vector cross products form a Lie algebra and they satisfy the Jacobi Identity:

	
a x bx c a x b x c bx a x c� � � � � � � �. 	

Well. He says. You can verify that Jacobi Identity by using the epsilon identity. I 
would not want to spoil the fun of it for you. Do it when you get back to your hotel 
room and before the rope tricks start this evening. I did, and I am sure the reader 
would like to do this as well. Once this exercise is completed the reader will see 
clearly that, enticing as it is, the epsilon is just the tip of the iceberg of a pattern to 
continues into Lie algebras, group theory, symmetry and beyond.

�Epilogue

Some references may be useful to the reader. Much of the material in this paper can 
be found in the author’s book “Knots and Physics” (Kauffman 2012) and in his 
papers (Kauffman 1990, 1992, 2005, 2016). The origin of the diagrammatics of vec-
tors can be found in the work of Roger Penrose (Penrose 1971) and certain key 
insights and their diagrams are in the work of G. Spencer-Brown (Spencer-Brown 
1979, 1997). For the coloring problem the reader can consult (Appel and Haken 
1977; Kauffman 1990, 2016; Penrose 1971; Spencer-Brown 1979; Heawood 1890). 
For Lie algebras, a good start is (Stillwell 2008).

In this paper Professor RosePen is a fictional character who takes on some of the 
ideas and mathematical attitudes of Roger Penrose, George Spencer-Brown, John 
Horton Conway and the Author.

I have included some of my favorite mathematical tricks in this paper. The intent 
however is to go beyond tricks and ask about the nature of the sort of relationships 
that we have seen here. There are many more relationships of this kind. My field, 
topology, is full of them, and I am sure that other mathematicians in other fields 
would have many examples of their own. All of these examples use a diagram or 
some geometry to pivot between one conceptual domain and another. These dia-
grams give us an excuse to shift from one point of view to another and to find that 
the two points of view are related by the structure of the diagram and the meanings 
that are associated with it.

One can think about this situation as an allegory for a search for relationship that 
is mediated by a special place where the meeting can be accomplished. That place, 
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the place of the diagram, is a multiplicity that is a unity where the multiplicity 
resides in the many interpretations that the diagram can receive, and the unity 
resides in the act of making the diagram, a making that can be accomplished and 
reenacted by any one who wishes to come to the understanding that the diagram 
offers. It is in the making that the many becomes the one and the one becomes 
the many.
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Chapter 8
Experimental Mathematics: Overview 
and Pedagogical Implications

Marcel Danesi

�Introduction

In 2011, the TV quiz show Jeopardy featured two human champions competing 
against IBM’s Watson, an AI system designed for the event. Watson won the match 
by a large margin. Then, in 2017, another AI system, AphaGo, beat the world’s Go 
champion with a creative move that was previously unknown, surprising Go experts. 
Popularized events such as these have made it saliently obvious to a large audience 
that AI bears many implications for understanding what intelligence is; and given 
that those AI systems were the product of a partnership between mathematicians 
and computer scientists, it is also obvious that they bear specific implications for 
how mathematics itself is practiced in the current technological environment, called 
the Information Age or, equally, the Computer Age. If an AI system can be devised 
to come up with a truly intelligent move in the game of Go, previously unbeknownst 
to humans, then the question arises: Can AI do creative mathematics? A positive 
answer does not seem to be beyond the realm of possibility.

The use of AI to solve mathematical problems and prove theorems has become 
its own discipline, called Experimental Mathematics (EM). As research in AI 
becomes ever more sophisticated, it might even be possible for a mechanical “super 
intelligence” to emerge, as Ray Kurzweil calls it in his 2005 book, The singularity 
is near, in which he maintains that there will come a moment in time when AI will 
have progressed to a point that it will autonomously outperform human intelligence. 
That moment, known as the (technological) singularity, will occur when an upgrad-
able software becomes self-sufficient without human intervention, thus becoming 
capable of self-improvements. Each new self-improvement will bring about an 
intelligence explosion that will, in turn, lead to a powerful artificial 
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super-intelligence that will surpass human intelligence. Kurzweil predicts that the 
singularity should occur in the 2040s, when AI technologies will be so advanced 
that they cannot be controlled any longer by human intervention (Kurzweil 2012). 
By then, networks of silicon neurons will possess the same kind of information-
processing functions of brain cells and thus operate at the speed of neurons.

It is relevant to note that the idea of a singularity can be traced back to a comment 
made by mathematician John van Neumann, cited by Stanislas Ulam (1958: 5): 
“[The] ever accelerating progress of technology and changes in the mode of human 
life, which gives the appearance of approaching some essential singularity in the 
history of the race beyond which human affairs, as we know them, could not con-
tinue.” Then, in a 1965 essay, mathematician I. J. Good predicted that eventually an 
ultraintelligent machine would trigger an intelligence explosion (Good 1965: 31):

Let an ultraintelligent machine be defined as a machine that can far surpass all the intel-
lectual activities of any man however clever. Since the design of machines is one of these 
intellectual activities, an ultraintelligent machine could design even better machines; there 
would then unquestionably be an ‘intelligence explosion,’ and the intelligence of man 
would be left far behind. Thus the first ultraintelligent machine is the last invention that man 
need ever make.

In 1981, writer Vernor Vinge popularized Good’s ideas, using the term singular-
ity in his novella True names. He followed this up with a 1993 article in which he 
maintained that the singularity would become a reality in the first part of the twenty-
first century. Whether the singularity is a realistic notion or not, the point is that EM 
fits into this scientific Zeitgeist, based on a mathematics-computer science partner-
ship, raising several key questions regarding both mathematics and mathematics 
pedagogy. The purpose of this chapter is to look at these questions in a general way. 
If there is indeed a real possibility that AI can do mathematics independently of 
humans, then what does it tell us about mathematics? Can it discover new mathe-
matics? What are the implications for mathematics education, if any?

�Experimental Mathematics

A primary objective of EM is, literally, to carry out “experiments” with algorithms 
to see what they yield mathematically. These include creating computer programs 
with the ability to solve mathematical problems, prove theorems, and unravel pat-
terns in classic conjectures. Although its origins go back to computer experiments 
on theorem proving in the 1950s, the first true texts in this field are the ones by 
Donald Knuth, which go back to the late 1960s. Knuth called the mathematics-
computer science partnership concrete mathematics (see Graham et al. 1989), defin-
ing it simply as the analysis of algorithms, and the insights into the nature of 
mathematics that this provides. EM has achieved a number of impressive results, 
from discovering a formula for the binary digits of π (Bailey et al. 1997) to finding 
the smallest counterexample to the sum of powers conjecture by Euler (Frye 1988). 
As Borwein and Bailey (2004: vii) aptly point out, the importance of EM inheres in 
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providing a concrete understanding of mathematical properties, by confirming or 
confronting conjectures, thus making mathematics “more tangible, lively and fun 
for both the professional researcher and the novice.” EM has its own journal, 
Experimental Mathematics, founded in 1992, acknowledging its importance as a 
general research field in mathematics.

One of the primary forms of algorithmic experimentation involves machine 
learning, a term put forth by Arthur Samuel in 1959. This is concerned with design-
ing computer programs that are capable of learning inductively. A famous feat of 
this kind of program came in 1996 when IBM developed a chess algorithm named 
Deep Blue that was capable of analyzing millions of chess positions every second 
and to learn from the evolving configurations of the chess pieces on the board, 
adjusting its program accordingly. Although it lost its first competition to chess 
champion Garry Kasparov, in a rematch it defeated him soundly. A subbranch of 
machine learning theory is now called Deep Learning AI; one of its aims is to study 
how computers can learn from huge amounts of data via artificial neural networks, 
which are computer networks that mimic the architecture and functions of neurons 
in the brain.

The first practical outcome of the mathematics-computer science alliance came 
in the mid-1950s with automated theorem proving (ATP) (Urban and Vyskočil 
2013). ATP was at first based on the propositional calculus and predicate logic elab-
orated by Gottlob Frege (1879) and formalized later by Russell and Whitehead in 
their Principia mathematica (1913). It was called a first-order logical system. 
Russell and Whitehead thought they could derive all mathematics using axioms and 
the inference rules of formal logic, laying the foundations for ATP, even though this 
turned out to be overly optimistic (see below). The first ATP system, called a first-
order proof system, was developed by Martin Davis in 1954. It was capable of solv-
ing a small set of logical theorems and grasping elementary mathematical properties. 
As Davis quipped about this early system (cited in Davis 2001: 3): “Its great tri-
umph was to prove that the sum of two even numbers is even.” In 1956, Newell, 
Simon and Shaw developed a Logic Theory Machine, based on the Principia math-
ematica, which had the ability to elaborate a small set of proofs based on the 
Russell-Whitehead logical system (see Newell and Simon 1956). With human guid-
ance, the system was able to prove 38 of the first 52 theorems of the Principia. This 
approach was called “heuristic” because the Machine attempted to mimic human 
mathematicians, but it could not ensure that a proof could be carried out for every 
valid theorem. Since then, more sophisticated algorithms have been designed which, 
in theory, could prove or assess any theorem based on first-order logic. But, despite 
such sophistication, ATPs at present are mainly capable of solving elementary 
mathematical problems and carrying out basic proofs. As Ganesalingam and Gowers 
(2017: 253) point out, devising a truly intelligent ATP system is a highly realiz-
able goal, but is still in its fledgling stages:

The main challenge…is that it does not seem to be possible to reconstruct genuinely 
human-like writeups from the proofs produced by automated provers from the machine-
oriented tradition. In order to be able to produce such writeups we have had to use much 
more restricted proof methods than those available to modern provers. This in turn makes it 
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more challenging for the prover to solve any individual problem, and indeed the program 
does not solve any problems that are beyond the reach of existing fully automatic provers. 
We should also note that we see this prover as the first stage of a long-term project to write 
a program that solves more complex problems in a ‘fully human’ way.

ATP has already helped prove a number of hard theorems, such as the Robbins 
conjecture, which had eluded human mathematicians, until William McCune 
devised a computer program that proved it (McCune 1997). The event was one of 
the first to raise the possibility that computers could actually do mathematics, per-
haps even better than humans. McCune called his program EQP, for equational 
prover. He checked the proof by computer and by hand. It was then checked inde-
pendently by other mathematicians. To distance himself from the ATPs of the past, 
McCune called his project an experiment in “automated reasoning,” rather than 
“automated theorem proving.” It was, arguably, one of the first “ultraintelligent” 
algorithms, to use Good’s (1965) designation (above).

�The Entscheidungsproblem

For “automated mathematics” to be able to do mathematics, it would require a sys-
tem of axioms and rules that could be applied to all problems. In other words, for AI 
to be able to do mathematics, independently of humans, the mathematics fed into it 
would have to be consistent and able to decide if a problem is solvable or not.

With the Principia mathematica, Russell and Whitehead aimed to provide such 
a system. As they explain in their introduction, their aim was (Russell and Whitehead 
1913: 1): (1) to analyze the ideas and methods of mathematical logic, minimizing 
the number of primitive notions and axioms, and inference rules; (2) to precisely 
express mathematical propositions in symbolic logic using the most efficient nota-
tion possible; and (3) to solve the paradoxes that plagued logic and set theory, such 
as the Liar Paradox of antiquity and Russell’s own Barber Paradox, which involved 
circularity in thinking.

But the Principia did not overcome the Entscheidungsproblem (“decision prob-
lem”), which originated with Leibniz, who wanted to build a machine that could 
determine the truth values of mathematical statements, realizing that this would 
entail developing a consistent formal language (Davis 2000: 3–20). The problem 
was elaborated explicitly by David Hilbert and Wilhelm Ackermann in 1928. Hilbert 
(1928) believed that there was no such thing as an undecidable or unsolvable prob-
lem. But Kurt Gödel’s (1931) famous incompleteness theorem that within any for-
mal set of propositions, such as those in the Principia, there are some that can be 
neither proved nor disproved, showed that mathematical systems are de facto 
incomplete. For the present purposes, the main argument put forth by Gödel can be 
condensed as follows (from Danesi 2002: 146):

Consider a mathematical system that is both correct—in the sense that no false statement is 
provable in it—and contains a statement “S” that asserts its own unprovability in the sys-
tem. S can be formulated simply as: “I am not provable in system T.” What is the truth status 
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of S? If it is false, then its opposite is true, which means that S is provable in system T. But 
this goes contrary to our assumption that no false statement is provable in the system. 
Therefore, we conclude that S must be true, from which it follows that S is unprovable in T, 
as S asserts. Thus, either way, S is true, but not provable in the system.

A few years later, Alonzo Church (1936) demonstrated why a solution to the 
Entscheidungsproblem is unlikely, employing a method that would now fall within 
the EM paradigm. According to Church, the Entscheidungsproblem could be 
approach meaningfully only if the notion of algorithm was formally defined. In 
1936 Alan Turing had also  examined the Entscheidungsproblem in terms of his 
“Turing machine”—a mathematical model of a hypothetical computing machine 
which can use a set of predefined rules to determine a result from a set of input 
variables. Church proved that there is no computable function which decides if two 
given expressions are equivalent or not. For Turing, the Entscheidungsproblem can 
similarly be framed in computational terms as devising an algorithm capable of 
deciding whether a given statement is provable from the axioms using the rules of 
first-order logic. Turing showed that this was impossible, calling it the Halting 
Problem. Given a computer program and an input, will the program finish running 
or will go into a loop and run forever? Turing argued that no algorithm for solving 
this problem can exist logically. Another formulation of the Halting Problem is as 
follows: Can a computer program be envisioned that can look at any other program 
and decide if it will ever stop running? Here is a paraphrase of Turing’s proof by 
contradiction:

Assume that there is such a program. If so, we could run it on a version of itself, which 
would halt if it determines that the other program never stops, and runs an infinite loop if it 
determines that the other program stops. This is a contradiction.

The Church-Turing thesis, as it came to be known, presented an early obstacle to 
AI systems such as ATPs, since they were subject to incompleteness and to the 
Halting Problem—problems that remain unsolved to this day. Perhaps an ultraintel-
ligent machine—to recycle that phrase—can overcome these two obstacles to true 
AI, both of which derive from the nature of the human brain. Of course, this is 
speculation, but nonetheless an interesting form of speculation.

�The P = NP Problem

Another problem facing automated mathematics is the P = NP problem. It asks if 
every problem whose solution can be quickly checked or verified can also be solved 
quickly. This can be illustrated simply with the game of Sudoku (Fortnow 2013). 
Any proposed solution to the game can be easily realized by a computer algorithm; 
but the time it takes to check the solution grows slowly (that is, polynomially) as the 
grid gets larger. Sudoku is thus said to be in P (quickly solvable), but not in NP 
(quickly checkable). Thousands of other problems are similar; that is, they can be 
realized quickly, but take longer and longer times to validate as they increase in 
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complexity. Polynomial time refers to the time a computer takes as a polynomial 
function of the size of the input. The expression “quickly solvable” means in this 
framework that an algorithm can solve a task in polynomial time—that is, it is a 
polynomial function of the size of the input to the algorithm. The general class of 
problems for which an algorithm can provide an answer in polynomial time is called 
P, which stands for “polynomial time.” Another class of problems are those for which 
there is no quickly solvable answer, but which can nonetheless be verified in poly-
nomial time if relevant information is inputted. This class of problems, for which an 
answer can be verified in polynomial time, is called NP, which stands for “nondeter-
ministic polynomial time.”

Computer scientists have shown that problems in NP have the property that a fast 
solution to any one of them can be used to build a quick solution to any other prob-
lem, a property called NP-completeness. If P were equal to NP then problems that 
are complex (involving large amounts of data) could be tackled easily as the algo-
rithms become more efficient. The P = NP problem is one of the most important 
open problems in computer science and mathematics—it would determine whether 
problems that can be verified in polynomial time can also be solved in polynomial 
time. If it turned out that P ≠ NP, which is widely believed to be the case, it would 
mean that there are problems in NP that are harder to compute than to verify: that is, 
they could not be solved in polynomial time, but the answer could be verified in 
polynomial time.

The formal articulation of the P  =  NP problem is traced to a 1971 paper by 
Stephen Cook (and independently a few years later to another paper by Leonid 
Levin 1973). An early mention of the problem is found in a 1956 letter written by 
Kurt Gödel to John von Neumann. Gödel asked Neumann whether theorem-proving 
could be solved in quadratic or linear time—a central question for automated math-
ematics (Fortnow 2013). P would consist of all those problems that can be solved on 
a deterministic sequential machine in an amount of time that is polynomial in the 
size of the input; the class NP would consist of all those problems whose solutions 
can be verified in polynomial time given the relevant information, or equivalently, 
whose solution can be found in polynomial time on a non-deterministic machine. 
Some of the existing automated proof techniques are not powerful enough to answer 
the P = NP problem, suggesting that novel technical approaches are required. It is 
those approaches that occupy a great amount of interest within EM.

�Autopoiesis

Another major obstacle to fully automated mathematics as a surrogate for human-
based mathematics concerns the nature of human creativity itself. The latter involves 
so-called embodied cognition, an idea traced to the theory of autopoiesis (Maturana 
and Varela 1973). For the purposes of the present discussion, this implies that human 
thought organizes itself on the basis of the input received through the body; that is, 
by self-organizing input changes through specific anatomical and sensory-feeling 
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systems. The latter were called the constituents of the human mental Bauplan by the 
biologist Jakob von Uexküll (1909) at the turn of the twentieth century. For von 
Uexküll, creativity emerges through the ability of an organism to organize itself 
creatively in responses to environmental changes. Animals with widely divergent 
brains (or neural systems) do not generate the same kinds of creative responses to 
input. There exists, therefore, no common world of objects shared by humans and 
non-human animals equally—and by extension, by humans and machines.

Can automated reasoning systems become autopoietic in the human sense? As 
Maturana and Varela (1973: 16) observe, autopoiesis “takes place in the dynamics 
of the autonomy proper to living systems.” An example of an autopoietic system is 
the eukaryotic cell, which is organized into structures such as the nucleus, organ-
elles, a membrane and cytoskeleton. These depend on an external flow of molecules 
and energy which, in turn, allow for these very components to organize themselves 
(like a wave propagating itself through a medium). Autopoietic systems are thus 
self-propagating and self-contained. These are contrasted to allopoietic systems, 
such as an automobile assembly line, which involves assembling raw materials into 
an automobile (an organized structure), which is something other than itself (the 
assembly line). Human creativity is autopoietic; automated reasoning, like an 
assembly line, is (currently) largely allopoietic. It is when the two are combined, as 
in the proof of the Robbins conjecture, that the results are truly remarkable. McGann 
(2000: 358) provides the following relevant characterization of autopoiesis:

An autopoietic system is a closed topological space that continuously generates and speci-
fies its own organization through its operation as a system of production of its own compo-
nents, and does this in an endless turnover of components. Autopoietic systems are thus 
distinguished from allopoietic systems, which are Cartesian and which have as the product 
of their functioning something different from themselves. Coding and markup appear 
allopoietic.

Among the main allopoietic features of automated reasoning systems are the 
following:

	1.	 They can describe input data correctly but cannot make any non-trivial predic-
tions or hypotheses about the underlying system.

	2.	 They are limited to technology and to the mathematics used, making follow-up 
experimental testing trivial, since there would be no known real world counter-
parts to the theorized model.

	3.	 However, if the model results in a non-trivial or unexpected experimental hypoth-
esis, by happenstance, then it can be tested and verified by further human inter-
vention. This may lead to the design and implementation of new automated 
experiments and may lead, in turn, to potentially significant results.

As Lakoff and Núñez (2000) have shown, solving problems and doing mathe-
matical proofs involves a feature of language that is maximally autopoietic—meta-
phorical reasoning. Lakoff and Núñez characterize many problems and proofs as 
being based on grounding and linking metaphors. The former encode basic ideas, 
being directly grounded in experience. For example, addition develops from the 
experience of counting objects and then inserting them in a collection. Linking 
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metaphors connect concepts within mathematics that may or may not be based on 
physical experiences. Some examples of this are the number line, inequalities, and 
absolute value properties within an epsilon-delta proof of limit. Linking metaphors 
are the source of negative numbers, which also emerge from an autopoietic form of 
reasoning that, as Alexander (2012: 28) elaborates, is an “entity with its own 
identity:”

Using the natural numbers, we made a much bigger set, way too big in fact. So we judi-
ciously collapsed the bigger set down. In this way, we collapse down to our original set of 
natural numbers, but we also picked up a whole new set of numbers, which we call the 
negative numbers, along with arithmetic operations, addition, multiplication, subtraction. 
And there is our payoff. With negative numbers, subtraction is always possible. This is but 
one example, but in it we can see a larger, and quite important, issue of cognition. The larger 
set of numbers, positive and negative, is a cognitive blend in mathematics…The numbers, 
now enlarged to include negative numbers, become an entity with its own identity. The col-
lapse in notation reflects this. One quickly abandons the (minuend, subtrahend) formula-
tion, so that rather than (6, 8) one uses −2. This is an essential feature of a cognitive blend; 
something new has emerged.

Mathematics makes sense when it encodes concepts that fit our experiences of 
the world—experiences of quantity, space, motion, force, change, mass, shape, 
probability, self-regulating processes, and so on. The inspiration for new mathemat-
ics comes from these experiences as it does for new language. It is unclear how AI 
can ever experience input in this way. And if it did, what would it make of a truly 
creative blend? It would still take human intervention to interpret it. The bimodal 
morphology of the human brain, with its two hemispheres, is the root of creativity 
(Gardner 1982: 74). When the brain takes in unfamiliar information it requires the 
experiential (probing) right-hemisphere functions to operate freely to grasp it; these 
can be called R-Mode functions (Danesi 2017). However, this exploratory effort 
would be virtually wasted if not followed up by the brain’s ability to simultaneously 
analyze the same input; this is a left-hemispheric capacity that can be called an 
L-Mode function. So, human creativity can be formulated as a blending of informa-
tion between the R-Mode and the L-Mode. The creation and solution of some prob-
lem involves the R-Mode and L-Mode interacting dynamically. The work of Russian 
psychologist Lev S. Vygotsky (1961) is relevant to this bimodal view of the brain. 
Vygotsky’s research on children has shown that creativity manifests itself in a blend 
of non-verbal symbolism (play, drawing, etc.), which has its source in the R-Mode, 
and verbal symbolism (narratives, fables, dramatizations, etc.), which has its source 
in the L-Mode. The emergence of creative, abstract thinking emerges as the two 
modes interact dynamically in even the simplest of tasks.

AI has taken great strides in advancing how we may indeed construct some 
L-Mode systems of representation. As far as can be told, R-Mode systems, such as 
those involved in metaphorical reasoning, are lacking (see Black 1962). As physi-
cist Roger Penrose (1989) has argued, computers can never truly be creative in the 
human sense because the laws of nature will not allow it.
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�Prospects

Despite the obstacles mentioned above, Experimental Mathematics is a thriving 
field, with automated systems providing insights to human mathematicians that 
would literally have been unthinkable in the past. Neural network theory, for exam-
ple, has been remarkably powerful in this sense. It was used to create the AI that 
beat the world champion at Go, mentioned at the start of this chapter. The program 
has been developed further to play against itself using reinforcement learning. This 
type of program, called DeepMind, is a very useful one mathematically. It receives 
as input a series of equations along with their solutions, without any explanation of 
how those solutions can be reached. In recent versions, DeepMind was devised to 
“intuit” how to solve equations without any instructions or structure, based solely 
on examining a limited number of completed examples. As opposed to other AI 
systems, DeepMind is not pre-programmed, learning from experience. Of course, 
the experience is based purely on pattern-extraction from data that is introduced into 
the system by humans. It is not fully autopoietic.

To study creativity, a subfield of AI has emerged, called computational creativity 
(McCormack and D’Inverno 2012). The problem is that the notion of human cre-
ativity is still an intuitive one, and impossible to define—a criterion that is essential 
to any computational approach. What would creativity be like in an AI system? 
Would it need to be autopoietic in the human sense? Among the first computer sci-
entists to tackle the problem of computational creativity were Newell, Shaw, and 
Simon in 1963, who eliminated the wide-open meaning associated with creativity, 
defining it more narrowly as something that is novel and useful. A computer can 
indeed come up with something novel, as the case of the Go match has shown. But 
was it creative  in the human sense? The computer examined a database of about 
100,000 human Go matches, playing against itself millions of times, reprogram-
ming and improving itself, using a Monte Carlo tree search algorithm based in neu-
ral network theory to carry out an “analysis” of a winning move.

Suffice it to say that the Newell-Shaw-Simon approach has had implications for 
AI generally. For example, Schmidhuber (2010) has argued that creativity is based 
on a simple computational principle for optimizing learning—the processing and 
encoding of a continually growing history of actions and inputs, implemented with 
an artificial neural network or some other machine learning device that can exploit 
patterns to improve performance over time. According to Schmidhuber, this explains 
all kinds of human creative acts, including discovering new mathematical ideas and 
theorems. So far, however, there is no evidence that human and computational cre-
ativity share the same principle. Recall that autopoiesis involves autonomous self-
organization. So can computers really become autonomous in this sense? It is 
suggestive to note that Google has developed its own AI theorem-proving program, 
which can prove, essentially unaided by humans, many basic theorems of mathe-
matics. In 2019, two members of Facebook’s AI research group, Guillaume Lample 
and François Charton, even developed a neural network system capable of solving 
symbolic mathematical problems.
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Despite such truly remarkable feats, automated mathematics remains an allopoi-
etic intelligence at the present time. Experimental Mathematics is important as a 
kind of laboratory of allopoietic mathematics, where the laboratory is the computer, 
providing a concrete way for human mathematicians to gain insights, unravel math-
ematical principles, test conjectures, and confirm results.

�Pedagogical Implications

The Robbins conjecture proof (above) laid the groundwork for what is now called 
the “computational thinking” method in mathematics pedagogy (Papert 1980; Wing 
2006). The characteristics that define it are problem deconstruction, pattern recogni-
tion, data representation, abstraction, and algorithm-creation. Simply put, it envi-
sions the learning of mathematics as being implanted on learning how to program 
computers to solve problems. Papert (1980) saw the goal of classroom pedagogy as 
creating a “programming environment” that invites students to write codes to solve 
specific problems. David Mumford and Sol Garfunkel (2013: 174) elaborate this 
pedagogical principle as follows:

Everyone says computer technology should be used in schools, but why let the computer be 
another incomprehensible technological mystery? Teach everyone the rudiments of pro-
gramming and what goes on inside that box. “But is this math?” we hear you saying. Yes; 
writing computer code teaches you how to be precise and formal and makes concrete math-
ematical recipes like that for long division. They are what we call algorithms, and this sort 
of training is a paradigm for rational thinking.

The central idea in this kind of pedagogy is that, by trying to figure out how to 
design algorithms to solve problems of various sorts, learners can discover mathe-
matical patterns and even identify errors in their previous thinking. Kosslyn (1983: 
116) described this aspect of computers aptly decades ago:

The computer model serves the function of a note pad when one is doing arithmetic: It helps 
keep track of everything so that you don’t get a headache trying to mentally juggle every-
thing at once. Sometimes the predictions obtained in this way are surprising, which often 
points out an error in your thinking or an unexpected prediction.

AI systems can now respond to student questions about specific topics, identify 
what aspects the student is ready to learn, which ones need more training, and so on 
(Cheney et al. 2011; Nansen et al. 2012; McCoy 2014). There are also a number of 
computer-based mathematics projects for in-class pedagogy. One of the most com-
prehensive has been designed by Conrad Wolfram (2020), who believes that math-
ematics education should be based entirely on developments in the AI mathematics 
laboratory.

Does this mean that the teacher has no role to play any longer? Like the need for 
human mathematicians to guide automated mathematics, so too there is a need for 
human teachers to guide the whole process. Indeed, paradoxically, computer-based 
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learning puts even more of an onus on the teacher, as McLuhan and Leonard (1967: 
24) remarked decades ago:

Tomorrow’s educator will be able to set about the exciting task of creating a new kind of 
learning environment. Students will rove freely through this place of learning, be it con-
tained in a room, a building, a cluster of buildings or an even larger schoolhouse. There will 
be no distinction between work and play in the new school, for the student will be totally 
involved. Responsibility for the effectiveness of learning will be shifted from student to 
teacher.

�Concluding Remarks

The question of whether AI can do mathematics is ultimately a rhetorical one. When 
mathematicians talk about something coming into existence as the result of some 
proof or serendipitous discovery, they are talking about something that only humans 
can truly interpret and understand. As Ian Stewart (2013: 313) observes, the prob-
lem of existence is hardly a trivial one:

The deep question here is the meaning of “exist” in mathematics. In the real world, some-
thing exists if you can observe it, or, failing that, infer its necessary presence from things 
that can be observed. We know that gravity exists because we can observe its effects, even 
though no one can see gravity. However, the number two is not like that. It is not a thing, 
but a conceptual construct.

The irrational numbers and the imaginary ones did not “exist” until they cropped 
up in the solution of two specific equations made possible by the Pythagorean theo-
rem and the concept of quadratic equation respectively. So, where were they before? 
Were they waiting to be discovered? This question is clearly at the core of the nature 
of mathematics. These did not “exist” until they crystallized in the conduct of math-
ematics, through ingenious notational modifications, diagrammatic insights, ludic 
explorations with mathematical signs, and so on. These features of the human mind 
are likely to be beyond the grasp of automated systems—at least at the present time.
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Chapter 9
Why the Basics Still Matter: The Cost 
of Using a Machine to Do Mathematics

Sasha Gollish

�Introduction

Remember the joke 1 + 1 = a window? If you rearrange the numbers and symbols 
you can draw a simple window. It is a playful answer, and quite creative. This cre-
ativity based on playfulness is commonly missing these days from mathematics 
courses. Dan Finkel (2019), founder of For the Love of Math, says that when a 
student comes to a teacher with a playful solution such as the one above the response 
should always be “yes,” because “yes,” compared to “correct,” starts a true dialogue 
between student and teacher, because “yes” says “I value and accept your idea;” 
“yes” is a mark of respect, and “no” can be a motivation destroyer.

I liked math because it was correct or not correct and I could fumble around to 
find the correct solution. I liked it because finding the right answer gave me confi-
dence. I liked math because a teacher could not tell me the answer was wrong when 
I thought it was right, which was how I felt about reading comprehension and the 
purpose of a passage—at least now I can let books invoke feelings in me and no one 
tells me I’m wrong!

Developing the fluidity to move through the basic math operations gave me con-
fidence when it came to do more complex math. I remember in OAC (Ontario 
Academic Credit) calculus that my peers would convert fractions to decimals, expe-
riencing the whole process as a nightmare. Looking back, I can see that they missed 
out on the simplicity and beauty of seeing connections between fractions and deci-
mals, because they were “afraid” of fractions. Plus, they needed a calculator to get 
to their decimals and what was usually a two-digit number (one on the top of the 
fraction, the other on the bottom) became a long string of numbers that was so much 
more cumbersome to work with.
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I understand why using a calculator was helpful to them. I will admit that I too 
will occasionally break down and use calculator on my phone to help me with some-
thing simple, but first I usually try to work it out in my head. That threshold for 
knowing the basics might be slipping, not just in mathematics, but all subjects. In a 
way, we all walk around with a device (i.e. any smart phone connected to a cellular 
data network) in our pocket, purse, bag, etc. that makes us a polymath. But relying 
on our machines does not really mean that we have “learned” that information, nor 
does it make us a polymath—a smart phone is simply a tool that supports knowledge.

Stepping back from the kind of technological world in which we live and think-
ing back to mathematics, the idea of knowing the fundamental (rudimentary) opera-
tions for addition, subtraction, multiplication, and division remains a crucial skill 
that all of us need, but equally as important is the ability to have fun with mathemat-
ics. There are so many fun things in life where we can use mathematics, from cal-
culating a mortgage payment on your first home, to grocery shopping when you get 
your first adult job paycheck and you splurge on expensive cheese, even understand-
ing geometry for parking your car in a spot at the grocery store to get that elusive 
“close” spot.

I have this memory of watching a British Minister take a phone out of her pocket 
and tell the world this was why we no longer needed to teach math. I may have 
imagined this event, or I may have a biased recollection to fit a narrative I want to 
tell myself. Regardless, I could not disagree more. I know that math gives some 
people the shivers, invokes horrible memories, and may even induce panic attacks. 
Unfortunately, I think that this is brought about because people may not have mas-
tered the basics of math, which disadvantages them in many ways, and so they miss 
out on some very important things in life that involve knowing mathematics. This 
chapter will argue that we still need to teach students the basics and not rely on our 
machines to do mathematics.

�What Are the Basics of Mathematics?

It is important to frame what is meant by basics of mathematics for the purposes of 
this chapter. The basic or foundational skills vary by age and ability. When one is 
first introduced to mathematics, usually as a child, it involves intuitive pattern rec-
ognition and counting. That early stages form a foundation for mathematics. As one 
progresses, intuitive forms become increasingly more formalized, turning into 
knowledge of simple arithmetic and subtraction, and then multiplication and divi-
sion. Some of us might remember the 12 by 12 blocks we had to fill in, usually for 
addition and multiplication, as well as practicing multiplication and division with 
“mad minute” flash cards, or other heuristics devices.

Fields that require advanced mathematics are many, including doctors, engi-
neers, scientists, etc., involving the calculus, algorithmic thinking, or estimation, 
which simply extend the basic mathematics skills (Gollish 2019). Defining the 
basics for mathematics has to take into account how math is employed, from early 
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learning (number counting, pattern recognition), primary education (addition, mul-
tiplication, division, and subtraction), to advanced skill-acquisition (medicine and 
engineering). In effect, all such skills are based on grasping the foundational prin-
ciples of mathematics that manifest themselves in our everyday lives, as from 
understanding a mortgage to how much one can spend on groceries per week or how 
many kilometers someone might need to run to train for a marathon.

In the Merriam-Webster dictionary, “fundamental” is defined as “serving as a 
basis supporting existence, determining essential structure; relating to essential 
structure, function, or facts; of central importance; and one of the minimum con-
stituents without which a thing or a system would not be what it is” (Merriam-
Webster 2020). “Basic” is a synonym of fundamental and is defined as “constituting 
or serving as the basis or starting point or concerned with fundamental scientific 
principles” (Merriam-Webster 2020).

It is the common set of basic mathematics skills that make one numerically liter-
ate, or numerate. Numeracy “is the ability to access, use, interpret, and communi-
cate mathematical information and ideas, to engage in and manage mathematical 
demands of a range of situations in adult life” (National Centre for Education 
Statistics (2020). The Organization for Economic Cooperation and Development 
(OECD) builds upon this definition and adds that mathematical literacy “includes 
concepts, procedures, facts, and tools to describe, explain, and predict phenomena. 
It helps individuals know the role that mathematics plays in the world and make the 
well-founded judgments and decisions needed by constructive, engaged and reflec-
tive 21st Century citizens” (OECD 2019). The OECD is an umbrella organization 
for the Programme of International Student Assessment (PISA) which holds math-
ematics contests, and which serves as a way to rank countries in their mathematics 
skills. The PISA 2021 Mathematics Framework identified the following key aspects 
of foundational or basic mathematical reasoning:

•	 understanding quantity, number systems and their algebraic properties;
•	 appreciating the power of abstraction and symbolic representation;
•	 identifying mathematical structures and their regularities;
•	 recognizing functional relationships between quantities;
•	 using mathematical modelling as ways to grasp the real world (as in the physical, 

biological, social, economic and behavioural sciences); and
•	 understanding variation as the function of statistics.

These key traits are what one needs to be numerate. PISA emphasizes that basic 
mathematical cognition involves an ability to reason logically and present argu-
ments so that one can “formulate, employ, and interpret and evaluate to solve prob-
lems in a variety of real-world contexts” (OECD 2019). This definition demonstrates 
that learning math involves a set of standards but competencies and outcomes that 
every individual should acquire in school. In Canada, provinces set their own stan-
dards or outcomes for mathematics education with the objective of imparting 
numerical literacy and reasoning (Council of Ministers of Education, Canada 2020). 
Other than Ontario and Quebec, provinces follow the Common Core Standards for 
Mathematics from the National Council of Teachers of Mathematics (NTCM), an 
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American institution. The common core standards are modeled after the method of 
“process and proficiency,” which includes the following (Council of Ministers of 
Education, Canada 2020):

	1.	 Making sense of problems and persevering in solving them.
	2.	 Reasoning abstractly and quantitatively.
	3.	 Constructing viable arguments and critiquing the reasoning of others.
	4.	 Modeling with mathematics.
	5.	 Using appropriate math ideas strategically.
	6.	 Attending to precision.
	7.	 Looking for and making use of structure.
	8.	 Looking for and expressing regularity in repeated reasoning.

In Ontario, basic mathematics is “fostered through instruction that highlights 
strategies for remembering facts, focuses on making sense, and integrates math-fact 
learning into other aspects of math learning, such as developing computational 
skills.” The document goes on to suggest that this is not to be interpreted as repeated 
practice or “drills,” although it is not clear what is meant by this (Ministry of 
Education of Ontario 2005). The idea seems to be that math fluency correlates with 
the cognitive load—the curriculum is based on the belief that there should be a 
gradual process of learning, so that students should master addition and subtraction 
facts by the end of grade three and multiplication and division facts by the end of 
grade five. If that is the desired outcome practice, repetition seems to be the quickest 
means to an end but does not ensure that students understand, or reflect, upon how 
these operations function.

From any curriculum program, it is confusing to determine what constitutes the 
basics or foundational skills of mathematics. Certainly, “counting, adding and sub-
tracting, multiplying, dividing, calculating change, calculating tips, and percent-
ages,” as suggested by Vinner (2018) in Mathematics, education, and other 
endangered species, are obvious aspects of math competence. Saul Khan, founder 
of Khan Academy, a non-profit organization dedicated to providing free, world-
class education, which first started with a series of mathematics videos, breaks 
down math competence in the early stages as follows (Khan Academy 2020):

	1.	 Counting (up to 120)
	2.	 Addition and Subtraction (making 10, then 20, then 100, finally 1000)
	3.	 Place Value (tens, hundreds)
	4.	 Measurement and Data
	5.	 Geometry

These are not trivial, especially when one puts a lens on how we teach these to 
our students. At the root of it there is a desire to ensure that all students become 
numerically literate (numerate) and to hopefully develop some passion and desire to 
pursue and play with mathematics, as opposed to dreading it.
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�How We Teach Mathematics

To talk about how to teach the basics (or fundamentals) of mathematics, it is neces-
sary to first define what mathematics is, albeit schematically. Generally speaking, 
mathematics is “the science of numbers and their operations, interrelations, combi-
nations, generalizations, and abstractions; of space configurations and their struc-
ture, measurement, transformations, and generalizations; and algebra, arithmetic, 
calculus, geometry, and trigonometry are branches of mathematics” (Merriam-
Webster 2017). One might say, as seventy-five prestigious Canadian and American 
mathematicians of 1962 eloquently said, “to know mathematics means to be able to 
do mathematics: to use mathematical language with some fluency, to do problems, 
to criticize arguments, to find proofs, and, what may be the most important activity, 
to recognize a mathematical concept in, or to extract it from, a given concrete situ-
ation” (Ahlfors et al. 1962).

Defining mathematics leads to several ambiguities, unlike other subjects that 
generally have consistent definitions. This is borne out by the diversity in answers 
when one asks students and instructors to explain what mathematics is (Boaler 
2015). Mathematics education researcher Jo Boaler (2015) found the following: if 
you ask a student what the study of mathematics is the student will tell you it is the 
“study of numbers,” “a lot of rules,” or “a list of rules and procedures that need to 
be remembered.” In contrast, if you ask mathematicians the same thing, they will 
tell you that mathematics is “the study of patterns” or “a set of connected ideas.”

Moreover, there is confusion and debate about how to teach the “basics.” How 
one teaches these to students has sparked much debate about pedagogical methodol-
ogy. Mathematics teaching can be thought of in terms of two paradigms, a tradition-
alist approach, which suggests the practice of fundamental skills, and a reformist 
approach, which suggests discovery learning in the classroom to help students con-
struct their own knowledge (Schoenfeld 2004; Karney et al. 2017). Alan Schoenfeld 
famously framed this debate in 2004 as the “math wars.” In Schoenfeld’s seminal 
article he articulated that the “math wars” are not simply about how one teaches 
math (traditionalist or reformist) but whether mathematics is for the elite or the 
masses, and thus involves tensions between “excellence” and “equity,” and whether 
mathematics is a democratizing force or a vehicle for maintaining the status quo. 
Artfully, Schoenfeld (2004) emphasized why this conversation is of such impor-
tance—“mathematical knowledge, is a powerful vehicle for social access and social 
mobility. [The] lack of access to mathematics is a barrier—a barrier that leaves 
people socially and economically disenfranchised.”

While these wars show no particular signs of nearing a resolution, some 
(Bevevino et al. 1999; Schoenfeld 2004; Carlson 2014) argue for a middle ground 
between teaching tried-and-true basic mathematics skills in the classroom and 
allowing students to explore, discover, and innovate. There is not a one-size-fits-all 
approach to teaching mathematics, or any subject. Below, I discuss some of the 
teaching methods, none of which intend to privilege one method over the other, but 
to demonstrate the strengths and challenges of each of them.
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�Rote Rehearsal and Deliberate Practice

Intrinsically we know what rote rehearsal (learning) is. It is based on repeating a 
task mnemonically, ingraining a skill, and thus developing the sense of gaining 
expertise from this repetition. The American Psychological Association (2020) pro-
vides a clear, concise definition, stating that the act of rote rehearsal or maintenance 
rehearsal involves “repeating items over and over to maintain them in short-term 
memory. According to the levels-of-processing model of memory, maintenance 
rehearsal does not effectively promote long-term retention because it involves little 
elaboration of the information to be remembered.” Cramming for a test to have 
short-term retention of facts might make sense in some situations, but for deep 
learning rote rehearsal may not be an effective solution (Devlin 2019). Teaching 
“rote” suggests students learn blindly to follow rules and procedures with no foun-
dational knowledge as to how the rules apply or why the procedure works 
(Mighton 2019).

A relative of rote learning is deliberate practice. Deliberate practice goes beyond 
the notion of repetition, creating meaning between a skill and its abstract goal—the 
goal is to build metacognitive proficiency. Made famous by K. Anders Ericsson and 
popularized by Malcolm Gladwell in Outliers: The story of success, deliberate prac-
tice suggests that students become experts through training, which is “a limited time 
of intense concentration and focused engagement, rather than simply rote rehearsal. 
The general characteristics of deliberate practice are setting specific goals, design-
ing/monitoring learning activities, and reflecting” (Ericsson 2002; Gladwell 2008). 
Designing activities to promote discovery learning in mathematics, involves the use 
of problem sets that help students build connections and scaffolding to other facets 
of mathematics and other courses (i.e., fractals in biology). This means encouraging 
students to set goals for themselves that push the boundaries of their comfort zones, 
getting them to reflect upon the presented material. While there seems to be an ideo-
logical gap between deliberate practice and rote rehearsal, they actually are comple-
mentary. We need both. So, why do these two approaches seem to be polarized?

�Discovery-Based Learning

In the debate, one side advocates the repetition of tasks and the other side supports 
process learning and problem solving, where students are responsible for construct-
ing their own knowledge by developing their own explanations and approaches with 
little guidance from their instructor. As opposed to learning a single skill through 
the deliberate practice style of learning, discovery-based learning aims for a more 
holistic understanding of the process (Schoenfeld 2004). This might involve much 
struggle on the part of students.

The struggle is productive, however and is part of a method that “encourages 
creativity and builds authentic engagement and perseverance” (Cowen 2016). 
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However, since this is sometimes seen as a barrier to classroom learning, shifting 
teaching in a manner that promotes efficiency and correctness learning might be a 
remedy (Pasquale 2015). In this way, students can take ownership of their learning, 
gaining a better understanding that they might also transfer to other courses 
(Edwards 2018)—helping promote deep learning through the “discovery” of math-
ematics. However, discovery-based learning is also criticized because it might entail 
too much struggle, so that students might give up (Mighton 2019). Finding a bal-
ance is what is needed, just enough so that students are neither bored nor feel over-
whelmed. This challenge-skill balance is termed flow by Csikszentmihalyi (2008), 
which “postulates that people enjoy an activity the most when the high challenge 
level of the activity matches people’s high skill level.” If the struggle is too great, 
students may be unmotivated, or worse intimidated, by the math problem in front 
of them.

Discovery-based learning has elements that inspire deep learning, promoting the 
flow; however, when scaffolding is absent and the struggle is too great students give 
up. This leads students to claim, “I’m just not a math person.” What if instead there 
was a middle ground, one that introduces the practice (even through repetition), 
allowing students to “discover” how the math is connected, and instills confidence, 
and even joy?

�Structured Inquiry

John Mighton (2020) offers a middle ground to close the gap between the tradition-
alists and the reformists. He describes his approach as “structured inquiry,” a way to 
strike a “balance between independent and guided thought and between problems 
that are too hard or too easy for students.” By focusing on incremental steps and 
providing the “right” scaffolding one can instill confidence in students as they move 
from simple to more complex mathematics. Others also encourage the use of this 
middle ground, blending tried-and-true basic mathematical pedagogy, allowing stu-
dents to explore, discover, and innovate thoughtfully (Bevevino et  al. 1999; 
Schoenfeld 2004; Carlson 2014).

This teaching approach, which combines task analysis and scaffolding, is a gate-
way to computer programming (coding) and algorithmic thinking. Task analysis, 
according to Mighton (2019), includes planning out the steps (down to minutiae) to 
follow and perform a procedure. This is an early foundation for algorithmic think-
ing, solving problems by following a set of rules, such as the rules of a calculation 
(Gollish 2019), typically associated with computer programing and the foundations 
of mathematical thinking. Deconstructing a mathematics problem according to its 
constituent steps can allow students to identify where they are struggling, so that an 
instructor can provide the right type help the student needs, as opposed to providing 
the solution or over-scaffolding the problem. This type of task analysis and writing 
out the steps follows George Pólya’s classic method in How to solve it (Pólya 1957), 
in which he suggests four simple steps to break down and grasp any problem.
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	1.	 Understand the problem.
	2.	 Devise a plan (translate).
	3.	 Carry out the plan (solve).
	4.	 Look back (reflect, interpret, and check).

In Ontario, this blended approach forms the basic pedagogy (Ministry of 
Education of Ontario 2005). Interestingly, Mighton’s structured inquiry approach is 
sometimes criticized for merely giving a different name to “rote” or “drill and kill” 
learning. However, Mighton responds that by connecting a “basic” skill to a bigger 
idea this method neatly blends traditional and reformed approaches: “Most research-
ers now recommend that teachers introduce concepts with simple concrete models 
or representations and that they gradually make the representations more abstract” 
(Mighton 2020). Mighton shows how this method works with his lesson modules as 
part of the JUMP math program. While structured inquiry has its roots in an amal-
gam of deliberate practice and discovery-based learning, there are, however, other 
ways of teaching that can instill a passion for learning and for having fun with 
mathematics.

�Other Ways to Teach Mathematics

Ultimately, the goal of math pedagogy is to teach students to thinking mathemati-
cally. Jordan Ellenberg (2014) suggests that mathematical thinking is an extension 
of common sense thinking, providing a lens to examine the world and useful for 
guiding informed decisions. Ellenberg advocates using the mathematical informa-
tion that is present in the world, such as the occurrence of fractals in nature to stimu-
late mathematical thinking; in a similar vein Eugenia Cheng (2016) suggests that 
baking techniques and patterns can be used to simulate processes of abstraction.

Another approach is the so-called Habits of Mind one, which aims to stimulate 
different “skills, attitudes, cues, past experiences and proclivities” to reach a more 
thoughtful solution (Costa 2000). Developed by Costa and Kallick (2008), the goal 
in this method is to evoke attributes of “intelligent behavior.” It posits that intelli-
gence is not “fixed” but flexible, and with the right motivation anyone can learn 
anything (Costa and Kallick 2008; Boaler 2016).

Another method to teach mathematics is puzzle-based learning. Puzzles have 
one solution but multiple pathways to arrive at it; in effect it has attributes of both 
open-ended and closed-ended questions: “When students engage in puzzle-based 
learning, they explore facets of a task and begin to formulate a deeper understanding 
of the function which can be elaborated in class” (Costa 2017). This echoes learning 
and pedagogical principles such as those put forth by Pólya and Mighton. The ulti-
mate goal is, again, to bring about deep learning in all math students, regardless of 
whether they show an aptitude for mathematics or not (Mighton 2008; Dweck 2008; 
Boaler 2016). Interestingly, none of these teaching methods suggest the use of 
devices such as calculators or computing devices; and they all assert that it is critical 
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to not cognitively overload the students. Before discussing cognitive load, there are 
lessons to be learned outside of mathematics that might provide insights on teaching 
the basics of mathematics.

�Literacy

The teaching of reading, literacy, music, etc. might offer ideas for math pedagogy. 
Literacy training is particularly relevant. As UNESCO (2002) put it, literacy today 
is a broad term: “Literacy is about more than reading or writing—it is about how we 
communicate in society. It is about social practices and relationships, about knowl-
edge, language and culture” (Matsuura 2002). The Province of Alberta (Alberta 
Education 2020) provides a similar definition, remarking that literacy is: “the abil-
ity, confidence and willingness to engage with language to acquire, construct and 
communicate meaning in all aspects of daily living.” Literacy is an acquired skill 
imparted through some form of training. Pre-literacy is, instead, the period in child-
hood when language is acquired without formal training. As is well known, as early 
as 6-months babies can recognize words, and by 8- or 9-months they can produce 
some words on their own, together with other communicative signs, such as gesture 
(Cicerchia 2020). Children soon develop the ability to identify letters, numbers, and 
shapes, as they develop phonemic competence and are taught how to associate pho-
nemes with reading signs and systems; in English, this includes reading from left to 
right, and starting at the top of a page and reading down (Scholastic Parents Staff 
2020). This pre-literacy stage forms the foundation on which children gradually 
learn to read and write.

Pre-literacy learning has always had implications for how to teach mathematics, 
since it might mirror how children develop numeracy alongside literacy. Some 
argue that the key process is making connections between the phonemic code and 
the alphabetic code, called phonics; others suggest instead that learning to read and 
write involves a focus on entire texts, rather than isolated words and their sounds, 
called holistic (Aarnoutse et al. 2001; Wexler 2018). The debate between phonics-
versus-holistic learning of literacy debate has migrated to the elementary classroom, 
where mathematics and reading are taught in tandem. Educators are coming to rec-
ognize that a balanced approach is the most effective one to teach reading, and this 
extends to mathematics, whereby symbols and concepts can be connected either as 
discrete items (as in phonics) or as part of a theme in which mathematical concepts 
can be located (as in the holistic approach) (Davis and Mighton 2018).

In all this, motivation is a key factor. Research indicates that literacy and numer-
acy improve when a student develops a love for reading and math. This means 
contextualizing learning; so, for example, getting a student who is interested in 
baseball to read a passage about baseball the passage might enhance the student’s 
comprehension and analytical skills; the same applies to doing, say, a puzzle in 
math or working with practical math problems (Mighton 2008; Wexler 2019). In 
one of her articles Wexler (2019) asks:
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What if the best way to boost reading comprehension is not to drill kids on discrete skills 
but to teach them, as early as possible, the very things we’ve marginalized—including his-
tory, science, and other content that could build the knowledge and vocabulary they need to 
understand both written texts and the world around them?

From phonics to building a mental lexicon of familiar words, how one gets from 
one word at a time (the pre-literacy phase) to full reading comprehension across a 
variety of subjects does not matter—it is getting the student there (Cicerchia 2020).

�Physical Literacy

Physical literacy refers to the acquisition of skill in one or more sports. It involves 
knowing how to move physically in a specific sport. Overall, it involves knowledge 
of the fundamental movements and skills in any kind of physical activity (Kriellaars 
2013). Learning to be physically literate it is not, however, merely knowing how to 
move in an environment of play, but also how to carry out new activities, how to take 
advantage of opportunities for working together, and how to ask relevant questions 
(Kriellaars 2013; Sport for Life 2020). Children need to be taught agility, balance, 
and coordination in different environments, inside and outside. Confidence and 
competence come from enjoyment, repetition, and the safe testing of the child’s 
limits to improve their abilities. Sport for Canada advocated a minimum of 180 min-
utes (3 hours) of activity per day for children, with 60 of those being vigorous.

Physical literacy programs provide activities for children during their school 
years and even beyond. The fundamental phases that undergird such programs are 
the following (Higgs et al. 2019):

	1.	 Active Start: this is designed to help children master basic movements and 
develop habits of physical activity through fun, engaging activities.

	2.	 FUNdamentals: this is intended to help children develop fundamental movement 
skills—agility, balance and coordination—again through the enjoyment of phys-
ical activity.

	3.	 Learn to Train: is the phase when children learn a wide variety of sport-specific 
skills in an enjoyable and friendly environment.

The emphasis on “fun” is a key principle in this approach, as is the concept of 
general understanding. In his book Range: Why generalists triumph in a specialized 
world, David Epstein (2019) exposes the myth behind early specialization: “even-
tual elites typically play a variety of sports, usually in an unstructured or lightly 
structured environment; they gain a range of physical proficiencies from which they 
can draw.” Epstein compares the career paths of Tiger Woods and Roger Federer in 
their respective sports (golf and tennis). Although Woods appears to have been 
exposed to a highly structured routine from a young age, both athletes enjoyed simi-
lar success because they enjoyed practicing their sports, which allowed them to 
develop proficiency in them.
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In 2015, Sport for Life defined physical literacy as “the motivation, confidence, 
physical competence, knowledge and understanding to value and take responsibility 
for engagement in physical activities for life,” based on affective (motivation and 
confidence), physical (physical competence), cognitive (knowledge and under-
standing), and behavioural (engagement in physical activities for life) modalities. It 
identified five core principles of physical literacy that, on closer scrutiny, apply to 
any form of literacy:

	1.	 It is an inclusive skill accessible to all.
	2.	 It represents a unique journey for each individual.
	3.	 It can be cultivated and enjoyed through a range of experiences in different envi-

ronments and contexts.
	4.	 It needs to be valued and nurtured throughout life.
	5.	 It contributes to the development of the whole person.

�The Musical Mind

Music might be the most similar to mathematics in its structure and in the way the 
two are acquired (Ericsson 2002; Gladwell 2008). Musical literacy is thus also rel-
evant to math pedagogy. Music concepts are abstract, so they are best taught with 
visuals and manipulatives at first (Alegria 2017). Music also requires dedicated 
practice to master a new skill, as does mathematics. It too can have “hugely positive 
ramifications for personal fulfillment and lifetime success” (Tsioulcas 2012; 
Buszard 2014). For these reasons, music and mathematics pedagogy share many 
features. Some of the classic methods, such as the Suzuki and Kodály one, have in 
fact been extended to mathematics (Sarrazin 2012). It is worth going through the 
main ones for the sake of illustration:

	1.	 The Kodály Method is a holistic approach focusing on the intellectual, emo-
tional, physical, social, and aesthetic aspects of music, with the belief that music 
is for everyone. It espouses a sequential approach, beginning with sight-reading 
and mastering basic rhythms and pitches before advancing to complex technical 
and aesthetic aspects.

	2.	 The Dalcroze Method, also called the eurythmics method, focuses on teaching 
rhythm, structure, and musical expression through movement. In this approach 
the music is the stimulus for making the body move, which in turn causes an 
emotional reaction in the student, deepening the significance of the experience. 
The method begins with training the ear so as to get the body to mimic the sounds.

	3.	 The Orff Schulwerk Approach fosters creative thinking through improvisation, 
combining instruments, singing, movements and speech to develop musical pro-
ficiency. There are four phases in this approach: imitation, exploration, improvi-
sation and composition.

	4.	 The Suzuki Method espouses principles that are meant to match how children 
acquire their native languages; a learner begins by listening and then repeating in 
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a step-by-step process, inducing patterns in the music and then practicing them 
formally.

As mentioned, these methods have much in common with the ways in which 
mathematics is learned and taught. So, rote rehearsal could be compared to decod-
ing words in pre-literacy environments (reading), consistent repetition in sport with 
practice techniques in mathematics, and discovery-learning (induction) in the 
Suzuki Method (music) corresponds to structured learning; and so on.

�Cognitive Load

In all kinds of learning tasks, carrying a huge cognitive load will invariably hamper 
learning. Cognitive load refers to the working memory (short-term) required to 
carry out a task (Kirschner et al. 2018). The more a task demands of us cognitively, 
the slower we learn. Most of us now probably do not need much working memory 
or time to do the times tables between 1 and 12 (these are in our long-term mem-
ory); but learning them initially involved a considerable cognitive load (mnemonic 
effort). In addition to memory, cognitive load involves the number of tasks one is 
trying to complete. “At high levels of multitasking, the cognitive load is higher and 
the benefits smaller. It is modern technology and computers that allow people to 
multitask—for instance, web-browsers provide an interface that allows for multiple 
tabs to facilitate concurrent activities” (Adler and Benbunan-Fich 2012).

This is where the notion of switching cost comes in. When we multitask, instead 
of solo- or single-tasking, there is a cognitive cost to pay, whereby we must shift our 
brain states between the concurrent tasks we are attempting to complete. It is almost 
impossible to reach a state of flow if we are multi-tasking (American Psychological 
Association 2006; Aral, Brynjolfsson, and can Alstyne 2011; Adler and Benbunan-
Fich 2012).

�Conclusions

To argue for a no-technology, machine-free, classroom today is an absurdity, given 
that we are immersed in all kinds of technologies. If nothing else, technology should 
be used as an ancillary tool for reinforcing learning. However, if the students become 
solely focused on the use of devices for all tasks there is a switching cost involved, 
disrupting the thinking flow. In a seminar organized by Science Magazine (Oransky 
et al. 2019), it was pointed out, virtually by consensus, that it is important for stu-
dents to understand basic mathematics independently, and not “relying and overly-
ing on software,” because “it can lead to trouble.” The trouble is lack of understanding 
and misuse of basic mathematics. Technology can be seen as a scaffold with respect 
to traditional teaching.
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To make sure that the basics are learned, a balanced approach is required, based 
as well on insights from other subjects. We cannot separate graduated material, rote 
practice from discovery-induction. We must also learn from methods used to impart 
other literacies, as discussed. If I were to dig down to the granularity of what I think 
the fundamentals of mathematics are, I would see them as components of a clock. 
Similar to a clock there are 12 numbers around the face, but instead of hands in the 
middle, there are the four operations—addition (+), subtraction (−), multiplication 
(×) and division (÷). All students should be able to not just complete these opera-
tions from 1 to 12, but also understand what the operations mean and be able use 
them as part of their daily experiences. These basic operations parallel the 
FUNdamentals of physical literacy; playing with numbers from 1–12 is the 
FUNdamental of mathematics. My claim is that through these simple pedagogical 
ideas, we can bring back the “fun” to the math classroom.
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Chapter 10
Syntonic Appropriation for Growth 
in Mathematical Understanding: 
An Argument for Curated Robotics 
Experiences

Krista Francis and Steven Khan

�Introduction: “There Are No Numbers Between 5 and 6”

We open with an anecdote from our initial co-writing meetings about students’ 
growth in mathematical understanding. We chose this scene to provide an illustra-
tive example of what we intend to highlight, viz. that curated robotics experiences 
offer opportunities for syntonic appropriation that contributes to learners’ growth in 
mathematical understanding:

Krista: When I work with children aged 9–11 years old (Grade 4 to 6) with robots I’ve 
noticed in their conversations they often refer to the robot as themselves (“I need...”) or 
extensions of themselves (“We need…”). Adults, teachers and pre-service teachers, also 
often refer to the robot as themselves. For example, when they say “we’re so close” as they 
try to get the robot to travel 100 centimeters exactly or “we need to go back one” on similar 
tasks. I’ve also noticed how quickly children seem to learn decimal numbers when they do 
this task or similar tasks. When I first started working in one school (3 years ago) and asked 
what’s between 2 and 3 or 4 and 5, it didn’t matter which grades, 4, 5 and 6 (Division 2 or 
Upper Elementary) the children would confidently answer “there is nothing” between 2 and 
3 or between 4 and 5 and that’s despite having up to three years of learning about decimal 
numbers.

Steven: Since I work mostly with elementary pre-service teachers, let’s look at the K-8 
Program of Studies (Alberta Education 2016a, b) (Curriculum document) and the 
Achievement Indicators (2016) (Supplementary document) to see where decimals first 
appear, as what happens in classrooms here in Canada I’ve found is very much driven by the 
Provincial Curriculum documents. Decimals appear in Grade 4 in the Number Strand (see 
Appendix) and the goal of comparing and ordering decimal numbers becomes a required 
curriculum outcome by the end of Grade 5. The specific model of using a number line is not 
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mentioned in the Program of Studies but is in the accompanying Achievement Indicators 
document which is meant to provide some ideas to teachers but is not the ‘curriculum’ and 
teachers are not legally required to report on the ideas presented there.

Krista: Grade 4 teachers might say that this (using the number line for decimals) is not their 
responsibility. But the number line is such a powerful tool (Braithwaite and Siegler 2018; 
Obersteiner et al. 2019). It elaborates and extends the ordering of whole numbers, espe-
cially for decimal fractions, and points towards the real number continuum later on that it is 
surprising to me that it is not even considered until Grade 5.

Steven: Checking the Program of Studies, I see that the number line is introduced as an 
expectation in Grade 1 with respect to benchmarks of the whole numbers 0, 5, 10 and 20 but 
is not with respect to fractions and decimals at least not in the stated expectations. It is 
however explicitly called on in the Achievement Indicators in Grade 4 (Name fractions 
between two given benchmarks on a numberline. Order a given set of fractions by placing 
them on a number line with given benchmarks) and Grade 5 (Position a given set of frac-
tions with like and unlike denominators on a number line, and explain strategies used to 
determine the order; Order a given set of decimals by placing them on a number line that 
contains the benchmarks 0.0, 0.5 and 1.0.) and Grade 6 (Place a given set of fractions, 
including mixed numbers and improper fractions, on a number line, and explain strategies 
used to determine position.)

Krista: Well, I am going to keep this information in mind for future teaching and profes-
sional learning. Below (Fig. 10.1) is an illustration of an interaction that two Grade 4 girls 
had with their teacher while programming their robot to travel exactly 100 cm. This was 
their first experience programming the robot to move and their first experience with decimal 
numbers. They had been working on this task for about half an hour before this interaction 
occurred. They had observed that 5-wheel rotations did not travel far enough and 6 was too 
far. Their challenge was understanding that there were numbers between 5 and 6.

Krista: The next week this pair of girls were using decimal numbers as they were trying to 
figure out how many wheel rotations to travel 73 cm. They solved the questions with an 
answer of 4.2. This was a variation of the context and the girls demonstrated a spatial sense 
of the number indicating it was closer to 4 than 5.

We framed our discussions about these incidents in terms of a growth in mathe-
matical understanding following the model offered by Pirie and Kieren (1994a, b). 
We believe that a well structured robotics inquiry (such as these described in this 
paper and others) allows students to discern critical features of a concept (Marton 
2014, 2018) through providing multiple instantiations of the concept (available 
through different embodied metaphors and enactions) and multiple opportunities to 
relate to its different aspects.

In this paper we argue that a well structured robotics inquiry can lead to what 
Pirie and Kieren (1994a, b) called growth in mathematical understanding. In par-
ticular we offer that such structuring is a means to encourage processes of syntonic 
appropriation as introduced by Papert (1980). We start with the observation that 
some mathematical concepts are introduced to learners in ways that are disassoci-
ated from learners’ bodies, experiences and/or culture(s). Consequently, learners 
struggle to apply/relate the mathematics concepts in novel circumstances – such as 
in a robotics environment. Learning in this case is superficial and fragmented though 
our intention is for such knowledge to become deep and connected.
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The intentional design of instructional tasks can focus use of mathematical con-
cepts for making the robots move more precisely in order to prompt growth in math-
ematical understanding around mathematical concepts such as the existence of 
rational numbers and their ‘location’ or ‘magnitude’ on the visuo-spatial representa-
tion of a number line. Our goal is to suggest and illustrate how the Pirie-Kieren 
model can be used to highlight/draw attention to some of the growth in mathemati-
cal understanding within a curated robotics learning experience. The growth in 
mathematical understanding we observe involves students (gradually) appropriating 
models and concepts in a syntonic way through curating their own experiences of 
learning from the opportunities provided by the teacher’s previously curated robot-
ics learning task(s). We use the metaphor of curating in this paper as we have found 

Fig. 10.1  How many wheel rotations for the robot to travel 100 cm?
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that there is value in shifting our thinking from the language of accumulating of 
experience (Khan et  al. 2015) to the intentional and deliberate curating of such 
experience which involves keeping an imagined audience and their interactions 
in mind.

�Arguing for Curating Tasks—Theoretical Framing

�Knowing Is Doing

Our main theoretical commitment is to enactivism (see Khan et al. 2015). However, 
in this paper we also draw on theories of embodied cognition in the learning of 
mathematics (Lakoff and Núñez 2000) and computational thinking (Buteau et al. 
2016; Francis et al. 2016; Grover and Pea 2013; Wing 2006).

Briefly, enactivism is (1) a theory of engagement, (2) that is simultaneously 
attentive to the coupling of organisms and their environments, action as cognition, 
and sensorimotor coordination; and (3) attending to relevant phenomena of interest 
involves a methodological eclecticism (Di Jaegher and Di Paulo 2013) that is con-
cerned with inter-agent dynamics that include feedback from the system and the 
organism’s responses. In our work students, teachers, researchers, tasks and tech-
nologies are dynamically coupled and provide feedback to each other.

Enactivist theories of human learning attend explicitly and deliberately to action, 
feedback, and discernment. They emphasize the bodily basis of meaning. As Brown 
and Coles (2011: 861) note, “[t]he enactive conception of knowledge is essentially 
performative”, i.e. knowing is doing. While constructivism can also be interpreted 
as performative, the focus is on the outcome of actions rather than the process of 
interactions as in enactivism. Enactivism is attentive to the many feedback struc-
tures in a greater-than-the-individual-learner system. It is the organism as a whole, 
together with its environment, which co-evolves in enactivism.

We work from the position of Varela et al. (1991: 173) that contends that the 
enactivist approach comprises two principles, viz. that “(1) perception consists in 
perceptually guided action and (2) cognitive structures emerge from the recurrent 
sensorimotor patterns that enable action to be perceptually guided.” (That is to say, 
what an individual perceives is dependent on, but not determined by, the types of 
sensory stimuli that the individual’s body, its physical interface with the world 
encounters.

For example, with respect to perceptually guided action, Rushton (2008: 36) 
states, “[t]o walk to a target you need to know where it is,” i.e., our potential for 
action (walking or moving in terms of the robot and body syntonicity) and goal 
(destination) is dependent on the perception and selection of sensory information 
from the physical world. Work in developmental psychology (e.g. Keen et al. 2003), 
which analyses infants reaching for objects, exemplify both principles of the enac-
tivist approach we are using.
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Over time, repeated activity (action) establishes predictable (statistical) patterns 
of neural and neuromuscular activity that in turn influences the response to the stim-
uli sought or encountered. Humphreys et al. (2010: 186) argue and present experi-
mental evidence that, “our need to act upon the world not only imposes a general 
need for selection on our perceptual systems, but it directly mediates how selection 
operates. Attention is grounded in action.” It is action then or rather potential for 
action that focuses attention on some features of the environment such that some 
aspects of the sensory landscape are perceived and others are not. It is these ongoing 
focusing of perceptions and sensations and evaluation of goal states (feedback) that 
guides action. This focusing of intention is an attribute of the individual learner as 
well as the learning designer-teacher-curator.

We distinguish between related enactivist and embodied perspectives in that in 
enactivism the external environment plays a significant role in understanding the 
dynamic unfolding of cognitive processes: what is in the environment is a resource 
for thinking, doing/knowing and being. While enactivism is attentive to ongoing 
co-constituted interaction among bodily action, cognition, and the environment, 
theories of embodied cognition focus on the relationship between cognition and 
prior action. In other words, cognition, in embodied models, is closely tied to prior 
sensorimotor experiences. Rather than predictions of learning a concept, enactivism 
is concerned with the learning in action since it is the potential for action in the 
world that focuses attention and drives learning. Embodied cognition is concerned 
with the learning from action. Embodied cognition can be regarded as a sort of con-
solidation of enactive action. In this work both of these theoretical frames are neces-
sary in our attempt to make sense of learners’ growth in mathematical understanding 
in a robotics learning environment.

Hutto (2013: 174) argued that enactivism, with its starting assumption that men-
tal life can be understood as embodied activity, is a good candidate for “defining and 
demarcating [psychology’s] subject matter”—that is, in his terms, for “unifying 
psychology.” Traditional perspectives, he argued, delimit psychological explana-
tions to ones that rely on inner representational states. He noted that enactivism, in 
its original formulation by Varela et al. (1991: 177), attended explicitly to organ-
isms’ varied engagements with contexts “not only of the biological kind but also of 
sociocultural varieties.” The robotic moving task illustrated in Fig. 10.1 could be 
interpreted as merely a manipulation of an inner representation but to our under-
standing from an enactivist perspective it is not at this point in time. Rather, they are 
in the process of constructing a mental number line (as an object-to-think-with) 
through action with the robot, the programming interface, the task specifications, 
and each other. By the last panel though where they have completed the task accu-
rately, embodied perspectives help us to better understand how decimal numbers 
and a number line have been appropriated through metaphors of imagined robotic 
movement. We see value here in drawing readers’ attention to this necessary shift in 
theoretical tools to better analyse and understand the growth in mathematical under-
standing of learners at two different points in developmental time. Bridging these 
two moments in time we use the Pirie-Kieren model which helps us to carefully 
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notice and name subtle shifts in attention as evidenced by changes in language, 
gesture and performance (action).

�Teaching Is Presenting Appropriable Challenges

�From Accumulating to Curating

In previous work we used the idea of learning from an enactivist perspective as an 
accumulating of sufficient and diverse experiences (Francis et al. 2016; Khan et al. 
2015). Over time, in work with students and teachers the limits of this descriptor 
have become more apparent as we have critically appraised our own growth in 
understanding about how people (National Academies of Sciences, Engineering, 
and Medicine 2018) and systems learn (Davis et al. 2019; Dehaene 2020). Learners 
and teachers do appreciatively much more than ‘accumulate’ experiences, they 
attach affective (probabilistic) weights and meaning to these experiences. The meta-
phor of curating has emerged as a more apt descriptor than accumulating.

We take curating as a literacy practice. Looking to its linguistic origin we find 
both curation as a noun and a verb. As a noun, a curate refers to a person tasked with 
the care or cure of souls. We choose to read ‘care’ as deliberate and loving attention 
to the necessary aspects for the realization of well-being in another (including the 
self). We read ‘cure’ (of a soul) not in a medically restorative sense or the elimina-
tion of a disease, but rather as a learning how to live and be well in the world 
(Seligman 2011) with others. In more recent usage, the verb curate refers to the 
actions of selecting, organizing, and presenting something for an intended (or imag-
ined) audience based on expert knowledge and values. According to art historian, 
Donald Preziosi (2019: 11), curation,

involves the critical use of parts of the material environment both for constructing and 
deconstructing the premises, promises, and potential consequences of what are convention-
ally understood as realities, or social, cultural, political, philosophical, or religious truths. It 
is a way of using things to think with and to reckon with—to struggle with and against—
their possible consequences. It is an epistemological technology: a craft of thinking. As 
such, it is not innocent or innocuous…[It] entails the conscious juxtaposition and orchestra-
tion of what in various Western traditions were distinguished as “subjects” and “objects”: 
what are conventionally differentiated as “agents,” and as what is “acted upon.” Curating 
not only precedes and is more fundamental than exhibitions, galleries, collections, and 
museums; but it is also not unique, nor exclusive, to any of those institutions and profes-
sions. In fact, it is not even an “it” at all but is, rather, a way of using things: potentially any 
things. In short, curating is a creative performance using the world to think about, and both 
affirm and transform, the world.

Curation here involves critical, craft and creative thinking with awareness or 
consciousness, i.e. it is not mere collection (or accumulation) and display, it is ori-
ented towards an imagined audience and intended for learning. The perspective 
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above shares many resonances with Papert’s framing of bricolage (Papert 1980). It 
is engaging in bricolage that provides the necessary and diverse occasions for syn-
tonic appropriation.

As independent curator Glen Adamson argues, curation is about manipulating 
and trading in the attention economy, “You are drawing people’s attention to objects 
in a different and heightened way. The other big idea for me is that curation is really 
about attention. The medium you work in as a curator is attention, and we live in a 
so-called ‘attention economy,’ in the sense that what people pay attention to is itself 
a form of value” (Acosta and Adamson 2017). Attention is one pillar that is key to 
learning (Dehaene 2020). Our goal is to suggest and illustrate how the Pirie-Kieren 
model can be used to highlight/draw attention to some of the growth in mathemati-
cal understanding within a curated robotics learning experience:

Krista: When I first started doing this work my attention was on the engineering process 
(design), partly because I was taught/mentored in the design of robotics tasks but my son 
who was in engineering at the time. But as I started to recognize glimmers of the potential 
for mathematics learning, I began to curate and explore more mathematical tasks as opposed 
to design tasks. I found that as students gained some of the mathematical connections in 
programming robots, their skill at the programming design also improved, such as manoeu-
vring the robot precisely. Michael recently told me that if he would have learned how the 
move steering worked in Grade 9 (mathematically modeled) it would have put him years 
ahead in the robotics competitions in which he participated.

Rephrasing this in the language of our paper, a deeper more complex and focused 
syntonic appropriation and appreciation of the robot’s functioning might occur 
alongside (in synchrony with) a growth in mathematical understanding needed for 
personal goal achievement. Getting there however requires our intentional focusing 
of students’ attention through our curated task. Teachers, we think, have always 
worked the economics of attention in classrooms, schools and larger collectives, 
and in doing so have developed or utilised skills in curating. What we are trying to 
do is to draw attention to that challenging aspect (curating) of teachers’ work that is 
not quite captured in the idea of Mathematics-for-Teaching (M4T) (Davis and 
Renert 2014) or Mathematical Knowledge for Teaching (Ball et  al. 2005) or 
Technological Pedagogical Content Knowledge (TPCK) (Koehler and Mishra 
2005) and to find ways to value it and develop it more intentionally as part of the 
work we do in our different professional networks with pre-service and in-service 
teachers and colleagues in different communities of practice:

Steven: Teachers and pre-service teachers have taught me the value of the emotional dimen-
sion for learners in tasks, I hope that I manage to shift their understanding that while learn-
ers might be engaged because of the emotional investment in the task, their attention as a 
teacher has to be on what is mathematically significant.

In our next section, we introduce some elements of the Pirie-Kieren model of 
growth in Mathematical Understanding which we use as an analytic frame.
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�The Pirie-Kieren Model of Growth 
in Mathematical Understanding

There are a variety of framings of mathematical understanding (Hiebert and 
Carpenter 1992; Sfard 1991; Sierpinska 1994; Simon 2006; Skemp 1976). George 
(2017) offers a historical analysis of the concept in mathematics education. An 
enactivist framing of understanding however grounds it in terms of the dynamics of 
action (or co-action) and potential actions in a world, that is to say, individual under-
standings are not static or ‘fixed’ but contextually and temporally dependent, 
grounded in experience and interpretations of experience, that may be challenging 
to articulate. This view of understanding is a non-linear or complex one (Davis and 
Simmt 2003). As such, we draw on Pirie and Kieren’s (1994a, b) model of growth 
of mathematical understanding through non-linear back-and-forth movements of 
the following modes: primitive knowing, image making, image having, property 
noticing, formalising, observing, structuring and inventising (see Fig. 10.2).

Fig. 10.2  Illustration of Pirie and Kieran model of growth in mathematical understanding
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We use the Pirie-Kieren model as an analytic tool to illustrate children’s growth 
in understanding of mathematical concepts and computational thinking concepts 
(see Namukasa 2019 for an example of the relationship). Coming to understanding 
starts with primitive knowing. “Primitive here does not imply low level mathemat-
ics, but is rather the starting place for growth of any particular mathematical under-
standing” (Pirie and Kieren 1994a: 170). This is what a learner brings with them at 
the beginning of a new task sequence. According to Pirie and Kieren (1994a), stu-
dents’ primitive knowing can be assumed, i.e., the skills they have initially. In the 
case of these students working with Lego EV3 robots such primitive knowing 
includes knowing related to mathematics such as spatial reasoning, proportional 
thinking, number; programming; technical procedural knowing such as how to con-
nect the robots to the iPad and download and run programs; and knowledge about 
classroom routines, norms and procedures including how to work in small groups:

•	 Image making is when a student records and reflects on primitive knowing (creat-
ing an object through drawing or manipulatives). In figure (1) the girls are begin-
ning to think about (make an image) of what is between the numbers 5 and 6 
(prompted by their engagement with the robot as well as their teacher and 
the task).

•	 Image having is when a student no longer requires acting on the object. Pirie and 
Kieren (1994a: 170) note that, “[a]t the mode of image having a person can use 
a mental construct about a topic without having to do the particular activities 
which brought it about.” Between the second and the third frame of Fig. 10.1 
above, the students are starting to recognise how the decimal numbers are related 
incrementally, i.e. they are beginning to develop a spatial sense of (decimal) 
numbers on a number line.

At the fourth level of understanding, property noticing, one can manipulate or 
combine aspects of one’s own images to “construct context specific properties” 
(Pirie and Kieren 1994a: 170). In our example, the fourth frame when students say 
“we need 7”, we take this as indicating a movement from image-making to image 
having in that students are no longer thinking directly ‘with’ the robot but are able 
to use their mental image of decimals on a number line. Mathematically, that is as 
far as we perceived the students’ movement in the model. Having also worked with 
Marton’s (2014, 2018) Variation Theory of Learning we see the various modes in 
the PK model as dynamic networks of critical discernments of student thinking or 
understanding. This is particularly evident with the property noticing mode.

However, from a programming standpoint, in frame 2 of Fig. 10.1, the students 
very quickly moved from primitive knowing of how to program to move whole 
wheel rotations, through image making, image having, property noticing to formal-
ising how to program decimals into the move steering block. Formalising, is when 
one can abstract a “method or common quality from the previous image” (Pirie and 
Kieren 1994a: 171). We have demonstrated previously (Francis et al. 2016) that the 
block programming environment makes it easier to move into this formalising mode.

Deeper levels of the Pirie and Kieren model (1994a: 171) are not observed in our 
analysis, but for reference they are mentioned briefly. Observing occurs when one 
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reflects on one’s formalising of images and proposes theorems. “Structuring occurs 
when one attempts to think about one’s formal observations as a theory. This means 
that the person is aware of how a collection of theorems is interrelated and calls for 
justification or verification of statements through logical or meta-mathematical 
argument.” With inventising, one has such a strong understanding that they are able 
to ask new questions which might grow into an entirely new concept. In our exam-
ple in Fig. 10.1, the grade 4 girls do not yet have sufficient number or sufficient 
diversity in the example space of curated experiences in mathematics or robotics or 
programming to move into these levels/modes of understanding. That is to say, they 
are in the process of developing and growing their understandings in each of 
these areas.

�Syntonic Appropriation and Tools for Conviviality

As we mentioned earlier, the teacher and students in Fig. 10.1 above referred to the 
robot in the first-person plural as ‘we’. This use of the word ‘we’ is an indication of 
the intimacy, familiarity and conviviality they have with the robot. As a similar 
example, Merleau-Ponty (1978) noted the phenomenon of such intimacy, familiar-
ity and conviviality with technology in the example of driving a car. Drivers are 
intimately acquainted with how the car turns by moving the steering wheel, or how 
pressing the gas pedal changes the speed, or how pressing the brake arrests move-
ment. Drivers are also intimately aware of the dimensions of the car so that when 
they are parking, they do not bump into other cars. There is a sense of knowing and 
intention such that the driver moves the car with almost the same spatial precision 
as their own body (Merleau-Ponty 1978: 144):

We said earlier that it is the body which “understands” in the acquisition of habituality. This 
way of putting it will appear absurd, if understanding is subsuming a sense datum under an 
idea, and if the body is an object. But the phenomenon of habituality is just what prompts 
us to revise our notion of “understand” and our notion of the body. To understand is to 
experience harmony between what we aim at and what is given, between the intention and 
the performance—and the body is our anchorage in the world.

The experience of harmony is part of what Papert (1980) intends by the term 
‘syntonic appropriation’ and Illich (1973) by ‘convivial.’ Tool use is not an end in 
itself nor is it the motivation for action. Doing something, creating something and 
the aesthetic dimensions of experience are the ends and motives:

the ultimate theoretical task in advancing, for example, the learning of mathematics, is not 
producing a range of so-and-so-centric kinds of mathematical knowledge but rather finding 
ways of thinking about mathematical knowledge that will allow each individual to make 
what in Mindstorms I call a syntonic appropriation (Papert 1980).

In The children’s machine, Papert (1993) connects bricolage as a methodology 
for intellectual activity in the context of tinkering, building with Lego, and working 
in computer environments (programming in Logo and controlling robot turtles) 
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with Illich’s (1973) concept of tools for conviviality, seeing the latter as analogous 
to his concept of syntonic appropriation. Papert (1993: 144) writes:

[t]he basic tenets of bricolage as a methodology for intellectual activity are: Use what 
you've got, improvise, make do. And for the true bricoleur the tools in the bag will have 
been selected over a long time by a process determined by more than pragmatic utility. 
These mental tools will be as well worn and comfortable as the physical tools of the travel-
ing tinkerer; they will give a sense of the familiar, of being at ease with oneself; they will be 
what Illich calls “convivial” and I called “syntonic” in Mindstorms.

Papert also notes that there are different forms of syntonicity in the learning of 
mathematics, viz. ego-syntonic, body-syntonic and cultural syntonic which must all 
filter through a context for learning mathematics in which the aesthetic is fore-
grounded. For Illich (1973: 17) the term convivial—“with life”—is intentionally 
and deliberately chosen to, “designate a modern society of responsibly limited 
tools” (p.6) that,

designate[s] the opposite of industrial productivity… [but rather] autonomous and creative 
intercourse among persons, and the intercourse of persons with their environment...indi-
vidual freedom realized in personal interdependence...the freedom to make things among 
which they can live, to give shape to them according to their own tastes, and to put them to 
use in caring for and about others.

While Papert connects syntonic appropriation with Illich’s tools for conviviality 
he has not elaborated upon the connection. We find that there is a need to elaborate 
this connection more fully in our work as this we believe is part of where attention 
needs to be drawn to extend frameworks like M4T/MKT/TPCK. When Papert talks 
about syntonic appropriation he is referring to those felt processes by which an 
object or tool becomes “an object-to-think-with” or following Sfard’s (2008) com-
mognitive theory, an object to discourse with. Papert’s discussion of syntonic appro-
priation exists in the realm of Deweyan educative experience, i.e. of individual 
learning.

Illich, on the other hand, is very much concerned with the role of technology in 
society and the press that technology imposes on everyday life through increases in 
industrial productivity and efficiency. Illich’s argument is the need for responsibly 
limiting tools such that the locus of control remains with the individual in serving a 
community, i.e. tool use is a way to bring to life the imagination of the tool user 
within an ethical space. The Logo programming language and its evolution in forms 
like Scratch or the EV3 Lego robotic visual programming language is one way in 
which tool use can be responsibly limited. We can also approach the idea of “respon-
sibly limiting” through the concept of “enabling constraints” of complexity informed 
approaches (Davis and Simmt 2003). While the tools themselves provide some 
degree of responsibly limited active engagement and immediate feedback, the inten-
tion of a designer-teacher-curator can powerfully focus and direct learners’ atten-
tion and consolidation of understanding through meaningful task design and 
ongoing dialogue. In this way the designer-teacher-curator participates (without 
over-determining the pace, unfolding and trajectory) in the process of the learners’ 
appropriation of the tools as tools for conviviality.
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Syntonic appropriation allows for (mental and physical) tools to become partners 
in intellectual and creative life, to become discursive tools that give life to individual 
learner’s ideas and communities of practitioners and which thereby contribute to 
growth in understanding. This freedom to select and make things – intellectual inde-
pendence – the space of learning and growth is an ethical space for both Papert and 
Illich and one might add an empathetic space for creating a life-giving or convivial 
community.

The mathematical tool/object-to-think-with that we are intending students to 
make a syntonic appropriation with is the number line. We worked to design/curate 
tasks that embed the number line as an object-to-think-with within students’ initial 
appropriation of robots as objects-to-think-with. We intended that students might 
make a (more) syntonic appropriation with the number line in this context than with 
other presentations and previous experiences. That is to say, we intended for it to 
become a tool for conviviality in relation to learning mathematics. In the next sec-
tion, we describe the tasks and our process that we designed / implemented / refined 
/ curated for embedding the number line as an object-to-think-with.

�Appropriable Challenges

�A Curated Task for Learning Mathematics

In our previous work (see Francis et al. 2016), we investigated how enactivism was 
a good framework for studying children’s engagement in spatial reasoning while 
programming robots to move. In this paper, we are using our understanding of spa-
tial reasoning to work more explicitly to develop understandings of the rational/
decimal number line. We are putting more attention on the aspects of the task that 
enable this. We are curating our past experiences to direct students’ attention and 
actions towards enabling their syntonic appropriation of the number line as an 
object-to-think-with (or tool for conviviality) as the specific domain over which 
their growth in mathematical understanding is observed.

In the following task, learners are invited to explore how the <move steering> 
programming block works to turn the robot. Figure 10.4 below is an example of the 
EV3 <move steering> programming block’s steering set to 25. Our intention in this 
task is to intentionally vary the steering settings incrementally, and thereby draw 
students attention to specific observations about (1) how the wheels rotate, (2) how 
the robot travels in terms of the radius of the robot’s turn and the circumference of 
its circular path, and (3) what the steering means in terms of differential percentage 
through direct questioning/ dialogue/ prompting.

A recording sheet functions to create a shared focus of attention for discussion. 
Note that collaboration and dialogue are intended. Designer-teacher-curator has 
intentionally designed the recording sheet in order to prompt certain awarenesses and 
questions (see http://stem-education.ca/files/SteeringRecordingsheet-oldEV3_2020.
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pdf). In the first part of the recording sheet attention is drawn to how the wheels move 
and the direction of the robot’s turn as the steering changes incrementally. For 
instance, when the steering is set to 25, then the right wheel rotates ½-wheel rotation 
forward and the left wheel rotates 1 rotation forward. The robot turns 
counter-clockwise.

Next, in order to have students attend to features of the robot’s circular path, a 
mat was designed (see Fig. 10.3 above). Blue circles are the path of the outer wheel 
of the robot (at 25% steering the outer radius is 24 cm, at 50% it is 12 cm; 75% it is 
8 cm and 100% it is 6 cm). The horizontal and vertical axes were included to give 
students access to the benchmark angles related to quarter, half and three-quarter 
turn and to allow for development of estimation strategies as well as serving as a 
marker for starting the robots off.

In order to easily follow the trace of the outer and inner wheels, the design of the 
mat allows students to discern that the robot has to be moved closer to the center of 
the circle as the steering increases. This reduces some of the cognitive load inherent 
in working with multiple aspects that vary simultaneously and allows a focusing on 
the critical learning intention of the task, viz. to learn how to turn the robot precisely.

Students are shown how to use the mat using the 25% steering – the robot is 
placed along one of the axes with the outer wheel on the largest blue circle (see 
Fig. 10.4 below). The number of wheel rotations is varied in order to get the robot 
to follow one complete circle. Only the number of wheel rotations is being varied at 
this time. This allows them to discern the radius and circumference of the robot’s 
circular path with 25% steering as a (decimal) multiple of the number of wheel 

Fig. 10.3  Steering mat for move steering task (see http://stem-education.ca/files/SteeringMat.pdf)
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rotations. Next students are guided to investigate the radius and circumference of 
the robot’s circular path for 50%, 75%, 100%, −75%, −50% and − 25% through the 
provided recording sheet.

Students are required to find which circular path the robot travels with incremen-
tal variations of the steering. For instance, when the steering is set to 25, then the left 
outer wheel of the robot travels around the circle with a 24 cm radius. Next they are 
asked to determine how many wheel rotations it takes to complete one circle (the 
circumference). The extension of the second part is to convert the number of wheel 
rotations to cm.

Lastly, in the final portion of the task, students are asked to pictorially model the 
first part of the task (the number of rotations for each wheel with incremental steer-
ing changes) using fraction bars (with the ‘whole’ being two fraction bars represent-
ing one complete wheel rotation forward and one complete rotation backwards. 
Then they are asked to convert the fractions to a percentage (which represents the 
steering on the <move steering> block). Figure 10.5, summarizes the details that the 
designer-teacher-curator wanted to call attention to.

Fig. 10.4  A robot following a 24 cm radius circle with steering is set to 25
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In Fig. 10.5 above the steering parameter is being varied incrementally. It is the 
only critical aspect that is varied (everything else is held constant). This allows 
learners to discern the function of the steering block in terms of its gross effects on 
the robot’s movement. However, to do this intentionally, the task has been designed 
and refined, or curated so that attention is explicitly drawn to the number (or frac-
tion) of wheel rotations and the direction of the wheel rotation, and the direction 

Fig. 10.5  Summary of how the robot turns with incremental changes to the steering (http://stem-
education.ca/files/SteeringExplanationSummary.pdf)
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that the robots turn through the provided recording sheet. Each of these is a dimen-
sion of variation that is opened up. Varying this one thing in a structured (incremen-
tal) way allows learners to notice/attend to changes in the robot’s behaviour at a 
number of distinct levels—each of these is a new dimension of variation (critical 
aspect for further study). Learners can think in terms of wheel rotations only, or in 
terms of the direction of wheel rotations only or the direction of robot turning only, 
however, the next part of the task requires working simultaneously with all of these 
to develop an understanding of how the robot moves around a circle. In this part of 
the task students are working with mathematical ideas of percentages (though they 
are not necessarily aware of this at this point in the task), direction of motion, and 
rotation.

In the intentional design of this task we asked what growth in mathematical 
understanding is possible, i.e. for an individual learner what is it possible to learn? 
In terms of primitive knowings they know how to program the <move steering> 
block and download to their robot, they know magnitude of numbers, language for 
direction of movement (clockwise and anti-clockwise or forward and backward), 
how to move the robot straight precisely (they have done tasks to do that, how many 
wheel rotations to travel 100  cm), decimal numbers (involved in measurement), 
how to measure accurately with rulers.

The larger goal of the move steering task is to use mathematical modelling to 
understand the black box of what the steering means in terms of how the robot 
moves/turns. Within the larger task, attention is directed to enactively experience 
the number line as an object-to-think-with through the concepts of circumference 
and radius. In the next section, we describe a student’s engagement in the move 
steering task.

�Knowing Is Appropriating Modes of Doing

�Examples Illustrating Theory

We remind readers that our argument is that a well-structured robotics inquiry (such 
as one like we described above, where the teacher provides the initial questions and 
overview of what needs to be done, and the students work independently to formu-
late and analyze findings – with support and guidance from the teacher) – can lead 
to what Pirie and Kieren (1994a, b) called growth in mathematical understanding 
(whose modes were exemplified in our anecdote in Fig. 10.1) by encouraging pro-
cesses of syntonic appropriation of specific mathematical objects-to-think-with (the 
number line).

In this section we intend to illustrate how the Pirie-Kieren model can be used to 
highlight/draw attention to some of the growth in mathematical understanding 
within a curated robotics learning experience (Fig. 10.6 below).
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In previous observations of children programming their robots to trace a polygon 
(Francis and Poscente 2017) we noticed that the children did not appear to move 
beyond the image having category of mathematical understanding. As Pirie and 
Kieren (1994b: 40) describe, the image having mode is characterised by a strong 
dependence on metaphor and working with metaphor thus, “mathematics is the 
image that they have and their working with that image.” In the shift in understand-
ing to property noticing “similie comes into play—“is” becomes “is like.” In the 

Fig. 10.6  Luke and Kara tracing a pentagon (See video https://vimeo.com/343271775)
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context of the polygon task, a shift to property noticing would be when students 
notice the similarities between the triangle and other polygons. For instance, a tri-
angle program consists of a straight-turn 3 times. Noticing that a square “is like” a 
triangle because it is also a collection of straight-turn but it is 4 times instead of 
3 times.

In this chapter we created illustrations to call attention to exchanges between 
students, teachers and the technology. These illustrations (Figs.  10.1, 10.6, and 
10.7) are excerpts of videos that were obtained during weekly robotics classes in a 
local school (weekly robotics classes were held and video recorded weekly 

Fig. 10.7  Greg syntonically appropriating the unmarked number line the move steering task
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throughout the year for the past 4 years). These particular exchanges were chosen 
after an exhaustive interpretive video interaction analysis (Knoblauch et al. 2013). 
We began an initial overview of relevant video selection. This initial overview 
required reviewing field notes for finding and selecting video for analysis. Next, the 
selected videos were reviewed and the selection was refined based on the quality of 
the images, sound, actions and interactions.

Transcripts of the video do not illustrate the actions of the participants. For that 
reason, sequenced still image freeze frames were extracted from the video. Sketches 
of the images were made to improve the comprehensibility of the verbalized text 
form and make it easier for the reader to understand the situation (Knoblauch et al. 
2013). Consistent with McLeod (1990), the sketches were placed in a juxtaposed 
sequential comic strip format to convey interactions. This format is similar to stud-
ies by Plowman and Stephen (2008) and Heath et al. (2010). The speech bubbles 
represent the dialogue; the commentary represents the metaphors of number used. 
The removal of background information allows us to keep attention focused on 
speech, gesture, and actions only and removes distracting elements such as carpet, 
tables and chairs. We are not saying that the classroom context is not important and 
we are aware of the loss of other information such as around ethnicity and valid 
concerns about representation in research images, however, in this study and paper 
these are not our focus for analysis in looking at growth in mathematical 
understanding.

�Developing Modes of Doing

Figure 10.6 is an illustration of an exchange between two Grade 4 students, Luke 
and Kara, as they attempted to trace a pentagon. The exchange occurred quite early 
in the year and the students had familiarity with making their robot move straight 
and turn. In this exchange, Luke is attempting to rectify an issue with the robot’s 
movements. The program works for the first two straight-turn increments of the 
pentagon’s path. They had success making the first two straight-turn segments of the 
polygon. But the robot veers off path for the third straight-turn. Luke has attempted 
to correct the last two blocks of the assembled code three times. Figure 10.6 begins 
with his fourth attempt.

As they tested and retested ideas, they engaged with multiple spatial reasoning 
elements simultaneously while moving back and forth between image making and 
image having. We did not observe the children move into formalising, nor were they 
able to program their robots’ turns consistently. This pattern continued throughout 
the year on many other robotics tasks. Each corner or distance for the robot to travel 
encountered in future tasks was approached with a guess and check process. Not to 
negate the importance of working in the space of image making and image having, 
we wondered if robotics tasks and inquiries could be structured in manners that 
could elicit deeper mathematical understanding that translates into more precise 
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robotics movements and turns. Hence we developed the move steering task 
(described previously).

�Developing More Powerful Modes of Doing

In the graphic illustration (Fig. 10.7), Greg, aged 11, is working on a curated robot-
ics task that is intended to help explain how the <move steering> programming 
block works. In this part of the task, Greg is identifying which circle the outer wheel 
of the robot travels along, the radius of that circle in cm, the circumference of that 
circle in wheel rotations, and the direction the robot travels for <move steering> set 
at 100%, 75%, 50%, 25%, 0, −25%, −50%, −75%, and − 100%. Figure 10.7 begins 
as Greg is attempting to determine the circumference of the outer circle that the 
robot follows when the steering is set to 25%.

As Pirie and Kieren (1994b: 43) note formalising is characterised by “a sense 
that one’s mathematical methods work for all” relevant examples. Children who are 
formalising do not need the physical actions and images which brought them to the 
point of formalising.” Greg knows which circle the radius traces for all the positive 
steering settings. From the previous week’s tasks, Greg learned that negative steer-
ing is symmetrical to the positive steering, but the robot turns in a different direc-
tion. He applied this previous learning to complete the rest of the recording sheet 
[formalising] without needing to test each setting.

We have shown in the examples above that a well-structured (curated) robotics 
task can lead to growth in mathematical understanding. In this final section we still 
need to show that this occurs by encouraging processes of syntonic appropriation of 
specific mathematical objects-to-think-with (the number line). In the many years of 
working with young children and robotics we have observed a syntonic appropria-
tion of the robot in achieving the overall challenge goals (get as close to the wall as 
fast as possible). However, what we now see as being enabled by the carefully 
curated robotics task is a narrower but very powerful syntonic appropriation of spe-
cific, relevant mathematical objects-to-think-with such as the number line. This we 
believe is close to Papert’s (1980) intent and description with learning environments 
such as Logo and Illich’s (1973) view of technology as a tool for conviviality. 
Syntonic appropriation is not a one-off event or experience, it occurs at differential 
temporal paces and at different conceptual and affective grain-sizes for individual 
learners.

In the second frame of Fig. 10.7 above, Greg holds the robot on the mat and 
physically moves the robot while closely observing how far the wheel rotates to get 
to the exact start place again. At this point the learner, the robot and the mat—spe-
cifically the outer circumference which represents an unmarked number line—are 
structurally coupled (in the enactivist sense) as one learning system. Greg is physi-
cally and concretely measuring the circumference with the wheel’s rotations, simi-
lar to how a measuring wheel measures field sizes and so is coming to awareness of 
the need and existence of relevant sequential smaller units of decimal measure in 
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relation to horizontal distance traveled. It is at such points of careful attention and 
focus that we believe processes of syntonic appropriation related to growth in math-
ematical understanding are at work.

In the follow up task in the subsequent week, every group was able to turn their 
robot precisely to complete a new challenge (to see videos of a turn: https://vimeo.
com/415696291 and here https://vimeo.com/415697745). They knew it was a 100% 
steering turn. From our previous experience we have seen that other groups typi-
cally have approached turning on this task (and others) through a more guess-and-
check approach and would take significantly longer to arrive at this understanding, 
some even after as much as a year of working with robots. Note, we are not claiming 
that these learners know everything about circumference and radius, but they have 
developed from very similar initial primitive knowings to more than an image hav-
ing level of understanding about these concepts. We are claiming however that 
through the curated learning environment and enactive experiences learners are at 
the point of beginning to notice properties and formalise measurement with decimal 
numbers and are developing an enactive relationship with the rational number line 
(not the real continuum at this time).

�Conclusion

The structure of a task matters especially for developing mathematical understand-
ing. Through the examples in the paper we have shown our process of designing and 
curating a robotics learning task with the specific intention of directing learners’ 
attention to the underlying number line as an object-to-think-with. The task affords 
students an opportunity to work with multiple instantiations of number – number as 
a count, number as a measure, number as distance moved/rolled and the existence 
of numbers between whole numbers or decimal/rational numbers – and grow their 
mathematical understanding of number. The structuring of the task, we have argued, 
encourages processes of syntonic appropriation such that learners have a personal 
and embodied meaning of the concept and the associated object-to-think-with.

When structurally coupled with the robot and the task learners are cognitively 
and affectively inserting themselves INTO (not merely onto) the number line in an 
enactive way, i.e. there is a meaning to being ‘between’ two points as a result not of 
discrete hops (as in whole number counting) but of continuous motion. When num-
ber lines are typically encountered in early elementary (if at all) they are used to 
model addition, subtraction and multiplication. These all involve discrete ‘hops’ or 
‘jumps’ forward and backwards on the number line from one well-defined point to 
another. However, hopping, jumping, even stepping is only a small portion of the 
repertoire of movements made by human bodies, the majority of which are experi-
enced (even if not consciously aware) as continuous movements. The specific task 
affordances allow students to put themselves into the robot in a way that allows 
them to ‘experience’ a continuous movement and so come to appreciate that there 
are a multitude of numbers between 2 and 3 in a meaningful way. It is in this way 
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that the prior syntonic appropriation of the robot (building and earlier tasks) allows 
for the deeper syntonic appropriation of a powerful mathematical model – that of 
the (rational) number line and which leads to the deepening of multiple mathemati-
cal understandings (including that of number etc.) enabling both robot and number 
line to become a tool for conviviality in relation to learning mathematics. We 
acknowledge that there are many other aspects of mathematics that are likely being 
developed during and through this learning experience, however, we have chosen to 
focus on those aspects that we intentionally designed for, viz. appropriating the 
number line as an object-to-think-with.

�Implications for Classroom Practice

Curated robotics experiences can provide opportunities for children to learn these 
concepts not from an external “objective” perspective (disassociated way) but from 
a dynamic embodied and enactive perspective in ways that are meaningful. These 
curated experiences through providing a sufficiency of structure enable individual 
and collective processes of syntonic appropriation and sense-making that serves to 
enable growth in mathematical understanding.

One of the implications we see can be framed as teaching is presenting appropri-
able challenges in contrast to presenting content or experiences alone. We note from 
our own experiences that we, as teachers, also experience growth in our own peda-
gogical understanding of the teaching of mathematics. Earlier versions of robotics 
tasks we have used were not as appropriable for discerning the underlying object-
to-think-with of the number line. Students were doing similar things BUT their 
attention was not being directed. In this instance the intentional design of the mats 
and recording sheet together with the task focuses students’ attention on how the 
Move Steering works to turn the robot precisely. Turning the robot precisely, or as 
intended, is associated with positive (perhaps joyful) affect. To be clear, we do not 
believe that the learners have yet accumulated/curated sufficient and diverse sets of 
experiences as yet, and complementary mathematics learning is still needed to help 
students to formalise their understandings.

Teachers also have a (legal) responsibility to the curriculum which entails finding 
and developing appropriable tasks that address mathematical concepts in ways that 
enable syntonic appropriation through responsibly limiting (and gradually and 
deliberately increasing) the set of conceptual tools or enactive-objects-to-think-with 
(in contrast to merely mental-objects-to-think-with which represent a terminal goal 
of learning from action). Our explicit goal was to have the learners make a syntonic 
appropriation of the number line as an object-to-think-with to serve learners future 
growth in mathematical understanding. This future growth involves connecting 
their learning of multiple mathematical concepts beyond number. A teacher’s role is 
to connect this knowing of the enactive-object-to-think with other mathematical 
concepts. In our move steering task for example the circumference of a circle was 
first experienced as distance traveled. In the extension to this task (not presented in 
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this paper), these experiences are shifted to more formalized understandings of 
radius and circumference with the algebraic expression of c = 2πr (where c = cir-
cumference, r = radius) as an analysis of data collected.

Ideally a teacher would be able to continue to direct students’ attention and 
action in using the object-to-think-with with other mathematical topics and con-
cepts. This is where the designer-teacher-curator’s role emerges as one that exceeds 
that of each of the individual categories (designer or teacher or curator) as each set 
of skills and dispositions is necessary but insufficient on its own. This requires, we 
think, a collaboration perhaps amongst task designers, classroom teachers and 
teacher-researchers who knit their curated nets of knowledge and experiences 
together. We see this as important to develop resources and learning experiences 
that help focus or sharpen attention on the intended object or aspect of learning 
(Dehaene 2020; Marton 2014).

�Implications for Theory/Research

�Modes of Knowing: Connecting Enactivism 
and Embodied Cognition

One contribution we see this paper as making is explicitly identifying the periods of 
time during analysis for which enactivist frameworks and embodied cognition 
frameworks are useful in making sense of student learning. Earlier we noted that, 
with reference to Fig. 10.1, enactivism is useful for understanding learning within 
the environment while an embodied cognition approach would foreground the rela-
tionships between prior engagements and outcome. Thus, we reiterate that enactiv-
ism is concerned with the learning in action since it is the potential for action in the 
world that focuses attention and drives learning while embodied cognition is con-
cerned with the learning from action and thus a later consolidation of enactive 
action. We encourage others to see if this particular juxtaposition and blending of 
theoretical frames is useful for advancing understanding of student learning across 
developmental time both in action and from action.

�Modes of Doing: Syntonic Appropriation

Our second contribution is to work explicitly with Papert’s ideas around syntonic 
appropriation which we see as a missing element in frameworks like MKT/M4T/
TPCK that acknowledge but do not deeply engage with the affective domain in 
teaching and learning mathematics. Specifically, we have introduced the idea of 
‘curating’ experience as a useful metaphor in relation to the type of knowing that 
characterises the types of intentional learning spaces and opportunities that were 
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designed and used in the task. Following Papert we investigated and reinforced his 
link with Illich’s ideas of technology as a tool for conviviality through (initially) 
offering responsibly limited usage that thereby enables focused attention and growth 
in mathematical understanding.

�Modes of Understanding: Pirie-Kieren Model

We have incorporated technology into the Pirie-Kieren model of growth in mathe-
matical understanding. Technology can provide enactivist experiences of concepts 
that support and strengthen those inner modes (image making, image having, and 
property noticing). Our work supports their view of growth in mathematical under-
standing as a non-linear process. The Pirie-Kieren model we believe is mostly about 
interpreting learning. What we have done is demonstrate how technology (structur-
ally coupled with humans and a carefully curated task) can be used to influence 
learning. In learning to use the number line as an object-to-think-with for fractional 
(decimal) numbers and the idea of a number as a measure/distance, the use of robot-
ics technology was critical.

In the current learning environment in schools with multiple competing learning 
initiatives and increasingly constrained teacher time, robotics platforms like the 
EV3, a well curated task and close collaboration with teachers allowed for address-
ing these multiple learning presses (STEM, CT, Multiliteracies, etc.). As mathemat-
ics learning evolves to increasingly include and depend on technology, 
designer-teacher-curators will require a complex and complementary set of interdis-
ciplinary skills to both interpret learning in situ and design occasions to meaning-
fully influence learning.

�Appendix

Program of Studies Achievement Indicators Document

9. Represent and describe decimals 
(tenths and hundredths), concretely, 
pictorially and symbolically.

Write the decimal for a given concrete or pictorial 
representation of part of a set, part of a region or part of a 
unit of measure.
Represent a given decimal, using concrete materials or a 
pictorial representation.
Explain the meaning of each digit in a given decimal with 
all digits the same.
Represent a given decimal, using money values (dimes 
and pennies).
Record a given money value, using decimals.
Provide examples of everyday contexts in which tenths 
and hundredths are used.
Model, using manipulatives or pictures, that a given tenth 
can be expressed as a hundredth; e.g., 0.9 is equivalent to 
0.90, or 9 dimes is equivalent to 90 pennies.
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Program of Studies Achievement Indicators Document

10. Relate decimals to fractions and 
fractions to decimals (to 
hundredths).

Express, orally and in written form, a given fraction with 
a denominator of 10 or 100 as a decimal.
Read decimals as fractions; e.g., 0.5 is zero and five 
tenths.
Express, orally and in written form, a given decimal in 
fraction form.
Express a given pictorial or concrete representation as a 
fraction or decimal; e.g., 15 shaded squares on a 
hundredth grid can be expressed as 0.15 or 15/100
Express, orally and in written form, the decimal 
equivalent for a given fraction; e.g., 50/100 expressed as 
0.50.

Demonstrate an understanding of 
addition and subtraction of decimals 
(limited to hundredths) by:
 � Using personal strategies to 

determine sums and differences
 � Estimating sums and differences
 � Using mental mathematics 

strategies

Predict sums and differences of decimals, using 
estimation strategies.
Determine the sum or difference of two given decimal 
numbers, using a mental mathematics strategy, and 
explain the strategy.
Refine personal strategies to increase their efficiency.
Solve problems, including money problems, which 
involve addition and subtraction of decimals, limited to 
hundredths.
Determine the approximate solution of a given problem 
not requiring an exact answer.

10. Compare and order decimals (to 
thousandths) by using:
 � Benchmarks
 � Place value
 � Equivalent decimals.

Order a given set of decimals by placing them on a 
number line that contains the benchmarks 0.0, 0.5 and 
1.0.
Order a given set of decimals including only tenths, using 
place value.
Order a given set of decimals including only hundredths, 
using place value.
Order a given set of decimals including only thousandths, 
using place value.
Explain what is the same and what is different about 0.2, 
0.20 and 0.200.
Order a given set of decimals including tenths, hundredths 
and thousandths, using equivalent decimals; e.g., 0.92, 
0.7, 0.9, 0.876, 0.925 in order is: 0.700, 0.876, 0.900, 
0.920, 0.925.
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Chapter 11
Why Do Mathematicians Need Diagrams? 
Peirce’s Existential Graphs and the Idea 
of Immanent Visuality

Vitaly Kiryushchenko

�Introduction

The topic of this chapter is the relationship between mathematical reasoning, dia-
grams, and everyday visual experience. My goal here is not to discuss either the 
external causes of this relationship or the variety of ways in which mathematicians 
actually use pictures and diagrams in their work. There is ample literature on both 
topics, including accounts of how the links between numerical and spatial represen-
tations are rooted in the same patterns of brain activity (Gracia-Bafalluy and Noël 
2008; Hubbard et  al. 2005), discussions of particular ways in which conceptual 
material and images are combined in mathematical reasoning (Loeb 2012; Lowrie 
and Kay 2001; Martinec and Salway 2005; Pinto and Tall 2002) and studies of the 
cases in which the application of diagrammatic representation proves to be espe-
cially conducive to teaching math (Bakker and Hoffmann 2005, Boaler 2016, 
Danesi 2016, pp. 92–108, Hegarty and Kozhevnikov 1999, Kucian et al. 2011, Legg 
2017, Prusak 2012). The question I would like to ask here is more general: Why at 
all do mathematicians need to use diagrams, images and other visualizations in 
their work?

One way to approach this question is to say that pictures and diagrams play in 
mathematical proofs the role of auxiliary tools (Hanna 2007; Mumma 2010; Brown 
1999). According to this view, pictures and diagrams are used by mathematicians in 
order to facilitate their reasoning and then translate those pictures and diagrams into 
a formal calculus. Although the diagrams are constructed as elaborate staged obser-
vations that make certain steps of a mathematical proof visually available, from this 
perspective, they do not constitute an independent mathematical language and are 
but partial and imprecise models designed for the purposes of informal demonstra-
tion only (Barker-Plummer 1997; Kulpa 2009). Accordingly, on this view, 
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mathematicians do not actually build proofs directly on visual imagery, but rather 
use the latter to enhance the symbolic formalization of the former. This view does 
have a significant practical merit, as it proves suggestive of a variety of particular 
modes of use associated with diagrams in mathematics. Yet in spite of its practical 
merit, in terms of the question posed above, this view does not help much. From the 
more general perspective the question above represents, explaining the advantages 
of using something by saying that it is good for the purpose, is like explaining the 
effects of opium, as the doctor from Moliere’s Imaginary Invalid famously puts it, 
by virtus dormitiva, or its capacity to do so. The immediate further questions, in this 
case, are “What is it exactly that makes diagrams, understood as tools, useful?” and 
“Why exactly are formal proofs not enough?”

Another answer to the same general question—the answer I am going to defend 
here—is to say that there is a tight relationship between the deductive character of 
mathematical reasoning and the very way mathematicians construct their diagrams. 
According to this view, all deductions, including mathematical ones, in order to be 
accomplished, require some sort of observation—and therefore, ipso facto involve 
visual experience. Charles S. Peirce, the principal proponent of this view, claimed 
that, although not all diagrammatic reasoning is mathematical in nature, there is no 
mathematical reasoning proper that is not diagrammatic (CP1: 54, CP2: 216, CP5: 
148, where CP  followed by volume number and then paragraph number  refers 
to Collected Papers of Charles S. Peirce [Peirce 1931–1958]). Peirce also believed 
that, this being the case, mathematical diagrams could be construed not simply as 
partial supplementary aids to formal mathematical proofs, but as immediate visual-
izations of the deductive process as such. Peirce’s view has two important conse-
quences. The first consequence is that the very necessity of mathematical deductions 
should be considered internal to the diagrams mathematicians construct. The sec-
ond consequence is that there has to be something about the very nature of ordinary 
visual experience that directly links the basic spatial relations supporting our visual 
integration, on the one hand, and our mathematical intuitions, on the one hand. 
Furthermore, Peirce was convinced that, if these two claims are a matter of fact, 
then it should be possible to construct a deductive mathematical language that 
would amount to a complete system of diagrammatic expression independent of 
formal symbolic proofs.

�Visual Representation

In order to fully appreciate the possibility of the independent visual language Peirce 
had in mind, and see how the idea of such language might help us answer, in the 
Peircean vein, the general question formulated above, we will need to understand 
why exactly Peirce the mathematician attached so much importance to diagram-
matic expression. Although, as it is commonly recognized, mathematical reasoning 
was the heartbeat that pumped blood through the veins of Peirce’s entire philosophi-
cal system, Peirce did not have a full-fledged philosophy of mathematics. For the 
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lack of a systematic, self-explanatory account, then, we first need to look for the 
sources of Peirce’s interest in diagrams that are external to his philosophy.

All of those sources are well known, yet have never been considered together. 
Meanwhile, such consideration, however brief, might prove very helpful. First, 
Peirce confessed that he had a strong personal habit of thinking by means of visual 
images, and that he was inclined to attribute this capacity to his mathematical mind-
set (MS 619: 8, 1909, where MS followed by manuscript number and then page 
number refers to the Charles S.  Peirce Papers, Houghton Library, Harvard 
University). At the same time, visual experience, Peirce insisted, was at the core of 
ordinary linguistic competence. In one of the entries of his late diary, he makes a 
confession: “I do not think I ever reflect in words: I employ visual diagrams, firstly, 
because this way of thinking is my natural language of self-communion, and sec-
ondly, because I am convinced that it is the best system for the purpose” (MS 619: 
8, 1909). As an educator, Peirce believed that it would be a good idea if some sort 
of diagrammatic logic were taught in schools prior to the grammar of any natural 
language (CP4: 619). In his correspondence over the years, Peirce confessed repeat-
edly that, to him personally, English was as foreign as any other tongue. Moreover, 
he linked his incapacity for linguistic expression to his left-handedness, which, as 
he explains one of his letters to a mathematician Cassius L. Keyser, in turn, framed 
his social interactions:

But I am left-handed; and I often think that means that I do not use my brain in the way that 
the mass of men do, and that peculiarity betrays itself also in my ways of thinking. Hence, 
I have always labored under the misfortune of being thought “original.” Upon a set subject, 
I am likely to write worse than any man of equal practice (quoted in Brent 1998: 43. As 
Brent (1998: 15) notes, Peirce in fact was able to use both of his hands in writing simultane-
ously. For example, he was able to shock his students by writing on the blackboard, ambi-
dextrously and simultaneously, a logical or mathematical problem and its solution).

In an early draft of “A neglected argument for the reality of God” (1908), Peirce 
further clarifies the matter, stating that he was “accustomed to think of Reason and 
Authority as opposite ways of determining opinions, and to approve of the former 
alone” (MS 842, 180–181). According to one of Peirce’s letters to his friend Victoria 
Welby, this attitude towards authority and social conventions in general might be 
partly explained by the fact that Peirce was “brought up with far too lose a rein,” 
except that he “was forced to think hard and continuously” (Peirce 1958: 417). 
Another letter to Lady Welby contains a more extensive explanation that provides a 
useful overall link between Peirce’s left-handedness, his troubles with written lan-
guage, his disdain for conventionality and the meticulousness of his personal think-
ing habits:

[A]s a boy I invented a language in which almost every letter of every word made a definite 
contribution to its signification. It involved a classification of all possible ideas; and I need 
not say that it was never completed…The grammar of my Language was, I need hardly say, 
modelled in a general way after the Latin Grammar as almost all ideas of grammar are to 
this day. It had, in particular, the Latin parts of speech; and it never dawned upon me that 
they could be other than they are in Latin. Since then I have bought Testaments in such 
languages as Zulu, Dakota, Hawaiian, Jagalu, Magyar…These studies have done much to 
broaden my ideas of language in general; but they have never made me a good writer, 
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because my habits of thinking are so different from those of the generality of people. 
Besides I am left-handed (in the literal sense) which implies a cerebral development and 
connections of parts of the brain so different from those of right-handed people that the 
sinister is almost sure to be misunderstood and live a stranger to his kind, if not a misan-
thrope. This has, I doubt not, had a good deal to do with my devotion to the science of logic. 
Yet probably my intellectual left-handedness has been serviceable to my studies in that 
science. It has caused me to be thorough in penetrating the thoughts of my predecessors,—
not merely their ideas as they understood them, but the potencies that were in them 
(Hardwick 1977: 95–96).

As all these letters and notes, taken together, suggest, in Peirce’s case, the impor-
tance of visual experience extends beyond the bounds of purely theoretical concerns 
and has some implications in terms of his personal intellectual habits. Visual think-
ing, personal difficulties in dealing with written language, the nature of logic in 
general (and the model of a universal language in particular), left-handedness, and 
the tendency to disregard conventions happen to be intimately connected with 
each other.

Peirce’s preference for visual representations, of course, went beyond this knot 
of personal intellectual idiosyncrasies. From very early on in his career, both as a 
mathematician and as a philosopher, Peirce paid close attention to the role played in 
mathematical cognition by maps. As a mathematician, he was professionally 
involved in solving mathematical problems related to geological maps (CP7: 85), 
and proving the so-called “four color theorem” (CP2: 105 CP5: 490 NEM4: 
216–222, where NEM refers to Peirce’s New Elements of Mathematics  [Peirce 
1976]). He also developed a map projection known as the “quincuncial map,” which 
represented a transformation of conformal stereographic projection and was one of 
the first maps created with an application of the theory of functions of a complex 
variable (Eisele 1963, Kiryushchenko 2012, Kiryushchenko 2015; W4: 68–71, 
where W followed by volume number and then page number refers to the 
Chronological Edition  [Peirce 1982]). As a philosopher, Peirce considered dia-
grams in general as maps of thought (CP4: 530). He rejected the idea of likeness, or 
similarity as originating from the comparison of two simple, visually given quali-
ties. Instead, he believed likeness to be the result of the application of a mapping 
rule describing a relation established between two sets, where a unique element of 
one set is paired with one single element of another set. Peirce’s principal sugges-
tion was that what underpins our perceptions of things as being alike is the isomor-
phism not of substances, but of relations (see also Stjernfelt 2007: 50–77, Paavola 
2011). And he claimed that maps, together with geometric diagrams and algebraic 
equations, were the primary examples of such isomorphism (NEM4: xv, CP4: 530, 
Bradley 2004: 71–73). A mathematical function is routinely understood as a map-
ping relation between sets of numbers, which tells us how to go on with interpreting 
the dynamics of the function. According to Peirce, by analogy, a visual feature we 
perceive as common to, say, a portrait of a person and the person themselves, is a 
result of mapping one set of relations between facial features onto another, which 
reveals a character of the portrayed person based on the schematization of an antici-
pated facial change.
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�Diagrams

Another source of Peirce’s interest in the role diagrams play in mathematical rea-
soning is the fact that Peirce, whose first degree was in chemistry from Lawrence 
Scientific School at Harvard, had a tendency to draw broad parallels between his 
graphical logic and the idea of chemical valence. In particular, he compared logical 
relations to chemical compounds. For instance, on his view, a medad (a relation 
whose arity is zero) is similar to a saturated chemical compound—such that may 
result, for instance, from joining two bonds of a bivalent radicle (CP3: 421), and a 
dyad is similar to one oxygen atom chemically bonded to two atoms of hydrogen, 
which constitutes a molecule of water, etc. The analogy Peirce drew between his 
logic of relations and chemical valences is well known and thoroughly studied 
(Parker 1998: 63–70, Roberts 1973: 17–25, Samway 1995). However, one historical 
aspect behind this analogy is rarely mentioned. Namely, it is that its source lies in 
the metamorphosis, which had taken place in chemistry in the mid-1840s, and 
which was triggered by the formulation of the chemical type theory.

The idea that the type theory and, later, the theory of valences brought about was 
that chemical compounds could be studied not as mixtures of actual substances, but 
as relational pictures, or diagrammatic schematizations of those substances. 
Chemists discovered that the relational structure of a molecule and transformations 
of chemical compounds could be depicted in a certain way, with the use of basic 
graphical conventions. Thus, it is the idea of chemical valences that actually gave 
birth to the first fully developed scientific language, which provided a diagrammatic 
projection of the (previously hidden) life of its natural object. This said, the reason 
why Peirce attached so much value to the analogy between his mathematical dia-
grammatic logic and the system of chemical valences is that he considered both 
logical and molecular graphs as messages capable of saying what the matter of fact 
is and, simultaneously, showing how it is to be interpreted. In both cases, seeing how 
the graphs develop into meaningful structures and understanding how this develop-
ment works is one and the same process—or, better say, one and the same act.

Another source of inspiration for Peirce with respect to mathematical diagrams 
was his correspondence with Alfred Bray Kempe, a British mathematician best 
known for his proof of the four-colour theorem (later shown incorrect). In 1886, the 
Royal Society of London published Kempe’s Memoir on the theory of mathematical 
form. In the opening paragraph of the Memoir, Kempe stated that his intention was 
to separate whatever is necessary for “exact or mathematical thought” from “the 
accidental clothing,” as well as to offer an “exposition of fundamental principles” 
and “a description of some simple and uniform modes of putting the necessary mat-
ter in evidence” (Kempe 1886: 2). The fundamental principles of the mathematical 
thought, separated from the accidental geometrical, algebraic, and logical clothing, 
were presented by Kempe as a system of diagrams that consisted of spots connected 
by different types of lines. Kempe’s diagrams were supposed to express the univer-
sal form of algebraic and geometrical representations that would reveal a deeper 
grammar of mathematical thinking common to both. Kempe sent Peirce a copy of 
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the Memoir, and a few months later, in 1887, Peirce answered with some sugges-
tions that caused Kempe to make revisions also published in the Transactions of the 
Royal Society of London later that year (W6: xlv).

Now that we have situated diagrammatic expression within Peirce’s mathemati-
cal mindset and learned what areas of research beyond philosophy and pure math-
ematics conditioned Peirce’s aptitude for visual thinking, we can see that all the 
interconnections between these areas and Peirce’s personal intellectual idiosyncra-
sies are based on an amalgam of a few core ideas. These are the ideas of likeness as 
isomorphism, natural language, basic relational structure of things, and certain 
intellectual economy that prescribes us to pay attention to what is necessary while 
disregarding the accidental. As will transpire, what brings all these ideas together is 
the role that, according to Peirce, is played in mathematical reasoning by observation.

One of Peirce’s entries for Mark Baldwin’s Dictionary of philosophy and psy-
chology (1901) reads as follows:

In mathematical reasoning there is a sort of observation. For a geometrical diagram or array 
of algebraical symbols is constructed according to an abstractly stated precept, and between 
the parts of such diagram or array certain relations are observed to obtain, other than those 
which were expressed in the precept. These being abstractly stated, and being generalized, 
so as to apply to every diagram constructed according to the same precept, give the conclu-
sion (CP2: 216).

Peirce further claims that, in any particular instance of mathematical reasoning 
(not only in the case of geometry, but also in the case of algebraic equations and 
syllogistic structures), “there must be something amounting to a diagram before the 
mind’s eye,” and that “the act of inference consists in observing a relation between 
parts of that diagram that had not entered into the design of its construction” (NEM4: 
353, CP2: 279). Inferring, then, according to Peirce, is observing attentively what 
an experiment with a diagram brings about. To use one of Peirce’s own examples, a 
particular case of Barbara syllogism, written down correctly, represents a simple 
diagram that clearly shows the relationship between the three terms involved, and, 
in doing so, actually exhibits the fact that the middle term of the syllogism occurs in 
both premises. Likewise, an algebraic equation is a rule that maps one relation 
between variables onto another in such a way that further manipulation could lead 
to the discovery of a series of new facts. Even a purely symbolic algebraic formali-
sation, then, is an icon that pictorially represents relations between the terms 
involved.

A simple geometrical example would be Pythagoras’ theorem. The majority of 
the proofs of this theorem require that, in order to explain the relation among the 
three sides of a right triangle, a geometer should make a certain rearrangement. In 
the initial, Pythagoras’s own version of the proof, it is the rearrangement of the four 
identical right triangles whose hypotenuses form a square. When describing the 
process of such rearrangement in some detail, Peirce adds that, in any other case 
similar to the two above, what we need is

to set down, or to imagine, some individual and definite schema, or diagram—in geometry, 
a figure composed of lines with letters attached; in algebra an array of letters of which some 
are repeated. This schema is constructed so as to conform to a hypothesis set forth in general 
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terms in the thesis of the theorem. Pains are taken so to construct it that there would be 
something closely similar in every possible state of things to which the hypothetical 
description in the thesis would be applicable, and furthermore to construct it so that …, 
although the reasoning is based upon the study of an individual schema, it is nevertheless 
necessary, that is, applicable to all possible cases (CP 4: 233; emphasis added).

In an unpublished work titled “Syllabus” (c. 1902), Peirce extrapolates this point 
about the link between manipulating images, deductive necessity and discovery of 
new truths to icons in general:

For a great distinguishing property of the icon is that by the direct observation of it other 
truths concerning its object can be discovered than those which suffice to determine its 
construction. Thus, by means of two photographs a map can be drawn, etc. Given a conven-
tional or other general sign of an object, to deduce any other truth than that which it explic-
itly signifies, it is necessary, in all cases, to replace that sign by an icon. This capacity of 
revealing unexpected truth is precisely that wherein the utility of algebraical formulae con-
sists, so that the iconic character is the prevailing one (CP2: 279).

A year later, in lecture VI of his Harvard Lectures on pragmatism (1903), Peirce 
goes as far as to claim:

All necessary reasoning without exception is diagrammatic. That is, we construct an icon of 
our hypothetical state of things and proceed to observe it. This observation leads us to sus-
pect that something is true, which we may or may not be able to formulate with precision, 
and we proceed to inquire whether it is true or not. For this purpose, it is necessary to form 
a plan of investigation and this is the most difficult part of the whole operation. We not only 
have to select the features of the diagram which it will be pertinent to pay attention to, but 
it is also of great importance to return again and again to certain features. Otherwise, 
although our conclusions may be correct, they will not be the particular conclusions at 
which we are aiming (CP 5.162; emphasis added).

Based on these, as well as other, more complicated examples, Peirce further 
shows that it is never the case that, in solving a problem, simply thinking in general 
terms is enough. “It is necessary,” he says, “that something should be done. In 
geometry, subsidiary lines are drawn. In algebra, permissible transformations are 
made. Thereupon, the faculty of observation is called into play. Some relation 
between the parts of the schema is remarked” (CP 4:23, Hull 2017: 149; Joswick 
1988: 113).

As Peirce notes, any one of Euclid’s theorems is first formulated in abstract 
terms. However, in the Elements, such abstract statement, from which only some 
trivial truths may be deduced, is followed by the construction of a geometrical fig-
ure, and then, upon observation, the initial statement is reformulated in new terms; 
this time—with reference to the figure constructed. This, in turn, is followed by 
modifying the figure (by moving certain parts of it, or adding new lines, or both), 
and ascertaining whether the modifications hold good relative to the second formu-
lation. Once this is done, Peirce says, the words, “which had to be demonstrated,” 
follow without any further restatement of the result in abstract terms. As he fur-
ther notes,

[i]n like manner when we have finished a process of thinking, and come to the logical criti-
cism of it, the first question we ask ourselves is “What did I conclude?” To that we answer 
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with some form of words, probably. Yet we had probably not been thinking in any such 
form—certainly not, if our thought amounted to anything…What the process of thinking 
may have been has nothing to do with this question (CP2: 55, emphasis added).

There is, in the end of all this construction and rearrangement, a moment at 
which the result is shown by the speediest way possible, and after which thought can 
only idle in creating trivial corollaries. Again, according to Peirce, geometry repre-
sents only one of many possible cases in which this ultimate point is revealed. In 
fact, in any logical process whatsoever, Peirce says,

[w]hen we contemplate the premiss, we mentally perceive that that being true the conclu-
sion is true. … Since the conclusion becomes certain, there is some state at which it 
becomes directly certain. Now this no symbol can show; for a symbol is an indirect sign 
depending on the association of ideas. Hence, a sign directly exhibiting the mode of relation 
is required (CP4: 75, emphasis added).

According to Peirce, mathematics can discover new regularities due to the fol-
lowing two features that diagrams exhibit. First, because there is always an array of 
possible transformations, which are implied by the very way a given diagram is 
constructed, and all of which will never be enacted. Second, because, due to the 
essential indeterminacy of perception, we cannot predict in advance what particular 
transformations out of the array will in fact be enacted, and what the ultimate result 
of those transformations will be (Stjernfelt 2007: 81–83). What these two features 
imply is that mathematics essentially is an observation-based activity, a habit-
driven, and yet creative practice rather than a static deductive grammar that supplies 
rules for the contemplation of abstract mathematical forms (Campos 2009; Hull 
2017). Within mathematical reasoning as a practice, visual imagination has a three-
fold role to play. First, a mathematician forms a skeletonized iconic representation, 
a diagram, whether geometrical or algebraic, of the facts he is interested in consid-
ering. The principal purpose of the initial skeletonization, Peirce says, “is to strip 
the significant relations of all disguise,” so that “only one kind of concrete clothing 
is permitted—namely, such as, whether from habit or from the constitution of the 
mind, has become so familiar that it decidedly aids in tracing the consequences of 
the hypothesis (CP3: 559). Second, a mathematician observes this diagrammatic 
picture until, at some point, “a hypothesis suggests itself that there is a certain rela-
tion between some of its parts.” Third, he experiments upon the diagram in order to 
test his hypothesis, so that “it is seen that the conclusion is compelled to be true by 
the conditions of the construction of the diagram” (CP2: 278, CP3: 560, Joswick 
1988: 108–109). Mathematicians, thus, use some basic features of spatial represen-
tation to construct skeletonized images, or diagrams, such that certain changes in 
the relations between parts of those diagrams and a further analysis thereof reveal 
the necessary deductive force of the argument the diagrams represent. Considered 
in this vein, the diagrams are not just illustrations of the reasoning process; they are 
the process itself, visualized. And the only authority that we have in this case is not 
symbolic conventions, but the reasoning process itself, immediately visually 
present.
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Recall that mathematical diagrams show relations that are constitutive of their 
objects and that, at the same time, can be manipulated so that new truths about their 
objects are discovered. Although a diagram is constructed “according to an abstractly 
stated precept” (CP2: 216), not all possible relations between the parts of the dia-
gram are initially predefined in the precept. In this respect, diagrammatic expres-
sions, if sufficiently conventionalized, are like any other language in that the array 
of possible interpretations presupposed by their initial construction always exceeds 
the array of new interpretations available, given our current goals and our point of 
view. Some Peirce scholars (Ambrosio 2014: 257) extrapolate this link between 
iconicity and the generative aspect of language on any representation:

The very process of constructing an icon matters for Peirce, as it reveals the very respects 
in which a particular sign stands for its object. What seems to emerge from Peirce’s account 
is that the very relation of representation is itself the result of a process of discovery: ‘con-
structing’ an icon amounts to discovering, and selecting, relevant respects in which a repre-
sentation captures salient features of the object it stands for.

Given this, it is not surprising that Peirce himself consistently links iconicity and 
language. In particular, he claims, for instance, that “in the syntax of every language 
there are logical icons of the kind that are aided by conventional rules” (CP2: 280; 
emphasis added). The suggestion here is that language is capable of conveying and 
storing information not only because it symbolically encodes this information and 
refers to appropriate external objects, but also due to the fact that its syntax iconi-
cally frames our perception. On this view, the very order of meaning to some extent 
depends on the visual schematisms set up by the general syntactic arrangement of a 
given language. On this view, in a sense, the way we put organize the symbols we 
use in writing reflects the way we think.

In using diagrams, what we have is, as it were, a system of keyholes, through 
which we see something only because we do not see all the rest. However, what is 
peculiar about the use of diagrams in mathematics is that, even though the possibili-
ties are limitless, the mathematician is capable of anticipating changes between the 
parts of a given diagrams that are characterized by necessity. Peirce admits that the 
nature of this relationship between novelty and necessity presents an unresolved 
problem. He claims that, “how the mathematician can guess in advance what 
changes to make is a mystery” (NEM4: 215). However, one might speculate that 
this capacity has something to do with the interplay between two Peircean distinc-
tions: the deductive force of mathematical reasoning vs. the compulsive force of 
perception, and the active power of the imagination vs. the passive receptivity of 
perception. Taken together, the distinctions constitute part of the reason observa-
tion, according to Peirce, is always involved in mathematical reasoning. And the 
link between the two, again, is provided by an analogy between perceptual and 
mathematical judgments:

We speak of hard facts. We wish our knowledge to conform to hard facts. Now, the “hard-
ness” of fact lies in the insistency of the percept, its entirely irrational insistency... But this 
factor is not confined to the percept. We can know nothing about the percept … except 
through the perceptual judgment, and this likewise compels acceptance without any assign-
able reason. This indefensible compulsiveness of the perceptual judgment is precisely what 
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constitutes the cogency of mathematical demonstration. One may be surprised that I should 
pigeon-hole mathematical demonstration with things unreasonably compulsory. But it is 
the truth that the nodus of any mathematical proof consists precisely in a judgment in every 
respect similar to the perceptual judgment except only that instead of referring to a percept 
forced upon our perception, it refers to an imagination of our creation. There is no more 
why or wherefore about it than about the perceptual judgment, “This which is before my 
eyes looks yellow” (CP7: 659).

The analogy, as Peirce further describes it, is rather intricate and by no means 
self-evident. The receptivity of perception is passive, while the imagination is an 
active capacity. What Peirce is saying here is that perceptual content forced on the 
passive receptivity of perception and an imprint produced by my own active power 
of imagination share the same phenomenological quality. Just as a percept is forced 
upon our perceptive capacity, a mathematical truth is forced upon our imagination; 
there is no “why or wherefore” about either of the two. In the latter case, there is a 
parallelism between the internal imaginative experimentation with diagrams (the 
capacity to predict the dynamic pattern of future changes) and external visual per-
ception based on the capacity to adapt to the ever-changing environment. This anal-
ogy between the diagrammatic mathematical visuality and our ordinary, everyday 
visual experience now finally needs to be clarified.

�Existential Graphs

As has been argued above, according to Peirce, spatial imagination and abstract 
reasoning are involved in the process of manipulating diagrams not as two distinct 
mental faculties, but as two aspects of the same activity put to work together. The 
point is aptly summarized in Hull (2017: 147): “Peirce’s conception of a diagram is 
fundamentally and inseparably both conceptual and spatial insofar as reasoning by 
diagrams engages the continuum of spatial extension in the reasoning process.”

Mathematics, then, is a practice that makes use of a set of specific cognitive 
mechanisms in order to creatively schematize together the general and the particu-
lar, abstractions and images, thought and action. A mathematician is capable of 
conceptualizing and, in doing so, directly observing the world as an ordered variety 
of forms of relations, because in mathematical thought, visual integration and con-
ceptual syntheses are as mutually interdependent as two sides of a sheet of paper. 
Naturally, this mutual interdependence of general concepts and individual images 
should have a medium. Therefore, there should exist the possibility for a diagram-
matic language that, in using simple graphical conventions, would embody the unity 
of the visual and the conceptual, of the perceptual dynamics and logical inference. 
This, Peirce believed, should be a language capable of visually representing think-
ing as it happens—thinking in actu (CP4: 6).

The possibility of such language, introduced by Peirce in late 1890s as “Existential 
Graphs,” is contingent on two facts. First, according to Peirce, any perception can 
only be of a change. Just as there is no feeling of one’s skin when a feather is not 
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drawn across it, there is no proper vision of an object without some perception of 
the corresponding stereotypical motion. A cheetah chasing its prey, a butterfly in 
flight, a pencil bouncing off the table—each of these moving images loads our per-
ception with habitual expectations, without which the visual integration necessary 
for our grasping those objects as such, would not be complete. Accordingly, if 
motion of an object does not just tell us where an object is going, but helps us rec-
ognize the object as such, it shall do so whether this object is a an animal, a pencil, 
a mathematical function, or a thought itself. If mathematics, expressed in a system 
of diagrams, or graphs, is to borrow from the architecture of ordinary visual recog-
nition, then, in order to capture thought in action, to grasp the continuity of thinking, 
what we need to work out is not just a set of graphical conventions, but also a cor-
responding set of moves. In short, we need a system of moving pictures in order to 
turn thought into a proper object of study.

The second fact is this. Peirce, I believe, would admit that visual perceptions are 
inferential. Simply seeing something as “red” requires the capacity to apply the 
concept “red.” Besides, acquiring such a concept involves a long history of piece-
meal adjustments and readjustments, gradually habitualized intakes and responses 
to various objects in various circumstances. And this requires mastering some infer-
ential skills. Moreover, according to Peirce, there is no sharp line of demarcation 
between perceptual judgment and hypothetical (or abductive) inference. Both 
amount to an act of a fallible insight assembling different elements that were present 
in our minds before. In the case of abduction, “it is the idea of putting together what 
we had never before dreamed of putting together which flashes the new suggestion 
before our contemplation” (CP5: 181). Perceptual judgment, in turn, “is the result 
of a process…not sufficiently conscious to be controlled, or, to state it more truly, 
not controllable and therefore not fully conscious” (ibid.). Peirce’s system of graphs 
represents a move in the opposite direction: with the help of simple graphic conven-
tions, the graphs make inferences a matter of visual perception.

On the one hand, then, we have images supported by the inferential ties that hold 
together our linguistic competence. On the other hand, we have inferences encoded 
visually. There is thus an exchange between the external, inferentially informed 
imagery of ordinary perception, and the immanent, diagrammatic imagery of math-
ematical thought. In using a set of basic spatial intuitions, Peirce’s graphs show how 
inferences work. Meanwhile, the cognitive mechanisms that allow us to make those 
intuitions into the moving objects that the graphs are, are the same as those that 
shape our ordinary perception. To put it slightly differently, manipulating the graphs, 
which leads to the discovery of new truths, is based on the same perceptual dynam-
ics that characterizes ordinary vision. But the deductive force of a conclusion, which 
results from the manipulation, is revealed due to the visuality that is immanent to 
the mechanisms of inference.

Final Remark
To conclude, Peirce’s graphs represent an intricate knot of relations between written 
language, ordinary visual experience, necessary mathematical reasoning, and imag-
inative experimentation. While an ordinary person is content with the passive 
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exercise of external perception only, a mathematician makes a good use of the inter-
play between the external visuality of objects and the immanent visuality of infer-
ences in order to combine the creativity of mathematical thinking and the robust 
deductive necessity of its results.
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Chapter 12
Procedural Steps, Conceptual Steps, 
and Critical Discernments: A Necessary 
Evolution of School Mathematics 
in the Information Age

Martina Metz and Brent Davis

�Introduction

Early in 2010, the Organization for Economic Cooperation and Development 
(OECD) published an online document in which it distinguished among “formal,” 
“informal,” and “non-formal” education. Many elements of this typography were 
predictable. Of the three, for example, only formal learning was identified to involve 
certified teachers, accredited curricula, and institutionalized settings. But there were 
also some unexpected elements. In particular, not many educational leaders expected 
a prominent—but unexplained and unjustified—statistic asserting that 75–85% of 
one’s learning is other than formal.

That sort of datum is hard to contest. In fact, it would seem reasonable to argue 
that it is grossly underestimated. While not fully explained in the report, one can 
infer that the number to indicate the portion of an average life not dominated by 
attending school. That is, it was intended to emphasize the importance of lifelong 
learning. If that was the purpose, the point is simultaneously important and trivial. 
And that is perhaps why some in the educational establishment viewed the statistic 
with suspicion, as a not-so-veiled move to diminish schooling’s long-held authority 
in matters of defining, offering, and certifying learnings.

In this regard, the technological context of the OECD’s pronouncement is sig-
nificant. It was a statement on learning in the Information Age. With advancements 
in and ubiquity of communication and storage technologies, traditional schools can 
no longer maintain a pretense of guardians of and gatekeepers to cultural knowl-
edge. While broad awareness of that pretense has not yet contributed to substantial 
transformation in the institution, it would seem reasonable to expect that formal 
learning—that is, schooling—is on the threshold of significant transformation. In 
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this chapter, we muse on possible meanings and consequences of that realization, 
specifically as it pertains to mathematics education.

The social and cultural conditions of this potential transformation are not with-
out precedent. Indeed, there are striking social and technological parallels between 
current circumstances and the historical moment that saw the original invention of 
public schooling. At the risk of oversimplification, key motivations for the creation 
of mass formal education in the western world included a dramatic shift in access to 
craft and scientific knowledge (enabled by printing presses and postal services), an 
associated convulsion in knowledge production (enabled by the co-amplifying 
influences of research institutions and business), an exponential growth of wealth, 
and the creation of legal systems that gave new rights to the disadvantaged as it 
recognized the dangers of increasingly inequitable distributions of that new wealth.

The modern school was partly a response to and partly a contributor to these 
intertwined convulsions. Simultaneously controlling and enabling, mandatory mass 
education was imposed as much to protect children from an exploitative labor mar-
ket as it was to equip them with the basic tools needed to contribute effectively to 
that market. From the start, these basics were identified as the abilities to decode 
written texts, transcribe simple dictations, and perform uncomplicated calcula-
tions—or, more colloquially, “readin’, ‘ritin’, and ‘rithmetic.” That is, the word 
“basics” originally signalled minimal necessary skills for workers. It pointed to 
some disciplines, but it said nothing about those disciplines themselves. 
Unfortunately, as the school became an entrenched and integral aspect of modern 
culture, the original, context-sensitive meaning of basics was lost. Thus, as society 
evolved, the basics remained stubbornly resilient. This detail is especially evident in 
school mathematics where, in the popular arena, “basics” is now typically assumed 
to refer to adding, subtracting, multiplying, and dividing—that is, not as a set of 
needs fitted to a particular context at a particular time, but as a reference to an 
assumed-to-be-natural foundation to mathematics. Indeed, the phrase “learning the 
basics” is often treated synonymously to “learning simple arithmetic.”

Consequently, the construct of basics has become an albatross around the neck 
of mathematics education. As we develop in this chapter, for example, the notion 
was as the epicentre of multiple twentieth-century “reform” efforts, which sought to 
replace the traditionalist emphasis on mastery of procedural steps with a focus on 
conceptual steps—that is, to reframe mathematical competence in terms of progress 
toward deep understanding rather than mastery of technical procedures. That shift 
was tethered to dramatic developments in psychology and philosophy that contrib-
uted to new understandings of learning, which in turn revealed that the beliefs that 
oriented the original design of public schooling are plainly indefensible. (Even so, 
they still prevail.)

Profound and consequential insights into learning continue to emerge, now 
driven principally by the cognitive sciences. In this chapter, we use the notion of 
critical discernments to draw together some provocative emerging ideas and to 
explore their educational relevance against the now-popular contrast of procedural 
steps and conceptual steps. In the process, we also attempt to interrupt the contem-
porary meaning of “basics” by illustrating our discussions with concepts that we 
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assert are basic to this era, but that are currently given minor attention in most for-
mal curricula. On that matter, we (the authors) are unaware of any mathematics 
curriculum revision or mathematics teaching reform effort within our lifetimes—
anytime, anywhere—that has not been stymied by demands to attend to the “basics.” 
Our hope is that giving heed to matters of basic to whom, when, and where might 
contribute to efforts toward change.

Companion considerations are the conceptions of “learning” and “teaching” that 
arose alongside and continue to function in symbiotic relationship with the original 
notion of basics. Our suspicion, rooted in decades of engaging with classroom 
teachers, curriculum developers, and policy makers, is that a reason that the ten-
dency to conflate “basics” and “mathematics” is so pervasive and so resistant is that 
that the assumed relationship is part of a grander flock of associations—that is, of 
mutually confirming assumptions of the nature of knowledge, the processes of 
learning, and the mechanics of teaching. In that regard, it appears that efforts to 
conceive of a mathematics education that is fitted to the moment are complex: A 
revisionist conception must simultaneously address matters of appropriate content 
and defensible practice. That is, it must engage with three sets of questions, seeking 
to understand the conditions of learning (who, when, where, why?), to identify and 
situate content (what?), and to define classroom practices based on current knowl-
edge of human cognition (how?).

We attempt to take on all three of these matters in this chapter, but in differenti-
ated ways. We start by taking on the how—an entrance point that is more intended 
to uncover some of the intricate web of associations that have over recent decades 
hobbled intelligent and action-oriented engagements with the other two matters. 
After that reframing, we turn illustration-based engagements with the conditions 
and content questions, moving on the conviction that actual experience with a new 
form of mathematics pedagogy is likely to be more compelling than an academic 
argument.

�Learning: From “Getting” to “Constructing” 
to “Differentiating”

“Learning” is one of those phenomena that is intimately familiar, but shallowly 
understood. This point is cogently illustrated through the website, Discourses on 
Learning in Education (https://learningdiscourses.com), which describes, contrasts, 
and clusters over nearly 900 (at the time of this writing) perspectives on—that is, 
metaphors for, definitions of, theories on, strategies of—learning that are repre-
sented in the current education literature.

One of those discourses is popularly known as “twenty-first-century learning” or 
“Deeper Learning”—which, as first hearing, might seem an obvious alignment with 
the themes of this chapter. A blend of several prominent contemporary discourses, 
Deeper Learning is explicitly concerned with transforming formal education in 
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ways that fit with emergent personal, social, cultural, technological, and economic 
conditions. While there are many varieties of the discourse, they tend to cluster 
around the same set of educational goals (e.g., robust academic outcomes, higher-
level thinking skill, positive attitudes, technological proficiency, honed social skills) 
and to be defined by a specific cluster of teaching strategies (e.g., centered on real-
world issues, oriented toward problems that are relevant to learners, choice-rich 
tasks, access to diverse tools and resources, frequent formative assessments, flexible 
and frequent opportunities to collaborate).

On the surface, then, Deeper Learning sounds like a movement that is hard to 
critique. However, even a shallow examination of the discourse reveals that, in fact, 
it rests on pretty much the same assumptions on knowledge, learning, and education 
as the traditional, shallower approach to schooling that it is presumed to critique.

The learningdiscourses.com site was motivated by this sort of realization. It is 
designed to assist in making sense of and sorting through competing and comple-
mentary perspectives. The project is informed by contemporary research in the cog-
nitive sciences, a transdisciplinary domain that brings together psychology, 
linguistics, computer science, neuroscience, anthropology, philosophy, and other 
realms of inquiry. The cognitive sciences focus on the tools and strategies used by 
humans to make sense of the world, including especially tactics employed to main-
tain illusions of certainty against a reality of gaping holes in information, frequent 
flaws in logic, inevitable errors in recall, and implicit prejudices in perception. 
“Metaphor” figures centrally in these discussions, as both a means and a focus of 
analysis.

That emphasis is grounded in the twentieth-century realization that human 
thought is mainly analogical/associative rather than logical/deductive. Much of cog-
nitive science research is thus trained on how metaphoric associations across 
domains of experience can orient perception, prompt action, bias interpretation, and 
infuse justifications. That focus turns out to be useful to sort through current discus-
sions in education. As mentioned, the Discourses on Learning in Education site 
reviews and relates more than 900 currently active perspectives. That number is 
daunting. Somewhat less daunting, however, is that the number of core metaphors 
used across these discourses is much smaller (certainly under 50), and fewer than a 
dozen have any significant traction. As well, major educational movements tend to 
be associated with specific metaphors.

For example, traditional education is strongly reliant on metaphors through 
which knowledge is characterized as some sort of stable object, by which learning 
comes to be understood as getting that object. The intertwined notions are evident 
in such phrases as “collections of facts,” “gathering of information,” “tossing around 
ideas,” “picking things up,” “holding a belief,” “getting it,” “getting to,” and “learn-
ing stuff.” Ancient in origin (see Ong 1982), the grounding knowledge-as-object 
metaphor can be taken to suggest that there is a real truth, out there, stable, eternal, 
independent of knowers, untainted, and benign. The cultural priority of these quali-
ties was later amplified in the first scientific revolution, as the ideal of objective 
truth, and further amplified as a nascent global capitalism found ways to commodify 
knowledge, creating a marketable thing.
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As a means to understand the manner in which humans experience their truths, 
the knowledge-as-object metaphor has its value. However, as a principle for struc-
turing formal learning, it is lacking. Nevertheless, the cluster of associations that 
have arisen around this figurative notion has long served as a grounding principle in 
public education. When knowledge is understood as a set of objects, then it makes 
sense to conceive of curriculum development in terms of selecting the most-worthy 
objects and formatting encounters with them. It also makes sense to approach their 
study as a systematic mastery of their parts. It renders learning a matter of picking 
things up, packing them in, and bouncing them back. It enables the interpretation of 
intelligence as how much one can hold—and that highly troublesome notion under-
girds a multi-billion-dollar industry focused on measuring these imagined capaci-
ties. Ultimately, an uncritical embrace of the knowledge-as-object metaphor defines 
both learner and teacher, the former as a vessel or recipient, and the latter as a con-
veyer or deliverer.

The poverty of this cluster of notions was a major focus of psychological research 
in the early-twentieth century. To bring the issue to the fore, researchers test-drove 
a variety of new metaphors for learning, with associating and constructing figuring 
most prominently. Efforts were made to conceive of learning as an iterative cycle of 
interpretation, by which one’s knowledge was framed as a coherent-but-evolving 
web of associations. The associated rise of “constructivist” theories among educa-
tors in the last half of the twentieth century represented an attempt to format the 
conversation for educators. Around school mathematics, constructivisms served as 
the main theoretical engines in major reform efforts, as they were used to alert edu-
cators to the problems associated with entrenched-but-invisible object-based meta-
phors and to the possibilities of taking up action-based metaphors. Problem-solving, 
personal strategies, learning from errors, talk-aloud protocols, manipulative-based 
explorations, and a grabbag other constructivism-influenced emphases were soon 
taken up. One of the popular memes used to collect these new ideas, and to distin-
guish them with entrenched notions, was a distinction proposed by Skemp (1976) 
between procedural and conceptual. Procedural was used to tag traditionalist 
emphases on acquisition and mindless mastery, and conceptual signalled shifts 
toward construction and making meaning.

Unfortunately, the shift didn’t have the impact that theorists hoped. Our suspi-
cion is that the ease with which notions of “constructing” can be blended with 
notions of “acquiring” proved to be debilitating. That is, the proposed new cloud of 
associations was perhaps not sufficiently distinct, and so more often than not they 
were subsumed into established practices and structures. Indeed, even some leading 
mathematics education researchers seemed to miss the point. Consider Sfard’s 
(1998: 5) conclusion as she contrasted object-based and action-based conceptions 
of knowledge and learning:

Concepts are to be understood as basic units of knowledge that can be accumulated, gradu-
ally refined, and combined to form ever richer cognitive structures. The picture is not much 
different when we talk about the learner as a person who constructs meaning.
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Further to the surrounding issues, perhaps no one should be surprised that efforts 
to reform mathematics curriculum have been no more impactful than efforts to 
reform mathematics teaching. The miscontrual of basics continues in force, a linear-
ized trajectory through prespecified content still dominates.

Enter the cognitive sciences. In recent decades, some educators have started to 
move to a much more distinct set of metaphors that frame learning in terms of dif-
ferentiating—a two-layered action of noticing aspects of one’s experiences and 
noticing/construing associations among those noticings. This idea is part of the 
growing appreciation that humans aren’t especially logical. In fact, sapiens are bad 
at deductive reasoning—and, left to their own devices, tend to fall back on situation-
specific and opportunistic tactics to get through situations that would be better man-
aged through systematic thought. Humans extrapolate from past events, they seek 
patterns in the moment, they impose familiar metaphors, they re-enact established 
scripts. Thankfully, humans have also learned to off-load the demands of logical 
thought onto mechanical tools—except, for some reason, in contexts such as most 
public schools, where there remains an insistence that learners attempt to master 
mechanical processes that no longer need to be mastered. (To be clear about the 
point here: We believe that, to learn mathematics, learners must master concepts. 
But, as we develop, that sort of mastery is quite distinct from the mastery of multi-
step procedures.)

What’s particularly interesting about the metaphor of learning as differentiating 
(i.e., noticing and knitting noticings) is its utility for revealing the intellectual pov-
erty of so many educational practices. For example, an immediate consequence of 
taking this metaphor seriously is that one must be especially attentive to what, 
exactly, learners are supposed to differentiate, how to channel attentions, how to 
organize experiences to increase the likelihood of useful associations, and so on. 
That is, the notion of learning as differentiating takes us immediately to a different 
model of teaching—one that simultaneously reveals the incoherence of many con-
temporary educational obsessions while offering a frame for alternative attitudes 
toward teaching and curriculum. We develop this and associated ideas in the last 
half of this chapter. But, before getting there, we must take on our second question, 
on the nature of mathematics. How does the differentiating metaphor prompt us to 
look at mathematics, and what does mathematical knowledge tell us about how it 
should be learned?

�Mathematics: From “Building” to “Structure” to “Network”

Through the history of modern education, mathematics teaching practice has been 
consistent with prevailing beliefs about the discipline. For instance, a prominent, 
and likely dominant, belief is that mathematics is like a building. It has foundations. 
It has levels, and those levels are ordered. Hence, teaching and curriculum should be 
attentive to establishing solid foundations and tracing out its levels in logical order. 
That is, not only is mathematics an object, it is a specific sort of object that dictates 
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topics and orders. Variations on these themes have defined school mathematics 
since the 1600s, in no small part because they are so compatible with the knowledge-
as-object and learning-as-getting metaphors.

The realization that assumptions about the discipline affords an alternative char-
acterization of many efforts to reform school mathematics in the twentieth century. 
In particular, in the last half of the century, a large number of teachers and research-
ers who embraced a constructivist sensibility lined up behind a new definition of 
mathematics—namely, as what mathematicians do. Circularity of logic notwith-
standing, this shift in definition meshed with constructivist principles of learner 
agency, inseparability of knower and known, and gradual unfolding of possibility. It 
also shone a light on appropriate teaching emphases. In that regard, mathematicians 
were seen to be principally focused on solving problems. Authentic problems. Real 
problems. Sometimes open-ended problems. This shift in emphasis tied in nicely 
with progressivist emphases on authenticity and relevance, among other foci. It also 
fit with emerging sentiments and sensibilities that were later to evolve into Deeper 
Learning, as described in the previous section.

The move also set up what came to be known as the “Math Wars”—an ongoing, 
mainly North American-based tension between, in simplest terms, believers in 
back-to-basics sorts and proponents of problem-solving. Since the late 1980s, the 
Math Wars have dominated discussions of math teaching practice. For our purposes 
here, the critical detail is not the explicit tension, but that the Math Wars are enabled 
and perpetuated by two incompatible sensibilities—that is, two grand flocks of 
implicit association, each of which is internally consistent, but neither of which is 
especially defensible. The first of these found its anchor in the assumption that 
mathematics is an object that exists independent of humanity. In this flock, math 
learning is about faithfully reconstituting a fixed reality. The second flock swirls 
around the conviction that mathematics is an evolving structure—a hallmark of 
human creativity that emerges when logic is a defining quality. In terms of prag-
matic consequences, the structure metaphor grounded criticisms of linear curricula, 
overly parsed concepts, isolated skills, and procedural steps while it prompted atten-
tions to rich problems, meaningful contexts, flexible sequencing, and concep-
tual steps.

Yet, somehow, most efforts to enact these notions have not gone well. Somewhat 
ironically, a likely reason for the failure was anticipated by the person most com-
monly associated with problem-based learning. Noticing the tendency of humans to 
frame differences in terms of polarities, more than a century ago John Dewey (1910) 
cautioned that seeing differences in terms of polar opposites might compel debaters 
to think that those opposites must bookend all possibilities. That assumption, Dewey 
(1910: 9) worried, constrained thinking rather than enabling it, as he concluded that, 
“in fact intellectual progress usually occurs through sheer abandonment of those 
questions together with both of the alternatives they assume…We don’t solve them: 
we get over them.”

For instance, it might be tempting to think that the full spectrum of possibility for 
school mathematics is captured between “traditional” and “reform” sensibilities. On 
the one hand, mathematics is seen as pre-determined and pristinely organized—that 
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is, it is regarded as something discovered. On the other hand, mathematics is viewed 
as contingent and subject to human interest and whim—that is, something created. 
Surely the continuum defined by “something discovered” and “something created” 
encompasses everything.

In fact, however, almost everyone who has framed their thinking with the dyad 
of “something discovered” and “something created” has missed a blindingly obvi-
ous detail: both elements of the dyad assume a something. Both are indexed to an 
assumption that mathematics is a thing—and, not somewhat ironically, this detail 
shows up most powerfully around the notion of discovery. As mentioned, among 
Traditionalists, mathematics is usually seen as out there, in the real word, and there-
fore discovered. Once discovered, however, it makes sense to convey it. Among 
Reformists, mathematics is most often assumed to be created, but somehow that 
conviction leads to strong recommendations for discovery-oriented teaching—
revealing that object-based assumptions on mathematics have not been jettisoned at 
all. Perhaps that is why, even though Reformists managed to awaken educators to 
learner agency by attending to what mathematicians do, the contents and outcomes 
of most mathematics curricula are scarcely discernible from pre-reform versions, 
even after a half-century of Reformist influence.

Getting over the Math Wars, then, may be dependent on a compelling and defen-
sible alternative to the implicit-but-pervasive knowledge-as-object metaphor that 
continues to undergird almost all discussions of school mathematics. Fortuitously, 
many alternatives have been developed, especially over the past few decades. One 
that we find especially useful is the metaphor that knowledge is systemic coherence 
across levels of organization, from which it follows that learning might be associ-
ated with making and acting on differentiations that enable systemic coherence. 
That is, learning is about noticing and knitting noticings—and, in turn, that blend 
sets up a model of school mathematics that aligns with neither side of the Math 
Wars. And it doesn’t land between them either.

Over the past few decades, in efforts to understand the nature of their discipline, 
many mathematics researchers have turned its tools onto the discipline itself. A 
consistent conclusion is that mathematics is a complex system (e.g., Foote 2007). 
Consequently, mathematics has a decentralized network structure. Other phenom-
ena that have this structure include cultures, ecosystems, and brains. More point-
edly, mathematics is not an object—and, with that, the premises of the Math Wars 
crumble. As do both Traditionalist and Reformist teaching.

So, how might an educator approach mathematics when knowledge is under-
stood as systemic coherence across levels of organization? To answer that question, 
we focus not on the elements of mathematics but on how the elements of mathemat-
ics might be made available in learners’ experiences. A decentralized network com-
prises both nodes and links—which, in the case of mathematics, have been associated 
with “principles” (i.e., stable aspects of existence, such as patterns and forms) and 
“logics” (i.e., different means of combining principles into systems of interpreta-
tion). Learning mathematics, then, is about differentiating—that is, becoming aware 
of principles (i.e., noticing) and applying logics (i.e., knitting noticings). 
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Correspondingly, teaching comes to be about channeling attentions and juxtaposing 
experiences to support appropriate linking.

And that takes us to a model of mathematics teaching informed by “Variation 
Theory,” which we argue is fitted to this Information Age.

�Why Variation Theory?

As the Math Wars have continued to polarize discussions regarding the best ways to 
teach math (Schoenfeld 2004), it is clear that we have not yet adequately answered 
Chazan and Ball’s (1999) call to go “beyond being told not to tell.” Marton’s theory 
of variation (Marton and Booth 1997; Marton and Tsui 2004; Marton 2015) offers 
powerful insights that allow a clear alternative to both telling and discovering—and 
to the knowledge-as-object metaphors upon which they are based. While it is impos-
sible to “transmit” understanding or “process” the products of perception, it is pos-
sible to offer deliberate contrasts that dramatically increase the likelihood that 
learners will perceive intended principles and relationships in a particular way. In 
addition to effective prompting techniques, this requires careful attention to both 
short and long-term structuring—which we describe with the contronym, ravel-
ing—of mathematical ideas to which we might prompt. Neither effective prompting 
nor long-term raveling feature prominently in discussions of traditional vs. reform 
approaches, which has likely contributed to the longevity of the Math Wars. 
Traditional methods can work. So can reform methods. But the alleged reasons they 
work (or reasons the other does not) may have more to do with elements of peda-
gogy that do not even enter the conversation; further complicating matters, success 
may be misattributed to one or other “contemporary obsession” (Preciado-Babb 
et al. 2020).

In this part, we further develop the key ideas underlying variation theory and 
relate them to principles of variation pedagogy developed independently in China 
(Gu et al. 2004; Huang and Leung 2004; Lai and Murray 2014). Following that, 
below we offer an interpretation of variation theory that integrates Marton’s theo-
retical principles and Chinese pedagogical principles into a nested set of variation 
types that we’ve found helpful for designing short and long-term pedagogical 
sequences that support fractal awareness consistent with the nature of mathematics.

�Learning as Differentiation

Marton’s theory is based on the premise of learning as differentiation, which might 
be contrasted with learning as enrichment; i.e., that perception is always necessarily 
partial, depending on what we separate from an undifferentiated whole. Emerging 
from this is a distinctive principle that lies at the heart of Marton’s work: The 
Principle of Difference states that we discern new ideas when they are contrasted 
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against a constant background. Highlighting difference to prompt distinction-
making is itself clarified by contrasting it with the common practice of (attempting 
to) highlight similarity to promote association-making. While association-making 
is indeed important to learning, Marton argued that we do not discern new meanings 
by perceiving similarities among examples that otherwise differ—i.e., through 
induction. If we can’t perceive something in one place, we won’t see it in two, or 
three, or a hundred. We can, however, generalize similarity among previously dis-
cerned examples (we also make metaphorical associations, but we will take that up 
a bit later).

Distinguishing generalizing from induction is essential to understanding and 
effectively using variation. This can be tricky, because often the patterns of variation 
used to prompt generalization are the same ones we might be tempted to offer in the 
hope of prompting induction. But order matters: Once separated through contrast, 
ideas become perceptible and can then be generalized. The examples may be the 
same, but the manner in which associations are assumed to be made is not. What can 
be highlighted via contrast is also constrained by prior knowledge, but in a different 
manner: We can’t simply prompt attention to advanced mathematical ideas unless 
the necessary contrasts have themselves been sufficiently prompted. Thus, mathe-
matical ideas must be carefully “raveled” so that we prompt attention at a level 
where learners are able to make sense of offered contrasts. It turns out that the levels 
can themselves be usefully described in more general terms, which is an important 
elaboration of the variation types that we discuss below.

�The Principle of Difference: Induction vs. Generalization

The Principle of Difference is both less intuitive and more powerful than often 
appears at first glance. When we are trying to explain something that is familiar to 
us, it can seem as though multiple examples should support deeper insight. This is 
likely because once something has been discerned, multiple examples can add clar-
ity through expansion of the example space associated with that idea (Watson and 
Mason 2005, 2006). Again, however, this is about generalizing existing understand-
ing. If the particular something hasn’t yet been discerned, it’s impossible to simply 
induce what the many examples are examples of: We can’t induce meaning from 
similarity if a unifying feature is unavailable.

Mason, Burton, and Stacey (1982/2010) recommended “generalizing and spe-
cializing” as a way of seeking deeper insight; it is through exploring variations of a 
particular case that we often find insight into both that case and a more general class 
of cases to which it belongs. Importantly, however, this is not about finding similari-
ties among varied examples, but about finding the perturbations under which the 
broader category remains intact (which may itself be influenced by the particular 
conditions of investigation).

In some cases, a single contrast can provide the necessary insight for generaliz-
ing a particular feature, which is why sometimes it’s possible to “see the general in 

M. Metz and B. Davis



195

the specific” (Mason and Pimm 1984; Watson and Mason 2006): Doing so involves 
seeing certain parameters of a problem as variable, which provides the necessary 
contrast for generalizing. In summary: separation (through contrast, not induction) 
must precede generalization; further, the very same examples that are inadequate 
for separation are ideal for generalization. Once separated and generalized, different 
features may be simultaneously varied, or fused.

�Separating, Generalizing, and Fusing

What exactly does it mean to separate through contrast? If we want to highlight the 
meaning of, for example, apple, highlighting difference would involve contrasting 
an apple with other things that are like apples in as many ways as possible but differ 
with respect to some essential feature. At the moment of discerning, both apple and 
the broader whole from which it has been separated (Food? Fruit? Spherical 
objects?) become namable, but these namable “things” are less important than the 
un-namable difference that defines them. In other words, the notion of difference is 
essential to transcending the knowledge-as-object metaphor that has proved so 
intransigent over decades of attempts to improve math education.

Once the notion of apple has been separated from a background—say of food, or 
fruit, or spherical objects (i.e., once apple becomes a discernible and thus name-
able difference)—we may then generalize to a broader class of apples. Although 
this class may be defined in terms of what all apples have in common, it is generated 
and bounded through expansion of allowable differences (Can it still be an apple if 
it has pink flesh?). To generalize, we hold the notion of apple constant and consider 
the permissibility of particular variations of apple—which looks just like the pattern 
of induction mentioned above, except that we’re using difference (not similarity) to 
test the limits of our definition of apple. In other words, generalizing is about per-
ceiving differences between differences (i.e. variations of apple, which is itself dis-
tinct from non-apple)—and thus could be considered the sort of level change that 
lies at the heart of the hierarchy we are proposing.

According to Marton (2015), new ideas must be prompted in a manner such that 
what is general and what is specific are discerned simultaneously. When distin-
guishing apple from non-apple, it may be that a learner becomes aware of the cate-
gory fruit of which apple is a particular type; Marton would call such a category a 
critical aspect. If apple is the first fruit to be so separated from the broader category, 
both fruit (as a category) and apple (as one member of that category) are perceived 
at the same time. In this case, the contrast highlights both the apple and a hierarchi-
cal structure involving apples and fruit (i.e., both the critical aspect fruit and the 
critical feature apple). Thus, “What is general and what is specific are discerned 
simultaneously when a new meaning is appropriated. There cannot be any features 
experienced without the awareness of the aspect that unites them, nor can there be 
any aspect experienced without the awareness of features that belong to it. 
Differences and features that differ cannot exist without each other” (Marton 2015: 
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48). Once apple and fruit have been thus separated, we might be moved to lay out 
the particular criteria we see as essential to each. Having done so, we might hold up 
new examples to those criteria and thereby classify them as fruit, apple, or both. 
Classification is distinct from generalizing in that it sets particular features of a 
particular example against an articulated definition; generalizing, on the other hand, 
takes particular features of a particular example and identifies a space of possibility 
bounded by the constraints of the experiential context as opposed to by the defined 
criteria of a definition.

Watson and Mason (2005) helpfully referred to critical aspects in terms of dimen-
sions of possible variation and critical features in terms of range of permissible 
change. To highlight allowable variations of apple, apple becomes the critical 
aspect, which can be generalized according to variation in (familiar) features such 
as color, shape, size, and flavor. In doing so, it is helpful to contrast and vary fea-
tures one at a time: Apples can be various shades of yellow, green, or red. They 
range from quite round (Macintosh) to a bit lumpy (Red Delicious). They can be 
smaller than a tennis ball (crab-apple) or as big as a softball (Fuji). They can range 
from quite sour (Granny Smith) to very sweet (Fuji). Color, shape, size, and flavor 
are critical features (of the critical aspect apple), and each can be varied within 
certain parameters. Similarly, “yellow, green, and red” are features of the aspect 
color, but discerning color itself isn’t the focus at this time; in the context of the 
apple, color is assumed as prior knowledge.

Even when critical features have been carefully named in an attempt to separate 
them for attention, teachers and resources frequently attempt to prompt attention to 
the named thing rather than to relevant differences—differences which might then 
be given a name. This is how easily Marton’s induction insinuates itself into peda-
gogies where the metaphor of knowledge-as-object has not been interrupted.

To offer a simple example, “practice rounding” tends to involve practice sets that 
cluster varied numbers to be rounded to nearest ten, then numbers to be rounded to 
the nearest hundred, and so on. Direct contrast between rounding to the nearest ten 
and nearest hundred is thus not easily perceived. Alternatively, the pattern of varia-
tion in Fig. 12.1 offers direct juxtaposition of rounding to the nearest ten, hundred, 
thousand, and ten-thousand—and requires learners to round the same number to 
varied place values (note that it’s important that students are prompted to work from 
top to bottom, as moving left to right offers the same pattern of variation we’re hop-
ing to interrupt). These contrasts offer meaningful information about the impact of 
rounding. More carefully chosen variation of fewer examples can be very powerful, 
because learners must practice making key discernments rather than merely practice 

Fig. 12.1  Rounding
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a procedure. The contrasts between selected numbers and between successive charts 
are also carefully chosen, but these differences between differences can only make 
sense if the first order of difference has been successfully prompted. If we treat the 
first level of difference as a thing rather than a difference, every level thereafter 
becomes inaccessible. In this sense, first-order differences become the essential cri-
terion for what is truly basic to structurally coherent mathematics pedagogy.

Similarly, when learning to add multi-digit numbers, learners may be asked first 
to add without regrouping, then to add with regrouping. A key discernment in doing 
so, however, is recognition that tens in the ones’ place can be re-grouped. In other 
words, re-grouping can only be perceived in contrast to not re-grouping (and vice 
versa). When examples and practice sets separate adding with and without re-
grouping, such contrast is far less obvious. Alternatively, if varied tens in the ones’ 
place are directly juxtaposed (and include no tens), particularly in a manner that 
highlights those tens, the meaning of re-grouping is more likely to be perceived see 
Fig. 12.2). At the very least, learners should have to decide whether or not to re-
group (zero tens or one ten). In practice sets where every example involves trading 
a single ten, we have observed learners go through the entire set and placing a “1” 
in the box for trades. They are not distinguishing between trades and no trades (or 
between one ten and other numbers of tens); they are merely performing a step that 
is highly limited to the particular context of that practice set. Note that in the last 
example, the lack of color-coding, slight mixing of the ten pairs, and inclusion of an 
extra one introduce elements that widen the space in which learners are expected to 
make appropriate discernments. Depending on learners’ background and confi-
dence, these features might be introduced one at a time.

To summarize: Once an idea is separated through contrast, essential features 
may also be highlighted by varying them against a constant background and gener-
alized by identifying non-essential features. They may also be fused by co-varying 
previously discerned (and possibly generalized) features. Returning to the apple, 

Fig. 12.2  Re-grouping tens
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eventually, we recognize apple even when multiple features co-vary and even when 
those features co-vary in ways that produce novel situations. Even if we were sud-
denly confronted with a crab-apple-sized, Red Delicious-shaped, yellow-coloured 
apple, we would likely recognize it as an apple. Similarly, we can learn to add multi-
digit numbers that involve re-grouping into any place value and with any number 
remaining in each place value. More significantly than what we can do, however, is 
that we may now recognize the very idea of re-grouping tens in a more broadly 
generalized sense that makes it available in a wide variety of other contexts, includ-
ing all of the other so-called “basic” operations. Note that it’s not the operations 
themselves that are basic, but the critical discernments upon which the traditional-
defined basics need to be based.

While separating, generalizing, and fusing have to do with discerning the effects 
of multiple co-varying features, they do not fully account for how we generate 
mathematics or how we learn mathematics: Mathematical knowledge also expands 
both through abduction and through the integration of different ideas.

�Abduction

If mathematical knowing has to do with organizing information into accurate hier-
archies and identifying the logical implications implied by those structures, it may 
seem that mathematics is inherently a logical endeavour. But the formation of those 
hierarchies is an abductive—or more specifically, an analogical—process, which is 
not surprising considering that such hierarchies are created by analogical minds. 
Here, the similarity we decried in the context of induction assumes a prominent 
role, though difference is still essential to prompting new meaning. We generalize 
when we compare examples and decide whether identified differences are consis-
tent with pre-specified criteria; we abduct when we transfer explanatory structure 
(consciously or unconsciously) between that which we perceive as similar. We anal-
ogize when we consider the appropriateness of transfer and do so (or refrain from 
doing so) intentionally.

To continue with our fruit example, it may be that a learner has already discerned 
apples and oranges but not considered their relationship. Doing so may simply 
involve combining them into a single category based on specified and familiar cri-
teria; as noted about, this is classification. However, it may involve consideration of 
whether recognized shared features allow transfer of explanatory structure from one 
to the other. If so, we are talking not just about classification, but about abduction. 
Although difference is required to separate new ideas, the human mind is adept at 
perceiving similarities among previously discerned ideas. Abduction is not about 
seeing something new—it’s about recognizing something familiar in a different 
context. From there, it is possible to consider whether what is known about each 
context may usefully or accurately be brought to bear on the other, though this 
aspect of abducting appears much less intuitive. Humans are deeply prone to jump-
ing to conclusions based on perceived similarities. In any case, difference can only 
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be perceived between ideas that have been previously discerned; i.e., differences 
can only be perceived between previously perceived differences. This would imply 
infinite regress if we assumed a blank-state infant mind, but we know that humans 
come into the world already attuned to particular differences from which all others 
eventually evolve (Lakoff and Núñez 2000).

Separating, generalizing, and fusing contribute to effective knowledge hierar-
chies. Marton (2015) addressed the importance of such hierarchies (particularly in 
the context of writing). Watson and Mason (2006) further emphasized the fractal 
nature of those hierarchies and highlighted the role of abstraction—which is consis-
tent with what we’re calling abduction—in their formation:

However, to make mathematical progress the results of the images, models, and generaliza-
tions thus created have to become tools for more sophisticated mathematics. We see gener-
alization as sensing the possible variation in a relationship, and abstraction as shifting from 
seeing relationships as specific to the situation, to seeing them as potential properties of 
similar situations. (Watson and Mason 2006: 94)

Taken together, the rejection of induction and the articulation of the role of dif-
ference in generalizing and abducting further support the importance of abandoning 
mental things. Doing so also helps resolve an apparent paradox highlighted by 
Watson (2017): If much of mathematics is defined in terms of similarities (defined 
by dependency relationships among variables) how can we use difference to prompt 
to similarity? One way of looking at this is that similarity is always between similar 
differences; if not, we couldn’t have perceived them in the first place.

�Integration

When used with well-raveled content, variation theory can offer powerful insights 
that contribute to effective variation pedagogy. To do so effectively, we must of 
course be clear about what we want to prompt attention to. But this is not as straight-
forward or intuitive as it might seem, particularly in the context of mathematics 
education. Marton (2015: 176) emphasized that “the object of learning that is used 
as a lens for inspecting the teaching may or may not be identical with the intended 
object of learning (i.e., the learning that the teacher had hoped to contribute to).” In 
mathematics it is frequently the case that instrumental learning is mistaken for rela-
tional learning (Skemp 1976). Carefully generated patterns of variation intended to 
teach particular mathematical ideas will ultimately fail if those ideas are defined 
only in instrumental terms; i.e., as things rather than differences.

Many who focus on step-based approaches emphasize that they do focus on the 
meaning of those steps. Even when the focus is on the underlying conceptual mean-
ing of those steps, however, a procedure does not always offer an effective means of 
raveling the mathematical ideas required to make sense of that procedure. Many 
procedures require the integration of multiple ideas that, if not previously discerned 
and generalized, are very difficult to integrate (see Fig. 12.3).
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One of the obstacles that some seem to have with understanding critical discern-
ments is that they think so long as steps are explained conceptually, they qualify as 
critical discernments. This ignores the importance of raveling: Often explaining a 
step in an algorithm involves multiple discernments (see Fig. 12.4), which is why 
many learners don’t follow the conceptual explanation and beg to simply be given a 
list of steps. Critical discernments are raveled over time so that learners have made 
the necessary discernments that allow them to make sense of each new 
discernment.

Fig. 12.3  Procedural steps vs. conceptual steps (long division)

Fig. 12.4  Conceptual steps vs. critical discernments (division)
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Sometimes raveling algorithms involves integrating seemingly unrelated under-
standings that come together due to their role in the solution to a problem, but a 
well-raveled sequence should also have elements of progressive differentiation. In 
math, this often shows up in the form of seeing something as a special case of a 
broader principle. For example, the long division algorithm is a special case of 
separating-to-divide (CD #2 in Fig. 12.4), which itself is a refinement of the dis-
tributive property. Contrasting different ways of separating a number to divide 
opens “ways of separating” as a dimension of possible variation while simultane-
ously expanding the example space consisting of those ways.

Once again, generalizing and specializing emerge as two sides of the same coin. 
We generalize by varying and identifying boundaries for variation, not by looking 
for similarity among multiple examples. Nonetheless, it remains important to 
remain attentive to implications of such insights on both (or multiple) levels of the 
hierarchy and to how they might be elaborated; i.e., to what can be articulated in 
general terms and to the specific cases that comprise, limit, or extend articulated 
generalizations (Mason et al. 1982/2010).

This manner of viewing generalizing and specializing has implications for the 
current obsession with multiple strategies (Preciado-Babb et al. 2020). Rather than 
learning a variety of different ways to divide and then considering how they’re alike 
(Marton’s induction), we can progressively refine critical discernments about the 
nature of multiplication, division, and the distributive property. Each of the typical 
methods for division emerge from these critical discernments and are thus already 
connected. Again: The general is recognized at the same moment that the particular 
is differentiated; we see the general in the particular (Mason and Pimm 1984) pre-
cisely when the particular emerges through differentiation. Or, as Marton (2015: 
48) put it: “There cannot be any new features experienced without the awareness of 
the aspect that unites them, nor can there be any aspect experienced without the 
awareness of features that belong to it. Differences and features that differ cannot 
exist without each other.”

The distinction between procedural and conceptual steps is perhaps even more 
striking in the case of relating prime factors and factors (see Fig. 12.5). Offering a 
conceptual explanation of the procedural steps listed here would be grossly insuffi-
cient for most learners, because they would require a sub-ravel (and a sub-ravel of 
the sub-ravel) for each step before such an explanation could make sense.

Integrating multiple ideas is distinct from both fusion and from discerning 
dependency relationships among variables. It has to do with bringing diverse math-
ematical ideas to bear on a single context or problem, as in modeling and problem 
solving. Elsewhere, we have used a braiding metaphor (Preciado-Babb et al. 2020) 
to describe this difficulty: Learners need to braid the strands (i.e., each of the critical 
discernments on the right) before they can effectively attend to the rope itself. In 
other words, they would have to braid the strands at the same time that they’re braid-
ing the rope. This is also true of the discernments pertaining to long division, but the 
layers of sub-ravel requiring attention for the unknown to become perceptible may 
seem less daunting.
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�Conceptual and Procedural Variation

While there is value in talking about the theory of variation more generally, it is 
illuminating to consider how its principles are specifically implicated in the teach-
ing of mathematics. In China, variation pedagogy particular to mathematics (Gu 
et al. 2004, 2017; Huang and Leung 2004; Lai and Murray 2014) was originally 
developed independently of Marton’s theory, though collaboration among research-
ers from the two traditions has become common as researchers have recognized 
their complementarities. Nonetheless, there are some notable differences in empha-
sis (Huang et al. 2016; Pang et al. 2016; Watson 2017). In particular, Chinese varia-
tion pedagogy includes an explicit focus on sameness as well as difference (Gu et al. 
2004). Watson (2017: 85) emphasized that much of mathematics takes invariant 
“dependency relationships” as its object of learning; in other words, similarity is, in 
fact, essential to mathematics. But earlier we insisted that humans are attuned to 
difference, not similarity, and that induction does not work. What’s going on? We 
have found that the manner in which sameness is prompted is consistent with 
Marton’s principle of difference, but it’s important to consider more closely what it 
means to use difference to prompt attention to similarity—or more specifically, to 
the underlying dependency relations that generate that similarity. Prompting to 
relationship is much different than prompting to pattern (Hewitt 1992).

Gu et al. (2004) distinguished two types of variation important to teaching math-
ematics: (a) conceptual variation (CV) and (b) procedural variation (PV). Here, 
“conceptual” and “procedural” are used differently than is typical in Western con-
texts, where conceptual is roughly synonymous with Skemp’s (1976) “relational,” 
and “procedural” is roughly synonymous with his “instrumental.” Both conceptual 
and procedural variation are about sense-making, and they are neither opposed nor 
competing. According to Gu, Huang, and Marton, conceptual variation offers 

Steps vs. Discernments
How do prime factors determine number of factors?

Procedural Steps
1. Find the prime factors of the 

number.

2. Write the prime factors with 
exponential notation.

3. Add 1 to each exponent from 
Step 2. Multiply those numbers 
together to find the number of 
factors.

Critical Discernments
CD#1: Every number can be written as the product of prime factors. 

CD#2: Every number has a single prime factorization.

CD#3: Every number has a unique prime factorization. 

CD#4: Prime factors combine to make factors.

CD#5: The number of factors a number has is determined by the number of 
ways you can combine its prime factors.

CD#6: If a number has one prime factor, repeated multiple times, the 
combinations are varying numbers of that factor. 

CD#7: If a number has two or more prime factors, clusters of one prime 
multiplied by clusters of the other(s) create new factors of that number.

CD#8: The number of factors can be found by multiplying the number of 
possibilities for each prime factor in a number’s prime factorization.

Fig. 12.5  How do prime factors determine the number of factors?
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examples, non-examples/counter-examples, and non-standard examples of a con-
cept; thus, conceptual variation is roughly akin to Marton’s contrast and generaliza-
tion and to Watson and Mason’s (2005, 2006) “example spaces.” Conceptual 
variation offers the initial differences that bound a context for learning; it is con-
cerned with clarifying and broadening the space of variation encompassed by a 
particular idea. Hewitt’s (1999, 2001a, b) consideration of what is arbitrary and 
what is necessary in mathematics further highlights the importance of distinguish-
ing what can and cannot be relationally defined and of teaching in ways that are 
consistent with this distinction. Even what is arbitrary, however, must be separated 
by prompting to difference; a particular definition or premise may be arbitrarily 
chosen, but once chosen, it cannot be arbitrarily prompted.

Procedural variation is further differentiated into three sub-categories: (a) vary-
ing the features of a problem (PV1); (b) comparing methods for solving a problem 
(PV2); and (c) considering how a single method can be applied to similar prob-
lems (PV3).

The procedural variations are collectively described as “progressively unfolding 
mathematics activities” (Gu et  al. 2004: 319): “[P]rocedural variation intends to 
pave the way to help students establish the substantive connections between the new 
object of learning and the previous knowledge” (Gu et al. 2004: 340–341). In this 
way, successive examples may be experienced as “easier,” but this is a particular 
kind of easier: They make it easier to make significant mathematical discernments, 
not just easier to complete a practice set or do a certain type of question. While some 
might see repetitive practice in a set of tasks designed with procedural variation in 
mind, it in fact involves deliberate change against a constant background; i.e., it’s 
not the repetitive practice of a procedure but a way of highlighting relationships 
between particular mathematical variables. Lai and Murray (2014) argued convinc-
ingly that failure to distinguish between these two types of repetition likely lies at 
the heart of the perceived “Chinese paradox” (Huang and Leung 2004), whereby 
Western observers have sometimes struggled to make sense of how allegedly weak 
Chinese pedagogy consistently produces such strong results.

Differences based on logical hierarchy are also an important consideration when 
considering effective patterns of variation. A lesson (or a text) is experienced chron-
ologically, but for learning to be effective, ideas offered within that chronology must 
be structured hierarchically; doing so involves prompting awareness of particular 
hierarchical relationships and how they are woven into increasingly dense and elab-
orated webs of association. Marton (2015) reported on several studies (outside of 
mathematics) where each new awareness was connected to a broader context. In 
such cases, learning was more effective than in cases where teaching was structured 
in linear sequence.

The different forms of variation can be seen in terms of a natural hierarchy with 
the potential to support the sort of meaningful long-term structuring of mathematics 
envisioned by Dienes (1960). Typically, however, descriptions of variation peda-
gogy often involve unrelated examples used to exemplify types of variation 
(Kullberg et  al. 2017; Sun 2011; Wong 2008). While such studies are useful for 
prompting attention to the significance of fine-grained variation, it is not easy (a) to 
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see the distinguishing features of different types of variation or (b) to see how they 
might be used to progressively elaborate an idea beyond the immediate context of a 
question set or a lesson. In China, coherent long-term raveling may be more clearly 
supported by carefully developed teaching resources, but elsewhere this is not 
always the case (Jianhua 2004; Bajaj 2013). Ma (1999) found that Chinese teachers, 
even those with less formal education than their counterparts elsewhere, showed 
more profound understanding of the elementary math they were teaching. In such 
cases, it is particularly vital that progressions highlighting hierarchical structure be 
embedded in quality resources that support both teachers and students in discerning 
complex webs of relationships.

�Summary

We opened this part by noting that mathematics education has yet to articulate and 
put into broad practice a meaningful response to Chazan and Ball’s (1999) observa-
tion that we need to offer teachers more than a directive not to “tell.” Variation the-
ory offers a way out of the apparent contradictions that emerge from many of the 
traditional vs. reform debates. It is not without potential pitfalls, however. Particular 
contradictions emerge when we attempt to use variation theory in conjunction with 
the knowledge-as-object. In such cases, variation theory tends to be distorted in one 
of two ways, depending whether the distortion occurs in a Traditionalist context or 
in a Reformist context.

Traditionalists may take variation as a means of offering gentler progressions 
and minimizing cognitive load. In other words, the subtle changes between ques-
tions are seen primarily in terms of gentle steps rather than in terms of meaningful 
contrasts deliberately chosen to make particular differences visible. While it is 
indeed important to attend to the limits of working memory, effective variation is 
about increasing clarity, not about making things easier. In fact, attempts to simplify 
by focusing on one thing at a time often result in the loss of the very contrasts neces-
sary for effective prompting through variation.

Reformists working with the hope that learners will independently discover rel-
evant knowledge-objects often fail to consider the hierarchy of differences required 
to make necessary contrasts perceptible in the first place. Open problems can offer 
spaces in which the variation of critical features assumes relevance (Runesson 
2005), and learners can indeed take responsibility for generating their own patterns 
of variation emerging from those features (Watson and Mason 2005)—if they’ve 
discerned relevant dimensions of possible variation, if they have appropriate math-
ematical tools (developed through their own ravel) to manage that variation, and if 
they are not expected to weave the strands they are braiding, so to speak. Not all 
“paths” in the Reformists’ journey follow a sequence that effectively supports atten-
tion to necessary differences, the fusion of multiple variables or the integration of 
prior knowledge.
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When variation theory is paired with the metaphor of knowledge as a decentral-
ized network, however, the importance of separating relevant features from an inte-
grated whole and then re-integrating them in a manner that highlights an appropriate 
web of associations is much easier to talk about; i.e., the metaphor invokes both 
relationships and language that productively enable thinking and communicating 
about learning. Here, the significance of the particular ways in which mathematical 
ideas are raveled assumes prominence: Careful contrasts and wide spaces of varia-
tion typically open rich spaces of conceptual variation that subsequent procedural 
variations may continue to elaborate.

We have found it somewhat challenging to highlight how such hierarchies unfold 
in a longer-term ravel. To focus on the fine-grained distinctions significant at a par-
ticular level makes it harder to step back and focus on the relationships between 
levels in the hierarchy. To do so, we do not offer the same level of detail within each 
level that we might otherwise do, though we hope that the particular examples 
we’ve chosen sufficiently highlight the importance of fine-grained distinctions. 
Once again, the need to simultaneously attend to an intricate web of understanding 
at both the immediate and the long-term level fuels our insistence that a carefully 
developed resource is essential to the coherent, long-term elaboration of mathemati-
cal ideas.

�Mathematics as Levels of Variation

We have found it helpful to conceptualize types of variation in terms of levels of 
variation defined by varied interactions among successive levels of difference (see 
Fig. 12.6). Level 1 separates and bounds key ideas with which we wish to work. 
This typically invokes what Hewitt (1999, 2001a, b) deemed the arbitrary. Levels 
2–5 involve qualitatively different interactions among identified parts, each of 
which involves necessary implications (as opposed to arbitrary definitions) of the 
ideas established at Level 1. Levels 1–4 form a hierarchy of types: Level 1 uses 

Fig. 12.6  Levels of variation

12  Procedural Steps, Conceptual Steps, and Critical Discernments: A Necessary…



206

contrast to separate and generalize key features, Level 2 explores co-variation of 
those features, Level 3 contrasts relationships among different ways of co-varying 
(sometimes in the form of sequences and strategies), and Level 4 contrasts relation-
ships among relationships. Level 5 focuses on interactions among previously identi-
fied features and relationships, including those that go beyond the object of learning 
identified in Levels 1–4.

Consistent with our claim that seeing knowledge as a decentralized network sig-
nificantly influences how we make sense of teaching and learning, these levels 
might be helpfully compared with Bateson’s articulation of logical types pertaining 
to the development of living things:

	1.	 The parts of any member of Creatura [i.e., living things] are to be compared with 
other parts of the same individual to give first-order connections.

	2.	 Crabs are to be compared with lobsters or men with horses to find similar rela-
tions between parts (i.e., to give second-order connections).

	3.	 The comparison between crabs and lobsters is to be compared with the compari-
son between man and horse to provide third-order connections (Bateson 
1979/2002: 10).

If we substitute ideas for organisms, we come very close to the framework we are 
attempting to describe. Hence we move from what Bateson referred to as serial 
homology (where each part within a particular organism is constrained during 
embryonic development by the previous parts) and phylogenetic homology (where 
new developments are constrained by shared evolutionary history) to what might be 
considered parallel homology, where parts do not act directly upon one another but 
may yet act in similar ways due to a history of evolving to meet similar evolutionary 
constraints. The three points above correspond to our Levels 2–4. Within and 
between each level, information is defined by difference, which is precisely why it 
can’t be a thing. Difference exists in the space between. Each of the levels (1–5) are 
however, bounded—by what Bateson referred to as context and described in terms 
of a story, or pattern through time, that links varying elements in a space of shared 
relevance: “Any A is relevant to any B if both A and B are parts of components of 
the same ‘story’” (p. 14).

�Change and Choice

Before we articulate the levels themselves, it’s important to take a closer look at the 
importance of change and choice. Teaching involves prompting attention to relevant 
differences, which are themselves essential for prompting attention to associations. 
Prompting has two key elements: what we offer (change) and what we invite learn-
ers to distinguish (choice). We must offer relevant contrasts and invite particular 
noticings, and to do so, we must offer tasks that require learners to make relevant 
distinctions. Attention to “change and choice” in this manner has a profound impact 
on what we call “practice:” Most of what gets called practice is “practice doing,” but 
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good practice is “practice discerning.” In addition, examples and tasks must each 
use appropriate and sufficient contrast; i.e. they should be sufficiently different, 
uncluttered by distractors, and clearly juxtaposed in both time and space.

Finally, it is essential to acknowledge learners’ roles in making themselves 
receptive to change: It is by moving our heads that our eyes receive differential 
signals regarding the position of objects in space and that we may thus perceive 
depth; this is also how our ears receive differential signals regarding the direction of 
sound, that we may thus perceive the direction from which a particular sound ema-
nated; and it is by dragging our fingers over a surface that we may perceive differ-
ences that alert us to the shape or texture of whatever we are touching. Teachers may 
prompt to the significance of difference by inviting attention to relevant contrasts, 
but as learners come to expect such differences in the sequence of examples and 
tasks they are offered, they learn to do the mental equivalent of moving their head 
or dragging their finger, now over a set of ideas, but still with the aim of detecting 
the differences that contain relevant information. In the remainder of this section, 
we illustrate the five levels in a manner that we hope offers an abbreviated experi-
ence of relevant differences. A more elaborate sequence with many more opportuni-
ties for engagement may be found in Unit 3 of the Math Minds Online Course (Math 
Minds 2020).

�Level 1: Bounding and Naming Differences

Level 1 defines the nature and limits of what we want to work with; i.e., to the par-
ticular aspects and features with which we wish to work. Level 1 is akin to concep-
tual variation in Gu et al.’s (2004) description of Chinese pedagogy and to separating 
in Marton’s (2015) theory of variation.

The nature of Level 1 boundaries may be arbitrary in that there are infinitely 
many ways experience may be bounded, but they nonetheless define the premises 
from which necessary implications may be derived. It is here that the illusion of 
acquire-able “things” emerges. When we give differences a name, they appear as 
objects—as a “this” instead of a “this-as-opposed-to-that” or the conceptual “space-
between-this-and-that”. But if we lose sight of the difference that the name points 
to, we put ourselves and our students in a position from which no further insight is 
possible.

We take as our starting point exponents as a special case of repeated multiplica-
tion in which all multiplicands are the same. Prior experience with varied interpreta-
tions of multiplication will be assumed (see Fig. 12.7) as the starting point from 
which further differentiation may be prompted.

The new features to be developed through the full Level 1–5 sequence are (a) the 
extension from three multiplicands to an infinite number of addends, which has dif-
ferent implications for different interpretations of multiplication (Davis 2015), but 
which we wish to generalize to numerical laws, (b) the repetitive nature of multipli-
cation when working with exponents, and (c) the mathematical notation used to 
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describe varied configurations of repeated multiplication. The decision to bound the 
multiplicands in such a way that they all match and the use of exponential notation 
to describe the possibilities that emerge in that space is arbitrary (Hewitt 1999), but 
clear contrasts are useful in prompting attention to these boundaries (see Figs. 12.8 
and 12.9). We define what exponents are through contrast through what they are 
not, then generalize to less standard or more complex cases. Level 1 can often be 
characterized in terms of “yes-no-also,” as in Fig. 12.9.

Fig. 12.7  How is 23 like/unlike 2 × 3 × 5?

Fig. 12.8  Level 1 variation: What is repeated multiplication?
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�Level 2: Varying Features

Having thus defined the space in which we wish to work, we may now focus on 
variation of those apparent “things” or features. This puts us at Level 2, differences 
between differences, which has much in common with Marton’s generalization and 
with the first type of procedural variations (PV1) described by Lai and Murray 
(2014); i.e., variation of problem conditions. This is highlighted in Fig. 12.10, which 
also attempts to clarify the difference between an inductive approach to varying 

What Are Exponents? 
(Level 1 Varia�on)

Exponents define number of mul�plica�ve repeats (star�ng at 1). 

YES

20 = 1

21 = 2 

23 = 2 × 2 × 2 = 8

25 = 2 × 2 × 2 × 2 × 2 = 32

100 = 1

101 = 10

102 = 10 × 10 = 100

105 = 10 × 10 × 10 × 10 × 10 = 10,000

NO

25 ≠ 2 × 5 

25 ≠ 10 

105 ≠ 10 × 5

10,000 ≠ 50

25 ≠ 52

32 ≠ 25

ALSO: (?)3 = ? × ? × ? 

(6 + 2)3 = (6 + 2)× (6 + 2) × (6 + 2) = 8 × 8 × 8 = 512 

(6 - 2)3 = (6 - 2) × (6 - 2) × (6 - 2) = 4 × 4 × 4 = 64 

(6 × 2)3 = (6 × 2) × (6 × 2) × (6 × 2) = 12 × 12 × 12 = 1728 

(6 ÷ 2)3 = (6 ÷ 2) × (6 ÷ 2) × (6 ÷ 2) = 3 × 3 × 3 = 27 
((6 ÷ 2)2)3 

= (6 ÷ 2)2  × (6 ÷ 2)2 × (6 ÷ 2)2

= 32 × 32 × 32

= 9 × 9 × 9 
= 729

((6 ÷ 2)3)2 

= (6 ÷ 2)3  × (6 ÷ 2)3

= 33  × 33

= 27 × 27 
= 729

Fig. 12.9  Level 1 variation: What are exponents?

Varying Problem Features
Level 2 Varia
on: Which column prompts* more effec�vely?
How Alike? (Induction)
What do all have in common?
a)      35 × 32

= (3 × 3 × 3 × 3 × 3) × (3 × 3)
= 37 

b)      46 × 42 

= (4 × 4 × 4 × 4 × 4 × 4) × (4 × 4)
= 48

c)       72 × 73 

(7 × 7) × (7 ×7 ×7) 
= 75

d)      612 × 63 

(6 × 6 × 6 × 6 × 6 × 6 × 6 × 6 × 6 × 6 × 6 × 6) × (6 × 6 × 6)
= 615

How Different? (Generalization)
What happens if I change…?
a)      34 × 33 

(3 × 3 × 3 × 3) × (3 × 3 × 3)
= 37 

b)     84 × 83 

(8 × 8 × 8 × 8) × (8 × 8 × 8)
= 87

c)     84 × 85

(8 × 8 × 8 × 8) × (8 × 8 × 8 × 8 × 8)
= 89

d)    84 × 95 

(8 × 8 × 8 × 8) × (9 × 9 × 9 × 9 × 9)
= 84 × 95 (can’t be combined)

*Note this is just the first part of the prompt—learners would then engage in a similar set of practice prompts.

3 × 3 × 3)

4 × 4 × 4) × (4 × 4)

× (7 ×7 ×7) 

Fig. 12.10  Level 2 variation: Varying base, exponent
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problem conditions (not recommended) and an approach focused on difference 
(recommended).

Already in Fig. 12.9, variations of “yes” and “no” were offered, but the primary 
purpose of given contrasts was to identify relevant features (base, exponent) and to 
highlight the rules for interpreting exponential notation. At Level 2, we start to 
explore the implications of varying features identified at Level 1. In short, from 
Level 1 to Level 2, the goal shifts from defining boundaries to exploring implica-
tions of change. Importantly, changing one feature (A) has a resultant change on 
another (B), and the focus of attention shifts to this relationship, which might be 
seen as a sort of difference between A and B, and which we will call C. It’s important 
that first one feature varies, then another, and then both together—Marton’s fusion. 
Changing which feature is known and which is unknown can deepen understanding 
of the relationship between identified variables.

On the left side of Fig. 12.10, several examples are given in which learners must 
add exponents to get an answer. However, each question uses new bases and new 
exponents, which can make it harder to see the impact of change. In such cases, it is 
easy to fall into the trap of the teacher asking learners to “guess what is in my mind” 
(Mason 2010). While what is the same may seem obvious to the teacher, there are, 
in fact, a variety of features that are the same, and it’s not always easy for learners 
to zone in on the intended one. In cases like this, teachers typically end up giving the 
rule, then ask learners to apply it in multiple cases. In so doing, it essentially gets 
reduced to a procedure rather than a generalized relationship.

The examples on the right are also cases where learners must add exponents, but 
now only one feature changes in each question, which makes it easier both to iden-
tify the intended feature and to see the impact of each change. Whether we are vary-
ing within a particular law or between multiple laws, we can limit variation to all 
but one feature, then observe the impact of changing that feature. Note that exam-
ples we’ve highlighted primarily focus on the “change” aspect of “change and 
choice.” Through careful questioning as varied examples are offered and through 
appropriate follow-up tasks, it is also important that the teacher require learners to 
make relevant distinctions.

�Level 3: Varying Relationships

If relationships within a particular exponent law are the focus, then it makes sense 
to vary features of that law—one feature at a time—and to observe the effect of 
doing so. By highlighting those changes—and their impact—the focus of attention 
shifts to relationships. However, distinguishing among different exponent laws 
should also become a focus fairly quickly (see Fig. 12.11). To do so, it is helpful to 
contrast the laws themselves while holding as many features constant as possible. In 
the set on the right, the bases and exponents are kept constant, while the operations 
change. Again, instead of doing several examples that all require adding exponents 
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and then identifying what they have in common, here the focus is on impact 
of change.

This pattern or variation may still be seen in terms of Lai and Murray’s PV1 
(changing features), but there are also elements of PV2, or changing strategies. In 
our case, this doesn’t show up in the sense of multiple strategies to solve the same 
problem but through the manner in which both Level 3 and PV2 prompt to contrast-
ing relationships. In fact, Level 3 may be seen as a version of PV2 that varies the 
relationship against a constant background instead of varying the representation or 
context against a constant relationship. This isn’t to say that there isn’t value in 
comparing carefully selected multiple strategies (Durkin et al. 2017), but for rea-
sons that we explain a bit later, doing so is better described by Level 5 (integration) 
in our scheme.

�Level 4: Abstraction

At Level 4, the relationships among relationships themselves become the focus of 
attention through contrast with other situations that partially share explanatory 
structure; meaning may move in both directions, but it’s helpful when at least one 
situation is clearly understood. The example we offer in Fig. 12.12 may seem like 
an application rather than an abstraction, but the point is that it offers a space where 
the structure of relevant relationships may be contrasted in ways that allow transfer 
of meaning.

Contras�ng Rela�onships
Level 3 Varia�on: From difference within to difference between

Difference Within (Level 2)
a) 34 × 33 

= (3 × 3 × 3 × 3) × (3 × 3 × 3)         
= 3 × 3 × 3 × 3     × 3 × 3 × 3
= 37 

b)        84 × 83 

= 8 × 8 × 8 × 8     × 8 × 8 × 8
= 87

c)        84 × 85

= 8 × 8 × 8 × 8     × 8 × 8 × 8 × 8 × 8
= 89

d)       84 × 95 

= 8 × 8 × 8 × 8     × 9 × 9 × 9 × 9 × 9
= 84 × 95 (can’t be reduced)

Difference Between (Level 3)
a) 32 × 36

= 3 × 3    × 3 × 3 × 3 × 3 × 3 × 3 
= 32+6    =   38

b) (32)6

= (3 × 3)6

= 3 × 3    × 3 × 3    × 3 × 3   × 3 × 3   × 3 × 3   × 3 × 3
= 36x2    =   312

c) 36 ÷ 32 = 34

=  3 × 3    × 3 × 3    × 3 × 3 =   36 - 2    =    34

3 × 3

d) 36 ÷ 34 = 32

=  3 × 3    × 3 × 3 × 3 × 3 =    36 - 4     =    32

3 × 3 × 3 × 3

Fig. 12.11  Level 3 variation: Contrasting exponent laws
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The variables in the chain letter (i.e., number of people you send the letter to, 
number of people on the list, number of people who break the chain) could be seen 
in terms of variable bases and exponents, but recognizing this as a possibility and 
considering the appropriateness of transfer is key to making sense of the task. 
Consideration of combination locks with variable numbers of both numbers (or 
other symbols) on the lock and numbers (or other symbols) in the combination 
would serve a similar purpose. The variations described here are partially consistent 
with Lai and Murray’s PV3, which involves “multiple applications of a method by 
applying the same method to a group of similar problems” (p. 8). Again, however, 
our emphasis is not on whether the task offers an application but on whether the 
similarity between problems affords transfer of explanatory structure (which is con-
sistent with the examples offered by Lai and Murray).

Lest it seem that we are contradicting ourselves in recommending another strat-
egy that explicitly focuses on identifying similarity, note that mapping an analogy 
differs from induction in essential ways. Induction inappropriately focuses on per-
ception of similarity in that it requires learners to find commonalities among fea-
tures they have not yet discerned. Earlier, we highlighted how generalization focuses 
on similarity between previously discerned features; here, we highlight how 
abstraction focuses on similarity between previously discerned relationships.

�Level 5: Integration

Level 5 focuses on the use of tasks that require the integration of seemingly unre-
lated concepts that become enmeshed in the “same story” and thereby assume rel-
evance to one another. In doing so, Level 5 incorporates all levels of the Level 1–4 

Fig. 12.12  Level 4 variation—Contrasting relationship contrasts: Making sense of exponential 
structure
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hierarchy without adding another layer of differences among differences; it does so 
by bringing together ideas previously formed through their own progressions. We 
distinguish integration from abstraction in that where abstraction focuses on the 
transfer of meaning between two at least partially familiar situations, integration 
requires the combining of familiar ideas to solve a problem. Integration, then, does 
not fit into the same hierarchical structure described in Levels 1–4.

The rope metaphor we used to describe the importance of integrating prior 
knowledge that is well-understood—of taking care not to ask students not to braid 
the strands of a rope at the same time that they’re asked to braid those strands into a 
rope—is key to Level 5. If raveled appropriately, the “How Many Factors” task we 
introduced earlier (Fig. 12.5) may be seen as a Level 5 task: It requires and therefore 
integrates ideas developed in multiple Level 1–4 progressions, including the one 
pertaining to exponents developed here. Thus, it might be considered a Level 5 task 
in a variety of progressions, depending on the order in which topics were intro-
duced. The key point is that each of the components has been previously developed 
before we ask learners to integrate them.

Again, it may seem that integration is mere application. Both abstraction and 
integration, may (but need not) overlap with applications, but the notion of applica-
tion doesn’t seem to be a particularly useful distinction when considering how a 
problem or task set prompts to meaning. Similarly, the use of multiple strategies to 
solve a problem (and considering how they’re related) may focus either on varying 
relationships (Level 3) or on integrating diverse ideas, which we argue is an impor-
tant distinction.

�A Brief Note on Problem Solving

Various notions of problem solving assume relevance in different places within the 
hierarchy we’ve developed here, particularly those that focus on general heuristics 
and those that emphasize transfer to novel situations. A clear focus on the ongoing 
structuring of knowledge engages learners directly with the sorts of ideas typically 
highlighted in lists of problem solving strategies, and the dynamic structures thus 
developed lend themselves metaphoric transfer. Further, Levels 1–3 focus on what 
is sometimes referred to as “working systematically.” Here, working systematically 
is focused neither on procedural steps with clear worked examples nor “rich tasks” 
with a focus on “mathematical process.”

Teaching with variation models working systematically (with structured varia-
tion) and weaves together mathematical ideas that support working systematically 
(e.g., identifying combinations, graphical representation, algebraic representation). 
In other words, ideas are raveled into co-amplifying ideas that serve each other. As 
learners become more familiar with using structured variation and more aware of 
dimensions that are vary-able, they can take greater responsibility for creating the 
variations that prompt to new meaning. Working systematically typically gets short-
changed in one of two ways: (1) When it’s seen as only a process for approaching 
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other content, it doesn’t get adequately raveled in its own right and (2) when it’s 
seen only as an isolated body of content, the important role it does play in making 
sense of other content gets overlooked. Both matter—and both are borne of the 
same artificial process-content dichotomy.

Levels 4 and 5 address problem solving as application, but application is divided 
into two categories that differ in terms of the ways they support structuring mean-
ing: Level 4 is about recognizing structural similarity among diverse problems, 
while Level 5 is requires decomposing complex problems into manageable sub-
problems (here “manageable” includes requisite prior knowledge). In other words, 
Levels 4 and 5 draw from and elaborate the structured knowledge developed in 
Levels 1–3. Various conceptions of modeling might similarly be categorized accord-
ing to their role in structuring meaning.

While various discourses on mathematical problem solving (English and 
Gainsburg 2016; Liljedahl et al. 2016) acknowledge the role of prior knowledge, 
they focus less on the long-term structuring of that knowledge than on the immedi-
ate actions (or non-actions) taken in the hopes of calling forth or generating a fruit-
ful combination of ideas relevant to a particular problem situation. While 
problem-solving heuristics may support mathematical creativity, discovery, and 
invention, they can easily lend themselves to an air of mystique that perpetuates the 
myth that mathematics is primarily the realm of those with a particular type of abil-
ity or even genius. We hope that our emphasis on long-term structuring helps create 
rich ground from which all learners may share in the powerful a-has that accompany 
moments of illumination and insight.

�Summary

Most reports of variation pedagogy focus on a short-term ravel, likely with the 
assumption that what is well-integrated locally will also be well-integrated on a 
broader scale. As we observe variation pedagogy being taken up outside of China, 
this does not seem to be a well-grounded assumption. Collections of isolated les-
sons, even when well-varied internally (i.e., even when the focus is on mathematical 
structure and not merely on procedures), do little to prompt to the broader integrated 
structure of mathematics, and most curricula and resources are grossly insufficient 
in supporting such coherence (Bajaj 2013).

It is a monumental undertaking to build an effective sequence of effectively var-
ied lessons. Even when thoughtfully designed, such lessons inevitably change when 
they meet students—not just to suit the idiosyncrasies of individual students, but in 
ways that gradually become more consistent with the phenomenographic space of 
possibility defined by the affordances of human perception. It is not reasonable to 
expect individual teachers to take on the task of re-inventing and refining effective 
long-term mathematical sequences. Even when teachers have sufficient pedagogical 
content knowledge relevant to their grade level, there is much that can be offered in 
the form of a well-raveled resource that takes into account both the structure of 
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mathematics, common patterns of interaction between learners and mathematics, 
and long-term coherence between grades. With this in place, teachers are simultane-
ously supported in making sense of the long-term ravel and freed to attend to the 
fine-grained variations relevant to their moment-by-moment interactions with 
students.

�Conclusion

As both teachers and researchers, we must confess to a frustration with the field of 
education. At times it feels as though there is no other domain of human engage-
ment that is more resistant to well-structured theory (e.g., exposing the metaphoric 
substrate of entrenched activity) and validated evidence (e.g., year-over-year 
improvements in learner engagement and understanding). When presented with 
such ideas and evidence, more often than not, the system finds ways to reject or 
minimize it—often by characterizing a new insight as reflective of the other “camp” 
in whatever skirmish is happening at the moment.

It’s thus that we have experienced criticisms and rejections from teachers and 
policy makers positioned at both poles in the Math Wars. For instance, Traditionalists 
balk at the assertions that all learners can become adept at mathematics, that gaps in 
understanding are attributable to missed noticings, and that perceived differences in 
learner ability have more to do with flawed pedagogy than flawed learners. On the 
other side, Reformists have a strong tendency to see a well-deconstructed concept 
in terms of the much-hated step-based approach to teaching rather than an equity-
informed noticing approach. Absences are another favorite focus of their criticisms. 
Limited group work, few open-ended problems, and no heed to personalized strate-
gies—notwithstanding that the evidence supporting such emphases is dubious at 
best—are lobbed as reasons to reject the model entirely. We actually take these 
rejections by both staunch Traditionalists and staunch Reformists as positive indica-
tors, emboldened by Dewey’s (1990: 9) observation regarding oppositional think-
ing, noted earlier: “We don’t solve them: we get over them.”

Part of that “getting over” is hinged to rethinking the relationship between teach-
ers and resources. As we hope is evident in the preceding discussion, a well-
structured inquiry involves high levels of knowledge and extensive effort. Each of 
our lessons has pulled in the expertise of mathematicians, logicians, teachers, and 
educational researchers. Flatly stated, there is no way that solitary teachers in iso-
lated classrooms might be reasonably expected to design such lessons on their own.

It is thus that we frame fitted-to-the-Information-Age approach to mathematics 
teaching in terms of a partnership in which each aspect is associated with differenti-
ated obligations. Principal responsibility for the Ravel—that is, discerning the criti-
cal discernments involved in a concept, appreciating their relationships to one 
another, and so on—sits with the resource. Responsibility for the Prompt is more 
shared, with the resource providing suggestions and that teacher selecting and 
adapting those suggestions according to knowledge of experiences, established 
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competencies, and interests of those present. The contingencies associated with 
Interpreting means that that element is almost entirely the responsibility of the 
teacher, and Deciding what to do next is a shared responsibility that sits across the 
teacher’s knowledge of what’s happening and the resource’s advice on what might 
happen next. Conceived as a partnership, the RaPID model is neither a step-
following (Traditionalist) script nor an open-ended (Reformist) exploration.

To state this point more emphatically, we see the next moment in the necessary 
evolution of school mathematics in the Information Age to be about a much-
expanded and formalized partnership between teachers and resources, each having 
obligations to the other.

That suggestion is heresy within much of the current educational establishment. 
It strikes against two principles that are held by Traditionalist and Reformist alike: 
firstly, a conviction on the sanctity of teacher autonomy and, secondly, a belief that 
the best response to learner difference is differentiated experience. We question 
those ideals. In an era of massive connectivity (in which there can be genuine, mutu-
ally beneficial influences between teachers and resource developers) and better 
understandings of knowledge and cognition (that point to flawed assumptions in 
differentiated models of instruction), new possibilities for school mathematics are 
not just afforded, they are required.
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Chapter 13
If One Can Read and Write Then One Can 
Also Do Mathematics

Robert K. Logan

�Introduction

There are those that claim that they are good at reading and writing but they are not 
as good when it comes to mathematics. Actually the 3 R’s of reading, ‘riting and 
‘rithmetic are more closely related than most people think. I will show in this essay 
that the origin of verbal language and mathematics depend on each other. In particu-
lar the mathematical skill associated with set theory is what gave rise to the origin 
of verbal language and verbal language allowed mathematics to evolve from a prim-
itive set theory to arithmetic and all the beautiful structures of mathematics after-
wards. So, if one is good at talking, reading and writing they have no excuse for 
doing poorly at mathematics especially arithmetic. It is important that we dispel this 
erroneous notion that one can be good with verbal language and be a disaster with 
numbers and mathematics. The manipulation of information which requires math-
ematical skills is as important in the information age and as being literate was in the 
age of the written word. Mathematics, as we will argue, is a language and today 
mathematical literacy is just as important as verbal literacy. So, let’s get started and 
examine the topology of mathematics in the mind and its interaction with verbal and 
written language from which it emerged and examine its connection with science, 
computing, the Internet and the World Wide Web, the languages of the Information 
Age. In fact, we will explore the notion that mathematics is part of an evolutionary 
chain of six languages. One does not ordinarily think of computing and the Internet 
as languages but I will demonstrate that speech, writing, mathematics, science, 
computing and the Internet form an evolutionary chain of six languages.
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�What Is a Language and What Is Its Dynamic Nature?

Language is not the passive container or medium of human thought whose only 
function is to transmit and communicate our ideas and sentiments from one person 
to another. Language is a “living vortices of power” (Innis 1972, v. McLuhan’s 
foreword), which shapes and transforms our thinking. Language is both a system of 
communications and an informatics tool. Without verbal language our mental life 
would be reduced to feelings, emotions, and the processing of our perceptions as is 
the case with all other forms of life. Verbal language makes conceptualization, 
abstraction and reflection possible. Our ability to use verbal language is what dif-
ferentiates us from the rest of the animal kingdom. Other animals are capable of 
communicating with each other but the range of what they can express is limited to 
a small number (less than 50) of signals. Human verbal language, on the other hand, 
is generative so there are an infinite number of possible messages or meaning that 
we are capable of composing and communicating. Abstract thinking and language 
cannot be separated.

�The Origins of Verbal Language

Only humans are capable of verbal language, abstract thought, mathematics and 
conceptualization. It is believed that first came verbal language and then mathemati-
cal thought. But I suggest otherwise. The origin of verbal language, the origin of the 
mind and the origin of mathematic thinking all happened at approximately the same 
time and that these three elements are basically interlinked. Human verbal language 
was as much a product of mathematical thinking as mathematics was a product of 
verbal language.

The human mind is a product of the brain and verbal language as was argued in 
The Extended Mind: The Emergence of Language, the Human Mind and Culture 
(Logan 2007), but verbal language as we have argued was dependent on the ability 
of humans to think in terms of sets employing a primitive form of set theory. Before 
verbal language, we lived in a world of percepts. Our communication was mimetic 
consisting of hand signals, facial gestures, body language and non-verbal prosody 
or tones such as grunts and whines. We could only communicate about the here 
and now.

Conceptual thinking only became possible with verbal language and our first 
concepts were our first words. These words acting as concepts linked to and repre-
senting all the percepts associated with those words. For example, the word water 
represents the concept of water and instantaneously triggers all of the mind’s direct 
experiences and perceptions of water such as the water we drink, the water we cook 
with, the water we wash with, the water that falls as rain or melts from snow and the 
water that is found in rivers, ponds, lakes, and oceans.
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The word “water” acting as a concept and an attractor not only brings to mind all 
“water” transactions but it also provides a name or a handle for the concept of water, 
which makes it easier to access memories of water and share them with others or 
make plans about the use of water. Words representing concepts speed up reaction 
time and, hence, confer a selection advantage for their users. And at the same time 
those languages and those words within a language, which most easily capture 
memories enjoys a selective advantage over alternative forms of communication.

The skill that made language possible and allowed a word acting as a concept to 
represent all of the percepts associated with that word was the mathematical ability 
to create sets, the set of all the percepts associated with that word. We suggest that 
the brain before verbal language was merely a percept processor and that afterwards 
it was able to conceptualize, i.e. operate with concepts. Each concept linked all the 
percepts associated with that concept. We conclude that the human mind naturally 
makes associations, creates categories or sets and hence has the natural mathemati-
cal structure of set theory.

We further suggest that verbal language emerged as a primitive form of set the-
ory in that a set of percepts that are associated with each other or are similar are 
linked together with a word acting as a concept that unites all the members of that 
set. In a certain sense the primitive form of set theory we just described seems to be 
a pre-condition for the emergence of verbal language. It is not possible to determine 
the causal linkage between the primitive form of set theory and verbal language. It 
is not that set theory caused verbal language to emerge or that language allowed set 
theory to emerge. Rather we would claim, invoking complexity theory and emer-
gent dynamics, that mathematical set theory and verbal language self-organized into 
an emergent supervenient system.

In our model, the emergence of set theory preceded the emergence of enumera-
tion as enumeration requires verbal language. There are two types of numbers, con-
crete numbers and abstract numbers. A pair of shoes or a yoke of oxen are concrete 
numbers. Concrete numbers have meaning only as units of the commodity they are 
designating and enumerating. Concrete numbers cannot represent abstract numbers 
like one, two or three. The number ‘two’ is abstract as it can apply to any set of two 
objects. We would surmise that at some point in the evolution of language one par-
ticular concrete number came to represent an abstract number. We can only guess as 
to how this happened as there is no record of how verbal language evolved from its 
origins, but certainly it is the case that numbers in the form of numerals like one, 
two and three are basically concepts represented by words. A hint of how the evolu-
tion from concrete numbers to abstract numbers might have occurred in verbal lan-
guage might be ascertained by studying how notated concrete numbers evolved into 
notated abstract numbers which we will consider shortly.

The model that we have proposed of how verbal language and mathematical 
thinking co-emerged is an abduction or a just so story. It is a hypothesis but it cannot 
rise to the level of a scientific hypothesis because it cannot be falsified as the emer-
gence of verbal language happened long before any scientific observations could be 
made. But in my mind even though it is a just so story it might just be true.
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�Mathematics in the Mind Leads to Writing in Sumer 
and Writing Leads to the Further Development 
of Mathematical Thinking

Not only did mathematical thinking lead to verbal language but it also gave rise to 
written language through the development of mathematical notation. The very first 
notation for recording quantities were tally sticks. The tally stick, however, gave no 
indication of what was being tallied but they were the first forms of notated concrete 
numbers.

The next step in the evolution of numerical notation were three-dimensional clay 
accounting tokens that archeologist Denise Schmandt-Besserat discovered in the 
Fertile Crescent of Mesopotamia between the Tigris and Euphrates rivers that were 
used from 8000 BCE to about 3000 BCE. These tokens had different shapes that 
corresponded to the things that they were enumerating which were agricultural 
commodities and hence represent a step forward from tally sticks in the evolution of 
numerical notation. For example, one token shape represented a large measure of 
wheat, another token shape a small measure of wheat and a third token shape a jar 
of oil. The tokens were used as receipts for tributes paid by farmers to the priest-
accountants as a form of taxation. These tributes were redistributed to the irrigation 
workers who provided the water that was essential for the farmers to grow their 
crops. These clay tokens did not represent abstract numbers like 1, 2 or 3 but they 
were concrete numbers. Three ‘jar of oil’ tokens did not represent the abstract num-
ber three but rather represented 3 jars of oil and two ‘large measure of wheat’ tokens 
did not represent the abstract number two but rather represented 2 large measures of 
wheat. These tokens representing concrete numbers, however, evolved into abstract 
numbers as we shall now relate.

The clay tokens were stored in clay envelopes starting around 3200 BCE to make 
sure that the tokens would not get lost. Then because it was a nuisance to have to 
break open the clay envelopes to see what was inside and reseal the token in a new 
clay envelope it was decided to press the tokens into the surface of the clay enve-
lopes so one could determine what was inside without having to break open the 
envelope. It then occurred to a smart accountant that there was no need for the enve-
lopes. One could merely press the tokens into a clay tablet and then one would have 
a permanent record of the accounting. The token impressions on the clay tablets still 
represented concrete numbers but this practice would eventually lead to abstract 
numbers.

What led to abstract numbers or numerals was the combination of the clay tablets 
with their concrete numbers and an increase in the commerce in Sumer in 
Mesopotamia about 3000 BCE. As commercial transactions began to incorporate 
large quantities of commodities the system of pressing clay tokens many into a tab-
let became cumbersome and unmanageable. To deal with this challenge a new sys-
tem of accounting emerged making use of abstract numbers.

The large and small measure of wheat were used to represent the abstract num-
bers “10” and “1” respectively. These tokens were still pressed into clay tablets but 
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the tokens for the other commodities were no longer pressed into the clay, but rather 
the shapes that these tokens would make if pressed into the clay were drawn with a 
stylus. As a result, two classes of signs emerged. The impressed token shape signs 
for the large and small measure of wheat came to represent the numerals 10 and 1 
respectively. The second class of signs, etched signs representing the commodities 
and hence represented words. Once the idea of using signs to represent words came 
into practice it was soon realized that all spoken words could be represented by 
etched signs and hence the idea of writing emerged from the accounting token sys-
tem. The Sumerians quickly realized that they could represent spoken words other 
than agricultural commodities with etched signs and so writing emerged to repre-
sent spoken language and also abstract numbers. Writing was invented by accoun-
tants and not by writers, but writers harnessed the accountant’s idea of creating 
written symbols for spoken words. And mathematicians harnessed the accountant’s 
idea of notating abstract numbers to develop a notation for mathematics that led to 
more sophisticated mathematical thinking.

The idea of writing and mathematical notation spread from Sumer throughout 
the Eastern Hemisphere. First by the Egyptians and the Semitic people in the Levant 
and then the Greeks and from them all over the Middle East and Europe. The idea 
of writing and mathematical notation also spread to China over the trade routes 
between the Middle East and the Orient. The independent invention of writing in the 
Western Hemisphere began in Mesoamerica beginning with the Zapotec writing 
system that has not yet been fully deciphered. We therefore cannot find a link 
between math and writing for the Mesoamerican writing systems as we do not know 
how that system emerged, but the Mesoamerican writing system also included a 
notation for abstract numbers.

Aztec numerals used the following symbols: a dot for 1; a bar for 5; and this 
shape  for 20 or sometimes for zero. They also deployed a place number system 
for larger numbers based on 20, 400 = 202 and 8000 = 203. One of the chief uses of 
the Aztec writing was to keep track of the Mesoamerican calendar providing a pos-
sible hint of a connection between math and writing.

With a written notation for both words and mathematical notation not only was 
communication enhanced but mathematical thinking became more sophisticated. 
De Cruz and De Smedt (2013: 3) argue that

mathematical symbols are not only used to express mathematical concepts—they are con-
stitutive of the mathematical concepts themselves. Mathematical symbols are epistemic 
actions, because they enable us to represent concepts that are literally unthinkable with our 
bare brain [signaling] an intimate relationship between mathematical symbols and mathe-
matical cognition.

Thus, mathematical thinking gave rise to mathematical notation and writing 
which in turn led to the further development of mathematical thinking. Having dem-
onstrated how speech, writing and mathematics are interlinked we now turn to show 
how they are actually part of a larger evolutionary chain of interlinked languages 
composed of speech, writing, mathematics, science, computing and the Internet.
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�An Evolutionary Chain of Six Languages: Speech, Writing, 
Mathematics, Science, Computing and the Internet

Marshall McLuhan (1964: 8) in his ground-breaking study of media titled 
Understanding media noted that

the ‘content’ of any medium is always another medium. The content of writing is speech, 
just as the written word is the content of print, and print is the content of the telegraph.

The content of the Internet is computing and the content of computing is science 
and the content of science is mathematics and writing and the content of mathemat-
ics and writing is speech. When a medium first appears, it uses the content of another 
medium exclusively for its content until its users have learned to exploit the new 
medium to develop new forms of expression. We saw that writing and mathematical 
notation made use of spoken language for its content. Science makes use of the 
spoken word, writing and mathematics. The practice of computing makes use of the 
skills of spoken language, writing, mathematics, and science. And finally, the devel-
opment of the Internet, the language of the Information Age, required all five of the 
languages that preceded it, namely speech, writing, mathematics, science and 
computing.

�The Dynamic Nature of Language

Language is not the passive container or medium of human thought whose only 
function is to transmit and communicate our ideas and sentiments from one person 
to another. As McLuhan (1972) noted language is a “living vortices of power,” 
which shapes and transforms our thinking. Language is both an informatics tool and 
a system of communications. One cannot separate language from thinking. Without 
verbal language our mental life would be reduced to the processing of our percep-
tions, feelings and emotions. Verbal language allows conceptualization, abstraction 
and reflection to take place. Our ability to use verbal language is what differentiates 
us from the rest of the animal kingdom. Other animals are capable of communicat-
ing with each other but the range of what they can express is limited to small num-
ber of signals. They are unable to conceptualize. They have no sense of the past and 
the future. They live in the perpetual present. Human verbal language allows us to 
think about abstractions, to plan for the future and reminisce about the past. 
Language is generative so that we are capable of creating an infinite number of pos-
sible messages or ideas.

Language is like an organism that grows and evolves, with both its semantics and 
syntax becoming ever more complex. Language began as verbal or spoken language 
and evolved into written language, mathematics, science, computing, and the 
Internet (Logan 2004). And each of these six languages have undergone their own 
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individual evolutions. Each of these six languages is like a symbiotic organism that 
depends on its human hosts for its sustenance.

Each mode of language incorporates the features of the previous modes. The 
Internet incorporates all of the features of computing which in turn incorporates the 
features of all the previous modes: speech, writing, mathematics, and science. 
Science incorporates speech, writing, and mathematics. Writing and mathematics 
arose at the same moment in history. They therefore only incorporated the features 
of speech, albeit different ones.

In addition to each new language incorporating the features of the languages that 
preceded it, it is also the case that each new language changed the languages that 
preceded it. Writing changed the way spoken language was used. The first uses of 
spoken language were for the purpose of communication. However, it was discov-
ered that verbal language could also be used to record and store information through 
the mechanisms of poetry and song. This discovery gave rise to the oral tradition 
among preliterate people whereby vital information necessary for their survival, 
their identity, and their sense of history was recorded or stored in their tales, epics, 
and legends that were in the form of poetry that facilitated their being memorized. 
Oral language was used as a device for processing, storing, retrieving, and organiz-
ing information. The preservation or storage of information and knowledge in pre-
literate societies was achieved through the memorization of folktales or myths. 
These tales or legends were not merely entertaining stories told in an impromptu 
manner. They were, in fact, very carefully organized to provide listeners with the 
basic information required in their society. In his Preface to Plato, Eric Havelock 
refers to the oral storyteller as a “tribal encyclopedia.” With the advent of writing 
oral poetry was no longer required to store information and as a result poetry became 
an art form rather than a way to store information.

Writing and mathematical notation emerged at the same time in Sumer in the 
transition from three-dimensional accounting tokens to a written notation for num-
bers and words on clay tablets. Writing changed the nature of mathematics as for-
mal proofs of geometric relationships emerged in ancient Greece as well as deductive 
logic. Mathematics in the age of alphabetic literacy changed just as mathematics is 
changing in the age of information. Alphabetic literacy is not only associated with 
deductive logic but McLuhan and Logan (1977) showed an interesting connection 
of alphabetic literacy with codified law, monotheism, abstract science and deduc-
tive logic.

Western thought patterns are highly abstract, compared with Eastern. There developed in 
the West, and only in the West, a group of innovations that constitute the basis of Western 
thought. These include (in addition to the alphabet) codified law, monotheism, abstract sci-
ence, formal logic, and individualism. All of these innovations, including the alphabet, 
arose within the very narrow geographic zone between the Tigris-Euphrates river system 
and the Aegean Sea, and within the very narrow time frame between 2000 B.C. and 500 
B.C. We do not consider this to be an accident. While not suggesting a direct causal connec-
tion between the alphabet and the other innovations, we would claim, however, that the 
phonetic alphabet played a particularly dynamic role within this constellation of events and 
provided the ground or framework for the mutual development of these innovations.
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This observation of the effects of phonetic writing supports the notion that mathe-
matics will change in the age of information, i.e. the age of computers and the 
Internet. Mathematics is, in fact, changing as is reported in the Wikipedia article 
Computer-assisted proof (https://en.wikipedia.org/wiki/Computer-assisted_proof).

Another example of how a new language changes a language that preceded it is 
the way the emergence of abstract science affected mathematics with scientists 
developing new kinds of mathematics to describe nature. Descartes’s analytic 
geometry and Newton’s differential calculus being two examples of this among 
many other examples. The effects of computing on science are far too many to 
document. Suffice it to say that almost every contemporary scientific discovery 
involves the use of the computer. The language of the Internet and the dialect of the 
World Wide Web are essential for scientific activity. In fact, the Web was developed 
at the elementary particle accelerator at CERN by Tim Berners-Lee (1999) to facili-
tate the communications of the international research teams that carried out their 
research at CERN.

�Conclusion

If one is to operate successfully in the Information Age one must be fluent with all 
six languages especially mathematics as it is the base for computing and using the 
Internet. Mathematics in the age of information and the age of computers, the 
Internet and the World Wide Web will continue to evolve. It is also likely that as new 
languages emerge, such is the case with robotics and artificial intelligence that they 
will inspire even more new mathematics. I cannot predict was these will be but I am 
confident that the complexity of mathematics in the Age of Information will con-
tinue to grow. QED!
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