
Merging Railway Standard Notations
in a Formal DSL-Based Framework

Asfand Yar1, Akram Idani1(B), and Simon Collart-Dutilleul2,3

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
asfand.yar@grenoble-inp.org, akram.idani@univ-grenoble-alpes.fr
2 Institut de Recherche Technologique Railenium, 59300 Famars, France

3 Univ. Lille Nord de France, IFSTTAR, 59666 Villeneuve d’Ascq Cedex, France
simon.collart-dutilleul@ifsttar.fr

Abstract. The design of a railway signalling system may be validated
using three basic concepts: (1) functional standards, (2) domain spe-
cific notations, and (3) safety requirements checking. However, there
is a lack of tools that merge these notions in a unified framework to
be used by standardisation authorities, as well as domain experts and
safety engineers. In this ongoing work we make the bridge between the
three notions using Meeduse, a tool in which the B method is applied
in order to formally reason on the correctness of domain specific lan-
guages (DSLs) and simulate their dynamic semantics using the ProB
animator. The application context of this work is that of two well known
standards in the railway field: RailTopoModel and ERTMS/ETCS. We
propose a railway DSL framework whose static semantics are built on
top of RailTopoModel and the underlying dynamic semantics conform
to ERTMS/ETCS. The overall approach is assisted by the B method,
which allows us to define, prove and animate safety-critical behaviors
given domain-centric models.

Keywords: ERTMS/ETCS · RailTopoModel · B method · DSL

1 Introduction

In the railway field, there are several tools that propose Domain Specific Lan-
guages (DSLs) to model railroad networks such as RaIL-AiD1 and SafeCap [7].
They allow the design of readable models thanks to domain specific notations.
However, most of their DSLs are not formally defined and hence they do not
apply formal verification techniques such as theorem proving or model-checking
to guarantee the correctness of the underlying semantics. Furthermore, often
the DSLs they provide are not directly derived from existing standards, such as
RailTopoModel [8] and ERTMS/ETCS [3]. In order to circumvent these short-
comings, we are developing a formally proved railway DSL framework whose

1 Railway Infrastructure and Layout Aided Designer (https://www.rail-aid.com).

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 411–419, 2020.
https://doi.org/10.1007/978-3-030-59155-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_30&domain=pdf
https://www.rail-aid.com
https://doi.org/10.1007/978-3-030-59155-7_30


412 A. Yar et al.

static semantics implement RailTopoModel and dynamic semantics comply with
ERTMS/ETCS operating rules.

RailTopoModel is the International Railway Standard (IRS 301002) devel-
oped by the UIC (International Union of Railways), with the contribution of
several railway infrastructure managers and industrial companies, for the sake
of optimizing communication between the various actors of the railway sec-
tor. It defines and describes the structure of a railway network together with
the physical installations that it manages. These structural business assets are
intended to be as complete as possible, however the model does not provide
operating rules such as route computations and train movements. Our work
addresses these behaviours by focusing on the European signalling and train
control system ERTMS/ETCS in order to introduce standardized management
rules and their underlying safety properties within RailTopoModel. Our app-
roach is assisted by the B method which allows to define, prove and animate
safety-critical behaviours given domain specific models designed in our DSL
framework.

Section 2 outlines the main principles of this ongoing work. In Sect. 3 discusses
how the formal B method will be integrated within our DSL-based framework.
Finally, Sect. 4 draws the conclusions and the perspectives of this work.

2 Proposed Approach

2.1 Overall Architecture

Figure 1 gives an overall view about our approach for merging RailTopoModel
and ERTMS/ETCS in a formal DSL-based framework. Our framework is com-
posed of the two layers presented at the top and at the bottom of Fig. 1.

The semantics layer covers both static and dynamic semantics of our DSLs:
the static semantics are built on meta-models that we derive from RailTopo-
Model, and the dynamic semantics are built on ERTMS/ETCS specifications.
Regarding the execution layer, it is managed by tool Meeduse3 that animates
behaviours of domain specific models conforming to the semantics layer. Formal
B specifications are used in both layers in order to apply formal reasoning tech-
niques to our DSLs: proofs for the semantics definition, and animation/model-
checking for models execution. The choice of the B method is motivated by
several aspects. First, the B method is widely used in the railway field and there
are several success stories that support this fact [9], such as for example Meteor,
the automated Paris subway. Recently, a comparative study of several formal
methods regarding their industrial suitability [10] has been done and rated B
high when it comes to formal constructs like those applied in our work.

2 The IRS 30100 is the foundation for quick, unambiguous and error-free data storage
and data exchange inside and between business processes [8].

3 http://vasco.imag.fr/tools/meeduse.

http://vasco.imag.fr/tools/meeduse.


Merging RailTopoModel and ERTMS/ETCS 413

Fig. 1. Architecture of the proposed framework

2.2 Methodology

RailTopoModel is presented in [8] based on a UML class diagram divided into
four packages. The Base package of RailTopoModel defines a railway network by
an abstraction level (meso, micro, macro) and a composition of railway resources.
For example, a network resource can be a NetElement such as line sections, or
an InterlockingNetEntity such as signals. Having this reference UML model of
RailTopoModel, we introduce two additional meta-models with specific concepts,
each of them led to a particular DSL: (1) the Topology DSL allows the domain
expert to represent lines, tracks and their connections; and (2) the Infrastruc-
ture DSL allows to add objects over a given topology such as physical objects
(e.g. stations), immaterial objects (e.g. speed limits) and logical objects (e.g.
signals). In order to ensure the conformance of our DSLs with RailTopoModel,
our methodology follows the following established rules:

– The Core package contains the exact RailTopoModel: as the semantics of
RailTopoModel are defined using a UML class diagram, this step simply intro-
duces the underlying UML concepts within the Eclipse Modeling Framework
(EMF), as an EMF meta-model.

– Define the additional meta-models (Topology and Infrastructure) outside the
core package and use references. Our aim is to guarantee that the initial
RailTopoModel semantics are kept unchanged during the DSL development.
The core meta-model remains then low-coupled with the additional meta-
models. This rule provides two main advantages: (1) there is no need to
modify or extend the core meta-model and therefore it can be considered as



414 A. Yar et al.

an independent artifact, and (2) the additional meta-models could be easily
extended or replaced without any impact on the core meta-model.

– Classes of our meta-models (such as those of ERTMS/ETCS) must inherit
from classes issued from the Core meta-model. This inheritance allows one to
associate clearly identified semantics from RailTopoModel to any additional
class.

– Associations between the additional classes must be computed as much as
possible from the elements of RailTopoModel. This rule allows to reduce the
number of relations as much as possible and carefully check whether there
exists a way to compute these relations from relations of the core meta-model.

2.3 The Core Meta-Model

Figure 2 shows a subset of the Core meta-model. This meta-model applies generic
concepts used in railway networks. Class Network for example is composed of
network resources (class NetworkResource) that represent its topological and
structural properties such as the various net elements and their locations.

Fig. 2. Subset of the core Meta-model



Merging RailTopoModel and ERTMS/ETCS 415

2.4 Defining the Additional Meta-Models

Figure 3 illustrates the Topology meta-model where the upper part contains the
root class of this meta-model called Topology. It consists of LinearElements and
InterlockingNetEntities. The bottom part of meta-model shows the class Track
(inherited from LinearElement) and the classes Switch and BufferStop (inherited
from InterLockingNetEntity). BufferStop can be used as a start or end of any
network track while Switch is the intermediate junction among three tracks. Each
switch has an attribute called continueCourse which sets the track to be used
(right track or left track). Note that classes LinearElement and InterlockingNe-
tEntity are defined in the core package. On the one hand they are referenced
by the root class and on the other hand they are specialized by the additional
classes Track, Switch and BufferStop. Indeed, these three classes are not initially
defined by RailTopoModel but they are required by a railway DSL especially to
define the dynamic semantics.

Fig. 3. Topology Meta-Model

Regarding the Infrastructure meta-model, we apply the same principles. This
meta-model contains infrastructure elements to make railway network opera-
tional. For this purpose, we introduce concepts from ERTMS/ETCS such as:
movement authority, train, virtual block and track-side.

2.5 Modeling

Our DSL tool allows to instantiate the aforementioned meta-models using
domain specific notations. Figure 4 is an example of a topology designed based
on the Topology meta-model. It represents buffer stops (bus01, bus02, bus03),
switches (sw01, sw02, sw03 etc) and tracks (trc01, trc02, trc03 etc).

As presented by the topology meta-model, each switch has three branches:
the fixed branch, the left branch and the right branch. The fixed branch is a
fixed course for the switch which is not change-able while the continue course is



416 A. Yar et al.

change-able and can be set to left or right which directs the train either to the
left branch or the right branch. In the left hand-side of Fig. 5, the green arrow
shows the course assigned to the branches. The arrow to right branch is green as
continue course of switch is set to right. The continue course of the same switch
shown in the right side of Fig. 5 is set to left which turns the color of arrow to
left branch into green and arrow to right branch into red.

Fig. 4. Designed topology

Fig. 5. Switch branches (Color figure online)

3 Formal Semantics

The advantage of a MDE architecture is that it allows to easily develop DSL
tools with graphical or textual concrete syntax. This approach puts into practice
a clear separation of concerns ranging from requirements to target platforms, and
going through several design stages. This is useful especially for railway model
editors, because the interoperability between these tools is favored by the use of
standardized meta-modeling formalisms. A DSL allows to reduce the risk that
human errors such as misinterpretation of the requirements and specification
documents lead to erroneously validate the specifications, and produce a wrong
real system. Still, while MDE provides solutions to the validation problem, the
verification problem remains a major challenge. In this ongoing work we formally
define the semantics of our DSL tool using the B method and apply the under-
lying reasoning tools such as the AtlierB prover and the ProB model-checker.
Note that most of the static semantics of our railway DSL tool and the associated
graphical concrete syntax are available, and currently we are actively working
on the definition of the formal semantics.



Merging RailTopoModel and ERTMS/ETCS 417

3.1 Static Semantics

The formal definition of static semantics is ensured by our tool Meeduse [6].
It applies a classical UML-to-B translation [5] (step (Translation) in Fig. 1) to
meta-models and produces a functional B specification covering data structures
as well as basic operations (getters, setters, etc). The structure of the resulting
B specifications is presented in Fig. 6 where the B machine of the Infrastructure
DSL requires data (sees dependency) defined in the Topology DSL. The Infras-
tructure machine is further refined in order to redefine abstract infrastructure
objects by means of ERTMS data objects (such as eurobalises, virtual blocks)
that are not initially provided by RailTopoModel but which are part of the
static semantics. The refinement is then dedicated to guarantee by proofs that
this redefinition preserves the infrastructure DSL invariants.

Fig. 6. Formal static semantics

3.2 Dynamic Semantics

The dynamic semantics of a DSL deal with behavioural descriptions that make
the DSL executable. In our work, we apply ERTMS/ETCS as a way to intro-
duce execution within RailTopoModel. Indeed, ERTMS/ETCS defines safe train
behaviours thanks to the mechanism of movement authority. It describes how
and when permissions to enter block sections are assigned to trains. Note that
in the last decade, several works have been devoted in order to provide formal
models of ERTMS/ETCS. Recently the ABZ’2018 conference [4] has published
several B models, which provides us a rich catalog of proved B operations and
invariants.

Our objective is to reuse these existing B specifications for the dynamic
semantics definition. For this purpose, we create linkage B specifications (Fig. 1)
in which we apply two mechanisms from the B method: refinement and inclusion.
In the B method, refinements have two main principles: add requirements by
going from abstract models to more concrete ones and prove the preservation
of the abstract model invariants. The composition, such as inclusion, allows to
beak down the system by applying the separation of concerns principle.

In our approach, refinements would guarantee the preservation of the safety
invariants of ERTMS/ETCS defined in the re-used B specifications and inclusion
provides an access to the B variables that represent the static semantics and
use them in place of those of the refined machines. Proved B operations are



418 A. Yar et al.

then refined by DSL-centric operations and hence behaviours that comply with
ERTMS/ETCS are applied to our DSLs.

3.3 Execution

DSL execution is intended to perform early validation since the DSL is expected
to behave as the target system should run. In our framework, this execution is
done by Meeduse given domain-specific models that represent railway topologies
and infrastructures conforming to RailTopoModel. First, Meeduse injects these
models into the functional B specifications issued from our meta-models. This
step, called (Valuation) in Fig. 1, creates enumerations and generates substitu-
tions that assign concrete initial values to the B variables. Then, the tool asks
ProB to compute the initial state of the B specifications and the list of opera-
tions that can be animated from this state. At this stage, railway experts can
start playing with the B operations of the linkage machines in order to simulate
ERTMS/ETCS train behaviours. All along the interactive animation, Meeduse
synchronises the current state of the B specifications with the input models (step
(Synchronisation) in Fig. 1), which results in a domain-centric visual animation.
The interest of this approach in comparison with classical visual animation is
that our framework allows railway experts to design by themselves the input
models and validate their behaviours without being trained in formal methods.

4 Conclusion

The use of Domain-specific modelling languages becomes important in the rail-
way domain as they provide support for railway mechanisms from their semantics
definition to their concrete syntax. In the last decade, several tools and platforms
[1,2,7,11,12] were proposed in order to allow railway experts to design railway
infrastructures and associated signalling systems. However, the limitation with
these tools is that either the semantics of their DSLs don’t fully comply with
international railway standards.

In the railway domain, several specifications are defined by European and
national authorities like the ISO4 specifications from AFNOR5 or TSIs6 from
EUAR (European Union Agency for Railway). These specifications provide stan-
dardised engineering rules and infrastructure guidelines and allow the establish-
ment of common interfaces for railway systems in order to maintain the com-
patibility among cross-border infrastructure objects. They also provide cost-
effectiveness processes to ensure safety by using the best practices.

This paper presents the main principles of our ongoing work for the devel-
opment and the execution of railway DSLs that comply with current standards:
RailTopoModel and ERTMS/ETCS. We apply the B method to formally define
the static and dynamic semantics and prove that functional specifications can be
4 https://www.iso.org/.
5 Association Française de Normalisation.
6 Technical Specifications for Interoperability.

https://www.iso.org/.


Merging RailTopoModel and ERTMS/ETCS 419

executed on a given ETCS-based infrastructure, without braking global safety
invariants. Our approach is domain-centric, which allows domain experts to
design topological views of a railway system and then play with scenarios that
comply with ERTMS/ETCS. This work provides two main contributions in com-
parison with existing railway editors: our DSL is derived from approved railway
standard documents (RailTopoModel and ERTMS/ETCS) and the underlying
semantics follow a formal method with available reasoning tools.

References

1. Industrial Railway CAD software. https://hwww.railcomplete.com/
2. Railway Infrastructure and Layout Aided Designer. https://www.rail-aid.com/
3. The ERTMS/ETCS signalling system. http://www.railwaysignalling.eu/wp-

content/uploads/2016/09/ERTMS ETCS signalling system revF.pdf
4. Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.): ABZ 2018. LNCS, vol.

10817. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4
5. Idani, A., Ledru, Y.: B for modeling secure information systems. In: Butler, M.,

Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 312–318. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25423-4 20

6. Idani, A., Ledru, Y., Vega, G.: Alliance of model-driven engineering with a proof-
based formal approach. Innovations Syst. Softw. Eng. 1–19 (2020). https://doi.
org/10.1007/s11334-020-00366-3

7. Iliasov, A., Lopatkin, I., Romanovsky, A.: The SafeCap platform for modelling rail-
way safety and capacity. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFE-
COMP 2013. LNCS, vol. 8153, pp. 130–137. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40793-2 12

8. International Union of Railways (UIC): RailTopoModel - Railway infrastructure
topological model (2016). ISBN 978-2-7461-2513-1

9. Lecomte, T.: Applying a formal method in industry: a 15-year trajectory. In:
Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp.
26–34. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04570-7 3

10. Mashkoor, A., Kossak, F., Egyed, A.: Evaluating the suitability of state-based
formal methods for industrial deployment. Softw. Pract. Experience 48(12), 2350–
2379 (2018)

11. Vu, L., Haxthausen, A., Peleska, J.: A domain-specific language for railway inter-
locking systems. In: Proceedings of the 10th Symposium on Formal Methods for
Automation and Safety in Railway and Automotive Systems, pp. 200–209. Tech-
nische Universität Braunschweig (2014)

12. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for
generic interlocking models and their properties. In: Fantechi, A., Lecomte, T.,
Romanovsky, A. (eds.) RSSRail 2017. LNCS, vol. 10598. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68499-4 7

https://hwww.railcomplete.com/
https://www.rail-aid.com/
http://www.railwaysignalling.eu/wp-content/uploads/2016/09/ERTMS_ETCS_signalling_system_revF.pdf
http://www.railwaysignalling.eu/wp-content/uploads/2016/09/ERTMS_ETCS_signalling_system_revF.pdf
https://doi.org/10.1007/978-3-319-91271-4
https://doi.org/10.1007/978-3-319-25423-4_20
https://doi.org/10.1007/s11334-020-00366-3
https://doi.org/10.1007/s11334-020-00366-3
https://doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1007/978-3-642-04570-7_3
https://doi.org/10.1007/978-3-319-68499-4_7

	Merging Railway Standard Notations in a Formal DSL-Based Framework
	1 Introduction
	2 Proposed Approach
	2.1 Overall Architecture
	2.2 Methodology
	2.3 The Core Meta-Model
	2.4 Defining the Additional Meta-Models
	2.5 Modeling

	3 Formal Semantics
	3.1 Static Semantics
	3.2 Dynamic Semantics
	3.3 Execution

	4 Conclusion
	References




