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Abstract. While many maintainability metrics have been explicitly
designed for service-based systems, tool-supported approaches to auto-
matically collect these metrics are lacking. Especially in the context of
microservices, decentralization and technological heterogeneity may pose
challenges for static analysis. We therefore propose the modular and
extensible RAMA approach (RESTful API Metric Analyzer) to calcu-
late such metrics from machine-readable interface descriptions of REST-
ful services. We also provide prototypical tool support, the RAMA CLI,
which currently parses the formats OpenAPI, RAML, and WADL and
calculates 10 structural service-based metrics proposed in scientific liter-
ature. To make RAMA measurement results more actionable, we addi-
tionally designed a repeatable benchmark for quartile-based threshold
ranges (green, yellow, orange, red). In an exemplary run, we derived
thresholds for all RAMA CLI metrics from the interface descriptions of
1,737 publicly available RESTful APIs. Researchers and practitioners
can use RAMA to evaluate the maintainability of RESTful services or
to support the empirical evaluation of new service interface metrics.
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1 Introduction

Maintainability, i.e. the degree of effectiveness and efficiency with which a soft-
ware system can be modified to correct, improve, extend, or adapt it [17], is
an essential quality attribute for long-living software systems. To manage and
control maintainability, quantitative evaluation with metrics [9] has long estab-
lished itself as a frequently employed practice. In systems based on service ori-
entation [22], however, many source code metrics lose their importance due to
the increased level of abstraction [4]. For microservices as a lightweight and
fine-grained service-oriented variant [20], factors like the large number of small
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services, their decentralized nature, or high degree of technological heterogeneity
may pose difficulties for metric collection and the applicability of existing met-
rics, which has also been reported in the area of performance testing [11]. Several
researchers have therefore focused on adapting existing metrics and defining new
metrics for service orientation (see e.g. our literature review [7] or the one from
Daud and Kadir [10]).

However, approaches to automatically collect these metrics are lacking and
for the few existing ones, tool support is rarely publicly available (see Sect. 2).
This significantly hinders empirical metric evaluation as well as industry adop-
tion of service-based metrics. To circumvent the described challenges, we there-
fore propose a metric collection approach focused on machine-readable REST-
ful API descriptions. RESTful web services are resource-oriented services that
employ the full HTTP protocol with methods like GET, POST, PUT, or DELETE as
well as HTTP status codes to expose their functionality on the web [23]. For
microservices, RESTful HTTP is used as one of the primary communication
protocols [20]. Since this protocol is popular in industry [5,26] and API docu-
mentation formats like WADL1, OpenAPI2, or RAML3 are widely used, such an
approach should be broadly applicable to real-world RESTful services. Relying
on machine-readable RESTful documentation avoids having to implement tool
support for several programming languages. Second, such documents are often
created reasonably early in the development process if a design-first approach is
used. And lastly, if such documents do not exist for the system, they can often
be generated automatically, which is supported for popular RESTful frameworks
like e.g. Spring Boot4.

While formats like OpenAPI have been used in many analysis and reengi-
neering approaches for service- and microservice-based systems [18,19,25], there
is so far no broadly applicable and conveniently extensible approach to calculate
structural service-based maintainability metrics from interface specifications of
RESTful services. To fill this gap, we propose a new modular approach for the
static analysis of RESTful API descriptions called RAMA (RESTful API Metric
Analyzer), which we describe in Sect. 3. Our prototypical tool support to show
the feasibility of this approach, the RAMA CLI, is able to parse the popular for-
mats OpenAPI, RAML, and WADL and calculates a variety of service interface
metrics related to maintainability. Lastly, we also conducted a benchmark-based
threshold derivation study for all metrics implemented in the RAMA CLI to
make measurements more actionable for practitioners (see Sect. 4).

2 Related Work

Because static analysis for service orientation is very challenging, most proposals
so far focused on programming language independent techniques. In the context
1 https://www.w3.org/submission/wadl.
2 https://www.openapis.org.
3 https://raml.org.
4 https://springdoc.org.
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of service-oriented architecture (SOA), Gebhart and Abeck [13] developed an
approach that extracts metrics from the UML profile SoaML (Service-oriented
architecture Modeling Language). The used metrics are related to the quality
attributes unique categorization, loose coupling, discoverability, and autonomy.

For web services, several authors also used WSDL documents as the basis for
maintainability evaluations. Basci and Misra [3] calculated complexity metrics
from them, while Sneed [27] designed a tool-supported WSDL approach with
metrics for quantity or complexity as well as maintainability design rules.

To identify linguistic antipatterns in RESTful interfaces, Palma et al. [21]
developed an approach that relies on semantic text analysis and algorithmic
rule cards. They do not use API descriptions like OpenAPI. Instead, their tool
support invokes all methods of an API under study to document the necessary
information for the rule cards.

Finally, Haupt et al. [14] published the most promising approach. They used
an internal canonical data model to represent the REST API and converted
both OpenAPI and RAML into this format via the epsilon transformation lan-
guage (ETL). While this internal model is beneficial for extensibility, the chosen
transformation relies on a complex model-driven approach. Moreover, the exten-
sibility for metrics remains unclear and some of the implemented metrics simply
count structural attributes like the number of resources or the number of POST
requests. The model also does not take data types into account, which are part
of many proposed service-based cohesion or complexity metrics. So, while the
general approach from Haupt et al. is a sound foundation, we adjusted it in
several areas and made our new implementation publicly available.

3 The RAMA Approach

In this section, we present the details of our static analysis approach called
RAMA (RESTful API Metric Analyzer). To design RAMA, we first analyzed
existing service-based metrics to understand which of them could be derived
solely from service interface definitions and what data attributes would be nec-
essary for this. This analysis relied mostly on the results of our previous literature
review [7], but also took some newer or not covered publications into account.
Additionally, we analyzed existing approaches for WSDL and OpenAPI (see
Sect. 2). Based on this analysis, we then developed a data model, an architec-
ture, and finally prototypical tool support.

Relying on a canonical data model to which each specification format has
to be converted increases the independence and extensibility of our approach.
RAMA’s internal data model (see Fig. 1) was constructed based on entities
required to calculate a wide variety of complexity, size, and cohesion metrics.
While we tried to avoid unnecessary properties, we still needed to include all
metric-relevant attributes and also to find common ground between the most
popular RESTful description languages.

The hierarchical model starts with a SpecificationFile entity that con-
tains necessary metadata like a title, a version, or the specification format (e.g.
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Fig. 1. Simplified canonical data model of RAMA.

OpenAPI or RAML). It also holds a single API wrapper entity consisting of a
base path like e.g. /api/v1 and a list of Paths. These Paths are the actual
REST resources of the API and each one of them holds a list of Methods. A
Method represents an HTTP verb like GET or POST, i.e. in combination, a Path
and a Method form a service operation, e.g. GET /customers/1/orders to fetch
all orders from customer with ID 1. Additionally, a Method may have inputs,
namely Parameters (e.g. path or query parameters) and RequestBodies, and
outputs, namely Responses. Since RequestBodies and Responses are usually
complex objects of ContentMediaTypes like JSON or XML, they are both rep-
resented by a potentially nested DataModel with Properties. Both Parameters
and Properties contain the used data types, as this is important for cohesion
and complexity metrics. This model represents the core of the RAMA approach.

Based on the described data model, we designed the general architecture of
RAMA as a simple command line interface (CLI) application that loosely follows
the pipes and filters architectural style. One module type in this architecture is
Parser. A Parser takes a specific REST description language like OpenAPI as
input and produces our canonical data model from it. Metrics represent the sec-
ond module type and are calculated from the produced data model. The entirety
of calculated Metrics form a summarized results model, which is subsequently
presented as the final output by different Exporters. This architecture is easily
extensible and can also be embedded in other systems or a CI/CD pipeline.

The prototypical implementation of this approach is the RAMA CLI5. It
is written in Java and uses Maven for dependency management. For metric
modules, a plugin mechanism based on Java interfaces and the Java Reflection

5 https://github.com/restful-ma/rama-cli.
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API enables the dynamic inclusion of newly developed metrics. We present an
overview of the implemented modules in Fig. 2.

Fig. 2. Implemented architecture of the RAMA CLI (arrows indicate data flow).

For our internal data model, we used the protocol buffers format6 developed
by Google. Since it is language- and platform-neutral and is easily serializable,
it can be used in diverse languages and technologies. There is also a tooling
ecosystem around it that allows conversion between protocol buffers and various
RESTful API description formats. From this created protobuf model, the nec-
essary Java classes are automatically generated (Canonical REST API Model in
Fig. 2).

With respect to input formats, we implemented Parsers for OpenAPI,
RAML, and WADL, since these are among the most popular ones based on
GitHub stars, Google search hits, and StackOverflow posts [15]. Moreover, most
of them offer a convenient tool ecosystem that we can use in our Parser
implementations. A promising fourth candidate was the Markdown-based API
Blueprint7, which seems to be rising in popularity. However, since there is so far
no Java parser for this format, we did not include it in the first prototype.

The RAMA CLI currently implements 10 service-based maintainability
Metrics proposed in five different scientific publications (see Table 1), namely
seven complexity metrics, two cohesion metrics, and one size metric. We chose
these metrics to cover a diverse set of structural REST API attributes, which
should demonstrate the potential scope of the approach. We slightly adjusted
some of the metrics for REST, e.g. the ones proposed for WSDL. For additional
details on each metric, please refer to our documentation8 or the respective
source.

Finally, we implemented two Exporters for the CLI, namely one for a PDF
and one for a JSON file. Additionally, the CLI automatically outputs the results
to the terminal. While this prototype already offers a fair amount of features
and should be broadly applicable, the goal was also to ensure that it can be
6 https://developers.google.com/protocol-buffers.
7 https://apiblueprint.org.
8 https://github.com/restful-ma/rama-cli/tree/master/docs/metrics.
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extended with little effort. In this sense, the module system and the usage of
interfaces and the Reflection API make it easy to add new Parsers, Metrics,
or Exporters so that the RAMA CLI can be of even more value to practitioners
and researchers.

Table 1. Implemented maintainability metrics of the RAMA CLI.

Name Abbrev. Property Source

Average Path Length APL Complexity Haupt et al. [14]

Arguments per Operation APO Complexity Basci and Misra [3]

Biggest Root Coverage BRC Complexity Haupt et al. [14]

Data Weight DW Complexity Basci and Misra [3]

Distinct Message Ratio DMR Complexity Basci and Misra [3]

Longest Path LP Complexity Haupt et al. [14]

Number of Roots NOR Complexity Haupt et al. [14]

Lack of Message-Level Cohesion LoCmsg Cohesion Athanasopoulos et al. [1]

Service Interface Data Cohesion SIDC Cohesion Perepletchikov et al. [24]

Weighted Service Interface Count WSIC Size Hirzalla et al. [16]

4 Threshold Benchmarking

Metric values on their own are often difficult to interpret. Some metrics may
have a lower or an upper bound (e.g. a percentage between 0 and 1) and may
also indicate that e.g. lower values are better or worse. However, that is often
still not enough to derive implications from a specific measurement. To make
metric values more actionable, thresholds can therefore play a valuable role [28].
We therefore designed a simple, repeatable, and adjustable threshold derivation
approach to ease the application of the metrics implemented within RAMA.

4.1 Research Design

Since it is very difficult to rigorously evaluate a single threshold value, the major-
ity of proposed threshold derivation methods analyze the measurement distri-
bution over a large number of real-world systems. These methods are called
benchmark-based approaches [2] or portfolio-based approaches [8]. Since a large
number of RESTful API descriptions are publicly available, we decided to imple-
ment a simple benchmark-based approach.

Inspired by Bräuer et al. [8], we formed our labels based on the quartile
distribution. Therefore, we defined a total of four ranked bands into which a
metric value could fall (see also Table 2), i.e. with the derived thresholds, a
measurement could be in the top 25%, between 25% and the median, between
the median and 75%, or in the bottom 25%. Depending on whether lower is
better or worse for the metric, each band was associated with one of the colors
green, yellow, orange, and red (ordered from best to worst). If a metric result is
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Table 2. Used metric threshold bands (colors are based on a metric where lower is
better; for metrics where higher is better, the color ordering would be reversed).

Band Color Start End

Q1 green lower bound or minimum 1st quartile

Q2 yellow 1st quartile 2nd quartile / median

Q3 orange 2nd quartile / median 3rd quartile

Q4 red 3rd quartile upper bound or maximum

in the worst 25% (red) or between the median and the worst 25% (orange) of
analyzed systems, it may be advisable to improve the related design property.

To derive these thresholds per RAMA CLI metric, we designed an automated
benchmark pipeline that operates on a large number of API description files. The
benchmark consists of the four steps Search, Measure, Combine, and Aggregate
(see Fig. 3). The first step was to search for publicly available descriptions of
real-world APIs. For this, we used the keyword and file type search on GitHub.
Additionally, we searched the API repository from APIs.guru9, which provides
a substantial number of OpenAPI files.

Once a sufficiently large collection of parsable files had been established, we
collected the metrics from them via the RAMA CLI (Measure step). In the third
step Combine, this collection of JSON files was then analyzed by a script that
combined them into a single CSV file, where each analyzed API represented a
row. Using this file with all measurements, another script executed the threshold
analysis and aggregation (Aggregate step). Optionally, this script could filter out
APIs, e.g. too small ones. As results, this yielded a JSON file with all descriptive
statistics necessary for the metric thresholds as well as two diagram types to
potentially analyze the metric distribution further, namely a histogram and a
boxplot, both in PNG format.

To make the benchmark as transparent and repeatable as possible, we pub-
lished all related artifacts such as scripts, the used API files, and documentation
in a GitHub repository10. Every subsequent step after Search is fully automat-
able and we also provide a wrapper script to execute the complete benchmark
with one command. Our goal is to provide a reusable and adaptable foundation
for re-executing this benchmark with different APIs as input that may be more
relevant threshold indicators for a specific REST API under analysis.

4.2 Results

We initially collected 2,651 real-world API description files (2,619 OpenAPI,
18 WADL, and 14 RAML files). This sample was dominated by large cloud
providers like Microsoft Azure (1,548 files), Google (305 files), or Amazon Web

9 https://apis.guru/browse-apis.
10 https://github.com/restful-ma/thresholds.
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Fig. 3. Threshold benchmark design.

Services (205 files). Additionally, there were cases where we had several files of
different versions for the same API.
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A preliminary analysis of the collected APIs revealed that a large portion
of them were very small, with only two or three operations. Since it seems rea-
sonable to assume that several of the RAMA CLI metrics are correlated with
size, we decided to exclude APIs with less than five operations (Weighted Service
Interface Count < 5) to avoid skewing the thresholds in favor of very small APIs.
Therefore, we did not include 914 APIs in the Aggregate step. Our exemplary
execution of the described benchmark calculated the quartile-based thresholds
based on a total of 1,737 public APIs (1,708 OpenAPI, 16 WADL, and 13
RAML files). The median number of operations for these APIs was 15. Table 3
lists the thresholds for all 10 metrics of the RAMA CLI. Because of the sequen-
tial parsing of API files, the execution of the benchmark can take up to several
hours on machines with low computing power. We therefore also provide all
result artifacts of this exemplary run in our repository11.

Table 3. Calculated metric thresholds from 1,737 API description files.

Metric Top 25% 25% - 50% 50% - 75% Worst 25%

APO [0.20, 3.52] ]3.52, 4.60] ]4.60, 8.63] ]8.63, 21.63]

APL [1.00, 2.50] ]2.50, 5.00] ]5.00, 8.00] ]8.00, 15.60]

BRC [1.00, 1.00] ]1.00, 0.99] ]0.99, 0.60] ]0.60, 0.00]

DW [4, 77] ]77, 167] ]167, 378] ]378, 41570]

DMR [0.00, 0.26] ]0.26, 0.36] ]0.36, 0.48] ]0.48, 1.00]

LoCmsg [0.00, 0.53] ]0.53, 0.62] ]0.62, 0.69] ]0.69, 1.00]

LP [1, 3] ]3, 8] ]8, 10] ]10, 19]

NOR [1, 1] ]1, 2] ]2, 3] ]3, 359]

SIDC [1.00, 1.00] ]1.00, 0.64] ]0.64, 0.55] ]0.55, 0.00]

WSIC [5, 8] ]8, 15] ]15, 31] ]31, 1126]

5 Limitations and Threats to Validity

While we pointed out several advantages of the RAMA approach, there are
also some limitations. First, RAMA only supports RESTful HTTP and there-
fore excludes asynchronous message-based communication. Even though REST
is arguably still more popular for microservice-based systems, event-driven
microservices based on messaging receive more and more attention. Similar doc-
umentation standards for messaging are slowly emerging (see e.g. AsyncAPI12),
but our current internal model and metric implementations are very REST-
specific. While several metrics are undoubtedly valid in both communication

11 https://github.com/restful-ma/thresholds/tree/master/results.
12 https://www.asyncapi.com.
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paradigms, substantial efforts would be necessary to fully support messaging in
addition to REST. Apart from that, the approach requires machine-readable
RESTful API descriptions to work. While such specifications are popular in the
RESTful world, not every service under analysis will have one. And thirdly,
relying on an API description file restricts the scope of the evaluation. Collected
metrics are focused on the interface quality of a single service and cannot make
any statement about the concrete service implementation. Therefore, RAMA
cannot calculate system-wide metrics except for aggregates like mean, which
also excludes metrics for the coupling between services.

Our prototypical implementation, the RAMA CLI, may also suffer from
potential limitations. While we tried to make it applicable to a wide range
of RESTful services by supporting the three formats OpenAPI, RAML, and
WADL, there are still other used formats for which we currently do not have a
parser, e.g. API Blueprint13. Similarly, there are many more proposed service-
based metrics we could have implemented in the RAMA CLI. The modular
architecture of RAMA consciously supports possible future extensions in this
regard. Lastly, we unfortunately cannot guarantee that the prototype is com-
pletely free of bugs and works reliably with every single specification file. While
we were very diligent during the implementation, have a test coverage of ∼75%,
and successfully used the RAMA CLI with over 2,500 API specification files, it
remains a research prototype. For transparency, the code is publicly available as
open source and we welcome contributions like issues or pull requests.

Finally, we need to mention threats to validity concerning our empirical
threshold derivation study. One issue is that the derived thresholds rely entirely
on the quality and relevance of the used API description files. If the majority
of files in the benchmark are of low quality, the derived thresholds will not be
strict enough. Measurement values of an API may then all fall into the Q1 band,
when, in reality, the service interface under analysis is still not well designed.
By including a large number of APIs from trustworthy sources, this risk may
be reduced. However, there still may be services from specific contexts that are
so different that they need a custom benchmark to produce relevant thresholds.
Examples could be benchmarks based only on a particular domain (e.g. cloud
management), on a single API specification format (e.g. RAML), or on APIs of
a specific size (e.g. small APIs with 10 or less operations). As an example, large
cloud providers like Azure, Google, or AWS heavily influenced our benchmark
run. Each one of these uses fairly homogeneous API design, which influenced
some metric distributions and thresholds. We also eliminated a large number
of very small services with less than five operations to not skew metrics in this
direction. So, while our provided thresholds may be useful for a quick initial
quality comparison, it may be sensible to select the input APIs more strictly to
create a more appropriate size- or domain-specific benchmark. To enable such
replication, our benchmark focuses on repeatability and adaptability.

13 https://apiblueprint.org.
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6 Conclusion

To support static analysis based on proposed service-based maintainability met-
rics in the context of microservices, we designed a tool-supported approach called
RAMA (RESTful API Metric Analyzer). Service interface metrics are collected
based on machine-readable descriptions of RESTful APIs. Our implemented pro-
totypical tool, the RAMA CLI, currently supports the specification formats Ope-
nAPI, RAML, and WADL as well as 10 metrics (seven for complexity, two for
cohesion, and one size metric). To aid with results interpretation, we also con-
ducted an empirical benchmark that calculated quartile-based threshold ranges
(green, yellow, orange, red) for all RAMA CLI metrics using 1,737 public REST-
ful APIs. Since the thresholds are very dependent on the quality and relevance of
the used APIs, we designed the automated benchmark to be repeatable. Accord-
ingly, we published the RAMA CLI14 as well as all results and artifacts of the
threshold derivation study15 on GitHub.

RAMA can be used by researchers and practitioners to efficiently calculate
suitable service interface metrics for size, cohesion, or complexity, both for early
quality evaluation or within continuous quality assurance. Concerning possible
future work, a straight-forward option would be the extension of the RAMA CLI
with additional input formats and metrics to increase its applicability and util-
ity. Additionally, our static approach could be combined with existing dynamic
approaches [6,12] to mitigate some of its described limitations. However, the
most critical expansion for this line of research is the empirical evaluation of
proposed service-based maintainability metrics, as most authors did not provide
such evidence. Due to the lack of automatic collection approaches, such evalu-
ation studies were previously challenging to execute at scale. Our preliminary
work can therefore serve as a valuable foundation for such endeavors.
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