
Henry Muccini · Paris Avgeriou ·
Barbora Buhnova · Javier Camara ·
Mauro Caporuscio · Mirco Franzago ·
Anne Koziolek ·
Patrizia Scandurra et al. (Eds.)

14th European Conference, ECSA 2020
Tracks and Workshops, L'Aquila, Italy, September 14–18, 2020
Proceedings

Software
Architecture

Communications in Computer and Information Science 1269

Communications
in Computer and Information Science 1269

Commenced Publication in 2007
Founding and Former Series Editors:
Simone Diniz Junqueira Barbosa, Phoebe Chen, Alfredo Cuzzocrea,
Xiaoyong Du, Orhun Kara, Ting Liu, Krishna M. Sivalingam,
Dominik Ślęzak, Takashi Washio, Xiaokang Yang, and Junsong Yuan

Editorial Board Members

Joaquim Filipe
Polytechnic Institute of Setúbal, Setúbal, Portugal

Ashish Ghosh
Indian Statistical Institute, Kolkata, India

Igor Kotenko
St. Petersburg Institute for Informatics and Automation of the Russian
Academy of Sciences, St. Petersburg, Russia

Raquel Oliveira Prates
Federal University of Minas Gerais (UFMG), Belo Horizonte, Brazil

Lizhu Zhou
Tsinghua University, Beijing, China

https://orcid.org/0000-0002-5961-6606
https://orcid.org/0000-0001-6859-7120
https://orcid.org/0000-0002-7128-4974

More information about this series at http://www.springer.com/series/7899

http://www.springer.com/series/7899

Henry Muccini • Paris Avgeriou •

Barbora Buhnova • Javier Camara •

Mauro Caporuscio • Mirco Franzago •

Anne Koziolek • Patrizia Scandurra •

Catia Trubiani • Danny Weyns •

Uwe Zdun (Eds.)

Software
Architecture
14th European Conference, ECSA 2020
Tracks and Workshops, L’Aquila, Italy, September 14–18, 2020
Proceedings

123

Editors
Henry Muccini
University of L’Aquila
L’Aquila, Italy

Paris Avgeriou
University of Groningen
Groningen, The Netherlands

Barbora Buhnova
Faculty of Informatics
Masaryk University
Brno, Czech Republic

Javier Camara
Department of Computer Science
University of York
York, UK

Mauro Caporuscio
Department of Computer Science
Linnaeus University
Växjö, Sweden

Mirco Franzago
University of L’Aquila
L’Aquila, Italy

Anne Koziolek
Karlsruhe Institute of Technology
Karlsruhe, Germany

Patrizia Scandurra
University of Bergamo
Dalmine, Italy

Catia Trubiani
Gran Sasso Science Institute
L’Aquila, Italy

Danny Weyns
Department of Computer Science
KU Leuven
Leuven, Belgium

Uwe Zdun
Faculty of Computer Science
University of Vienna
Vienna, Austria

ISSN 1865-0929 ISSN 1865-0937 (electronic)
Communications in Computer and Information Science
ISBN 978-3-030-59154-0 ISBN 978-3-030-59155-7 (eBook)
https://doi.org/10.1007/978-3-030-59155-7

© Springer Nature Switzerland AG 2020
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-6365-6515
https://orcid.org/0000-0002-7101-0754
https://orcid.org/0000-0003-4205-101X
https://orcid.org/0000-0001-6717-4775
https://orcid.org/0000-0001-6981-0966
https://orcid.org/0000-0003-4338-7746
https://orcid.org/0000-0002-1593-3394
https://orcid.org/0000-0002-9209-3624
https://orcid.org/0000-0002-7675-6942
https://orcid.org/0000-0002-1162-0817
https://orcid.org/0000-0002-6233-2591
https://doi.org/10.1007/978-3-030-59155-7

Preface

The European Conference on Software Architecture (ECSA) is the premier European
conference that provides researchers and practitioners with a platform to present and
discuss the most recent, innovative, and significant findings and experiences in the field
of software architecture research and practice.

This year’s technical program included a doctoral symposium track with its own
keynote, a gender diversity in software architecture & software engineering track with
its own keynote, and a tool demos track. ECSA 2020 also offered nine workshops on
diverse topics related to the software architecture discipline. ECSA 2020 also included
a research track, three keynote talks, and an industry track, included in a volume by
Springer LNCS. In addition, ECSA 2020 featured a journal first track partnering with
the Journal of Software and Systems, Elsevier, and the IEEE Software Magazine.

ECSA 2020 received 103 contributions to all tracks. We received 11 workshop
proposals, 4 doctoral symposium submissions, 3 gender diversity papers, 7 tools
demos, 1 tutorial, and 4 journal first contributions.

The workshops took place on the two days before the ECSA 2020 main conference
and the program included the following nine workshops:

– Third International Workshop on Context-aware, Autonomous and Smart Archi-
tecture (CASA 2020)

– 5th Workshop on Continuous Software Engineering (CSE 2020) and 6th Interna-
tional Workshop on Quality-Aware DevOps (QUDOS 2020)

– Third International Workshop on moDeling, vErification and Testing of dEpendable
CriTical systems (DETECT 2020)

– 4th Workshop on Formal Approaches for Advanced Computing Systems (FAACS
2020) and First International Workshop on Model-Driven Engineering for Software
Architecture (MDE4SA 2020)

– 4th International Workshop on Engineering IoT Systems: Architectures, Services,
Applications, and Platforms (IoT-ASAP 2020)

– Second Workshop on Systems, Architectures, and Solutions for Industry 4.0
(SASI4 2020)

– 6th International Workshop on Automotive System/Software Architectures (WASA
2020)

All workshops together received a total of 58 papers. Each workshop had an
independent Program Committee, which was in charge of selecting the papers. Out
of the 58 submissions, 28 papers were selected to be presented at the workshops.

The doctoral symposium track had its own keynote provided by Radu Calinescu,
from the Department of Computer Science at the University of York, UK, who talked
about “Going the extra mile to publish your research in a top venue.”

The gender diversity in software architecture track had also its own keynote pro-
vided by Paola Inverardi, from the Information Engineering, Computer Science, and

Mathematics Department, University of L’Aquila, Italy. Professor Inverardi, who was
rector of the University of L’Aquila from 2013 to 2019, is in a unique position to report
about the state of the implementation of gender equality policies at Italian universities,
a topic of great interest to ECSA’s audience.

We are grateful to the members of the tracks and workshop Program Committees for
helping us to seek submissions and provide valuable and timely reviews. Their efforts
enabled us to put together a high-quality program for ECSA 2020. We would like to
thank the members of the Organizing Committee of ECSA 2020 for playing an
enormously important role in successfully organizing the event with several tracks and
collocated events, as well as the workshop organizers, who made significant contri-
butions to this year’s successful event.

July 2020 Paris Avgeriou
Barbora Buhnova

Javier Camara
Mauro Caporuscio

Mirco Franzago
Anne Koziolek
Henry Muccini

Patrizia Scandurra
Catia Trubiani
Danny Weyns

Uwe Zdun

vi Preface

Organization

General Chair

Henry Muccini University of L’Aquila, Italy

Steering Committee

Muhammad Ali Babar The University of Adelaide, Australia
Paris Avgeriou University of Groningen, The Netherlands
Tomas Bures Charles University, Czech Republic
Rogério de Lemos University of Kent, UK
Laurence Duchien CRIStAL, University of Lille, France
Carlos E. Cuesta Rey Juan Carlos University, Spain
David Garlan Carnegie Mellon University, USA
Paola Inverardi University of L’Aquila, Italy
Patricia Lago Vrije Universiteit Amsterdam, The Netherlands
Antónia Lopes University of Lisbon, Portugal
Ivano Malavolta Vrije Universiteit Amsterdam, The Netherlands
Raffaela Mirandola Politecnico di Milano, Italy
Henry Muccini University of L’Aquila, Italy
Flavio Oquendo (Chair) IRISA, University of South Brittany, France
Ipek Ozkaya Carnegie Mellon Software, USA
Jennifer Pérez Universidad Politecnica de Madrid, Spain
Bedir Tekinerdogan Wageningen University, The Netherlands
Danny Weyns KU Leuven, Belgium
Uwe Zdun University of Vienna, Austria

Program Committee Chairs

Research Track

Ivano Malavolta Vrije Universiteit Amsterdam, The Netherlands
Ipek Ozkaya Carnegie Mellon Software, USA

Industry Track

Anton Jansen Philips, The Netherlands
Olaf Zimmermann Hochschule für Technik Rapperswil, Switzerland

Conference Track Chairs

Doctoral Symposium

Patrizia Scandurra DIIMM, University of Bergamo, Italy
Danny Weyns KU Leuven, Belgium

Tool Demos

Paris Avgeriou University of Groningen, The Netherlands
Barbora Buhnova Masaryk University, Czech Republic

Gender Diversity in Software Architecture and Software Engineering

Javier Camara University of York, UK
Catia Trubiani Gran Sasso Science Institute, Italy

Workshop Organization Chairs

CASA

Claudia Raibulet Universitá degli Studi di Milano-Bicocca, Italy
Khalil Drira LAAS-CNRS, CNRS, Université de Toulouse, France
Mariagrazia Fugini Politecnico di Milano, DEIB, Italy
Patrizio Pelliccione University of L’Aquila, Italy,

and Chalmers — University of Gothenburg, Sweden
Genaína N. Rodrigues University of Brasilia, Brazil

Joint CSE/QUDOS

Robert Chatley Imperial College London, UK
Katja Kevic Microsoft, UK

DETECT

Yassine Ouhammou LIAS, ISAE-ENSMA, France
Abderrahim Wakrime Mohammed V University, Morocco

Joint FAACS-MDE4SA

Matteo Camilli Free University of Bozen-Bolzano, Italy
Stéphanie Challita Inria, France
Alessio Bucaioni Mälardalen University, Sweden
Amleto Di Salle University of L’Aquila, Italy
Ludovico Iovino Gran Sasso Science Institute, Italy
Peng Liang Wuhan University, China

IoT-ASAP

Romina Spalazzese Malmö University, Sweden
Marie Platenius-Mohr ABB Corporate Research, Germany

viii Organization

Ilias Gerostathopoulos Vrije Universiteit Amsterdam, The Netherlands
Steffen Becker University of Stuttgart, Germany

SASI4

Rafael Capilla Rey Juan Carlos University, Spain
Klaus Schmid University of Hildesheim, Germany
Patrizio Pelliccione University of L’Aquila, Italy,

and Chalmers — University of Gothenburg, Sweden
Andreas Burger ABB Corporate Research, Germany
Pablo O. Antonino Fraunhofer IESE, Germany

WASA

Darko Durisic Volvo Car Corporation, Sweden
Stefan Kugele Technische Hochschule Ingolstadt, Germany
Yanja Dajsuren Eindhoven University of Technology, The Netherlands
Miroslaw Staron Chalmers – University of Gothenburg, Sweden

Organizing Committee

Workshop Chairs

Mauro Caporuscio Linnaeus University, Sweden
Anne Koziolek Karlsruhe Institute of Technology, Germany

Proceedings Chair

Mirco Franzago University of L’Aquila, Italy

Web Chair

Karthik Vaidhyanathan Gran Sasso Science Institute, Italy

Journal First Chair

Uwe Zdun University of Vienna, Austria

Publicity Chairs

Stéphanie Challita Inria, France
Juergen Musil TU Wien, Austria

Student Volunteer Chairs

Roberta Capuano University of L’Aquila, Italy
Jamal El Hecham IRISA, France

Virtualization Chairs

Claudio Di Sipio University of L’Aquila, Italy
Luca Traini University of L’Aquila, Italy

Organization ix

Contents

ECSA 2020 Doctoral Symposium Track

A Semiautomatic Approach to Identify Architectural Technical Debt
from Heterogeneous Artifacts . 5

Boris Pérez

Big Data and Machine Intelligence in Software Platforms for Smart Cities . . . 17
Mubashir Ali

Decentralized Self-adaptation in Large-Scaled Systems of Systems 27
Daniel Matusek

Systematic Approach to Engineer Decentralized Self-adaptive Systems 38
Federico Quin

ECSA 2020 Tool Demos Track

Voyager: Software Architecture Trade-off Explorer 55
Jason Mashinchi and Javier Cámara

A Decision Support System for Pattern-Driven Software Architecture 68
Siamak Farshidi and Slinger Jansen

Gropius — A Tool for Managing Cross-component Issues 82
Sandro Speth, Uwe Breitenbücher, and Steffen Becker

SecoArc: A Framework for Architecting Healthy Software Ecosystems 95
Bahar Schwichtenberg and Gregor Engels

SQuAT-Vis: Visualization and Interaction in Software Architecture
Optimization. 107

Sebastian Frank and André van Hoorn

ECSA 2020 Gender Diversity in Software Architecture and Software
Engineering Track

Girl-Friendly Computer Science Classroom: Czechitas Experience Report . . . 125
Barbora Buhnova and Lucia Happe

Mining Gender Bias: A Preliminary Study on Implicit Biases
and Gender Identity in the Department of Computer Science
at the Technical University of Munich . 138

Ana Petrovska, Patricia Goldberg, Anne Brüggemann-Klein,
and Anne Nyokabi

CASA - 3rd International Workshop on Context-aware, Autonomous
and Smart Architecture

State of the Practice Survey: Predicting the Influence of AI Adoption
on System Software Architecture in Traditional Embedded Systems 155

Jasmin Jahić and Robin Roitsch

Composition Algorithm Adaptation in Service Oriented Systems. 170
Niranjana Deshpande and Naveen Sharma

A Statistical Approach for Context-Awareness of Mobile Applications. 180
Mai Abusair, Mohammad Sharaf, Antinisca Di Marco,
and Paola Inverardi

A Reference Architecture for Personalized and Self-adaptive
e-Health Apps . 195

Eoin Martino Grua, Martina De Sanctis, and Patricia Lago

CSE/QUDOS - Joint Workshop on Continuous Software
Engineering and Quality-Aware DevOps

Collecting Service-Based Maintainability Metrics from RESTful API
Descriptions: Static Analysis and Threshold Derivation 215

Justus Bogner, Stefan Wagner, and Alfred Zimmermann

Optimizing Parametric Dependencies for Incremental Performance
Model Extraction . 228

Sonya Voneva, Manar Mazkatli, Johannes Grohmann,
and Anne Koziolek

Data Pipeline Architecture for Serverless Platform. 241
Chinmaya Dehury, Pelle Jakovits, Satish Narayana Srirama,
Vasilis Tountopoulos, and Giorgos Giotis

Examination and Comparison of TOSCA Orchestration Tools 247
Anže Luzar, Sašo Stanovnik, and Matija Cankar

Auto-scaling Using TOSCA Infrastructure as Code 260
Matija Cankar, Anže Luzar, and Damian A. Tamburri

xii Contents

Towards Coordinated Autoscaling and Application Brownout
at the Orchestrator Level . 269

Ivan Kotegov and Antonio Filieri

DETECT - 3rd International Workshop on Modeling, Verification
and Testing of Dependable Critical Systems

Measurement-Based Timing Analysis on Heterogeneous MPSoCs:
A Practical Approach. 279

Roy Jamil, Emmanuel Grolleau, Bernard Dautrevaux,
and Antoine Bertout

Awas: AADL Information Flow and Error Propagation Analysis
Framework. 294

Hariharan Thiagarajan, John Hatcliff, and Robby

Formal Verification of Run-to-Completion Style Statecharts
Using Event-B . 311

Karla Morris, Colin Snook, Thai Son Hoang, Geoffrey Hulette,
Robert Armstrong, and Michael Butler

A Simulator Coupling Architecture for the Creation of Digital Twins 326
Thomas Kuhn, Pablo Oliveira Antonino, and Adam Bachorek

Integrating Runtime Verification into an Automated UAS Traffic
Management System . 340

Matthew Cauwels, Abigail Hammer, Benjamin Hertz, Phillip H. Jones,
and Kristin Y. Rozier

Dependability of Model-Driven Executable DSLs: Critical Review
and Solutions . 358

Akram Idani

FAACS-MDE4SA - Joint Workshop on Formal Approaches
for Advanced Computing Systems and Model-Driven Engineering
for Software Architecture

Defining a Formal Semantic for Parallel Patterns in the Palladio Component
Model Using Hierarchical Queuing Petri Nets. 381

Markus Frank, Alireza Hakamian, and Stefen Becker

Model-Based Simulation at Runtime with Abstract State Machines 395
Elvinia Riccobene and Patrizia Scandurra

Merging Railway Standard Notations in a Formal DSL-Based Framework . . . 411
Asfand Yar, Akram Idani, and Simon Collart-Dutilleul

Contents xiii

Continuous Formal Verification of Microservice-Based Process Flows 420
Matteo Camilli

IoT-ASAP - 4th International Workshop on Engineering IoT Systems:
Architectures, Services, Applications, and Platforms

Defining Design Patterns for IoT APIs. 443
Rasmus Svensson, Adell Tatrous, and Francis Palma

SASI4 - 2nd Workshop on Systems, Architectures, and Solutions
for Industry 4.0

Access Control for Smart Manufacturing Systems . 463
Björn Leander, Aida Čaušević, Hans Hansson, and Tomas Lindström

Industrie 4.0 Virtual Automation Bus Architecture 477
Thomas Kuhn, Pablo Oliveira Antonino, and Frank Schnicke

Enabling Industry 4.0 Service-Oriented Architecture Through
Digital Twins . 490

Frank Schnicke, Thomas Kuhn, and Pablo Oliveira Antonino

WASA - 6th International Workshop on Automotive System/Software
Architecture

System Health Indicators in Mixed Criticality E/E Systems
in Automated Driving Context . 509

Friederike Dollinger, Rinat Asmus, and Marc Dreiser

How to Conduct Experiments with a Real Car? Experiences and Practical
Guidelines . 518

Thomas Hutzelmann, Dominik Mauksch, and Alexander Pretschner

Towards a Systems Engineering Based Automotive Product Engineering
Process . 527

Hassan Hage, Vahid Hashemi, and Frank Mantwill

Development of a Virtual Simulation Environment and a Digital Twin
of an Autonomous Driving Truck for a Distribution Center 542

Ion Barosan, Arash Arjmandi Basmenj, Sudhanshu G. R. Chouhan,
and David Manrique

Author Index . 559

xiv Contents

ECSA 2020 Doctoral Symposium Track

ECSA 2020 Doctoral Symposium Track

Continuing a long tradition of the European Conference on Software Architecture
(ECSA), the doctoral symposium at ECSA 2020 offered PhD students an opportunity
to provide feedback on their research projects in the broad field of software architec-
ture. The symposium accepted submission from both students at early and advanced
stages of their research. Students were encouraged to present their research settings,
goals, methods, (preliminary) results, and a critical reflection on their work, by inter-
acting closely with established researchers in their specific areas. Despite the logistic
challenges faced due to the COVID–19 pandemic that significantly affected the
organization of the conference this year and transformed it into a virtual event, the
symposium facilitated students disseminating their research and obtaining constructive
feedback on their current research and future research directions.

Every submitted paper was reviewed by at least three members of the Program
Committee. The evaluation was based on technical quality of the submission, including
clarity, adequacy of the problem tackled, position to related work, self-contained
solution description, expected results and evaluation plan, the overall quality, origi-
nality of the submission, the novelty of the research approach, and relevance to ECSA
2020. For this edition, we received high-quality submissions, and after a thorough
review process, four contributions were accepted for presentation during the confer-
ence. Dr. Radu Calinescu gave an inspiring keynote talk on “How to get your research
published in a top software engineering venue” that was appreciated by the students as
well senior participants.

We thank the ECSA Organizing Committee for their continuous support. Our
particular gratitude goes to the Doctoral Symposium Committee members for all their
support in evaluating the submissions and guiding the next generation of researchers in
the field of software architecture in their initial steps as research professionals and
academics. Thanks also to the PhD students who contributed and actively participated
and discussed their research projects. We also express our appreciation to the keynote
speaker for accepting our invitation. All who contributed enabled us to have a par-
ticularly interesting symposium providing constructive input to the students and con-
tinuing to develop a spirit of collaborative research in the software architecture
community.

Organization

Doctoral Symposium Chairs

Danny Weyns KU Leuven, Belgium, and Linnaeus University,
Sweden

Patrizia Scandurra DIGIP, University of Bergamo, Italy

Doctoral Symposium Program Committee

Jesper Andersson Linnaeus University, Sweden
Francesca Arcelli Università degli Studi di Milano-Bicocca, Italy
Steffen Becker University of Stuttgart, Germany
Laurence Duchien University of Lille, France
Carlo Ghezzi Politecnico di Milano, Italy
Nicole Levy Cedric, CNAM, France
Leonardo Mariani Università degli Studi di Milano-Bicocca, Italy
Raffaela Mirandola Politecnico di Milano, Italy
Elena Navarro University of Castilla-La Mancha, Spain
Flavio Oquendo IRISA, UMR, CNRS, Université de

Bretagne-Sud, France
Jennifer Pérez Benedí Universidad Politécnica de Madrid, Spain
Ralf H. Reussner Karlsruhe Institute of Technology, Germany
Florence Sedes Paul Sabatier University, France
Elvinia Riccobene University of Milan, Italy
Marjan Sirjani Malardalen University, Sweden
Chouki Tibermacine University of Montpellier, France
Uwe Zdun University of Vienna, Austria

Additional Reviewers

Henry Muccini
Antonela Tommasel

A Semiautomatic Approach to Identify
Architectural Technical Debt from

Heterogeneous Artifacts

Boris Pérez1,2(B)

1 Universidad de los Andes, Bogotá, Colombia
br.perez41@uniandes.edu.co

2 Univ. Francisco de Paula Santander, Cúcuta, Colombia
borisperezg@ufps.edu.co

Abstract. Architectural Technical Debt (ATD) is a metaphor used to
describe decisions taken by software architects to accomplish short-term
goals but possibly negatively affecting the long-term health of the system.
However, ATD doesn’t receive enough attention for the architect teams
because it is hard to identify, to measure, to prioritize, and its value
is related to long-term maintenance and evolution of a system. In this
research, we propose a model-driven approach that focuses on building a
binary classification model for ATD identification based on the informa-
tion gathered from artifacts produced during architecture design. This
model will allow software architects to support the managing of conscious
and unconscious ATD in their software projects. This proposal focuses
on TD at the architecture-level only without considering source code.
The effectiveness of this proposal will be evaluated using case studies
and expert interviews.

Keywords: Architectural technical debt · Software architecture ·
Architectural technical debt management · Model-driven architecture

1 Introduction

Companies related to software development have an increasing pressure to
improve their effectiveness in each new deployment, by reducing time or
resources, and at the same time, delivering a high-quality solution capable of
keeping functional in the long term [3,18]. This leads to software teams to take
decisions to accomplish short-term goals but possibly affecting negatively the
maintainability of the system [3]. Furthermore, these decisions could be made
consciously (i.e. to promote certain quality attributes over others) or could be
made unconsciously (i.e. lack of knowledge) [8].

This kind of design decisions when system-wide quality attributes (QAs)
of a system, particularly maintainability and evolvability, are consciously or
unconsciously compromise, is called Architectural Technical Debt (ATD) [27].
According to Ernst et al. [7], architecture debt is the most common source of
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 5–16, 2020.
https://doi.org/10.1007/978-3-030-59155-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_1&domain=pdf
http://orcid.org/0000-0001-9249-1756
https://doi.org/10.1007/978-3-030-59155-7_1

6 B. Pérez

TD. Typical ATD includes violations of best practices, consistency, and integrity
constraints of the software architectures [18,27]. If ATD is left unchecked, it can
cause expensive repercussions such as making it difficult and slow to add new
business value [3]. Xiao et al. [26] stated that most time in the overall mainte-
nance effort is consumed by paying interest on ATD.

Despite its importance, ATD doesn’t receive enough attention for the archi-
tect teams because it is hard to identify, to measure (it is not easily visible), and
its value is related to long-term maintenance and evolution of a system [3,11].
Also, there is a lack of time, a lack of effective tools, a lack of knowledge, and
a lack of strategies to get to know what kind of information needs to be col-
lected [17]. Discovering ATD items early in the software life cycle could save a
significant amount of maintenance costs [18].

Some approaches for dealing with ATD are focused on individual activities
within an overarching process of ATD management [18,26,27], or covering all
ATD management activities [13]. However, these approaches are focused on the
source code, which may lead to significant rework in order to repay the ATD
[12], or relies heavily on interviews with the architecture team.

The goal of this research project is to define and develop a novel semiauto-
matic ATD identification technique able to support the management of candidate
ATD items, and in doing so, supporting architects in making impact-conscious
decisions. This approach is relying on architectural models (C&C, Deployment)
and heterogeneous artifacts produced during the software architecture design
stage together with machine learning techniques. The validation of this app-
roach will be carried on through real industry cases. This work aims to answer
the following research questions:

– RQ1: Can information extracted from architectural models and heteroge-
neous artifacts improve the identification of ATD items in comparison with
traditional methods?

– RQ2: Which artifacts are more useful to provide indicators of ATD?
– RQ3: Is it possible to establish a relationship between the evolution of archi-

tectural elements and the ATD items injected into the architecture?
– RQ4: How supervised machine learning techniques can support the identifi-

cation of ATD items?

The research study will include the implementation of the approach and its
validation.

2 Related Work

During the past years, several approaches have been proposed to support the
identification of ATD [25]. Martini et al. [18] developed a holistic framework
for the semi-automated identification and estimation of Architectural Technical
Debt in the form of non-modularized components. They run in parallel a refac-
tored version of the component and a not refactored version of the component.

Semiautomatic Approach to Identify and Manage ATD 7

The evaluation was done by comparing the source code, by analyzing the history
and the parallel development and maintenance efforts for both systems.

Dı́az-Pace et al. [6] used link prediction (LP) techniques to inferring likely
configurations of architectural smells. This approach considers a module struc-
ture as a network, along with information from previous versions, and applies
link prediction techniques. It seeks to predict the appearance of new dependen-
cies in the next system version. Li et al. [15] proposed to use software modularity
metrics based on a single version of source code, to calculate ATD. Modularity
metrics Index of Package Changing Impact (IPCI) and Index of Package Goal
Focus (IPGF) were identified with a high correlation with ANMCC (the average
number of modified components per commit). A higher ANMCC indicates more
ATD in a software system.

Current approaches for architecture technical debt identification are mostly
based at code level analyzing and monitoring [5]. Such approaches rely on the
analysis of ATD symptoms to detect specific types of ATD such as architectural
antipatterns and smells among architectural components [18], modularity anal-
ysis [19], dependency analysis [5] among others. These approaches are focused
on code analysis. These approaches can only provide some insights about ATD
presence, but it is not possible to confirm whether it is actual ATD nor provide
ATD measures [18]. Architectural decisions are an important source of ATD, and
some of them are not reflected in the code, for example, immature or obsolete
technologies used, their rationale, or architecture nonconformance [2,27].

Li et al. [27] proposed a decision-based ATDM (DATDM) approach. This
process is based on architecture decisions and an ATD conceptual model. This
approach is based on human knowledge and therefore, requires a strong presence
of software architects. This ensures that ATD identification and measurement is
carried out in the most formal and complete way. However, as said in [2], ATD
identification and assessment need to be performed with a minimum of human
intervention. Besker et al. [3] acknowledged that practical ATD Management
(ATDM), with an architectural focus, lacks empirical studies.

Therefore, the research community stated three important requirements on
ATD management: (i) To perform identification and assessments with as little
human intervention as possible [2], (ii) to develop approaches dealing with arti-
facts different to source code [12], and (iii) to discover and pay ATD early in the
software lifecycle [26].

3 Work Plan

The goal of this research project is to define and develop a novel semiautomatic
ATD identification technique able to support the management of candidate ATD
items (consciously or unconsciously), and in doing so, supporting architects in
making impact-conscious decisions. This work followed three research activities:
(i) A systematic review of the literature, (ii) a survey of the state-of-the-practice
of causes, effects, monitoring, payment and preventive practices of TD in software
projects, and (iii) an approach to support software architects in dealing with
ATD.

8 B. Pérez

3.1 Systematic Literature Review

The overall goal of this literature review is to identify, classify, and understand
the current state of the art in the field of ATD management. This activity fol-
lowed the guidelines of Kitchenham et al. [10] and was conducted in the light of
the following research questions:

– RQ1: Which approaches to ATDM have been used by both industry and
research community?

• RQ1.1: What are the characteristics of these approaches?
• RQ1.2: Which artifacts and data sources have been proposed in these
approaches?
• RQ1.3: Which evaluations have been performed in these approaches?

– RQ2: Which ATDM activities are supported in these approaches?

“Software architecture” and any synonyms, and “debt” were defined as search
terms. We targeted the search query only to the title to reduce the number of
studies from domains different than software development. The search was con-
ducted in January 2019, and include papers from 2010 to 2018. Results obtained
with this SLR demonstrate an important interest in looking for ways to deal with
ATD. We started with 520 studies, to end up with 20 primary studies via a clas-
sification methodology dedicated to ATD management. From our analysis, we
could establish that ATD identification and measurement are the most studied
activities in the literature. Source code is the most used source of information
in order to perform these activities, and interviews and meetings are used to
support the insights of the proposals. We can also confirm that a proposal to
manage ATD with an architectural focus is missing.

Similar systematic reviews can be found in the literature. Li et al. [12] per-
formed a systematic mapping study of the research work published from 1992
to 2013 on TD and TD management. This study classified TD into 10 types,
8 TDM activities were identified, and 29 tools for TDM were collected. Code
debt and architectural debt were the most selected TD types. Alves et al. [1]
also performed a systematic mapping study to investigate the current state of
the art of TD as well as TD management in practice. In this study, 100 works,
dated from 2010 to 2014, were evaluated. They found 15 TD types, been design
debt and architecture debt as the most selected one.

Systematic reviews focused on ATD can be found in [3,25]. Verdecchia et al.
[25] performed a systematic mapping study for identifying, classifying, and eval-
uating the state of the art on ATD identification. Starting from 509 potentially
relevant studies, they ended up analyzing 47 primary studies. ATD identifica-
tion techniques were classified according to the level of abstraction (source code
packages being the most selected), type of ATD, analysis type (architectural
antipatterns and smells being the most selected), analysis input (source code
being the most selected), among others. The secondary study of Besker et al.
[3] is the closest to ours by focusing exclusively on ATD. This study inspected
42 studies to conceive a novel descriptive model aimed to provide a comprehen-
sive interpretation of the architectural TD phenomenon. Their model identified

Semiautomatic Approach to Identify and Manage ATD 9

the main characteristics of ATD in four groups: The importance of ATD, ATD
Checklist, ATD Impediments, and ATD Management.

Our study differs from theirs by focusing on ATD management (approaches
and activities supported), by having different research questions and focus, and
by using a more recent period: from 2010 to 2018. None of the studies aims
directly at the characterization of existing approaches for ATD management:
characteristics, artifacts and data sources, evaluations, and supported activi-
ties. Therefore, conducting this research was a required activity to support our
research.

3.2 Survey of the State-of-the-Practice on TD

As part of this study, it was required to understand not only what literature
is saying about TD but also the state of practice and industry trends in the
TD area. This activity was performed as a part of InsighTD project, which is a
globally distributed family of industrial surveys initiated in 2017. Its goal is to
gather relevant data about the state of practice of TD and to improve the under-
standing of TD management. To date, researchers from 11 countries (Brazil,
Chile, Colombia, Costa Rica, Finland, India, Italy, Norway, Saudi Arabia, Ser-
bia, and the United States) have joined the project. In this survey, data gathering
was done using an online anonymous questionnaire (28 questions). Invitations
were sent to software practitioners through LinkedIn, industry-affiliated member
groups, mailing lists, and industry partners, as invitation channels.

Several studies have been performed since 2017, including the InsighTD
project creation [24], analysis on the causes and effects of TD in agile software
projects [23], understanding how practitioners react to the presence of debt in
the Chilean software industry [21], among others [9,22]. For example, in [20],
Pérez et al. identified refactoring, improve testing and improve design as the
most cited practices for TD payment. Also, it was possible to establish a rela-
tionship between the age of the software systems and the amount of cited cases of
refactoring. Software systems with less than 1 year (70.6%) of development tend
to use more refactoring than software systems with more than 10 years (29.4%)
of development. Finally, it was identified that refactoring is the main payment
practice used by development teams to pay off the debt no matter what caused
it to be injected.

3.3 Supporting Software Architects

This section presents a semiautomatic model-driven approach that focuses on
building a binary classification model for ATD identification based on the arti-
facts produced during architecture design. This model will allow software archi-
tects to support the managing of conscious and unconscious ATD in their soft-
ware projects. At the same time, newly identified or justified ATD cases may
be used as inputs to the classification model. It is worth to mention that this
model will identify candidates of ATD items, and the software architects will be
responsible for confirming or rejecting these candidates. We seek to provide the

10 B. Pérez

architect with information that he did not have before, and that he/she can now
use to make more impact-conscious decisions.

This proposal focuses on TD at the architecture-level only without consid-
ering source code. It is expected to work with software teams having several
versions of the architecture and several heterogeneous artifacts. According to a
study made as a part of InsighTD, we found that almost 59% of the respondents
employ a mixing methodology based on traditional and agile approaches.

The core element of this proposal is the Block of Interest (BoI). A BoI repre-
sents the evolution of architectural elements during the software design. A BoI
is composed of facts, where each fact represents a change in an architectural
element (i.e., component), together with its characteristics. This proposal con-
sists of three (3) stages, and eight (8) steps (Fig. 1). These stages are iterative
and could be performed multiple times during the life cycle of the project. An
iteration will depend on the software architects’ team.

Currently, steps 1, 2, and 3 are developed. Step 4 is in progress. Steps 5 and
6 require the manual participation of software architects, and the application
is already supporting these two steps. This proposal can work without step 4,
focusing only on changes over architectural elements. However, step 4 is used to
enrich the decisions taken by software architects and therefore, it is relevant to
find justification of architectural decisions. Steps 7 and 8 are still to be devel-
oped. Strategies for organizing information for use by the ML model are being
evaluated.

Stage 1. Extraction. This stage focused on reviewing artifacts produced dur-
ing the architecture design stage, extracting information (step 1), and represent-
ing them in abstract models (step 2). Each artifact requires a specific proce-
dure to extract its information, and a specific meta-model to represent them.
Meta-models are stored in XMI, and designed on Ecore1. The meta-model for
a component and connector model is presented in Fig. 2. Architectural mod-
els (Component & Connector, and Deployment) are required to be designed
in Draw.io or LucidChart. Architectural decisions are required to be described
using a specific ADR template (title, motivators, decision, alternative, among
others). Commits logs also require a specific template defining elements such
as type, scope, subject, and body. We plan to analyze which artifacts, by itself
or together with another artifact, could provide better hints of ATD presence
(RQ2).

Steps 1 and 2 are presented in separate ways because the information
extracted from architectural models is used to create the BoI, and information
extracted from heterogeneous artifacts is used to enrich the BoI. These artifacts
are loaded through a web user interface,m and then steps 1 and 2 are done in
an automatic fashion.

Stage 2. Synthesis. This is the core stage in our proposal and its goal is to
build an ATD map over the architecture, based on changes in the architectural
1 (Meta)model of Eclipse Modeling Framework (EMF).

Semiautomatic Approach to Identify and Manage ATD 11

Fig. 1. Overview of the proposal

Fig. 2. Component and connector abstract model

12 B. Pérez

elements. BoI creation first requires (step 3) to manual select the architectural
elements software architects want to keep track on and to set a relationship
with the corresponding architectural decisions. This is made through a web user
interface. An excerpt from the model is presented in Fig. 3.

Each Fact of the BoI is automatically created and represents a change in an
architectural element among versions of a model. Then, the rest of the artifacts
are reviewed (automatically) to find relevant information about the elements
selected (step 4). Entities, topics, and key phrases are used to try to map this
information with these architectural elements. The text in the artifacts is pre-
processed removing punctuation and stop words and applying lower-casing and
lemmatization. Then, semantic similarity is applied to get the matches of the
architectural elements. Semantic similarity is a metric defined over a set of doc-
uments, sentences or terms, to measure how similar the meanings of two content
items are.

If there are five versions of a component and connector model, and a com-
ponent changes two times, then there will be two Fact instances as a part of
the block of interest. Figure 4 shows the visualization of a block of interest. Each
entry in the timeline (right box) corresponds to a Fact. The lower box represents
the matches of the elements on the artifacts. The Upper left box shows the BoI
using the component and connector notation. Each entry in the timeline allows
the architect to review the corresponding version of the element in the diagram,
and also the changes performed.

Step 5 allows stakeholders to perform a manual validation and enrichment
of the gathered information. Finally, in step 6, software architects review the
changes made, check whether the change corresponds to an ATD item and if
so, justify the debt. This justification covers intentionality, compromised QA,
rationale, payment practice, among others proposed by Li et al. [14]. Software
architects can measure the impact of the ATD item based on three variables:
(i) Implementation cost (architect personal perception about the relative imple-
mentation cost of fixing or repay the debt), (ii) severity (three-level scale to
characterize the negative influence of the ATD item [16]); and (iii) number of
architectural elements affected. Each of these variables needs to have assigned
a percentage of relevance, according to architect’s interest. Step 6 will allow us
to identify if it is possible to establish a relationship between the evolution of
architectural elements and the ATD items injected into the architecture (RQ3).

Stage 3. Learning. Expert knowledge is leveraged in steps 5 and 6 to validate
and enrich (label) the block of interest. The next step (step 7) is to automati-
cally transform this information into a valid data format to be used as input to
train a supervised machine learning model. This training process will be done
using k-fold cross-validation. In this model validation technique, k equal-sized
subsamples are produced from the sample. One of the k subsamples is then used
as the validation data for testing the model. The remaining k − 1 subsamples
are used as training data. This process is repeated k times.

Semiautomatic Approach to Identify and Manage ATD 13

Fig. 3. Model core

The output of this step is a binary classification model, where the target
variable (0,1) is an indicator if the element contributes to increase TD. Facts,
with all the information related, are used as predictors for this model. The most
facts used as predictors, the better the accuracy of the model. During this step,
different supervised machine learning algorithms will be tested to identify which
one offers the best accuracy (RQ4).

After the model reaches an acceptable level of accuracy, it can be used (step
8) by software architects to support the identification and rationale of candi-
date ATD items injected into the software architecture. This step will present a
detailed list of all candidate ATD items found in the models and artifacts used
to design the software architecture.

The main idea is to iterate over the list of Facts previously identified as ATD
items and to compare them with a newly created Fact via a classification model.
If all information surrounding the Fact is similar, then, the newly created Fact
will be marked as a candidate ATD item. Software architects will be respon-
sible to accept or reject the candidate. This way, we will be able to answer if
information extracted from architectural models and heterogeneous artifacts can
improve the identification of ATD items in comparison with traditional methods
(RQ1).

To assess the applicability of this approach, we plan to conduct a set of
validations, both in academic and industrial settings. The academic setting will
be used to support the training step of the model. The industrial setting will

14 B. Pérez

Fig. 4. Web UI of a BoI

be used to test the feasibility of the proposal in a real context. In both settings,
expert interviews will be conducted, as a useful research approach to uncover
knowledge [4]. The expert interview is a method of qualitative empirical research
designed to explore expert knowledge, and to obtain additional unknown or
reliable information, authoritative opinions serious and professional assessments
of the research topic, in this case, architectural technical debt.

4 Expected Results

As researchers on software architecture, we hope that this proposal can be
widespread in the software architects community, to support them during the
decision-making process by making visible the ATD present in the architecture
of software systems. We hope that this proposal could be used by the local
software architects, and then by the global community. This proposal will be
freely available through an online repository for two reasons: (i) to support its
widespread, and (ii) to allow its improvement through collaboration with the
scientific community.

We expect that new architectures and new artifacts can be included as inputs
for the training step of the machine learning model, to improve the accuracy of
the ATD identification process. We plan to keep researching machine learning
techniques to identify which one can provide better accuracy in ATD identifica-
tion.

We hope that the doctoral symposium helps us to improve and enrich this
proposal, through the feedback on the used research methods, and references
and guidance related to the work we are developing.

Acknowledgments. The author is working under the supervision of Prof.
Daŕıo Correal.

Semiautomatic Approach to Identify and Manage ATD 15

References

1. Alves, N.S., Mendes, T.S., de Mendonça, M.G., Sṕınola, R.O., Shull, F., Seaman,
C.: Identification and management of technical debt: a systematic mapping study.
Inf. Softw. Technol. 70, 100–121 (2016)

2. Avgeriou, P., Kruchten, P., Ozkaya, I., Seaman, C.: Managing technical debt in
software engineering (dagstuhl seminar 16162). In: Dagstuhl Reports. No. 4, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik (2016)

3. Besker, T., Martini, A., Bosch, J.: Managing architectural technical debt: a unified
model and systematic literature review. J. Syst. Softw. 135, 1–16 (2018)

4. Bogner, A., Menz, W.: The theory-generating expert interview: epistemological
interest, forms of knowledge, interaction. Interviewing Experts, pp. 43–80. Palgrave
Macmillan, UK, London (2009). https://doi.org/10.1057/9780230244276 3

5. Brondum, J., Zhu, L.: Visualising architectural dependencies. In: 2012 Third Inter-
national Workshop on Managing Technical Debt (MTD), pp. 7–14 (June 2012)

6. Dı́az-Pace, J.A., Tommasel, A., Godoy, D.: Towards anticipation of architectural
smells using link prediction techniques. In: 2018 IEEE 18th International Working
Conference on Source Code Analysis and Manipulation (SCAM), pp. 62–71. IEEE
(2018)

7. Ernst, N.A., Bellomo, S., Ozkaya, I., Nord, R.L., Gorton, I.: Measure it? manage
it? ignore it? software practitioners and technical debt. In: Proceedings of the 2015
10th Joint Meeting on Foundations of Software Engineering, pp. 50–60. ESEC/FSE
2015, ACM, New York, USA (2015)

8. Falessi, D., Cantone, G., Kazman, R., Kruchten, P.: Decision-making techniques for
software architecture design: a comparative survey. ACM Comput. Surv. (CSUR)
43(4), 33 (2011)

9. Freire, S., et al.: Surveying software practitioners on technical debt payment prac-
tices and reasons for not paying off debt items. In: Proceedings of the Evaluation
and Assessment in Software Engineering, pp. 210–219. EASE 2020, Association for
Computing Machinery, New York, USA (2020)

10. Kitchenham, B., Brereton, O.P., Budgen, D., Turner, M., Bailey, J., Linkman,
S.: Systematic literature reviews in software engineering - a systematic literature
review. Inf. Softw. Technol. 51(1), 7–15 (2009)

11. Kruchten, P.: Strategic management of technical debt: tutorial synopsis. In: 2012
12th International Conference on Quality Software, pp. 282–284 (August 2012)

12. Li, Z., Avgeriou, P., Liang, P.: A systematic mapping study on technical debt and
its management. J. Syst. Softw. 101, 193–220 (2015)

13. Li, Z., Liang, P., Avgeriou, P.: Chapter 9- architectural debt management in value-
oriented architecting. In: Economics-Driven Software Architecture, pp. 183–204.
Morgan Kaufmann, Boston (2014)

14. Li, Z., Liang, P., Avgeriou, P.: Chapter 5- architecture viewpoints for documenting
architectural technical debt. In: Software Quality Assurance, pp. 85–132. Morgan
Kaufmann, Boston (2016)

15. Li, Z., Liang, P., Avgeriou, P., Guelfi, N., Ampatzoglou, A.: An empirical investi-
gation of modularity metrics for indicating architectural technical debt. In: Pro-
ceedings of the 10th International ACM Sigsoft Conference on Quality of Software
Architectures, pp. 119–128. QoSA 2014, ACM, New York, USA (2014)

16. Marinescu, R.: Assessing technical debt by identifying design flaws in software
systems. IBM J. Res. Dev. 56(5), 1–9 (2012)

https://doi.org/10.1057/9780230244276_3

16 B. Pérez

17. Martini, A., Besker, T., Bosch, J.: The introduction of technical debt tracking
in large companies. In: 2016 23rd Asia-Pacific Software Engineering Conference
(APSEC), pp. 161–168 (December 2016)

18. Martini, A., Sikander, E., Madlani, N.: A semi-automated framework for the iden-
tification and estimation of architectural technical debt: a comparative case-study
on the modularization of a software component. Inf. Softw. Technol. 93, 264–279
(2018)

19. Nord, R.L., Ozkaya, I., Sangwan, R.S., Koontz, R.J.: Architectural dependency
analysis to understand rework costs for safety-critical systems. In: Companion
Proceedings of the 36th International Conference on Software Engineering, pp.
185–194. ICSE Companion 2014, ACM, New York, USA (2014)

20. Pérez, B., et al.: What are the practices used by software practitioners on technical
debt payment? results from an international family of surveys. In: To appear in
the Proceedings of the 3rd International Conference on Technical Debt. TechDebt,
ACM (2020)

21. Pérez, B., et al.: Familiarity, causes and reactions of software practitioners to the
presence of technical debt: a replicated study in the chilean software industry.
In: 2019 38th International Conference of the Chilean Computer Science Society
(SCCC), pp. 1–7 (2019)

22. Rios, N., et al.: Hearing the voice of software practitioners on causes, effects, and
practices to deal with documentation debt. In: Madhavji, N., Pasquale, L., Ferrari,
A., Gnesi, S. (eds.) REFSQ 2020. LNCS, vol. 12045, pp. 55–70. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-44429-7 4

23. Rios, N., Mendonça, M.G., Seaman, C., Spinola, R.O.: Causes and effects of the
presence of technical debt in agile software projects (2019)

24. Rios, N., Sṕınola, R.O., Mendonça, M., Seaman, C.: The most common causes and
effects of technical debt: first results from a global family of industrial surveys.
In: Proceedings of the 12th ACM/IEEE International Symposium on Empirical
Software Engineering and Measurement, p. 39. ACM (2018)

25. Verdecchia, R., Malavolta, I., Lago, P.: Architectural technical debt identification:
the research landscape. In: International Conference on Technical Debt (TechDebt)
(2018)

26. Xiao, L., Cai, Y., Kazman, R., Mo, R., Feng, Q.: Identifying and quantifying archi-
tectural debt. In: Proceedings of the 38th International Conference on Software
Engineering, pp. 488–498. ICSE 2016, ACM, New York, USA (2016)

27. Zengyang Li, P.L., Avgeriou, P.: Architectural technical debt identification based
on architecture decisions and change scenarios. In: 2015 12th Working IEEE/IFIP
Conference on Software Architecture, pp. 65–74 (May 2015)

https://doi.org/10.1007/978-3-030-44429-7_4

Big Data and Machine Intelligence in
Software Platforms for Smart Cities

Mubashir Ali(B)

DIGIP, University of Bergamo, Bergamo, Italy
mubashir.ali@unibg.it

Abstract. Information and communication technologies (ICT) are play-
ing an important role in the development of software platforms for Smart
Cities to improve city services, sustainability, and citizen quality of life.
Smart City software platforms have a significant role to transform a city
into a smart city by providing support for the development and integra-
tion of intelligent services. Big data analytics is an emerging technology
that has a huge potential to enhance smart city services by transform-
ing city information into city intelligence. Despite this,it has attracted
attention in a rather restricted range of application domains, and its
joint application with self-adaptation mechanisms is rarely investigated.

In this Ph.D. research, in collaboration with the Smart Cities and
Communities Lab. of the Italian national agency ENEA, we focus on
the design and development of a software platform for smart city based
on self-adaptation, as realized in the IBM MAPE-K (Monitor, Analyze,
Plan, and Execute over a shared Knowledge) control loop architecture
model, and on machine intelligence, as provided by a big data analytics
framework. This last is introduced in between the analysis and planning
modules of the MAPE-K control loop model. We will evaluate the effec-
tiveness of the proposed approach with a real showcase in the public
lighting domain.

Keywords: Smart city platform · Big data analytics · Self-adaptation

1 Introduction

More than half of the world population is living in the cities [13]. So facilitating
the city residents with better services and managing the services offered in the
city is an important task for the city managers. In this regard, many countries
are working in the development of Smart City projects. The rapid integration
in the field of Information and Communication Technology (ICT) and Inter-
net of Things (IoT) is playing a significant role in making a city “smart”. The
Smart City concept has been widely and variously defined by the industry and

This Ph.D. research is conducted in collaboration with the Smart Cities and Commu-
nities Lab. of the Italian national agency ENEA.

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 17–26, 2020.
https://doi.org/10.1007/978-3-030-59155-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_2&domain=pdf
http://orcid.org/0000-0003-2467-4045
https://doi.org/10.1007/978-3-030-59155-7_2

18 M. Ali

academia. According to [4,19], Smart City is the integration of social, physi-
cal and IT infrastructures to improve the quality of city services. The primary
objective of the Smart City projects is to improve the city infrastructure by
making use of ICT and IoT solutions and providing smart services to the citi-
zens. The most common smart services offered usually are effective traffic and
parking management, safety and security, environmental monitoring, to name
a few. The storage and analysis of this heterogeneous multimodel urban data
is crucial for a variety of goals, but traditional database management systems
cannot help to achieve these goals. The recent development in the big data tech-
nologies and analytic techniques have made possible to get insight from raw data
and derive useful hidden patterns on how people use cities that can be used for
the development of novel intelligent smart services.

Development of intelligent smart services is equally important for citizens
as well as for the business organizations. Lopez et al. [14] have identified and
reviewed existing intelligent business and management models in the big data
era. They stated that “Intelligence” is understood as a process of gathering,
analyzing, interpreting, and disseminating high-value data and information at
the right time for use in the decision-making process. No doubt, big data tools
are very essentials for the storage and aggregation of large scale heterogeneous
multimodel data, but computationally intensive machine intelligence and data
analytics solutions are required to extract the hidden useful information that
pro facilitate the city planners [9,12].

Public lighting energy management is one of the most crucial problems for
smart cities [18]. Public lighting is one of the biggest energy consumers, especially
public buildings such as government, health, and educational institutes have a
high usage frequency [24]. However, the applications of big data analytics in this
domain are limited.

Most of the studies reported in the literature rely on a very limited amount
of historical data and are unable to process large amounts of urban data intelli-
gently based on machine learning as well as big data platforms. Existing systems
also lack of support for the identification of KPIs (Key Performance Indicators)
– such as lighting KPIs (e.g., power per square meter, power per inhabitant,
power per lighting spot, dimming KPIs, etc.) and KPIs for anomalies detection
(outlier detection) – and forecasting models (such as time series prediction and
anomaly prediction). With the aim of supporting city decision making processes
and overcome these shortcomings, more intelligent systems based on big data
analytics are required.

The goal of this PhD research project is to design and develop a novel big
data analytic framework to support the decision making process in self-adaptive
smart city software platforms, and therefore provide more intelligent city ser-
vices. The proposed generic analytical framework will initially be validated in
the public lighting domain to address the above highlighted limitations of the
existing systems.

In order to achieve such a goal, the following main research questions are
formulated:

Big Data and Machine Intelligence in Software Platforms for Smart Cities 19

– RQ1: How big data analytics and self-adaptation mechanisms can be inte-
grated in smart city software platforms?

– RQ2: Which machine learning and deep learning algorithms are more suitable
to support decision making in self-adaptive smart city software platforms?

– RQ3: Which big data technology stack and performance metrics are useful
for the public lighting data analysis?

– RQ4: Which artifacts and emerging standards are more useful to provide
KPI for smart cities and how these can be quantitatively measured?

2 Related Work

The state-of-the-art includes two main streams of research: (i) big data analytics
for smart city platforms, and (ii) works about smart city services reported in the
public lighting domain.

Big Data Analytics in Smart City Platforms. The role of big data in the
development of smart cities is undeniable [10]. Big data analytics is an emerging
technology that has a huge potential to enhance smart city services by transform-
ing city information into city intelligence. Despite this, it has attracted atten-
tion in a rather restricted range of application domains, and its joint application
with self-adaptation mechanisms is rarely investigated. The big data analytics
has been actively used in the development of smart city software architecture, in
this section, existing state-of-the art on smart city software architectures adopt-
ing big data analytics and self-adaptation are discussed.

Azzam et al. [2] proposed the architecture of the CitySPIN project for the
development of smart services. The platform of the CitySPIN is assisted with
methods and techniques, which are based on Semantic WEB and Linked Data
technologies for the acquisition and integration of heterogeneous data of different
formats (structured, unstructured, and semi-structured), including open data
and social data. The CitySPIN project is based on a three-layered architecture:
1) back-end layer, which is responsible for data collection, pre-processing and
data integration, 2) service layer, which provides the services of analysis by
applying queries and prediction model. The prediction model is based on machine
learning algorithms to facilitate the prediction by using historical data that can
assist in decision making, and 3) front end layer or presentation layer, which
facilitate the users to interact with the system and perform different kinds of
analysis of their need.

In another study [17], a CityPulse framework is presented for the development
of smart city services by enabling the integration of heterogeneous data streams,
interoperability, (near-) real-time data analytics, and applications development
in a scalable framework. The CityPulse framework is composed of a powerful
data analytics module, which is empowered to perform intelligent data aggre-
gation, quality assessment, event detection, contextual filtering, and decision
support. All the components of the CityPulse have been developed as reusable
entities and application development is facilitated by open APIs.

20 M. Ali

Pedro et al. [16] proposed a project called CityAction in the context of smart
city, which facilitate the city managers to take actions/decisions on the bases of
real-time city data. The main objective of the project is to support the design and
development of an integrated platform that has the ability to combine city data
coming from different sources with heterogeneous devices and perform intelligent
data analysis. The architecture of the CityAction is based on four independent
layers: 1) Device layer, in which IoT sensors, actuators and communication gate-
ways correspond to different vertical systems, 2) M2M Connectivity layer, which
is responsible for the devices interconnection to the internet, 3) Middleware
layer, this layer has the responsibility to integrate several blocks like data bro-
ker, monetization, data management and analytics, vertical management M2M
management, and API management, 4) Application layer that also has an ability
to incorporate the open data to enrich the application portfolio. Mohamed et
al. [5] came up with another approach to transform big data into a smart data.
In this study, they introduced a system called CityPro. The architecture of the
CityPro is discussed for surveillance system. In the architecture of the CityPro,
a federated star-schema is used in the storage repository and repository only
store the summarized data instead of huge amount of data.

In another study [6], an approach is discussed for the development of next-
generation big data applications. they have proposed a CAPIM (Context-Aware
Platform using Integrated Mobile services) platform, which is design to automate
the process of collecting and aggregating the context information on a large scale.
An intelligent transportation system is developed by using CAPIM platform,
which helps the user and city managers to understand the traffic problems of
their city. In another interesting study, Paula et al. [21] proposed a simple and
scalable hut architecture to extract the valuable historical insights and actionable
knowledge from IoT data streams. The developed hut architecture support both
historical as well as real-time data analysis. It is applied on two real-world appli-
cations scenarios in smart city environment such as transportation and energy
management. The implementation of the hut architecture is based on the open
source components and can be replaced or customized according to the need.
In another study [20], authors proposed a system called CrowdNav to enable
self-adaptation in a complex large scale software-intensive distributed system by
using big data analytics. The novel contribution of the developed system is to
use the operational data, which is generated at run-time for adaption and the
seamless integration of self-adaptation with latest Big Data technologies.

Smart Public Lighting. Our proposed smart city software architecture will
initially be validated in the public lighting domain, so hereafter we have pre-
sented some notable studies reported in the public lighting domain. Marijana
et al. [24] proposed an approach to address the issues of energy efficiency of
the public buildings. The contribution of this approach is two-fold: 1) apply
machine learning models to predict the energy consumption of the public build-
ing, a real dataset of Croatia that composed of 17,000 public buildings is used
for experimental evaluation. Three well known ML methods i.e. deep neural net-
work, RPart decision tree, and random forest were used, and it is observed that

Big Data and Machine Intelligence in Software Platforms for Smart Cities 21

random forest produce the highest accuracy, and 2) an architecture of an intelli-
gent machine learning based energy management system called: MERIDA that
is composed of six layers i.e. i) big data collection, ii) data pre-processing, iii)
ML models for prediction, iv) data interpretation and visualisation, v) decision
making, and vi) benefits. This proposed study has extended and modified the
approaches presented in [11,15,22].

In another study [15], authors proposed an advanced IoT based intelligent
energy management system for public buildings. The architecture of the pro-
posed system consists of three modules: 1) data collection module 2) data inte-
gration module, and 3) prediction models/rules and action plans. In the first
module of the proposed system, authors introduced five pillars such as building’s
data, energy production, energy prices, weather data, and end-users’ behavior. In
data integration module, a semantic framework for data integration is proposed,
which is based on Ztreamy system, a Python-based semantic service and Optimus
ontology is also created. The third module integrates prediction models, rules,
and a MariaDB database that is used to store the results. In [11], authors dis-
cussed an IoT based system comprised of three-layered architecture. The identi-
fied IoT layers are: (1) the perception layer that is composed of internet-enabled
devices (sensors. cameras, GPS, RFID, etc), (2) the network layer, which is
responsible to forward data from perception layer to the application layer, and
(3) the application layer, which process the data coming from previous two lay-
ers and suggest better power’s distribution and management strategies. Authors
stress that Supervisory Control and Data Acquisition (SCADA) systems are the
core of decision making in smart grid, and these systems are used for real-time
monitoring and control over the power grid.

Galicia et al. [8], proposed a machine learning based ensemble method for
predicting time series big data. The ensemble model is composed of a decision
tree, gradient boosted trees, and a random forest. The system is implemented
by using MLib library of the Apache Spark framework to ensure the scalabil-
ity and suitability for big data. The experimental evaluation is performed on
two different datasets i.e. Spanish electricity consumption data of 10 years, and
Australian solar data. The experimental results showed that dynamic ensemble
model provides best prediction results in comparison with static ensemble and
individual ensemble members.

In another similar study [23], a deep learning based approach is proposed for
big data time series forecasting. The deep feed forward neural network is used
with Apache Spark platform for distributing computing. The system is evaluated
on a real-world dataset composed of electricity consumption in Spain and authors
observed that deep learning is one of the best technique to process big data time
series along with the decision tree, in term of scalability and accuracy. In [22], an
intelligent building management system is proposed to manage the public sector
buildings of Croatia.The system is based on a three layered architecture, which
collects building data, their energy, water consumption, monitor consumption
indicators, detects anomalies or irregularities, sets energy efficiency targets and
reports energy and water consumption savings.

22 M. Ali

An IoT and big data analytics based smart home energy management system
is presented in [1], in which IoT devices are installed with home appliances to
collect the energy consumption data, then collected data is forward to a cen-
tralized server for further processing and analysis. The proposed system has
utilized off-the-shelf business intelligence (BI) and big data analytics software
components to manage energy consumption. In [7], authors presented an adap-
tive lighting system for smart city environment. The developed system has an
ability to autonomously control the lighting level of a street lamp by exploiting
the vehicles data (car, bus, bike motorcycle) and pedestrian traffic in the targeted
area. The system is making use of locally installed controllers, motion sensors,
video cameras and electronic devices for video processing. Authors reported that
by using this proposed system up to 65% energy can be saved in comparison of
tradition street lamp system.

From a preliminary state-of-the-art review, it seems there does not exist a
general smart city software platform designed by the joint application of big data
analytics and self-adaptation mechanisms. It has also been observed that most
of the software architectures for smart city services, which support adaptability,
do not explicitly adopt a MAPE-K control loop architecture for self-adaptation.

3 Proposed Approach

This section presents a preliminary outline of a big data-driven self-adaptive
software architecture to Support smart city decision making (see Fig. 1). The
main modules of the proposed architecture are the Knowledge repository, Mon-
itor, Analysis, Planning, Execute, and the Analytical framework. This last is
the major focus of our research effort, together with the concrete realization
and evaluation with respect to the public lighting domain. The function of each
module is described in the following paragraphs.

Knowledge Repository. It is composed of a urban big data lake and by the useful
knowledge and analytical models’ results produced by the MAPE modules and
by the analytical framework.

Monitor Module. It consists of static and dynamic data collection frameworks
and of a real-time data stream processing and integration middleware. For exam-
ple, the Monitor component may collect data from the lighting managed system
PELL (Public Energy Living Lab), a project started by ENEA in 20141. The
primary objective of the PELL system is to collect, handle, organize and evaluate
the dynamic and static strategic data of urban energy-intensive infrastructures
(public lighting and public buildings). PELL brokers and gateway act as a sen-
sors to update the monitor module.

1 https://www.pell.enea.it/enea/.

https://www.pell.enea.it/enea/

Big Data and Machine Intelligence in Software Platforms for Smart Cities 23

Big Data Lake

Monitor Analysis

Smart City Decision Making

Knowledge Repository

PELL
Broker

PELL
Gateway

Probes

trigger

analytic
query

trigger

Planning Execute

update models select models
read queries

adaptation options

develop models adaptation goals
adaptation options

write plan

read plan

Effectors

trigger

Analytical Framework

ML Algorithms

KPIs

Analytical models
output / results

Real-time data stream
processing / integration

middleware Visualization

Static Data Dynamic Data

Public Lighting
Data

Public Building
Data

PELL Data

Managed System

Fig. 1. Proposed adaptive smart city software architecture

Analysis Module and Analytical Framework. The analysis module analyzes the
up to date knowledge to determine whether adaptation is required or not. In
order to support dynamic adaptation, we have introduced an analytical frame-
work in between the analysis and planning phases of the MAPE-K loop. The
analytical framework consists of KPIs management tools, machine learning (ML)
algorithms and city visualization dashboards. Different machine learning tech-
niques such as supervised learning, unsupervised learning and reinforcement
learning will be investigated for providing descriptive, predictive and prescrip-
tive analysis. Since the performance of the machine learning models is highly
dependent on the quality of data, different data pre-processing techniques will
be applied to transform unstructured data into structured form. The analysis
module could formulate analytical queries to the analytical framework in order
to get the desired analysis, then their output/results are provided to the analysis
component by making them available into the knowledge repository. Once the
analysis components have performed the required analysis, it may trigger the
planning module.

24 M. Ali

Planning and Execute Modules. In the planning component, adaptation options
are ranked based on the adaptation goals (for example, street lighting adaptation
according to real traffic conditions, lighting anomalies prediction and mitigation
– such as peaks, outlier, faults, trends, etc. – in adaptive lighting) and a plan
for the highest ranked option is created. This plan is then used by the executor
module to adapt the managed system with the help of actuators controllable
remotely or with the human interventions/actions made trough control rooms.

4 Expected Results and Evaluation

The expected outcomes of our research include both theory and practice. The
first expected contribution of the work will be a systematic literature review
conducted on the main subjects and RQs of the proposed PhD research. It
will provide a comprehensive overview of the existing approaches and challenges
in the development of smart city software platforms and intelligent smart city
services. The two main contributions with respect to the main goal of the project
are the following:

– Design and development of the adaptive smart city platform model described
in the previous section within the existing ENEA smart city platform [3],
focusing on the analytical framework and on the definition and implemen-
tation of the ML algorithms, KPIs identification and calculation (such as,
in the lighting domain, power for square meter, power for inhabitant, power
for lighting spot, KPIs for anomalies detection, etc.), and analytical data
visualization.

– Evaluation of the proposed platform with a real-world smart city use case in
the domain of public lighting. Intelligent analysis of the PELL public light-
ing data (such as descriptive, predictive, and prescriptive analysis) will be
conducted.

5 Conclusion

In this paper, we have presented a research summary of a PhD project. We
presented the design of our proposed smart city software architecture and high-
lighted the challenges in the existing smart city software platforms. The pro-
posed architecture model is based on big data-driven software self-adaptation.
We have also discussed the modules of proposed architecture with respect to big
data analytics and the self-adaptation mechanism that we intend to use, namely
the MAPE-K loop. We will evaluate the effectiveness of proposed approach into
a PELL project use case.

Acknowledgement. This research program is supported in part by the Italian agency
ENEA and the Italy’s Lombardy Region.

Big Data and Machine Intelligence in Software Platforms for Smart Cities 25

References

1. Al-Ali, A.R., Zualkernan, I.A., Rashid, M., Gupta, R., AliKarar, M.: A smart home
energy management system using iot and big data analytics approach. IEEE Trans.
Consum. Electron. 63(4), 426–434 (2017)

2. Azzam, A., et al.: The citySPIN platform: a CPSS environment for city-wide infras-
tructures (2019)

3. Brutti, A., et al.: Smart city platform specification: a modular approach to achieve
interoperability in smart cities. In: Cicirelli, F., Guerrieri, A., Mastroianni, C.,
Spezzano, G., Vinci, A. (eds.) The Internet of Things for Smart Urban Ecosystems.
IT, pp. 25–50. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-96550-
5 2

4. Caragliu, A., Del Bo, C., Nijkamp, P.: Smart cities in Europe. J. Urban Technol.
18(2), 65–82 (2011)

5. Dbouk, M., Hakim, M., Sbeity, I.: CityPro: from big-data to intelligent-data; a
smart approach. In: BDCSIntell, pp. 100–106 (2018)

6. Dobre, C., Xhafa, F.: Intelligent services for big data science. Future Gen. Comput.
Syst. 37, 267–281 (2014)

7. Gagliardi, G., et al.: A smart city adaptive lighting system. In: 2018 Third Inter-
national Conference on Fog and Mobile Edge Computing (FMEC), pp. 258–263.
IEEE (2018)

8. Galicia, A., Talavera-Llames, R., Troncoso, A., Koprinska, I., Mart́ınez-Álvarez, F.:
Multi-step forecasting for big data time series based on ensemble learning. Knowl.
Based Syst. 163, 830–841 (2019)

9. Habibzadeh, H., Kaptan, C., Soyata, T., Kantarci, B., Boukerche, A.: Smart city
system design: a comprehensive study of the application and data planes. ACM
Comput. Surv. 52(2), 1–38 (May 2019). https://doi.org/10.1145/3309545

10. Hashem, I.A.T., et al.: The role of big data in smart city. Int. J. Inf. Manag. 36(5),
748–758 (2016)

11. Jangili, S., Bikshalu, K.: Smart grid administration using big data and wireless
sensor networks. Int. J. Adv. Res. Sci. Eng 6, 629–636 (2017)

12. Juan, Y.K., Wang, L., Wang, J., Leckie, J.O., Li, K.M.: A decision-support system
for smarter city planning and management. IBM J. Res. Dev. 55(1.2), 1–3 (2011)

13. Lea, R.J.: Smart cities: an overview of the technology trends driving smart cities
(2017)

14. López-Robles, J.R., Otegi-Olaso, J.R., Gómez, I.P., Cobo, M.J.: 30 years of intel-
ligence models in management and business: a bibliometric review. Int. J. Inf.
Manag. 48, 22–38 (2019)

15. Marinakis, V., Doukas, H.: An advanced IoT-based system for intelligent energy
management in buildings. Sensors 18(2), 610 (2018)

16. Martins, P., Albuquerque, D., Wanzeller, C., Caldeira, F., Tomé, P., Sá, F.: Cityac-
tion a smart-city platform architecture. In: Arai, K., Bhatia, R. (eds.) FICC 2019.
LNNS, vol. 69, pp. 217–236. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-12388-8 16

17. Puiu, D., et al.: Citypulse: large scale data analytics framework for smart cities.
IEEE Access 4, 1086–1108 (2016)

18. Radulovic, D., Skok, S., Kirincic, V.: Energy efficiency public lighting management
in the cities. Energy 36(4), 1908–1915 (2011)

19. Robert, G., et al.: Will the real smart city please stand up? City 12(3), 303–320
(2008)

https://doi.org/10.1007/978-3-319-96550-5_2
https://doi.org/10.1007/978-3-319-96550-5_2
https://doi.org/10.1145/3309545
https://doi.org/10.1007/978-3-030-12388-8_16
https://doi.org/10.1007/978-3-030-12388-8_16

26 M. Ali

20. Schmid, S., Gerostathopoulos, I., Prehofer, C., Bures, T.: Self-adaptation based on
big data analytics: a model problem and tool. In: 2017 IEEE/ACM 12th Interna-
tional Symposium on Software Engineering for Adaptive and Self-Managing Sys-
tems (SEAMS), pp. 102–108. IEEE (2017)

21. Ta-Shma, P., Akbar, A., Gerson-Golan, G., Hadash, G., Carrez, F., Moessner, K.:
An ingestion and analytics architecture for iot applied to smart city use cases.
IEEE Internet of Things J. 5(2), 765–774 (2017)

22. Tomšić, Ž., Gašić, I., Čačić, G.: Energy management in the public building sector-
isge/isemic model. Energija 64(1–4) (2015)

23. Torres, J.F., Galicia, A., Troncoso, A., Mart́ınez-Álvarez, F.: A scalable approach
based on deep learning for big data time series forecasting. Integr. Comput. Aided.
Eng. 25(4), 335–348 (2018)

24. Zekić-Sušac, M., Mitrović, S., Has, A.: Machine learning based system for managing
energy efficiency of public sector as an approach towards smart cities. Int. J. Inf.
Manag. 102074 (2020)

Decentralized Self-adaptation in
Large-Scaled Systems of Systems

Daniel Matusek(B)

Institute of Systems Architecture, Chair of Computer Networks, Technische
Universität Dresden, 01069 Dresden, Germany

daniel.matusek@tu-dresden.de

Abstract. Today’s distributed applications require steady mainte-
nance. To tackle this problem, so-called self-adaptive systems (SAS) can
be used to change the behaviour automatically to adapt to a changing
environment and context. Open challenges remain when those SAS get
combined with Systems of Systems (SoS). SoS can get partitioned in mul-
tiple sub-parts as a result of errors or connection faults which rises the
need for a decentralized self-adaptation approach in SoS. In this doctoral
paper, those open challenges are discussed and explained using a scenario
of self-driving vehicles. Ideas for solving the problems are presented and
the evaluation method of using the Webots simulation environment is
explained. Solving the problems of self-adaptive SoS will enable robust
adaptations in large-scale systems.

Keywords: Self-adaptive systems · Decentralized systems · Robust ·
Distributed systems · Systems of systems

1 Motivation

Today’s distributed applications require steady maintenance. To tackle this prob-
lem, so-called self-adaptive systems (SAS) could be used to change the behaviour
automatically [1]. Solving the problem of adapting systems to changing context
and its environment would allow for nearly perpetual running systems [2]. SAS
can monitor themselves and their environment and analyse the state to adopt
the internal structure and behaviour to the changed context. Many proposed
systems use a central instance to control adaptation across multiple devices.

Systems of systems (SoS) are large interconnected collaborative systems [3],
which consist of multiple autonomous systems. They work together to achieve a
common goal, but the individual subsystems can have their own goals, too. Due
to numerous participants from different manufacturers heterogeneity is intro-
duced into those systems. During the lifetime of an SoS, communication errors
or internal errors can occur, which impacts the coordination of self-adaptation
and disturbs a trouble-free procedure. Due to connection faults, new subsystems
can emerge and a system gets partitioned in even more parts. Due to multiple
autonomous parts and heterogeneity of the system, a centralized approach for
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 27–37, 2020.
https://doi.org/10.1007/978-3-030-59155-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_3&domain=pdf
http://orcid.org/0000-0002-1723-5514
https://doi.org/10.1007/978-3-030-59155-7_3

28 D. Matusek

self-adaptation in SoS is not suitable due to possible bottlenecks, communication
overhead and a single-point-of-failure.

A decentralized solution for coordinating adaptations increases robustness
and allows for improving the scalability of those systems [4]. Recently researchers
proposed first approaches for the decentralized coordination of adaptations [5].
By developing a communication protocol to invoke adaptations decentrally, the
need for a central instance was superseded. This approach has not been yet
adopted for SoS, where the overall system structure is more complex than in a
plain distributed system. Current approaches [5] rely on disturbance-free commu-
nication and correct working nodes, which might not be suitable in an SoS when
many participants are involved. Enabling decentralization for self-adaptation in
SoS would help to make those systems more robust and solving the remaining
research challenges.

Fig. 1. Introduction of the scenario

Problem Scenario. To describe the problems which arise when combining
self-adaptation and SoS, a scenario of a self-organizing [6] SoS is presented (see
Fig. 1). The SoS consists of trucks, which span convoys or partitions of convoys
on a network of highways. Convoys are organized towards a common goal and
work together to optimize their results and fulfilment of the task. Each convoy
can communicate with all the other convoys and the trucks can communicate
with the other trucks in their convoy. In Fig. 1 the communication between trucks
and convoys is indicated. Those connections could be disturbed and prevent the
message exchange between participants, or even lead to the isolation of single
trucks because they cannot connect to other peers. The subsystems get divided
into multiple subparts and partitions are emerging. Those subparts should be
able to work for their own to keep the whole system running. Split trucks from
their convoy should now organize themselves together and continue to realize
their system goal and possibly connect to their originating convoy later. Figure 3
shows a connection error for convoy1, where the right truck cannot communicate
with others at this moment. This results in missing messages about ongoing

Decentralized Self-adaptation in Large-Scaled Systems of Systems 29

adaptations by other trucks even in the same convoy. A truck or convoy might
not adapt to a new or changed goal.

Scenario System Model. For the scenario and throughout the thesis, assump-
tions must be made about the underlying system model to understand the iden-
tified challenges and preliminary research questions. First, a decision about the
form of coordination and knowledge sharing, i.e. if every participant must know
about each other and if every participant must learn about all adaptations and
changes in the system. Since the member of the SoS can change dynamically,
the participants do not necessarily need to know about every single truck in the
system.

To perform adaptations, member of the SoS must agree on or decline the
adaptation, which leads to a decision whether we need a strong consensus to
adapt as one or if subparts are allowed to adapt without the agreement of other
subsystems or nodes. Since the scenario is considered a large-scale system, it
would be a drawback if all nodes of the SoS must have agreed on an adapta-
tion. Therefore adaptations without the agreement of all other participants are
possible.

Next to the aforementioned constraints for the regarded types of SoS, addi-
tional properties must be met by the designed scenario. We use the character-
istics described by Wätzold et al. [7]. The SoS is open, which allows for new
participants during run-time and also allows for leaving members. The system is
heterogeneous, which means that different types of members can be part of the
system, e.g. different manufacturers. Self-adaptivity is a mandatory property.
Next, it is a dynamic system because its internal structure can be varying dur-
ing runtime. The subsystems in the SoS work collaborative to achieve a common
goal but can work independently if they are on their own. Decentralization is
a key aspect in this example to ensure higher availability when convoys move
independently [8]. A central coordination instance is a single point of failure and
if this central instance is not reachable due to shortages or connection issues,
adaptations could not be invoked. Besides that, we eliminate a single point of
trust and allow multiple instances to make decisions instead of trusting only
one central node. Additionally, decentralized control allows for better scalability
[4], which is crucial in a scenario of self-driving trucks, where the number of
participants is unknown upfront.

2 Foundations

During the thesis, the notion of roles will be used to develop a solution for the
problem of robust, decentralized SAS. With the help of roles, we can express
the context-dependent and collaborative behaviour of objects, which is crucial
for self-adaptive SoS. This approach has been proposed by Charles W. Bach-
mann [9] in 1973. To describe roles, their objects and properties, Steimann
introduced 15 features which apply for role-based infrastructure [10]. Kuehn
et al. [11] surveyed several approaches for role-based programming languages and
defined an extended understanding of roles, in addition to those from Steimann

30 D. Matusek

[10]. An object enriched with a role can act according to its played role and
extends its original behaviour by the properties of the role. A big advantage of
this concept is the ability to dynamically change the role of an object during
runtime. This enables run-time adaptation which supersedes the need for long
maintenance breaks and downtimes. An object (a so-called natural type), which
could be e.g. a real-world entity, can play one or more roles and so change the
behaviour, functions and abilities. Functionality could be loaded during run-time
and would allow for a nearly perpetual runtime if we took aside arising errors or
bugs. Those are some of the properties that can be exploited in the research of
self-adaptive software systems. To develop role-based applications, a role-based
domain-specific language called SCROLL was developed, which is based on scala
and allows for dynamic dispatch [12].

Weißbach et al. [5] introduced an algorithm for coordinated decentralized
adaptations. Every node has its adaptation manager (AM) which is responsible
for invoking adaptations on the node runtime and is communicating with the
AM on other nodes. The structure is indicated in Fig. 2. The adaptation coor-
dination is managed by the AM on a higher layer. The adaptation process is
performed transactionally and atomically, which means that only if every par-
ticipant agrees and successfully prepares the adaptation, it will be executed.
Otherwise, the changes will be rolled back. Every AM is allowed to invoke an
adaptation if necessary. The implementation and concept from Weißbach et al.
[5] are using a local role application runtime called LyRT1 [13,14] on their nodes,
which naturally allows for the run-time adaptations of the objects.

Fig. 2. Adaptation Manager in decentralized protocol

The protocol from Weißbach et al. [5] performing adaptations in an atomic
and transactional way. This fits the concept of ACID (atomicity, consistency,
isolation and durability) properties for database systems. This ensures that an
adaptation is only successful if the whole change is applied for every participant.
A contrary concept are BASE (Basic Availability, Soft-State, Eventual consis-
tency) database transactions, which ensures that some level of availability is
guaranteed and the data might not be the most current. Eventual consistency

1 https://github.com/nguonly/lyrt-with-transaction.

https://github.com/nguonly/lyrt-with-transaction

Decentralized Self-adaptation in Large-Scaled Systems of Systems 31

ensures, that the system will reach some guaranteed state eventually, but not
necessarily at every moment.

Conflict-Free Replicated Data Types (CRDTs) is a distributed data structure
which allows for the automated synchronisation of distributed replicated data
sets. CRDTs can be used offline and are not dependent on their latency. E.g.,
two parties share a common file and have an offline copy each. They are allowed
to work offline on them and to make changes. When they both are online again,
the replicas will get synchronised in the background automatically. CRDT enable
the concept of eventual consistency of BASE, because the replicated datasets are
not consistent if the participants are not connected, but synchronise afterwards.

3 Research Gap and Research Questions

In the following section, identified problems of the existing work and related
research questions will be presented which will be tackled in the next years.
Limitations are presented and discussed.

Subsystems in SoS can be the result of errors and connection faults, which
partition the system. Those emerged subsystems could now perform adaptations
to provide useful services within each partition. Each partition then takes its
own independent adaptation decisions and thus, the subparts drift away from
a globally consistent configuration. As a consequence, after reintegrating the
subparts synchronization might be necessary to unite all system parts back to
a single system. This challenge was already indicated by Weyns et al. [15]. This
results from the independence of SoS because subsystems want to achieve their
goals. Projecting this onto the scenario, Convoy1 and convoy2 from Fig. 1 could
both trigger adaptations which affect the whole SoS including convoy3. Those
changes can be contradictory to each other, which affects the system negatively.
Considering the protocol from Weißbach et al. [5], concurrent adaptations could
be even invoked by every single truck. This leads to the first research question:
RQ1. How are concurrent adaptations in multiple subsystems handled?

Fig. 3. Connection error in a convoy

Resulting inconsistency and a possibly false state of the system as a cause
of connection errors is another challenge to tackle. Due to missing information

32 D. Matusek

because of a connection error, a truck or convoy might have wrong routing infor-
mation and keep moving towards a wrong goal. Using the Weißbach protocol to
perform a decentralized adaptation, the adaptation would be aborted since the
disconnected truck could not respond to the request. For our scenario, aborting
a change might not be the optimal solution regarding self-optimization. Incon-
sistency is tolerable to a certain point, but it must be dealt with.

RQ2. How can we recover a consistent state in an SoS after a self-adaptation
was performed when a node or connection failed?

Another aspect to investigate is the distribution of leaders in the SoS [16]
and the hierarchy of decentralized SoS. In the decentralized coordination proto-
col from Weißbach et al. [5] each AM can act as a coordinator in the system.
The problem is illustrated in Fig. 1. With the protocol in its current form, every
truck can invoke changes for the whole system regardless of its convoy. It is
questionable if this is suitable for SoS, where a system is divided into multi-
ple subsystems because it raises the communication overhead and increases the
chance of concurrent adaptations.

RQ3. Which degree of decentralization is suitable for the adaptation coordina-
tion in SoS?

Investigated approaches for decentralized adaptations use the concept of
atomic adaptation transactions for performing the distributed adaptations [5].
It is questionable if this is the right procedure if we consider large systems with
a high amount of nodes. A truck in convoy1 could trigger an adaptation to
change the behavior of the other trucks in convoy2 or convoy3. An example is
route optimization for the other convoys. With atomic adaptation transactions
following the ACID principle, if one of the convoys or trucks did not accept the
change or revoked it, the whole adaptation will be rolled back. Even if the other
convoy would profit from it, the change would not be executed.

RQ4. How do non-atomic adaptation transactions supporting a notion similar
to eventual consistency behave in comparison to atomic adaptation transactions
for decentralized self-adaptation?

Approaches for solving and answering the challenges and research questions
will be presented in the next part. The possible contributions will be discussed.

4 Approach

The presented approach from Weißbach et al. [5] will be used as a foundation to
develop decentralized self-adaptation in SoS and to introduce more robustness.
In the following section goals for the elaborated problems will be presented.

Regarding RQ1, the problem of concurrent adaptations must be solved by a
synchronization mechanism which compares the originating and resulting states
of adapted nodes. The approach for RQ2 is related to the first, since the result

Decentralized Self-adaptation in Large-Scaled Systems of Systems 33

of both problems is missing synchronisation of the knowledge about the global
state and an inconsistent or erroneous global state.

A procedure for failed nodes and connections between trucks and convoys
must be developed which reestablishes consistency when subparts they get con-
nected again or when concurrent adaptations were performed. Two possibilities
can be investigated for this. The first can be used to address both RQ1 and
RQ2. In chapter two, CRDTs were introduced, which are mainly used for sys-
tems like e.g. Google Documents, which allow for collaborative work and working
with offline copies [17]. It would be interesting to apply the concept of CRDTs to
self-adaptive SoS. The current state of nodes and application could be treated
like a shared dataset, which is replicated on multiple then. In case of a dis-
connection and possible resulting concurrent adaptations, those changes will be
translated into a form similar to changes for CRDTs and after reconnection or
finished adaptations, the changes can be synchronized again. Since this is an
early stage of research, a deeper investigation on how to use CRDTs for self-
adaptive SoS is necessary. In the case of a disconnected node which does not
notice an upcoming adaptation (RQ2), the protocol from Weißbach et al. [5]
could also be extended to replay adaptations when nodes are available again
and if the adaptations were not concurrent. If a truck in a convoy failed, the
other participants of the convoy are responsible to resend all missed messages.
For whole convoys, the nearest convoy should trigger the recovery. This solu-
tion approach requires the disconnected subsystem or single node to remain in
its original state before it came to an error, to ensure that no adaptations or
changes will be overwritten.

Another identified problem regarding decentralized self-adaptation in SoS in
the scenario is the leader election. The decentralized protocol from [5] allows
every participant of the system to invoke adaptations and all nodes are treated
equally. We will investigate if every AM of a subsystem should be able to com-
municate with others SoS, or if each subsystem has a leader which is responsible
for inter-subsystem communication. We will compare the impact of different
amount of leaders in an SoS and different hierarchies, or if equal members in an
SoS regardless of the different subsystems are the right approach. For a hierarchi-
cal approach, a correct leader election mechanism must be chosen. This could be
either a random decision or a sophisticated leader election mechanism. An exem-
plary algorithm for decentralized distributed systems was presented by Mo et al.
[18]. The proposed way is stable even on position changes of the devices which
is important for the scenario of self-driving trucks or if the topology adapts,
which is very important for SoS. Their approach also makes assumptions about
the correct moment in time when the leader must be switched. Additionally, we
will analyse the needed hierarchical structure for efficient adaptations in SoS. A
possible leader distribution and hierarchy is shown in Fig. 4. Each convoy has
a leader now, which is responsible for the communication with the other con-
voys. For the internal structure of a convoy, each node is equal, but with this
approach, the communication overhead for the whole system is reduced. The
leader is indicated in orange. Leader change as proposed in [18] is important,

34 D. Matusek

since a leader can get disconnected in a subsystem, which is shown in convoy1
in Fig. 4. Another truck must lead the convoy from now on. In combination with
leader election, it is necessary to detect if partitioning occurred and which nodes
belong to which partition. The next step would then be a leader election in that
partition.

Fig. 4. Leader election in SoS

The existing decentralized adaptation protocol [5] uses atomic adaptation
transactions for performing adaptations and follows the ACID principle. Since
this approach introduces some limitations for self-adaptive SoS as explained in
the chapter before, we will investigate the impact of the BASE concept for those
transactions, which is motivated by modern database systems2. The current
adaptation mechanism would allow a certain level of inconsistency and errors of
nodes which participate in a transaction. It will be necessary to define a limit
of tolerance for the eventual consistency and which states are still valid system
states. A strong consensus is not necessary then. This would allow for error
tolerance during the adaptation phase since the work focusses on large-scale
systems where errors are more likely to happen than in a small system, and only
the affected parts must be recovered.

5 Methodology

As explained in the previous sections, the identified challenges will be deeper
investigated using the scenario of self-driving trucks. We will simulate those
trucks using the Webots3 Simulation environment. First, the overall sce-
nario without error-solving mechanisms must be implemented to evaluate the
behaviour of the system in its initial state. Afterwards, the error cases which
were explained in Sect. 3 will be integrated into the system to check the impact

2 https://neo4j.com/blog/acid-vs-base-consistency-models-explained/.
3 https://cyberbotics.com/.

https://neo4j.com/blog/acid-vs-base-consistency-models-explained/
https://cyberbotics.com/

Decentralized Self-adaptation in Large-Scaled Systems of Systems 35

of the errors and to have a basis for evaluating the contributions of the thesis.
The next step will be the investigation of a leader election and decentralization
hierarchy to elaborate on the impact of many potential concurrent leaders which
may invoke adaptations contrary to each other. After that, a concept will be cre-
ated to use BASE transactions instead of ACID to allow for fault-tolerance in
the system. For that, the protocol from Weißbach et al. [5] must be extended and
modified. The designed concept will be evaluated using the scenario and proper
benchmarks regarding errors and performance. We will evaluate the reliability
of the decentralized adaptations in the subsystems and evaluate the impact on
performance and communication overhead with different amounts of leaders in
the SoS. An assessment of successful synchronization of diverged states must be
done.

The scenario will be using a role runtime on the trucks in the convoys. This
allows us to easily change the behaviour of the objects during run-time as a
result of an adaptation. Generally, we will consider run-time adaptation for this
project to decrease downtimes and keep the system running.

Those steps and improvements will result in robust self-adaptation in SoS
using decentralization.

6 Future Work and Research Plan

Since the thesis is in an early stage, the next time will be used for deeper sys-
tematic literature research. The focus will be on decentralized coordination tech-
niques, especially non-atomic techniques. Besides that, literature regarding con-
currency in distributed systems will be evaluated. In parallel, a prototype of
the mentioned idea will be implemented to evaluate intermediate results and
to reschedule the plan if necessary. To test preliminary results, the simulation
environment with Webots will be set up. Publications are planned for comparing
the impact of ACID vs. BASE for decentralized adaptations and the efficiency
of fewer leaders in subsystems of the SoS.

Following milestones are planned for the rest of the PhD time:

– Q4/2020: Finished deeper literature work and final research questions
– Q3/2021: Implemented improved algorithms for decentralized adaptations
– Q4/2021: Evaluation of the results using Webots
– Q1/2022: Begin of write-down
– Q3/2022: Handing in the finished thesis

7 Conclusion

In this doctoral project paper, the motivation and challenges in the field of
SoS with decentralized self-adaptation were presented. Current problems and
challenges were discussed and the state-of-the-art approaches were analysed. It
was shown that there are still open fields of interest and issues regarding self-
adaptation in partitioned SoS. The approaches for tackling the challenges were
outlined and milestones for the PhD project have been introduced.

36 D. Matusek

Acknowledgement. This work is funded by the German Research Foundation
(DFG) within the Research Training Group Role-based Software Infrastructures for
continuous-context-sensitive Systems (GRK 1907).

References

1. de Lemos, R., et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.)
Software Engineering for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 1–32.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-35813-5 1

2. Weyns, D., et al.: Perpetual assurances for self-adaptive systems. In: de Lemos, R.,
Garlan, D., Ghezzi, C., Giese, H. (eds.) Software Engineering for Self-Adaptive Sys-
tems III. Assurances. LNCS, vol. 9640, pp. 31–63. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-74183-3 2

3. Maier, M.W.: Architecting principles for systems-of-systems. Syst. Eng. 1(4), 267–
284 (1998). https://doi.org/10.1002/(SICI)1520-6858(1998)1:4〈267::AID-SYS3〉3.
0.CO;2-D

4. Weyns, D., Malek, S., Andersson, J.: On decentralized self-adaptation: lessons from
the trenches and challenges for the future. In: Proceedings - International Confer-
ence on Software Engineering, pp. 84–93 (2010). https://doi.org/10.1145/1808984.
1808994

5. Weisbach, M., et al.: Decentralized coordination of dynamic software updates in the
Internet of Things. In: 2016 IEEE 3rd World Forum on Internet of Things, WF-IoT
2016, pp. 171–176 (2017). https://doi.org/10.1109/WF-IoT.2016.7845450

6. Ferscha, A.: Collective adaptive systems. In: UbiComp and ISWC 2015 - Proceed-
ings of the 2015 ACM International Joint Conference on Pervasive and Ubiqui-
tous Computing and the Proceedings of the 2015 ACM International Symposium
on Wearable Computers, pp. 893–896. Association for Computing Machinery Inc,
New York, USA (2015). https://doi.org/10.1145/2800835.2809508

7. Wätzoldt, S., Giese, H.: Modeling collaborations in adaptive systems of systems. In:
ACM International Conference Proceeding Series, vol. 07–11-September. Associa-
tion for Computing Machinery (2015). https://doi.org/10.1145/2797433.2797436

8. Casadei, R., Viroli, M.: Collective abstractions and platforms for large-scale self-
adaptive IoT. In: Proceedings - 2018 IEEE 3rd International Workshops on Foun-
dations and Applications of Self* Systems, FAS*W 2018, pp. 106–111. Institute of
Electrical and Electronics Engineers Inc. (2018). https://doi.org/10.1109/FAS-W.
2018.00033

9. Bachman, C.W., Daya, M.: The role concept in data models. In: Proceedings of
the Third International Conference on Very Large Data Bases - Volume 3, VLDB
1977, pp. 464–476. VLDB Endowment (1977)

10. Steimann, F.: On the representation of roles in object-oriented and conceptual mod-
elling. Data Knowl. Eng. 35(1), 83–106 (2000). https://doi.org/10.1016/S0169-
023X(00)00023-9

11. Kühn, T., et al.: A metamodel family for role-based modeling and programming
languages. In: Combemale, B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.) SLE
2014. LNCS, vol. 8706, pp. 141–160. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-11245-9 8

12. Leuthäuser, M.: Scroll - a scala-based library for roles at runtime. In: Proceedings
of the 3rd Workshop on Domain-Specific Language Design and Implementation
(DSLDI 2015) (2015)

https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1007/978-3-319-74183-3_2
https://doi.org/10.1007/978-3-319-74183-3_2
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1145/1808984.1808994
https://doi.org/10.1145/1808984.1808994
https://doi.org/10.1109/WF-IoT.2016.7845450
https://doi.org/10.1145/2800835.2809508
https://doi.org/10.1145/2797433.2797436
https://doi.org/10.1109/FAS-W.2018.00033
https://doi.org/10.1109/FAS-W.2018.00033
https://doi.org/10.1016/S0169-023X(00)00023-9
https://doi.org/10.1016/S0169-023X(00)00023-9
https://doi.org/10.1007/978-3-319-11245-9_8
https://doi.org/10.1007/978-3-319-11245-9_8

Decentralized Self-adaptation in Large-Scaled Systems of Systems 37

13. Taing, N., et al.: Run-time variability of role-based software systems. In: MOD-
ULARITY Companion 2016 - Companion Proceedings of the 15th International
Conference on Modularity, pp. 137–142. Association for Computing Machinery, Inc
(2016). https://doi.org/10.1145/2892664.2892687

14. Taing, N., et al.: Consistent unanticipated adaptation for context-dependent appli-
cations. In: Proceedings of the 8th International Workshop on Context-Oriented
Programming, COP 2016, pp. 33–38. Association for Computing Machinery Inc,
New York, USA (2016). https://doi.org/10.1145/2951965.2951966

15. Weyns, D., Andersson, J.: On the challenges of self-Adaptation in systems of
systems. In: 1st ACM SIGSOFT/SIGPLAN International Workshop on Software
Engineering for Systems-of-Systems, SESoS 2013 Proceedings, pp. 47–51. ACM
Press, New York, USA (2013). https://doi.org/10.1145/2489850.2489860

16. Lesch, V., Krupitzer, C., Tomforde, S.: Emerging self-integration through coordina-
tion of autonomous adaptive systems. In: 2019 IEEE 4th International Workshops
on Foundations and Applications of Self* Systems (FAS*W), pp. 6–9. IEEE (2019).
https://doi.org/10.1109/FAS-W.2019.00016

17. Preguiça, N., Baquero, C., Shapiro, M.: Conflict-free Replicated Data Types
(CRDTs) (2018). https://doi.org/10.1007/978-3-319-63962-8 185-1

18. Mo, Y., Beal, J., Dasgupta, S.: An aggregate computing approach to self-stabilizing
leader election. In: 2018 IEEE 3rd International Workshops on Foundations and
Applications of Self* Systems (FAS*W) (2018). https://doi.org/10.1109/FAS-W.
2018.00034

https://doi.org/10.1145/2892664.2892687
https://doi.org/10.1145/2951965.2951966
https://doi.org/10.1145/2489850.2489860
https://doi.org/10.1109/FAS-W.2019.00016
https://doi.org/10.1007/978-3-319-63962-8_185-1
https://doi.org/10.1109/FAS-W.2018.00034
https://doi.org/10.1109/FAS-W.2018.00034

Systematic Approach to Engineer
Decentralized Self-adaptive Systems

Federico Quin(B)

Katholieke Universiteit Leuven, Leuven, Belgium
federico.quin@kuleuven.be

Abstract. Self-adaptation is a widely accepted approach to deal with
uncertainties that are difficult to anticipate before deployment. We focus
on architecture-based adaptation that relies on a feedback loop that rea-
sons over architectural models of the system at runtime to make adapta-
tion decisions. In particular, we study decentralized self-adaptive systems
where self-adaptation is realized through multiple coordinating feedback
loops. Such decentralization is crucial for systems where adaptation deci-
sions cannot be made in a centralized way, such as in large scale Internet
of Things (IoT). State of the art in this area is limited to either concep-
tual ideas or solutions dedicated to particular settings. This paper out-
lines a research project targeting the research question: “how to model
and realize decentralized feedback loops that are capable to guarantee
compliance of system goals in an efficient way despite uncertainties the
system faces?” We plan to answer this question in two stage. First, we
study commonalities and variability of decentralized self-adaptive sys-
tems leveraging on patterns and coordination mechanisms, and reify our
insights in a framework. Second, we study language support for the design
and implementation of decentralized self-adaptation, capitalizing on the
outcome of the first stage. To ensure guarantees for the qualities we will
found our work on formal techniques. To ensure efficiency, we will com-
bine statistical techniques with machine learning. We plan to validate
the research results in two domains: IoT and multi-cloud systems.

Keywords: Self-adaptation · Architecture-based adaptation ·
Decentralization · Formal techniques · Machine learning

1 Introduction

Self-adaptation equips a software system with the capabilities of dealing with
changing conditions during operation. These changing conditions are versatile
and are commonly referred to as uncertainties. We focus on architecture-based
adaptation that relies on a feedback loop that reasons over architectural models
of the system at runtime to make adaptation decisions. A well known way to
realize self-adaptation is MAPE-K introduced by IBM (Monitor-Analyze-Plan-
Execute sharing knowledge) [22]. Pioneering contributions in this area are the

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 38–50, 2020.
https://doi.org/10.1007/978-3-030-59155-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_4&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_4

Systematic Approach to Engineer Decentralized Self-adaptive Systems 39

Rainbow framework [16], Models@Runtime [34] and the three layer architecture
model that is inspired by robot architectures [25].

The upcoming generation of software systems increasingly consists of a large
number of loosely composed distributed entities. An example of such a system
is an Internet-of-Things application that comprises a large number of IoT sen-
sors. To deal with adaptation, a centralized feedback loop can be constructed
that manages the overall adaptation of the individual smaller networks, ensur-
ing that the goals of the system are met. Yet such centralized solution may
require substantial communication draining resources such as bandwidth and
energy. Alternatively, the IoT network can be split up into smaller networks.
Each smaller network can then be equipped with a feedback loop that coordi-
nates and handles adaptation decisions locally. We focus our research around
the latter approach where self-adaptation occurs in a decentralized fashion.

Engineering decentralized self-adaptive systems brings a whole heap of chal-
lenges with itself. Tasks such as coordination between feedback loops, knowledge
sharing or making sure that system goals remain satisfied make the design of
these systems difficult. Currently mostly conceptual ideas and tailored solutions
have been proposed to engineer decentralized self-adaptive systems. This PhD
research project aims for a systematic and reusable engineering approach.

This brings us to the research problem that we base our research on:

How to model and realize decentralized feedback loops that are capable to
guarantee compliance of system goals in an efficient way despite uncer-
tainties the system faces?

The remainder of this paper discusses related work, it gives an overview
of the scientific approach we plan to follow in this PhD research project, we
sketch the intended solution and how we plan to evaluate it, we list the expected
contributions and conclude with a critical reflection on the planned research.

2 Related Work

We start with a discussion of related work. We focus on selected work that applies
architecture-based adaptation to decentralized systems to gain an understanding
of the current state of the art solutions. We also take a look at work that uses
formal approaches to realize architecture-based adaptation to further build our
own research upon. Lastly, we cover some work in the related areas of multi-
agent systems and executable models as these will also play a key role in our
research.

2.1 Decentralized Approaches to Architecture-Based Adaptation

A pioneering work on decentralized adaptation is [17] that uses the Alloy lan-
guage to express structural constraints among software components. Compo-
nent managers automatically configure the components according to the overall
architectural specification. The approach uses reliable broadcast to maintain

40 F. Quin

local copies of the configuration and coordinate component managers, restrict-
ing scalability. Later the authors introduced a gossip protocol to overcome the
limitations of the centralized approach [38]. K-Components [10] reifies the sys-
tem’s architecture as a configuration graph whose nodes represent components
and edges represent connectors. A configuration manager monitors events, plans
the adaptations, validates them, rewrites the graph and adapts the underlying
system. Malek et al. [27] use an auction-based coordination mechanism to find
the appropriate deployment architecture under changing operating conditions.
Hebig et al. [19] present a UML profile to support the design and interplay of
control loops of adaptive systems at the architectural level. Weyns et al. [45]
describe key attributes of decentralized adaptive systems derived from a num-
ber of case studies, and argues for an inter-disciplinary approach where the
body of work of the multi-agent system community offers a promising starting
point to tackle the challenges of decentralized adaptations. Vromant et al. [41]
extend MAPE loops with support for inter-loop and intra-loop coordination,
and Weyns et al. [46] further elaborate on how multiple MAPE loops can be
coordinated. A simple notation is presented for MAPE loop interactions that is
used to describe several patterns of interacting MAPE loops. GoPrime [9] offers
a decentralized middleware for self-assembly of distributed services. GoPrime
exploits a gossip protocol to achieve decentralized information dissemination to
maintain an assembly of services that fulfills global quality-of-service and struc-
tural requirements. Gru [14] provides microservice architectures with a variety of
decentralized autonomic operations without changing the implementation of the
services themselves. Stack et al. [37] introduce self-healing concepts to autonomic
cloud management systems. They propose and evaluate a layered master-slave
architecture to assure proper quality control in hierarchical cloud architectures.

The solutions in these works are mostly limited to conceptual ideas (for
example a position paper [41] on inter- and intra-feedback loop communication)
or provide only limited applicability (for example [37] which specifically proposes
a master-slave architecture). We further discuss how we will build upon these
works in Sect. 4.

2.2 Formal Approaches to Architecture-Based Adaptation

Zhang et al. [47] present a process to create formal models for adaptive sys-
tems, verify the models and automatically translate the models into executable
programs. Model-based testing is used to guarantee conformance between mod-
els and programs. In follow up work [48], a dynamically adaptive program is
modeled as a collection of steady-state programs and a set of adaptations that
realize transitions among the programs in response to environmental changes.
To handle state explosion, the authors propose a modular model checking app-
roach, but apply it only at design time. Epifani et al. [11] uses a discrete time
Markov chain to represent the possible execution flows of a system at runtime.
The probabilities that represent uncertainties are dynamically updated based
on observations, using a Bayesian estimator. Calinescu et al. [6] argue for the
use of quantitative verification at runtime for adaptive systems and in [7] the

Systematic Approach to Engineer Decentralized Self-adaptive Systems 41

authors apply the approach to achieve quality goals for service-based systems.
Formally specified requirements are automatically analyzed using runtime model
checking techniques to identify and enforce optimal service configurations and
resource allocation. Ghezzi et al. [18] introduce adaptive model-driven execution
to mitigate uncertainties. A Markov decision model of the system, that is gen-
erated from UML interaction diagrams, specifies the probability distribution of
the different execution paths of the system. The model is executed by an inter-
preter that drives the execution of the system to guarantee the highest utility
for a set of quality properties. Calinescu et al. [5] present DECIDE, an approach
to decentralize feedback loops that uses quantitative verification at runtime to
assure quality-of-service requirements in the presence of change.

2.3 Executable Models and Multi-agent Systems

Multi-agent Systems. The body of work developed by self-organization and
multi-agent system research offers an immense source of knowledge to tackle
some of the difficult problems in decentralized adaptive systems. We highlight a
few examples. Sharing complete knowledge in a decentralized setting constrains
scalability, as for example discussed in [17]. Kota et al. [24] show that agents that
are capable of reasoning about when and how to adapt using only their history of
interactions provides a very robust approach to deal with change in decentralized
settings. Weyns et al. [42] elaborate on the exploitation of coordination patterns
from multi-agent systems as a basis to support adaptation in decentralized set-
tings. Providing system-wide assurances in decentralized settings is challenging.
Law-Governed Interactions [29] is one approach that contributes to the problem
of assurances in decentralized systems. Nallur et al. [30] propose a mechanism
for decentralized adaptation in multi-agent systems called clonal plasticity. This
approach is particularly suitable for slow changing systems. Arcaino et al. [4]
propose a framework, inspired by Abstract State Machines in the multi-agent
systems domain, to specify distributed and decentralized adaptation control in
self-adaptive systems.

Executable Models. Executable models are primarily used in model-driven engi-
neering with the aim to test and measure particular properties of a system based
on the execution of an abstract representation of the system; a well-known exam-
ple is Executable UML [28]. Ctrl-F [3] introduces a domain-specific language
to describe and verify adaptation behaviors of component-based architectures.
Similarly to Executable UML, the specifications are not directly executed but
compiled to an implementation in a general purpose programming language. Our
interest is on executable models to the runtime. There are only a few examples
of executable modeling languages proposed for adaptive systems. EUREMA [40]
supports the specification of feedback loops and their coordinated execution.
EUREMA is based on the notion of mega-model, but currently lacks a for-
mal underpinning. ActivFORMS [20] supports direct execution of feedback loop
models (specified as networks of timed automata). The models can be verified

42 F. Quin

before deployment and executed at runtime realizing adaptation of a managed
system via probes and effectors.

2.4 Related PhD Studies

Shmelkin [36] aims to provide answers on how inter- and intra-loop commu-
nication should happen in distributed and decentralized self-adaptive systems.
Kluge [23] envisions a model-driven architecture for self-adaptive systems where
structured context is explicitly modeled. Entities in this architecture are mod-
eled as message-passing processes that fulfill a specified role. This role results in
dynamic relationships and behavior with other entities in the system, with the
aim of having an intuitive formulation of adaptations in the system.

3 Scientific Approach

The research will be conducted over a period of 3 to 4 years. We follow an
incremental process in three stages based on Design Science (inspired by [15]) as
shown in Fig. 1. In the first stage, it is crucial that we obtain a complete overview
of the state of the art of research on decentralized self-adaptive systems. To that
end we first conduct a systematic literature review [21] on this subject. Based
on the insights collected from the literature study, in the second stage, we will
identify commonalities and variability of solutions and use that as input for
the design of a framework for decentralized self-adaptive systems. We plan to
demonstrate the applicability of the framework to applications in the domains of
IoT and Cloud. In the third stage, we will leverage the knowledge obtained from
the first two stages to define language primitives for an executable modeling
language of decentralized self-adaptive systems. Similarly to the framework, we
will demonstrate the applicability of the language by applying it to the two
domains.

In addition to the use cases on IoT and Cloud, we also plan to empirically
validate our research results by conducting experiments with MsC students.
More details on this can be found in Sect. 4.1. We will disseminate our findings
via the publication of high-quality papers and provide software engineers with
knowledge and open source tools to design decentralized self-adaptive systems.

4 Solution: Framework and Executable Language

We will consolidate the knowledge we obtained from the literature review into
a framework. We plan to identify recurring patterns that are presented and
used in these solutions and identify commonalities and variability in existing
work. This allows us to design and realize a framework that supports the design
of decentralized self-adaptive systems. Based on the insights derived from this
effort and its evaluation, we will then consolidate the knowledge into language
constructs for an executable modeling language to further help the design and
implementation of decentralized self-adaptive systems.

Systematic Approach to Engineer Decentralized Self-adaptive Systems 43

Fig. 1. Design of the research (dSAS short for decentralized self-adaptive system).

Framework. The framework is centered on two main aspects. The first aspect
focuses on the realization of decentralized adaptation decisions by providing the
appropriate interfaces to facilitate this. An important observation here is that
decentralized adaptation can be constructed in multiple ways. Figure 2 shows an
example scenario where two feedback loops need to make planning decisions by
coordinating each of their planners. The proposed framework makes sure that
the planners have the required interface to effectively decide on adaptation plans.
Another example is presented in Fig. 3, where the feedback loops both have a
local knowledge component and share a distributed knowledge component. Sim-
ilarly, the framework should provide interfaces to support this scenario. The
second aspect the framework focuses on is the way coordination is conducted.
Here we are mainly concerned with the protocols used for communication, as
well as the data that has to be communicated to properly coordinate the feed-
back loops. We will leverage on FORMS [44] as a starting point of the specific
information that will need to be transmitted to ensure that proper coordination
is possible.

Language Primitives. The executable modeling language will provide high-level
modeling primitives to specify interactions between multiple feedback loops and
high-level modeling primitives. Our focus will be on the identification of lan-
guage primitives that we plan to embed in an existing core language, in partic-
ular timed automata for which extensive expertise is available in our research
group. As a first element of the language, we place an emphasis on the models
being executable, and thus no further coding of the feedback loops being neces-
sary, avoiding error prone coding. As a second element, we focus on the use of
statistical verification techniques rather than exhaustive techniques. The main
reason for this decision is that statistical techniques are not as computationally

44 F. Quin

expensive as exhaustive techniques, which are known to suffer from the state
space explosion problem [20]. A third element in the design of the modeling
language is incorporating machine learning. The use of machine learning in self-
adaptive systems can be quite versatile: aiding intrusion-detection systems [31],
reducing adaptation spaces [39], taking over the process of making adaptation
decisions [33], enhancing the knowledge of the system by for example updat-
ing quality models at runtime [8], etc. In order to support all different types of
use-cases of machine learning in self-adaptation, we will carefully analyze the
approaches to devise concrete primitives in the language.

Fig. 2. Decentralized planning with multiple feedback loops

4.1 Evaluation

We plan to evaluate both the framework and the executable modeling language
by realizing decentralized self-adaptive systems in the Internet of Things and
Multi-Cloud domains respectively. The evaluation methodologies we intend to
use are self-developed evaluation cases and case studies. In the evaluation cases,
we will define metrics to compare the results with related approaches. In order
to compare the effectiveness of our solution we will conduct case studies in
MsC courses and thesis projects on the engineering of decentralized self-adaptive
systems. In those case studies we aim to qualitatively evaluate the framework
or executable modeling language. Measures that present themselves here are the
time required to engineer those systems, as well as the complexity of the resulting
systems (using established software metrics such as cyclometric complexity).

Systematic Approach to Engineer Decentralized Self-adaptive Systems 45

Fig. 3. Local and remote knowledge components with multiple feedback loops

5 Expected Contributions

We split up the expected contributions of this research into 3 parts, correspond-
ing to the different stages and progression of the research.

5.1 State of the Art Overview of Decentralized Self-adaptive
Systems

The first contribution of our work is a state of the art overview of the design and
application of decentralized self-adaptive systems. This state of the art overview
will be conducted by performing a systematic literature review [21]. We aim to
publish a conference research paper presenting the findings from the literature
review as a contribution to the self-adaptation community by the end of 2020.

5.2 Framework for Decentralized Self-adaptive Systems

A second contribution of our work will be an open source framework which
supports the engineering and design of decentralized self-adaptive systems. An
important note here however is the scope of applicability of the framework to
a specified family of systems with inherent self-adaptation capabilities and par-
ticular uncertainty types and dynamics. The framework provides a higher level
abstraction than application specific solutions, by supporting different decen-
tralized system topologies and coordination tasks (see examples in Sect. 4). We
plan to finalize and present the framework by the end of 2021.

46 F. Quin

5.3 Executable Modeling Language for Decentralized Self-adaptive
Systems

The last main contribution of our work is an open source library aimed at
the engineering of decentralized self-adaptive systems. This library leverages
the knowledge gained from the framework by providing higher level language
abstractions to the system engineers. Our aim is to incorporate the language
primitives in an existing executable core modeling language and combine it with
a parser in order to further aid the design of decentralized self-adaptive systems.
We aim to complete the research on the executable modeling language by the
end of 2022.

6 Critical Reflection

We critically reflect on two key aspects of this research project: the scope of the
research and complexity management of the research.

Scope. In line with current research in self-adaptive systems, see e.g. [7,13,35],
we assume that the managed system is available and equipped with basic
facilities for consistent adaptation (probes to support monitoring, effectors for
adding/removing elements, etc.), for which we can rely on existing solutions.
We target systems for which dynamics in the environment are significantly
slower than execution of adaptations and communication. We focus on runtime
uncertainties that are related to parameters of the system or the environment
[12,26,32] as well as structural uncertainty [43]. So called “unknown unknowns”
that typically require evolution of the managing system are out of scope of this
research. We also assume that the system provides effectors with discrete set-
tings to adapt the system (or these parameters can be discretized). As we rely
on statistical techniques for decision making of adaptations, we assume that
the behavior of the managed system is stochastic and that the distributions
of the variables that represent uncertainties in the runtime models of the sys-
tem and the environment are known or can be determined. These assumptions
determine the class of systems and the scope of problems that we target in this
research. Example applications of this class are interactive service-based appli-
cations, applications deployed on mobile vehicles, and IoT applications. Out of
scope are real-time systems and systems with entities that pursue their own
goals. These systems require dedicated solutions (e.g., real-time operating sys-
tems) or pose specific trust challenges (e.g., establishing trustworthiness among
elements).

Complexity. It is well known that decentralization of software systems is a chal-
lenging problem [46]. The need to handle uncertainty relying on statistical tech-
niques and machine learning adds to this complexity. To tackle this complexity
we organized this research project in phases, enabling us to work in an iterative
manner where the complexity of the problem is gradually exposed and tackled.
We will collaborate with members of the imec-DistriNet research group where

Systematic Approach to Engineer Decentralized Self-adaptive Systems 47

ample expertise is available on key aspects of this research project, such as soft-
ware architecture, coordination mechanisms, and language design. On the formal
side, we will collaborate with the team of Radu Calinescu of York University,
UK [1] with whom our research group has a long running collaboration. Finally,
for the evaluation in the domain of the Internet of Things, we will work together
with our partners of the Networked Embedded Software group at imec-DistriNet
as well as with VersaSense, a provider of IoT solutions [2].

7 Conclusion

The engineering of decentralized self-adaptive systems is a complicated and
multi-faceted endeavor. A vast amount of considerations have to be taken into
account to (1) design and (2) ensure proper operation at runtime of these sys-
tems. In this paper we outline our PhD research project which aims to hide design
complexities from system engineers by abstracting them away in the form of a
newly proposed framework and executable modeling language. Both the frame-
work and the language will be validated in the IoT and Cloud domains.

Acknowledgements. This research project is supported by the KU Leuven C1 grant
“Trustworthy Decentralized Self-Adaptive Systems”.

References

1. https://www.cs.york.ac.uk/people/raduc
2. https://www.versasense.com/
3. Alvares, F., Rutten, E., Seinturier, L.: High-level language support for reconfig-

uration control in component-based architectures. In: Weyns, D., Mirandola, R.,
Crnkovic, I. (eds.) ECSA 2015. LNCS, vol. 9278, pp. 3–19. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-23727-5 1

4. Arcaini, P., Riccobene, E., Scandurra, P.: Formal design and verification of self-
adaptive systems with decentralized control. ACM Trans. Auton. Adapt. Syst.
11(4), 1–35 (2017)

5. Calinescu, R., Gerasimou, S., Banks, A.: Self-adaptive software with decentralised
control loops. In: Egyed, A., Schaefer, I. (eds.) FASE 2015. LNCS, vol. 9033, pp.
235–251. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46675-
9 16

6. Calinescu, R., Ghezzi, C., Kwiatkowska, M., Mirandola, R.: Self-adaptive software
needs quantitative verification at runtime. Commun. ACM 55(9), 69–77 (2012)

7. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.:
Dynamic QoS management and optimization in service-based systems. IEEE
Trans. Softw. Eng. 37(3), 387–409 (2011)

8. Calinescu, R., Rafiq, Y., Johnson, K., Bakundefinedr, M.E.: Adaptive model learn-
ing for continual verification of non-functional properties. In: 5th ACM/SPEC
International Conference on Performance Engineering (2014)

9. Caporuscio, M., Grassi, V., Marzolla, M., Mirandola, R.: GoPrime: a fully decen-
tralized middleware for utility-aware service assembly. IEEE Trans. Softw. Eng.
42(2), 136–152 (2016)

https://www.cs.york.ac.uk/people/raduc
https://www.versasense.com/
https://doi.org/10.1007/978-3-319-23727-5_1
https://doi.org/10.1007/978-3-662-46675-9_16
https://doi.org/10.1007/978-3-662-46675-9_16

48 F. Quin

10. Dowling, J., Cahill, V.: The k-component architecture meta-model for self-adaptive
software. In: Yonezawa, A., Matsuoka, S. (eds.) Reflection 2001. LNCS, vol. 2192,
pp. 81–88. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45429-2 6

11. Epifani, I., Ghezzi, C., Mirandola, R., Tamburrelli, G.: Model evolution by run-time
parameter adaptation. In: 31st International Conference on Software Engineering.
IEEE, USA (2009)

12. Esfahani, N., Kouroshfar, E., Malek, S.: Taming uncertainty in self-adaptive soft-
ware. In: 19th ACM SIGSOFT Symposium and the 13th European Conference on
Foundations of Software Engineering. ACM (2011)

13. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation via quantitative
verification and sensitivity analysis at run time. IEEE Trans. Softw. Eng. 42(1),
75–99 (2016)

14. Florio, L., Nitto, E.D.: Gru: an approach to introduce decentralized autonomic
behavior in microservices architectures. In: 2016 IEEE International Conference
on Autonomic Computing (ICAC) (2016)

15. Fotrousi, F.: Combining user feedback and monitoring data to support evidence-
based software evolution. Ph.D. thesis, Blekinge Institute of Technology, Karl-
skrona, Sweden, April 2020

16. Garlan, D., Cheng, S.W., Huang, A.C., Schmerl, B., Steenkiste, P.: Rainbow:
architecture-based self-adaptation with reusable infrastructure. Computer 37(10),
46–54 (2004)

17. Georgiadis, I., Magee, J., Kramer, J.: Self-organising software architectures for
distributed systems. In: 1st Workshop on Self-Healing Systems. ACM (2002)

18. Ghezzi, C., Pinto, L.S., Spoletini, P., Tamburrelli, G.: Managing non-functional
uncertainty via model-driven adaptivity. In: 2013 35th International Conference
on Software Engineering (ICSE) (2013)

19. Hebig, R., Giese, H., Becker, B.: Making control loops explicit when architecting
self-adaptive systems. In: 2nd International Workshop on Self-Organizing Archi-
tectures. ACM (2010)

20. Iftikhar, M.U., Weyns, D.: Activforms: active formal models for self-adaptation.
In: 9th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems. ACM (2014)

21. Keele, S., et al.: Guidelines for performing systematic literature reviews in software
engineering. Technical report, Ver. 2.3 EBSE Technical Report. EBSE (2007)

22. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003)

23. Kluge, T.: A role-based architecture for self-adaptive cyber-physical systems. In:
15th International Conference on Software Engineering for Adaptive and Self-
Managing Systems (2020)

24. Kota, R., Gibbins, N., Jennings, N.R.: Decentralized approaches for self-adaptation
in agent organizations. ACM Trans. Auton. Adapt. Syst. 7(1), 1–28 (2012)

25. Kramer, J., Magee, J.: Self-managed systems: an architectural challenge. In: Future
of Software Engineering (FOSE 2007), pp. 259–268 (2007)

26. Mahdavi Hezavehi, S., Durelli, V., Weyns, D., Avgeriou, P.: A systematic literature
review onmethods that handle multiple quality attributes in architecture-based
self-adaptive systems. Inf. Softw. Technol. 90, 1–26 (2017)

27. Malek, S., Mikic-Rakic, M., Medvidovic, N.: A decentralized redeployment algo-
rithm for improving the availability of distributed systems. In: Dearle, A., Eisen-
bach, S. (eds.) CD 2005. LNCS, vol. 3798, pp. 99–114. Springer, Heidelberg (2005).
https://doi.org/10.1007/11590712 8

https://doi.org/10.1007/3-540-45429-2_6
https://doi.org/10.1007/11590712_8

Systematic Approach to Engineer Decentralized Self-adaptive Systems 49

28. Mellor, S.J., Balcer, M., Jacoboson, I.: Executable UML: A Foundation for Model-
Driven Architectures. Addison-Wesley Longman Publishing Co. Inc., USA (2002)

29. Minsky, N.H., Ungureanu, V.: Law-governed interaction: a coordination and con-
trol mechanism for heterogeneous distributed systems. ACM Trans. Softw. Eng.
Methodol. 9(3), 273–305 (2000)

30. Nallur, V., Cardozo, N., Clarke, S.: Clonal plasticity: a method for decentralized
adaptation in multi-agent systems. In: 11th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems. ACM (2016)

31. Papamartzivanos, D., Gómez Mármol, F., Kambourakis, G.: Introducing deep
learning self-adaptive misuse network intrusion detection systems. IEEE Access
7, 13546–13560 (2019)

32. Perez-Palacin, D., Mirandola, R.: Uncertainties in the modeling of self-adaptive
systems: a taxonomy and an example of availability evaluation. In: ACM/SPEC
International Conference on Performance Engineering (2014)

33. Porter, B., Filho, R.R.: Losing control: the case for emergent software systems using
autonomous assembly, perception, and learning. In: 2016 IEEE 10th International
Conference on Self-Adaptive and Self-Organizing Systems (SASO) (2016)

34. Blair, G., Bencomo, N., France, R.: Models@ run.time. Computer 42, 22–27 (2009)
35. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and research chal-

lenges. ACM Trans. Auton. Adap. Syst. 4(2), 1–42 (2009)
36. Shmelkin, I.: Monitoring for control in role-oriented self-adaptive systems. In: 15th

International Conference on Software Engineering for Adaptive and Self-Managing
Systems (2020)

37. Stack, P., Xiong, H., Mersel, D., Makhloufi, M., Terpend, G., Dong, D.: Self-healing
in a decentralised cloud management system. In: 1st International Workshop on
Next Generation of Cloud Architectures. ACM (2017)

38. Sykes, D., Magee, J., Kramer, J.: FlashMob: distributed adaptive self-assembly.
In: 6th International Symposium on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS 2011, pp. 100–109. ACM (2011)

39. Van Der Donckt, J., Weyns, D., Quin, F., Van Der Donckt, J., Michiels, S.: Apply-
ing deep learning to reduce large adaptation spaces of self-adaptive systems with
multiple types of goals. In: 15th International Conference on Software Engineering
for Adaptive and Self-Managing Systems (2020)

40. Vogel, T., Giese, H.: Model-driven engineering of self-adaptive software with
EUREMA. ACM Trans. Auton. Adapt. Syst. 8(4), 1–33 (2014)

41. Vromant, P., Weyns, D., Malek, S., Andersson, J.: On interacting control loops in
self-adaptive systems. In: 6th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems. ACM (2011)

42. Weyns, D., Georgeff, M.: Self-adaptation using multiagent systems. IEEE Softw.
27(1), 86–91 (2010)

43. Weyns, D.: Software engineering of self-adaptive systems. In: Cha, S., Taylor, R.,
Kang, K. (eds.) Handbook of Software Engineering, pp. 399–443. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-00262-6 11

44. Weyns, D., Malek, S., Andersson, J.: Forms: a formal reference model for self-
adaptation. In: 7th International Conference on Autonomic Computing. ACM
(2010)

45. Weyns, D., Malek, S., Andersson, J.: On decentralized self-adaptation: lessons from
the trenches and challenges for the future. In: Software Engineering for Adaptive
and Self-Managing Systems, pp. 84–93. ACM (2010)

https://doi.org/10.1007/978-3-030-00262-6_11

50 F. Quin

46. Weyns, D., et al.: On patterns for decentralized control in self-adaptive systems.
In: de Lemos, R., Giese, H., Müller, H.A., Shaw, M. (eds.) Software Engineering
for Self-Adaptive Systems II. LNCS, vol. 7475, pp. 76–107. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-35813-5 4

47. Zhang, J., Cheng, B.H.C.: Model-based development of dynamically adaptive soft-
ware. In: 28th International Conference on Software Engineering. ACM (2006)

48. Zhang, J., Goldsby, H.J., Cheng, B.H.: Modular verification of dynamically adap-
tive systems. In: 8th ACM International Conference on Aspect-Oriented Software
Development. ACM (2009)

https://doi.org/10.1007/978-3-642-35813-5_4

ECSA 2020 Tool Demos Track

ECSA 2020 Tool Demos Track

It is our pleasure to welcome you to the tool demos track of the 14th European
Conference on Software Architecture (ECSA 2020). The aim of the ECSA 2020 tool
demos track is to provides an opportunity for both practitioners and researchers to
present and discuss the most recent advances, ideas, experiences, and challenges in the
field of software architecture by means of live tool demo presentations.

We solicited two categories of tool demo contributions addressing any aspect of
tool support. These were tools used in practice, whether from vendors, industry, or
open source projects, and research tools and demos from academic or industrial
research environments. We welcomed tools raging from early prototypes to in-house or
pre-commercialized products.

We received seven submissions, which underwent a peer-review process with three
reviews each (single blind). Out of these seven submissions, five were accepted to be
presented at the conference, where four of them had all positive (or borderline) scores
(positive on average), and one had a combination of positive/borderline/negative scores
(borderline on average) and was accepted conditionally to make sure that the concerns
of the reviewers are properly addressed. We would like to thank all the authors for their
time in preparing high-quality submissions.

Last, we would like to express our gratitude to the Tool Demos Program Committee
for the dedication and great work during the tools selection process, and the whole
organization team of ECSA 2020 for making ECSA 2020 a successful conference
despite the COVID-19 challenges that resulted in moving the conference to the virtual
format.

Organization

Tool Demos Chairs

Paris Avgeriou University of Groningen, The Netherlands
Barbora Buhnovas Masaryk University, Czech Republic

Tool Demos Program Committee

Rami Bahsoon University of Birmingham, UK
Tomas Bures Charles University Prague, Czech Republic
Daniel Feitosa University of Groningen, The Netherlands
Ilias Gerostathopoulos Technical University of Munich, Germany
Elisa Yumi Nakagawa University of São Paulo, Brazil
Elena Navarro University of Castilla-La Mancha, Spain
Jennifer Perez Universidad Politécnica de Madrid, Spain
Claudia Raibulet Università degli Studi di Milano-Bicocca, Italy
Rodrigo Santos UNIRIO, Brazil
Michael Stal Siemens, Germany
Danny Weyns KU Leuven, Belgium

Additional Reviewers

Maria Istela Cagnin
Thiago Bianchi

Voyager : Software Architecture Trade-off
Explorer

Jason Mashinchi and Javier Cámara(B)

Department of Computer Science, University of York, York, UK
jason.mashinchi@alumni.york.ac.uk, javier.camaramoreno@york.ac.uk

Abstract. Software engineers must ensure that systems under devel-
opment are endowed with software architectures that enable them to
meet their requirements. Apart from functionality, systems also have to
satisfy extra-functional requirements that may include behavioural con-
straints that the software must adhere to, as well as qualities to opti-
mise such as performance, availability, and energy efficiency. These qual-
ities are often inter-dependent and heavily influenced by the structure of
the system. This results in poorly understood multi-dimensional design
spaces, in which trade-offs among qualities are not evident when mak-
ing architectural decisions. This paper presents Voyager, a tool which
allows engineers to visualise architectural configurations and explore the
trade-offs among their quality attributes in a multi-dimensional design
space. The tool produces contextual visualisations to facilitate trade-off
analysis, providing engineers with a streamlined way of understanding
architectural design spaces, using an approach that combines architec-
tural structure with multi-dimensional data visualisations. A user study
was conducted to evaluate the effectiveness of the tool. Results show
that participants achieved a significantly higher accuracy in a shorter
time span and had a better user experience when using Voyager, with
respect to an existing comparable tool.

Keywords: Software architecture · Visualisation · Trade-offs · Quality
attributes

1 Introduction

Software is extensively used across the globe today, forming a key part of many
industries with applications that range from safety-critical aviation to social net-
working. All software must meet its requirements – i.e. must be able to achieve
its intended purpose, by performing functions required of it and meeting what-
ever behavioural constraints that exist [12]. For example, a piece of software may
be required to calculate the speed a car is travelling, with a constraint that it
must deliver a result within 10 ms of receiving an input. There are many correct
ways to develop software, and many possible architectural structures that allow
the software to achieve its goal, each with its own benefits and trade-offs.

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 55–67, 2020.
https://doi.org/10.1007/978-3-030-59155-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_5

56 J. Mashinchi and J. Cámara

A key challenge for software engineers is to understand the properties of
the architectural design space, to allow them to make better design decisions
with well-grounded knowledge about the trade-offs amongst concerns (e.g. cost,
reliability) and the architectural constraints [4]. More often than not, the archi-
tectural design space is poorly understood, as it is not easy to represent the
trade-offs that exist between desirable quality attributes and the structure of
possible architectural configurations in an accessible way. Understanding this
design space is useful for developing optimal software, as different configurations
entail different trade-offs that software architects have to make.

Visualisation is a useful tool for developing an understanding of data. How-
ever, visualising architectural design spaces is challenging because of the multi-
dimensional nature of the problem (quality metrics used for comparison often
go beyond three dimensions), and the difficulty in relating explicitly structure
and quality trade-offs.

This paper presents Voyager1 – a tool that primarily focuses on the needs of
software engineers, by combining trade-off analysis with software architectural
structure visualisation. As quality metrics of architectural configurations depend
on their structures, it is helpful for architects to understand and easily analyse
both side-by-side. Existing tools focus on either architecture visualisation (e.g.
AcmeStudio [15]), or architectural trade-off analysis (e.g. ClaferMoo [11]), unlike
Voyager which offers a novel combination of the two, enabling engineers to nar-
row design spaces and find better configurations more effectively.

While Voyager is designed primarily for software architecture analysis, the
multi-dimensional trade-off analysis features are more general purpose, so it can
also be applied to other related areas with multi-dimensional data to analyse
results from variable configuration spaces (e.g. software product lines [6], quanti-
tative verification [8]). In addition, Voyager has extensibility features that enable
integration with external tools which can act as a data source and provide addi-
tional visualisations to appear in the user interface.

2 Background and Related Work

Architecture refers to the high-level aspects of the software, such as its overall
organisation, the individual components and their functionality, and the rela-
tionships and interaction between them [4]. There are many alternative software
architectures that can be used to realize a software system, each with its own
set of quality characteristics [10]. Selecting one of a possible set of alternative
approaches to the software architecture entails carrying out a set of design deci-
sions which have to be informed by a clear understanding the design space,
including trade-offs amongst relevant quality attributes.

To inform this selection, some tools such as Prism-MW [7], ArchJava [1]
and Aura [16] facilitate modelling a set of correct architectural configurations
to analyse, without much support for optimisation. Work in multi-dimensional
1 The source code, user study data and a video demonstration of the Voyager tool is

located online at: https://github.com/jasonmash/voyager.

https://github.com/jasonmash/voyager

Voyager : Software Architecture Trade-off Explorer 57

architecture optimisation approaches is plentiful and varied in classes of tech-
niques employed [2], with some recent approaches enabling automated synthesis
of sets of correct configurations with associated quality metrics [5]. However,
these tools are not designed to facilitate systematic and interactive exploration
of their output, which is often difficult to understand and cumbersome to explore.
The output of these tools can be used as input for Voyager, which offers trade-
off and architectural structure visualisations that help software engineers under-
stand and analyse these sets of multidimensional architectural data.

As each architectural configuration consists of a structured set of compo-
nents, individual architectures can be visualised and analysed using tools such
as AcmeStudio [15] and SoftArchVis [13]. These tools allow visualising the soft-
ware architectures to give a better understanding of how each configuration is
composed and their attributes. However, these tools are limited to visualising one
architectural configuration at a time, reducing their effectiveness for understand-
ing and analysing the design space and quality trade-offs. Voyager incorporates
basic structural diagramming tools alongside its trade-off analysis functionality,
and also provides an extensions interface that allows external tools to add new
static or dynamic architectural visualisations.

Other existing tools such as ClaferMoo [11] and TradeMaker [3] are good for
comparing amongst many configurations, providing charts such as 2D bubble
plots and matrices representing the distribution of configurations in relation
to their quality attributes. However, these do not include architectural structure
information, making it difficult to understand how the quality attributes relate to
the architecture itself. Voyager incorporates the design space visualisations and
trade-off analysis tools, alongside architectural structure visualisations, showing
each when contextually appropriate, without requiring any user configuration.

Finding an architecture design that meets all quality requirements while bal-
ancing the trade-offs from dependent quality attributes requires multi-objective
optimisation, a process that generates sets of Pareto optimal solutions (i.e. solu-
tions for which no alternative solution that is better in one property and equally
as good with respect to all others, exists [14]). Although some of the exist-
ing architecture optimisation approaches can generate Pareto-optimal solutions,
none of the surveyed tools incorporates algorithms to calculate the Pareto fron-
tier for user-selected quality attributes from a raw data set. Our tool is able to
do that, making clear which configurations are Pareto-optimal for the selected
attributes.

In summary, existing tools are effective for analysing either a single archi-
tecture at a time, or multiple correct architectures but without any explicit link
to architectural structure. In contrast, our tool combines the benefits of trade-
off analysis with that of software architectural structure visualisation to enable
better understanding of architectural design spaces.

3 Voyager

Voyager is designed to support architects during evaluation of architecture design
quality and satisfaction of stopping criteria when optimising architectures, help-

58 J. Mashinchi and J. Cámara

ing them in understanding the design space and potentially providing feedback
for the generation of new design alternatives (Fig. 1, right).

Architecture
representation

Generate new
design alternative(s)

Evaluate
architecture
design quality

Stopping
criteria?

Final architecture
design(s)

V
oy

ag
er

true

false

Fig. 1. (left) screenshot of Solution Explorer in Voyager and (right) architecture opti-
misation workflow (adapted from [2])

3.1 Implementation

The tool is implemented using open source web technologies, delivering a cross-
platform application that runs in a browser. The tool is implemented using
TypeScript (typescriptlang.org), a superset of JavaScript, which utilises extra
compilation steps to add features such as type checking that improve devel-
oper productivity. Additionally, open source libraries such as Vue.js (vuejs.org),
Bootstrap (getbootstrap.com) and ECharts [9] are used to construct the user
interface, alongside several other libraries listed in the code. While the tool is
designed to run entirely within a browser, all computation and data process-
ing takes place locally, and data is persisted across browser sessions to ensure
Voyager behaves like any other locally installed application.

To ensure the quality of the Voyager tool, a suite of end-to-end and unit tests
has been developed, using the Cypress (cypress.io) and Mocha (mochajs.org)
libraries respectively.

3.2 Solution Explorer

The core functionality of Voyager is found in the “Solution Explorer”, enabling
users to study a set of architectural configurations and their trade-offs using
context-appropriate visualisations, alongside relevant sorting and filtering tools.
The Solution Explorer page is split into three columns, each showing attributes,
configurations and visualisations respectively for the current data set. An exam-
ple is shown in Fig. 1 (left), for a set of configurations that have cost, reliability,
and response time quality attributes.

Voyager : Software Architecture Trade-off Explorer 59

3.3 Quality Attributes

The left-hand most “Attributes” pane includes the set of quality attributes
inferred from the imported architecture configurations, and it has been designed
to allow software architects to straightforwardly reduce the architectural design
space. This is accomplished by allowing users to: select, filter and sort configura-
tions based on the values of their quality attributes; to set an optimisation aim
(i.e. whether higher or lower values are better for the attribute); and to narrow
down the range of acceptable values for a given attribute. Changing these prop-
erties updates the list of configurations and any currently visible visualisations
in real-time, ensuring users get instant feedback on how changes to the design
space affect the possible architectural solutions for the given data set.

3.4 Architectural Configurations

The centre of the screen contains a list of configurations that meet the require-
ments specified in the attributes pane. The configurations are grouped together
based on Pareto optimality, where optimal architectures on the Pareto frontier
are placed at the top, followed by non-dominant solutions below. Configurations
are sorted according to their attribute values, the order of which is determined
by the attribute optimisation aim (e.g. when higher values are better, those
configurations are placed first). This effectively shows architects which of the
possible structures are best suited for further consideration.

A single configuration can be selected, showing the “Selected Configuration”
panel to the right. This presents each quality attribute value for the selected
configuration, and a radar chart of these values relative to those of other config-
urations, alongside any visualisations of its software architecture.

By default, Voyager shows an architectural structure graph, representing
each component within the architecture and the connections between them. This
chart allows the user to hover over individual elements for further details and
can be panned and zoomed. Additional architectural visualisations from external
tools can be shown in the selected configuration panel, by providing these in an
image or html-based format using the Voyager extensions interface. These archi-
tectural visualisations help users understand the design space, by enabling users
to quickly compare possible configurations and identify which style of architec-
tures are better or worse, which components have which trade-offs, etc.

3.5 Design Space Visualisation

Using visualisations is an effective way of understanding data sets, as it allows
humans to intuitively identify patterns and trends, and spot outliers. Voyager
shows visualisations of the design space in the rightmost panel, including data
points for each visible configuration after the attribute filters have been applied.
This allows users to gain an understanding of the relationships between quality
attributes and therefore whether trade-offs exist.

60 J. Mashinchi and J. Cámara

Software architecture quality attributes, like any other data, are easy to visu-
alise when there are one, two or three attributes to analyse, making use of graphs
such as scatter plots, bar charts and 3D surface plots. However, as it is common
with software architectures, there are often more than three dimensions of data
to process, presenting a challenge as we cannot simply add additional dimensions
to graphical visualisations, being fundamentally limited to 3D space. Therefore,
Voyager makes use complex visualisations that encode additional data into the
space we are able to perceive, applying projections onto the data where neces-
sary, and utilising additional properties such as colour, size and position where
appropriate.

The visibility of each visualisation in the UI is context-dependent, as their
effectiveness depends on the number of configurations and the number of dimen-
sions of attributes, determined by the selected attributes and filters. Each visu-
alisation updates in real-time as filters are adjusted, which means users do not
have to manually press refresh (or similar) like existing tools. This reduces cog-
nitive load, by allowing users to focus their thought processes on their data,
rather than on how to get the software to do what they want it to.

The visualisations shown in the visualisations panel have been selected
according to their usability, clarity and function. These include bar/line charts,
2D/3D scatter plots, surface plots, configuration maps and radar charts.

Each visualisation has a dropdown menu in the top right corner, providing
options such as exporting to image files, and switching between projections of
3D charts (e.g. orthographic and perspective). All visualisations include addi-
tional information in tooltips for each data point – e.g. 3D scatter plots include
information about where the mouse is along each axis, and which configuration
is highlighted. In addition, selecting a point provides architectural structure
diagrams, acting as an effective tool for comparing architectural structure and
quality attributes side-by-side (c.f. Fig. 1, left).

3.6 Reports

Voyager contains reporting functionality to allow users to save any visualisation
included in the application into a report for future reference. Report visualisa-
tions contain a snapshot of their source data to ensure their content is not modi-
fied by any data manipulation performed elsewhere in the application. Users can
create one or more reports, each with a unique title, to group together multiple
visualisations that can be labelled - this provides a straightforward mechanism
for comparing between multiple architectures.

3.7 Data Sources and Extensibility

Voyager makes use of common file formats such as .csv and .json to allow users
to import and export data from the application easily, enabling the use of various
other tools for data collection and preparation. The state of the application can
be exported directly from the user interface, and re-imported at a later date to

Voyager : Software Architecture Trade-off Explorer 61

restore the application exactly to its previous state, resulting in an output file
that can be shared amongst interested parties when collaborating.

Voyager offers an extension interface, allowing third party tools to integrate
with the tool by providing lists of configurations and associated customised
visualisations in static (image) or dynamic (html/js) formats. Communication
between Voyager and external tools is accomplished using HTTP requests, with
the requirement for external tools to implement a REST API that returns JSON
data for specified endpoints. This technology choice was made because HTTP is
a widely supported protocol, with easy implementation across many program-
ming languages.

4 Evaluation

During development, Voyager has been validated with existing data sets, includ-
ing the Tele Assistance System (TAS) exemplar (a service-based system) [17],
showing indication of its potential to analyze trade-offs in preliminary user exper-
iments. To further validate that Voyager meets the goal of providing engineers
with a user-friendly tool for visualising software architectures and exploring their
trade-offs, we have conducted a user study to quantify its effectiveness.

4.1 User Study Design

We constructed a user study consisting of a set of questions related to a software
architectural trade-off analysis scenario. Participants are asked to make use of
tools including Voyager and other existing comparable software to analyse the
provided data for a given scenario. This allows for the collection of quantitative
data that is used to compare and measure the effectiveness of our tool.

Each scenario used in the user study include sets of architectural configura-
tion data, containing both quality attribute values and a representation of the
architectural structures for each configuration. Participants are asked questions
requiring them to find optimal architectural configurations for the data set, by
performing tasks such as filtering, sorting, clustering and correlation to iden-
tify any trade-offs between quality attributes. Participants also must make use
of individual architectural structure visualisations to compare between two or
more potential configurations. The data sets used contained many configura-
tions with cost, battery life, range and reliability quality attributes, each with
representative trade-offs between each.

To establish a baseline prior ability of each participant, and to ensure they
have a chance to familiarise themselves with the type of problem they are being
asked to solve, the first section of the user study consists of a background task
which all participants complete. This background task contains a scenario and
set of questions, alongside a basic spreadsheet tool that presents the data and
only offers basic data analysis tools including sorting and filtering.

Following the completion of the background task, the participants are ran-
domly allocated one of two possible tools for use on further, more difficult ques-
tions. One of these tools is Voyager, and the other is ClaferMoo Visualizer [11]

62 J. Mashinchi and J. Cámara

- a directly comparable tool with similar aims. This tool was selected for use
in this study because: it provides a user interface that can be used to solve the
same class of problems as Voyager, it is easily available and widely used, and it
can be populated with fundamentally the same data set as Voyager.

The same scenario, data set and questions are used regardless of the allocated
tool, with slight terminology adjustments to account for the differences between
the tools (i.e. a Voyager “configuration” is called a “variant” in ClaferMoo).
This second analysis task is intentionally more difficult than the background
task, and contains additional quality attributes and configurations to analyse.

Each scenario consisted of four questions, each formulated to cover a com-
prehensive range of tasks users typically accomplish when conducting analytic
activities, and also to provide quantitative data to be used to compare and mea-
sure the effectiveness of our tool. For each question, timing data was captured
to understand how long it takes users to complete allocated tasks for each tool.

Question Rationale

1. Identify the configuration with the
lowest cost

A straightforward question to get
participants familiar with the tool user
interface. Requires them to use the UI
to find a single configuration with the
lowest value for one quality attribute

2. Identify one (or more)
configurations with the highest
possible battery life and highest
possible range within the same
configuration

This question is designed to get
participants thinking about trade-offs,
as the data set contained no obvious
answers, as in this case, increased
range meant reduced battery life.
Participants could make use of the
tabular or graphical representations of
all configurations, as well as sorting
tools to find those configurations that
were on the Pareto-front for this
problem

3. Identify one (or more)
configurations that have the highest
possible battery life, then the
highest possible range where the
reliability is greater than [threshold]

This question requires participants to
make use of more advanced
functionality within each tool,
including filtering, to identify
configurations on the Pareto-front for
this problem. Participants were told
that sorting/filtering/visualisation
tools could be used

4. Identify any common features
present in configurations that have a
battery life greater than [threshold]
and a cost less than [threshold]

This question was designed to get
participants to make use of
architectural structure visualisation
tools, to identify any components and
connections that were common within
a similar class of configurations

Voyager : Software Architecture Trade-off Explorer 63

The responses collected from each participant are validated using a numerical
score for each question, representing the number of correct answers achieved out
of the total set of correct answers. For the questions where optimal configurations
need to be identified, the set of correct answers is the set of Pareto-optimal
configurations matching the specified goal.

Following the completion of each scenario within the user study, we asked
participants a series of usability questions to gather their opinion and therefore
a measure of their perception and confidence of how well they performed on the
task for each tool. Participants were asked (i) how they found the task, (ii)
how well they thought they did, and (iii) how easy the tool was to use. The
answer options for these questions took the form of a 5-point Likert scale, with
the results being stored as 0 being a strongly negative answer, 3 being neutral,
and 4 being a strongly positive answer.

To determine whether a response we received from a participant was valid
(and not filtered out), we made use of the following criteria: (i) the participant
completed all questions, (ii) all answers to the question were in the expected
data formats, (iii) timing data was present for every question, and (iv) the
participant reported no problems completing the study.

4.2 Experiment Design

We recruited 47 participants to complete the user study of various backgrounds
and abilities. Of the 47 participants who started the user study, 32 participants
fully completed the study and provided results that were valid for further analysis
and contained no invalid answers according to the verification criteria above.

To ensure we understood our participants background experience, they were
asked to provide their current occupation, educational study level, and their level
of study in STEM-related subjects. Numbers of participants at each STEM edu-
cation level were as follows: Secondary: 1; Post-Secondary: 9; Bachelor’s Degree:
5; Master’s Degree (or higher): 17.

A web-based tool was developed to conduct the user study. This was neces-
sary to embed a spreadsheet tool, Voyager and ClaferMoo Visualizer in a seam-
less user interface, which ensured the only technical requirement participants
had to comply with was access to a modern desktop-sized web browser.

The total cohort of participants was split into two equally-sized groups, each
of which was allocated either the Voyager or ClaferMoo Visualizer tool. In total,
16 participants (50% of the total) completed the task using Voyager, and 16
participants completed the task using ClaferMoo Visualizer. All 32 participants
completed the background task using the embedded spreadsheet.

To balance the effects of education levels amongst participants, their allo-
cation to groups was entirely random. This led to the unintended effect of one
group having a slightly higher average education level than the other, which may
have resulted in an overestimate of the difference in outcomes between the groups
in the results. To account for this, a statistical T-Test was performed making
use of the background task data, which did not show a statistically significant
difference in the scores achieved between the two groups (p = 0.691, with mean

64 J. Mashinchi and J. Cámara

values of: 5.1 for Voyager, and 4.9 for ClaferMoo participants; where the maxi-
mum score was 8). A review of each participant’s occupation showed these were
well balanced between groups, as similar numbers of participants with relevant
occupations were present in each group (e.g. engineers, computer specialists).

The independent variable of this experiment was the tool used to complete
the same scenario. The dependent variables we measured were: correctness, con-
fidence, user perception, and time to complete each task. Correctness was mea-
sured using the scores achieved per question, while confidence and perception
were measured using the usability questions.

The hypotheses for this experiment were as follows:

1. Given the same data set and questions, participants would identify more
correct answers in a shorter time period using Voyager compared to those
using an existing tool.

2. Participants would find Voyager subjectively easier to use and would be more
confident in their results compared to using a spreadsheet or a comparable
existing tool.

4.3 Analysis and Results

The results of the user study support both hypotheses of the experiment. This
data is publicly accessible alongside the source code. A two-sample, one-sided
statistical t-test was used to calculate a measure of whether there was a signifi-
cant difference between two sets of data, making use of the output p-value, which
shows a significant result if it is less than 0.05. A p-value represents the proba-
bility of observing a result at least as extreme as the observed results, assuming
that the null hypothesis is true (equal means). A smaller p-value means there is a
smaller probability that the null hypothesis is true, providing stronger evidence
in favour of the alternative hypothesis.

Participants using Voyager achieved a higher average score, in less time than
those who used ClaferMoo Visualizer, given the same questions and data set.
The mean average scores and durations for the tool questions are shown below,
in addition to the p-values obtained using a t-test as described above.

Total score (% correct) Duration (mins)

Voyager 57 8.4

ClaferMoo visualizer 38 10.9

T-Test (p-value) 0.0133 0.0391

Performing a statistical t-test shows there is a significant difference between
both tools for the total score with mean averages of 57% for Voyager, and 38% for
ClaferMoo, with p = 0.0133. Likewise for timing data (total time to complete
tool questions), with mean averages of 8.4 min for Voyager and 10.9 min for
ClaferMoo, with p = 0.0391. These p-values allow us to reject the null hypothesis,

Voyager : Software Architecture Trade-off Explorer 65

and conclude there is not evidence in support of equal means. This shows a
statistically significant difference for both dependent variables, indicating that
the hypothesis that the Voyager tool allows users to achieve higher accuracy
answers in a shorter time period is correct. Broken down by question, in every
case, participants using Voyager achieved a higher mean average than those who
used ClaferMoo Visualizer.

The results from the usability questions that measured user perception and
confidence also support the hypothesis that Voyager was subjectively easier to
use compared to a spreadsheet and existing tools. A statistical t-test for each of
the questions asked was conducted, comparing the results from Voyager to those
from both the spreadsheet and ClaferMoo tasks. The results are as follows:

Question Mean average T-test (p-value)

Spreadsheet ClaferMoo Voyager Spreadsheet ClaferMoo

How easy was the tool to use? 2.19 1.13 2.69 0.03627 0.00002

How did you find the task? 1.94 1.44 2.38 0.00904 0.00134

How well do you think you did? 2.38 2.25 2.81 0.01339 0.05330

For the user perception measures (how easy was the tool to use?, how did
you find the task?) - it is clear that Voyager has a higher mean average than
both a spreadsheet and ClaferMoo Visualizer, and this is statistically significant
for in both cases (p < 0.05). This means users found Voyager easier to use, and
found completing the same task easier using Voyager.

For the question quantifying how confident users felt about their answers
(how well do you think you did?), Voyager had statistically significant differ-
ence compared to the spreadsheet (p = 0.01339) with a higher mean average,
but there was not a significant difference compared to ClaferMoo Visualizer
(p = 0.05330, which is greater than 0.05) despite its higher average. This is a
clear contrast to the actual scores achieved on both tools, where there was a
statistically significant difference in the results.

5 Discussion and Future Work

Voyager is a trade-off exploration tool designed for supporting effective analy-
sis and understanding of multi-dimensional design spaces. The tool delivers a
user-friendly, flexible and robust interface, offering a novel solution that com-
bines multi-dimensional quality attribute analysis with architectural structure
visualisation – neither of which appear to have been combined into a single tool
before. It makes use of modern web technology to deliver clear 2D and 3D data
visualisations, offering a maintainable and reliable codebase fit for future use
and expansion. Voyager ’s extensibility features enable flexible integration with
other tools, opening up the potential to serve a much larger set of use-cases (e.g.,
software product lines).

66 J. Mashinchi and J. Cámara

Our user study shows Voyager is effective for use with multi-dimensional
architecture trade-off problems, having obtained results that show it had a signif-
icantly better user experience compared with existing comparable tools, allowing
participants to achieve higher accuracy of answers in a shorter time span.

There is scope for future work - including implementing new visualisation
ideas (e.g. hierarchical structure exploration, parallel coordinate charts, con-
ditional formatting etc), encouraging open source contributions, and offering
enhanced support for external tool integration.

Acknowledgements. The authors would like to thank everyone who kindly volun-
teered to participate in the user study.

References

1. Aldrich, J., Chambers, C., Notkin, D.: ArchJava: connecting software architec-
ture to implementation. In: Proceedings of the 24th International Conference on
Software Engineering, ICSE 2002, pp. 187–197, May 2002

2. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software archi-
tecture optimization methods: a systematic literature review. IEEE Trans. Softw.
Eng. 39(5), 658–683 (2013)

3. Bagheri, H., Tang, C., Sullivan, K.: Trademaker: automated dynamic analysis of
synthesized tradespaces. In: Proceedings of the 36th International Conference on
Software Engineering, ICSE 2014, pp. 106–116. ACM, New York (2014)

4. Bass, L., Clements, P., Kazman, R.: Software Architecture in Practice, 3rd edn.
Addison-Wesley Professional, Upper Saddle River, NJ (2012)

5. Cámara, J., Garlan, D., Schmerl, B.R.: Synthesizing tradeoff spaces with quan-
titative guarantees for families of software systems. J. Syst. Softw. 152, 33–49
(2019)

6. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns.
Addison-Wesley Professional, Reading, MA (2001)

7. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a tool for automatic
verification of probabilistic systems. In: Hermanns, H., Palsberg, J. (eds.) TACAS
2006. LNCS, vol. 3920, pp. 441–444. Springer, Heidelberg (2006). https://doi.org/
10.1007/11691372 29

8. Kwiatkowska, M.: Quantitative verification: models, techniques and tools. In:
6th Joint Meeting on European Software Engineering Conference and the ACM
SIGSOFT Symposium on the Foundations of Software Engineering: Companion
Papers, pp. 449–458. ACM (2007)

9. Li, D., et al.: ECharts: a declarative framework for rapid construction of web-based
visualization. Vis. Inform. 2(2), 136–146 (2018)

10. Mahdavi-Hezavehi, S., Galster, M., Avgeriou, P.: Variability in quality attributes of
service-based software systems: a systematic literature review. Inf. Softw. Technol.
55(2), 320–343 (2013)

11. Murashkin, A., Antkiewicz, M., Rayside, D., Czarnecki, K.: Visualization and
exploration of optimal variants in product line engineering. In: Proceedings of the
17th International Software Product Line Conference, pp. 111–115. ACM (2013)

12. Mylopoulos, J., Chung, L., Nixon, B.: Representing and using nonfunctional
requirements: a process-oriented approach. IEEE Trans. Softw. Eng. 18(6), 483–
497 (1992)

https://doi.org/10.1007/11691372_29
https://doi.org/10.1007/11691372_29

Voyager : Software Architecture Trade-off Explorer 67

13. Sawant, A.P., Bali, N.: Softarchviz: a software architecture visualization tool. In:
4th IEEE International Workshop on Visualizing Software for Understanding and
Analysis, pp. 154–155, June 2007

14. Sayyad, A.S., Ammar, H.: Pareto-optimal search-based software engineering: a lit-
erature survey. In: 2013 2nd International Workshop on Realizing Artificial Intel-
ligence Synergies in Software Engineering, pp. 21–27, May 2013

15. Schmerl, B., Garlan, D.: AcmeStudio: supporting style-centered architecture devel-
opment. In: Proceedings of the 26th International Conference on Software Engi-
neering, ICSE 2004, pp. 704–705 (2004)

16. Sousa, J.P., Garlan, D.: The aura software architecture: an infrastructure for ubiq-
uitous computing (2003)

17. Weyns, D., Calinescu, R.: Tele assistance: a self-adaptive service-based system
exemplar. In: 2015 IEEE/ACM 10th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, pp. 88–92 (2015)

A Decision Support System for
Pattern-Driven Software Architecture

Siamak Farshidi1(B) and Slinger Jansen1,2

1 Department of Information and Computer Science, Utrecht University,
Utrecht, The Netherlands

{s.farshidi,slinger.jansen}@uu.nl
2 School of Engineering Science, LUT University, Lappeenranta, Finland

Abstract. The selection process of architectural patterns is challenging
for software architects, as knowledge about patterns is scattered among
a wide range of literature. Knowledge about architectural patterns must
be collected, organized, stored, and quickly retrieved when it needs to be
employed. In this tool paper, we introduce a decision support system that
uses a decision model for supporting software architects with the pattern
selection problem according to their requirements, including functional
and quality requirements. The decision model is built based on a tech-
nology selection framework for modeling multi-criteria decision-making
problems in software production. Twenty-four software architects in the
Netherlands have evaluated the tool. They confirm that the tool supports
them with their daily decision-making process.

Keywords: Architectural patterns · Pattern-driven software
architecture · Multi-criteria decision-making · Decision support
system · Decision model

1 Introduction

Software architecture is fundamental for the development of a software product
and plays an indispensable role in its success or failure as software architec-
ture deals with the base structure, subsystems, and interactions among these
subsystems [4]. Software architecture design can be viewed as a decision-making
process: software engineers consider a set of alternative solutions that could solve
a system design problem, and select the set that is evaluated as the optimal [14].

Software architecture is the composition of a set of architectural design deci-
sions, concerns, variation points, features, and usage scenarios that address vari-
ous system requirements, including functional and quality requirements [2]. Each
architectural design decision is made with a design rationale [6], which represents
the knowledge that provides the answers to questions about the design decision
or the process followed to make that decision.

An architectural pattern describes high-level structures and behaviors of soft-
ware systems and addresses a particular recurring problem within a given context
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 68–81, 2020.
https://doi.org/10.1007/978-3-030-59155-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_6&domain=pdf
http://orcid.org/0000-0003-3270-4398
http://orcid.org/0000-0003-3752-2868
https://doi.org/10.1007/978-3-030-59155-7_6

A Decision Support System for Pattern-Driven Software Architecture 69

in software architecture design [3]. Architectural patterns aim to satisfy several
requirements and help to document the architectural design decisions [1]. So that
selecting architectural patterns is a subset of architectural design decisions [22],
and it is a challenging task for software architects, as knowledge about patterns,
such as their application domains and their interactions with quality attributes,
is scattered among a wide range of literature [18]. Thus, a decision support sys-
tem (DSS) is needed to support software architects with architectural pattern
selection intelligently.

In this article, we present a DSS for Pattern-Driven Architecture, which
assists software architects in selecting the best fitting set of patterns. The DSS
asks architects for their requirements in terms of functional requirements and
quality concerns. Accordingly, several sets of architectural patterns are returned
that match these requirements. Subsequently, architects can start tweaking the
requirements to find the most suitable set of patterns for their design. The DSS is
based on several well-known software engineering concepts, such as the ISO/IEC
software quality models and the MoSCoW prioritization technique. Architects
will indicate their preferences using primary selections such as ‘The application
must have high availability’ and ‘The application could have accessibility’. Using
a literature study, we have assessed how patterns perform on these quality crite-
ria. The DSS bundles this knowledge and provides architects with an interactive
and collaborative decision tool.

We regard building a software architecture as a decision-making process [17]:
(1) Stakeholders with their requirements are engaged. (2) Scenarios are captured.
(3) Architectural patterns are identified to address requirements. (4) Poten-
tial combinations of patterns are explored. (5) Architects evaluate the combi-
nations of patterns (alternative solutions). If the alternative solutions do not
meed the requirements, they are reworked and requirements revisited. (6) An
architecture is drafted using the identified patterns (alternative solutions), view-
points, and perspectives. (7) Different architectural alternatives for refining the
draft are explored, and architectural decisions are made to select among them.
(8) The architecture is evaluated with stakeholders. Finally, if the architecture
does not fulfill stakeholder requirements, the architecture design is reworked and
requirements possibly revisited (see Fig. 1). While this process has been a reli-
able method for producing architectures, it strongly depends on the architect’s
limited knowledge and experience, who may have experience with only a small
number of patterns. Thus, we envision a process where the architect is supported
by tools to enhance her knowledge of the patterns available for particular design
problems.

Recently, we designed a framework [8] for supporting software developers and
architects (decision-makers) with their multi-criteria decision-making (MCDM)
problems in software production. An MCDM problem deals with evaluating a set
of alternatives and considers a set of decision criteria [15]. In this tool paper, we
introduce a decision model, based on the framework, for the patterns selection
problem. The DSS employed the decision model to support software architects
with the pattern selection problem. Accordingly, we believe that the DSS can

70 S. Farshidi and S. Jansen

be used in steps (1–5) to facilitate the decision-making process for software
architects (see Fig. 1).

The rest of this tool paper is organized as follows. Section 2 outlines a brief
description of the DSS components and explains the constituent parts of the
decision model. Section 3 presents the DSS and its application through a real-
world example. Section 4 positions the DSS, among other tools and MCDM
approaches, in the literature. Finally, Sect. 6 presents the evaluation of the DSS
and summarizes this tool paper.

Fig. 1. This figure shows that the DSS can be deployed in the software architec-
ture design process to support the software architects with the pattern selection
problem [7,17].

2 Decision Support System

A DSS is an information system that comprises domain-specific knowledge and
decision models to assist decision-makers by offering knowledge about a set of
alternatives [20]. In this tool paper, the DSS integrates key aspects of knowledge-
driven and model-driven DSSs [16] to store and organize the extracted knowledge
regarding architectural patterns systematically facilitate the decision-making
process. Note, for the sake of simplicity, we use patterns to refer “architectural
patterns”.

A Decision Support System for Pattern-Driven Software Architecture 71

Additionally, we follow the framework [8] for modeling decision problems in
software production as MCDM problems. The framework applies the six-step
decision-making process [15] to build decision models for MCDM problems. The
knowledge base of the DSS is a collection of decision models for different MCDM
problems [7,9–11]. According to the framework, the decision model for the pat-
tern selection problem contains three sets (including Patterns, Software Quality
Models, and Features) besides the mapping among the elements of these sets
(see Fig. 1).

- Patterns: Patterns are the building blocks that, when assembled, can provide
complete solutions for an architect’s problem (see Fig. 1). Patterns have rela-
tionships to each other. For example, patterns can be alternatives to each other,
for example, Interpreter, Rule-Based System, and Virtual Machine [1]; More-
over, some patterns can also be complementary and combined. For instance, the
Client-Server pattern can be combined with the Broker pattern [12].

- Software Quality Models: A set of quality attributes, such as Availabil-
ity and Security, should be defined in the decision model. We employed the
ISO/IEC 25010 standard [13] as a domain-independent quality model. The key
rationale behind using this software quality model is that it is a standardized
way of assessing a software product’s quality. Moreover, it describes how easily
and reliably a software product can be used.

- Features: Each pattern has a set of features, for instance, “centralized gov-
ernance” is a feature of the “Client-Server”. We identified the following types
of features through a Systematic Literature Review (SLR) [11]. We reviewed
21,373 articles, and finally, 232 high-quality primary studies have been selected
for performing the knowledge extraction process. Note, such feature types can be
found in most patterns, even with different titles. (1: Problem) Descriptions of
the problems indicating the intent in applying patterns. (2: Context) The precon-
ditions under which patterns are applicable. (3: Forces) Descriptions of the allied
forces and constraints. (4: Solution) Static structures and dynamic behaviors of
patterns. (5: Resulting Context) The post-conditions after a pattern has been
applied. (6: Examples) Some sample applications of patterns. (7: Rationale) An
explanation/justification of each pattern as a whole. (8: Related Patterns) The
relationships among patterns. (9: Known Uses) Known applications of patterns
within existing systems. (10: Pros/Cons) Pros and cons of employing patterns.

- Mappings: We identified the impacts of 29 patterns on 40 quality attributes
based on a series of expert interviews with twelve senior software architects at
different software producing organizations in the Netherlands [11]. Moreover,
The mapping between the patterns and the features was investigated with the
SLR and the experts.

72 S. Farshidi and S. Jansen

Decision-Makers, such Software architects and developers, prioritize their
requirements based on the MoSCoW prioritization technique [5], and then they
send the requirements through the user interface of the DSS to the inference
engine. Figure 3 shows the user interface of the DSS.

Inference Engine: The DSS has an inference engine that receives inputs from
the user interface. Next, it excludes all infeasible solutions, those that do not
support “Must-Have” features or those that support “Won’t-Have” features, and
then it ranks the feasible solutions based on the number of “Should-Have” and
“Could-Have” features that they support. In other words, requirements with
Must-Have or Won’t-Have priorities act as hard-constraints and requirements
with Should-Have and Could-Have priorities act as soft-constraints. The infer-
ence engine assigns a non-negative score to each alternative solution based on
the well-known Sum of Weights Method [7], and finally, it returns a shortlist of
feasible patterns (solutions) to the user interface.

3 A Practical Running Example

The DSS is accessible through the following link: (https://dss-mcdm.com). After
login to the system, a software architect should select the “Software Architecture
Pattern Selection” to create an instance of the decision model.

This section presents a real-world example of the pattern selection process.
We asked a software architect at AFAS Software, a software producing organiza-
tion in the Netherlands, to define their software architecture from a high-level of
abstraction; then, we used the DSS and the decision model to capture the archi-
tect’s concerns and requirements; next, the DSS generated a set of solutions
accordingly.

Fig. 2. The architects describe their case in the context description screen. The tool
uses text matching to automatically extract a subset of features from the description
to get the architect started.

Case Description - The software architect described AFAS software as follows:
AFAS Software is a Dutch vendor of Enterprise Resource Planning (ERP) Soft-
ware with more than 500 employees. AFAS has the goal of automating business

https://dss-mcdm.com

A Decision Support System for Pattern-Driven Software Architecture 73

processes found in a diverse range of companies. It supports business processes
such as invoicing, project management, payrolling in a single integrated software
system. The current AFAS product, called AFAS Profit, is a traditional client-
server application with a relational database for storing and retrieving customers’
management data, such as business models and ontologies. AFAS Profit is a com-
plete, integrated ERP system used by more than 10000 small and medium-sized
enterprises. For example, Ernst & Young, Kwik-Fit, LeasePlan, Oad Reizen,
Sandd, and Wibra, are already employing AFAS Profit to automate their busi-
ness processes. Figure 2 shows the description of the decision-making problem in
terms of the case title and description; moreover, the logo of the company can be
attached to the “case description”.

Fig. 3. Represents how a decision-maker can define the requirements based on the
MoSCoW prioritization technique.

Case Definition - The software architect defined AFAS Profit as a web-based
solution that is consistent with the user experience of the windows client but
feels web-native to customers. AFAS Profit is configurable by customers in their
styling to match their logo and business style. AFAS Profit has the following
characteristics: (1) It is a combination of a client or frontend portion that inter-
acts with the user and a server or back-end portion that interacts with the
shared resource. The client process contains solution-specific logic and provides
the interface between the user and the rest of the application system. The server
process acts as a software engine that manages shared resources. (2) All data are
centralized on a single server, simplifying security checks, including updates of
data and software. (3) It supports a higher degree of flexibility and security, com-

74 S. Farshidi and S. Jansen

pared to the previous solution. (5) Its performance has increased significantly,
compared to the previous solution, as tasks are shared between servers.

The architect stated that “Functional Correctness”, “Resource Utilization”,
“Configurability”, “Accessibility”, “Reliability”, “Availability”, and “Scalability”
are the main quality concerns. Additionally, “technology agnostic”, ”modern
web application”, and ”reusability of the business logic” are the key require-
ments of AFAS profit. Figure 3 shows the “case definition” of AFAS Profit. The
software architect assigned the MoSCoW priorities (Must-Have, Should-Have,
Could-Have, and Won’t-Have) to the requirements. Note, the data type the fea-
tures can be either Boolean or Non-Boolean. For instance, “handling user input”
is a Boolean feature, which means that a pattern either supports it or not. How-
ever, the level of support of “Availability” or “Scalability”, as two Non-Boolean
features, of a pattern can be “High”, “Medium”, or “Low”.

Fig. 4. Illustrates part of the case evaluation by the DSS. Ticks (✓) in a row signify
that the feature is supported by the corresponding patterns, and crosses (✗) symbolize
that the patterns do not support the feature.

Case Evaluation - The software architect stated that AFAS Profit architec-
ture is based on a combination of the “Client-Server”, “Publish-Subscribe”, and
“Layers” patterns. The main rationales behind these design decisions are (1)
the frontend can be easily replaced or upgraded, and every module of the busi-
ness logic, in the back-end, can be reused. (2) The web client communicates over
HTTP with the server, so it is possible to choose different technologies for the web
client. (3) They can implement a Content Management System (CMS) to make
the web client configurable in style and layout. (4) While the data is requested
through communication with the server, preventing stale data, the CMS parts are
published with some delay, making it possible to cache the style and layout for
fast retrieval.

The inference engine gets the requirements and evaluates the alternative
patterns in its knowledge base accordingly. As each pattern supports only a

A Decision Support System for Pattern-Driven Software Architecture 75

limited set of features, the inference engine has to generate feasible solutions
(combinations of patterns). Note, finding a subset of patterns that support all
hard-constraints can be formulated as the set cover problem. The DSS uses an
algorithm based on the set cover problem to generate several feasible solutions
when all patterns in its knowledge base do not support the entire list of hard-
constraints of a decision-maker. For instance, Fig. 4 shows that the DSS could
not find any patterns that address all the AFAS Profit requirements so that it
generated a set of solutions consist of multiple patterns.

Fig. 5. Shows top-3 solutions for AFAS Profit.

Patterns tend to be combined to provide greater support for the reusability
during the software design process [19]. A pattern can be blended with, connected
to, or included in another pattern. For instance, the Broker pattern can be con-
nected to the Client-Server pattern to form the combined Client-Server-Broker
pattern [12]. Figure 5 shows top-3 solutions for AFAS profit. The solutions sup-
port all requirements with Must-Have priorities and do not support Won’t have
requirements (hard-constraints). Note, the DSS generated almost similar solu-
tions that the experienced software architects at AFAS came up with. Note that
the DSS sorts its suggestions based on their scores so that top-3 solutions can
be considered the most valuable suggestions.

The DSS Reports - In the knowledge extraction phase for building the decision
model, we observed multiple inconsistencies regarding the impacts of patterns
on quality attributes. Some studies reported adverse impacts of a particular pat-
tern on a quality attribute. For instance, efficiency can be considered as both
strength and liability of the Pipes and Filters pattern. We applied fuzzy logic to
aggregate the extracted knowledge regarding the potential impacts of patterns
on quality attributes. In the implementation of the score calculation (trade-off)
phase of the DSS, the impact values range from −2 to 2+. Accordingly, the
patterns with more liabilities score lower than those that have more strengths.
Note, quantifying the impact of a particular pattern on the quality attributes is
complicated because quality attributes are system-wide capabilities. Generally,

76 S. Farshidi and S. Jansen

Fig. 6. Show a subset of the mapping between features and patterns used by the DSS
to generate solutions for AFAS profit. The primary source of knowledge to build this
mapping is the SLR. We employed Fuzzy logic to gain some agreement among the
selected studies to calculate the values [11]. Note: High (H), Medium (M), Low (L),
Unknown (?).

they cannot be evaluated entirely until the whole system can be evaluated. The
DSS evaluates alternative solutions according to decision-makers’ quality con-
cerns. Figure 6 shows the impacts of the single solutions for AFAS profit on a
subset of quality attributes.

Figure 7 illustrates a decision structure based on AFAS profit require-
ments. The DSS automatically generates such decision structures according to
the requirements of decision-makers. The first level of the decision structure
(Domain) indicates the goal of the decision-making process. The second level
denotes the relevant quality attributes that impact the prioritized requirements,
which are signified in the third level (requirements). The last level (Feasible
Solutions) shows a list of feasible patterns for the decision domain.

4 Related Work

In the SLR [11], we reviewed selected 232 high-quality primary studies for per-
forming the knowledge extraction process. The knowledge base of the SLR,
including the primary studies and extracted knowledge, is available as a tech-
nical report on the following web page: http://swapslr.com. We realized that
researchers introduced a variety of tools and MCDM techniques to address the
pattern selection problem. Notably, there are few tools available for software
architects. Architecting is a knowledge-intensive practice, so it can be hard to
find the best way to support architects with the right knowledge at the right time.
A subset of tools for supporting software architects with their design decisions
are presented as follows: Archium (www.archium.io) is a visualization tool that
produces a view on the functional dependencies between architectural design
decisions. It is not an automatic pattern detection or selection, but visualizing
the dependencies can help software architects identify such patterns. ArchReco
(www.cs.ucy.ac.cy/sielis) provides a design environment that software architects

http://swapslr.com
www.archium.io
www.cs.ucy.ac.cy/ sielis

A Decision Support System for Pattern-Driven Software Architecture 77

can draw diagrams with pre-defined shapes that exist in a palette. The descrip-
tion of the shapes is part of a contextual element set that ArchReco’s processes
suggest the most suitable context-based recommended design patterns. Such
Design Patterns are retrieved from several data sources and filtered accord-
ing to the contextual information that is processed when software architects
request recommendations. Sirius (www.obeodesigner.com/en/product/sirius) is
a tool that enables software architects to graphically design complex systems
while keeping the corresponding data consistent (architecture, component prop-
erties, etc.). AKB (www.se.jku.at/akb-knowledge-sharing) is an implementation
and extension of the Architecture Haiku concept, a one-page design description.
AKB supports software architects with capturing and sharing of architectural
knowledge based on architecture profiles.

Fig. 7. Shows part of the decision structure for the AFAS profit that was generated by
the DSS. The domain of the decision-making process is “Finding the best fitting set of
patterns for AFAS profit”. The qualities are based on the ISO/IEC 25010 [13] quality
model. The software architect (decision-maker) defined the feature requirements. The
DSS suggested feasible alternative solutions for AFAS profit (last level). Note, the map-
ping between the qualities and the features was based on domain experts’ knowledge;
moreover, the relationships among features and patterns were determined based on the
SLR [11].

The DSS enables software architects to document their drawings and design
rationales. We implemented a design studio based on the Unified Modeling Lan-
guage concepts to store design decisions while the decision-making process. The
main difference between the DSS and such tools is that it supports software
architects with their decision-making process. In other words, the DSS provides
a discussion and negotiation platform to enable software architects to make
group decisions. Furthermore, the DSS can be used over the full life-cycle and
can co-evolve its advice based on evolving requirements. Software architects can
prioritize their functional requirements and quality concerns using the MoSCoW
prioritization technique through the user interface of the DSS. Then, the DSS
generates a set of feasible solutions that address the requirements.

www.obeodesigner.com/en/product/sirius
www.se.jku.at/akb-knowledge-sharing

78 S. Farshidi and S. Jansen

5 Evaluation

We carried out a study with 24 software architects and developers in the Nether-
lands to assess the user acceptance of the decision support system and the deci-
sion model based on the Technology Acceptance Model. Firstly, we formed 12
groups of two individuals according to their expertise and the companies that
they were working with. Next, we introduced the decision model within the DSS
portal and presented some of its applications. Then, we assigned the problem
definitions of two real-world software architectures to the groups and asked them
to design two solutions for the problems. The groups used the decision model
within the DSS platform to help them with (1) defining the requirements based
on the MoSCoW prioritization technique, and (2) finding the best fitting set
of patterns. The group sessions lasted between 45 to 60 min. At the end of the
sessions, we ask all of the participants to fill out a TAM-based questionnaire;
Next, we collected their feedback and opinion about the decision model. The
participants highlighted that the decision model, in terms of reusable knowledge
regarding the patterns, was a useful tool that can support them to explore more
patterns while designing real-world software architectures. They asserted that
the decision model assists them in finding liabilities and strength of patterns,
their features, and potential application domains that they have employed in.

The DSS assists software architects in the requirements elicitation activity by
offering a list of essential features of patterns. Moreover, software architects have
different perspectives on their requirements in different phases of the Software
Development Life-Cycle. They might want to consider generic domain features
in the early phases of the life-cycle, whereas they are interested in more tech-
nical features as their development process matures. Therefore, the DSS might
come up with various solutions for a software architect in different phases of its
software development life-cycle. As the choices of a decision-maker are stored in
the DSS knowledge base, it does not cost a significant amount of time to rerun
the decision-making process. In a typical scenario, an architect will tweak her
decisions and values to assess her choices have on the desired set of patterns.
Software architects sometimes have to select a particular set of patterns because
of legacy technology choices. Sometimes vendor lock-in makes a customer depen-
dent on a vendor for products and services, unable to use another vendor without
substantial switching costs. An example of a pattern that has been trending in
recent years is the Microservices pattern (see [11]). Microservices advantages can
tempt architects to consider it as a hammer and convert every design decision
into a nail.

Patterns and quality attributes are not independent and have significant
interaction with each other. Such interactions can be observed as trade-offs
between quality attributes. Software architects need to select and employ an
optimal set of patterns to satisfy quality concerns. For instance, some studies
assert that Reusability is a strength and Scalability is a liability of the Layers
pattern (see [11]). If an architect is looking for both qualities, she has two options:
choose another (set of) pattern(s) or use tactics to improve Scalability. System
quality is best exposed in production, independent of whether system quality

A Decision Support System for Pattern-Driven Software Architecture 79

has been made explicit. We recall that well-known authors, such as Wiegers and
Beatty [21], classify quality attributes as external (exposed at the run time/in
production, e.g., performance) and internal (exposed at design time, e.g., mod-
ifiability). If architects do not think about performance, the system will still
expose its performance in the field. The knowledge around the quality of a sys-
tem under design is hard to gather without in the field experiences; however,
experience with similar patterns in other systems provides invaluable insight
into the inherent qualities of a new system. The DSS recommends patterns
that exhibit similar quality behaviors when purely implemented (without tac-
tics) in different systems and that this knowledge can be used by architects to
make informed design decisions. We consider it future work to further explore
these relationships between patterns and the way in which these communicating
properties are best communicated to architects, having to choose from a set of
complex solutions.

The tool has been designed using the .Net framework. While it has been
optimized somewhat, the tool will sometimes still perform slowly, with end-user
wait times of around 5 s, which is workable, but not ideal. One of the challenges
is the solution space: for recommending solutions (combinations of patterns),
the problem’s search space is huge, consisting of 29 patterns and 188 features.
For instance, for a solution with three patterns, the problem’s search space is
found to contain ∼ 29 × 28 × 27 × 188 possible problem states.

6 Conclusion

In this tool paper, we present a DSS besides a decision model for architectural
pattern selection. The DSS suggests feasible patterns for particular cases based
on the quality concerns and functional requirements of decision-makers. The
DSS1 is accessible through the following link: (https://dss-mcdm.com). We con-
sider it future work to ensure that the knowledge base remains up to date, for
instance, through a wiki-mechanism. Thus, software architects can consider the
DSS as a source of knowledge and reliable assistance while making decisions
regarding the best-fitting set of patterns for their software architectures. Addi-
tionally, we should enhance the DSS with a learning module that improves its
learnability aspect in the future.

It is presently impossible to assess which patterns are compatible and fre-
quently used in combination, even though practically all systems implement
more than one pattern. The knowledge base of the DSS contains individual pat-
terns that solve particular parts of a design problem. The inference engine uses
an algorithm based on the set cover problem to generate several feasible solu-
tions when all patterns in its knowledge base do not support the entire list of
hard-constraints of a decision-maker.

In our studies, we have dealt with different kinds of architectures, with a
slight bias towards enterprise resource planning systems. We consider it as future
1 Please watch a demo video of the DSS through this link: https://youtu.be/
AhfGYpwpJSQ.

https://dss-mcdm.com
https://youtu.be/AhfGYpwpJSQ
https://youtu.be/AhfGYpwpJSQ

80 S. Farshidi and S. Jansen

work to apply the tool to problems in other domains, such as Internet of Things,
gaming, or media systems.

References

1. Avgeriou, P., Zdun, U.: Architectural patterns revisited-a pattern language. In:
European Conference on Pattern Languages of Programs (2005)

2. Bosch, J.: Software architecture: the next step. In: Oquendo, F., Warboys, B.C.,
Morrison, R. (eds.) EWSA 2004. LNCS, vol. 3047, pp. 194–199. Springer, Heidel-
berg (2004). https://doi.org/10.1007/978-3-540-24769-2 14

3. Bushchmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M.: Pattern-
oriented software architecture-a system of patterns. Adv. Softw. Eng. Knowl. Eng.
1, 1–487 (1996)

4. Clements, P., Kazman, R., Klein, M., et al.: Evaluating Software Architectures.
Tsinghua University Press, Beijing (2003)

5. DSDM Consortium: The DSDM Agile Project Framework Handbook. Ashford,
Kent (2014)

6. Dutoit, A.H., McCall, R., Mistŕık, I., Paech, B.: Rationale Management in Soft-
ware Engineering, 1st edn., p. 434. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-30998-7

7. Farshidi, S., Jansen, S., De Jong, R., Brinkkemper, S.: A decision support system
for cloud service provider selection problems in software producing organizations.
In 2018 IEEE 20th Conference on Business Informatics (CBI), vol. 1, pp. 139–148.
IEEE (2018)

8. Farshidi, S., Jansen, S., de Jong, R., Brinkkemper, S.: A decision support system
for software technology selection. J. Decis. Syst. 27, 98–110 (2018)

9. Farshidi, S., Jansen, S., De Jong, R., Brinkkemper, S.: Multiple criteria decision
support in requirements negotiation. In: The 23rd International Conference on
Requirements Engineering: Foundation for Software Quality (REFSQ 2018), vol.
2075, pp. 100–107 (2018)

10. Farshidi, S., Jansen, S., España, S., Verkleij, J.: Decision support for blockchain
platform selection: three industry case studies. IEEE Trans. Eng. Manage. PP,
1–20 (2020)

11. Farshidi, S., Jansen, S., van der Werf, J.M.: Capturing software architecture knowl-
edge for pattern-driven design. J. Syst. Softw. 169, 110714 (2020)

12. Harrison, N.B., Avgeriou, P.: How do architecture patterns and tactics interact?
A model and annotation. J. Syst. Softw. 83(10), 1735–1758 (2010)

13. ISO. IEC25010: systems and software quality requirements and evaluation
(SQuaRE). International Organization for Standardization, vol. 34, p. 2910 (2011)

14. Lago, P., Avgeriou, P.: First workshop on sharing and reusing architectural knowl-
edge. ACM SIGSOFT Softw. Eng. Notes 31(5), 32–36 (2006)

15. Majumder, M.: Multi criteria decision making. Impact of Urbanization on Water
Shortage in Face of Climatic Aberrations. SWST, pp. 35–47. Springer, Singapore
(2015). https://doi.org/10.1007/978-981-4560-73-3 2

16. Power, D.J.: Decision support systems: a historical overview. In: Handbook on
Decision Support Systems, vol. 1, pp. 121–140. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-48713-5 7

17. Rozanski, N., Woods, E.: Software Systems Architecture: Working with Stakehold-
ers Using Viewpoints and Perspectives. Addison-Wesley, Boston (2012)

https://doi.org/10.1007/978-3-540-24769-2_14
https://doi.org/10.1007/978-3-540-30998-7
https://doi.org/10.1007/978-3-540-30998-7
https://doi.org/10.1007/978-981-4560-73-3_2
https://doi.org/10.1007/978-3-540-48713-5_7

A Decision Support System for Pattern-Driven Software Architecture 81

18. Tang, A., Liang, P., Van Vliet, H.: Software architecture documentation: the road
ahead. In: The 9th Working IEEE Conference on Software Architecture, pp. 252–
255. IEEE (2011)

19. Ton That, M.T., Sadou, S., Oquendo, F., Borne, I.: Composition-centered archi-
tectural pattern description language. In: Drira, K. (ed.) ECSA 2013. LNCS, vol.
7957, pp. 1–16. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-
39031-9 1

20. Wang, H.: Intelligent agent-assisted decision support systems: integration of knowl-
edge discovery and knowledge analysis. Expert Syst. Appl. 12(3), 323–335 (1997)

21. Wiegers, K., Beatty, J.: Software Requirements. Pearson Education, London (2013)
22. Zimmermann, O.: Architectural decisions as reusable design assets. IEEE Softw.

28(1), 64–69 (2010)

https://doi.org/10.1007/978-3-642-39031-9_1
https://doi.org/10.1007/978-3-642-39031-9_1

Gropius — A Tool for Managing
Cross-component Issues

Sandro Speth1(B) , Uwe Breitenbücher2 , and Steffen Becker1

1 Institute of Software Engineering, University of Stuttgart,
Stuttgart, Germany

{sandro.speth,steffen.becker}@iste.uni-stuttgart.de
2 Institute of Architecture of Application Systems, University of Stuttgart,

Stuttgart, Germany
uwe.breitenbuecher@iaas.uni-stuttgart.de

https://www.iste.uni-stuttgart.de/rss/

https://www.iaas.uni-stuttgart.de/

Abstract. Modern software systems often are structured as distributed
component-based architectures, such as microservice architectures. How-
ever, such systems come with significant challenges in cross-component
issue management. Each component usually manages its issues in an
independent issue management system, and conventional issue manage-
ment systems only have a project-specific scope. Therefore, issues that
affect multiple components or propagate across various components can-
not be displayed. Furthermore, issues cannot be linked semantically to
issues in other components. Instead, emergency solutions, such as a URL
to the other issue, must be used. This makes it challenging to recognize
cross-component dependency information. This paper presents Gropius,
a tool for integrated management of cross-component issues. Gropius
graphically models such cross-component issues together with the sys-
tem architecture in a notation similar to a UML component diagram.
Additionally, other research and industry efforts to manage such issues
are discussed and compared to Gropius.

Keywords: Issue management · Integration · Service-oriented
architecture · Component-based architecture · Bug tracking ·
Microservices

1 Introduction

Today’s systems usually consist of several externalized components, such as
microservices, which together form an application. Although such a distributed
application has many advantages, the complexity of the application also leads
to several challenges and problems during development as identified by Mah-
mood et al. [9]. For example, there is a lack of showing inter-dependencies of
components. Additionally, since each component is developed by an indepen-
dent team, often several teams which might not know each other meet at the
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 82–94, 2020.
https://doi.org/10.1007/978-3-030-59155-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_7&domain=pdf
http://orcid.org/0000-0002-9790-3702
http://orcid.org/0000-0002-8816-5541
http://orcid.org/0000-0002-4532-1460
https://doi.org/10.1007/978-3-030-59155-7_7

Gropius — A Tool for Managing Cross-component Issues 83

interfaces between the components. In particular, issue management comes with
the high potential for risk, since dependencies between the various components
can lead to the propagation of bugs or other issues along the call chain through
the components. To fix such an issue, the original component must be iden-
tified, and the bug must be fixed there. It is, therefore, necessary to be able
to communicate such cross-component issues efficiently and effectively across
individual component boundaries. For this, the architectural dependencies must
be documented together with the issues. However, conventional issue manage-
ment systems only work on a project-specific scope and thus fail to provide
a cross-component view. In these conventional issue management systems, the
dependencies between several issues of different components cannot be repre-
sented semantically. The only solution to create a link is to provide a URL to
the linked issues. This makes it impossible to visualize dependencies of an issue
on different components, as well as the architectural dependencies of the affected
components on each other. Also, issue propagation is difficult to identify along
with the issue by following the links instead of graphically. For the management
of such cross-component issues, therefore, an appropriate syntax is required that
models issues together with the dependency view of the architecture. For this
purpose, we have developed Gropius, a system for integrated management of
issues which affect different independently developed components. In Gropius,
components, their dependencies to each other, as well as cross-component issues
can be visualized and modelled in a graphical notation similar to a UML com-
ponent diagram. Linking and propagation of issues, therefore, can be identified
more easily. By applying the adapter pattern, Gropius acts as a wrapper over
traditional issue management systems and can consequently create and manage
issues in the issue management systems of all affected components. In this work,
we describe the architecture and functionality of Gropius. Additionally, other
approaches to manage cross-component issues are discussed and compared to
our approach. Besides, there is a short introduction video for Gropius1.

The remainder of the paper is as follows: Sect. 2 briefly explains the problem
of issue management in component-based systems, provides a problem use case
and discusses how this use case can be solved with the cross-component issue
management system Gropius. Afterwards, the architecture of Gropius with par-
ticular regard to and the graphical CrossComponentIssueModeller are outlined
in Sect. 3. Section 4 discusses related research and industry efforts to manage
issues which are affecting several components or projects. Additionally, we com-
pare these approaches with Gropius. Finally, we conclude in Sect. 5.

2 Problem Statement and Use Case

Modern systems usually consist of many independently developed components,
such as in the widely used microservice architecture style. The components are
specified by contracts and form the composable building blocks for a more exten-
sive software [11,13]. Components offer interfaces to the outside world, which can
1 https://youtu.be/dRhDINDbMkc.

https://youtu.be/dRhDINDbMkc

84 S. Speth et al.

be consumed by other components to use the exported functions. Thus, compo-
nents can be provided and used without understanding the internals. However,
the consumption of such interfaces also creates dependencies between the inde-
pendent components of the system.

Mahmood et al. have described in [9] some problems and challenges that
occur in such component-based systems. One of the main challenges they identify
is the lack of adequate tracking of bugs and faults in such systems. They point out
that issues in such systems must be tracked back to the original component and
at the same time adequately managed in all dependent components. Additionally,
Mahmood et al. show a lack of inter-dependency between components.

Since the components are each developed and maintained by independent
teams, the ownership and resulting rights do not belong to the developers of
the interface consuming components. Besides, bug reports and other types of
issues for each component are managed in an independent issue management
system (bug tracker). However, due to the dependencies across components,
issues can be propagated across components along the call chain using the con-
sumed interfaces. For example, if a component’s functionality fails due to a bug,
the dependent components will also be affected by the bug at runtime because
the consumed interfaces do not fulfil their contracts.

Fig. 1. A use case for a problematic issue management for two components of a webshop
implemented as a microservice architecture

Imagine a use case of a part of a webshop implemented with a microser-
vice architecture as shown in the component diagram of the Fig. 1. The order
and shipping services are components of the system, with the shipping service
providing an interface that is consumed by the order service. Both components
are developed by independent teams and manage the issues of their components
in different issue management systems (e.g. GitHub and Jira). Assuming a bug
occurs in the shipping service’s interface, the dependent functionality of the order
service will also be affected at runtime. The bug, therefore, propagates via the

Gropius — A Tool for Managing Cross-component Issues 85

consumed interface from the shipping service to the order service and creates
another bug there. Bug reports can be created for the corresponding bugs in
both issue management systems. However, as described in [9], the resulting bug
must be traced back to its original component. To make this possible, the bug
report of the resulting bug should link to the bug report of the original bug,
since the fixing of the bug in the order service depends on the fixing of the bug
in the shipping service. Since conventional issue management systems have a
project-specific scope and, therefore, can only track issues within a component,
issues cannot link to issues in other issue management systems. The bugs of
both components must consequently be communicated and synchronized by the
development teams via e-mail, meetings or other tools, which leads to a sig-
nificant communication effort. Therefore, a system is needed that enables issue
management for independently developed components while using the actual
issue management systems of the components.

Fig. 2. Overview of the cross-component issue management system Gropius

For this purpose, we have designed Gropius, the integrated cross-component
issue management system. Figure 2 shows how Gropius can be used to manage
and synchronize issues across different components. Instead of using the con-
ventional issue management systems, all issues of the components of a project
can be modelled and managed using a graphical notation in Gropius, which is
introduced by Speth in [12]. This allows development teams to create issues
that affect multiple components and link semantically to other issues across
components, rather than just specifying a URL or the ID of an issue. Gropius
propagates changes to issues to the actual issue management systems of the
components and synchronizes with them. Gropius thereby operates as a wrap-
per over the different issue management systems and links them to a single joint
UI. The figure shows how components and their dependencies are modelled in
the CrossComponentIssueModeller together with the issues in a system archi-
tecture graph. The components are represented in a syntax that is very similar to
a UML component diagram to highlight dependencies across components more
clearly. Additionally, Gropius can distinguish whether an issue directly affects a
component or its interface and display this in the graph at a suitable position.

86 S. Speth et al.

Dependencies between issues are modelled not only textually in the description
of the issue, but also graphically, making them easy to identify.

The use case described above can now be solved very easily with Gropius. A
project manager can create a project for the webshop in Gropius and create the
components of the project (order service and shipping service). To synchronize
Gropius with the actual issue management systems, each component links to
the respective issue management system and the information about what type
of issue management system (e.g. Jira) is involved. To ensure that the compo-
nents are not only created individually but also to show the dependencies across
components, the interface of the shipping service can be created in the graph
and consumed by the order service. This allows Gropius to display the architec-
ture of the webshop project, similar to a UML component diagram. After the
components have been created, Gropius shows a project member, e.g. a devel-
oper, all open issues of the component in the graph. This allows a developer of
the order service to quickly identify if a bug report exists for the interface of
the shipping service. Since in the use case the order service consumes the faulty
interface of the shipping service, and the bug is propagated to the order service,
it is possible for a developer to quickly locate the origin of the bug in the order
service during debugging via the concrete representation of the dependencies of
the components. Due to the dependency of the bug, it cannot be resolved directly
by the developer but requires the resolution of the bug that affects the interface
of the shipping service. However, this cross-component bug can be documented
via Gropius. The developer can create a bug report using the graph and point it
to the bug report on which he depends. This semantic link is then also displayed
in the graph to model the dependency more precisely. Gropius also creates the
new bug report in the Issue Management System of the order service. If the bug
report of the shipping service interface is closed, the graph will show the bug
in green and signal the order service development team that the dependent bug
can now be fixed.

3 Architecture

This section describes the general architecture of the Cross-Component Issue
Management System Gropius [6]. As depicted in Fig. 3, the system is divided
into front-end, back-end and databases, whereby the back-end is connected to the
actual issue management systems of the components via adapters. The system,
therefore, forms a kind of shared wrapper over other issue management systems.
We present the front-end with particular regard to the graphical notation of
cross-component issues in Sect. 3.1. The back-end is explained in more detail
in Sect. 3.2. We look at the use of the adapter pattern to synchronize issues to
the corresponding issue management systems. Finally, we discuss in Sect. 3.3 the
persistence and synchronization of cross-component issues managed by Gropius.

Gropius — A Tool for Managing Cross-component Issues 87

Fig. 3. Architecture of the cross-component issue management system

3.1 Front-End and the Graphical CrossComponentIssueModeller

The front-end is written as a web application in Angular, taking into account
modern tools and technologies. It consists of three main modules responsible
for user management (UserManagement), project and component management
(ProjectManagement), and the modelling and management of cross-component
issues (CrossComponentIssueModeller). The main view with expanded project
menu and CrossComponentIssueModeller is depicted in Fig. 4.

UserManagement. The UserManagement module takes care of the registra-
tion, authentication and authorization of users. A user has to authenticate him-
self for the supported issue management systems. This can be done using creden-
tials or access tokens. Since Gropius is a wrapper over other issue management
systems, this step is particularly crucial for propagating user actions to the actual
systems. Authentication between front-end and back-end is done using JSON
Web Tokens, a modern standard for bearer tokens for client authentication [7].

88 S. Speth et al.

ProjectManagement. Users can create new projects or be added to an exist-
ing project as a contributor by a project owner which the ProjectManagement
module is responsible for. Navigation to the projects is done after logging in via
the SideNav bar, which can be seen in Fig. 4. In addition to the users, each project
has a set of components that represent the components of a component-based
system. These components are managed in the CrossComponentIssueModeller.

CrossComponentIssueModeller. The components are represented in a
graphical notation, which is similar to a UML component diagram. For this
graph editor’s implementation, the grapheditor-webcomponent [4] developed
at the University of Stuttgart was chosen, as it is based on highly modifiable and
state-of-the-art framework d3.js. As in a component diagram, the components
link to each other in the graph editor of the CrossComponentIssueModeller using
the lollipop notation. Additionally, the CrossComponentIssueModeller provides
options for graph interaction and filtering. New interfaces can be created from
the components by drag-and-drop, and components can be connected to already
existing interfaces of other components. Dependencies between components can
be made visible by this notation.

Components and interfaces can have data stored for them. This makes it
possible to give an interface information about the type of interface, for exam-
ple, a REST via HTTP/2 interface. This is particularly helpful if a component
provides several interfaces, and these are to be distinguished. Additionally, com-
ponents need a link to their associated issue management system and a link to
their repository system. Such a link is required by Gropius to manage issues for
the components. Actions on issues are propagated via the back-end to the actual
issue management system. The required repository is stored so that a developer

Fig. 4. Front-end view which shows an open project and the CrossComponent

IssueModeller

Gropius — A Tool for Managing Cross-component Issues 89

Fig. 5. Problem use case managed in the cross-component issue management system
Gropius

can link issues to the source code or other artefacts in the repository of the com-
ponent from Gropius. This is particularly important if a cross-component issue
is to link to artefacts of another component, for example, the source code of an
interface that is being consumed.

Issues are attached to the node for the respective components that are
affected by the issues. If an issue affects a component’s interface, the issue is
displayed directly at the interface instead of at the component. The user can
drag-and-drop for each component or interface individually to determine whether
the issues should be displayed below, above, to the left or right of it. For a better
overview, issues are collected in folders that can be opened by clicking. There
are three main categories, feature requests, bug reports and unclassified issues.
Feature requests are displayed with a blue bulb, bug reports with a red bug and
unclassified issues with a question mark. Since the CrossComponentIssueMod-
eller displays issues next to the components in the graph, links between different
issues, especially issues of different components, can be displayed graphically.
This allows a user to identify if issues are propagated across multiple compo-
nents quickly. If several components have the same issue, this is displayed in the
graph for all affected components. In contrast, in the data storage, it is only one
object that references all affected components as locations. To prevent all issues
from being displayed at the same time, a user can hide the different types of issues
in the graph using toggle switches. Additionally, a user can use the notification
toggle slider to display only those issues for which the user receives notifications
from the underlying issue management system. Notifications include, for exam-
ple, the user’s selection in comments on an issue or when the user is assigned to
an issue.

Consider the problem use case from Sect. 2. Figure 5 shows the graph of the
CrossComponentIssueModeller for the use case. It displays the two components
for an order service and a shipping service. The shipping service component pro-
vides an interface that is consumed by the order service component. Additionally,
the figure depicts three bug reports. The first bug report concerns the shipping
service component. Due to this bug, a second bug arises at the interface of the
component. In the graph, the bug report at the interface points to the bug report
at the component. Since the order service component consumes the interface of
the shipping service component, the bug also propagates to this component. This

90 S. Speth et al.

results in another bug report for the order service component, which in links to
the bug report in the interface of the shipping service component. In this view,
the modelling language clearly shows that the issues have been propagated. To
fix the bugs, a user can follow the links to the origin in the graph. From this, an
order can be derived in which the bugs must be fixed. Thus, a developer can see
for the given example that the bug in the shipping service must be fixed first.

To keep the graph displayed with clarity even with a high number of com-
ponents, the CrossComponentIssueModeller offers the possibility to zoom in the
graph or to move in the view of the graph by drag-and-drop. Additionally, all
components and interfaces can be moved via drag-and-drop and thus arranged
differently. The resulting layout is user-specific. Thus, each user can define the
layout in the dependency graph of the components individually concerning his
own needs. To ensure that the overview of the entire application can always be
kept, a minimap in the upper left corner of the CrossComponentIssueModeller
shows the entire graph in small size. It covers the parts displayed in the current
view of the graph with a slightly transparent coloured rectangle.

If a user prefers a traditional list of issues instead of the dependency graph of
the system’s components and the display of dependencies across issues, he can
switch to the list tab. There, all components and their issues are displayed in
lists. It is easier to see issue details, such as the title, but information such as
dependencies on issues in other components is wholly lost.

3.2 Backend and Adapter

The back-end and front-end communicate via GraphQL, a modern query lan-
guage for APIs, which facilitates further development of the API over time [5].
Corresponding to the front-end, there are three modules for user management,
project management and components. The UserController persists user data in
the database and queries it. The ProjectController stores components and con-
tributors to a project and how the components of the project are connected. A
component can occur in several projects. The ComponentController ensures that
for each component of a project, the issues can be queried, updated and new
issues created via a uniform interface, the IMSAdapter. The cross-component
issues are mapped to common issues in the actual issue management systems.

The use of the adapter pattern allows writing adapters specifically for any
issue management system. As a consequence, Gropius can also support emerging
issue management systems. The abstract IMSAdapter defines a uniform inter-
face. The correct specific adapter can be selected and bound at runtime. In order
to support a new issue management system, a developer can write a specialized
adapter for the newly supported issue management system. This specialized
adapter inherits from the abstract IMSAdapter. In this way, the adapters pro-
vide the interface that is consumed by the component controller. The user’s
credentials, such as an access token, must be stored in the database for authen-
tication with the underlying issue management systems. In the case of GitHub,
for example, Gropius acts as a GitHub app via the adapter and can, therefore,

Gropius — A Tool for Managing Cross-component Issues 91

perform operations on behalf of the users on the actual issue management sys-
tems. This enables Gropius to act as a wrapper over the various component issue
management systems. For other issue management systems, the adapter must
follow the respective API terms of use. If the issue management system allows
Gropius to perform operations directly with the user’s credentials, Gropius can
perform the operations without intermediate steps as if the user would perform
them in the actual issue management system.

3.3 Persistence and Synchronization

The Gropius cross-component issue management system allows users to cre-
ate and manage issues for the affected components. Each action, e.g. update of
an issue, is propagated by Gropius on behalf of the user to the corresponding
issue management systems of the components. This means that issues created in
Gropius are stored persistently in the issue management systems of all affected
components. The credentials of the user, such as an access token, are used for the
respective issue management system that the user provides to Gropius. Depend-
ing on the issue management system, Gropius then acts as a registered app, as
in the case of GitHub. The issue created by Gropius thereby appears as if it had
been created by the user directly in the actual issue management system. An
issue created by Gropius on the use-case’s order service’s GitHub repository is
shown in Fig. 6. The issue body contains the actual description and additional
metadata, which are interpreted by Gropius. The issue shown is a bug report,
which refers to another component’s issue with a Depends relation. If an issue
is changed in the component’s issue management system, Gropius can take this
change into account when it next requests the issues. Even if this issue affects
several components, Gropius propagates the changes made to the issue manage-
ment systems of all components. If an issue is changed directly in the actual issue

Fig. 6. Bug report created by Gropius in the name of user spethso for the order service
component of the use case

92 S. Speth et al.

management system, this change will be recognized by Gropius the next time
a Gropius user queries the issue. Then, Gropius propagates the change to the
other issue management systems accordingly. Therefore, cross-component and
regular issues are synchronized in both directions.

4 Related Research and Industry Efforts

There are various efforts for cross-component issue management. In a Redmine
forum [10] it is discussed how an issue can be related to several projects. The
proposed solution is to create a common (Redmine) task for all projects and
subtasks for the respective affected projects. This solution is only feasible if all
projects are in the same Redmine project. In component-based systems, however,
each component usually manages its issues in an independent issue management
system, for example, a separate Redmine project for each component. Therefore,
this approach is not a practical solution for our use case.

Also, various Atlassian forums [2,3] discuss approaches to manage issues that
affect multiple projects. In the proposed Structure plugin, Jira data from multi-
ple Jira projects can be managed and filtered together in a spreadsheet-like UI. A
significant disadvantage of this plugin is that ownership permissions are required
for each project. Since components are usually developed and maintained exter-
nally, the plugin cannot usually be used for component-based systems. Another
proposed solution is to create a simple Jira project with several Scrum Boards
for individual projects (components). As described above, such an approach is
not applicable for component-based systems.

The Jira Plugin Backbone Issue Sync [8] allows the synchronization of an
issue across multiple Jira projects. As in Gropius, a user can decide which issue
should be synchronized. However, the plugin is limited to Jira. Other issue man-
agement systems like GitHub or Redmine are not supported. With the use of
adapters, Gropius can support different issue management systems and is, there-
fore, better suited for multiple components from different systems.

Multi Project Picker [1] is another Jira plugin that allows you to manage
issues across multiple components. The Multi Project Picker plugin removes the
limitation that an issue can only belong to one Jira project. Instead, an issue
can be assigned to multiple projects using comma-separated projects in a form
field. Also, as in Gropius and the Backbone Issue Sync, a user can specify for
each issue which projects are affected. However, similar to the Backbone Issue
Sync plugin, the plugin is limited to Jira projects and, therefore, not universally
applicable as with Gropius.

Gropius — A Tool for Managing Cross-component Issues 93

5 Conclusion

Distributed component-based systems come with some challenges. One major
challenge is tracking bugs and faults across components to the original com-
ponent and adequately managing the issue in all affected components. Since
each component usually has an independent issue management system, cross-
component issues cannot be managed appropriately with conventional issue
management systems. As a result, developers must communicate such issues
using other means, such as e-mails or meetings. Another challenge is the iden-
tification of interdependencies of such independently developed components.
We have developed Gropius to address these challenges. Gropius is a tool
for integrated management of cross-component issues. In Gropius, the com-
ponents of a component-based architecture and their dependencies are dis-
played in a graphical notation similar to UML component diagrams. Issues and
their cross-component dependencies can be visualized in the graphical nota-
tion together with the affected components. This allows a developer to manage
cross-component issues and track issues across multiple components. Changes
to issues, as well as newly created issues, are propagated and synchronized via
Gropius to the actual conventional issue management systems of the compo-
nents so that existing components with their own issue management system can
be imported without any problems. In contrast to other research and industry
efforts, Gropius supports any issue management system via adapters instead of
a single one. Consequently, Gropius enables integrated cross-component issue
management via a uniform interface.

References

1. Multi project picker—atlassian marketplace. https://marketplace.atlassian.com/
apps/1211709/multi-project-picker?hosting=server&tab=overview

2. Atlassian: how do others work with issues affecting multiple projects
(2020). https://community.atlassian.com/t5/Jira-questions/How-do-others-work-
with-issues-affecting-multiple-projects/qaq-p/399950

3. Atlassian: solved: Share one issue “ticket” across multiple projects ...
(2020). https://community.atlassian.com/t5/Jira-Software-questions/Share-one-
issue-quot-ticket-quot-across-multiple-projects-and/qaq-p/407534

4. Bühler, F.: Grapheditor—mico grapheditor documentation 0.5.4 documentation.
https://mico-grapheditor.readthedocs.io/en/stable/#

5. Foundation, G.: Graphql—a query language for your API. https://graphql.org/
6. Gropius: a cross-component issue management system for component-based archi-

tectures. https://github.com/ccims
7. Jones, M., Bradley, J., Sakimura, N.: RFC 7519: Json web token (jwt). IETF, May

2015
8. K15t: Backbone issue sync for jira (2020). https://www.k15t.de/software/

backbone-issue-sync-for-jira
9. Mahmood, S., Niazi, M., Hussain, A.: Identifying the challenges for managing

component-based development in global software development: preliminary results.
In: 2015 Science and Information Conference (SAI), pp. 933–938. IEEE (2015)

https://marketplace.atlassian.com/apps/1211709/multi-project-picker?hosting=server&tab=overview
https://marketplace.atlassian.com/apps/1211709/multi-project-picker?hosting=server&tab=overview
https://community.atlassian.com/t5/Jira-questions/How-do-others-work-with-issues-affecting-multiple-projects/qaq-p/399950
https://community.atlassian.com/t5/Jira-questions/How-do-others-work-with-issues-affecting-multiple-projects/qaq-p/399950
https://community.atlassian.com/t5/Jira-Software-questions/Share-one-issue-quot-ticket-quot-across-multiple-projects-and/qaq-p/407534
https://community.atlassian.com/t5/Jira-Software-questions/Share-one-issue-quot-ticket-quot-across-multiple-projects-and/qaq-p/407534
https://mico-grapheditor.readthedocs.io/en/stable/#
https://graphql.org/
https://github.com/ccims
https://www.k15t.de/software/backbone-issue-sync-for-jira
https://www.k15t.de/software/backbone-issue-sync-for-jira

94 S. Speth et al.

10. Redmine: relating an issue to multiple projects - redmine (2020). https://www.
redmine.org/boards/1/topics/21939

11. Reussner, R.H.: Modeling and Simulating Software Architectures: The Palladio
Approach. MIT Press, Cambridge (2016)

12. Speth, S.: Issue management for multi-project, multi-team microservice architec-
tures. Master’s thesis, University of Stuttgart (2019)

13. Szyperski, C., Gruntz, D., Murer, S.: Component Software: Beyond Object-
Oriented Programming. Pearson Education, London (2002)

https://www.redmine.org/boards/1/topics/21939
https://www.redmine.org/boards/1/topics/21939

SecoArc: A Framework for Architecting
Healthy Software Ecosystems

Bahar Schwichtenberg(B) and Gregor Engels

Paderborn University, Paderborn, Germany
{bahar.schwichtenberg,gregor.engels}@upb.de

https://www.cs.uni-paderborn.de/dbis

Abstract. In recent years, prominent software companies have suc-
ceeded to grow by creating ecosystems of third-party providers and users
around their software platforms. The overall well-functioning of such
ecosystems is referred to as ecosystem health that is the result of a com-
plex and variable range of architectural design decisions at business and
technical levels. Despite a body of work considering the architecture of
software ecosystems, there is still a lack of solid methods with a precise
foundation to facilitate architectural decision-making by providing auto-
mated techniques and tools. To fill this gap, we present SecoArc, which is
a pattern-centric ecosystem modeling framework for architecting healthy
software ecosystems. SecoArc makes the architectural knowledge of well-
established ecosystems available. In this paper, we focus on the SecoArc
modeling language, analysis technique, and a ready-to-use tool. SecoArc
enables platform providers to design architectural variabilities, assess the
architecture concerning the quality attributes of ecosystem health, and
deeply compare several competing architectures. We show the applica-
tion of the SecoArc framework in a case study.

Keywords: Software ecosystems · Architectural analysis · Software
architecture

1 Introduction

Nowadays leading software companies such as Apple grow by transforming their
software products, e.g., iOS, to platforms with the open application programming
interfaces (APIs) that are exposed to third-party providers so that they can
develop software on top of the platforms. To this end, the companies create
large ecosystems of third-party providers that are in service to a community
of users. Literature refers to such ecosystems as software ecosystems [1]. Often
online marketplaces such as Apple App Store1 are used to make the third-party
developments available to the users.

This work was partially supported by the German Research Foundation (DFG) within
the Collaborative Research Center “On-The-Fly Computing” (CRC 901). In addition,
we would like to thank Sayanti Kundu for the valuable work during the implementation
of SecoArc.
1

https://www.apple.com/ios/app-store, Last Access: June 20, 2020.

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 95–106, 2020.
https://doi.org/10.1007/978-3-030-59155-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_8&domain=pdf
https://www.apple.com/ios/app-store
https://doi.org/10.1007/978-3-030-59155-7_8

96 B. Schwichtenberg and G. Engels

Despite some companies being successful, there is still a lack of systematic
knowledge to create software ecosystems. Platform provider is the keystone to
ensure the health of the entire ecosystem by suitable architectural decision-
making. Ecosystem health refers to its overall performance and sustainable well-
functioning. It is the result of a complex design space of architectural variabili-
ties comprising business and technical decisions and their interdependencies [2].
For example, platform providers observe user feedbacks very differently (if at
all), e.g., in terms of binary rating, star rating, reviewing given by verified or
anonymous users. In the lack of systematic knowledge, platform providers face
irreversible consequences of suboptimal architectural decision-making mainly
because they fail to deal with the architectural variabilities and deciding on
a final set of architectural decisions that lead to the creation of a healthy ecosys-
tem [3]. Examples of such consequences are going out of budget or continually
falling into technical debt [4]. Technical debt happens when software develop-
ment processes are sped-up by making fast but unconsolidated decisions, in the
hope of a solid reconstruction in future [5]. A solution to overcome the lack of
knowledge would be to make architectural knowledge of well-established ecosys-
tems available for future use.

In this paper, we present a pattern-centric approach specific to the domain
of software ecosystems called SecoArc [6] for designing and analyzing ecosystem
architecture. The goal of the SecoArc framework is to assist platform providers in
enhanced architectural decision-making while creating software ecosystems. The
architectural knowledge provided by SecoArc is derived from several exhaustive
studies of the well-established ecosystems and the related literature in our pre-
vious work [7,8]. Platform providers can use the SecoArc modeling language to
specify the ecosystem architecture and the SecoArc architectural analysis tech-
nique to analyze the architecture with respect to the quality attributes of ecosys-
tem health. This paper is an extension of our previous work [9], where the enact-
ment of SecoArc in a case study is presented. The focus of this paper is mainly
on modeling and analyzing activities and the tool-support. Specifically, we intro-
duce the multifaceted result of architectural analysis that is categorized into four
perspectives, i.e., pattern suggestion, pattern conformance, quality attribute ful-
fillment, and decision conformance. These results aim at enhancing architectural
decision-making by (a) raising awareness about the strategic directions that the
design decisions in an architecture are facilitating and (b) enabling platform
providers to appraise their decision-making on the basis of existing ecosystems
so that they can accordingly orient themselves through the process of decision-
making.

The paper is structured as follows: First, Sect. 2 introduces the challenges
that a solution to the problem needs to overcome. Section 3 presents the SecoArc
framework. Section 4 elaborates on the modeling and analyzing activities per-
formed in the case study. In Sect. 5, it is discussed how the SecoArc framework
overcomes the challenges. Section 6 discusses related work, which is followed by
Sect. 7 that concludes the paper and addresses future research directions.

SecoArc: A Framework for Architecting Healthy Software Ecosystems 97

2 Challenges

Investigation of the research problem related to the lack of systematic architec-
tural knowledge to create healthy software ecosystems can be linked to three main
challenges that are addressed within the scope of this paper.

C1: Dealing with Architectural Variability
When transforming a software product to an open platform, platform providers
face an overwhelming range of architectural variabilities. Despite considerable
amount of work on variability mechanisms in software engineering [10], these
mechanisms are not applied for the domain of software ecosystems because
architectural variabilities of software ecosystems are distributed among differ-
ent disciplines such as computer science, business and information systems [3].
The solution for the problem needs to provide insight into different types of
variable design decisions so platform providers can create custom designs based
on them.

C2: Specifying Ecosystem Architecture
Existing modeling approaches such as general-purpose languages like Unified
Modeling Language (UML) [11] and enterprise architecture modeling (EAM)
like ArchiMate [12] do not directly capture design decisions of software ecosys-
tems. In practice, the high abstraction and the amplitude of notations result in
laborious and time-consuming work while specifying an ecosystem architectural
specification. A modeling approach to specify ecosystem architecture needs to
efficiently capture the key architectural characteristics of software ecosystems.

C3: Assessing Ecosystem Health
Platform providers are currently limited to textual templates, which use natu-
ral languages, to assess ecosystem health. Using such templates is tedious and
leads to ambiguity. While textual templates can be used as complementary doc-
umentation, they lack a formal foundation to serve the basis for an automated
analysis technique or tool. The solution needs to enable the assessment of ecosys-
tem health in platform providers’ contexts. Specifically, specific measurements
that facilitate quantitative implications about the quality of the architecture
should be introduced. More importantly, this should enable platform providers
to compare the suitability of several architectures based of variabilities.

3 The SecoArc Framework

In this section, we present an architectural ecosystem modeling framework called
SecoArc to overcome the challenges (C1-C3). The goal of the framework is to
support platform providers in architectural decision-making while creating soft-
ware ecosystems. The architectural knowledge provided by SecoArc is derived
from the examination of more than 100 well-established ecosystems in practice
as our previous study [7,8]. In the following, first, we give an overview of the

98 B. Schwichtenberg and G. Engels

SecoArc architecture. Afterward, two main building blocks, i.e., the modeling
language and architectural analysis technique, are presented.

3.1 Overview of Architecture

Figure 1 demonstrates an overview of the components of the SecoArc model-
ing language and the SecoArc architectural analysis technique. These compo-
nents are implemented using the Eclipse Modeling Framework (EMF) and the
Sirius framework. Platform provider is the human actor, who interacts with
the modeling workbench to design the ecosystem architecture or analyze the
architecture. The modeling workbench uses a domain-specific language. The
language includes a metamodel that represents the SecoArc abstract syntax. It
holds the description of software ecosystems. The concrete syntax is a set of
visual notations for modeling the ecosystem architecture. Furthermore, the
semantics is expressed by a set of constraints.

The Platform provider can use the modeling workbench to analyze
the architecture by means of the architectural analysis technique. The
analysis technique comprises three main components: Context matching pro-
vides design recommendations based on the platform provider’s organizational
context. Decision matching analyzes the suitability of a single architecture
whereas architecture comparator compares more than one competing archi-
tectures with each other. Finally, a report of analysis is generated and pro-
vided to the platform provider. The rest of this section elaborates on each
component.

Fig. 1. SecoArc architecture

SecoArc: A Framework for Architecting Healthy Software Ecosystems 99

3.2 Modeling Language

SecoArc provides a modeling language to specify ecosystem architecture. The
main objectives of the language are to (a) capture the domain knowledge of
software ecosystems, including the architectural variabilities, and (b) provide a
basis for the architectural analysis. In the following, we elaborate on the main
constituents of the modeling language. The complete lists of visual notations
and elements of the metamodel can be found in the SecoArc specification in [6].

Metamodel. The abstract syntax of the language is presented by a metamodel
that comprises the domain knowledge of software ecosystems. It includes the
description of human actors and their relations. Besides, the architectural vari-
abilities are captured in terms of three types of elements, i.e., the elements of
business, application, and infrastructure architectures [7]. The metamodel con-
tains some semantics that is related to the well-formedness rules. An example is
the ecosystem architecture should have at least one platform provider.

Visual Notations. SecoArc introduces visual notations that form the concrete
syntax of the modeling language. The notations can be used to design ecosystem
architecture in the modeling workbench. While both visual and textual notations
have their own advantages and disadvantages, the reason to choose visual nota-
tions for the SecoArc concrete syntax refers to the users of SecoArc that are
platform providers, who are often in management positions. They would like
to capture main ideas efficiently without being confronting with overwhelming
details. With this respect, visual notations surpass textual representations in
hiding unwanted complexity [13].

Constraints. The semantics of the SecoArc language is defined by using rules
that are statically checked on models. In SecoArc, these rules are implemented
as Object Constraint Language (OCL) constraints. The constraints pertain to
the structure of the ecosystem and should be obeyed by the architecture. These
constraints capture the semantics of the architectural variabilities. For instance,
if the choice of service execution is defined as “remote execution on the cloud”,
then there must be infrastructure elements in the architecture that support this
task. The OCL constraints can be found in the source code of SecoArc. For the
sake of brevity, we refer interested readers to the repository that is linked on the
SecoArc website [6].

3.3 Architectural Analysis Technique

The SecoArc architectural analysis technique follows a rule-based pattern-
matching approach that checks the architecture designed in the modeling work-
bench with respect to the knowledge of three architectural patterns.

In our previous work [8], we identify three architectural patterns for software
ecosystems namely open source software (OSS)-based ecosystem, partner-based

100 B. Schwichtenberg and G. Engels

ecosystem, and resale software ecosystem. The patterns are based on an exami-
nation of ecosystems from a diverse range of application domains. In a nutshell,
each pattern characterizes a prominent strategic ecosystem development app-
roach that is dominantly used in practice to gear the ecosystem functionality to
certain business objectives. In the OSS-based ecosystem, the platform provider
aims at attracting developers of open-source software. The ecosystem is open
to innovation. Software failure is not threatening human lives. In the partner-
based ecosystem, the software is highly commercialized as well as extensively
tested, as failures can cause severe financial or safety damages. Thereby, the
platform provider develops a network of carefully selected partners. Only the
partners can extend the platform functionality. In the resale software ecosystem,
the number of third-party providers is noticeably high. In this situation, the
platform provider empowers third-party providers with tools and techniques to
develop software independently. Furthermore, the ecosystem is equipped with
software features like rating and ranking that enable users to efficiently access
high quality software as the number of third-party developments grows. Detailed
processes of pattern identification are given in [8].

The tabular representation on the right side of Fig. 2 shows that each pat-
tern is characterized using a high-level business objective. Furthermore, the pat-
terns help platform providers with certain contextual factors address the quality
attributes of ecosystem health. The concrete sets of design decisions in the mid-
dle determine the linkage between the ecosystem architecture and the quality
attributes. During the architectural analysis, platform provider’s organizational
context and design decisions in the architecture are respectively matched against
the contextual factors and the design decisions of the patterns. In the following,
we refer to the components of the analysis technique shown in Fig. 1 and explain
how they handle the pattern-matching tasks.

Context Matching. Each pattern is associated with a specific type of plat-
form provider with certain organizational characteristics using four contextual
factors, i.e., company size, market size, domain criticality, and commerciality.
The context matching compares the contextual parameters provided by the
platform provider with the contextual factors of the patterns. This results in a
pattern suggestion that shows which pattern would suit the platform provider’s
organizational characteristics the most.

Decision Matching. Each pattern is described using a concrete set of archi-
tectural design decisions. The decision matching matches the decisions of the
ecosystem architecture against the decisions of the patterns. The results of this
matching are categorized into three perspectives, i.e., pattern conformance, qual-
ity attribute fulfillment, and decision conformance. Here, according to the num-
ber of matched decisions, percentages of decision conformance and thereby the
pattern conformance are calculated. Furthermore, the quality attribute fulfill-
ment is the extent that each quality attribute is fulfilled by considering the
matched decisions associated with that quality attribute.

SecoArc: A Framework for Architecting Healthy Software Ecosystems 101

Architecture Comparator. The architecture comparator uses the results
of decision matching to generate a comparative view for analysis of more than
one architecture. In the comparative view, results of the pattern conformance,
quality attribute fulfillment, and decision conformance for more than one archi-
tecture are calculated.

Ecosystem
Architecture

Architectural Patterns of Software Ecosystems

OSS-Based Ecosystem Partner-Based Ecosystem Resale Software Ecosystem

Platform

Organizational
Context

Business
Objectives Innovation Strategic Growth Business Scalability

Contextual
Factors

- Low Commerciality
- Low Criticality

- High Commerciality
- High Criticality

Design
Decisions

Made

Design
Decisions

- Open Entrance
- Open Platform
- Open Publish
- Free Platform
- Free Licensing
- Choice of

Programming
Language

- Platform Fee
- Monetized

Documentation
- Entrance Fee
- Monetized APIs
- Commercial Licensing
- Closed-source Service

- Rating
- Reviewing
- Ranking
- Testing

Framework
- Issue Tracking
- Multi Lines of

Development

- Integrated
Development
Environment
(IDE)

- Bring Your Own
License (BYOL)

- Service
Execution

Quality
Attributes Creativity Interoperability Sustainability

- Large Company
- Large Market of Services

Matching

Matching ??

??

Fig. 2. The pattern-matching performed by the architectural analysis technique

4 Case Study: On-The-Fly Computing

We apply the SecoArc framework within the scope of CRC 901 On-The-Fly Com-
puting2. On-the-fly computing is a paradigm to provision custom-made software
services on the basis of market platforms that individually compose third-party
services for every user request using machine learning (ML) techniques. In the
case study, the provider of an on-the-fly computing market designs and assesses
the suitability of two alternative architectures using SecoArc. The detailed pro-
cedure of the case study is presented in our previous work [9]. In this section, we
introduce the alternative architectures. Afterward, we elaborate on the modeling
activities and results of the architectural analysis.

Architecture #1 describes an open ecosystem, where anyone can use the
platform as a user, or to extend the platform’s functionality as a third-party
provider. The platform provider uses the public Git repository for the source
codes.

Architecture #2 concerns a semi-open ecosystem, where the platform
provider distinguishes commercial trusted partners from the mass number of
third-party developers. The partners can commercialize their developments. In
return, they need to deliver high quality software. To ensure the quality of soft-
ware delivered by the partners, the platform provider uses an online marketplace
that includes rating and ranking features.

2
https://sfb901.uni-paderborn.de/, Last Access: June 20, 2020.

https://sfb901.uni-paderborn.de/

102 B. Schwichtenberg and G. Engels

4.1 Architectural Modeling

Figure 3 shows how a variability, i.e., Fee, is realized in the metamodel. Accord-
ing to the knowledge of variabilities, fee is a typical variation point in software
ecosystems [7]. The metamodel indicates this variability using inheritance rela-
tionships between Fee and its three variants. At the bottom, Architecture #2 is
partially shown. Fee is realized as Service Fee and modeled using the SecoArc
notation, i.e., (SAC). It indicates that the users have to pay a service fee if they use
an ML service that is developed by the trusted partners. Furthermore, the archi-
tecture includes a marketplace that uses rating and ranking features to make the
quality of services noticeable in the ecosystem. The require relation between the
variation points specifies a dependency. As mentioned in Sect. 3.2, the seman-
tics of variabilities is expressed by defining constraints. For more readability,
the corresponding OCL constraint is not shown in the figure, which specifies if
there is a kind of fee, then, there must be a billing feature in the architecture
that enables online payment. This constraint is not fulfilled since there exists no
billing feature in the architecture.

Fig. 3. The relations between the viabilities, metamodel, and architecture (for read-
ability purposes, only relevant parts of the models and their relations are shown.)

4.2 Analysis Results

As mentioned in Sect. 3.3, the results of the architectural analysis is provided
using four perspectives, i.e., pattern suggestion, pattern conformance, quality

SecoArc: A Framework for Architecting Healthy Software Ecosystems 103

attribute fulfillment, and decision conformance. In the following, we elaborate
on these results in the context of the case study.

a) Pattern Suggestion Perspective. Pattern suggestion is the result of the
component context-matching. The provider of the on-the-fly computing plat-
form specifies the software functionality as non-critical and free-to-use. Thereby,
the analysis suggests the OSS-based ecosystem pattern. This implies the pattern
is mostly applied by providers, who allow free and open access to their non-
critical platforms. In the modeling workbench, typical ecosystem development
strategies and the architectural design decisions of the OSS-based ecosystem are
given.

b) Pattern Conformance Perspective. In contrary to the pattern sugges-
tion, the result of pattern conformance depends on the design decisions. Figure 4
shows the result of pattern conformance. Architecture #1 and Architecture #2
respectively conform to the OSS-based ecosystem and resale software ecosys-
tem patterns the most. The percentages show the extent to which the ecosys-
tem architecture matches to the decisions of the patterns. By referring to the
exemplary ecosystems, the platform provider can orient themselves through the
process of decision-making.

OSS-based Ecosystem Resale Software Ecosystem Partner-based Ecosystem

Architecture #1 100 % 33.3% 0 %

Architecture #2 50 % 88.8% 66.6%

Exemplary Ecosystems Mozilla, Eclipse, Apache
Cordova

Apple, Adobe, Salesforce SAP, Symantec, Citrix

Fig. 4. Result of the pattern conformance

c) Quality Attribute Fulfillment Perspective. This perspective is the result
of decision-matching. Figure 5 demonstrates the result for Architecture #1 and
Architecture #2. Architecture #1 clearly supports creativity mainly due the high
openness and free usage of the platform. Architecture #2 enhances sustainabil-
ity and interoperability, due to the decisions that strengthen the feedback loop
between the users and providers, e.g.., by including rating and ranking features.

d) Decision Conformance Perspective Decision conformance facilitates a
detailed view to the whole pattern-matching (cf. Fig. 2). Figure 6(a) presents
a comparative view of this part of the results. In addition, in the modeling
workbench, a detailed report of analysis is provided that lists the design decisions
that are (not) realized in the architecture. Figure 6(b) presents a part of the
analysis report for Architecture #2 that provides details on two design decisions,
i.e., rating and BYOL. Using this knowledge, the platform provider can actively

104 B. Schwichtenberg and G. Engels

Fig. 5. Result of the quality attribute fulfillment

decide on the decisions that are not considered in the architecture and their
absence degrades certain quality attributes. For example, interoperability can
be improved in Architecture #2 by including BYOL.

OSS-based Ecosystem:
Innovation

Partner-based
Ecosystem: Strategic

Growth

Resale Software Ecosystem:
Business Scalability

Creativity Sustainability Interoperability

Architecture #1 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Architecture #2 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Architectural Design Decision Realized (✓) / Not-realized ()

O
p

en
 E

nt
ra

nc
e

O
p

en
 P

la
tf

or
m

Fr
ee

 L
ic

en
si

ng

O
p

en
 P

ub
lis

h

C
ho

ic
e

of

P
ro

gr
am

m
in

g
La

ng
ua

ge

P
la

tf
or

m
 F

ee

E
nt

ra
nc

e
Fe

e

M
on

et
iz

ed

D
oc

um
en

ta
tio

n

M
on

et
iz

ed
 A

P
Is

C
om

m
er

ci
al

Li

ce
ns

in
g

C
lo

se
d

 S
ou

rc
e

S
er

vi
ce

R
at

in
g

R
ev

ie
w

in
g

R
an

ki
ng

Te
st

in
g

Fr
am

ew
or

k

Is
su

e
Tr

ac
ki

ng

M
ul

ti-
d

ev
el

op
m

en
t

Li
ne

s

S
er

vi
ce

E

xe
cu

tio
n

ID
E

B
Y

O
L

Fr
ee

 P
la

tf
or

m

(a) Realized and Not-realized Decisions of Architecture #1 and Architecture #2

Rating Decision Realized Rating improves discoverability of high quality extensions when the market grows. This supports business
scalability.

Bring Your
Own License
(BYOL)

Decision Not-realized Services providers from other ecosystems might already licensed their services. BYOL facilitates the legal
process that allows service providers to integrate external licenses in your ecosystem.

(b) Part of Report of Analysis for Architecture #2

Fig. 6. Result of the decision conformance

5 Discussion

We revisit the challenges introduced in Sect. 2 to discuss how they are addressed
by the SecoArc framework. C1: The SecoArc metamodel, visual notation, and
constraints embed the knowledge of architectural variabilities in business, appli-
cation, and infrastructure levels. Therefore, by using the language, platform
providers are relieved from being aware of all the variabilities and their interde-
pendencies. C2: Using the SecoArc modeling language, platform providers can

SecoArc: A Framework for Architecting Healthy Software Ecosystems 105

specify ecosystem architecture whereas the rich domain knowledge of software
ecosystems is made available in a structured way. C3: The SecoArc analysis
technique enables the assessment of ecosystem health by making the knowledge
of well-established ecosystems reusable. The analysis technique automates the
process of pattern-matching so that platform providers can check the health of
their ecosystems and compare them with the existing ecosystems.

6 Related Work

In this section, we discuss related work that aims at facilitating modeling and/or
analyzing software ecosystems. Woods and Bashroush [13] propose an archi-
tectural description language for large and complex information systems. It
provides visual notations for experiments inside an industrial project, which
are conventions agreed upon among the project members. Furthermore, Chris-
tensen et al. [14] conceptualizes the design and analysis of ecosystem architec-
ture in telemedicine. Business and software aspects are respectively described
using natural languages and UML deployment diagrams. However, the rela-
tions between the business and software aspects are not specified. Bosch and
Bosch-Sijtsema [15] introduce ESAO for analysis of ecosystems. It is a con-
ceptual framework to describe design decisions using natural languages. ESAO
captures strategic, architectural, and organizational aspects at the enterprise
and ecosystem levels. There, the linkage to business objectives is not clarified.
The major shortcoming of the mentioned works is the lack of formality as the
ecosystem architecture is mainly described using natural languages.

Sadi et al. present a design and analysis approach [16] using an i* model-
ing technique. The resulting models capture actors, tasks, and business goals.
Despite having similar motivations to our work, this work only concerns collabo-
rations. Thereby, the models are quite high-level. Our work includes software and
infrastructure elements, and their relations to the actors. A lack of tool-support
hampers the applicability of this work. Furthermore, the analysis technique con-
cerns openness requirements, which is a different focus than our work.

7 Conclusion and Future Work

The novel architectural approach of creating software ecosystems by opening the
platforms to third-party providers has been applied in practice in recent years.
However, there is still a lack of systematic architectural knowledge to create
healthy software ecosystems. In the lack of knowledge, platform providers have
to bear consequences of suboptimal architectural decision-making. In this paper,
we present SecoArc that aims at facilitating model-based design and analysis
of software ecosystems. Using SecoArc, platform providers can design, analyze,
and compare competitive architectures while assessing the quality attributes of
ecosystem health. In the future, quality attributes concerning the governance
and evolution of running ecosystems should be considered. This includes captur-
ing dynamic semantics and quality rules related to the behavior of the actors and

106 B. Schwichtenberg and G. Engels

architectural elements. Generating meaningful code from the high-level descrip-
tion of the architecture is another challenge to be addressed as future research
directions.

References

1. Bosch, J.: From software product lines to software ecosystems. In: International
Conference on Software Product Line, pp. 111–119. CMU (2009)

2. Mhamdia, A.B.H.S.: Performance measurement practices in software ecosystem.
Int. J. Prod. Perform. Manage. 62(5), 514–533 (2013)

3. Manikas, K.: Revisiting software ecosystems research: a longitudinal literature
study. J. Syst. Softw. 117, 84–103 (2016)

4. Build an in-house enterprise app store without breaking the budget
(2016). http://searchcloudapplications.techtarget.com/answer/Build-an-in-house-
enterprise-app-store-without-breaking-the-budget

5. Digkas, G., Lungu, M., Chatzigeorgiou, A., Avgeriou, P.: The evolution of technical
debt in the apache ecosystem. In: Lopes, A., de Lemos, R. (eds.) ECSA 2017. LNCS,
vol. 10475, pp. 51–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
65831-5 4

6. SecoArc, July 2012. https://sfb901.uni-paderborn.de/secoarc
7. Jazayeri, B., Zimmermann, O., Engels, G., Kundisch, D.: A variability model for

store-oriented software ecosystems: an enterprise perspective. In: Maximilien, M.,
Vallecillo, A., Wang, J., Oriol, M. (eds.) ICSOC 2017. LNCS, vol. 10601, pp. 573–
588. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69035-3 42

8. Jazayeri, B., Zimmermann, O., Küster, J., Engels, G., Szopinski, D., Kundisch,
D.: Patterns of store-oriented software ecosystems: detection, classification, and
analysis of design options. In: Lathin American Conference on Pattern Languages
of Programs. ACM (2018)

9. Jazayeri, B., Schwichtenberg, S., Küster, J., Zimmermann, O., Engels, G.: Modeling
and analyzing architectural diversity of open platforms. In: Dustdar, S., Yu, E.,
Salinesi, C., Rieu, D., Pant, V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 36–53.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49435-3 3

10. Galster, M., Weyns, D., Tofan, D., Michalik, B., Avgeriou, P.: Variability in soft-
ware systems—a systematic literature review. IEEE Trans. Soft. Eng. 40(3), 282–
306 (2014)

11. OMG. Unified Modeling LanguageTM (UML R©) Version 2.5. (2017). https://www.
omg.org/spec/UML

12. The Open Group. ArchiMate R© 3.0.1 Specification (2017). http://pubs.opengroup.
org/architecture/archimate3-doc/

13. Woods, E., Bashroush, R.: Modelling large-scale information systems using ADLs–
an industrial experience report. J. Sys. Softw. 99, 97–108 (2015)

14. Christensen, H., Hansen, K.M., Kyng, M., Manikas, K.: Analysis and design of
software ecosystem architectures-towards the 4S telemedicine ecosystem. Inf. Soft.
Tech. 56(11), 1476–1492 (2014)

15. Bosch, J., Bosch-Sijtsema, P.: ESAO: a holistic ecosystem-driven analysis model.
In: Lassenius, C., Smolander, K. (eds.) ICSOB 2014. LNBIP, vol. 182, pp. 179–193.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08738-2 13

16. Sadi, M.H., Yu, E.: Accommodating openness requirements in software platforms:
a goal-oriented approach. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS,
vol. 10253, pp. 44–59. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
59536-8 4

http://searchcloudapplications.techtarget.com/answer/Build-an-in-house-enterprise-app-store-without-breaking-the-budget
http://searchcloudapplications.techtarget.com/answer/Build-an-in-house-enterprise-app-store-without-breaking-the-budget
https://doi.org/10.1007/978-3-319-65831-5_4
https://doi.org/10.1007/978-3-319-65831-5_4
https://sfb901.uni-paderborn.de/secoarc
https://doi.org/10.1007/978-3-319-69035-3_42
https://doi.org/10.1007/978-3-030-49435-3_3
https://www.omg.org/spec/UML
https://www.omg.org/spec/UML
http://pubs.opengroup.org/architecture/archimate3-doc/
http://pubs.opengroup.org/architecture/archimate3-doc/
https://doi.org/10.1007/978-3-319-08738-2_13
https://doi.org/10.1007/978-3-319-59536-8_4
https://doi.org/10.1007/978-3-319-59536-8_4

SQuAT-Vis: Visualization and Interaction
in Software Architecture Optimization

Sebastian Frank(B) and André van Hoorn

Institute of Software Technology, University of Stuttgart,
70569 Stuttgart, Germany

sebastian.frank@iste.uni-stuttgart.de

Abstract. Optimization of software architectures is a complex task that
can not be fully automated. For this reason, software architecture opti-
mization approaches often require human architects to participate in the
optimization process, e.g., by selecting architectural candidates. Never-
theless, most of these approaches fail to support architects in solving
their tasks as they provide no or insufficient visualization and interac-
tion techniques. Thus, architects usually have to invest time and effort
to find a (not ideal) solution themselves.

In this paper, we present SQuAT-Vis — a tool that can be plugged
into software architecture optimization approaches and allows architects
to investigate (intermediate) results visually. SQuAT-Vis has been devel-
oped based on four common use cases in the domain and to be compatible
with the technologies used by SQuAT, a state-of-the-art software archi-
tecture optimization approach. Nevertheless, SQuAT-Vis is conceptually
intended to be modular and compatible with other approaches as well.
Such a tool is, therefore, an important contribution to the domain of
(interactive) software architecture optimization.

1 Introduction

Software architecture optimization approaches, like SQuAT [19] and
Per-Opteryx [15], exist to support architects in exploring design alternatives
to reach a higher software quality, e.g., for performance and modifiability. For
example, maintenance often contributes 40% to 80% of the costs to a software
system [11], which makes modifiability a critical property of a software system.

However, software architecture optimization in practice is rarely fully auto-
mated. Instead, it relies on heuristics or the participation of human architects
to solve the domain’s challenges. One challenge is the exponential growth of the
design space with an increasing number of requirements and architectural ele-
ments, making an investigation of the whole design space often infeasible [2].
Therefore, interactive approaches, like ArchE [7] or DesignBots [6], require the
architect to select tactics to be applied and, thus, to guide the search. Another
challenge is the conflict between quality attributes [4], which requires mak-
ing trade-offs. Thus, architects have to express their preferences, e.g., in Per-
Opteryx [15] by selecting the final candidate from a set of Pareto-optimal alter-
natives.
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 107–119, 2020.
https://doi.org/10.1007/978-3-030-59155-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_9&domain=pdf
http://orcid.org/0000-0002-3068-1172
http://orcid.org/0000-0003-2567-6077
https://doi.org/10.1007/978-3-030-59155-7_9

108 S. Frank and A. Hoorn

Human architects have to perform essential tasks in the (interactive) opti-
mization process, which are elaborated in this work, namely, selecting candi-
dates, deciding on the termination of the optimization, identifying changes, and
explaining results. However, visualization and interaction techniques are not pro-
vided by common software architecture optimization approaches. Therefore, the
SQuAT-Vis tool presented in this paper intends to close this gap and avoids that
architects have to invest time and effort in repeatedly developing (non-optimal)
solutions on their own. To achieve this, SQuAT-Vis displays information about
goal satisfaction and architectures in three connected views.

This paper gives an overview of the tool’s design and implementation. It also
provides a high-level summary of a previously conducted evaluation [10]. Arti-
facts, including the source code, are provided as supplementary material [9].
Additionally, a video [8] is provided. The remainder of this paper is struc-
tured as follows: Sect. 2 describes related works. The mentioned use cases, which
SQuAT-Vis is designed for, are outlined in Sect. 3. Key concepts and decisions
are explained in Sect. 4, while Sect. 5 describes SQuAT-Vis’s views for the investi-
gation of design alternatives. Then, Sect. 6 focuses on the tool’s architecture and
technologies, and Sect. 7 briefly summarizes the conducted evaluation. Finally,
this work is concluded in Sect. 8.

2 Related Work

To the best of our knowledge, a visualization approach specifically designed to
support architects in software architecture optimization does not exist. We exam-
ined a selection of sophisticated software architecture optimization approaches,
namely DesignBots [6], ArchE [7], PerOpteryx [15], ArcheOpterix [1],
SQuAT [19], and AQOSA [17]. All of these approaches provide none or limited
visualizations to support architects. SQuAT [19] and PerOpteryx [15] provide
results in textual form. ArchE [7] uses traffic light glyphs to display goal sat-
isfaction. However, this simplified representation provides limited information.
The works of AQOSA [17] and ArcheOpterix [1] use scatter plots to visualize the
Pareto front. However, only a limited number of goals can be shown in a scatter
plot, and not all optimization approaches are based on Pareto optimality.

While there seems to be no specific solution for software architects, there
are many visualization tools that can be seen as partial solutions. Visualiza-
tion approaches for specific optimization methods exist, e.g., GAVEL [12] allows
visual comprehension of optimization processes based on genetic algorithms,
which are, for example, used in PerOpteryx [15]. For multivariate data, generic
tools like the Trade Space Visualizer [23] help to discover the relationship
between variables. However, they require the architect to have a basic under-
standing of visualization, to perform manual efforts, and are unable to visualize
software architectures. For software architectures, graphical modeling editors are
usually available, e.g., the Palladio Bench for the Palladio Component Model [3].
However, these editors are designed for modeling single architectures, not for
comparison and examination of multiple architectures.

Visualization and Interaction in Software Architecture Optimization 109

In the more general, related interactive optimization domain, visualization
and interaction techniques have been investigated before. Jones [14] examines
how to use bar charts, pie charts, graph-based, and matrix-based visualizations
for displaying optimization models, algorithms, and solutions. The advantages
and disadvantages of bar charts, star plots, petal diagrams, and metroglyphs,
among others, are discussed by Miettinen [18] for the visualization of decision-
making problems. While the development of SQuAT-Vis benefited from these
works’ insights, the visualization of software architectures is not covered by them
at all.

3 Use Cases

We developed SQuAT-Vis to assist architects in typical use cases of software
architecture optimization. The foundation for identifying these use cases is the
general optimization process in software architecture optimization, as described
by Aleti et al. [2] and illustrated in Fig. 1. The optimization process starts with an
initial architecture representation; then, new design alternatives are generated,
and the alternatives’ quality is evaluated. These activities are repeated until
a defined stopping criterion is satisfied. Then, one or more candidate(s) are
presented.

We extended the process by the activity of selecting a single, final design and
the activity of implementing the necessary changes. We then identified activities
that implicitly or explicitly require interaction with the architect in at least
one software architecture optimization approach. The resulting use cases are
explained in the following and enumerated in Fig. 1 in the order of appearance.

3.1 Candidate Selection

This use case describes that the architect has to reduce a set of architectural
candidates to a subset. Interactive approaches allow the architect to express her
preferences by selecting candidates during the optimization for a more directed
search, e.g., ArchE [7] requires the architect to decide on the quality trade-
offs in the next step. Approaches that present alternatives, e.g., Pareto-optimal
solutions like in PerOpteryx [15], expect the architect to make the final choice
by expressing her preferences in the end. This use case requires the architect to
perform comparisons of several candidates with respect to the satisfaction of the
optimization goals.

Architecture
representation

Generate new
design alternatives

Evaluate architecture
design quality

Stop?
Architecture

design(s)
True

False

Select
design

Final architecture
design

Implement Optimized
Software System

Architect
41 1 32

Artifact Activity
Legend Candidate

Selection
Candidate
Selection

Stopping
Criterion

Candidate
Implementation

Result
Explanation

Fig. 1. Software architecture optimization process (based on Aleti et al. [2]) with the
investigated use cases for interaction colored in red (Color figure online)

110 S. Frank and A. Hoorn

3.2 Stopping Criterion

In this use case, the architect has to decide whether she accepts the proposed
candidate(s) or wants the optimization process to continue. Approaches like
SQuAT [19] explicitly ask the architect for this decision, while others, e.g., Per-
Opteryx [15], expect a stopping criterion to be defined beforehand. However,
the architect still has to implicitly make this decision as she can rerun the pro-
cess with the outputs of a previous execution as the inputs. Again, the decision
requires comparisons of several candidates with respect to optimization goal
satisfaction, but also architectural and evolutionary information, e.g., parents of
candidates, to judge whether another iteration is likely to improve the solution.

3.3 Candidate Implementation

In practice, the outcome of the optimization process should be the optimized
software system. Therefore, the architect needs to understand which (architec-
tural) changes she has to apply, e.g., which component needs to be allocated
to which server. Although software architecture optimization approaches do not
always explicitly show this information to the architect, the difference between
the initial and final candidates can usually be investigated with graphical mod-
eling editors. Therefore, this use case is not the main focus of SQuAT-Vis but is
still considered due to its high practical relevance.

3.4 Result Explanation

Software architects often do not want to implement the proposed solution blindly.
Trust is of high importance, especially in highly automated software systems [16].
Therefore, being able to understand which architectural changes lead to the
satisfaction of goals or how goals influence each other is essential to accept a
solution and get more insights about the system. This use case requires combin-
ing different kinds of information, i.e., goal satisfaction values and architectural
properties.

4 SQuAT-Vis Concepts

This section gives insights into key concepts of SQuAT-Vis. Section 4.1 describes
the elements from the domain of software architecture optimization, which are
then mapped to visualizations, as described in Sect. 4.2. Finally, Sect. 4.3 intro-
duces grouping and tagging of candidates. Further, minor concepts, also regard-
ing interaction, are mentioned in Sect. 5 and shown in a provided video [8].

4.1 Data Types

Candidates are grouped into levels, which have a total order and should reflect
the iteration in which the candidate was generated. Furthermore, a candidate
can have a parent, which is another candidate that served as a basis for its
creation. Apart from that, a candidate has two essential purposes. It represents
an architecture and can be evaluated with respect to the optimization goals.

Visualization and Interaction in Software Architecture Optimization 111

Architectures. Software architectures can be diverse, making it hard to select
suitable elements and properties to model them. Thus, our selection is based on
the Palladio Component Model (PCM) [3] as it is designed to model software
architectures and predict their quality. Components were chosen as a means
to describe partitions of software and links to indicate (static) dependencies
between components. Furthermore, allocations describe to which resource con-
tainers, which represent servers, components are deployed to. The resource con-
tainers can consist of resources, which are characterized by a real-value, e.g., the
clock rate of a central processing unit.

Goals. Software architectures are optimized with at least one goal in mind, usu-
ally referring to the architecture’s quality attributes. As goals and their metrics
can be various, e.g., in terms of units and optimization direction, we followed
the approach of SQuAT to use utility values. Thus, the goal satisfaction has to
be mapped into a utility value space, with values ranging from 0 (unsatisfied)
to 1 (satisfied). All candidates have to know the utility value for each goal.

4.2 Visualizations

As described before, SQuAT-Vis has to visualize information about goals and
architectures. While the first consists of multivariate data, the latter consists of
rather relational data.

For visualization of multivariate data, we considered several visualizations,
e.g., the ones mentioned by Miettinen [18]. Some of them are illustrated in Fig. 2,
namely a scatter plot matrices, b bar charts, c parallel coordinates plots,
d radar charts, and e petal diagrams. For goal satisfaction, we selected
a scatter plot matrices and d radar charts as they complement each other

well. Scatter plot matrices consist of one scatter plot for every combination of
goals, showing one goal on each axis, while the candidates are represented as
circles. Thus, they scale well with the number of candidates, but badly with the
number of goals. The opposite holds for radar charts, which arrange multiple
goals represented by axes in a circle. The candidates are represented as poly-
lines, which have intersections with the axes according to their goal satisfaction.
Therefore, they are compact and strengths and weaknesses can be interpreted
based on the shape. A limited set of candidates can even be placed in the same
visualization.

We also interpret resource specifications as multivariate data. Therefore, we
chose to visualize them as c parallel coordinates plot. This visualization offers
a trade-off between the required space and scalability with the number of archi-
tectures.

According to Salameh et al. [22], visualizations of architectural data are most
often graph-based or matrix-based. For this reason and as it fits relational data,
graph-based node-linked diagrams are used to visualize components, links, and
allocations. As comparisons of candidates are important to support the use cases

112 S. Frank and A. Hoorn

Fig. 2. Visualization types for multivariate data

Fig. 3. Variations of node-link diagrams for visualizing multiple architectures

described in Sect. 3, we allow for merging several architectures into one visual-
ization by scaling the size of the elements with the number of their appearance.
Furthermore, coloring can be used to highlight candidates. Figure 3 illustrates
three variations of the modified graphs. Variant a is text-based, while vari-
ant b uses a pie-chart for highlighting, e.g., there are two candidates using the
DefaultPDFExporter and both are highlighted, while all eight candidates use the
MainExporter, including the two highlighted candidates. Variant c is intended
for the comparison of a small number of candidates, with one color assigned to
each. In the example, both candidates use the MainExporter, but one uses the
DefaultPDFExporter, while the other uses the ProfessionalPDFExporter.

4.3 Groups and Tags

All candidates in SQuAT-Vis can be grouped or tagged. Figure 4 shows the
default colors and icons for the groups and tags. The architect can assign candi-
dates to four groups that have different purposes. The current group highlights
candidates temporarily. Candidates can also be marked for further investiga-
tion or selected as the desired result. Each candidate in the comparison group
can get an individual color for more detailed comparisons of candidates in the
comparison mode.

The architect can not assign tags as they describe the inherent properties of
the candidates. The initial candidate given as an input to the optimization is
tagged. As candidates that do not dominate each other, so-called Pareto-optimal
candidates, can be of high interest, they are tagged as well. For approaches
that can suggest candidates based on other techniques, e.g., negotiation in
SQuAT [19], the suggested -tag is available.

Visualization and Interaction in Software Architecture Optimization 113

Group | Tag

Color

Icon

Current Marked Selected Comparison Initial Pareto Suggested

Cyan Blue Purple Custom Green Red Blue

Fig. 4. Overview of the groups, tags, and their associated colors and icons

5 SQuAT-Vis Views

The previously described visualizations and variations of them are composed to
form coordinated views [21] to allow the architect to investigate different aspects
of a set of candidates. SQuAT-Vis also provides administrative views to select
projects and to summarize their status, but only the three views focusing on
visualizations are presented in the following. The Population View (Sect. 5.1)
gives an overview of goal satisfaction of the whole population, while the Candi-
dates View (Sect. 5.2) focuses on individual candidates. The Architecture View
(Sect. 5.3) visualizes properties of the candidates’ architectures.

5.1 Population View

The Population View (Fig. 5a) should give an overview of the whole population
of candidates and allow for an efficient preselection.

Like the other views, the Population View is equipped with a a navigation
toolbar at the top. It allows to switch between the views and provides the option
to send selected candidates back to the software architecture optimization tool
for further optimization. Furthermore, the b side toolbar is a means to inspect
and control the available candidates, their group membership, and tags.

The remainder of the view mainly consists of two parts. The c magnified
scatter plot gives an overview of all candidates with respect to the satisfaction of
two goals. In the example, most candidates (almost) satisfy goal m1, but there
is a much wider range for goal p2. The scatter plots for all combinations of goals
are shown in the d scatter plot matrix, and each plot can be selected to be
displayed as c magnified scatter plot.

This view is a comparatively compact representation of all candidates,
enabling the architect to identify patterns in the scatter plots. Furthermore, the
color of circles and rings indicates group membership and tagging, as described
in Sect. 4.3. Evolutionary information is also displayed, as candidates of the most
recent level are colored black, and candidates of previous levels are colored gray.
Arrows show how candidates evolved from their parents.

One major drawback of the scatter plot representation is that candidates
have to be represented as circles in every scatter plot. This makes it hard to
investigate specific candidates with respect to all their goal satisfaction values.
While highlighting by colors already mitigates this disadvantage, the e radar
charts provide a more compact representation for current candidates.

114 S. Frank and A. Hoorn

Population View

Candidates View

Architecture View

Fig. 5. Screenshots of the main views in SQuAT-Vis. They visualize data from the
ST+ Case Study [19], which is available as part of the supplementary material [9].

Visualization and Interaction in Software Architecture Optimization 115

5.2 Candidates View

The Candidates View (Fig. 5b) is intended for the comparison of a few candidates
with respect to their goal satisfaction. Therefore, it complements the Population
View, which focuses on giving an overview of the whole population.

The a big radar chart is intended to make comparisons between few can-
didates. One of the four groups can be chosen to display all candidates of the
group in the same visualization. For the comparison group, they are shown in
their color. In addition, all candidates can be shown with low opacity in the
background to give the architect an impression about the goal satisfaction in
the whole population, e.g., in the example, the dark area in the top indicates
that goal m1 is much more often (almost) satisfied than the other three goals.

All candidates are shown in b the list of candidates visualized as radar
charts. This list can be filtered based on names, tags, and groups. It also shows
the tags and groups for each candidate and provides some interaction points,
e.g., a right-click menu to modify the group composition.

5.3 Architecture View

The purpose of the Architecture View (Fig. 5c) is to examine the architectural
properties of the whole population or groups. Therefore, it should help architects
in finding explanations for the results of software architecture optimization.

The view consists of four parts. One part is the a node-link diagram for
components and dependencies, as described in Sect. 4.2. A b variation, with
rectangles as resource containers to visualize the allocation of components, is
also displayed. Both node-link diagrams are equipped with additional features
and interaction techniques. We applied a force-directed layout, with configurable
parameters, to improve the arrangements of nodes and links. Elements can be
filtered, dragged, moved to the front, hovered to show additional information,
and their corresponding candidates are added to the current group if they are
clicked.

A c parallel coordinate plot shows the active candidates as black, partially
transparent lines, while the current candidates are highlighted. This feature
allows to compare the current candidates to the population and make patterns
visible, e.g., most candidates using a particular component could have a fast
CPU.

To also make the influence on the goal satisfaction visible, a d radar chart
is displayed. Similar to the big radar chart in the Candidates View, it shows
several candidates simultaneously but is limited to the current group. In the
shown example, it is evident that the highlighted candidates do overall satisfy
three goals well, but not the fourth.

6 Architecture and Technologies

SQuAT-Vis has been initially designed to be compatible with SQuAT’s tech-
nologies but aims to be modular and loosely coupled. Figure 6 illustrates its
design.

116 S. Frank and A. Hoorn

Real World TechnologiesImplementation

Database

Server

Browser

Data Access Objects (DAOs)

Data

Facelets

Beans CSV-ExportersServer Protocols Importers

Views

Visualizations

CSV-Data

Analyzers

Persistent Data

Scripts

Java Persistence API (JPA)

ObjectDB

Java
Java Server Faces (JSF)

Java Server Faces (JSF)
AJAX

D3.js
Bootstrap
Javascript

HTML / CSS

Fig. 6. Overview of the SQuAT-Vis system architecture and technologies

For the front-end, the JavaScript visualization library D3.js [5] is used to
generate the visualizations due to its flexibility, big community, and the number
of available templates to build on. The use of JavaScript for the implementation
of the interaction techniques comes consequently with this decision. The utiliza-
tion of web technology comes with the option of running a (central) SQuAT-Vis
server remotely; then, architects need nothing but a browser to use the applica-
tion.

The back-end is implemented based on Java Enterprise Edition (JEE), which
has been chosen as it is a mature, scalable, and still maintained technology
for developing web applications. To assure the loose coupling, SQuAT-Vis lis-
tens to an open port to communicate with software architecture optimization
approaches, which can use a provided Java-library to follow predefined commu-
nication protocols. As the prototype focuses on SQuAT [19], only an importer
for PCM [3] instances is available. Analyzers allow to enrich the received data,
e.g., to tag Pareto-optimal candidates. The results are stored in a database and
provided via Beans and Facelets as it is common in JEE applications.

The interface of SQuAT-Vis only expects information about goals and archi-
tectures and does not assume a specific optimization process. Therefore, it is con-
ceptually compatible with various architecture optimization approaches. How-
ever, two significant limitations arise from the current implementation as it
(i) uses the Java Socket API and (ii) lacks Non-PCM importers.

7 Evaluation

This section summarizes a previously conducted evaluation of SQuAT-Vis [10],
which is fully described in the supplementary material [9]. We investigated
(i) whether SQuAT-Vis can support architects in the use cases introduced in
Sect. 3 and (ii) the tool’s scalability with the number of candidates. Section 7.1
outlines the setup of the experiment and Sect. 7.2 summarizes results.

Visualization and Interaction in Software Architecture Optimization 117

7.1 Description

Following the suggestion of Isenberg et al. [13], we conducted a qualitative eval-
uation based on a case study. We asked two experts and one non-expert of the
field to watch a video tutorial and solve four tasks based on the four use cases
described in Sect. 3 for each of two case study data sets. The ST+ [19] data set
consisted of 554 candidates, 5 basic components, and 4 goals. The bigger data
set is based on the Common Component Modeling Example (CoCoME) [20]
and consisted of 1193 candidates, 51 components, and 8 goals. The participants
answered a questionnaire consisting of 99 questions regarding their expertise,
their performance in solving the tasks, and their overall impression of SQuAT-
Vis. Besides, we conducted measurements of loading times for both data sets
with increasing numbers of active levels for all the three views (see Sect. 5).

7.2 Results and Discussion

Except for the implementation of a candidate, all use cases were encountered
by the participants before. The non-expert did only partially solve the tasks or
not report any results, which leads to the conclusion that SQuAT-Vis should
be used by experts. The experts (partially) solved all tasks regarding candidate
selection and stopping criteria and were satisfied by their results and the sup-
port by SQuAT-Vis. For CoCoME, no expert solved a task regarding candidate
implementation and result explanation. However, for ST+, some explanations
were identified. The experts fully agreed that SQuAT-Vis is an important con-
tribution to the field. They especially liked the Candidates View, the grouping
concept, and the comparison mode. Their critique focused on the Architecture
View, which has been rated as “not intuitive”. The experts also suggested addi-
tional features, e.g., showing response values instead of utility values. The results
of the scalability evaluation suggest displaying at most between 609 and 942 can-
didates to achieve view loading times of 10 s or less.

8 Conclusion

We presented SQuAT-Vis, a tool that provides connected views to visualize
and interact with the results of software architecture optimization. It focuses
on four previously defined, general use cases of human architects in the domain,
namely the selection of candidates, whether to stop the optimization, implement-
ing changes, and explaining results. Therefore, it visualizes goal satisfaction and
architectures. The results of an expert user study [10], summarized in this paper,
indicate that SQuAT-Vis is useful for candidate selection and deciding on the
stopping criteria, while also offering limited support in explaining results. Fur-
thermore, the prototype can handle up to several hundred candidates efficiently.
Therefore, SQuAT-Vis can be seen as an important building block to support
architects in (interactive) software architecture optimization. However, future
work is required to improve the compatibility of SQuAT-Vis with more software

118 S. Frank and A. Hoorn

architecture optimization approaches, conduct a more general evaluation of its
applicability, and identify further improvements.

Acknowledgement. This work has been partially supported by the German Research
Foundation (HO 5721/1-1) and the Baden-Württemberg Stiftung.

References

1. Aleti, A., Bjornander, S., Grunske, L., Meedeniya, I.: ArcheOpterix: an extendable
tool for architecture optimization of AADL models. In: ICSE MOMPES, pp. 61–71.
IEEE (2009)

2. Aleti, A., Buhnova, B., Grunske, L., Koziolek, A., Meedeniya, I.: Software archi-
tecture optimization methods: a systematic literature review. TSE 39(5), 658–683
(2013)

3. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. JSS 82(1), 3–22 (2009)

4. Boehm, B., In, H.: Identifying quality-requirement conflicts. IEEE Softw. 13(2),
25–35 (1996)

5. Bostock, M.: D3.js. https://d3js.org
6. Diaz-Pace, J.A., Campo, M.: Exploring alternative software architecture designs:

a planning perspective. IEEE Intell. Syst. 23(5), 66–77 (2008)
7. Diaz-Pace, A., Kim, H., Bass, L., Bianco, P., Bachmann, F.: Integrating quality-

attribute reasoning frameworks in the ArchE design assistant. In: Becker, S., Plasil,
F., Reussner, R. (eds.) QoSA 2008. LNCS, vol. 5281, pp. 171–188. Springer, Hei-
delberg (2008). https://doi.org/10.1007/978-3-540-87879-7 11

8. Frank, S.: SQuAT-Vis showcase video. https://youtu.be/YUGujyR0jA8
9. Frank, S.: Supplementary material. https://doi.org/10.5281/zenodo.3454747

10. Frank, S.: Techniques for visualization and interaction in software architecture
optimization. Master’s thesis, University of Stuttgart (2019)

11. Glass, R.L.: Frequently forgotten fundamental facts about software engineering.
IEEE Softw. 18(3), 112 (2001)

12. Hart, E., Ross, P.: GAVEL-a new tool for genetic algorithm visualization. TEVC
5(4), 335–348 (2001)

13. Isenberg, T., Isenberg, P., Chen, J., Sedlmair, M., Möller, T.: A systematic review
on the practice of evaluating visualization. TVCG 19(12), 2818–2827 (2013)

14. Jones, C.V.: Visualization and optimization. JOC 6(3), 221–257 (1994)
15. Koziolek, A., Reussner, R.: Towards a generic quality optimisation framework for

component-based system models. In: CBSE, pp. 103–108. ACM (2011)
16. Lee, J.D., See, K.A.: Trust in automation: designing for appropriate reliance. Hum.

Factors 46(1), 50–80 (2004)
17. Li, R., Etemaadi, R., Emmerich, M., Chaudron, M.: An evolutionary multiobjective

optimization approach to component-based software architecture design. In: CEC,
pp. 432–439. IEEE (2011)

18. Miettinen, K.: Survey of methods to visualize alternatives in multiple criteria deci-
sion making problems. OR Spectr. 36(1), 3–37 (2012). https://doi.org/10.1007/
s00291-012-0297-0

19. Rago, A., Vidal, S., Diaz-Pace, J.A., Frank, S., van Hoorn, A.: Distributed quality-
attribute optimization of software architectures. In: SBCARS, p. 7. ACM (2017)

https://d3js.org
https://doi.org/10.1007/978-3-540-87879-7_11
https://youtu.be/YUGujyR0jA8
https://doi.org/10.5281/zenodo.3454747
https://doi.org/10.1007/s00291-012-0297-0
https://doi.org/10.1007/s00291-012-0297-0

Visualization and Interaction in Software Architecture Optimization 119

20. Rausch, A., Reussner, R.H., Mirandola, R., Plasil, F.: The Common Component
Modeling Example, vol. 5153. Springer, Heidelberg (2008). https://doi.org/10.
1007/978-3-540-85289-6

21. Roberts, J.C.: State of the art: coordinated & multiple views in exploratory visu-
alization. In: CMV, pp. 61–71. IEEE (2007)

22. Salameh, H.B., Ahmad, A., Aljammal, A.: Software evolution visualization tech-
niques and methods-a systematic review. In: CSIT, pp. 1–6. IEEE (2016)

23. Stump, G., Yukish, M., Martin, J., Simpson, T.: The ARL trade space visualizer:
an engineering decision-making tool. In: MA&O, p. 4568. AIAA (2004)

https://doi.org/10.1007/978-3-540-85289-6
https://doi.org/10.1007/978-3-540-85289-6

ECSA 2020 Gender Diversity
in Software Architecture and Software

Engineering Track

ECSA 2020 Gender Diversity in Software
Architecture and Software Engineering Track

It has been widely demonstrated that diversity in gender, culture, religion, and country,
is a key factor to success, competitiveness, and innovation in software development. In
the case of gender diversity, the role of traditionally underrepresented genders in the
computing area has increasingly gained importance in the emerging information age.
However, setting up gender-balanced teams in ICT companies as well as in STEM
universities and research centers is still hard to realize in practice, even if everyone
acknowledges the importance of achieving gender diversity for the success of projects.

Following the success of past editions, the 4th Special Track on Gender Diversity in
Software Architecture & Software Engineering is part of the 14th premier European
Conference on Software Architecture (ECSA 2020). The gender diversity track pro-
vides a forum for discussions about how to better achieve diversity in SE/STEM.
People from all genders and backgrounds are invited to participate in this track.
Students, industry professionals, academics, and other leaders in computing are wel-
come to promote networking and technical discussion to motivate the participation and
visibility of underrepresented genders in STEM degrees and industry.

This year, the track received three submissions. Each one of them was thoroughly
reviewed by at least three Program Committee members. After discussion, two out of
the three submissions were accepted. In this edition, the track incorporated a mix of
presentations and a panel to discuss current and future issues in the field by leading
experts from academia. One of the highlights of the track was Professor Paola Inver-
ardi’s keynote talk. Professor Inverardi, who was rector of the University of L’Aquila,
Italy, from 2013 to 2019, is in a unique position to report about the state of the
implementation of gender equality policies at Italian universities, a topic of great
interest to ECSA’s audience.

Organization

Gender Diversity in Software Architecture and Software
Engineering Chairs

Javier Camara University of York, UK
Catia Trubiani Gran Sasso Science Institute, Italy

Gender Diversity in Software Architecture and Software
Engineering Program Committee

Aldeida Aleti Monash University, Australia
Paolo Arcaini National Institute of Informatics, Japan
Francesca Arcelli Università degli Studi di Milano-Bicocca, Italy
Kyungmin Bae Pohang University of Science and Technology,

South Korea
Amel Bennaceur The Open University, UK
Lidia Fuentes Universidad de Málaga, Spain
Ilias Gerostathopoulos Vrije Universiteit Amsterdam, The Netherlands
Antonia Lopes University of Lisbon, Portugal
Paulo Mendes Maia University of Ceara, Brazil
Claudio Menghi University of Luxembourg, Luxembourg
Liliana Pasquale University College Dublin and Lero, Ireland
Chouki Tiebermacine University of Montpellier, France
Danny Weyns KU Leuven, Belgium

Girl-Friendly Computer Science
Classroom: Czechitas Experience Report

Barbora Buhnova1,2(B) and Lucia Happe3

1 Czechitas, Prague, Czech Republic
baru@czechitas.cz

2 Masaryk University, Brno, Czech Republic
buhnova@fi.muni.cz

3 Karlsruhe Institute of Technology, Karlsruhe, Germany
lucia.happe@kit.edu

Abstract. The under-representation of girls within software engineer-
ing has far-reaching consequences, from social to economical. For the
moment, curriculum design is being widely discussed as the essential
factor that teachers can adapt to influence their education’s inclusive-
ness. However, in building an inclusive learning environment, effective
pedagogy is even more crucial, fostering controlled work with students’
strengths, weaknesses, interest in the topic, sense of belonging, and expe-
rience of success. In this paper, we collect effective strategies for build-
ing a girl-friendly classroom environment that is inclusive towards novice
computer science learners, and we pair them with the practical experi-
ence from a successful education NGO called Czechitas, specialized in
female-tailored computing courses.

Keywords: Computer science education · Girls · Secondary grade ·
Learning environment · Czechitas

1 Introduction

The growth of interest in computer science (CS) and information technology
(ICT) is a unique opportunity to widen the reach of CS education, resulting
in a more diverse population of students. Realizing this potential is however
challenging as we still know very little about how to teach CS to a broader
audience more effectively, and how CS teaching shall adapt to the ways in which
different people learn.

When looking at the gender diversity specifically, secondary education is
being understood as the life-altering time period, where the self-selection of girls
away from CS and other STEM subjects happens [27]. For many girls, this
period is characterized by their first contact with CS and ICT subjects, in an
environment where boys are ahead in their knowledge and tend to monopolize
the instructor’s time and set the standard pace within the classroom [29,34].

It is being shown [24] that novice learners learning complex topics benefit
from support, explicitly guided tasks and activities, as well as specific and timely
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 125–137, 2020.
https://doi.org/10.1007/978-3-030-59155-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_10&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_10

126 B. Buhnova and L. Happe

feedback [20,28]. In the presence of more experienced learners, the need is not
always easily noticed. The frustration from the missing experience of success
within the mixed secondary-school environment might make the novice learners
(many of which tend to be female) drop the course concluding that it is too late
for them to start with CS. That is why it is vital to invest deliberate effort in
building an environment that is supportive of novice learners, having a direct
effect on recruitment and retention of girls in CS.

Although many intervention programs have been implemented, gender diver-
sity in practice has not improved significantly [3]. The low effectiveness of the
interventions seem to suggest that the recommendations proposed in research
are not reaching practice [15]. Indeed, publications that report on practical and
actionable implementation of recommendations for girl-friendly classroom design
are very rare [18].

In this paper, we explore existing research recommendations for building
girl-friendly CS classroom environment benefiting novice secondary-grade learn-
ers, and put them in perspective with practical recommendations collected from
lecturers of Czechitas, a nonprofit organization providing female-tailored CS
courses. In the paper, we specifically explore the strategies that make the class-
room environment less hostile and more welcoming to female novice learners.

The structure of the paper is as follows. In Sect. 2, we discuss the theoretical
background of the work, followed with a short description of Czechitas in Sect. 3.
The methodology of the study is outlined in Sect. 4, and the actual collection of
effective recommendations is given in Sect. 5. Section 6 concludes the paper.

2 Research Background on Gender Tendencies

Although many different factors are being reported as necessary in increasing
girls’ interest and commitment in computer science [19], in the case of novice
learners on the secondary level of education, the friendliness and inclusiveness
of the environment appears to play the crucial role [26]. While such a safe envi-
ronment benefits any novices, certain aspects make it benefit specifically the
spectrum of students that are being left behind by the current style of CS edu-
cation, which are more often girls than boys. Hence although talking explic-
itly about girls, the recommendations studied in this paper are meant to all
secondary-grade CS novices who exhibit the skill set and tendencies statistically
more typical for girls, irrespective of gender.

The distribution of differences in gender tendencies is in psychology described
by the Bell curve of gender tendencies [4] illustrated in Fig. 1. The y-axis might
characterize e.g., the generalist vs. specialist skill set, factual vs. intuitive think-
ing, focus on target vs. perspective, tendency towards short-term high-intensity
commitment vs. long-term sustained commitment, or simply the intensity of
self-identification with keywords such as agreeableness, assertiveness, enthusi-
asm, compassion, or contextualized tendency towards prioritization, integration,
competition, inclusion, and others [32]. Although the average values of the male
vs. female distribution might not be very different, and sizeable overlaps exist,

Girl-Friendly Computer Science Classroom: Czechitas Experience Report 127

the numbers of male and female individuals with different tendencies are sub-
stantial, which is why gender diversity boosts creativity and success in software
engineering industry.

Fig. 1. Bell curve of gender tendencies [4].

Many of the differences in gender tendencies, such as the different approach
to problem solving, are supported by neurological research. For instance, when
girls try to understand the problem space, they tend to holistically characterize
the domain to a greater detail as a web of an extensive array of potential factors
[6,8,35]. Doing so, they might appear to be stuck and feel anxiety when being
pushed by the teacher to move on quickly [14]. On the other hand, boys have a
higher tendency to approach the problem by eliminating issues and approaching
them in isolation [16]. Both the strategies have their advantages, and they work
best in combination [4]. However, in the contexts of male-dominated computer
science classrooms, the teachers without explicit attention and effort to notice it
could unintentionally fall into the thinking that successful solutions are the ones
linked with the problem-solving strategy that is more common for boys.

The fact that girls prefer safer environment without pressure, competition,
with more time for their assignments and to rehearse and recall what they are
learning at their own time, place, and pace, might be misinterpreted by the
teacher as the fact that girls are weaker in computing, which is not the case.
When girls are given the conditions they need to master computing, they achieve
exceptional results, and later excel in the industry, where diverse individuals
are needed to build various teams, involved in product design, implementation,
testing, or management [17].

3 Practice Background on Czechitas

Czechitas [9,10,13] is a Czech non-profit organization founded in 2014 with the
vision to bring tech closer to girls, and girls closer to tech. Since then, this
idea has attracted a strong community of volunteers, tech professionals, and
tech companies. It has turned into a rich portfolio of female-tailored courses in
software engineering, including software architecture, web development, mobile
app development, data science, testing, digital marketing, and many more. While

128 B. Buhnova and L. Happe

initially established to provide female students with an opportunity to put their
hands on coding, it now aims at achieving a major social change.

Thanks to the success of Czechitas education activities, consisting of hun-
dreds of courses each year all around the Czech Republic, Czechitas has become
recognized as the leading platform in the Czech Republic actively addressing
gender diversity in CS and STEM, with over 20,000 of girls and women who
graduated from our courses.

A successful example of a female-tailored course for secondary grade is the
IT Summer School for high-school girls, which is a week-long program that con-
sists of both theoretical lectures and practical workshops where the girls learn
the basics of programming, HTML/CSS, graphic design, interactive game devel-
opment, experiment with Lego robots and Arduino. They attend excursions at
universities and partner companies. At the end, they participate in a hackathon,
in which they are able to develop their own team IT project.

4 Methodology

As our study has both the research and practice elements, the methodology in
this section details both, focusing on building a girl-friendly environment. To
keep the focus, we are deliberately not including topics such as the effects of role
models, curriculum design, or practical relevance of the education, which are all
essential in gender-sensitive education. Instead, our focus in this paper is solely
on the education environment.

Collecting Recommendations from Research: We have performed a literature
search to understand the practices to create girl-friendly CS classroom recom-
mended by research, including recommendations for inclusive pedagogy as well as
the inclusive environment. We have covered the following research databases in
the search: ACM Digital Library, IEEE, Google Scholar, Springer, Wiley Online
Library, and Eric. The initial search generated hundreds of articles on diverse
topics targeted to understand the causes, consequences, and solutions to gen-
der distribution in STEM. We filtered the results and included the ones that
provide insights or guidance on possible girls-friendly classroom design strate-
gies in secondary education specifically, as the experiences in this time period
have a crucial impact on the career perception in computing defined as software
engineering or informatics.

Collecting Experience from Practice: To collect the best practices used by teach-
ers in the Czechitas courses, we have organized two workshops in two Czech
major cities, with 20 participants (teachers) each, including a moderated discus-
sion with four most experienced lecturers in each workshop. The lecturers who
were interviewed at the workshop all had at least two years of experience with
lecturing Czechitas female-tailored courses. The workshops were organized as an
open discussion forum among more and less experienced teachers to exchange
knowledge on effective girl-friendly classroom design and organization strategies.

Girl-Friendly Computer Science Classroom: Czechitas Experience Report 129

Table 1. Strategies making classroom environment inclusive of novice female learners

Recommendation (Rec.) Goal of the strategy

1. By creating safe environment

1.1. Support non-competitive culture
[5,7]

Minimising building of classroom
hierarchy hostile to girls

1.2. Hold lessons creating a sense of
belonging [12]

Increasing awareness about what is
happening in the classroom

1.3. Create opportunities for exchange
[2,5,12,22]

Building the sense of belonging

1.4. Avoid technical obscurity in
discussions [30]

Improving understanding

2. By segregation

2.1. Provide all-female educational
programs [5,12,19,33]

Allowing girls to get more instruction
time

2.2. Split classes by experience not
gender [22,29,31]

Working against the monopolization
of instructor time by the most
experienced students

3. By personalised learning

3.1. Introduce easy methods for
students to report on struggle [21]

Intervening to limit frustration

3.2. Plan time constraints to regularly
check on class [1,21]

Intervening as needed to give
personalized feedback

3.3. Use self-efficacy interventions
[21,23,25]

Avoiding disengagement

5 Recommendations on Girl-Friendly Classroom Design

For more than 20 years, the research community, governmental, and educational
institutions undertake diverse interventions aimed at increasing gender diversity
in CS education, yet with little progress [18]. We believe that better transfer
among research and practice provides an opportunity to address this challenge,
not only by identifying causes and consequences and identifying possible inter-
ventions, but also by translating them into practical and actionable teaching
practices, and learning back from them. Our argumentation is based on a review
of research literature as well as on our own practical experience with teaching
CS. We have examined the literature recommendations on how to teach CS to a
broader audience more effectively and how CS teaching can adapt to gender ten-
dencies observed in girls. In response to this research question, we aggregated
a set of effective measures and strategies into three main categories, summa-
rized together with their identified recommendations from literature in Table 1,
and discussed in relation to our practical observations in the remainder of this
section.

130 B. Buhnova and L. Happe

5.1 By Creating Safe Environment

Recommendations from Research: The sense of belonging seems to be the essen-
tial factor in achieving a safe environment allowing female novice learners to
express themselves freely. What are the experiences necessary to feel that we
belong? The research suggests that girls need: (1) to be able to succeed and be
represented on all levels of classroom hierarchy; (2) to understand, share and
exchange their classroom experiences; (3) to know that their experience is typi-
cal and expected; and (4) the language, art of expression used and goals followed
in the classroom to be understandable and relevant to them.

The Rec. 1.1. [5,7] suggests using strategies to minimize competitive culture,
which often feels threatening to girls. This can be achieved by instilling growth
mindset and explaining strategies for success explicitly to girls and boys the
same (to fight the hostile art of competition based on previous computing com-
petence), as well as including assignments requiring skills usually hold by girls as
well. The Rec. 1.2. [11] suggests reflecting on what’s happening in the classroom,
creating a transformative culture of shared experience. This could include collab-
orative lesson planning or debriefing discussions to explain the expectations. The
teachers and tutors can especially share their own experiences with success and
failure in computing tasks, how they feel using technology, what they expect of it,
and what impact it has on their life or society. Shared experience combined with
emphatic speech and authentic interest in what students are experiencing can
rapidly increase the sense of belonging. The Rec. 1.3. [2,5,12,22] suggests that
the classroom organization should include opportunities for exchange, communi-
cation of expectations, welcoming chat, and additional field trips and extracur-
ricular activities targeted on girls but not necessarily segregated. Research [2]
here shows that girls still believe that it is necessary to have masculine charac-
teristics to succeed in CS. Providing them with non-stereotypical experiences in
the classroom fights this dangerous belief. The Rec. 1.4. focuses on increasing
the sense of belonging by avoiding technical obscurity in the language used in
the classroom. Here, literature suggests that girls loose orientation quickly when
many abstraction levels are mixed, and tend to fall in frustration when they feel
the art of expression is strange and not relevant to them. Speech sensible to
this, holding one abstraction level and informing the class by its change limits
the frustration and fights the disengagement of girls in the classroom.

Experience from Czechitas: Creating a safe environment with a strong spirit of
belonging is the essential characteristic of all Czechitas female-tailored courses
and events. To this end, we implement several practices that have, over time,
proved to have a significant impact on attracting girls to engage in learning
programming and software engineering. As we find this crucial, we have a person
in each course who checks for the right atmosphere, so that it is not the task of
the lecturer who needs to focus on the teaching. In addition to that, besides the
main lecturer, there is a team of 4–6 mentor assistants present in each course,
ready for individual assistance to anybody struggling with their assignments.

Girl-Friendly Computer Science Classroom: Czechitas Experience Report 131

Czechitas courses are characterized with a very informal atmosphere where
the girls are navigated to get to know each other, and where we deliberately
flatten the feeling of hierarchy between them and the lecturers, to remove the
initial fear of asking questions and make it natural to be honest and open about
individual learning difficulties. E.g., at each course, we spend some informal time
together, which is strengthened by coffee breaks to which everybody contributes
with the food they bring and share with others. After each course, the partici-
pants are invited to join our Facebook community, with specialized groups for
different learning themes, where they can continue exchanging knowledge, fol-
lowing learning tips shared by others, and finding help if they struggle with their
coding ideas and projects. Long-term courses have their own Facebook group,
often paired with a Slack channel for a tighter connection.

Best Practices Emphasized by the Lecturers:

– Within a three-month course, dedicate one lesson in a month to a different
kind of learning, e.g., outdoors in a park, sharing learning difficulties and
successful attempts in overcoming them, tips, and tricks of discovered online
learning platforms.

– Ease the atmosphere in the course by employing fun in the learning process.
A good way is to use funny GIFs and memes in presentations as ice breakers.
Another effective way is tandem teaching, where a pair of lecturers teach
together while interacting in a friendly way to ease the atmosphere.

– Foster interaction via ways that are easy to join and add dynamics to the
lesson. A good way is to stand up and move instead of just sit and raise
hands. Interactive polls and dynamic word clouds also work well. If hand-
raising is used, add funny elements to it, for instance, by using the hand like
a clock hand to indicate on a scale 1–11 (as in hours on the clock) how well
one understands a concept.

– Deliberately create opportunities for the participants to engage with assistant
mentors on-site during the day to assist those who need help.

– To avoid technical obscurity and ease the understanding of difficult concepts,
use analogy with the real world, and share tips for useful analogies with other
lecturers. For instance, a data type can be explained as a post item type –
one can fit different content into a package, an envelope, or a postcard. There
is some data one can fit in a postcard as well as a package, but one is more
appropriate than the other.

5.2 By Segregation

Recommendations from Research: The main goal of segregation of students
based on gender in Rec. 2.1. [5,12,19,33] or on previous experience in Rec. 2.2.
[22,29,31] is to provide all students with a fair share of instruction time and more
suitable instruction form. More experienced students, in this case usually boys,
tend to monopolize the teacher’s time, computer labs, and the curriculum mate-
rial. The teachers who do not make an explicit effort to provide a girl-friendly

132 B. Buhnova and L. Happe

environment will unintentionally end-up promoting a male-oriented classroom.
Dealing with such an environment, girls tend to give up and take a more passive
and only observing position in a computer lab. This way, girls voluntarily give
up their instruction time. Being in this circle of feeling misplaced and frustrated
in the CS classroom, there is only a little that can spark girls’ motivation and
interest in CS. The hypothesis is that girls need a safe environment and commu-
nity of other girls or a community of other girls or boys that are science-affine,
similarly experienced, and welcoming. The study in [33] shows that the boys
often limited girls’ involvement in the classroom assignments and did not accept
their ideas; over time, this has the potential to diminish girls’ desire to partic-
ipate. Both teachers and curriculum developers should consider how to guide
students to productive and fair group work in the CS classroom.

Experience from Czechitas: While for primary-grade children, we do not observe
any significant benefits of girls-only classes, for secondary-grade (especially the
upper-secondary) and older girls and women, the positive effect of girls-only
learning options is enormous. That is visible in the interest in the courses (mul-
tiple times higher than their capacity), open interaction happening within the
class, as well as the commitment to continue with CS. Based on our experi-
ence, the girl-only environment benefits namely the novice learners who start
with CS later than their peers. In our perception, the girl-only environment acts
best as an incubator to build confidence and commitment to computing, while
there shall be deliberate effort to integrate the learners in a mixed environment
when ready. To this end, we encourage and support girls to form teams together
with the lecturers or mentors, and register to mixed-gender IT hackathons, to
experience success in the mixed environment too.

Best Practices Emphasized by the Lecturers:

– In the presence of more experienced learners within the classroom, keep the
focus on the less experienced ones, while the more experienced can form a
group around one of the assistant mentors, who shall have special assignments
ready for them.

– If such a grouping is expected, adapt the seating of students accordingly (by
experience) since the beginning. To do this, add a game at the beginning of
the lesson, via which the students form the groups by experience organically
themselves.

– Engage the more experienced learners in assisting their less experienced peers.
Invite them explicitly in doing so during moments in which it is evident that
some students are ready with their assignments while others might need help.

5.3 By Personalised Learning

Recommendations from Research: The goals of personalized learning are to: (1)
provide self-efficacy interventions if needed; (2) calibrate self-evaluation of girls
by encouragement and feedback; (3) and limit frustration. The Rec. 3.1. [21] sug-
gests that teachers should introduce easy methods for students to report when

Girl-Friendly Computer Science Classroom: Czechitas Experience Report 133

they are struggling, and they fell in traps in their work, where they need help
to continue. Many students, especially girls, are not comfortable with asking for
help, demanding attention, and struggle quietly in the CS classroom. Organizing
the classroom in a way that it is easy to ask for help diminishes these barriers.
The Rec. 3.2. [1,21] shows that teachers need to be aware of students who fre-
quently lose focus and intervene as needed. The standard strategy is to make
sure to scan the room frequently and allow some struggles before assisting stu-
dents to allow them to think and learn on their own, but introduce constraints
on frustration, especially early in the course. The work in [25] shows that girls
respond to performance feedback early in the course, revising their self-efficacy
beliefs. The implication of this result is crucial as it suggests that responses
to early failures could be causing female students to disengage from CS very
early. Understanding how the self-efficacy feedback loop operates in girls could
modify pedagogical approaches by introducing early and targeted self-efficacy
interventions to improve girls’ retention in CS. Too early failures decrease moti-
vation to continue and retention of girls in the computer science courses rapidly.
Thus the solution here is to provide students with an innovative environment
and culture, early mentoring, and specially planned success experiences [25,30].
Teachers can create opportunities for success and mentor girls to succeed early.
The Rec. 3.3. [21,23,25] highlights the importance of incorporating opportunities
for self-efficacy interventions and for self-evaluation in CS classroom. Teachers
should engage students in self-assessment opportunities and monitor them for
any inconsistencies that should be regularly reflected on. This reflection will help
students evaluate their performance and capabilities more objectively and more
accurately. Especially for girls, it is imperative as girls tend to underestimate
their performance in comparison to boys more often, which could be a huge
liability in the CS classroom.

Experience from Czechitas: The need for personalized learning is in Czechi-
tas further emphasized by the fact that we provide extra-curricular education,
mixing students with different backgrounds and from different schools in one
classroom. Hence, we needed to develop a method to monitor each student’s
progress and adapt their learning path accordingly for the most effective out-
come. The monitoring part of the method is based on the system of colorful
sticky notes used by the students (stick visibly to their laptops) to share their
status, namely: (1) I am done with the primary assignment and work already on
the bonus assignment, (2) I am still working on the primary assignment and do
not want to be disturbed, (3) I am still working on the primary assignment and
would appreciate help, (4) I am also done with the bonus assignment and would
appreciate some guidance on what else I can be working on before the group is
ready to move on. The adaptation part of the method is based on pre-designed
sets of primary and bonus assignments, together with the ability of the lecturer
to find the right moment to move on to the next topic, while those who might be
left behind are helped individually by assistant mentors so that they catch up
with the leading group. In each classroom, there is typically one main lecturer
and 4–6 assistant mentors, who, besides individualized help, also encourage the

134 B. Buhnova and L. Happe

students who are struggling. Besides the on-site personalized learning manage-
ment, we make sure that the students who might be slower are supported with
study material upfront (so that they can familiarize themselves with the topic)
and in many courses also a video recording afterward (so that they can recall the
coding assignments and repeat them individually home for the stronger effect of
the learning).

Best Practices Emphasized by the Lecturers:

– Do not rely on the sticky notes only, learn to read the eye contact and under-
stand if somebody needs help.

– Ask progress questions that do not discourage the slower learners.
– Design bonus assignments so that they deepen the primary assignment knowl-

edge, not introduce new knowledge.
– Prepare tips for complementary online resources for those who are ready with

bonus assignments too early.
– Be ready to skip some course content if the group appears to need more time

for the assignments than the lecturer expected. Decide in time what parts
can be skipped so that the course does not appear unfinished.

– Be ready to add more content to the course on the fly if the group is faster
than the lecturer expected.

– Within a three-month course, offer voluntary lessons once a month aimed
solely at repeating the parts of the content that might not be fully understood
by slower students.

– Avoid context switching, i.e. follow one core scenario or project the whole
day or course, which the lecturer keeps coming back to.

– Work with the assumption that the students might be watching their screen
at any point in time, which means that they can easily miss what is displayed
on the lecturer’s screen. Make sure to comment verbally on everything you
do on the screen.

– Define sections of the course with an inclusive start, i.e., where even those
who got lost in the previous section can resume and continue with others.

– Make pauses for the students to take notes so that they do not need to take
notes parallel to the lecturer speaking. Explain how to take notes and what
to note given the material that is provided as part of the course.

– When writing the code, do not delete the pieces of code written previously.
Comment them out so that the students can come back to them later and
reconstruct the lesson’s story.

6 Conclusion

How the future of software engineering plays out will depend on our ability to
support more cultural and gender diversity in computer science classrooms. As
the richness of computing as intellectual endeavor starts to be explicitly visible
in the curriculum and the offer of fields to study, the diversity of the students will
increase, and the culture will evolve. To ease the process, the teachers need to be

Girl-Friendly Computer Science Classroom: Czechitas Experience Report 135

provided with the toolset for building an inclusive CS classroom environment. In
the paper, we have contributed to building such a toolset via a survey of effective
pedagogical interventions to create a more inclusive learning environment for
girls in the field of computer science, which we have accompanied by experience
from practice, namely from a successful educational NGO, called Czechitas.

Acknowledgements. The writing of this article was supported in part by Vector
Stiftung, Project “Mädchen für Informatik begeistern” at Karlsruhe Institute of Tech-
nology (KIT).

References

1. Al-Khalifa, H.S., Faisal, H.R., Al-Gumaei, G.N.: Teaching mobile application devel-
opment in 20 hours for high school girls: a web-based approach. In: 2019 IEEE
Global Engineering Education Conference (EDUCON), pp. 16–21. IEEE (2019)

2. Anderson, L., Edberg, D., Reed, A., Simkin, M.G., Stiver, D.: How can universities
best encourage women to major in information systems? Commun. Assoc. Inf. Syst.
41(1), 29 (2017)

3. Annabi, H., Lebovitz, S.: Improving the retention of women in the IT workforce:
an investigation of gender diversity interventions in the USA. Inf. Syst. J. 28(6),
1049–1081 (2018)

4. Annis, B., Nesbitt, R.: Results at the Top: Using Gender Intelligence to Create
Breakthrough Growth. Wiley, Hoboken (2017)

5. Arroyo, A.E.N.: Gender and Scratch: Exploring Support for Online Gendered Set-
tings. Ph.D. thesis, The Pennsylvania State University (2018)

6. Blum, D.: Sex on the Brain: The Biological Differences Between Men and Women.
Penguin Books, London (1998)

7. Boston, J.S., Cimpian, A.: How do we encourage gifted girls to pursue and succeed
in science and engineering? Gift. Child Today 41(4), 196–207 (2018)

8. Brizendine, L.: The Female Brain. Morgan Road Books, New York (2006)
9. Buhnova, B., Jurystova, L., Prikrylova, D.: Assisting women in career change

towards software engineering: experience from Czechitas NGO. In: Proceedings
of the 13th European Conference on Software Architecture-Volume 2, pp. 88–93
(2019)

10. Buhnova, B., Prikrylova, D.: Women want to learn tech: lessons from the Czechitas
education project. In: 2019 IEEE/ACM 2nd International Workshop on Gender
Equality in Software Engineering (GE), pp. 25–28. IEEE (2019)

11. Burns, H.D., Lesseig, K.: Empathy in middle school engineering design process. In:
2017 IEEE Frontiers in Education Conference (FIE), pp. 1–4. IEEE (2017)

12. Burns, H.D., Lesseig, K., Staus, N.: Girls’ interest in stem. In: 2016 IEEE Frontiers
in Education Conference (FIE), pp. 1–5. IEEE (2016)

13. Czechitas: Website. https://www.czechitas.cz
14. Decety, J., Jackson, P.L.: The functional architecture of human empathy. Behav.

Cogn. Neurosci. Rev. 3(2), 71–100 (2004)
15. DuBow, W.M., Ashcraft, C.: Male allies: motivations and barriers for participating

in diversity initiatives in the technology workplace. Int. J. Gend. Sci. Technol. 8(2),
160–180 (2016)

16. Fisher, H.: The First Sex: The Natural Talents of Women and How They Are
Changing the World. Ballantine Books, New York (1999)

https://www.czechitas.cz

136 B. Buhnova and L. Happe

17. Garćıa-Peñalvo, F., Reimann, D., Tuul, M., Rees, A., Jormanainen, I.: TACCLE
3, O5: an overview of the most relevant literature on coding and computational
thinking with emphasis on the relevant issues for teachers, Belgium, vol. 165123
(2016). https://doi.org/10.5281/zenodo

18. Gorbacheva, E., Beekhuyzen, J., vom Brocke, J., Becker, J.: Directions for research
on gender imbalance in the it profession. Eur. J. Inf. Syst. 28(1), 43–67 (2019)

19. Gürer, D., Camp, T.: An ACM-W literature review on women in computing.
SIGCSE Bull. 34(2), 121–127 (2002). https://doi.org/10.1145/543812.543844

20. Hattie, J.: The applicability of visible learning to higher education. Scholarsh.
Teach. Learn. Psychol. 1(1), 79 (2015)

21. Henry, J., Dumas, B.: Perceptions of computer science among children after a
hands-on activity: a pilot study. In: 2018 IEEE Global Engineering Education
Conference (EDUCON), pp. 1811–1817. IEEE (2018)

22. Hyrynsalmi, S., Sutinen, E.: The role of women software communities in attracting
more women to the software industry. In: 2019 IEEE International Conference on
Engineering, Technology and Innovation (ICE/ITMC), pp. 1–7. IEEE (2019)

23. Kallia, M., Sentance, S.: Are boys more confident than girls? the role of calibration
and students’ self-efficacy in programming tasks and computer science. In: Proceed-
ings of the 13th Workshop in Primary and Secondary Computing Education, pp.
1–4 (2018)

24. Kirschner, P.A., Sweller, J., Clark, R.E.: Why minimal guidance during instruction
does not work: an analysis of the failure of constructivist, discovery, problem-based,
experiential, and inquiry-based teaching. Educ. Psychol. 41(2), 75–86 (2006)

25. Lishinski, A., Yadav, A., Good, J., Enbody, R.: Learning to program: gender dif-
ferences and interactive effects of students’ motivation, goals, and self-efficacy on
performance. In: Proceedings of the 2016 ACM Conference on International Com-
puting Education Research, pp. 211–220 (2016)

26. Main, J.B., Schimpf, C.: The underrepresentation of women in computing fields:
a synthesis of literature using a life course perspective. IEEE Trans. Educ. 60(4),
296–304 (2017)

27. Murphy, A., Kelly, B., Bergmann, K., Khaletskyy, K., O’Connor, R.V., Clarke,
P.M.: Examining unequal gender distribution in software engineering. In: Walker,
A., O’Connor, R.V., Messnarz, R. (eds.) EuroSPI 2019. CCIS, vol. 1060, pp. 659–
671. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-28005-5 51

28. Narciss, S.: Designing and evaluating tutoring feedback strategies for digital learn-
ing. Digit. Educ. Rev. 23, 7–26 (2013)

29. Siiman, L.A., Pedaste, M., Tõnisson, E., Sell, R., Jaakkola, T., Alimisis, D.: A
review of interventions to recruit and retain ICT students. Int. J. Mod. Educ.
Comput. Sci. 6(3), 45 (2014)

30. Statter, D., Armoni, M.: Learning abstraction in computer science: a gender per-
spective. In: Proceedings of the 12th Workshop on Primary and Secondary Com-
puting Education, pp. 5–14 (2017)

31. Vela, K.N., Bicer, A., Capraro, R.M., Barroso, L.R., Caldwell, C.: What matters to
my future: stem int-her-est and expectations. In: 2018 IEEE Frontiers in Education
Conference (FIE), pp. 1–7. IEEE (2018)

32. Weisberg, Y.J., DeYoung, C.G., Hirsh, J.B.: Gender differences in personality
across the ten aspects of the big five. Front. Psychol. 2, 178 (2011)

33. Wieselmann, J.R., Dare, E.A., Ring-Whalen, E.A., Roehrig, G.H.: “I just do what
the boys tell me”: exploring small group student interactions in an integrated
STEM unit. J. Res. Sci. Teach. 57(1), 112–144 (2020)

https://doi.org/10.5281/zenodo
https://doi.org/10.1145/543812.543844
https://doi.org/10.1007/978-3-030-28005-5_51

Girl-Friendly Computer Science Classroom: Czechitas Experience Report 137

34. Willoughby, T.: A short-term longitudinal study of internet and computer game
use by adolescent boys and girls: prevalence, frequency of use, and psychosocial
predictors. Dev. Psychol. 44(1), 195 (2008)

35. Zaidi, Z.F.: Gender differences in human brain: a review. Open Anat. J. 2(1), 37–55
(2010)

Mining Gender Bias: A Preliminary
Study on Implicit Biases and Gender

Identity in the Department of Computer
Science at the Technical University of

Munich

Ana Petrovska1(B), Patricia Goldberg1, Anne Brüggemann-Klein1,
and Anne Nyokabi2

1 Department of Informatics, Technical University of Munich, Munich, Germany
{petrovsk,figueira,brueggem}@in.tum.de

2 Siemens AG, Erlangen, Germany
anne.nyokabi@siemens.com

Abstract. The concept of implicit biases is widely seen in many dif-
ferent areas and is regarded as one of the main reasons for the gender
disparity between students pursuing degrees in Computer Sciences. Since
less than 20% of Computer Science students are female, the information
about gender bias in this field is of extreme importance. This research
aimed to investigate if and by how much the female students in our
department are affected by likely gender bias in their academic life. The
data collected in this research was used to evaluate the automatic asso-
ciation that students have towards a specific gender and the computer
science field.

Keywords: Gender bias · Computer science · University and academia

1 Introduction and Motivation

Unconscious bias, also known as hidden or implicit bias [1], affects all of us. Very
often, each of us, unconsciously and almost instantaneously assess the people
around us based on their appearance, gender, and personality traits among oth-
ers. However, excellence in education, science and research can only be achieved
if we select from the broadest range of talents, and that is not possible if uncon-
scious bias is narrowing down the field due to non-scientific reasons. Unconscious
bias is a term from the field of psychology which describes the bias an individual
has against another person or a situation [12].

Although unconscious bias can be harmless in some present-day situations,
it often has damaging, long-lasting adverse effects. Concretely, it is related to
labeling and burdening a specific group of people based on their gender, skin

A. Petrovska and P. Goldberg—these authors contributed equally.

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 138–150, 2020.
https://doi.org/10.1007/978-3-030-59155-7_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_11&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_11

Mining the Gender Bias 139

color, age, religion, or country of origin. The process of labeling a person is
automatic, and people develop these behaviors based on their background, past
experiences, and general exposure to cultural attitudes and social stigmas against
certain groups. The problem with unconscious bias is that when it affects our
reasoning, leading us to make fewer fair decisions, especially in the matters
that need rational thinking, deluding us from the true facts of the situations,
and consequently preventing us from considering the bigger pictures. We can-
not move towards narrowing the gender gap issue in the technical fields if we
first do not comprehend the reasons that hold us back: the hidden, unconscious,
non-rational biases that each individual (regardless the gender) has—on a per-
sonal level, which later propagates on an organizational level. Unconscious bias
has been identified as the main reason for poor gender-balanced representation
in the IT working environments, as well as the disproportion in the numbers
of male versus female students pursuing degrees in Computer and Information
Sciences worldwide, with around 20% of computer science degrees awarded to
women [11]. Concretely, at the university where we conducted our study, the
Technical University of Munich (TUM), the overall number of female students
makes up to 34% in 2014 [8] and 36% in 2018 [7]. The numbers are somehow
expected since we are a technical university with a strong focus on engineering
and technical sciences, where the number of women is inherently lower. However,
the disproportion of male and female students is more significant at the TUM
Department of Computer Science, where only 19% of the students, 15% of the
Ph.D. candidates and 11% of the professors are female [7].

Understanding the reasons for the immense gender gap and the disproportion
in the numbers of our department has been the core motivation for this work.
Mining the gender gap and the biases should potentially lead towards identifying
the reasons behind the numbers, which should later enable us to take proactive
measures for improving the current situation. In order to understand our biases,
first, we need to be aware of them. Concretely, the idea behind this work ini-
tially originated from the previous efforts made towards increasing the awareness
about the unconscious bias in the TUM Department of Computer Science—the
Unconscious Bias Awareness Training, further explained in Sect. 2.1. The work
presented in this paper, including the Unconscious Bias Awareness Training, has
been conducted in the frame of Informatik-Forum Frauen (IFF)1, also known as
Women in CS @ TUM. IFF is an informal group at the TUM Department of
Computer Science, working towards equal participation and support of women
and other underrepresented groups at the department.

In previous research, Nosek et al. [9] studied the math-gender stereotype
using a mixture of implicit and explicit tests to gather information about the
math–gender relationship. Concretely, the authors investigated how the associ-
ations between 1) the feeling of belonging to a group for both genders (group
membership) and 2) how well they identify themselves as part of that group
(group identity), shapes one’s individual preferences and performance. Depend-
ing on how strong these associations are, the attitudes towards math vary, cor-

1 https://www.in.tum.de/en/current-students/equal-opportunity/.

https://www.in.tum.de/en/current-students/equal-opportunity/

140 A. Petrovska et al.

responding in a more negative implicit and explicit math attitude for women
but a more positive one for men. Stronger implicit math-male stereotypes were,
bigger the negative impact on the women’s attitude was. The authors concluded
that associating the self with females and math with males made it difficult for
women, even women who had selected math-intensive majors, to associate math
with themselves. However, to the best of our knowledge, a similar study combin-
ing implicit and explicit tests, focusing on computer science-gender stereotypes,
has not yet been conducted.

Inspired by the above mentioned Unconscious Bias Awareness Training and
by the lack of available datasets containing information on the computer science-
gender bias, the solution that this work proposes is an online questionnaire
that can gather data from both implicit and explicit questions. Therefore, the
problem that this work is solving is twofold. The first problem is from the field of
psychology—the creation of the questionnaires that could collect information on
the person’s hidden biases, which could be later analyzed. We measured both the
conscious and unconscious prejudice through explicit and implicit questionnaires,
respectively. For the conscious measure, we have created explicit (self-reporting)
questions on gender identity and questions relevant to the TUM Department of
Computer Science. The self-report questions are particularly useful for cases in
which we want to evaluate, not only what a person thinks, but also how one would
explicitly present their ideas. The self-reporting questions are further explained
in Sect. 3.1. As the unconscious measure, we used the Implicit Association Test
(IAT) [4], further explained in Sect. 2.2. The second is a technical problem, for
which we need to create an online surveying form that does not only collect the
answers but also 1) collects the time that the respondent took for answering a
specific question, and 2) the number of errors that the respondent makes while
answering a question, which is of crucial importance for the analysis of the
collected data and calculating the IAT results.

2 Previous Work

2.1 Unconscious Bias Awareness Training

To lessen the hidden bias consequences, the Informatik Forum Frauen (IFF)
conducted Unconscious Bias Awareness Training within TUM Department of
Computer Science. The goal of this training is to promote and increase awareness
of our hidden biases through real-life experiments and examples. The training
has been previously held in different setups inside the university reaching a
broad range of people, for example, students, tutors, Ph.D. candidates or other
lecturers, who participated in different workshops or pro-seminars [6].

2.2 Implicit Association Test

Previous work [1] has shown that in principle, the results from explicit or self-
reporting questionnaires tend to be misleading, since the respondents are often

Mining the Gender Bias 141

(subconsciously) dishonest while answering the questions. In psychology, the
proposed solution to this problem is a concept named “Implicit Social Cognition”
[3], which served as a basis for developing the Implicit Association Test (IAT).
IAT, initially developed and introduced in 1998 by Greenwald et al. [4] within
the frame of social psychology, is a tool designed to measure and estimate one’s
unconscious or implicit bias towards a specific stereotypical group. Since then,
it has been researched and used to investigate biases in several groups, most
prominently focusing on gender and race. To address the issue of subconscious
dishonesty that is present in the explicit questionnaire, IAT relies on the concept
of time. Namely, faster response times are expected while pairing concepts that
indicate stronger associations, for example male and computer science, compared
with linking women and computer science, for which people usually take longer
because of a weak mental association. While answering the IAT questionnaire,
people need to connect terms that are rapidly shown to them, which makes it
difficult to fake answers.

3 Method

3.1 Questionnaire Creation

Our questionnaire has two type of questions: explicit (self-reporting) ques-
tions further explained in Sect. 3.2, and implicit, IAT based questions, further
explained in Sect. 3.3.

3.2 Explicit (Self-reporting) Questions

The first type of questions we developed was the Explicit Test. We created
three sub-types of self-reporting question: Gender Identity, Quality Ranking and
Department Related questions, classified into three categories: Matrix, Drag and
Drop and Single Choice questions.

Gender Identity Questions. In order to have a better insight into who is com-
pleting the online questionnaire, we first asked two single choice questions on
respondent’s gender and their age. The respondents could identify with male or
female gender, or could not disclose to which gender they identify with (“Rather
not say” option).

The purpose of the gender identity questions was to classify the respondents
and to extract their gender identity information. Table 1 shows the full list of
questions. Using this type of information, we could better understand the per-
son replying to the questionnaire, what are their personal views about their own
gender, and how well are they identifying themselves with their gender. The gen-
der identity questions are structured according to the Matrix category, in which
the respondent were asked to answer if they Strongly Agree, Agree, Disagree,
and Strongly Disagree with a given statement. We created eight gender identity
statements in the matrix, with two different tones: “Positive” and “Negative”.

142 A. Petrovska et al.

Table 1. List of Gender Identity questions.

Nr. Tone Gender Statement

1 Positive 1-Female I feel I fit in with other Females in my department

1-Male I feel I fit in with other Males in my department

2 Negative 2-Female I feel annoyed that I am supposed to do some things just
because I am a Female

2-Male I feel annoyed that I am supposed to do some things just
because I am a Male

3 Positive 3-Female I feel comfortable being a Female in my department

3-Male I feel comfortable being a Male in my department

4 Negative 4-Female I feel people interpret my behavior based on my gender

4-Male I feel people interpret my behavior based on my gender

5 Positive 5-Female I feel that my personality is similar to most Females
personalities’ in my department

5-Male I feel that my personality is similar to most Males personalities’
in my department

6 Positive 6-Female I feel that the things I like to do in my spare time are similar to
what most Females in my department like to do in their spare
time

6-Male I feel that the things I like to do in my spare time are similar to
what most Males in my department like to do in their spare time

7 Negative 7-Female I sometimes think it might be more fun to be of opposite gender

7-Male I sometimes think it might be more fun to be of opposite gender

8 Positive 8-Female I think I am a good example of being a Female

8-Male I think I am a good example of being a Male

Qualities Ranking. In the Qualities Ranking question the respondents were asked
to rank ten given terms: Smart, Emotionless, Geek, Confident, Disciplined, Inde-
pendent, Principled, Opinionated, Attractive and Strong, in the order they con-
sider them as relevant qualities needed for success in their career or studies
(most important at the top). This is a Drag and Drop question, with the most
important quality ranked at the top.

Department Related Questions. The last type of self-reporting questions con-
tained explicit questions about the Department of Computer Science at TUM
in a Matrix form. This section was mainly designed to comprehend the stu-
dent’s perception of the department gender equality issues. The matrix contained
eight statements, regardless of the gender of the respondent. The categories of
responses are: Strongly Agree, Agree, Strongly Disagree, Disagree and Not Appli-
cable. The last category was added since some students may have neither an
advisor nor a supervisor, thus some statements were not applicable to those
students. The list of statements is shown in Table 2.

Mining the Gender Bias 143

3.3 Implicit Questions

The implicit questions are based on IAT [4,10]. In our work, we focus on two
categories: Arts and Computer Science; and two targets: Female and Male. For
each category/target, five words were chosen as representatives (see Table 3),
and the respondents were asked to associate each word to the corresponding
category or target. We collect the time and the number of errors a person did
while associating a word to a target/category. The IAT developed was divided
into seven association tasks, split into five steps, as shown in Fig. 1. Steps 1, 2
and 4 are practice sessions. The final hidden bias calculation was based only on
the results from steps 3 and 5, disregarding the practice tasks.

Table 2. List of Department Related questions.

Nr. Statement

1 Students in my department are treated equally by the staff regardless of
their gender

2 I am confident that the staff of my department would address sexism

3 I have witnessed gender discrimination from the staff of my department

5 I feel that my professor treats men and women equally during the lectures

6 I feel that my supervisor/advisor aligns her/his research with mine

7 I feel that my supervisor/advisor helps me identify my
training/development needs

8 I feel that my supervisor/advisor shows interest in my progress/success

Table 3. Words which represent the categories and the targets of the IAT.

Arts Sculpture Music Theater Painting Melody

Computer Science Programming Technology Code Mathematics Electronics

Female Sister Mother Aunt Grandmother Daughter

Male Brother Father Uncle Grandfather Son

The procedure of the association tasks is the following: the screen is divided
into two parts, left and right. In the first step, the respondent needs to associate
a term shown in the middle of the screen with Male on the left and Female to the
right. In the second step, the term shown in the middle needs to be associated
to a category—Computer Science and Arts to the left and right, respectively.
The third step includes two consecutive critical association tasks, in which the
participants need to associate words related to Male or Computer Science, and
words related to Female or Arts. The fourth step was again a practice task, whose
aim is to flip the targets, thus Female is located on the left side, while Male on

144 A. Petrovska et al.

the right. The last step, similarly to step three, had two critical association tasks
but in this step Female is associated to Computer Science and Male to Arts.

4 Data Collection

With the permission of the TUM Data Protection Officer and the support from a
few professors at the department, our questionnaire was filled in eight introduc-
tory and advanced lectures and practical courses, on bachelor and master level.
We collected the data within a period of a month, and the students answered
the questionnaire in-class supervised by at least one of the authors of this work
and the lecturer of the course. In total, 457 students completed the questionnaire
from which 184 (41%) were females, 267 (58%) were males, and 6 students (1%)
did not identify their gender.

Fig. 1. Association tasks

5 Implementation of the Questionnaire

During our research we identified a lack of available—and ideally open-source—
online survey tools that not only collect the respondents’ answers but also the
time each respondent takes to complete a section of the questionnaire. In our
work, keeping track of the time was an essential factor, since calculating the IAT
scores depends on the time that the respondents took to answer the question and
the amount of errors that they made while doing so. The solution was to develop
our own, in-house online questionnaire tool, which fulfills all the previously iden-
tified and elicited requirements that we had for our tool. The implementation of
our questionnaire is open-source: https://gitlab.com/patygold3254/hiddenbias.

6 Results

In this paper, we explore the following two hypotheses:
Hypothesis 1: In the explicit questions, female and male students in our depart-
ment give similar answers to the same question.
Hypothesis 2: In the implicit questions, each gender associates computer sci-
ence easier with their own gender.

https://gitlab.com/patygold3254/hiddenbias

Mining the Gender Bias 145

6.1 Data Exploration of the Explicit (Self-reporting) Questions

Gender Identity Questions. Figure 2 represents the percentage of replies for each
statement from Table 1. The graph is sub-divided into Positive and Negative
tone statements, and it is colored by the categories—from Strongly Disagree
to Strongly Agree. The negative tone statements had the most accumulative
percentage of Strongly Disagree and Disagree answers. Similarly, statements 1,
3 and 5 in the positive tone statements had the most accumulative percentage
of Strongly Agree and Agree answers. Statements 2, 3 and 5 did not show a
significant change in the answers among females and males respondents (less
than 5% difference in each agreement level). In this question, the data collected
did not represent a significant difference in responses among females and males.

Percentage of responses by category

Fig. 2. Percentage of replies for each statement in the Gender Identity questions.

Qualities Ranking. Figure 3 shows the percentage of the words ranked in the
first place by all of the respondents, divided by gender. Since the total number
of respondents who did not identify with any gender was low (1%), the focus of
this section will be only on the answers given by female and male respondents.
The word with the highest percentage, among both female and male participants,
was “Smart”, which was ranked on a first place by 20% of the female and 30%
of male respondents. On the contrary, the least amount of people ranked the
word “Attractive” on the first place in their rankings. It is worth noting that
the words “Emotionless”, “Geek”, “Opinionated” and “Strong” had twice the
number of female respondents ranking it first place than male respondents.

Although the data collected from the Gender Identity questions do not show
a significant difference between male and female respondents’ answers, the data
collected in Qualities Ranking does. This question shows a significant differ-
ence in adjectives which normally are used to describe the opposite gender. For

146 A. Petrovska et al.

Percentage of word in first place by gender

Fig. 3. Percentage of Qualities Ranking words ranked in first place.

example, words such as “Emotionless” and “Strong” that are normally associ-
ated as a male characteristic, were better positioned by female respondents as an
important quality to have in order to succeed in their career or studies, rather
than by the male respondents. This result shows a weaker gender identity of
female students compared to male students, raising a theory that female stu-
dents and professionals in the field of computer science, may be often adapting
their behavior in order to be better accepted, and succeed in a male-dominated
environment.

Department Related Questions. Figure 4 represents the percentage of replies for
each statement related to the Department of Computer Science, colored by the
category of the answer and sub-divided by the gender of the respondent. State-
ments 3, 6, 7 and 8 had almost 50% of the respondents answering as “Not
Applicable”. We could explain this by assuming that there are students that do
not have a supervisor or advisor. However, statement 3 cannot be interpreted in
the same way, as it was a question about gender discrimination. Furthermore,
this sentence had the highest percentage of “Disagree” answers, leading, initially,
to no conclusion from the answers. However, the conclusion that we could draw
is that this question was either not well formulated or did not contain enough
information to be answered, since more than a half of the respondents could not
give a clear agree or disagree answer to it. Importantly, in the overall matrix, no
great difference could be spotted while comparing the answers of different gen-
ders, therefore the perception of the department is similar to all the students.

6.2 Data Exploration of the Implicit Questions

The results of the implicit questions are calculated by counting the errors and
response time of step 5 minus step 3 (see Fig. 1). If the result is negative, the

Mining the Gender Bias 147

winner is female, meaning that the respondent has an automatic association
between Female and Computer Science. If the result is positive, the winner is
male. The automatic association term refers to the hidden bias a person has
of the target and the category. This association is subdivided into 4 classifica-
tions groups: “little to no”, “slight”, “moderate” and “strong”. “Little to no”
means that the respondent demonstrates hardly any automatic association to
that gender and Computer Science, while “strong” means a strong association
[1].

Percentage of department related responses by category

Fig. 4. Percentage of department related replies for each statement.

Figure 5 represents the distribution of the IAT results’ variables collected
from the respondents of our questionnaire. The x-axis represents the classifi-
cation categories, while the y-axis—the number of responses in that category.
Each bar plot represents the gender of the respondent, divided by “Female” (41%
of the respondents), “Male” (58%) and “Rather not say” (1%). And the vari-
able “Winner” represents the winner of the Implicit Association Test, explained
above. It is worth noticing that 60% of female respondents showed an automatic
association with Female and Computer Science, and this association is spread
into the classification categories, varying from “little to no” until “strong”. Mean-
while, 67% of male respondents showed a stronger automatic association with
Male and Computer Science, having roughly the same intensity of classification
categories. The data result, shown in Fig. 5, show that the majority of male
respondents demonstrated a strong automatic association between Male and
Computer Science. This result leads to the conclusion that men in the depart-
ment of Computer Science at TUM have a stronger implicit association between

148 A. Petrovska et al.

Male and Computer Science. Meanwhile, women have a less strong association
between Male and Computer Science, tending to demonstrate actually a strong
association between Female and Computer Science.

Number of responses per classification and winner

Fig. 5. Bar plot representing the total number of responses in IAT.

6.3 Data Analysis of the Implicit Questions

Furthermore, we did data analysis on statistical evaluations of the IAT mea-
surements. Following the IAT best practises [5], the measurements’ outliers were
deleted using the z-score given by z = x−μ

σ , in which μ represents the mean and
σ the variance [2].

Figure 6(a) represents the duration of the respondents (in seconds), divided
by gender, per task. Having in mind that step 3 associates Male and Computer
Science in two association tasks, and step 5 associates Female and Computer
Science in two tasks also, the boxplot shows a significant wider interquartile
range (IQR) of the male respondents in step 5 comparing to female respondents.
Therefore, the time range of male respondents when associating Female and
Computer Science was bigger than the time range of female respondents. The

(a) Duration of the respondents (b) Errors of the respondents

Fig. 6. Boxplot divided by gender, per task.

Mining the Gender Bias 149

median of the male respondents in step 5 is significantly higher, comparing to
their median in step 3. Figure 6(b) represents the errors per step, per respondent
gender. While the boxplot for Females remains almost constant across tasks, the
boxplot for the Males shows a higher IQR for step 5.

There are significant differences in the median and in the interquartile range
of the duration and the number of errors when grouping the respondents per
gender. This result leads to the conclusion that men take longer and make more
errors than women while associating Female and Computer Science.

7 Conclusion

Since hidden biases are not trivial to measure, calculate and analyze, we propose
explicit and implicit questions, based on which we collect data from our depart-
ment to understand better if our students are affected by gender bias in their
academic life. We have set up two hypotheses, which our results supported. Con-
cretely, from the explicit self-reporting) questionnaire, our results showed that
there is no significant difference in responses among female and male respon-
dents on the Gender Identity and Department Related questions. Nevertheless,
this differed in Qualities Ranking, where female students ranked characteristic
usually linked to the opposite gender, as “Emotionless” and “Strong”, as more
important for success in their studies and careers.

Although society, media, and women’s upbringing tend to picture men closer
to computer science, or STEM in general, the results from our IAT question-
naire show that the majority of the of female students (60%) in our department
associate computer science with female easier than with male, and 67% of the
male respondents have a stronger automatic association with male and computer
science. The results show that each gender associate computer science with their
own gender more easily, but males do so more than females.

In summary, although we see a correlation of the respondent’s gender with
their hidden bias result, this study does not have sufficient data to conclude
causality. As next steps we continue collecting and analyzing data from the
department, that should enable us to do better statistics and draw better con-
clusions.

Acknowledgement. A special appreciation to everyone involved in the data collec-
tion.: Prof. Brügge, Prof. Seidl, Prof. Pretschner, Prof. Ott, Prof. Schulz, Prof. Jacob-
sen, T. Hutzelmann, N. Pezhman, M. Schüle, N. Hartmann, N.-M. Zarges, R. Palenta,
D. Dzvonyar and L. Alperowitz.

References

1. Banaji, M.R.: Blindspot: Hidden Biases of Good People. Delacorte Press, New
York (2013). https://search.library.wisc.edu/catalog/9910203165702121

2. Ghosh, D., Vogt, A.: Outliers: an evaluation of methodologies. In: Joint Statistical
Meetings, pp. 3455–3460. American Statistical Association, San Diego (2012)

https://search.library.wisc.edu/catalog/9910203165702121

150 A. Petrovska et al.

3. Greenwald, A.G., Banaji, M.R.: Implicit social cognition: attitudes, self-esteem,
and stereotypes. Psychol. Rev. 102(1), 4 (1995)

4. Greenwald, A.G., McGhee, D.E., Schwartz, J.L.: Measuring individual differences
in implicit cognition: the implicit association test. J. Pers. Soc. Psychol. 74(6),
1464 (1998)

5. Greenwald, A.G., Nosek, B.A.: Health of the implicit association test at age 3
(2001)

6. IFF: Unconscious Bias Training (2018). https://www.in.tum.de/en/current-
students/equal-opportunity/projects/unconscious-bias-training/

7. TUM Department of Informatics: The Department of Informatics in Facts and
Figures 2018 (2018)

8. Technical University of Munich: Diversity at tum, focus: Gender and family (2015)
9. Nosek, B.A., Banaji, M.R., Greenwald, A.G.: Math = male, me = female, therefore

math �= me. J. Pers. Soc. Psychol. 83(1), 44 (2002)
10. Nosek, B.A., Greenwald, A.G., Banaji, M.R.: Understanding and using the implicit

association test: II. method variables and construct validity. Pers. Soc. Psychol.
Bull. 31(2), 166–180 (2005)

11. National Center for Science and Engineering Statistics: Women, minorities, and
persons with disabilities in science and engineering: 2019. Technical report,
National Science Foundation (2019)

12. Steele, C.M.: Whistling Vivaldi: And Other Clues to How Stereotypes Affect Us
(Issues of Our Time). WW Norton & Company, New York (2011)

https://www.in.tum.de/en/current-students/equal-opportunity/projects/unconscious-bias-training/
https://www.in.tum.de/en/current-students/equal-opportunity/projects/unconscious-bias-training/

CASA - 3rd International Workshop on
Context-aware, Autonomous and Smart

Architecture

International Workshop on Context-aware,
Autonomous and Smart Architecture (CASA)

The CASA@ECSA 2020 workshop aimed to bring together researchers and practi-
tioners interested in modern systems implementing the required features for managing
context-awareness, dynamicity, autonomy, and smart behavior. These features may be
associated with small devices such as mobile phones and their related applications, as
well as with big systems concerning transportation, airports, and cities. They are useful
for a wide range of application domains including healthcare, e-government commu-
nication and social networks, smart grids, energy management systems, finance, con-
ference management systems and learning, just to name a few examples.

The development of such solutions involves interdisciplinary and trendy concepts
and skills concerning context-awareness, autonomy, adaptiveness, machine learning,
Internet of Things, big data, integration and communication, networks, green and
efficient energy consumption, and user-friendly access. In this context, software
architectures play a fundamental role in the quality of development of such systems and
the success of their deployment.

This workshop aims to discuss the fundamental principles of context-aware,
autonomous, and smart solutions, the current architectural trends, and the future issues
and challenges to be addressed at the architectural level. The workshop invites experts
from industry and academic environments to share their solutions, ideas, visions, and
questions about the design of software architectures for such solutions. We aim to
enable discussions, partnerships, and collaborations among the software architects
working on these topics.

CASA@ECSA 2020 received very interesting contributions from authors belong-
ing to seven distinct countries, and the four best papers were accepted to be presented
during this virtual event in September 2020 in the context of the 14th European
Conference on Software Architecture (ECSA 2020).

The first paper entitled “State of the Practice Survey: Predicting the Influence of AI
Adoption on System Software Architecture in Traditional Embedded Systems” is
authored by Jasmin Jahic and Robin Roitsch. It investigates the perception of the
artificial intelligence in industry and its impact, especially in embedded systems from
an architectural point of view. The authors have interviewed various practitioners in
different companies for the proposed survey.

The second paper entitled “Composition Algorithm Adaptation in Service Oriented
Systems” is authored by Niranjana Deshpande and Naveen Sharma. It proposes the
adaptation of composition techniques of services in service oriented architectures. The
adaptation is performed for each user request. This solution leads to significant resource
savings at runtime.

The third paper entitled “A Statistical Approach for Context-Awareness of Mobile
Applications” is authored by Mai Abusair, Mohammad Sharaf, Antinisca Di Marco,
and Paola Inverardi. It focuses on determining contextual situations that require

adaptation in mobile contexts. The approach monitors the context, models the states of
its variables, and determines whether a state requires or not an adaptation based on
transition probabilities among states and the system quality.

The fourth paper entitled “A Reference Architecture for Personalized and Self-
adaptive e-Health Apps” is authored by Eoin Martino Grua, Martina De Sanctis, and
Patricia Lago. It proposes a reference architecture that enables artificial intelligence-
based personalization and self-adaptation for mobile apps for e-Health. The architecture
is based on multiple MAPE (Monitor, Analyze, Plan, Execute) loops operating at
different levels of granularity and for different purposes.

The workshop program is enriched by the invited talk entitled “Handling
Conflicting Requirements: a Primer” given by Prof. Paolo Ceravolo from Universitá
degli Studi di Milano, Italy.

We would like to thank all the authors of the submitted contributions for their
valuable proposals and the Program Committee members for their timely and accurate
reviews. We would like to thank the ECSA 2020 workshops co-chairs, Anne Koziolek
and Mauro Caporuscio, for their constant collaboration. Last but not least, we would
like to thank the ECSA 2020 general chair, Henry Muccini, for his great work espe-
cially in this special 2020 edition.

International Workshop on Context-aware, Autonomous and Smart Architecture (CASA) 153

Organization

Workshop Chairs

Claudia Raibulet Universitá degli Studi di Milano-Bicocca, Italy
Khalil Drira LAAS-CNRS, CNRS, Université de Toulouse,

France
Mariagrazia Fugini Politecnico di Milano, DEIB, Italy
Patrizio Pelliccione Chalmers — University of Gothenburg,

Sweden, and University of L’Aquila, Italy
Genaína N. Rodrigues University of Brasilia, Brazil

Workshop Program Committee

Rodrigo Bonacin Centro de Tecnologia da Informação Renato
Archer, Brazil

Ovidiu Constantin Oracle, Italy
Rafael Capilla Rey Juan Carlos University, Spain
Liliana Dobrica Politehnica University, Romania
Khalil Drira LAAS-CNRS, CNRS, Université de Toulouse,

France
Cédric Eichler INSA Bourge, France
Paolo Falcarin University of East London, UK
Mariagrazia Fugini Politecnico di Milano, DEIB, Italy
Patrizio Pelliccione Chalmers — University of Gothenburg,

Sweden, and University of L’Aquila, Italy
Claudia Raibulet Universitá degli Studi di Milano-Bicocca, Italy
Genaína N. Rodrigues University of Brasilia, Brazil
Fatiha Saïs Université Paris-Sud, France
Ramon Salvador Valles Universitat Politècnica de Catalunya, Spain
Thierry Villemur LAAS-CNRS, Université de Toulouse, France

State of the Practice Survey: Predicting
the Influence of AI Adoption on System
Software Architecture in Traditional

Embedded Systems

Jasmin Jahić1(B) and Robin Roitsch2

1 University of Cambridge, Cambridge, UK
jj542@cam.ac.uk

2 NVIDIA GmbH, Würselen, Germany
rroitsch@nvidia.com

Abstract. Artificial intelligence (AI) is a very disruptive technology.
When adopted by a software system, AI influences and significantly
changes its architecture due to its complexity, as well as due to a need
to adjust the existing system to use AI (e.g., adopt accelerators). This is
particularly critical in traditional embedded systems as they focus on a
tight coupling of software and hardware. In this paper, we present results
of a survey on how well companies in embedded software domain under-
stand AI, how they perceive its possible benefits, and how they discuss
the adoption of AI and its influence on their software system architec-
ture. The goal of this survey is to evaluate architectural techniques that
companies currently use when trying to assess the influence of adopting
AI and to discuss the adequacy of these techniques for this task.

Keywords: Artificial intelligence · Software architecture · System
architecture · Embedded systems · Adequacy check

1 Introduction

Software systems today enjoy many benefits enabled by AI. Although these ben-
efits are real and significant, in practice there is still a veil of mystery of what AI
is capable of. Companies are still struggling to understand what kind of changes
they need to introduce to their system architecture in order to adopt AI, and
how these changes will affect system’s non-functional properties. The reason for
this is that AI is a very disruptive technology. It is not yet another framework
to adopt in order to solve a particular problem. Instead, it introduces changes
to software components, software design and development, data management
(needed for training of AI models), and software system deployment. Further-
more, AI is still a new technology, with challenges related to testing, safety, and
security. Therefore, adopting AI is a significant and risky architectural decision.

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 155–169, 2020.
https://doi.org/10.1007/978-3-030-59155-7_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_12&domain=pdf
http://orcid.org/0000-0002-8948-2960
http://orcid.org/0000-0002-1274-4336
https://doi.org/10.1007/978-3-030-59155-7_12

156 J. Jahić and R. Roitsch

In this paper, we present a survey performed among 51 embedded software
system companies, which investigates what kind of analysis techniques industry
uses for predicting the influence of adopting AI on their software system archi-
tecture. We also investigate what are the existing challenges in this regard, why
the existing techniques are not well-suited for this purpose, and what would
help architects in practice to overcome the existing challenges. The results of
the survey indicate that AI is a complex technology, which imposes significant
amount of changes on the existing components of system architecture and influ-
ences its most important quality aspects such is safety. The reasons why existing
techniques for assessing the influence of architectural decisions fail are: i) lack of
knowledge for applying AI in software systems, and ii) their inability to capture
this lack of knowledge and indicate it to architects before making a decision.

This paper is organised in a following structure. Section 2 introduces related
terms, definitions, and analysis approaches. Section 3 presents the questions driv-
ing this survey, and Sect. 4 presents results of the survey arranged according to
these questions. Section 5 concludes this paper and presents potential for new
analyses within the scope of this survey.

2 Related Work

2.1 AI, Neural Networks, and Machine Learning

One of definitions of artificial intelligence (AI) says that it is an intelligence of
devices and machines that enables them to perceive their environment and take
corresponding actions to fulfil their goals [10]. The computational backbone of AI
are artificial neural networks [8]. Machine learning term refers to algorithms that
build a mathematical model based on training data, enabling them to predict
behaviour or make decisions without being explicitly programmed to do so [9].

There exist surveys that explore real benefits and myths around AI [1,2,5],
as well as those that explore application benefits of AI in certain domains (e.g.,
in medicine [12]). To the best of our knowledge, none of the existing approaches
investigates how suitable are the existing architecture techniques for investigat-
ing adequacy of AI and its influence on software system architecture.

2.2 Solution Adequacy Check and SWOT Analysis

Solution adequacy check (SAC) aims to build confidence in developed system
architecture [7]. The SAC analyses how adequate is a system architecture design
to meet its architecture drivers. SAC is based and derived from the Architecture
Trade-off Analysis Method (ATAM) [6], which supports collecting and prioritiz-
ing architecture drivers and assists in evaluating an architecture against these.
The Rapid Architecture Evaluation (RATE) method [7] is a SAC-based col-
lection of evaluation methods supporting the development from early stages of
requirements management up to code quality checks. The most important part of
this architecture evaluation is the interpretation of the learned results about sys-
tem design. By categorizing these to their corresponding natures, RATE enables

Influence of Adopting AI on Software Architecture 157

evaluation of the outcome (i.e., influence and effect) of an architectural decision
and rates the quality of system architecture that adopts such decision.

In contrast to RATE and especially to SAC, the Strength, Weakness, Oppor-
tunities, and Threats (SWOT) analysis [4,11] has its origin in strategic manage-
ment and is a tool used for planning company strategies. It provides a compre-
hensive assessment of strengths and weaknesses as well as the opportunities and
risks of a company. This technique aims to identify, on one hand, the internal
company situation, on the other hand to evaluate possible chances and threats
from external environment.

3 Survey Setup

3.1 Setup, Motivation, and Rationale

We have conducted this survey among 51 embedded software system companies
from Austria, Germany, and Switzerland. The main motivation behind it is to
understand how to predict the influence of a decision of adopting AI on properties
of software systems. The influence can be reflected in terms of added value (e.g.,
improve quality properties, new functionality, new business cases, new applica-
tions), but it also can have negative effect. Often, there are sets of pre-requisite
requirements that a system must fulfil. The new technology must not disturb
these (e.g., non-functional requirements related to legacy, specific standards in
industrial domain, and application type). Besides that, there could be commer-
cial and organisational limitations and constraints stopping the adoption of a
new technology (e.g., cost, a need to train the team, time for understanding
necessary software and hardware changes). If these are misunderstood before
making a decision, they can result in an architectural design with properties
that do not satisfy system’s requirements.

In order to understand if existing decision-making techniques for predicting
influence of adopting a new technology are able to successfully guide architects
through this process, we have surveyed how architects currently perform require-
ments engineering, how do they evaluate influence of adopting new technologies
(e.g., decision making techniques such as adequacy check and SWOT analysis),
and how they learn about new technologies.

Finally, we have offered to the survey participants several pre-defined choices
of techniques that could enhance decision-making process to improve predicting
the influence of AI adoption, and also asked them to specify their opinion. We
were mainly focused on how to facilitate the process of predicting the influence
of AI adoption (e.g., new types of analysis, training). Besides that, we wanted to
know what architects need to understand about concrete properties, components,
and processes of AI in order to predict how do they influence important design
decisions of the system (e.g., data collection, deployment).

The survey questions are grouped into three categories. First (Sect. 3.2), we
want to understand in which stage of adopting AI companies are, the internal
level of knowledge that surveyed companies have about AI, what kind of bene-
fits do architects expect from AI, and which of the good software architecture

158 J. Jahić and R. Roitsch

and engineering practices do architects use for decision-making and predicting
the influence of the design decisions. The second category (Sect. 3.3) contains
questions about particular requirements and limitations (e.g., safety) that are
preventing companies from adopting AI, and what could help architects with
the predicting the influence of a decision to adopt AI in their system. The third
category contains questions related to profile of the companies that participated
in the survey (see the summary in Sect. 3.4).

3.2 AI Knowledge, Expected Benefits, and Engineering Practices

Surveyed companies are at a different stage of adopting AI. In order to under-
stand their AI-related expertise, we formulated the following questions:

1. Stage of AI adoption (possible answers: none, in evaluation, in development,
existing and available, not clear)?

2. Internal knowledge about AI (possible answers: not existing, basic, interme-
diate, expert, free text)?

3. Presence of internal AI experts (possible answers: yes, no)?

Expected Benefits from Adopting AI:

1. Expected influence (e.g., added value) of adopting added-value from AI (pos-
sible answers: performance, new business cases, new customer base, improve
competitiveness, new applications currently not possible with traditional pro-
gramming approaches, free text)?

2. How could AI augment your product functionality (free text)?

Some development methodologies (e.g., V model [3]) could already help to
reason about the effects that AI has on a system (e.g., through a proper require-
ments engineering process). In order to make architecturally significant decisions,
there exist well-established analysis techniques that predict the influence of deci-
sions on the system in terms of added value and negative side effects:

1. Requirements engineering approach (possible answers: internal brainstorm-
ing, internal workshops, discussion with domain experts, requirements exist,
free text)?

2. How do you currently decide which is the most suitable hardware and software
architecture for your product (free text)?

3. How do you evaluate new technologies with respect to their influence such is
added value (possible answers: SWOT analysis, adequacy check, free text)?

4. How do you learn about emerging technologies (possible answers: suppliers,
portals, blogs, fairs, conferences, magazines, free text).

Influence of Adopting AI on Software Architecture 159

3.3 Requirements, Limitations, and Decision-Making Process

Some of the most important architectural drivers in embedded software sys-
tems are cost, footprint, safety, and security. It is necessary not to disturb these
requirements when adopting new technologies. In order to summarize what kind
of requirements need to be met and what kind of limitations exist in companies,
relevant to adopting AI, we have formulated the following questions:

1. Non-functional quality requirements (possible answers: safety, security, per-
formance, standards, free text)?

2. Technical/commercial/organizational constraints (cost, team training, time
for understanding software and hardware platforms, free text)?

In order to understand what could facilitate the decision-making process, we
have created following questions:

1. What could facilitate the decision-making process for AI adoption (possible
answers: information about AI in embedded systems, hands-on training, a
tailored architecture adequacy check, dedicated consultation, free text)?

2. What would you need to understand about AI before adopting it to your sys-
tem (possible answers: basic functionality of AI, how to design, development
and usage of neural networks, data management for neural networks, deploy-
ment of neural networks, suitable target platforms, how to evaluate potential
benefits of AI, free text)?

3.4 Company Profiles

The survey statistics show that we have covered a wide range of company sizes:
1 to 49 employees (15.69%), 50–999 (41.18%), 1000–4999 (23.53%), over 5000
(17.65%), while 1.96% of participants were not sure about their company size.

We are pleased to note that statistic shows that in our survey took
part companies from 12 industrial domains (agriculture, automotive, avionics,
autonomous machines, computer vision, defence, industrial applications, medi-
cal, smart home/city, public sector, energy, IT and Internet of Things (IoT)),
covering 14 application fields (research and development, autonomous flying,
automotive applications (driving, management), biometric application, image
processing and vision, IoT platforms and connectivity, audio equipment, jour-
nalism, predictive maintenance, drilling services, energy management systems,
lightning systems, industry 4.0 and robotics, medical devices).

4 Survey Results

4.1 Internal Knowledge of AI

The results of the survey show that AI is a technology that draws huge attention
in industry (Fig. 1). Only less than 4% of the survey participants (2 companies)

160 J. Jahić and R. Roitsch

were not at all involved at any stage of AI adoption. The results also show that
most of the companies are still in early stages of discussing AI and developing
solutions based on it (more than 70% of companies are in these two stages,
Fig. 1-a). AI is adopted in software systems by 13.73% of the surveyed companies.
Very few companies (13.73% of them) consider that they have expert knowledge
of AI in their teams (Fig. 1-b). This is an interesting result considering that more
than 64% of the companies have dedicated AI experts (Fig. 1-c), and indicates a
potential gap between skills that AI experts have and the skills that are needed
for applying AI in software industry.

Fig. 1. a) Stage of AI adoption. b) Internal competences and knowledge about AI. c)
Presence of dedicated AI experts.

4.2 Expected Benefits from Adopting AI

Fig. 2. a) Expected added-value from AI. b) Expected ways in which AI can augment
product functionality.

When it comes to the discussion of influence that adopting AI potentially has,
most architects are excited about possible benefits. On a higher abstraction
level, when discussing general terms in which AI can bring added value (Fig. 2-
a), architects mostly see the benefit of AI in enabling new business cases and
enabling new applications which are currently not possible with the traditional
programming approaches. It is also interesting to note that more than 50% of
companies also selected competitiveness as the potential added value.

Influence of Adopting AI on Software Architecture 161

However, when asked about concrete ways in which AI can augment function-
ality of their system, architects struggled to describe concrete expected benefits.
It is important to state that more than 30% of the answers communicated that
architects do not see, at the moment, any possibility for AI augmenting func-
tionality in their products, and that they simply do not need AI for that (Fig. 2-
b). Furthermore, 13.73% of all answers were too generic (e.g., new functionali-
ties). Other answers we have generalized into two categories. Around 33% of all
companies have listed concrete functionalities which they expect AI to enable.
These include predictive maintenance, pattern recognition and image process-
ing, decision making, personalized systems, user assistance, and more human-
alike functionality. Besides new functionalities, 21.57% of all answers were related
to expected improvements in quality of functionality. Expected quality improve-
ments include flexibility, adaptability, overall quality, performance, reduced soft-
ware and product maintenance costs, efficiency, and improvements of algorithms
in terms of increased accuracy while at the same time reducing implementation
effort. From these answers we conclude that AI is still a very much misunderstood
technology. It has been marketed well and from the marketing perspective practi-
tioners have high expectations (e.g., competitiveness, new business cases). How-
ever, when it comes to listing concrete ways in which AI could potentially improve
their system, we see that around 45% of the survey participants could not give a
concrete answer (either none or too general). Although, theoretically, they see a
huge potential of AI, they often do not see what kind of new functionalities this
technology can enable, nor how can it increase quality of their products.

4.3 Existing Software Engineering and Architecture Practices

Requirements and architecture drivers are among the first produced artifacts
needed for software architecture and describe its problem domain. The results of

Fig. 3. a) Requirements engineering approach. b) Decisions-making techniques regard-
ing suitable hardware and software technologies. c) Evaluation of influence on architec-
ture when adopting new technologies (e.g, added-value). d) The most common mediums
for learning about new technologies.

162 J. Jahić and R. Roitsch

the survey show that companies have well established requirements engineering
processes, and have established engineering practices for making decisions about
software and hardware technologies that will help them to meet their require-
ments (Fig. 3). The results (Fig. 3-a) show that most of the companies use their
internal capacities for listing the requirements (64.71% rely of internal brain-
storming sessions, and 45.1% on internal workshop). A surprising result, in a
positive sense, was that 62.75% of surveyed architects say that they also consult
domain experts when formulating requirements for their products. Some of the
surveyed companies also receive requirements from their customers (27.45%).
When making decisions about appropriate hardware and software technologies
(Fig. 3-b), around 30% of surveyed architects claim that they conduct some
sort of analysis (e.g., SWOT, run benchmarks, state of the art review). Besides
that, 21.43% answers claimed that the decision-making process is driven by soft-
ware/hardware specifications and their attributes (performance, price, possibil-
ity to integrate, and availability). Also, 21.43% answers claimed that for making
decisions they rely on established practices (legacy, experience, and established
cooperation with suppliers).

Hence, we conclude that requirements engineering is a well-established disci-
pline in the surveyed companies. Furthermore, architects often consult domain
experts, which is particularly important for adopting new technologies such as
AI. When making decisions about technologies, architects tend to perform cer-
tain analysis and make decisions according to general drivers present in this area
(e.g., price, performance, legacy, and trustworthiness and reliability of suppliers).

The results of the survey regarding how the survey participants predict con-
sequences of architectural decisions and their influence on software architecture
in terms of added value and affected architectural properties (e.g. negative side
effects) also indicate that there exist well-established techniques and processes
in industry (Fig. 3). When reasoning about influence (e.g., compromising qual-
ity properties, potential incompatibility, effort) of an architectural decision of
adopting new technology such is AI, 60.78% of architects claim to use SWOT
analysis, and 47.06% claim to use adequacy check (Fig. 3-c). Some architects
claim to use both. For more information about adequacy check and SWOT anal-
ysis see Sect. 2.2. Only 7.84% participants said that they do not use any analysis
technique for evaluating influences of design decisions such is the adoption of a
new technology. The second result (Fig. 3-d) indicates a potential gap between
state of the art and state of the practice. Only 3.92% participants claim to learn
about new technologies from research papers. There is a significant number of
those that learn about new technologies from conferences (66.67%). However, it
is important to note that the survey participants predominantly said that these
were industrial congresses and rarely scientific conferences. Internet websites and
technology portals, used by 82.35% of participants, remain the main source of
knowledge regarding new technologies.

Influence of Adopting AI on Software Architecture 163

4.4 Quality, Technical, Commercial, and Organizational
Requirements and Limitations

The survey’s results show that the most important quality requirement of inter-
est, when considering AI, is performance of the system (74.51% of participants
stated so, Fig. 4-a). Besides performance, the results show that safety is the sec-
ond most important quality requirement that companies must consider when
adopting new technologies, such is AI (68.63% of all participants stated so).
Survey participants also stated that, in context of safety, it is important to
certify a system according to safety standards (e.g., ISO 26262). Besides these
two, 56.86% of participants stated that security is an important quality require-
ment they need to consider. Some of the companies also need to consider lim-
itations regarding sharing of personal data and functional safety. Besides these
non-functional requirements, the survey participants expressed their concerns
regarding time and effort needed for understanding AI-related software platforms
(49.02%), understanding AI-related hardware platforms (47.06%), and time that
is required to train their team in order to be able to use and integrate these plat-
forms into their projects (45.1%). In that context, 39.22% of companies stated
that they are concerned about potential costs that the adoption of AI technology
will cause (Fig. 4-b). In summary, around two thirds of surveyed companies are
worried how adoption of AI will affect their performance. Besides that, compa-
nies are worried if they will be able to certify their products due to the lack of
AI-related standards, especially those related to safety. The results of the survey
show that almost every second company is worried about the investment costs
related to adopting AI.

Fig. 4. When adopting AI, there are: a) Non-functional quality requirements that
companies need to fulfill; b) Technical, commercial, and organisational constraints.

4.5 Enhancing Decision-Making Process for AI Adoption

In Sect. 4.3, we saw that 47.06% of the survey participants claim to use adequacy
check when discussing influence of adopting new technologies (Fig. 3-c). However,
when asked about what could enhance the decision-making process in order
to facilitate the prediction of influence that the adoption of AI will have on

164 J. Jahić and R. Roitsch

a system (Fig. 5-a), majority of the participants (60.78% of them) selected a
tailored adequacy check. Obviously, the existing adequacy check is not suitable for
predicting the influence of adopting AI. Furthermore, the participants stated that
they would need more information about how to apply and use AI in embedded
systems (45.1%) and that hands-on training on AI technology would help them
to assess the influence of AI adoption on their system (47.06%).

Fig. 5. a) Knowledge and techniques that could (further) facilitate adoption of AI. b)
Concrete points that companies need to understand about AI to (further) adopt it.

In order to better understand what kind of concrete information companies
would need in order to facilitate the decision making process and adopt AI
(or adopt it further, as some surveyed companies have existing and available
AI-based solutions), we have asked more concrete questions (Fig. 5-b). It seems
that companies are indeed having a lack of knowledge about concrete application
steps of AI in software engineering. For each of the concrete possibilities that
we offered (e.g., need to understand basic functionality of AI, need to under-
stand data management), we had a significant turn out of selections. The least
selected choice was that about basic functionality of AI (39.22%). Besides that,
architects claim that they need further assistance in understanding and pre-
dicting influence of design, development and use of neural networks (58.82%),
data management for neural networks (52.94%), deployment of neural networks,
suitability of target platforms (47.06%), and in general how to evaluate poten-
tial benefits of AI (54.9%). The results in Fig. 5-b establish the claim that the
existing analysis techniques for guiding decision-making process and predicting
the influence of decisions on software architecture (SWOT, adequacy check) are
not suitable for exposing influence that AI will have on architecture of soft-
ware system, because they simply do not capture these technology-specific, yet
architecturally disruptive, aspects.

4.6 Survey Results According to the Existing Software Architecture
Practices

In Sect. 4.3, we discussed existing software engineering and architecture practices
that support engineers and architects when making decisions about adopting new

Influence of Adopting AI on Software Architecture 165

technologies. The results (Fig. 3-c) show that 60.78% of the survey participants
use SWOT analysis, and 47.06% of them claim to use adequacy check when
making architectural decisions. While most of them use one or both of these,
only 7.84% of the participants do not use any particular analysis.

Fig. 6. Use of the existing analysis approaches among participants that consider that
they also need: a) A tailored adequacy check for to facilitate adoption of AI. b) To addi-
tionally evaluate potential benefits of AI before adopting it. c) To additionally under-
stand data management for neural networks. d) To additionally understand deployment
of neural networks.

However, although they use these well-established architectural techniques,
the survey participants stated that they need enhanced decision making pro-
cesses i) to facilitate the adoption of AI, ii) to additionally evaluate potential
benefits of AI, iii) to additionally understand data management needed for neural
networks, and iv) to additionally understand deployment of neural networks.

When asked about knowledge and techniques that would facilitate the adop-
tion of AI (see Sect. 4.5), 60.78% of the surveyed participants expressed a need for
a tailored architecture adequacy check (Fig. 5-a), 45.1% stated that they would
need more information about how to apply and use AI in embedded systems, and
47.06% of the survey participants said that hands-on training on AI technology
would help them to assess the influence of AI adoption on their system. We focus
on tailored architecture adequacy check (i.e., on those 60.78% surveyed partici-
pants), as it is the most desired technique and one that fits the best to the scope
of architecture activities. Analysis of the survey results (Fig. 6-a) shows that only
6.45% of the participants, which consider that a tailored adequacy check would
help them, do not use any analysis for discussing influence of adopting a new
technology. Otherwise, all others that stated that they would need a tailored
adequacy check is already using some sort of the analysis. From them, 61.29%
are already using SWOT analysis, 51.61% are using adequacy check, and 19.35%
are using both of these analyses. However, they still claim the need for a tailored
adequacy check.

Existing analysis techniques should be able to guide architects through the
process of making new decisions. However, 54.9% of survey participants claim
that they need to additionally evaluate potential benefits of AI. From these
participants, only 7.14% of them do not use any analysis technique for evaluating
added value when it comes to making new decisions (Fig. 6-b). They either use

166 J. Jahić and R. Roitsch

adequacy check (57.14%), SWOT analysis (53.57%), or both analyses (17.86%).
Therefore, we conclude that the existing analysis techniques are not suitable for
evaluating additional benefits that AI introduces.

When it comes to data management, required for neural networks, 52.94%
of the survey participants claim that they need to analyse this aspect further
(Fig. 5-b). From these participants, only 11.11% of them do not use any analysis
technique for evaluating added value when it comes to making new decisions
(Fig. 6-c). They either use SWOT analysis (59.26%), adequacy check (51.85%),
or both analyses (22.22%).

Finally, 49.02% of the survey participants claim that they need to further con-
sider the effect of deployment of neural networks on their architecture (Fig. 5-b).
Only 4% of them do not use any analysis technique for evaluating decisions of
adopting new technology (Fig. 6-d). They either use SWOT analysis (68%), ade-
quacy check (52%), or both analyses (24%). Those companies where AI experts
are absent perceive their knowledge of AI as either non existing (27.78%) or
basic (72.22%).

4.7 Survey Results According to Internal Knowledge that
Companies Have Regarding AI

Fig. 7. Internal competences and knowledge about AI (do not know, not existing, basic,
intermediate, expert) compared with: a) Stage of AI adoption, and b) presence of AI
experts.

We have compared the perception that participants have about their internal
level of competences and knowledge about AI against phase of adoption of AI
(Fig. 7-a), and against presence of AI experts in their enterprises (Fig. 7-b). The
results are as one would expect. Around 21% of participants that are in develop-
ment stage of AI adoption perceive that they have expert knowledge of AI and
57.14% of them perceive that they have intermediate knowledge of AI. Around
57% of participants that work in organisations where AI is already available in
systems perceive that they have expert knowledge of AI.

Influence of Adopting AI on Software Architecture 167

Fig. 8. Comparison between stage of AI adoption (none, in evaluation, in development,
existing and available, not clear) against: a) Knowledge and techniques that could
facilitate adoption of AI, and b) concrete points that companies need to understand
about AI for (further) adopting it.

Finally, we have identified what kind of needs exist at different stages of
AI adoption (Fig. 8). It is interesting to notice that 57.14% of surveyed partic-
ipants, which claim to have AI available in their existing systems, stated that
tailored adequacy check could help them to further facilitate adoption of AI
(Fig. 8-a). Another interesting result is that as companies progress further with
AI adoption, there is a greater need to evaluate potential benefits of this tech-
nology (Fig. 8-b): 54.55% of surveyed participants that are in evaluation phase
of AI adoption said that they need to further understand AI benefits, against
64.29% of those that are in development phase, and 71.43% that are in phase
where AI already exists in their systems. These companies might have adopted
AI without considering its benefits, or they are struggling to justify benefits of
AI adoption, or they are simply trying to find new use cases.

4.8 State of the Practice Summary

Companies that have AI experts perceive their knowledge about AI either mostly
as basic (24.24%) and intermediate (51.52%), and expert by only 21.21% of these
companies. This indicates a potential gap between skills that AI experts have
with the skills that are needed for applying AI in software industry. The results
of the survey show that companies have well-established requirements engineer-
ing processes, where they often consult domain experts (62.75% of them). Fur-
thermore, they use well-established analysis techniques (SWOT and adequacy
check) before adopting new technologies (only 7.84% participants do not use
these). There were no other inputs from architects besides these two analyses.

168 J. Jahić and R. Roitsch

Practitioners do not use state of the art research for learning about new tech-
nologies (only 3.92% of the participants claim to learn about new technologies
from research papers), but rather portals, blogs, and industrial congresses.

In order to enhance the decision-making process in order to facilitate the
prediction of influence that the adoption of AI will have on a system, 60.78% of
the participants selected a tailored adequacy check. Obviously, the existing anal-
ysis techniques (SWOT, adequacy check) are not suitable for exposing influence
that AI will have on architecture of software system, because they simply do not
capture its technology-specific, yet architecturally disruptive, aspects.

5 Conclusion and Future Work

We have investigated how architects in traditional embedded software compa-
nies predict influence of adopting AI on their software system architecture. The
results indicate two important challenges. Although companies these days have
dedicated AI experts, there is obviously a gap in skills that these experts have
with the needs for applying AI in software engineering. The second conclusion is
that, although companies often use analysis techniques that should enable pre-
diction of the influence of adopting AI in their systems, there is a need for more
tailored analysis techniques that would expose concrete effects that AI adoption
has on a system (e.g., drawbacks and benefits of AI adoption), and expose con-
crete categories in which a company has the lack of knowledge with respect to
relevant AI properties, components, and processes. Such exposure would enable
engineers and stakeholders in making more adequate decisions about AI adop-
tion. The existing techniques are unable to capture this lack of knowledge and
indicate it to architects in a form that would enable them to discard some AI-
related decisions as inadequate.

In future, it would be very interesting to analyse dependencies between the
stage in which company is when it comes to the adoption of AI with i) the
expected added-value and ii) the decision-making process.

References

1. Bacon, L.: Benefits and challenges in the use of big data and AI. In: 2018 19th
IEEE/ACIS International Conference on Software Engineering, Artificial Intelli-
gence, Networking and Parallel/Distributed Computing (SNPD), p. 1 (2018)

2. Dasoriya, R., Rajpopat, J., Jamar, R., Maurya, M.: The uncertain future of artifi-
cial intelligence. In: 2018 8th International Conference on Cloud Computing, Data
Science Engineering (Confluence), pp. 458–461 (2018)

3. Forsberg, K., Mooz, H.: The relationship of system engineering to the project cycle.
In: INCOSE International Symposium, vol. 1, no. 1, pp. 57–65 (1991)

4. Ghaffari, K., Soltani Delgosha, M., Abdolvand, N.: Towards cloud computing: a
SWOT analysis on its adoption in SMEs. Int. J. Inf. Technol. Converg. Serv. 4
(2014)

5. Kawakami, H., Hiraoka, T.: Contemplating AI technologies from the viewpoint of
benefit of inconvenience. In: 2013 Conference on Technologies and Applications of
Artificial Intelligence, pp. 335–336 (2013)

Influence of Adopting AI on Software Architecture 169

6. Kazman, R., Klein, M., Barbacci, M., Longstaff, T., Lipson, H., Carriere, J.: The
architecture tradeoff analysis method. In: IEEE International Conference on Engi-
neering of Complex Computer Systems (Cat. No. 98EX193), pp. 68–78 (1998)

7. Knodel, J., Naab, M.: Pragmatic Evaluation of Software Architectures. Springer,
Switzerland (2016). https://doi.org/10.1007/978-3-319-34177-4

8. Kolata, G.: How can computers get common sense? Science 217(4566), 1237–1238
(1982). https://science.sciencemag.org/content/217/4566/1237

9. Koza, J.R., Bennett, F.H., Andre, D., Keane, M.A.: Automated design of both
the topology and sizing of analog electrical circuits using genetic programming. In:
Gero, J.S., Sudweeks, F. (eds.) Artificial Intelligence in Design ’96, pp. 151–170.
Springer, Dordrecht (1996). https://doi.org/10.1007/978-94-009-0279-4 9

10. Poole, D., Mackworth, A., Goebel, R.: Computational Intelligence: A Logical App-
roach (1998)

11. Schawel, C., Billing, F.: Die Top 100 Management Tools, pp. 23–225. Gabler Verlag,
Wiesbaden (2004)

12. Yeasmin, S.: Benefits of artificial intelligence in medicine. In: International Con-
ference on Computer Applications Information Security (ICCAIS), pp. 1–6 (2019)

https://doi.org/10.1007/978-3-319-34177-4
https://science.sciencemag.org/content/217/4566/1237
https://doi.org/10.1007/978-94-009-0279-4_9

Composition Algorithm Adaptation in
Service Oriented Systems

Niranjana Deshpande and Naveen Sharma(B)

Rochester Institute of Technology, Rochester, NY, USA
{nd7896,nxsvse}@rit.edu

Abstract. Architecting and constructing software systems using Service
Oriented Architecture (SOA) is a widely employed paradigm. Applica-
tion functionality is commonly delivered by composing Internet commu-
nicable software components or services. Using SOA, applications are
constructed by a well-defined composition process that implements com-
position logic to meet an application’s functional and non-functional
requirements. Various composition techniques have been proposed in the
literature, with varying performance guarantees and resource usage. Ser-
vice composition also has to adapt to unanticipated conditions posed by a
highly dynamic environment due to changing services, evolving architec-
tures, and user requirements. Current adaptive methodologies determine
a composition technique at design time and adapt selection and binding
of service at runtime. In this paper, we propose adaptation of composition
techniques for each user request. Our data driven approach selects the
best composition technique for a given application dependency graph.
It learns adaptation rules from execution data and trades-off resource
usage and solution quality of composition techniques.

Keywords: Service composition · Dynamic algorithm selection ·
Classifier-based selection

1 Introduction

Service Oriented Architecture (SOA) has become a widely used architectural
paradigm in software engineering. Its popularity derives, in part, from its prom-
ise to deliver software applications as composable systems by designing and
implementing modular software as communicating services. At the heart of actu-
alizing these composable systems lies the service composition process.

Service composition is a complex task due to the following factors. First,
service composition is Quality of Service (QoS) driven. This means a service
composition technique must efficiently search and carefully select service can-
didates that not only meet the application’s functional requirements but also
non-functional QoS objectives satisfying user constraints. Second, the number
of third-party services available that implement the same functionality has also
dramatically increased [8]. Searching and selecting service candidates from a
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 170–179, 2020.
https://doi.org/10.1007/978-3-030-59155-7_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_13&domain=pdf
http://orcid.org/0000-0002-6953-2692
http://orcid.org/0000-0003-3071-017X
https://doi.org/10.1007/978-3-030-59155-7_13

Composition Algorithm Adaptation in Service Oriented Systems 171

large number of services can quickly become time and memory-intensive. Fur-
thermore, during an application’s lifecycle, services evolve leading to changes in
QoS that result in unexpected overall application behavior that is difficult to
trace and correct manually [21]. Third, application functionality may also evolve
at runtime, changing overall functional requirements. Thus, changing user needs
and services make service composition a dynamic task. Software composition
must adapt quickly and efficiently to meet user expectations.

Due to the dynamic nature of composition, it is not possible to anticipate
how individual services may change and what effect their evolution has on over-
all global performance [18]. Thus, adaptation is necessary. Current adaptive
methodologies [9,10,15] address QoS driven service composition by determin-
ing a composition technique to be used statically at design time and adapting
local service selection and binding at runtime. Additionally, adaptation occurs
at an individual service level using a set of predetermined rules and decision
points. Current approaches do not consider adapting composition algorithms at
runtime to save resources.

Given a wide variety of available service composition methods [16], we focus
on this question: how can we determine the right method for a given service
composition task? We postulate that the right method is the one that meets
application QoS while managing compute resources needed for execution. Our
goal is to improve composition using a data-driven classifier trained on past exe-
cution data that proactively selects the most appropriate composition algorithm
for the current user request, learns adaptation rules from execution data to meet
user QoS requirements and saves time and memory resource usage used for com-
position. We present preliminary results for our adaptive selection approach and
report time and memory savings while meeting QoS requirements.

2 Related Work

Current adaptive service composition literature discusses different approaches to
achieve QoS based SOA adaptation - some present new composition algorithms
while others outline systems approaches for adaptation. Various adaptive com-
position algorithms are discussed in [13,16,22–24]. Each composition algorithm
has different performance guarantees and uses different computational resources,
so our approach outlines how to adaptively pick between several available com-
position algorithms for each user request.

Several QoS driven approaches have been proposed for self-adaptation of SOA
systems [1,3–7,11,14,19,22]. While many self-adaptive QoS driven approaches
for SOA systems [3,5–7,19] use service selection to adapt to changes in the envi-
ronment, [4,22] propose techniques for architectural adaptation by dynamically
adapting coordination patterns. Some current approaches for QoS driven com-
position such as [10,11,21] present platforms which use both service selection
and dynamic coordination pattern selection as adaptation mechanisms.

MOSES [10] addresses adaptation at the individual and composite services
by triggering adaptation reactively. The composition technique is a Linear Pro-

172 N. Deshpande and N. Sharma

gramming (LP) optimization algorithm chosen at design time. While LP algo-
rithms provide optimal results, they can easily become resource intensive for
larger compositions; different algorithms can be used for different user requests.
Another approach, QoSMOS [9], maps composite services to abstract services
and allocates resources to services for execution depending on desired solution
quality. It does not consider resources consumed by the choice of composition
algorithm - which is an important consideration. Our approach focuses on selec-
tion of the appropriate composition algorithm and proactively adapts the same
to meet QoS and compute resource requirements.

The methods discussed above address adaptation at the service or workflow
level but do not change the core composition mechanism. With such varied ser-
vice composition approaches proposed, we focus on selecting the right technique
at runtime for optimal composition. Composition technique selection depending
on the complexity of composition and compute resources available has shown to
provide solutions that meet user QoS requirements and have resource savings
in [20]. In [20], the authors propose dynamic selection of composition algorithms
to minimize processing time for submitted user requests. They do not propose
adaptation, rather their focus is on recommending algorithms for a set of man-
ually submitted batched user requests once invoked. Their approach minimizes
processing time of batched user requests which is not indicative of real-time pro-
cessing, making it less precise compared to adaptation on a per-request basis.
Also, due to the highly dynamic service nature of composition environment, a
scalable, runtime system is required to service user requests [8]. Our approach
explicitly factors in memory and time requirements of individual algorithms
along with user QoS constraints for individual requests.

Approaches for testing self-adaptive capabilities of SOA systems are pre-
sented in [14,17]. While [14] outlines an approach to testing how fault tolerant
an adaptive SOA system is by injecting faults, in [17], details are provided about
building in self-testing into applications allowing for validation at runtime. While
recognizing the importance of runtime validation, in this paper, we do not focus
on validation. We propose a new adaptation mechanism by choosing an appro-
priate composition algorithm for a user request keeping in mind environmental
conditions. By proactively selecting the composition algorithm for each user
request, we explicitly allow for trade offs between computational overhead and
solution quality based on changing dependency graph characteristics, services
and user constraints.

3 Solution Overview

Our main goal is to provide the best suited composition technique for each user
request. The best suited composition technique is one that meets user QoS spec-
ifications within the time and memory resource alloted to it. Figure 1 shows a
high level system overview. A user sends a request characterized by the minimum
QoS requirements for the composed application to meet. A dependency graph
depicting application functionality as a sequence of abstract tasks is assigned

Composition Algorithm Adaptation in Service Oriented Systems 173

by the system based on the nature of each request. The system also allocates
time and memory resources for the composition algorithm to use. These are
gathered and sent to the composition algorithm selector which chooses from a
portfolio of available algorithms. The selector proactively adapts which compo-
sition algorithm is to be used for each user request, by modeling performance of
each algorithm and predicting the best possible algorithm given current context.
Once a selection is made, the composition executor uses registered services to
complete the user request.

3.1 Composition Algorithm Adaptation

As our main goal is to select the best suited composition algorithm, so we start
by implementing a portfolio of algorithms. We run the algorithms on simulated
user requests to collect data about their performance. This data is used by a
data-driven selector to make decisions at runtime. We use a classifier trained on
labeled data and evaluate its performance. These steps are described in detail
next.

Portfolio of Algorithms. We implement 3 popular service composition algo-
rithms - Multi Constrained Shortest Path (MCSP) [23], Ant Colony Sys-
tem(ACS) [24] and Genetic Algorithm (GA) [20]. Each belongs to a different
class of algorithms used to solve service composition, using variable compute
resources depending on desired solution quality. We use a grid search for ACS
and GA hyper-parameters to determine the best performing configuration for
each request. ACS, GA and MCSP use the Lp metric discussed in [24] as a util-
ity function. The Lp metric measures utility of a calculated solution with respect
to the optimal solution. It unifies all QoS metrics into a single quantity making
it easier to understand. To simulate user requests, we generate sets of random
QoS requirements and randomly assign dependency graphs. Each abstract task

User
Request

Dependency Graph

User
Request

ProcessingQoS
Preferences

Composi on Algorithm Adapta on

Data-Driven Composi on
Algorithm Selector

Composi on
Algorithm 1

Composi on
Algorithm 2

Composi on
Algorithm …

Composi on
Executor

Service
Registry

Allo ed
Time

Allocated
Memory

Composing System

Fig. 1. High level system overview

174 N. Deshpande and N. Sharma

in the dependency graph has its own concrete implementations of services. So, to
simulate concrete service QoS metrics, we randomly sample the QWS [2] dataset.
Each service is associated with 8 QoS metrics from the QWS dataset: response
time, latency, reliability, availability, successability, compliance, best practices
and throughput. Each attribute is weighted differently depending on user pref-
erences. We generate weights for each of these attributes and compute resource
allocations randomly. Thus, each composition algorithm receives a dependency
graph, user QoS requirements, QoS weights and a set of concrete service QoS
metrics to choose from. A composition algorithm selects a set of concrete service
each corresponding to abstract service in the dependency graph such that it fills
user requirements.

Training Classifiers. We choose classifiers as the data-driven composition
algorithm selector component. As a machine learning based approach it learns
trade-off rules from the data itself. By providing labels, we guide the classifier
to arrive at the correct conclusion. Developers can guide the system to prioritize
their requirements by changing labeling schemas. So, we empirically evaluate
popular classifiers such as Support Vector Machines (SVMs), random forests,
Logistic Regression and Discriminant Analyses. A grid search determines the
best hyperparameters for each classifier. We select this subset of classifiers as they
provide a good breadth of types of relationships that can be modeled between
features. To evaluate classifiers, 5-fold cross-validation was performed along with
a grid search for hyperparameters. A 70–30 train test split was used on a shuffled
dataset to train the data and evaluate its accuracy. Time and memory resources
were randomly assigned to each request. The test set is used to evaluate perfor-
mance after a classifier is picked in Sect. 4.

Dataset Creation. Composition algorithm execution yields information about
its performance. As seen from Algorithm 1 each dataset entry records compo-
sition algorithm used, original user and computed solution QoS requirements,
assigned QoS weights, dependency graph characteristics, delivered solution util-
ity, assigned and actual time and memory usage. In this paper, we use a classifier
to decide which composition algorithm to use. Each entry is labeled according to
the best composition algorithm to use. To assign labels, we first determine the
algorithms that fulfill QoS requirements. If not, we use the algorithm with the
highest utility. Next, we calculate the difference between assigned and actual time
(and memory) usage of each composition algorithm. The algorithm that meets
user requirements and best minimizes atleast one of two compute resources dif-
ferences is chosen to be the algorithm of choice and used as a label. Note that we
do not minimize time and memory usage, but the difference between assigned
and actual resource usage. This allows our chosen algorithm to adapt flexibly as
each request can be assigned variable resources. We use the labeled dataset to
train classifiers and determine which one to use based on its accuracy and the
F1 score.

Composition Algorithm Adaptation in Service Oriented Systems 175

4 Experimental Evaluation

To evaluate how well classifier-based selection performs, we simulate test sets of
user requests randomly and randomly assign time and memory resources. We
compare time and memory usage of the classifier-picked composition algorithm
versus a naively picked algorithm that picks only based on solution utility. As our
approach picks the algorithm meeting user constraints or the next best algorithm
in case one is not available, we compare based on computational resources. We
measure percentage of time and memory saved per request using both choices
and report average values.

Collecting Composition Algorithm Execution Data. To collect execu-
tion data each composition algorithm is executed on randomly generated user
requests. We implement three composition algorithms - MCSP [23], ACS [24]
and GA [20]. Inputs to each composition algorithm are users constraints, weights
corresponding to QoS preferences, an assigned dependency graph and randomly
assigned time and memory resources. User constraints were randomly generated
for each of the 8 QoS attributes as described previously. Dependency graphs of
different sizes and structures were considered. Graphs having number of abstract
services in [5, 10, 20, 30, 40] and number of candidate services in [5, 10, 15, 20,
25, 30, 35, 40] having three structures, sequential, structured and fully connected
as described in [12], were generated. Each combination was tested and evaluated
with different weights corresponding to each QoS attribute. The collected dataset
is shuffled and split 70–30, 70% of it is used for training the classifier and 30%
is used to test and evaluate classifier-based adaptation approach performance.
Collected data is shuffled and split multiple times to give different train and test
sets for variability. Multiple evaluations on test sets gives an accurate estimate
of both individual classifier and classifier-based adaptation performance.

176 N. Deshpande and N. Sharma

Fig. 2. Compute resources utilized by composition algorithm if chosen by our approach
vs a naive approach

Classifier Selection. To select an appropriate classifier for our application, we
empirically evaluate some popular options as seen from Table 1. Based on the
results from Table 1, the top performing classifiers were Random Forest, Deci-
sion Tree and QDA. As seen from Table 1, Random Forest demonstrates good
accuracy and F1-score. A high F1-score indicates that a classifier can correctly
identify true positives, even in situations where there may be a class imbalance,
making for a stable classifier. Thus, Random Forest is used for selecting com-
position algorithms. Random Forest uses 200 trees, a maximum depth of 6 and
entropy as a splitting criterion.

Classifier-Based Adaptation Approach Performance. For our prelimi-
nary results, we implement three popular composition algorithms from existing
literature and train a classifier to choose an appropriate composition technique
per user request. To assess our technique’s performance, we evaluate the percent-
age of time and memory resources saved by our classifier-based approach com-
pared to a purely naive approach. The naive approach makes selections based
purely on the expected solution utility, that is, it picks the composition algo-
rithm that provides the highest possible utility. Our classifier considers expected
solution utility, time and memory resources to select the composition algorithm.
The classifier selects the composition algorithm that meets user requirements. In
case none of the available algorithms can meet user requirements, it selects one

Table 1. Classifier accuracies

Classifier Accuracy F1 score Classifier Accuracy F1 score

Random Forest 0.95 0.94 Logistic Regression 0.88 0.88

Decision Tree 0.94 0.93 SVM with rbf kernel 0.51 0.39

QDA 0.92 0.92 SVM with sigmoid kernel 0.52 0.35

Composition Algorithm Adaptation in Service Oriented Systems 177

that gives the best possible utility for a request. Hence, we evaluate performance
based on gains in time and memory utilization. Figure 2 shows time and memory
that would be utilized by a selected composition algorithm if chosen by a naive
selector versus our approach. In the figure, we visualize compute resource usage
for variably sized dependency graphs. Dependency graphs are characterized by
a tuple (#abstract services, #candidate services per abstract service) Overall,
considerable compute savings are observed. Using random forest as a classifier,
we observed on average, 33% of time was saved compared to a naive approach
across the requests we tested our approach on. We saw a similar savings in
memory used, 24.8 %. These results indicate that our approach is able to select
appropriate composition algorithms for unique user requests. Thus, our approach
picks the a composition approach that delivers on user QoS requirements while
using the resources allocated to it.

Composition Algorithm Selection Overhead. The selection algorithm
itself takes negligible time to pick between different approaches. If we were to
consider the total request processing time as a sum of the time taken to select a
composition algorithm and execute it, the selection itself takes less than 1% of
total processing time on average, which is negligible. Other overheads associated
are time and memory resources used by the classifier, which are also negligible
as compared to resources used for composition. Note that our classifier requires
a labeled dataset.

5 Conclusion and Future Work.

In this work, we outline a data-driven approach for composition algorithm adap-
tation. Our classifier-based approach learns adaptation rules from past execution
data and shows 95% accuracy on a random training dataset. Preliminary results
demonstrate considerable compute resource savings for various solution utility
requirements. We assume that changes in a dynamic environment are reflected in
composition algorithm performance, so we will expand our experiments to more
closely simulate more diverse user requests - in terms of dependency graphs and
constraints. A limitation of using classifiers is the requirement of labels, which
requires additional processing. In the future, we will expand our experiments to
include other types of learning algorithms that do not require labels. In addition
to this, we will deploy our approach as an online feedback loop to be used at
runtime. More diverse composition algorithms will also be added, to analyze the
bounds of scalability of our approach.

Acknowledgements. This material is based upon work supported by the National
Science Foundation under Award No. 1943002.

178 N. Deshpande and N. Sharma

References

1. Al-Helal, H., Gamble, R.: Introducing replaceability into web service composition.
IEEE Trans. Serv. Comput. 7(2), 198–209 (2014). https://doi.org/10.1109/TSC.
2013.23

2. Al-Masri, E., Mahmoud, Q.H.: QoS-based discovery and ranking of web services. In:
2007 16th International Conference on Computer Communications and Networks,
pp. 529–534, August 2007. https://doi.org/10.1109/ICCCN.2007.4317873

3. Ali, N., Solis, C.: Self-adaptation to mobile resources in service oriented architec-
ture. In: 2015 IEEE International Conference on Mobile Services, pp. 407–414,
June 2015. https://doi.org/10.1109/MobServ.2015.62

4. Alrifai, M., Risse, T.: Combining global optimization with local selection for effi-
cient QoS-aware service composition. In: Proceedings of the 18th International
Conference on World Wide Web, WWW 2009, p. 881–890. Association for Com-
puting Machinery, New York (2009). https://doi.org/10.1145/1526709.1526828

5. Ardagna, D., Baresi, L., Comai, S., Comuzzi, M., Pernici, B.: A service-based
framework for flexible business processes. IEEE Softw. 28(2), 61–67 (2011)

6. Ardagna, D., Pernici, B.: Adaptive service composition in flexible processes. IEEE
Trans. Softw. Eng. 33(6), 369–384 (2007)

7. Ardagna, D., Mirandola, R.: Per-flow optimal service selection for web ser-
vices based processes. J. Syst. Softw. 83(8), 1512–1523 (2010). https://doi.
org/10.1016/j.jss.2010.03.045. http://www.sciencedirect.com/science/article/pii/
S0164121210000750. Performance Evaluation and Optimization of Ubiquitous
Computing and Networked Systems

8. Bouguettaya, A., et al.: A service computing manifesto: the next 10 years. Com-
mun. ACM 60(4), 64–72 (2017). http://doi.acm.org/10.1145/2983528

9. Calinescu, R., Grunske, L., Kwiatkowska, M., Mirandola, R., Tamburrelli, G.:
Dynamic QoS management and optimization in service-based systems. IEEE
Trans. Softw. Eng. 37(3), 387–409 (2011). https://doi.org/10.1109/TSE.2010.92

10. Cardellini, V., Casalicchio, E., Grassi, V., Iannucci, S., Lo Presti, F., Mirandola,
R.: MOSES: a platform for experimenting with QoS-driven self-adaptation poli-
cies for service oriented systems. In: de Lemos, R., Garlan, D., Ghezzi, C., Giese,
H. (eds.) Software Engineering for Self-Adaptive Systems III. Assurances. LNCS,
vol. 9640, pp. 409–433. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
74183-3 14

11. Cardellini, V., Casalicchio, E., Grassi, V., Lo Presti, F., Mirandola, R.: Towards
self-adaptation for dependable service-oriented systems. In: de Lemos, R., Fabre,
J.-C., Gacek, C., Gadducci, F., ter Beek, M. (eds.) WADS 2008. LNCS, vol. 5835,
pp. 24–48. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10248-
6 2

12. Cardoso, J.: Approaches to compute workflow complexity. In: Leymann, F., Reisig,
W., Thatte, S.R., van der Aalst, W. (eds.) The Role of Business Processes in Ser-
vice Oriented Architectures. No. 06291 in Dagstuhl Seminar Proceedings, Inter-
nationales Begegnungs- und Forschungszentrum für Informatik (IBFI), Schloss
Dagstuhl, Germany, Dagstuhl, Germany (2006). http://drops.dagstuhl.de/opus/
volltexte/2006/821

13. Cho, J., Ko, H., Ko, I.: Adaptive service selection according to the service density
in multiple qos aspects. IEEE Trans. Serv. Comput. 9(6), 883–894 (2016). https://
doi.org/10.1109/TSC.2015.2428251

https://doi.org/10.1109/TSC.2013.23
https://doi.org/10.1109/TSC.2013.23
https://doi.org/10.1109/ICCCN.2007.4317873
https://doi.org/10.1109/MobServ.2015.62
https://doi.org/10.1145/1526709.1526828
https://doi.org/10.1016/j.jss.2010.03.045
https://doi.org/10.1016/j.jss.2010.03.045
http://www.sciencedirect.com/science/article/pii/S0164121210000750
http://www.sciencedirect.com/science/article/pii/S0164121210000750
http://doi.acm.org/10.1145/2983528
https://doi.org/10.1109/TSE.2010.92
https://doi.org/10.1007/978-3-319-74183-3_14
https://doi.org/10.1007/978-3-319-74183-3_14
https://doi.org/10.1007/978-3-642-10248-6_2
https://doi.org/10.1007/978-3-642-10248-6_2
http://drops.dagstuhl.de/opus/volltexte/2006/821
http://drops.dagstuhl.de/opus/volltexte/2006/821
https://doi.org/10.1109/TSC.2015.2428251
https://doi.org/10.1109/TSC.2015.2428251

Composition Algorithm Adaptation in Service Oriented Systems 179

14. Fugini, M.G., Pernici, B., Ramoni, F.: Quality analysis of composed services
through fault injection. Inf. Syst. Front. 11(3), 227–239 (2009)

15. Gomaa, H., Hashimoto, K., Kim, M., Malek, S., Menascé, D.A.: Software adapta-
tion patterns for service-oriented architectures. In: Proceedings of the 2010 ACM
Symposium on Applied Computing, SAC 2010, pp. 462–469. ACM, New York
(2010). http://doi.acm.org/10.1145/1774088.1774185

16. Jatoth, C., Gangadharan, G., Buyya, R.: Computational intelligence based QoS-
aware web service composition: a systematic literature review. IEEE Trans. Serv.
Comput. 10(03), 475–492 (2017). https://doi.org/10.1109/TSC.2015.2473840

17. King, T., Ramirez, A., Rodolfo, C., Clarke, P.: An integrated self-testing framework
for autonomic computing systems. J. Comput. 2 (2007). https://doi.org/10.4304/
jcp.2.9.37-49

18. Mutanu, L.: State of runtime adaptation in service-oriented systems: what,
where, when, how and right. IET Softw. 13, 14–24 (2019). https://digital-library.
theiet.org/content/journals/10.1049/iet-sen.2018.5028

19. Schuller, D., Siebenhaar, M., Hans, R., Wenge, O., Steinmetz, R., Schulte, S.:
Towards heuristic optimization of complex service-based workflows for stochastic
QoS attributes. In: 2014 IEEE International Conference on Web Services, pp. 361–
368 (2014)

20. Trummer, I., Faltings, B.: Dynamically selecting composition algorithms for eco-
nomical composition as a service. In: Kappel, G., Maamar, Z., Motahari-Nezhad,
H.R. (eds.) ICSOC 2011. LNCS, vol. 7084, pp. 513–522. Springer, Heidelberg
(2011). https://doi.org/10.1007/978-3-642-25535-9 36

21. Wang, H., et al.: Integrating reinforcement learning with multi-agent techniques
for adaptive service composition. ACM Trans. Auton. Adapt. Syst. 12(2), 81–842
(2017). https://doi.org/10.1145/3058592. http://doi.acm.org/10.1145/3058592

22. Wang, L., Li, Q.: A multiagent-based framework for self-adaptive software with
search-based optimization. In: 2016 IEEE International Conference on Software
Maintenance and Evolution (ICSME), pp. 621–625, October 2016. https://doi.
org/10.1109/ICSME.2016.16

23. Yu, T., Zhang, Y., Lin, K.J.: Efficient algorithms for web services selection with
end-to-end QoS constraints. ACM Trans. Web 1(1) (2007). http://doi.acm.org/10.
1145/1232722.1232728

24. Zhang, W., Chang, C.K., Feng, T., Jiang, H.y.: QoS-based dynamic web service
composition with ant colony optimization. In: 2010 IEEE 34th Annual Computer
Software and Applications Conference (COMPSAC), pp. 493–502. IEEE (2010)

http://doi.acm.org/10.1145/1774088.1774185
https://doi.org/10.1109/TSC.2015.2473840
https://doi.org/10.4304/jcp.2.9.37-49
https://doi.org/10.4304/jcp.2.9.37-49
https://digital-library.theiet.org/content/journals/10.1049/iet-sen.2018.5028
https://digital-library.theiet.org/content/journals/10.1049/iet-sen.2018.5028
https://doi.org/10.1007/978-3-642-25535-9_36
https://doi.org/10.1145/3058592
http://doi.acm.org/10.1145/3058592
https://doi.org/10.1109/ICSME.2016.16
https://doi.org/10.1109/ICSME.2016.16
http://doi.acm.org/10.1145/1232722.1232728
http://doi.acm.org/10.1145/1232722.1232728

A Statistical Approach for
Context-Awareness of Mobile

Applications

Mai Abusair1(B), Mohammad Sharaf1, Antinisca Di Marco2,
and Paola Inverardi2

1 An-Najah National University, Nablus, Palestine
{mabuseir,sharaf}@najah.edu

2 University of L’Aquila, L’Aquila, Italy
{antinisca.dimarco,paola.inverardi}@univaq.it

Abstract. Context-aware systems are able to sense and adapt to the
environment. Mobile applications can benefit from context-awareness
since they incur to context changes during their execution. A detailed
understanding of the context is needed to know what a context-aware
system should sense and adapt to. This paper introduces a statistical
approach that helps in determining contextual situations that require
adaptation. The approach starts from monitoring mobile context vari-
ables values, modeling their states, and deducing from these models a
Markov chain model, where each state represents a contextual situation.
Depending on transition probabilities and system quality at each state
we can decide when it is necessary to apply context-awareness.

Keywords: Context-awareness · Contextual situation · Transition
probability

1 Introduction

Nowadays, most software systems adapt their behavior according to their con-
text. Mobile applications have a huge context variability due to user mobil-
ity, diverse user preferences, and device capabilities. Context-awareness (that
leads to adaptation) have a great effect on the qualities of software systems, like
availability [2,13]. Therefore, in designing a system that is context-aware, only
relevant part of this environment (i.e. context) is considered. Determining the
relevant context is not easy. The complexity of the environment may involve
an enormous possibly relevant context. Accordingly, an approach is needed to
decide the context to be considered in designing context-aware systems [8,10].

In [3], we deal with understanding context variability. In particular, we intro-
duce an empirical approach, based on an Android mobile application, that moni-
tors the mobile phone context variables, and, by analyzing the monitored data, is
able to model the context variables and the contextual situations as UML State

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 180–194, 2020.
https://doi.org/10.1007/978-3-030-59155-7_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_14&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_14

A Statistical Approach for Context-Awareness of Mobile Applications 181

charts. In [2,13], we use contextual situations to analyze at each state the mobile
application behaviors in terms of service availability and user satisfaction, and to
determine consequently the appropriate adaptation strategy at each contextual
situation.

This paper extends our work in [3]. It proposes a statistical approach, that
after extracting the contextual situations from the mobile context variability, it
builds a Markov chain model where each state represents a contextual situation.
It computes the transition probability matrix for the different states. The contex-
tual situations that receive more frequent transitions probabilities are candidates
for applying adaptations at their state. The approach aims to save the effort of
applying unnecessary adaptations, and, thus, mobile resources can be used more
efficiently.

This paper is organized as follows: Sect. 2 presents a brief background, while
Sect. 3 introduces the statistical approach. The approach is evaluated in a sce-
nario described in Sect. 4. Finally, Sect. 5 concludes the paper.

2 Background

The recently developed software systems never stands on their own but they are
connected to their environment. Context-aware applications require knowledge
not only about user’s current environment (e.g., location, time, or if the user
is in quiet or noisy environment), but also about the specifications of the com-
puting devices and resources being used (e.g, mobile device or notebook) [7,11].
Context-aware applications might also require knowledge about user’s social sit-
uations (e.g., manager or co-worker). The application then adapts the Quality
of Service or the presentation of information offered to the users according to
the current context [2,4,13].

In the following sections, we briefly describe the context concepts and mod-
eling, in Sects. 2.1 and 2.2, respectively.

2.1 Context Concepts

Context is defined in [1] as “any information that can be used to characterize
the situation of any person, place or object that is considered relevant to the
interaction between a user and an application, including the user and application
themselves”. Context encompasses information like time, location, lighting, noise
level, network capabilities and user status.

The context variability can be described using context concepts detailed in
[3]. Recalling our work in [3], a context variable C can have several values val,
these values can be discrete or can take a range of values. The context variable
C general formula can be written as [9]:

182 M. Abusair et al.

C ∈ {val1, val2, ... valz } for discrete values
or
C ∈ { [vala, valb], [valc, vald], .. } for range of values

For instance, if B represents battery level, CN network connectivity, and LL
light level. Then these context variables can be written as:

B ∈ {SufficientBattery, NoSufficientBattery}
CN ∈ {AvailableConnectivity, NoAvailableConnectivity}
LL ∈ {[0, 150), [150, 300), [300, 1000), [1000, 10000]}

A contextual situation S can be defined by a group of context variables C and
their values, under which a system will eventually run. If a contextual situation
S is defined by x context variables C then S will be denoted as:

S = {C1(valC1), C2(valC2), ..., Cx(valCx
)}

Since each context variable C has different values valC , different contextual
situations may result from the same group of context variables. For instance,
let us consider a contextual situation defined by battery state B and connectiv-
ity CN as described in the previous section, then possible contextual situations
will be:

S1 = {B(SufficientBattery), CN(AvailableConnectivity)},
S2 = {B(SufficientBattery), CN(NoAvailableConnectivity)},
S3 = {B(NoSufficientBattery), CN(AvailableConnectivity)},
S4 = {B(NoSufficientBattery), CN(NoAvailableConnectivity)}

2.2 Context Modeling Approach

Modeling context variability is needed to understand the system environment.
Our empirical approach, previously suggested in [3], is devised to model the
context. The approach aims to derive the contextual situations from a context
sensing application. The context sensing application can be any tool that is able
to monitor a group of required context variables and collect their values while
the device is running.

The approach [3] encompasses a group of steps: The first step of the approach
requires to run the Android mobile application, namely Context Sensing Appli-
cation (CSA), to sense context variables. In the second step, the collected data
are shared and stored for analysis. The third step of the approach deals with the
analysis of monitored data to build statechart models for each context variables,
separately. Such models describe the context variables’ states (represented by
single values or range of values) and the probability to move from one state to
another. The devised statecharts describe the evolution of the context variables
over time. In the forth step, such context variables’ models are lumped together
and thus allows to realize the different contextual situations that might occur.

A Statistical Approach for Context-Awareness of Mobile Applications 183

3 Statistical Approach for Context-Awareness

In this Section we will describe our statistical method that aims to realize the
relevant context in designing context-aware mobile applications. The approach
starts by reasoning on monitored context variables values to extract their possible
states, detailed in Sect. 3.1. Then, from the context variables states, the contex-
tual situations are deduced and formulated in a Markov chain model where each
state represents a contextual situation, detailed in Sect. 3.2. After all, the transi-
tion probability matrix is computed, and by reasoning on its values, the candi-
dates states to context-awareness are determined according to transitions prob-
abilities received and their effect on the Quality of Service, detailed in Sect. 3.3.
Figure 1 summarizes the approach.

Fig. 1. A statistical approach for context-awareness

184 M. Abusair et al.

3.1 Defining Context Variables States

To define the context variables of a mobile application, we run a context sensing
application to monitor and log the context variables values (we can use the app
adopted in [3] or any other available app). Then, by applying analytical reasoning
on the collected data, we can define the context variables states.

For simplicity, we show how context variables are defined using simple exam-
ple. Recalling to what we have in [3], we show two context variables evolution,
namely battery state and level. To define the context variables, the user was asked
to run a context sensing application in the background of her mobile phone for
one week. Then, the context log file is extracted. By analyzing the log file values,
concentrating on the battery level and battery state values, and by reasoning on
their values changes (see Fig. 3 that shows a screenshot for the empirical data
used, we come out with the two context variables, Battery Level BL and Battery
State BS, that can be written according to the definition in Sect. 2.1, as follows:

BL ∈ {LowBattery, HighBattery}
BS ∈ {Charging, NotCharging}

For the battery state, all the extracted values were Charging and NotCharg-
ing. The time the device spends on the NotCharging state is way longer than it
is in the Charging state. Normally, this is consequent of the fact that the user
charges the mobile for one hour and then she can enjoy the mobile usage for
several hours.

For the battery level, instead, we observed values in the range [1%, 100%].
To reduce the number of states and to focus on reasonable cases, we decided to
consider only two possible states for the battery level: Low Battery state that
represents values between 0%–30%: and High Battery state for the values in
the range 31%–100%. The reason of choosing 30% as a threshold between high
and low battery, is that usually android devices start the safe mode when the
battery dropped down below 20% [12], and we consider it 30% to allow users to
continue using the application while saving battery. Moreover, from the values
retrieved through several runs of context monitoring app, we noticed that the
users usually do not charge their mobile phones when their batteries level is
higher than 30% (an example on this evidence is happened in the empirical data
shown in Fig. 3, we can notice that the user unplugged the charger when the
mobile device battery level is 34%).

3.2 Building Contextual Situations Model

In this section we show how to model the contextual situations using Markov
chain model. To this aim, we use the defined context variables described in the
previous section to deduce the different contextual situations.

Accordingly, each state in the Markov chain model represents a super state
that obtained from a combination of a certain number of context variables states
(in this example the two states for battery level and battery state). The resulted

A Statistical Approach for Context-Awareness of Mobile Applications 185

Markov chain model, called contextual situation model, models the run-time
context evolution of a mobile context-aware software system.

We should note that sometimes not all the combinations are allowed, some
context variables values cannot be met together (for example to have no inter-
net connection and the ping process is success). Therefore, in order to build a
consistent unique contextual situation model, only contextual situation that are
feasible combinations of context variables states have to be considered. The fea-
sibility of these combinations can be noticed by reasoning on the retrieved log
file values.

Therefore, by considering the two context variables, Battery Level BL and
Battery State BS, described in the previous section, we can deduce up to four
different contextual situations. These are:

S1 = {BL(LowBattery), BS(Charging)}
S2 = {BL(LowBattery), BS(NotCharging)}
S3 = {BL(HighBattery), BS(Charging)}
S4 = {BL(HighBattery), BS(NotCharging)}

Thus, the Markov chain model will have four states (S1, S2, S3, S4).
The transitions probability for these states are computed using the following
formula [3]:

psi,sj
=

#(vi → vj)
#(vi → vk) + #(vi → vj)

(1)

where:
#(vi → vj) represents the number of subsequent pair of records reporting in

the first a value vi falling into the state si and in the second a value vj falling
into the state sj ; #(vi → vk), where k! = j, represents the number of subsequent
pair of records reporting in the first a value vi falling into the state si and in the
second a value vk falling in any state excluding sj .

The probability to remain in the state si is set to psi,si
= 1 − Sum(psi,sj

)
where j is different from i. Figure 2 shows a simple example for computing transi-
tions probabilities from context records, supposing the concern is to track simple
network information every one hour.

Fig. 2. An example on computing transition probabilities

186 M. Abusair et al.

Figure 3 has a screenshot for our extracted empirical data, that shows exam-
ples of some considered contextual situations state transitions (contextual sit-
uations states are represented using solid rounded rectangles). Figure 4 shows
the contextual situations state transitions probabilities deduced from the values
retrieved from the user running context sensing application.

3.3 Computing Transition Matrix

The Markov chain produced for the contextual situations is described using a
transition matrix. By reasoning on the matrix values we are able to determine
the contextual situations that receive high transitions probabilities.

Going back to the example illustrated in the previous section, and according
to the contextual situations model produced Fig. 4, we build a transition matrix
as follows:

Fig. 3. Examples on contextual situations state transitions

A Statistical Approach for Context-Awareness of Mobile Applications 187

Fig. 4. Contextual situation Markov model for battery state and level

Mtransition =

⎛
⎜⎜⎝

S1 S2 S3 S4

S1 0.9375 0 0.0625 0
S2 0.0323 0.9677 0 0
S3 0 0.1587 0.8254 0.0159
S4 0 0.0012 0.0012 0.9976

⎞
⎟⎟⎠

For each contextual situation state Si where i ∈ [1, n], and n is the number
of contextual situations, we will find the sum of the transitions probabilities that
lead to it, including the transition probability from a state to itself. Table 1 shows
the values computed at each state from the probabilities in the transition matrix
example.

Accordingly, S2 state, that represents the contextual situation that includes
low battery and not charging, receives the highest transitions probabilities. Fol-
lowing it S4 state, that represents the contextual situation that includes high
battery and not charging. Then, S1 and S3, respectively.

The contextual situations that receive high transitions probabilities, compa-
rable with other states, are good candidates for applying context-awareness at
their states. This will help the analyst to shorten the probable contextual situ-
ations list for context-awareness. Moving to a given contextual situation more
often, means that the analyst should take care about this contextual situation
and its effect on the Quality of Service [6]. While, less frequent transitions to
a given contextual situations, means that the system can rarely being exposed
to this context, and, thus, the analyst can exclude this contextual situations
from being relevant to context-awareness; making sure this will not have a crit-
ical effect on the Quality of Service of a system being studied. See Fig. 5 that
summarises the realized relationships among contextual situations selection.

188 M. Abusair et al.

Table 1. Transitions probabilities summation at each state

Si S1 S2 S3 S4

n∑

k=1

PSk,Si 0.9698 1.1276 0.8891 1.013504

Fig. 5. Contextual situations that are relevant to context-awareness

Thus, referring to our work in [5,13], the Quality of Service must be mea-
sured in the different contextual situations to ensure it has a noticeable effect on
the quality. For example, if the aim of applying context-awareness is to preserve
service availability, then, the initially selected contextual situations (determined
by transitions probabilities) must have noticeable effect on computing service
availability in order to be considered in the adaptation strategy. In the follow-
ing section, we clarify this and the whole approach by running it on a mobile
application real example.

4 Running the Approach on OSApp Mobile Application

OSApp is an Android mobile application connected to the “OffSiteArt—
Artbridge for L’Aquila” project1. The project aims to cover the scaffolding of
the buildings in reconstruction after the 2009 earthquake with pieces of art of
emergent artists selected under a call for art.

When the user runs the app while moving in the city center, she will have
information about the pieces of arts around her as markers on google map. When
she clicks on one of such markers, she will receive details of the piece of art and
of the artist’s biography, as high quality picture and video content [13]

1 http://www.offsiteart.it.

http://www.offsiteart.it

A Statistical Approach for Context-Awareness of Mobile Applications 189

As it is now, OSApp always sends to the user high quality pictures and videos
without considering the different contexts under which the application is running
due to the user mobility. However, the app may experience different connectivity
conditions depending on the different network coverage available in the area; the
device running it could have different battery status.

In order to clarify the approach described in Fig. 1, we will run an experiment
on OSApp that shows how our statistical approach works.

While running OSApp, we run in the background of the mobile device a
context sensing application that is able to monitor several environmental context
[3]. After retrieving the log file, for simplicity, we choose to reason on two context
variables; Network Connectivity (NC) and Battery Level (BL), and we define
them with their values as follows:

NC ∈ {GoodConnectivity, PoorConnectivity}
BL ∈ {LowBattery, HighBattery}

Supposing that, when the download speed is less than 1 MB then NC is poor
and when it is higher than 1 MB then NC is good. Also, when BL is less than
or equal 30% then BL is low battery and when BL is more than 30% then BL
is high battery.

If a contextual situation S will be described by the variables BL and NC,
then 4 possible contextual situations will result:

S1 = {NC(PoorConnectivity), BL(LowBattery)}
S2 = {NC(PoorConnectivity), BL(HighBattery)}
S3 = {NC(GoodConnectivity), BL(HighBattery)}
S4 = {NC(GoodConnectivity), BL(LowBattery)}

The contextual situations model for the four states (S1, S2, S3, S4) is repre-
sented using Markov chain model, see Fig. 6. By reasoning on the log file con-
text values, the transitions probabilities can be computed using the formula in
Sect. 3.2.

Fig. 6. Contextual situation model for battery level and network connectivity

190 M. Abusair et al.

The transition matrix is computed as follows:

Mtransition =

⎛
⎜⎜⎝

S1 S2 S3 S4

S1 0.333 0 0.666 0
S2 0 0.9677 0.0322 0
S3 0 0.008 0.98 0.012
S4 0 0 0.0322 0.967

⎞
⎟⎟⎠

For each state we will find the sum of all transitions probabilities that lead
to it, see Table 2.

Table 2. Transitions probabilities summation at each state in OSApp

Si S1 S2 S3 S4

n∑

k=1

PSk,Si 0.333 0.975 1.704 0.979

Fig. 7. System model and UBG with loop

Back to the experiment, we want to modify OSApp in a way it will be
context-aware application that preserves the User Perceived Service Availability
(UPSA) [13]. In [14], the authors came with the concept of UPSA that is defined
as: During a user interaction (session) with the system, the user issues multiple
requests at different time points for different system resources. The unavailability
of requested resource will cause the request to fail. The service availability is the
probability that all requests are successfully satisfied during the user session. In
addition, the authors developed several models of UPSA that consider different
User Behavior Graphs (UBG) and system models. In this paper, for simplicity,
we will reuse their UPSA model coming from:

– UBG with loops that allow multiple requests in the user session; this UBG
has three states: processing state P , thinking state Th and exit session state
E, with a probability p that a user will make another request, and probability
1 − p that she will exit the session (see Fig. 7-(a)).

– A system model with two states, up state U and down state D, with constant
failure rate λ and repair rate μ (see Fig. 7-(b)).

A Statistical Approach for Context-Awareness of Mobile Applications 191

For the considered model, we recall the work in [13], the UPSA formula is
defined as follows:

∀ UPk ∈ UP

UPSASa

Tb
=

u0.
λp

λ+λp
.(1−p)

1−p.[
λp

λ+λp
.(μ

λ+μ+ λ
λ+μ .

λT h
λ+μ+λT h

)]

(2)

Where

– p user probability of interest in making requests
– 1-p probability that a user will end the session after thinking state
– λP is a rate that represents the number of requests per time unit the user

makes to the system
– λTh is the rate associated to the thinking time state the user enters
– μ0 instantaneous system availability [15]
– λ system failure rate
– μ system repair rate

Note that, in Formula 2 the system parameters and UBG probabilities are
influenced by the user profile UPk, contextual situations Sa and tactics Tb (i.e.
app behavior). This means that we will have a UPSA value for each UPk, Sa and
Tb. Indeed, if we have x user profiles UP , m tactics T , n contextual situations S,
Where, k ∈ [1, x], a ∈ [1, m], b ∈ [1, n]. Then, UPSASa

Tb
calculated for UPk is the

user perceived service availability for a user belonging to profile UPk, deploying
Ta tactic in Sb contextual situation.

In this experiment, we have one user profile (mid-age users whose ages are
between 35–49 years) running OSApp in different contextual situations (S1, S2,
S3, S4) and experimenting different tactics (app behaviors, T1 when OSApp
sends high quality pictures and videos and T2 when OSApp sends low quality
pictures and videos).

To compute UPSA, we asked mid-age users to run OSApp in its original
behavior (sending high quality picture and videos T1) and to make different
requests for information about pieces of arts under different contextual situations.
Then, from the extracted contextual situations and requests log file, we are able
to compute UPSA for OSApp under different states, see Table 3.

Table 3. UPSA for mid-age users running OSApp with high qualities

S1 S2 S3 S4

UPSA 36.34% 0.3771 41.04% 39.22%

192 M. Abusair et al.

Table 4. UPSA for mid-age users running OSApp with low qualities

S1 S2 S3 S4

UPSA 38.25% 41.22% 43.81% 42.08%

Accordingly, by reasoning on the values in Table 2 and 3, we realize that:

– The contextual situation S3 receives the highest transitions probabilities. In
other words, the probability of the transitions from any of the specified states
(S1, S2, S3, S4) to S3 is high; comparable with other states. Moreover, the
computed UPSA value at S3 is more than the values at other specified con-
textual situations. That means, if the UPSA value at S3 is accepted for us,
then the default behavior for OSApp can be employed at S3 state.

– The contextual situation S1 receives the lowest transitions probabilities. More-
over, the UPSA at S1 has the lowest computed availability among other val-
ues. However, since the transitions probabilities from other states to S1 is low,
then, there could be no need to apply adaptations at this state to enhance
the availability. Applying an adaptation at this state can waste efforts and
usages of mobile resources.

– The contextual situations in S4 and S2 have very close, relatively high, transi-
tions probabilities. Thus, we can consider applying adaptations at their state
to enhance the UPSA.

If we want to enhance the UPSA, we can think of applying another behavior
that deliver the same service but with different quality, like sending low quality
pictures and videos. Table 4 shows the UPSA computed at the different contex-
tual situations if OSApp always sends low quality pictures and videos.

Accordingly, to preserve the UPSA for a given user profile UP , OSApp can
perform an adaptation strategy that at a given contextual situation S OSApp
applies the tactic T that has the highest UPSA [13], see Table 5. However, to
save the effort of applying unnecessary adaptation, OSApp should consider the
transitions probabilities, computed in Table 2, to decide when to apply adapta-
tions. Thus, for OSApp to be context-aware system that adopts efficient adap-
tations and preserves UPSA, we can extract an efficient adaptation strategy

Table 5. Extracting efficient adaptation strategy for mid-age users running OSApp

S1 S2 S3 S4

UPSA for T1 36.34% 37.71% 41.04% 39.22%

UPSA for T2 38.25% 41.22% 43.81% 42.08%

Adaptation strategy considering
maximum UPSA (T1, T2)

T2 T2 T2 T2

Transitions probabilities
∑

0.333 0.975 1.704 0.979

Efficient adaptation strategy after

considering transitions probabilities

Eliminated T2 T1 (default behavior) T2

A Statistical Approach for Context-Awareness of Mobile Applications 193

(see Table 5) that applies at S3 the default behavior (sending high quality pic-
tures and videos T1), at S2 and S4 it applies the low quality behavior (sending
low quality picture and video T2), and finally S1 can be eliminated from the
adaptation considerations, since it receives low transitions probabilities and it
does not have a critical effect on UPSA.

5 Conclusion

This paper presents a statistical approach for context-aware mobile applications.
We evaluated our approach by running it on OSApp. The approach is able to
determine the contextual situations that are relevant to context-awareness by
computing at their different states the transitions probabilities and software
qualities.

The paper shows how efficient adaptation strategy can be extracted. The
described adaptation strategy aims to perform changes in the mobile application
behavior, at relevant contextual situations, to preserve the user perceived service
availability taking into account an efficient use of mobile resources.

References

1. Abowd, G.D., Dey, A.K., Brown, P.J., Davies, N., Smith, M., Steggles, P.: Towards
a better understanding of context and context-awareness. In: Gellersen, H.-W. (ed.)
HUC 1999. LNCS, vol. 1707, pp. 304–307. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48157-5 29

2. Abusair, M.: User- and analysis-driven context aware software development in
mobile computing. In: ESEC/FSE 2017 Proceedings of the 2017 11th Joint Meeting
on Foundations of Software Engineering, Paderborn, Germany, September 2017,
pp. 1022–1025. ACM (2017)

3. Abusair, M., Di Marco, A., Inverardi, P.: An empirical approach for determining
context of mobile systems. In: Proceedings of the 11th European Conference on
Software Architecture: Companion Proceedings, pp. 71–77 (2017)

4. Abusair, M., Sharaf, M., Di Marco, A., Inverardi, P., Muccini, H.: An approach
for developing context-aware mobile application. In: WomENcourage2019, Rome,
Italy (2019)

5. Abusair, M., Sharaf, M., Muccini, H., Inverardi, P.: Adaptation for situational-
aware cyber-physical systems driven by energy consumption and human safety. In:
Proceedings of the 11th European Conference on Software Architecture: Compan-
ion Proceedings, pp. 78–84 (2017)

6. Autili, M., Di Benedetto, P., Inverardi, P.: Context-aware adaptive services: the
PLASTIC approach. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS, vol.
5503, pp. 124–139. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-
642-00593-0 9

7. Dey, A.K.: Providing architectural support for building context-aware applications.
Ph.D. thesis, Georgia Institute of Technology (2000)

8. van Engelenburg, S., Janssen, M., Klievink, B.: Designing context-aware systems:
a method for understanding and analysing context in practice. J. Log. Algebr.
Methods Program. 103, 79–104 (2019). https://doi.org/10.1016/j.jlamp.2018.11.
003. http://www.sciencedirect.com/science/article/pii/S2352220818300191

https://doi.org/10.1007/3-540-48157-5_29
https://doi.org/10.1007/3-540-48157-5_29
https://doi.org/10.1007/978-3-642-00593-0_9
https://doi.org/10.1007/978-3-642-00593-0_9
https://doi.org/10.1016/j.jlamp.2018.11.003
https://doi.org/10.1016/j.jlamp.2018.11.003
http://www.sciencedirect.com/science/article/pii/S2352220818300191

194 M. Abusair et al.

9. Eskins, D., Sanders, W.H.: The multiple-asymmetric-utility system model: a frame-
work for modeling cyber-human systems. In: 2011 Eighth International Conference
on Quantitative Evaluation of Systems (QEST), pp. 233–242. IEEE (2011)

10. Mikic-Rakic, M., Malek, S., Medvidovic, N.: Architecture-driven software mobility
in support of QoS requirements. In: Proceedings of the 1st International Workshop
on Software Architectures and Mobility, pp. 3–8. ACM (2008)

11. Muccini, H., Sharaf, M., Weyns, D.: Self-adaptation for cyber-physical systems: a
systematic literature review. In: Proceedings of the 11th International Symposium
on Software Engineering for Adaptive and Self-managing Systems, pp. 75–81 (2016)

12. Ravi, N., Scott, J., Han, L., Iftode, L.: Context-aware battery management for
mobile phones. In: Sixth Annual IEEE International Conference on Pervasive Com-
puting and Communications, PerCom 2008, pp. 224–233. IEEE (2008)

13. Abusair, M., Di Marco, A., Inverardi, P.: Context-aware adaptation of mobile appli-
cations driven by software quality and user satisfaction. In: Proceedings of the
2017 IEEE International Conference on Software Quality, Reliability and Security
Companion, Information Assurance Workshop, Prague, Czech Republic, July 2017
(2017)

14. Wang, D., Trivedi, K.S.: Modeling user-perceived service availability. In: Malek,
M., Nett, E., Suri, N. (eds.) ISAS 2005. LNCS, vol. 3694, pp. 107–122. Springer,
Heidelberg (2005). https://doi.org/10.1007/11560333 10

15. Wang, D., Trivedi, K.S.: Modeling user-perceived reliability based on user behavior
graphs. Int. J. Reliab. Qual. Saf. Eng. 16(04), 303–329 (2009)

https://doi.org/10.1007/11560333_10

A Reference Architecture for Personalized
and Self-adaptive e-Health Apps

Eoin Martino Grua1(B) , Martina De Sanctis2 , and Patricia Lago1

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
{e.m.grua,p.lago}@vu.nl

2 Gran Sasso Science Institute, L’Aquila, Italy
martina.desanctis@gssi.it

Abstract. A wealth of e-Health mobile apps are available for many pur-
poses, such as life style improvement, mental coaching, etc. The inter-
ventions, prompts, and encouragements of e-Health apps sometimes take
context into account (e.g., previous interactions or geographical location
of the user), but they still tend to be rigid, e.g., by using fixed rule
sets or being not sufficiently tailored towards individuals. Personaliza-
tion to the different users’ characteristics and run-time adaptation to
their changing needs and context provide a great opportunity for get-
ting users continuously engaged and active, eventually leading to better
physical and mental conditions.

This paper presents a reference architecture for enabling AI-based
personalization and self-adaptation of mobile apps for e-Health. The ref-
erence architecture makes use of multiple MAPE loops operating at dif-
ferent levels of granularity and for different purposes.

Keywords: Self-adaptive systems · Personalization · Reference
architecture · Mobile apps · e-Health

1 Introduction

E-Health mobile apps are designed for assisting end users in tracking and improv-
ing their own health-related activities [28]. With a projected market growth to
US$102.3 Billion by 2023, e-Health apps represent a significant market [12] pro-
viding a wide spectrum of services, i.e., life style improvement, mental coaching,
sport tracking, recording of medical data [24]. The unique characteristics of e-
Health apps w.r.t. other health-related software systems are that e-Health apps
(i) can take advantage of smartphone sensors, (ii) can reach an extremely wide
audience with low infrastructural investments, and (iii) can leverage the intrin-
sic characteristics of the mobile medium (i.e., being always-on, personal, and
always-carried by the user) for providing timely and in-context services [9].

However, even if the interventions, prompts, and encouragements of current e-
Health apps take context into account (e.g., previous interactions or geographical
location of the user), they still tend to be rigid and not fully tailored to individual
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 195–209, 2020.
https://doi.org/10.1007/978-3-030-59155-7_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_15&domain=pdf
http://orcid.org/0000-0002-5471-4338
http://orcid.org/0000-0002-9417-660X
http://orcid.org/0000-0002-2234-0845
https://doi.org/10.1007/978-3-030-59155-7_15

196 E. M. Grua et al.

users, e.g., by using fixed rule sets or by not considering the unique traits and
behavioral characteristics of the user. In this context, we see personalization [7]
and self-adaptation [15,27] as effective instruments for getting users continuously
engaged and active, eventually leading to better physical and mental conditions.

In this work, we combine personalization and software self-adaptation to pro-
vide users of mobile e-Health apps with a better, more engaging and effective
experience. To this aim, we propose a reference architecture that combines data-
driven personalization with self-adaptation. The main design drivers that make
the proposed reference architecture unique are: (i) the combination of multi-
ple Monitor - Analyze - Plan - Execute (MAPE) loops [17] operating at
different levels of granularity and for different purposes, e.g., to suggest users the
most suitable and timely activities according to their (evolving) health-related
characteristics (e.g., active vs. less active), but also to cope with technical aspects
(e.g., connectivity hiccups, availability of IoT devices and third-party apps on the
user’s device) and the characteristics of the physical environment (e.g., indoor vs.
outdoor, weather); (ii) the exploitation of our online clustering algorithm for
efficiently managing the evolution of the behavior of users as multiple time series
evolving over time. This online clustering algorithm has been already extensively
tested in a previously published article [14], showing promising results by doing
better than the current state-of-the-art.

The main characteristics of the proposed reference architecture are the fol-
lowing: (i) it caters the personalization of provided services to the specific user
preferences (e.g., preferred sport activities); (ii) it guarantees the correct func-
tioning of the provided features via the use of connected IoT devices (e.g., a
smart-bracelet) and runtime adaptation strategies; (iii) it adapts the provided
services depending on contextual factors such as environmental conditions and
weather; (iv) it supports a smooth participation of domain experts (e.g., psy-
chologists) in the personalization and self-adaptation processes; and (v) it can
be applied in the context of a single e-Health app and by integrating the services
of third-party e-Health apps (e.g., already installed sport trackers).

2 Background

The notion of reference architecture (RA) is borrowed from Volpato et al. [26],
who define it as “a special type of software architectures that provide a char-
acterization of software systems functionalities in specific application domains”,
e.g., SOA for service orientation and AUTOSAR for automotive. In the context
of this study, a self-adaptive software system is defined as a system that can
autonomously handle changes and uncertainties in its environment, the system
itself and its goals [27].

For the definition of personalization we build on that by Fan and Poole [7] and
define it as “a process that changes a system to increase its personal relevance to
an individual or a category of individuals”. Furthermore, to enhance personaliza-
tion, we use CluStream-GT (standing for: CluStream for Growing Time-series)
[14]. CluStream-GT was chosen for this RA as it is the state-of-the-art clustering

A Reference Architecture for Personalized and Self-adaptive e-Health Apps 197

algorithm for time-series data (especially within the Health domain). CluStream-
GT works in two phases: offline and online. First, the offline phase initializes the
algorithm with a small initial dataset; this is done either at design time or at
the start of runtime. After, during the online phase the algorithm clusters the
data that is being collected at runtime. Clustering allows the RA to group sim-
ilar users together; where similarity is determined by the data gathered from
the apps. This gives the RA a more sustainable and scalable method of person-
alization, without requiring to create individual personalization strategies but
maintaining a suitable degree of personalization [14,19]. An example case where
clustering can be used to aid personalization is with the use of cluster based
Reinforcement Learning [13].

The methodology used for the design of our RA is the one presented by
Angelov et al. [2].

3 Related Work

Several RAs for IoT can be found in the literature [1,3,4,10]. In particular,
Bauer et al. [4] present several abstract architectural views and perspectives,
which can be differently instantiated. The adaptation of the system’s configura-
tion is also envisioned, at an abstract level. IoT-A [3] aims to be easily customized
to different needs, and it makes use of axioms and relationships to define con-
nections among IoT entities. IIRA [1] is particularly tailored for industrial IoT
systems. WSO2 [10] presents a layered structure and targets scalability and secu-
rity aspects too. All of the above RAs are abstract and domain independent. As
such, they do not address required features specific to the IoT-based e-Health
domain. Moreover, they lack the needed integration with AI for personalization
used to tailor interventions to the user’s health-related characteristics.

Other works providing service oriented architectures (SOAs) focused on adap-
tation but neglected user-based personalization. E.g., Feljan et al. [8] defined a
SOA for planning and execution (SOA-PE) in Cyber Physical Systems (CPS),
and Mohalik et al. [22] proposed a MAPE-K autonomic computing framework to
manage adaptivity in service-based CPS. Morais et al. [23] present RAH, a RA
for IoT-based e-Health apps. RAH has a layered structure, and it provides com-
ponents for the prevention, monitoring and detection of faults. Differently from
RAH, our RA explicitly manages the self-adaptation of the e-Health mobile app,
both at users- and architectural levels. Mizouni et al. [21] propose a framework
for designing and developing context-aware adaptive mobile apps. Their frame-
work lacks other types of adaptation, i.e., adaptation for user personalization
and adaptation with other IoT devices – which is possible with our RA.

Lopez and Condori-Fernandez [20] propose an architectural design for an
adaptive persuasive mobile app with the goal of improving medication adherence.
Accordingly, the adaptation is here focused only on the messages given to the
user and lacks the other levels of adaptation (environment adaptation, etc.) that
our RA covers. Kim [18] proposes a general RA that can be used when developing
adaptive apps and implements a e-Health app as an example. However, being it

198 E. M. Grua et al.

general, the RA lacks the level of detail present in our work, the integration of
AI for personalization, and a way for involving domain experts in the app design
and operation, which is essential in adaptive e-Health.

In summary, to the best of our knowledge, ours is the first RA for e-Health
mobile apps that simultaneously supports (i) personalization for the different
users, by exploiting the users’ smart objects and preferences to dynamically get
data about e.g., their mood and daily activities, and (ii) runtime adaptation to
the user-needs and context in order to keep them engaged and active.

4 Reference Architecture

Figure 1 shows our RA1 with the following stakeholders and components.

 Smartphone

e-Health app

 Smartphone

e-Health app

User Process

Smart Objects

Internet

Environment Sources

App Store

Domain
Expert

Development
Team

Data

U
se

rs

Distribute

Collected
Data

Release

Data

D
at

a

AI Personalization
Adaptation

Editor of
Abstract Activities
& Goals

Clustering History

Query

Create
& Modify

Collected Data

User Process

Notify

Notify

Back-end

U
pd

at
e

V
er

ify

Legend

information-flow

operation

MAPE loop

Update

Catalog of
Abstract Activities
& Goals

Catalog of
Supported Mobile
Applications

Query

D
at

as
to

re
Query

Query

Update

Update

U
pd

at
e

Manage

User Process
Handler

AI Personalization

 Internet
 Connectivity
 Manager

 Smart Objects
 Manager

 Environment
 Driven
 Adaptation
 Manager

 User Driven
 Adaptation
 Manager

 Third-party
 Applications
 Manager

Data

Fig. 1. Reference architecture for personalized and self-adaptive e-Health Apps

Users provide and generate the Data gathered by the e-Health app. At the
first installation, the users are asked to input information to better understand
their aptitudes. After an initial usage phase and data collection, the system has
enough information to assign them to a cluster.

Smartphone is the host where the self-adaptive e-Health app is installed.
In the mobile app, four components, namely User Driven Adaptation Manager,
1 For the interested reader, we have defined the corresponding viewpoint here: http://

s2group.cs.vu.nl/casa-2020-technical-report/.

http://s2group.cs.vu.nl/casa-2020-technical-report/
http://s2group.cs.vu.nl/casa-2020-technical-report/

A Reference Architecture for Personalized and Self-adaptive e-Health Apps 199

Environment Driven Adaptation Manager (UD Adaptation Manager and ED
Adaptation Manager from here on, respectively), Smart Objects Manager and
Internet Connectivity Manager implement a MAPE loop to dynamically perform
adaptation. The Third-party Applications Manager, in turn, is responsible for the
communication with third-party apps supported by the RA that can be exploited
by the e-Health app both during its nominal execution and when adaptation is
performed. It is also responsible for storing the user’s preferences. Further details
on these components are given in Sect. 5.

Smart Objects are devices, other than the smartphone, that the app can
communicate with. They are used to gather additional data about the users as
well as augmenting the data collected by the smartphone sensors. For instance,
a smart-watch would be used by the app to track the user’s heart-rate, therefore
adding extra information on the real-time performance of the user.

Environment is the physical location of the user, and its measurable prop-
erties. It is used by the e-Health app to make runtime adaptations w.r.t. its
current operational context and to the user’s scheduled activities (see Sect. 5.5).

The back-end of our RA (right-hand side of Fig. 1) is Managed by a Devel-
opment team. It additionally exposes an interface to the Domain Expert that is
also involved in the e-Health app design and operation. The back-end contains
the components needed to store the collected user data and to manage the user
clusters. It also hosts components supporting the general functioning of the app.

User Process Handler is in charge of sending User Processes to the
users, by taking care of sending the same User Process to all users of the same
cluster. A User Process is composed of one or more Abstract Activities. These
activities are inspired by the ones introduced in [5], although they differ both in
the structure and in the way they are refined, as later explained. An Abstract
Activity is defined by a vector of one or more Activity categories and an associ-
ated goal, with each vector entry representing a day of the week2. For the sake
of space we leave the description of the formalization of the goal model to future
work.

Each Abstract Activity is defined by the Domain Expert via the Editor of
Abstract Activities & Goals and later stored in the Catalog of Abstract Activities
& Goals. Each Activity category identifies the kind of activity the user should
perform. As an example, the user can receive either a Cardio or Strength Activity
category and so should perform an activity of that kind. More precisely, for each
user, the Activity categories are converted to Concrete Activities at run-time via
the use of the UD Adaptation Manager and based on the user’s preferences. For
instance, a cardio Activity category can be instantiated into different Concrete
Activities such as running, swimming and walking. Moreover, if an Abstract
Activity is composed of multiple Activity categories, all or some of type Cardio,
they can be converted into different Concrete Activities. This implies that users
who receive the same User Process will still be likely to have different Concrete

2 Examples of Abstract Activities are shown here: http://s2group.cs.vu.nl/casa-2020-
technical-report/.

http://s2group.cs.vu.nl/casa-2020-technical-report/
http://s2group.cs.vu.nl/casa-2020-technical-report/

200 E. M. Grua et al.

Activities, therefore personalizing the experience to the individual user (this is
further discussed in Sect. 5.2).

The User Process Handler receives Updates from (i) the AI Personaliza-
tion and (ii) the Editor of Abstract Activities & Goals in order to send User
Processes to their associated users. The AI Personalization Updates the User
Process Handler every time a user moves from one cluster to another, while the
Editor of Abstract Activities & Goals Updates it every time new clusters are
analyzed by the Domain Expert (along with the new associated User Process).
These updates guarantee that the User Process Handler remains up to date
about the User Processes and their associated users.

AI Personalization sends an Update to the Clustering History component
whenever a change occurs in the clusters. The AI Personalization component
uses the CluStream-GT algorithm to cluster users into clusters in a real-time
and online fashion [14]. It receives the input data from the e-Health app (see
Collected Data in Fig. 1). More than one instance of CluStream-GT can be
running at the same time. In fact, there is one instance per category of data.
E.g., if the e-Health app is recording both ecological momentary assessment [25]
and biometric data, one for the purpose of monitoring mood and the other for
fitness, there will be two running instances of the algorithm.

AI Personalization Adaptation is in charge of monitoring the evolution
of clusters and detecting if any change occurs. Examples include the merging of
two clusters or the generation of a new one. To do so, it periodically Queries
the Clustering History database. If one or more new clusters are detected, this
component will Notify both the Development Team and the Domain Expert.
The Domain Expert will examine the new information and add the appropriate
User Process to the Catalog of Abstract Activities & Goals via the dedicated
editor. In turn, the Development Team is notified just as a precaution so that it
can verify if the new cluster is not an anomaly. The specifics of the corresponding
MAPE loop are described in Sect. 5.1.

The role played by AI via the CluStream-GT algorithm is relevant in our RA
as it strongly supports both personalization and self-adaptation, thus guarantee-
ing a continuous user engagement that is crucial in e-Health apps. Specifically,
personalization is achieved by clustering the users based on their preferences and
their physical and mental condition. This supports the RA in assigning appro-
priate User Processes to each user, and further adapt them to continuously cope
with the current status of the user.

Clustering History is a database of all the clusters created by the AI
Personalization component. For each cluster it keeps all of the composing micro-
clusters with all of their contained information.

Editor of Abstract Activities & Goals allows the Domain Expert to
create and modify Abstract Activities (and their associated goals) and to combine
them as User Processes. This is achieved via a web-based interactive UI and the
editor’s ability to Query the Catalog of Abstract Activities & Goals. It is also
the editor’s responsibility to update the User Process Handler if any new User
Process has been created and is currently in use.

A Reference Architecture for Personalized and Self-adaptive e-Health Apps 201

Catalog of Abstract Activities & Goals is a database of all User Pro-
cesses that the Domain Expert has created for each unique current and past
cluster. When a new cluster is defined, the Domain Expert can assign to it an
existing User Process from this catalog, or create a new one and store it.

Catalog of Supported Mobile Applications is a database containing
the metadata needed for interacting with supported third-party mobile apps
installed on users’ devices. This database stores information such as the specific
types of Android intents (and their related extra data) needed for launching
each third-party app, the data it produces after a tracking session, etc. Indeed,
our e-Health app does not provide any specific functionality for executing the
activities suggested to the user (e.g., running, swimming); rather, it brings up
third-party apps (e.g., Strava3 for running and cycling, Swim.com4 for swim-
ming) and collects the data produced by the apps after the user performs the
physical activities. The main reasons for this design decision are: (i) we do not
want to disrupt the users’ habits and preferences in terms of apps used for track-
ing their activities, (ii) we want to build on existing large user bases, (iii) we
do not want to reinvent the wheel by re-implementing functionalities already
supported by development teams with years-long experience.

Whenever the e-Health app evolves by supporting new applications (or no
longer supporting certain applications), the Catalog of Supported Mobile Appli-
cations Updates, through the Datastore, the Third-party Applications Manager.
The Third-party Applications Manager responsibility is to keep the list of sup-
ported mobile apps up to date and provide the corresponding metadata to the
UD Adaptation Manager and the ED Adaptation Manager, when needed.

The e-Health app and back-end communicate via the Internet. Specifically,
the communication from the e-Health app to the back-end is REST-based and
it is performed by the Internet Connectivity Manager, which is responsible for
sending the Collected Data to the AI Personalization component in the back-
end. Communication from the back-end to the e-Health app is performed by the
User Process Handler which is in charge of sending the User Process to the
e-Health app via push notifications.

5 Components Supporting Self-adaptation

The RA has five components used for self-adaptation. To accomplish its respon-
sibilities, each of these components implement a MAPE loop.

5.1 AI Personalization Adaptation

The main goal of the AI Personalization Adaptation is to keep track of the
clusters evolution and to enable the creation of new User Processes. It does it
through its MAPE loop depicted in Fig. 2. During its Monitor phase, the AI

3 http://strava.com.
4 http://swim.com.

http://strava.com
http://swim.com

202 E. M. Grua et al.

Personalization Adaptation monitors the macro-clusters. In its Analyze phase
it determines if there are changes in the monitored macro-clusters. To do so,
the AI Personalisation Adaptation periodically queries the Clustering History
database. It compares the current clusters with the previously saved ones. If any
of the current ones are significantly different, then the AI Personalization Adap-
tation enters its Plan phase. The Plan phase gathers the IDs of the users and
macro-clusters involved in these significant changes. Since this change involves
the need of the creation of new User Processes for all of the users belonging to the
new clusters the Domain Expert must be involved in this adaptation. To achieve
this we have exploited the type of adaptation described in [11], which considers
the involvement of humans in MAPE loops. In particular, in [11] the authors
describe various cases in which a human can be part of a MAPE loop. AI Per-
sonalization Adaptation falls under what the authors refer to as: ‘System Feed-
back (Proactive/foreground)’. This type of adaptation is initiated by the system
which may send information to the human. The human (i.e. Domain Expert) uses
this information to execute the adaptation (by creating the new User Processes
necessary). To send the needed information to the Domain Expert, AI Personal-
ization Adaptation takes the gathered knowledge from the Plan phase and gives
it to Execute. Execute notifies (Fig. 1) both the Development Team and the
Domain Expert about the detected cluster change(s) and relays the gathered
information.

Monitor Plan

Macro-clusters Have the macro-
clusters changed? Is

the change significant?

Plan notifications to be
sent

Send notifications to
the Development Team
and the Domain Expert

Analyze Execute

Fig. 2. AI Personalization Adaptation MAPE loop.

To determine if a cluster is significantly different from another we use a
parameter delta. This parameter is set by the Development Team at design time
and determines how different the stored information of one cluster has to be
from another one to identify them as unique. The Development Team is notified
as a precaution, to double check the change and verify that no errors occurred.

5.2 User Driven Adaptation Manager

The main responsibility of the UD Adaptation Manager is to receive the User
Process from the back-end and convert the contained Abstract Activities into
Concrete Activities. A Concrete Activity represents a specific activity that the
user can perform, also with the support of smart objects and/or corresponding

A Reference Architecture for Personalized and Self-adaptive e-Health Apps 203

mobile apps. As an example, running is a concrete activity during which the user
can exploit a smart-bracelet to monitor their cardio rate as well as a dedicated
mobile app to measure the run distance and the estimated burned calories. A
Concrete Activity is designed as a class containing multiple attributes that is
stored on the smartphone. The attributes are:

Monitor Plan

User process Is the user process new? (Re)specify the user
activities based on

current preferences and
relevant installed apps

Store the personalised
user process and notify

the user of the new
activities

Analyze Execute

Fig. 3. UD Adaptation Manager MAPE loop.

• Selectable: is True if the UD Adaptation Manager or the ED Adapta-
tion Manager can choose this Concrete Activity, when dynamically refining
Abstract Activities; False otherwise. It is set by the user via the user pref-
erences.

• Location: it specifies if the activity is performed indoors or outdoors. This
attribute is used by the ED Adaptation Manager to choose the appropriate
Concrete Activity according to weather conditions (see Sect. 5.5).

• Activity category: it defines what type of category does the Concrete Activ-
ity fall under. E.g., for a fitness activity, it specifies a cardio or strength
training.

• Recurrence: it tracks how many times the user has performed the Con-
crete Activity in the past. It allows the UD Adaptation Manager to have a
preference ranking system within all the selectable Concrete Activities.

For each user, the Concrete Activities are derived from their preferences
stored in the Third-party Applications Manager. During its nominal execution,
the UD Adaptation Manager is in charge of refining the Abstract Activities
in the User Process into Concrete ones. To do this, it queries the Third-party
Applications Manager and exploits its knowledge of the Concrete Activities and
their attributes. After completing the task, the UD Adaptation Manager presents
the personalized User Process to the user as a schedule, where each slot in
the vector of Activity categories corresponds to a day. Therefore creating the
personalized user schedule of Concrete Activities.

Refining a User Process is required every time that the user is assigned with
a new process, to keep up with its improvements and/or cluster change. To
this aim, a dynamic User Process adaptation is needed to adapt at run-time
the personalized user schedule, in a transparent way and without a direct user
involvement. Figure 3 depicts the MAPE loop of the UD Adaptation Manager.

204 E. M. Grua et al.

Once it accomplishes its main task of refining the User Process, the UD Adap-
tation Manager enters the Monitor phase of its MAPE loop, by monitoring
the User Process. The Analyze phase receives the monitored User Process from
Monitor. Analyze is now responsible to determine if the user has been assigned
a new User Process. If so, the UD Adaptation Manager converts the Abstract
Activities in this new User Process into Concrete ones, taking into account the
user preferences. It makes this conversion by finding suitable Concrete activi-
ties during the Plan phase. As all of the Abstract Activities have been matched
with a corresponding Concrete activity, the Execute phase makes the conver-
sion, storing this newly created personalized User Process and notifying the user
about the new activity schedule.

5.3 Smart Objects Manager

This component aims to maintain the connection with the user’s smart objects
and, if not possible, find alternative sensors to make the e-Health app able to
continuously collect user’s data, thus to perform optimally. To this aim, it imple-
ments a MAPE loop, shown in Fig. 4, supporting the dynamic adaptation at the
architectural level of the smart objects. The Monitor phase is devoted to the
run-time monitoring of the connection status with the smart objects. Connection
problems can be due to either the smart objects themselves, which can be out
of battery, or to missing internet, bluetooth or bluetooth low energy connectiv-
ity. The Analyze phase is in charge of verifying the current connection status
(received by Monitor) and see if the connection status with any of the smart
objects has changed. During the Plan phase the MAPE will create a sequential
plan of actions that the Execute will have to perform. All of the actions are
aimed at re-establishing the lost connection or at finding a new source of data.
For instance, if the smart-watch connected to the smartphone runs out of bat-
tery and the attempts to reconnect to it fail, the Smart Objects Manager will
switch to sensors inbuilt in the smartphone (such as the accelerometer).

Monitor Plan

Connection status of
the smart objects

Has the connection
status (on/off)

changed?

If not connected,
reconnect.

If reconnecting doesn't
work notify the user.

If notification failed find a
new source of data

Execute the plan in a
sequential manner

Analyze Execute

Fig. 4. Smart Objects Manager MAPE loop.

A Reference Architecture for Personalized and Self-adaptive e-Health Apps 205

5.4 Internet Connectivity Manager

The main purposes of the Internet Connectivity Manager are to (1) send the
Collected Data to the back-end and store them locally when the connection is
missing, and (2) provide resilience to the e-Health app’s internet connectivity.
As shown in the MAPE loop in Fig. 5, during the Monitor phase the Internet
Connectivity Manager runtime monitors the quality of the smartphone’s internet
connection. Analyze is then in charge of detecting whether a significant connec-
tion quality alteration is taking place. If so, the Internet Connectivity Manager
enters the Plan phase and it plans for an alternative. The alternative can include
switching the connection type or storing the currently collected data locally on
the smartphone. As a new connection can be established, the component sends
the data to the back-end to be used by the AI Personalization.

Monitor Plan

Internet connection
quality

Has the quality
significantly altered?

Change the mean of
connection or store the
data locally and send

when possible

Establish new
connection or

store/send data

Analyze Execute

Fig. 5. Internet Connectivity Manager MAPE loop.

5.5 Environment Driven Adaptation Manager

One of the objectives of the e-Health app is keeping the users constantly engaged,
to ensure that they execute their planned schedule of activities. To this aim, the
ED Adaptation Manager plays an important role, which is essentially supported
by its MAPE loop, depicted in Fig. 6. The purpose of this component is to con-
stantly check whether the currently scheduled Concrete Activity best matches
the runtime environment (i.e., weather conditions) the user is located in. To do
so, the ED Adaptation Manager monitors in run-time the user’s environment.
The Monitor phase periodically updates the Analyze phase by sending the envi-
ronment data. This phase establishes if the environment significantly changed.
If so, it triggers the Plan phase that verifies whether the currently planned Con-
crete Activity is appropriate for the user’s environment. If it is not, it finds an
appropriate alternative and sends the information to Execute. Execute swaps
the planned Concrete Activity with the newly found one and notifies the user of
this change.

206 E. M. Grua et al.

Monitor Plan

Environment
 (weather and
geolocation)

Has the environment
changed significantly?

Change the Concrete
Activity and notify the
user of such change

Analyze Execute

If the current Concrete
Activity is not

appropriate, find an
appropriate alternative

Fig. 6. ED Adaptation Manager MAPE loop.

6 Discussion

It is important to note that our RA is extensible so to support other domains
beyond fitness and mood. On the client side no changes are required, whereas the
only components which may need to be customized to a new application domain
are: (i) the Editor of Abstract Activities & Goals, so that it is tailored to the
different domain experts; and (ii) the Catalog of Supported Mobile Applications,
so that it now describes the interaction points with different third-party apps.

Abstract Activities allow Domain Experts to define incremental goals span-
ning over the duration of the whole User Process. In addition, User Processes
are defined at the cluster level (potentially including thousands of users) and
can cover large time spans (e.g., weeks or months). Those features make the
operation of the RA sustainable from the perspective of Domain Experts, who
are not required to frequently intervene for defining new goals or User Processes.

Furthermore, through the conversion from Activity Categories to Concrete
Activities, which takes place during the dynamic Abstract Activities refinement,
we accommodate both Type-to-Type adaptation (e.g., from the Cardio Activity
Category to the Running Concrete Activity) and the most common Type-to-
Instance adaptation (e.g., by using the Strava mobile app as an instance of the
Running Concrete Activity). Similarly, a Type-to-Type adaptation is reported
by Calinescu et al. [6] presenting an approach where elements are replaced with
other elements providing the same functionality but showing a superior quality
to deal with changing conditions (e.g., dynamic replacement of service instances
in service-based systems). In our approach, however, we go beyond, by replacing
activities with others providing different functionality to deal with changing
conditions. To the best of our knowledge, this adaptation type is uncommon in
self-adaptive architectures, despite quite helpful.

The components of the RA running on the smartphone can be deployed
in two different ways, each leading to a different business case. Firstly, those
components can be integrated into an existing e-Health app (e.g., Endomondo5

for sports tracking) so to provide personalization and self-adaptation capabilities
to its services. In this case the development team of the app just needs to deploy

5 http://endomondo.com.

http://endomondo.com

A Reference Architecture for Personalized and Self-adaptive e-Health Apps 207

the client-side components of the RA as a third-party library, suitably integrate
the original app with the added library, and launch the server-side components.
The second business case regards the creation of a new meta-app integrating
the services of third-party apps, similarly to what apps like IFTTT6 do. In this
case, the meta-app makes an extensive usage of the Third-party Applications
Manager component and orchestrates the execution of the other apps already
installed on the user device.

Finally, we are aware that our RA is responsible for managing highly-sensitive
user data, which may raise severe privacy concerns. In order to mitigate potential
privacy threats, the communication between the mobile app and the back-end is
TLS-encrypted and the payload of push notifications is encrypted as well, e.g., by
using the Capillary Project [16] for Android apps, which supports state-of-the-art
encryption algorithms, such as RSA and Web Push encryption. Eventually, we
highlight that, according to the privacy level required by the Development Team,
the components running in the back-end can be deployed either on premises or
in the Cloud, e.g., by building on public Cloud services like Amazon AWS and
execute them in a protected environment, e.g., behind additional authentication
and authorization layers.

7 Conclusions and Future Work

In this paper we presented a RA for e-Health apps. Its goal is to combine AI-
based personalization and self-adaptation. The RA achieves self-adaptation on
three levels: (i) adaptation to the users and their environment, (ii) adaptation
to smart objects and third-party applications, and (iii) adaptation according to
the data of the AI-based personalization, ensuring that users receive personalized
activities that evolve with the users’ run-time changes in behavior.

As future work we are realizing a prototype implementing the RA and design-
ing a controlled experiment to evaluate its effects on users’ behavior and perfor-
mance at run-time.

References

1. The industrial internet of things volume G1: reference architecture. Ind. Internet
Consort. (2019). https://bit.ly/2talimM

2. Angelov, S., Grefen, P., Greefhorst, D.: A framework for analysis and design of
software reference architectures. Inf. Softw. Technol. 54(4), 417–431 (2012)

3. Bassi, A., et al.: Enabling Things to Talk: Designing IoT Solutions with the IoT
Architectural Reference Model, 1st edn. Springer, Heidelberg (2016). https://doi.
org/10.1007/978-3-642-40403-0

4. Bauer, M., et al.: IoT reference architecture. In: Enabling Things to Talk: Designing
IoT solutions with the IoT Architectural Reference Model (2013)

6 http://ifttt.com.

https://bit.ly/2talimM
https://doi.org/10.1007/978-3-642-40403-0
https://doi.org/10.1007/978-3-642-40403-0
http://ifttt.com

208 E. M. Grua et al.

5. Bucchiarone, A., Lafuente, A.L., Marconi, A., Pistore, M.: A formalisation of
adaptable pervasive flows. In: Laneve, C., Su, J. (eds.) WS-FM 2009. LNCS, vol.
6194, pp. 61–75. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-
14458-5 4

6. Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T.: Engi-
neering trustworthy self-adaptive software with dynamic assurance cases. IEEE
Trans. Softw. Eng. 44(11), 1039–1069 (2018)

7. Fan, H., Poole, M.S.: What is personalization? Perspectives on the design and
implementation of personalization in information systems. J. Organ. Comput. Elec-
tron. Commer. 16(3–4), 179–202 (2006)

8. Feljan, A.V., Mohalik, S.K., Jayaraman, M.B., Badrinath, R.: SOA-PE: a service-
oriented architecture for planning and execution in cyber-physical systems. In: 2015
International Conference on Smart Sensors and Systems (IC-SSS), pp. 1–6 (2015)

9. Fling, B.: Mobile Design and Development: Practical Concepts and Techniques for
Creating Mobile Sites and Web Apps. O’Reilly Media Inc., Sebastopol (2009)

10. Fremantle, P.: A Reference Architecture for the Internet of Things. WSO2 White
paper (2015). https://bit.ly/2RMzCft

11. Gil, M., Pelechano, V., Fons, J., Albert, M.: Designing the human in the loop of
self-adaptive systems. In: Garćıa, C.R., Caballero-Gil, P., Burmester, M., Quesada-
Arencibia, A. (eds.) UCAmI 2016. LNCS, vol. 10069, pp. 437–449. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-48746-5 45

12. Global Industry Analysts, Inc.: mHealth (mobile health) services - market analysis,
trends, and forecasts (2019). https://tinyurl.com/rbvdtc3

13. Grua, E.M., Hoogendoorn, M.: Exploring clustering techniques for effective rein-
forcement learning based personalization for health and wellbeing. In: 2018 IEEE
Symposium Series on Computational Intelligence (SSCI), pp. 813–820. IEEE
(2018)

14. Grua, E.M., Hoogendoorn, M., Malavolta, I., Lago, P., Eiben, A.: Clustream-GT:
online clustering for personalization in the health domain. In: IEEE/WIC/ACM
International Conference on Web Intelligence, pp. 270–275. ACM (2019)

15. Grua, E.M., Malavolta, I., Lago, P.: Self-adaptation in mobile apps: a system-
atic literature study. In: IEEE/ACM 14th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS), pp. 51–62 (2019)

16. Hogben, G., Perera, M.: Project capillary: End-to-end encryption for push mes-
saging, simplified. (2018). https://tinyurl.com/y8n8btoc

17. IBM: An architectural blueprint for autonomic computing. Technical report. IBM
(2006)

18. Kim, H.K.: Architecture for adaptive mobile applications. Int. J. Bio-Sci. Bio-
Technol. 5(5), 197–210 (2013)

19. Kim, K., Ahn, H.: Using a clustering genetic algorithm to support customer seg-
mentation for personalized recommender systems. In: Kim, T.G. (ed.) AIS 2004.
LNCS (LNAI), vol. 3397, pp. 409–415. Springer, Heidelberg (2005). https://doi.
org/10.1007/978-3-540-30583-5 44

20. Suni Lopez, F., Condori-Fernandez, N.: Design of an adaptive persuasive mobile
application for stimulating the medication adherence. In: Poppe, R., Meyer, J.-J.,
Veltkamp, R., Dastani, M. (eds.) INTETAIN 2016 2016. LNICST, vol. 178, pp.
99–105. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-49616-0 9

21. Mizouni, R., Matar, M.A., Al Mahmoud, Z., Alzahmi, S., Salah, A.: A frame-
work for context-aware self-adaptive mobile applications SPL. Expert. Syst. Appl.
41(16), 7549–7564 (2014)

https://doi.org/10.1007/978-3-642-14458-5_4
https://doi.org/10.1007/978-3-642-14458-5_4
https://bit.ly/2RMzCft
https://doi.org/10.1007/978-3-319-48746-5_45
https://tinyurl.com/rbvdtc3
https://tinyurl.com/y8n8btoc
https://doi.org/10.1007/978-3-540-30583-5_44
https://doi.org/10.1007/978-3-540-30583-5_44
https://doi.org/10.1007/978-3-319-49616-0_9

A Reference Architecture for Personalized and Self-adaptive e-Health Apps 209

22. Mohalik, S.K., Narendra, N.C., Badrinath, R., Le, D.: Adaptive service-oriented
architectures for cyber physical systems. In: IEEE Symposium on Service-Oriented
System Engineering, SOSE, pp. 57–62 (2017)

23. de Morais Barroca Filho, I., Aquino Junior, G.S., Vasconcelos, T.B.: Extending
and instantiating a software reference architecture for IoT-based healthcare appli-
cations. In: Misra, S., et al. (eds.) ICCSA 2019. LNCS, vol. 11623, pp. 203–218.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24308-1 17

24. Paschou, M., Sakkopoulos, E., Sourla, E., Tsakalidis, A.: Health internet of things:
metrics and methods for efficient data transfer. Simul. Model. Pract. Theory 34,
186–199 (2013)

25. Shiffman, S., Stone, A.A., Hufford, M.R.: Ecological momentary assessment. Annu.
Rev. Clin. Psychol. 4, 1–32 (2008)

26. Volpato, T., Oliveira, B.R.N., Garcés, L., Capilla, R., Nakagawa, E.Y.: Two per-
spectives on reference architecture sustainability. In: Proceedings of the 11th Euro-
pean Conference on Software Architecture: Companion, pp. 188–194. ACM (2017)

27. Weyns, D.: Software engineering of self-adaptive systems: an organised tour and
future challenges. In: Chapter in Handbook of Software Engineering (2017)

28. Williams, P.A.H., McCauley, V.: A rapidly moving target: conformance with e-
health standards for mobile computing. In: 2nd Australian eHealth Informatics
and Security Conference (2013)

https://doi.org/10.1007/978-3-030-24308-1_17

CSE/QUDOS - Joint Workshop
on Continuous Software Engineering

and Quality-Aware DevOps

Joint Workshop on Continuous Software
Engineering and Quality-Aware DevOps

(CSE/QUDOS)

It is our great pleasure to welcome you to CSE/QUDOS 2020 – the joint 5th Workshop
on Continuous Software Engineering (CSE 2020) and 6th International Workshop on
Quality-Aware DevOps (QUDOS 2020), held virtually as part of the 14th European
Conference on Software Architecture (ECSA 2020).

The QUDOS workshop provides a forum for experts from academia and industry to
present and discuss novel quality-aware methods, practices, and tools for DevOps. On
the other hand, the goal of the CSE workshop is to present and discuss innovative
solutions, ideas, and experiences in the area of continuity along the entire software
engineering lifecycle, hence, CSE. For the second time, the CSE and QUDOS work-
shops joined forces to foster cross-fertilization and bootstrap an even bigger, stronger
community around the urgently emerging topics they are both addressing from different
angles.

CSE/QUDOS 2020 is a one-day workshop. The workshop received eight sub-
missions for full papers, three submissions for short papers, and two abstract sub-
missions for industry talks. The quality of submissions was extremely high, leading us
to accept four technical full papers, two short papers, and one industry abstract. These
papers were selected by the program chairs based on the reviews provided by the
CSE/QUDOS 2020 Program Committee members. In addition to the talks presenting
the accepted papers, CSE/QUDOS 2020 featured an invited keynote and ample space
was devoted to discussions on continuous software engineering and quality-aware
DevOps.

We thank the Program Committee members, who helped with timely and con-
structive reviews, as well as each author and presenter for their contributions to the
CSE/QUDOS 2020 workshop.

The joint CSE/QUDOS 2020 workshops were organized and technically sponsored
by the Research Group (RG), the DevOps Performance Working Group of the Standard
Performance Evaluation Corporation (SPEC RG), and the consortium of the EU project
RADON. The workshop is also supported by the IFIP Working Group on Service
Oriented Systems and the GI Working Group Microservices and DevOps.

Organization

Workshop Chairs

Robert Chatley Imperial College London, UK
Katja Kevic Microsoft, UK

CSE Steering Committee

Stephan Krusche Technical University of Munich, Germany
Horst Lichter RWTH Aachen University, Germany
Dirk Riehle FAU Nürnberg, Germany
Andreas Steffens RWTH Aachen University, Germany

QUDOS Steering Committee

Danilo Ardagna Politecnico di Milano, Italy
Giuliano Casale Imperial College London, UK
Andre van Hoorn University of Stuttgart, Germany
Philipp Leitner Chalmers — University of Gothenburg,

Sweden

Workshop Program Committee

Bram Adams Polytechnique Montréal, Canada
Maurício Aniche TU Delft, Netherlands
Cor-Paul Bezemer University of Alberta, Canada
Jan Bosch Chalmers University of Technology, Sweden
Daniel Bryant DataWire and InfoQ, UK
Jürgen Cito TU Vienna, Austria
Thomas Kurpick Trusted Shops GmbH, Germany
Shane McIntosh McGill University, Canada
Brendan Murphy Container Solutions, UK
Adrian Mouat University of Oxford, UK
Cesare Pautasso University of Lugano, Switzerland
Kayla Shapiro Facebook, UK

Emma Söderberg Lund University, Sweden
Damian Tamburri TU Eindhoven, The Netherlands
Catia Trubiani Gran Sasso Science Institute, Italy
Benji Weber Snyk, UK
Uwe Zdun University of Vienna, Austria

214 Organization

Collecting Service-Based Maintainability
Metrics from RESTful API Descriptions:
Static Analysis and Threshold Derivation

Justus Bogner1(B) , Stefan Wagner1 , and Alfred Zimmermann2

1 Institute of Software Engineering, University of Stuttgart, Stuttgart, Germany
{justus.bogner,stefan.wagner}@iste.uni-stuttgart.de

2 Herman Hollerith Center, University of Applied Sciences Reutlingen,
Reutlingen, Germany

alfred.zimmermann@reutlingen-university.de

Abstract. While many maintainability metrics have been explicitly
designed for service-based systems, tool-supported approaches to auto-
matically collect these metrics are lacking. Especially in the context of
microservices, decentralization and technological heterogeneity may pose
challenges for static analysis. We therefore propose the modular and
extensible RAMA approach (RESTful API Metric Analyzer) to calcu-
late such metrics from machine-readable interface descriptions of REST-
ful services. We also provide prototypical tool support, the RAMA CLI,
which currently parses the formats OpenAPI, RAML, and WADL and
calculates 10 structural service-based metrics proposed in scientific liter-
ature. To make RAMA measurement results more actionable, we addi-
tionally designed a repeatable benchmark for quartile-based threshold
ranges (green, yellow, orange, red). In an exemplary run, we derived
thresholds for all RAMA CLI metrics from the interface descriptions of
1,737 publicly available RESTful APIs. Researchers and practitioners
can use RAMA to evaluate the maintainability of RESTful services or
to support the empirical evaluation of new service interface metrics.

Keywords: RESTful services · Microservices · Maintainability · Size ·
Complexity · Cohesion · Metrics · Static analysis · API documentation

1 Introduction

Maintainability, i.e. the degree of effectiveness and efficiency with which a soft-
ware system can be modified to correct, improve, extend, or adapt it [17], is
an essential quality attribute for long-living software systems. To manage and
control maintainability, quantitative evaluation with metrics [9] has long estab-
lished itself as a frequently employed practice. In systems based on service ori-
entation [22], however, many source code metrics lose their importance due to
the increased level of abstraction [4]. For microservices as a lightweight and
fine-grained service-oriented variant [20], factors like the large number of small
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 215–227, 2020.
https://doi.org/10.1007/978-3-030-59155-7_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_16&domain=pdf
http://orcid.org/0000-0001-5788-0991
http://orcid.org/0000-0002-5256-8429
http://orcid.org/0000-0003-3352-7207
https://doi.org/10.1007/978-3-030-59155-7_16

216 J. Bogner et al.

services, their decentralized nature, or high degree of technological heterogeneity
may pose difficulties for metric collection and the applicability of existing met-
rics, which has also been reported in the area of performance testing [11]. Several
researchers have therefore focused on adapting existing metrics and defining new
metrics for service orientation (see e.g. our literature review [7] or the one from
Daud and Kadir [10]).

However, approaches to automatically collect these metrics are lacking and
for the few existing ones, tool support is rarely publicly available (see Sect. 2).
This significantly hinders empirical metric evaluation as well as industry adop-
tion of service-based metrics. To circumvent the described challenges, we there-
fore propose a metric collection approach focused on machine-readable REST-
ful API descriptions. RESTful web services are resource-oriented services that
employ the full HTTP protocol with methods like GET, POST, PUT, or DELETE as
well as HTTP status codes to expose their functionality on the web [23]. For
microservices, RESTful HTTP is used as one of the primary communication
protocols [20]. Since this protocol is popular in industry [5,26] and API docu-
mentation formats like WADL1, OpenAPI2, or RAML3 are widely used, such an
approach should be broadly applicable to real-world RESTful services. Relying
on machine-readable RESTful documentation avoids having to implement tool
support for several programming languages. Second, such documents are often
created reasonably early in the development process if a design-first approach is
used. And lastly, if such documents do not exist for the system, they can often
be generated automatically, which is supported for popular RESTful frameworks
like e.g. Spring Boot4.

While formats like OpenAPI have been used in many analysis and reengi-
neering approaches for service- and microservice-based systems [18,19,25], there
is so far no broadly applicable and conveniently extensible approach to calculate
structural service-based maintainability metrics from interface specifications of
RESTful services. To fill this gap, we propose a new modular approach for the
static analysis of RESTful API descriptions called RAMA (RESTful API Metric
Analyzer), which we describe in Sect. 3. Our prototypical tool support to show
the feasibility of this approach, the RAMA CLI, is able to parse the popular for-
mats OpenAPI, RAML, and WADL and calculates a variety of service interface
metrics related to maintainability. Lastly, we also conducted a benchmark-based
threshold derivation study for all metrics implemented in the RAMA CLI to
make measurements more actionable for practitioners (see Sect. 4).

2 Related Work

Because static analysis for service orientation is very challenging, most proposals
so far focused on programming language independent techniques. In the context
1 https://www.w3.org/submission/wadl.
2 https://www.openapis.org.
3 https://raml.org.
4 https://springdoc.org.

https://www.w3.org/submission/wadl
https://www.openapis.org
https://raml.org
https://springdoc.org

Collecting Service-Based Maintainability Metrics from RESTful APIs 217

of service-oriented architecture (SOA), Gebhart and Abeck [13] developed an
approach that extracts metrics from the UML profile SoaML (Service-oriented
architecture Modeling Language). The used metrics are related to the quality
attributes unique categorization, loose coupling, discoverability, and autonomy.

For web services, several authors also used WSDL documents as the basis for
maintainability evaluations. Basci and Misra [3] calculated complexity metrics
from them, while Sneed [27] designed a tool-supported WSDL approach with
metrics for quantity or complexity as well as maintainability design rules.

To identify linguistic antipatterns in RESTful interfaces, Palma et al. [21]
developed an approach that relies on semantic text analysis and algorithmic
rule cards. They do not use API descriptions like OpenAPI. Instead, their tool
support invokes all methods of an API under study to document the necessary
information for the rule cards.

Finally, Haupt et al. [14] published the most promising approach. They used
an internal canonical data model to represent the REST API and converted
both OpenAPI and RAML into this format via the epsilon transformation lan-
guage (ETL). While this internal model is beneficial for extensibility, the chosen
transformation relies on a complex model-driven approach. Moreover, the exten-
sibility for metrics remains unclear and some of the implemented metrics simply
count structural attributes like the number of resources or the number of POST
requests. The model also does not take data types into account, which are part
of many proposed service-based cohesion or complexity metrics. So, while the
general approach from Haupt et al. is a sound foundation, we adjusted it in
several areas and made our new implementation publicly available.

3 The RAMA Approach

In this section, we present the details of our static analysis approach called
RAMA (RESTful API Metric Analyzer). To design RAMA, we first analyzed
existing service-based metrics to understand which of them could be derived
solely from service interface definitions and what data attributes would be nec-
essary for this. This analysis relied mostly on the results of our previous literature
review [7], but also took some newer or not covered publications into account.
Additionally, we analyzed existing approaches for WSDL and OpenAPI (see
Sect. 2). Based on this analysis, we then developed a data model, an architec-
ture, and finally prototypical tool support.

Relying on a canonical data model to which each specification format has
to be converted increases the independence and extensibility of our approach.
RAMA’s internal data model (see Fig. 1) was constructed based on entities
required to calculate a wide variety of complexity, size, and cohesion metrics.
While we tried to avoid unnecessary properties, we still needed to include all
metric-relevant attributes and also to find common ground between the most
popular RESTful description languages.

The hierarchical model starts with a SpecificationFile entity that con-
tains necessary metadata like a title, a version, or the specification format (e.g.

218 J. Bogner et al.

Fig. 1. Simplified canonical data model of RAMA.

OpenAPI or RAML). It also holds a single API wrapper entity consisting of a
base path like e.g. /api/v1 and a list of Paths. These Paths are the actual
REST resources of the API and each one of them holds a list of Methods. A
Method represents an HTTP verb like GET or POST, i.e. in combination, a Path
and a Method form a service operation, e.g. GET /customers/1/orders to fetch
all orders from customer with ID 1. Additionally, a Method may have inputs,
namely Parameters (e.g. path or query parameters) and RequestBodies, and
outputs, namely Responses. Since RequestBodies and Responses are usually
complex objects of ContentMediaTypes like JSON or XML, they are both rep-
resented by a potentially nested DataModel with Properties. Both Parameters
and Properties contain the used data types, as this is important for cohesion
and complexity metrics. This model represents the core of the RAMA approach.

Based on the described data model, we designed the general architecture of
RAMA as a simple command line interface (CLI) application that loosely follows
the pipes and filters architectural style. One module type in this architecture is
Parser. A Parser takes a specific REST description language like OpenAPI as
input and produces our canonical data model from it. Metrics represent the sec-
ond module type and are calculated from the produced data model. The entirety
of calculated Metrics form a summarized results model, which is subsequently
presented as the final output by different Exporters. This architecture is easily
extensible and can also be embedded in other systems or a CI/CD pipeline.

The prototypical implementation of this approach is the RAMA CLI5. It
is written in Java and uses Maven for dependency management. For metric
modules, a plugin mechanism based on Java interfaces and the Java Reflection

5 https://github.com/restful-ma/rama-cli.

https://github.com/restful-ma/rama-cli

Collecting Service-Based Maintainability Metrics from RESTful APIs 219

API enables the dynamic inclusion of newly developed metrics. We present an
overview of the implemented modules in Fig. 2.

Fig. 2. Implemented architecture of the RAMA CLI (arrows indicate data flow).

For our internal data model, we used the protocol buffers format6 developed
by Google. Since it is language- and platform-neutral and is easily serializable,
it can be used in diverse languages and technologies. There is also a tooling
ecosystem around it that allows conversion between protocol buffers and various
RESTful API description formats. From this created protobuf model, the nec-
essary Java classes are automatically generated (Canonical REST API Model in
Fig. 2).

With respect to input formats, we implemented Parsers for OpenAPI,
RAML, and WADL, since these are among the most popular ones based on
GitHub stars, Google search hits, and StackOverflow posts [15]. Moreover, most
of them offer a convenient tool ecosystem that we can use in our Parser
implementations. A promising fourth candidate was the Markdown-based API
Blueprint7, which seems to be rising in popularity. However, since there is so far
no Java parser for this format, we did not include it in the first prototype.

The RAMA CLI currently implements 10 service-based maintainability
Metrics proposed in five different scientific publications (see Table 1), namely
seven complexity metrics, two cohesion metrics, and one size metric. We chose
these metrics to cover a diverse set of structural REST API attributes, which
should demonstrate the potential scope of the approach. We slightly adjusted
some of the metrics for REST, e.g. the ones proposed for WSDL. For additional
details on each metric, please refer to our documentation8 or the respective
source.

Finally, we implemented two Exporters for the CLI, namely one for a PDF
and one for a JSON file. Additionally, the CLI automatically outputs the results
to the terminal. While this prototype already offers a fair amount of features
and should be broadly applicable, the goal was also to ensure that it can be
6 https://developers.google.com/protocol-buffers.
7 https://apiblueprint.org.
8 https://github.com/restful-ma/rama-cli/tree/master/docs/metrics.

https://developers.google.com/protocol-buffers
https://apiblueprint.org
https://github.com/restful-ma/rama-cli/tree/master/docs/metrics

220 J. Bogner et al.

extended with little effort. In this sense, the module system and the usage of
interfaces and the Reflection API make it easy to add new Parsers, Metrics,
or Exporters so that the RAMA CLI can be of even more value to practitioners
and researchers.

Table 1. Implemented maintainability metrics of the RAMA CLI.

Name Abbrev. Property Source

Average Path Length APL Complexity Haupt et al. [14]

Arguments per Operation APO Complexity Basci and Misra [3]

Biggest Root Coverage BRC Complexity Haupt et al. [14]

Data Weight DW Complexity Basci and Misra [3]

Distinct Message Ratio DMR Complexity Basci and Misra [3]

Longest Path LP Complexity Haupt et al. [14]

Number of Roots NOR Complexity Haupt et al. [14]

Lack of Message-Level Cohesion LoCmsg Cohesion Athanasopoulos et al. [1]

Service Interface Data Cohesion SIDC Cohesion Perepletchikov et al. [24]

Weighted Service Interface Count WSIC Size Hirzalla et al. [16]

4 Threshold Benchmarking

Metric values on their own are often difficult to interpret. Some metrics may
have a lower or an upper bound (e.g. a percentage between 0 and 1) and may
also indicate that e.g. lower values are better or worse. However, that is often
still not enough to derive implications from a specific measurement. To make
metric values more actionable, thresholds can therefore play a valuable role [28].
We therefore designed a simple, repeatable, and adjustable threshold derivation
approach to ease the application of the metrics implemented within RAMA.

4.1 Research Design

Since it is very difficult to rigorously evaluate a single threshold value, the major-
ity of proposed threshold derivation methods analyze the measurement distri-
bution over a large number of real-world systems. These methods are called
benchmark-based approaches [2] or portfolio-based approaches [8]. Since a large
number of RESTful API descriptions are publicly available, we decided to imple-
ment a simple benchmark-based approach.

Inspired by Bräuer et al. [8], we formed our labels based on the quartile
distribution. Therefore, we defined a total of four ranked bands into which a
metric value could fall (see also Table 2), i.e. with the derived thresholds, a
measurement could be in the top 25%, between 25% and the median, between
the median and 75%, or in the bottom 25%. Depending on whether lower is
better or worse for the metric, each band was associated with one of the colors
green, yellow, orange, and red (ordered from best to worst). If a metric result is

Collecting Service-Based Maintainability Metrics from RESTful APIs 221

Table 2. Used metric threshold bands (colors are based on a metric where lower is
better; for metrics where higher is better, the color ordering would be reversed).

Band Color Start End

Q1 green lower bound or minimum 1st quartile

Q2 yellow 1st quartile 2nd quartile / median

Q3 orange 2nd quartile / median 3rd quartile

Q4 red 3rd quartile upper bound or maximum

in the worst 25% (red) or between the median and the worst 25% (orange) of
analyzed systems, it may be advisable to improve the related design property.

To derive these thresholds per RAMA CLI metric, we designed an automated
benchmark pipeline that operates on a large number of API description files. The
benchmark consists of the four steps Search, Measure, Combine, and Aggregate
(see Fig. 3). The first step was to search for publicly available descriptions of
real-world APIs. For this, we used the keyword and file type search on GitHub.
Additionally, we searched the API repository from APIs.guru9, which provides
a substantial number of OpenAPI files.

Once a sufficiently large collection of parsable files had been established, we
collected the metrics from them via the RAMA CLI (Measure step). In the third
step Combine, this collection of JSON files was then analyzed by a script that
combined them into a single CSV file, where each analyzed API represented a
row. Using this file with all measurements, another script executed the threshold
analysis and aggregation (Aggregate step). Optionally, this script could filter out
APIs, e.g. too small ones. As results, this yielded a JSON file with all descriptive
statistics necessary for the metric thresholds as well as two diagram types to
potentially analyze the metric distribution further, namely a histogram and a
boxplot, both in PNG format.

To make the benchmark as transparent and repeatable as possible, we pub-
lished all related artifacts such as scripts, the used API files, and documentation
in a GitHub repository10. Every subsequent step after Search is fully automat-
able and we also provide a wrapper script to execute the complete benchmark
with one command. Our goal is to provide a reusable and adaptable foundation
for re-executing this benchmark with different APIs as input that may be more
relevant threshold indicators for a specific REST API under analysis.

4.2 Results

We initially collected 2,651 real-world API description files (2,619 OpenAPI,
18 WADL, and 14 RAML files). This sample was dominated by large cloud
providers like Microsoft Azure (1,548 files), Google (305 files), or Amazon Web

9 https://apis.guru/browse-apis.
10 https://github.com/restful-ma/thresholds.

https://apis.guru/browse-apis
https://github.com/restful-ma/thresholds

222 J. Bogner et al.

Fig. 3. Threshold benchmark design.

Services (205 files). Additionally, there were cases where we had several files of
different versions for the same API.

Collecting Service-Based Maintainability Metrics from RESTful APIs 223

A preliminary analysis of the collected APIs revealed that a large portion
of them were very small, with only two or three operations. Since it seems rea-
sonable to assume that several of the RAMA CLI metrics are correlated with
size, we decided to exclude APIs with less than five operations (Weighted Service
Interface Count < 5) to avoid skewing the thresholds in favor of very small APIs.
Therefore, we did not include 914 APIs in the Aggregate step. Our exemplary
execution of the described benchmark calculated the quartile-based thresholds
based on a total of 1,737 public APIs (1,708 OpenAPI, 16 WADL, and 13
RAML files). The median number of operations for these APIs was 15. Table 3
lists the thresholds for all 10 metrics of the RAMA CLI. Because of the sequen-
tial parsing of API files, the execution of the benchmark can take up to several
hours on machines with low computing power. We therefore also provide all
result artifacts of this exemplary run in our repository11.

Table 3. Calculated metric thresholds from 1,737 API description files.

Metric Top 25% 25% - 50% 50% - 75% Worst 25%

APO [0.20, 3.52]]3.52, 4.60]]4.60, 8.63]]8.63, 21.63]

APL [1.00, 2.50]]2.50, 5.00]]5.00, 8.00]]8.00, 15.60]

BRC [1.00, 1.00]]1.00, 0.99]]0.99, 0.60]]0.60, 0.00]

DW [4, 77]]77, 167]]167, 378]]378, 41570]

DMR [0.00, 0.26]]0.26, 0.36]]0.36, 0.48]]0.48, 1.00]

LoCmsg [0.00, 0.53]]0.53, 0.62]]0.62, 0.69]]0.69, 1.00]

LP [1, 3]]3, 8]]8, 10]]10, 19]

NOR [1, 1]]1, 2]]2, 3]]3, 359]

SIDC [1.00, 1.00]]1.00, 0.64]]0.64, 0.55]]0.55, 0.00]

WSIC [5, 8]]8, 15]]15, 31]]31, 1126]

5 Limitations and Threats to Validity

While we pointed out several advantages of the RAMA approach, there are
also some limitations. First, RAMA only supports RESTful HTTP and there-
fore excludes asynchronous message-based communication. Even though REST
is arguably still more popular for microservice-based systems, event-driven
microservices based on messaging receive more and more attention. Similar doc-
umentation standards for messaging are slowly emerging (see e.g. AsyncAPI12),
but our current internal model and metric implementations are very REST-
specific. While several metrics are undoubtedly valid in both communication

11 https://github.com/restful-ma/thresholds/tree/master/results.
12 https://www.asyncapi.com.

https://github.com/restful-ma/thresholds/tree/master/results
https://www.asyncapi.com

224 J. Bogner et al.

paradigms, substantial efforts would be necessary to fully support messaging in
addition to REST. Apart from that, the approach requires machine-readable
RESTful API descriptions to work. While such specifications are popular in the
RESTful world, not every service under analysis will have one. And thirdly,
relying on an API description file restricts the scope of the evaluation. Collected
metrics are focused on the interface quality of a single service and cannot make
any statement about the concrete service implementation. Therefore, RAMA
cannot calculate system-wide metrics except for aggregates like mean, which
also excludes metrics for the coupling between services.

Our prototypical implementation, the RAMA CLI, may also suffer from
potential limitations. While we tried to make it applicable to a wide range
of RESTful services by supporting the three formats OpenAPI, RAML, and
WADL, there are still other used formats for which we currently do not have a
parser, e.g. API Blueprint13. Similarly, there are many more proposed service-
based metrics we could have implemented in the RAMA CLI. The modular
architecture of RAMA consciously supports possible future extensions in this
regard. Lastly, we unfortunately cannot guarantee that the prototype is com-
pletely free of bugs and works reliably with every single specification file. While
we were very diligent during the implementation, have a test coverage of ∼75%,
and successfully used the RAMA CLI with over 2,500 API specification files, it
remains a research prototype. For transparency, the code is publicly available as
open source and we welcome contributions like issues or pull requests.

Finally, we need to mention threats to validity concerning our empirical
threshold derivation study. One issue is that the derived thresholds rely entirely
on the quality and relevance of the used API description files. If the majority
of files in the benchmark are of low quality, the derived thresholds will not be
strict enough. Measurement values of an API may then all fall into the Q1 band,
when, in reality, the service interface under analysis is still not well designed.
By including a large number of APIs from trustworthy sources, this risk may
be reduced. However, there still may be services from specific contexts that are
so different that they need a custom benchmark to produce relevant thresholds.
Examples could be benchmarks based only on a particular domain (e.g. cloud
management), on a single API specification format (e.g. RAML), or on APIs of
a specific size (e.g. small APIs with 10 or less operations). As an example, large
cloud providers like Azure, Google, or AWS heavily influenced our benchmark
run. Each one of these uses fairly homogeneous API design, which influenced
some metric distributions and thresholds. We also eliminated a large number
of very small services with less than five operations to not skew metrics in this
direction. So, while our provided thresholds may be useful for a quick initial
quality comparison, it may be sensible to select the input APIs more strictly to
create a more appropriate size- or domain-specific benchmark. To enable such
replication, our benchmark focuses on repeatability and adaptability.

13 https://apiblueprint.org.

https://apiblueprint.org

Collecting Service-Based Maintainability Metrics from RESTful APIs 225

6 Conclusion

To support static analysis based on proposed service-based maintainability met-
rics in the context of microservices, we designed a tool-supported approach called
RAMA (RESTful API Metric Analyzer). Service interface metrics are collected
based on machine-readable descriptions of RESTful APIs. Our implemented pro-
totypical tool, the RAMA CLI, currently supports the specification formats Ope-
nAPI, RAML, and WADL as well as 10 metrics (seven for complexity, two for
cohesion, and one size metric). To aid with results interpretation, we also con-
ducted an empirical benchmark that calculated quartile-based threshold ranges
(green, yellow, orange, red) for all RAMA CLI metrics using 1,737 public REST-
ful APIs. Since the thresholds are very dependent on the quality and relevance of
the used APIs, we designed the automated benchmark to be repeatable. Accord-
ingly, we published the RAMA CLI14 as well as all results and artifacts of the
threshold derivation study15 on GitHub.

RAMA can be used by researchers and practitioners to efficiently calculate
suitable service interface metrics for size, cohesion, or complexity, both for early
quality evaluation or within continuous quality assurance. Concerning possible
future work, a straight-forward option would be the extension of the RAMA CLI
with additional input formats and metrics to increase its applicability and util-
ity. Additionally, our static approach could be combined with existing dynamic
approaches [6,12] to mitigate some of its described limitations. However, the
most critical expansion for this line of research is the empirical evaluation of
proposed service-based maintainability metrics, as most authors did not provide
such evidence. Due to the lack of automatic collection approaches, such evalu-
ation studies were previously challenging to execute at scale. Our preliminary
work can therefore serve as a valuable foundation for such endeavors.

Acknowledgments. We kindly thank Marvin Tiedtke, Kim Truong, and Matthias
Winterstetter for their help with the threshold study execution and tool develop-
ment. Similarly, we thank Kai Chen and Florian Grotepass for their implementation
support. This research was partially funded by the Ministry of Science of Baden-
Württemberg, Germany, for the doctoral program Services Computing (https://www.
services-computing.de/?lang=en).

References

1. Athanasopoulos, D., Zarras, A.V., Miskos, G., Issarny, V., Vassiliadis, P.: Cohesion-
driven decomposition of service interfaces without access to source code. IEEE
Trans. Serv. Comput. 8(4), 550–5532 (2015). https://doi.org/10.1109/TSC.2014.
2310195

2. Baggen, R., Correia, J.P., Schill, K., Visser, J.: Standardized code quality bench-
marking for improving software maintainability. Software Qual. J. 20(2), 287–307
(2012). https://doi.org/10.1007/s11219-011-9144-9

14 https://github.com/restful-ma/rama-cli.
15 https://github.com/restful-ma/thresholds.

https://www.services-computing.de/?lang=en
https://www.services-computing.de/?lang=en
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1109/TSC.2014.2310195
https://doi.org/10.1007/s11219-011-9144-9
https://github.com/restful-ma/rama-cli
https://github.com/restful-ma/thresholds

226 J. Bogner et al.

3. Basci, D., Misra, S.: Data complexity metrics for XML web services. Adv. Electr.
Comput. Eng. 9(2), 9–15 (2009). https://doi.org/10.4316/aece.2009.02002

4. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Assuring the evolvability
of microservices: insights into industry practices and challenges. In: 2019 IEEE
International Conference on Software Maintenance and Evolution (ICSME), pp.
546–556. IEEE, Cleveland, Ohio, USA, September 2019. https://doi.org/10.1109/
ICSME.2019.00089

5. Bogner, J., Fritzsch, J., Wagner, S., Zimmermann, A.: Microservices in indus-
try: insights into technologies, characteristics, and software quality. In: 2019 IEEE
International Conference on Software Architecture Companion (ICSA-C), pp. 187–
195. IEEE, Hamburg, Germany, March 2019. https://doi.org/10.1109/ICSA-C.
2019.00041

6. Bogner, J., Schlinger, S., Wagner, S., Zimmermann, A.: A modular approach to
calculate service-based maintainability metrics from runtime data of microservices.
In: Franch, X., Männistö, T., Mart́ınez-Fernández, S. (eds.) PROFES 2019. LNCS,
vol. 11915, pp. 489–496. Springer, Cham (2019). https://doi.org/10.1007/978-3-
030-35333-9 34

7. Bogner, J., Wagner, S., Zimmermann, A.: Automatically measuring the maintain-
ability of service- and microservice-based systems: a literature review. In: Proceed-
ings of the 27th International Workshop on Software Measurement and 12th Inter-
national Conference on Software Process and Product Measurement on - IWSM
Mensura 2017, pp. 107–115. ACM Press, New York (2017). https://doi.org/10.
1145/3143434.3143443

8. Bräuer, J., Saft, M., Plösch, R., Körner, C.: Improving object-oriented design qual-
ity: a portfolio- and measurement-based approach. In: Proceedings of the 27th
International Workshop on Software Measurement and 12th International Confer-
ence on Software Process and Product Measurement on - IWSM Mensura 2017, pp.
244–254. ACM Press, New York (2017). https://doi.org/10.1145/3143434.3143454

9. Coleman, D., Ash, D., Lowther, B., Oman, P.: Using metrics to evaluate software
system maintainability. Computer 27(8), 44–49 (1994). https://doi.org/10.1109/
2.303623

10. Daud, N.M.N., Kadir, W.M.N.W.: Static and dynamic classifications for SOA
structural attributes metrics. In: 2014 8th. Malaysian Software Engineering Con-
ference (MySEC), pp. 130–135. IEEE, Langkawi, September 2014. https://doi.org/
10.1109/MySec.2014.6986002

11. Eismann, S., Bezemer, C.P., Shang, W., Okanović, D., van Hoorn, A.: Microser-
vices: a performance tester’s dream or nightmare? In: Proceedings of the
ACM/SPEC International Conference on Performance Engineering, pp. 138–149.
ACM, New York, April 2020. https://doi.org/10.1145/3358960.3379124

12. Engel, T., Langermeier, M., Bauer, B., Hofmann, A.: Evaluation of microservice
architectures: a metric and tool-based approach. In: Mendling, J., Mouratidis, H.
(eds.) CAiSE 2018. LNBIP, vol. 317, pp. 74–89. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-92901-9 8

13. Gebhart, M., Abeck, S.: Metrics for evaluating service designs based on SoaML.
Int. J. Adv. Software 4(1), 61–75 (2011)

14. Haupt, F., Leymann, F., Scherer, A., Vukojevic-Haupt, K.: A framework for the
structural analysis of REST APIs. In: 2017 IEEE International Conference on
Software Architecture (ICSA), pp. 55–58. IEEE, Gothenburg, April 2017. https://
doi.org/10.1109/ICSA.2017.40

https://doi.org/10.4316/aece.2009.02002
https://doi.org/10.1109/ICSME.2019.00089
https://doi.org/10.1109/ICSME.2019.00089
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1109/ICSA-C.2019.00041
https://doi.org/10.1007/978-3-030-35333-9_34
https://doi.org/10.1007/978-3-030-35333-9_34
https://doi.org/10.1145/3143434.3143443
https://doi.org/10.1145/3143434.3143443
https://doi.org/10.1145/3143434.3143454
https://doi.org/10.1109/2.303623
https://doi.org/10.1109/2.303623
https://doi.org/10.1109/MySec.2014.6986002
https://doi.org/10.1109/MySec.2014.6986002
https://doi.org/10.1145/3358960.3379124
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1007/978-3-319-92901-9_8
https://doi.org/10.1109/ICSA.2017.40
https://doi.org/10.1109/ICSA.2017.40

Collecting Service-Based Maintainability Metrics from RESTful APIs 227

15. Haupt, F., Leymann, F., Vukojevic-Haupt, K.: API governance support through
the structural analysis of REST APIs. Comput. Sci. Res. Dev. 33(3), 291–303
(2017). https://doi.org/10.1007/s00450-017-0384-1

16. Hirzalla, M., Cleland-Huang, J., Arsanjani, A.: A metrics suite for evaluating flexi-
bility and complexity in service oiriented architectures. In: Feuerlicht, G., Lamers-
dorf, W. (eds.) ICSOC 2008. LNCS, vol. 5472, pp. 41–52. Springer, Heidelberg
(2009). https://doi.org/10.1007/978-3-642-01247-1 5

17. International Organization For Standardization: ISO/IEC 25010 - Systems and
software engineering - Systems and software Quality Requirements and Evaluation
(SQuaRE) - System and software quality models (2011)

18. Mayer, B., Weinreich, R.: An approach to extract the architecture of microservice-
based software systems. In: 2018 IEEE Symposium on Service-Oriented System
Engineering (SOSE), pp. 21–30. IEEE, Bamberg, March 2018. https://doi.org/10.
1109/SOSE.2018.00012

19. Neumann, A., Laranjeiro, N., Bernardino, J.: An analysis of public REST web
service APIs. IEEE Trans. Serv. Comput. PP(c), 1 (2018). https://doi.org/10.
1109/TSC.2018.2847344

20. Newman, S.: Building Microservices: Designing Fine-Grained Systems, 1st edn.
O’Reilly Media, Sebastopol, CA, USA (2015)

21. Palma, F., Gonzalez-Huerta, J., Moha, N., Guéhéneuc, Y.-G., Tremblay, G.: Are
RESTful APIs well-designed? Detection of their linguistic (Anti)patterns. In: Bar-
ros, A., Grigori, D., Narendra, N.C., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol.
9435, pp. 171–187. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-
662-48616-0 11

22. Papazoglou, M.: Service-oriented computing: concepts, characteristics and direc-
tions. In: Proceedings of the 4th International Conference on Web Information
Systems Engineering (WISE 2003), p. 10. IEEE Computer Society, Rome, Italy
(2003). https://doi.org/10.1109/WISE.2003.1254461

23. Pautasso, C.: RESTful web services: principles, patterns, emerging technologies.
In: Bouguettaya, A., Sheng, Q.Z., Daniel, F. (eds.) Web Services Foundations, pp.
31–51. Springer, New York (2014). https://doi.org/10.1007/978-1-4614-7518-7 2

24. Perepletchikov, M., Ryan, C., Frampton, K.: Cohesion metrics for predicting main-
tainability of service-oriented software. In: Seventh International Conference on
Quality Software (QSIC 2007), pp. 328–335. IEEE, Portland (2007). https://doi.
org/10.1109/QSIC.2007.4385516

25. Petrillo, F., Merle, P., Palma, F., Moha, N., Guéhéneuc, Y.-G.: A lexical and
semantical analysis on REST cloud computing APIs. In: Ferguson, D., Muñoz,
V.M., Cardoso, J., Helfert, M., Pahl, C. (eds.) CLOSER 2017. CCIS, vol. 864, pp.
308–332. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94959-8 16

26. Schermann, G., Cito, J., Leitner, P.: All the services large and micro: revisiting
industrial practice in services computing. In: Norta, A., Gaaloul, W., Gangadha-
ran, G.R., Dam, H.K. (eds.) ICSOC 2015. LNCS, vol. 9586, pp. 36–47. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-50539-7 4

27. Sneed, H.M.: Measuring web service interfaces. In: 2010 12th IEEE International
Symposium on Web Systems Evolution (WSE), pp. 111–115. IEEE, Timisoara,
September 2010. https://doi.org/10.1109/WSE.2010.5623580

28. Vale, G., Fernandes, E., Figueiredo, E.: On the proposal and evaluation of a
benchmark-based threshold derivation method. Software Qual. J. 27(1), 275–306
(2018). https://doi.org/10.1007/s11219-018-9405-y

https://doi.org/10.1007/s00450-017-0384-1
https://doi.org/10.1007/978-3-642-01247-1_5
https://doi.org/10.1109/SOSE.2018.00012
https://doi.org/10.1109/SOSE.2018.00012
https://doi.org/10.1109/TSC.2018.2847344
https://doi.org/10.1109/TSC.2018.2847344
https://doi.org/10.1007/978-3-662-48616-0_11
https://doi.org/10.1007/978-3-662-48616-0_11
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.1007/978-1-4614-7518-7_2
https://doi.org/10.1109/QSIC.2007.4385516
https://doi.org/10.1109/QSIC.2007.4385516
https://doi.org/10.1007/978-3-319-94959-8_16
https://doi.org/10.1007/978-3-662-50539-7_4
https://doi.org/10.1109/WSE.2010.5623580
https://doi.org/10.1007/s11219-018-9405-y

Optimizing Parametric Dependencies for
Incremental Performance Model

Extraction

Sonya Voneva1(B), Manar Mazkatli1(B), Johannes Grohmann2(B),
and Anne Koziolek1(B)

1 Karlsruhe Institute of Technology, Karlsruhe, Germany
uzeci@student.kit.edu,

{manar.mazkatli,koziolek}@kit.edu
2 University of Würzburg, Würzburg, Germany

johannes.grohmann@uni-wuerzburg.de

Abstract. Model-based performance prediction in agile software devel-
opment promises to evaluate design alternatives and to reduce the cost
of performance tests. To minimize the differences between a real soft-
ware and its performance model, parametric dependencies are intro-
duced. They express how the performance model parameters (such as
loop iteration count, branch transition probabilities, resource demands,
and external service call arguments) depend on impacting factors like
the input data.

The approaches that perform model-based performance prediction in
agile software development have two major shortcomings: they are either
costly because they do not update the performance models automatically
after each commit, or do not consider more complex parametric depen-
dencies than linear.

This work extends an approach for continuous integration of perfor-
mance model during agile development. Our extension aims to optimize
the learning of parametric dependencies with a genetic programming
algorithm to be able to detect non-linear dependencies.

The case study results show that using genetic programming enables
detecting more complex dependencies and improves the accuracy of the
updated performance model.

Keywords: Performance model (PM) · Parametric dependencies ·
Genetic programming (GP) · Agile development

1 Introduction

When software performance does not meet the predefined requirements, delays,
higher costs, and failures on deployment may occur [26]. Thus, the approach of
Software Performance Engineering (SPE) is crucial in today’s software develop-
ment process. Model-based Performance Prediction (MbPP), first introduced by

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 228–240, 2020.
https://doi.org/10.1007/978-3-030-59155-7_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_17&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_17

Optimizing Parametric Dependencies for Incremental Performance 229

Smith [22] under the name SPE, aims to avoid potential performance issues using
a performance model of the considered system. This allows the reproduction of
the time-critical behaviour of a system based on a simulation [19]. PMs allow
the developers to judge the quality of their software components and the design
alternatives without investing the effort of actually implementing and testing
them.

To describe the specific implementation of the components better, para-
metric dependencies are introduced. They express the relation between input
arguments of a service and the Performance Model Parameters (PMPs). The
PMPs are represented by abstract source code characterizations like loop iter-
ations count, branch transition probabilities, resource demands, and arguments
of external service calls. The parameterization allows answering “what-if”- ques-
tions, like MbPP for unseen usage profiles or design alternatives. For example,
if we detected that the resource demand of a specific service equals its input
argument * 5, we can easily simulate the system under new conditions (new
input).

One disadvantage of MbPP is that creating a PM and keeping it consistent
with the source code during agile software development is a time-consuming
task. Until recently, researchers have focused on automating the extraction of
PMs, but two main flaws are found in existing works [3,4,13,15,23,25].

– in order to extract the PM after some update in the code, the whole system
must be instrumented and run, which causes high monitoring overhead and
discards the manual changes that may be applied to the extracted PMs (e.g.,
refinements to PMs architecture or to PMPs).

– they don’t examine how the PMPs depend on input data, i.e. the parametric
dependencies, except [7,13].

In the approach, proposed by Mazkatli et al. [17], Continuous Integration of
Performance Model (CIPM), both issues are addressed by incremental extraction
and calibration of PMs with parametric dependencies.

The incremental calibration of CIPM [18] covers, however, only linear depen-
dencies. This work extends CIPM by (1) advanced estimation of the external
calls’ arguments, considering the parametric dependencies and (2) by optimiz-
ing all the detected dependencies using a genetic algorithm. For goal (1), we filter
the dependency candidates by applying feature selection. We furthermore search
for a dependency not only to the input arguments of a service, but, considering
the data flow, to the return values of the previous external calls.

This paper is structured as follows: Sect. 2 gives an overview of the back-
grounds of our work, Sect. 3 presents a code example to clarify the definition
of parametric dependencies. In Sect. 4 we elaborate on the specific steps of our
approach. Section 5 covers the evaluation part of the work. In Sect. 6 the related
work in the scientific field is discussed. Finally, Sect. 7 concludes the paper and
suggests some future work.

230 S. Voneva et al.

2 Foundations

This chapter contains the foundations of our approach. We discuss the different
tools, libraries and algorithms, involved in the process.

2.1 Palladio

Palladio is an approach to model and simulate architecture-level PMs. Within
Palladio, the Palladio Component Model (PCM) defines a language for describ-
ing PMs: the static structure of the software (e.g. components and interfaces),
the behavior, the required resource environment, the allocation of software com-
ponents, and the usage profile.

The PCM Service Effect Specification (SEFF) [20] describes the behavior of
a component service on an abstract level using different control flow elements:
internal actions (a combination of internal computations that do not include calls
to required services), external call actions (calls to required services), loops, and
branch actions. SEFF loops and branch actions include at least one external
call, otherwise they are merged into the internal actions to increase the level
of abstraction. To predict the performance measures (response times, central
processing unit (CPU) utilization, and throughput) the architects have to enrich
the SEFFs with PMPs. Examples of PMPs are resource demands (processing
amount that internal action requests from a certain active resource, such as a
CPU or hard disk), the probability of selecting a branch, the number of loop
iterations, and the arguments of external calls.

Palladio uses the stochastic expression (StoEx) language to define PMPs
as expressions that contain random variables or empirical distributions.
StoEx allows to refer to variable properties (e.g. NUMBER_OF_ELEMENTS,
VALUE, BYTESIZE, and TYPE). StoEx also supports calculations (e.g.
5*file.BYTESIZE) and comparisons (e.g. (x.VALUE > 8) ? 1 : 2) [20].

2.2 Kieker

Kieker [9] is an extensible open-source application performance management
tool, which allows capturing, analyzing and visualizing execution traces of source
code. Monitoring probes are inserted into the source code without modifying it.
They can be predefined and customized or dynamic and adaptive. We use Kieker
with manually instrumented code to store monitoring records. For defining the
structure of the records we use the Instrumentation Record Language (IRL) [10].

2.3 Algorithms

For detecting initial parametric dependencies we integrated two Machine Learn-
ing (ML) algorithms from the Java library Weka [8]. Linear regression is used
for estimating dependencies which consists only of numeric values. Decision tree
is adopted for all dependencies which contain numeric and nominal values.

Optimizing Parametric Dependencies for Incremental Performance 231

For refining the initial dependencies we applied Genetic Programming
(GP) [12]. It is a meta-heuristic machine learning technique which, inspired by
the Darwinian principle of survival and evolution of the fittest, finds an opti-
mal solution to a search problem. The definition of optimal is according to a
predefined fitness function. Each potential solution is referred to as an individ-
ual. Furthermore, individuals consist of genes. GP is a special kind of genetic
algorithm with genes, forming a tree structure.

In the following, the most important elements of GP will be described. A
gene repository stores the genes, which itself is a base for creating a chromosome
repository. The chromosome repository keeps all chromosomes. A chromosome
is a potential solution of the problem, whereas the genes are the particles, of
which that solution is composed. A set of chromosomes is called a generation.

A typical GP approach consists of multiple steps, which are repeated in many
iterations. In the first iteration an initial generation is created from individuals
in the chromosome repository. Next, the crossover and mutation take place. The
process of crossover is analogous to biological crossover in human reproduction
- parent chromosomes are recombined to form new children. Mutation is simply
changing one or multiple genes of a chromosome to ensure genetic diversity.

The fitness function determines how“good”/“fit” an individual is. In order to
define the fitness of an individual, domain expertise on properties of the expected
optimal solution is required.

2.4 Continuous Integration of Performance Model

Continuous Integration of Performance Model (CIPM) is an approach to auto-
matically keep the architectural PM consistent during the agile software devel-
opment [17]. Its idea is to respond to the changes in source code by updating
and calibrating the PM incrementally.

CIPM uses predefined consistency rules [14] that propagate the changes in
source code to the PM using model-based transformations. Additionally, CIPM
applies model-based instrumentation that instruments only the changed parts of
source code to provide the required monitoring data for calibrating the new/up-
dated parts of PMs.

After executing the source code, CIPM analyses the generated monitoring
data to calibrate PMs incrementally [11,18]. The incremental calibration esti-
mates the missing PMPs considering the (linear) parametric dependencies. For
the detection of the parametric dependencies, CIPM uses ML algorithms like
linear regression and decision tree, which may result in inaccurate parametrized
PMPs if more complex dependencies exist.

CIPM updates also the deployment and usage parts of PMs to respond to the
potential changes in deployment or usage profile. To validate the accuracy of the
updated PM, CIPM starts the simulation and calculates the variation between
the monitoring data and the simulation results to show the estimation error.

232 S. Voneva et al.

3 Parametric Dependencies Example

To illustrate the meaning of a parametric dependency, listing 1.1 will be exam-
ined. In this code piece, we have two components - A and B. The presented
method from component A - serviceA() calls three services from its external
component - B. This means that component A is the requiring component and
component B is the providing component. As one can notice, the branch transi-
tion and the arguments of the external service calls depend on the arguments of
serviceA().

The external calls in this scenario are the calls to serviceB1(), serviceB2()
and serviceB3(). We try to estimate the dependency between each argument
of an external call and the corresponding candidates for a dependency from the
arguments of serviceA() or the data flow like the list result. The candidates
for a dependency can be arguments from the same data type (as the external
call argument) or arguments which have a characteristic from the same data
type. For example, the candidates for the integer argument of the serviceB2
are the x.VALUE, y.VALUE and result.NUMBER_OF_ELEMENTS. These candidates
are used to build a dataset which is the training set of our ML algorithms,
which try to detect the dependencies. In PCM the dependencies can be rep-
resented as a StoEx (see Sect. 2.1). So, if the dependencies in this example are
successfully detected the StoEx s would be: 4 * y.VALUE for the argument of the
serviceB1(), x.VALUE ^ 2 + y.VALUE for the argument of the serviceB2()
and result.NUMBER_OF_ELEMENTS for the argument of the serviceB3().

public class A {
2

private B componentB;
4

public void serviceA(int x, int y, boolean b){
6 /* Some internal action */

if(b){
8 /* Some internal action */

List<Integer> result = componentB.serviceB1(4*y);
10 componentB.serviceB2(Math.pow(x,2) + y);

componentB.serviceB3(result.size());
12 }

...
14 }

}

Listing 1.1. Example of a service (serviceA()) calling external services (serviceB1()
and serviceB2() or serviceB3())

Optimizing Parametric Dependencies for Incremental Performance 233

4 Approach

The proposed approach is part of the vision described by Mazkatli and Koziolek
[17], see section Sect. 2.4. They describe a tool which automatically updates a
PM, represented as PCM, from iterative source code changes. The incremental
calibration [18] enriches the extracted PM with parametric dependencies of the
form:

Di(P) = (a ∗ p0 + b ∗ p1 + ... + z ∗ pn + C) (1)

where p0, p1..pn are numeric service arguments or numeric attributes of the
caller’s arguments. a..z are the weights of the input arguments and C is a con-
stant. This work aims to additionally detect non-linear parametric dependencies
for external call arguments and for all types of PMPs and to refine the linear
dependencies.

In the following, we present an overview of our workflow (cf. Fig. 1).

Instrumentation of
source code

Feature
selection

Loop
iterations

Branch
transition

Resource
demand

PCM
Parametric

dependencies
StoEx

construction

Artefact

Process Related Work

Contribution

External call
argumens

(A)

(A) identifying dependencies
(B) optimizing dependencies

Genetic
Programming

(B)

Estimation

Applying
heuristics

Monitoring data

Fig. 1. Workflow of our approach

Preprocessing. We begin by applying some heuristics, similarly to [13], before
monitoring the source code. The point is to reduce the monitoring overhead
by recording only performance-relevant information. For example, if we have
an input argument which has the type List<T>, we may not be interested in
its specific elements. Therefore, we monitor only its size. In our approach, we
defined which characteristics should be monitored for every data type which is
handled.

Afterwards, the source code is instrumented using the framework Kieker, see
Sect. 2.2, similarly to [18].

The collected monitoring data is one of the inputs needed for our dependency
estimation approach. The other input is the PCM of the system. We can easily
differentiate between the records of the PMPs, because Kieker stores them as
separate types. We have monitoring record types for loop, branch, internal action
demanding a resource, and an external call action. For example, a monitoring

234 S. Voneva et al.

record for the latter contains information like external action id, service execution
id, caller id, caller execution id, input parameters, return value, entry and exit
timestamps. More information on this can be found in this Bachelor’s thesis [24].

Feature Selection and ML Models. The monitoring records are then converted to
datasets (for each PMP a separate one), which are valid as inputs for the algo-
rithms of Weka [8]. We use this library for feature selection and then creating an
estimation model for each PMP. We filter the dataset to remove all attributes
which do not have an impact on the prediction quality. For judging this, the
ClassifierSubsetEval class was chosen, which evaluates attribute subsets on
training data. It uses a classifier to estimate the ‘merit’ of a set of attributes.
In our case the classifiers are LinearRegression - for numeric values only, and
J48 - a decision tree, implementing the C4.5 algorithm ([21]), for both nominal
and numeric values. The evaluator also needs a specified search technique. Our
choice - BestFirst performs greedy hill climbing with backtracking; one can
specify how many consecutive non-improving nodes must be encountered before
the system backtracks. We defined the search to be bidirectional. After reduc-
ing the datasets, we can instantiate our classifiers. As the workflow shows, the
construction of estimation models for the loops, branches and internal actions,
demanding some resource, was already implemented. To generate the StoEx, we
parse the classifier output (coefficients) and build a string from it.

Optimizing. The major part of our approach is improving the linear dependen-
cies from [18], which are detected with the ML algorithms in Weka, see Sect. 2.3.
By detecting more complex dependencies and updating the PM accordingly, the
accuracy of the model is increased. The dependencies are refined only if the mean
squared error, that they produce, is bigger than 0.1. The optimization is con-
ducted according to the GP algorithm presented in Sect. 2.3. In order to reduce
the time needed by the algorithm to produce a solution, we set the output of the
above-mentioned ML algorithms as an initial parametric dependency (starting
point of the genetic evolution).

Similarly to the approach of Krogmann et al. [13], we model genes as mathe-
matical functions to express more complex dependencies. Figure 2 depicts an
example of a gene. This is very beneficial for our approach since both, the
Abstract Syntax Tree (AST) of the StoEx language and the genes of GP have tree
structures and we are able to easily transform the initial StoEx into a starting
individual for the GP.

Another worth-mentioning feature of the GP is the fitness function. In our
implementation the fitness of an individual (mathematical expression) is judged
according to its complexity (depth of AST) and prediction accuracy (mean
squared error). Moreover, each algorithm run (evolution) is restricted by a max-
imum run time and a maximum number of generations - these limits are imple-
mented as parameters of the algorithm.

In our work, we used the Jenetics library1, written in Java, which provides
a GP implementation. In contrast to other GP implementations, Jenetics uses
1 https://jenetics.io/manual/manual-5.1.0.pdf.

https://jenetics.io/manual/manual-5.1.0.pdf

Optimizing Parametric Dependencies for Incremental Performance 235

Power
^

Variable
"x.VALUE"

Variable
"y.VALUE"

Addition
+

Constant
"2"

Fig. 2. Tree representation of the individual x2 + y

the concept of an evolution stream for executing the evolution steps. Therefore,
it is no longer necessary to perform the evolution steps in an imperative way.

The final step of the workflow is constructing the StoEx - this involves some
string processing. Then, the StoEx is inserted in the PCM at the right place and
as an output of our approach we deliver the PCM, enriched with the optimized
parametric dependencies.

5 Case Study

Our evaluation is twofold. First, we judge the importance of feature selection
and the accuracy of the initial estimated dependencies. Second, we evaluate the
optimization technique GP. In the first part, we compare the accuracy and the
complexity of the estimated dependencies when feature selection is used and
when not. The results do not show a significant impact of using the feature
selection for numerical variables in contrast to using it for nominal ones [24].
Therefore, due to lack of space in this paper we focus on the second part of the
evaluation to show the most representative results.

5.1 Goal and Scenario

Our main research question is: which PM is more accurate - with GP optimiza-
tion or without? To answer this question, we calibrate three different PMs: one
with our approach, one considering only linear dependencies and the last one -
without any parametric dependencies. For the calibration, we use a monitoring
data generated by a usage profile P1. Then, we use the three models to pre-
dict the performance for unforeseen usage profile P2. To compare the prediction
power of these PMs, we compare the predicted response times by the simulations
with the actual response times that we can measure for P2. Both response times
are distributions, therefore we use the following metrics to compare the simi-
larity: Kolmogorov-Smirnov-Test (KS-Test) [6] that tests whether two empirical
distributions come from the same underlying distribution, the Wasserstein met-
ric [16] that quantifies the effort needed to transfer one distribution into the
other, and conventional statistical measures. For both KS-Test and Wasserstein,
the lower the value is, the higher is the accuracy of PM.

236 S. Voneva et al.

5.2 Setup

To answer the research question above we implemented an artificial example - a
small application with focus on the external service calls with complex depen-
dencies. The most important components of the micro-system are:

class A contains our target method for incremental calibration of the PCM
- serviceA(). Its first part is shown in listing 1.1. The rest of the method consists
of a loop and some other external service calls. This method has three arguments
- int x, int y, and boolean b. The component class A has the PCM role of
a requiring component - this means it requires some external services.

class B encapsulates six methods which are called by class A.So class B
has the PCM role of a providing component. Each of these six methods has only
one input argument and contains an internal action, which does some computa-
tions like calculating prime numbers or square root of 1000 numbers in an array.
The arguments of the called methods in class B each have a different depen-
dency to the service argument(s) of class A. To ensure variety we set different
dependencies: linear, qudratic, cubic, negation, etc.

First, we apply a fine-grained monitoring using the following usage profile
P1 to generate the required monitoring data for the calibration. For this, we
ran serviceA() 500 times with ten simulated concurrent users. We chose the
arguments x, y and b as follows: random integer from the set [0..9], random
integer from the set [1, ..10], and random boolean. With the described setup the
monitoring itself took around 20 min. After this, we calibrated three different
PMs - one only with distribution functions of the estimated PMPs (manually
calibrated), one after learning the linear dependencies as described in [18] and
one with more complex (optimized) dependencies as described in this paper.

Then, we start the simulation using the three PMs to predict the response
time of serviceA() for the unforeseen usage profile (P2): i.e., changing the x
parameter to a random integer from the set [0..19], y parameter to random
integer from the set [1..20], and b to random boolean. We repeat the simulation
50 times for each PM to make the results more representative.

As a reference, we monitor serviceA() coarse-grained for the usage profile
(P2), to create a validation set for the evaluation. Coarse-grained monitoring
records the entry and exit times without the unnecessary monitoring overhead,
like service id or arguments. Finally, we compare the simulation results with the
actual monitoring data using the metrics defined in Sect. 5.1.

5.3 Results

First, we want to discuss the time aspect of calibrating a PMs with our approach
and the benefits of doing this iteratively. We measured that identifying and opti-
mizing all six dependencies between arguments of serviceA() and arguments of
the external calls from class B takes around 35 s on average. A linear depen-
dency is detected for around 4 s (with the ML algorithms) and a quadratic, for
example, takes around 10 s, as it involves the optimization process. In a sce-
nario, where only one input argument of an external service call is changed the

Optimizing Parametric Dependencies for Incremental Performance 237

iterative update of the PM, i.e. considering only the modified parts of the code,
could save us a serious percentage of the optimization time.

Table 1 presents a comparison between the response times of serviceA()
over 50 iterations according to the monitoring data and to the three PMs simu-
lations. From each distribution, the quartiles, as well as the minimum, maximum,
and average values are calculated. As the table shows, the performance predic-
tion of the PM that is calibrated with our approach - optimizing parametric
dependencies, is the closest prediction to the actual monitoring response time
in comparison to the prediction of other PMs: PM that is calibrated with linear
dependencies and PM that is distribution functions, where parametric depen-
dencies for external service calls are not handled at all.

Table 1. Response times (in seconds) of the three PMs: first - parameterized only
with distribution functions for the external call arguments, then - only with linear
dependencies for all PMPs and finally - with more complex dependencies for all PMPs.

Distribution Min Q1 Q2 Q3 Max Avg

Monitoring 0.009 0.217 0.59 1.318 2.589 0.825

Distribution functions 0.021 1.576 2.857 4.369 7.151 3.045

Linear functions 0.025 1.643 2.904 4.546 7.082 3.078

Optimized 0.111 0.676 1.222 1.676 2.232 1.199

In Table 2, again the simulations of the PMs are compared, but this time
with different metrics - KS-Test [6] and Wasserstein [16]. As the numbers from
Table 2 indicate, the Optimized PM improves the KS-Test value by 0.302 and
the Wasserstein value by 1.255 on average. This improvement is roughly two
times for the KS-Test value and five times for the Wasserstein value. These
results confirm that the Optimized PM has the highest similarity to the actual
system.

Table 2. Comparison of the metrics KS-Test and Wasserstein of the three models:
first - parameterized only with distribution functions for the external call arguments,
then - only with linear dependencies for all PMPs and finally - with more complex
dependencies for all PMPs.

Metric Distribution functions Linear functions Optimized

KS Q1 0.585 0.581 0.278

KS Avg. 0.595 0.592 0.293

KS Q3 0.608 0.601 0.306

WS Q1 1.527 1.535 0.292

WS Avg. 1.568 1.56 0.313

WS Q3 1.609 1.591 0.339

238 S. Voneva et al.

6 Related Work

Various approaches for extracting an architectural model based on static (e.g.
[2,14]), dynamic (e.g. [3,4,23]), or hybrid analysis (e.g. [13]) exist. In comparison
to our approach, the aforementioned approaches require monitoring overhead
to extract consistent PMs during agile software development and do not keep
the previous potential manual changes to PMs. Similarly to the approach of
Krogmann et al. [13], we use GP to detect the parametric dependencies. In
contrast to their work, we use the GP during an incremental calibration of PMs.
This reduces the required overhead by GP to learn the dependencies, because
our approach uses GP only to optimize the PMPs that have been changed in
the recent development iteration and have a high cross-validation error by the
used initial ML algorithms.

The following works also consider parametric dependencies. Grohmann
et al. [7] introduce an approach to identify and to characterize [1] paramet-
ric dependencies for PMs using monitoring data from a running system. This
monitoring data is then analyzed and correlations between different parameters
are identified with the use of different feature selection approaches from the area
of the ML. This approach does not represent the parametric dependencies as
StoEx or support the iterative updates to PM. Courtois et al. [5] use multivari-
ate adaptive regression splines to extract parametric dependencies. They perform
dedicated performance tests to obtain the data on which they fit the regression
splines. This approach also lacks the incremental fashion of PM construction.

7 Conclusion and Future Work

The contribution of this work is twofold. First, we presented an approach for
the incremental estimation of external calls’ arguments for CIPM, considering
parametric dependencies. For this, we apply some feature selection algorithms to
reduce the number of candidates for the proposed ML algorithms that identify
(initial) dependencies.

The second part of our work is the optimization of the parametric dependen-
cies for all types of PMPs using a GP algorithm, which refines the outputs of
the ML algorithms (PMPs as StoEx) and eventually finds more complex depen-
dencies than linear. To sum up, the implemented mechanism needs two inputs -
a PCM and monitoring data from instrumented source code. The output of our
algorithms are the optimized PMPs as StoEx, which are inserted in the PCM,
so that at the end we enriched a PCM with parametric dependencies.

To evaluate the implemented technique, we ran the simulation for the arti-
ficial micro-system using three different PMs, parameterized in different ways,
and compared between the response time of our target service according to the
monitoring records and the simulated response times. The results show that
the PM with optimized parametric dependencies has an accuracy of two times
(Kolmogorov-Smirnov-Test value) and five times (Wasserstein metric) higher
than a PM with linear or distribution functions only. This confirms that the
optimization improves the accuracy of the PM.

Optimizing Parametric Dependencies for Incremental Performance 239

Our approach promises to detect more complex dependencies during the
incremental calibration to improve the accuracy of the iteratively updated
PMs. Therefore, we plan to integrate our implementation with the implemented
pipeline, proposed in [18], and to perform further evaluation using different case
studies.

In future works we aim to develop an optimization mechanism which han-
dles the dependencies of the nominal arguments as well, as our implementation
lacks this feature. Additionally, we aim to extend our approach to detect the
dependencies to the service arguments of composite data types. One idea in
this direction is traversing all fields of the composite argument until reaching
primitive ones.

References

1. Ackermann, V.: Blackbox learning of parametric dependencies for performance
models from monitoring data (2018)

2. Becker, S., Hauck, M., Trifu, M., Krogmann, K., Kofron, J.: Reverse engineering
component models for quality predictions. In: 2010 14th European Conference on
Software Maintenance and Reengineering, pp. 194–197 (03 2010)

3. Brosig, F., Huber, N., Kounev, S.: Automated extraction of architecture-level per-
formance models of distributed component-based systems. In: Proceedings of the
2011 26th IEEE/ACM International Conference on Automated Software Engineer-
ing, pp. 183–192. IEEE Computer Society (2011)

4. Brunnert, A., Vögele, C., Krcmar, H.: Automatic performance model generation
for java enterprise edition (ee) applications. In: European workshop on performance
engineering pp. 74–88 (09 2013). https://doi.org/10.1007/978-3-642-40725-3-7

5. Courtois, M., Woodside, M.: Using regression splines for software performance
analysis. In: Proceedings of the 2nd International Workshop on Software and Per-
formance, pp. 105–114 (2000)

6. Dodge, Y.: The Concise Encyclopedia of Statistics, Chapter Kolmogorov-Smirnov
Test, pp. 283–287. Springer, New York (2008)

7. Grohmann, J., Eismann, S., Elflein, S., von Kistowski, J., Kounev, S., Mazkatli, M.:
Detecting parametric dependencies for performance models using feature selection
techniques. In: 2019 IEEE 27th International Symposium on Modeling, Analysis,
and Simulation of Computer and Telecommunication Systems (MASCOTS), pp.
309–322 (2019)

8. Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The
WEKA data mining software: an update. SIGKDD Explor. Newsl. 11(1), 10–18
(2009)

9. van Hoorn, A., Waller, J., Hasselbring, W.: Kieker: a framework for application
performance monitoring and dynamic software analysis. In: Proceedings of the 3rd
ACM/SPEC International Conference on Performance Engineering. ICPE 2012
(2012)

10. Jung, R.: An instrumentation record language for kieker. Technical report., Kiel
University (2013). https://doi.org/10.13140/RG.2.1.3655.5689

11. Jägers, J.P.: Iterative performance model parameter estimation considering para-
metric dependencies (2018)

12. Koza, J.R.: Genetic Programming: On the Programming of Computers by Means
of Natural Selection. MIT Press, Cambridge, MA, USA (1992)

https://doi.org/10.1007/978-3-642-40725-3-7
https://doi.org/10.13140/RG.2.1.3655.5689

240 S. Voneva et al.

13. Krogmann, K., Kuperberg, M., Reussner, R.: Using genetic search for reverse engi-
neering of parametric behavior models for performance prediction. IEEE Trans.
Softw. Eng. 36, 865–877 (2010). https://doi.org/10.1109/TSE.2010.69

14. Langhammer, M.: Automated Coevolution of Source Code and Software Architec-
ture Models. Ph.D. thesis, Karlsruhe Institute of Technology, Karlsruhe, Germany
(2017)

15. Langhammer, M., Shahbazian, A., Medvidovic, N., Reussner, R.H.: Automated
extraction of rich software models from limited system information. In: 2016 13th
Working IEEE/IFIP Conference on Software Architecture (WICSA). IEEE (2016)

16. Majewski, S., Ciach, M., Startek, M., Niemyska, W., Miasojedow, B., Gambin, A.:
The wasserstein distance as a dissimilarity measure for mass spectra with applica-
tion to spectral deconvolution. In: 18th International Workshop on Algorithms in
Bioinformatics (WABI 2018) (2018)

17. Mazkatli, M., Koziolek, A.: Continuous integration of performance model, pp. 153–
158 (04 2018). https://doi.org/10.1145/3185768.3186285

18. Mazkatli, M., Monschein, D., Grohmann, J., Koziolek, A.: Incremental calibra-
tion of architectural performance models with parametric dependencies. In: IEEE
International Conference on Software Architecture (ICSA 2020) (2020)

19. Pooley, R.: Software Engineering and Performance: a road-map. In: ICSE-Future
of SE Track, pp. 189–199 (2000)

20. Reussner, R.H., et al.: Modeling and Simulating Software Architectures- The Pal-
ladio Approach. MIT Press, Cambridge (2016)

21. Ruggieri, S.: Efficient c4.5. IEEE Trans. Knowl. Data Eng. 14(2), 438–444 (2002).
https://doi.org/10.1109/69.991727

22. Smith, C.U.: Performance Engineering of Software Systems, 1st edn. Addison-
Wesley Longman Publishing Co., Inc, Boston, MA, USA (1990)

23. Spinner, S., Walter, J., Kounev, S.: A reference architecture for onlineperfor-
mance model extraction in virtualized environments. In: Companion Publication
for ACM/SPEC on International. Conference on Performance Engineering, pp.
57–62. Association for Computing Machinery, New York, USA (2016)

24. Voneva, S.: Optimizing parametric dependencies for performance model extrac-
tion. bachelor’s thesis (2020). https://sdqweb.ipd.kit.edu/publications/pdfs/
Voneva20a.pdf

25. Walter, J., Stier, C., Koziolek, H., Kounev, S.: An expandable extraction framework
for architectural performance models. In: Proceedings of the 8th ACM/SPEC on
International Conference on Performance Engineering Companion, pp. 165–170.
ICPE 2017 Companion, ACM, New York, USA (2017)

26. Woodside, M., Franks, G., Petriu, D.: The future of software performance engi-
neering, pp. 171–187 (06 2007). https://doi.org/10.1109/FOSE.2007.32

https://doi.org/10.1109/TSE.2010.69
https://doi.org/10.1145/3185768.3186285
https://doi.org/10.1109/69.991727
https://sdqweb.ipd.kit.edu/publications/pdfs/Voneva20a.pdf
https://sdqweb.ipd.kit.edu/publications/pdfs/Voneva20a.pdf
https://doi.org/10.1109/FOSE.2007.32

Data Pipeline Architecture for Serverless
Platform

Chinmaya Dehury1(B) , Pelle Jakovits1, Satish Narayana Srirama1 ,
Vasilis Tountopoulos2, and Giorgos Giotis2

1 University of Tartu, Tartu, Estonia
{chinmaya.dehury,jakovits,srirama}@ut.ee

2 Athens Technology Center S.A., Athens, Greece
{v.tountopoulos,g.giotis}@atc.gr

Abstract. To provide cost effective cloud resources with high QoS,
serverless platform is introduced that allows to pay for the exact amount
of resource usage. On the other hand, a number of data management
tools are developed to handle the data from a large number of IoT sensing
devices. However, the modern data-intensive cloud applications require
the power that comes from integrating data management tools with
serverless platforms. This paper proposes a novel data pipeline archi-
tecture for serverless platform for providing an environment to develop
applications that can be broken into independently deployable, schedu-
lable, scalable, and re-usable modules and efficiently manage the flow of
data between different environments.

Keywords: Serverless computing · Data pipelines · TOSCA · DevOps

1 Introduction

While moving towards a more matured utility computing to offer the computing
resources on a on-demand basis with pay-as-you-go pricing model, Cloud Service
Providers (CSPs) are designing and developing serverless platforms, such as AWS
Lambda, Google Cloud Functions, etc. Here the cloud services are broken down
to the level of individual functions triggered by different events.

This event-driven computing model uses container technology. For each func-
tion, a dedicated container is created that hosts the function and provides the
necessary virtual resources. Such containers only need to run while the function
is being executed and this enables developers and cloud consumers to pay for
exact usage of the resources, even at the granularity of hundreds of milliseconds.

In the case of data-intensive cloud applications, it is necessary to efficiently
handle the flow of huge data volume, using different data management tools
/architectures, such as Apache Nifi [1], Apache Beam [4], Amazon data pipeline
[3], data mesh, etc. For this matter, serverless platforms need to be mature
enough to work with the data pipeline technologies. On the other hand, exist-
ing data pipeline architectures should be developed for integration purpose to
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 241–246, 2020.
https://doi.org/10.1007/978-3-030-59155-7_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_18&domain=pdf
http://orcid.org/0000-0003-1990-0431
http://orcid.org/0000-0002-7600-7124
https://doi.org/10.1007/978-3-030-59155-7_18

242 C. Dehury et al.

invoke remote serverless functions. To fill this research gap, this paper presents
a data pipeline architecture for the serverless platform using the Topology and
Orchestration Specification for Cloud Applications (TOSCA) [5] standard. The
goal is to allow developers to rapidly model, develop, and deploy data pipeline
applications that are compatible with the serverless paradigm.

The rest of the paper is organized as follows. The proposed methodology for
the data pipeline architecture is explained in Sect. 2 together with used technolo-
gies. Section 3 presents a possible use case of proposed architecture. Section 4
concludes the paper with the scope for further developments of the proposed
architecture.

2 Methodology

This section discusses the overall concept of how to model data pipeline applica-
tions with the TOSCA language. It is important to note that TOSCA specifica-
tion is not designed for modeling the flow of data. To fill up this gap, RADON
consortium has proposed an architecture that includes the methodology of how
data pipelines should be modeled and orchestrated [7].

TOSCA [5] is a recently developed standard focusing on the portability and
interoperability of the cloud-based applications. The TOSCA-based application
blueprint describes the structure and management aspects of the whole applica-
tion. The structure of the applications is defined by a graph consisting of a set of
nodes (to represent software components) and edges (to represent relationship
among software components), collectively known as the topology template. Fur-
ther, the standard allows the user to provide information that is enough to make
automatic deployment and un-deployment of the applications, provisioning of
the resources, and manage the life-cycle of the application etc. [8].

2.1 Pipeline Modelling

The modeling of the pipeline and general overview of the proposed architecture
is presented in this section. It is essential to understand the general require-
ment of a data-pipeline based serverless application. Users should be able to
seamlessly and efficiently integrate the serverless functions with different data
sources and storage services to handle the data flow. The pipeline should pro-
vide a way to handle the data in an efficient manner. It should also consider
the performance mismatch among the pipelines and facilitate a data buffering
or queuing if needed.

The proposed architecture provides a set of TOSCA models to fulfill the
requirements of serverless applications. Under the hood, open-source data man-
agement platform Apache NiFi [1] is used for automating the movement, rout-
ing, and transformation of data between different systems and services. NiFi
introduces essential components such as processors, input ports, output ports
and queues between processors. The processors are individual tasks for carrying
out activities such as reading/writing the data from/to local and remote services,

Data Pipeline Architecture for Serverless Platform 243

routing data to FaaS functions, modifying the content of data, etc. Currently
only NiFi is supported but other data management platforms, such as Amazon
data pipeline [3] can be introduces as an alternative. Amazon data pipeline
[3] is a cloud service offered by Amazon to handle the movement and transfor-
mation of the data within the AWS cloud services, such as S3 buckets, different
databases, AWS lambda functions, etc. This allows developers to schedule data
analytics operations or configure data copying tasks to be invoked by differ-
ent events. Furthermore, Ansible automation engine is used for implementing
the life-cycle management commands (e.g. install, configure, start, stop) of the
TOSCA models.

The hierarchy of developed TOSCA models (within RADON consortium) for
data pipeline based applications for the serverless platform is presented in Fig. 1.
It can be seen that the TOSCA models are mainly divided into three groups,
under the umbrella of abstract node type PipelineBlock : SourcePB, MidwayPB,
and DestinationPB. The detailed description of the above models is presented
in the following sections.

Fig. 1. TOSCA-based pipeline models hierarchy [2].

Modelling Basic Pipelines. Each pipeline acts like a black box, which receives
some input, processes the input data, and then gives the desired output. A
pipeline can also be used to redirect without any processing. Keeping that in
mind, a basic pipeline unit, known as PipelineBlock, is created, as shown in the
example Fig. 2. Each PipelineBlock consists of a queue to hold the incoming data,
i.e., DataIngestionQueue, a dedicated queue to hold the output, i.e., DataEmis-
sionQueue, and a sequence of one or more data analytics tasks between both
the queues. Both the queues can be connected to data endpoints or another
PipelineBlock. An example of how multiple PipelineBlocks can be used is pre-
sented in Fig. 2. The example consists of two PipelineBlocks: PipelineBlock1, and
PipelineBlock2. The PipelineBlock1 is responsible for invoking a serverless func-
tion after receiving the data from an external data end-point, and PipelineBlock2

244 C. Dehury et al.

is responsible for pushing the processed data to an external storage component,
i.e. S3Bucket. Here both the pipelines are independent and are very loosely cou-
pled. For such feature, PipelineBlock1 can be connected to any other Pipelines
to bush the data or to further process the output from first pipeline. Similarly,
PipelineBlock1 can be replaced by other pipelines to invoke serverless function
deployed in different cloud environment.

Fig. 2. An example of multiple interconnected PipelineBlock [2].

Towards designing the TOSCA models, the PipelineBlock node type is
designed to keep the common properties and attributes of all the pipelines. Com-
mon property of pipeline blocks is that they require to be hosted on a specific
runtime environment, which is of the type radon.nodes.nifi.Nifi for NiFi based
pipeline blocks. In addition, the relationship type for connecting two NiFi data
pipeline blocks is of type radon.relationships.nifi.ConnectsToNifi, which extents
ConnectTo TOSCA relationship type and contains a configuration script to ini-
tiate the connection between two deployed NiFi pipeline blocks.

Source pipelines blocks (SourcePB), as shown in Fig. 1, is used for con-
suming data from local or remote data sources and requires passing data to other
pipeline blocks. SourcePB is used to derive ConsumeDataEndPoint TOSCA
node type, which in turn is used to derive: ConsumeRemote and ConsumeLocal.
ConsumeRemote node type is used for consuming data from external sources
and contains types such as ConsS3Bucket for reading data from AWS S3 buck-
ets and GenericSource for reading data from a generic external storage. To read
the data from the local file system, we have designed ConsumeLocal node type,
which needs the value of the directory, indicating the path of the directory from
where data need to be fetched.

Midway pipeline block (MidwayPB) is designed for intermediate data
transformation or analytic tasks and it requires both incoming and outgoing
connections from other node types. Three dedicated node types: LocalAction,
RemoteAction, and RouteToRemote are derived from MidwayPB. LocalAction
node type can be used to perform data processing tasks on local server. Remote-
Action node type is used to invoke remote services to perform some processing
operations on the data. Such as FaaSFuntion node type, which models functions
from different serverless platforms. For example, under FaaSFunction, Lambda

Data Pipeline Architecture for Serverless Platform 245

node type is created to invoke the AWS lambda function. Its basic properties
are function name, cred file path for credential file, region of the function etc.
Similarly, node type to invoke Google Cloud Function can also be developed by
deriving the FaaSFunction node type. RouteToRemote node type is designed to
route data objects based on their characteristics. For instance, multiple server-
less functions can be deployed to handle different image sizes, and images can be
routed to different functions based on their size. One function can be designed
to process only images smaller than 10 MB and another to handle images larger
than 100 MB. In such scenarios, RouteToRemote node type can play a major
role in routing images to the most appropriate FaaS functions.

Destination pipeline block (DestinationPB) is similar to SourcePB node
type, with the main difference that DestinationPB is used to publish data to
a data source or an external service. PublishRemote TOSCA node type can be
used to publish the data to AWS S3Bucket (using PubsS3Bucket) or to a generic
data end-point that can be accessed remotely (using GenericDestination node
type). Similarly, to publish the data to the local file system, PublishLocal can be
used, with the only minimum input being the directory, which indicates where
to put the data in the local machine. This node type must have the capability
to accept connection from either SourcePB or from MidwayPB.

3 Use Case: Tourism Promotion

A Mobile and web-based cloud application for tourism promotion, Viarota [6] can
be seen as a potential application of the proposed architecture. Viarota provides
optimal loyalty-based personalised tour plans developed within the RADON
project [7]. To promote these tours, Viarota crawls the user’s posts and views
from different social media sources and tour related websites, such as Twitter,
Facebook, Youtube, etc. The crawled data are then processed and stored in a
database for providing aggregated reviews on the visits placed in the proposed
tours. The data pipeline approach can be applied while crawling the data from
different online sources, and process the crawled data by invoking different FaaS
functions, etc. In this case, relevant pipelines, include data, such as the taxonomy
concepts for the places of visit being included in the tours proposed for a touristic
destination, their various combinations into tours, the automatically collected
posts from various social media sources, which relate to what is said about the
places and their index file, containing annotations, like the time of the posts, the
inferred season, the sentiment expressed in them and eventually the reflected
emotion. By applying the data pipeline approach, the whole application can be
broken into multiple independent deployable, schedulable, scalable, and re-usable
microservice-based modules. This would accelerate the development process of
such a data-intensive application.

4 Conclusions and Future Works

In this paper, an architecture based on the data pipeline approach is pro-
posed for the serverless platform. The architecture uses and extends the TOSCA

246 C. Dehury et al.

specification for data pipeline based serverless applications. Apache NiFi is used
as the underlined technology and Ansible as the automation engine for the imple-
mentation of the life-cycle of the serverless components. Different TOSCA nodes
are proposed for consuming, publishing, and transforming data, including the
utilization of remote serverless functions for analytical tasks.

Development of additional TOSCA nodes for a variety of functionalities, such
as node type to handle the data movement through a secure channel, encrypt-
ing the data only in case of multi-cloud environment, etc. are the part of the
future development plan of the proposed architecture. Further, a set of necessary
TOSCA node types will be developed for the implementation of the Viarota solu-
tion based on data pipeline approach in order to support this application scenario
in effectively managing the involved data pipelines and their movement across
different cloud-based environments.

Acknowledgment. This work is partially funded by the European Union’s Horizon
2020 research and innovation project RADON (825040).

References

1. Apache NiFi (2019). https://nifi.apache.org/. Accessed 21 October 2019
2. D5.5-Data-Pipeline-Orchestration-I, 16 July 2020 (2019). http://radon-h2020.eu/

wp-content/uploads/2020/01/D5.5-Data-Pipeline-Orchestration-I.pdf
3. AWS data pipeline documentation (2020). https://docs.aws.amazon.com/data-

pipeline/. Accessed 24 January 2020
4. Beam overview, 16 July 2020 (2020). https://beam.apache.org/
5. Topology and orchestration specification for cloud applications (TOSCA) standard

v1.3 26 February 2020 (2020). https://docs.oasis-open.org/tosca/TOSCA-Simple-
Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html

6. Viarota - enhance the travel experience of your visitors 25 June 2020 (2020). https://
viarota.com/

7. Casale, et al.: Radon: rational decomposition and orchestration for serverless com-
puting. SICS Softw. Intensive Cyber-Phys. Syst, August 2019

8. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: Winery – a modeling tool
for TOSCA-based cloud applications. In: Basu, S., Pautasso, C., Zhang, L., Fu,
X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 700–704. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45005-1 64

https://nifi.apache.org/
http://radon-h2020.eu/wp-content/uploads/2020/01/D5.5-Data-Pipeline-Orchestration-I.pdf
http://radon-h2020.eu/wp-content/uploads/2020/01/D5.5-Data-Pipeline-Orchestration-I.pdf
https://docs.aws.amazon.com/data-pipeline/
https://docs.aws.amazon.com/data-pipeline/
https://beam.apache.org/
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://docs.oasis-open.org/tosca/TOSCA-Simple-Profile-YAML/v1.3/TOSCA-Simple-Profile-YAML-v1.3.html
https://viarota.com/
https://viarota.com/
https://doi.org/10.1007/978-3-642-45005-1_64

Examination and Comparison of TOSCA
Orchestration Tools

Anže Luzar(B), Sašo Stanovnik, and Matija Cankar

XLAB Research, XLAB d.o.o., Pot za Brdom 100, 1000 Ljubljana, Slovenia
anze.luzar@xlab.si

https://www.xlab.si/research/

Abstract. The use of orchestration and automation has been growing
in recent years. This can be especially evident in cloud infrastructures
where OASIS TOSCA orchestration standard can be used to provide
independence and prevent vendor lock-in. In this paper we examine dif-
ferent TOSCA compliant orchestration tools, test them with TOSCA
templates and present a comparison between these tools. This compar-
ison should be used to decide which tool is easier to use for both the
companies and the developers according to their requirements.

Keywords: Comparison · Cloud computing · DevOps ·
Orchestration · Automation · Orchestrator · Orchestration tool ·
TOSCA

1 Introduction

Automation and orchestration tools usually do not draw the attention of develop-
ers who are independent or are working on smaller projects. However, for large
companies and corporations they are of great significance, bringing business
value through the possibilities to orchestrate and transfer applications through-
out several cloud infrastructures. Although developers want complete indepen-
dence from the target platforms, numerous cloud providers only provide com-
patibility and first–party support for their own services. This can create a signif-
icant impact on the effort and cost expenditure, associated with the migration
of services to from one to another cloud platform. Companies therefore search
for universal orchestration tools, which promise compatibility with many cloud
providers. However, these often don’t support specific functionalities within each
of the supported cloud platforms. To pick the orchestrator and the accompany-
ing tools means researching their advantages and also all their drawbacks. There
currently seems to be no evident intersection between orchestration or automa-
tion support within the cloud services as orchestrators usually do not support
deployment on all available cloud platforms and also do not support all possible
automation tools. For this paper we delve into orchestration and set a goal to
examine and compare different orchestration tools in order to make the deci-
sion process more straightforward. This paper presents the properties and use
of several selected tools.
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 247–259, 2020.
https://doi.org/10.1007/978-3-030-59155-7_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_19&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_19

248 A. Luzar et al.

1.1 DevOps and Orchestration

Development and Operations (DevOps for short) is an approach in information
technology that emphasizes communication and integration between software
developers and other IT experts and is used mostly for introducing automated
software and infrastructure changes [7].

Orchestration is a sort of distributed automated configuration that includes
monitoring and coordination of computer systems, application and services and
thereby helps making the execution of complex tasks or task groups easier. The
process of orchestration is used to solve the problem of connecting and arranging
larger amounts of automated tasks in a desired workflow [14]. Within orchestra-
tion a workflow is defined (this is usually called a process of workflow orchestra-
tion) and consists of a sequence of automated tasks. Based on the orchestration
targets there are many different types of orchestration and the ones that stand
out the most are cloud orchestration, service orchestration and release orches-
tration [8].

It is important to distinguish orchestration from automation which are often
confused. The execution of a task and the operations within, belongs to the
automation, which aims to reduce the human factor in the processes that can
be automated. On the other hand, the orchestration process aims to join the
majority of already automated tasks and put them in a logical order which then
results in the deployment of the complete application or services [3].

1.2 Orchestration Tools

Orchestrators or orchestration tools represent a wide set of complex IT software
that is used to invoke the aforementioned process of workflow orchestration.
These tools can be very specific – from deploying applications to setting up
Docker containers. In order to pick the appropriate tool we should follow different
criteria such as:

– the size of the company which is important when paying for tool licences,
– the operating systems used in the orchestrated system,
– whether the tool is open-source or commercial, where one should note that

open-source tools are often supported by their community and that commer-
cial tools offer professional support and can therefore be used in mission–
critical IT systems [13].

The orchestration tools can often be scaled and can deliver highly complex
applications and, as we repeat the tasks again and again, they become pre-
dictable and can be optimized. Apart from that, it is known that these tools
reduce costs and errors (through repeatability of the orchestration process),
increase productivity, save significant amount of time, make operations faster,
minimize system down times etc. In the last few years there has been an enor-
mous growth in cloud orchestration for several cloud providers (for instance
Amazon Web Services, Microsoft Azure and Google Cloud Platform) where the

Examination and Comparison of TOSCA Orchestration Tools 249

orchestration process includes deploying applications, creating cloud resources
(e.g. for storage), configuring networks, setting up virtual machines and so on.
Organizations use orchestrators to migrate their applications to the cloud and
in doing so they increase the accessibility, reduce times for healing the services
in case of errors and make all their business processes faster [15].

1.3 OASIS TOSCA Standard

OASIS Topology and Orchestration Specification for Cloud Applications, or
shortly TOSCA, is an open standard that defines the application topology within
cloud infrastructures by dividing services into components and defining their
connections, dependencies, capabilities and requirements. This makes the appli-
cations portable and independent of any cloud providers which corresponds to
the DevOps theory of installing and delivering applications throughout their life
cycle [11]. Apart from TOSCA there are other cloud orchestration standards such
as Amazon AWS CloudFormation or OpenStack Heat, but they are specific and
tailored to their platforms. CloudFormation seems to be more AWS oriented and
Heat was designed for OpenStack and targets cloud workloads, whereas TOSCA
is more general and meant for enterprise workloads and applications.

The TOSCA standard includes a special metamodel with a declarative
domain-specific language that offers the definition of portable TOSCA docu-
ments called TOSCA templates and complete application packages (commonly
called blueprints) which include templates with all the accompanying files needed
for the deployment. All these files usually get packed into compressed artifacts
called Cloud Service Archives or CSARs. TOSCA has a strictly defined system
of types which for example includes node types, relationship types, their proper-
ties, attributes, interfaces, requirements and so on. The TOSCA standard can be
used within different markup languages and the most common ones are YAML
and XML. We centered ourselves around TOSCA Simple Profile for YAML that
currently has four different versions (v1.0, v1.1, v1.2 and v1.3) [2].

There are currently many emerging and promising tools using TOSCA such
as Alien4Cloud, Apache AriaTosca, CELAR, Cloudify, DICER, Eclipse Win-
ery, MSO4SC HPC, Indigo, ONAP, OPEN-O, OpenBaton, OpenStack, Open-
TOSCA, Opera, RADON, SODALITE, OPNFV, Puccini, SeaClouds, TosKer,
Ubicity and so on. Some of them are completely compatibile with the standard
and some others have extended it and defined their own DSL. However, TOSCA
YAML templates have little practical value without their implementations. To
provide these, different automation tools can be used, such as Ansible, Chef,
Puppet, Salt, Juju, Jenkins, Vagrant, Bash, Docker and Terraform. TOSCA
orchestrators are focused on connecting these tools with parsed TOSCA defini-
tions so that tasks can be executed [12].

2 Testing the Orchestration Tools

For the analysis we have chosen xOpera, Ystia Yorc, IndigoDC and Cloudify
orchestrators which all support TOSCA standard definitions. For the testing

250 A. Luzar et al.

part we prepared a simple TOSCA template (see Fig. 1) for creating a directory
with an example file. The template uses the latest TOSCA YAML profile version
1.3 (for the orchestrators which did not support this version we have changed it
to lower ones). Here we defined one simple node type called hello type with one
input (which is set to "Hello from TOSCA!" at the beginning of the orchestra-
tion) and two paths to operations for creating (deploying) and deleting (unde-
ploying).

1 t o s c a d e f i n i t i o n s v e r s i o n : t o s c a s i m p l e y a m l 1 3
2
3 node types :
4 he l l o t yp e :
5 der ived from : t o s c a . n o d e s . S o f tw a r eCompon e n t
6 i n t e r f a c e s :
7 Standard :
8 inputs :
9 content :

10 de f au l t : { g e t i n p u t : c o n t e n t }
11 type : s t r i n g
12 opera t i on s :
13 c r ea t e : p l a y b o o k s / c r e a t e . yml
14 de l e t e : p l a y b o o k s / d e l e t e . yml
15
16 topo logy template :
17 inputs :
18 content :
19 type : s t r i n g
20 de f au l t : " Hello � from � TOSCA ! "
21
22 node templates :
23 my−workstat ion :
24 type : t o s c a . n o d e s . Compute
25 a t t r i b u t e s :
26 pr i v a t e add r e s s : l o c a l h o s t
27 pub l i c add r e s s : l o c a l h o s t
28
29 h e l l o :
30 type : h e l l o t y p e
31 requirements :
32 - host : my−w o r k s t a t i o n

Fig. 1. TOSCA YAML template for testing.

For the operation actuators we used Ansible playbooks because Ansible is the
easiest automation tool for setup and usage and also most of the TOSCA orches-
trators prefer and support it. The example playbook we used for the create
TOSCA interface operation is shown in Fig. 2. A similar playbook was used to
implement delete TOSCA operation.

Examination and Comparison of TOSCA Orchestration Tools 251

1 - hos t s : a l l
2 g a t h e r f a c t s : f a l s e
3 t a sk s :
4 - name: C r e a t e t h e new f o l d e r s t r u c t u r e
5 f i l e :
6 path : / tmp / op e r a − t e s t / h e l l o
7 r e cur s e : true
8 s t a t e : d i r e c t o r y
9

10 - name: C r e a t e h e l l o . t x t and add c o n t e n t
11 copy :
12 dest : / tmp / op e r a − t e s t / h e l l o / h e l l o . t x t
13 content : " {{ � c o n t e n t � }} "

Fig. 2. Ansible playbook for the TOSCA create operation.

2.1 xOpera

xOpera is a project that includes opera tool which is a lightweight open-source
TOSCA orchestrator compatible with TOSCA Simple Profile in YAML v1.3 [17].
As primary developers of opera we follow the UNIX convention of a minimal tool
that does only one thing (e.g.. orchestration) and that one thing well instead of
having a tool that can handle multiple tasks of different types. This orchestration
tool uses Ansible to implement the TOSCA standard operations which means
that operations like deploy and un-deploy run a set of actuators in the form of
Ansible playbooks [4]. Opera is easily installed through a Python pip package
that is available on PyPI (https://pypi.org/project/opera/). Opera only pro-
vides the client CLI interface so it can be used very quickly [17]. Our xOpera
orchestration test where we used opera deploy and opera undeploy commands
has been successful (see Fig. 3).

Fig. 3. The orchestration testing with xOpera.

https://pypi.org/project/opera/

252 A. Luzar et al.

2.2 Ystia Yorc and Alien4Cloud

Yorc is the High Performance Computing (HPC) TOSCA orchestrator which
targets support for hybrid infrastructure applications such as Infrastructure as a
Service (IaaS), HPC schedulers and Container as a service (CaaS). The impor-
tant part of Yorc are the scaling of applications within TOSCA workflows [18].
Yorc has multiple set–up options. The usual way is to run its server on a remote
virtual machine (such as an OpenStack VM) where we have to take care of
the configuration of the server. This is also important if we want to properly
interact with the open–source orchestration platform Alien4Cloud where Yorc is
officially supported. An easier setup method that we used is to use the official
Yorc Docker image and deploy the server in a Docker container. For interacting
with the server we used a CLI client Yorc tool and downgraded the prepared
TOSCA template to YAML version 1.2 which is the latest supported TOSCA
version in Yorc. We also needed to pack our templates and playbooks in a zipped
CSAR to be able to run the yorc deployments deploy command as shown in
Fig. 4.

Fig. 4. Orchestration process result using Ystia Yorc.

Alien4Cloud (or a4c) stands for Application LIfecycle ENablement for Cloud
or shorter Alien4Cloud which is an Atos open-source platform that facilitates
managing complex applications and cloud services within companies and here-
with also offers a tool for fast application deployment for users and develop-
ers. Alien4Cloud extends TOSCA Simple Profile in YAML along with all the
TOSCA entities providing its DSL called Alien4Cloud DSL. The a4c orches-
trator receives a TOSCA CSAR artifact with all the TOSCA templates, their
implementations and the accompanying files as an input. The orchestration pro-
cess depends on the a4c version we use. Apart from officially supported Ystia
Yorc there is also a support for Cloudify 3, Cloudify 4, experimental support for
Marathon tool (which is a meta framework for Mesos offering orchestration of
clusters and Docker containers) and the support for Puccini orchestration tool in

Examination and Comparison of TOSCA Orchestration Tools 253

beta version. By supporting multiple orchestrators Alien4Cloud becomes more
independent from the cloud provider and therefore tries to prevent so called ven-
dor lock-in since multiple orchestrator includes the support for multiple cloud
providers. The installation of a4c can be done on Linux or OS X with one curl
command in terminal solely and then we can already access the tool’s dash-
board in the browser. There is a simple drag and drop topology modelling tool
where we can use already prepared a4c roles from the TOSCA topology catalog.
TOSCA definitions can be imported from Git and when modelling is done we
can export a full TOSCA template or CSAR [1].

Because of numerous features that we found useful, we also decided to test
the usage of a4c orchestration tool. After reshaping the TOSCA template to
be compatible with Alien4Cloud domain specific language we have setup a4c
platform in a Docker container and installed Yorc plugin to connect a4c with
Yorc orchestrator. From there on the orchestration process was smooth as we
packed our TOSCA templates into CSAR and initiated the deployment within
the a4c platform.

Fig. 5. Alien4Cloud topology modelling tool.

2.3 Indigo DC

IndigoDC is a TOSCA orchestration tool representing a Platform as a Service
(PaaS) component which primarily offers setting up resources on cloud comput-
ing platforms like OpenStack or OpenNebula and also offers managing groups
of computers using open–source Apache Mesos clusters [9]. The orchestrator
was developed within a European Union Horizon 2020 project called INDIGO-
DataCloud (INtegrating Distributed data Infrastructures for Global ExplOita-
tion) which aimed to provide hybrid infrastructure and software in the form of
IaaS and SaaS components. The speciality of this tool is that it uses a Service
License Agreement (SLA) to choose the orchestration target and the order of the
automated tasks with the help of a REST service called Cloud Provider Ranker
that collects the data about available cloud providers and chooses one using

254 A. Luzar et al.

different rules and algorithms [16]. For the testing part we have set up Indigo
DC server locally in a Docker container and used the Orchent CLI client tool to
interact with the orchestrator. Indigo uses Ansible playbook or roles for TOSCA
operations but the supported version of TOSCA YAML is only 1.0 so we had to
refactor our TOSCA template by providing minor changes to TOSCA interface
operation definitions. From that point we had issues as the orchestrator was
unable to initiate the deployment. The problem was also that for the orchestra-
tor to work we would have to supply different cloud provider secret credentials
(like for AWS, Azure and GCP) to the server which could raise some security
issues. The configuration if Indigo Data Cloud orchestrator was not intuitive so
from there we did not proceed with the testing.

Fig. 6. Architecture of orchestration with IndigoDC [10]

2.4 Cloudify

Cloudify is an open-source framework for cloud orchestration with a built-in
TOSCA orchestrator, modelling tool and monitoring software that offers mod-
eling applications, optimizing their life cycle and deploying on numerous cloud
providers [5]. Some of the components that can be a part of applications are
included by default (for instance Nginx, Gunicorn, Flask, PostgreSQL, Rab-
bitMQ and Pika), while others can be included through special plugins (for
example Ansible and cloud plugins). Cloudify can be used by setting up a
Cloudify Manager in a Docker container that acts as an orchestration server
and then it can be interacted with using the Cloudify CLI. The other way is to
use the Cloudify web component that represents a concept of Environment as
a Service (EaaS) to provide reusable orchestration environments with the goal
to reduce the bottleneck between orchestration, automation, CI/CD tools and
cloud providers. The Cloudify orchestrator has moved beyond TOSCA, develop-
ing its own Cloudify DSL that is used to define its own application blueprints.

Examination and Comparison of TOSCA Orchestration Tools 255

Therefore it offers Cloudify DSL versions 1.0, 1.1, 1.2 in 1.3 that are derived
from corresponding TOSCA profiles. The DSL includes extended TOSCA defi-
nitions and plugins that can be used for TOSCA implementations (e.g. plugin
definitions for Chef, Puppet, Ansible, Salt, ...). The other embedded TOSCA
actuators can be in the form of Python, Bash, PowerShell, Ruby scripts and so
on [6].

Fig. 7. Cludify dashboard.

For the testing part we used free testing license for Cloudify Labs (in Fig. 7),
translated our TOSCA template to Cloudify DSL and used the prepared Ansible
playbooks for creating and deleting the service. We packed all the files into a
CSAR and uploaded it to the Cloudify labs web portal where we initiated the
workflow and the deployment (see Fig. 8).

Fig. 8. Successful blueprint deployment via Cloudify Labs orchestrator.

3 The Comparison of TOSCA Orchestrators

During the testing of different orchestrators we created a comparison that would
help us decide which tools are appropriate for the tested use case and to show
the perspective that orchestrators have. The comparison is visible in Table 1

256 A. Luzar et al.

where we picked the most commonly occurring characteristics among these
tools: release year, tool purpose, supported platforms, architecture, language,
installation, license, supported automation tools, user interface, modeling tool,
OASIS TOSCA compatibility, supported TOSCA profiles and supported cloud
providers.

Table 1. Orchestration tools comparison table.

Aspect Opera Yorc Indigo Cloudify

Release year 2019 2017 2016 2012

Purpose Minimalistic

TOSCA

orchestrator

HPC TOSCA

orchestrator

TOSCA Paas

orchestrator for

cloud frameworks

Opensource

TOSCA

orchestration

platform

Supported

platforms

Linux, OS X,

Windows

Linux Linux Linux, OS X

Architecture Client Server, client Server, client Server, client

Implemented in Python Go Java Python

Installation Virtual

environment and

opera pip package

Server on an

OpenStack VM or

a Docker

container

Server in a Docker

container

Server on an

OpenStack VM or

a Docker

container

Installation and

usage difficulty

Easy Medium Hard Medium

License Apache License

2.0

Apache License

2.0

Apache License

2.0

Apache License

2.0

Supported

automation tool

Ansible Bash scripts,

Ansible

Ansible All (by default

bash, Python,

Ruby and other

scripts and

Ansible plugin

User interface No Yes Yes Yes

Modelling tool No Yes (Alien4Cloud) No Yes (embedded

and Alien4Cloud)

TOSCA

compatibility

Yes Yes Yes No

Latest TOSCA

profile version

TOSCA YAML

1.3

TOSCA YAML

1.2

TOSCA YAML

1.0, TOSCA NFV

1.0

Cloudify DSL 1.3

(derived from

TOSCA 1.3)

Officially

supported target

cloud platforms

The support is

performed by the

user

AWS, OpenStack

in GCP

AWS, Azure AWS, Azure,

GCP, OpenStack,

vCloud(plugins)

Looking into the release year it is apparent that the newest orchestrator
is xOpera and the oldest is Cloudify. Every tested orchestrator serves its own
purpose such as: versatile and light-weight approach, supporting heterogeneous
infrastructures (HPC, Cloud) for xOpera, HPC computing for Yorc, PaaS orches-
trator for Indigo and open-source orchestration platform for Cloudify. All of the
orchestrators support the Linux operating system and Cloudify has the addi-
tional support for OS X. Cloudify and xOpera are written in Python, Yistia
Yorc in Go and IndigoDC is implemented in Java. All tools except xOpera
require setting up an orchestration server which can reside in a Docker con-
tainer. The installation process for xOpera consists of only installing it as a

Examination and Comparison of TOSCA Orchestration Tools 257

Python package. Based on setup difficulty and usage we have categorized the
xOpera orchestrator as easy to use, whereas Yorc and Cloudify were marked
with medium difficulty. IndigoDC was the most problematic for usage because
it consumed the biggest amount of time and at the end we were not able to use
it for the orchestration. All analyzed orchestration tools have an open-source
Apache 2.0 license. xOpera and Indigo are implementing the TOSCA standard
by using Ansible as the automation tool, while Yorc offers Bash and Ansible.
Cloudify is the most advanced in this aspect since it can be used with Python,
Ruby or Bash scripts, with an embedded Ansible plugin or by using any other
custom–defined plugin in order to use other automation tools like Chef, Puppet
or Salt. Apart from xOpera, all of the tools provide a graphical user interface.
Yorc and Cloudify also include a modelling tool for combining TOSCA enti-
ties and both are part of the Alien4Cloud platform. The orchestrators are fully
compatible with TOSCA standard, except from Cloudify which uses its own
DSL language, extending TOSCA standard definitions. Opera supports the lat-
est TOSCA YAML profile version 1.3, Yorc supports YAML 1.2, Indigo used
version 1.0 and also provides the support for TOSCA NFV network profile v1.0
and Cloudify also uses the latest TOSCA version since its DSL v1.3 is derived
from TOSCA profile in YAML v1.3 but it also keeps the support for all the older
TOSCA YAML versions. The xOpera orchestrator does not have any predefined
cloud plugins and the user is required to provide the support himself based on
TOSCA definitions and Ansible modules. Yorc explicitly supports OpenStack,
AWS and GCP, whereas IndigoDC includes the support for AWS and Azure
cloud providers. Cloudify can be connected to any cloud by using our custom
plugins or the prepared plugins for AWS, Azure, GCP, OpenStack and VMware
vCloud.

4 Results and Decisions

The aspects of the orchestration tool comparison they helped us to decide which
tool is the best for our testing use case. For us the most important characteristics
were the installation, which had to be easy and fast. This allows us to test the
deployment right away and consequently requires the latest TOSCA compatibil-
ity to keep up with the latest TOSCA standard features. Our key purpose, the
minimalistic TOSCA orchestrator, which can be used for simple client deploy-
ment without any scaling or HPC features can be achieved by opera as the
most suitable tool for our experiment. That choice might not be the best for
other use cases. The presented comparison aspects can guide developers through
the choice of the best tool according to their own different requirements. For
instance if HPC computing is needed, uses should consider Yorc, as it was devel-
oped especially for that purpose, or maybe xOpera orchestrator if they want
to benefit from the latest TOSCA version. For example if we would want to
deploy our application on several cloud providers along with the use of various
automation tools and plugins, Cloudify would prevail as it offers the support
for almost all these tools. Then there are special cases when developers want

258 A. Luzar et al.

to create a model of their application in a graphical environment with all the
visible connections between different components. Going this way opera is not
the best choice, whereas Cloudify and Yorc along with Alien4Cloud modeling
tool could stand out.

The next aspect that cannot be waved aside is the supported version of the
TOSCA Simple Profile in YAML. Every version brings new syntax updates and
features and it is important for the orchestrators to support the latest TOSCA
versions in order to ensure the best possible cloud deployment process. There
opera and Cloudify, which are based on latest TOSCA v1.3 are the most suitable.
The security is also a big concern when picking these tools since engineers does
not want to expose their cloud credentials (e.g. AWS secret keys, GCP service
account keys etc.) to numerous possible treats and they want to be sure that
the orchestrator or the service that is being used within will not copy or move
credentials away from the local machine. Considering security, Cloudify seems
as a good option as it provides so called secrets store which is a secure variable
storage where the secrets are stored and called from as key-value pairs. On the
other hand Yistia Yorc also turns out to be reliable in this perspective since
it uses HashiCorp Vault to protect sensitive data. Apart from the fact that
deployment with Indigo orchestrator did not work properly, this orchestrator
has its own separated Identity and Access Management service which supports
different cloud secrets and can be a good choice.

5 Conclusions and Future Work

Orchestration and with it, automation, are already important today, but will
further gain importance, with the rise of 5G (and with it, edge). The latter
will bring additional complexity basically on all infrastructure levels, as the
number of connected devices and their capabilities will increase further. During
our examination OASIS TOSCA turned out to be a promising standard with the
ability to define and maintain application topology. Combined with orchestration
tool and equipped with automation actuators TOSCA standard gets a practical
use that can simplify multiple processes and can save a lot of precious time. All
the orchestrators that we have tested were unique and had their own purpose
whether this was HPC computing or PaaS interaction. Since we were not able to
get IndigoDC to work, xOpera, Yorc and Cloudify were analyzed more in detail.
Apart from Yorc being the official Alien4Cloud orchestrator, xOpera is also a
tool with significant potential. From all the tools it was the easiest to install
and to use. It does not have any embedded cloud plugins which is, in fact, not a
negative thing since it then allows users to define this part as they wish. xOpera
also supports the latest 1.3 version of TOSCA YAML which proves that the tool
is being maintained and updated through time. Cloudify is a more enterprise
solution and seems to be used by corporations which desire support and a user
friendly environment, whereas xOpera is currently an open-source orchestrator
in the making. This fact is also different from all the other tools, which seem to
be in a mature state of development. It is evident that the orchestrator that will

Examination and Comparison of TOSCA Orchestration Tools 259

be most flexible and will follow the latest cloud trends with the support for the
latest TOSCA version will have a good chance of dominating.

Acknowledgements. This paper has been partially supported by the European
Union’s Horizon 2020 research and innovation programme under Grant Agreement
No. 825040 (RADON). The work described here has also been conducted within the
European Union’s Horizon 2020 Research & Innovation action SODALITE (project
no. 825480).

References

1. Alien4cloud documentation. https://alien4cloud.github.io/ (2020). Accessed on 17
June 2020

2. Binz, T., Breiter, G., Leyman, F., Spatzier, T.: Portable cloud services using tosca.
IEEE Internet Comput. 16(3), 80–85 (2012)

3. Caballer, M., Zala, S., Lopez Garcia, A., Molto, G., Orviz Fernandez, P., Velten,
M.: Orchestrating complex application architectures in heterogeneous clouds

4. Carbonell, M.: xopera: an agile orchestrator. https://www.sodalite.eu/content/
xopera-agile-orchestrator (2019). Accessed on 24 June 2020

5. Cloudify. https://cloudify.co/ (2020). Accessed on 18 June 2020
6. Cloudify documentation center. https://docs.cloudify.co/ (2020). Accessed on 23

June 2020
7. Devops day. https://slovenia.iiba.org/sl/devops (2017). Accessed on 24 June 2020
8. Goldberg, J.: Workflow orchestration: an introduction. https://www.bmc.com/

blogs/workflow-orchestration/ (2019). Accessed on 22 June 2020
9. Indigo - datacloud github. https://github.com/indigo-dc/ (2020). Accessed 21 June

2020
10. Indigo paas overview. https://www.slideshare.net/TheEOSChubproject/

indigopaasoverview/ (2019). Accessed on 21 June 2020
11. Oasis tosca. https://www.oasis-open.org/ (2020). Accessed on 19 June 2020
12. Oasis tosca documentation. https://docs.oasis-open.org/tosca/ (2020). accessed on

19 June 2020
13. Orchestration & scheduling tools. https://www.plutora.com/ci-cd-tools/

orchestration-scheduling-tools (2019). Accessed on 20 June 2020
14. Redhat. https://www.redhat.com (2020), accessed on 22 June 2020
15. Rouse, M.: What is cloud orchestration (cloud orchestrator)? https://

searchitoperations.techtarget.com/definition/cloud-orchestrator (2017). Accessed
on 26 June 2020

16. Salomoni, D., Campos, I., Gaido, L.: Indigo-datacloud: a platform to facilitate
seamless access to e-infrastructures. Journal of Grid Computing 16, 381–408
(2018). Accessed on 2020-6-21

17. xopera github repository. https://github.com/xlab-si/xopera-opera (2020).
Accessed on 18 June 2020

18. Ystia project github. https://github.com/ystia (2020). Accessed on 20 June 2020

https://alien4cloud.github.io/
https://www.sodalite.eu/content/xopera-agile-orchestrator
https://www.sodalite.eu/content/xopera-agile-orchestrator
https://cloudify.co/
https://docs.cloudify.co/
https://slovenia.iiba.org/sl/devops
https://www.bmc.com/blogs/workflow-orchestration/
https://www.bmc.com/blogs/workflow-orchestration/
https://github.com/indigo-dc/
https://www.slideshare.net/TheEOSChubproject/indigopaasoverview/
https://www.slideshare.net/TheEOSChubproject/indigopaasoverview/
https://www.oasis-open.org/
https://docs.oasis-open.org/tosca/
https://www.plutora.com/ci-cd-tools/orchestration-scheduling-tools
https://www.plutora.com/ci-cd-tools/orchestration-scheduling-tools
https://www.redhat.com
https://searchitoperations.techtarget.com/definition/cloud-orchestrator
https://searchitoperations.techtarget.com/definition/cloud-orchestrator
https://github.com/xlab-si/xopera-opera
https://github.com/ystia

Auto-scaling Using TOSCA
Infrastructure as Code

Matija Cankar1(B), Anže Luzar1, and Damian A. Tamburri2

1 XLAB d.o.o., Pod za Brdom 100, 1000 Ljubljana, Slovenia
matija.cankar@xlab.si

2 Eindhoven University of Technology - JADS, s’Hertogenbosch, The Netherlands
https://www.xlab.si/research/

Abstract. Autoscaling cloud infrastructures still remains a challenging
endeavour during orchestration, given the many possible risks, options,
and connected costs. In this paper we discuss the options for defining and
enacting autoscaling using TOSCA standard templates and its own pol-
icy definition specifications. The goal is to define infrastructure blueprints
to be self-contained, executable by an orchestrator that can take over
autonomously all scaling tasks while maintaining acceptable structural
and non-functional quality levels.

Keywords: Cloud computing · Scaling infrastructures · Autoscaling ·
TOSCA · Orchestration · Function-as-a-Service · FaaS

1 Introduction

The cloud computing era fostered the emergence of ways to exploit the compute,
storage, and network resources and provide new abilities to adapt dynamically
the amount of the computing resources to the need of the application that relies
on resource provisioning [8]. The aforementioned practice—defined as scaling of
the resources [9]—has increasingly became more efficient and responsive to the
current application load. On the one hand, two known approaches to scaling
are nowadays used, with the first one making possible to scale-in or perform
vertical scaling, which means that the capacities of the provisioned resources
(CPU, RAM, etc.) are scaled up or down. The second is scale-out or performing
horizontal scaling, which means that the number of units (e.g., virtual machine
with specific amount of RAM, CPU, and storage) is enlarged or shrunk.

On the other hand, all cloud providers address the scaling of the leased virtual
infrastructure in some way and mostly all do this by their own approach that
differs mainly in configuration of this task. For example, the OpenStack [5] uses
its own language called Heat, Amazon AWS uses CloudFormation [1] and some
cloud management tools, like open-source representative called Slipstream [3]
use their own techniques.

Besides the differences of the cloud providers, the approach to the scaling
depends on the technology that powers the application. For example, applica-
tions based on Docker and Kubernetes allow for horizontal scaling. However,
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 260–268, 2020.
https://doi.org/10.1007/978-3-030-59155-7_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_20&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_20

Auto-scaling Using TOSCA Infrastructure as Code 261

applications based on Function-as-a-Service (FaaS) [2] will mainly use a combi-
nation of vertical and horizontal scaling. Almost all public provides allow man-
ually defined values for vertical scaling, while horizontal scaling is covered by
the provider. Only in private open source cloud solutions, as Open-FaaS, both
scaling approaches need to be performed by an external software.

To support the autoscalable orchestration of microservice applications inter-
mixing FaaS, Container, and regular virtual-machine components that can be
deployed on any provider we develop xOpera, an orchestrator capable of “speak-
ing” with all cloud providers and technologies, addressing autoscaling in a policy-
based fashion. On the one hand, interoperability is achieved thorough abstrac-
tion, which can be solved with the OASIS standard on “Topology and Orches-
tration Specification for Cloud Applications” (TOSCA) [4]. On the other hand,
the policy-based facilities offered by xOpera only partially address the expected
scaling capabilities and the approach shows several limitations.

We contribute to the state of the art and practice with experiences
gained through the design and prototypization of xOpera—and its autoscal-
ing features—which we expect to spark fruitful discussions and speedup the
standardisation and practice of the auto-scaling definition of cloud applications.

The rest of this paper is structured as follows, first the problem of scaling
and current support in TOSCA is presented. In Sect. 3 presents the concepts of
scaling and the Sect. 4 proposes an approach and evaluation. The paper discusses
ideas in Sect. 5 and is concluded with Sect. 5.

2 Problem Definition

The introduction section described different scaling approaches based on under-
lying technology. Performing (auto)scaling is complicated task that needs to take
into account the state of the application before and after the scaling and per-
form all required steps to guarantee a safe transition between the states. The
software performing this act needs to rely on a set of policies and thresholds
that define scaling limits and duties. To perform the scaling on an appropriate
moment, the scaling software needs to be subscribed on a messaging queue from
monitoring and perform actions with the orchestrator. This tight integration
between monitoring service, scaling service and orchestrator service makes the
issue even harder and frequently is well solved only inside closed provider envi-
ronments (Amazon AWS, Microsoft Azure, Google Cloud Platform, etc). This
means that user is able to deploy application to one provider and use one app-
roach of scaling, but moving this application to another provider will require
manual re-configuration of deployment and scaling. Our aim is to depend on
TOSCA standard and propose a way to define scaling at the deploy time, so the
orchestrator will be able to create initial deploy on infrastructure and configu-
ration of monitoring in a way that will be easily manageable in case of scaling.

262 M. Cankar et al.

2.1 Definition of Application Scaling

One most crucial agreement to be defined before forming the scaling approach
is to determine what scaling is and what is not. The modification of the running
application is scaling when we can change the amount of resources without having
a significant impact on the running application(s). In our case this means that
scaling should not result in total un-deploy and redeploy of application but rather
moving the functionality from one state to another without shutting down or
re-deploying everything.

Based on aforementioned limits we focused on the three most general scaling
approaches:

1. simple horizontal scaling, e.g., scaling of containers;
2. simple vertical scaling, e.g., FaaS scaling;
3. complex horizontal scaling, e.g., load balancer example.

In our proposal we consider all other scaling approaches that include more sig-
nificant changes in the application as (re-)deploying of a new application and
are therefore, out of scope.

Next two crucial agreements to be defined on scaling are determining a way
to explain the scaling limitations and scaling actions. The TOSCA suggests the
use of scaling policies to define scaling limitations and thresholds, as shown on
Fig. 1. The current version of standard does not provide any details explaining
how this data can be used in action therefore it is not obvious what is the job
of a scaler, orchestrator or maybe some other tool. When the thresholds are
reached something should happen, e.g., a scaler application should take care of
it. To overcome this issue we propose a TOSCA which example tries to resolve
this issue in Sect. 4.

1 tosca_definitions_version: tosca_simple_yaml_1_3
2 my_scaling_policy_1:
3 type: tosca.policy.scaling
4 description: Simple node autoscaling
5 properties:
6 min_instances: <integer>
7 max_instances: <integer>
8 default_instances: <integer>
9 increment: <integer>

Fig. 1. TOSCA YAML example from TOSCA v1.3.

3 Scaling Concepts

Most common approach to implement scaling is to use three components (see
Fig. 2), namely orchestrator, monitoring and scaler. In this approach the scaler
receives notifications from monitoring, defines next scaling state and instructs
the orchestrator how to achieve this change. To describe this approach with

Auto-scaling Using TOSCA Infrastructure as Code 263

a particular monitoring application and a TOSCA orchestrator would imply,
that scaler encapsulates all knowledge about scaling and also about deploying.
Scaler would need to a) receive monitoring notifications b) create a new TOSCA-
application blueprint based on the defined policies and c) send the blueprint to
the orchestrator. The downside of this idea is a division of the process lead
between the orchestrator.

Fig. 2. Scaling using the scaler component.

For example – using the mentioned concept – when orchestrator receives
the initial application blueprint in TOSCA CSAR, which we consider that it
is an application package including all necessary information to spawn up and
set application in runtime, it needs to a) deploy all application components, b)
configure monitoring and c) define scaler. But after the initial orchestration of
the application is done, the scaler overtakes the leadership and instructs the
orchestrator how to proceed. This approach complicates the situations on two
levels, first it is a requirement for a scaler, which is TOSCA compliant and can
scale applications on various providers. The second issue raises when user sends a
small update of the application configuration to the orchestrator which could be
overridden by the scaler sending new TOSCA configuration to the orchestrate at
the same time. Therefore, if something goes wrong and specifications are different
in orchestrator and scaler it is not clear if the targeted application state is in the
orchestrator or in the scaler.

4 Proposed Approach, Scaler Inside the Orchestrator

Our proposed approach eliminates the scaler and adds its functionality inside
the orchestrator, as it is sketched in Fig. 3. This means that orchestrator would

264 M. Cankar et al.

be the entity in charge of deploying and scaling application at any moment. In
the initial deployment orchestrator deploys application, configures monitoring
threshold and defines a TOSCA scaling policy with all scaling definitions. This
means that monitoring would send notifications directly to the orchestrator when
the thresholds would be reached. In this particular cases, orchestrator would run
a scale command on the TOSCA blueprint (by executing the linked Ansible
playbook) which would perform scaling.

From the Fig. 3 it seems that there is no significant change, we anticipate to
solve two things. First is the one that the deployment and scaling process deal
only with one entity. The second even more important is that the description
of the scaling can use the same language as the deploying one and exploits the
orchestrator engine and TOSCA actions to perform it.

Fig. 3. Proposed architecture without scaler component, TOSCA defines everything
and orchestrator is able to accept monitoring notifications.

An example of the proposed TOSCA scaling policy and scaling interface for
our approach is shown in Fig. 4. Note that the example is simplified to emphasise
only the crucial parts of an approach that can be used to fulfill scaling within the
TOSCA orchestrator by configuring scaling in TOSCA YAML service template.
In the first part of the listing in Fig. 4 – lines 1–22 – the OpenStack virtual
machine presenting an initial application state is defined. Next block – lines
24–40 – presents the scaling policy, similarly that TOSCA standard suggests
and was presented in Fig. 1. The property of CPU is defined to be monitored,
and the initialisation is globally limited, not accepting values lower than 80. This
threshold should be configured by the orchestrator in a particular monitoring tool
as Prometheus. This monitoring configuration part is omitted from our example
for brevity. The next part – lines 41–51 – defines the triggers that would initiate
scaling procedures. A trigger affects our application, the openstack node, and
calls the scaling operation. The important part of this TOSCA definition comes

Auto-scaling Using TOSCA Infrastructure as Code 265

next – lines 53–61 – where we define scale operation called by trigger. This
interface would call a specific Ansible script that orchestrator would process at
the deployment phase. This scale out.yaml script would perform scaling on an
OpenStack VM e.g. deploy one additional instance to balance the load on the
application. The rest of the TOSCA template on Fig. 4 – lines 63–79 – defines a
topology template that initializes first VM and sets scaling policy properties.

In action the scale-up policy (radon.policies.scaling.ScaleOut) would
be used when the CPU load would surpass the adjusted value (see
cpu upper bound). When this would happen the policy could use targets key-
word to filter out the node it applies to and use a TOSCA scaling trigger
definition in order to call the defined TOSCA scale operation within the
radon.interfaces.scaling. This interface operation would then pass on the
amount by which to scale (see the adjustment parameter) to the Ansible play-
book (scale out.yaml) which would perform scaling on an OpenStack VM (for
example it could deploy one additional instance so that the load would be bal-
anced).

4.1 Proposed Experiment and Evaluation Plan

The implementation of the proposed concept is in progress and will be fin-
ished and tested during RADON project [2]. For the orchestrator we will
use xOpera [10] orchestrator with current support of TOSCA v1.3 and
Prometheus [6] for monitoring. Currently in progress is finalising the possibility
to scale FaaS applications, supporting vertical scaling of the requirements based
on configuration update on the providers side, e.g. AWS, Azure or GCP. The
next step is to support horizontal scaling with adding or removing container
instances. The last step will be to support horizontal scaling of regular virtual
machines.

The crucial step here is to define TOSCA types, namely nodes, policies and
triggers in a way that will serve as a template to other applications. The outcomes
will be tested by the RADON project partners providing template applications
and industrial use-cases and the xOpera orchestrator community. The templates
for scaling will be published in a publicly available TOSCA template library
provided by RADON project and project GitHub repository [7].

Evaluation will be straight-forward with testing the designed TOSCA blue-
print of a scalable application with the proposed orchestrator. If this combination
will be able to scale application in a same way that scalers can, the verdict will
be that the TOSCA standard yaml specification is strong enough to exploit the
orchestrator in a way to act as a scaler. That approach simplifies the solution as
we do not need special TOSCA scaler to scale TOSCA applications.

5 Discussion and Lessons Learned

Deploying application is a complex job with many tasks. Having the ability to use
one IaC language, as TOSCA, is a commodity for a DevOps teams that deploy

266 M. Cankar et al.

1 tosca_definitions_version: tosca_simple_yaml_1_3
2
3 node_types:
4 radon.nodes.OpenStack.VM:
5 derived_from: tosca.nodes.Compute
6 properties:
7 name:
8 type: string
9 image:

10 type: string
11 flavor:
12 type: string
13 network:
14 type: string
15 key_name:
16 type: string
17 interfaces:
18 Standard:
19 type: tosca.interfaces.node.lifecycle.Standard
20 operations:
21 create:
22 implementation: playbooks/create.yaml
23
24 policy_types:
25 radon.policies.scaling.ScaleOut:
26 derived_from: tosca.policies.Scaling
27 properties:
28 cpu_upper_bound:
29 description: The upper bound for the CPU
30 type: float
31 required: false
32 constraints:
33 - greater_or_equal: 80.0
34 adjustment:
35 description: The amount by which to scale
36 type: integer
37 required: false
38 constraints:
39 - greater_or_equal: 1
40 targets: [radon.nodes.openstack.VM]
41 triggers:
42 radon.triggers.scaling:
43 description: A trigger for scaling
44 event: trigger
45 target_filter:
46 node: radon.nodes.openstack.VM
47 action:
48 - call_operation:
49 operation: radon.interfaces.scaling.scale
50 inputs:
51 adjustment: { get_property: [SELF, adjustment] }
52
53 interface_types:
54 radon.interfaces.scaling:
55 derived_from: tosca.interfaces.Root
56 operations:
57 scale:
58 inputs:
59 adjustment: { default: { get_property: [SELF, name] } }
60 description: Operation for scaling.
61 implementation: playbooks/scale_out.yaml
62
63 topology_template:
64 node_templates:
65 vm1:
66 type: radon.nodes.OpenStack.VM
67 properties:
68 name: HostVM
69 image: centos7
70 flavor: m1.xsmall
71 network: provider_64_net
72 key_name: my_key
73
74 policies:
75 test:
76 type: radon.policies.scaling.ScaleOut
77 properties:
78 cpu_upper_bound: 90
79 adjustment: 1

Fig. 4. TOSCA YAML template example with scaling policy.

Auto-scaling Using TOSCA Infrastructure as Code 267

their applications to heterogeneous environment with multiple cloud providers.
The deployment step is very well covered in TOSCA, while the ability to auto-
scale application is not yet fully defined. During the process of creating the
framework for developing, deploying and lifecycle management we realised that
the latter, which includes scaling, is complex and fragile. Following the approach
with outside scaler did not promise a stable solution. For example, in case of
issues an interruptions during the application life-cycle management, it is not
clear which state – scalers or orchestrators – is the desired one? It could be that
scaler is in process to submit new application template to the orchestrator, or
the orchestrator should update the scalers’ configuration.

Exploring the solutions that would not be affected from aforementioned
orchestrator-scaler leadership issue we focused on TOSCA definitions and pro-
pose the usage of TOSCA, which incorporates scaling definitions to be executed
by orchestrator. The TOSCA standard will not require significant updates to
use our approach, while some improvements of the TOSCA orchestrators will
be necessary. Orchestrator cannot be stopped after the deploy (or particular
re-deploy job), but needs to be alive and ready to accept the triggers from the
monitoring system. This changes the way how the orchestrator should operate.

6 Conclusions and Future Work

To conclude, scaling and autoscaling are and will be desired functionalities within
larger microservice applications e.g. AWS Lambda applications and applications
using Docker containers. There are several ways of establishing scaling policies
successfully but some of them can consume more time or require more tools than
others. Instead of commonly used separate scalers this part can be moved to the
orchestration process in order to facilitate this task and have universal approach
to the application scaling. OASIS TOSCA standard provides promising scaling
policies that can be supported in TOSCA orchestrators which can then use their
own services to maintain the automatic scaling of application’s resources and
therefore relieve the end-users and the companies by keeping the applications
constantly accessible.

Acknowledgements. This paper has been partially supported by the European
Union’s Horizon 2020 research and innovation programme under Grant Agreement
No. 825040 (RADON).

References

1. Aws cloud formation (2020). https://aws.amazon.com/cloudformation/. Accessed
19 June 2020

2. Casale, G., et al.: RADON: rational decomposition and orchestration for serverless
computing. SICS Softw. Intensive Cyber Phys. Syst. 35, 77–87 (2019). https://
doi.org/10.1007/s00450-019-00413-w

https://aws.amazon.com/cloudformation/
https://doi.org/10.1007/s00450-019-00413-w
https://doi.org/10.1007/s00450-019-00413-w

268 M. Cankar et al.

3. Janiesch, C.: Slipstream: live dashboarding for sap netweaver bpm (“galaxy”). Sap
community network blog (2009). http://scn.sap.com/people/christian.janiesch/
blog/2009/11/17/slipstream-live-dashboarding-for-sap-netweaver-bpm-galaxy

4. Lipton, P., Palma, D., Rutkowski, M., Tamburri, D.A.: Tosca solves big problems
in the cloud and beyond!. IEEE Cloud Comput. 5(2), 37–47 (2018). http://dblp.
uni-trier.de/db/journals/cloudcomp/cloudcomp5.html#LiptonPRT18

5. Openstack heat (2020). https://wiki.openstack.org/wiki/Heat. Accessed 19 June
2020

6. Prometheus (2020). https://prometheus.io/. Accessed 21 June 2020
7. Radon github repository (2020). https://github.com/radon-h2020. Accessed 29

June 2020
8. Sahare, S., Rojatkar Dr, D.V.: Cloud computing. Int. J. Trend Sci. Res.

Dev. 1(6), 786–789 (2017). http://www.ijtsrd.com/engineering/electronics-and-
communication-engineering/4685/cloud-computing/shubhangi-sahare

9. Wei, Y., Kudenko, D., Liu, S., Pan, L., Wu, L., Meng, X.: A reinforcement learning
based auto-scaling approach for saas providers in dynamic cloud environment.
Math. Probl. Eng. 2019, 11 (2019). https://doi.org/10.1155/2019/5080647

10. xOpera github repository (2020). https://github.com/xlab-si/xopera-opera.
Accessed 20 June 2020

http://scn.sap.com/people/christian.janiesch/blog/2009/11/17/slipstream-live-dashboarding-for-sap-netweaver-bpm-galaxy
http://scn.sap.com/people/christian.janiesch/blog/2009/11/17/slipstream-live-dashboarding-for-sap-netweaver-bpm-galaxy
http://dblp.uni-trier.de/db/journals/cloudcomp/cloudcomp5.html#LiptonPRT18
http://dblp.uni-trier.de/db/journals/cloudcomp/cloudcomp5.html#LiptonPRT18
https://wiki.openstack.org/wiki/Heat
https://prometheus.io/
https://github.com/radon-h2020
http://www.ijtsrd.com/engineering/electronics-and-communication-engineering/4685/cloud-computing/shubhangi-sahare
http://www.ijtsrd.com/engineering/electronics-and-communication-engineering/4685/cloud-computing/shubhangi-sahare
https://doi.org/10.1155/2019/5080647
https://github.com/xlab-si/xopera-opera

Towards Coordinated Autoscaling and
Application Brownout at the

Orchestrator Level

Ivan Kotegov and Antonio Filieri(B)

Imperial College London, London, UK
a.filieri@imperial.ac.uk

Abstract. Modern cloud applications are expected to continuously pro-
vide adequate performance, withstanding changing workloads, heteroge-
neous hardware, and unpredictable infrastructure failures. Autoscaling
can automatically provision resources to match performance goals but
may suffer from slower reaction times and risks of over-provisioning.
Brownout mechanisms, on the other hand, empower applications with
the ability to quickly dim out optional features, freeing computational
resources to serve core functionalities with the desired performance level.
However, modifying an application to include brownout capabilities may
require invasive changes to the codebase and the need to expose ad-
hoc interfaces to coordinate the interaction of the brownout dimmers
and autoscaling actions, avoiding interferences that may destabilize the
system. In this paper, we report on our preliminary results on the
design of an application-agnostic control theoretical solution to inte-
grate scaling and dimming capabilities at the orchestrator level. We
implemented a prototype of our controller on top of Kubernetes and
HAProxy to empower generic applications with coordinated autoscal-
ing and brownout capabilities by dynamically controlling the number of
active replicas and per-user access to optional API endpoints.

1 Introduction

Modern cloud applications are expected to adapt their behavior and resource
allocations to continuously provide the desired quality of service in spite of
unpredictable changes in their workloads and execution environments.

Most adaptation techniques rely on feedback loops to control and mitigate the
effects of external phenomena on the performance of the controlled application.
Feedback loops continuously measure the evolution of relevant quality figures of
the running system, triggering adaptation actions when these measures deviate
from acceptable ranges. Adaptation decisions, such as provisioning of additional
resources or disabling optional software features, can be drawn based on a vari-
ety of methods, from casting the decision as an optimization problem to using
machine learning to predict the most appropriate reactions [1].

Different methods require more or less accurate models of the relevant sys-
tem behaviors (e.g., abstracted as queuing networks or difference equations), can
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 269–274, 2020.
https://doi.org/10.1007/978-3-030-59155-7_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_21&domain=pdf
http://orcid.org/0000-0001-9646-646X
https://doi.org/10.1007/978-3-030-59155-7_21

270 I. Kotegov and A. Filieri

adapt for a single or multiple goals and actuators, and provide different guaran-
tees on the effectiveness, stability, and robustness of their decision processes [2].

Among the different adaptation paradigms considered in the field, in this
paper we focus on autoscaling and brownout. Autoscaling aims at automat-
ically allocating and deallocating computational resources as required by the
application to match its performance goals. Microservices or FaaS are typical
architectures that enable an application to increase its capacity by instantiat-
ing additional replicas. Brownout [3] is instead a form of graceful degradation
where an application may adaptively disable optional features to reduce its com-
putational fingerprint, releasing resources to serve core features at the required
performance level. Brownout has also been used to improve the energy footprint
of cloud applications [4], and resource utilization in cloud applications [5].

Differently from autoscaling, current brownout controllers require ad-hoc
changes to the application codebase, increasing maintainability costs and devel-
opment complexity. Furthermore, while provably effective and stable in isola-
tion, deploying these two techniques simultaneously on the same application
may induce coupling effects, where the actions taken independently by the two
controllers may antagonize each other, possibly leading to oscillations.

In this paper, we present preliminary findings on our development of
a control-theoretical adaptation mechanism to coordinate autoscaling and
brownout decisions at the orchestrator level, with the goal of controlling the
response time of an application. To coordinate the two controllers’ actions to
keep the response time at the desired values, we propose using a mid-range
control architecture [6]. This enables the use of computationally efficient and
provably stable PI controllers, coordinated to take advantage of the distinct
speed, accuracy, and strengths of both autoscaling and brownout. We report on
preliminary experimental results in support of our control design via a prototype
implementation on top of Kubernetes and HAProxy.

2 Background

Feedback Control. Figure 1 represents a basic feedback loop. The controller
C computes its control signal u as a function of the difference between the
desired behavior – the setpoint (ysp) – and the measured process behavior (y).
This difference is called error (e). The process behavior is affected by both the
control signal and external disturbances w. Even if the external disturbances
are not explicitly modeled or only coarse information about them is available,
their (relevant) effects on the process propagates through the measure y via the
feedback loop, allowing the controller to reject the disturbances.

Controllers can be evaluated on several formal properties [7]. The three most
relevant for this work are stability, settling time, and overshoots. A stable con-
troller will eventually drive the process within a bounded distance from the
setpoint, if feasible. Settling time is the time required to converge (up to a fixed
accuracy) to the setpoint, while overshoots are related to transitory excessive
reactions and should be limited.

Towards Coordinated Autoscaling and Brownout 271

C Pysp
-

e
y

u w

Fig. 1. Feedback control loop.

PID Controllers. Equation (1) formalizes the control law of a PID controller.

u(t) = K · e(t)
︸ ︷︷ ︸

proportional

+
K

Ti
·
∫

e(τ)dτ

︸ ︷︷ ︸

integral

+K · Td · de(t)
dt

︸ ︷︷ ︸

derivative

(1)

where e(t) = ysp(t) − y(t) is the error, which the controller aims to minimize.
A PID is tuned through the three parameters K, Ti, and Td. K is the propor-
tional gain. Higher values of K lead to “stronger” reactions, which may reduce
the settling time of the closed loop, but could destabilize it. The integral term
mitigates steady-state deviations form the setpoint that the proportional com-
ponent cannot handle, it can, however, lead to overshoots. The integral action
also helps to smooth the reaction to fast changes in the error. The derivative
term can reduce the convergence time and increase stability, but it may induce
the controlled system to follow error variations due to external disturbances. For
our application, we will not use the derivative component (Td = 0), preferring
disturbance rejection over settling time. This setting is called the PI controller.
PID controllers do not require an explicit analytical model of the process but
can be tuned using human expertise or established heuristics [6]. While usually
sub-optimally, PIDs can control several classes of nonlinear systems [5].

3 Coordinating Scaling and Dimming

Our goal is to consistently control the number of replicas allocated to an applica-
tion (scaling) and the brownout of optional features (dimming). We will refer to
the corresponding controllers as scaler and dimmer, respectively. Control should
be placed at the orchestrator/load-balancer level, instead of modifying the appli-
cation’s logic, for a better separation of concerns. The control goal is to keep the
average response time close to a prescribed setpoint.

Individually, both a scaler and a dimmer can be implemented using PI. The
former actuated on the number of replicas, the latter regulating the rate at
which access to optional features endpoints is allowed. However, if the two con-
trollers act independently, they can interfere with one another, possibly leading
to oscillations and destabilizing the system. For example, consider the measured
response time exceeds the setpoint, the scaler can allocate an additional replica,
while at the same time the dimmer may disable optional features, reducing com-
putational demand. The reduced demand would trigger the scaler to deallocate

272 I. Kotegov and A. Filieri

excessive replicas, while the dimmer would at the same time restore optional
features. In control terms, there are two actuators coupled on a single measure.

Mid-range Control. PI(D)s are single-input single-output (SISO) controllers,
i.e., manipulating one actuator to control one measurement, and cannot be easily
extended to control multiple inputs or multiple outputs. We can observe that
the dimmer and the scaler have different dynamics. Dimmer decisions can be
enforced quickly (access control) and have high resolution, deciding with high
precision the rate at which optional features should be served. However, dimming
can compensate only moderate load variations, since core application features are
always served. Scaling, on the other hand, can compensate for larger variations
by provisioning additional resources, but its actions have lower resolution and
take longer to actuate.

This situation lends itself to the design of a mid-range control architecture [6].
This architecture is described in Fig. 2. The dimmer takes the measured response
time and controls the rate at which optional features are served to reach the
setpoint. The scaler, on the other hand, takes the control signal emitted by the
dimmer and controls the number of provisioned replicas to keep the dimmer
around the middle of its operational range (dsp).

Scaler (PI)

Dimmer (PI)

Orchestrator

Access control

dsp

ysp Σ

us

u ye

es

Controller Process

-

- wl

Fig. 2. Controller architecture.

When the error e exceeds the capabilities of the dimmer, its control signal
u is likely to saturate to the top or the bottom of its range (i.e., either serving
optional features to every user or to none). This deviation of u from its mid-range
dsp will then trigger the reaction of the scaler, which will allocate or deallocate
replicas to bring the dimmer back to dsp where it can limit serving optional
features as needed for the new number of replicas. Both the dimmer and the
scaler are PI controllers.

4 Preliminary Results

Implementation. We implemented the control architecture of Sect. 3 by
extending HAProxy-Ingress, an open-source Kubernetes Ingress controller. Dim-
ming is implemented by generating and dynamically updating the HAProxy’s

Towards Coordinated Autoscaling and Brownout 273

configuration defining access control lists (ACLs) for optional application fea-
tures. The dimmer control signal represents the maximum number of requests
a user (uniquely identified by session id) can make over a 30 s window before
their requests to optional features get disabled. The range of the dimmer control
signal is 1–1000. The scaler controls the number of pods in the cluster (1–6).
Average response time is measured by HAProxy over the last 1024 requests.
Experiment. We adapted the JPetStore benchmark adding artificial optional
features, similarly to [3]. The optional features simulate a random delay averag-
ing 1 s. Kubernetes is deployed on a cluster of 6 i7-4790 workstations and uses
Weave Net CNI. We used JMeter distributed testing with 6 instances to sim-
ulate users. Each simulated user generated a sequence of up to 1000 requests
separated by a random delay between 1 and 100 milliseconds. Each user is ran-
domly assigned a ratio between 0 and 50% denoting the proportion of optional
features requested. The controllers have been tuned manually, with K = 0.05
and Ti = 3 for the dimmer and K = 0.0025 and Ti = 1000 for the scaler. The
scaler uses a hysteresis of 2 min to allow for resource allocation and measure-
ments update. The target mid-range for the dimmer is set to 600 ± 200.

Results. An example run is shown in Fig. 3. Time is reported in steps of 15 s.
The top subfigures shows the number of active user sessions over time, and the
measured response time and setpoint, respectively.

wl (# users)
y
ysp

u
e
us

replicas

Sc
al

er
 /

re

pl
ic

as

0

5

D
im

m
er

0

1000

R
ep

so
ns

e
tim

e
(s

)

0

2

4

6

W
or

kl
oa

d

0

1000

2000

Time (steps)
0 50 100 150 200 250 300 350

Fig. 3. Experiment results. From the top: workload wl in number of active user sessions;
Response time (y) and its setpoint (ysp); Dimmer control signal (ud) and error (ed);
Scaler control signal (us) and corresponding number of replicas.

As observable in the figure, small variations in the workload are handled
by the dimmer, without the intervention of the scaler (whose control signal is

274 I. Kotegov and A. Filieri

nonetheless tracking the deviation of u from its midrange). Larger variations and
higher spikes (e.g., flash crowds) require the provisioning of more replicas, which
is triggered when the dimmer signal u saturates towards 1; similarly, replicas
are removed when u saturates towards 1000 (i.e., in our setup, serving optional
features to all users). The two controllers coordinate their operations avoiding
oscillations and bringing the average response time around or below the setpoint.

5 Conclusions

We presented preliminary results on the use of a mid-range control architecture
to coordinate autoscaling and brownout at the orchestrator level. The use of PI
controllers requires a few arithmetic operations to determine the control actions,
avoiding the overhead of more complex multi-objective strategies [8]. However, in
these experiments, the controllers have been tuned manually, which may require
some expertise. Autotuning and adaptive PIs may provide better performance, in
particular allowing to retuning the controllers to better fit the current workload
trends, reducing settling time and overshooting phenomena [9].

References

1. Qu, C., Calheiros, R.N., Buyya, R.: Auto-scaling web applications in clouds: a tax-
onomy and survey. In: ACM Comput. Surv. 51(4) (2018). https://doi.org/10.1145/
3148149

2. Chen, T., Bahsoon, R., Yao, X.: A survey and taxonomy of self-aware and self-
adaptive cloud autoscaling systems. ACM Comput. Surv. 51(3) (2018). https://
doi.org/10.1145/3190507

3. Klein, C., Maggio, M., Årzén, K.-E., Hernández-Rodriguez, F.: Brownout: building
More robust cloud applications. In: ICSE, pp. 700–711. ACM Press, Hyderabad
(2014).https://doi.org/10.1145/2568225.2568227

4. Xu, M., Dastjerdi, A.V., Buyya, R.: Energy efficient scheduling of cloud application
components with brownout. IEEE Trans. Sustain. Comput. 1(2), pp. 40–53 (2016).
arXiv: 1608.02707. https://doi.org/10.1109/TSUSC.2017.2661339

5. Wang, C., et al.: Effiective capacity modulation as an explicit control knob for public
cloud profitability. ACM Trans. Auton. Adapt. Syst. 13(1), 21–225 (2018). https://
doi.org/10.1145/3139291

6. Åström, K.J., Hägglund, T., Astrom, K.J.: Advanced PID control, vol. 461. ISA
(2006)

7. Filieri, A., et al.: Control strategies for self-adaptive software systems. ACM Trans.
Auton. Adapt. Syst. 11(4), 241–2431 (2017). https://doi.org/10.1145/3024188

8. Maggio, M., Papadopoulos, A.V., Filieri, A., Hoffmann, H.: Automated control of
multiple software goals using multiple actuators. In: ESEC- FSE. ESEC/FSE 2017.
ACM, August 2017. https://doi.org/10.1145/3106237.3106247

9. Maggio, M., Klein, C., Årzén, K.-E.: Control strategies for predictable brownouts
in cloud computing. In: IFAC Proceedings Volumes. 19th IFACWorld Congress, vol.
47, no. 3, pp. 689–694, January 2014. https://doi.org/10.3182/20140824-6-ZA-1003.
00669

https://doi.org/10.1145/3148149
https://doi.org/10.1145/3148149
https://doi.org/10.1145/3190507
https://doi.org/10.1145/3190507
https://doi.org/10.1145/2568225.2568227
http://arxiv.org/abs/1608.02707
https://doi.org/10.1109/TSUSC.2017.2661339
https://doi.org/10.1145/3139291
https://doi.org/10.1145/3139291
https://doi.org/10.1145/3024188
https://doi.org/10.1145/3106237.3106247
https://doi.org/10.3182/20140824-6-ZA-1003.00669
https://doi.org/10.3182/20140824-6-ZA-1003.00669

DETECT - 3rd International Workshop
on Modeling, Verification and Testing of

Dependable Critical Systems

International Workshop on Modeling,
Verification and Testing of Dependable Critical

Systems (DETECT)

Critical systems are emerging research fields where the safety is dependent upon the
precise operations of the system. With this in mind, software architecture is one of the
most challenging topics for critically dependable systems since it requires integrating
solutions from experts of various domains. Also, integration of components contributed
by respective domain experts is one of the key challenges in engineering software
architectures.

Critical systems are more and more used in different domains and under several
forms (e.g., cyber-physical systems, embedded systems, real-time systems) and become
more complex since they can be networked and composed of heterogeneous subsys-
tems. Due to their heterogeneity and variability, critical systems require the expertise of
a modeling, verification, and testing area to ensure their dependability and safety of
their software architectures. The International Workshop on moDeling, vErification and
Testing of dEpendable CriTical systems (DETECT) was organized in conjunction with
the European Conference on Software Architecture (ECSA), hence it is mainly based
on model-based system engineering paradigm and software architecture challenges.

DETECT 2020 would not have possible without the support and the cooperation of
the Program Committee members and also the external reviewers, who carefully
reviewed and select the best contributions. We would like to thank all the authors who
submitted papers, the reviewers, and the Organization Committee members for their
investment and involvement in the success of DETECT 2020. This volume contains the
papers selected for presentation at the workshop. The acceptance rate was 40%. Indeed,
DETECT 2020 received 15 papers from 8 countries (Algeria, Belgium, France,
Germany, Morocco, The Netherlands, the UK, and the USA). The Program Committee
selected six full papers. Each paper was reviewed by at least four to five reviewers and
was discussed afterwards by the reviewers and the Program Committee chairs. Easy-
Chair was used for the management of DETECT 2020 and it provided a very helpful
framework for the submission and review processes.

Organization

Workshop Chairs

Yassine Ouhammou LIAS, ISAE-ENSMA, France
Abderrahim Ait Wakrime Mohammed V University, Morocco

Workshop Program Committee

Shaukat Ali Simula, Norway
Youness Bazhar ASML, The Netherlands
Alessandro Biondi Scuola Superiore Sant’Anna, Italy
Mohamed Yassin Chkouri Abdelmalek Essaâdi University, Morocco
Khalil Drira LAAS-CNRS, Université de Toulouse, France
Rachida Dssouli Concordia University, Canada
Mamoun Filali-Amine IRIT, France
Abdelouahed Gherbi ETS Montreal, Canada
Fahad Golra Agileo Automation, France
Paul Gibson Télécom SudParis, France
Emmanuel Grolleau LIAS, ISAE-ENSMA, France
Geoff Hamilton Dublin City University, Ireland
Jameleddine Hassine KFUPM, KSA
Jérome Hugues SEI CMU, USA
Gwanggil Jeon Incheon National University, South Korea
Slim Kallel University of Sfax, Tunisia
Tomasz Kloda Technical University of Munich, Germany
Zakaria Maamar Zayed University, UAE
Van-Hien Ngo STE Hanoi University, Vietnam
Réda Nouacer CEA, France
Mehrdad Saadatmand RISE SICS Vasteraas, Sweden
Colin Snook University of Southampton, UK
Laura Titolo NASA, USA
Faiez Zalila CETIC, Belgium

Measurement-Based Timing Analysis
on Heterogeneous MPSoCs:

A Practical Approach

Roy Jamil1,2(B), Emmanuel Grolleau1(B), Bernard Dautrevaux2(B),
and Antoine Bertout1(B)

1 LIAS, ENSMA, University of Poitiers,
1 av. C. Ader, BP40109, 86961 Futuroscope, France

{roy.jamil,grolleau}@ensma.fr, antoine.bertout@univ-poitiers.fr
2 AC6, 21, Rue Pierre Curie, 92400 Courbevoie, France

{roy.jamil,bernard.dautrevaux}@ac6.fr
https://www.ac6.fr

Abstract. This paper explores and compares different execution time
measurement methods on modern heterogeneous multiprocessor systems
on chip (HMPSoCs). We consider different measurement factors, such as
the resolution, accuracy, granularity and difficulty of implementation and
use of each technique. Moreover, HMPSoCs add the dimension of inter
core cluster communication which has so far received little attention. In
this paper, we show how to evaluate inter-cluster communication and
apply the method on several recent chips. Moreover, we characterize the
cost of migration between different types of cores.

Keywords: Execution time measurement · Worst case execution
time · Timing analysis · Real time · Heterogeneous multiprocessors

1 Introduction

Several types of programs have to meet timing constraints, especially in the real-
time systems domain. For those, a timing analysis is required: it is measuring
the duration of the execution of some code on a given platform. A safe way to
compute a worst-case execution time (WCET) [18] of a program is called static:
based on a fine grain model of the execution platform and the source or binary
code, the worst-case behavior of each branching in the program combined with
the worst-case behavior of the internal state of the platform is established [13,14].
Nevertheless, on modern platforms like heterogeneous MPSoCs, the static faces
two major problems. The platform model for new platforms cannot be found
in any timing analysis tool and adding them would require a very high amount
of work. Moreover, if it were to be done, the possible interference at different

Supported by AC6.

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 279–293, 2020.
https://doi.org/10.1007/978-3-030-59155-7_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_22&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_22

280 R. Jamil et al.

contention points (memory bus, memory banks, cache memory, heuristic compo-
nents, etc.) would lead to a very high overestimation of the possible behavior of
the program. Indeed, modern architectures tend to optimize average execution
time at the cost of determinism. The other way to compute a worst-case or aver-
age execution time on a platform is called dynamic, and consists in measuring
the actual execution time of the program under analysis on the target platform.
This technique can be applied on a new platform, with the help of adapted devel-
opment environments, like the one we present in this paper. This technique is not
safe, since it is possible to observe, at some point in the lifetime of the system,
some execution time that could be larger than the one measured during dynamic
timing analysis. Nevertheless, for systems with less stringent timing constraints,
called soft real-time systems, intensive dynamic measurement of the execution
time could be sufficient, and often be the only applicable choice. Indeed, the
execution time of an instruction may vary depending on the internal state of
the processor. This state becomes more and more complex with the presence of
heuristic components. As a result, it is becoming more difficult to predict the
relevant parts of the processor’s internal state that influence timing behavior.
The execution of a piece of code is dependent not only on the value of its input
data (for example, issuing different branching in tests) but also, given the exact
same behavior (same branching conditions), this execution is dependent on the
internal state of the CPU and memory, especially regarding local optimization
of average execution time. These optimization techniques imply execution time
variations, and may even worsen the worst-case execution time.

Typically, a processor handles each instruction in several steps (or stages):
fetching, decoding, executing, writing, etc. For the same instruction, only one of
these stages is used at the same time. In practice, available stages are used in
parallel for other instructions. This leads to an overlap in the execution of instruc-
tions, known as pipelining. Since there may be dependencies between instructions
(for example, a calculated value is required for a subsequent instruction), there
may be interaction between instructions that are executed one after the other.

Most high frequency CPUs use a cache memory to accelerate average memory
access time by storing values read from the memory. The locality of reference
implies that an accessed instruction or data has a high chance to be accessed
again, and the next access to a cached value will not necessitate to access the
memory, reducing the execution time. Nevertheless, preemption will alter the
cache content, and create cache related preemption delays, problem which has
received a lot of attention in static analysis [1].

Moreover, in order to keep the pipeline filled in the program branches, pro-
cessors commonly implement a branch prediction, its purpose is to predict what
is executed after a conditional branch when the condition is not yet known.
These processors then speculatively retrieve the instructions from the memory,
which are ignored if the prediction turns out to be wrong. This often influences
the behaviour of the cache in the most complex way.

On multicore architectures, sharing the same memory bus, or on multicore
and manycore architectures sharing the same memory banks, execution on one

Measurement-Based Timing Analysis on Heterogeneous MPSoCs 281

core may interfere with execution on another core because of the contention of
accesses to both the memory bus and memory banks.

Moreover, programs can require the use of external circuits, from external
specialized computing units (e.g., Floating Point Unit - FPU, Graphical Pro-
cessing Unit - GPU, Application Specific Integrated Circuits - ASICs, etc.), to
external devices and peripherals, which work asynchronously from the comput-
ing cores and can also be shared among several cores (and thus among several
executing pieces of code). For example, if the system has to access a peripheral
by mapped addresses in memory, then the computation of the WCET should
take both the time taken by the communication bus to access the peripheral and
the response time of the device into account. This is also the case for memory.
The response time of the device, memory or bus depends on their respective
occupancy rates and on their arbitration policy, which is to often opaque.

On complex hardware architectures, it is not possible to know the actual,
achievable, WCET of a system because it is too complex to determine. Indeed,
there are many parameters to take into account and the overestimation compared
to actual observable cases is too large to be useful. Moreover, if the evolution
of technology for three decades has always prioritized the average computation
time, being detrimental to the worst-case execution time. For example, if the
WCET on a modern hardware platform overestimates tenfold the WCET com-
pared to the actual observable WCET, what would be the point of using this
platform compared to an older, slower, and simpler platform where the computed
WCET would be closer to the actual observable WCET? We do not believe that
using a platform at 5 or 10% of its capacity is acceptable. This is why we focus
on dynamic measurement tools on modern platforms. One of the desired effects
is to find the value as close as possible to the worst observable execution time.

1.1 Timing Analysis Methods

This paper focuses on measurement methods of execution times on modern com-
puting platforms. Deployment of a program, along with its host operating sys-
tem, configuration, and options, is time consuming. Moreover, several clocks,
timers, and software Application Programming Interfaces (API), allow theoret-
ically a programmer to measure the execution time of a piece of code. In this
paper, we discuss these methods, in order for them to be used in a wider timing
analysis method to obtain a worst-case execution time. This can be used in three
of the four families of timing analysis methods that can be identified.

(1) Dynamic methods rely on intensive measurement on the platform.
(2) Static analysis is based on mathematical models that depends on both soft-

ware and hardware with the same importance. It generally has two phases:
the flow analysis determines all possible paths in the control flow graph of
the program, and the time analysis evaluates the execution time of each of
these paths. The hardware model allows to determine the execution time
of the instructions individually. The software model represents the possible
execution flows. The combination of these models with information on the

282 R. Jamil et al.

maximum number of times loops are iterated, the possible paths in the pro-
gram, the frequency of execution of code parts, etc. gives a WCET estimate.
As long as the models are correct, the WCET estimate is always reliable,
even if it is greater than any observable execution time.

(3) Hybrid measurement-based analysis was first presented by Kirner et al. [9].
It is an industry standard technique, employed in commercial tools, that
operates similarly to static analysis, except that it does not rely on a hard-
ware model. Rather, it uses measurements to derive execution times of small
program parts, before combining them using flow information in the WCET
calculation. Although the WCET estimate is generally more accurate than
that computed by static analysis, there is a possibility of underestimation if
testing has not sufficiently stressed the execution times of the small program
parts. Requiring intensive testing on the platform, the content of this paper
can also be useful in this type of measurement.

(4) More recently, some research groups started to develop stochastic response
time analysis methods, based on stochastic distributions on execution
times [5], which could lead to consider the very rare occurrences of the simul-
taneity of worst-case program behavior with worst-case platform behavior
as rare events, and reduce the under-utilization of modern platforms. Like
dynamic methods, these methods require intensive testing and this paper
also offers tooling for such type of measurement.

1.2 Measurement Techniques Characteristics

In order to measure execution time several methods exist that are each featuring
a unique selection of attributes[17]. These include:
1. Accuracy represents how close the measured value is to the true value by

using a measuring technique. In other terms, when retrieving an execution
time there is always an error limit. The actual value is certainly between the
measured value +− the accuracy of the method.

2. Difficulty of using a technique is a subjective characteristic, it is the effort put
in place to implement a method. For instance, if a given method requires the
use of advanced materials (e.g., logic analyzer), it is typically less accessible
to users than a purely software method.

3. Granularity represents the size of code which is possible to be measured, for
example, some methods are able to measure the execution time per function,
thread or process, other advanced techniques are able to measure the exe-
cution time of a single instruction [10]. Measurement, especially by software
means, has an impact on the measure.

4. Resolution of a measurement with respect to time, is the hardware limita-
tion associated with each method. For example, some physical timers have a
resolution of one microsecond.

1.3 Contributions

We show how we help a user to obtain measurements on his programs using a
new module that we are developing. For this tool, we tried to make the technique

Measurement-Based Timing Analysis on Heterogeneous MPSoCs 283

easy to use, requiring only the target hardware and the development computer,
giving the highest possible resolution depending on the available clocks or oper-
ating system, then it retrieves the measurement data automatically through the
debugger and exports it to a spreadsheet. The limitation, as with other dynamic
methods, is the inability to know the accuracy. We plan to work on this limita-
tion in future works. In the following section, the existing measurement methods
are compared. Then, in the third section, a specific measurement method on het-
erogeneous MPSoCs is discussed.

2 Measurement Methods on a Core

2.1 Stopwatch

Using stopwatches is a basic method to measure the amount of time elapsed
between the beginning and the end of a measurement. It requires a timing device,
for example, a digital watch, started at the beginning, and stopped at the end
of the measured piece of code. The stopwatch can be either external, where the
watch does not affect the code being measured, or instrumented, where we have
to add some code at the boundaries of the block of code being measured, altering
the duration of the measured code.

The resolution and the accuracy of this method depends on the tool being
used for the measurement. When running several times this code, the measure-
ment data is to be stored somewhere in the memory or registers of the target
hardware. There are two naive ways to handle it: (i) data stored locally during
the measurement campaign, and sent to the host platform at the end, creates
more memory stress and can interfere with the measurement itself, or be limited
by local memory size, (2) data sent after each measure to the host computer,
which can slow down the whole process. In both cases, the data is sent to the
host computer using a connection between target and host (Ethernet, serial,
etc.).

All these methods require therefore an additional code to recover the data
which increases the complexity of the measurement system. But there is another
way to retrieve data without adding any code. This method uses a debugging
system based on a hardware debug probe and a software debugger. It allows the
host machine to have a full view on the memory and the registers’ values. It
also makes possible to transfer the data recovery complexity from the measured
system to the host machine where we can simply encapsulate it into a software
part of an integrated development environment. We can then re-use it to do
measurements on other systems, all the while taking advantage of the possibility
of displaying the data on the host with statistics and graphs.

Regardless of the underlying stopwatch, many issues may occur due to the
preemption and interrupts. During the measurement of a segment of code, an
interrupt provokes false measurement value. We have two solutions to cope with
this. The first consists in masking the interrupts at the beginning of a measure-
ment and unmasking it at the end. But this solution is not applicable all the
time, because masking is not always available and it could also affect the system

284 R. Jamil et al.

behavior or modify its timing. The second solution is to simply discard values
that do not make sense, for example when we have a duration much longer than
other measurements most probably due to the interrupt. This solution must be
applied carefully to avoid discarding a representative value.

In the next sub-sections, we derive the listing of the stopwatch code on several
types of platforms.

2.2 Linux Time Tools

Linux provides many tools and functionalities to measure the elapsed time, with
their own characteristics, advantages and disadvantages.

The linux commands date and time are two popular tools giving the execu-
tion time of the whole program. They cannot be used to measure the execution
time of a specific function or a block of code. The main advantage of these tools
is the ease of use. Nevertheless, they are not very accurate and have a relatively
high granularity (a program). Gprof [7] is an open source profiling tool for Unix
application, it is a part of the GNU project and can be used for profiling pro-
grams compiled with GCC. In order to gather measurement data, GProf needs
code instrumentation, which can be done automatically using the GCC compiler
by passing specific options.

For more accurate measurement with a finer granularity, POSIX clocks can
be used. Two popular clocks are usually used:

1. CLOCK REALTIME that represents the current wall clock which is affected
by the modification of the system time-of-day clock.

2. CLOCK MONOTONIC which represents the elapsed time since a fixed point
in the past, this clock is not affected by changes in the system clock or a system
reboot.

It defines two functions for the clock configuration, the first is used to get
the resolution of the clock clock getres(), which is implementation dependant,
and has a precision up to a nanosecond. The second, clock settime(), is used
to set the time of a clock.

The function clock gettime() returns the current value of the selected
clock. This function should be used as a wrap to stopwatch in order to mea-
sure the segment of code, this is done by taking its value at the beginning and
the end of the measured block, as shown below:

s t r u c t t imespec s ta r t t ime , s top t ime ;
unsigned i n t measurement ;
c l o ck g e t t ime (CLOCK MONOTONIC, &s t a r t t ime) ;

/∗ code to measure ∗/

c l o ck ge t t ime (CLOCK MONOTONIC, &stop t ime) ;
measure = ((s top t ime . tv n s e c − s t a r t t ime . tv n s e c) +
(s top t ime . t v s e c − s t a r t t ime . t v s e c)∗1000000000u) ;

Measurement-Based Timing Analysis on Heterogeneous MPSoCs 285

One of the drawbacks of this method is that we include the duration of
clock gettime() itself in the measurement. If the portion of measured code is
short, this leads to a drastic overestimation.

2.3 C Standard Functions

Many functions defined in C language are available for measurement, these func-
tions should be used like a stopwatch. The function clock() [8] determines the
processor time used and the function time() [8] determines the current calen-
dar time. The standard does not specify their resolution but indicates that they
should be the implementation’s best approximation.

2.4 Clock Cycles Counter

Most processors implement mechanisms and registers used for profiling and
benchmarking purposes. These mechanisms are usually based on free running
cycles counter, counting upward, where the value of the register will be incre-
mented by one on each clock cycle, then it will be zeroed on overflow and gen-
erate an event. These mechanisms are on-chip physical components controlled
by assembly instructions, and have a small overhead on the processing. On Intel
architectures this counter is called Timer Stamp Counter (TSC), on the other
hand, ARM based architectures use the clock cycles counter (CYCCNT), which
is a 32-bits register. The counter is usually used like a stopwatch: its value is
reset and it has to be started before the measurement.

2.5 Timer/Counter Chip

Processors’ chips usually contain timers, that could be general purpose timers
or any other timer type. These timers are based on counters either upward or
downward. In both cases, they can be used to measure the execution time of
a segment of code or a function by using it as a stopwatch. This technique
requires an initialization phase before doing the measurement, during which the
timer usually has to be configured by setting the source clock and other setup
mentioned later on. These peripherals have many registers that provide different
functionalities. In order to measure a portion of code, two types are required: the
control registers and the counter value registers. The latter holds the maximum
counting limitation which is usually based on registers size between 8 and 32
bits. The control functionalities vary among chips and types, and the ability to
set it as an upward or a downward counter is usually available. Another common
functionality is the possibility to specify the initial, start, stop and reset values, as
well as setting a pre-scaler (clock divider) and the counting granularity. Giving
a timer resolution, the higher the precision is, the lower the duration before
an overflow. Let’s suppose that the timer has 32 bits counter value registers,
and has a source clock frequency 200 MHz meaning that its precision can get
up to 5 ns. This implies that it will overflow after 21.47 s. With the pre-scaler,

286 R. Jamil et al.

the clock can be divided by 2, 4, 6... so that measurement can be done for a
longer duration, at the cost of precision. To avoid any kind of inaccuracy, it is
always recommended to start with an estimated pre-scaler, and then reduce it to
increase the precision, discarding values that show that an overflow occurred. In
some cases, it is even recommended to measure a block of code with an estimated
execution duration equal to 10% of the maximum value that can be held by the
value registers. We can find these timers in two places. Either they are available
as an external peripheral inside the chip or in all cores of the same type. On one
hand, having the timer as an external peripheral has many advantages. Besides
providing different functionalities not related to the measurement, we can benefit
from the higher clock speed allowing more precision, in addition to size of the
registers value. It is also more configurable without side effects on the system.
This kind is used later on, to measure the inter processors message passing. But
this type is much more specific to each board, making its usage less portable
than other types. On the other hand, each processor usually provides a main
timer that can be used for many purposes. The most common one is the tick
generator of an operating system. In most cases, it is configured to have the
same speed as the processor so the measurement can take place without any
special kind of initialization. The measurement unit could be both in time or in
cycles. The conversion is not immediate since some processors see their frequency
dynamically modified depending on the load or core temperature. Such a timer
should be used carefully because other components could be using it, and they
might modify its configuration (for example FreeRTOS uses the Systick timer for
its own purpose). This also implies that if an operating system is used, there is
a high risk of inaccurate results. In such cases, it is recommended to use another
method or another timer and certainly not changing its configuration in any way,
because it will probably crash the operating system. One popular example of a
timer used for measurement is the ARM Systick timer, that can be found in all
ARM based microcontrollers from different manufacturers, allowing the code to
be way more portable than the external timer. It is also easy to use [19].

2.6 Logic Analyzer

Logic analyzer is a solution to a particular class of problems. It is a versatile tool
that can help with digital hardware debugging, design verification and embedded
software debug. The data stored in the real-time acquisition memory can be used
in a variety of display and analysis modes. Once the information is stored within
the system, it can be viewed in many formats.

In order to use a logic analyzer two approaches are possible. The first one
consists in connecting the probes to the CPU pins. The advantage of this app-
roach is that it does not disturb the real-time code. At the same time, it is
a very complicated method because the correlation between the logic analyzer
measurement and the source code can only be done by reverse engineering.

The second one consists in sending strategic signals to an output port at the
beginning and end of each code segment. These signals are then read as events
by the logic analyzer. The code instructions that are enclosed within a macro

Measurement-Based Timing Analysis on Heterogeneous MPSoCs 287

make it easier to redefine the macro without affecting the application code. This
method can be used for small systems as well as for large applications that use
commercial real-time operating systems.

2.7 Experimental Comparison

We measured the execution time using different methods on three heterogeneous
boards, the STM32MP157-DK2 from STMicroelectronics, it consists of a dual-
core Cortex-A 650 MHz and a single core Cortex-M 209 MHz, and two boards
from NXP, the i.MX7ULP (Cortex-A 500 MHz and a Cortex-M 200 MHz) and
the i.MX8EVK (Cortex-A 1 GHz and a Cortex-M 240 MHz). We used the Adap-
tive Differential Pulse Code Modulation benchmark which is part of TACLe
Benchmark suite [6], the test was repeated for at least one hundred times. In
Fig. 1, we are showing as box plots the results obtained using three measurement
methods: the ARM cycles counter (CYCCNT), ARM core timer (SYSTICK) and
a peripheral timer that is specific to each board. The results are similar across
all three methods. This shows a consistency that is reassuring since the only
difference lies on the choice of the easiest method to implement.

i.MX7-M4 i.MX8-M4 STM32MP1-M4

0.8

0.85

0.9

0.95

1

·104

ex
ec
ut
io
n
ti
m
e
di
st
ri
bu

ti
on

(c
yc
le
s)

CYCCNT

i.MX7-M4 i.MX8-M4 STM32MP1-M4

0.8

0.85

0.9

0.95

1

·104

ex
ec
ut
io
n
ti
m
e
di
st
ri
bu

ti
on

(c
yc
le
s)

SYSTICK

i.MX7-M4 i.MX8-M4 STM32MP1-M4

0.8

0.85

0.9

0.95

1

·104
ex
ec
ut
io
n
ti
m
e
di
st
ri
bu

ti
on

(c
yc
le
s)

TIMER PERIPHERAL

Fig. 1. Execution time distribution using different methods

Figure 2 shows the results of the same benchmark code but using the POSIX
clock based measurement using get clocktime() function on a Linux OS in
normal load condition or in a stressed environment using the hackbench tool
[20]. We can see that the results in a stressed environment are more spread than
on normal load. The execution time when measured in nanoseconds varies a
lot depending on the frequency of the processor, therefore, the i.MX7 500 MHz
frequency is the slowest and the i.MX8 1 GHz is the fastest, though if we calculate
the equivalent cycles count, it gives closer values.

We notice that the execution time on the i.MX8 board is faster on a stressed
environment. This is due to the fact that Linux changes the frequency dynam-
ically [15] depending on the processor’s load. In this case, the frequency 1 GHz
when normal load, while it is boosted 1.5 GHz in the stressed environment.

288 R. Jamil et al.

i.MX7 i.MX8 STM32MP1
0.5

1

1.5

2
·104

ex
ec
ut
io
n
ti
m
e
di
st
ri
bu

ti
on

(n
an

os
ec
on

ds
)

LINUX

i.MX7 i.MX8 STM32MP1
0.5

1

1.5

2
·104

ex
ec
ut
io
n
ti
m
e
di
st
ri
bu

ti
on

(n
an

os
ec
on

ds
)

LINUX STRESSED

Fig. 2. Execution time distribution on Linux

3 Inter-core Timing Measurement

3.1 Heterogeneous Asymmetric Multicores

Until recently, most of the multicore platforms were homogeneous, including sev-
eral identical cores able to access the main memory using the same bus, allowing
a global scheduler to schedule the threads globally on every core. Following the
market needs, several SoC manufacturers are nowadays proposing new heteroge-
neous multicore system where they combine at least two different types of cores,
for example a microcontroller (MCU) and a set of microprocessors (MPU). This
new technology is becoming very popular in the computing world, this is not
only due to the fact that we can dedicate a processor to a specific function but
also to the ability to use an entirely different OS on each core. SoC architects, are
creating mixed types of processing cores for complex systems to perform sophis-
ticated operations in an effective way, they combine MCU and MPU units on one
multicore device. For example, we can find a SoC with quad-core ARM Cortex-
A53, two ARM Cortex-R5 and a Field-Programmable Gate Array (FPGA) or
another SoC with dual-core ARM cortex-A7 and an ARM Cortex-M4.

In a real-time context, those features stress the question of how to measure
the execution time of an application that starts on a core then migrates through
the inter processor communication mechanism then ends on another type of core.

3.2 Inter-core Communication Technologies

Heterogeneous asymmetric multi processor (AMP) cores have several compo-
nents that permit inter-core communication, the most important one is the
shared memory, we usually find exclusive memories for each group of the AMP
cores and a shared memory [16], where they can access it simultaneously. This
access needs other mechanisms to avoid a race condition and to allow synchro-
nisation. This is where an inter cores signaling controller is implemented that
triggers interrupts between the AMP cores, this controller is available in the
STM32 family as Inter-Processor Communication Controller (IPCC) [16], which

Measurement-Based Timing Analysis on Heterogeneous MPSoCs 289

mainly consists of two parts – Interrupts management and the AHB interface.
Each channel makes use of single status flags to indicate Send or Receive status
of a processor. Communication between processors follows a simple and stream-
lined approach using the IPCC. Before any message is passed, the channel flag
is first checked to see whether it is free or occupied. Once the channel is free,
a channel free interrupt is generated by the sender. The channel free interrupt
is then masked after which the message can be written in the channel buffer.
The channel status flag is also set to ‘Occupied’ that triggers an interrupt in
the receiver side. The receiving side then checks which channel is occupied and
masks the appropriate Channel Occupied Interrupt. This allows the data to be
read by the receiver from the channel buffer. Once the operation is complete, the
receiver sets the Channel status flag to Free and unmasks the Channel Occu-
pied interrupt. For half-duplex communication, the processors follow a similar
method to send and receive messages through the IPCC.

Another mechanism available in Asymmetric Multi Processor (AMP) archi-
tectures is the hardware spinlocks [11], also known as hardware semaphores [16],
which permits the exclusive access to the shared memory or a shared peripheral.
These hardware means are often used by the software framework OpenAMP,
that allows AMP systems to utilize the multi-processor configuration by allow-
ing operating systems to interact and communicate with complex homogeneous
or heterogeneous architectures.

With a large number of microcontroller cores being built on single integrated
chips, it is becoming increasingly difficult for developers to fully utilize the avail-
able underlying hardware. When it comes to homogeneous systems, the symmet-
rical processing approach treats all the cores equally by evenly balancing the load
among them. However, they cannot be scaled to handle heterogeneous architec-
tures, that can host different operating systems and use different instruction sets.
This is where the OpenAMP framework comes into the picture. It is an open-
source project that mainly deals with changing the ways operating systems are
designed to interact with existing hardware. The framework allows developers
to install and deploy multiple operating systems, applications and software over
homogeneous or heterogeneous architectures. They are scalable and allow the
developers to utilize the available hardware.

OpenAMP is based on a master-slave concept that utilizes different proces-
sors and load. The main components of an OpenAMP are mentioned below [2]:

1. Remoteproc: It is used to control the Life-Cycle Management of the different
processors existing on the AMP architecture. It uses the software running on
the master processor to control other remote processors in the architecture. It
also can be used to allocate system resources and create virtual I/O (virtio)
devices using the firmware resource table.

2. rpmsg: It is a virtio-based API that allows Inter-Process communication
between software running on different processors in the AMP architecture.
RPMsg devices are also called channels.

290 R. Jamil et al.

RPMsg-Lite is another method for communication between multiple cores in
a heterogeneous. It is a lightweight implementation of the RPMsg that offers a
code size reduction, API simplification, and improved modularity [12], we use
this implementation on the NXP i.MX boards.

3.3 Measurement Methods

To measure the execution time of a program that runs on AMP multicores we
should use techniques that are independent from any specific core. Furthermore,
the cycle does not make sense, as long as the cores are not synchronized and
each has its own frequency. This is the reason why we should use a time unit
like the nanosecond or microseconds where we take the same time reference.

An on-chip external timer is a good choice in this case, as long as this periph-
eral could be controlled by all the AMP cores. It should be used like a stopwatch,
where the start value is taken from the first core and then the end value from
the last.

In the example shown in Fig. 3, we have two AMP cores. The start value is
taken from the microcontroller (MCU) and the end value from the processor.
Our measurement method includes the execution time on both the MCU and
the processor parts, writing the message to the shared memory in addition to
the latency due to the inter-processor communication mechanism.

Fig. 3. AMP measurement using timer

Like any other measurement method based on the on-chip timer, one has to
make sure to avoid the counter overflow as well as to decide on which core this
timer should be initialized. The time unit is the timer’s counter value, which can
be converted to seconds based on the timer’s frequency and prescaler.

In order to prepare for the test, we developed two applications each executed
on a different core. The first sends a 512 bytes message to the second part
which continues the execution. The external timer used for the measurement is
initialized on the microcontroller’s side, and it is possible to start, stop or read
its counter’s value on both sides.

The results shown in Fig. 4 demonstrate the execution time in nanoseconds
of this application where benchmark parts were starting and ending on different

Measurement-Based Timing Analysis on Heterogeneous MPSoCs 291

i.MX7 i.MX8 STM32MP1

1.2

1.4

1.6

1.8

·104
ex
ec
ut
io
n
ti
m
e
di
st
ri
bu

ti
on

(n
an

os
ec
on

ds
)

Linux to M4

i.MX7 i.MX8 STM32MP1

2

4

6

8

·104

ex
ec
ut
io
n
ti
m
e
di
st
ri
bu

ti
on

(n
an

os
ec
on

ds
)

M4 to Linux

Fig. 4. Measuring the communication time for AMP application

cores. We can notice, on all boards, that sending a message from the microcon-
troller to the Linux operated microprocessor has higher latency but shows more
determinism. The fact that there is more variation when Linux operates as the
reader can be explained by the fact that the task waiting for the message, while
having the highest priority, is in a waiting state. When the message arrives,
it triggers an interrupt, which triggers the Linux kernel operations, that will
put the task in a ready state, and call the scheduler. This is therefore suffering
the variation of the kernel latency. When Linux acts as the sender, we observe
very few variation, because when the counter is activated by the highest priority
task, that then feeds the messaging’s driver with the data to send, there is no
scheduling decision to make.

3.4 Heterogeneous Migration

Currently, schedulers support migration only for symmetrical multiprocessing
(SMP). In AMP system, these schedulers face many challenges, because they
must deal with unrelated multiprocessor platforms, that usually have different
instruction set architecture (ISA). Nevertheless, allowing migration could lead to
a full resource utilization, because optimal global schedulers for heterogeneous
platforms have been proposed in the literature [3,4]. Nevertheless, these global
schedulers usually consider an instantaneous migration time. One simple solution
consists of compiling the code for each architecture, then specifying the migration
points in the code, allowing the migration from a cluster to another. This is
where the necessary local data is transferred to the other side using OpenAMP
to continue the execution.

4 Conclusion

In this paper we discussed several measurement methods both on a single type
of core, for baremetal and Linux based pieces of code. We showed experimentally
that most clock based measurement methods give similar results, this implicates

292 R. Jamil et al.

that the choice of the methods should rely on simplicity and accessibility. More-
over, we discussed how inter-cluster communication can be measured, since in
this case, an external clock has to be used and the timers used on a single core
cannot be shared. We also showed experimentally that inter cluster communica-
tion from a microprocessor to a microcontroller exhibits more determinism than
the symmetric operation. On several different boards, this duration is in the
order of magnitude of 10 to 80 ms. This could be used to allow tasks to migrate
from a cluster to a different one, by using software preemption points.

References

1. Altmeyer, S., Burguière, C.: Cache-related preemption delay via useful cache
blocks: survey and redefinition. J. Syst. Architect. 57(7), 707–719 (2011)

2. Baum, F., Raghuraman, A.: Making full use of emerging ARM-based heterogeneous
multicore SoCs. In: 8th European Congress on Embedded Real Time Software and
Systems (ERTS 2016) (2016). https://hal.archives-ouvertes.fr/hal-01292325

3. Bertout, A., Goossens, J., Grolleau, E., Poczekajlo, X.: Template schedule con-
struction for global real-time scheduling on unrelated multiprocessor platforms.
In: 2020 Design, Automation & Test in Europe Conference & Exhibition, pp. 216–
221. IEEE (2020)

4. Bertout, A., Goossens, J., Grolleau, E., Poczekajlo, X.: Workload assignment for
global real-time scheduling on unrelated multicore platforms. In: Proceedings of the
28th International Conference on Real-Time Networks and Systems, pp. 139–148
(2020)

5. Davis, R.I., Cucu-Grosjean, L.: A survey of probabilistic schedulability analysis
techniques for real-time systems. LITES: Leibniz Trans. Embed. Syst., 1–53 (2019)

6. Falk, H., et al.: Taclebench: a benchmark collection to support worst-case execution
time research. In: 16th International Workshop on Worst-Case Execution Time
Analysis (2016)

7. Graham, S.L., Kessler, P.B., McKusick, M.K.: Gprof: a call graph execution pro-
filer. SIGPLAN Not. 39(4), 49–57 (2004). https://doi.org/10.1145/989393.989401

8. ISO: ISO/IEC 9899:2018 Information technology – Programming languages – C.
pub-ISO, pub-ISO:adr, June 2018. https://www.iso.org/standard/68564.html

9. Kirner, R., Wenzel, I., Rieder, B., Puschner, P.: Using measurements as a comple-
ment to static worst-case execution time analysis. Intell. Syst. Serv. Mankind 2, 8
(2005)

10. Lilja, D.J.: Measuring Computer Performance: A Practitioner’s Guide. Cambridge
University Press, Cambridge (2005)

11. Linux kernel: Hardware Spinlock Framework. https://www.kernel.org/doc/
Documentation/hwspinlock.txt

12. NXP: RPMsg-Lite User’s Guide. https://nxpmicro.github.io/rpmsg-lite/
13. Park, C., Shaw, A.C.: Experiments with a program timing tool based on source-

level timing schema. In: Proceedings 11th Real-Time Systems Symposium, pp.
72–81. IEEE (1990)

14. Puschner, P., Koza, C.: Calculating the maximum execution time of real-time
programs. Real-Time Syst. 1(2), 159–176 (1989)

15. Spiliopoulos, V., Kaxiras, S., Keramidas, G.: Green governors: a framework for
continuously adaptive DVFs. In: 2011 International Green Computing Conference
and Workshops, pp. 1–8. IEEE (2011)

https://hal.archives-ouvertes.fr/hal-01292325
https://doi.org/10.1145/989393.989401
https://www.iso.org/standard/68564.html
https://www.kernel.org/doc/Documentation/hwspinlock.txt
https://www.kernel.org/doc/Documentation/hwspinlock.txt
https://nxpmicro.github.io/rpmsg-lite/

Measurement-Based Timing Analysis on Heterogeneous MPSoCs 293

16. ST Microelectronics: STM32MP157 advanced Arm-based 32-bit MPUs (2019)
17. Stewart, D.B.: Measuring execution time and real-time performance. In: Embedded

Systems Conference (ESC), vol. 141 (2001)
18. Wilhelm, R., et al.: The worst-case execution-time problem-overview of methods

and survey of tools. ACM Trans. Embed. Comput. Syst. (TECS) 7(3), 36 (2008)
19. Yiu, J.: The Definitive Guide to ARM® Cortex®-M3 and Cortex®-M4 Proces-

sors. Newnes (2013)
20. Zhang, Y.: Hackbench (2008). https://people.redhat.com/mingo/cfs-scheduler/

tools/hackbench.c

https://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c
https://people.redhat.com/mingo/cfs-scheduler/tools/hackbench.c

Awas: AADL Information Flow and Error
Propagation Analysis Framework

Hariharan Thiagarajan(B), John Hatcliff(B), and Robby(B)

Kansas State University, Manhattan, KS, USA
{thari,hatcliff,robby}@ksu.edu

Abstract. The continued maturation of industry standard architec-
ture description languages is providing a foundation for more sophis-
ticated analyses earlier in the system engineering process. The Architec-
ture Analysis and Design Language (AADL) and its supporting anno-
tation sub-languages provide the ability to model system hardware/-
software components as well as information flows within the system.
Such flows include conventional notions of data/control flows, security-
oriented information flows, and fault/error propagation paths that are
supported by the AADL Error Modeling Annex (EMv2)—all of which
are central to engineering safety/security-critical systems.

In this paper, we describe Awas – an open-source framework for per-
forming information reachability analysis on AADL models annotated
with flow annotations at varying degrees of details. The framework pro-
vides highly scalable interactive visualizations of flows with dynamic
querying capabilities. To ease the process, we provide a simple domain-
specific language to pose various queries for checking safety and security
properties. We demonstrate the effectiveness of our approach by applying
it on a collection of industrial models of safety/security-critical systems
from the medical and avionics domains.

1 Introduction

Critical systems have become more complex and interconnected in recent years.
The growing emphasis on the composition of components and systems into bigger
systems provides unique challenges in developing real-world solutions. One way
to cope with the scale of such systems is to adopt distributed development.
However, when multiple vendors are involved, it is imperative to communicate
the dependencies and responsibilities. Safety and security aspects of the system
often span multiple organizations and many sub-systems. It is essential to have
a common understanding of various dependencies in the system.

A common approach to developing systems of systems is to use a model-based
system engineering (MBSE) methodology. Developing a system model enables

This work is supported in part by the US Army, by the DARPA CASE program, and
by Software Engineering Institute.

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 294–310, 2020.
https://doi.org/10.1007/978-3-030-59155-7_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_23&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_23

Awas: AADL Information Flow and Error Propagation Analysis Framework 295

the capturing of the overall architecture and assign responsibilities among stake-
holders. In distributed development with multiple stakeholders, integration fail-
ure is a common concern. Identification and rectification of integration failures
are expensive due to encountering integration failures late in the system integra-
tion process, which is after the development of individual components. Using a
standardized architecture description language like the Architecture and Analy-
sis Definition Language (AADL) provides an opportunity to analyze the system
before considerable monetary investments, share a common vocabulary, model
elements, and tools to design and implement a system. MBSE can also include
code generation – ensuring the generated code captures the abstract model’s
safety and security critical properties.

In a multi-vendor development context, various notions of dependence anal-
ysis are key to gaining system understanding and supporting safety and security
audits and assurance cases. In hazard analysis, the knowledge of fault propaga-
tion through the system due to dependencies facilitates developing better hazard
mitigation strategies. Analyzing security aspects of the system requires compre-
hending the flow of information through data and control channels. Addition-
ally, over the life cycle of the system, upgrading and re-integrating components
requires an understanding of the impact of the changes. Addressing these chal-
lenges is best supported by a general-purpose dependence analysis infrastructure
– where dependencies can be captured in and derived from models which align
with the structure of the system to be deployed. Using a dependence analysis
infrastructure, developers and analysts can better understand relationships and
interactions between components in large scale systems.

The developers of AADL recognize these challenges and provided with lan-
guage constructs to capture the flow of information within a component, between
components, and between a platform and its functional sub-system. Addition-
ally, AADL annex EMv2 enables the capturing of error flows in the system.
However, AADL lacks tooling to visualize the end-to-end flow of information,
especially in a large system. In a model with multiple sub-systems, abilities to
navigate up and down the system hierarchy is advantageous. In hazard analysis
of the medical system, although AADL provides tools to compute the flow of
error, overlaying the calculated error flows on the system model can better com-
municate the hazardous scenario to an analyst. Finally, AADL needs support for
dynamic interaction with the model and its dependence information, including
the ability to specify and replay queries capturing relevant “what if?” scenarios.

In this paper, we present Awas, a general-purpose framework for scalable
dependence analysis of AADL models that integrates AADL flows and EMv2
error propagations. Specific contributions of this paper are:

– General AADL model representation with different forms of information flow
– Scalable reachability analysis libraries
– Interactive visualization of AADL models with the ability to focus on partic-

ular concerns of developers and analysts
– General dependence framework for security and hazard analyses

296 H. Thiagarajan et al.

– Evaluation of the suitability and scalability of the framework against examples
from avionics and medical domains

The Awas tool and example AADL models, along with the tutorial materials,
are available as open-source content at [16]. Additionally, Awas is being applied
on the DARPA CASE project to analyze system-wide information flow properties
and on a US Army project to support risk management of interoperable medical
systems.

Modeling Ac vity
Organize into components
Choose par oning strategy
Design inter-component communica on
(+ Real-Time, Fault Mi ga on, etc.)

Model-based Graphical View (AADL) Model-based Textual View (top level AADL)

UAV
Mission Computer

Ground
Sta on

Flight
Planner

Waypoint
Manager

Flight
Controller

Radio Serial

System Concept (External Input)

Fig. 1. A simple UAS example with AADL modeling artifacts

2 Background

In this section, we provide a brief overview of AADL, focusing on its various
forms of dependency and information flow relations. AADL concepts are illus-
trated using a simple Unmanned Aerial System (UAS).1

Figure 1 presents a high-level view of a fragment of the example system
(upper left) along with excerpts of AADL modeling artifacts. The system concept
consists of a UAV conducting surveillance. The UAV receives mission informa-
tion (e.g., a map with collection targets) from the ground station and sends
status information to the ground station. The UAV includes a mission computer
and a flight controller. The mission computer computes waypoints from ground
station inputs. The flight controller acts upon these waypoints to advance the
surveillance task. The mission computer is inspired by US Air Force Research
Lab’s Unmanned Systems Autonomy Services (OpenUxAS) [13].
1 The simple UAS is adapted from an example used by the Collins Aerospace team

on DARPA Cyber-Assured Systems Engineering (CASE) project – the authors are
part of the Collins team on DARPA CASE.

Awas: AADL Information Flow and Error Propagation Analysis Framework 297

1 system implementation UAS.Impl
2 subcomponents
3 GND: device GS::GroundStation;
4 UAV: system UAV::UAV.Impl;
5 RFB: bus RF;
6 connections
7 c1: port GND.send_map -> UAV.recv_map;
8 c2: port UAV.send_status -> GND.recv_status;
9 bac1: bus access RFB <-> GND.RFA;

10 bac2: bus access RFB <-> UAV.RFA;
11 properties
12 Actual_Connection_Binding => (reference

(RFB)) applies to c1, c2;
13 end UAS.Impl;

Fig. 2. Simple UAV system top level
model – illustrating inter-component
dependences

Fig. 3. Instance diagram of top level
system and the UAV subsystem

AADL Overview: AADL is a SAE standardized architecture description lan-
guage for modeling real-time embedded systems. AADL has both textual and
graphical views as illustrated in Fig. 1. AADL modeling elements include soft-
ware, middleware, and hardware and components along with various types of
dependency relationships between them (inter-component dependencies) and
within them (intra-component dependencies). Each modeling element can have
a variety of AADL properties – modeling attributes that specify important char-
acteristics of the element that may subsequently be leveraged for model analysis
or code generation.

Inter-component Dependences: The most prominent inter-component rela-
tionships are connections which capture data and control flow between soft-
ware components such as threads and processes (e.g., the flow of waypoint
data between the mission computer and flight controller). Connections associate
ports on sending and receiving components, and AADL includes different port
categories to specify communication patterns between components (e.g., asyn-
chronous message passing, synchronous shared memory). Relationships to/be-
tween middleware components can be captured using by specifying connections
via bus accesses (intuitively, a feature on a software component indicating that
it utilizes a communication substrate); for example, the mission computer and
flight controller declare access to an AADL bus that models a serial bus com-
munication medium. Finally, software elements such as threads/processes and
connections can be allocated to middleware and hardware resources such as pro-
cessors and buses using AADL bindings. These dependencies can have multiple
layers. For example, a process can first be bound to a virtual processor used
to model a partition in a hypervisor and then the hypervisor partitions can be
bound to a processor. Similarly, a communication connection can be bound (tran-
sitively) through one or more virtual buses representing layers of abstraction and
associated protocols in a protocol stack.

298 H. Thiagarajan et al.

Figure 2 provides excerpts of the simple UAS AADL model that illustrate
some of these kinds of dependencies. It captures the implementation of the
system consisting of three sub-components of type GroundStation, UAV, and
RF (radio frequency communication) with connections representing information
flows between them. These connections include both: (a) port connections rep-
resenting application level communication at lines 7–8, and (b) bus accesses
representing component infrastructure utilization of the underlying communica-
tion RFB substrate at lines 9–10. Line 12 is an AADL binding specifying that the
port based communication between the ground station and the UAV components
is realized using the RFB bus at a lower level of abstraction.

The model information in Fig. 2 is part of what AADL terms a declarative
model because it declares the architectural structure organized into a hierarchy
using various AADL containment structures. In addition, the model may have
multiple component implementation declarations for a given component type.
Given a selection of particular component implementations, AADL tools will
construct an instance model which instantiates the declarative model to a partic-
ular implementation configuration/instance while removing some of conceptual
containment components to more directly associate connections between ports
of components corresponding to actual hardware and software units. Figure 3
illustrates a portion of an instance model diagram for the system. Note that
some of the dependence relations such as bindings, e.g., the realization of the
connection c1 and c2 through the bus RFB, are not captured.

1 system MissionComputer
2 features
3 recv_map: in event data port DataType.Impl;
4 position_status: in event data port DataType.Impl;
5 waypoint: out event data port DataType.Impl;
6 send_status: out event data port DataType.Impl;
7 UARTA: requires bus access UAV::Serial;
8 RFA: requires bus access UAS::RF;
9 flows

10 compute_waypoint: flow path recv_map -> waypoint;
11 compute_status: flow path position_status -> send_status;
12 annex EMV2 {**
13 use types UAS_Errors;
14 error propagations
15 recv_map : in propagation {wellformed_authenticated, wellformed_unauthenticated,

not_wellformed_authenticated, not_wellformed_unauthenticated};
16 waypoint : out propagation {wellformed_authenticated};
17 flows
18 wellformed_authenticated : error path recv_map{wellformed_authenticated} ->

waypoint{wellformed_authenticated};
19 unauthenticated_map : error sink recv_map{not_wellformed_unauthenticated,

wellformed_unauthenticated};
20 not_wellformed_map : error sink recv_map{not_wellformed_unauthenticated,

not_wellformed_authenticated};
21 end propagations; **};
22 end MissionComputer;

Fig. 4. AADL flow and error propagations annotations in mission computer

Awas: AADL Information Flow and Error Propagation Analysis Framework 299

Intra-component Dependencies: AADL also provides multiple notions of
intra-component dependences. The most basic of these are flow specifications,
which model data and control flow relationships between a component’s input
and output ports. Figure 4 presents additional model details for the Mission
Computer component. Line 10 uses a flow annotation to indicate that comput-
ing a waypoint will involve taking map information as input from the com-
ponent’s recv map port and producing waypoints that will flow out of the
waypoint port. Similarly, computing status information will take input from
the position status port and send information out of the send status port.
AADL does not define a precise semantics for flows, and it does not make an
explicit distinction between data and control flow. Flow annotations may be
given different interpretations by different analysis tools. For example, a latency
analysis tool may consider a flow to model a single or collection of execution
paths through the component source code, with an associated worse case exe-
cution time for the path. A security analysis tool may interpret the flow as a
specification of information flow (e.g., a combination of data and control flow).

AADL includes other notions of flows that augment the basic flows above.
For example, it provides an Error Modeling (EM) annex [15] to support multiple
forms of model-based hazard analysis. In EM, tokens representing errors/faults
and error flow annotations are added to model propagation of errors through
a component. One can also use these annotations to model various types of
security issues. For example, consider that the UAS system is designed to satisfy
the following requirements.

1. Communications between Ground Station and UAV must be authenticated.
2. Commands from the Ground Station shall be checked for well-formedness

before being used to compute coordinates for the Flight Controller.

These address two different integrity properties: a data authentication prop-
erty and a data well-formedness property. While basic AADL flows capture flow
channels from the Ground Station to the UAV flight controls, the requirements
above reflect properties of information flowing along those channels. Specifi-
cally, somewhere along the channels the system needs trusted components to
filter out malformed data and to authenticate data. To reason about both
properties at once, one can use AADL error tokens to simulate/approximate
a cartesian abstract interpretation that captures different combinations of well-
formedness and authentication properties. We define the following four tokens
EMv2 error tokens: wellformed authenticated, wellformed unauthenticated,
not wellformed authenticated, and not wellformed unauthenticated.

In Fig. 4, lines 15–16 models that the mission computer component may
receive any combination of error through its port recv map. However, it may
propagate only the wellformed authenticated message to the flight controller –
reflecting the fact that somewhere in the mission computer architecture security
functions “filter out” malformed messages and unauthenticated messages. Line
18 shows the propagation of the token wellformed authenticated received in the
input port recv map to the waypoint port (i.e., “good” information is allowed to
flow through and form the basis of waypoints to the flight controller). On the

300 H. Thiagarajan et al.

other hand, the mission computer acts as a sink for (i.e., filters out) any token
that indicates a “bad” message, (i.e., tokens not wellformed unauthenticated,
not wellformed authenticated and wellformed unauthenticated).

3 Awas Tool Architecture

Section 2 surveyed the diverse forms of inter- and intra-component dependence
captured in AADL models, and Sect. 1 summarized the many uses of depen-
dencies in developing and assuring safety and security critical systems. Awas
provides (a) infrastructure that unifies AADL dependencies into a single graph-
based framework, (b) algorithms for performing analysis and queries on depen-
dence information, (c) APIs that allow other tools to access Awas algorithms and
tailor them to specific concerns, and (d) interactive and scalable visualizations
of dependence information and analysis results.

Fig. 5. AADL reachability analysis tool architecture

Figure 5 presents the Awas tool implementation architecture. Awas is a
plug-in to the open-source Eclipse-based OSATE environment, the most pop-
ular AADL modeling tool. AADL instance models are translated through a
JSON-based AADL Intermediate Representation (AIR), from which the Awas
graph structures are extracted. Analysis and query algorithms work on the graph
structures. The algorithms/queries can be directed and results obtained either
through APIs or through the Awas visualization infrastructure.

For a given AADL instance model, Awas generates an HTML5-based inter-
active visualization. Awas algorithms, developed in Scala, are compiled to
JavaScript and run directly in the browser – allowing queries and analyses to be
executed independently of OSATE or other tool components requiring installa-
tion. Figure 6 shows an example visualization. Multiple panes can be opened to

Awas: AADL Information Flow and Error Propagation Analysis Framework 301

Fig. 6. Awas reachability visualizer and query interpreter

show dependencies and analysis results at different levels of the system architec-
ture. The user can immediately launch and view various forms of forward and
backward reachability analysis by selecting components, ports, and connections.
Views can be configured by selected levels of detail (e.g., focusing on base con-
nection dependencies, adding dependencies related to AADL bindings, adding
AADL EM error flow information). In addition, AADL provides a query lan-
guage (illustrated in the right pane of Fig. 6 that enables frequently used queries
and queries corresponding to system requirements or auditing goals to be spec-
ified and easily replayed with a single click. The visualizer provides a dynamic
read-eval-print-loop for the Awas query language (bottom right). Our industrial
partners have found the HTML5-based Awas visualizers to be especially useful
because they allow a system description to be easily distributed via the web or
a zip file so that stakeholders can browse the architecture and its dependencies
without having to install the complete OSATE infrastructure and associated
AADL models.

4 Base Awas Dependence Graph and Visualization

The base Awas dependence visualization consists of components, each with a
summary of its intra-component flows/dependencies, and AADL connections
reflecting inter-component dependencies. Figure 7 illustrates how Awas captures
intra-component information flows. The top of the figure illustrates the use
of AADL’s existing flow annotation in the AADL textual view to indicate
that within the UAS mission computer software, information arriving at the
position status only flows to the send status output port. The bottom of
Fig. 7 shows this information in the Awas web-based visualizer.

302 H. Thiagarajan et al.

Prototype
HTML5

component
flow

visualizer

Component: PROC_SW

Fig. 7. Awas visualization of intra-component flows

To capture inter-component dependencies and to support reachability anal-
ysis in various stages of modeling from an abstract model to a model with rich
error behavior and nested components, Awas constructs a graph data structure
similar to the Program Dependence Graph (PDG) [6], capable of capturing intra-
/inter-component flows, and error flows. In the in-memory graph representation,
both components and connections are represented as nodes. The edges connect-
ing the nodes are considered infallible or passive similar to [19]. To interact with
the visualization of underlying dependence graph, users simply click on a compo-
nent or port and press a button to carry out basic queries such as “where in the
system does information from this port/component flow?” (forward reachability
in the dependence/constraint graph) or “what system elements are contributing
information that flows into this port/component?” (backward reachability).

In the visualization of the UAS example in Fig. 8, the user clicks on the
send map port (in blue) of the Ground Station and presses the Forward button
to invoke the dependence analysis and visualizer to display paths (in red) and
associated ports and connections (in green) along which map information flows
in the system. The visualization allows one to open multiple windows to show
the results at different levels of the system hierarchy (in Fig. 8), the left window
shows the top-level of the system, while the right two windows show the UAV
and its mission computer subsystem). A simple scroll of a mouse wheel zooms
into a particular system section or component of interest. Double-clicking on
components drills down to their subcomponent models.

In AADL, a component can be refined by a sub-system where the information
from a component’s input port descend into the sub-system and accent back
through the output port into the parent system. The intra-component flows
defined in a component summarizes the information flow in the sub-system. In
Awas, each system is expressed by a graph. In case of sub-system, the Awas
graph includes the parent component’s ports as nodes in the graph. Using these
port-nodes a sub-system graph is connected to its parent component’s graph.

Awas: AADL Information Flow and Error Propagation Analysis Framework 303

Fig. 8. Awas visualization of a forward slice (interactive forward dependence query)
(Color figure online)

5 Property Propagation Graph and Visualization

Awas supports different forms of analyses that are layered on top of the base
graphs and visualizations of Sect. 4. One such layering is the support for the
AADL Error Modeling (EM) annex. In previous work, we illustrated how AADL
EM and Awas could support safety analysis and risk management of medical
devices [17]. In this section, we summarize how Awas can support visualizations
of simple security analysis phrased in AADL EM.

Section 2 illustrated how AADL EM specifications could be used to capture
authentication and message well-formedness properties related to the UAS exam-
ple. Figure 9 shows an annotated screenshot of the Awas visualizer for the data
security property analysis applied to this example. The figure illustrates flow
properties of the system after adding flow controls that authenticate commands
and filter out malformed Ground Station data. The top left quadrant shows the
top level system architecture. The colored markups highlight the map port of
the Ground Station and information flow channels into the UAV.

Figure 10 shows a simplified version of the system architecture for readabil-
ity, overlaid with portions of Fig. 9 that capture key specifications and analysis
results. The top left shows a magnification of the Ground Station visualization:
the outgoing map port of Ground Station is annotated to indicate that a com-
promised Ground Station may send malformed map data or otherwise untrust-
worthy data or commands. Diving down into the UAS architecture in the top
right of Fig. 9, the visualization shows map information flowing through UAV
mission computer, with the bottom right showing the map information’s path
through mission computer components. The bottom left shows the details of the
mission computer software architecture. To guard against the threats captured
earlier in annotations for the Ground Station, the radio driver component was

304 H. Thiagarajan et al.

Fig. 9. Awas visualization of AADL EM-based security properties (Overview)

Fig. 10. Awas visualization of AADL EM-based security properties (Details) (Color
figure online)

modified to authenticate the map and commands, and a filter component was
added that drops map messages that are malformed.

Figure 10 zooms in on a summary of the filter flow policy, indicating that
while “not well-formed data” flows into the filter, such data does not flow out of
the filter (indicated by the *). In Fig. 9, the flow leaving the filter is visualized
showing the path through the remainder of the software (where the map data is
converted into waypoints) and mission computer (bottom right) all the way to
the flight controls (top right). Figure 10 also shows a summary of the flows into
the flight controller indicating that the desired properties are satisfied for the

Awas: AADL Information Flow and Error Propagation Analysis Framework 305

waypoint data – only waypoint data derived from authenticated and well-formed
map data flows into the flight controls.

These examples illustrate a broader capability enabled by the synergistic
interaction between AADL EM and Awas: a system can be analyzed for different
safety and data security concerns that are relevant to a particular application (in
the example, authentication and message formed-ness). These analyses do not
need to consider details from scratch; instead they “piggyback” on the base flow
channels and reason about whether or not desired properties exist at different
points along those channels.

6 Awas Query Language

Previous sections focused on how users interacted with Awas by clicking and
selecting various options within visualizations. This section provides a brief
overview of the Awas query language, which can be used to codify commonly
executed queries, architecture-oriented requirements, or audit objectives. Queries
can be presented to Awas via loading a text file, entering text through the Awas
visualizer REPL, or through the Awas APIs.

Forward Reachability: Awas forward reachability analysis answers the general
question of “what are all the components (ports, connections) that depend on a
component (port) of interest?”. The query concept below from the Simple UAS
is an example forward reachability.

Query Concept 1

If the ground station sends the map, where does information regarding the map flow?
Also, where is it getting consumed?

This query concept can specified as an Awas query as follows:
forward_GND_send_map = reach forward UAS_Impl_Instance.GND.send_map

There are two parts on all Awas queries. The part of the query before the equals
sign is the name of the query; that is, forward GND send map is the query name.
The part after the equal sign is the query expression. The query name stores
the results of a query. Therefore, subsequent queries can be composed using the
query name. The expression of a query is the part that gets evaluated against
the model. The query expression starts with the keyword reach indicating that
it is a reachability query. The following keyword forward dictates the direction
of the reachability analysis. Finally, the canonical name of the port send map
serves as the criteria for the query.

Backward Reachability: Similar to the forward reachability described above,
the user can compute the reachability against the flow of information using the
backward analysis. Backward analysis can answer the question of “where does
the information needed by a component of interest flow from?”. Additionally,
in case of a safety analysis, a backward analysis is useful in identifying the root

306 H. Thiagarajan et al.

causes of a hazard or failure. Backward reachability analysis is analogous to the
backward program slicing [20].

Query Concept 2

From where does information needed to compute the recv status flow from?

This query concept can be specified as an Awas query as follows:
backward_GND_status = reach backward UAS_Impl_Instance.GND.recv_status

Source and Target Reachability: Since forward and backward reachability
computes a transitive closure, in a large system, the forward or backward anal-
ysis results may overwhelm the user. If the user concern is to check for the
flow of information only up to a certain point in the system, then they can
provide both source and the target in the query to obtain a more focused set of
results. The counterpart of this operation in the implementation level is program
chopping [7,14].

Query Concept 3

When the ground station is sending the map, how does it get to the flight controller?

This query concept is formalized as follows:
GS_flight_controller = reach from UAS_Impl_Instance.GND.send_map

to UAS_Impl_Instance.UAV.FCTL.waypoint

This query illustrates that the user can specify both the source and sink of
the information flow using the keywords from and to . The result includes all
the connections, components, and ports responsible for propagating information
between send map and waypoint ports.

Path Reachability: In the chopping analysis above, the result computed
includes all the nodes that are contributing to the reachability of a target node
from a source node. However, the result does not distinguish each sequence of
nodes that traces a path from source to target. In some instances, it is useful
to realize the results as paths. We compute the path similar to the meet-over-
all-path solution in program analysis [8]. We split a path whenever there are
more than one intra-component flows defined for a port and more than one edge
leaving from a port. In case of absence of the intra-component flows we conserva-
tively assume flows connecting every pair of input and output ports. This causes
exponential number of paths and degrade the performance. However, the bigger
question is, why would someone explore paths when the model is not mature
enough to include intra-component flows? On the other hand, if the graph is
strongly connected, there can be a large number of paths. In that case, we pro-
vide filtering mechanism based on the presence or absence of a node/port in the
path using all, some and none keywords.

Awas: AADL Information Flow and Error Propagation Analysis Framework 307

Query Concept 4

When the ground station is sending the map, is it always flowing through the filter?

This query concept is formalized as follows:
paths_FTL = reach refined paths from UAS_Impl_Instance.GND.send_map

to UAS_Impl_Instance.UAV.FCTL.waypoint
with none(UAS_Impl_Instance.UAV.MCMP.PROC_SW.FTL:port)

This query checks for the first requirement defined in Sect. 2. It identifies indi-
vidual paths that can reach the port waypoint form port send map, and among
paths, it checks for the existence of a path without any of the ports form the filter
(FTL) component. The keyword refined informs the query evaluator to ignore
the paths using summary flows in the parent components. An empty result for
the above query indicates that all the paths from send map to waypoint passes
through FTL component.

Error Reachability: Although the OSATE IDE provides several forms of haz-
ard analysis to calculate the error propagation in an AADL model [2,10], it fails
to explain and visualize the propagation of errors in the system. In our approach,
we overlay the error propagation information on the Awas graph to provide evi-
dence of an error affecting other components. To issue queries with error tokens,
the Awas query language includes the ability to reference EM error tokens.

Awas computes the error propagation and transformation using a simplified
version of Fault propagation and Transformation Calculus (FPTC) [19]. The
reachability is first computed without the error information and then results are
refined with error propagation.

Query Concept 5

Do only authorized and well-formed maps reach the flight controller?

This query concept poses the question whether issues such as not wellformed
or unauthenticated information originating from the ground station reach the
flight controller. In essence, we are checking for the possibility of the situation
where an adversary is capable of taking control over the UAV or the possibility
of crashing the UAV due to corrupted data.
valid = reach paths from UAS_Impl_Instance.GND.send_map{

UAS_Errors.wellformed_authenticated, UAS_Errors.not_wellformed_unauthenticated,
UAS_Errors.not_wellformed_authenticated, UAS_Errors.wellformed_unauthenticated}

to UAS_Impl_Instance.UAV.FCTL.waypoint{UAS_Errors.wellformed_authenticated}

The query specification captures that, even though the port send map may prop-
agate wellformed authenticated, wellformed unauthenticated, not wellformed
authenticated, not wellformed unauthenticated only wellformed authenticated
reaches the port way point.

7 Evaluation

We evaluated Awas based on the reachability queries described in Sect. 6 applied
to a collection of open source AADL models. Table 1 presents the performance

308 H. Thiagarajan et al.

data for various queries evaluated in both JVM and JavaScript platforms. On the
JVM sections, we generated thirty queries using randomly picked criterion and
evaluated each query thirty times to compute the average evaluation time for
a model. For the JavaScript sections, we used the Google Chrome web browser
as the execution platform and evaluated each query ten times to compute the
average on a MacBook Pro with a 2.3 GHz Intel Core i7 process and 16 GB of
memory.

Table 1. Experiment data

Models Aircraft System Display Manager
Flight Guidance

System
Flight Guidance

Two GPS Isolette Open PCA Pump Communication Router Speed Regulation Simple UAV AFRL UxAS Wheel Break System

No. of. Graphs 7 11 1 2 4 13 1 11 4 2 312
Max Depth

of Nested Graphs 4 3 1 2 3 5 1 2 4 2 8

No. of.
Components 32 40 5 11 14 49 6 35 18 38 455

No. of.
Connections 47 48 7 22 44 587 8 59 46 102 1666

No. of.
Ports 127 116 10 30 64 834 16 143 102 599 1834

No. of.
Nodes 104 140 14 37 79 1098 13 142 81 142 3473

No. of.
Edges 94 96 14 44 88 1176 16 152 110 206 3332

No. of.
Intra-component

Flows
9 0 15 34 15 119 15 121 48 0 0

JVM <1 <1 <1 <1 1 102 <1 1 3 26 101Forward Node
Reachability JS 2 3 1 2 5 387 3 3 9 70 305

JVM <1 <1 <1 <1 2 173 <1 1 4 30 72Backward Node
Reachability JS 4 3 <1 2 6 410 1 3 11 76 199

JVM 1 1 <1 1 4 326 1 2 8 68 164Source Node to
Target Node
Reachability

JS 5 5 2 4 10 1080 3 7 22 143 511
JVM 2 <1 <1 <1 2 - <1 <1 7 33496 -Node Path

Reachability JS 15 3 <1 <1 6 - <1 10 35 - -
JVM 1 3 <1 2 14 653 <1 7 10 162 864Forward

Port
Reachability

JS 4 19 2 8 34 1974 2 14 21 311 2279
JVM <1 1 <1 <1 4 84 <1 <1 2 7 259Backward

Port
Reachability

JS 1 2 <1 2 9 165 <1 2 5 12 507
JVM 3 5 1 3 21 876 <1 7 12 169 1343Source Port to

Target Port
Reachability

JS 4 18 4 10 42 2413 3 19 29 401 3006
JVM 4.8 7 1 5 18063 - 2 12 22 - -

Average Time
(ms)

Port Path
Reachability JS 10 24 4 13 - - 5 26 45 - -

As can be observed from Table 1, Awas is capable of performing reachability
analysis instantaneously even on large industry model such as the Wheel break
system except for the path reachability. In the model Speed regulation path
reachability computation is reasonably efficient due to the availability of intra-
component flows. Elsewhere, in the Isolette model, due to the lack of intra-
component flows, port path reachability is noticeably slower.

Our work demonstrates the feasibility of performing graph-based reachability
analysis in a web browser, due to the recent improvement in the JavaScript
execution engines [5].

It is difficult to empirically evaluate the useability and effectiveness of a tool
like a Awas without a rigorous user study. For anecdotal evidence, we note that
Awas handles a large subset of AADL and has been applied to industrial scale
models including the Open PCA Pump models [3] – one of the largest and most
complex publicly available AADL models (over 80 components, with 5–7 levels
of architectural hierarchy. Once AADL flows annotations are added to a model,
constructing an Awas visualization follows a very simple work flow: choose on
option from an OSATE menu, specify a target folder, open the generated HTML
index file in a browser. Our experience working with AADL on a number of
projects is that even with small models it is easy to lose “situational awareness”
(e.g., “what other things is this port connected to and what does it influence
within the system?”). We have found Awas to be very useful to regain situational

Awas: AADL Information Flow and Error Propagation Analysis Framework 309

awareness and to support comprehension of model structure. The Awas web site
[16] contains example models that can be immediately launched for browsing,
and these example artifacts are supported by detailed walkthroughs and videos.

8 Conclusion and Future Work

AADL models capture many notions of dependence relevant for engineering
safety and security systems, but up to this point the lack of tooling has been
a barrier to effective leveraging of this information. With Awas, we have devel-
oped a framework that aggregates AADL’s dependence information and provides
analysis and visualization tools that enable engineers to better utilize that infor-
mation for development and assurance of realistic systems.

AADL and Awas can contribute to more rigorous engineering practices that
addresses challenges in developing certified software and systems [4]. For exam-
ple, in recent work we have applied Awas to support hazard analysis and risk
management activities required for certification of medical devices [3,17].

With our industrial partners, we are extending Awas to support other forms
of analysis and projections of model and system information. This includes (a)
supporting additional security analysis and threat modeling tasks that leverage
model properties of components and connections added during security audits,
(b) providing specifications and visualizations of flows between partitions in
systems whose safety and security properties are established using a micro-kernel
and separation kernel foundation [1,11], (c) visualization of coverage information
(e.g., of ports, connections, and flow paths) from system tests and during live
execution, (d) visualizations of counter-example paths resulting from model-
checking activities and deductive verification techniques in AADL [9], and (e)
integration of model-level information flows with source-code level information
flows [12,18] and the ability to navigate freely between these.

References

1. Carpenter, T., Hatcliff, J., Vasserman, E.Y.: A reference separation architecture for
mixed-criticality medical and IoT devices. In: Proceedings of the ACM Workshop
on the Internet of Safe Things (SafeThings). ACM, November 2017

2. Delange, J., Feiler, P.: Architecture fault modeling with the AADL error-model
annex. In: 2014 40th EUROMICRO Conference on Software Engineering and
Advanced Applications, pp. 361–368. IEEE (2014)

3. Hatcliff, J., Larson, B., Carpenter, T., Jones, P., Zhang, Y., Jorgens, J.: The open
PCA pump project: an exemplar open source medical device as a community
resource. SIGBED Rev. 16, 8–13 (2019)

4. Hatcliff, J., Wassyng, A., Kelly, T., Comar, C., Jones, P.L.: Certifiably safe
software-dependent systems: challenges and directions. In: Proceedings of the on
Future of Software Engineering (ICSE FOSE), pp. 182–200 (2014)

5. Herrera, D., Chen, H., Lavoie, E., Hendren, L.: Webassembly and javascript chal-
lenge: Numerical program performance using modern browser technologies and
devices. Technical report, Technical report SABLE-TR-2018-2, Montréal, Québec,
Canada (2018)

310 H. Thiagarajan et al.

6. Horwitz, S., Reps, T., Binkley, D.: Interprocedural slicing using dependence graphs.
ACM Trans. Program. Lang. Syst. (TOPLAS) 12(1), 26–60 (1990)

7. Jackson, D., Rollins, E.J.: Chopping: a generalization of slicing. Carnegie-Mellon
Univ Pittsburgh Pa Dept Of Computer Science, Technical report (1994)

8. Kildall, G.A.: A unified approach to global program optimization. In: Proceedings
of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of Program-
ming Languages, pp. 194–206. ACM (1973)

9. Larson, B.R., Chalin, P., Hatcliff, J.: BLESS: formal specification and verification
of behaviors for embedded systems with software. In: Brat, G., Rungta, N., Venet,
A. (eds.) NFM 2013. LNCS, vol. 7871, pp. 276–290. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-38088-4 19

10. Larson, B., Hatcliff, J., Fowler, K., Delange, J.: Illustrating the AADL error mod-
eling annex (v. 2) using a simple safety-critical medical device. ACM SIGAda Ada
Lett. 33(3), 65–84 (2013)

11. Larson, B., Jones, P., Zhang, Y., Hatcliff, J.: Principles and benefits of explicitly
designed medical device safety architecture. Biomed. Instrum. Technol. 51(5), 380–
389 (2017)

12. Ranganath, V.P., Hatcliff, J.: Slicing concurrent java programs using Indus and
Kaveri. STTT 9(5–6), 489–504 (2007). https://doi.org/10.1007/s10009-007-0043-
0

13. Rasmussen, S., Kingston, D., Humphrey, L.R.: A brief introduction to unmanned
systems autonomy services (UxAS). In: 2018 International Conference on
Unmanned Aircraft Systems (ICUAS), pp. 257–268 (2018)

14. Reps, T., Horwitz, S., Sagiv, M.: Precise interprocedural dataflow analysis via
graph reachability. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT Sympo-
sium on Principles of Programming Languages, pp. 49–61. ACM (1995)

15. SAE AS-2C Architecture Description Language Subcommittee: SAE Architecture
Analysis and Design Language (AADL) Annex Volume 3: Annex E: Error Model
Language. Technical report, SAE Aerospace, June 2014

16. Thiagarajan, H., Hatcliff, J.: Awas user documentation. http://awas.sireum.org/.
https://awas.sireum.org

17. Thiagarajan, H., Larson, B., Hatcliff, J., Zhang, Y.: Model-based risk analysis for
an open-source PCA pump using AADL error modeling. In: Proceedings of the
International Conference on Model-based Safety Analysis, September 2020

18. Thiagarajan, H., Hatcliff, J., Belt, J., Robby: Bakar Alir: supporting developers in
construction of information flow contracts in SPARK. In: 2012 IEEE 12th Interna-
tional Working Conference on Source Code Analysis and Manipulation, pp. 132–
137 (2012)

19. Wallace, M.: Modular architectural representation and analysis of fault propagation
and transformation. Electron. Notes Theoret. Comput. Sci. 141(3), 53–71 (2005)

20. Weiser, M.: Program slicing. In: Proceedings of the 5th International Conference
on Software Engineering, pp. 439–449. IEEE Press (1981)

https://doi.org/10.1007/978-3-642-38088-4_19
https://doi.org/10.1007/s10009-007-0043-0
https://doi.org/10.1007/s10009-007-0043-0
http://awas.sireum.org/
https://awas.sireum.org

Formal Verification of Run-to-Completion
Style Statecharts Using Event-B

Karla Morris1(B), Colin Snook2, Thai Son Hoang2, Geoffrey Hulette1,
Robert Armstrong1, and Michael Butler2

1 Sandia National Laboratories, Livermore, CA, USA
knmorri@sandia.gov

2 ECS, University of Southampton, Southampton, UK

Abstract. Although popular in industry, state-chart notations with
‘run to completion’ semantics lack formal refinement and rigorous verifi-
cation methods. State-chart models are typically used to design complex
control systems that respond to environmental triggers with a sequential
process. The model is usually constructed at a concrete level and veri-
fied and validated using animation techniques relying on human judge-
ment. Event-B, on the other hand, is based on refinement from an initial
abstraction and is designed to make formal verification by automatic the-
orem provers feasible. We introduce a notion of refinement into a ‘run to
completion’ statechart modelling notation, and leverage Event-B’s tool
support for theorem proving. We describe the difficulties in translating
‘run to completion’ semantics into Event-B refinements and suggest a
solution. We illustrate our approach and show how critical (e.g. safety)
invariant properties can be verified by proof despite the reactive nature
of the system. We also show how behavioural aspects of the system can
be verified by testing the expected reactions using a temporal logic model
checking approach.

Keywords: Run-to-completion · State-charts · Refinement

1 Introduction

Statecharts provide a graphical language, generalized from state machines, that
is popular with engineers. Variants appear in Matlab Simulink/Stateflow [11]
and the Ansys tools. Particularly attractive is providing accessibility to abstrac-
tion/refinement via Rodin/Event-B which has an intuitive metaphor in the Stat-
echart semantics [12,13]. The hope is that engineers can better understand the
origin of proof obligations in refinements and achieve formal guarantees earlier
in their designs where it is most tractable. Our approach is focused on a map-
ping to Event-B where safety preservation is key. In our version of Statechart
semantics, refinement means a subset of traces from an abstraction. This has the
beneficial effect of preserving safety properties from abstraction to refinement
and permits proofs to be discharged at the highest tractable level of abstraction
where they are the easiest to discharge.
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 311–325, 2020.
https://doi.org/10.1007/978-3-030-59155-7_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_24&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_24

312 K. Morris et al.

Many incompatible definitions of refinement have been posed by others [4,10]
and that can lead to confusion. Though these separate refinements have different
goals, all of which may be attractive to systems designers in different ways,
they will not always preserve safety properties. From the Event-B vernacular
it might be better to relabel these other approaches not as methods of model
“refinement”, but rather methods of model “elaboration”. Preservation of safety
across refinement requires only a few restrictions to the original [5] Statecharts
(e.g. transitions cannot cross containment boundaries arbitrarily), but still allows
for both parallel and hierarchical composition.

The work we will present here includes three refinement rules.

1. Rule A: Guard conditions on a transition can be strengthened; this can be
done by adding textual guards to the transition, or changing the source of
the transition to a nested state.

2. Rule B: Transitions can have additional actions, provided they do not modify
variables appearing in the abstraction; this can be accomplished by adding
textual action to the transition or by changing the target to nested state.

3. Rule C: A state-chart can be embedded within a state of another state-chart
– sometimes called hierarchical composition or hierarchical refinement.

Via the translation explained in Sect. 5, these rules rely on the usual Event-B
proof obligations to ensure that they do indeed yield refinements in the Event-B
semantics. If an Event-B model B can be shown (via the construction rules of
the Event-B language as well as the proof obligations) to refine another Event-B
model A, then we know that every behavior of B is also a behavior of A. This
definition yields a useful principle of preservation of safety – if we can show that
a bad thing never happens in A, then we can add detail via refinements in B,
knowing that the bad thing will continue to never happen in B. That is, Event-B
refinements preserve safety properties in the sense of [9]. This makes refinement a
useful technique in developing safety-critical systems: one can analyze a simpler
abstract model for critical safety properties and then add detail to the model via
refinements, secure in the knowledge that the safety properties will be preserved.

Although the autonomous drone example in this paper is based on the exam-
ple described in [4], the definition of refinement used in that work is quite dif-
ferent from our own. This forces some differences in our refinement rules and
consequently the way the example is developed. In [4] “refinement” is a trans-
formation of the model which preserves reachability of a state with respect to
sequences of inputs. However, this also allows the possibility of introducing new
behaviors in the concrete model that the abstraction does not exhibit (more
details are in Sect. 4). While this notion of refinement seems useful in certain
contexts, unlike refinement in Event-B it does not guarantee preservation of
safety properties. Therefore it should be considered less suited to development
of safety-critical systems.

Section 2 provides background material. Section 3 discusses the Statechart
concept of ‘run to completion’ and how it can be specified in Event-B. Section 4
introduces our example case study; a drone. Section 5 gives an outline of our
translation from State-Chart XML (SCXML) to Event-B. Section 6 illustrates

Formal Verification of Run-to-Completion Style Statecharts Using Event-B 313

our approach to verifying safety invariant properties. Section 7 illustrates our
approach to verifying control responses, and Sect. 8 concludes.

2 Background

2.1 SCXML

SCXML is a modelling language based on Harel state-charts with facilities for
adding data elements that are modified by transition actions and used in condi-
tions for their firing [16]. SCXML follows a ‘run to completion’ semantics, where
trigger events1 may be needed to enable transitions. Trigger events are queued
when they are raised, and then one is de-queued and consumed by firing all the
transitions that it enables, followed by any (un-triggered) transitions that then
become enabled due to the change of state caused by the initial transition fir-
ing. This is repeated until no transitions are enabled, and then the next trigger
is de-queued and consumed. There are two kinds of triggers: internal triggers
are raised by transitions and external triggers are raised by the environment
(non-deterministicly for the purpose of our analysis). An external trigger may
only be consumed when the internal trigger queue has been emptied. We chose
SCXML as our source language because it is relatively simple compared to some
run to completion modelling languages yet has a well defined action language
and simulation tool support.

2.2 Event-B

Event-B [1,6] is a formal method for system design. It uses refinement to intro-
duce system details gradually into the formal model. An Event-B model con-
tains two parts: contexts and machines. Contexts contain carrier sets, constants,
and axioms constraining the carrier sets and constants. Machines contain vari-
ables v, invariants I(v) constraining the variables, and events. An event con-
sists of a guard denoting its enabled-condition and an action defining the value
of variables after the event is executed. In general, an event e has the form:
any twhere G(t, v) then S(t, v) end where t are the event parameters, G(t, v) is
the guard of the event, and S(t, v) is the action of the event.

Machines can be refined by adding more details. Refinement can be done by
extending the machine to include additional variables (superposition refinement)
representing new features of the system, or by replacing some (abstract) variables
by new (concrete) variables (data refinement). Refinement in Event-B is reasoned
on an event basis. A (concrete) event f refines an (abstract) event e if whenever f
is enabled then e is also enabled (guard strengthening), and the action of f is the
same or equivalent to e (where equivalence is given by some relationship defined
in the invariants). New events are said to refine ‘skip’ (an implicit abstract event
that did nothing), and therefore do not alter abstract variables. More information

1 In SCXML the triggers are called ‘events’, however, we refer to them as ‘triggers’ to
avoid confusion with Event-B.

314 K. Morris et al.

about Event-B refinement can be found in [1]. Event-B is supported by the Rodin
Platform (Rodin2) [2].

2.3 UML-B State-Machines

UML-B [14] provides a diagrammatic modelling notation for Event-B in the
form of state-machines and class diagrams. The diagrammatic models relate
to an Event-B machine and generate or contribute to parts of it. For example
a state-machine will automatically generate the Event-B data elements (sets,
constants, axioms, variables, and invariants) to implement the states. Transi-
tions contribute further guards and actions representing their state change, to
the events that they elaborate. State-machines are typically refined by adding
nested state-machines to states. Each state is encoded as a boolean variable and
the current state is indicated by one of the boolean variables being set to TRUE.
An invariant ensures that only one state is set to TRUE at a time. Events change
the values of state variables to move the TRUE value according to the transi-
tions in the state-machine. While the UML-B translation deals with the basic
data formalisation of state-machines it differs significantly from the semantics
discussed in this manuscript. UML-B adopts Event-B’s simple guarded action
semantics and does not have a concept of triggers and run-to-completion. Here
we make use of UML-B’s state-machine translation but provide a completely
different semantic by generating a behaviour into the underlying Event-B events
that are linked to the generated UML-B transitions.

3 Run to Completion

The run to completion semantics is specified via an abstract basis that is
extended by the model [12,13]. Figure 1 shows a state-chart representation of
how the basis enforces the run to completion semantics on the model transitions.

The specification of this basis consists of an Event-B context and machine
that are the same for all input models and are refined by the specific output
of the translation. The basis context introduces a set of all possible triggers,
SCXML TRIGGER which is partitioned into internal and external triggers (e.g.
FutureInternalTrigger and FutureExternalTrigger respectively), some of which will
be introduced in future refinements. Each refinement partitions these trigger sets
further to introduce concrete triggers, leaving a new abstract set to represent
the remaining triggers yet to be introduced. For clarity, we use sets to abstractly
represent the trigger queues. This does not affect safety verification but forces
us to introduce fairness assumptions regarding trigger consumption in order to
verify liveness properties. It would be relatively straight forward to properly
model the trigger queues which are an implementation of this fairness property.

2 An extensible toolkit which includes facilities for modelling, verifying the consistency
of models using theorem proving and model checking techniques, and validating
models with simulation-based approaches.

Formal Verification of Run-to-Completion Style Statecharts Using Event-B 315

Fig. 1. Abstract representation of run to completion basis

Each of the transitions in the basis (see Fig. 1) represents an abstract event
of the basis machine that describes the generic behaviour of models under a
run to completion semantics. These events provide an abstraction that defines
the altering of trigger queues and completion flag. Event-B refinement rules
prohibit new events from modifying abstract variables (i.e. new events refine
‘skip’). Hence, since SCXML transitions need to modify the trigger queues etc.,
used to capture the SCXML run to completion semantics, all events generated by
translation of the specific SCXML model, must refine abstract events introduced
for this purpose in the basis. The basis machine also declares variables that
correspond to the currently dequeued trigger, dt, the queue of internal triggers
raised by actions within the model, iQ, the queue of external triggers raised by
the environment, eQ, and a flag, uc, that signals when a run to completion macro-
step has been completed (no un-triggered transitions are enabled). Note that, for
convenience, the currently dequeued trigger is modelled as a singleton set which
may be empty (i.e. consumed) or contain the single trigger to be consumed.

The trigger queues and dequeued trigger are initialised to empty and
uc is set to FALSE so that un-triggered transitions are dealt with via the
futureUntriggeredTransitionSet event. This will subsequently enable completion
and reset the uc flag to TRUE. The abstract event futureRaiseExternalTrigger
represents the raising of an external trigger (not shown in the diagram).
After completion, a queued trigger can be prepared for consumption by mov-
ing it to the dequeued trigger, dt. Internal triggers have a higher priority,
since the external trigger queue is only dequeued if the iQ is empty (see

316 K. Morris et al.

dequeueExternalTriggered and dequeueInternalTriggered in Fig. 1). The abstract
event futureTriggeredTransitions represents a combination of transitions that are
triggered by the dequeued trigger, dt. The actions of these transitions may also
raise triggers of their own in the internal trigger queue iQ.

Completion of triggered and untriggered transitions may be non-
deterministically premature to allow future refinements to strengthen the guards
of transitions (i.e. to disable them resulting in an earlier completion). In the
process of refining a model, a designer takes advantage of this non-determinism
in the abstraction by adding nested sub-states and explicit guards to transi-
tions. When a refinement level is reached where the designer wants to enforce
a requirement (i.e. prevent it being bypassed by a non-deterministic comple-
tion), the model needs to be finalised (see Sect. 5 for more on finalisation). The
SCXML translation tool will then automatically strengthen the guards of events
NoTriggerTransitionEnable and futureUntriggeredTransitionSet, to ensure that the
run to completion sequence is not interrupted by non-deterministic behaviour.
To do this we need to guard completion so that it cannot happen while any
relevant transition is still enabled. To finalise a triggered transition, the guard
of NoTriggerTransitionEnable is strengthened by adding the conjunction of the
negated guards of all transitions that can fire in parallel with the transition being
finalised. Similarly the guard of futureUntriggeredTransitionSet is strengthened by
adding the conjunction of the negated guards of all untriggered transitions that
can fire in parallel. It may seem that finalisation could cause an unmanageable
explosion of guards. However, to fire in parallel, transitions must be contained in
parallel regions and also be enabled by the same trigger (or be un-triggered). In
practice, since most systems do not contain many parallel regions, the number
of transitions that can fire in parallel is limited. Transition finalisation can be
left until it is needed for the proof of a particular property and does not generate
any new proof obligations since adding guards is a trivial refinement step. Final-
isation is also needed in order to remove non-deterministic behaviours when the
model is animated for validation purposes.

4 Description of the Sample Application

To illustrate the development and analysis process of a design using the previ-
ously described state-chart semantics, we will discuss a quadrotor helicopter or
quadrotor application similar to the one presented by Syriani et al. [4]. The appli-
cation will focus on the incremental design of some of the drone’s required func-
tionality. The constructed model must obey state-chart refinement rules listed
in Sect. 1, these rules are proven within the Rodin tool. The structure of the
state-chart for this model at each subsequent abstraction level restricts further
the development of the model to refinements that obey the rules. This will allow
us to prove properties of the model in a very strategic fashion, as properties
proven of early abstraction levels are preserved in later refinements.

The first abstraction of the model shown in Fig. 2 captures the basic function-
ality of the drone. The model’s initial state is OFF and as a result of the on and

Formal Verification of Run-to-Completion Style Statecharts Using Event-B 317

toTakeoff external triggers it transitions to the START and OPERATIONAL states
respectively3. The drone reacts to the off external trigger by shutting down and
subsequently transitioning to the OFF state. Within the OPERATIONAL state
the drone will transition to FLY, DESCEND or LANDED state after the internal
trigger toFly, toLand or landed is raised, respectively. In this abstraction, these
internal triggers are raised non-deterministically in the system by functional-
ity not currently defined. As additional details are incorporated into the model
in later refinements some of that non-determinism is removed and replaced by
transitions with actions that raised the previously defined internal triggers. It
should be noted that this abstraction of the drone model includes a transition
from TAKEOFF to DESCEND (dashed transition in Fig. 2). This allows for the
drone to respond to a toLand trigger if it encounters some problems while in the
TAKEOFF state. Syriani et al. [4] introduces this transition in later refinements
under Rule 8 path refinement rule. This rule is inconsistent with our rules of
refinement as it results in a concrete event with no corresponding behavior in
the abstraction.

Fig. 2. State-chart of drone application. Abstract level including only generic behavior.

Figure 3 shows three subsequent refinements to the drone model. The first
refinement of the model is shown in beige, as we refine the parent state TAKEOFF
by applying Rule B and C. Under these rules we introduce child states and
new model variables, similar to Rule 2 basic-to-or state rule defined by Syriani
et al. [4] As part of this refinement we introduced an untriggered transition
responsible for raising the toFly internal trigger, and therefore removed some of
the non-determinisms in the abstraction.

The second refinement, the details of which are shown in green in Fig. 3,
extends the capabilities within OPERATIONAL by using Rule C to make it a
parallel state that controls flying and battery related functionality. This is the
same as Rule 4 and-state rule defined by Syriani et al. [4]. The charge within the
drone battery is control by the parallel BATTERYOP state. The functionality
3 Transitions in Figs. 2–3 are labeled with trigger names (e.g. toTakeoff, toFly) not

with event names as it is in UML-B.

318 K. Morris et al.

Fig. 3. State-chart of drone application. Refinement level introducing details for take
off (shown in beige). Refinement level for battery consumption functionality (shown
in green). Refinement level for descending capabilities, in case of emergency (shown in
lilac).

is modeled by introducing a new model variable, charge, which is decreased as
a response to the internal trigger decreaseCharge. The aforementioned trigger,
is raised non-deterministically by some unspecified internal functionality. Our
state-chart semantics supports transition refinement, as such we are able to
modified previously defined transitions. In particular, this type of refinement
allow us to add guards and/or actions to previously defined transitions. The
strengthening of guards, Rule A, or additional actions, Rule B, are expressed
in term of new model variables that contribute implementation details to the
model. To ensure the drone operates with enough battery power we strengthen
the guards of transitions to the FLY and TAKEOFF states. As part of this design
stage we introduce a requirement to constrain drone operation to a battery
charge of at least 20% capacity. This can be expressed as

(BATTERYOK TRUE) charge 20% .
Figure 3 shows the third refinement of the drone model, with features added

in lilac. At this stage we use Rule C to introduce additional implementation
details to ensure that under special circumstances (e.g. sensing of adverse envi-
ronment or unexpected battery dropped) the drone is able to circumvent flying
and proceed to an emergency landing. The previously described requirement can
be expressed as

(TAKEOFF TRUE) (BATTERYOK TRUE toLand) .

Formal Verification of Run-to-Completion Style Statecharts Using Event-B 319

To implement this new capability in the design the internal trigger cancel
is introduced. The internal trigger cancel can be raised non-deterministically
by some sensing capability, the details of which are not currently implemented.
If the trigger is raised, the climbing process must be aborted and the drone
descending sequence shall start. This refinement level is done differently from
Syriani et al. [4], which follows Rule 7 state extension rule. The aforementioned
rule requires a data remapping of the abstract states TAKEOFF, CLIMB and
HOVER, which should be distinct from the states in this refinement, as the state
ABORT is introduced. In contrast, we implement this refinement using a rule
similar to Syriani et al.’s Rule 2 basic-to-or state rule, which introduces the
concrete states CLIMB2 and ABORT to the abstract state CLIMB.

5 SCXML Translation to Event-B

The translation of a specific SCXML model to UML-B and Event-B, comprises
the following stages:

– Firstly, a basis machine and context are created to embody the semantics of
the SCXML language (Sect. 3). The basis provides variables and events to
model the queue of triggers as well as abstract versions of events to model
transitions firing. The basis is independent of the particular SCXML model
which is added in subsequent refinements.

– Secondly, all possible combinations of each set of transitions that can fire
together are calculated and corresponding events are generated, at appropri-
ate refinement levels, that refine the abstract basis events. The transitions
that can fire together are those that are triggered by the same trigger (or are
both untriggered) and are in different parallel (‘and’) sub-states. If these tran-
sitions raise internal triggers, a guard, (e.g. i1, i2, ... raisedTrigger, where
i1, i2, ... have been added to the internal triggers set), is introduced to define
the raised triggers parameter. The subset allows more triggers to be raised in
later refinements. For triggered transitions, the trigger is specified by a guard
that defines the value of the trigger parameter.

– Thirdly, the SCXML state-chart is translated into a corresponding UML-B
state-machine whose transitions elaborate (i.e. add state change details to)
the transition combination events that the transition may be involved in.
A transition may fire in parallel with transitions of parallel nested state-
machines that have the same (possibly null) trigger.

– Finally the UML-B state-machine is translated into Event-B by programmat-
ically invoking the UML-B translator.

A tool to automatically translate SCXML source models into UML-B has
been produced. The tool is based on the Eclipse Modelling Frameworkand uses
an SCXML meta-model provided by Sirius [3] which has good support for exten-
sibility. The UML-B state-machine is subsequently translated into Event-B using
the standard UML-B translation which provides variables to model the current
state and guards and actions to model the state changes that transitions perform.
Further details of the translation are given in [12,13].

320 K. Morris et al.

6 Verification of Safety Properties

In a state-chart model we naturally wish to verify properties P that are expected
to hold true in a particular state S. Hence, all of the safety properties that we
consider are of the form: , where the antecedent is implicit from
the containment of P within S. There are two kinds of properties that we might
want to verify in an SCXML state-chart; 1) properties concerning the values of
auxiliary data maintained by the system and 2) constraints about the state of
another parallel state-chart region. SCXML models represent components that
react to received triggers and cannot be perfectly synchronised with changes to
the monitored properties. Hence, P may be temporarily violated until the system
reacts by leaving the state S in which the property is expected to hold. To cater
for this we express P in a modified form P’ that allows time for the reaction to
take place. There are two forms of reaction that can be used to exit S; a) an
untriggered transition, or b) a transition that is triggered by an internally raised
trigger. For a), the modified property P’ becomes P untriggered transitions
are not complete, and for b) P’ becomes P trigger t is in the internal queue
or dequeued (where t is the internal trigger raised when the violation of P is
detected). Hence P is checked only in stable states that are reachable according
to the run-to-completion semantics.

In this section we illustrate a typical example of the type of properties that
we imagine could be verified in a reactive SCXML system. All of the proof
obligations are automatically discharged for our example. Since our models are
strictly structured and proof obligations will always have this common form, we
are optimistic that proofs will always discharge automatically. We model the
safety property features at an early level of refinement where the models are
relatively simple, so that the validity of verification conditions is clear. Detail
is then added in later refinements which are proven (automatically) to preserve
the previously verified safety properties. In our example, some auxiliary data
is monitored by one state-chart region and while a parallel region refers to the
state of the monitoring region. Hence the reaction consists of an un-triggered
transition in the monitoring region which sends an internal trigger to the other
region when it leaves the desired monitor state.

For our drone model, the safety property that we wish to verify is that the
control system does not continue to take off or fly if the battery charge drops
below a certain threshold (say 21%). By refinement level 1 we have developed
the drone’s state to the point where we distinguish the TAKEOFF and FLY
states (Fig. 2). In refinement level 2 we therefore introduce the battery charge
monitoring function along with the associated safety properties. A parallel state-
chart region, with sub-states BATTERYOK and BATTERYLOW, is added to the
state OPERATIONAL (Fig. 3). The BATTERYOK sub-state is used in the safety
invariant of the TAKEOFF and FLY states. Thus we split the verification into
two parts: a type b proof to show that the system reacts to the battery charge
decreasing below 21% (an external event) by leaving the BATTERYOK sub-state,
and a type a proof to show that when the system leaves the BATTERYOK state it

Formal Verification of Run-to-Completion Style Statecharts Using Event-B 321

subsequently (within the run to completion) leaves the FLY or TAKEOFF states.
Both parts are described in more detail as follows.

System Reacts to the Low Battery Charge. An external trigger indicates that
the battery charge has dropped by 10% and this is used by a self transition
to decrement the controllers data value for charge. The BATTERYOK state is
supposed to indicate that the battery charge is ok (>20%) and to ensure that it
does, we add a state invariant to this effect (charge>20). When charge decreases
to 20 (or less), an untriggered transition immediately reacts by switching to
the BATTERYLOW state. To ensure that this reaction is not bypassed by the
non-determinism that we incorporated to allow for future refinement, we flag it
as finalised at refinement level 2. Finalisation means that we cannot strengthen
its guards in future refinements as is normally permitted, since its reaction is
needed to ensure the invariant is preserved. If the user forgoes the finalization,
the property would not be verifiable at that refinement level and it will need
to be verified in later refinements. After translation to Event-B via UML-B the
invariant in state BATTERYOK is

(BATTERYOK TRUE) (uc FALSE charge 20) .
The only events that can break this invariant are ones that make the

antecedent become true or the consequent become false and we deal with
these as follows: The transitions that enter state OPERATIONAL and initialise
the BATTERY region by entering BATTERYOK (hence making the antecedent
become true) contain the guard that charge>50 (since we do not allow the drone
to take off unless the battery is well charged) and hence the invariant is satis-
fied. The self transition that decreases charge (and hence could potentially falsify
the consequent) is guarded by uc = FALSE since it is a triggered transition, and
hence the disjunction in the consequent ensures it remains true. The comple-
tion event NoUntriggeredTransitions of the basis machine resets uc = TRUE to
indicate completion of the cycle and hence could potentially break the invari-
ant. However, finalising the transition BATTERYOK BATTERYLOW (that leaves
BATTERYOK when charge>20 becomes false) means that the negation of its
guard is added to the completion event by the translation. Since this transition
fires when BATTERYOK = TRUE (i.e. its source state) and charge 20 the com-
pletion event is guarded by (BATTERYOK TRUE charge 20) which means
that it does not fire when it could break the invariant (i.e. forcing the untriggered
reaction to fire first).

System Subsequently Leaves the FLY or TAKEOFF States. The safety
property of the TAKEOFF and FLY states can now be simply stated as
BATTERYOK = TRUE. However, since this relies on a particular internal trigger
(toLand) to make the appropriate reaction, we also need to specify that trigger as
an attribute of the invariant in the SCXML model. After translation to Event-B
via UML-B the invariant in state TAKEOFF becomes

TAKEOFF=TRUE) (toLand iQ toLand dt BATTERYOK TRUE

322 K. Morris et al.

The invariant for the FLY state is similar with a corresponding antecedent. The
transitions that enter TAKEOFF (which make the antecedent true) simultane-
ously enter BATTERYOK ensure the consequent is true. The only transition that
enters FLY (which makes the antecedent of the FLY invariant true) comes from
the TAKEOFF state and hence the consequent is already true. The transition that
leaves BATTERYOK (making the last disjunct of the consequent false) raises the
toLand trigger making the first disjunct true. Some transitions leave the super-
states of BATTERYOK but these either simultaneously leave OPERATIONAL (the
superstate of TAKEOFF and FLY), or re-enter BATTERYOK. The basis contains
an event to dequeue the internal triggers which preserves the overall consequent
because establishes the second conjunct as it falsifies the first (i.e. it removes
toLand from the iQ but simultaneously adds it to dt). The only events that fal-
sify the second conjunct are the transitions triggered by toLand which leave the
TAKEOFF or FLY states making the antecedent false.

Hence, invariant properties that follow these suggested patterns are always
automatically proven due to simple logic about the changes in state.

7 Verification of Control Responses

A model that has been proven to satisfy some invariant (e.g. safety) properties,
may still not behave in a useful way. Therefore, as well as verifying invariant
properties, we would like to verify the system’s responsiveness. That is, we want
to ensure that the controller responds to external triggers to make appropriate
modifications to the system variables. These kind of live responses are difficult
to prove via invariant preservation since they are temporal properties. While
Event-B refinements have also been shown to preserve some liveness properties
under certain conditions [7], there are not yet efficient supporting tools for the
technique. Instead, we can express the property in Linear Temporal Logicand
use the ProB4 model checker to verify it.

In general, our liveness properties will have the following form:

G([external trigger event] F predicate) ,
where the predicate concerns variables v that the system maintains, and may

refer to old values old(v) that existed when the external trigger occurred. To
specify a liveness property to be verified, a special Linear Temporal Logicele-
ment is added to the SCXML model with attributes, property (a string of the
above form) and refinement (an integer indicating the refinement level at which
the property should be verified). The translator generates a separate ‘branch’
refinement for each Linear Temporal Logicproperty to be verified. In this special
refinement, history variables are added to record the value at the state when the
external trigger occurs, of any variables that are referenced as ‘old’ values. A
text file is automatically generated containing the Linear Temporal Logicprop-
erty to be checked. In this generated version, an assumption of strong fairness

4 ProB is an animator, constraint solver and model checker for the B-Method. https://
www3.hhu.de/stups/prob.

https://www3.hhu.de/stups/prob
https://www3.hhu.de/stups/prob

Formal Verification of Run-to-Completion Style Statecharts Using Event-B 323

is added for all other events in the model. Without this assumption, the system
may never achieve the expected response to a trigger. Therefore it corresponds
to a requirement that the system can always make satisfactory progress and not
become live locked. For simplicity we omit this assumption from the remaining
examples.

SF[e1] SF[e2]... G([external trigger event] F[predicate])
This property can be added into the ProB model checker LTL formula text

field.
We illustrate the method with an example of a temporal property that we

expect to hold in the drone SCXML system. The liveness property that we
wish to verify is that, after an external trigger event decreaseCharge, the battery
charge value should decrease in value.

G ([ExternalTriggerEvent decreaseCharge] F charge old(charge)) .
However, we could not verify this property. The counter example traces that
ProB provided gave us a better understanding of the reasons why. The prop-
erty as stated is too strong (i.e. not true) for our model; there are additional
conditions that need to be considered and added as part of the antecedent.

– Our model represented the trigger queues abstractly as sets which meant that
the decreaseCharge trigger may never be dequeued. The standalone version of
ProB allows strong fairness to be specified for particular parameter values but
this does not work in the Rodin plug-in for ProB. In any case, a more accurate
(concrete) representation of the queue fixes the problem and improves our
model.

– The charge is not always decreased in response to the decreaseCharge trigger.
The controller only monitors battery charge while in the BATTERYOK state
and discards the trigger in other states. Also, the controller stops decreasing
charge when it approaches 0. To cater for this we added a pre-condition
BATTERYOK TRUE charge 10 to the LTL property.

– Even if this pre-condition is true when the trigger is raised, another trig-
ger (e.g. off) may already be in the queue and take the controller out
of BATTERYOK before the decreaseCharge trigger is dequeued. Again we
strengthen the pre-condition off / dt eQ of the Linear Temporal Logicex-
pression to avoid this situation.

After making these changes the final form of the Linear Temporal Logicproperty,
which ProB was able to exhaustively check and confirm was as follows:

G ExternalTriggerEvent decreaseCharge] BATTERYOK TRUE charge
off/SCXML dt SCXML eq F charge old(charge .

8 Conclusion

Reactive Statecharts are useful and widely used by engineers for modelling the
design of control systems. Event-B provides an effective language for formally

324 K. Morris et al.

verifying properties via incremental refinements. However, it is not straightfor-
ward to apply the latter to the former. We have demonstrated a technique for
introducing refinement of reactive Statecharts that can be translated to Event-B
for verification. Invariant properties about the expected coordination of states
can be added and are interpreted with additional allowance for the reactions
to take place. That is, they hold only after the reaction has taken place. Such
invariants prove automatically with the existing Rodin theorem provers. We also
demonstrate a complementary process for verifying expected reactions to envi-
ronmental triggers that uses the Linear Temporal Logicmodel checker. Another
kind of liveness property that would be useful to verify is that the ‘run’ converges
to completion. I.e. transition loops and raised internal triggers do not introduce
endless live-lock, but eventually terminate to allow the next external trigger to
be consumed. This could also be verified using the Linear Temporal Logicmodel
checker, however, in future work we will adopt the techniques suggested in [8]
to verify liveness properties using the theorem provers.

These verifications do not validate that the model behaviour is useful. For
this, the SCXML model should be animated so that its behaviour can be
observed by a domain expert. Elsewhere [15] we have developed a ‘Scenario
Checker’ tool and methods for animating pre-defined domain specific scenarios
at various levels of abstract. In future work we will demonstrate the use of this
tool for automatically executing the run to completion. In future work, we also
intend to formalise the semantics of our extended SCXML notation in order to
define its notion of refinement and correspondence to Event-B.

All data supporting this study are openly available from the University of
Southampton repository at https://doi.org/10.5258/SOTON/D1475

Acknowledgements. Sandia National Laboratories is a multimission laboratory
managed and operated by National Technology & Engineering Solutions of San-
dia, LLC, a wholly owned subsidiary of Honeywell International Inc., for the U.S.
Department of Energy’s National Nuclear Security Administration under contract DE-
NA0003525.

References

1. Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge
University Press, Cambridge (2010)

2. Abrial, J.R., Butler, M., Hallerstede, S., Hoang, T., Mehta, F., Voisin, L.: Rodin:
an open toolset for modelling and reasoning in Event-B. Softw. Tools Technol.
Transf. 12(6), 447–466 (2010)

3. Eclipse Foundation: Sirius project website, March 2016. https://eclipse.org/sirius/
overview.html

4. Syriani, E., Sousa, V., Lúcio, L.: Structure and behavior preserving statecharts
refinements. Sci. Comput. Program. 170(15), 45–79 (2019). https://doi.org/10.
1016/j.scico.2018.10.005

5. Harel, D.: Statecharts: a visual formalism for complex systems. Sci. Comput. Pro-
gram. 8(3), 231–274 (1987). https://doi.org/10.1016/0167-6423(87)90035-9

https://doi.org/10.5258/SOTON/D1475
https://eclipse.org/sirius/overview.html
https://eclipse.org/sirius/overview.html
https://doi.org/10.1016/j.scico.2018.10.005
https://doi.org/10.1016/j.scico.2018.10.005
https://doi.org/10.1016/0167-6423(87)90035-9

Formal Verification of Run-to-Completion Style Statecharts Using Event-B 325

6. Hoang, T.S.: An introduction to the Event-B modelling method. In: Industrial
Deployment of System Engineering Methods, pp. 211–236. Springer (2013)

7. Hoang, T.S., Schneider, S., Treharne, H., Williams, D.M.: Foundations for using
linear temporal logic in Event-B refinement. Form. Asp. Comput. 28(6), 909–935
(2016). https://doi.org/10.1007/s00165-016-0376-0

8. Hudon, S., Hoang, T.S., Ostroff, J.S.: The Unit-B method — refinement guided by
progress concerns. Softw. Syst. Model. 15(4), 1091–1116 (2016). https://doi.org/
10.1007/s10270-015-0456-2

9. Lamport, L.: Proving the correctness of multiprocess programs. IEEE Trans. Softw.
Eng. SE–3(2), 125–143 (1977)

10. Maraninchi, F.: The Argos language: graphical representation of automata and
description of reactive systems. In: In IEEE Workshop on Visual Languages (1991)

11. MATLAB: 9.7.0.1190202 (R2019b). The MathWorks Inc., Natick, Massachusetts
12. Morris, K., Snook, C., Hoang, T.S., Armstrong, R., Butler, M.: Refinement of

statecharts with run-to-completion semantics. In: Artho, C., Ölveczky, P.C. (eds.)
FTSCS 2018. CCIS, vol. 1008, pp. 121–138. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-12988-0 8

13. Morris, K., Snook, C., Hoang, T.S., Hulette, G., Armstrong, R., Butler, M.: Refine-
ment and verification of responsive control systems. In: Raschke, A., Méry, D.,
Houdek, F. (eds.) ABZ 2020. LNCS, vol. 12071, pp. 272–277. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-48077-6 23

14. Snook, C., Butler, M.: UML-B: formal modeling and design aided by UML.
ACM Trans. Softw. Eng. Methodol. 15(1), 92–122 (2006). https://doi.org/10.1145/
1125808.1125811

15. Snook, C., Hoang, T.S., Dghaym, D., Fathabadi, A.S., Butler, M.: Domain-specific
scenarios for refinement-based methods. J. Syst. Arch. (2020). (to be published in)

16. W3C: State chart XML SCXML: State machine notation for control abstraction,
September 2015. http://www.w3.org/TR/scxml/

https://doi.org/10.1007/s00165-016-0376-0
https://doi.org/10.1007/s10270-015-0456-2
https://doi.org/10.1007/s10270-015-0456-2
https://doi.org/10.1007/978-3-030-12988-0_8
https://doi.org/10.1007/978-3-030-12988-0_8
https://doi.org/10.1007/978-3-030-48077-6_23
https://doi.org/10.1145/1125808.1125811
https://doi.org/10.1145/1125808.1125811
http://www.w3.org/TR/scxml/

A Simulator Coupling Architecture
for the Creation of Digital Twins

Thomas Kuhn(B), Pablo Oliveira Antonino, and Adam Bachorek

Fraunhofer Institute IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{thomas.kuhn,pablo.antonino,adam.bachorek}@iese.fraunhofer.de

Abstract. Digital Twins are digital representations of real-world entities. Their
behavior resembles the behavior of the real entity at all times. They are candi-
dates for the evaluation of complex adaptive embedded systems, for example in
the domains of autonomous driving, or industry 4.0 production systems. How-
ever, as most simulators are specialized and only simulate selected aspects of a
system with highest accuracy, the creation of a Digital Twin requires the coupling
of simulators and their simulation models. Related work indicates that this is still
a labor-intensive and manual task. In this paper, we present an architecture frame-
work that transfers approaches from Component-Based Software Engineering to
simulator coupling. Simulators are encapsulated as simulation components with
defined interfaces. The creation of a Digital Twin is supported by orchestrating
simulation components. We present the formal definition of simulation compo-
nents and our simulation framework, as well as the rules for coupling simulation
components into Digital Twins.

Keywords: Simulator coupling · Digital Twins · Components · CBSE

1 Introduction

Simulations are an integral part of the development and testing cycle of embedded
systems. They are used in Hardware-in-the-Loop (HiL) testbeds to cover, for example,
the simulation of system environments, as well as in virtual HiL setups that substitute
physical parts of HiL testbeds with simulationmodels.With growing system complexity,
simulations need to cover an increasing amount of effects. This is especially important,
as architects need to keep nowadays much more system aspects into account, which
include low-level aspects of target platforms, like communication busses [15]. With the
upcoming use of Digital Twins for systems, Digital Twins provide simulation models
that behave at all times like the real system under development [1], a single simulator
cannot anymore ensure a simulation with sufficient accuracy. Instead, multiple, often
specialized simulators, must be coupled to represent also complex system environments
with sufficient accuracy.

Creation of a coupled simulation requires the semantic integration of simulation
models from multiple simulators. Related work shows that this is still a manual task that

© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 326–339, 2020.
https://doi.org/10.1007/978-3-030-59155-7_25

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_25&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_25

A Simulator Coupling Architecture for the Creation of Digital Twins 327

requires the manual integration of proprietary interfaces to simulators. Simulator cou-
plings are therefore oftenmanually developed as tailored connectors between simulators.
We did observe that while software interfaces to simulators often differ, the underlying
Models of Computation and Communication (MOCC), which control the behavior of
the simulation, are relatively harmonized. The behavior of most simulators conforms
to a specific MOCC that specifies its simulation model. Environment simulators, for
example, comply with a continuous time MOCC, while network simulators conform to
discrete event MOCCs. We gave a brief overview on MOCCs and on the coupling of
MOCCs into holistic simulations [2].

In this paper, we introduce our component-based approach specifically for the cou-
pling of simulation components. It provides a defined encapsulation for simulators into
Simulation Components (SCs) with defined interfaces. We describe Simulation Com-
ponents (SCs), interfaces, views on simulation models, and coupling semantics. We
furthermore describe the coupling of focused SCs into Digital Twins that address multi-
ple system aspects, and discuss the re-use potential of SCs. Our goal is to raise attention
to the need of unified interfaces for simulators, and to discuss our proposal for an open
and accessible database for re-useable simulator interfaces. This will enable the creation
of complex Digital Twins simply by instantiating and connecting SCs with compatible
interfaces.

The remainder of this paper is structured as follows: Sect. 2 surveys related work.
Section 3 describes our simulator coupling concept. Section 4 describes the realization
of network simulation components with the ns-3 network simulator. Section 5 draws
conclusions and lays out future work.

2 State-of-the-Art and State-of-the-Practice

Simulator couplings are usedwhenever a single simulator is no longer sufficient for a sim-
ulation task. Sommer, German, and Falko [3] illustrate a coupling between the discrete
event network simulator OMNeT++, and the movement simulator SUMO. OMNeT++
is the simulation host and splits the coupled simulation into time steps. The coupling
first simulates all network traffic, and then invokes SUMO to simulate node movements.
SUMO provides node positions after each simulation step to OMNeT++ and therefore
replaces the built-in node movement simulation of OMNeT++.

[5] documents the coupling of network simulation with components for power sys-
tems simulation. It simulates the impact of network delays to the overall system per-
formance. The network simulation implements a frame level simulation that simulates
the transmission of network frames between power system components. Recent works
in simulator coupling illustrate the need of integrating simulators to simulate system
effects that go beyond the abilities of the simulation model of a single simulator. The
authors of [4] illustrate another bidirectional coupling of a vehicle simulator and (wire-
less) network simulation to support the development of autonomous driving vehicles.
Another recent work with respect to simulator coupling is presented in [7]. The authors
of [7] describe a coupling of mobility and network simulators to enable the evaluation of
new communication protocols and concepts in a realistic context. [13, 16, 18] illustrate
simulator couplings for the validation of automotive functions. [14] illustrates a virtual

328 T. Kuhn et al.

environment for Ecosystem Admission, which addresses an even more advanced use-
case. These works illustrate the need of future simulator couplings for highly automated
and autonomous driving functions. [8] describes a co-simulation platform for smart grids
that integrates the OPNET network simulator with the OpenDSS simulator for the simu-
lation of power distribution networks. The simulation host is realized as MATLAB code
that invokes both simulators according to the co-simulation model. OPNET provides the
network simulation, while OpenDSS simulates the smart grid behavior. Similar to [5],
the impact of a network to smart grid behavior is simulated by the coupling.

The authors of [9] describe an evaluation of energy efficiency of MIMO antenna
arrays. It requires a physical layer simulation that covers radio propagation and short scale
fading. The detailed simulation provides higher accuracy with respect to transmission
errors due to interferences, but of course also requires significantly more calculations
per simulation step.

In related work, there also have been previous attempts to define re-usable interfaces
between simulators. Wegener et al. [4] documents a proposal for a common interface
between mobility and network simulators, which is a common simulator coupling. The
interface supports the execution of simulation steps, issuing of defined node movement
commands, and communication of node positions to network simulators. The discussed
simulator couplings illustrate open requirements for the integration of simulationmodels:
Theworks presented in [3–5] only require (a less accurate) frame level communication to
evaluate overall system and application performance. [9] requires a much more accurate
network simulation with realistic radio propagation. [3] illustrates the substitution of a
mobility simulation model with a more accurate simulation.

We have built on several approaches for the coupling of simulation models: The
Functional Mock-up Interface (FMI) standard [10] is a standard for the packaging of
simulation models. It defines Functional Mockup Units (FMU) that encapsulate simula-
tion models with an interface. The FMI puts a focus on functional simulation. It realizes
a discrete time coupling of simulation models that is extended with a mechanism to
re-evaluate the simulation in case of detected discontinuities. Communication between
FMUs is via the exchange of values after completed simulation steps. FMU however
does not yet cover the connection of simulators with different MOCCs. It does also not
encapsulate multiple simulation models in the same FMU.We use FMU as a foundation
for our Simulation Component approach. The High-Level Architecture (HLA) [11] is
another approach for the coupling of simulation models. It covers the execution of a
distributed simulation, as well as the definition of object models.

3 Simulator Coupling Architecture

Related work indicates the need for the integration of different simulation models, and
that simulator couplings are performedmanuallywithout a highdegree of re-use.Compo-
nent Based Software Engineering (CBSE) did increase re-use significantly. Combining
simulators and their simulationmodels into a Digital Twin should be as easy as the re-use
of software components.

A Simulator Coupling Architecture for the Creation of Digital Twins 329

3.1 Simulation Component-Based Digital Twins

CBSE encapsulates software functions into components that enforce the information
hiding principle: component users use components through defined interfaces, the imple-
mentation of a component remains hidden. Users must not make assumptions regarding
the implementation of a component that is not covered by an interface, and a compo-
nent must not make any assumptions regarding its environment that is not covered by an
interface. This enables re-use and, for example, the possibility to replace one component
by another component with a compatible interface. We encapsulate simulators and their
simulation models in re-useable Simulation Components. Figure 1 illustrates the ele-
ments of a Simulation Component (SC) for simulating a WiFi communication channel.
An SC type is identified by a type name, e.g.WiFi Channel. Views provide access to the
SC.

Fig. 1. Elements of a Simulation Component

Basic SCs encapsulate a simulator and its simulationmodels. Aggregated SCs encap-
sulate and combine other SCs. Similar to software components, an SCprovides interfaces
for inter-component communication. We define the set of interfaces to an SC as views
on this component. A view provides a consistent access on simulation models of the
encapsulated simulator. Complex simulators may provide multiple views to access their
simulationmodels, simple simulators possible only provide a single view.Multiple views
on the same simulation model enable access to this model on different levels of detail.

We distinguish provided, required, and configuration views. Provided views expose
simulation data, and enable, for example, access to simulated node positions, or a sim-
ulated network. They are marked by an arrow that points away from the component.
Required views receive data from other SCs. They are marked by an arrow that points
towards the SC. We distinguish mandatory required views that must be connected for
an SC to be operational, and optional provided views that support, for example, the
optional substitution of a contained simulation model with another one. Configuration
views enable the configuration of a simulation component. They are painted at the side
of the SC.

330 T. Kuhn et al.

Inter-SC communication is viamessages. Views therefore consist of input and output
ports that send and receive messages. A port is part of the view interface and defines a set
of sent or received messages. Every view also defines theMOCC that its communication
conforms to. Views of a basic SC always conform to one MOCC. Aggregated SCs,
however,may containmultiple directors that control containedSCs according to different
MOCCs. Views of aggregated SCs consequently may conform to different MOCCs. The
illustrated example in Fig. 1 uses Discrete Time (DT) and Discrete Event (DE) MOCCs.

3.2 Simulation Components

We define a Simulation Component sc as tuple of a set of views SCViews, and a name
scName. The set SCViews contains all views of a Simulation Component. It consists of the
defined interface for this view scViewIF , the view type scViewType, and an associated model
of computation and communication (MOCC) scViewMOCC . The view type scViewType is
either a provided view (prv), an optional required view (reqo), a mandatory required
view (reqm), or a configuration view (cfg).

sc = (SCViews, scName) (1)

scView = (scViewIF, scViewType, scViewMOCC) (2)

scViewType ∈ {
prv, reqo, reqm, cfg

}
(3)

scViewIF = {
scport.n

}
, scport = (ptype, pdir), pdir ∈ {tx,rx} (4)

The view interface scViewIF consists of a set of ports that realize communication end-
points. Every port scport is a tuple of the port type ptype and port direction pdir . The port
direction defines whether the port transmits (tx) or receives data (rx). A view may be
added to an SC as a provided or a required view. The view interface scViewIF , however,
always defines ports and port directions from the viewpoint of a provided view.

Parameter ports (SCPorts) provide configuration data and are always rx ports, thus,
have no direction property. The port type ptype defines the message type for a port. Every
port transmits or receives a set of message types tmsg.

ptype =
{
tmsg.m

}
(5)

A message type tmsg is defined by a set of named message parameter Tpar , and by a base
message type tbase. A message parameter tpar is defined by a tuple of parameter name
pname and parameter type ttype alongwith a flag indicating if it is optional (popt). Message
types inherit parameters from their base type. Refinement of inherited parameters is not
permitted, with the exception of refining an optional message parameter to a mandatory
parameter.

tmsg = (Tpar, tbase, Tmeta), tpar = (pname, ttype, popt), (6)

Message parameter types ttype are defined according to a type system. Our framework
supports the primitive types Float, Double, Integer, Boolean, String, Int8, Int16, Int32,

A Simulator Coupling Architecture for the Creation of Digital Twins 331

Int64, as well as Maps, Structures, Sets, and Array types based on the supported basic
types for inter-Simulation Component communication.

tmeta= (idmeta, ttype) (7)

Messages may carry additional meta data in addition to the defined parameter, which is
independent of message types. Component ports may require specific meta data prop-
erties to be present or guarantee meta data availability. This enables the extension of
view types with additional information that is not directly related to a view, but, e.g., to
a coupling. A common use for meta data is to add addressing information when creating
1:n, m:1, or n:m inter-component connections. SC interfaces define the set Tmeta that
contains the IDs and types (ttype) of required and always provided meta data properties.

A view furthermore defines a model of computation and communication (MOCC)
in scViewMOCC which defines the communication semantics of that view.

3.3 Extending and Connecting Views

Views may be extended to add additional provided information. Extended views are
permitted to add additional transmit ports, and to add additional transmitted messages
to inherited transmit ports. Extending may also add additional meta data to messages
at transmit ports. When a view is added as required view, extending adds additional
dependencies that can only be satisfied by connecting an extended view. Provided views
remain backwards compatible, i.e., they retain all information provided by base views.

Fig. 2. Connecting simulation components

Simulation components are connected to Digital Twins by connecting provided to
required views with directional links. An operational SC requires connection of all
mandatory required views. A directional link always connects transmit ports to receive
ports, as illustrated in Fig. 2.

Figure 3 above illustrates the coupling of Simulation Components into a Digital
Twin that simulates an environment with cars and pedestrians. The coupling evaluates

332 T. Kuhn et al.

Fig. 3. Simulation component coupling example

interaction ofWiFi communication betweenboth system types.Both cars andpedestrians
are represented by digital twins with SCs that simulate behavior, and WiFi interfaces.
The SCs are coupled by connecting their views with directional links. Digital Twins of
cars (Carn) consist of the Protocol and theWiFi Stack SCs. Pedestrians are represented
by a Bluetooth Stack SC that connects to a Traffic Generator SC.Movements of cars and
pedestrians are controlled by the SCMobility. Communication between SCs for protocol
and WiFi simulation is via view FrmWiFi. Wireless channel simulation is exposed as
individual simulation componentWiFi Channel and Accurate Channel to enable the use
of simulation models with different accuracy. This enables a frame-based simulation in
the large scale, as well as the evaluation of interferences between Bluetooth and WiFi
communication that may share the same frequency bands.

In the illustrated example from Fig. 3, the connection between views NodePos and
NodePos.Mul ofMobility and Accurate Channel connects views that conform to different

A Simulator Coupling Architecture for the Creation of Digital Twins 333

Models of Computation and Communication (MOCC). When coupling both views, the
coupling must ensure correct coupling semantics to yield valid simulation results.

We have already described the foundations of MOCC coupling in [2]. Simulation
component execution conforms to a MOCC that controls its execution. Directors imple-
ment MOCCs and control assigned Simulation Components. The nesting of directors
enables the creation of nested simulations with coupledMOCCs (cf. [2]). An aggregated
SC that defines multiple views internally contains directors that control the SCs realizing
the views of the aggregated SC.

Coupling of two views with differing MOCCs is consequently performed based on
the coupling semantics from [2]: Inter-SC communication is realized with messages. A
view using a Discrete Time (DT)MOCC transmits a message from every transmit port at
the end of every time step, and samples themost recently received value on all of its input
ports. A view that uses a Discrete Event (DE) MOCC only transmits changed values on
its output ports, and immediately reacts to changes on its input ports, conforming to the
DEMOCC (cf. [2]).

4 Application Example

The usability of our coupling approach depends on the applicability of SCs, in particular
on their ability to harmonize the interfaces of simulationmodels fromexisting simulators.
We therefore analyze the simulation models of the well-known ns-3 network simulator
to provide evidence for this.We focus on the encapsulation of itsWiFi simulation classes
into SCs, and describe the views of the created SCs.

Figure 4 illustrates relevant classes of the ns-3 [17] simulator with respect to theWiFi
simulation model. We grouped important ns-3 classes into Protocol simulation, Node
simulation, simulation of Movements, WiFiMAC, WiFiPhy, and the WiFiChannel.

The ns-3 uses a discrete event simulation with a central scheduler that schedules
events and controls message transport between the C++ classes that implements the
ns-3 simulation models. The overall architecture of an ns-3 simulation resembles the
communication stack architecture as defined by the ISO/OSI reference architecture [12].
All communicating ns-3 classes implement specific send and receive functions that pass
Packet instances to higher and lower layers. Ns-3 Packets carry tags, headers and trailers
in addition to frame payload to pass information between protocols across layers.

The ns-3 Node class implements a physical node and aggregates applications, pro-
tocols, and network devices. The Channel class and its subclasses implement the shared
communication medium of a network. We chose the YansWiFiChannel as the simu-
lation model for this evaluation. The AdhocWifiMac and MacLow classes implement
WiFi medium access control protocol simulation. WiFiPhy is the base class of WiFi
physical layer implementations while class YansWifiPhy implements the physical layer
that matches the YansWiFiChannel implementation. TheMobilityModel class simulates
node movements and enables access to node positions.

Figure 5 illustrates the encapsulation of the groups of ns-3 classes from Fig. 4 into
SCs for the simulation of WiFi MAC/Phy (ns-3 WiFi) and IP protocols (ns-3 protocol).
The SC ns-3 WiFi encapsulates both WiFi MAC and Phy simulation, as we figured that
the implementation of these simulation models often depends on each other. It therefore

334 T. Kuhn et al.

Fig. 4. Main ns-3 WiFi simulation classes

would not have been feasible to separate them into individual SCs. The WiFi MAC and
Phy classes of ns-3 require a reference to an instance of the ns-3 node class. This and an
instance of the NetDevice class (cf. Fig. 5) is therefore part of the ns-3WiFi SC.

Fig. 5. Protocol and WiFi Simulation Components

We created generic, i.e., non-ns-3 specific message types for inter-SC communi-
cation, which are illustrated in greater detail in Table 1. Interfaces convert generic
inter-component communication messages to ns-3 message types (e.g., Packet) that are
expected by the ns-3 simulation model implementations. Most ns-3 simulation models

A Simulator Coupling Architecture for the Creation of Digital Twins 335

require references to other parts of the protocol stack. For example, the ns-3 WiFi SC
needs to register upstream protocols in the ns-3 Node instance to ensure its routing to
upstream components. The ns-3 realizes this via a callback function (ProtocolHandler-
Callback) that transports frames to protocol simulation models. The ns-3 WiFi SC must
furthermore assign the 48 Bit MAC address of the WiFi interface to the ns-3 node, as
well as a unique node ID.

Table 1. Message type definitions

Message type Member Type Description

Pos x Double Node x coordinate

y Double Node y coordinate

z Double Node z coordinate

AppTx pkt Packet Packet data and metadata

AppRx pkt Packet Packet data and metadata

WiFiTx pkt Packet Transmitted WiFi frame

WiFiRx pkt Packet Received WiFi frame

ChanWifi.Tx pkt Packet Transmitted WiFi frame

ChanWifi.Rx pkt Packet Received WiFi frame

ChanAnnDev protId Int32 Protocol ID

ChanPhy.Tx txWave Double[] Transmitted modulated frame

ChanPhy.Rx rxWave Double[] Received modulated frame

.TxID txID Int64 Transmitter ID meta data

Our Simulation Component therefore defines a configuration view with parameter
ports that enable configuration of the mandatory parameter node ID and node Addr.
Protocol simulation models get a unique ID assigned, which is used internally to manage
the ProtocolHandlerCallback function, and to address inter-SC component messages to
the correct protocols, e.g., to realize the n:m link between WiFi Stack and Protocol in
Fig. 3.

The SC ns-3 Protocol encapsulates the simulation models for the IP stack of the
ns-3 simulator. It also uses an ns-3 node instance and must register upstream protocols
similar to theWiFi SC.We decided to replicate the node instance in both SCs, as the ns-3
implementation did permit this. The existing ns-3 protocol classes make use of packet
tags; adding tags to inter-component communication must therefore be possible for
proper operation of ns-3 basedSimulationComponents. Figure 6 illustrates a technology-
independent Packet type for inter-SC interaction that replaces the ns-3 specific Packet
class. It is used for message types that are communicated through the views of SCs.
The Packet type defines a unique ID (uID), a serialized payload (data), and additional
meta data that is stored in a key/value map using structured types. The structured types

336 T. Kuhn et al.

PktTag, ByteTag,Header, Trailer store ns-3 specific information that is not used by other
simulators.

Fig. 6. Packet type for Simulation Component coupling

We decided to keep the native ns-3 types for the meta data, as it does not contain any
negative impact data for our evaluation. Exporting parts of the meta data for message
definitions of an extended view, however, could enable a tighter integration of other
simulators. We leave this for future work.

Fig. 7. ns-3 Phy and Channel interaction

Figure 7 details the interaction between ns-3 YansWiFiPhy and YansWiFiChannel
components, which will become a border between two SCs. The YansWiFiChannel
component requires a list of connected nodes, as well as connection to a mobility model
that provides the subset of nodes that are in transmission range from the YansWiFiPhy
component. The SC interface for the channel therefore must provide this information.
We decided to introduce the ChanAnnDev message for this (cf. Table 1).

Internally, the YansWiFiChannel uses the Simulator::ScheduleWithContext opera-
tion to pass ns-3 Packet instances between the sender and all receiver nodes. This func-
tion invokes the scheduler and is part of the discrete event implementation of the ns-3
simulator. The ns-3 scheduler therefore needs to be integrated with the discrete event
MOCC of the Simulation Component to process incoming messages. We achieved that

A Simulator Coupling Architecture for the Creation of Digital Twins 337

by implementing the simulation worker interface of FERAL that enables its integration
into a hierarchically coupled simulation, as described in [2].

Figure 8 illustrates the Simulation Components that encapsulate ns-3WiFi Channel
and Mobility models in detail. It illustrates the component substructure with the ns-3
class groups from Fig. 7, interfaces, and main message flows.

Fig. 8. Mobility and WiFi channel Simulation Components

Table 2 illustrates the detailed views definition for inter-SC communication that were
illustrated in Fig. 3.Message types are detailed inTable 1. The inter-view communication
messages include messages for communicating actual simulation events, e.g., the inter-
component transmission of simulated wireless frames, as well as the transmission of
meta data that includes node positions and registration of upstream protocols.

Table 2. View definitions for inter-SC communication

View Message type Description

NodePos Pos Node position (x,y,z coordinates)

NodePos.Mul PosTxID Node position with sender ID meta data

AppVal AppTx Transmitted (functional) application data

AppVal AppRx Received (functional) application data

FrmWiFi WiFiTx Transmitted WiFi frame

FrmWiFi WiFiRx Received WiFi frame

ChanWifi ChanWifi.Tx Transmitted WiFi frames

ChanWifi ChanWifi.Rx Received WiFi frames

ChanWifi ChanAnnDev Announce WiFi device to channel

ChanWifi.Mul ChanWifi.Tx.TxID Transmitted WiFi frames with sender ID

ChanWifi.Mul ChanWifi.Rx.RxID Received WiFi frames with receiver ID

ChanWifi.Mul ChanAnnDev.TxID Announce WiFi device to channel with sender ID

ChanPhy.Mul ChanPhy.Tx.TxID Transmitted modulated frames with sender ID

ChanPhy.Mul ChanPhy.Rx.RxID Received modulated frames with receiver ID

ChanPhy.Mul ChanAnnDev.TxID Announce device to channel with sender ID

338 T. Kuhn et al.

In our evaluation, we illustrated the most important steps to encapsulate important
simulation models of the ns-3 simulator as Simulation Components. We also illustrated
that harmonized interfaces can transport data between simulationmodels with simulator-
independent data structures. Simulator-specific information was encapsulated in meta
data, and enabled the use of simulator-specific features in couplings. Harmonizing addi-
tional information that we encoded as simulator-specific meta data will enable addi-
tional features. However, we have shown the basic steps required to integrate simulation
models.

5 Conclusion

In this paper, we have illustrated our component-based simulator coupling architecture
framework. Our framework however only has a benefit when developers adopt the idea
of re-useable interfaces. We have shown the necessary steps to encapsulate simulation
models into SCs with the example of the ns-3 simulator. We also did illustrate the
required steps, and therefore the required effort to create an SC. With this publication,
we want to start a discussion regarding re-useable simulator interfaces to simplify future
couplings. This is necessary, as the rapid creation of simulation environments will also
become necessary in future, as future embedded systems will be operating in muchmore
heterogeneous system contexts compared to already existing systems. They will require
more sophisticated DTs as testing environments. As existingHiL settings cannot provide
this flexibility, and traditional simulator couplings require too much effort for manual
couplings, we believe that component-based approaches have the potential to simplify
the creation of tailored simulator couplings significantly.

To support future simulator couplings, we are currently working on an implementa-
tion of this framework that will bemade available for academic research. This framework
will consist of core components that enable the coupling of programming languages, and
implement the main aspects of the framework. It will furthermore provide integration
components that simplify the integration of new simulators as simulation components.

References

1. Glaessgen, E.H., Stargel, D.S.: The digital twin paradigm for future NASA andU.S. Air Force
Vehicles. In: 53rd Structural Dynamics and Materials Conference Special Session: Digital
Twin, Honolulu, HI, US (2012)

2. Kuhn, T., Forster, T., Braun, T., Gotzhein, R.: FERAL—framework for simulator coupling on
requirements and architecture level. In: Proceedings of the Eleventh ACM/IEEE International
Conference on Formal Methods and Models for Codesign (MEMOCODE 2013), pp. 11–22.
IEEE Computer Society, USA (2013)

3. Sommer, C., German, R., Dressler, F.: Bidirectionally coupled network and road traffic sim-
ulation for improved IVC analysis. IEEE Trans. Mob. Comput. 10(1), 3–15 (2010). https://
doi.org/10.1109/TMC.2010.133

4. Wegener, A., Piorkowski, M., Raya, M., Hellbrück, H., Fischer, S., Hubaux, J.-P.: TraCI:
an interface for coupling road traffic and network simulators. In: Proceedings of the 11th
Communications and Networking Simulation Symposium, CNS 2008 (2008). https://doi.
org/10.1145/1400713.1400740

https://doi.org/10.1109/TMC.2010.133
https://doi.org/10.1145/1400713.1400740

A Simulator Coupling Architecture for the Creation of Digital Twins 339

5. Nasiriani, N., et al.: An embedded communication network simulator for power systems
simulations in PSCAD. In: 2013 IEEE Power & Energy Society General Meeting, Vancouver,
BC, pp. 1–5 (2013). https://doi.org/10.1109/pesmg.2013.6672764

6. Llatser, I., Jornod, G., Festag, A., Mansolino, D., Navarro, I., Martinoli, A.: Simulation of
cooperative automated driving by bidirectional coupling of vehicle and network simulators.
In: 2017 IEEE IntelligentVehicles Symposium (IV), LosAngeles, CA, pp. 1881–1886 (2017).
https://doi.org/10.1109/ivs.2017.7995979

7. Schuhbäck, S., et al.: Towards a bidirectional coupling of pedestrian dynamics and mobile
communication simulation. In: Proceedings of 6th InternationalOM, vol. 66, pp. 60–67 (2019)

8. Sun, X., Chen, Y., Liu, J., Huang, S.: A co-simulation platform for smart grid considering
interaction between information and power systems. In: ISGT 2014,Washington, DC, pp. 1–6
(2014). https://doi.org/10.1109/isgt.2014.6816423

9. Kim, T., et al.: Tens of Gbps support with mmWave beamforming systems for next generation
communications. In: IEEE GLOBECOM 2013, December 2013, pp. 3790–3795 (2013)

10. Bertsch, C., et al.: FMI for physical models on automotive embedded targets. In: Proceedings
of the 11th International Modelica Conference, Versailles, France, 21–23 September 2015,
vol. 118. Linköping University Electronic Press (2015)

11. Dahmann, J.S., Fujimoto, R.M., Weatherly, R.M.: The department of defense high level
architecture. In: Proceedings of the 29th Conference on Winter Simulation, pp. 142–149
(1997)

12. Zimmermann, H.: OSI reference model – the ISO model of architecture for open systems
interconnection. IEEE Trans. Commun. 28(4), 425–432 (1980)

13. Feth, P., Bauer, T., Kuhn, T.: Virtual validation of cyber physical systems. In: GI Conference
on Software Engineering & Management, Dresden, Germany (2015)

14. Cioroaica, E., Chren, S., Buhnova, B., Kuhn, T., Dimitrov, D.: Towards creation of a reference
architecture for trust-based digital ecosystems. In: ECSA 2019: Proceedings of the 13th
European Conference on Software Architecture – vol. 2, September 2019

15. Antonino, P.O., Morgenstern, A., Kuhn, T.: Embedded-software architects: it’s not only about
the software. IEEE Softw. 33(6), 56–62 (2016)

16. Marko, N., Ruebsam, J., Biehn, A., Schneider, H.: Scenario-based testing of ADAS - inte-
gration of the open simulation interface into co-simulation for function validation. In: Pro-
ceedings of the 9th International Conference on Simulation and Modeling Methodologies,
Technologies and Applications (SIMULTECH 2019) (2019)

17. Riley, G.F., Henderson, T.R.: The ns-3 network simulator. In: Wehrle, K., Güneş, M., Gross,
J. (eds.) Modeling and Tools for Network Simulation. Springer, Heidelberg (2010). https://
doi.org/10.1007/978-3-642-12331-3_2

18. Baumann, P., Samlaus, R.,Mikelsons, L., Kuhn, T., Jahic, J.: Towards virtual validation of dis-
tributed functions. In: Proceedings of the 2019 Summer Simulation Conference (SummerSim
2019), July 2019

https://doi.org/10.1109/pesmg.2013.6672764
https://doi.org/10.1109/ivs.2017.7995979
https://doi.org/10.1109/isgt.2014.6816423
https://doi.org/10.1007/978-3-642-12331-3_2

Integrating Runtime Verification into an
Automated UAS Traffic
Management System

Matthew Cauwels(B) , Abigail Hammer(B) , Benjamin Hertz(B) ,
Phillip H. Jones(B) , and Kristin Y. Rozier(B)

Iowa State University, Ames, IA 50010, USA
{mcauwels,arhammer,benhertz,phjones,kyrozier}@iastate.edu

Abstract. Unmanned Aerial Systems (UAS) are quickly integrating
into the National Air Space (NAS). With the number of registered small
(under 55 pounds) UAS in the USA alone at over 1.5 million, and pro-
jected to expand rapidly, according to the Federal Aviation Adminis-
tration (FAA), safety is a pressing consideration. Safe UAS integration
into the NAS requires an intelligent, automated system for UAS Traffic
Management (UTM). Even more than for manned aircraft, UTM must
integrate runtime checks to ensure system safety, at the very least to
make up for the lack of humans on board to employ the common-sense
safety checks ingrained into the culture of human aviation.

We overview a candidate automated, intelligent UTM system and pro-
pose multiple integration points for runtime verification (RV) to ensure
that each part of the UTM adheres to safety requirements during opera-
tion. We write, validate, and present patterns for formal requirements
across multiple subsystems of this UTM framework. After encoding
our requirements as flight-certifiable runtime observers in the R2U2 RV
engine, we execute them in simulation across multiple real-life test flights
supplemented with simulated data to cover additional cases that did not
occur in flight. Lessons learned accompany an analysis of the efficacy and
performance of RV integration into the UTM framework.

Keywords: UAS · UTM · Runtime Verification · R2U2

1 Introduction

The Federal Aviation Administration (FAA) forecasts Unmanned Aerial System
(UAS) numbers to continue to “expand rapidly” over the next 20 years with over
90% of the growth from consumer-grade or professional-grade (non-model) UAS
used for commercial or research purposes [5]. Given the considerable traffic this

K. Y. Rozier—Supported by NSF CAREER Award CNS-1552934 and NSF PFI:BIC
grant CNS-1257011. Reproducibility artifacts: http://temporallogic.org/research/
DETECT2020/.

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 340–357, 2020.
https://doi.org/10.1007/978-3-030-59155-7_26

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_26&domain=pdf
http://orcid.org/0000-0002-2450-812X
http://orcid.org/0000-0002-0340-0160
http://orcid.org/0000-0003-1627-9715
http://orcid.org/0000-0002-8220-7552
http://orcid.org/0000-0002-6718-2828
http://temporallogic.org/research/DETECT2020/
http://temporallogic.org/research/DETECT2020/
https://doi.org/10.1007/978-3-030-59155-7_26

Integrating RV into an Automated UTM System 341

will generate and the pressing concern for safe integration into the National Air
Space (NAS), additional traffic management is required on top of current safety
regulations [6]. A recent candidate for an intelligent, automated UAS Traffic
Management (UTM) system addresses these concerns [25].

One important consideration in such an automated system is how, and where,
to integrate checks during system operation that continuously monitor for vio-
lations of system safety requirements, e.g., due to unexpected environmental
conditions or other scenarios that could not be predicted and tested for during
system design. This is especially critical given the automated nature of the sys-
tems involved: pilots and human ground controllers make numerous decisions
in the control of commercial aircraft that serve as a foundation for their traffic
management systems but are missing from UTM. For example, pilots regularly
identify and dismiss off-nominal sensor readings and ground controllers operate
under unstated assumptions, such as that the flight plans of two aircraft should
never contain unsafe overlaps.

Runtime Verification (RV) provides checks that cyber-physical systems
adhere to their safety requirements during operation. However, much of the
research into RV has focused on increasing expressivity of monitored properties
and operational reach of RV engines. The on-board resources, overhead, opera-
tional delays, and intrusive system instrumentation required to run these tools
are incompatible with flight certification [12]. In response, the Responsive, Real-
izable, Unobtrusive Unit (R2U2), was designed to monitor sufficiently expressive
properties, in real time, under hard resource constraints, with low-to-no over-
head, and without system instrumentation that would violate flight certification
[17]. Only three RV tools are flight-certifiable: R2U2, Lola [22], and Co-Pilot
[16]; R2U2’s flexible architecture was the easiest to adapt to our UTM system.

We examine the candidate UTM system [25], overviewing its design, imple-
mentation, and initial tests, e.g., with University of Iowa’s (U of I’s) Operational
Performance Laboratory’s (OPL’s) Vapor 55 UAS flying over small, nearby
airspace. We map out three subsystems where RV could be embedded within this
UTM framework: on-board the Vapor 55, on-board each Ground Control System
(GCS), and within the UTM cloud-based framework. However, the biggest bot-
tleneck to the successful deployment of formal methods like RV is specification of
the requirements under verification [19]. Building upon the runtime specification
pattern categories of [19], we detail patterns for formal requirements specifica-
tion across these subsystems and write, debug, and validate a covering set of
temporal logic specifications. Using R2U2 to create runtime observers from this
specification set, we deploy in simulation real-time RV over a set of real-life flight
tests, expanding our data set to include realistic scenarios that were not able to
be flown in real life. We examine the outputs from R2U2 and provide a roadmap
for utilizing this data to robustify the UTM framework. Our case study details
the process of RV integration for future adopters of systems like UTM.

Our contributions are as follows: (1) patterns useful for RV specifica-
tions across a real distributed UTM implementation; (2) a method for adding
a single first-order operator to Mission-time Linear Temporal Logic (MLTL)

342 M. Cauwels et al.

specifications in an RV engine; (3) an open set of RV benchmarks from real-
world UAS/GCS telemetry data; (4) an extensive experimental evaluation (124
specifications) of a distributed RV implementation in real-time; and (5) lessons
learned from distributed RV specifications validation and refinement for a UTM
system.

The remainder of this paper is organized as follows. Section 2 gives back-
ground information on MLTL and R2U2. Section 3 overviews the candidate
UTM framework. Our formal specifications fill Sect. 4, including specifications
specific to the on-board UAS, the GCS, and the UTM’s cloud-based framework.
To inform future practitioners, we detail their organization, discuss coverage met-
rics, and exemplify each specification pattern we found useful in our study. We
also address the critical topic of specification validation and debugging. Section 5
describes our test scenario and graphs the outputs from R2U2 for specifications
from six of our patterns. Section 6 concludes with lessons learned and next steps
for RV integration into the future UTM system.

2 Preliminaries

Mission-Time Linear Temporal Logic. For all our specifications, our chosen lan-
guage is Mission-time Linear Temporal Logic (MLTL) [11,17]. A variant of Met-
ric Temporal Logic (MTL) [2], MLTL incorporates closed interval I = [a, b] time
bounds over a set of bounded natural numbers (i.e., 0 ≤ a ≤ b < +∞) on each
temporal operator.

Definition 1 (MLTL Syntax [11,17]). The syntax of an MLTL formula ϕ over
a set of atomic propositions AP is recursively defined as:

ϕ ::= true | false | p | ¬ϕ | ϕ1 ∧ ϕ2 | ϕ1 ∨ ϕ2 | �Iϕ | ♦Iϕ | ϕ1UIϕ2 | ϕ1RIϕ2

where p ∈ AP is a Boolean atom (0/1), ϕ1 and ϕ2 are MLTL formulas, and I is
a closed-bound interval [lb, ub], where lb ≤ ub.

For any two MLTL formulas ϕ1 and ϕ2, ϕ1 ≡ ϕ2 if and only if they are
semantically equivalent. Since MLTL is derived from linear temporal logic (LTL),
many of the semantics are the same: false ≡ ¬true, ϕ1 ∨ ϕ2 ≡ ¬(¬ϕ1 ∧ ¬ϕ2),
¬(ϕ1UIϕ2) ≡ (¬ϕ1RI¬ϕ2) and ¬♦Iϕ ≡ �I¬ϕ. The only notable difference is
that MLTL discards LTL’s next (X) operator, as it is semantically equivalent
to �[1,1]ϕ [11]. A position π[i], where (i ≥ 0) is an assignment over 2AP ; |π|
represents the length of π.

Definition 2 (MLTL Semantics [11,17]). The satisfaction of an MLTL formula
ϕ, over a set of propositions AP, by a computation/trace π starting from position
i (denoted as π, i |= ϕ) is recursively defined as:

– π, i |= true, – π, i |= p iff p ∈ π[i], – π, i |= ¬ϕ iff π, i 	|= ϕ,
– π, i |= ϕ1 ∧ ϕ2 iff π, i |= ϕ1 and π, i |= ϕ2,
– π, i |= ϕ1U[lb,ub]ϕ2 iff |π| ≥ i+ lb and, there exists j ∈ [i+ lb, i+ub] such that

π, j |= ϕ2 and for every k < j, k ∈ [i + lb, i + ub], π, k |= ϕ1.

Integrating RV into an Automated UTM System 343

Realizable Responsive Unobtrusive Unit (R2U2). Our R2U2 instrumentation
uses two of that tool’s main architectural layers: (1) signal processing and
(2) temporal logic monitors. R2U2 has implementations in hardware (FPGAs),
C++, and C; we choose the latter for embedding in the UTM. R2U2’s archi-
tecture details appear in a tool overview [20], with additional details from past
case studies in [7,10,13,17,23].

R2U2 reads relevant sensor readings off the main system bus, then passes
them through lightweight, real-time atomic checkers that filter and discretize the
sensor readings. Checks like “altitude < MIN” transform signals into Boolean
atomics, e.g., true or false, that populate the atomic propositions in temporal
logic formulas. Each MLTL formula encodes directly into an observer embedded
on the target platform. The hierarchical tree of inputs, filters, atomic checkers,
and temporal logic formulas comprise an R2U2 specification observation tree.
Redundant branches of the tree can be combined through a pre-flight optimiza-
tion step for efficiency and reducing encoding size. For example, suppose R2U2
is implemented on a fixed-wing UAS and has two separate specifications: (1)
the UAS’s landing gear will be stowed when it is above 1,000 ft, and (2) the
UAS’s speed will be within 300 mph to 400 mph when above 1,000 ft. Since both
of these specifications require the altimeter reading to exceed 1,000 ft, a single
Boolean operator can be passed to both temporal logic observers.

3 UTM System Definition

In parallel with NASA’s third UTM Technical Capability Level [14], a hybrid
university-industrial team proposed an intelligent, centralized UTM for low-
altitude urban environments to coordinate UAS traffic in a safe and efficient
way [25]. A high-level diagram of the proposed UTM system appears in Fig. 1.

Fig. 1. An overview of the NSF funded cloud-based UTM[25]. (Color figure online)

344 M. Cauwels et al.

Ground Control Stations (GCS) connect to the UTM Cloud Server and
upload their proposed flight plan for approval. The UTM Cloud server performs
pre-flight plan conflict detection using a dynamic geofencing algorithm [27]. The
UTM then notifies the GCS if the flight plan is rejected or approved. If rejected,
the GCS should submit a new flight plan until one is approved. When approved,
the GCS streams the UAS’s telemetry data to the server, which then performs
an en route conflict prediction. If an en route conflict is predicted, the server
will alert all GCS involved of the conflict, so that they may have enough time
to submit a new flight plan and perform an avoidance maneuver.

There are many challenges to overcome before such a UTM would be incor-
porated into our NAS [3,18]. For example, an ongoing research question is how
to handle uncooperative and hostile UAS in the UTM’s airspace. One assump-
tion of this UTM is that all UAS are non-hostile, i.e., no UAS is purposefully
flying an unapproved flight plan. However, this UTM was designed to receive
telemetry data from anyone who connects to it, regardless of flight plan status.
While the details of how to maintain communication with both cooperative and
uncooperative UAS is still ongoing research [24], RV can be used within this
UTM to alert the operator to the presence of uncooperative UAS.

Another ongoing research question for UTMs is whether low-altitude airspace
should be structured, e.g., with similar traffic patterns and rules as ground trans-
portation [9]. Regardless of which approach is used, RV can be incorporated to
alert users of dangerous or undesirable circumstances. For example, this UTM
was developed for unstructured airspace, so it has more general operating range
specifications, such as those that make sure that all UAS are within the UTM’s
airspace. Conversely, if a structured airspace was chosen, the structured ruleset
can be formally verified using RV.

4 UTM Runtime Specifications

We first decide the types of interfaces to each UTM sub-system, then how R2U2
can be implemented into each subsystem, to drive specification elicitation.1

4.1 UTM Sub-system I/O

UAS. The UAS follows a flight plan provided by the GCS and is responsible
for collecting and streaming its telemetry data to the GCS. Real flight data
from OPL’s Vapor 55 UAV helicopter’s [1] internal log provides the data used
for analysis and evaluation. The subset we chose is based on which signals were
most useful for performing RV; see Table 1.

For each UAS in the system, the number of inputs to an on-board R2U2
implementation remains constant over the entire run and is predetermined prior

1 Note that the list presented is not a comprehensive list of all our specifications; the
full list can be found at http://temporallogic.org/research/DETECT2020/.

http://temporallogic.org/research/DETECT2020/

Integrating RV into an Automated UTM System 345

Table 1. Selected output signals from the UAS.

stinUnoitpircseDlangiS

Pos{N,E,D} Relative positional vector (North, East,
Downward) from the home point. {m, m, m}

Lat, Lon, Alt GPS coordinate positions. {DD, DD, MSL}
Roll, Pitch, Yaw Euler angles of the UAS. {deg, deg, deg}
P, Q, R Euler angle-rates of the UAS. {deg/s, deg/s, deg/s}
Vel{N,E,D} Velocity vector of the UAS. {m/s, m/s, m/s}
Acc{N,E,D} Acceleration vector of the UAS. {m/s2, m/s2, m/s2}
Temp, TempE1/2 Temperature of the air and motors. C
Pres Atmospheric pressure. hPa

Phase
Set of strings corresponding to preset
phases of flight.

{<undefined>, Test actuators,
Stationary, Hover, Cruise, Go to,
Stop at, In flight, Landed}

Subphase
Set of strings corresponding to preset
subphases of flight.

{Ready, Test, Takeoff, Manual,
Waypoints, Home, Landing}

FlightMode
Set of strings corresponding to
automatic and manual control. {Automatic, Home}

RPM RPM of the main motor. –

to runtime. This makes implementations of R2U2 equivalent across all UAS,
meaning that the time spent creating specifications for an individual UAS
remains constant. This is assuming all UAS in a system are the same class,
i.e., all single-rotor helicopter-style UAS with similar parameters.

GCS. The GCS has many responsibilities within the UTM system. It is respon-
sible for: (1) submitting flight plans to the UTM; (2) directing and receiving
telemetry data from an inflight UAS; (3) pre-processing and transmitting any
telemetry data received from its UAS to the UTM; and (4) monitoring for any
conflict alerts from the UTM. For our case study, we look only at implement-
ing RV to monitor (1), (2), and (4). Due to limitations on the way the UTM’s
test data was produced, i.e., the Vapor 55 was only simulated during the UTM
test, and because it would be identical to the UAS’s R2U2 implementation, we
omitted (3) from the GCS’s R2U2 implementation.

A challenging aspect of the GCS is that the flight plan data must be con-
tinuously streamed to R2U2, since flight plans that are transmitted once across
the GCS to the UTM are not saved anywhere in R2U2’s memory (see Table 2).
This made formatting R2U2’s inputs from the GCS challenging; in particu-
lar, the number of waypoints within a GCS’s flight plan can vary. This led to
NumTelem + NumFP + (NumWPsFP)(NumWP) total inputs from a GCS to
R2U2, where NumTelem is the number of telemetry inputs, NumFP is the num-
ber of inputs from the flight plan, NumWpsFP is the number of signals associated
with each waypoint, and NumWP is the number of waypoints within the flight

346 M. Cauwels et al.

Table 2. Input and output signals from the GCS to the UTM

Telemetry Signals
stinUnoitpircseDO/ISCGlangiS

ID O The flight plan ID of the telemetry transmission. int

Time O The time stamp when the GCS transmits the
telemetry to the UTM. UNIX

wp{Lon,Lat,Alt} O The latitude, longitude, and altitude of the
waypoint the UAS is currently flying toward. DD/MSL

Lon, Lat, Alt O The UAS’s measured longitude, latitude, and
altitude. DD/MSL

Vel O The UAS’s velocity measurement. m
Ang O The UAS’s heading measurement. deg.

Flight Plan Signals
stinUnoitpircseDO/ISCGlangiS

fp ID I The UTM’s assigned flight plan ID for the
approved flight plan. int

Status I The UTM’s response to the GCS’s flight plan
{Approved,
Rejected,
Replaced}

Start O The start time of the flight plan. UNIX
End O The estimated end time of the flight plan. UNIX

Phase O The type of waypoint.

{START,
STOP,

CRUISE,
HOME}

fp{Lon,Lat,Alt} O The specific waypoint’s latitude, longitude, and
altitude. DD/MSL

Time Filed O The time stamp when the GCS transmitted the
flight plan to the UTM. UNIX

plan. For our specific system, NumTelem = 9, NumFP = 4, NumWpsFP = 5,
and NumWP varies between 4 and 10 waypoints.

This variance in the number of inputs from one GCS to another led us to
develop specifications that validate across all instances of NumWP . We accom-
plished this by adjusting R2U2’s pre-processing layer to iterate across a loop of
all instances of one variable (say, Phase) and determine if at least one violates a
certain property. While this is not a full-fledged first-order logic [4,8], it leads to
a mapping of multiple inputs to a single Boolean atomic input to R2U2 and acts
like a single first-order operator to MLTL. At the sacrifice of precision, i.e., rather
than knowing which exact waypoint was violating a property, R2U2 reports if
at least one input is violating a property, which allows for easier automation
and generality when incorporating R2U2 across iterative types of inputs (i.e.,
varying number of waypoints).

Integrating RV into an Automated UTM System 347

UTM Cloud Server. Since the UTM is implemented as a cloud-based, cen-
tralized server, it is in charge of consolidating all flight plan and telemetry infor-
mation and determining whether any two UAS will conflict. Like the instances
of R2U2 for the GCS, the number of inputs for the UTM varies: once with the
number of waypoints in a flight plan and again with the number of UAS. Thus,
the total number of inputs to an instance of R2U2 for the UTM can be calcu-
lated by NumID(NumTelem + NumFP)+(NumWPsFP)(

∑NumID
i=0 NumWP [i]),

where NumID represents the total number of flight plan IDs in the UTM and
NumWP [i] is the specific number of waypoints for flight plan i. This can lead to
a large number of inputs for R2U2, i.e., 20 UAS with 4 waypoints each would
be 580 inputs.

Similar to the GCS, to get traction on such a large number of inputs, we
have designed our specifications similar to first order logic, i.e., for all UAS
a certain property holds or there exists a UAS where a property is violated.
Again, we trade expressiveness for performance: we retain real-time performance
guarantees but only promise R2U2 will immediately alert the UTM operator of
a violation, not identify the specific UAS responsible.

4.2 Coverage of Real-World Specification Types

To help organize our specifications, each one is categorized into one of six labels:
(1) operating range, (2) sensor bounds, (3) rates of change, (4) control sequences,
(5) physical model relationships, and (6) inter-sensor relationships. These cate-
gories resemble those of [19,26], though we add a level of granularity to several
for ease of organization.

Operating Range. Every sensor to, and variable within, a given system has
an expected operating range and should it fall below or exceed a given thresh-
old, this may indicate a hazardous system state. For example, the proposed
centralized UTM will cover a predefined airspace. Should a UAS stray beyond
these operating limits of the UTM, an alert will be sent to the UTM operator
to inform the corresponding UAS’s GCS that they are reaching or exceeding a
safety threshold of the system.

Sensor Bounds. Sensors and variables also have well defined bounds on the
values they can return. For example, a UAS should never see latitude values
that are meaningless (i.e., latitude measurements less than −90◦ or greater than
90◦). These types of specifications may be used in conjunction with Operating
Range specifications to help diagnose whether there is a user error (accidentally
operating outside their airspace) or hardware failure (sensor returning bad data
to the system).

Note that there is an implied � operator outside all of the specifications
due to the stream-based nature of R2U2 runtime observers. That is: R2U2 out-
puts a stream of verdicts indicating whether each specification holds starting at

348 M. Cauwels et al.

Table 3. UAS, GCS, and UTM specifications investigated

noitacfiicepSLTLMnoitpircseDemaN

UAS RC 8
The difference between two consecutive
pressure Pres readings cannot exceed a
maximum rate of climb MaxPrevPres.

¬(�[0,3]¬(Pres leq MaxPrevPres∧
Pres geq MinPrevPres))

UAS IS 1

Since the altimeter and the barometer both
derive the air pressure, the error between
these two measurements of pressure will be
less than the MaxPresErr and greater
than MinPresErr.

(Pres lt MaxPresErr) ∧
(Pres gt MinPresErr)

GCS CS 7
The reference latitude LatWP and
longitude LonWP will be contained within
the set of waypoints given in the flight plan.

wpLonLat eq fpLonLat

GCS PM 2

If a telemetry stream is reporting that the
UAS’s heading Ang is between 90◦ and
180◦, then, if the UAS’s velocity Vel is
greater than 0 m/s, the UAS’s latitude Lat
should be decreasing while its longitude
Lon should be increasing.

¬(Ang eq Quad4 ∧
Vel gt Zero)∨ (Lat geq PrevLat ∧
Lon geq PrevLon)

UTM OR 11

Every UAS’s position will be bounded
within the given airspace. All latitude Lat
will be bounded between
(41.6000◦,41.6720◦).

�[0,3](Lat leq LatUB ∧
Lat geq LatLB)

UTM SB 3

Every UAS’s position will exist on Earth
GPS coordinates. All latitude Lat
measurement’s will be bounded by
(−90◦,90◦) degrees.

�[0,3](Lat leq MaxLatUB ∧
Lat geq MinLatLB)

See http://temporallogic.org/research/DETECT2020/ for a compete set of specifications.

every discretized execution time stamp. Formally, ∀i, R2U2 gives a verdict as to
whether π, i |= ϕ in the form of a stream 〈i , verdict〉. So, even the purely propo-
sitional formulas are still asserting that a relationship holds, e.g., throughout a
flight.

Rates of Change. Additionally, sensor’s and variable’s rate of change may also
be bounded. For example, a UAS will have some maximum change in velocity
between any two telemetry transmissions. Should it exceed this value, it may
indicate that the UAS’s transmission rate varied (e.g., a dropped transmission).
Additionally, one could monitor to make sure there is change between two con-
secutive sensor measurements, or that the amount of variance between sensor
measurements is not skewed in one direction or another, which could mean the
UAS is under a cyber-attack, such as GPS spoofing.

Control Sequences. Because this system follows a rigorous series of stages,
several specifications monitor that the system is adhering to its specified con-

Integrating RV into an Automated UTM System 349

trol sequence. For example, the intended sequence of states for the UTM is to:
(1) receive a flight plan from a GCS, (2) approve or reject the flight plan, (3)
if approved, issue the GCS a corresponding flight plan ID, and (4) the GCS
transmits the telemetry data of the UAS with the corresponding flight plan ID.
Many different hazardous situations can be made by removing or rearranging
this intended sequence; thus, monitoring for any out-of-order sequences can help
alert the system or the user to execute a mitigation action.

Physical Model Relationships. In many systems, there exist physical rela-
tionships between one or more combinations of sensors and actuators when com-
manding the system. For example, if a UAS is commanded to accelerate, the
motors should respond accordingly to execute that command. These types of
relationships can detect sensor calibration errors and ensure that sensors agree
about the system’s overall state.

Inter-sensor Relationships. To help diagnose failures, some systems may be
able to invoke specifications that use multiple sensors, either of the same or differ-
ent type, to measure common values. For example, the relationship between baro-
metric pressure (obtained from an on-board barometer) and altitude (obtained
from the GPS) allows for more than one way to measure altitude. RV can use
these types of specifications to determine if both sensors agree. If they do not
agree, then polling, or other system health management techniques, could be
used to determine the faulty sensor and switch the primary source for the UAS
altitude measurements.

4.3 Specification Validation

Because specification creation is a circular process [19], we chose to validate
our list of RV specifications in a variety of ways. The first was a Matlab-based
approach where we incorporated logged data for each subsystem into Matlab and
validated the ways in which the Boolean atomics were created. The second was
by uploading our MLTL runtime specifications for each individual subsystem
into an open-source MLTL satisfiability checker [11] to perform specification
debugging via checking each specification, its negation, and the conjunction of
all specifications for satisfiability [21]. The third way these specifications were
validated was by running the pre-recorded data into the R2U2 tool chain and
checking to see if the specification held true over the system trace. If it did,
we injected faults into the pre-recorded data and monitored R2U2’s output to
see if it correctly detected the faults. Of the list of 124 specifications we made
for the UAS, GCS, and UTM, Table 3 presents six specifications that we feel
encapsulate interesting properties about each subsystem.

350 M. Cauwels et al.

5 Evaluation

The UTM test scenario consists of 20 UAS interacting with the UTM – OPL’s
Vapor 55 hardware-in-the-loop simulation and our 19 physics-based simulated
flights – with the goal of testing the UTM’s conflict detection logic. Of the
20 flight plans, 18 were conflict-free, one was designed to create a pre-departure
conflict, and one deviated from the pre-approved flight plan, creating an en-route
conflict. During the 42 min test, the UTM correctly detected and alerted both
GCSs of the en-route conflict, with OPL’s GCS submitting a new, conflict-free
flight plan en-route.

Although we intended to have R2U2 embedded into the UTM system for
this test, in practice this would have required enhancements to core functional-
ities and improving the networking capabilities of the UTM. However, all test
data was recorded and put to use offline in refining our specifications and imple-
mentations of R2U2 into each subsystem. We argue that since R2U2 has pre-
viously been embedded and used in several successful aerospace applications
[7,10,13,17,23], our offline, real-time simulations of this embedding perform rep-
resentatively to an actual implementation. Note we plan to incorporate R2U2
into the UTM system for the next test.

Fig. 2. A small observation tree from the GCS’s R2U2 implementation. Two sensor
values, wpLat and wpLon, are inputs to the signal processing layer, which pre-processes
them into Boolean atomics for the temporal logic observers.

R2U2 was hosted on a Ubuntu 18.04 LTS operating system on an Intel Core
i7-4810MQ CPU with a 2.80 GHz clock and 16 GB of RAM. Each subsystem of
R2U2 was run independently, i.e., each subsystem was run with its own instance
of R2U2 across its own input trace and no cross-platform communication was
performed. Figure 2 shows an example of how specifications are encoded into
R2U2’s observations trees.

Integrating RV into an Automated UTM System 351

(a) OR UTM 11: Modified latitude trace (b) OR UTM 11: Unmodified latitude trace

(c) (Lat ≤ LatUB) ∧ (Lat ≥ LatLB) (d) �[0,3]((Lat ≤ LatUB) ∧ (Lat ≥ LatLB))

Fig. 3. Two instances of the UTM’s R2U2 monitoring: a modified run (a) where one
UAS (purple) temporarily exceeds the operating range bounds, and an unmodified run
(b) where all UAS lie within the operating range (dashed lines). Both fault-injected
runs show R2U2 identifies the corresponding violation of the specification; however, the
output of the purely Boolean formula (c) bounces due to a missed telemetry transmis-
sion. To avoid a false positive, due to missing data, we add a temporal logic filter (d)
that monitors for multiple subsequent nominal data sequences. (Color figure online)

Operating Range. As seen from Fig. 3, the UTM’s R2U2 monitors and reports
if the operating range bounds are satisfied for all of UAS’s latitude measure-
ments. As the original test data was fault-free, we injected a fault, which revealed
a sudden spike in R2U2’s output during the injected fault. This corresponds to
a dropped transmission in the original data. Thus, we refine our specification to
include an overarching �[0,3] operator, which acts as a sliding window temporal
filter, to suppresses such output bouncing.

Sensor Bounds. Similar to Fig. 3, Fig. 4 shows the UTM’s R2U2 monitoring
and reporting if any of the UAS’s latitude measurements exceed the sensor bound
threshold of (−90◦, 90◦). Similarly, the original data was fault free, so we injected
a fault into one of the UAS’s latitude measurements. Again, testing revealed
transmission losses, so we added a �[0,3] filter to suppress any false positives
triggered by missing data.

Rates of Change. The pressure recorded by a UAS’s on-board barometer
changes as it ascends and descends. Thus, we developed a specification to monitor
change in pressure: the difference between two consecutive pressure readings are
limited to ±0.4 hPa (derived from the maximum rates of climb and descent

352 M. Cauwels et al.

(a) SB UTM 3: Modified latitude trace (b) SB UTM 3: Unmodified latitude trace

(c) (Lat ≤ MaxLatUB)∧
(Lat ≥ MinLatLB)

(d) �[0,3]((Lat ≤ MaxLatUB)∧
(Lat ≥ MinLatLB))

Fig. 4. Like Fig. 3, the top graphs show modified (a) and unmodified (b) input traces.
Similarly, dropped telemetry transmissions cause output bouncing (c), so a �[0,3] filter
is applied (d). (Color figure online)

(a) RC UAS 8: Modified air pressure trace (b) RC UAS 8: Unmodified air pressure trace

(c) �[0,3]¬(Press ≤ MaxPrevPress∧
Press ≥ MinPrevPress)

(d) ¬�[0,3]¬((Press ≤ MaxPrevPress)∧
(Press ≥ MinPrevPress))∧

�[0,3]((Press ≤ MaxPrevPress)∧
(Press ≥ MinPrevPress))

Fig. 5. Two instances of the UAS’s R2U2 monitoring: (a) a modified trace where we
injected a shift in the air pressure’s rate of change, and (b) an unmodified trace where a
few anomalies exceed the pressure rate of change bounds (dashed lines). Both outputs
of the fault-injected run from R2U2 are shown; however, the output of the original
formula (c) bounces due to noisy input jumping back within the margins. To remove
this bouncing, we added another �[0,3] filter (d) to keep the current state until all
outliers are filtered and the state has unquestionably changed. (Color figure online)

Integrating RV into an Automated UTM System 353

(a) IS UAS 1: Unmodified pressure sensor trace (b) IS UAS 1: Modified pressure sensor trace

(c) �[0,3]((Pres < MaxPresErr)∧
(Pres > MinPresErr))

(d) �[0,3]((Pres < MaxPresErr)∧
(Pres > MinPresErr))

Fig. 6. Two instances of the UAS’s R2U2 monitoring: an unmodified run (a) where the
pressure from the barometer remains within the error margins of the GPS’s calculated
atmospheric pressure (dashed lines), and a modified run (b) where the same data was
injected with a fault by subtracting 100hPa from the barometer’s atmospheric pressure
reading. R2U2’s output (c) acknowledges the error-free trace of (a), and (d) shows that
R2U2 detects the violation from (b). (Color figure online)

[15]). Unlike our other specifications, Fig. 5 shows that we needed to include
a conjunction of two �[0,3] filters to remove all output bouncing: one filters
outlying violating verdicts and one filters outlying satisfying verdicts.

Control Sequence. The UTM’s test scenario included one UAS deviating from
its pre-approved flight plan. Figure 7 shows R2U2 correctly detecting this real-
world deviation in real time.

Inter-sensor Relationship. The difference between the barometer’s and
GPS’s pressure should be bounded within acceptable error. A comparison of
the two sensors can help diagnose sensor failures (see [15] for more details).
For example, Fig. 6 shows a side-by-side comparison of two pressure traces:
an unmodified and a modified version with a fault injected from t = 1500 to
t = 1750.

Physical Model Relationship. As shown in Fig. 8, when a UAS’s heading
is between 90◦ and 180◦ and its velocity is non-zero, then the UAS’s latitude
should be decreasing while its longitude is increasing.

354 M. Cauwels et al.

Fig. 7. The latitude (top) and longitude (middle) traces
for an adversarial UAS, showing that the GCS is com-
manding it to a different waypoint (red, dashed line)
instead of one from its approved flight plan (green, dot-
ted line). Corresponding to the violation of CS GCS 7
(Table 3), R2U2’s output (bottom) shows it successfully
detects this real-world fault. (Color figure online)

Lessons Learned. Many
of our specifications are
rather simplistic, i.e., �[0,3]

(ϕ1 ∧ ϕ2); however, their
simplicity allows for easy
validation and verifica-
tion. They are easy to
validate through discus-
sion with system design-
ers. Additionally, we used
temporal filters, e.g., the
�[0,3] sliding window fil-
ter, extensively to mit-
igate false-positives. As
false-positives can cause
mistrust of the RV mon-
itor, we built our specifi-
cations to err on the side
of missing a fault. As seen
in Sect. 5, if R2U2 sent a
fault alert, the fault was
clear for the human oper-
ators receiving the alert.
Many of our specifications encapsulate intuitive bounds and relationships for
sensor values and variables that humans implicitly assume about a given sys-
tem, i.e., latitude coordinates are bounded between (−90◦, 90◦) and that events
cannot end before they start. These “common-sense” specifications are often
overlooked, yet they catch real faults, e.g., from variable overflow and under-
flow, sensor or wiring failures, and excessive noise. Our coverage categorization
for specifications allowed us to enumerate many such sanity checks about the
UTM system, which helped us achieve a reasonable covering set of specifications
for the UTM’s three sub-systems. In practice, this lead to R2U2 identifying a
real-life fault where a data-translation error caused the UTM to register flight
plans that ended before they started. Such an error would be obvious to human
controllers but automated systems require RV to flag this impossibility. Future
work is aimed toward creating automated tools for specification elicitation.

6 Conclusion

Before UAS can integrate into the NAS, we need to establish a prov-
ably safe, intelligent, and automated UTM system. To help facilitate
this, we have integrated the state-of-the-art runtime verification tool
R2U2 across the three different layers of an actual UTM implemen-

Integrating RV into an Automated UTM System 355

tation: on-board the individual UAS, in conjunction with each opera-
tor’s GCS, and embedded into a centralized, cloud-based UTM server.

Fig. 8. Single instance of R2U2 on a simulated UAS
showing the latitude, longitude, heading, and velocity.
With assumptions of the UAS operating in North Amer-
ica and there is a relationship between heading and tra-
jectory, then a relationship between velocity, heading,
and position can be verified. (Color figure online)

By validating and releas-
ing over 100 runtime
MLTL specifications, two
sets of recorded traces
from test flights of a
real-life UTM implemen-
tation, and the results
of checking those formu-
las, we contribute a large
benchmark suite. This
suite is useful for verifi-
cation of the algorithms
and implementations of
future RV tools, provid-
ing both nominal and
faulty traces and realis-
tic sensor noise and out-
lier readings that chal-
lenge RV engines.
Additionally, we exem-
plify the real-world chal-
lenges of implementing
RV into a centralized,
high-traffic UTM. We
demonstrate real-time performance of extending MLTL formulas with a sin-
gle first-order operator, where we validate whether a specification holds for all
UAS or if there exists a UAS that violates a specification. When refining our
specification set, we found sensor noise and outliers triggered false positives and
that a simple �[0,3] around each critical sensor check eliminated these while only
slightly delaying the trigger of actual faults. Of our 124 specifications, two-thirds
contain this construct. This modification can be automatically inserted into spec-
ifications for real-life systems where false positives cannot be tolerated. Though
we verified a short (42 min) relatively small real-life system (26, 33-64, and 634
sensor inputs for the UAS, GCS, and UTM, respectively) we still found it hard
to manually write a sufficiently covering set of specifications. To ensure we did
not miss covering unstated assumptions, we used coverage metrics to brainstorm
our list of 124 specifications: variable coverage (every variable appears in at least
one specification) and pattern coverage (specifications follow each pattern from
[19]). Our experience informs an on-going project to enable more automated
specification elicitation.

356 M. Cauwels et al.

References

1. AeroViroment: VAPOR All-electric Helicopter UAS. https://www.avinc.com/uas/
view/vapor-vtol. Accessed 17 Dec 2019

2. Alur, R., Henzinger, T.A.: Real-time logics: complexity and expressiveness. Inf.
Comput. 104(1), 35–77 (1993)

3. Aweiss, A.S., Owens, B.D., Rios, J.L., Homola, J.R., Mohlenbrink, C.P.: UAS
Traffic Management National Campaign II. In: 2018 AIAA SciTech, pp. 1–16,
January 2018

4. Bakhirkin, A., Ferrère, T., Henzinger, T., Nickovic, D.: The first-order logic of
signals. In: EMSOFT (2018)

5. Federal Aviation Administration (FAA): FAA Aerospace Forecast - Fiscal
Years 2019–2039 (2019). https://www.faa.gov/data research/aviation/aerospace
forecasts/media/FY2019-39 FAA Aerospace Forecast.pdf

6. Federal Aviation Administration (FAA): Unmanned Aerial Systems (UAS) (2020).
https://www.faa.gov/uas/

7. Geist, J., Rozier, K.Y., Schumann, J.: Runtime observer pairs and bayesian net-
work reasoners on-board FPGAs: flight-certifiable system health management for
embedded systems. In: Bonakdarpour, B., Smolka, S.A. (eds.) RV 2014. LNCS,
vol. 8734, pp. 215–230. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
11164-3 18

8. Havelund, K., Peled, D., Ulus, D.: First order temporal logic monitoring with
BDDs. In: FMCAD, pp. 116–123 (2017)

9. Hunter, G., Wei, P.: Service-oriented separation assurance for small UAS traffic
management. In: INCS19, pp. 1–11 (2019)

10. Kempa, B., Zhang, P., Jones, P.H., Zambreno, J., Rozier, K.Y.: Embedding online
runtime verification for fault disambiguation on Robonaut2. In: Bertrand, N.,
Jansen, N. (eds.) FORMATS. LNCS, pp. 196–214. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-57628-8 12

11. Li, J., Vardi, M.Y., Rozier, K.Y.: Satisfiability checking for mission-time LTL. In:
Dillig, I., Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11562, pp. 3–22. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-25543-5 1

12. The international conference on runtime verification. https://www.runtime-
verification.org/ (2001-present)

13. Moosbrugger, P., Rozier, K.Y., Schumann, J.: R2U2: monitoring and diagnosis of
security threats for unmanned aerial systems. In: FMSD, pp. 1–31, April 2017

14. NASA: Unmanned Aircraft System (UAS) Traffic Management (UTM). https://
utm.arc.nasa.gov/index.shtml. Accessed 12 Mar 2020

15. NASA: Earth atmosphere model, May 2015. https://www.grc.nasa.gov/WWW/
K-12/airplane/atmosmet.html

16. Pike, L., Wegmann, N., Niller, S., Goodloe, A.: Copilot: monitoring embedded
systems. Innovations Syst. Softw. Eng. 9(4), 235–255 (2013). https://doi.org/10.
1007/s11334-013-0223-x

17. Reinbacher, T., Rozier, K.Y., Schumann, J.: Temporal-logic based runtime observer
pairs for system health management of real-time systems. In: TACAS, pp. 357–372
(2014)

18. Rios, J., Mulfinger, D., Homola, J., Venkatesan, P.: NASA UAS traffic management
national campaign: operations across Six UAS Test Sites. In: DASC, pp. 1–6 (2016)

19. Rozier, K.Y.: Specification: the biggest bottleneck in formal methods and auton-
omy. In: Blazy, S., Chechik, M. (eds.) VSTTE 2016. LNCS, vol. 9971, pp. 8–26.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-48869-1 2

https://www.avinc.com/uas/view/vapor-vtol
https://www.avinc.com/uas/view/vapor-vtol
https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2019-39_FAA_Aerospace_Forecast.pdf
https://www.faa.gov/data_research/aviation/aerospace_forecasts/media/FY2019-39_FAA_Aerospace_Forecast.pdf
https://www.faa.gov/uas/
https://doi.org/10.1007/978-3-319-11164-3_18
https://doi.org/10.1007/978-3-319-11164-3_18
https://doi.org/10.1007/978-3-030-57628-8_12
https://doi.org/10.1007/978-3-030-57628-8_12
https://doi.org/10.1007/978-3-030-25543-5_1
https://www.runtime-verification.org/
https://www.runtime-verification.org/
https://utm.arc.nasa.gov/index.shtml
https://utm.arc.nasa.gov/index.shtml
https://www.grc.nasa.gov/WWW/K-12/airplane/atmosmet.html
https://www.grc.nasa.gov/WWW/K-12/airplane/atmosmet.html
https://doi.org/10.1007/s11334-013-0223-x
https://doi.org/10.1007/s11334-013-0223-x
https://doi.org/10.1007/978-3-319-48869-1_2

Integrating RV into an Automated UTM System 357

20. Rozier, K.Y., Schumann, J.: R2U2: tool overview. In: RV-CUBES, Seattle, WA,
USA, vol. 3, pp. 138–156. Kalpa Publications, September 2017

21. Rozier, K.Y., Vardi, M.Y.: LTL satisfiability checking. Int. J. Softw. Tools Technol.
Transfer (STTT) 12(2), 123–137 (2010)

22. Schirmer, S.: Runtime monitoring with LOLA. Master’s thesis, Saarland Univer-
sity, November 2016. https://elib.dlr.de/113126/

23. Schumann, J., Rozier, K.Y., Reinbacher, T., Mengshoel, O.J., Mbaya, T., Ippolito,
C.: Towards real-time, on-board, hardware-supported sensor and software health
management for unmanned aerial systems. IJPHM 6(1), 1–27 (2015)

24. Wargo, C.A., et al.: Ubiquitous surveillance notional architecture for system-wide
DAA capabilities in the NAS. In: 2018 IEEE Aerospace Conference, pp. 1–14 (2018)

25. Wei, P., Atkins, E.M., Hunter, G., Rozier, K.Y., Schnell, T.: Pre-Departure
Dynamic Geofencing, En-Route Traffic Alerting, Emergency Landing and
Contingency Management for Intelligent Low-Altitude Airspace UAS Traffic
Management, July 2017. https://www.nsf.gov/awardsearch/showAward?AWD
ID=1718420

26. Zhao, Y., Rozier, K.Y.: Formal specification and verification of a coordination
protocol for an automated air traffic control system. Sci. Comput. Program. 96,
337–353 (2014)

27. Zhu, G., Wei, P.: Low-altitude UAS traffic coordination with dynamic geofencing.
In: 16th AIAA Aviation Technology, Integration, and Operations Conference, June
2016

https://elib.dlr.de/113126/
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1718420
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1718420

Dependability of Model-Driven
Executable DSLs

Critical Review and Solutions

Akram Idani(B)

Univ. Grenoble Alpes, CNRS, LIG, 38000 Grenoble, France
Akram.Idani@univ-grenoble-alpes.fr

Abstract. One of the promising techniques to address the dependability
of a system is to apply, at early design stages, domain specific languages
(DSLs) with execution semantics. Indeed, an executable DSL would not
only represent the expected system’s structure but it is intended to itself
behave as the system should run. However, in order to make executable
DSLs a powerful asset in the development of safety-critical systems, not
only a rigorous development process is required but the domain expert
should also have confidence in the execution semantics provided by the
DSL developer. The challenge addressed in this paper is then to ver-
ify whether execution semantics provided by Model-Driven Engineering
(MDE) tools comply with the expected behaviour of a given DSL. We
experimented existing MDE approaches with associated implementations
(QVT, Kermeta, fUML), in order to debug a safety-critical system. This
paper presents the lessons learned from this study and provides formal
alternatives, based on the B method and CSP process algebra, which are
well-established techniques allowing interactive animation on the one
hand and reasoning on the behaviour correctness, on the other hand.

Keywords: B Method · Domain specific languages · MDE

1 Introduction

The Model Driven Engineering (MDE) paradigm suggests solutions to the two
major problems of software development: (1) the software complexity, and (2) the
gap between conceptual models and coding activities. Indeed, on the one hand,
MDE advocates for the use of models throughout the engineering life-cycle in
order to reduce complexity, and on the other hand, it is assisted by numerous
tools (e.g. EMF1, Xtext2, ATL3) dedicated to a clear separation of concerns
ranging from requirements to target platforms, and going through several design
stages. Interoperability between these tools is favored by the use of standardized
meta-modeling formalisms which increases automation especially for developing

1 https://www.eclipse.org/modeling/emf/.
2 https://www.eclipse.org/Xtext/.
3 http://www.eclipse.org/atl/.

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 358–373, 2020.
https://doi.org/10.1007/978-3-030-59155-7_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_27&domain=pdf
http://orcid.org/0000-0003-2267-3639
https://www.eclipse.org/modeling/emf/
https://www.eclipse.org/Xtext/
http://www.eclipse.org/atl/
https://doi.org/10.1007/978-3-030-59155-7_27

Dependability of Model-Driven Executable DSLs 359

domain specific languages (called DSLs). In the last decade, several research
works have been devoted in order to enhance DSLs by underlying operational
semantics which makes them executable. One of the major advantages of exe-
cuting a DSL is to provide abstractions of the system’s behavior and hence allow
the domain expert to perform early analysis of the expected system. Indeed, an
executable DSL can be simulated and debugged by existing MDE-based tools
(e.g. the Gemoc Studio4) leading to a better quality than a static DSL. Unfor-
tunately, although these advantages show that executable DSLs are a promising
paradigm, several issues related to correctness and the level of trust that one can
have in execution engines are still challenges for a rigorous development process.

In this paper, we lead an experimental study built on the Petri-net DSL as it
is developed by existing works [1,8,10,11] that applied MDE frameworks such as
xMOF-fUML, QVT and Gemoc-Kermeta in order to address operational seman-
tics and corresponding simulation/debugging activities. We tried their Petri-net
DSLs to debug a safety-critical system and check their ability to address proper-
ties such as: correctness, deadlock-freedom, mutual exclusion and fairness. This
paper presents a critical review and lessons learned from this study and provides
formal alternatives, based on the B method and CSP5 process algebra, which
are well-established techniques allowing interactive animation on the one hand
and reasoning on the behaviour correctness, on the other hand.

Section 2 describes the DSL on which we have built our experimental study
and gives an overview about tools of our benchmark. Section 3 applies and
compares algorithms as they are encoded in existing works for debugging a
safety-critical model from the domain expert point of view. In Sect. 4 we provide
a formal solution for the definition of execution semantics. Finally, Sect. 5 draws
the conclusions and the perspectives of this work.

2 The Petri-Net DSL

In this paper, our case study is that of running Petri-nets. Petri-net is a visual
language used for modeling concurrent systems. Its mathematical foundations
inspired by the graph theory allow formal calculus about safety properties. The
choice of this DSL is motivated by the fact that it was widely addressed by the
research works interested in modeling and debugging techniques. This section
presents structural and contextual constraints of this DSL as well as its execution
semantics and defines a simple safety-critical Petri-net example.

2.1 Structural and Contextual Semantics

Figure 1 shows the Petri-net meta-model as considered by [1]6. It is composed
of three meta-classes: Net (the root class), Place and Transition. These classes
are linked by four relationships: places, transitions, input and output.
4 http://gemoc.org/.
5 CSP: Communicating Sequential Processes.
6 The ecore file can be found at: https://github.com/gemoc/petrinet/blob/master/

petrinetv1/fr.inria.diverse.sample.petrinetv1.model/model/petrinetv1.ecore.

http://gemoc.org/
https://github.com/gemoc/petrinet/blob/master/petrinetv1/fr.inria.diverse.sample.petrinetv1.model/model/petrinetv1.ecore
https://github.com/gemoc/petrinet/blob/master/petrinetv1/fr.inria.diverse.sample.petrinetv1.model/model/petrinetv1.ecore

360 A. Idani

Fig. 1. Petri-nets meta-model

This meta-model defines structural properties of a given Petri-net. For
instance, a Transition must be linked to at least one input place and one output
place. Attribute tokens represents the number of tokens in a place: it is mono-
valuated, optional and without a default initial value. The various references of
this meta-model do not admit repetitions. Note that the meta-model is taken
from [1] and it is presented without any modification. Furthermore, the DSL
must comply with the following contextual invariant written in OCL:

context Place inv Token Is Natural: self.tokens ≥ 0

For illustration we use the simple Petri-net of Fig. 2 which is dedicated to control
traffic lights in a crossroads. This model deals with a safety-critical system since
failures may lead to loss of life due to accidents that it may cause.

Fig. 2. Traffic light controller in Petri-nets (V1)

The domain expert needs then to have confidence in the provided operational
semantics of the Petri-net DSL in order to prove that his model guarantees safety
properties such as:

Dependability of Model-Driven Executable DSLs 361

– correctness: asserts that the system does not exhibit bad behaviors, where
invariants (structural or contextual) are violated.

– deadlock-freedom: states that the traffic lights can’t be blocked in a state in
which no progress is possible

– mutual exclusion: states that lights in a road intersection cannot enter simul-
taneously their critical sections (critical sections are states green and orange
in our example).

– fairness: requires that the system gives fair turns to its components (in our
example both lights must be able to function).

Model of Fig. 2 deals with two traffic lights (Light A and Light B) which are
to be placed in two roads that intersect. Light A and Light B are respectively
controlled by the left hand-side and the right hand-side of this figure. Every
traffic light sequentially switches from Green to Orange and then to Red, in an
infinite loop. This Petri-net model shows concurrent evolutions of traffic lights
without any synchronisation between them. Finally, the current state of this
model assigns red to Light A and green to Light B.

In this paper we apply existing MDE approaches [1,8,10,11], with associated
implementations, in order to debug the traffic light controller especially from the
domain expert point of view. The intention is to check the ability of these MDE
tools to address safety properties as those mentioned above.

2.2 Execution Semantics

Basic Petri-nets execution semantics are defined by transition firing that holds
when a transition satisfies an enabledness property. To check this property, exist-
ing MDE techniques call a query defined as:

query isEnabled(t : Transition) : Boolean =
t.input->forAll(p : Place | p.tokens > 0)

This query returns true if attribute tokens is greater than 0 for each input
place of transition t, false otherwise. Algorithm of Fig. 3, taken from [1], describes
how a Petri-net runs. This algorithm chooses non-deterministically a transition
t (called tenabled) from the set of transitions that satisfy the above property
and then calls operation fire(t). As a result, the number of tokens in the input
places of t is decreased (operation removeToken) and the number of tokens in
the output places is increased (operation addToken). Modifications of tokens,
done at every call to operation fire, evolve the set of enabled transitions and
then the algorithm may loop or stop when this set becomes empty.

2.3 Benchmark Overview

In order to address safety properties using existing MDE-based Petri-net DSLs,
our study applies various approaches which are based on different languages
(QVT, Kermeta and fUML). In the remainder, we call these approaches respec-
tively PNetQVT, PNetKermeta and PNetfUML.

362 A. Idani

Fig. 3. Running a Petri-net [1]

1. PNetQVT [11]: QVT (Query/View/Transformation) is an OMG7 standard for
model transformations. QVT defines: QVT-Relations and QVT-Core which
are declarative languages but at two different levels of abstraction, and QVT-
Operational which is an imperative language. In [11], the authors used QVT-
Relations which is the high-level language of QVT extending OCL and its
semantics with imperative features. Unfortunately, there is a lack of tools
supporting QVT-Relations. Indeed, the tools that we found are either out of
date (Medini QVT) or proprietary (ModelMorf). Then, for our benchmark
needs, we encoded a variant of rules proposed by [11] in QVT-Operational
using the Eclipse EMF framework.

2. PNetKermeta [1]: Kermeta [7] is a language workbench that involves different
meta-languages for abstract syntax (aligned with EMOF [4]), static seman-
tics (aligned with OCL) and behavioural semantics (via an action language
also called Kermeta). In [1], the Gemoc studio was applied together with
the Kermeta language to define the Petri-net DSL and debug its execution
using an animation technique. In our benchmark we used source-code issued
from the Gemoc website: https://github.com/gemoc/petrinet/blob/master/
petrinetv1/.

3. PNetfUML [8,10]: fUML is an OMG standard that defines the execution
semantics of a subset of UML 2.3. The standard applies, in the form of pseudo
Java-code, a basic virtual machine enabling UML models using elements com-
prised in the fUML subset to be executed. [10] proposes the xMOF tool which
integrates fUML with MOF to enable the specification of the behavioural

7 OMG: Object Management Group (https://www.omg.org).

https://github.com/gemoc/petrinet/blob/master/petrinetv1/
https://github.com/gemoc/petrinet/blob/master/petrinetv1/
https://www.omg.org

Dependability of Model-Driven Executable DSLs 363

semantics of DSMLs in terms of fUML activities. For our experiments we
used the open-source DSL, provided at: https://modelexecution.org/moliz/
xmof/.

The above tools use the Eclipse Modeling Framework (EMF), which makes
easy their integration and the analysis of the Petri-net DSLs that they provide
within a unified framework. Note that their underlying approaches agree on
operations fire, addToken and removeToken. However, they differ from each other
by: (1) the level of abstraction depending on (meta-)programming languages, (2)
the semantics associated to the non-deterministic choice of enabled transitions,
and (3) the execution engine.

3 Debugging the Traffic-Light Model

In this section we apply and compare the works of our benchmark for debugging
the traffic-light model from the domain expert point of view.

3.1 Results

Starting from the initial state of Fig. 2, PNetQVT, PNetfUML and PNetKermeta

produced the same execution trace (Fig. 4) showing that only Light A is func-
tioning. Curiously the transition firing sequence was: (start1; t1; end1)+.

Fig. 4. First execution of the traffic light Petri-net

Often the end user or the domain expert does not have any knowledge about
how the Petri-net semantics are encoded, that is why we tried again these tools
starting from a more intuitive initial state where lights are set to red. In this
second execution, PNetKermeta and PNetfUML have had the same behaviour than
that they exhibited in the previous case but with Light B left in state Red.
PNetQVT produced a different trace, presented in Fig. 5:

(start1; t1; start2; end1); (start1; t1; end1)+

In this behaviour light B is switched to green after Light A passed to orange
and then after firing transition end1 the system is engaged in a loop similar
to that of Fig. 4. Based on these behaviours it is difficult to conclude about
safety properties: dead-lock freedom, mutual exclusion and fairness. In the first

https://modelexecution.org/moliz/xmof/
https://modelexecution.org/moliz/xmof/

364 A. Idani

Fig. 5. Second execution of the traffic light Petrinet

execution of PNetKermeta and PNetfUML both lights reached their critical sections
together (middle state of Fig. 4), which violates the mutual exclusion property.
Nonetheless, from the second execution one can conclude that this property is
satisfied, which is obviously contradictory with the first execution. In the same
sense, these two executions show a dead-lock freedom since the corresponding
traces did not reach a blocking state, but they show too that the fairness property
is not guaranteed since Light B didn’t evolve at all, which is also somehow
contradictory. Having these behaviours and considering that the semantics of
Petri-nets is well-defined, we believe that it is difficult for the end-user − who
should be in our case an expert in Petri-nets and formal methods − to adopt
these tools and apply them to model a safety-critical system.

3.2 Analysis

In order to explain these behaviours we analysed the source code of our bench-
mark tools and we found that they do not choose in the same way the enabled
transition. Indeed, in our reference algorithm the choice of the transition to fire
is non-deterministic, which is not the case for these tools.

Indeterminism in PNetfUML and PNetKermeta: PNetfUML and PNetKermeta

applied a deterministic principle in which the first transition satisfying query
isEnabled is fired. In PNetfUML [10] it is stated that:“The run() operation repeat-
edly determines a list of enabled Transitions, . . . , and calls fire() for the first
Transition in this list.”. PNetKermeta source code uses the following instruction
in the context of class Net:

transitions.findFirst[t|t.isEnabled]

The limitation is that collection transitions issued from class Net is filled
sequentially depending on the order on which the modeling elements are created

Dependability of Model-Driven Executable DSLs 365

by the designer. In fact, in EMF references are typed by the EList data structure
whose semantics are different from the Set data-structure. Actually for Fig. 2 we
created the left hand side (that of Light A) before the right hand side (that of
Light B) and hence we get a malfunction of Light B. Based on this observation
we changed the order of transitions in the XMI file of the model, and then we get
a different behaviour. We think that it is not a judicious choice to condition the
DSL behaviour by the order on which modeling elements are created because it
may be confusing for the domain expert. Moreover, DSL behaviour variations
depending on the XMI file content would not reflect at all the behaviour of the
target system, which weakens the debugging functions dedicated to a Petri-net
based safety-critical controller.

Indeterminism in PNetQVT: In PNetQVT, the enabled transition is provided
by the following OCL-based query:

Semantics of the “any” construct in OCL [3] (section 11.9, page 177) are
defined as: “Returns any element in the source collection for which body eval-
uates to true. . . If there are one or more elements for which body is true, an
indeterminate choice of one of them is returned”. In the OCL reference manual
the operator “any” is rewritten as follows:

Set->any(iterator | body) =

Set->select(iterator | body)->asSequence()->first()

Conversion from Set to Sequence is non-deterministic because type set does
not cover ordering. However, the EMF/OCL package uses the java structure
HashSet8 for the OCL type Set. Unfortunately, elements of a HashSet are dis-
persed by means of a hashing function which is called every time a modification
operation (e.g. add, remove) is applied to the HashSet. Since in our example,
the set of transitions is never modified, then this dispersion is not recomputed
and the asSequence() operation always produced the same result. The HashSet
dispersion produced from our initial Petri-net (Fig. 2) is:

[start1, t1, start2, end2, end1, t2]

This dispersion allows to understand the weird behaviours of the traffic light.
Indeed, in the initial state, the set of enabled transitions gathers start1 and t2
and hence asSequence()->first() gets start1. Then, the same algorithm is
applied producing a call to t1 followed by end1. Transition t2 would never be
fired because in this dispersion it appears after transition end1 which brings back
the model to the initial state. The similarity between the output of PNetQVT

and that of both PNetfUML and PNetKermeta when Light A is red and Light B
is green is hence a pure luck. This behaviour is not only unsuitable towards a

8 HashSet is an implementation of interface Set in Java.

366 A. Idani

non-deterministic executable DSL but also dangerous because the failure comes
from the execution engine not from the semantics. This failure may reduce the
confidence that a domain expert may have in the DSL execution engine. Indeed,
besides human errors, it is known that execution engines are the most critical
parts in safety-critical systems; that is why several standards exist in order to
reduce their capabilities to controllable structures and functions.

4 Formal DSL Semantics: The Meeduse Technique

The disparity between execution tools leads to behaviours that are conformant
to the semantics specified by their execution models but may be far from the
expected behaviour in accordance with the domain expertise. This is an impor-
tant problem since the same model may not be executed in the same way on
different tools even for deterministic structures. In fact, when designing a model
via a given DSL tool, the domain expert focuses on debugging his model rather
than debugging the DSL semantics provided by the MDE expert.

We propose an alternative definition of the Petri-net semantics using Meeduse
[6], a tool that we developed in order to mix the formal B method and EMF-
based DSLs. The use of a well-established formal approach assisted by provers
and model-checkers, guarantees the consistency of the Petri-net DSL and its
conformance to the expected behaviour. This formal reference model allows then
to establish what goes well and wrong in the considered benchmark and can be
useful for further improvements of existing DSL definition tools.

4.1 Functional Model

In order to get a functional B specification conformant to the Petri-net meta-
model, Meeduse9 [6] translates the meta-model into a correct by design B spec-
ification. Figure 6 gives the heading part of the generated B machine.

Fig. 6. Heading part of the Petri-nets machine

Every meta-class leads to an abstract set (e.g. TRANSITION) and an
abstract variable (e.g. Transition) which respectively represent the possible
9 Meeduse: http://vasco.imag.fr/tools/meeduse/.

http://vasco.imag.fr/tools/meeduse/

Dependability of Model-Driven Executable DSLs 367

instances and the existing instances of the meta-class. Associations and class
attributes lead to variables (e.g. places, transitions, etc.). The invariant proper-
ties generated by Meeduse are provided in Fig. 7.

Fig. 7. Invariant of the Petri-nets machine

This invariant covers structural properties defined by multiplicities and the
optional/mandatory character of attributes, as well as contextual constraints like
the Token Is Natural invariant. For example, predicates from line (18.) to line
(23.) of Fig. 7 translate multiplicities 1..* associated to references input and
output. Attribute tokens, which is single-valuated, optional and defined over the
set of natural numbers, is translated into a partial function from set Place to the
B type NAT (line (17.)).

Tools such as those of our benchmark produce an implementation from a
meta-model gathering all basic operations (setters, getters, etc.) and Meeduse
generates a B machine gathering similar basic operations but which are written
in a theory (set theory, first order predicate logic and generalized substitutions)
allowing to carry out proof of correctness. Figure 8 shows the basic setter of
attribute tokens.

For this specification, Meeduse produced 24 operations and the AtelierB
(http://www.atelierb.eu/en/) prover generated 74 proof obligations (POs) for
which it was able to automatically prove 62. The 12 other POs were proved
manually without improvements of the B specifications.

4.2 Execution Operations

Execution semantics often introduces complex modifications of the domain
model. They may create or destroy objects, modify relationships between these
objects and also update several class attributes. We are then afraid that the

http://www.atelierb.eu/en/

368 A. Idani

Fig. 8. Basic setter of attribute tokens

difficulty in applying executable DSLs in safety-critical systems goes beyond the
problem of indeterminism exhibited from our benchmark. We need a clear sep-
aration of concerns regarding properties to verify: (1) that of the meta-model
with associated modeling operations, (2) that of the execution utility operations
(e.g. addToken and removeToken), and (3) that of the coordination mechanism
(e.g. operations fire and run of Fig. 3).

We introduce the execution semantics of the Petri-net DSL by a set of B
operations shared in a machine that includes the functional machine. As the
Petri-net running algorithm iterates over input and output places of a transition,
we add operation getPlaces (Fig. 9) in order to return these sets given a transition
tt. Operation getEnabled is a formalisation of query isEnabled presented in Sect.
2.2. The enabledness property of a transition tt should not only be based on the
positive value of tokens (relation Place tokens) for all input places (input−1[{tt}])
but must also take into account the upper limit of this attribute for all output
places (output−1[{tt}]):

(P1) Place Tokens[input−1[{tt}]] ∩ {0} = ∅
(P2) Place Tokens[output−1[{t}]] ∩ {MAXINT} = ∅

Precondition (P1) is not sufficient because we would like to safely increase
the number of tokens in output places. Without precondition (P2), the Petri-
net controller may then reach a state in which a transition is enabled, and the
tokens in its input places are consumed without producing tokens in the output

Fig. 9. Operations getEnabled and getPlaces

Dependability of Model-Driven Executable DSLs 369

places. This would lead to an inconsistent Petri-net because consumption and
production of tokens should not be dissociated. Both preconditions are then
required in order to be able to call both addToken and removeToken when a
transition is enabled.

Figure 10 gives the B specification of operation addToken (operation remove-
Token is somehow similar). Note that AtelierB discharged four proof obligations
from this machine (two POs for the setter call, and two additional POs for the
well-definedness of Place Tokens(pp)) and it was able to prove them automati-
cally.

Fig. 10. Operation addToken

4.3 Semantics Coordination

In order to keep reasoning at a high abstraction level, operations run and fire
presented as algorithms in Fig. 3, are defined as CSP10 processes that coordinate
the operations of the execution semantics. The process algebra CSP is an event-
based formalism that enables description of patterns of system behaviour. In
[2] combination of CSP and the B method is defined and integrated within the
model-checker ProB [9]. This formalism is then useful for executable DSLs due
to its abstraction capabilities and also thanks to the tool availability.

Figure 11 shows the CSP specification of the Petri-net running algorithm.
This algorithm is composed of four processes: RUN, FIRE, CONSUME and
PRODUCE. Process RUN (line 1.) is a recursion defined by a sequential composi-
tion with the prefixed process FIRE. In this sequence channel getEnabled?trans
is a call to the B operation getEnabled whose output value is registered in
variable trans. The variable is then transmitted to process FIRE. Concretely,
variable trans represents an enabled transition provided non-deterministically
by operation getEnabled. The simulation of process RUN continues indefinitely
or stops when the system reaches a deadlock.

Process FIRE applied to a transition trans is a sequencing of processes CON-
SUME and PRODUCE preceded by the simple action prefix:

getPlaces!trans?input?output

10 CSP: Communicating Sequential Processes [5].

370 A. Idani

1. MAIN = RUN
2. RUN = getEnabled?trans → FIRE(trans) ; RUN
3. FIRE(trans) =
4. getPlaces!trans?input?output → (
5. CONSUME(input) ; PRODUCE(output)
6.)
7. CONSUME(input) = |||[x∈input]removeToken!x → SKIP
8. PRODUCE(output) = |||[x∈output]addToken!x → SKIP

Fig. 11. CSP formalisation of run and fire

This action is a call to the B operation getPlaces on transition trans in order
to get its input and output places, which are further transmitted to processes
CONSUME and PRODUCE. The objective is to apply operations removeToken
and addToken to all elements of sets input and output. Notation |||[x∈S]Op!x
represents a replicated interleaving which applies all possible combinations of
Op having the various valuations of parameter x taken from set S.

4.4 Debugging the Traffic Light

In order to debug the traffic light via our formal semantics we have two pos-
sibilities using Meeduse: (1) interactive animation, and/or (2) model-checking.
Meeduse integrates ProB and EMF together in order to take benefit of the visu-
alisation capabilities of MDE tools such as Sirius and GMF for DSLs, and the
animation and model-checking functions of ProB. In Meeduse, EMF and ProB
are continuously synchronised during the animation process.

The right hand side of Fig. 12 provides the ProB view and the left hand
side our EMF/Sirius modeler. The ProB view shows CSP guided animation. In
the current state of the model two operations are enabled: start1 and t2. In
interactive animation, depending on the choice done by the user, the tool fires
the selected transition and then changes the model according to the formal B
specification. For every animation step, Meeduse gets the B machine state from
ProB and translates it back to the EMF model in order to update the graphical
view. As presented in Fig. 12, ProB offers model-checking functions allowing to
find deadlocks, invariant violations and reachability of CSP goals.

Mutual Exclusion: A traffic light enters its critical section after enabling tran-
sition start and it leaves it by transition end meaning that the critical section
includes states Green and Orange. In order to check this property for our petri-
net model, we add the following invariant to our B specification and we ask ProB
to find invariant violations and produce the corresponding transition sequences.
Contrary to the observation issued from our benchmark, ProB quickly found the
invariant violation showing that this property is not respected.

Dependability of Model-Driven Executable DSLs 371

Fig. 12. Integration of ProB within EMF

Fairness: To check this property we apply a parallel composition of process RUN
with the process FAIRNESS defined in Fig. 13, line (12.). This process leads to
two possible traces: (step1 ; step2 ; goal) and (step2 ; step1 ; goal). Channel
step1 (respectively step2) is produced from process FIRE when guard trans =
end1 (respectively trans = end2) holds. The objective of this specification is to
reach goal STOP when the system produces a trace where both transitions end1
and end2 are fired by the RUN process.

1. MAIN = RUN |[{step1, step2}]| FAIRNESS
2. RUN = getEnabled?trans → FIRE(trans) ; RUN
3. FIRE(trans) =
4. getPlaces!trans?input?output → (
5. CONSUME(input) ; PRODUCE(output)
6.) ;
7. ((trans = end1) : step1 → SKIP
8. [] (trans = end2) : step2 → SKIP
9. [] (trans {∈� end1, end2}) : SKIP)
10. CONSUME(input) = |||[x∈input]removeToken!x → SKIP
11. PRODUCE(output) = |||[x∈output]addToken!x → SKIP
12. FAIRNESS = (step1 → SKIP ||| step2 →SKIP) ; goal → STOP

Fig. 13. Fairness checking with CSP

372 A. Idani

ProB successfully found the expected sequences leading to the goal and show-
ing that the system gives fair turns to lights A and B. However, given that the
running algorithm is non-deterministic, it would be interesting to seek for the
existence of loops where only one light runs. For this purpose, we can override
the getEnabled operation in process RUN as follows:

RUN = FIRE(start1); FIRE(t1); FIRE(end1); RUN

Given this CSP rule, ProB explored all possible situations without finding
goal STOP, which shows that the system may stay running without evolutions
of Light B. This proof exhibits a weak fairness from the model.

5 Conclusion

PNetQVT gave the better abstraction level however it suffers from limitations
of the misuse of non-determinism. PNetKermeta and PNetfUML have had a con-
trollable deterministic behaviour however this choice makes them quite distant
from the original Petri-net semantics. The Petri-net DSL is a “tiny” DSL and it
does not allow to present all possibilities of a proof-based approach, but it was
sufficient to exhibit several failures from our benchmark. Indeed, in addition to
the problem of indeterminism, these tools include other unsafe behaviours due
to: the implicit initialisation of the optional attribute tokens, and also the uncon-
trolled incrementation of this attribute that may produce an integer overflow.
Similar simple failures in real-life critical systems have had disastrous conse-
quences. To cope with these limitations, our solution applies a formal model in
order to debug the DSL using the ProB animator and model-checker.

Often, in classical development processes, the use of a formal method with
proofs is not widespread because it seems to create an overhead for the devel-
oper. The Meeduse approach described in this paper targets safety-critical sys-
tems where formal reasoning is widely applied even if it requires good skills in
mathematics. Integration of a DSL-based solution to this field is interesting since
it provides a way for rapid-prototyping of a system’s behaviour without a loss of
formal proofs. The alliance, favored by Meeduse, between executable DSLs and a
formal method such as B, allows to reach a high level of abstraction with a good
mix between expressiveness and precision. We believe that this is a promising
technique to deal with the dependability of safety-critical systems.

References

1. Bousse, E., Leroy, D., Combemale, B., Wimmer, M., Baudry, B.: Omniscient debug-
ging for executable DSLs. J. Syst. Softw. 137, 261–288 (2018)

2. Butler, M., Leuschel, M.: Combining CSP and B for specification and prop-
erty verification. In: Fitzgerald, J., Hayes, I.J., Tarlecki, A. (eds.) FM 2005.
LNCS, vol. 3582, pp. 221–236. Springer, Heidelberg (2005). https://doi.org/10.
1007/11526841 16

https://doi.org/10.1007/11526841_16
https://doi.org/10.1007/11526841_16

Dependability of Model-Driven Executable DSLs 373

3. Object Management Group: Object Constraint Language (OCL) 2.4 Core Specifi-
cation (2014). https://www.omg.org/spec/OCL/

4. Object Management Group: Meta Object Facility (MOF) 2.5.1 Core Specification
(2015). https://www.omg.org/spec/MOF/2.5.1/

5. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-Hall Inc., Upper
Saddle River (1985)

6. Idani, A., Ledru, Y., Vega, G.: Alliance of model-driven engineering with a proof-
based formal approach. Innov. Syst. Softw. Eng. 1–19 (2020). https://doi.org/10.
1007/s11334-020-00366-3

7. Jézéquel, J.M., Combemale, B., Barais, O., Monperrus, M., Fouquet, F.: Mashup
of meta-languages and its implementation in the Kermeta language workbench.
Softw. Syst. Model. 14, 905–920 (2015)

8. Langer, P., Mayerhofer, T., Kappel, G.: Semantic model differencing utilizing
behavioral semantics specifications. In: Dingel, J., Schulte, W., Ramos, I., Abrahão,
S., Insfran, E. (eds.) MODELS 2014. LNCS, vol. 8767, pp. 116–132. Springer, Cham
(2014). https://doi.org/10.1007/978-3-319-11653-2 8

9. Leuschel, M., Butler, M.: ProB: a model checker for B. In: Araki, K., Gnesi, S.,
Mandrioli, D. (eds.) FME 2003. LNCS, vol. 2805, pp. 855–874. Springer, Heidelberg
(2003). https://doi.org/10.1007/978-3-540-45236-2 46

10. Mayerhofer, T., Langer, P., Wimmer, M., Kappel, G.: xMOF: executable DSMLs
based on fUML. In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS,
vol. 8225, pp. 56–75. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
02654-1 4

11. Wachsmuth, G.: Modelling the operational semantics of domain-specific modelling
languages. In: Lämmel, R., Visser, J., Saraiva, J. (eds.) GTTSE 2007. LNCS, vol.
5235, pp. 506–520. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-
540-88643-3 16

https://www.omg.org/spec/OCL/
https://www.omg.org/spec/MOF/2.5.1/
https://doi.org/10.1007/s11334-020-00366-3
https://doi.org/10.1007/s11334-020-00366-3
https://doi.org/10.1007/978-3-319-11653-2_8
https://doi.org/10.1007/978-3-540-45236-2_46
https://doi.org/10.1007/978-3-319-02654-1_4
https://doi.org/10.1007/978-3-319-02654-1_4
https://doi.org/10.1007/978-3-540-88643-3_16
https://doi.org/10.1007/978-3-540-88643-3_16

FAACS-MDE4SA - Joint Workshop on
Formal Approaches for Advanced

Computing Systems and Model-Driven
Engineering for Software Architecture

Joint Workshop on Formal Approaches
for Advanced Computing Systems and Model-
Driven Engineering for Software Architecture

(FAACS-MDE4SA)

FAACS

The main mission of the workshop is to foster the integration between formal methods
and software architecture communities with the purpose of improving their connection
in the field of advanced computing systems. This is an emerging class of software
systems that expose complex computational models, e.g., mobile, cloud, autonomic,
adaptive computing and artificial intelligence based, while exploiting new technologies
and infrastructures, e.g., internet-of-things connectivity and smart devices, to deliver
services and information to a multitude of end-users. The development of these systems
often requires advanced architectural design exploiting the integration of heterogeneous
architecture description languages and patterns, qualitative and quantitative assessment
of architectures, and solutions already tested in specific contexts. Although significant
advancements have been achieved during the last decades, formal methods are still not
widely adopted in industry. Ensuring, e.g., reliability, safety, and availability of such
systems is a very challenging problem, requiring advanced software architecture design
that can be devised by the software architecture community, and rigorous modeling and
analysis techniques that can be devised by the formal methods community.

The 4th International Workshop on Formal Approaches for Advanced Computing
Systems (FAACS 2020) was held in virtual mode on September 14, 2020. For the third
year, the workshop was collocated with the European Conference on Software
Architecture (ECSA). The first edition of FAACS was collocated with the 15th
International Conference on Software Engineering and Formal Methods (SEFM 2017).
This year FAACS received five submissions from authors belonging to six different
countries. After an accurate peer-review process involving three members from the
Program Committee per submission, three submissions were accepted for publication
(an acceptance rate of 60%). The accepted contributions represent a mix of modeling
and (design-time and run-time) verification techniques in different application domains
such as railway, distributed, and self-adaptive systems. The workshop program
included the invited talk entitled “Performance Learning for Uncertainty of Software
Systems” given by Catia Trubiani from Gran Sasso Science Institute, Italy.

We would like to thank the Program Committee members that have made the
workshop possible with valuable comments received during the review process. We
would also like to thank the Steering Committee members and the ECSA workshop
chairs for the valuable help and support.

FAACS Organization

FAACS Chairs

Matteo Camilli Free University of Bozen-Bolzano, Italy
Stéphanie Challita Inria, France

FAACS Steering Committee

Paolo Arcaini National Institute of Informatics, Japan
Marina Mongiello Politecnico di Bari, Italy
Elvinia Riccobene University of Milan, Italy
Patrizia Scandurra University of Bergamo, Italy

FAACS Program Committee

Yamine Ait Ameur IRIT, INPT-ENSEEIHT, France
Paolo Arcaini National Institute of Informatics, Japan
Simon Bliudze Inria, France
Georg Buchgeher Software Competence Center Hagenberg,

Austria
Javier Cámara University of York, UK
Lorenzo Capra University of Milan, Italy
Julien Deantoni Inria, France
Stefan Hallerstede Aarhus University, Denmark
Sungwon Kang Advanced Institute of Science and Technology,

South Korea
Jan Kofron Charles University, Czech Republic
Elizabeth Leonard Naval Research Laboratory, USA
Claudio Menghi University of Luxembourg, Luxembourg
Philippe Merle Inria, France
Dominique Mery Université de Lorraine, LORIA, France
Gianfranco Modoni STIIMA-CNR, Italy
Henry Muccini University of L’Aquila, Italy
Elvinia Riccobene University of Milan, Italy
Patrizia Scandurra University of Bergamo, Italy
Lionel Seinturier University of Lille, France
Paola Spoletini Kennesaw State University, USA
Catia Trubiani Gran Sasso Science Institute, Italy

MDE4SA

Responsiveness to ever-evolving requirements, market needs, customer feedback, and
technology are only a few of the challenges posed by modern software systems and
impacting software architecture (SA) and its evolution. Such challenges require ad-hoc
methodologies, technologies, and tools to mitigate complexity, deal with architectural
erosion, and survive the technological evolution. Model-driven engineering (MDE) is a
methodology for developing complex software systems, which uses the principle of
abstraction and separation of concerns for tackling the complexity of modern software
systems. Models are not considered as mere documentation, but as well-defined arte-
facts (specified through modeling languages) that can be understood, automatically
manipulated by automated processes, and transformed into other artefacts. In this
context, the interplay between MDE and SA seems natural and of great benefit.
Modeling languages, e.g., AADL and ArchiMate, can be used for representing SAs,
while model transformations can be used for several different tasks including, e.g.,
traceability, consistency checking, code generation, and simulation. MDE4SA aims at
promoting and fostering discussion on novel ideas and techniques, possibly contro-
versial approaches on the interplay of MDE and SA. The workshop aims at providing a
forum for researchers and practitioners from academia and industry in which novel and
innovative solutions to current and future challenges of the interplay of MDE and SA
can be presented and discussed.

The first edition of MDE4SA was held in virtual mode on September 14, 2020, and
was collocated with the European Conference on Software Architecture (ECSA).
MDE4SA received three submissions. After a thorough peer-review process involving
three members from the Program Committee per submission, only one submission was
accepted for publication (an acceptance rate of 33%). The workshop program included
the invited talk entitled “(Ab)using MDE for SA” given by Assoc. Prof. Patrizio
Pelliccione from University of L’Aquila, Italy, and Chalmers University of Technol-
ogy, Sweden.

We would like to thank the MDE4SA Steering and Program Committees for
making the workshop possible. Additionally, we would like to thank the ECSA
workshop chairs, Anne Koziolek and Mauro Caporuscio, for their help and support,
ECSA for hosting the workshop, and the CCIS Springer editors for publishing the
contributions.

MDE4SA Organization

MDE4SA Chairs

Alessio Bucaioni Mälardalen University, Sweden
Amleto Di Salle University of L’Aquila, Italy
Ludovico Iovino Gran Sasso Science Institute, Italy
Peng Liang Wuhan University, China

MDE4SA Steering Committee

Alessio Bucaioni Mälardalen University, Sweden
Amleto Di Salle University of L’Aquila, Italy
Ludovico Iovino Gran Sasso Science Institute, Italy

MDE4SA Program Committee

Marco Autili University of L’Aquila, Italy
Jan Carlson Mälardalen University, Sweden
Martina De Sanctis Gran Sasso Science Institute, Italy
Antinisca Di Marco University of L’Aquila, Italy
Darko Durisic Volvo Cars, Sweden
Patricia Lago Vrije Universiteit Amsterdam, The Netherlands
Ivano Malavolta Vrije Universiteit Amsterdam, The Netherlands
Patrizio Pelliccione University of L’Aquila, Italy, and Chalmers

University of Technology, Sweden
Dalila Tamzalit LS2N, Université de Nantes, France
Emilio Tuosto Gran Sasso Science Institute, Italy
Karthik Vaidhyanathan Gran Sasso Science Institute, Italy
Manuel Wimmer JKU Linz, Austria
He Xiao University of Science and Technology Beijing,

China
Pengcheng Zhang Hohai University, China

Defining a Formal Semantic for Parallel
Patterns in the Palladio Component
Model Using Hierarchical Queuing

Petri Nets

Markus Frank(B), Alireza Hakamian, and Stefen Becker

Univeristy of Stuttgart, 70569 Stuttgart, Germany
{markus.frank,alireza.hakamian,steffen.becker}@iste.uni-stuttgart.de

Abstract. Context: With the introduction of multicore processors more
than a decade ago, parallel software behavior became also relevant for
BIS and end-user applications. This evolution raises several new chal-
lenges for Software Performance Engineering (SPE). One challenge for
model-based SPE is to come up with new language concepts to include
parallel behavior in the software behavior models (i.e., UML activity
diagrams).

Objectives: In this paper we are going to formally describe the seman-
tics of parallel behavior concepts in order to compare existing language
extension to that and make an evaluation.

Methods: We use Hierarchical Queuing Petri Nets to formally
describe the general parallel behavior concepts based on the example
of the Palladio Component Model.

Results: We give a formal semantic of the parallel behavior elements
(like loops, sections, or blocks) for model-based SPE. Further, we evalu-
ate the semantic of introduced parallel language concepts into the PCM.

Conclusion: We show that even if there are syntactic differences
between the concepts in PCM and the behavior of the parallel loops,
they behave semantically alike.

Keywords: PCM2QPN · Palladio · Parallel langauge concepts ·
Hierarchical Queuing Petri Nets · Formal semantics

1 Introduction

Around 2003 the first end-user multicore processors were released [9]. Today mul-
ticore processors are state of the art—common smartphones have eight cores,
and for desktop PCs, up to 32 cores are available. This evolution has a signif-
icant impact on the way we develop software. To efficiently use the hardware,
the software developers write concurrent code. Thus, current approaches for
Software Performance Engineering have to be reviewed. One well know app-
roach is the Palladio Component Model [3] and the Palladio Bench1, which are
1 https://www.palladio-simulator.com/home/.

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 381–394, 2020.
https://doi.org/10.1007/978-3-030-59155-7_28

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_28&domain=pdf
https://www.palladio-simulator.com/home/
https://doi.org/10.1007/978-3-030-59155-7_28

382 M. Frank et al.

a model-driven performance engineering languages. The PCM has been recently
extended with concepts for massive parallel behaviour [5]. These concepts con-
tain language extensions for the PCM to include OpenMP-like parallel loops,
sections, and blocks. To the best of our knowledge, such concepts have not been
used in SPE before [7] and no formal semantic exist.

In this paper, we use Hierarchical Queueing Petri Nets [2] to formally
describe the semantic of parallel loops, sections, and blocks. Further, we evaluate
if the introduced language extensions in [5], follow the same formal semantic.

To achieve this, we comply to and extend the work done by [12] who started
to describe the semantics of the PCM elements with HQPNs formally.

As a result, we formally describe parallel loops, sections, and blocks by
HQPNs. Further, we show that the previously introduced language extensions
[5] do not follow these semantics.

In the following, we start with the foundations in Sect. 2. Here we describe
the PCM and the language extension in detail. Further, we give a brief insight
into HQPNs. In Sect. 3, we open with a description of the mapping process
(PCM to HQPNs). It follows by a summary of the relevant PCM elements for
our mapping and a detailed description of the actual mapping (parallel loops,
section, and blocks) to HQPNs. Afterwards, we compare the formal semantic
with the existing language extension [5] for the PCM and conclude our findings.

2 Foundations

2.1 Software Performance Engineering (SPE)

SPE aims to predict software quality attributes like performance (e.g., response
time), cost of operations (costs) and range of capable performance (scalability)
[1]. Therefore, SPE uses performance models to estimate quality attributes. In
general we distinguish between analytical and simulative approaches. While ana-
lytical approaches are usually faster in solving the models, simulative approaches
give software performance engineers (SPEs) more freedom in modelling details
of the system under study. In analytical approaches the SPEs have to omit many
details of the system and make simplistic assumptions. In order, to derive perfor-
mance metrics, it is necessary to combine the models of the hardware, software
(in terms of structure and behaviour) and the usage profile.

The main advantage of SPE is to enable software developers to evaluate
performance requirements in the early stage (i.e., during design time). In this
phase, decisions and design can easily be changed because no realization has to
be made. So, different design alternatives can be evaluated, be compared, and
trade-off decisions can be made in an informed and engineering-like manner [20].

2.2 The PCM and the Palladio Bench

The purpose of the PCM and its related tooling, the Palladio Bench [3,17,18], is
mainly to analyze quality attributes of a software architecture like performance-
related properties, which includes response times of service requests, scalability

Defining a Formal Semantic for Parallel Patterns 383

by changing the demand of a workload to the system, and elasticity (how fast,
e.g., a cloud infrastructure scale up to react to an increasing workload) [14].
Within Palladio, the following main aspects have to be modelled. Each repre-
senting one of the five viewpoints:

Usage Diagram. The usage environment describes how often and with which
kind of data, services are requested. Thus, it describes the user interaction with
the system.

Repository Diagram. The available software components are described in a
Repository Diagram. The components in this diagram have provided and
required interfaces and the logical connections between these interfaces. All in
all, the diagram is similar to the UML2 [19] Component Diagram.

Service Effect Specification Diagram. He internal behavior of each component
needs to be modeled. The corresponding diagram is called Service Effect Spec-
ification Diagram (SEFF). Thus, for each provided interface, a SEFF has to be
modelled. The SEFF is similar to a UML2 Activity Diagram; it can use, e.g.,
loops, branches, internal actions (to demand hardware resources like CPU cycles)
and external actions (usage of other components via required interfaces of the
component).

Resource Diagram. Resources are the computing nodes, network connections,
etc., which are used to process the requests and provide resources like CPU
cycles.

Allocation Diagram. In the Allocation Diagram, the components are deployed or
allocated to specific machines and hardware instances. This diagram is similar
to the UML2 deployment diagram.

The usage (usage diagram) models the calls to provided interfaces of com-
ponents (repository diagram). This requires to evaluate the related SEFFs that
can call additional interfaces or demand for hardware resources. To evaluate how
long, e.g., an internal action takes, the used hardware needs to be considered.
Based on the deployment diagram, the actual hardware is identified and utilized.
How long it takes to provide the demanded resources depends on the capability
of the used hardware, which is described by the resource diagram.

The final model is a Palladio instance model composed out of all the above
mentioned sub-models. To analyze such a model, analytic or simulative solvers
can be used (see. Sect. 2.1). The result is a (performance) behaviour analysis of
the complete system. This behaviour can be further analyzed to identify limi-
tations of the system like bottlenecks or the violation of service level objectives
(SLOs). Afterwards, the model can be altered, and the consequences of the
changes can be analyzed. This allows to evaluate different versions of a system
before the first line of code is written.

Architectural Templates (AT). Next, we describe the Architectural Tem-
plate (AT) approach in more detail. This is necessary to understand how the

384 M. Frank et al.

PCM language can be extended and to understand the parallel language exten-
sion we evaluate later.

The AT method was introduced by Lehrig [13]. It is a software engineering
method that allows software architect to reuse architectural knowledge from pre-
specified templates for architectural modelling and analyses. In theory, the AT
approach is similar to the UML2 profiling strategy. UML Profile, as well as the
AT approach, are using stereotypes and package specialization to extend the
meta-model without changing the profiled meta-model. With AT, the software
architect can annotate model elements with stereotypes. Next, the engineering
method behind AT, transforms the annotated architecture model to a PCM
instance, based on pre-defined rules for each AT. The benefit of this approach is
that the software architect saves much time, needs less expert knowledge, and
errors are reduced [13].

<< loopAction >>
@Parallel

rep = matrixASizeM.VALUE * matrixASizeN.VALUE *
matrixBSizeJ.VALUE

threadPooleSize = threadNumber
overhead = 50 * threadPoolSize <CPU>

ResourceDemands
0.00000069 <CPU>

<< InternalAction >>
calculation

Parallel Loop AT

<< Fork >>

ForkedBehaviours

 << Synchronisation Point >>

ResourceDemands
0.00000069 * matrixASizeM.VALUE *

matrixASizeN.VALUE *
matrixBSizeJ.VALUE / 2 <CPU>

<< InternalAction >>
calculationA

ResourceDemands
0.00000069 * matrixASizeM.VALUE *

matrixASizeN.VALUE *
matrixBSizeJ.VALUE / 2 <CPU>

<< InternalAction >>
calculationB

ResourceDemands
100 <CPU>

<< InternalAction >>
overhead

ResourceDemands
100 <CPU>

<< InternalAction >>
overhead

Resolved SEFF for a two threaded parallel loop
with additional synchronization overhead as extra
internal action

Fig. 1. Unwrapping of a parallel loop AT (left) to PCM (right)

Parallel ATs. We introduced in previous work [5], an architectural template
for parallel loops and sections. The full details can be found in [5]. Here we
briefly mention the most relevant concepts to follow the rest of the paper.

Parallel Loop. The basic idea of the parallel AT is to provide an AT to the
software architect, which allows him to annotate the parallel behaviour in the
model quickly. As an example, in Fig. 1(a) we want to model a matrix multi-
plication in parallel. Since the matrix multiplication is executed using a loop,
we also use the LoopAction here. Besides the number of loop iterations, which
is in our case specified by the matrix sizes, we also need to use the @Parallel

Defining a Formal Semantic for Parallel Patterns 385

stereotype. Further, we need to specify two additional parameters for parallel
behaviour. These are the number of threads (i.e., how many software threads
should be forked) and the overhead. We introduced the overhead to show that
for forking and joining the threads, additional computing resources are required.

Figure 1b shows how the AT approach maps the parallel loop. It performs an
in-place model-to-model transformation based on predefined QVTo2 transfor-
mation rules. Due to performance in the Palladio Bench, the mapping resolves
the loop action to a fork. This is only possible because the resource demands
for the internal action are known at this point. Instead of simulating the loop,
we can transform the loop to fork action, by multiplying the resource demands
with the number of loop iterations for each thread. Depending on the number of
threads, the mapping creates independent forks. Each thread contains the orig-
inal internal action (with adopted resource demand) and an additional action
with the overhead.

Parallel Sections and Blocks: Parallel sections and parallel blocks are conceptu-
ally very similar to the parallel loops. Therefore, they are handled in the same
conceptual way as we described above.

2.3 Hierarchical Queueing Petri Nets

In this paper, we are using HQPN to formally describe the dynamic behaviour
of the parallel language elements in the PCM. HQPNs includes several exten-
sions to the conventional Petri nets (PNs). These extensions include Colored
PN, Generalised Stochastic PN, Colored GSPN, and Queueing PN. In the fol-
lowing, we assume the reader is familiar with PNs. Therefore we only give a
brief introduction to PNs and HQPNs. Thereby, we follow the definitions given
by [2] for PNs and the various extensions [11]. A more detailed overview is
provided in [12].

Petri Nets. An ordinary Petri Net (PN) is a 5-tuple PN = (P, T, I−, I+,M0),
where:

1. P = p1, p2, ..., pn a finite and nonempty set of places,
2. T = t1, t2, ..., tm a finite and nonempty set of transitions P ∩ T = ∅
3. I− and I+ : P ×T → N0 are called backward and forward incidence functions

respectively
4. M0 : P → N0 is called initial marking.

PNs cannot differ between the token type. Coloured PN (CPN) allows bind-
ing a type (colour) to each token. Each place is restricted to a set of colours.
Furthermore, the transitions of CPNs can fire in different modes based on the
colour of the token.

Furthermore, using Stochastic PN (SPN), we can include temporal aspects.
SPN assign an exponentially distributed firing delay to each transition. This
delay defines the time a transition waits after being enabled until it fires [12].
2 MOF Query/View/Transformation—https://www.omg.org/spec/QVT/.

https://www.omg.org/spec/QVT/

386 M. Frank et al.

Queuing Petri Nets. Bause et al. [2] introduced Queueing PN (QPN). Queue-
ing PN is based on CGSPNs and integrates queue concept into places. Therefore
QPN is used to express queuing behaviour, which is in the forms of SPE, in PNs.
In QPN there is a queueing place, where tokens are queued and a depository for
tokens, which have completed their service.

Models in QPN can become quite large. To tolerate the largeness problem
of monolithic QPN, it is convenient to divide them into smaller inter-active
subnets. For this purpose, HQPN are used. They consist of several QPN subnets
and additionally contain subnet places. Each subnet has a dedicated input and
output place and another place counting the active population of the subnet,
which is the number of tokens fired into the subnet that has not yet left the
subnet again.

A Hierarchical Queueing PN is a 4-tuple HQPN = (N,SP, SA, FS), where:

1. N is a finite set, where:
(a) n ∈ N is a non-hierarchical QPN (Pn, Tn, Cn, I

−
n , I+n ,Mn0 , Qn,Wn),

(b) the sets of net elements are pairwise disjoint:
∀n1, n2 ∈ N : [n1 �= n2 ⇒ (Pn1∪ Tn1) ∩ (Pn2 ∪ Tn2) = ∅]

2. SP ⊂ PN is the set of the subnet places,
3. SA : SP → N is the subnet assignment function,
4. FS ⊆ P (PN) is the set of fusion sets, such that members of a fusion set

have identical color sets and equivalent initialization expressions: ∀fs ∈ FS :
∀p1, p2 ∈ fs : [C (p1) = C (p2) ∧ M0 (p1) = M0 (p2)]

3 Mapping of PCM Instances to HQPN

In this section, we will describe the mapping of PCM Components to HQPNs.
The model transformation uses HQPNs as a target model. Thereby, we will
start to explain the mapping for essential components of the PCM, which was
developed by Koziolek in [12]. Koziolek defined semantic behaviour for most
of the PCM elements. However, due to space limitations, we will discuss only
the loop and asynchronous fork, which we later reuse. For a full definition of
all essential elements of the PCM, we refer to the dissertation of Koziolek [12].
Further, we introduce a mapping for asynchronous for-loop, which was not done
by Koziolek. As soon as we know the basic concepts, we discuss mapping of the
parallel behaviour to HQPNs in general. Based on that, we will evaluate and
compare the semantic behaviour of the parallel AT (from [5]) to the expected
parallel behaviour.

3.1 Mapping of General PCM Components

All elements used in the following are part of the Palladio Service Effect Spec-
ification, which describes the behaviour of the software model. For the sake of
simplicity, we only look at the subnets (QPN) of the HQPN.

Within our HQPN each token represents a single user or request within
our system. The token’s color is a complex data type named TokenData (see
Listing 1.1). It contains:

Defining a Formal Semantic for Parallel Patterns 387

Fig. 2. Mapping of PCM2QPN: (a) LoopAction, (b) asynchronous Fork, (c) syn-
chronous Fork (for a, b cf. [12])

– VarList: A list of currently valid parameter characterizations.
– CompParList: A list of currently valid parameter characterization specified

as component parameter.
– LoopList: List of loop iterations. When a token enters a loop, the number

is set in the list to show the number of iterations that is left.
– GuardList: A List of branching guards. The PN uses them to calculate

probability distributions with stochastic dependencies.
– TokenID: A unique ID for each token. This can be used to merge tokens

after they have been split and firing them into subnets.

In the following we will refer to a TokenList as a. For more details on map-
ping the processing resources, stochastic expressions, and distributions see [12].

c o l o r VarSpec = product s t r i n g ∗ s t r i n g ;
c o l o r VarList = l i s t VarSpec ;
c o l o r CompParList = l i s t VarSpec ;
c o l o r LoopList = l i s t i n t ;
c o l o r GuardList = l i s t s t r i n g ; c o l o r TokenId = in t ;

c o l o r TokenData = product VarList ∗ CompParList ∗
LoopList ∗ GuardList ∗ TokenId ;

Listing 1.1. Color of a token, called TokenData (cmp. [12])

388 M. Frank et al.

PCM Loop. Figure 2(a) shows the mapping of a PCM Loop Component (above
as PCM description) to a QPN (below). The QPN contains the loop head and
body. After entering the loop, the first transition t1 is to evaluate the loop
iteration (in this case it is not a constant value, but a distribution or stochastic
expression). The transition t1 adds the loop iteration integer as a list instead
of an integer to the LoopList. The reason is that the loop can be executed
recursively nested, and the token needs to memorise all the loop counters. The
head of the list gives the current iteration count.

Based on that value either transition t3 (counter = 0) or t2 (counter > 0)
fires. In case of t2 the token will be fired in a subnet pid2, which represents the
loop body. As soon as the token returns from the subnet, t4 fires and a3 decreases
the loop counter and the token enters the loop head. Finally, when t3 is reached,
a4 removes the counter from the list of loop iteration integers and the token is
placed in the successor of the loop (i.e., pid3).

PCM Asynchronous Fork. Asynchronous Forks spawn new threads without
synchronising them in the end. Each thread terminates independently from each
other. Figure 2(b) illustrates the behavior for the given PCM specification.

First, the transition t1 fires a copy of the current token into multiple places
in QPN pidi, each representing a forked behaviour. During t1, the values of the
current token are modified in a way, that the ID h stays unique. For that, a
number i is added for each forked behaviour. The rest of the values stay the
same. At the end of each forked behaviour, the transition t2 - tn flushes the
copied token. To continue, the transition t1 fires an additional token to the
successor represented here by pidn+1.

PCM Synchronous Fork. In contrast to asynchronous, in synchronous forks,
the control flow spawn threads and waits for them to finish before continuing with
the next steps. Figure 2(c) illustrates the behavior and give the PCM description.

In general, the QPN (Fig. 2(c)) looks very similar to the asynchronous forks.
So in the following, we only go into the two main differences:

First, instead of the transitions t2 to tn (in asynchronous forks), which flushes
the token after the forked behaviour has finished, we now have a transition
t2, which only fires if there is a token available in each place pid2 to pidn. Is
that condition is fulfilled, t2 fires and places a token in the successor of the
synchronous fork—in our case pidn+1. The token that is placed in the successor
place is a merged copy of a2 to an. Further, the ID h is modified in the way that
i is removed. Thus, the ID is reset to the original value before entering the fork
and stays unique.

The second difference to the asynchronous forks is when and how to pass
the token to the successor. While for the asynchronous forks, the transition t1
immediately passes a token to the successor, the transition in the synchronous
forks does not and only passes the tokes into the forked behaviours. The successor
is added in the end, and the transition t2 triggers the successor. In that way, it
is ensured that all forked behaviours have finished before continuing.

Defining a Formal Semantic for Parallel Patterns 389

Fig. 3. Mapping PCM2QPN: (a) asynchronous parallel loop, (b) synchronous parallel
loop

3.2 Mapping of Parallel Behavior to QPN

In this section, we discuss the behaviour of parallel loops, sections and blocks.
Since no native PCM elements are representing these concepts, we give the PCM
descriptions based on the parallel AT extensions introduced in our previous work
[8]. The description should reflect the way common frameworks like openMP3

have implemented these concepts. In the next section, we will then demonstrate
how parallel ATs have been realised.

Parallel Loops

Behavior: Parallel loops are a parallelisation concept known from different
parallel programming paradigms like OpenMP. Simply, a parallel loop executes
each loop iterations in a separate thread. Using a thread pool with a fixed or
dynamic size, the threads are then scheduled to the physical cores and executed
in parallel. For the most scenarios, it is assumed that the threads are data
independent. This means that read and write operation of each thread does not
influence others. A typical example to illustrate the behaviour of parallel loops
is a matrix multiplication [6]. Assuming you have two matrices (10 × 10) you
want to multiply. This would result in a total number of 1000 multiplications
to perform. Using, for example, OpenMP parallel loops with a thread pool size
of 8, this would split the workload for each thread equally, resulting in 125
calculations per thread.

3 openMP – https://www.openmp.org/.

https://www.openmp.org/

390 M. Frank et al.

A parallel loop can either be synchronous (often used when distributing work-
loads and realising a master-worker pattern [15]) or asynchronous (i.e., imple-
menting an observer pattern).

PCM Instance: Given the behaviour description of a parallel loop, it is repre-
sented similar to a fork action in PCM. It has a successor and a forked behaviour.
Since the behaviours are all equal, specifying it once is enough. In addition to
the fork action, the information about the thread pool size and the number of
iterations is required. For synchronous forks, a passive resource is needed as well.
A passive resource can be used to implement require and release behaviours, i.e.,
for mutexes [12].

Mapping: For the mapping of the behaviour description to QPN, we distinguish
between two different kinds of parallel loops: Synchronous and asynchronous
loops, which are shown in Fig. 3.

Asynchronous Parallel Loop: The QPN for asynchronous parallel loops is a com-
bination of a loop and an asynchronous fork. It starts similar to a fork with the
transition t1, which fires two tokens: One into the place of the successor pidn+1,
which can then continue, and another token into the place of the loop behaviour.
Thereby, the id of the token is altered and increased (a1). Following the descrip-
tion of a loop (see the Fig. 2(a)), the next step, evaluates the loop iteration. In
this case, two evaluations are done. One for the outer loop, which forks the new
threads. Here the value equals to the value of the given thread pool size. The
evaluation of the iteration literal specifies the second loop iteration value and
then divided by the thread pool size, to equally share the workload. It is added
to the LoopList. Based on that former value, the loop either continues or finally
goes to t4. In case the loop continues t3 fires a two tokens. One into the subnet
pidn, with an adjusted id (cf. Sect. 3.1) and one to pid3 with an adjusted loop
counter. After that the loop condition is evaluated again. Further, the subnet
pidn represents a normal loop as characterized in Sect. 3.1. Finally, when a subnet
has finished, t5 destroys the token.

Synchronous Parallel Loop: In contrast to the asynchronous parallel loop, the
synchronous one does not continue until all tokens returned from all subnets.
For that reason, there is no fork action in the beginning, and the QPN starts
with the evaluation of the loop iteration, which again equals the value for the
thread pool size. The loop execution behaves the same way as the asynchronous
loop does. In contrast to asynchronous loops, where tokens are flushed after
returning from the subnet, in synchronous loops, the tokens are passed on. The
transition t4 fires a token into two places: pid5 and pid6. pid5 shows a passive
resource and X indicates the number of created tokens. So, whenever a subnet
is finishes and the token returns, t4 fires and increases the number of tokes in
the places. Thereby, the original token with the corresponding colour is placed
in the pid5, and the loop iteration counter is removed from the token’s colour.
In the very end, transition t5 fires if there are the number of n tokens in the
place pid6. The value of n is equal to the value of the thread pool size. Thus,
the transition t5 fires if all subnets have been returned. Further, the transition

Defining a Formal Semantic for Parallel Patterns 391

t5 adjusts the value of the id field, removes the added identifier for the subnet
i, and restores the value to its original value.

Please note that we modelled the passive resource (pid6) along with the
require (x) and release (n) actions explicit, for reasons of exemplification. It
is also possible to combine it with pid5.

Parallel Sections and Blocks

Behavior: Parallel sections or blocks refer to a specific area in the source code
that is either explicitly marked for parallel execution (i.e., parallel sections in
openMP) or implicitly allow multiple executions of the same block. The former
behaves similar to a loop. Most of the time, a parallel section is used to split
the workload based on a task set or data structure. The section is specified by
the same behaviour but can have different input parameter. The later can be a
method that is called by multiple threads.

PCM Instance: In the SEFF, a block, which can be called multiple times form
different threads, is modelled with a simple fork action and therefore can be
either synchronous or asynchronous. Due to the similarities of a parallel section
to a parallel loop, there is no additional concept in PCM and on an abstract
level, it can be handled in the same way as a parallel loop.

Mapping: The mapping of PCM Instances for parallel sections to QPN is per-
formed in a very similar way as the mapping of parallel loops. The only difference
is that the subnet will not be of type loop but of arbitrary types. This means
that not the loop characterisation is passed to the subnet but an adjusted ver-
sion of the VarList, describing the workload for the specific subnet. For blocks,
the mapping is the same as for forks. Due to these highly similar concepts, we
will skip a full description at this point.

3.3 Evaluation of the Mapping of Parallel ATs to QPN

In the following, we will evaluate the behaviour of the parallel loop ATs.
As described in Sect. 2.2, the parallel ATs need to map all elements to the
given PCM instances. Thus, the parallel AT method maps all kinds of parallel
behaviour (loops, sections, or blocks) to a fork-join scenario (see. Fig. 1). There-
fore, we can use the existing mapping of forks to QPNs to express the formal
semantic. To show that this is a valid approach, we elaborate on a thought exper-
iment. For that, we assume to have a synchronous parallel loop, which should
calculate a matrix multiplication with the matrices of size 10 × 10. So, in total,
1000 multiplications have to be performed. Further, we assume each multipli-
cation takes 1 ms on a two-core system. In theory, executing the multiplication
in a sequential way takes 1 s. Using synchronous parallel loop (as described
in Sect. 3.2) needs additional information about the number of worker threads.
Assume we use two worker threads for the two core system. The behaviour of the
synchronous loop, splits to two separate threads, and share the workload equally.
That means each worker threads needs to perform 500 multiplications and needs
500 ms. Since we assume two cores, the overall execution time is 500 ms, due to

392 M. Frank et al.

the fact that both threads can run in parallel. Now let us consider the parallel
AT: Here we use the parallel loop action (see Fig. 1a) and specify the number
of replications to be 1000, the thread pool size is two, and the resource demand
for one calculation is 1 ms on the CPU. The parallel AT approach maps this to
a fork behaviour with two parallel threads, which needs to be synchronised in
the end. The resource demand for each internal action is still the same 1 ms on
the CPU. But this time, it is multiplied by the number of repetitions divided
by the number of worker threads (i.e., it shares the workload equally). So, each
internal action takes 500 ms, and the total run-time is 500 ms.

This exemplifies that when it comes to the response time, the behaviour is
the same. For this, in future work, we plan to provide a mathematical proof
based on QPNs.

4 Future Work

In this paper, we formally describe different parallel patterns. This is only one
single piece of puzzle fitting in a bigger picture. The overall goal of our research
project is to enable software architects to make reliable performance predic-
tions for concurrent software on multicore systems4. Including common parallel
patterns such as loops, blocks, and sections into the performance prediction lan-
guages and thereby giving the formal semantics is only one step. However, there
are more parallel paradigms, such as ACTORS, streams, or message passing
approaches.

Currently, we are working on identification, categorisation and classification
of parallel behaviour patterns in the literature and practice. In future work, we
will include further parallelisation patterns in PCM and give a formal definition
of the behaviour. It remains an open question if HQPN is suitable to describe
other types of parallelisation paradigms.

5 Related Work

When it comes to related work, there are several works, which try to bring a
formal semantic to modelling languages by making the models executable. In
the following, we name the relevant work for us:

One of the more general approaches is the foundational UML Subset5 by
OMG. The fUML Subset is an executable subset of UML. It can be used to
describe the structural and behavioural semantics of the system. It also can be
used to define MOF-based modelling languages such as standard UML or its
subsets and extensions. For example, the semantics of UML state machines can
be specified as a program written in fUML. In addition to that, there are several

4 https://www.researchgate.net/project/Multi-Many-Core-Software-Performance-
Engineering.

5 https://www.omg.org/spec/FUML.

https://www.researchgate.net/project/Multi-Many-Core-Software-Performance-Engineering
https://www.researchgate.net/project/Multi-Many-Core-Software-Performance-Engineering
https://www.omg.org/spec/FUML

Defining a Formal Semantic for Parallel Patterns 393

more specific approaches like [16] using fUML to specify the abstract syntax and
behavioural semantics of domain-specific modelling languages.

Closer to our topic there is the work from Distefano et al. [4]. In that work, the
authors provided and evaluated an approach to map standard UML annotated
with OMG Profiles for Schedulability, Performance, and Time Specification to
Petri Nets. For this, they use an intermediate representation called a performance
context model. They use Petri Nets to evaluate the performance of the software
architecture represented by UML models.

Finally, there is also the work from Koziolek [12] and Happe [10], which we
have introduced in Sect. 2 and our work relied upon.

In none of the approaches, there is a discussion about the mapping of parallel
behaviour concepts.

6 Conclusion

Parallel programming is an essential part of efficiently using state of the art
processors. To ensure performance prediction accuracy in parallel execution,
current engineering tools need to support the formal definition of elements in
parallel behaviour.

In this paper, we first gave a formally defined semantics for parallel loops,
blocks, and sections. Second, we evaluated the Parallel Architectural Template
method, which is an extension of the Palladio Component Model. Besides, we
can list the following contributions:

– Summarize contributions from J. Happe and H. Koziolek.
– Providing a formal specification for synchronous forks using QPN.
– Describing the behaviour for a synchronous and asynchronous parallel loop.
– Describing the behaviour for parallel sections and blocks.
– Provide a formal specification for parallel loops using QPN.
– Provide a formal specification for sections and blocks.
– Evaluate the behaviour of parallel ATs.

As a result, we showed that the parallel Loops provided by the parallel AT
method does not follow the same or expected syntax that parallel loops in general
have. However, we showed that regarding the aim of the software performance
predictions, both concepts deliver the same results and therefore have the same
semantics. Thus, the parallel AT method is a valid approach to express parallel
behaviour in the PCM.

References

1. Balsamo, S., Di Marco, A., Inverardi, P., Simeoni, M.: Model-based performance
prediction in software development: a survey. IEEE Trans. Softw. Eng. 30(5), 295–
310 (2004)

2. Bause, F., et al.: Stochastic Petri Nets: An Introduction to the Theory (2002)

394 M. Frank et al.

3. Becker, S., Koziolek, H., Reussner, R.: The palladio component model for model-
driven performance prediction. J. Syst. Softw. 82(1), 3–22 (2009)

4. Distefano, S., Scarpa, M., Puliafito, A.: From UML to petri nets: the PCM-based
methodology. IEEE Trans. Softw. Eng. 37(1), 65–79 (2010)

5. Frank, M., Hakamian, A.: An architectural template for parallel loops and sections.
In: Proceedings of the 9th Symposium on Software Performance 2018, Hildesheim,
Germany, 7–9 November 2018, Hildesheim, November 2018

6. Frank, M., Hilbrich, M.: Performance prediction for multicore environments–an
experiment report. In: Proceedings of the Symposium on Software Performance
2016, Kiel, Germany, 7–9 November 2016 (2016)

7. Frank, M., Hilbrich, M., Lehrig, S., Becker, S.: Parallelization, modeling, and per-
formance prediction in the multi-/many core area: a systematic literature review.
In: Proceedings of the 7th IEEE International Symposium on Cloud and Service
Computing (2017)

8. Frank, M., Staude, S., Hilbrich, M.: Is the PCM ready for ACTORs and multi-
core CPUs? – a use case-based evaluation. In: Proceedings of the Symposium on
Software Performance 2017, Karlsruhe, Germany, 9–10 November 2017 (2017)

9. Geer, D.: Chip makers turn to multicore processors. Computer 38(5), 11–13 (2005)
10. Happe, J.: Predicting software performance in symmetric multi-core and multi-

processor environments. Dissertation, University of Oldenburg, Germany, August
2008

11. Jensen, K.: Coloured Petri Nets: Basic Concepts, Analysis Methods and Practical
Use, vol. 1. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-662-03241-
1

12. Koziolek, H.: Parameter dependencies for reusable performance specifications of
software components. Ph.D. thesis, Universität Oldenburg (2008)

13. Lehrig, S.: Efficiently conducting quality-of-service analyses by templating archi-
tectural knowledge. Ph.D. thesis, University of Stuttgart, Germany (2017, accepted
for publication)

14. Lehrig, S., Eikerling, H., Becker, S.: Scalability, elasticity, and efficiency in cloud
computing: a systematic literature review of definitions and metrics. In: Proceed-
ings of the 11th International ACM SIGSOFT Conference on Quality of Software
Architectures, pp. 83–92. ACM (2015)

15. Mattson, T.G., Sanders, B., Massingill, B.: Patterns for Parallel Programming.
Pearson Education, London (2004)

16. Mayerhofer, T., Langer, P., Wimmer, M., Kappel, G.: xMOF: executable DSMLs
based on fUML. In: Erwig, M., Paige, R.F., Van Wyk, E. (eds.) SLE 2013. LNCS,
vol. 8225, pp. 56–75. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-
02654-1 4

17. Reussner, R., et al.: The Palladio Component Model. Technical report, KIT,
Fakultät für Informatik, Karlsruhe (2011)

18. Reussner, R., et al.: Modeling and Simulating Software Architectures: The Palladio
Approach. MIT Press, Cambridge (2016)

19. Rupp, C., Queins, S., Zengler, B.: UML 2 glasklar: Praxiswissen für die UML-
Modellierung. Hanser (2007)

20. Williams, L.G., Smith, C.U.: Making the business case for software performance
engineering. In: International CMG Conference, pp. 349–358 (2003)

https://doi.org/10.1007/978-3-662-03241-1
https://doi.org/10.1007/978-3-662-03241-1
https://doi.org/10.1007/978-3-319-02654-1_4
https://doi.org/10.1007/978-3-319-02654-1_4

Model-Based Simulation at Runtime with
Abstract State Machines

Elvinia Riccobene1 and Patrizia Scandurra2(B)

1 Dipartimento di Informatica, Università degli Studi di Milano, Milan, Italy
elvinia.riccobene@unimi.it

2 Department of Economics and Technology Management, Information Technology
and Production, Università degli Studi di Bergamo, Bergamo, Italy

patrizia.scandurra@unibg.it

Abstract. Software systems are rapidly growing in complexity and
scale, and are subject to different kinds of uncertainties related to the
dynamics of resource availability or changes in system objectives. So,
many real usage scenarios might be impossible to reproduce and validate
at design-time. As envisioned by the Models@run.time research commu-
nity, the use of models at runtime is fundamental to address this chal-
lenge. Our focus is on providing guarantees for changing safety goals at
runtime (a form of uncertainty) with the employment of mathematically-
based runtime analysis techniques from the area of formal methods
(FM@run.time).

In this paper, we propose a novel framework for the runtime simu-
lation of Abstract State Machine models and the on-the-fly changes of
safety assertions at the model level to provide software assurance guar-
antees at runtime. The framework is called AsmetaS@run.time and is
being developed as part of the ASM specification and analysis toolset
ASMETA.

Keywords: Runtime simulation · Models@run.time · Abstract State
Machines · ASMETA

1 Introduction

Modern software systems are rapidly growing in complexity and scale, and many
real usage scenarios might be impossible to reproduce and validate at design-
time, as they depend on third party off-the-shelf systems and platforms. These
systems make the problem of verifying software in-house extremely hard.

To address this challenge, the Models@run.time research community has
identified a reference architecture [6,8] to equip a software system with a model
running in a “causally connected way” with the system and to allow reasoning
about it not only at design time, but also at runtime.

Classically, formal models are built at design time to support system valida-
tion and verification. In the new vision, formal models are developed at design

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 395–410, 2020.
https://doi.org/10.1007/978-3-030-59155-7_29

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_29&domain=pdf
http://orcid.org/0000-0002-1400-1026
http://orcid.org/0000-0002-9209-3624
https://doi.org/10.1007/978-3-030-59155-7_29

396 E. Riccobene and P. Scandurra

time for an initial assessment that the software system satisfies the initial require-
ments, but these models are then kept alive at runtime to run in tandem with the
real system, and are continuously analyzed to address software runtime assur-
ance [7,13]. Similar ideas have been proliferating in other contexts, such as Dig-
ital twins in the manufacturing domain [30], and Living models [26] in the field
of Computer Automated Multi-Paradigm Modelling.

This usage of formal methods requires novel mechanisms for leveraging the
efficient applicability of conventional formal analysis techniques at runtime. We
share this viewpoint of continuous assurance throughout the software lifecycle
and in order to support this line of research, we have been investigating the use
of Abstract State Machines as runtime system models, exploiting their feature of
being executable besides being verifiable. Our focus is on providing guarantees
for changing safety goals at runtime (a form of uncertainty).

In this paper, we present some preliminary results by introducing the archi-
tecture of a runtime simulation platform we have been developing within the
ASMETA (ASM mETAmodeling) analysis toolset1 – a set of tools for the ASM
formal method – to check safety assertions of software systems at runtime and
support also the on the fly changes of safety assertions. This mechanism exploits
the concept of executable ASM models and it is based on a new component, the
AsmetaS@run.time, that has been designed to manage the ASM model simula-
tion in tandem with the real software system. We also envision a real scenario
in the context of safety-critical systems, the so-called runtime enforcement [14]
of safety assertions, where we are applying the ASM@run.time approach.

This paper is organized as follows. An overview of formal analysis techniques
@run.time is given in Sect. 2. In Sect. 3 we provide some preliminary background
concepts on the ASM formal method and the ASMETA analysis framework.
Section 4 outlines our approach to runtime simulation of ASMs with the new
added ASMETA component AsmetaS@run.time. In Sect. 4 we provide a model
example to illustrate the main features of such a tool, and we conclude this paper
in Sect. 5.

2 Related Work on the Use of FMs@run.time

The use of formal and unambigous models at runtime is crucial; the results
of model analyses are likely to be more trustworthy than with other types of
semi-formal engineering models. However, extending the use of formal analysis
techniques at runtime is not trivial. The major challenges are reducing the over-
heads associated with the execution of formal analysis techniques at runtime and
scaling the approach beyond small to medium system sizes. Another challenge
is related to the expert knowledge that is required to build the models used in
the runtime analysis. In this respect, the adoption of lightweight formal methods
(such as state-based formalisms based on set theory and first-order logic) could
be helpful, since they may capture or express the required domain concepts more
naturally and efficiently for analysis purposes than other heavier formalisms.
1 https://asmeta.github.io/.

https://asmeta.github.io/

Runtime Simulation with ASMs 397

We here briefly report the main validation and verification (V&V) approaches
relevant to the runtime use of formal methods:

– Runtime simulation. Model-based simulation at runtime has been successfully
adopted to enable efficient decision making in self-adaptive systems [28,29].
Distinct models for each relevant quality are combined with runtime simu-
lation of the models to select an adaptation option that satisfies the system
goals. These last usually refer to extra-functional quality properties (like reli-
ability, availability, expected response time, etc.) and may also change during
execution. Simulation, in general, is less time and resource consuming com-
pared with exhaustive verification techniques, and it is, therefore, particularly
advantageous at run-time, when time and resources are often constrained.

– Runtime model checking. Runtime automated verification checks whether cer-
tain properties of interest hold for the system model during system opera-
tion. In particular, there is interest in using stochastic models that encode
system behaviour and knowledge of relevant qualities [13]. However, this
technique puts constraints on the size of the models and on the time and
resources required to perform model checking, since exhaustive verification
(that exhaustively explores the state-space of a model) suffers from the well-
known state-space explosion problem.

Recently, statistical model checking has been proposed as an alternative to
traditional model checking techniques. It solves the model checking problem dif-
ferently: it simulates the system for finitely many executions, and uses hypothesis
testing to infer whether the samples provide statistical evidence for the satisfac-
tion or violation of the specification with some degree of confidence [20]. This
approach has main advantages in terms of efficiency and simplicity to be used
at runtime. It is a compromise between testing and classical model checking
techniques. In fact, simulation-based methods are known to be far less memory
and time intensive than exhaustive ones, and therefore more appealing to use
at runtime. The work in [29], for example, uses statistical model checking at
runtime to drive the adaptation of the system by selecting adaptation options
that realize the adaptation goals efficiently.

Other runtime verification techniques have been used to ensure the depend-
ability of software systems. They are described in the two following paragraphs
since we consider them to be different classes of techniques.

– Runtime monitoring is concerned with checking whether a run of a system
under scrutiny satisfies or violates given formally-specified properties. Moni-
tors are typically generated automatically from some high-level specification.
Examples of such approaches employing state-based formalisms are ASMETA
CoMA [3,21] for ASMs and AMOebA-RT [17] for adaptive software, to name
a few. These approaches detect violations of correctness properties after they
happen and their associated runs are recorded. As they analyse a single run at
a time, these techniques scale well. However, unlike the runtime model check-
ing approach, runtime verification cannot guarantee the lack of constraint
violations.

398 E. Riccobene and P. Scandurra

– Runtime quantitative verification is a mathematically-based technique mostly
used to analyse models (such as Markov chains and Markov Decision Pro-
cesses) of systems that exhibit stochastic behaviour, and to check (through,
for example, a probabilistic model checker like PRISM) that they comply with
non-functional requirements (such as performance, reliability, and cost/re-
ward system characteristics). These are expressed as combinations of formal
quantitative properties (such as in Probabilistic Computational Tree Logic).
A runtime use of probabilistic model checking for the dynamic QoS manage-
ment has been adopted in self-adaptive computer systems with a computation
overhead acceptable for realistic system sizes [13,22].

– Model finding [19] (as supported by formal specification languages like Alloy,
Maude, and FORMULA) is a technique to synthesize a model of the system
(or of the relevant parts of the system) that satisfies formally and declara-
tively specified system constraints and objectives. Model finding over open-
world programs uses SAT solvers at the core of the model synthesis process.
The synthesised model corresponds to a system configuration that fullfils the
system goals given its current state, and is used to drive the system to reach
this target configuration. The main challenge of this technique is the limited
scalability for systems with a large number of components [13].

– Runtime certification (see, for example, the approaches ConSerts [27] and
ENTRUST [12] in the context of self-adaptive systems, to name a few) is a
technique for the dynamic provision of assurance cases [1] arguing the suit-
ability of the software for its intended application at runtime.

3 Abstract State Machines and the ASMETA Toolset

ASMs [10,11] is a state-based formal method, extension of Finite State Machines
(FSMs). ASM states are algebraic structures, i.e., domains of objects with func-
tions and predicates defined on them. An ASM location, defined as the pair
(function-name, list-of-parameter-values), represents the abstract ASM concept
of basic object containers. The couple (location, value) represents a machine
memory unit. Therefore, ASM states can be viewed as abstract memories.

Location values are changed by firing transition rules. They express the mod-
ification of functions interpretation from one state to the next one. Note that the
algebra signature is fixed and that functions are total (by interpreting undefined
locations f(x) with value undef). Location updates are given as assignments
of the form loc := v, where loc is a location and v its new value. They are
the basic units of rules construction. There is a limited but powerful set of
rule constructors to express: guarded actions (if-then), simultaneous parallel
actions (par), sequential actions (seq), nondeterminism (existential quantifica-
tion choose), and unrestricted synchronous parallelism (universal quantification
forall).

An ASM computation is, therefore, defined as a finite or infinite sequence
S0, S1, . . . , Sn, . . . of states of the machine, where S0 is an initial state and each
Sn+1 is obtained from Sn by firing the unique main rule that represents the

Runtime Simulation with ASMs 399

starting point of the machine execution and in turn fires other transitions rules.
An ASM can have more than one initial state.

In a machine computation step, some locations can be updated. Functions
are classified as static (never change during any run of the machine) or dynamic
(may change as a consequence of agent actions or updates). Dynamic functions
are distinguished between monitored (only read by the machine and modified by
the environment) and controlled (read and written by the machine). A further
classification is between basic and derived functions, i.e., those coming with a
specification or computation mechanism given in terms of other functions. It is
possible to specify state invariants.

Running Model Example. Code 1 reports the ASM model of a gate controller
for the Railroad Crossing Problem [18]. When a train is approaching a railroad
crossing, the light, which is off when the gate is open, starts flashing and the gate
receives command to close, moving from state open to state closed throughout
state closing. When the train has passed, the gate receives command to open,
moving from state closed to state open throughout state opening, and the light
stop flashing.

This ASM model of the controller mediates between continuous processes
(closing and opening of the gate) and discrete computations controlling them.

At any time, an event LIGHT or GATE occurs to provide commands con-
trolling the light status (FLASHING or OFF) and the gate status (CLOSED,
OPENED, CLOSING or OPENING). The set of specified invariants guarantee
that The light is off only when the gate is open and vice versa the light is flash-
ing if the gate is not open, and that the only valid traces of the gate behaviour
are the sequences closed, opening, open, and open, closing, closed. Otherwise the
gate is not controlled in a safe and correct way (variable gateStatusUpdateOk
indicated whether the gate has been properly controlled).

ASMETA Modelling Process and Tools. ASMs allow an iterative design
process, shown in Fig. 1, based on model refinement. Tools supporting the pro-
cess are part of the ASMETA framework [4]. Requirements modelling starts by
developing a high-level model called ground model (ASM 0 in Fig. 1). It is spec-
ified by reasoning on the informal requirements (generally given as a text in
natural language) and using terms of the application domain, possibly with the
involvement of all stakeholders. The ground model should correctly reflect the
intended requirements and should be consistent, i.e., without possible ambigu-
ities of initial requirements. It does not need to be complete, i.e., it may not
specify some given requirements. The ground model and the other ASM mod-
els can be edited in AsmEE by using the concrete syntax AsmetaL [16]. Starting
from the ground model, through a sequence of refined models, further functional
requirements can be specified until a complete model of the system is obtained.
The refinement process allows to tackle the system complexity, and to bridge,
in a seamless manner, specification to code. At each refinement level, already
at the level of the ground model, different V&V activities can be applied, such

400 E. Riccobene and P. Scandurra

asm railroadGate
import ../../STDL/StandardLibrary
signature:
enum domain LightState = {FLASHING | OFF}
enum domain GateState = {CLOSED | OPENED | CLOSING | OPENING}
enum domain EventDomain = {LIGHT | GATE}
dynamic controlled light: LightState
dynamic controlled gate: GateState
dynamic controlled gateStatusUpdateOk: Boolean
dynamic monitored lightMon: LightState
dynamic monitored gateMon: GateState
dynamic monitored event: EventDomain

definitions:

//When the gate is closing, is closed or is opening, the light flashes.
invariant over gate: (gate=CLOSING or gate =CLOSED or gate =OPENING) implies light = FLASHING

//invariant over gate: gate != OPENED iff light = FLASHING

//The light is off only when the gate is open.
invariant over gate: light = OFF implies gate = OPENED

//The gate cannot be ”closed” after ”opening”
invariant over gate: gateStatusUpdateOk

main rule r Main =
if(event = LIGHT) then
light := lightMon

else
par
gate := gateMon //lazy evaluation di gateMon
if((gate=OPENED and (gateMon=CLOSED or gateMon=OPENING)) or
(gate=OPENING and (gateMon=CLOSED or gateMon=CLOSING)) or
(gate=CLOSED and (gateMon=OPENED or gateMon=CLOSING)) or
(gate=CLOSING and (gateMon=OPENED or gateMon=OPENING)))

then gateStatusUpdateOk := false
else gateStatusUpdateOk := true
endif

endpar
endif

default init s0:
function light = OFF
function gate = OPENED
function gateStatusUpdateOk = true

Code 1. ASM model of the Gate Controller

as model simulation, scenario-based simulation, property verification by model
checking, runtime verification, to name a few. Tools supporting such activities
are integrated into ASMETA (see Fig. 1).

Model to code transformation are supported for C++ code [9], and confor-
mance checking is possible to check if the implementation, if externally provided,
conforms to its specification. The tool ATGT [15] can be used to automatically
generate tests from ASM models and, therefore, to check the conformance offline;
CoMA [3], instead, can be used to perform runtime verification, i.e., to check
the conformance online. The runtime verification approach is supported only for
Java code; it consists in observing the behaviour of a Java object and checking

Runtime Simulation with ASMs 401

Modelling

Editor AsmetaL - AsmEE ASM 0 ASM 1 ASM n

Validation and verification At
 a

ny

le
ve

l

Code Generator

Asm2C++

Conformance Checking

Model-Based Testing
ATGT

Runtime Verification
CoMA

Validation Property
Verification

Model Checking
AsmetaSMV

Model Review
AsmetaMA

Interactive Simulation
AsmetaS

Scenarios
AsmetaV

Animator
AsmetaA

Fig. 1. ASM-based development process

Fig. 2. Simulation of the ASM model for the Gate Controller

that it conforms to the expected behaviour captured by an ASM specification.
The approach relies on the model checker AsmetaSMV (which, in turn, is based
on the NuSMV model checker) and therefore if suffers of all the limitation of a
model checker. Our AsmetaS@run.time approach tries to overcome limitations
due to system code language and to the size of models.

Model Simulation. Among the others, we here focus on the simulation tool,
AsmetaS [16], since its features are exploited by our ASM@run.time approach.
Essentially, AsmetaS is an interpreter which makes ASM models (as instances
of the Ecore2 metamodel AsmM [16]) executable by navigating the Ecore java
object graph (the in-memory representation of AsmM instances) and making
computations of the ASM update sets. AsmetaS simulator is used to observe
system executions by means of interactive simulation. This way of model vali-
dation consists in providing inputs (i.e., values of monitored functions) to the
machine and observing the computed state. We have different options for model
execution: the default one is the step-by-step simulation, when a next state is
computed from the previous one by applying simultaneously all the possible
location updates; a further option (interesting for our future purposes) is the
run Until Empty to stop the simulation when the update set is empty, i.e., the
machine has reached a final state or a fix-point state. The simulator, at each
step, performs consistent updates checking to check that all the updates are con-
sistent (two updates are inconsistent if they update the same location to two
different values at the same time [11]), and invariant checking. Figure 2 shows

2 https://wiki.eclipse.org/Ecore.

https://wiki.eclipse.org/Ecore

402 E. Riccobene and P. Scandurra

an example of a correct execution of the gate controller model, while Code 2
reports a failure simulation ending with an invariant violation due to the wrong
command OPENING given to a gate in state CLOSING.

∗∗ Simulation ∗∗
<State 1>
event=GATE
gate=OPENED
gateMon=CLOSING
gateStatusUpdateOk=true
light=FLASHING
</State 1>
<State 2>
event=GATE
gate=CLOSING
gateMon=OPENING
gateStatusUpdateOk=true
light=FLASHING
</State 2>
<State 3 (controlled)>
event=GATE
gate=OPENING
gateMon=OPENING
gateStatusUpdateOk=false
light=FLASHING
</State 3>
<Invariant violation>
gateStatusUpdateOk
</Invariant violation>

Code 2. Invariant violation of the ASM model of the Gate Controller

4 Runtime Simulation with ASMs

4.1 Overall Approach and Outlook

A system model is an abstract model (or also a multitude of models) describing
certain aspects or viewpoints of the system or subsystems of it at different lev-
els of abstraction or detail. The simulation of a system model at runtime with
the running software system is crucial in computing the dynamic input/output
behaviour in a real setting. It also makes sense that a property of interest con-
cerning some observations of behavior (e.g., about state reachability, order of
actions, information exposed, etc.) may be checked more efficiently on the run-
time model than on the real system. Correctness policies about resource usage
or application interactions could be, for example, formalized and encoded as
enforcement models to proactively correct misuses and misbehaviours [25].

Regardless of whether the system has been developed incrementally or not
from the model, we assume there is a homomorphic relation [26] between the
model and the system: simulating a model of a real system should yield the same
results as performing a real experiment followed by observation and collection
of the experimental results. Figure 3 visually illustrates how runtime simulation
works, distinguishing the design and the runtime phases. Essentially, a runtime

Runtime Simulation with ASMs 403

simulation and control tool operates between the system model and the real
running system; it traces the state of the model and of the system realizing a
conceivable causal relation depending on low level implementation details.

Fig. 3. Runtime simulation

This runtime simulation and control tool could be used in conjunction with
an enforcer component tool to concretely prevent the execution of unsafe com-
mands in the running system. In this case, the intended use of the runtime sim-
ulator is for input sanitisation [14], namely to evaluate safety assertions when
there is an input event that may change the state of the running system, and
prevent the change if it violates an assertion on the runtime model of the system.
This safety assertion enforcement mechanism is useful, for example, for cyber
physical systems where the environment is only partially observable [23], and, in
general, for any safety-critical system, where in certain (possibly transient cir-
cumstances/contexts) the effects of not enforcing certain safety assertions would
lead to human hazards, as it happens for medical software [2].

We do not here target real-time systems since these systems require dedicated
solutions (e.g., real-time operating systems) and pose specific challenges.

4.2 AsmetaS@run.time Simulation Environment

An overview of the overall AsmetaS@run.time simulation framework using ASMs
as runtime models is shown in Fig. 4. This framework was recently developed as
part of the ASMETA toolset.

The core of the framework is the subsystem Simulator@runtime. Its compo-
nent Container supports simulation as-a-service features (the interface IModel-
Execution) of the conventional ASMETA simulator AsmetaS, including model
roll-back to the previous safe state after a failure of the model execution (e.g.,
invariant violations, inconsistent updates, ill-formed inputs, etc.) while process-
ing an input event. The container allows also the dynamic adaptation of a run-
ning ASM model (the interface IModelAdaptation) to add/change/delete safety
assertions at runtime and, therefore, guarantee a safer (though possibly tempo-
rary) execution of the system.

404 E. Riccobene and P. Scandurra

Fig. 4. Runtime simulation with AsmetaS@run.time

The subsystems SimulationUI and Assertion Catalog are based on the
interfaces provided by the Simulator@runtime subsystem and supports the
dynamic Human-Model-Interaction (both in a graphical and in a command-line
way) to realize a sort of dashboard to visualize the current status of the executing
model and to enact commands for changing safety properties respectively.

In the following subsections, more details on the two main functionalities of
this platform are described.

Runtime Simulation with ASMs 405

Runtime Simulation. An active simulation is an entity (an instance of the
simulator AsmetaS) characterized by an identifier, an associated ASM model
and its current execution state, a simulation state (see below), and a set of
actions. These last are methods (the operations of the IModelExecution inter-
face) labelling the transitions of a protocol state machine that specifies the
behaviour of the simulation life-cycle: the corresponding UML protocol state
machine diagram is shown in Fig. 5. When an action on a simulation entity
is executed, the transition labeled by the corresponding method is taken in a
synchronized way.

Fig. 5. Runtime simulation lifecycle

A simulation entity could be in only one of the following states: READY,
RUNNING, ROLLING BACK, and ADAPTING. Once started, the simulation entity
is in state READY. The simulation entity moves to state RUNNING when one
of the following operations of the IModelExecution interface is called: i)
runStep, to run the ASM model step by step interactively; ii) runUntilEmpty,
to stop the simulation when the update set is empty ; iii) runStepWithTimeout
and runUntilEmptyWithTimeout, as i) and ii) respectively, but with a time-
out, so the ASM execution is suspended if the timeout period elapses
prior to completion of the ASM run. The simulation entity is in state
ROLLING BACK when the execution timeout or an exception arises. This last
could be an InvalidInvariantException (when an ASM invariant is vio-
lated), or an UpdateClashException (when an inconsistent update occurs,
i.e. when two updates refer to the same location but are distinct) or an
InputMismatchException (when the input value the user enters for a moni-
tored function is of a different type than that required by the model). When
the ASM model roll-back to the previous (safe) state completes, the simulation
entity comes back to the READY state. From the READY state, the simulation entity
can move to state ADAPTING for the run-time adaptation (concerning the safety

406 E. Riccobene and P. Scandurra

invariants to be verified) of the system model (more details are provided in the
next paragraph). From any state, upon the event stopExecution the simulation
entity is terminated.

Figure 6 shows the ASM model of the gate controller through the UI SimGUI.
In particular, the central panel shows the ASM runs and the simulation results.
The last one produced the verdict UNSAFE upon the invariant violation achieved
with the same input values reported in Code 2. Then, the model is rolled back to
the previous safe state (when the gate is CLOSING); then, a further run step is
performed with a right input value for the monitored function gateMon (CLOSED)
and a new safe state is produced as new current state.

Fig. 6. Runtime simulation UI

Safety Assertion Adaptation. A catalog of safety assertions describing pos-
sible situations that may produce a violation of safety are expressed in the ASM
runtime model in terms of ASM invariants. The catalog may be dynamically
updated at runtime in case dangerous situations have not been foreseen at design
time or because of unanticipated changes in the requirements for safety after the
system release. So the running ASM model can be adapted dynamically by the
simulation container to incorporate the new invariant definitions or simply mod-
ify or cancel existing ones. This can be done by an external client program or
manually by the user (see the screenshot of the UI Assertion Catalog in Fig.
7) through the UI connected to the container.

To the purpose of supporting on-the-fly changes of the underlying ASM model
consistently, a separate thread (different from the simulation thread) of the con-
tainer manages the model adaptation; it observes the status of the simulation to
determine when it reaches a quiescent state (i.e., it is in the READY state), so it is

Runtime Simulation with ASMs 407

Fig. 7. Assertion catalog UI

not currently in execution and no adaptation activity of it is going on. Once the
quiescent state is reached, the adaptation manager thread updates the model to
add/change/delete a safety invariant (the state ADAPTING in Fig. 5). Then, the
ASM model execution continues from its current state. The adding of a safety
property that would be immediately violated in the current state of the ASM
model would be forbidden at the level of the user interface.

5 Conclusion

In this paper, we have presented our long-term vision of using the ASM exe-
cutable models as formal support at runtime to assure safe execution of a soft-
ware system. To evaluate the proposed approach we are conducting a first series
of experiments in which we consider as runtime ASM models some case studies
available in the ASMETA example repository. Then, as a second series of exper-
iments we are going to execute runtime ASM models in tandem with prototype
realizations of systems that these models specify. Our short-term plan is to com-
plete the implementation of a runtime enforcement for input sanitisation [14] to
protect the system from its (untrusted) environment. A preliminary conceptual
view of such a mechanism was presented in [24].

In the future, we plan to apply the ASM@run.time framework in the context
of self-adaptive systems [5,29]. Our long term goal is to develop a complete frame-
work able to deal with requirements changes also affecting the model behavior,
and therefore providing model adaptation features at runtime. We also want to
test its effective operation in the area of safety-critical systems, as for exam-
ple those in the medical software domain and in the cyber-physical domain, by
considering running systems independently developed from the models.

408 E. Riccobene and P. Scandurra

References

1. Defence standard 00–56, issue 4: Safety management requirements for defence sys-
tems, June 2007

2. Alemzadeh, H., Kalbarczyk, Z., Iyer, R., Raman, J.: Analysis of safety-critical com-
puter failures in medical devices. IEEE Secur. Priv. 11(4), 14–26 (2013). https://
doi.org/10.1109/MSP.2013.49

3. Arcaini, P., Gargantini, A., Riccobene, E.: CoMA: conformance monitoring of Java
programs by abstract state machines. In: Khurshid, S., Sen, K. (eds.) RV 2011.
LNCS, vol. 7186, pp. 223–238. Springer, Heidelberg (2012). https://doi.org/10.
1007/978-3-642-29860-8 17

4. Arcaini, P., Gargantini, A., Riccobene, E., Scandurra, P.: A model-driven process
for engineering a toolset for a formal method. Softw. Pract. Exp. 41, 155–166
(2011). https://doi.org/10.1002/spe.1019. http://dx.doi.org/10.1002/spe.1019

5. Arcaini, P., Riccobene, E., Scandurra, P.: Formal design and verification of self-
adaptive systems with decentralized control. ACM Trans. Auton. Adapt. Syst.
11(4), 25:1–25:35 (2017)

6. Aßmann, U., Götz, S., Jézéquel, J.-M., Morin, B., Trapp, M.: A reference archi-
tecture and roadmap for models@run.time systems. In: Bencomo, N., France, R.,
Cheng, B.H.C., Aßmann, U. (eds.) Models@run.time. LNCS, vol. 8378, pp. 1–18.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-08915-7 1

7. Baresi, L., Ghezzi, C.: The disappearing boundary between development-time and
run-time. In: Roman, G., Sullivan, K.J. (eds.) Proceedings of the Workshop on
Future of Software Engineering Research, FoSER 2010, at the 18th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, 2010, Santa Fe,
NM, USA, 7–11 November 2010, pp. 17–22. ACM (2010)

8. Bencomo, N., Götz, S., Song, H.: Models@run.time: a guided tour of the state
of the art and research challenges. Softw. Syst. Model. 18(5), 3049–3082 (2019).
https://doi.org/10.1007/s10270-018-00712-x

9. Bonfanti, S., Gargantini, A., Mashkoor, A.: Design and validation of
a C++ code generator from Abstract State Machines specifications. J.
Softw. Evol. Process 32(2), e2205 (2020). https://doi.org/10.1002/smr.2205.
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2205

10. Börger, E., Raschke, A.: Modeling Companion for Software Practitioners. Springer,
Heidelberg (2018). https://doi.org/10.1007/978-3-662-56641-1

11. Börger, E., Stärk, R.: Abstract State Machines: A Method for High-Level System
Design and Analysis. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
642-18216-7

12. Calinescu, R., Weyns, D., Gerasimou, S., Iftikhar, M.U., Habli, I., Kelly, T.: Engi-
neering trustworthy self-adaptive software with dynamic assurance cases. IEEE
Trans. Software Eng. 44(11), 1039–1069 (2018)

13. Calinescu, R., Kikuchi, S.: Formal methods @ runtime. In: Calinescu, R., Jack-
son, E. (eds.) Monterey Workshop 2010. LNCS, vol. 6662, pp. 122–135. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-21292-5 7

14. Falcone, Y., Mariani, L., Rollet, A., Saha, S.: Runtime failure prevention and reac-
tion. In: Bartocci, E., Falcone, Y. (eds.) Lectures on Runtime Verification. LNCS,
vol. 10457, pp. 103–134. Springer, Cham (2018). https://doi.org/10.1007/978-3-
319-75632-5 4

https://doi.org/10.1109/MSP.2013.49
https://doi.org/10.1109/MSP.2013.49
https://doi.org/10.1007/978-3-642-29860-8_17
https://doi.org/10.1007/978-3-642-29860-8_17
https://doi.org/10.1002/spe.1019
http://dx.doi.org/10.1002/spe.1019
https://doi.org/10.1007/978-3-319-08915-7_1
https://doi.org/10.1007/s10270-018-00712-x
https://doi.org/10.1002/smr.2205
https://onlinelibrary.wiley.com/doi/abs/10.1002/smr.2205
https://doi.org/10.1007/978-3-662-56641-1
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-18216-7
https://doi.org/10.1007/978-3-642-21292-5_7
https://doi.org/10.1007/978-3-319-75632-5_4
https://doi.org/10.1007/978-3-319-75632-5_4

Runtime Simulation with ASMs 409

15. Gargantini, A., Riccobene, E., Rinzivillo, S.: Using spin to generate tests from
ASM specifications. In: Börger, E., Gargantini, A., Riccobene, E. (eds.) ASM 2003.
LNCS, vol. 2589, pp. 263–277. Springer, Heidelberg (2003). https://doi.org/10.
1007/3-540-36498-6 15

16. Gargantini, A., Riccobene, E., Scandurra, P.: A metamodel-based language and a
simulation engine for abstract state machines. J. UCS 14(12), 1949–1983 (2008).
https://doi.org/10.3217/jucs-014-12-1949

17. Goldsby, H.J., Cheng, B.H.C., Zhang, J.: AMOEBA-RT: run-time verification of
adaptive software. In: Giese, H. (ed.) MODELS 2007. LNCS, vol. 5002, pp. 212–
224. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-69073-3 23

18. Gurevich, Y., Huggins, J.K.: The railroad crossing problem: an experiment with
instantaneous actions and immediate reactions. In: Kleine Büning, H. (ed.) CSL
1995. LNCS, vol. 1092, pp. 266–290. Springer, Heidelberg (1996). https://doi.org/
10.1007/3-540-61377-3 43

19. Jackson, E.K., Schulte, W.: Understanding specification languages through their
model theory. In: Calinescu, R., Garlan, D. (eds.) Monterey Workshop 2012. LNCS,
vol. 7539, pp. 396–415. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-34059-8 21

20. Legay, A., Delahaye, B., Bensalem, S.: Statistical model checking: an overview.
In: Barringer, H., et al. (eds.) RV 2010. LNCS, vol. 6418, pp. 122–135. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16612-9 11

21. Liang, H., Dong, J.S., Sun, J., Wong, W.E.: Software monitoring through for-
mal specification animation. ISSE 5(4), 231–241 (2009). https://doi.org/10.1007/
s11334-009-0096-1

22. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.R.: Proactive self-adaptation
under uncertainty: a probabilistic model checking approach. In: Nitto, E.D., Har-
man, M., Heymans, P. (eds.) Proceedings of the 2015 10th Joint Meeting on Foun-
dations of Software Engineering, ESEC/FSE 2015, Bergamo, Italy, 30 August–4
September 2015, pp. 1–12. ACM (2015). https://doi.org/10.1145/2786805.2786853

23. Pinisetty, S., Roop, P.S., Smyth, S., Allen, N., Tripakis, S., von Hanxleden, R.:
Runtime enforcement of cyber-physical systems. ACM Trans. Embed. Comput.
Syst. 16(5s), 178:1–178:25 (2017). https://doi.org/10.1145/3126500

24. Riccobene, E., Scandurra, P.: Exploring the concept of abstract state machines for
system runtime enforcement. In: Raschke, A., Méry, D., Houdek, F. (eds.) ABZ
2020. LNCS, vol. 12071, pp. 244–247. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-48077-6 18

25. Riganelli, O., Micucci, D., Mariani, L.: Controlling interactions with libraries in
android apps through runtime enforcement. ACM Trans. Auton. Adapt. Syst.
14(2), 8:1–8:29 (2019). https://doi.org/10.1145/3368087

26. Tendeloo, Y.V., Mierlo, S.V., Vangheluwe, H.: A multi-paradigm modelling app-
roach to live modelling. Softw. Syst. Model. 18(5), 2821–2842 (2019). https://doi.
org/10.1007/s10270-018-0700-7

27. Trapp, M., Schneider, D.: Safety assurance of open adaptive systems – a survey.
In: Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U. (eds.) Models@run.time.
LNCS, vol. 8378, pp. 279–318. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08915-7 11

https://doi.org/10.1007/3-540-36498-6_15
https://doi.org/10.1007/3-540-36498-6_15
https://doi.org/10.3217/jucs-014-12-1949
https://doi.org/10.1007/978-3-540-69073-3_23
https://doi.org/10.1007/3-540-61377-3_43
https://doi.org/10.1007/3-540-61377-3_43
https://doi.org/10.1007/978-3-642-34059-8_21
https://doi.org/10.1007/978-3-642-34059-8_21
https://doi.org/10.1007/978-3-642-16612-9_11
https://doi.org/10.1007/s11334-009-0096-1
https://doi.org/10.1007/s11334-009-0096-1
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1145/3126500
https://doi.org/10.1007/978-3-030-48077-6_18
https://doi.org/10.1007/978-3-030-48077-6_18
https://doi.org/10.1145/3368087
https://doi.org/10.1007/s10270-018-0700-7
https://doi.org/10.1007/s10270-018-0700-7
https://doi.org/10.1007/978-3-319-08915-7_11
https://doi.org/10.1007/978-3-319-08915-7_11

410 E. Riccobene and P. Scandurra

28. Weyns, D., Iftikhar, M.U.: Model-based simulation at runtime for self-adaptive sys-
tems. In: Kounev, S., Giese, H., Liu, J. (eds.) 2016 IEEE International Conference
on Autonomic Computing, ICAC 2016, Wuerzburg, Germany, 17–22 July 2016, pp.
364–373. IEEE Computer Society (2016). https://doi.org/10.1109/ICAC.2016.67

29. Weyns, D., Iftikhar, M.U.: ActivFORMS: a model-based approach to engineer self-
adaptive systems. CoRR abs/1908.11179 (2019). http://arxiv.org/abs/1908.11179

30. Zhuang, C., Liu, J., Xiong, H.: Digital twin-based smart production management
and control framework for the complex product assembly shop-floor. Int. J. Adv.
Manuf. Technol. 96(1), 1149–1163 (2018)

https://doi.org/10.1109/ICAC.2016.67
http://arxiv.org/abs/1908.11179

Merging Railway Standard Notations
in a Formal DSL-Based Framework

Asfand Yar1, Akram Idani1(B), and Simon Collart-Dutilleul2,3

1 Univ. Grenoble Alpes, CNRS, Grenoble INP, LIG, 38000 Grenoble, France
asfand.yar@grenoble-inp.org, akram.idani@univ-grenoble-alpes.fr
2 Institut de Recherche Technologique Railenium, 59300 Famars, France

3 Univ. Lille Nord de France, IFSTTAR, 59666 Villeneuve d’Ascq Cedex, France
simon.collart-dutilleul@ifsttar.fr

Abstract. The design of a railway signalling system may be validated
using three basic concepts: (1) functional standards, (2) domain spe-
cific notations, and (3) safety requirements checking. However, there
is a lack of tools that merge these notions in a unified framework to
be used by standardisation authorities, as well as domain experts and
safety engineers. In this ongoing work we make the bridge between the
three notions using Meeduse, a tool in which the B method is applied
in order to formally reason on the correctness of domain specific lan-
guages (DSLs) and simulate their dynamic semantics using the ProB
animator. The application context of this work is that of two well known
standards in the railway field: RailTopoModel and ERTMS/ETCS. We
propose a railway DSL framework whose static semantics are built on
top of RailTopoModel and the underlying dynamic semantics conform
to ERTMS/ETCS. The overall approach is assisted by the B method,
which allows us to define, prove and animate safety-critical behaviors
given domain-centric models.

Keywords: ERTMS/ETCS · RailTopoModel · B method · DSL

1 Introduction

In the railway field, there are several tools that propose Domain Specific Lan-
guages (DSLs) to model railroad networks such as RaIL-AiD1 and SafeCap [7].
They allow the design of readable models thanks to domain specific notations.
However, most of their DSLs are not formally defined and hence they do not
apply formal verification techniques such as theorem proving or model-checking
to guarantee the correctness of the underlying semantics. Furthermore, often
the DSLs they provide are not directly derived from existing standards, such as
RailTopoModel [8] and ERTMS/ETCS [3]. In order to circumvent these short-
comings, we are developing a formally proved railway DSL framework whose

1 Railway Infrastructure and Layout Aided Designer (https://www.rail-aid.com).

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 411–419, 2020.
https://doi.org/10.1007/978-3-030-59155-7_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_30&domain=pdf
https://www.rail-aid.com
https://doi.org/10.1007/978-3-030-59155-7_30

412 A. Yar et al.

static semantics implement RailTopoModel and dynamic semantics comply with
ERTMS/ETCS operating rules.

RailTopoModel is the International Railway Standard (IRS 301002) devel-
oped by the UIC (International Union of Railways), with the contribution of
several railway infrastructure managers and industrial companies, for the sake
of optimizing communication between the various actors of the railway sec-
tor. It defines and describes the structure of a railway network together with
the physical installations that it manages. These structural business assets are
intended to be as complete as possible, however the model does not provide
operating rules such as route computations and train movements. Our work
addresses these behaviours by focusing on the European signalling and train
control system ERTMS/ETCS in order to introduce standardized management
rules and their underlying safety properties within RailTopoModel. Our app-
roach is assisted by the B method which allows to define, prove and animate
safety-critical behaviours given domain specific models designed in our DSL
framework.

Section 2 outlines the main principles of this ongoing work. In Sect. 3 discusses
how the formal B method will be integrated within our DSL-based framework.
Finally, Sect. 4 draws the conclusions and the perspectives of this work.

2 Proposed Approach

2.1 Overall Architecture

Figure 1 gives an overall view about our approach for merging RailTopoModel
and ERTMS/ETCS in a formal DSL-based framework. Our framework is com-
posed of the two layers presented at the top and at the bottom of Fig. 1.

The semantics layer covers both static and dynamic semantics of our DSLs:
the static semantics are built on meta-models that we derive from RailTopo-
Model, and the dynamic semantics are built on ERTMS/ETCS specifications.
Regarding the execution layer, it is managed by tool Meeduse3 that animates
behaviours of domain specific models conforming to the semantics layer. Formal
B specifications are used in both layers in order to apply formal reasoning tech-
niques to our DSLs: proofs for the semantics definition, and animation/model-
checking for models execution. The choice of the B method is motivated by
several aspects. First, the B method is widely used in the railway field and there
are several success stories that support this fact [9], such as for example Meteor,
the automated Paris subway. Recently, a comparative study of several formal
methods regarding their industrial suitability [10] has been done and rated B
high when it comes to formal constructs like those applied in our work.

2 The IRS 30100 is the foundation for quick, unambiguous and error-free data storage
and data exchange inside and between business processes [8].

3 http://vasco.imag.fr/tools/meeduse.

http://vasco.imag.fr/tools/meeduse.

Merging RailTopoModel and ERTMS/ETCS 413

Fig. 1. Architecture of the proposed framework

2.2 Methodology

RailTopoModel is presented in [8] based on a UML class diagram divided into
four packages. The Base package of RailTopoModel defines a railway network by
an abstraction level (meso, micro, macro) and a composition of railway resources.
For example, a network resource can be a NetElement such as line sections, or
an InterlockingNetEntity such as signals. Having this reference UML model of
RailTopoModel, we introduce two additional meta-models with specific concepts,
each of them led to a particular DSL: (1) the Topology DSL allows the domain
expert to represent lines, tracks and their connections; and (2) the Infrastruc-
ture DSL allows to add objects over a given topology such as physical objects
(e.g. stations), immaterial objects (e.g. speed limits) and logical objects (e.g.
signals). In order to ensure the conformance of our DSLs with RailTopoModel,
our methodology follows the following established rules:

– The Core package contains the exact RailTopoModel: as the semantics of
RailTopoModel are defined using a UML class diagram, this step simply intro-
duces the underlying UML concepts within the Eclipse Modeling Framework
(EMF), as an EMF meta-model.

– Define the additional meta-models (Topology and Infrastructure) outside the
core package and use references. Our aim is to guarantee that the initial
RailTopoModel semantics are kept unchanged during the DSL development.
The core meta-model remains then low-coupled with the additional meta-
models. This rule provides two main advantages: (1) there is no need to
modify or extend the core meta-model and therefore it can be considered as

414 A. Yar et al.

an independent artifact, and (2) the additional meta-models could be easily
extended or replaced without any impact on the core meta-model.

– Classes of our meta-models (such as those of ERTMS/ETCS) must inherit
from classes issued from the Core meta-model. This inheritance allows one to
associate clearly identified semantics from RailTopoModel to any additional
class.

– Associations between the additional classes must be computed as much as
possible from the elements of RailTopoModel. This rule allows to reduce the
number of relations as much as possible and carefully check whether there
exists a way to compute these relations from relations of the core meta-model.

2.3 The Core Meta-Model

Figure 2 shows a subset of the Core meta-model. This meta-model applies generic
concepts used in railway networks. Class Network for example is composed of
network resources (class NetworkResource) that represent its topological and
structural properties such as the various net elements and their locations.

Fig. 2. Subset of the core Meta-model

Merging RailTopoModel and ERTMS/ETCS 415

2.4 Defining the Additional Meta-Models

Figure 3 illustrates the Topology meta-model where the upper part contains the
root class of this meta-model called Topology. It consists of LinearElements and
InterlockingNetEntities. The bottom part of meta-model shows the class Track
(inherited from LinearElement) and the classes Switch and BufferStop (inherited
from InterLockingNetEntity). BufferStop can be used as a start or end of any
network track while Switch is the intermediate junction among three tracks. Each
switch has an attribute called continueCourse which sets the track to be used
(right track or left track). Note that classes LinearElement and InterlockingNe-
tEntity are defined in the core package. On the one hand they are referenced
by the root class and on the other hand they are specialized by the additional
classes Track, Switch and BufferStop. Indeed, these three classes are not initially
defined by RailTopoModel but they are required by a railway DSL especially to
define the dynamic semantics.

Fig. 3. Topology Meta-Model

Regarding the Infrastructure meta-model, we apply the same principles. This
meta-model contains infrastructure elements to make railway network opera-
tional. For this purpose, we introduce concepts from ERTMS/ETCS such as:
movement authority, train, virtual block and track-side.

2.5 Modeling

Our DSL tool allows to instantiate the aforementioned meta-models using
domain specific notations. Figure 4 is an example of a topology designed based
on the Topology meta-model. It represents buffer stops (bus01, bus02, bus03),
switches (sw01, sw02, sw03 etc) and tracks (trc01, trc02, trc03 etc).

As presented by the topology meta-model, each switch has three branches:
the fixed branch, the left branch and the right branch. The fixed branch is a
fixed course for the switch which is not change-able while the continue course is

416 A. Yar et al.

change-able and can be set to left or right which directs the train either to the
left branch or the right branch. In the left hand-side of Fig. 5, the green arrow
shows the course assigned to the branches. The arrow to right branch is green as
continue course of switch is set to right. The continue course of the same switch
shown in the right side of Fig. 5 is set to left which turns the color of arrow to
left branch into green and arrow to right branch into red.

Fig. 4. Designed topology

Fig. 5. Switch branches (Color figure online)

3 Formal Semantics

The advantage of a MDE architecture is that it allows to easily develop DSL
tools with graphical or textual concrete syntax. This approach puts into practice
a clear separation of concerns ranging from requirements to target platforms, and
going through several design stages. This is useful especially for railway model
editors, because the interoperability between these tools is favored by the use of
standardized meta-modeling formalisms. A DSL allows to reduce the risk that
human errors such as misinterpretation of the requirements and specification
documents lead to erroneously validate the specifications, and produce a wrong
real system. Still, while MDE provides solutions to the validation problem, the
verification problem remains a major challenge. In this ongoing work we formally
define the semantics of our DSL tool using the B method and apply the under-
lying reasoning tools such as the AtlierB prover and the ProB model-checker.
Note that most of the static semantics of our railway DSL tool and the associated
graphical concrete syntax are available, and currently we are actively working
on the definition of the formal semantics.

Merging RailTopoModel and ERTMS/ETCS 417

3.1 Static Semantics

The formal definition of static semantics is ensured by our tool Meeduse [6].
It applies a classical UML-to-B translation [5] (step (Translation) in Fig. 1) to
meta-models and produces a functional B specification covering data structures
as well as basic operations (getters, setters, etc). The structure of the resulting
B specifications is presented in Fig. 6 where the B machine of the Infrastructure
DSL requires data (sees dependency) defined in the Topology DSL. The Infras-
tructure machine is further refined in order to redefine abstract infrastructure
objects by means of ERTMS data objects (such as eurobalises, virtual blocks)
that are not initially provided by RailTopoModel but which are part of the
static semantics. The refinement is then dedicated to guarantee by proofs that
this redefinition preserves the infrastructure DSL invariants.

Fig. 6. Formal static semantics

3.2 Dynamic Semantics

The dynamic semantics of a DSL deal with behavioural descriptions that make
the DSL executable. In our work, we apply ERTMS/ETCS as a way to intro-
duce execution within RailTopoModel. Indeed, ERTMS/ETCS defines safe train
behaviours thanks to the mechanism of movement authority. It describes how
and when permissions to enter block sections are assigned to trains. Note that
in the last decade, several works have been devoted in order to provide formal
models of ERTMS/ETCS. Recently the ABZ’2018 conference [4] has published
several B models, which provides us a rich catalog of proved B operations and
invariants.

Our objective is to reuse these existing B specifications for the dynamic
semantics definition. For this purpose, we create linkage B specifications (Fig. 1)
in which we apply two mechanisms from the B method: refinement and inclusion.
In the B method, refinements have two main principles: add requirements by
going from abstract models to more concrete ones and prove the preservation
of the abstract model invariants. The composition, such as inclusion, allows to
beak down the system by applying the separation of concerns principle.

In our approach, refinements would guarantee the preservation of the safety
invariants of ERTMS/ETCS defined in the re-used B specifications and inclusion
provides an access to the B variables that represent the static semantics and
use them in place of those of the refined machines. Proved B operations are

418 A. Yar et al.

then refined by DSL-centric operations and hence behaviours that comply with
ERTMS/ETCS are applied to our DSLs.

3.3 Execution

DSL execution is intended to perform early validation since the DSL is expected
to behave as the target system should run. In our framework, this execution is
done by Meeduse given domain-specific models that represent railway topologies
and infrastructures conforming to RailTopoModel. First, Meeduse injects these
models into the functional B specifications issued from our meta-models. This
step, called (Valuation) in Fig. 1, creates enumerations and generates substitu-
tions that assign concrete initial values to the B variables. Then, the tool asks
ProB to compute the initial state of the B specifications and the list of opera-
tions that can be animated from this state. At this stage, railway experts can
start playing with the B operations of the linkage machines in order to simulate
ERTMS/ETCS train behaviours. All along the interactive animation, Meeduse
synchronises the current state of the B specifications with the input models (step
(Synchronisation) in Fig. 1), which results in a domain-centric visual animation.
The interest of this approach in comparison with classical visual animation is
that our framework allows railway experts to design by themselves the input
models and validate their behaviours without being trained in formal methods.

4 Conclusion

The use of Domain-specific modelling languages becomes important in the rail-
way domain as they provide support for railway mechanisms from their semantics
definition to their concrete syntax. In the last decade, several tools and platforms
[1,2,7,11,12] were proposed in order to allow railway experts to design railway
infrastructures and associated signalling systems. However, the limitation with
these tools is that either the semantics of their DSLs don’t fully comply with
international railway standards.

In the railway domain, several specifications are defined by European and
national authorities like the ISO4 specifications from AFNOR5 or TSIs6 from
EUAR (European Union Agency for Railway). These specifications provide stan-
dardised engineering rules and infrastructure guidelines and allow the establish-
ment of common interfaces for railway systems in order to maintain the com-
patibility among cross-border infrastructure objects. They also provide cost-
effectiveness processes to ensure safety by using the best practices.

This paper presents the main principles of our ongoing work for the devel-
opment and the execution of railway DSLs that comply with current standards:
RailTopoModel and ERTMS/ETCS. We apply the B method to formally define
the static and dynamic semantics and prove that functional specifications can be
4 https://www.iso.org/.
5 Association Française de Normalisation.
6 Technical Specifications for Interoperability.

https://www.iso.org/.

Merging RailTopoModel and ERTMS/ETCS 419

executed on a given ETCS-based infrastructure, without braking global safety
invariants. Our approach is domain-centric, which allows domain experts to
design topological views of a railway system and then play with scenarios that
comply with ERTMS/ETCS. This work provides two main contributions in com-
parison with existing railway editors: our DSL is derived from approved railway
standard documents (RailTopoModel and ERTMS/ETCS) and the underlying
semantics follow a formal method with available reasoning tools.

References

1. Industrial Railway CAD software. https://hwww.railcomplete.com/
2. Railway Infrastructure and Layout Aided Designer. https://www.rail-aid.com/
3. The ERTMS/ETCS signalling system. http://www.railwaysignalling.eu/wp-

content/uploads/2016/09/ERTMS ETCS signalling system revF.pdf
4. Butler, M., Raschke, A., Hoang, T.S., Reichl, K. (eds.): ABZ 2018. LNCS, vol.

10817. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91271-4
5. Idani, A., Ledru, Y.: B for modeling secure information systems. In: Butler, M.,

Conchon, S., Zäıdi, F. (eds.) ICFEM 2015. LNCS, vol. 9407, pp. 312–318. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-25423-4 20

6. Idani, A., Ledru, Y., Vega, G.: Alliance of model-driven engineering with a proof-
based formal approach. Innovations Syst. Softw. Eng. 1–19 (2020). https://doi.
org/10.1007/s11334-020-00366-3

7. Iliasov, A., Lopatkin, I., Romanovsky, A.: The SafeCap platform for modelling rail-
way safety and capacity. In: Bitsch, F., Guiochet, J., Kaâniche, M. (eds.) SAFE-
COMP 2013. LNCS, vol. 8153, pp. 130–137. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-40793-2 12

8. International Union of Railways (UIC): RailTopoModel - Railway infrastructure
topological model (2016). ISBN 978-2-7461-2513-1

9. Lecomte, T.: Applying a formal method in industry: a 15-year trajectory. In:
Alpuente, M., Cook, B., Joubert, C. (eds.) FMICS 2009. LNCS, vol. 5825, pp.
26–34. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-04570-7 3

10. Mashkoor, A., Kossak, F., Egyed, A.: Evaluating the suitability of state-based
formal methods for industrial deployment. Softw. Pract. Experience 48(12), 2350–
2379 (2018)

11. Vu, L., Haxthausen, A., Peleska, J.: A domain-specific language for railway inter-
locking systems. In: Proceedings of the 10th Symposium on Formal Methods for
Automation and Safety in Railway and Automotive Systems, pp. 200–209. Tech-
nische Universität Braunschweig (2014)

12. Vu, L.H., Haxthausen, A.E., Peleska, J.: A domain-specific language for
generic interlocking models and their properties. In: Fantechi, A., Lecomte, T.,
Romanovsky, A. (eds.) RSSRail 2017. LNCS, vol. 10598. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-68499-4 7

https://hwww.railcomplete.com/
https://www.rail-aid.com/
http://www.railwaysignalling.eu/wp-content/uploads/2016/09/ERTMS_ETCS_signalling_system_revF.pdf
http://www.railwaysignalling.eu/wp-content/uploads/2016/09/ERTMS_ETCS_signalling_system_revF.pdf
https://doi.org/10.1007/978-3-319-91271-4
https://doi.org/10.1007/978-3-319-25423-4_20
https://doi.org/10.1007/s11334-020-00366-3
https://doi.org/10.1007/s11334-020-00366-3
https://doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1007/978-3-642-40793-2_12
https://doi.org/10.1007/978-3-642-04570-7_3
https://doi.org/10.1007/978-3-319-68499-4_7

Continuous Formal Verification of
Microservice-Based Process Flows

Matteo Camilli(B)

Faculty of Computer Science, Free University of Bozen-Bolzano, Bolzano, Italy
matteo.camilli@unibz.it

Abstract. The microservice architectural style is often used to imple-
ment modern cloud, IoT, and large-scale distributed applications. Here
software development processes are characterized by short incremental
iterations, where several updates and new functionalities are continu-
ously integrated many times a day in a agile fashion. Such a paradigm
shift calls for new formal approaches to systematic (design-time and run-
time) verification. This paper introduces a formal framework to apply
continuous verification of microservice based applications built on top of
Conductor, i.e., an open source orchestration engine of microservices
workflows in use at Netflix, Inc. for their production environment. Our
proposal adopts a model-driven paradigm and it leverages solid founda-
tion from Petri nets to specify and verify the behavior of time-dependent
workflows. This paper describes our approach, the current implemen-
tation, and evaluation activity conducted on a taxi-hailing application
example.

Keywords: Microservices · Petri nets · Formal verification · DevOps

1 Introduction

Microservices [11] represents an upward trending architectural style of modern
cloud, IoT, or more in general advanced large-scale distributed applications.
Even though fundamental principles of microservices are not novel or innova-
tive1, the migration towards microservices is still a sensitive matter nowadays.
In fact, several leading companies applied huge reengeneering activities to adopt
this paradigm. As a notable example, Netflix, Inc. [26] moved successfully from
a monolithic architectural style to a microservices-based architecture in order
to stream multimedia contents to an unprecedented amount of users every day.
The adopted architecture builds upon the Netflix Conductor engine [10], an
open source framework designed by Netflix Inc. and used daily in their produc-
tion environment. Conductor allows the creation of arbitrary complex work-
flows in which individual tasks are implemented by microservices. The workflow
blueprint (i.e., a high level description of the control and data flow) is defined
1 They are comparable to those of service-oriented computing [13] and we can find
their roots in the design principles of Unix [15].

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 420–435, 2020.
https://doi.org/10.1007/978-3-030-59155-7_31

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_31&domain=pdf
http://orcid.org/0000-0003-2491-5267
https://doi.org/10.1007/978-3-030-59155-7_31

Continuous Formal Verification of Microservice-Based Process Flows 421

using a JSON based DSL and includes a set of worker tasks (i.e., pieces of func-
tionality) running on compute nodes and system tasks (i.e., the glue composing
the workflow) executed by Conductor. Here, verification activities or even
testing can be challenging. In fact, continuous changes in rapidly evolving set-
tings potentially require continuous verification methods where artifacts must be
constantly recreated or modified. Moreover, the polyglot nature associated with
microservices potentially requires multiple verification/testing tools because of
different programming languages and runtime environments. To deal with these
issues, we introduce a formal framework to support continuous verification of
microservice workflows built on top of Conductor. Our approach extends our
previus work introduced in [6] and it adopts a model-driven [21] paradigm that
pushes the usage of formal models through the development as well as operation
phases. We foster the integration of the approach in modern software develop-
ment practices, such as DevOps [12], in order to adopt formal methods in agile,
continuous delivery, and automation setting. To achieve this goal, we decrease
the cost of producing a formal specification by means of an automated model to
model transformation technique. Namely, we mechanically obtain a Time Basic
Petri Net [16] (or simply TB net) formal model from the Conductor blueprint.
TB nets represents a time-extension of Petri nets (PNs) provided with a clear
formal semantics, traditionally considered as effective formal specification of dis-
tributed systems with time constraints. The TB nets formalism is supported
by powerful off-the-shelf software tools covering both modeling and verification
phases [4]. Generated models can be used to perform computer aided verifica-
tion activities such as model checking by means of well-known techniques. Once
the model has been verified, it can be used at runtime, after the deployment
of a release build, to monitor and verify the behavior of the target application
with respect to its formal specification. Both the model transformation process
and the runtime verification technique are currently implemented as part of a
open source software toolchain. We used our continuous verification framework
to verify both behavioral and temporal properties of a microservice-based taxi-
hailing application built upon the Conductor engine. Results obtained from
this preliminary validation activity are presented and discussed.

The paper is organized as follows. In Sect. 2 we give a preliminary high-
level overview of our continuous verification approach. In Sect. 3, we intro-
duce background notions to make this paper self-contained and our taxi-hailing
microservices-based application running example. In Sect. 4 we provide a detailed
description of our framework. In Sect. 5 we discuss the evaluation activity con-
ducted on the taxi-hailing example. In Sect. 6 we present related work. Finally,
we draw our conclusions in Sect. 7.

2 Overview of the Approach

Figure 1 shows an high-level overview on the main phases and how they can be
integrated into modern software development practices, such as a DevOps set-
ting [12]. The guidelines of DevOps define a handshake between development

422 M. Camilli

</>
Conductor
blueprint

model
checking

(i) automated transformation &
model checking

code
instrumentation

conformance
checking

(ii) monitoring &
runtime verification

Fig. 1. Overview of our approach integrated into a DevOps setting.

and operations that forces a shift in mindset, better collaboration, and tighter
integration. Following this trend that emphasizes fading boundaries between
design-time and runtime phases, we introduce a continuous formal verification
approach based on the iteration of the two phases: (i) Model Transformation
& Model checking; and (ii) Monitoring & Runtime Verification. Although the
approach is general, here we focus on microservices and the Conductor engine.
Some of the peculiar characteristics of Conductor will be leveraged to intro-
duce the rationale and put into place in a natural way some major technical
details of our approach.

(i) Model Transformation & Model checking. In this phase we automatically
generate the formal specification of the target application by transforming the
Conductor blueprint into a TB nets model which describes both the system
under development. The goal of this automatic transformation process is to
aid the creation of formal models in rapidly evolving conditions. In fact, every
change made to the workflow blueprint during development can be automati-
cally reflected to the formal TB net specification, lowering the cost of keeping it
consistent along the software lifecycle. We leverage TB net places to represent
the status of a service (i.e., scheduled, in progress, timed out, or failed) and
transitions to represent both service primitives and events coming from the sur-
rounding environment. We leverage time modeling capability of TB nets to spec-
ify temporal constraints on scheduling/execution of tasks composing the overall
applications. We defined a complete formal semantics of Conductor-based
workflows, meaning that we cover all the available language constructs to define
a Conductor blueprint. The final model is given by the composition of TB
net transformation patterns derived from microservice and execution flow con-
structs. Such a model can be used to perform formal verification activities, such
as interactive simulation (e.g., using token game) and model checking, with the
aid of existing off-the-shelf software tools. Our current implementation focuses on
the verification of Time Computation Tree Logic (TCTL) formulas [1] to verify
deadlock/livelock freedom, invariant, safety, liveness and bounded response-time
properties.

Continuous Formal Verification of Microservice-Based Process Flows 423

(ii) Monitoring & Runtime Verification. A model (re)generated in the previ-
ous step can be used to perform runtime verification upon the production infras-
tructure (i.e., the Conductor engine usually running on a cloud platform). The
objective here is to run and monitor the execution of the target application in
order to check conformance with respect to its own formal specification, thus
enabling faster feedback which lays the foundation of every high performing
DevOps team. The adopted runtime verification technique supplies the abil-
ity to map methods of interests (called action methods) to specific components
of the specification (i.e., TB net transitions). During operations, we perform a
monitoring activity through the co-execution of the target application and its
formal specification (triggered by observable events). The monitor continuously
evaluates the conformance of the execution (timed) trace with respect to the
TB net model and it produces a (on-the-fly) report about both functional and
temporal conformance failures. The report can be used in turn by developers to
extract insights on the failing components. Our current implementation makes
use of an Java monitoring engine which leverages the AspectJ framework to
instrument the execution of the Conductor orchestrator.

It is worth noting that in a continuous integration and delivery pipeline,
teams usually have different deployment environments including testing and pro-
duction. Our RV approach is intended to be integrated in each one of these envi-
ronments. In fact, common practices in such as load/stress testing can be used
to assess to what extent synthetically generated workload intensities affect the
ability to verify formal requirements. Furthermore, RV in production can con-
stantly monitor the target system and provide insights on occurring conformance
failures.

3 Preliminaries

3.1 Time Basic Petri Nets

TB nets represent an effective formal specification of concurrent (distributed)
time-dependent systems. Time constraints are introduced as linear functions
associated with each transition representing possible firing instants computed
since transition’s enabling. Tokens are atomically produced by firing transitions
and they are timestamped along with time values ranging over R≥0. TB nets
support a mixed time semantics, i.e., both urgent and non-urgent transitions
can be used to define mandatory and optional events, respectively.

The structure of a TB net extends the P/T net one (P, T, F), where P is
a finite set of places, T is a finite set of transitions such that P ∩ T = ∅, and
F ⊆ (P ×T)∪ (T ×P) is a set of arcs (or flows) connecting places to transitions
and transitions to places. Let v ∈ P ∪T : •v, v• denote the backward and forward
adjacent sets of v according to F , respectively, also called pre/post-sets of v. A
timestamp binding of t ∈ T is a map bt : •t → Bag(R≥0). Moreover, each
transition t is associated with a time function ft which maps a binding bt to a
(possibly empty) set of R≥0 values, denoted by ft(bt). ft is formally defined as
a pair of linear functions [lt, ut], denoting parametric interval bounds.

424 M. Camilli

{ "name": "access -control",
"timeoutSeconds": 1200,
"inputKeys": [...],
"outputKeys": [...],
"timeoutPolicy": "ALERT_ONLY",
"scheduleSeconds": 200

}

(a) JSON worker task

<name>_schedule

<name>_S2P

<name>_inProgress <name>_P2C

<name>_complete

<name>_P2T

<name>_timeout

<name>_ready

<name>_fail

<name>_P2F

IN OUT

(b) TB net transformation pattern

Initial marking: 〈name〉 ready{TA}
Transition Time function
〈name〉 S2P [τe, τe+〈scheduleSeconds〉]
〈name〉 P2C [τe, τe + ∞]
〈name〉 fail [τe, τe + ∞]
〈name〉 P2T [τe+〈timeoutSeconds〉, τe+〈timeoutSeconds〉]

Fig. 2. Transformation pattern of a ALERT ONLY timeout-policy worker. Non-urgent
transitions are depicted in gray.

A marking (or state) is a mapping m : P → Bag(R≥0), where Bag(X)
represents all possible multisets over X. According to the non-urgent (or weak)
semantics, t can fire at any instant τ ∈ ft(bt). The urgent (or strong) interpre-
tation states that t must fire at any τ ∈ ft(bt), unless disabled by the firing of
any conflicting transitions before the latest firing time of t. Given a binding bt, a
pair (bt, τ), with τ ∈ ft(bt), represents a firing instance of t. The firing instance
produces a new reachable marking by applying the traditional PN firing rules,
but producing tokens timestamped with τ .

Figure 2b shows a TB net example that models the lifecycle of a single
microservice. A single token with timestamp T0 = 0 in place 〈name〉 schedule
represents the microservice 〈name〉 in scheduled state (at time 0). In this mark-
ing, the transition 〈name〉 S2P is the only one enabled to fire by the binding:
{〈name〉 schedule → {1 ·T0}, 〈name〉 ready → {1 ·TA}}. The variable TA repre-
sents a special timestamp (i.e., anonymous timestamp) whose time value does not
influence the evolution of the system. Possible firing time instants are obtained
by evaluating the bounds of f〈name〉 S2P: [τe, τe + 200], where τe is the transi-
tion’s enabling time (the value 0 in this case). Given a valid timestamp value
τ ∈ [0, 200] (e.g., the value 150), according to the firing rules, we get a new mark-
ing with a new token T0 = 150 in place 〈name〉 inProgress (i.e., the execution
of the microservice starts from time 150). In this new marking, three transitions
are concurrently enabled to fire: the non-urgent 〈name〉 P2C in the time inter-
val [0,∞]; and the two urgent transitions 〈name〉 fail and 〈name〉 P2T in the
time interval [1200, 1200]. This configuration shows that the service can either
complete the execution, fail or enter a timeout state. In the latter case, the sys-
tem increments a counter (by producing a token into place 〈name〉 timeout) and
then schedules again the service. Whenever a final state is entered (i.e., either

Continuous Formal Verification of Microservice-Based Process Flows 425

the place 〈name〉 complete or the place 〈name〉 fail is marked), the microservice
returns in ready state to serve new requests.

API
gateway

FORK

access
control

cache

accessed

dispatcher

passenger

driver

DINAMIC FORK

passenger
management

passenger
management

driver
management

driver
management

coordinator

coordinator

notification

trip
management payment billingJOIN

DECISION

JOIN

EVENT
...

...

user request

Fig. 3. High-level schema of the taxi-hailing blueprint.

Formally, a marking mn is reachable from m0 iff. there exists a path σ
(sequence of firing instances and markings) such that:

σ = m0

(bt0 ,τ0)

−−−−−→ m1

(bt1 ,τ1)

−−−−−→ m2, . . . , mn−1

(btn−1 ,τn−1)

−−−−−−−−→ mn

The transitions associated with the enabled bindings in m are called enabled
transitions and they are denoted by enab(m).

By using consolidated analysis techniques it is possible to construct a finite
symbolic state space of a TB net model, called its Time Reachability Graph
(TRG) [5,7]. The TRG construction is fully automated and it relies on a sym-
bolic state notion: each reachable state is a pair: S = (M,C), where M (sym-
bolic marking) maps places into multisets of timestamps and C (constraint) is
a logical predicate formed by linear inequalities defining time relations between
timestamps. Given the TRG structure, model checking algorithms can be applied
to verify the correctness of the system against requirements expressed as Time
Computation Tree Logic (TCTL) properties [1,3]. The model checking technique
is fully automated by the Graphgen software tool.

3.2 A Running Example

We introduce here a small taxi-hailing workflow example used to put into place
major concepts. Figure 3 shows an high-level view of the provided pieces of
functionality. This schema follows the notation introduced in [10] and shows
both services and their relations in a Conductor workflow. Each microservice
(rectangle) implements an isolated function (e.g., access control, trip manage-
ment, payment, etc.) and is deployed independently, usually into cloud virtual
machines or Docker containers [24]. Microservices expose REST APIs consumed

426 M. Camilli

by other services. For instance, passenger management uses the notification ser-
vice to notify a passenger about an available driver. The API gateway exposes
a public API used by mobile clients or web UIs.

Other shapes represent control and data flow primitives (e.g., EVENT, FORK,
and JOIN) executed by the Conductor orchestrator. As an example, the
DECISION dispatcher allows to choose between alternative flows depending on the
request type. The passenger and the driver components use the DYNAMIC FORK
primitive to send user requests to different (replicated) services.

Table 1. Taxi-hailing workflow requirements

Label Description Property-type CTL formula

R1 The payment

service cannot

reach an

inconsistent

state where both

in progress and

timeout status

coexist

Safety ¬EF (payment inProgress > 0 ∧ payment timeout > 0)

R2 Whenever a a

user request has

been handled

correctly, then a

task among

Driver,

Passenger and

Trip

management is

executed

Liveness AG(accessControl complete > 0 ∧ cache complete > 0

→ AF (Passenger schedule > 0∨
Driver schedule > 0 ∨ TripManagement schedule > 0))

R3 Whenever a

payment task is

scheduled for

execution, it is

possible to

complete the

billing process in

2.4 s

Bounded

response-time

AG(payment schedule > 0 →
EF≤2400(billing complete > 0))

Finally, let us assume that the taxi-hailing workflow must satisfy the require-
ments reported in Table 1. Requirements are formally expressed as TCTL prop-
erties to verify them upon the TB net specification.

4 Continuous Formal Verification

Figure 4 shows the major components of the toolchain and their existing rela-
tions. As anticipated in Sect. 2, the approach builds upon a model-driven itera-
tive paradigm aiming at providing support to both development and operation
phases in a formal fashion.

Continuous Formal Verification of Microservice-Based Process Flows 427

TB net
(PNML)

Requirements
(TCTL)

Model
checker

(i) Model Transformation & Model checking

Blueprint
Compiler

Conductor
blueprint
(JSON)

Conductor
Orchestrator

Dev Ops

(annotated)
Decider

blueprint

Monitor Executor

TB net

RV module

Fig. 4. Toolchain supporting our approach.

4.1 Model Transformation and Model Checking

The first step is a fully automated model-to-model transformation carried out
by the Blueprint Compiler module as shown in Fig. 4. Our technique follows
the approach introduced in [6] and it provides transformation capability for
each construct of the Conductor (JSON-based) specification language. The
overall process is guided by the identification of transformation patterns of each
individual microservice (worker task) and each workflow primitive (system task).
Patterns have input/output elements to compose them each other. The final
TB net model is the result of the composition (i.e., the union by connecting
input/output elements) of different transformation patterns of the corresponding
microservices and primitives.

Worker Tasks – We use TB net places to represent the state of a task, while
TB net transitions represent task primitives. Temporal functions associated
with transitions are used to specify time concerns of scheduling and execu-
tion. Figure 2a shows the definition of a worker task using the Conductor
language. The listing contains a JSON object with a number of control parame-
ters used to tell the orchestrator how to manage the microservice lifecycle. The
scheduleSeconds parameter sets an upper bound to the scheduling time of each
instance of the worker task. The timeoutSeconds sets instead an upper bound
to the execution time. Thus, if the access-control does not complete in 1200
ms, the Conductor orchestrator must kill the execution and alert the system
(by incrementing a timeout counter) because of the ALERT ONLY timeout-policy.
Figure 2b shows the corresponding TB net transformation pattern. This pat-
tern must be instantiated by replacing each 〈parameter〉 with the correspond-
ing value in the JSON object. Dashed line shapes represent the input elements
(e.g., access-control schedule). Double line shapes represent output elements
(e.g., access-control complete). Three different types of timeout-policy exist:
ALERT ONLY, TIMEOUT WF (i.e., put the entire workflow in timeout state), RETRY
(i.e., reschedule the worker task a fixed number of times). The Conductor
engine handles the execution of worker tasks depending on values assigned to
timeout-policy and retry-logic. As a consequence, these control parameters are
used to identify the right transformation pattern.

428 M. Camilli

A detailed description of the behavior of all possible types of worker is outside
the scope of this paper and can be found in [10]. We let the reader refer to [6]
for a comprehensive discussion about (TB net) formalization of worker tasks.

System Tasks – In addition to a sequence of worker tasks, the Conductor
blueprint declares a number system tasks representing synchronization prim-
itives. In the following we provide the reader with a representative example
of transformation used in our taxi-hailing application, i.e., the FORK JOIN API
gateway. Such a primitive is used to schedule a parallel set of tasks specified in
the control parameter forkTasks by a list of task sequences. Figure 5a shows
the listing used to define this task in our running example. Here the two paral-
lel sequences contain a single worker task: the access-control and the cache,
respectively. This means that upon a user request, performed though the API,
the orchestrator triggers a parallel scheduling/execution of both microservices.
The control parameter joinTasks contains the lists of tasks whose completions
determines the end of the fork execution. If both access control and the cache
services succeed, the system replies back to the client through a notification
event.

{ "name": "api -gateway",
"type": "FORK_JOIN",
"forkTasks": [[{"taskReferenceName": "access -control", "type": "SIMPLE"}],

[{"taskReferenceName": "cache", "type": "SIMPLE" }]],
"joinOn": ["access -control", "cache"],
"forkSeconds": 250,
"joinSeconds": 250

}

(a) JSON FORK JOIN task

<name>_fork

for i ! <forkTasks>foreach p !
 previousTask.output

p

foreach p !
 <taski>.input

p

foreach p !
 <taski>.output

p

<name>_join

<name>_joined

(b) TB net transformation pattern

Transition Time function
〈name〉 fork [τe, τe+〈forkSeconds〉]
〈name〉 join [τe, τe+〈joinSeconds〉]

Fig. 5. Transformation pattern of a FORK JOIN system task.

Otherwise, if the required information is not cached, the process continues the
execution with the DECISION (req. type decision) system task. Figure 5b show
the associated transformation pattern composed of elementary TB net structural
elements and macro substitutions, delimited by dashed boxes. A for macro sub-
stitution is a construct used to repeat the inner elements depending on the

Continuous Formal Verification of Microservice-Based Process Flows 429

attached annotation. As an example, the 〈name〉 fork transition represents the
starting point of the fork tasks and must be connected to all the input elements
(p ∈ taskiinput) of all the tasks declared in the listing (taski ∈ forkTasks).
The parameters forkSeconds and joinSeconds define the maximum time (mil-
liseconds) required by the fork and the join operations, respectively. These values
are used to instantiate the time functions of the pattern as shown in Fig. 5b.

Composition and Model Checking – The overall transformation process,
executed by the blueprint compiler, reduces to the application of two steps in
sequence: transformation of each worker task; and then worker composition,
following the definition of transformation patterns associated with the declared
system tasks. The result of this process is a TB net model formally specifying the
behavior of the overall workflow. The formalization enables the usage of verifi-
cation techniques to assess design-time requirements satisfaction. In our current
approach we use interactive simulation (token game) to support validation, and
TCTL model checking to support formal verification. Important properties that
can be checked include deadlock/livelock freedom of the workflow, invariant,
safety, liveness and bounded response-time properties. For instance, the TCTL
properties R1, R2 and R3 reported in Table 1 have been verified on the taxi-
hailing workflow specification.

4.2 Monitoring and Runtime Verification

The generated TB net model is kept alive during operations in order to monitor
the target workflow. We use the RV technique to verify conformance of behavioral
and temporal aspects by first extracting a timed-trace of occurring events, from
the running workflow, and then verifying whether it corresponds to a feasible
execution path in the TB net model. A description of the RV approach follows.

Given a workflow ω, we denote a timed-trace πi as a sequence of observ-
able events πi = {e1, ..., en}, where each event ek represents the execution of
a task (either worker or system) that causes ω to change its global state. An
observable event ek is formally identified by the pair 〈id(ek), time(ek)〉, where id
and time map ek to a identifier (sequence of characters) and a timestamp (in
R≥0), respectively. An example of timed-trace, extracted from the taxi-hailing
workflow, follows.

πi = e0 : 〈api-gateway fork, 450〉, e1 : 〈access-control S2P, 622〉,
e2 : 〈cache S2P, 630〉, e3 : 〈access-control P2C, 1550〉, . . . (1)

Intuitively, the Monitor component is in charge of extracting the timed trace
πi from the execution of ω. The Executor component incrementally builds the
execution path σi from the TB net model depending on the occurring observ-
able events. The conformance relation is checked by the RV module on-the-fly
during the co-execution of the workflow and the model by performing a pairwise
comparison of occurring events in ω and firing transitions in the mdoel.

430 M. Camilli

Table 2. Taxi-hailing
structure.

Conductor blueprint TB net

transformation

#worker #system |P | |T | TRG

tasks tasks #states

9 6 57 61 8854

Table 3. Design-time verification.

Transformation TRG building Model checking

Time (s) Space Time (s) Space Time (s) Space

(KB) (KB) (KB)

2.13 80,304 210.12 273,166 (1) 0.19
(2) 0.38
(3) 0.22

(1) 7,741
(2) 9,522
(3) 7,011

Formally, there exists a conformance relation between πi and σi, iff. for each
ek ∈ πi, there exists mk ∈ σi such that:

tk ≡ id(ek) ∧ time(ek) ∈ [lt(btk), ut(btk)] (2)

To verify such a relation, for each occurring event ek ∈ πi, the RV module
verifies that the model transition t named id(ek) is enabled to fire from the
current marking m ∈ σi. The observed timestamp must conform to possible
firing times of t. If this condition holds, the Executor component updates σi

creating a new reachable marking with the proper timestamp.
The workflow execution is made observable by using AspectJ instrumenta-

tion of the Conductor Decider source code. In fact, the Decider contains a
number of callback used to handle workflow events, like task scheduling, comple-
tion, and failure. The annotation allows the execution of the callback methods
to be intercepted by AspectJ. Thus, callbacks generate observable events for
the Monitor. The Monitor enqueues the event ek into the trace πi, depending
on the workflow id. The RV module computes id(ek) by concatenating the task
reference name and status. Then, it retrieves time(ek) by sampling the time from
the Java virtual machine. If the conformance relation does not hold, a confor-
mance failure exception is thrown. The exception shows information about the
(timestamped) event that generated the exception, along with the set of enabled
bindings that represent in this context the expected events predicted by the
model.

5 Experimental Validation

We validated the overall continuous verification approach by conducting a num-
ber of experiments using our taxi-hailing example both during development and
operation phases. Experiments have been conducted on a machine equipped with
a Intel Xeon E5-2630 at 2.30 GHz CPU, 64 GB of RAM, the Ubuntu 14.04.3
LTS (GNU/Linux 3.13.0-39-generic x86 64) operating system with a completely
fair scheduler, and the Java HotSpot 1.8 64-Bit Server Virtual Machine using
the Garbage-First (G1) collector. Here we briefly discuss some significant results
and we refer the reader to our implementation2 for the replicability of the exper-
iments.
2 The main components of the toolchain are available as open source software at
https://github.com/SELab-unimi/conductor2pn and https://maharajaframework.
bitbucket.io/.

https://github.com/SELab-unimi/conductor2pn
https://maharajaframework.bitbucket.io/
https://maharajaframework.bitbucket.io/

Continuous Formal Verification of Microservice-Based Process Flows 431

Design-Time Verification – Data describing structural properties of the taxi-
hailing blueprint and corresponding TB net transformation are reported in
Table 2. This table reports the TB net model size in terms of number of places |P |
and number of transitions |T | and the TRG size in terms of number of reachable
states. Table 3 reports the execution time (in seconds) and the average mem-
ory consumption (in KBytes) of a number of operations required by verification
at design-time. Data shows the most expensive operation is the TRG building,
while both transformation and verification are orders of magnitude cheaper both
in terms of execution time and memory consumption. The transformation pro-
cess, in particular, is very efficient because its complexity strictly depends on
the model size (i.e., the structural complexity of the blueprint and the TB net)
which is a small structure with respect to the TRG size (∼101 vs ∼103 in our
taxi-hailing example).

Table 4. Runtime verification performance.

Frequency
(#invocations × s.)

AJO
(µs)

AJO jitter
(µs)

MIO
(µs)

MIO jitter
(µs)

DL
(µs)

Memory
(KB)

1 55.0 23.2 24.0 43.5 1488.6 2,113

2 52.5 20.6 23.6 46.4 1205.9 3,488

4 49.4 24.8 25.0 45.3 1022.7 5,055

8 52.8 27.6 28.1 47.4 755.8 10,066

Runtime Verification – Here we discuss experimental results to evaluate the
overhead of the runtime verification module running along with the taxi-hailing
Conductor workflow. Table 4 shows data extracted during runtime verification
activities by varying the frequency, i.e., average number of Monitor invocations
per second. The metrics used during the evaluation include the amount of mon-
itoring overhead added by the instrumentation, the overhead jitter, and the
auxiliary memory usage.

The monitoring overhead is caused by two main factors: the AspectJ instru-
mentation (AJO) and the monitor invocation overhead (MIO). Table 4 reports
the average value of this two variables (in μs) we observed during the execution of
the instrumented Conductor orchestrator by varying the frequency value. The
average AJO (i.e., due to the invocation of AspectJ advices) strictly depends
on the byte code generated from the annotated Decider by using the AspectJ
compiler. The order of magnitude of measured AJO values is approximately 10
µs. The MIO is caused by the amount of time required to enqueue an occurring
event into the synchronized event buffer structure. We observed that both the
MIO and the AJO have the same order of magnitude, however the average MIO
is generally lower (∼50% lower). Namely, the overhead introduced by AspectJ
dominates the overall monitoring overhead. The monitor invocation frequency
impacts on the average MIO. We observed a linear correlation between MIO and

432 M. Camilli

frequency values. The overhead jitter represents the deviance between the mon-
itoring overhead values. Results show that AJO and the MIO jitter values have
the same order of magnitude (i.e., ∼10µs). While the AJO jitter strictly depends
on the mechanics of AspectJ, the MIO jitter is governed by the Monitor status
during the observation of events. We observed MIO bursts whenever observable
events occur while the Monitor is suspended. In fact, in such a case, the MIO
includes the time required by resuming the suspended monitoring thread before
enqueuing a new event into the empty event buffer synchronized structure. The
detection Latency value represents the time between an occurring event and the
verdict (i.e., either conformance checked or conformance failure) computed by
the RV module. A bounded detection latency (DL) allows for fast identification
of conformance failures, thus making the operations team able to promptly react
to degraded situations. During our experimentation we observed the following
trend: the higher the frequency, the lower the DL. In fact, a low frequency implies
very often an empty event buffer structure, thus increasing the overhead required
by resuming a suspended thread. Overall we observed that the RV module is
able to identify a conformance failure with a very small DL (∼1 ms). The mem-
ory overhead is the additional space used by the Java virtual machine to run
and runtime verification components. Table 4 shows negligible auxiliary mem-
ory values (few KBytes on average). We observed a linear correlation between
memory overhead and monitor invocation frequency.

6 Related Work

The approach presented in this paper has been mainly influenced by dif-
ferent related works on formal specification and verification techniques of
(micro)service-based systems. In particular, we leverage formal methods and
integrate them into modern agile practices by following the approach envisioned
in [17].

Although modeling formalisms such as timed-automata [2] or finite-state-
machines [18] support the modeling of temporal or behavioral aspects, PNs-
based approaches are generally more concise and scalable in the specification
of concurrency and distribution [23]. Furthermore, aspects such as messaging,
communication protocols, which are commonly used in distributed architectures,
such as service oriented architectures and microservices, can be difficult to model
with the language primitives of automata-based formalisms [20,23]. PNs repre-
sent common formal models of service-oriented architecture specified by means of
the Business Process Execution Language for Web Services (BPEL) as described
in [19]. However, BPEL transformation approaches cannot be directly applied
in the context of microservices, where new emerging languages and frameworks,
such as Conductor and Jolie [25], represent upward trending choices. Jolie
is a microservices workflow interpreter engine equipped with a formal semantics
in terms of process algebra [14] that can be used for computer-aided verification
at design-time. Another recent line of research aims at leveraging the Event-B
modeling language to define microservices architectural patterns [27]. The app-
roach provides formal models of these patterns with the final goal of improving

Continuous Formal Verification of Microservice-Based Process Flows 433

comprehension and enabling correct-by-construction mechanisms. Our runtime
verification technique has been built upon the approach presented in [8], i.e.,
an event-based Runtime Verification (RV) technique for temporal properties of
distributed systems leveraging TB nets as modeling formalism. As described
in [8] the technique is supported by off-the-shelf tools that outperform compara-
tive other representative state-of-the-art runtime verification Java software tools
such as Java MaC [22], and Larva [9].

7 Conclusion

This paper describes an ongoing research activity on the application of for-
mal methods to continuously support the development and operation phases of
microservices-based workflows. The approach uses a model-driven paradigm and
exploits solid foundation from well-established formal methods. Namely, we use
the expressiveness of TB nets to support continuous verification of Conductor
workflows. Model transformation and design-time verification performed during
development aims at coping with continuously evolving specifications by keep-
ing (verified) artifacts automatically updated. Runtime verification provides a
way to support operation phases by monitoring and checking conformance of
the target application with respect to its own formal specification in order to
enable fast feedback and support high performing DevOps teams. The major
components of our current toolchain have been released as open source software
to encourage replication of experiments.

We are currently in the process of extending the RV technique to support (on-
the-fly) model-based testing along with different scenario control techniques. We
also want to expand the transformation capability by adding stochastic modeling
of the intrinsic uncertain aspects of the surrounding environment.

References

1. Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time systems. In:
[1990] Proceedings. Fifth Annual IEEE Symposium on Logic in Computer Science,
pp. 414–425, June 1990. https://doi.org/10.1109/LICS.1990.113766

2. Bengtsson, J., Yi, W.: Timed Automata: Semantics, Algorithms and Tools, pp. 87–
124. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2 3

3. Camilli, M., Bellettini, C., Capra, L., Monga, M.: CTL model checking in the
cloud using MapReduce. In: 2014 16th International Symposium on Symbolic
and Numeric Algorithms for Scientific Computing, pp. 333–340, September 2014.
https://doi.org/10.1109/SYNASC.2014.52

4. Camilli, M., Gargantini, A., Scandurra, P.: Specifying and verifying real-time self-
adaptive systems. In: 2015 IEEE 26th International Symposium on Software Relia-
bility Engineering (ISSRE), pp. 303–313, November 2015. https://doi.org/10.1109/
ISSRE.2015.7381823

5. Camilli, M.: Petri nets state space analysis in the cloud. In: Proceedings of the
34th International Conference on Software Engineering, ICSE 2012, pp. 1638–1640.
IEEE Press, Piscataway (2012)

https://doi.org/10.1109/LICS.1990.113766
https://doi.org/10.1007/978-3-540-27755-2_3
https://doi.org/10.1109/SYNASC.2014.52
https://doi.org/10.1109/ISSRE.2015.7381823
https://doi.org/10.1109/ISSRE.2015.7381823

434 M. Camilli

6. Camilli, M., Bellettini, C., Capra, L., Monga, M.: A formal framework for specifying
and verifying microservices based process flows. In: Cerone, A., Roveri, M. (eds.)
SEFM 2017. LNCS, vol. 10729, pp. 187–202. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-74781-1 14

7. Camilli, M., Gargantini, A., Scandurra, P.: Zone-based formal specification and
timing analysis of real-time self-adaptive systems. Sci. Comput. Program. 159,
28–57 (2018). https://doi.org/10.1016/j.scico.2018.03.002

8. Camilli, M., Gargantini, A., Scandurra, P., Bellettini, C.: Event-based runtime
verification of temporal properties using time basic Petri nets. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 115–130. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8 8

9. Colombo, Christian., Pace, Gordon J., Schneider, Gerardo: Dynamic event-based
runtime monitoring of real-time and contextual properties. In: Cofer, Darren, Fan-
techi, Alessandro (eds.) FMICS 2008. LNCS, vol. 5596, pp. 135–149. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-03240-0 13

10. Conductor, N.: Conductor documentation (2019). https://netflix.github.io/
conductor/. Accessed Sept 2019

11. Dragoni, N., et al.: Microservices: Yesterday, Today, and Tomorrow, pp. 195–216.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-67425-4 1210.1007/
978-3-319-67425-4 12

12. Ebert, C., Gallardo, G., Hernantes, J., Serrano, N.: Devops. IEEE Softw. 33(3),
94–100 (2016). https://doi.org/10.1109/MS.2016.68

13. Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design. Prentice
Hall PTR, Upper Saddle River (2005)

14. Fokkink, W.: Introduction to Process Algebra, 1st edn. Springer, Heidelberg (2000).
https://doi.org/10.1007/978-3-662-04293-9

15. Fowler, M.: Microservices: a definition of this new architectural term (2019).
https://martinfowler.com/articles/microservices.html. Accessed Sept 2019

16. Ghezzi, C., Mandrioli, D., Morasca, S., Pezzè, M.: A unified high-level Petri net
formalism for time-critical systems. IEEE Trans. Softw. Eng. 17, 160–172 (1991).
https://doi.org/10.1109/32.67597

17. Ghezzi, C.: Formal Methods and Agile Development: Towards a Happy Marriage,
pp. 25–36. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73897-0 2

18. Gurevich, Y.: Sequential abstract-state machines capture sequential algorithms.
ACM Trans. Comput. Logic 1(1), 77–111 (2000). https://doi.org/10.1145/343369.
343384

19. Hinz, S., Schmidt, K., Stahl, C.: Transforming BPEL to Petri Nets, pp. 220–235.
Springer, Heidelberg (2005). https://doi.org/10.1007/11538394 15

20. Iglesia, D.G.D.L., Weyns, D.: Mape-k formal templates to rigorously design behav-
iors for self-adaptive systems. ACM Trans. Auton. Adapt. Syst. 10(3), 151–1531
(2015). https://doi.org/10.1145/2724719

21. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM
2002. LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002). https://doi.org/
10.1007/3-540-47884-1 16

22. Kim, M., Viswanathan, M., Kannan, S., Lee, I., Sokolsky, O.: Java-MaC: a run-time
assurance approach for Java programs. Form. Methods Syst. Des. 24(2), 129–155
(2004). https://doi.org/10.1023/B:FORM.0000017719.43755.7c

23. Lee, W.J., Cha, S.D., Kwon, Y.R.: Integration and analysis of use cases using
modular Petri nets in requirements engineering. IEEE Trans. Softw. Eng. 24(12),
1115–1130 (1998)

https://doi.org/10.1007/978-3-319-74781-1_14
https://doi.org/10.1007/978-3-319-74781-1_14
https://doi.org/10.1016/j.scico.2018.03.002
https://doi.org/10.1007/978-3-319-57288-8_8
https://doi.org/10.1007/978-3-642-03240-0_13
https://netflix.github.io/conductor/
https://netflix.github.io/conductor/
https://doi.org/10.1007/978-3-319-67425-4_1210.1007/978-3-319-67425-4_12
https://doi.org/10.1007/978-3-319-67425-4_1210.1007/978-3-319-67425-4_12
https://doi.org/10.1109/MS.2016.68
https://doi.org/10.1007/978-3-662-04293-9
https://martinfowler.com/articles/microservices.html
https://doi.org/10.1109/32.67597
https://doi.org/10.1007/978-3-319-73897-0_2
https://doi.org/10.1145/343369.343384
https://doi.org/10.1145/343369.343384
https://doi.org/10.1007/11538394_15
https://doi.org/10.1145/2724719
https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.1007/3-540-47884-1_16
https://doi.org/10.1023/B:FORM.0000017719.43755.7c

Continuous Formal Verification of Microservice-Based Process Flows 435

24. Merkel, D.: Docker: lightweight Linux containers for consistent development
and deployment. Linux J. 2014(239) (2014). http://dl.acm.org/citation.cfm?
id=2600239.2600241

25. Montesi, F., Guidi, C., Lucchi, R., Zavattaro, G.: JOLIE: a Java orchestration
language interpreter engine. Electr. Notes Theor. Comput. Sci. 181, 19–33 (2007).
https://doi.org/10.1016/j.entcs.2007.01.051

26. Netflix, I.: The Netflix Service (2019). https://www.netflix.com/. Accessed Sept
2019

27. Vergara, S., González, L., Ruggia, R.: Towards formalizing microservices architec-
tural patterns with Event-B. In: 2020 IEEE International Conference on Software
Architecture Companion (ICSA-C), pp. 71–74 (2020)

http://dl.acm.org/citation.cfm?id=2600239.2600241
http://dl.acm.org/citation.cfm?id=2600239.2600241
https://doi.org/10.1016/j.entcs.2007.01.051
https://www.netflix.com/

IoT-ASAP - 4th International
Workshop on Engineering IoT Systems:
Architectures, Services, Applications,

and Platforms

International Workshop on Engineering IoT
Systems: Architectures, Services, Applications,

and Platforms (IoT-ASAP)

In 2017, we organized the First International Workshop on Engineering IoT Systems:
Architectures, Services, Applications, and Platform (IoT-ASAP 2017). Given its suc-
cess, we organized the second, third, and fourth editions – this year under the special
conditions of the COVID-19 pandemic that affected the entire world.

The Internet of Things (IoT) is characterized by billions of heterogeneous, dis-
tributed, and (intelligent) things – both from the digital and the physical worlds –

running applications and services from the Internet of Services (IoS). Things span, for
instance, simple RFID tags, sensors, actuators, as well as computers, autonomous
robots, and self-driving vehicles. Often, things are connected through heterogeneous
platforms also providing support for, e.g., data collection and management and
applications deployment. Additionally, things can offer their functionalities as
(web) services, facilitating them to interact with each other dynamically.

Since IoT systems are composed of a variety of things and services, the architecture
is a key aspect of their engineering. While designing and managing IoT systems,
services, and platforms has some challenges when it comes to tacking heterogeneity,
adaptability, reusability, interoperability, uncertainty, security, and privacy, it also
takes into account the human in the loop, bringing needs of the systems’ functionalities
and qualities. Additionally, challenges lie in the artificial intelligence area and include,
e.g., data analytics and machine learning. Novel software architecture principles are
needed to overcome all these challenges for IoT systems.

The objective of IoT-ASAP 2020 was, once again, to bring together researchers and
practitioners from several areas (e.g., architecture, IoT, service-oriented computing,
self-adaptive systems, multi-agent systems, data analytics, user interaction, and expe-
rience) to deepen and consolidate the latest R&D trends, principles, challenges, and
(interdisciplinary) approaches for engineering IoT systems. This year, the workshop
received two submissions of which one was accepted. Both papers were reviewed and
discussed by three reviewers from our Program Committee, following a single-blind
process. Furthermore, we invited the authors of the other paper to present and discuss
their ongoing work. Both works were in the area of architecture composition: one about
patterns for IoT APIs and the other about composition in dynamic industrial IoT
systems.

The program included a mixture of presentations as well as extensive interactive
parts with interesting discussions. The attendees of IoT-ASAP 2020 represented an
international mixture of people and the discussions contributed to gain an increased,
shared understanding of the IoT research field, with a focus on software architecture
(e.g., what is (not) part of IoT systems), suitable models for IoT systems considering all
challenges, and properties analysis and enforcement in IoT. We consider this a very
good continuation of this workshop series.

We would like to thank all the people who contributed to make this workshop a
success, including the Program Committee, the ECSA 2020 workshop chairs, Anne
Koziolek and Mauro Caporuscio, all the presenters, authors, and participants. Thank
you!

International Workshop on Engineering IoT Systems 439

Organization

Workshop Chairs

Romina Spalazzese Malmö University, Sweden
Marie Platenius-Mohr ABB Corporate Research, Germany
Ilias Gerostathopoulos Vrije Universiteit Amsterdam, Netherlands
Steffen Becker University of Stuttgart, Germany

Workshop Steering Committee

Romina Spalazzese Malmö University, Sweden
Marie Platenius-Mohr ABB Corporate Research, Germany
Gregor Engels University of Paderborn, Germany
Steffen Becker University of Stuttgart, Germany

Workshop Program Committee

Marco Autili University of L’Aquila, Italy
Antonio Bucchiarone Fondazione Bruno Kessler, Italy
Tomáš Bureš Charles University, Czech Republic
Federico Ciccozzi Mälardalen University, Sweden
Ivica Crnkovic Chalmers University of Technology, Sweden
Paul Davidsson Malmö University, Sweden
David Garlan Carnegie Mellon University, USA
Nikolaos Georgantas Inria, France
Sebastian Götz University of Technology Dresden, Germany
Panagiotis Katsaros Aristotle University of Thessaloniki, Greece
Jan Kofron Charles University, Czech Republic
Heiko Koziolek ABB Corporate Research, Germany
Pankesh Patel National University of Ireland, Ireland
Per Persso Ericsson, Sweden
Christian Prehofer Technical University of Munich, Germany
Alessandro Ricci Universitá di Bologna, Italy
Magnus Standar Ericsson, Sweden
Kenji Tei NII University, Japan

Danny Weyns KU Leuven, Belgium
Uwe Zdun University of Vienna, Austria

Sponsor

Knowledge Foundation (KKS) through the Internet of Things and People research
profile, Malmö University, Sweden.

Organization 441

Defining Design Patterns for IoT APIs

Rasmus Svensson, Adell Tatrous, and Francis Palma(B)

Department of Computer Science and Media Technology,
Linnaeus University, Kalmar, Sweden

{rs222tg,at222ux}@student.lnu.se, francis.palma@lnu.se

Abstract. Smart devices (or things) in the realm of IoT (Internet of
Things) talk to each other and transfer data over the Internet. IoT ven-
dors provide APIs for their clients to send data to the gateways and
application servers. However, there is a lack of guidelines on how a ven-
dor would design its API and resource URIs (Uniform Resource Iden-
tifiers). A generic design solution – design patterns – would make the
API design and development easier for the vendors. Design patterns are
reusable solutions to recurring problems and provide improved reusabil-
ity and understandability. Currently, there are no design patterns for
IoT APIs that IoT vendors can use. In this paper, we analyzed more
than 1,300 URIs from 13 IoT APIs including IBM Watson and Microsoft
Azure, and proposed eight novel design patterns for IoT APIs. We ana-
lyzed two datasets: (1) analysis set with 70% of all our URIs to define
design patterns for IoT APIs and (2) validation set with the remaining
30% of the URIs to verify the prevalence of defined design patterns. We
found that design patterns are prevalent in the IoT domain.

Keywords: IoT · APIs · Design patterns · Reusability ·
Maintainability

1 Introduction

Design patterns are reusable solutions to recurring design problems in software
engineering [3]. Among numerous benefits, design patterns make the systems
easier to understand and maintain. Design patterns work as a common language
for designers and developers, which is essential to build a system efficiently.
Design patterns are also useful in designing and developing Web services, e.g.,
RESTful APIs. RESTful Web services are designed and developed based on the
resources, where resources are identified using URIs (Uniform Resource Identi-
fiers) [9]. The success of a RESTful Web service depends on the ease with which
its clients can adopt the provided API, which includes understandability. Essen-
tially, this would benefit the reusability of the API, which is why design patterns
were proposed originally.

Researchers proposed design patterns for RESTful Web services [10]. How-
ever, those design patterns focus more on ensuring the RESTful-ness of the

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 443–458, 2020.
https://doi.org/10.1007/978-3-030-59155-7_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_32&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_32

444 R. Svensson et al.

APIs, i.e., suggest guidelines to design APIs that make the APIs truly REST-
ful. Moreover, the design patterns for REST APIs proposed in the literature
are micro-level patterns, e.g., how the versioning should be done, the endpoint
should be designed, a service contract can be made uniform, and so on. Thus,
design patterns at the URI-level are still missing. However, there are some con-
tributions to defining design patterns for REST APIs [1].

In the era of the Web, an emerging domain called IoT (Internet of Things)
relies on smart devices or things that communicate over the Internet and talk to
each other using an application layer protocol like HTTP or MQTT. The IoT
paradigm is heavily things-oriented and the design guidelines for APIs should
focus more on IoT-centric architecture [4]. Yet, there are no defined design pat-
terns for IoT APIs. This is the first study that thoroughly analyzes IoT APIs
and proposes relevant design patterns based on a subset of existing IoT APIs.
The prospective IoT vendors can benefit from this by designing and developing
their APIs based on our suggested design patterns, which would increase the
reusability and understandability of their IoT APIs.

Our key contributions include: (1) a thorough manual analysis of more than
1,300 URIs from 13 IoT APIs including IBM Watson IoT and Microsoft Azure;
(2) the definition of eight novel design patterns for IoT APIs that IoT vendors
can use, and that would work as a common language for IoT APIs designers;
and (3) a case study that shows the defined design patterns indeed are prevalent
among the IoT APIs with 84% of URIs mapped to at least one design pattern.

The remainder of the paper is organized as follows: Sect. 2 presents a brief
discussion on relevant studies in the literature. Section 3 details our methodology
and discusses each step in detail. Section 4 presents eight novel design patterns
for IoT APIs, while Sect. 5 shows the results of our case study. Finally, Sect. 6
concludes the paper and highlights our plans.

2 Related Work

Researchers proposed design patterns for REST APIs (Application Program-
ming Interfaces) [1,13]. For example, Abbas and Ojo [1] proposed a set of eight
design patterns by consolidating existing URI design rules and then abstracting
the rules into a set of URI design patterns specifications. However, the proposed
design patterns are domain-specific, i.e., geospatial data that describe informa-
tion related to locations on Earth. For this, the authors used the vocabulary
of inter-linked datasets and best practices for URI construction. Li et al. [6,13]
proposed some design patterns for northbound APIs in the software-defined net-
working, i.e., the APIs between the network applications and the controller in
software-defined networking. However, the goal of this was to ensure that APIs
conform to REST constraints [2]. Besides, the proposed design patterns are not
applicable in other domains, i.e., only for the network applications. Other stud-
ies to improve the URI design include Wilkinson et al. [12], where the authors
proposed the SADI approach (Semantic Automated Discovery and Integration)
that consists of a set of recommendations on how the services should be imple-
mented and described in order to achieve high interoperability. More specifically,

Defining Design Patterns for IoT APIs 445

URIs
Documentation

Data
Separation

Validation
Data

Analysis
Data

URI
Validation

URI
Analysis

Observations
Documentation

Conclusion
Extraction

Design Patterns
Definition

Scheme Authority Base Main Query

30%
70%

Each
URI

Each
APIEach URI

Fig. 1. Our methodology of defining design patterns.

SADI proposed a set of conventions and best-practices for developing APIs in the
bioinformatics domain. Some books discussed the best practices for URI design
[7,10]. However, they defined best practices in the forms of design rules to help
designers in designing readable and understandable URIs at the micro-level, i.e.,
how the version number should be provided, the pagination should be used, name
the resources to avoid confusions. Yet, design patterns at the URI-level are still
missing, which would work as a common language for the designers. McEwen
and Cassimally [8] described the design of the Internet of Things (IoT) at the
application level that combines hardware and software.

Our study is the first to provide a set of usable design patterns for the IoT
APIs regardless of the domain. Moreover, our design patterns can work as a
common language among the API designers. The following section details our
methodology of defining design patterns for IoT APIs.

3 Methodology

As depicted in Fig. 1, our methodology includes the collection of APIs documen-
tation (e.g., URIs), analysis of URIs, definition of design patterns, and finally,
manual validation of the newly defined design patterns with a set of unseen URIs.
The subsequent sections present our patterns defining strategy, our observations,
and the template that we used to present the design patterns.

3.1 Strategy for Design Pattern Definition

The steps undertaken include the following:

– We manually gather more than 1,300 URIs (regardless of the HTTP meth-
ods) from 13 IoT REST APIs, as listed in Table 1. In this first step, we also
randomly split all the collected URIs into two sets: (1) the analysis set with
70% of all URIs to be used for defining design patterns and (2) the validation
set with the remaining 30% of the URIs to be used for validating the defined
design patterns. We perform this split for each IoT API. Table 1 shows the
number of URIs in the analysis and validation set.

446 R. Svensson et al.

Table 1. The list of 13 IoT APIs analyzed in this study.

IoT APIs APIs documentation URLs #URIs

analysis

#URIs

validation

Total

Ambrosus

Gateway

https://ambrosus.docs.apiary.io/# 10 4 14

Cisco IPICS https://developer.cisco.com/site/flare/learn/api/#

flare-api

4 1 5

Clear Blade https://docs.clearblade.com/v/4/api/ 116 50 166

Cube

Sensors

https://my.cubesensors.com/docs 3 1 4

Droplit.io https://docs.droplit.io 142 61 203

IBM Watson https://docs.internetofthings.ibmcloud.com/apis/

swagger/index.html

189 80 269

Losant https://docs.losant.com/rest-api/overview/ 152 65 217

Microsoft

Azure

https://docs.microsoft.com/en-us/rest/api/iothub/ 124 52 176

Particle https://docs.particle.io/reference/device-cloud/

api/

77 33 110

Sonos https://developer.sonos.com/reference/ 46 20 66

thethings.iO https://developers.thethings.io/reference 23 10 33

The Things

Network

https://www.thethingsnetwork.org/docs/

applications/manager/api.html

8 4 12

Toon https://developer.toon.eu/toonapi/apis 18 8 26

Total 912 389 1,301

– We proceed with the analysis set for the definition of the design patterns. At
this point, we analyze and document more detailed information about each
URI in the analysis set. This information includes, for example, the HTTP
request method used for the resource URI, query and path parameters used,
a full description of the nodes involved in the URI, and the position of these
nodes in the URI. A node represents the smallest unit in a URI separated by
a forward slash (/). According to IETF RFC 3986 [5], a URI can be divided
into five sections: Scheme://Authority/Path?Query#Fragment. To be able
to analyze further, we extended this structure by dividing the Path section
into Base and Main sections, and disregard the Fragment section since it
is not found in any URIs. Thus, the resulting URI sections will instead be
Scheme://Authority/Base/Main?Query.

– Based on the newly defined URI structure, we analyze the analysis set for
each API by documenting observations in each section.

– Observations gathered for all the analysis set are grouped, and then, we deter-
mine obvious, common, and repeated patterns among all APIs. Design pat-
terns are concretely defined based on the findings in this step.

– Finally, we use the validation set to validate the patterns, i.e., to find the
prevalence of newly defined design patterns among the unseen validation set.
For this, we manually map each URI in the validation set to see if they fit
any newly defined patterns, and if yes, to which pattern(s). We found that

https://ambrosus.docs.apiary.io/#
https://developer.cisco.com/site/flare/learn/api/#flare-api
https://developer.cisco.com/site/flare/learn/api/#flare-api
https://docs.clearblade.com/v/4/api/
https://my.cubesensors.com/docs
https://docs.droplit.io
https://docs.internetofthings.ibmcloud.com/apis/swagger/index.html
https://docs.internetofthings.ibmcloud.com/apis/swagger/index.html
https://docs.losant.com/rest-api/overview/
https://docs.microsoft.com/en-us/rest/api/iothub/
https://docs.particle.io/reference/device-cloud/api/
https://docs.particle.io/reference/device-cloud/api/
https://developer.sonos.com/reference/
https://developers.thethings.io/reference
https://www.thethingsnetwork.org/docs/applications/manager/api.html
https://www.thethingsnetwork.org/docs/applications/manager/api.html
https://developer.toon.eu/toonapi/apis

Defining Design Patterns for IoT APIs 447

Table 2. The definitions of node types.

Name Description

Access Node A node that is used only to direct the following parts of the URI to a

certain section of the API, i.e., it is not a resource or data that could

be fetched

Parent Node A node that usually represents a category, a resource that includes

resources or an object. In the API and the URI, this node exists in a

hierarchy. Here, we tend to mention only the end of the hierarchy. For

instance, when a resource is accessed by these ways

/parentnode1/{var1}.../parentnodeN/{varN} or

/parentnode1/{var1}.../parentnodeN we only mention

/parentnodeN/{varN} or /parentnodeN

Indicative Node A node that represents an order, query or action to be taken on a

certain resource to apply this action or know a specific information

about this resource, e.g., filtering the results of a request made on a

certain resource. We can think of it as an endpoint that triggers a

function. It is usually a conventional word such as ‘info’, ‘create’, ‘last’,

‘status’, etc. Indicative Nodes can be divided into three categories:

Action Nodes, Filtering Nodes, and Informational Nodes

Action Node A node used to trigger a specific function or apply classic CRUD

functionalities on a resource, using any HTTP request method. In most

cases, these nodes take a form of an order to perform an action, e.g.,

‘create’, ‘clone’, ‘upload’, or ‘consume’

Filtering Node A node used to target a specific group or state of the requested

resources

Informational Node A node used to get information about metadata for a single or multiple

resources. These metadata cannot be directly modified nor accessible

through the resource

most URIs from the validation set fit at least one class of design patterns.
Thus, we show that the design patterns are prevalent in the IoT domain.

3.2 Our Observations on URI Sections

For the Scheme section that incorporates the protocol used in the URI, all ana-
lyzed APIs have one of two following variants:

– HTTP in CubeSensors and The Things Network;
– HTTPS in Ambrosus Gateway, Cisco IPICS, ClearBlade, Droplit.io, IBM Wat-

son, Losant, Microsoft Azure, Particle, Sonos, thethings.iO, and Toon;

The Authority section incorporates the host and, rarely, the port, i.e.,
host:port used in the URI. The Authority section also includes all the possible
variables required to redirect the URIs at specific services, areas, organizations,
and so on. Two variants are found among all the analyzed APIs:

– Static: the Authority section has the same string for all users of the API.
– Dynamic: the Authority section consists of a variable constructed for each

user, e.g., ‘servername’ in Cisco IPICS represents a qualified host name pro-
vided by the user. Alternatively, the Authority section includes a variable in

448 R. Svensson et al.

it that is placed at the beginning of the section, e.g., ‘orgId’ in IBM Watson
that represents a 6-character string ID to identify the organization within
this API. Also, ‘fully-qualified-iothubname’ in Microsoft Azure represents a
unique name string that is provided by the user and follows the API stan-
dards. The ‘region’ in The Things Network represents the area code string
that users provide depending on the geographical area of their application.

The Base section usually incorporates the version of the API, among
other Access Node(s) (as defined in Table 2), that are used in the majority
of the URIs provided by an API. The Base section, in contrast to the pre-
vious sections, does not have to be included in the URI, e.g., as in Ambro-
sus Gateway, Microsoft Azure, The Things Network, and Losant. But if it
does, it can take the whole section as Access Node(s) only. For example, the
/ipics server/handsetservice in all URIs provided by Cisco IPICS, and
/admin or /codeadmin in some of the URIs provided by Clear Blade.

Another form the Base section might take when providing the version of the
API. This could be done by providing the version as a single node, and this
node represents the whole Base section, e.g., /v1 in all URIs of Cube Sensors,
/v1 in most URIs of Particle, and /v2 in all URIs of thethings.iO. The Access
Node(s) and the version of the API could be mentioned together to represent
this section. The version could be:

– A single node after the Access Node(s), e.g., /api/v0002 in all URIs of IBM
Watson, /control/api/v1 in most URIs of Sonos and /toon/v3 in all URIs
of Toon;

– A single node before the Access Node(s), e.g., /v0/api in most URIs of
Droplit.io;

– Multiple nodes after the Access Node(s), e.g., /admin/v/4, /codeadmin/v/2,
/api/v/1, /api/v/2, /api/v/3 or /api/v/4 in some URIs of ClearBlade;

The Query section incorporates all the required and optional query parame-
ters that an API needs or provides in its URIs to make it possible to send, filter,
and sort data and information. The version of the API might be provided in this
section, instead of the conventional way within the Base section. The version is
provided as a required query parameter, e.g., api-version=2018-01-22 in all
URIs of Microsoft Azure. Another behavior found in this Query section is when
the authentication string is added as a required query parameter. For example,
the access token=, in most URIs of Particle. One observation worth mention-
ing for this section is that all query parameters in all the URIs from all APIs
follow the same structure ?key1=value1&key2=value2&... rather than other
forms like ?value1&value2&... or ?value1,value2,..., etc.

The Main is the most crucial section to define the purpose of the URI. Besides
the HTTP request method used in the URI, this section makes the URI unique
for serving its purpose. The Indicative Nodes presented in Table 3 are found in
URIs to apply the CRUD functionalities or other processes on resources and
their metadata. These nodes could be placed inside this section in various ways.

Defining Design Patterns for IoT APIs 449

Table 3. The list of all found Indicative Nodes in analysis set URIs for all APIs.

Indicative nodes Action node Filtering node Informational node

Ambrosus Gateway /info, /create, /list, /modify – /nodeinfo

Cisco IPICS /join, /uploaddata, /leave – /userdirectory

ClearBlade /putpass, /regensystemsecret,

/publish, /reg, /auth, /anon,

/checkauth, /execute, /logout

/history, /failed /count, /connectioncount,

/logs, /userinfo,

/definitions

CubeSensors – – /current

Droplit.io /create, /consume, /undelete,

/reactivate, /activate, /start,

/export, /disable

– /state

IBM Watson /add, /remove, /cancel, /download,

/multiple, /request, /restore

/draft /edgestatus, /connection,

/data-traffic,

/service-status

Losant /clone, /export, /search, /import,

/delete, /query, /truncate,

/setConnectionState,

/mqttPublishMessage, /release,

/bootstrap, /upload, /changePassword,

/disableTwoFactorAuth,

/disconnectGithub,

/disconnectTwitter, /refreshToken,

/transferResources, /verify-email,

/execute

– /archiveData,

/fullDataTablesArchive,

/payloadCounts, /state,

/fullEventsArchive,

/mqttSubscriptionStream,

/linkedResources, /stats,

/logs

Microsoft Azure /applyConfigurationContent,

/testQueries, /abandon, /cancel,

/create, /query,

/checkNameAvailability,

/exportDevices, /importDevices,

/verify, /search

– /statistics

Particle /ping, /device claims,

/password-reset, /test, /release

– /current, /last, /metadata,

/status, /data usage, /impact

Sonos /access, /subscription, /relative,

/mute, /match, /lineIn, /play, /pause,

/seek, /skipToNextTrack,

/skipToPreviousTrack,

/togglePlayPause, /join,

/joinOrCreate, /loadCloudQueue,

/skipToItem, /loadStreamUrl,

/refreshCloudQueue, /suspend,

/getPlaylist

– /playbackMetadata

thethings.iO – – /latest

Toon /states – /flows, /data

For example, an Indicative Node can be placed either before, after, or in the
middle of a chain of Parent Node(s), which are described in Table 2, depending
on the purpose of this node. It is worth mentioning that most of the URIs studied
have a conventional structure that does not have any extra nodes apart from the
Parent Node(s).

3.3 Template for Design Patterns Definition

Based on the observations found in each section (i.e., Scheme, Authority, Base,
Query, and Main) in analysis set URIs, we present the obtained design patterns
in Sect. 4. The template of our design pattern is inspired by the widely known

450 R. Svensson et al.

GoF design pattern template by Gamma et al. [3]. The template includes the
following sections:

– Name: States the chosen name of the design pattern.
– Description: Provides some background about when, why, and how this

pattern could be useful.
– Affected Sections: Mentions the sections that this pattern applies to.
– Forms: Enumerates the variants that this pattern might take in a URI, i.e.,

the different positions that nodes and variables might take in the URI.
– Sources: Mentions the APIs that this pattern was found in.
– Examples: Enumerates some realistic examples from the studied APIs.

In the following section, we present each of the design patterns for IoT APIs.

4 Design Patterns

This section presents eight design patterns that are abstracted from the URIs
from our analysis set. For each design pattern, we also represent them graphi-
cally to show the relationships among the various constituents in the pattern,
i.e., how they are associated to form a design pattern. Tables 4, 5, 6, 7, 8, 9,
10 and 11 describe our eight design patterns using the template presented in

Table 4. Early Directed URI pattern.

Name Early Directed URI (ED URI)

Description To direct the requested URI at a specific or unique subsection of the API,

such as an organization ID, an area code or a custom server name, use a

variable at the beginning of the Authority section followed by a period

Affected sections Authority section

Forms Scheme://{variable}.../Base/Main?Query
Sources IBM Watson IoT, The Things Network, and Microsoft Azure

Examples https://myiothub.azure-devices.net/jobs or http://eu.thethings.network:

8084/applications

/

.

://

/

?

Scheme section

string variable

Base section

Main section

Query sectionrest of the Authority section

https://myiothub.azure-devices.net/jobs
http://eu.thethings.network:8084/applications
http://eu.thethings.network:8084/applications

Defining Design Patterns for IoT APIs 451

Sect. 3.3. The tables also include the graphical representation of each design
pattern. In summary, among our eight defined design patterns: one is related to
the Authority section, one is related to both Base and Query sections, five are
related to the Main section, and one to the Query section.

5 Case Study

We performed this case study with our validation set, which is 30% of our initially
gathered data. To avoid the bias, the validation set was not exposed until all
the URIs in the analysis set are analyzed, and the definition of design patterns
is done. This case study aims to see whether our newly defined design patterns
are meaningful, i.e., whether we can map each URI from the unseen validation
set to the certain design pattern(s) that are defined based on the known analysis
set. We are able to map 84% of the URIs (325 out of 389 URIs) to at least one
defined design pattern, i.e., the IoT design patterns are indeed prevalent.

We follow an iterative and manual validation using the first-past-the-post1

technique by the maximum voting system. For a URI in the validation set, if the
first two authors (who are involved in defining design patterns) agree on a design
pattern, the URI is assigned to that design pattern class. In the case of a tie,
the third author of this paper (not involved in defining patterns) gets involved.

Table 5. Expressive Request pattern.

Name Expressive Request (ER)

Description To perform the classic CRUD functionalities or trigger a specific function

on a resource while clearly stating the purpose of the URI and not just

relying on the method used, add an Action Node in the Main section.

Affected sections Main section.

Forms 1. Scheme://Authority/Base/../ActionNode?Query or 2.

Scheme://Authority/Base/../ParentNode/ActionNode/{variable}?Query
Sources Ambrosus Gateway, Cisco IPICS, thethings.iO, Particle, ClearBlade,

Losant, Droplit.io, IBM Watson IoT, Microsoft Azure, Sonos, and Toon

Examples https://platform.clearblade.com/admin/checkauth or https://ioe.droplit.

io/v0/api/zones/123/behaviors/456/start or https://hermes.ambrosus-test.

com/account2/modify/123

/

://

?

/ / /

1

2

Scheme section

Authority section

Base section

rest of the Main section Query section

Action node

Parent node

string variable

N number to follow the forms of the pattern across the different sections

/

/

1 http://aceproject.org/main/english/es/esd01.htm.

https://platform.clearblade.com/admin/checkauth
https://ioe.droplit.io/v0/api/zones/123/behaviors/456/start
https://ioe.droplit.io/v0/api/zones/123/behaviors/456/start
https://hermes.ambrosus-test.com/account2/modify/123
https://hermes.ambrosus-test.com/account2/modify/123
http://aceproject.org/main/english/es/esd01.htm

452 R. Svensson et al.

Table 6. ‘me’ Accessible Resources pattern.

Name ‘me’ Accessible Resources (MAR)

Description To point at the currently authenticated user when requesting
resources or performing actions that this user has access to, use a
“me” node at the beginning of the Main section

Affected sections Main section

Forms Scheme://Authority/Base/me/..?Query

Sources thethings.iO and Losant

Examples https://api.losant.com/me/refreshToken or https://api.
thethings.io/v2/me/resources/123

/

/

://

Scheme section

Authority section

Base section

rest of the Main section

Query section

"me" node

/

?

We performed the case study on the validation set with 389 URIs, i.e.,
30% of all collected URIs from 13 IoT APIs. Table 12 shows the distribution
of URI counts over the design patterns for each API from the validation set.
The results show that the majority of the URIs follow the Versionized API and
Early Directed URI patterns regardless of the APIs, which is 75% and 31%,
respectively. The Expressive Request pattern is also moderately common among
the APIs. Although ‘me’ Accessible Resources, Metadata Retrievability, and Ver-
sionized Resources are less frequent among the APIs, this might be subject to
the gathered URIs, and thus, the validation set. However, at the beginning of
the pattern defining process, we split the dataset randomly to avoid biasing the
pattern frequency both in validation and analysis set. The quantitative observa-
tion in Table 12 suggests that the thresholds for detecting a pattern are rather
low, i.e., QA is only found in one API (with 2% of URIs), but MAR/PF/VR
in only two APIs, and ED URI in three APIs. Thus, only half of the patterns
included in the paper comply with Will Tracz’s ‘rule of three’ [11].

https://api.losant.com/me/refreshToken
https://api.thethings.io/v2/me/resources/123
https://api.thethings.io/v2/me/resources/123

Defining Design Patterns for IoT APIs 453

Table 7. Metadata Retrievability pattern.

Name Metadata Retrievability (MR)

Description To read information, mostly using the GET method, about metadata for a

single or multiple resources such as: count, state, status or other data that

cannot be directly modified nor accessible through a resource, the URI can

have a meaningful Informational Node at the end of the Main section as

an indication for the requested information

Affected sections Main section

Forms Scheme://Authority/Base/../InformationalNode?Query

Sources Ambrosus Gateway, Cisco IPICS, CubeSensors, thethings.iO, Particle,

ClearBlade, Losant, Droplit.io, IBM Watson IoT, Microsoft Azure, Sonos

and Toon

Examples https://platform.clearblade.com/admin/user/123/roles/count or https://

api.particle.io/v1/sims/123/status

/

/

://

/

/

://

//

??

Informational node

/

//

/://

//

??

Scheme section

Authority section

Base section

rest of the Main section

Query section

Table 8. Proactive Filtering pattern.

Name Proactive Filtering (PF)

Description To target a specific group or state of the requested resource without relying

on a dedicated query parameter, use a Filtering Node in the Main section

Affected sections Main section

Forms 1. Scheme://Authority/Base/../FilteringNode/ParentNode/..?Query or 2.

Scheme://Authority/Base/../ParentNode/FilteringNode/..?Query

Sources ClearBlade and IBM Watson IoT

Examples https://123456.internetofthings.ibmcloud.com/api/v0002/draft/schemas or

https://platform.clearblade.com/codeadmin/failed

?

Scheme section

Authority section

Base section

rest of the Main section

Query section

Filtering node

Parent node

N number to follow the forms of the pattern across the different sections

/

://

//

://://

///

//

/ / /

1

2/ / /

11

22

// //

https://platform.clearblade.com/admin/user/123/roles/count
https://api.particle.io/v1/sims/123/status
https://api.particle.io/v1/sims/123/status
https://123456.internetofthings.ibmcloud.com/api/v0002/draft/schemas
https://platform.clearblade.com/codeadmin/failed

454 R. Svensson et al.

Table 9. Querified Authentication pattern.

Name Querified Authentication (QA)

Description To provide the authentication string of the user in the URI when using the GET

method, instead of providing it in the header or the body when using other methods,

use a dedicated query parameter

Affected sections Query section

Forms Scheme://Authority/Base/Main/?{authentication-key}={authentication-string-value}
Sources Particle

Examples https://api.particle.io/v1/events/123?access token=456789

=

/

://

Scheme section

Authority section

Base section

Main section

/

?

query-key to represent the authentication string

query-value to of the authentication string

To further generalize the outcome from the validation set, we also tag each
URI from the analysis dataset to at least one design pattern. Table 13 shows
the distribution of URI counts over the design patterns for each API from the
analysis set. We found similar pattern usage frequency regardless of the API,
i.e., we still have the Early Directed URI and Versionized API as the most
common pattern, and Expressive Request pattern as the third most frequent
design pattern applied in the design of IoT APIs.

Figure 2 shows the relative frequency of design patterns for the analysis and
validation set. Compared to each other, analysis and validation set seem to
follow the same trend when it comes to the number of URIs using each of the
patterns. The Versionized API pattern that belongs to the Base section and
Early Directed URI pattern that belongs to the Authority section is the most
common design patterns. Design patterns related to the Main section are used
less and are more equally distributed between them. Moreover, the Querified
Authentication pattern that belongs to the Query section also has a low number
of URIs following the pattern.

https://api.particle.io/v1/events/123?access_token=456789

Defining Design Patterns for IoT APIs 455

Table 10. Versionized API pattern.

Name Versionized API (V API)

Description To add the version of the API in a selected single section to differentiate between the

updated types of the API, use either a dedicated version number in the Base section,

that could be put in different places, or a date-string as a query parameter

Affected sections Base and Query sections

Forms 1. Scheme://Authority/v{number}/Main?Query or 2.

Scheme://Authority/AccessNode(s)/v{number}/Main?Query or 3.

Scheme://Authority//AccessNode(s)/v/{number}/Main?Query or 4.

Scheme://Authority/v{number}/AccessNode(s)/Main?Query or 5.

Scheme://Authority/Base/Main?{version-key}={version-data-value}
Sources CubeSensors, thethings.iO, Particle, ClearBlade, Droplit.io, IBM Watson IoT,

Microsoft Azure, Sonos, and Toon

Examples http://api.cubesensors.com/v1/devices or https://123456.internetofthings.ibmcloud.

com/api/v0002/device or https://api.ws.sonos.com/control/api/v1/groups/123 or

https://platform.clearblade.com/api/v/3/code or https://ioe.droplit.io/v0/api/

clients or https://myiothub.azure-devices.net/configurations/123?api-version=2020-

03-13

/

://

=

1.1

1.2

1.3

1.4

2

1

2

Scheme section

Authority section

Base section

Main section

Query section"v" string to represent the version

number of the version

Access node

query-key to represent the version

query-value to of the version

N number to follow the forms of the pattern across the different sections

/

?

/

/ /

/

Analysis Data Validation Data

Fig. 2. Pattern frequency in validation and analysis data.

http://api.cubesensors.com/v1/devices
https://123456.internetofthings.ibmcloud.com/api/v0002/device
https://123456.internetofthings.ibmcloud.com/api/v0002/device
https://api.ws.sonos.com/control/api/v1/groups/123
https://platform.clearblade.com/api/v/3/code
https://ioe.droplit.io/v0/api/clients
https://ioe.droplit.io/v0/api/clients
https://myiothub.azure-devices.net/configurations/123?api-version=2020-03-13
https://myiothub.azure-devices.net/configurations/123?api-version=2020-03-13

456 R. Svensson et al.

Table 11. Versionized Resources pattern.

Name Versionized Resources (VR)

Description To add the version of a resource in the URI to differentiate between the

various types of updated functionalities that the API provides on the

requested resource, use a dedicated number in the same resource node or as

a separate node

Affected sections Main section

Forms 1. Scheme://Authority/Base/../ParentNode{number}/..?Query or 2.

Scheme://Authority/Base/../ParentNode/v{number}/..?Query
Sources Ambrosus Gateway and Microsoft Azure

Examples https://hermes.ambrosus-test.com/account2/info/accountAddress or

https://myiothub.azure-devices.net/jobs/v2/123

/

://

?

/ / /

1

2

Scheme section

Authority section

Base section

rest of the Main section Query section

"v" string to represent the version

Parent node

N number to follow the forms of the pattern across the different sections

/

/ /
number of the version

Table 12. Patterns frequency in Validation Set for all studied URIs.

IoT APIs/Patterns ED URI ER MAR MR PF QA V API VR

Ambrosus Gateway 0 4 0 0 0 0 0 4

Cisco IPICS 0 0 0 0 0 0 0 0

ClearBlade 0 5 0 1 2 0 29 0

CubeSensors 0 0 0 1 0 0 1 0

Droplit.io 0 10 0 0 0 0 61 0

IBM Watson IoT 80 0 0 0 19 0 80 0

Losant 0 4 4 4 0 0 0 0

Microsoft Azure 36 5 0 1 0 0 52 4

Particle 0 1 0 1 0 7 32 0

Sonos 0 11 0 2 0 0 19 0

thethings.iO 0 5 5 1 0 0 10 0

The Things Network 4 0 0 0 0 0 0 0

Toon 0 1 0 1 0 0 8 0

Total 120 46 9 12 21 7 292 9

Percentage 31% 12% 2% 3% 5% 2% 75% 2%

https://hermes.ambrosus-test.com/account2/info/accountAddress
https://myiothub.azure-devices.net/jobs/v2/123

Defining Design Patterns for IoT APIs 457

Table 13. Patterns frequency in Analysis Set for all Studied URIs.

IoT APIs/Patterns ED URI ER MAR MR PF QA V API VR

Ambrosus Gateway 0 6 0 1 0 0 0 6

Cisco IPICS 0 3 0 1 0 0 0 0

ClearBlade 0 12 0 9 5 0 55 0

CubeSensors 0 0 0 1 0 0 3 0

Droplit.io 0 11 0 1 0 0 142 0

IBM Watson IoT 189 10 0 5 41 0 189 0

Losant 0 25 10 12 0 0 0 0

Microsoft Azure 78 22 0 2 0 0 124 5

Particle 0 5 0 7 0 23 72 0

Sonos 0 30 0 1 0 0 45 0

thethings.iO 0 1 9 1 0 0 23 0

The Things Network 8 0 0 0 0 0 0 0

Toon 0 1 0 8 0 0 18 0

Total 275 126 19 49 46 23 671 11

Percentage 30% 14% 2% 5% 5% 3% 74% 1%

6 Conclusion and Future Work

Design patterns are widely accepted as reusable solutions to recurring design
problems with benefits of reusability and easy to understand and maintain [3].
Design patterns can be useful in RESTful Web services and, in particular, for IoT
APIs. The prospective IoT vendors can benefit from IoT APIs design patterns
by designing and developing their APIs based on our suggested design patterns,
which would increase the reusability and understandability of their APIs. In this
paper, we analyzed a set of 13 IoT APIs and proposed eight relevant design pat-
terns based on the existing IoT APIs. Our key contributions are: (1) a thorough
manual analysis of more than 1,300 URIs from 13 IoT APIs including IBM Wat-
son and Microsoft Azure; (2) the definition of eight novel design patterns for IoT
APIs that IoT vendors can use, and that would work as a common language for
IoT APIs designers; and (3) a case study that shows the defined design patterns
are prevalent among the IoT APIs with 84% of URIs in our validation set being
mapped to at least one design pattern.

Our plans include analyzing more APIs and extending our list of design pat-
terns. Our case study needs to be extended with more URIs from the selected
APIs. We also plan to develop a tool that can automatically detect design pat-
terns in the URIs and recommend design patterns for API designers.

Acknowledgment. We would like to thank The Knowledge Foundation that partially
supported this research through two projects with ref no. 20150088 and 20170176,

458 R. Svensson et al.

respectively. This study is conducted with support from Linnaeus University Centre
for Data Intensive Sciences and Applications (DISA).

References

1. Abbas, S., Ojo, A.: Applying design patterns in URI strategies-naming in linked
geospatial data infrastructure. In: 2014 47th Hawaii International Conference on
System Sciences, pp. 2094–2103. IEEE (2014)

2. Fielding, R.T., Taylor, R.N.: Architectural Styles and the Design of Network-based
Software Architectures, vol. 7. University of California, Irvine (2000)

3. Gamma, E.: Design Patterns: Elements of Reusable Object-Oriented Software.
Pearson Education India (1995)

4. Grønbæk, I.: Architecture for the Internet of Things (IoT): API and interconnect.
In: 2008 Second International Conference on Sensor Technologies and Applications
(Sensorcomm 2008), pp. 802–807. IEEE (2008)

5. Network Working Group: Uniform Resource Identifier (URI): Generic Syntax
(2005). https://tools.ietf.org/html/rfc3986

6. Li, L., Chou, W., Zhou, W., Luo, M.: Design patterns and extensibility of rest
API for networking applications. IEEE Trans. Netw. Serv. Manag. 13(1), 154–167
(2016)

7. Masse, M.: REST API Design Rulebook: Designing Consistent RESTful Web Ser-
vice Interfaces. O’Reilly Media Inc., Newton (2011)

8. McEwen, A., Cassimally, H.: Designing the Internet of Things. Wiley, Hoboken
(2013)

9. Richardson, L., Amundsen, M.: RESTful Web APIs. O’Reilly (2013). https://
books.google.se/books?id=ppEVtAEACAAJ

10. Subramanian, H., Raj, P.: Hands-on RESTful Web API Design Patterns and Best
Practices: Design, Develop, and Deploy Highly Adaptable, Scalable, and Secure
RESTful Web APIs. Packt Publishing (2019)

11. Tracz, W.: Where does reuse start? ACM SIGSOFT Softw. Eng. Notes 15(2),
42–46 (1990)

12. Wilkinson, M.D., Vandervalk, B., McCarthy, L.: The semantic automated discovery
and integration (SADI) web service design-pattern, API and reference implemen-
tation. J. Biomed. Semant. 2(1), 8 (2011)

13. Zhou, W., Li, L., Luo, M., Chou, W.: REST API design patterns for SDN north-
bound API. In: 2014 28th International Conference on Advanced Information Net-
working and Applications Workshops, pp. 358–365. IEEE (2014)

https://tools.ietf.org/html/rfc3986
https://books.google.se/books?id=ppEVtAEACAAJ
https://books.google.se/books?id=ppEVtAEACAAJ

SASI4 - 2nd Workshop on Systems,
Architectures, and Solutions

for Industry 4.0

Workshop on Systems, Architectures,
and Solutions for Industry 4.0 (SASI4)

Industry 4.0 (I4) is the next software revolution from computerized systems to digi-
talization of industry solutions, which aims at efficient manufacturing of small lot sizes,
even lot size one, by transforming the traditional PLCs (programmable logic con-
trollers) based interleaved structures into logical artifacts that are easy to change,
maintain, and adapt. To enable this, the fourth generation of the industrial revolution
attempts to automate as much as possible all industry processes and manage an
unprecedented amount of data where cyber-physical systems (CPSs) interact with
humans to produce software-intensive systems more efficiently. From a software
engineering perspective, such complex systems must be produced in many cases using
continuous software engineering approaches and multiple releases demanding contin-
uous integration and delivery. From the software architecture point of view, flexible
and open architectures are required to integrate the diversity of platforms and tech-
nology in support of I4 processes and manage the vast amount of data required by
complex engineering processes.

Also, the realization of smart factories demands high digitalization and integration
of each phase of the production process, the de-hierarchization of the traditional
automation pyramid, and the reconsideration of the different entities from the pro-
duction process, e.g., shop flop operators, factory management, providers of raw
materials, and electromechanical and computational equipment like robots, logistics
companies, and end users. Nowadays, many companies are replacing or upgrading old
rigid architecture approaches in favor of the greater flexibility supported by platforms
(e.g., microservice architectures) to provide higher scalability, but also domain-specific
architectures (e.g., robotics and automotive domains) demand new technologies and
software solutions to produce more efficient and versatile systems.

This workshop is relevant to the software architecture field to understand how to
design and maintain complex software architectures in different application domains
where multiple stakeholder’s concerns and multiple quality attributes must coexist to
produce complex systems. Along with the need to create more open systems, the
requirements will evolve often during the lifetime of the systems, either because new
functionality is required that was not anticipated during creation of the systems or
because new needs are identified based on requirements monitoring. This workshop
aims to increase the awareness combining software architecture and complex systems
engineering processes to understand how modern systems under the I4 umbrella must
be designed and efficiently built at lower costs.

In this edition we received four full submissions (a lower number than usual
perhaps caused by the COVID-19 pandemic) and we accepted three out of them. The
papers where each reviewed by three Program Committee members and selected based
on their novelty and on their relevance to the scope of the workshop.

Organization

Workshop Chairs

Rafael Capilla Rey Juan Carlos University, Spain
Klaus Schmid University of Hildesheim, Germany
Patrizio Pelliccione University of L’Aquila, Italy
Andreas Burger ABB Corporate Research, Germany
Pablo Oliveira Antonino Fraunhofer IESE, Germany

Workshop Program Committee

Christian Berger University of Gothenburg, Sweden
Hongyu Pei Breivold ABB Corporate Research, Sweden
Juan Luis Carús TSK, Spain
Jan Bosch Chalmers University of Technology, Sweden
Christoph Elsner Siemens AG, Germany
Thomas Fogdal Danfoss, Denmark
Sten Grüner ABB Corporate Research Germany, Germany
Mike Hinchey Lero, Ireland
Frank Van Der Linden Philips, The Netherlands
Thomas Kuhn Fraunhofer IESE, Germany
Jabier Martinez Tecnalia, Spain
Frank Schnicke Fraunhofer IESE, Germany
Dimitrios Serpanos University of Patras, Greece
Elisa Yumi Nakagawa University of Sāo Paulo, Brazil
Rick Rabiser Christian Doppler Lab. MEVSS, JKU Linz,

Austria

Additional Reviewer

Virendra Ashiwal

Access Control for Smart Manufacturing
Systems

Björn Leander1,2(B) , Aida Čaušević1 , Hans Hansson1 ,
and Tomas Lindström2

1 Mälardalen University, Väster̊as, Sweden
{bjorn.leander,aida.causevic,hans.hansson}@mdh.se

2 ABB Industrial Automation, Process Control Platform, Väster̊as, Sweden
tomas.lindstrom@se.abb.com

Abstract. In the ongoing 4th industrial revolution, a new paradigm
of modular and flexible manufacturing factories powered by IoT devices,
cloud computing, big data analytics and artificial intelligence is emerging.
It promises increased cost efficiency, reduced time-to-market and extreme
customization. However, there is a risk that technical assets within such
systems will be targeted by cybersecurity attacks. A compromised device
in a smart manufacturing system could cause a significant damage, not
only economically for the factory owner, but also physically on humans,
machinery and the environment.

Strict and granular Access Control is one of the main protective mech-
anisms against compromised devices in any system. In this paper we
discuss the requirements and implications of Access Control within the
context of Smart Manufacturing. The contributions of this paper are
twofold: first we derive requirements on an Access Control Model in the
context of smart manufacturing, and then asses the Attribute Based
Access Control model against these requirements in the context of a use
case scenario.

Keywords: Access control · Industrial automation and control
systems · Smart manufacturing · Industry 4.0 · Cybersecurity

1 Introduction

Smart manufacturing [1,2] is a development of traditional manufacturing imply-
ing a shift from production of big series of identical units towards a highly
dynamic manufacturing environment that is tuned to extreme customization,
fluctuating markets, and specific customer needs. The technology to enable this

This work is supported by the industrial postgraduate school Automation Region
Research Academy (ARRAY), funded by The Knowledge Foundation. The authors
would like to acknowledge Andrea Macauda and Axel Haller for valuable discussions
and feedback.

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 463–476, 2020.
https://doi.org/10.1007/978-3-030-59155-7_33

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_33&domain=pdf
http://orcid.org/0000-0003-2488-5774
http://orcid.org/0000-0001-5293-3804
http://orcid.org/0000-0002-7235-6888
https://doi.org/10.1007/978-3-030-59155-7_33

464 B. Leander et al.

dynamic behavior includes an increasing amount of interconnected sensors, actu-
ators and related services in the manufacturing environment, in combination
with e.g., cloud technologies, data lakes, artificial intelligence, etc., for inference
and aid to decision-makers [3].

In the dynamic smart manufacturing environments of today and tomorrow,
the traditional view of the manufacturing networks being air-gapped and pro-
tected by proprietary technologies no longer holds [4]. Considering that a great
number of these devices introduced in a smart manufacturing system have wire-
less connectivity, are living on the edge of the network, possibly with direct
connections to unprotected networks, there is an increasing risk that any of
these devices become compromised. This has been illustrated in a number of
attacks targeting industrial systems over the last ten years [5]. To protect the
manufacturing environment from compromised devices, there is a need to intro-
duce a number of security measures in the form of e.g., Intrusion Detection
Systems (IDSs), end-to-end security for sensitive data, malware detection and
fine-grained access control.

In this article we focus on access control, as one of the basic security func-
tions in any system, enabling access restriction to operations on resources only to
legitimate authorized subjects. The models for access control that are currently
in use are tailored to authorize human subjects performing operations on digital
assets, mainly supporting use-cases for rather static sets of resources and subjects
or roles. These traditional models do not provide a high level of flexibility for
expressing fine-grained policies [6], as frequently needed in smart manufacturing.
Attribute Based Access Control (ABAC) is a relatively new model for policy for-
mulation, potentially useful for machine-to-machine authorization [7,8]. Our aim
in this paper is to derive requirements on access control in smart manufacturing
systems, and evaluate ABAC against those requirements.

The remainder of this paper is structured as follows: Background is presented
in Sect. 2. In Sect. 3 we identify a compilation of requirements on access control.
In Sect. 4 a use cases scenario for smart manufacturing is presented, including
suggestions on policy formulations for ABAC in this context. A discussion on
how ABAC relates to the requirements are provided in Sect. 5. Scientific work
related to our findings is presented in Sect. 6. Finally the work is summarized and
some remaining challenges and future areas of research are described in Sect. 7.

2 Background

2.1 Smart Manufacturing Concepts

The term smart manufacturing is used for describing the 4th industrial revolu-
tion from a manufacturing perspective, with origin in a joint work by several
agencies in the US [3]. Smart manufacturing is sometimes also referred to as
Cyber Physical Production Systems (CPPS) [9] and Intelligent Manufacturing
Systems (IMS)1.

1 More information available at http://ims.org.

http://ims.org

Access Control for Smart Manufacturing Systems 465

In general, smart manufacturing encompasses the whole manufacturing chain,
from supply to production and logistics. Data collected from sensors within the
process are used for advanced data analytic in order to improve the overall oper-
ations. A key aspect of smart manufacturing is to provide flexibility and dynam-
icity in the manufacturing environment by modularization of process steps, so
that process steps can be combined and re-combined based on current produc-
tion requirements [10]. Integrating modular process steps in the manufacturing
system enables Workflow as a Service (WfaaS), where vendors of production
equipment could sell pre-fabricated process-steps as a service, allowing the fac-
tory owners to easily adapt to fluctuating market demands.

2.2 Cybersecurity Threats to Smart Manufacturing Systems

The increasing amount of connected and interconnected devices required for the
data acquisition together with external stakeholders in need to access the data,
considerably increases the attack surfaces of a smart manufacturing system.
Furthermore, as different modules within the system are dynamically connected
to each other, the authorization of privileges between devices and services must
be equally dynamic to allow continuous secure operation. According to Tuptuk
et al. [4], cybersecurity is rather seen as a characteristic than as a design principle
within the development of smart manufacturing systems, a misconception that
may lead towards many systems being insufficiently protected.

The CIA-model is often used to describe desired security characteristics of a
system (Confidentiality, Integrity and Availability [11]). In the context of smart
manufacturing, a cybersecurity attack may breach any of these characteristics,
e.g., leading to possible loss of Intellectual Property (IP), costly errors in produc-
tion due to unreliable or faulty data, and down-time or potentially safety-related
threats to production machinery, workers and the environment.

2.3 Access Control Definitions

There are a number of guiding principles for access control, the most notable
ones being [12]:

1. Least privilege, requires that a subject should only have the minimum
possible privileges needed to perform its tasks.

2. Complete mediation requires that any access to a resource must be moni-
tored and verified.

Following these principles in a smart manufacturing system will help min-
imize the harm an adversary can do after gaining an initial foothold within
the system, and even shorten the detection time, since failed access attempts
typically are logged and monitored.

Sandhu et al. [13] describe access control as being comprised of models at
three different layers, Policy, Enforcement and Implementation (PEI). Policy
models are used to formalize high level access control requirements, enforcement

466 B. Leander et al.

level models describe how to enforce these policies from a systems perspective,
and the implementation level models show how to implement the components
and protocols described by the enforcement model. Following the PEI-model,
this work is focusing on the policy-layer models, meaning that we will discuss
how rules can be expressed, rather than mechanisms to enforce the rules.

A prerequisite for robust access control is reliable authentication of entities.
In this work we assume that a trustworthy solution for authentication is used.

Historically, Mandatory Access Control (MAC) and Discretionary Access
Control (DAC) have been the two main paradigms within access control [14].
MAC is based on security classifications of resources, combined with security
clearances for subjects, e.g., top-secret content only readable for subjects with
the highest security clearance. In DAC on the other hand, the privileges are
defined as a relation between the resource and subject, often with the subject
allowed to transfer its privileges.

Role-Based Access Control (RBAC) is a model building on principles from
both DAC and MAC, where subjects are assigned to one or several roles that
may be hierarchically ordered. Privileges are derived from the roles rather than
from the subject. In a number of studies it has been shown that the traditional
access control schemes are not sufficient for, e.g., cloud-connected cyber physical
systems [15] and IIoT [16].

2.4 Attribute Based Access Control (ABAC)

A relatively novel scheme in access control is ABAC. In the work of Yuan and
Tong [17], the application is aimed at providing access control in web services.
They show that the granularity of the traditional RBAC scheme is not fine
enough, in order to formulate certain policies easily expressed in natural lan-
guage. The following example is extracted from [17], and provided here to intro-
duce ABAC and illustrate that such natural language rules are difficult to express
using the traditional Access Control models:

Let us assume we need to grant a user access to movies in an online streaming
service. In this example we consider a movie rating (R, R-13, G) and freshness
(New release, Normal), mapped to the user age and subscription category (Bud-
get, Premium). The following to rules apply for a user to be allowed to watch a
movie:

1. To watch movies with rating R, user must be over 17 years old, and for movies
with rating R-13, over 12 years.

2. To watch a New release, the user subscription category must be Premium.

In ABAC, the subject s’s right to perform operation o on a resource r in
environment e is calculated based on attributes of the subject, resource and
environment, As, Ar, Ae respectively:

allowo(s, r, e) ←− f(As, Ar, Ae)

Access Control for Smart Manufacturing Systems 467

For the movie streaming service, the following policy rules can be expressed,
based on the viewer and movie attributes:

f1(s, r, e) = (rating(r) = G) ∨ (age(s) > 12 ∧ rating(r) = R-13) ∨ (age(s) > 17)

f2(s, r, e) = (freshness(r) = normal) ∨ (category(s) = premium)

allowing for rules to be further combined:

allowview(s, r, e) = f1(s, r, e) ∧ f2(s, r, e).

Several works on ABAC have been conducted, including two major stan-
dardization efforts in the area: eXtensible Access Control Markup Language
(XACML) by OASIS [18], and Next Generation Access Control (NGAC) by
NIST [19]. A comparison between NGAC and XACML is provided by Ferraiollo
et al. [20].

Authorization architectures for ABAC typically contain a number of standard
components [8,18,20]: A subject can only access a resource through the the
Policy Enforcement Point (PEP), which acts as a mediator for any privilege
request. The PEP queries an authorization decision from the Policy Decision
Point (PDP) that reads policy information from the Policy Information Point
(PIP), which has access to Policy Data. An administrator maintains Policy Data
through a Policy Administration Point (PAP).

3 Access Control Requirements on Smart Manufacturing

In this section we formulate a list of requirements on access control for a smart
manufacturing system. To provide such a list we have studied the literature,
using an adapted version of the method presented by Kitchenham [21]. We have
selected relevant requirements guided by the basic principles for access control.
For details regarding the literature review and used protocol we refer the reader
to [22].

3.1 Requirements Related to a Traditional Manufacturing System

A traditional manufacturing system can be described as an Industrial Automa-
tion and Control System (IACS) which typically supports safety- and security
critical processes [23]. IACS are used to control and monitor a wide range of
different types of physical processes, e.g., in chemical industries, power plants,
and discrete manufacturing.

An illustration of a generic traditional manufacturing system architecture
can be seen in Fig. 1a, inspired by the Purdue Enterprise Reference Architecture
(PERA) [24]. These systems contain a number of essential functions that cannot
be disrupted, and that are required to maintain health, safety and availability of
the equipment under control. In principle, a security measure must not result in
a state of the system that could lead to Health, Safety or Environmental (HSE)
consequences. A number of requirements on the access control arise from the
need to support essential functions [23]:

468 B. Leander et al.

R1 Availability: The manufacturing system should be operable even if some
components fail, e.g., a failed server or a disruption in network connec-
tivity between shop floor and cooperate network should not interfere with
production.

R2 Security measures must not have a negative impact on essential functions.
Specifically, HSE-related incidents shall not happen as a result of loss of
control due to lack of privileges.

Non-Repudiation is also an important characteristic of access control that is
required by e.g., IEC 624432. We choose not to list it as a requirement in this
context, as the focus of this work is on mechanisms for access control at a policy
level and non-repudiation refers to logging and auditing of execution of granted
privileges.

Field Functions
(Level 1)

Automation Functions,
Supervisory Control

(Level 2)

Manufacturing Operations
Management (MoM)

(Level 3)

Enterprise
Functions
(Level 4)

(a) A traditional manufacturing system
architecture based on PERA

Device

Device
Device

Service Eng.Customer

Shop floor

Product

Cloud Service

Scheme

(b) A simplistic smart manufacturing
scenario

Fig. 1. An overview of a traditional and a smart manufacturing architecture. (a) PERA
illustration and (b) SM scenario

3.2 Requirements Related to Smart Manufacturing Systems

A number of requirements on access control are shared between the smart
manufacturing domain and other dynamic systems of interconnected cyber-
physical systems. These requirements arise through the evolution of the tra-
ditional automation pyramid towards a service oriented and decentralized sys-
tem [10,15]:

R3 Diversity: A system should provide support for several different kinds of
applications to be integrated throughout the whole life-cycle. This implies
that multiple categories of users, usages of services and production related
data shall be supported by the system.

2 Part 3-3: System security requirements and security levels, Ed 1.0, 2013.

Access Control for Smart Manufacturing Systems 469

R4 Scalability: A system should be scalable with regards to users and policies.
Management of a huge amount of devices, services and users must be simple
and cost efficient, still providing necessary transparency.

R5 Flexibility: The access control mechanism shall provide an easy way of defin-
ing new policies.

R6 Efficiency: The computational cost of inferring privileges should not nega-
tively impact the performance of the system as a whole.

From [16,25–27] we have derived the following requirements specific to the
smart manufacturing domain:

R7 Temporal policies: The required privileges to perform a task may shift
between each batch, or even between each produced unit. The access control
model shall be equally flexible, following the principle of least privilege.

R8 Logical ordering: Production in a manufacturing environment is usually
described as a workflow, meaning that the order of the actions, and the
number of times an action can be executed could be limited. The access
control model shall be able to express such logical ordering at a policy level.

3.3 Generic Access Control Requirements

In the following we describe generic access control requirements not covered in
earlier sections. These requirements are the result of discussions with industrial
experts:

R9 Transparency: From the perspective of an administrator, it must be easy to
deduce current state of granted privileges, and historical changes to privi-
leges. This transparency requirement could also extend to other privileged
users.

R10 Delegation: For certain scenarios, it should be possible to transfer privileges
from one subject to another through delegation.

4 A Smart Manufacturing Scenario

In this section we describe a generic smart manufacturing scenario to be analyzed
from an access control perspective. We provide a discussion on how ABAC can
be applied to the scenario in Fig. 1b. The scenario essentially follows the set-up of
a service-driven architecture for manufacturing, described in [10,26], connected
to the IEC 61499 [28].

Let us assume that a product p is to be manufactured. p is associated to a
set of devices D that must perform tasks on p for it to be finalized. In order
to perform the actions there is a need for a device d ∈ D to share information,
and execute operations on one or more other devices in D, according to the
manufacturing scheme defined specifically for p.

The customer c wants to read information from the system for data related
to product p via a cloud service, e.g., production status and expected delivery

470 B. Leander et al.

time. A 3rd party service organization o is responsible for maintaining some
of the devices in D, and must therefore be able to read status and perform
service-related actions on the devices, e.g., reading health records and performing
firmware upgrades.

In practice, the rules we describe in the following would be implemented using
e.g., XACML [18]. For brevity, we choose to describe only the logical expres-
sions of the policies, following the formalism introduced in [17]. The following
attributes will be used in the ABAC policy formulations below:

– batchid(x)3 is the value of the batch attribute, related to a produced entity p
or related to the current context of execution for a device d.

– batches(e) is the set of all active batches in the manufacturing environment e.
– purchases(c) is the set of batches that customer c has purchased. In this

example we assume a one-to-one connection between customer and batch.
– contractid(d) is the value of the service-contract attribute related to a

device d.
– contracts(o) is a set of contracts under which the service organization o is

working.
– idle(d) is a Boolean attribute indicating that device d is currently idle if true

or busy if false.
– ∗ is used to indicate an unassigned attribute value.

Given the example, we are able to show some interesting characteristics
regarding access control in smart manufacturing systems.

C1 Machine to Machine (m2m) cooperation is limited by the current
entity/batch attribute.

C2 Customer outside organization read rights are limited by a purchase.
C3 Service organization personnel (possibly 3rd party) having read and e.g.,

firmware-update rights limited by a contract.

Using ABAC, a policy to satisfy characteristic C1 could be expressed as:

allowop(d1, d2, e) = (batchid(d1) = batchid(d2)) ∧ batchid(d1) ∈ batches(e) (1)

Stating that the privilege to perform the operation will be granted only if the
devices d1 and d2 have the attribute batchid assigned with the same id, and
that id is among the active batches in the environment. Similarly, the customer
could be granted privileges based on a combination of attributes of the data
and attributes of the customer, which would allow a very fine-grained model
for authorization (i.e., related to characteristic C2). One simple example of an
authorization rule could be:

allowread(c, p, e) = batchid(p) ∈ purchases(c) (2)

Note that in this specific rule, as well as the following, no environment attributes
are used. Entity e will still be used in the declaration of the formula for con-
sistency reasons. The above equation is stating that reading information about
3 Here x is used as variable representing either an entity p or a device d.

Access Control for Smart Manufacturing Systems 471

product p is allowed if the batchid for p is present in the set of purchases that the
customer c has done. Typically such information is retrieved through filtering,
i.e., the privilege is enforced by the application or API implementation, which
is a much weaker condition than granting privileges through the access control
mechanism. In fact, following the traditional practice, the access control mech-
anism will grant read-access to any valid customer and rely on the application
to perform the correct filtering.

The privileges of personnel from the service organization (i.e., related to char-
acteristics C3) is an interesting issue, since there may be many factors within the
manufacturing environment that should prevent interruption or additional load
on devices or services related to direct operation. In a classical service operation
scheme, privileges to perform maintenance related operations may not be allowed
except when the production unit is halted for planned maintenance or similar.
However, in a smart manufacturing environment, this may be a common case,
especially for WfaaS scenarios, i.e., it is up to the service organization to make
sure that the workflows are running as needed. In these cases, an ABAC policy
could be used to minimize the risk of disturbing ongoing operations. For exam-
ple, an attribute indicating that the device is currently in use could inhibit the
right to perform disruptive actions, and attributes indicating a need to perform
an update or a similar disruptive maintenance action could inhibit the device
from being assigned to a batch. The following rule could be set up for intrusive
service operations:

allowop(o, d, e) = (contractid(d) ∈ contracts(o)) ∧ idle(d) (3)

Stating that the operation is allowed if the service contract for the device d
is in the set of contracts the service organization o is working under, and d is
currently idle.

5 Fulfillment of Requirements

A summary of the requirements and the fulfillment levels with regards to ABAC
is provided in Table 1. The fulfillment level Fulfilled denotes that ABAC is well
suited to fulfill the requirement; Possible denotes that fulfillment is possible,
but depends on the implementation; and Unclear denotes a requirement where
the fulfillment level is difficult to assess from available documentation. In the
following we discuss the reasoning behind the fulfillment assessment.

ABAC is able to express fine-grained rules due to the use of attributes on
subjects, objects and the environment, as well as the possibility to set up policy-
rules as functions of these attributes. This granularity and expressiveness will
allow a very high level of flexibility, leading to fulfilling requirement R5. As
illustrated in the Sect. 4, it seems possible to express rules in ABAC so that the
principle of least privilege is satisfied, something that would be more challenging
using e.g., RBAC. The requirement R3 on diversity is also fulfilled, provided
that policies can be easily added and adapted for different applications and user

472 B. Leander et al.

Table 1. Requirements fulfillment for ABAC

ID Requirement Description Fulfillment

R1 Availability Work in spite of degraded functionality Possible

R2 Critical events No HSE impact Possible

R3 Diverse Many user categories and usages of services and
data

Fulfilled

R4 Scalable Management of huge amount of devices,
services, users

Unclear

R5 Flexible AC must allow easy policy creation for new
scenarios

Fulfilled

R6 Efficient Cost of AC cannot impact system performance Unclear

R7 Temporal policies Quick shift in policies, due to customization Fulfilled

R8 Logical ordering Workflow based access control Unclear

R9 Transparency Administrator to see what privileges are granted
and why

Possible

R10 Delegation Privileges transferable through delegation Possible

categories. Here the enforcement and implementation considerations are of great
importance.

The reasoning used for R5 is also valid for requirement R7, as it arises as
a result of quick shifts in policies, due to e.g. customization. Hence, it can be
fulfilled since it is possible to express very fine-grained rules based on attributes.
As demonstrated in the scenario description, it is possible to express policies so
that they are meaningful in the context of shifting production schemes.

The management effort of an ABAC-model may not scale well with increasing
size and complexity of the system (requirement R4). It may be the case that
policy rules can be expressed in such a general way, as suggested in Sect. 4, but
there are certainly more complex scenarios including a potentially larger set of
rules. Any privilege request needs to evaluate all rules applicable for that specific
request, demanding logic for handling combinations of rules. In a system with
a complex set of policies, the implications of adding or altering a policy can
be difficult to foresee. Attribute provisioning is also a management issue in a
dynamic system. There is a need for trusted Attribute Authorities to provide
the integrity of claimed attributes.

A low computational cost (requirement R6) is not a general property of
ABAC. Depending on the implementation and how the policy base is formulated,
the operation of granting or denying a privilege request may be computationally
expensive. In case of using e.g., XCAML [18] for policy expression, there does
not seem to be a bounded cost for inference [20,29]. The total cost of inference
must also include the time for attribute enumeration, which may need additional
communication rounds with Attribute Authorities.

Requirement R1 implies that there should be a distributed architecture
for access control in smart manufacturing applications, possibly including redun-
dancy for key entities. This characteristic is uncommon in most available access

Access Control for Smart Manufacturing Systems 473

control enforcement models. An ABAC architecture consist of several author-
ities, which all must be available to provide continuous privilege enforcement.
However, it is possible to fulfill the requirement of a functioning access control
mechanism during degraded mode using an enforcement architecture with local
caches for attributes and policies that can be used in isolation. Another possi-
bility is using a distributed architecture of policy- and attribute-authorities.

Requirement R2 concerns the possibility for a system to stop (e.g., operator
lock-out during a critical scenario), and could possibly be met by ABAC using
an environment attribute indicating a system state within the plant. This would
however not be the first option for designing the system to protect it from HSE-
related incidents. Instead, secondary control-units are typically used for essential
functions, e.g., an emergency stop. Those controls are not dependent on standard
user authentication and authorization, and will have a very limited functionality.
Therefore, the fulfillment of this requirement can be seen as possible, even though
it is not directly dependent on the access control model.

Requirement R8 is stating that the access policies should follow the work-
flow in the process. This is currently not supported by ABAC. There are mecha-
nisms in e.g., NGAC and UCON [7] called obligations, which may alter privileges
based on previous policy decisions. However, it is not clear if obligations can be
used to describe a state-machine altering attribute assignments to mimic a pro-
cess workflow.

A generic requirement on an access control model is to provide transparency
(requirement R9). For ABAC it is unclear if such functionality is available
neither with regards to an administrator, nor to a user. A solution on the
implementation-model level could possibly be able to answer to the transparency
needs of an administrator, but it is not intrinsic to the access control scheme, as
in the case with e.g., the access control list (ACL) ability to perform per-resource
review, or the RBAC ability to perform a per-subject review.

To be able to transfer privileges between subjects, as stipulated by require-
ment R10, is common during delegation in industrial systems. In the case of
ABAC, this would require a subject to be able to transfer a set of attributes to
another entity, as the privilege inference is based on attribute values. In principle
there is nothing in ABAC that specifically prohibits this. However, it may prove
a challenge in practice, as the subject needs to know precisely which attributes to
transfer in order to achieve the intended privilege delegation. Detailed knowledge
on how the policy-rules are expressed is needed to perform privilege delegation
in ABAC. Looking at the examples from our use case scenario in Sect. 4, it would
be quite easy to allow delegation by e.g., transfer the contractid attribute to a
service engineer temporarily working with maintenance under a specific contract,
but there are more complex scenarios in which several rules concurrently may
influence a privilege decision. Furthermore, when transferring attributes there is
a need to limit the usage of the attributes to the actual scope of the delegation,
otherwise there is an apparent risk that the attribute transfer will grant other
privileges than was intended. Our conclusion is that additional mechanisms in
the enforcement and implementation layers are needed to make this requirement
practically achievable.

474 B. Leander et al.

6 Related Work

Salonikas et al. discuss the concept of access control requirements in a dynamic
industrial system with focus on the wider concept of IIoT [16], while Lopez
et al. target cloud connected cyber physical systems [15]. Both articles discuss
different access control models at the policy level, very similar to our work.
However, these articles do not consider modular system characteristics specific
for a smart manufacturing, as we do.

Watson et al. [6], discuss the use of different access control models in conjunc-
tion with OPC UA. They advocate the use of ABAC or a combination of ABAC
and RBAC as a good match for protection against privilege escalation for both
inside and outside attackers within IACS. Their work can be seen as a suggestion
for the enforcement layer, whereas our work provides guidance applicable to the
policy layer.

Some of the existing work present variations of ABAC suitable in differ-
ent domains. Lang et al. [8] suggest a proximity based access control (PBAC),
well suited for intelligent transportation systems. It originates from the ABAC
model, but uses the mathematical proximity between subject and resource as
one of the deciding factors for granting privileges. To derive policy rules, Model
Driven Security (MDS) is used. MDS usually relies on a modeling tool in which
the policy can be described at a high level of abstraction and the actual enforce-
ment rules are then generated based on that model. Park and Sandhu [7] present
the Usage CONtrol (UCONABC)-model, which can also be seen as an extension
of the ABAC model with obligations. In this approach, an access-control event
could alter attributes or conditions for future access controls. This mutability of
attributes, or a variation thereof, could possibly be used to model the behavior of
temporal workflows required by smart manufacturing. Next Generation Access
Control (NGAC) [20] is the NIST proposal on how ABAC should be described.
Compared to the traditional ABAC, in this variant attributes are provided as
hierarchical labels (i.e., similar to RBAC group hierarchies), rather than proper-
ties with values as described in the initial ABAC-models. All of these approaches
have interesting features useful in a smart manufacturing system, e.g., the model
driven approach from PBAC and the obligations from UCONABC . As a future
work, we aim to investigate the possibility to combine the beneficial concepts
from these approaches in a practical smart manufacturing scenario.

7 Conclusions

Smart manufacturing is a technology that has a huge economical potential,
transforming manufacturing towards servitization and extreme customization.
However, the technologies that such systems are built upon bring new chal-
lenges, especially as the increasing attack surface expose the system to addi-
tional cybersecurity threats. As we have argued in this paper, one of the largely
neglected mechanisms for security within manufacturing systems is access control

Access Control for Smart Manufacturing Systems 475

between devices and services. Since the dynamic properties of smart manufac-
turing require a similarly dynamic model for access control, additional attention
must be directed to this issue.

In this article we have derived a number of requirements on access control
within smart manufacturing systems, based on knowledge related to traditional
manufacturing systems, interconnected cyber-physical systems, and industrial
expertise. These requirements are considering both the guiding principles for
access control and the basic safety principles of an industrial control system.

Illustrated by a use-case scenario we have mapped the requirements to the
ABAC model, and shown that the model aligns well with the requirements.
However, there are still several open questions to be answered. How to handle
scalability with regards to management of policies and attributes in large systems
seems to be the most difficult issue to deal with, especially for complex sets of
access control policies. The management process must be sufficiently light-weight
in order for the model to be adopted in real applications. Transparency and
efficiency are other areas where additional efforts are needed to make the ABAC
model a feasible alternative for modern industrial manufacturing systems.

As future research we envision conducting a simulation study with use-cases
from the smart manufacturing domain, together with e.g., the Policy Machine,
which is the reference implementation of NGAC from NIST4. The management
issue of security policy generation could possibly be handled using model driven
security, as discussed by Lang et al. [8].

References

1. Mittal, S., Khan, M.A., Wuest, T.: Smart manufacturing: characteristics and tech-
nologies. In: Harik, R., Rivest, L., Bernard, A., Eynard, B., Bouras, A. (eds.) PLM
2016. IAICT, vol. 492, pp. 539–548. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-54660-5 48

2. Davis, J., Edgar, T., Porter, J., Bernaden, J., Sarli, M.: Smart manufacturing, man-
ufacturing intelligence and demand-dynamic performance. Comput. Chem. Eng.
47, 145–156 (2012)

3. Thoben, K.-D., Wiesner, S., Wuest, T.: “Industrie 4.0” and smart manufacturing
- a review of research issues and application examples. Int. J. Autom. Technol. 1,
4–16 (2017)

4. Tuptuk, N., Hailes, S.: Security of smart manufacturing systems. J. Manuf. Syst.
47(April), 93–106 (2018)

5. Slowik, J.: Evolution of ICS attacks and the prospects for future disruptive events.
Technical report (2017)

6. Watson, V., Sassmannshausen, J., Waedt, K.: Secure granular interoperability with
OPC UA In: INFORMATIK 2019: 50 Jahre Gesellschaft für Informatik - Infor-
matik fr Gesellschaft (2019)

7. Park, J., Sandhu, R.: The UCONABC usage control model. ACM Trans. Inf. Syst.
Secur. 7(1), 128–174 (2004)

4 https://csrc.nist.gov/Projects/Policy-Machine.

https://doi.org/10.1007/978-3-319-54660-5_48
https://doi.org/10.1007/978-3-319-54660-5_48
https://csrc.nist.gov/Projects/Policy-Machine

476 B. Leander et al.

8. Lang, U., Schreiner, R.: Proximity-based access control (PBAC) using model-
driven security. ISSE 2015, pp. 157–170. Springer, Wiesbaden (2015). https://doi.
org/10.1007/978-3-658-10934-9 14

9. Sadeghi, A.-R., Wachsmann, C., Waidner, M.: Security and privacy challenges
in industrial internet of things. In: The 52nd IEEE Annual Design Automation
Conference (2015)

10. Lu, Y., Ju, F.: Smart manufacturing systems based on cyber-physical manufactur-
ing services (CPMS). IFAC-PapersOnLine 50, 15883–15889 (2017)

11. Whitman, M., Mattord, H.: Principles of information security. In: Cengage Learn-
ing, 4th edn. (2012)

12. Saltzer, J., Schroeder, M.: The protection of information in computer systems.
IEEE 63(9), 1278–1308 (1975)

13. Sandhu, R., Ranganathan, K., Zhang, X.: Secure information sharing enabled by
trusted computing and PEI models. In: Proceedings of ACM Symposium on Infor-
mation, Computer and Communications Security (2006)

14. Sandhu, R.S., Samarati, P.: Access control: principles and practice. IEEE Commun.
Mag. 32, 40–48 (1994)

15. Lopez, J., Rubio, J.E.: Access control for cyber-physical systems interconnected to
the cloud. Comput. Netw. 134, 46–54 (2018)

16. Salonikias, S., Gouglidis, A., Mavridis, I., Gritzalis, D.: Access control in the indus-
trial internet of things. In: Alcaraz, C. (ed.) Security and Privacy Trends in the
Industrial Internet of Things. ASTSA, pp. 95–114. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-12330-7 5

17. Yuan, E., Tong, J.: Attributed based access control for web services. In: Proceedings
of IEEE International Conference on Web Services (2005)

18. eXtensible Access Control Markup Language (XACML) version 3.0 plus errata 01,
standard, OASIS (2017)

19. Hu, V.C., et al.: Guide to attribute based access control (ABAC) definition and
considerations. Technical report, NIST (2014)

20. Ferraiolo, D., Chandramouli, R., Kuhn, R., Hu, V.: Extensible access control
markup language and next generation access control (2016)

21. Kitchenham, B.A.: Procedures for undertaking systematic reviews. Technical
report, Keele University (2004)

22. B. Leander, ”Towards an access control in a smart manufacturing context,” tech.
rep., Mälardalen Real-Time Research Centre, Mälardalen University (2020)

23. IEC 62443 security for industrial automation and control systems, standard, Inter-
nation Electrotechnical Commission, Geneva, CH, 2009–2018

24. Williams, T.J.: The purdue enterprise reference architecture. Comput Ind. 24(2),
141–158 (1994)

25. Ladiges, J.: Integration of modular process units into process control systems. IEEE
Transactions on Industry Applications 54, 1870–1880 (2018)

26. Faller, C., Höftmann, M.: Service-oriented communication model for cyber-
physical-production-systems. Procedia CIRP 67, 156–161 (2018)

27. Ayatollahi, I., Brier, J., Mörzinger, B., Heger, M., Bleicher, F.: SOA on smart
manufacturing utilities for identification, data access and control. Procedia CIRP
67, 162–166 (2018)

28. IEC 61449 function blocks, standard, Internation Electrotechnical Commission,
Geneva, CH (2012)

29. Turkmen, F., Crispo, B.: Performance evaluation of XACML PDP implementa-
tions. In: ACM Conference on Computer and Communications Security (2008)

https://doi.org/10.1007/978-3-658-10934-9_14
https://doi.org/10.1007/978-3-658-10934-9_14
https://doi.org/10.1007/978-3-030-12330-7_5
https://doi.org/10.1007/978-3-030-12330-7_5

Industrie 4.0 Virtual Automation Bus
Architecture

Thomas Kuhn(B), Pablo Oliveira Antonino, and Frank Schnicke

Fraunhofer Institute IESE, Fraunhofer-Platz 1, 67663 Kaiserslautern, Germany
{thomas.kuhn,pablo.antonino,frank.schnicke}@iese.fraunhofer.de

Abstract. Many Industrie 4.0 use-cases require end-to-end communication
between layers of the automation pyramid. Converting the existing layered com-
munication into a peer-to-peer architecture does however require the functional
bridgingbetweenprotocols. In this article,wediscuss Industrie 4.0 communication
scenarios, constraints of the automation domain, as well as device communication
requirements, and present our end-to-end communication approach based on our
information bus concept, the virtual automation bus (VAB).

Keywords: Industrie 4.0 · Industrial IoT · Security · End-to-end
communciation · Software platform · Production · Changeability

1 Introduction

The fourth industrial revolution is driven by digitalization and networking of production
processes. This is a challenge for system architects, as they have to consider platform and
communication aspects in addition to traditional system requirements [9]. One central
scenario of Industrie 4.0 is improvement of the changeability of production processes.
Changeable production is considerably different from existing flexible production lines,
which enable the manufacturing of products with a preprogrammed range of changes.
Flexible car manufacturing lines produce cars with normal or adaptive cruise control.
Switching a production within this range of planned flexibility requires only minor
efforts. Changeability in production addresses unplanned changes, e.g. the manufactur-
ing of chassis elements with changed set of drilling holes. Changeable production lines
reduce downtimes due to production changes to a minimum value.

Changeability today is limited by the basic principles or operation in factory automa-
tion. In most cases, PLC controllers realize the factory automation. They execute cyclic
programs that read sensor values and control actuators to automate manufacturing steps.
Programexecution is affected e.g. by sensors orManufacturingExecutionSystems (MES
systems) [8] that select variants from the preprogrammed flexibility range. A changeable
production requires the MES system to change the programming of a PLC controller in
a much more flexible manner, e.g. by orchestrating production steps. In context of the
BaSys 4.0 project1, we did develop a service-based production that enables this kind

1 www.basys40.de.

© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 477–489, 2020.
https://doi.org/10.1007/978-3-030-59155-7_34

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_34&domain=pdf
http://www.basys40.de
https://doi.org/10.1007/978-3-030-59155-7_34

478 T. Kuhn et al.

of changeable production. Our service-based production deploys atomic, configurable
production steps on PLC controllers that implement services; service orchestration is
performed by higher-level components.

Realization of this concept requires an operational end-to-end communication
between all production assets. Ideally, a peer-to-peer communication between all devices
that are relevant for the production should be possible. This includes devices located in
the shopfloor, but also servers in the IT, or (mobile) interfaces to human operators. Today,
the automation pyramid prevents this. Field devices, e.g. sensors and actuators often use
proprietary busses to communicate. Data is encapsulated in proprietary formats. PLC
controllers communicate via Modbus or OPC-UA, which are standardized technolo-
gies, but target shopfloor applications. The IT communicates using http/REST services.
In many installations, additional proprietary busses are used in addition for specific
purposes.Moreover, different data types anddata encodings further limit interoperability.

We did therefore develop the virtual automation bus (VAB) concept [10] as end-
to-end communication solution in production environments. It defines communica-
tion primitives, and enables inter-network communication with existing infrastructures.
The VAB is therefore not another protocol, but a common language to bridge existing
protocols and (heterogeneous) network topologies into one virtual network.

In this paper, we describe an Industrie 4.0 use-case with respect to communication
needs. We devise our VAB concept and describe the VAB architecture, as well as its
operation in Industrie 4.0 settings with heterogeneous networks and with inter-company
communication.We furthermore analyze theVAB in context of common communication
scenarios.

2 Industrie 4.0 Virtual Automation Bus

Asset administration shells (AAS) [6] are one main concept of Industrie 4.0 for pro-
viding information hiding and higher levels of abstraction for assets. An AAS has a
unique identifier and contains sub-models. Sub-models define properties and services,
and implement a reflexive interface. They provide high-level information, e.g. regarding
offered services of assets, asset status models, or plant topology models. Low-level PLC
controllers implement the implement service-oriented interfaces of an AAS. High-level
controllers invoke services, but do not need to know about service implementation. To
enable re-use, orchestration functions should be able to set-up real-time connections
between controllers, e.g. by assigning PROFINET IO application relationships (AR).

2.1 Virtual Automation Bus Concept

Our virtual automation bus (VAB) should support the communication with and between
asset administration shells across network borders. It should also support service-based
and functional abstraction of production systems to support service-based production
systems for changeable production. To this end, we follow the proposals made in the
Industrie 4.0 community [5] to separate the different concerns for accessing data models,
managing asset functions, and for transporting data. The VAB hides the distributed
deployment of information, one of the main features of an asset administration shell.

Industrie 4.0 Virtual Automation Bus Architecture 479

Figure 2 illustrates this functional abstraction in context of an aluminum cold rolling
mill as example. It consists of Light Barriers (LBxx), Engines that move conveyor belts
(Ex), and PLC Controllers (Pxxx).

Aluminum cold rolling mills move aluminum coils through a system of conveyor
belts and other transport mechanisms between storage and the milling process, and
perform the milling with given quality and thickness values. Our example highlights the
proposed I4.0 interconnection between devices of the cold-rolling mill.

Controller runtime environments (Controller RTE) execute control algorithms that
control e.g. the milling process with real-time capabilities. Controller runtime envi-
ronments offer services and invoke services of other controller RTEs. They also com-
municate e.g. sensor values to other entities and receive setpoint values. Application
runtime environments (Application RTE) execute high-level applications that interact
with the office-floor, or that implement e.g. transport strategies. Application RTEs host
applications that offer service calls and use service calls to interact with other functions.

Asset administration shells (AAS) provide a unified interface for assets. They consist
of submodels that logically structure information and services. Each submodel therefore
covers a specific aspect of an asset (Fig. 1).

Fig. 1. Functional components of plant (cold rolling mill) automation

The VAB therefore provides the communication backend for controller RTEs and for
AAS. It therefore needs to implement data and message transport services and connect
automation components. It also needs to map the VAB communication primitives to
concrete communication technologies. This also require themapping of network specific

480 T. Kuhn et al.

addresses. The illustrated Registry therefore defines a unified way to map technology
independent identifiers to concrete technology specific communication endpoints.

The VAB hides nature and deployment location of sub models behind administration
shell interfaces. To ensure end-to-end connectivity between different device types, the
VAB submodels are based on a common, technology independent type system. Technol-
ogy mappings realize the mappings to platform types, e.g. OPC-UA data types. Platform
types must at least support the value ranges and accuracy of the defined technology inde-
pendent types. Table 1 defines our technology independent types, combining elementary
types for strings, integers, and real values with specific value ranges.

Table 1. Technology-independent data types

Any Represents any type

Ref Unambiguous reference to an element

Str String (sequence of characters) of unconstrained length

Str(x) String (sequence of characters) of maximum length x

Bool Boolean value that represents true or false

Int32 32-bit signed integer value

UInt32 32-Bit unsigned integer value

Int64 64-bit signed integer value

UInt64 64-Bit unsigned integer value

Float IEEE 754 [3] single precision floating point value

Double IEEE 754 [3] double precision floating point value

Void No value, used e.g. as return type

Besides of simple value types, our type system defines few special types: The Any
type is a placeholder that represents any possible type. It does not map to communica-
tion systems, and is therefore only permitted for interface specifications to express an
unspecified type. The Ref type is a reference to a connected object that uses a technology
independent unique ID for identifying the object.

2.2 Model Provider Services

Model provider functions enable a unified access to information that is structures in
sub models. This access is independent of the kind of provided information and it is
independent of how an information item is stored. Model providers map native data
formats into a specialization of the common structure that is shown in Fig. 2. This
common model representation is accessible through a service API, which enables its
exploration without knowledge of the underlying data format.

Model providers manage a set of elements and values of element properties. They
organize elements hierarchically, yielding a tree of elements. Elements therefore have
one parent and any number of contained elements. Properties describe element details,

Industrie 4.0 Virtual Automation Bus Architecture 481

Element

+ name: Str

Property

+ name: Str
+ value: Type

Type

0..*

proper�es

+contained
0..*

+parent

type

Fig. 2. Reflexive presentation of data as hierarchical model

e.g. its value. The predefined type property supports reflexive access to type information
via a reflexive type description. The reflexive type description conforms to the meta-
model in Fig. 3. Every model provider defines five primitives that enable interaction
with sub models.

Type

Name

Str

ArraySize isStruct

BoolInt32

TypeElement

type type

0..*

name

type

type

+elements

0..*

+parent

Fig. 3. Reflexive type description

• Ref create(Ref parent, Str name, Any value)
Create a newmodel elementwith parent element parent, name name, and value defined
by value.

• Ref delete(Ref parent, Str name)
Delete model element with name name from element parent.

• Any read(Ref el, Str prop)
Return value of property prop from element el.

• void update(Ref el, Str prop, Any value)
Change value from property prop of element el to new value value.

• Any invoke(Ref prov, Str id, Any[] par)
Invokes service with ID id on service provider prov with parameter array par. The
result will be returned when service execution is completed.

A type is described at runtime by the information model shown in Fig. 3. Every type
is described by a model element that defines the technology independent type name, an
optional array of array sizes, and a flag that indicates whether the type is a structure or
not.

482 T. Kuhn et al.

Figure 4 illustrates an example Topology meta model for an Aluminum cold rolling
mill. It defines offered services and properties of the topology sub model. The meta
model defines three plant topology elements: Transport segments transport aluminum
coils forward or backward, turntables turn aluminum coils, and shift tables vertically
connect transport segments. All segment controllers offer basic transportation services:
passToNext passes the aluminum coil to the next rail, takeFromPrevious receives an
aluminum coil from the previous rail. Functions passToPrevious and takeFromNext pro-
vide likewise services. The status interface of a segment enables automation engineers to
query whether the segment is free, i.e. no transport pallet is on the segment, or occupied.
Turntables additionally turn to angular positions between 0° and 180°. Shift tables drive
to specified positions.

Segment

+ isFree: Bool

+ passToNext(): void
+ passToPrev(): void
+ takeFromNext(): void
+ takeFromPrev(): void

TurnTableElement

+ posi on: Float

+ turnTo(Float): void

RailElement SliderElement

+ posi on: Int32

+ moveTo(Int32): void

SliderConn

+ posi on: Int32

Topology

+parent 1

+children 0..*

connec ons

0..4

prev

target

connec ons

0..*

next

0..*

Fig. 4. Topology meta-model of a cold rolling mill with services

3 Evaluating Deployments and Technologies

We did evaluate the Virtual Automation bus in several deployment scenarios. In this
section, we present two of them: the first scenario connects Industrie 4.0 devices with an
Ethernet network and uses HTTP/REST web services for communication. The second
scenario consists of two Ethernet networks that use HTTP/REST and OPC-UA for com-
munication. Both networks are connected via a BaSys gateway that couples networks.
The third Scenario consists of a deploymentwith an Ethernet network that realizes BaSys
VAB communication and a CAN bus network that implements a proprietary communi-
cation. The shown implementation were created with the Open-Source implementation
of the VAB that is available for download from [7].

3.1 Simple HTTP/REST Deployment

Figure 5 illustrates the first deployment scenario that we evaluate. Field devices connect
via Profibus to controllers; all other devices connect to one Ethernet network. Asset

Industrie 4.0 Virtual Automation Bus Architecture 483

Administration Shells of controllers and the plant reside on an AAS server, servers and
PLC controllers provide AAS sub models. The VAB therefore forms a virtual bus that
connects all AAS and sub models on the network.

Fig. 5. Ethernet technology mapping example for Cold-Rolling Mill

The sequence diagram in Fig. 6 illustrates an example interaction between the topol-
ogy server and controller PE005. The topology server exports the topology sub model
that contains the isFree property for each segment of the plant. The value of isFree
depends on the status of four light barriers that every controller exports in its status
model. The Topology server queries the status sub model of controller PE005 to check
the status of the light barriers. The example sequence illustrates the message sequence
via the VAB that queries the first light barrier LB2.

In the first step, the topology server queries a reference to the AAS with id PE005
using the VAB invoke primitive. The query is sent to a known directory instance that
tracks the addresses of all connected components. The directory returns a URL with the
local top-level domain .loc that points to the AAS provider. The topology server then
reads the available sub models of the AAS of controller PE005 using a HTTP GET
request. Then it invokes the directory server again to query the address of the sub model
provider. The topology server then uses the defined model provider API to read the
reference to the Status SubModel and subsequently the status of the light barrier. The
VAB hides the communication details of the AAS and sub models, it abstracts concrete
network locations through URLs.

Asset Administration Shells and Controllers implement a defined mapping from
logic meta models (cf. Fig. 4) to HTTP REST. An URL identifies every AAS and sub
model provider that realizes an HTTP REST service. Model provider services map to
HTTP requests as illustrated in Table 2.

484 T. Kuhn et al.

Fig. 6. Example call sequence in Ethernet/HTTP scenario

Table 2. HTTP mapping of VAB service calls

VAB call HTTP/REST mapping

read(e, p) GET e?path=p

update(e, p, v) PUT e?path=p [body: v as JSON]

create(e, p, v) POST e?path=p&op=create [body: v as JSON]

delete(e, p) DELETE e?path=p

invoke(p, id, par) POST p?path=id&op=invoke [body: par as JSON]

The defined mapping maps VAB calls to HTTP service primitives. Small values, e.g.
the path to the element and an operation ID are transmitted in the header, while complex
objects, e.g. parameters are transmitted in the HTTP body, which has no size limitation.

3.2 Multi Network Scenario

The second deployment in Fig. 7 illustrates a situation with two different Ethernet net-
works. Shop floor devices communicate via OPC-UA, which is an automation protocol
to connect shop floor devices. Enterprise components in the office floor communicate via
HTTP/REST web services. Similar to the first deployment, Asset Administration Shells
and sub models represent all components and their information and services through a
common interface. In contrast to the first deployment, the virtual automation bus needs
to bridge different networks. In the illustrated deployment, a gateway is instantiated
between both networks. The gateway implements technology mappings from both con-
nected networks. Theusedgateway realizes http/RESTmappings, as illustrated inTable 2
for HTTP. For OPC-UA, a similar mapping was defined in context of the evaluation.

The sequence diagram in Fig. 8 illustrates the call sequence with a gateway. The
Topology server asks for the Status SubModel, and receives a reference as response that

Industrie 4.0 Virtual Automation Bus Architecture 485

Fig. 7. Complex deployment with two networks

points to the gateway and encodes the OPC-UA address of the controller in the different
network. The topology server invokes the HTTP GET command via the received URL
in the same way as in the first scenario, the presence of the gateway is transparent. The
Gateway processes the GET command, transforms the requested property address in the
dest field to the appropriateOPC-UAcall, and invokes theOPC-UAReadValue operation
that reads the status of light barrier LB2. When invoking ReadValue, the Gateway has
to add the namespace ID (3 in the example), which therefore needs to be known to the
Gateway.

Fig. 8. Example call sequence in two networks scenario

486 T. Kuhn et al.

OurVABgateway approach enables the chainingof anynumber of gateways. Figure 9
illustrates an example sequence with two gateways: GW1 bridges between networks loc
and loc2, gateway GW2 bridges between the network loc2 and the protected network
hidden. This enables e.g. the development of network architectures that decouple critical
sections from IP traffic and only forward commands of the Model Provider Services for
critical infrastructures.

Fig. 9. Example call sequence with two gateways

The directory server returns the path with all necessary gateways as response to the
lookup request. This path is either pre-configured or is dynamically looked up by the
directory server. Gateways do not need to perform any activity besides forwarding the
call, and possibly translating the request, a read request in the illustrated example, into
the language of the target protocol. Every gateway forwards the request to the address
in field dest, which marks the destination. HTTP REST protocols encode the requested
operation in the request type. The illustrated HTTP/REST gateways therefore need to
support HTTP GET, POST, DELETE, and PUT requests.

3.3 Deployment with Active Gateway

Figure 10 illustrates the third example deployment. It highlights a common situation
when existing devices need to be integrated into an Industrie 4.0 setting.

Our third deployment connects all office floor components via HTTP/REST web
services. Shop floor components communicate via CAN. TheCANnetwork is optimized
for real-time transmission of short data frames; eachCAN frame has amaximumpayload
of 8 bytes. To save communication resources, the Gateway component implements the
status sub models of two controllers named PE005 and PE006, and translates service
calls into native CAN communication.

The sequence diagram inFig. 11 illustrates the communication example fromdeploy-
ments 1 and 2 in context of the third deployment. The Gateway receives updates of the
light barriers via CAN; each light barrier propagates its state with a unique CAN ID.
Light barrier LB2 propagates its status in this example with CAN ID 16. The gate-
way manages the controller sub model and stores the light barrier status. The gateway

Industrie 4.0 Virtual Automation Bus Architecture 487

Fig. 10. Complex deployment with CAN bus

Fig. 11. Example call sequence in CAN bus deployment scenario

did register this sub model with the directory server. The StatusSubModel of controller
PE005Ctrl is available at:

http://gateway.loc/provider/PE005Ctrl/StSM
The stored status is returned when the respective property is queried via the HTTP query
illustrated in Fig. 11. The gateway in this case performs an active translation between
native CAN bus traffic and the defined VAB communication semantics.

3.4 Discussion

Our deployment examples show how the VAB concept is realized in context of concrete
technologies, and that is proves useful in different deployment scenarios. The VAB is
able to transparently bridge between networks as long as every network implements

http://gateway.loc/provider/PE005Ctrl/StSM

488 T. Kuhn et al.

one defined mapping between VAB concepts and network specific implementations. In
this case, gateways do not need any knowledge regarding the structure of AAS and sub
models. In case of native communication, as illustrated in the third deployment, the
gateway needs to provide an additional mapping. Data is propagated via CAN bus using
CAN IDs, the gateway needs to know about themapping between CAN IDs and property
names. In the shown example, the gateway furthermore did implement the sub model
structures. Existing controllers in this case do not need to be changed, which realizes a
migration path for existing devices.

Our examples illustrate the virtual automation bus concept. Technology indepen-
dent reference types encode network specific paths, addresses, and optionally gateways.
Optionally, multiple gateways may be chained, which comes handy when networks need
to be separated, e.g. for security reasons. In this case, gateways copy model provider
calls as human readable strings between networks without having to open an IP port.
This prevents IP access to internal networks, and potential security problems.

4 Conclusion and Lessons Learned

During the development of our Virtual Automation Bus architecture, we put emphasis
into creation of a communication layer that connects Asset Administration Shells and
sub models. A basic type system and meta models define information structures and
enable technology independent abstractions for Asset Administration Shells and sub
model structures.When integrating a network ormiddleware technologywith the Virtual
Automation Bus, technology independent VAB primitives and the type system needs
to be mapped to the target technology. Meta models define a common language that
structure common types of information. VAB gateways transparently bridge network
technologies, but retain meta model structures.

We have presented two application cases that did provide the main requirements
to our VAB that did drive its specification and development. Our VAB considerably
improves the re-usability of both low-level control algorithms and high-level controllers.
It also improves changeability: changing of the plant topology only requires an update
of topology models. It is not necessary to update Low-level PLC code. This significantly
lowers the time that is necessary for adapting code to new plant installations. Further-
more, the VAB enables the integration of legacy devices. For existing devices that do not
support Asset Administration Shells, the AAS and sub models are provided by gateways
that translate between the VAB and the (proprietary) protocol of the native device.

Futurework includes the evaluation of ourVirtualAutomationBus in context of other
application cases, as well as the implementation of more complex Asset Administration
Shell use-cases that cover for example handing over of Asset Administration Shells and
the serialization of complex sub models.

References

1. Scheid, O.: AUTOSARCompendium - Part 1: Application &RTE (2015). ISBN 978-1-5027-
5152-2

Industrie 4.0 Virtual Automation Bus Architecture 489

2. Alves, T.R., Buratto, M., de Souza, F.M., Rodrigues, T.V.: OpenPLC: an open source alter-
native to automation. In: IEEE Global Humanitarian Technology Conference (GHTC 2014),
San Jose, CA, pp. 585–589 (2014)

3. IEEE 754-2008: Standard for Floating-Point Arithmetic, IEEE Standards Association (2008).
https://doi.org/10.1109/ieeestd.2008.4610935

4. Lehnhoff, S., Rohjans, S., Uslar,M.,Mahnke,W.:OPCunified architecture: a service-oriented
architecture for smart grids. In: First International Workshop on Software Engineering
Challenges for the Smart Grid (SE-SmartGrids), Zurich, pp. 1–7 (2012)

5. Epple, U., Schulz, D., et al.: Industrie 4.0 service architecture: basic concepts for interoper-
ability. VDI/VDE, November 2016

6. Adolphs, P., et al.: Structure of the administration shell – continuation of the reference model
for the industrie 4.0 component. VDI/VDE, April 2016

7. The Eclipse BaSyx Project. https://projects.eclipse.org/projects/technology.basyx
8. McClellan,M.: ApplyingManufacturing Execution Systems. CRC Press, Boca Raton (1997).

ISBN 9781574441352
9. Antonino, P.O., Morgenstern, A., Kuhn, T.: Embedded-software architects: it’s not only about

the software. IEEE Softw. 33(6), 56–62 (2016)
10. Kuhn, T., et al.: Industrie 4.0 virtual automation bus. In: Proceedings of the 40th International

Conference on Software Engineering: Companion Proceedings (2018)

https://doi.org/10.1109/ieeestd.2008.4610935
https://projects.eclipse.org/projects/technology.basyx

Enabling Industry 4.0 Service-Oriented
Architecture Through Digital Twins

Frank Schnicke(B), Thomas Kuhn, and Pablo Oliveira Antonino

Fraunhofer IESE, Fraunhofer-Platz 1, 67633 Kaiserslautern, Germany
{frank.schnicke,thomas.kuhn,pablo.antonino}@iese.fraunhofer.de

Abstract. Amajor goal of Industry 4.0 is to increase changeability of production
processes, and to reduce the additional cost for individualized products. A ser-
vice oriented production architecture can enable this goal. However, it demands
changes in the software-based systems that compose the different levels of automa-
tion in a factory. Additionally, it requires a multitude of data to reflect the demands
of service-oriented manufacturing processes. In this paper, we detail the minimal
data to be contained in digital twins to enable an Industry 4.0 service-oriented
architecture. We use two central Industry 4.0 use cases as drivers for deriving this
data.Wedescribe services by detailing their capabilities and their quality of service
in terms of time, money and resulting product quality. Using these descriptions,
we detail customer’s order and the included product to be manufactured. Addi-
tionally, we describe challenges of the orchestration process like incompleteness
of business processes and detail, how they can be solved using digital twins of
the product, the service providers and the plant. Finally, we validate the proposed
models by implementing the use cases on twomodel plants and give an experience
report.

Keywords: Service-oriented architecture · Industry 4.0 · Digital twin ·
Service-based production · Asset Administration Shell

1 Introduction

Industry 4.0 (I4.0) is the fourth industrial revolution [1]. Unlike previous revolutions, it
does not introduce a singular new technology, but covers amore groundbreaking change,
which is the end-to-end digitalization of manufacturing processes. A major benefit of
I4.0 are changeable processes. Today, changing of a manufacturing process yields high
cost [2], which is distributed over the lot size of a production. Consequently, the cost
for the production of small lot sizes is much higher than that of mass-produced assets.
If the cost for changing a manufacturing process decreases significantly, the production
of small lot sizes will become economically feasible.

The high cost for changing production processes originates in their federated archi-
tectures. Today, programmable logical controllers (PLCs) control production processes
steps. The used IEC 61131 [3] languages however were developed to automate sim-
ple processes. Due to the grown complexity of manufacturing processes and inter-PLC

© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 490–503, 2020.
https://doi.org/10.1007/978-3-030-59155-7_35

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_35&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_35

Enabling Industry 4.0 Service-Oriented Architecture Through Digital Twins 491

communication, automation engineers that change production processes face similar
issues as software engineers that maintain large software systems: changes yield unpre-
dictable side effects, that are difficult to locate, and that require time and effort to resolve
(cf. Sect. 2.3). The efforts for reprogramming PLCs are therefore a big part of process
changing costs.

We apply a Service-oriented Architecture (SOA) to automation to remove side-
effects when changing manufacturing processes. SOA provides a clear separation
between service providers and consumers. PLCs implement stateless, callable services
that must only depend on the explicit service parameters that are passed during invoca-
tion. Orchestration of services into process steps is no longer performed by the PLCs,
but by designated orchestrators. Only the service orchestrator has knowledge about the
final sequence of services that are required for the manufacturing of a specific prod-
uct. Information about products and PLC services are provided in Asset Administration
Shells (AAS) [23] that provide information about assets with a unified interface.

In this paper, we analyze I4.0 use cases as drivers to devise the minimum required
information for integrating SOA into production processes. We define AAS base models
with the amount of information that is at least required for supporting I4.0 use cases, and
that may be extended to tailor them to other manufacturing processes. We describe the
integration of agreed I4.0 technologies to enable a unified inter-device communication,
and describe the application of our framework in context of example implementations.

This paper is structured as follows: Sect. 2 introduces the state of the art and the
state of the practice of I4.0 and SOA. Section 3 describes use cases of I4.0 that drive
the development of our architecture framework. Section 4 describes the minimum infor-
mation. The proposed digital twins and orchestration is assessed in Sect. 5. Section 6
presents an overview of related work. Finally, Sect. 7 draws conclusions and provides
an outlook on future work.

2 State of the Art and State of Practice

I4.0 is about the end-to-end digitalization of the manufacturing industry. Today, manu-
facturing devices already collect large amounts of sensor data. They are however only
locally available. Data processing is only possible along the layers of the “automation
pyramid”, which refers to the strictly separated layers and protocols in automation sys-
tems and the difficulties for implementing cross-layer interaction. I4.0 instead advocates
a peer-to-peer architecture that enables cross-layer interaction that, for example, enables
enterprise resource planning (ERP) systems to directly interact with sensors, e.g. for
tracking the quality of manufacturing processes.

2.1 Industry 4.0 and Digital Twins

Cross-layer interaction requires a structured approach for representing and exchanging
data. The concept of digital twins, whose origin is in the testing of avionics systems [4]
is a key concept for a cross-layer communication in Industry 4.0 [5]. A digital twin is
a representation of the state of an asset, i.e. a physical entity. It enables unified access
to asset data and services. As defined by the IIC [6], “a digital twin is a formal digital

492 F. Schnicke et al.

representation of some asset, process or system that captures attributes and behaviors
of that entity suitable for communication, storage, interpretation or processing within a
certain context.”.

Digital twins will describe all relevant assets in an I4.0 production. Assets are for
example products-to-be-produced, work pieces and devices. DTs aggregate data gen-
erated in the physical world, enable experimenting with this data in digital representa-
tions of I4.0 assets (physical or non-physical entities), and provide insights that may be
deployed back to the physical world as updated configurations. Thus, the data provided
by the digital twins can be used to orchestrate and optimize the plant.

2.2 Service-Oriented Architecture

A Service-Oriented Architecture (SOA) is defined as “a set of architectural tenets for
building autonomous yet interoperable systems” [2]. An autonomous system is defined
as one that [2]: Is created independent of other systems, operates independent of their
environment, and provides self-contained functionality. Interoperability is defined as
“a characteristic of a product or system, whose interfaces are completely understood,
to work with other products or systems, present or future, in either implementation or
access, without any restrictions” [7]. SOA builds upon services, realizing this autonomy
and interoperability. Services are defined as “an act or performance offered by one party
to another. Although the process may be tied to a physical product, the performance
is essentially intangible and does normally result in ownership of any of the factors
of production” [8]. These services are understood to have several properties, such as
having a transaction concept [9] and being stateless [2, 10], which need to be transferred
to process automation. Even when using SOA, architects need to keep communication
times, platform resources, and scalability in mind [34].

2.3 Architecture of Plant Automation

Currently, automation is implemented using the “automation pyramid” reference archi-
tecture as defined by IEC 62264 [11]. This architecture consists of separate layers with
defined interaction points. PLCs perform the specific steps in predetermined cyclic pro-
grams. Supervisory control and data acquisition (SCADA) realize the distributed control
of several PLCs. Manufacturing Execution Systems (MES) manage the overall produc-
tion by controlling high-level manufacturing steps. Enterprise Resource Planning (ERP)
systems manage resources, for example the number of items in stock. Cross layer inter-
action in the automation pyramid is difficult, as every layer can only access information
that is provided by lower layers. Changes therefore require modifications in all layers.
Industry 4.0 propagates instead a peer-to-peer communication to enable device-to-device
communication. However, this change in architecture only addresses the data acquisition
part and does not introduce changeability on its own.

PLCs are programmed using languages defined by IEC 61131 [3]. These languages
impose several challenges, e.g. unclear semantics [12]. If process parameter needs to be
changed and the needed variant is not already implemented, the code on the PLC needs
to change, which may affect PLC cycle times and therefore real-time constraints of the
program. Predecessor and successor devices of the changed device depend on this cycle

Enabling Industry 4.0 Service-Oriented Architecture Through Digital Twins 493

time, and inter-PLC communication through networks also must be considered during
reprogramming. In consequence, a change of a single PLC may produce side effects in
other PLCs [13], which lead to downtimes, and therefore to a loss in time and money.

Thus, a change in architecture is necessary. Currently, there are several reference
architectures for Industry 4.0. IIRA [14] is not only a reference architecture for Indus-
try 4.0, but also addresses other domains like energy, smart cities and health care. It
presents the architectural viewpoints of business, usage, functionality and implementa-
tion. RAMI4.0 [15] defines a three dimensionalmodel decomposed into hierarchy levels,
lifecycle and value stream, and layers. It is a framework for a common understanding
between stakeholders. SITAM [16] decomposes its architecture into three middlewares:
integration, mobile and analytics with a focus on SOA.

3 Industry 4.0 Use Cases

Industry 4.0 is driven bymajor use cases that exemplify potentials and challenges. These
use cases are the architecture drivers that steer our design decisions regarding our I4.0
SOA information model. For the overall goal of process changeability, we emphasis
on use cases that focus on flexibility and productivity [17]. Flexibility is the automatic
reconfiguration concerning products and used devices. Productivity is about optimizing
the production process with respect to business goals, e.g. equally distributed degree of
capacity utilization.

3.1 Use-Case 1: Integration of New Devices

When a manufacturing process changes, the integration of new devices into the plant
quickly becomes necessary. As described in Sect. 2.3, this requires considerable efforts
for updating PLC and for testing. Industry 4.0 aims to drastically reduce this integration
time [18]. When applying the service-oriented principle, a device will register itself with
the manufacturing system and exposing provided services. Orchestrators will integrate
the new device dynamically into the process. The AAS describes additional information
regarding e.g. the required time and cost of process steps.

3.2 Use-Case 2: On-The-Fly Product Change

An efficient support of small lot sizes requires more efficient approaches for the chang-
ing of manufactured products [17]. Process changes should be possible with low, and
predictable effort and down times. Ideally, PLCs only need re-programming when new
base-services and tools are integrated. SOA enables this by separating service providers,
and orchestrators as service users. Furthermore, the SOA principle must be realized to
ensure stateless services and the transaction principle. It must support the controlling of
individual production lines, as well as complete factories.

494 F. Schnicke et al.

4 Enabling Industry 4.0 Service-Oriented Architecture

Major I4.0 applications therefore depend on information exchange between heteroge-
neous devices. Harmonizing data structures used for this information exchange enables
the definition of an overall Industry 4.0 architecture. Our architecture supports this het-
erogeneous exchange by using digital twins. Digital Twins (DT) are digital entities that
store data in well-defined information models, called sub-models. Using the use cases
described in the Sect. 3 we identify the following required sub-models: Service, Order,
Product and Plant model to create an executable production plan.

4.1 Service Model

Our service-based production approach decouples the implementation of services that
is provided by PLCs from the service orchestration. Orchestration of PLCs requires a
defined interface that enables the activation and monitoring of services. As PLC services
may be concurrent and long-running, we decided to use asynchronous call semantics.
The DT of a service provider therefore needs to provide a sub-model that provides an
interface Iserv for all provided services, which enables their controlling. Interface Iserv

is defined as following: Iserv = (uOcc, cExec, iExec, cOpMode, iWork).
This interface definition resembles the interface of a control component. TheControl

component concept was first introduced by Pohl, Krumm, Holland, Stewing and Lueck
[19] to provide generic access and control of service providers. The control component
defines several status variables of the service provider. These are:

– Occupation uOcc – The occupation state of the service provider indicates the current
occupier of a control component. Only one user may occupy a service provider at a
time. Sensitive operation modes may only be selected by the occupier of a component
to prevent interfering users. Property write access attempts to set an occupier, reading
back the property value indicates whether component occupation was successful.

– Execution Mode cExec – Defines the execution mode according to ISA-88.00.01-2010
[20], e.g. installation, automatic, or manual mode.

– Execution State iExec – Describes the current state of the service execution, e.g. idle,
execute or aborted. The corresponding state machine is defined by ISA-88.00.02 [21]
and originates from the Batch Control Industry. State transition commands may be
written to this property, read access returns the current state.

– Operation Mode cOpMode – Enables selection of the service to be executed. Services
are identified by a control-component specific name. Writing the property attempts to
select an operation mode, reading returns the selected operation mode.

– Work State iWork – Describes the current step of the service provider. In case of a
service of higher order, this can be for example the name of the current sub-step.

The service interface therefore defines five properties that support controlling and moni-
toring of the Control component. A Control component may expose all services through
a single interface, or it may define multiple interfaces for independent services. The use
of a generic state machine for execution state iExec enables orchestrators to monitor any

Enabling Industry 4.0 Service-Oriented Architecture Through Digital Twins 495

control component for ready, running, completed services, as well as for error indica-
tions. The control component concept is arbitrarily nestable to create services of higher
order while still exposing the same interface. A control component interfacing other
control components is called a group control component. In extreme, the whole plant
can be thought about as a service provider offering a “manufacture product” service.

In addition to an interface for invoking a service, service orchestrators need to know
about the capabilities of a service. We define a service by the service capabilities Dcap,
associated costCserv, achievable qualityQServ, the control component interface for invok-
ing the service Iserv, and the service name name that must be given as operation mode:
serv = (Dcap, Cserv, QServ, Iserv, name).

Because the definition of a generic semantic capability model that covers all possible
services is difficult, we therefore use a straightforward approach for the implementation
of a semantic description of offered services: Tags (e.g. Strings) describe the services and
identify them by names. In addition to this information, it is also important to describe
the quality that a service provider guarantees, e.g. in the sense of quality and cost in
form of money or time consumption. This may vary over time: For example, when
considering a milling machine, the service duration and tool wear will depend on work
piece material, tool material, and previous milling times. In some combinations, e.g.
metal tool and metal work piece, it may not even be possible to provide a successful
service at all. Service descriptions therefore need to be able to refer to machine and
product properties.

We therefore add (non)functional requirements to service descriptions to address
additional service constraints. Boolean logic enables creation of semantic relations
between tags and requirements. Requirements describe constraints imposed by the ser-
vice provider. Such constraints can be for example the maximum dimension of a work
piece a milling machine can process or the minimum temperature a hot rolling mill
needs for sufficient service execution. The following example ddrill illustrates a service
description with tags: ddrill = {((dev.heat < 80 °C) & (drill.diameter < 5 mm))}

Service “drill” is available if property heat of asset dev is less than 80 °C, and
requested product property drill diameter does not exceed 5 mm. Control component
service definitions may contain several definitions of this kind for provided services.
The overall capability definition Dcap is therefore a set of multiple definitions dn. The
service quality set QServ is a dynamic provided information that describes the currently
provided service quality. It consists of service-tag specific properties qprop.n that describe
the possible service quality, e.g. depending on measured tool quality.

The cost model Cserv describes cost associated with using the service. We define
two initial cost properties ctime and cmoney that refer to the required time and associated
monetary cost for executing a production service. With this model, we assume that the
cost for invoking a service are the same, regardless of the processed product. If this is
not the case, e.g. because different materials are processed, explicit services need to be
defined that represent different use cases.

4.2 Order and Product Model

An order consists of a set of products to be manufactured in combination with bounded
cost, a deadline expectation, and quality requirements. Products are characterized by

496 F. Schnicke et al.

a sequence of manufacturing steps, recprod , and associated cost Cprod that definine
deadlines cdl and monetary cost cmoney.

order = ({product1, . . . , productn}, Cprod), product = (recprod , PGroup),Cprod = {
cdl , cmoney

}

The product groupPGroup defines a set of tags that identify similar products, e.g. products
of similar dimensions and weight, with similar recipes that may for example be trans-
ported together. A recipe describes a product in a device independent way. As stated
in Sect. 4.1, we describe services with tags and constraints. Consequently, the recipe
should also identify requested services by tags, and define required product properties,
and quality requirements. Product properties and quality requirements are specific to the
service, and define for example the required diameter and accuracy when drilling a hole.
We apply the Business Process Model and Notation (BPMN) to define recipes, which
has been proven feasible for describing the interdependence of manufacturing steps.
Each BPMN node details one needed skill in combination with product and quality
parameters.

In order to keep the product recipe independent of the plant topology, the recipe
must only include transforming services, and no supporting services. A transforming
service is a service that changes the work piece itself, e.g. drilling a hole. In contrast,
a supporting service does not change the work piece but instead performs an action
that is necessary to enable transforming services in their execution. The most prominent
example of a supportive service is a transport service. Another example is a change of
temperature in the work piece. These supportive services should not be included in the
BPMN since the need for them depends on the plant setup on which the BPMN will be
instantiated. Thus, the orchestration step described in Sect. 4.4 will insert them where
necessary.

4.3 Plant Model

Orchestration of a production process based on a recipe needs knowledge regarding
plant topology to plan e.g. work piece transportation. A plant model details the plant by
providing a logical topologymodel that specify possible connections between production
resources. A cold-rolling mill for example transports an aluminum coil while milling,
and changes the position of that work piece. We therefore represent plant topologies
with directed graphs that describe transport mechanisms.

An incoming edge from a transport mechanism indicates that this mechanism is able
to serve the input of a production resource. Similarly, an outgoing edge indicates that the
transport service provider can retrieve a work piece from a production resource. For an
example of this directed graph, see Sect. 5.2. Amajor challenge for creating a cost model
for transportation is the large amount of transportation systemswith their characteristics:
conveyor belts transport a steady stream of work pieces between fixed end points. They
transport several work pieces at a time with constant delays. Autonomous transport
vehicles (ATVs) are able to transport several work pieces at a time as well, but will
wait until e.g. a palette is filled. Work pieces in this case suffer a significant delay in
transportation. Cranes are very flexible and can transport between numerous end-points.
They however may yield long delays, depending on their load. All transportation might

Enabling Industry 4.0 Service-Oriented Architecture Through Digital Twins 497

require buffer zones to store work pieces that are awaiting transportation. Additionally,
transport mechanisms may influence each other, e.g. by obstructing a path.

A unified model for a DT needs to abstract from the specifics of individual transport
systems.We therefore approximate the cost and delays associatedwith the transportation
of a work piece, and define whether a transportation device is exclusively (ATV, crane)
or not exclusively useable (e.g. conveyor belt). A plant topology model TPlant consists
of a set of tuples that describe devices and outgoing connections with transportation
services:

TPlant = {dev1, . . . , devn}, tdev = ({serv1, . . . , servn}, {trans1, . . . , transn})
transEx = (ttypeEx, ncap, tdel, PGroup), transNex = (

ttypeNex, fprod , PGroup
)

Plant topology TPlant describes all devices devn. Each device dev describes its ser-
vices serv, and available transportation for products. Transportation may either be exclu-
sive (transEx) or non-exclusive (transNex). Exclusive transportation is characterized by
work piece capacity ncap and transportation delays tdel for product groups PGroup. Non-
exclusive transportation is characterized by supported product frequency f prod . For any
transportation, we identify permitted product group tags PGroup.

4.4 Industry 4.0 Orchestration

The Industry 4.0 orchestration uses the previously described Digital Twins during the
orchestration process to identify a set of feasible service providers out of all service
providers. It assesses the following propertieswhen creating the set: Functionalmatching
(i.e. is the provided service the needed service), matching of constraints, quality, and
cost requirement.

Functional service matching is performed by finding appropriate services through
matching of tags. Afterwards, supporting service providers are scheduled based on con-
straints and on the plant topology sub-model to create a set of execution plans. Each
of these plans is a possible alternative product manufacturing. After a sufficient set of
plans are created, they need to be validated and judged. Thus, identification of likely
candidate plans based on property values from digital twins is crucial.

The minimum cost C (independent of cost in time or cost in money) is derived by
adding the cost of each service call. Additionally, product quality requirements have to be
considered. Similar to cost calculation, the maximum product quality is derived based
on the maximum quality estimate given by each provider. The maximum achievable
quality Q is calculated by multiplying the estimated maximum quality of each involved
service provider.

Finally, each execution plan will have minimum cost and a maximum quality esti-
mate assigned. By removing plans which do not meet cost or quality requirements,
the orchestrator creates a set of plans that meet the requirements. Figure 1 provides a
high-level overview on the orchestration and DT models.

498 F. Schnicke et al.

Fig. 1. The Digital Twins and their contained data needed to enable Industry 4.0 SOA.

5 Approach Implementation and Experience Report

Wedid implement our approachwith the BaSys 41 middleware [22]. It provides concepts
needed to implement Industry 4.0 in production systems. A major artifact of BaSys
is the Digital Twin that is realized with the Asset Administration Shell (AAS) [23].
Ongoing standardization activities aim at creating a common meta-model, and runtime
interface for the AAS. BaSys 4.0 supports the open-source reference implementation
EclipseBaSyx2 that implementsAAS andDigital Twins. In particular, the EclipseBaSyx
framework was used to describe the digital twins through the concept of the AAS and
to communicate with the used devices through control components.

5.1 Demonstrator Description

We did evaluate our approach in context of a demonstrator setup that was shown at
Hannover Messe (HMI) 2018. It did consist of devices representing different function-
alities of a milling line for the production of screws: two feeders acting as work piece
sources, two mills processing the work pieces by providing several services, and one
packager acting as a work piece sink. A human worker was integrated into the workflow
to provide a transport service. The demonstrator did evaluate our architecture in context
of the use cases from Sect. 3: Failure of devices was simulated by disabling the devices.
Repairing of devices was simulated by enabling the devices again. Through a GUI, it
was possible to define and order new products on-the-fly using the available services.
Additionally, the orchestration was configured to support the business goal of having a
maximum throughput.

1 The German joint research project BaSys 4.0 tackles the lack of maintainability and portability
of current manufacturing applications by implementing a middleware as compatibility layer.

2 https://eclipse.org/basyx.

https://eclipse.org/basyx

Enabling Industry 4.0 Service-Oriented Architecture Through Digital Twins 499

For HMI 2019, we did created a second demonstrator using a plant model provided
by Fischertechnik3 that did implement a changeable production of brake disks. This
demonstrator evaluated our architecture in a second setting consisting of a high-rack
storage, a transport robot, an oven, and an ERP system. Through an order dialog, a
customer could order a brake disk that then would be produced on the plant model.

5.2 Example Implementation of Digital Twins and Orchestration

Our demonstrators did create Digital Twins with the BaSys 4 middleware. We did create
a Digital Twin using an AAS for each device and product, and did structure relevant
information into sub-models. The plant AAS did define the plant topology as a sub-
model. Each AAS registers itself with the AAS Registry, thus making its data and
services available to other applications. AAS reference control components to provide
a unified interface for controlling production processes4.

Figure 2(a) illustrates the HMI 2018 demonstrator topology graph. The central trans-
port service connects all devices (service provider). Figure 2(b) illustrates the recipe for
a screw. First, a metal cube is milled into a cylindrical shape. Next, the screw head is
created by creating a cavity on the top of the cylinder. Finally, the screw thread is created
and the screw is packaged. Additionally, in the figure the orchestration of the abstract
recipe to an executable plan is shown by incorporating the plant topology to derive sup-
porting transport services. In the demonstrator context, Mill 2 did provide both profile
milling and spiral milling services, while Mill 1 was able to provide round milling. The
necessary data for service orchestration were retrieved from the product AAS. Device
services were implemented by control components as described in Sect. 4.1. The orches-
tration provides an execution plan in form of a BPMN model. We did use the Activi5

engine to execute the BPMN model.

Fig. 2. (a) The HMI 2018 demonstrator topology as a directed graph. (b) The execution plan is
derived from the recipe by mapping it to service providers while incorporating the demonstrator
topology.

The HMI 2019 demonstrator implements similar AAS and sub-models.When order-
ing a new product, the ERP system creates a new AAS detailing the order as described
in Sect. 4.2.
3 https://www.fischertechnik.de/en/service/elearning/simulating/fabrik-simulation-9v.
4 For an illustration of the architecture, see https://wiki.eclipse.org/File:BaSyx.BaSyx10Mins_8.
png.

5 https://www.activiti.org/.

https://www.fischertechnik.de/en/service/elearning/simulating/fabrik-simulation-9v
https://wiki.eclipse.org/File:BaSyx.BaSyx10Mins_8.png
https://www.activiti.org/

500 F. Schnicke et al.

5.3 Experience Report

We did implement our architecture successfully in both demonstrators. Modeling pro-
duction recipes with a BPMN has proven its worth. Instead of changing PLC behavior,
only a BPMN describing a new product needs to be introduced to the system to imple-
ment a process change. Thus, a low-level code change is replaced by a much more
simplistic high-level change. By adding and removing device AAS from the registry,
devices can quickly be integrated or removed, and are immediately usable by the orches-
trator. This was also proven while designing the demonstrators: Initially, the HMI 2018
demonstrator should use a robot for transportation. Due to organization constraints, this
was not realizable. Instead, the visitor was integrated into the demonstrator to transport
a workpiece. However, this fact emerged at a late point of development when most of
the system was already integrated. As result of the changeability introduced by the I4.0
SOA architecture, it was possible to quickly exchange the initially planned transport
service provider (i.e. the robot) with a worker guidance system that did communicate
with the user. The overall plant planning and description did remain the same. Thus, the
scope of a complete device exchange was only limited to the device integration into the
existing AAS infrastructure. No side effects did emerge. This underlines that even in
demonstrator development the proposed architecture provides a huge benefit.

Additionally, several challenges needed to be addressed during the implementation.
In the HMI 2019 demonstrator, service definition was not straightforward. An exposed
service should be as complete and simple to use as possible. However, in the interest of
process optimization, exposition of service detailswas necessary. Specifically, separating
the transport service in transportprepare, transportperform and transportreset steps allowed
to greatly decrease time needed for a manufacturing execution. Prepare moves the robot
arm to the source location, perform performs the transport step and reset moves the robot
arm to a waiting position.

6 Related Work

There is a lot of work related to SOA in manufacturing. However, related work does
mostly focus on a single device or on data acquisition but not on manufacturing control
through the means of SOA, which is necessary for enabling the two central use cases
described in Sect. 3.

Colombo, Karnouskos and Mendes [24, 25] describe the factory of the future utiliz-
ing SOA. The authors propose viewing the factory of the future as a system of systems
organized by means of SOA. Additionally, they describe a methodology for dynamic
reconfiguration of a SOA-based shop floor using high-level petri nets to describe the
control of devices. Additionally, the authors illustrate the composition of services as a
vectorial composition. Karnouskos et al. [26] propose an SOA-based architecture for
collaborative cloud-based industrial automation. The authors describe design consider-
ations such as backward/forward compatibility and system simulations. Based on these
considerations, they propose a service-based architecture built upon different user roles
and service groups. Using this architecture, they present the next generation of the con-
cepts of Supervisory Control and Data Acquisition (SCADA) and Distributed Control
System (DCS).

Enabling Industry 4.0 Service-Oriented Architecture Through Digital Twins 501

Jammes and Smit [2] describe a SOA approach using web services. They evaluated
their approach using a dose-maker device, focusing on an SOA approach in the device
itself. The topic of orchestration is described by Jammes, Smit, Lastra and Delamer [27]
and addressed through the use of OWL ontologies. Additionally, SOA is described in the
context of agent-based, self-orchestrating manufacturing systems. Both works evaluated
their proposal in the context of the SIRENA project. Jammes, Mensch and Smit [28]
describe an approach for service-oriented device communication using Devices Profile
for Web Services (DPWS). Additionally, they describe how to integrate legacy devices
into SOA. Pohl, Krumm, Holland, Stewing and Lueck [29] describe SOA in distributed
automation and control systems with a focus on service-oriented control architectures.
They describe a lease mechanism used for flexible service binding.

Thramboulidis, Vachtsevanou and Solanos [30] propose a microservice-based IoT-
based framework for manufacturing systems. The authors introduce the idea of a plant-
independent model (PIM) and a plant-specific model (PSM). Additionally, they describe
how to transform a PIM into a PSM. The paper details the description and discov-
ery of microservices. Ciavotta, Alge, Menato, Rovere and Pedrazzoli [31] propose a
microservice-based middleware for data acquisition using the MAYA platform. They
focus on the aspect of plant simulation in their proposed architecture.

Delamer and Lastra [32] describe device-level SOA with the focus on engineering
knowledge descriptions based on ontologies. They propose four interrelated ontologies:
process taxonomy, product ontology, equipment ontology, and service ontology. Varga
et al. [33] propose the Arrowhead framework, which builds upon the concept of local
clouds. Each local cloud is a system providing and consuming services.

7 Conclusion and Future Work

SOA is a viable approach for solving the requirements of Industry 4.0.However, to enable
I4.0 SOA, a multitude of data is needed, and data structures must be agreed upon. In this
paper, we have described a core of digital twins that enable changeable production and
organize data and interfaces of service providers, services, products, plant topologies,
and transportation. We have illustrated the applicability of our approach to changeable
production. We purposely perceive our approach as technical core rather than a fully
defined set of models: due to the large amount of different processes, it is likely that
real-world deployments will have to add additional properties, constraints, and digital
twins to achieve their I4.0 scenarios. We however believe that our core will provide
a valuable structuring and initial framework as foundation for these activities. We did
implement and validate our approach in context of theBaSys 4.0 project by implementing
it to two demonstrators, both shown at the Hannover Messe (HMI). The implementation
shows the potential of adopting the proposed digital twins and I4.0 orchestration.

A topic of future interest is the transformation of the plant-independent model into
a plant-specific model similarly to the addition of transport steps. It is possible, that a
single step in the product recipe is mapped onto a multitude of steps within the factory.
We assume that future research will focus on how to enable this mapping when different
levels of service granularity are described by recipe and service provider.

502 F. Schnicke et al.

References

1. Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M.: Industry 4.0. Bus. Inf. Syst. Eng.
6(4), 239–242 (2014). https://doi.org/10.1007/s12599-014-0334-4

2. Jammes, F., Smit, H.: Service-oriented paradigms in industrial automation. IEEE Trans. Ind.
Inform. 1, 62–70 (2005)

3. Programmable Controllers—Part 3: Programming Languages, International Electrotechnical
Commission, IEC, International Standard IEC61131-3 (2003)

4. Glaessgen, E., Stargel, D.: The digital twin paradigm for future NASA and US air force vehi-
cles. In: 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics andMaterials
Conference 20th AIAA/ASME/AHS Adaptive Structures Conference 14th AIAA (2012)

5. Rosen, R., Von Wichert, G., Lo, G., Bettenhausen, K.D.: About the importance of autonomy
and digital twins for the future of manufacturing. IFAC-PapersOnLine 48(3), 567–572 (2015)

6. Definition of Digital Twin. https://www.iiconsortium.org/pdf/IIC_Digital_Twins_Industrial_
Apps_White_Paper_2020-02-18.pdf. Accessed 20 July 2020

7. Definition of Interoperability. http://interoperability-definition.info/en/. Accessed 05 Dec
2019

8. Lovelock, C., Vandermerwe, S., Lewis, B.: ServicesMarketing. PrenticeHall Europe, London
(1996)

9. Turner, M., Budgen, D., Brereton, P.: Turning software into a service. Computer 36, 38–44
(2003)

10. Perrey, R., Lycett, M.: Service-oriented architecture. In: Proceedings of the 2003 Symposium
on Applications and the Internet Workshops, 2003, pp. 116–119. IEEE January 2003

11. International Electrotechnical Commission: IEC 62264-1 Enterprise-control system integra-
tion–Part 1: Models and terminology. IEC, Genf (2003)

12. Bauer, N., Huuck, R., Lukoschus, B., Engell, S.: A unifying semantics for sequential function
charts. In: Ehrig, H., et al. (eds.) Integration of Software Specification Techniques for Appli-
cations in Engineering. LNCS, vol. 3147, pp. 400–418. Springer, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-27863-4_22

13. Vyatkin, V.: Software engineering in industrial automation: state-of-the-art review. IEEE
Trans. Ind. Inform. 9(3), 1234–1249 (2013)

14. Industrial Internet Consortium: Industrial internet reference architecture. Technical Article
(2015). http://www.iiconsortium.org/IIRA.htm. Accessed 05 Mar 2020

15. DIN specification 91345: 2016-04 (2016). Reference Architecture Model Industrie 4.0
(RAMI4. 0)

16. Kassner, L., et al.: The Stuttgart IT architecture for manufacturing. In: Hammoudi, S., Maci-
aszek, L.A., Missikoff, M.M., Camp, O., Cordeiro, J. (eds.) ICEIS 2016. LNBIP, vol. 291,
pp. 53–80. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-62386-3_3

17. Wang, S., Wan, J., Li, D., Zhang, C.: Implementing smart factory of Industrie 4.0: an outlook.
Int. J. Distrib. Sens. Netw. 12(1), 3159805 (2016)

18. Böhm, B., et al.: Challenges in the engineering of adaptable and flexible industrial factories.
In: Modellierung (Workshops), pp. 101–110 (2018)

19. Polke,M., Epple, U., Heim,M.: Process Control Engineering, VCHVerlagsgesellschaftmbH,
D-69451 Weinheim (1994). ISBN 3-527-28689-6

20. American National Standards Institute. ANSI/ISA-88.00.02 (2001). Batch Control Part 2:
Data Structures and Guidelines for Languages

21. American National Standards Institute: ANSI/ISA-88.00.02 (2001). Batch Control Part 2:
Data Structures and Guidelines for Languages

22. Kuhn, T., et al.: Industrie 4.0 virtual automation bus. In: ACM ICSE 2018, Göteborg,
Schweden (2018)

https://doi.org/10.1007/s12599-014-0334-4
https://www.iiconsortium.org/pdf/IIC_Digital_Twins_Industrial_Apps_White_Paper_2020-02-18.pdf
http://interoperability-definition.info/en/
https://doi.org/10.1007/978-3-540-27863-4_22
http://www.iiconsortium.org/IIRA.htm
https://doi.org/10.1007/978-3-319-62386-3_3

Enabling Industry 4.0 Service-Oriented Architecture Through Digital Twins 503

23. Grangel-González, I., Halilaj, L., Coskun, G., Auer, S., Collarana, D., Hoffmeister, M.:
Towards a semantic administrative shell for industry 4.0 components. In: 2016 IEEE Tenth
International Conference on Semantic Computing (ICSC), pp. 230–237. IEEE, February 2016

24. Colombo, A.W., Karnouskos, S., Mendes, J.M.: Factory of the future: a service-oriented
system of modular, dynamic reconfigurable and collaborative systems. In: Benyoucef, L.,
Grabot, B. (eds.) Artificial Intelligence Techniques for NetworkedManufacturing Enterprises
Management. SSAM, pp. 459–481. Springer, London (2010). https://doi.org/10.1007/978-1-
84996-119-6_15

25. Karnouskos, S., et al.: A SOA-based architecture for empowering future collaborative cloud-
based industrial automation. In: IECON 2012-38th Annual Conference on IEEE Industrial
Electronics Society. IEEE (2012)

26. Bedenbender, H., et al.: Examples of the Asset Administration Shell for Industrie 4.0
Components–Basic Part. ZVEI White Paper (2017)

27. Jammes, F., Smit, H., Lastra, J.L.M., Delamer, I.M.: Orchestration of service-oriented
manufacturing processes. ETFA (2005)

28. Jammes, F., Mensch, A., Smit, H.: Service-oriented device communications using the devices
profile for web services. In: Proceedings of the 3rd International Workshop on Middleware
for Pervasive and Ad-Hoc Computing, pp. 1–8 (2005)

29. Pohl, A., Krumm, H., Holland, F., Stewing, F.J., Lueck, I.: Service-orientation and flexible
service binding in distributed automation and control systems. In: 22nd International Confer-
ence on Advanced Information Networking and Applications-Workshops (AINA workshops
2008), pp. 1393–1398. IEEE, March 2008

30. Thramboulidis, K., Vachtsevanou, D.C., Solanos, A.: Cyber-physical microservices: an
IoT-based framework for manufacturing systems. In: 2018 IEEE Industrial Cyber-Physical
Systems (ICPS), pp. 232–239. IEEE, May 2018

31. Ciavotta, M., Alge, M., Menato, S., Rovere, D., Pedrazzoli, P.: A microservice-based
middleware for the digital factory. Procedia Manuf. 11, 931–938 (2017)

32. Delamer, I.M., Lastra, J.L.M.: Loosely-coupled automation systems using device-level SOA.
In: 2007 5th IEEE International Conference on Industrial Informatics, vol. 2, pp. 743–748.
IEEE, June 2007

33. Varga, P., et al.: Making system of systems interoperable–the core components of the
arrowhead framework. J. Netw. Comput. Appl. 81, 85–95 (2017)

34. Oliveira Antonino, P., Morgenstern, A., Kuhn, T.: Embedded-software architects: it’s not only
about the software. IEEE Softw. 33(6), 56–62 (2016)

https://doi.org/10.1007/978-1-84996-119-6_15

WASA - 6th International Workshop
on Automotive System/Software

Architecture

International Workshop on Automotive
System/Software Architecture (WASA)

This volume contains the papers presented at the 6th International Workshop on
Automotive System/Software Architecture (WASA 2020) held on September 14, 2020,
in L’Aquila, Italy. WASA was organized as part of the 14th European Conference on
Software Architecture (ECSA 2020). Due to the worldwide COVID-19 pandemic, the
main conference and the workshop were hosted virtually.

WASA is concerned with topics related to the appropriate automotive
system/software architecture and engineering techniques, which can be accepted by the
automotive industry. Therefore, to bring together researchers and practitioners in the
automotive system/software architecture and engineering area, WASA was organized
with ECSA, the premier European software architecture conference.

The papers submitted covered topics such as a verified systems engineering pro-
cess, system health indicators in the automated driving context, a simulation platform
for an autonomous driving truck, an emotional model of a car, and experiences and
practical guidelines to conduct experiments with real cars. In particular, the 2020
edition of WASA saw an increase of papers focusing on automated driving in the
broadest sense. WASA 2020 had no separate abstract submission deadline, and we
received six submissions on the paper deadline with four full and two short papers. The
submissions came from The Netherlands and Germany. We conducted a single-blind
review process with three to four reviews per paper. Out of these submissions, we
accepted four papers (two full and two short papers, 67% acceptance rate). Besides
these paper presentations, we were happy to start the workshop day with a keynote
given by Erik Coelingh. He is a Technology Advisor and Vice President at Zenuity and
an Adjunct Professor Mechatronics at Chalmers University, Sweden. Erik gave an
inspiring talk on the future of intelligent vehicles.

We thank the ECSA 2020 organizers, in particular, Henry Muccini, the general
chair. We also thank Anne Koziolek and Mauro Caporuscio, the ECSA workshop
chairs, for managing the whole process and for swift feedback on several questions.
Moreover, we want to thank our Program Committee for doing an excellent job. The
workshop would not have been possible without these volunteer experts, who provided
reviews of such high quality. We appreciate this work very much!

We hope that you will enjoy reading this volume.

Organization

Workshop Chairs

Darko Durisic Volvo Car Corporation, Sweden
Stefan Kugele Technische Hochschule Ingolstadt, Germany
Yanja Dajsuren Eindhoven University of Technology,

The Netherlands
Miroslaw Staron Chalmers – University of Gothenburg, Sweden

Workshop Program Committee

Harald Altinger Audi, Germany
Klaus Becker BMW Group, Germany
Christian Berger University of Gothenburg, Sweden
Reinder Bril Eindhoven University of Technology,

The Netherlands
Alessio Bucaioni Mälardalen University, Sweden
Thomas Galla Elektrobit, Germany
Uwe Honekamp Vector, Germany
Yaping Luo Eindhoven University of Technology,

The Netherlands
Corrado Motta Volvo Car Corporation, Sweden
Marta Olszewska Abo Akademi University, Finland
S. Ramesh General Motors, USA
Karsten Schmidt Audi, Germany
Tetsuya Tohdo Denso, Japan
Mark Van Den Brand Eindhoven University of Technology,

The Netherlands
Andreas Vogelsang Technische Universität Berlin, Germany
Ji Wu Beihang University, China

System Health Indicators in Mixed
Criticality E/E Systems in Automated

Driving Context

Friederike Dollinger1(B) , Rinat Asmus3 , and Marc Dreiser2

1 Technical University Munich, Boltzmannstrasse 3, 85748 Garching, Germany
friederike.dollinger@tum.de

2 Fraunhofer Institute for Cognitive Systems IKS, Hansastraße 32, 80686 Munich,
Germany

marc.dreiser@iks.fraunhofer.de
3 BMW Group, 80788 Munich, Germany

rinat.asmus@bmw.de

Abstract. One problem standing in the way of fully automated vehicles
is the question of how to ensure vehicle safety and the safety of all traffic
participants. Standards like ISO 26262 and ISO/PAS 21448 tackle those
issues from different viewpoints by defining safety measures and mecha-
nisms. While ISO 26262 focuses on safety hazards arising from malfunc-
tioning of E/E systems, ISO/PAS 21448 stresses hazards due to tech-
nological limitations. However, it is an open challenge how system-wide
safety can be monitored and validated at run-time. To complement those
safety specifications we propose a system-wide run-time safety analysis.
Our System Health Management concept is based on so-called Health
Indicators (HIs) to propagate knowledge about detected errors and trig-
ger appropriate error reactions. We analyze probable information sources
to define meaningful HIs in automated driving context and investigate
influence factors, of both ISO 26262 and ISO/PAS 21448. We apply our
approach to a case study demonstrating its applicability in an automated
driving scenario.

Keywords: Safety · Automated driving system · Health indicator

1 Introduction

To classify different levels of automation, SAE International released the stan-
dard J3016 defining “Levels of Driving Automation” [4]. Current cars realize
levels 0 up to level 2, which offer driver support features. For instance, level 2
features can automatically accelerate and decelerate the vehicle. However, the
driver must always supervise and take over in case of critical situations, ergo he
serves as a safe fallback state. Transitioning from level 2 to level 3 increases sys-
tem complexity as the vehicle operates autonomously in dedicated Operational

c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 509–517, 2020.
https://doi.org/10.1007/978-3-030-59155-7_36

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_36&domain=pdf
http://orcid.org/0000-0002-4898-2483
http://orcid.org/0000-0002-1288-278X
http://orcid.org/0000-0002-0621-6422
https://doi.org/10.1007/978-3-030-59155-7_36

510 F. Dollinger et al.

Design Domains (ODDs) without requiring driver supervision. Only after notifi-
cation, the driver must take over within a specified time span. Level 4 can master
all driving tasks within the ODD; the automated driving system of level 5 vehicles
is capable to handle all environmental conditions. ISO 26262 [2] provides neces-
sary processes and mechanisms for realizing functional safety by avoiding design
faults and offering error detection and handling mechanisms, among other things.
Nonetheless, these mechanisms do not automatically account for the absence of
functional insufficiencies. To close this gap, ISO/PAS 21448 [3] defines the term
‘Safety of the Intended Functionality (SOTIF)’ as absence of unreasonable risk
due to hazards caused by performance limitations of the intended behavior or by
reasonably misuse by the user. And yet, the safety standards only support vehi-
cle development up to automation level 2 as many open issues, such as how to
validate and verify functional safety, remain [11]. The diversity of error sources
like random hardware faults or software design faults gives an indication of why
designing level 3 systems is so challenging. Furthermore, the causal safety chain
becomes a system-wide property as the failure of one element impacts the rest
of the system. For instance, sensor limitations could lead to erroneous environ-
ment perception and dangerous driving maneuvers. These safety violations must
be identified at run-time in order to trigger respective mitigation actions. To
tackle this problem, we present an approach for system-wide safety monitoring
at run-time.

This paper is structured as follows. In Sect. 2 we present a detailed description
of the proposed concept. Section 3 provides an example of how this concept can
be applied in an automated driving context. In Sect. 4 we compare our concept
to related work. At the end we give a conclusion and outlook.

2 Proposed Approach

Introducing the notion of Health Indicators shall increase system safety by
enabling system degradation and Quality of Service (QoS) mechanisms. HIs on
system-level enable system-wide recovery and degradation. Especially automated
driving systems rely on mechanisms of redundancy and diversity to improve sys-
tem safety. Thus, a standardized approach for degradation, not locally but on
system level, has to be defined. In case of failure, this allows switching to hot-
standby instances. Moreover, the principal idea of QoS is adopted to a safety
perspective. Attaching QoS values containing HIs permits service receivers to
instantly decide how far they trust the received service and how to process this
data. Current vehicle architectures integrate diverse platforms like AUTOSAR
or Genivi confirming to different safety and criticality levels. The QoS approach
facilitates coordinating safety mechanisms beyond the borders of single platforms
and standards.

2.1 Meta-Model

We introduce a System Health Management concept to target system-wide run-
time safety analysis. Figure 1 depicts a meta-model of the considered system.

System Health Indicators 511

Its goal is to formally express vehicle abstraction levels and system properties
used for run-time health analysis. This model enables partitioning the vehicle
into different domains that group dependent features. According to safety anal-
ysis conducted for ISO 26262 and ISO/PAS 21448 all functional features and
domains must have well-defined safety properties. These properties can include
redundancy and configuration information for the purpose of analyzing valid con-
figurations and possible degradation strategies. At domain level, those require-
ments result in a rule set for functional degradation rules. Depending on avail-
able features, this rule set allows continued system operation despite failures by
reducing the set of active functional features (graceful degradation). For decid-
ing which features to terminate, functional features have an assigned priority. In
case of failure, features can implement adaptation strategies to save resources
by performance degradation. Functional features are composed of different sub-
systems, defined by hardware, software, redundancy, and capability properties.
The performance degradation rules are based on the subsystem’s availability
and performance. Our concept considers the described properties of the meta-
model as basis to define constraints and models for run-time Health Indicators.
Thus, run-time monitors check those properties at subsystem, functional fea-
ture, and domain level. Those monitors are tailored to their underlying systems.
Subsystems for example have monitors that supervise critical hardware and soft-
ware resources. Domains or functional feature monitors may check degradation
and availability properties of platforms. Run-time Health Indicators shall enable
run-time system degradation strategies. Possible structures of health models are
defined in Sect. 3.

Safety Properties

Safety Properties

Capabilities

Functional
Degradation Rules

Redundancy

Priority

Perfromance
Degradation Rules

SW

HW

Description

Functional Feature

Subsystem

Domain

Resources

Resources

Fig. 1. Meta-model for considered vehicle

512 F. Dollinger et al.

2.2 Health Indicator

Within our concept we define Health Indicators as a triple of Performance, Reli-
ability and Degradation: HI = (Per, Rel, Deg). The three parameters capture
different aspects required by different safety standards. The Degradation para-
meter is a system specific set of degradation levels, which are based on availability
requirements. ISO 26262 demands supervision and monitoring functionalities to
assess the health state of E/E systems with respect to random or system errors.
The health state of ISO 26262 related safety considerations is captured in the
Performance parameter. The Reliability parameter evaluates how much to trust
the system due to uncertainties. Therefore, it encompasses SOTIF related safety
considerations by including the vehicle’s interaction with its environment, users,
and other cars to capture uncertainties introduced by them.

The main purpose of Health Indicators is to monitor system-wide safety
properties at run-time in order to trigger appropriate mitigation actions. Safety
violations can be mitigated by reducing the system’s functionality or perfor-
mance. Our Health Indicator triple supports both degradation strategies. The
Degradation parameter gives an overview on available system resources for func-
tional degradation. The Performance and Reliability parameters of features or
domains are a valuable information source to trigger performance degradation
strategies.

2.3 Run-Time System Health Management

The self-adaptation strategy of the SHM is implemented as MAPE-K loop.
It refers to the five activities of Monitoring the environment and/or system,
Analyzing data for discrepancies, Planning possible adaptation strategies, and
finally Executing the adaptation based on modeled Knowledge [10]. Figure 2
illustrates the planned MAPE-K adaptation architecture. Each managed sub-
system consists of a local MAPE-K loop. Subsystems can be single software
platforms, ECUs, or sensors, for instance. Relevant health information is locally
collected during the analysis phase and is shared with a global analysis unit,
the System Health Manager (SHM). The SHM receives information from one
or multiple local analysis units and optionally also from other SHMs. Based on
this information, HIs on subsystem, functional feature or domain level are deter-
mined. The HIs are in turn shared with managed subsystems. For clean archi-
tectural structuring, the concept shall comply to the “separation of concerns”
principle. Therefore, the adaption logic and execution are left with local state
managers, as they are the only ones with detailed information on, for instance,
running processes. The SHM focuses on abstract global health analysis and pro-
vides this information via HIs to local managers. Extensive system analysis is
required to ensure the local adaptations lead to a globally consistent state as
for instance presented in [5]. For safe global recovery, it may be necessary for
dependent subsystems to exchange current states.

As a standalone solution, our concept cannot guarantee safe system behav-
ior but rather acts as one measure to enable system degradation strategies by

System Health Indicators 513

Fig. 2. Adaptation mechanism structure

providing self-awareness on the system’s health status. For example, one SHM
is a single point of failure and might violate safety requirements. To circum-
vent this problem, two redundant global SHMs can be implemented. The second
SHM serves as hot-standby instance and can take over in case of failure of the
first instance. Therefore, compliance with safety requirements is dependent on
combining safety mechanisms tailored to the underlying problem statement.

3 Health Indicators in Automated Driving Context

3.1 Use Case

This section presents an example for determining HIs on subsystem level. The
paper is taken from the thesis [6], refer to it for more refined Health Indicator
examples. Figure 3 shows a simplified logical architecture of the Automated Driv-
ing domain adapted from [1]. The system enables level 3 features like a “highway
pilot”, to autonomously navigate vehicles on highways with structurally sepa-
rated roads with a maximum velocity of 130 km/h. In case of severe system
failures, the vehicle can either continue its operation with a reduced velocity of
60 km/h, request the driver to take over after a specified time, or stop the vehicle
at the emergency lane. To define HIs the presented E/E system architecture is
analyzed and divided into subsystems. In the following, the nominal integration
platform is taken as an exemplary subsystem for calculating HIs. The nominal
integration system is responsible for trajectory calculation. The computer vision
platform provides information to the PAC and the SAC ECUs. Both channels
generate independent environment models. Based on this environment model,
the PAC application computes a collision-free vehicle trajectory. In parallel, SAC
also uses computer vision information to determine a minimal risk trajectory.
Afterwards, the PAC Validator and the SAC Validator each check both trajec-
tories for collisions. According to several performance and safety requirements,
the trajectories are associated with a score. The Selector uses those scores to
choose the best trajectory.

514 F. Dollinger et al.

Nominal Integration System

Computer Vision Primary ASIL Channel (PAC)

Secondary ASIL Channel (SAC)

Env
Model

Driving
Policy

Sensors

HD Map

Grid

PAC
Validator

SAC
Validator

Selector

Fail Degraded System

Minimum Risk
Maneuver

Driving Policy
Comfort

Calculations
Sensors

Fig. 3. Example logical architecture for Automated Driving domain

3.2 Health Indicators of Automated Driving System

The Degradation represents different levels based on the availability and causal
dependencies of hardware and software resources. PAC and SAC have different
purposes; PAC shall continuously operate and compute trajectories while SAC is
supposed to take over in case of PAC failure. SAC is not intended for continuous
operation. As soon as SAC is activated a handover to the driver is initiated.
Those differences shall be visible in different degradation states:

DegNom =

⎧
⎪⎨

⎪⎩

0 Ok
1 Minimal Risk
2 Failed

(1)

For determining the Performance parameter, we propose a rule-based approach
based on software monitor results. The nominal integration system is considered
safety-critical and different software monitors supervise the timely arrival of
sensor information and whether logical and deadline constraints are satisfied. An
error tolerance for failed reference cycles can be configured for Alive Supervisions.
For instance, all supervision results are summed up in a supervision status, which
can have one of four states:

– OK: No supervision failed.
– FAILED: An Alive Supervision failed and the error counter is below the

configured error tolerance.
– EXPIRED: A Deadline or Logical Supervision failed or the error counter is

equal or above the configured error tolerance.
– DEACTIVATED: A mode switch deactivated the Supervised Entity.

Those supervision states can be mapped to performance levels as shown in Eq. 2.
OK and DEACTIVATED suggest application performance is good (0). A delayed
sensor input might decrease overall performance of the highway pilot regarding
its driving smoothness but is not considered a safety risk. Thus, FAILED is in

System Health Indicators 515

this case mapped to medium performance (1). EXPIRED indicates a severe error
or even functionality loss and is mapped to poor performance (2).

PerSen =

⎧
⎪⎨

⎪⎩

0 if LSS = OK ∨ LSS = DEACTIV ATED

1 if LSS = FAILED

2 if LSS = EXPIRED

(2)

The nominal integration system is a poster example of uncertainty introduced by
SOTIF for the Reliability parameter. Using machine learning algorithms in com-
puter vision and grid fusion yields high uncertainties as unfamiliar environments
might be interpreted the wrong way. The probability values of both machine
learning algorithms are indicators of how good the reliability of the environment
model is. In addition, the cross-validation of both trajectories evaluates how
much the computed trajectories can be trusted. The reliability is influenced by
whether the validators agree on the trajectory score and by the number of the
score itself. Disagreeing should decrease reliability, agreeing should increase its
values. Equation 1 considers the elaborated influence aspects.

RelNom = (α ∗ Prob + β ∗ #agree

#disagree
) ∗ score

scoremax
(3)

3.3 Health Indicator Models

In the following, we outline general aspects for determining Health Indicators
on subsystem, feature and domain level. For Degradation and Performance rule-
based health models prove valuable. They can encompass supervision results of
already installed monitoring mechanisms of safety-relevant software and hard-
ware components like software supervision results or sensor measurements. Pos-
sible subsystem failure dependencies are included by inspecting fault trees. The
uncertainty mirrored by the Reliability cannot be categorized in concrete states.
Instead we propose numerical evaluation with values ranging from 0 to 100.
This way, different influence factors can be weighted and put into relation with
each other. In general exist two main uncertainty causes: aleatoric and epistemic
uncertainty [9]. Epistemic uncertainty covers the uncertainty of unknown situa-
tions as there is no guarantee the artificial intelligence system will react safely.
Aleatoric uncertainty is caused by inaccurate sensor measurements and results in
a misrepresentation of the actual environment. To grasp aleatoric uncertainty, it
is important to capture the current environment state as well as the capabilities
and availability of different sensors. For measuring epistemic uncertainty diverse
and redundant information is used and compared as presented in the example
with PAC and SAC. Therefore, results of different validator and plausibility
checkers can be weighted to measure Reliability. Another uncertainty factor are
human operators. Consequentially, results of driver monitoring systems are a
good information source on the current driver state and could be included in the
Reliability analysis.

516 F. Dollinger et al.

4 Related Work

Most self-adaptive strategies in the industry and the scientific community focus
on application- or component-level analysis. In the following we compare our
concept with three system-level solutions. In the avionics domain, [7] presents a
two-level approach for software health management. The authors suggest com-
bining Component-level Health Managers with a high-level System Health Man-
ager. Similar to our approach, the Component-Level Health Manager is responsi-
ble for monitoring subsystems and reporting the anomalies to the System-Level
Health Manager. The System-Level Health Manager conducts a system-level
analysis on anomalies and executed mitigation actions. In contrast to our run-
time mitigation strategies based on HIs, the overall system diagnosis identifies
the root cause and an appropriate coping strategy is selected. Afterwards, the
Component-Level Health Manager is informed about the strategy and executes
the mitigation actions [7]. This work does not define any abstraction levels for
system health as we do with subsystem, features and domains.

In the automotive domain, the “SafeAdapt - Safe Adaptive Software for
Fully Electric Vehicles” project presents a decentralized concept for safe run-
time reconfiguration. All core nodes cyclically exchange health states of running
applications. The knowledge of application health states is used for coordinated
global adaptions [12]. We propose collecting health information to determine HIs
on feature and domain level in a centralized instance. Our SHM only provides
relevant HIs to local instances, which execute the adaptations.

Frtunikj proposes in [8] a decentralized fault management layer to handle
system failures. Each local node collects health information to determine a health
state of multiple system functions. Those health states are cyclically exchanged.
Taking the health state and additional information like redundancy types of
a subsystem, its degradation level as well as the system function degradation
level is calculated. On this basis the system reconfiguration manager chooses
an appropriate adaption option [8]. The proposed system functions are similar
to the features of this concept. We further consider the domain level for HIs.
Additionally, the HIs do not only give an indication on the current degradation
state but include knowledge on Performance and Reliability states.

5 Conclusion and Outlook

To complement existing standards, we set up a generic System Health Man-
agement concept for run-time safety analysis based on Health Indicators. More-
over, HIs can help tackling other open challenges for automated vehicles. To
bring automated driving into practice without compromising safety require-
ments, sophisticated verification and validation methods are required. It is yet
an unsolved problem how to generate test scenarios and test data that capture
all relevant hazards. Virtual simulation environments are a promising strategy
and could further be used for validating our concept in a risk-free environment.

System Health Indicators 517

But this is only part of the solution. Bringing verification and testing to run-
time appears a valid approach to complement the vehicle’s safety argumenta-
tion. HIs can be seen as a first step in the direction of run-time verification. Our
concept currently does not consider security issues. Information corruption of
sources like backend servers, other vehicles, infrastructure, or apps would result
in severe hazards. Including a run-time security evaluation is as important as
the run-time safety assessment. Future work could extend the existing HI with
security parameters that indicate external intrusions.

References

1. BMW Group Safety Assessment Report - SAE Level 3 Automated Driving
System. https://www.bmwusa.com/content/dam/bmwusa/innovation-campaign/
autonomous/BMW-Safety-Assessment-Report.pdf. Accessed 05 11 2020

2. ISO 26262 - Road Vehicles - Functional Safety, December 2018
3. ISO/PAS 21448 - Road vehicles – Safety of the intended functionality, January

2019
4. SAE Standard J3016 - Taxonomy and Definitions for Terms Related to Driving

Automation Systems for on-Road Motor Vehicles, June 2018
5. Becker, K.: Software Deployment Analysis for Mixed Reliability Automotive Sys-

tems. Dissertation, Technical University Munich, Munich (2017)
6. Dollinger, F.: Definition of System Health Indicators in Mixed Criticality E/E Sys-

tems in Automated Driving Context. Master’s thesis, Technical University Munich,
Munich (2020)

7. Dubey, A., Karsai, G., Mahadevan, N.: Model-based software health manage-
ment for real-time systems. In: 2011 Aerospace Conference, pp. 1–18, March 2011.
https://doi.org/10.1109/AERO.2011.5747559

8. Frtunikj, J.: Safety Framework and Platform for Functions of Future Automotive
E/E Systems. Dissertation, Technical University Munich (2016)

9. Hüllermeier, E., Waegeman, W.: Aleatoric and epistemic uncertainty in machine
learning: a tutorial introduction. ArXiv abs/1910.09457 (2019)

10. Kephart, J.O., Chess, D.M.: The vision of autonomic computing. Computer 36(1),
41–50 (2003). https://doi.org/10.1109/MC.2003.1160055

11. Kirovskii, O.M., Gorelov, V.A.: Driver assistance systems: analysis, tests and the
safety case. ISO 26262 and ISO/PAS 21448. In: IOP Conference Series: Materials
Science and Engineering 534, June 2019. https://doi.org/10.1088/1757-899x/534/
1/012019

12. Weiss, G., Schleiss, P., Drabek, C.: Towards flexible and dependable E/E-
architectures for future vehicles, September 2016

https://www.bmwusa.com/content/dam/bmwusa/innovation-campaign/autonomous/BMW-Safety-Assessment-Report.pdf
https://www.bmwusa.com/content/dam/bmwusa/innovation-campaign/autonomous/BMW-Safety-Assessment-Report.pdf
https://doi.org/10.1109/AERO.2011.5747559
https://doi.org/10.1109/MC.2003.1160055
https://doi.org/10.1088/1757-899x/534/1/012019
https://doi.org/10.1088/1757-899x/534/1/012019

How to Conduct Experiments with a Real
Car? Experiences and Practical

Guidelines

Thomas Hutzelmann(B), Dominik Mauksch, and Alexander Pretschner

Department of Informatics, Technical University of Munich,
85748 Garching b. München, Germany

{t.hutzelmann,d.mauksch,alexander.pretschner}@tum.de

Abstract. Higher computational power, new dimensions of interconnec-
tivity and modern machine learning techniques are necessary for building
a fully autonomous car, but exhibit an enormous technical complexity.
Research about new approaches and technology for handling this com-
plexity raises a problem: On the one side, researchers advocate transi-
tions and replacements for the current systems mainly without deploying
them in real cars on the streets. On the other side applying theoretical
approaches without clear evidence of their practical benefits is risky for
the practitioners. As a solution to close this gap, researchers should bring
their ideas more often into physical cars and support their proposals with
measurements from realistic experiments.

With this paper, we share our insights from an academic perspective
about connecting scientific prototypes with a real car. (1) We discuss
three interface designs for setups with differing connectivity to a run-
ning car; (2) We provide a checklist for planning and organizing real car
experiments including a discussion of involved trade-offs; (3) We give
practical advice and identify best practices learned from our own experi-
ments inside a car. In sum, we demonstrate that even with a short budget
and a small team size it still is possible to bring prototypes into real cars.

Keywords: Automotive · Car interface · Experimental evaluation

1 Introduction

The automotive domain is in the process of a huge technological change for
turning a vehicle from a basic machine into a fully autonomous transport mean
with included infotainment systems [3]. Although academic research and indus-
try both work towards the same goal, there is a gap between academia focusing
on new ideas and approaches, whereas industry must naturally focus on the most
promising and applicable ideas [11].

As an academic research team in the area of Software and Systems Engineer-
ing, we have developed various new algorithms and approaches for modern cars
in the last years. These software prototypes span from profiling of driving sce-
narios to different approaches for intrusion detection. However, we have ended
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 518–526, 2020.
https://doi.org/10.1007/978-3-030-59155-7_37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_37&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_37

How to Conduct Experiments with a Real Car? 519

up with the same problem in all these prototypes: They cannot be evaluated
realistically without being used inside a real car. Nevertheless, putting research
prototypes into a car has seemed risky, expensive and a plenty of work.

We are aware of various work from bigger research teams, ranging from build-
ing their own car [8] to collaborations between multiple universities [7]. Such
projects, budgets and team sizes were not available for us, but still we aimed
for a realistic evaluation. Through various iterations we experimented with dif-
ferent approaches and realized several experimental setups: Starting with small
dongles for passive data-recording, over Raspberry Pis with acoustic feedback
to the driver, to partially controlling the car’s driving behavior through attacks
with a connected laptop. In retrospective all these experiments are based on the
same decision process and follow the same schema in approaching a car.

In this work, we summarize our experiences from experiments with real cars
under tight budget and human resource constraints. Based on practical advice,
guided by checklists and best practices, we advocate experiments with cars while
keeping the risk controllable and the budget and workload low. Thus, our paper
dedicated to small research groups complements the already documented effort
of bigger research teams and projects. Thereby, we want to demonstrate that our
initial concerns as a small team were not justified, and we hope to encourage aca-
demic researchers to put their experimental prototypes earlier and more often into
real cars. Thus, we make an important step away from pure paperwork and arti-
ficial toy setups, towards real systems. Consequently, all research findings have
higher significance and provide meaningful validation of the new approaches.

During this paper we use several terms that we define as follows: The imple-
mented research prototype that is designed for operating with a car is labeled
as an experimental setup. An experiment is the process to collect empirical data
with the experimental setup. Research team refers to all people taking part in the
planning and conduction of the experiment. The track is the physical location
where the car is driven during an experiment. Finally, conducting an experiment
denotes all the required steps for getting results from the experiments—from
planning and organizing, to driving the car to elicit data.

2 Constraints and Requirements

Due to their dependency on expensive and potentially dangerous equipment,
experiments with real cars are strictly limited by external factors. In the follow-
ing discussions about decisions made before and during experiments, we distin-
guish between constraints and requirements: Constraints identify the general lim-
itations that are invariant for all experiments. These constraints are imposed by
rationality and by good scientific practice. Requirements on the experiment are
based on specific trade-offs and vary in different usages. All requirements reflect
the affected constraints, but are influenced by decisions of the research team.

520 T. Hutzelmann et al.

2.1 Constraints

Assured Safety: During the experiments, no human must be harmed. Damage
to the car or used setups might be acceptable but should be avoided if possible.
Therefore, it must be assured that the used setup is controllable at all times and
in all circumstances.

Minimal Budget: The cheaper the conduction of an experiment is, the better. It
is impossible to avoid some minimal costs, but if there are two approaches with
comparable outcome, the cheaper approach is preferable.

Sound Documentation: After the experiment, the documentation of the used
setup, and all collected data need to be as comprehensive and complete as nec-
essary for supporting or rejecting the hypothesis. The experiment needs to be
reproducible in the future, and the data is required as proof for the results and
support for the conclusions.

2.2 Requirements

Acceptable Risks: While working with physical hardware, it is impossible to avoid
all possible risks and dangers. However, it is important to consider which sce-
narios are acceptable and which are not. There is no guarantee or full insurance.
Therefore, all parties involved during the conduction need to agree on the max-
imum acceptable risk during the experiments. This especially applies if regular
traffic participants are involved, as no additional risk can be put on them.

Available Budget: The physical car, the experimental setup as well as the track
and the used equipment cost money. With smart ideas, there are often strategies
that reduce costs and enable low budget setups. Some of these tips will be
highlighted during this paper.

Usage of the Car: At the beginning of the experiment planning, it is important to
consider what to actually do with the car. This includes the driving scenarios as
well as how the experimental setup interacts with the car. Since the researchers
can focus only on relevant aspects, this offers big space for decisions.

3 Candidate Interfaces Between Setup and Car

For putting an experimental setup into the car, the first decision is about the
interaction with the car. The information exchange is highly dependent on the
experiment, but for the interfaces, in general, there exist three different choices
depicted in Fig. 1 and discussed in this section. Hybrids and combinations of
these interfaces for different parts of the setup are also possible.

How to Conduct Experiments with a Real Car? 521

Fig. 1. Three interfaces for experiments: (1) Isolation, (2) Receiving, (3) Interaction

3.1 Isolation of Setup and Car

A simple approach is not to connect the experimental setup with the car at all.
Just through operating inside the car and driving around with the setup already
enables several experiments. Various sensors like cameras, gyroscopes, or GPS
dongles enable a realistic data collection without direct connection to the car.

When the experimental setup is completely isolated from the car, the only
risk results from a potential interaction with the driver. The setup will behave
inside the car exactly as it does during the preparation, and the operation of the
car is not influenced at all. However, the isolation might require using redundant
sensors, which is more expensive than reusing the sensors inside the car. Fur-
thermore, the usage of the car is limited as the setup is never connected with any
network or realistic data from the car. For example, this type of interface has
been used to collect GPS traces around a city area to improve privacy issues [4]
and several variants to detect driver fatigue [10].

3.2 Receiving Data from the Car

Another approach for an interface is to connect the experimental setup with the
car, but only to receive information out of the network through the On-Board
Diagnostic (OBD) [9]. This standardized interface provides access to various
information from the vehicle, especially the engine, for example, the current
speed, the driven distance or the engine’s intake and exhaust.

As the OBD-port is designed for receiving information during the operation
of the car, the risk of this approach is rather minimal, when the experimental
setup is robust against delays or gaps in the received information. There exist
diverse OBD-adapters and—due to the standardization—they are rather cheap.
For example, this type of interface has been used to determine the fuel consump-
tion in osculating traffic [12] and to analyze the driving behavior to spot unsafe
driving [1]. Unfortunately, OBD does not offer access to advanced sensors as
video streams, lidar or radar. For receiving such data, the approach described
for interaction between setup and car is also applicable for just listening to the
network. However, it remains more intrusive so the provided assessment of this
other approach still applies.

522 T. Hutzelmann et al.

3.3 Interaction Between Setup and Car

The most intrusive interface is an integration into the car’s network for directly
receiving, sending and even suppressing messages. The vehicle does not openly
provide such an interface, but from our experience, it is still accessible reasonably
easy. After removing the interior lining—often through basic click mechanisms—
many cables are tangible. For instance, behind the rear mirror or under the
central console are convenient choices that expose various networks and do not
impede the driving. The concrete layout differs between manufacturers and car
models, but in our case, the information was always easily accessible online.

Such an interconnection with the experimental setup is very dangerous, if
the setup is not tested thoroughly and carefully. Wrong network interactions
can potentially disable or permanently destroy the car’s electronic components.
Therefore, this approach has two major prerequisites: First, the setup needs a
physical connection to the relevant network in the car. Most cables inside the
car have standardized plugs that are cheaply available, but the concrete connec-
tor might still need to be handmade or at least customized. Second, the setup
needs to understand the network protocol and the relevant payload in order
to communicate with syntactically valid and semantically meaningful messages.
Although the full message matrices are kept confidential by the manufacturers,
there exist open communities trying to reverse engineer the networks, for exam-
ple, the opendbc project [2] for CAN. Overall, the available information from the
network as well as the potential to integrate the experimental setup directly into
the car enables a huge potential for use cases, that might be worth the implied
risk and effort to establish this interface. For example, this type of interface has
been used for excessive security penetration testing [6] and to develop extensible
prototypes for autonomous driving [5].

4 Checklist of Organizing Experiments

After the experimental setup is prepared and provides a suitable interface to
the car, the concrete experiments need to be organized. This section discusses
the most important questions for devising the experiments. Each question refers
to requirements introduced in Sect. 2 and provides multiple alternatives with
different degrees of risk, budget, or usage of the car.

4.1 How to Compose the Research Team? (Risk, Budget, Usage)

Some experimental setups can be operated by a single person—the driver of
the car. For keeping the risk defensible with this, the experimental setup needs
to be very automatic and should only require close to no interaction by the
driver. So, this is only an option if the experimental setup mostly collects data
while not interfering with the drive. With experiments that require at least
some interaction or control during the drive, having two researchers in the car is
reasonable to keep the risk manageable without full automation: one for focusing
on driving the car and the other for controlling the experimental setup.

How to Conduct Experiments with a Real Car? 523

If the experiment requires equipment or observations from outside the car,
adding a third person to the team might be reasonable to assist with the setup or
to focus on documentation. Such assistance is comfortable, but from our experi-
ence, stationary cameras permanently recording are also a suitable alternative.
Additional people watching the experiment could be distractive and disturb the
focus. Therefore, too many people should be avoided as they also imply a safety
risk during the experiment.

4.2 Where to Get a Suitable Car? (Budget, Usage)

Only if the usage requires a permanent modification to the car that cannot be
undone without damage, then buying a car is the only option. Without these,
there also exist cheaper alternatives. If the usage scenario is not limited to specific
cars or car models, mainly when the setup is in isolation from the car, big rental
services are the best option as they offer cars for short periods and very small
budget. If the experiment requires a specific car model, for example, because of
some sensors incorporated in an interactive interface, big rental services to our
experience do not provide a broad choice between distinctive car models.

However, there also exist various smaller car and repair shops that have a
fleet of cars for rental. Most of the time, they focus on a specific brand and
offer all the recent models to similar conditions as the big rental services. After
contacting a few shops in our surrounding, we were always able to find the model
that we needed. No matter how the car is rented, it is crucial to check that the
planned usage is legally permitted.

4.3 Where to Do Experimental Rides? (Risk, Budget, Usage)

Non-interaction setups with no major risk may just be driven on regular streets
as the car still has a permission to operate there. Modified cars do lose their per-
mission to operate on regular streets and need an isolated, private place to not
endanger regular traffic. Furthermore, the specific driving scenario—the speed,
traffic, maneuver—is limiting the useful types of location. Industry corporations,
bigger research institutes or driving schools have specially designed tracks for test
drives. If the research team has a more flexible time schedule, there are also options
to build their own track on a private parking place. For example, the parking side
of a university is crowded during the week, but on the weekend it is mostly empty.
So with some barrier tape, parts of the parking places can be separated and used
for the experiments. These separated tracks lack street signs or road markings,
but the research team can build them. For the road marking, washable color or
barrier tape fixed straight on the ground has worked the best for us. Street signs
can be emulated with paperboard stabilized by water-filled plastic bottles. If the
car detects obstacles through radar, in our experience wrapping the paperboard
in aluminum is a simple solution. Nevertheless, separated tracks limit the usages
as their length is limited, and the driving scenarios are monotonic.

524 T. Hutzelmann et al.

5 Best Practices and General Advice

This final section provides general considerations for experiments with cars.
Depending on the concrete experiment, this list is not complete, but it provides
a baseline to prevent basic mistakes.

5.1 Structure the Available Time in Advance

A clear structure of what to do is essential for assuring that the spent time
leads to results. Therefore, the minimum is at least a temporal order of the
concrete experiments. The most important part of the schedule is to agree on
limits: This phase will end at this time, or during the experiments the car will
not drive above this speed and not outside this area. Additionally, the schedule
should consider breaks with snacks and food explicitly. It is important to get
out of the car regularly as it is not comfortable to work with the laptop on the
knees for longer hours. When the experiments—success or failures—bring strong
emotions, these breaks are valuable to calm down again.

5.2 What If the Setup Does Not Work?

None of our experiments has worked on our first attempt. Often there were
only small errors, but identifying them can be very time-consuming. Hence, it
is important to include self-checks into the experimental setup, for example, if
all the cables are connected properly. Also, a simple interface eases the experi-
ments as for example fast and precise typing is problematic during drives with
higher speed. Ideally, these interfaces also offer debugging options and provide
meaningful error messages if something goes wrong. Last but not least, never
try to hack something quick and dirty during the conduction. These hacks can
influence the whole experimental setup, ruin all measurements and have severe
safety impacts.

5.3 Enduring Power Supply

Especially conducting or preparing experiments in an idle car exhausts the bat-
teries of the equipment as well as of the car. While there are external chargers
for the car battery, these are expensive and there exist cheaper alternatives. In
our cases, it was the easiest to find one member of our team that drove the car to
his home and back to work in the morning. This procedure refilled the batteries
and was sufficient for day long experiments.

The other equipment inside the car can use two different forms of power
supply: When the component is running on batteries, bringing replacement bat-
teries or a power bank is sufficient to operate during the day and to recharge
during the night. Alternatively, the battery of the car can also be used to power
the experimental setup. There exist various adapters for USB or laptops to the
vehicle input and also the OBD-Port provides a small source of power.

How to Conduct Experiments with a Real Car? 525

6 Conclusion and Outlook

With this paper, we documented our experiences with connecting experimental
setups with running cars. Starting with a refinement from general constraints to
competing requirements, the report elicited three different interface designs to
connect the experimental setup with the car. These requirements and interfaces
are used as a foundation for a checklist of the organization and best practices for
conducting the experiments. The car usage can vary from driving around with
a small single-board computer to partially disassembling the car to connect new
components. Although the implied risk cannot be avoided completely, the dis-
cussions provide guidance for keeping it controllable. A bigger budget is helpful,
but with focus on the minimal realizations the overall budget can be cut down.

To balance conflicting requirements is difficult as long as the constraints and
their implications remain abstract. Hence, this paper provides a foundation for
discussions in the researcher team in order to decide about each aspect individ-
ually and eases the agreement about the shape of the experiment. Thereby, our
checklists and best practices are a foundation for conducting academic experi-
ments in various research domains.

We would like to end this experience paper with a personal comment: Before
we touched a physical car, we expected it to be a big challenge to connect our
experiments with a driving car. However, after we gave it a try it always turned
out to be relatively easy. The insights that we gained from a few drives with
our experimental setups changed our understanding completely. Sensor data and
measurements of the real physical behavior and real inaccuracy; a real time oper-
ation and realistic information flow workload; and most importantly authentic
interactions with the driver and the driving behavior, in combination spotted
several misconceptions in our research prototypes and provided valuable vali-
dation. Therefore, we highly recommend that academic researchers more often
aim for putting their research into a real car. With these guidelines we hope to
provide enough support to encourage more researches to follow our direction and
gain—as we did—richer and more applicable insights through their projects.

A Key-Questions from the Paper in Condensed Form

A.1 Candidate Interfaces between Setup and Car

1. What kind of interaction from the setup with the car is required?
2. What sensor data does the setup require?
3. What makes the deployment inside a car different from without a car?
4. How does the driver interact with the setup?

A.2 Checklist of Organizing Experiments

1. Is there need for a co-driver to assist with the experiments?
2. Does the experiment require additional documentation, e.g. by an additional

video from outside the car?

526 T. Hutzelmann et al.

3. Is some special car model, e.g. with a specific sensor, required?
4. Does the car need to be permanently modified?
5. What characteristics need to be present on the street?
6. What interaction with other traffic participants is needed?

A.3 Best Practices and General Advice

1. Has the setup been tested extensively before the experiment?
2. Does the schedule contain regular breaks?
3. Does every experiment have limits (time, speed, location, etc.)?
4. Does the setup provide a debug interface?
5. Are there replacement batteries for the setup?
6. How is the battery of the car regularly recharged?

References

1. Chen, S.H., Pan, J.S., Lu, K.: Driving behavior analysis based on vehicle OBD
information and adaboost algorithms. In: Proceedings of the International Multi-
Conference of Engineers and Computer Scientists (2015)

2. Comma.ai: opendbc. https://github.com/commaai/opendbc
3. Coppola, R., Morisio, M.: Connected car: technologies, issues, future trends. ACM

Comput. Surv. (2016). https://doi.org/10.1145/2971482
4. Hoh, B., Gruteser, M., Xiong, H., Alrabady, A.: Preserving privacy in GPS traces

via uncertainty-aware path cloaking. In: Computer and Communications Security
(2007). https://doi.org/10.1145/1315245.1315266

5. Kato, S., Takeuchi, E., Ishiguro, Y., Ninomiya, Y., Takeda, K., Hamada, T.: An
open approach to autonomous vehicles. IEEE Micro (2015). https://doi.org/10.
1109/MM.2015.133

6. Miller, C., Valasek, C.: Adventures in automotive networks and control units. Def.
Con. (2013). http://www.illmatics.com/car hacking.pdf

7. Van Oorschot, P.F., Besselink, I.J.M., Meinders, E., Nijmeijer, H.: Realization and
control of the Lupo EL electric vehicle. World Electr. Veh. J. 5(1), 14–23 (2012)

8. Ploeg, J., et al.: Cooperative automated maneuvering at the 2016 grand cooperative
driving challenge. IEEE Trans. Intell. Transp. Syst. (2018). https://doi.org/10.
1109/TITS.2017.2765669

9. SAE International: E/E Diagnostic Test Modes (2017). https://doi.org/10.4271/
J1979 201702

10. Sikander, G., Anwar, S.: Driver fatigue detection systems: a review. IEEE Trans.
Intell. Transp. Syst. (2019). https://doi.org/10.1109/TITS.2018.2868499

11. Vuori, T., Piik, J.: The co-evolution of academic research and industry practice:
evidence from the US car industry. Int. J. Soc. Syst. Sci. (2010). https://doi.org/
10.1504/IJSSS.2010.035567

12. Wu, F., et al.: Measuring trajectories and fuel consumption in oscillatory traffic:
experimental results. In: Transportation Research Board 96th Annual Meeting
(2017). https://hal.archives-ouvertes.fr/hal-01516133

https://github.com/commaai/opendbc
https://doi.org/10.1145/2971482
https://doi.org/10.1145/1315245.1315266
https://doi.org/10.1109/MM.2015.133
https://doi.org/10.1109/MM.2015.133
http://www.illmatics.com/car_hacking.pdf
https://doi.org/10.1109/TITS.2017.2765669
https://doi.org/10.1109/TITS.2017.2765669
https://doi.org/10.4271/J1979_201702
https://doi.org/10.4271/J1979_201702
https://doi.org/10.1109/TITS.2018.2868499
https://doi.org/10.1504/IJSSS.2010.035567
https://doi.org/10.1504/IJSSS.2010.035567
https://hal.archives-ouvertes.fr/hal-01516133

Towards a Systems Engineering Based
Automotive Product Engineering Process

Hassan Hage1,2(B), Vahid Hashemi2, and Frank Mantwill1

1 Helmut-Schmidt-University, Holstenhofweg 85, 22043 Hamburg, Germany
hassan.hage@hsu-hh.de

2 AUDI AG, Auto-Union-Straße 1, 85057 Ingolstadt, Germany

Abstract. Deficit and redundancies in existing automotive product development
hinder a systems engineering based development. In this paper we discuss a
methodical procedure to eliminate deficits in the current product development and
in turn to enable the introduction of a new systems engineering based development
methodology. As the core part of our approach, we discuss how to transform an
opaque heterogeneous product development to a homogenous consistent product
development taking into account existing disciplines. Our approach paves the way
to achieve a process structure that is more amenable to verification and validation.
We show the effectiveness of our proposed solution approach on an automotive
use case.

Keywords: Business process · Systems engineering · Verification & Validation

1 Introduction

The ever-increasing demand for technology and connectivity in automotive industries
has led automakers to invest heavily in the electronics and software development. The
interaction of the three components hardware, electronics and software is becoming
increasingly important, which in turn increases the complexity of a vehicle development
[3, 20]. The complexity arises due to the fact that safe, environmental friendly, eco-
nomical and easy accessible vehicle is demanded in the market [8]. At the same time,
the legal requirements, which are required for an initial vehicle registration, are tight-
ened [16]. Despite increasing complexity in a vehicle, a reduction in development times
due to competition is necessary [1, 20]. Hence, automotive manufacturers are facing an
exponentially growing challenge for which a reformation of their development strategy
is required [20, 25]. To account for the latter, manufacturers orient themselves accord-
ing to the standard of the “Automotive Software Process Improvement and Capability
Determination” (A-SPICE), which should enable a mastery of the development com-
plexity [8]. Hence, the development methodology of Systems Engineering (SE) plays
an important role, since this methodology will help to master the complexity. Systems
engineering approach has been exploited for many years in avionics industries for prod-
uct development. The increasing product complexity in automotive industries solicits
application of this method [4] which in turn is associated with complications.

© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 527–541, 2020.
https://doi.org/10.1007/978-3-030-59155-7_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_38&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_38

528 H. Hage et al.

Firstly, vehicle manufacturers have grown dramatically since they were founded in
the past few decades. Due to the drastic and rapid expansion of the company, a partly
heterogeneous company structure was formed. Domain-specific departments indepen-
dently developed their own processes, methods and tools [14]. As a result, it was no
longer possible to ensure a homogeneous, consistent and transparent product develop-
ment. Therefore, the traceability in the product development is sometimes challenging
and hence, the high product quality can be only ensured with difficulty. The recent
vehicle software manipulation for incorrect exhaust values is an example of a product
development inwhich suchmanipulationswere difficult and time consuming to be traced
[7, 11]. The reason for such a difficultly is the heterogeneous processes of the product
development.

Moreover, in the automotive industry, the Product Engineering Process (PEP) tradi-
tionally consists mainly of individual phases and control points/milestones. Behind the
phases are processes that have to be reached at certain milestones [12, 24]. Generally a
PEP is saved in a company as a specific document format, which is available for retrieval.
However, the processes presented in the PEP do not provide the domain-specific depart-
ments with process-related, sufficiently detailed information. In particular, the necessary
detailed process steps to reach themilestones are not apparent. Consequently, there exists
no product development process overviewwhich could deliver sufficient information and
the interdependency of all relevant groups of a product development. In addition, the
scheduling for domain-specific departments is very rough and dependencies between
these departments and intermediate milestones are not clear. Finally, the use of the SE
method requires a radical change in the corporate culture as well as parts of the corpo-
rate roles, processes, methods and tools as the current product engineering process is
not designed based on the SE.

The present paper presents a methodological approach that arose out of necessity
during the attempt to introduce SE at an automotive manufacture and resolves current
deficits in existing automotive developments that make it difficult to introduce new
development methods such as the SE.

Summarizing, the main contributions of this paper are as follows.

– We introduce and integrate milestones in process models to capture temporal aspects
of the product development.

– We show that by means of a unified modelling language in a heterogeneous product
development, the connectivity from the highest level of abstraction down to the lowest
level of abstraction can be ensured. This way we provide consistency and traceability
in the entire product development.

– We provide an approach which enables SE in the automotive product development.
We show promising results on the feasibility of our solution approach, obtained by
its implementation on an automotive use case.

Structure of the Paper. Section 2 provides a brief overview of the related works and
highlights the research gap. In Sect. 3, a solution approach is described. This approach
promises the elimination of deficits of an automotive product development and presents
a method to enable the introduction of SE in an existing product development. We then

Towards a Systems Engineering Based Automotive PEP 529

validate the feasibility of our proposed approach on a use case. Finally, Sect. 5 discusses
the solution approach and concludes the paper.

2 Related Work

This section provides an overview of related works. Existing methodologies, which
should provide transparency and consistency in the product development, are briefly
examined for advantages and disadvantages. This leads us to identify the current gap
and therefore, to propose a solution approach.

2.1 Methodology for Product Planning

The organization of German engineers a.k.a. “Verein der Deutschen Ingenieure (VDI)”
proposes a methodical procedure according to VDI 2220 guideline to plan the life cycle
of a product [22, 23]. This life cycle is referred to as a product planning or in a corporate
level as a product process (PP) [12]. It starts with a market research through the PEP
and finally, up to the product disposal [9, 22]. The actual product development takes
place in the PEP and includes the planning, drafting, designing and realization of a new
product. To account for the latter, the VDI guideline presents a methodical approach
on a detailed level. Finally, following the guideline leads to a consistent and traceable
product process. Product developments of automotive manufactures are roughly similar
(see Fig. 1).

Fig. 1. Product engineering process of various automotive manufactures [19].

As mentioned in Sect. 1, a product process as well as a PEP consists of phases and
milestones. This is a crucial bottleneck as product development according to VDI 2220
does not consider the temporal aspect of a development. Moreover, the guideline VDI

530 H. Hage et al.

2220 specifies a strict method; however, in practice a development consists of huge
amount of methods. Therefore, following such a strict method is hardly realizable. After
all, the VDI 2220 guideline is not designed for complex mechatronic products [22, 23].

2.2 Design Methodology for Mechatronic Systems

The organization of German engineers introduced the guideline VDI 2206 for designing
of mechatronic systems [23]. This guideline consists of elements problem-solving cycle
as a micro-cycle, the V model as a macro-cycle as well as process modules for recurrent
working steps. The first problem-solving element is based on the method of SE but
further considers disciplines such as business administration which are necessary for a
product development. Target of this element is to analyze the initial problem as well as to
determine the actual and desired state. The second element consists a problem solution
and plans the further procedure based on the V model of SE for developing mechatronic
systems [23]. Finally, the third element defines and deepens a part of theVmodelwith the
use of process modules. This approach enables a consistent and traceable development
of complex mechatronic products by strictly following the guideline. Nevertheless, this
approach similarly to the VDI 2220 guideline enables a theoretical approach based on a
completely newproduct development. Therefore, already establishedprocesses,methods
and tools could not further be used and an existing development has completely to be
changed. The latter is unrealizable due mainly to the high product complexity as well as
the lack of consideration of temporal aspects.

2.3 Systems Engineering/Model-Based Systems Engineering (MBSE)

Systems Engineering is an interdisciplinary approach for the development of multidis-
ciplinary systems such as mechatronic systems. With the help of this methodology, a
holistic and cooperative understanding between all development participants is created
[15, 21]. However, it does not consider necessary disciplines such as business adminis-
tration and temporal aspects for the product development. The SE approach is oriented
on the V model. The V model is started by the RFLP approach – R stands for Require-
ments, F for Functional Model, L for Logical Model and P for Physical Model – through
hardware, electronics and software development up to verification and validation of the
entire product [17, 18]. A V model-based vehicle developments is shown in Fig. 2. This
development process requires specific processes that are performed with specific meth-
ods and tools [18]. MBSE is a method of SE and aims to achieve a largely model-based
development through the V model. For example, dependencies between functions are
recorded as a model and not as a text [13]. MBSE offers the advantage of a uniform
standard language amongst the product development so that consistency and traceability
are easier to realize. Moreover, MBSE creates a better holistic understanding between
developers [13]. Nevertheless, using MBSE over the entire existing product develop-
ment needs a radical change of processes, methods and tools. In particular, use of this
approach is not realizable when the existing development is not transparent as detailed
in Sect. 1.

Towards a Systems Engineering Based Automotive PEP 531

Fig. 2. V-model of SE for developing a vehicle [17].

2.4 Research Gap

Following strictly the aforementioned approaches enables a consistent and traceable
product development. The main issue is that all approaches are based on a new product
development including specific processes, method and tools. However, a method for
reaching consistency and traceability in an existing development is required. Addition-
ally, necessary disciplines such as production, marketing, finance, temporal aspects etc.
shall be considered in a product development. To account for the latter, a method shall be
developed to enable transformation of an opaque heterogonous product development to
a homogenous consistent product development taking into account existing disciplines
as well as processes, methods and tools. The latter is clearly identified as a research gap
which is the core focus in this paper. It is worthwhile to note that the required method
has to inevitably consider a development based on SE as automotive manufactures ori-
ent themselves according to A-SPICE guidelines and the approach of SE. However the
integration of the SE approach shall be incremental as already developed processes,
methods and tools are not possible to change abruptly.

3 Solution Approach

In order to record the actual state of the product development in terms of processes, the
top-down approach “from rough to detail” is used. This approach recommends breaking
down an overall problem to be solved into logical and interrelated sub-problems. The
sub-problems are further broken down until small manageable problems are obtained
which can then be solved [2]. The bottom-up approach could also used but for the
target of this paper the bottom-up approach is more time intensive. The recording of the
actual state is done in a similar way as the top-down approach. At the beginning the
business process is defined. Subsequently, the specification of the main process takes
place. After that associated sub-processes are specified until the last process workflow
level is finally recorded. Figure 3 reflects the process hierarchy where X means the last
specified sub-process and Y the last specified process workflow.

532 H. Hage et al.

Fig. 3. Process levels.

In a complex overall process, sub-processes are designed by different people with
different understandings and background knowledge. For this reason, an existing speci-
fication language is used to ensure uniform understanding. The Business Process Model
and Notation (BPMN) language [10] is recommended for this purpose because this
language enables a sufficiently described process through its notations. All recorded
processes are represented using the BPMN specification language. It is also possible to
create logical dependencies between the main- and sub-processes. In practice, the suc-
cess of a development does not only depend on the process flow but also on the adherence
to the time component and milestones. For this reason, it is necessary to take the time
component into account at the process specification and modeling phase. Specification
languages like BPMN do not offer suitable symbols to capture milestones in the process
model. Therefore, we provide symbols from the BPMN languagewith a different context
in this approach.

The top-down process modeling and specification are prerequisite for enabling the
inevitable usage of SE. However, as already discussed in Sect. 2, the application is
not straightforward for an existing automotive development. To this end, and with the
aim of enabling the SE approach, we discuss a methodical approach to transform an
existing product development to achieve consistency and, in the case of e.g. changes, the
possibility of traceability. The high level idea of our approach takes the prepared process
modeling and specification and compares that with the prescribed processes of the SE to
observe similarities and deviations. The procedural changes cannot be avoided during
the implementation of the SE as the nature of SE is up to a certain extent, theory-based.
Therefore, it is necessary to obtain a constant overview of the quality of the changed
processes in order to remain within the scope of the prescribed SE process standard. Our
approach includes implementation of five phases detailed as follows.

3.1 Phase 1: SP – Setting a Pyramid

A product is described as an entire system which in turn consists of several subsystems,
each of which are composed in components. The development of such systems or com-
ponents requires a large number of specialist, who are simply responsible for the system
or component. In order to achieve a consistent product development, it is necessary to
make the existing structure transparent, such that transparency is realized through the
cycle shown in Fig. 4.

The starting step Determine Level identifies a sub-process of the product process
and determines its hierarchical assignment (see Fig. 3) to the entire process. Then, the

Towards a Systems Engineering Based Automotive PEP 533

Fig. 4. Cycle of process transparency.

next step Determine Docs captures all required documents that are needed to perform
the associated process. The focus here is especially on process flow overview includ-
ing timing dependencies. Finally, the last step Adding to Pyramid takes all processes
including documents to the associated level in a notional pyramid down.

3.2 Phase 2: NL – Neutralizing the Language

Complex product developments usually involves a large number of different, indepen-
dent processes,methods and tools. For example,Microsoft Excel (ME) is used in a certain
sub-process. Therefore, results are generated and forwarded in an ME format. On the
other side, an in-house developed tool is used to generate results in another sub-process.
The large number of sub-processes and their complexities result in a difficult commu-
nication between different processes. Therefore, a lot of time is invested in translating
technical terms from other domain-specific departments [5]. Besides, it is not possible to
assign a domain-specific process to the entire process chain or product development. As
an immediate consequence, there are often unwanted, redundant sub-processes. To avoid
these problems, a common holistic modeling language is required, which is performed
in this phase. All processes recorded in the first phase has to be translated in a holistic
language. This requires a graphical specification language as process design is done by
various people with different understandings and background knowledge. Therefore, a
specification language accessible to all process-involved persons is necessary. As men-
tioned earlier, the solution approach of this paper recommends the BPMN language for
process modeling.

In order to obtain an expressive enough processmodel, somequalitative requirements
has to be taken into account to ensure that all for a consistent product engineering process
required information are for the further procedure guaranteed:

1. Only necessary process steps are recorded.
2. Each process step has a defined input and output, and a specified execution time.
3. All actors within a process are assigned to a specific role description.
4. Milestones are in the process model equal to events [10]. A start milestone is equal to

a start event, an intermediate milestone (see Fig. 5b) is equal to an intermediate event
and an end milestone is equal to an end event. For covering the temporal aspect, the
event symbol is always followed by a time symbol, depicted in Fig. 5a. This symbol
describes the time that is needed to reach an event. In total, the time and event symbol
cover a milestone.

534 H. Hage et al.

(a) time symbol (b) intermediate event

Fig. 5. The symbols depicted here are captured by the software Enterprise Architect.

These qualitative requirements must be observed when creating process models.
All of the processes captured in phase 1 are continuously modeled according to these
requirements.

3.3 Phase 3: LD – Logical Dependency

This phase deals with the development of a logical process structure to achieve the
entire consistent process. For this purpose, all relations between processes with each
other are encoded by means of the specification language. Figure 6 shows a quantitative
representation of logical dependencies.

Fig. 6. An entire logical and coherent process.

In general, the lowest level of the pyramid has the highest level of detail, since this
is the place of the domain-specific development. In contrast, the top pyramid level has
the highest level of abstraction. Following the top-down approach, the highest level of
abstraction is used to create the logical process structure. Starting from the uppermost
process of the pyramid level, this process has to be connected to the process of the
subsequent pyramid level.Due to a uniform specification language, a connection between
the processes is possible without any complications. Afterwards, the second pyramid
level is connected to the third level. This process is carried out from level to level until
the last pyramid level is reached. An entire continuous process is achieved when the
dependency of a process on all other processes at all levels can be shown. Dependencies
among processes at the same pyramid level are given at the next higher level and denoted
as implicit dependencies. Section 3.4 deepened the way to reach these dependencies.

Towards a Systems Engineering Based Automotive PEP 535

3.4 Phase 4: CBM – Controlled by Milestones

The phase Controlled by Milestones aims to detect implicit dependencies of processes
and provides all target groups of the pyramid with all common process relevant informa-
tion. This is realized by symbols of a graphical specification language. The time symbol
shown in Fig. 5a describes a specific time or date that supports an intermediate process
to trigger or completes a process. Each event that occurs between the beginning and the
end of an event is called an intermediate event as depicted in Fig. 5b.

An event is equated with a milestone in the present context. In other words, a mile-
stone in a process model is reached when an event is reached after the process steps
have been successfully completed. Since a milestone always has a temporal depen-
dency, a time symbol is added to the intermediate event symbol in order to transfer the
meaningfulness of a milestone completely in a process model.

As mentioned before, milestones are represented in the process model with the
help of the time and event symbols. The milestone Project Start (PS) is equal to an
intermediate event and the time specification fictionally indicates that the milestone PS
occurs at the specified time before Start Of Production (SOP). It is worthwhile tomention
that the idea of covering temporal aspects is partly considered in the work of [6]. This
work describes the usage of time symbols for every process step in a BPMNmodel. Each
process step/task obtains a time symbol that describes the time needed for performing the
step/task. Nevertheless, this approach does not take into account the idea of milestones
into a process model such as the BPMN model. The latter has been addressed in our
approach through simultaneous use of time and event symbols.

An example for introducing a milestone into a process model is depicted in Fig. 7.
It is quite often that milestones are represented in the shape of inverted triangles with a
given name and time.

Fig. 7. Capturing milestones in BPMN. In this example, a previous time event occurs for three
months before SOP and one month passes until the intermediate event PS is reached. The
intermediate event PS thus occurs two months before SOP.

Every process model has a process flow which is performed by defined roles with
the help of one or more tools at a given time.

In order to start a process, at least one input variable is required. The process in
turn provides at least one output variable. A milestone life cycle is depicted in Fig. 8.
It describes all necessary information which a milestone should have in order to detect
implicit dependencies and to realize a consistency. A milestone requires answering of
the eight Golden Questions (GQ) for obtaining all relevant information to build up a
consistent and traceable BPMN model:

536 H. Hage et al.

Fig. 8. Milestone life cycle.

• GQ1 - Which process has to be performed?
• GQ2 - Which role is responsible for the process?
• GQ3 - Which tools are required?
• GQ4 - How much time is necessary for performing the process?
• GQ5 - Which input is required?
• GQ6 - Which output is generated?
• GQ7 - For which milestone is the generated output of GQ6 required as an input?
• GQ8 - On which file are the inputs/outputs saved?

If the eight GQs are answered for each milestone of the process, the processes at
various levels are able to know interdependencies through the milestones. The answers
of the eight GQs have to be linked to each milestone. According to the BPMN standard,
inputs and outputs could be described in a process model with the symbol Data Object.

3.5 Phase 5: CSEA – Compliance with Systems Engineering Approach

This phase deals with the qualitative changes of processes, methods and tools. The
processes, methods and tools that have been established for years need to be revised or
reformed for introducing the methodology of Systems Engineering. This is done based
on the automotive V model of SE as shown in Fig. 2.

The linked processes from the pyramid of phase 4 are compared with the pro-
cesses of the V model for similarities and deviations. Four aspects are considered in
this comparison; namely, Process steps/tasks, Roles, Methods and Tools.

The processes at the lowest level of the pyramid need to be compared with similar
processes of the V model. For example, in an automotive development components
of a vehicle are tested before approval. The V model also provides a component test.
All necessary process steps in the existing process for testing a component has to be
compared with the process steps for component test according to SE. If process steps
differ, a revision of the old process according to the V model process is required. It
should be revised for the entire process otherwise a consistent product engineering
process according to SE is not ensured. This applies also to the roles, methods and

Towards a Systems Engineering Based Automotive PEP 537

tools. This comparison including changes is elaborated for each individual process. It is
possible that old processes deviate strongly from processes of SE but then new process
has to be added and old one removed.

The V model of SE is characterized by verification and validation of developed sys-
tems and functions. For ensuring that characteristic, processes at the right side of the
V model has to be linked to the processes of the left side of the model. Consequently,
roles that are responsible for testing obtain the possibility of verification and validation
by calling up e.g. the target requirements. Moreover, during revising the product engi-
neering process sufficient iterations for verification and validation of different degrees
of maturity have to be considered. In addition, in further procedure methods and tools
of the corresponding processes could be used to stabilize verification and validation.
This requires a comprehensive networking in the entire product engineering process of
all tools which is out of the focus of this paper. It is worthwhile to note that in order to
ensure the possibility for verification and validation during the implementation of the
SE processes the retaining of the entire milestones in the model shall be considered. The
latter is due to the fact that exchange of the performance and content of the processes
are triggered by means of milestones. This guarantees verification and validation of the
process at a proper time with the corresponding process content. Iterations of verifica-
tion and validation can be increased arbitrarily by adding intermediate milestones in the
process model. Through a successful implementation of SE processes a traceability on
each process level of abstraction can be ensured through the entire process. This in turn
enables recognizing process changes and obstacles in time.

4 An Automotive Use Case

The feasibility of the proposed approach in Sect. 3 has been tested to a certain extent on an
automotive use case. Since such a check is not feasible for the entire vehicle development
within the framework of a research project, we chose testing process of a park pilot as a
use case. The aim is to integrate and demonstrate this use case in the context of the entire
product development and to design its SE compatible process. Initially, phases 1 and 2
of the solution approach are applied. Thereby all levels of product development, which
are relevant for the use case could be determined. Following the top-down approach, the
Product Process is linked through the product engineering process to the Function Chart
which in turn is linked through a Test Plan down to the lowest level where the required
department was located as depicted in Fig. 9.

In parallel, all interdependent processes, methods and tools are recorded. Informa-
tion about the processes at different levels are obtained from various stakeholder with
different data formats. After determining all necessary processes and their contents,
phase 3 to 5 are applied, so that finally a uniform overall BPMN model is created that
starts from the Product Process. From the Product Process all levels can be broken down
and navigated until finally the process of the use case testing of a park pilot is reached
on the lowest level.

The corresponding BPMNmodel in a coordinate system is described in Fig. 10. The
overall process of vehicle development, the Product Process, begins at the origin. To
reach the process of the testing of a park pilot, a constant deepening of the processes

538 H. Hage et al.

Fig. 9. Current product process.

is necessary. At the same time the complexity of the processes increases due to the
technical details. Finally, the importance and dependence of the testing of a park pilot
use case in the overall context could be determined. More precisely, if this process is
changed the effect of this change on the overall process can be tracked.

Fig. 10. BPMN model of the entire process in a coordinate system.

EachBPMNdiagram in themodel is given a timelinewhich canbe seen asmilestones,
as depicted in Fig. 11. This figure describes the timeline of the entire product process at
a high level with its associated milestones. Hence the time aspect in the process could be
taken into account. Furthermore, the timeline helps to enable dependencies between the
processes by means of input and output variables. The differences between the existing
process of the testing of a park pilot use case and the processes to be achieved according
to SE are determined in the last phase. For this use case we analyzed the testing process
of a park pilot and could notice only small deviations between the existing process and
the process according to SE. According to the deviations the old process has been revised
to be SE compatible.

In this use case only small process modifications were required. However, this is not
always the case. Integration of different SE processes may require massivemodifications
which in turn are time consuming. A further investigation may be needed to automate

Towards a Systems Engineering Based Automotive PEP 539

Fig. 11. Timeline of the product process.

adaptation of the old processes to the SE ones. However, such an automation is not in
the focus of the present paper. It is very important to follow the structure of revising
processes step by step. Otherwise, the idea of verification and validation by means of
milestones is hindered. Therefore, during the implementation of SE milestones correct
interdependencies are needed as depicted in Fig. 12. In this figure, a cutout of the
interdependencies of the milestones at several levels of abstraction of the entire product
is presented. The third rectangle in Fig. 12 depicts a reference timeline of milestones
in one month step for the entire product process. This reference timeline ensures the
correct link between milestones of higher and lower levels of abstractions. Moreover the
link between different levels of timelines supports the transparency about inputs/outputs
between various processes.

Fig. 12. Excerpt from the networked milestones at different process level.

5 Conclusion and Future Work

Due to the increase in product complexity, the introduction of the SE methodology for
vehicle manufacturers is inevitable as this methodology is necessary for achieving a
high A-SPICE standard where the strong focus is on process qualities. In this paper, we
identify deficits in the development process at vehicle manufacturers that impair process
quality and develop a methodical approach to address this issue. Our proposed solution
turns existing processes into a consistent structure and thus increases the existing process

540 H. Hage et al.

quality. At the same time, it enables adaptation of the SE approach to change develop-
ment methodologies of a decade-old product development. Several product processes in
the automotive industry are simultaneously existing for a certain number of products.
In this regard, our solution approach enables exchange between different product pro-
cesses through the phases discussed in Sect. 3, especially the use of a uniformmodelling
language. Our proposed, unlike conventional methodologies, offers direct practical rel-
evance. The effectiveness of the solution approach has successfully been tested on an
automotive use case.

TheSE is characterized by iterative verifications and validations on different develop-
ment levels (e.g. components or subsystems). In order tomake this possible, an extension
of phase 5 is needed to be provided as the industrial PEP does not further consider the
verification and validation methodology of the SE. Moreover, the identified processes
shall be checked for their process-related and temporal implementation in practice. For
this purpose, a logic is required that can record individual process steps, including the
executed time of a developer and assign them in the entire process. This way devia-
tions between the prescribed process and the executed processes in terms of content and
time are to be detected and eliminated at an early stage. Furthermore, this logic should
contribute to the optimization of the processes. Finally, an automated verification and
validation shall be carried out which, at the same time, is compatible with SE.

Acknowledgments. This work is supported by the Helmut-Schmidt-University in Hamburg and
by the AVAI project at AUDI AG in Ingolstadt.

References

1. Bögemann, B., Siegmund, I.: Product life cycles are getting shorter, your development times
too? MB Collaborations (2018)

2. Brugger, R.: IT-Projekte strukturiert realisieren. Springer Fachmedien Wiesbaden GmbH
(2003)

3. Brünglinghaus, C.: Elektronik und Software beherrschen Innovationen im Auto. Springer
Professional (2014)

4. Busch, A.: Automotive SPICE: Die “Gewürzmischung” für System- und Softwareentwick-
lung. Continental Automotive GmbH (2020)

5. Düchting, C.: Aufbau eines freigabe- und kommunikationsbasierten Assistenzsystems im
Produktentstehungsprozess. University of Dortmund (2005)

6. Duran, F., Camilo, R., Gwen, S.: Stochastic Analysis of BPMNwith Time in Rewriting Logic
(2018)

7. DWMade forminds.www.dw.com, https://www.dw.com/en/bmw-searched-over-suspicious-
emissions-software/a-43055629. Accessed 20 Mar 2018

8. e.V., Verband der Automobilindustrie (2020). www.vda-qmc.de
9. Eßmann, V.: Planung potentialgerechter Produkte. Springer Fachmedien Wiesbaden GmbH

(2013)
10. Group, Object Management (2020). www.omg.org, https://www.omg.org/spec/BPMN
11. Hans-Dieter, Z., Michael, K., Raimund, P.: Lexikon Qualitätsmanagement: Handbuch des

Modernen Managements auf der Basis des Qualitätsmanagements. De Gruyter Oldenbourg
(2016)

http://www.dw.com
https://www.dw.com/en/bmw-searched-over-suspicious-emissions-software/a-43055629
http://www.vda-qmc.de
http://www.omg.org
https://www.omg.org/spec/BPMN

Towards a Systems Engineering Based Automotive PEP 541

12. Hans-Hermann, B., et al.: Produktentstehungsprozess. Springer Fachmedien (2013)
13. Hart, L.E.: Introduction to Model-Based System Engineering (MBSE) and SysML (2015)
14. Hutterer, P.: Reflexive Dialoge und Denkbausteine für die methodische Produktentwicklung.

Technical University Munich (2005)
15. Gausemeier, Jürgen, et al.: Studie: Systems Engineering in der industriellen Praxis. Carl

Hanser Verlag GmbH & Co, Munich (2013)
16. Klöckner, J.: Autohersteller kämpfen gegen EU. WirtschaftsWoche (2013)
17. Groll, M.W., Heber, D.: E/E-Product Data Managment in Consideration of Model-Based

Systems Engineering. IOS Press (2016)
18. Stelzer, R. et al.: EEEMethoden undWerkzeuge in der Produktentwicklung. TUDpressVerlag

der Wissenschaft GmbH, n.d
19. Reuter, M.: Technischer und wirtschaftlicher Vergleich von Herstellungsverfahren bei der

Entwicklung von Kunststoffhohlkörpern in Automobilanwendungen (2013)
20. Schömann, S.O.: Produktentwicklung in der Automobilindustrie. Springer Gabler (2012)
21. Shortell, T.M.: INCOSE Systems Engineering: A Guide for System Life Cycle Processes and

Activities. John Wiley, Hoboken (2015)
22. VDI Fachbereich Produktentwicklung und Mechatronik: Systematic approach to the devel-

opment and design of technical systems and products. Beuth Verlag GmbH (1993)
23. Verein Deutscher Ingenieure: Design methodology for mechatronic systems. Beuth Verlag

GmbH (2004)
24. Walla, W.: Standard- und Modulbasierte digitale Rohbauprozesskette. KIT Scientific Pub-

lishing (2017)
25. Watanabe, K.: Toyota Motor Corporation (2007)

Development of a Virtual Simulation
Environment and a Digital Twin
of an Autonomous Driving Truck

for a Distribution Center

Ion Barosan(B), Arash Arjmandi Basmenj, Sudhanshu G. R. Chouhan,
and David Manrique

Eindhoven University of Technology, Eindhoven, The Netherlands
{i.barosan,a.arjmandi.basmenj,s.g.r.chouhan}@tue.nl,

d.a.manrique.negrin@student.tue.nl

Abstract. This paper presents the development of a Virtual Simulation
Environment (VSE) and a Digital Twin (DT) of an autonomously driv-
ing truck for a distribution center. While autonomous driving on public
roads still faces various technical and legal challenges, within a distri-
bution center, which is a confined area, some of these restrictions do
not apply. Therefore, distribution centers can be the first environment
where the autonomous driving of trucks is possible. A distribution cen-
ter is a closed environment with no, or minimal generic traffic, where
the trucks have relatively low speeds, short stopping distance and lay-
out precisely known. Dedicated sensors locate the trucks. This paper
addresses the mentioned aspects of driving in the distribution centers
describing the necessary steps taken for the design, implementation, and
testing of a VSE for a distribution center, and a DT of an autonomously
driving truck. The development of the VSE is based on the integration
of a SysML modeling tool – IBM Rhapsody, MATLAB Simulink, and
Unity Game Engine using a Model-Based System Engineering approach.
The paper also presents the test and the validation of a driving scenario
used in a distribution center, using the TruckLab setup of the Eind-
hoven University of Technology, The Netherlands. The VSE and the DT
showed considerable potential as testing and validation tools for auto-
motive engineers, making it possible to define driving test scenarios for
different types of tractor and trailer combinations.

Keywords: Digital Twin · Autonomous driving truck · Model-Based
System Engineering · Virtual Simulation Environment · Distribution
center · SysML · MIL (Model-In-Loop) · DTIL (Digital-Twin-In-Loop)

1 Introduction

The automotive industry is facing a fundamental change by moving its focus
from a mechanical to a software-intensive approach [1]. This fundamental change
c© Springer Nature Switzerland AG 2020
H. Muccini et al. (Eds.): ECSA 2020, CCIS 1269, pp. 542–557, 2020.
https://doi.org/10.1007/978-3-030-59155-7_39

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59155-7_39&domain=pdf
https://doi.org/10.1007/978-3-030-59155-7_39

Development of a Virtual Simulation Environment and a Digital Twin 543

affects many aspects related to the way customers envisage vehicles and mobility.
The constant introduction of innovations and functionality in modern automobile
rely mostly on software engineering model-based competence [2]. As part of the
automotive industry’s innovation, autonomous driving trucks offers a significant
area of technological advancement. Companies like Amazon, Daimler and many
others [3–5] have started testing their autonomous truck technologies. However,
the mentioned companies are majorly focused on driving on a highway, and not
in the areas of the warehouses or the distribution centers.

Distribution centers are the basis of a supply network, and often one of the
essential parts of a production or manufacturing operation. In distribution cen-
ters goods arrive in bulk, are stored until needed, retrieved, and then assembled
into shipments [5]. Moreover, the distribution centers are equipped with the
latest technology for order processing, warehouse management, transportation
management.

The efficient processing of a distribution center greatly impacts the final
price of the product delivered to the end-user. In general, a distribution center
has three main areas: the receiving, the storage, and the shipping area. It may
also have additional specialized areas. In the shipping area, each store can have
dedicated dock doors. The receiving area can also be specialized based on the
handling characteristics of freight being received, on whether the product is going
into storage or directly to a store, or by the type of vehicle delivering the product
[6].

While autonomous driving on public roads still faces various technical and
legal challenges, within a distribution center, which is a confined area, some of
these restrictions do not apply. It may very well be the first environment where
autonomous driving trucks can be possible. In container terminals Automated
Guided Vehicles are already driving for many years. As future trucks can be
controlled by wire, they will be well equipped for autonomous driving.

A distribution center is a closed environment with no/minimal generic traffic,
such as pedestrians or cyclists. In the distribution center, the trucks have rela-
tively low speeds, short stopping distance and layout precisely known. To manage
all these aspects dedicated sensors may be used to locate the vehicles within the
distribution center, for example cameras and LIDAR. However, ensuring safety
in the distribution centers is a critical aspect of both software and hardware
deployed in the vehicle.

This paper presents the development of a Virtual Simulation Environment,
and a Digital Twin of an autonomously driving truck used to simulate different
use-case driving test scenarios in distribution centers. Moreover, the VSE and
the DT can be used to simulate many types of tractor and trailer combinations,
making the VSE a very flexible environment for testing their maneuverability at
low speeds in small areas.

This paper is organized as follows: Section 2 gives more background and
motives this work further. Section 3 reviews the related work. Section 4 covers

544 I. Barosan et al.

the design of the TruckLab’s virtual environment and the Digital Twin of the
autonomous driving truck. Section 4.3 presents the development of the VSE.
Also, this section presents the integration of different tools necessary for Model-
In-Loop and Digital Twin-In-Loop. Section 4.4 covers the results of a driving
test scenario in the distribution center. Finally, Sect. 5 presents the conclusions,
discussions and future work.

2 Context and Motivation

The significance of Logistics to the Economy of The Netherlands is around 10%
of its GDP (Gross Domestic Product per capita), making Logistics a key sector
of the Netherlands economy [7]. The Autonomous Vehicles Readiness index of
2019 ranks the Netherlands as the global leader in terms of preparedness to
deploy autonomous vehicles [8]. This circumstance suggests that the scope for
autonomous vehicles to be deployed practically is ample.

Fig. 1. Left, The TruckLab at Eindhoven University of Technology. Right, the Jumbo
distribution center in Veghel, The Netherlands.

The Netherlands has the highest number of distribution centers in Europe
[7]. INTRALOG project - Intelligent Truck Application in Logistics has been
started for identifying the potential of automated driving within the Logistics
domain [9]. INTRALOG is a consortium of companies and universities, with a
focus on docking semitrailers in distribution centers.

There is a shortage of truck drivers in the Netherlands and other parts of
Europe [10], which stimulates the opportunity for deploying autonomous trucks
in the Logistics sector, without the concern of displacing human jobs.

In the distribution centers, the movement of trucks is done by human drivers,
who could be time-dependent due to their non-availability past work hours. Thus,
autonomous trucks can improve the efficiency of a distribution center and make
their operation less dependent on human drivers. The most challenging driver’s
professional skill is the docking of a truck. An automated docking could be a
significant step towards easing the manual effort required to perform the dock-
ing. With the advancement in modern sensor technology, autonomous trucks are

Development of a Virtual Simulation Environment and a Digital Twin 545

becoming more viable for operation within short distances as that of a distribu-
tion center [11].

There have been a few attempts to develop systems that assist the driver
to maneuver inside a distribution center. Eaton has developed a dock assist
system as presented in [13]. With the supervision of a human driver, assistance
is provided only for the case of docking. It is reported that the dock assist system
made far more corrections and was slower compared to a human driver. Also,
the most important limitation is that the driver needs to park the semitrailer
parallel to the docking station initially.

Another major aspect of the distribution centers is safety. Besides collision
between vehicles, collision avoidance is needed with objects located in the distri-
bution centers area. With increasing attention to cooperative driving, scenarios
like vehicles working together at a crossing become important. To guaranty the
safety inside the distribution center, it is necessary to create the optimum path
planning for the vehicles. This challenge increases the complexity of the automa-
tion in the distribution center and of the truck. When the path is predefined, it
is known what kind of maneuvers the truck will execute in a specific situation.
Being able to control the truck’s maneuvers, we can avoid unsafe situation. We
can plan the driving of the truck to the dock stations, based on the optimum
path, the dock stations positions and the initial truck’s parking position. In this
way the safety in the distribution centers will increase.

The trucks driving between distribution centers have an increased overall
length, 25 m or more, and multiple articulations. These so-called, high-capacity
vehicles lead to an increase in transport efficiency both regarding costs and
reduction of CO2 emissions. The truck can be actuated fully electrically, 100%
by wire, which will facilitate autonomous driving. The throttle, brake, clutch,
and gearshift are already operated electrically, and the first trucks that have
electric steering actuation are appearing on the market.

As a consequence, future scenarios for distribution centers can be defined,
taking into account that in a distribution center:

• Safety is a crucial component for every employee.
• Articulated vehicles load and unload at a fast rate, making the distribution

center a high-risk area.
• Multiple vehicles driving around each with a destination rely on the truck

drives smooth maneuvers ability in a small area.
• More commonly used to increase the loads on trucks, larger vehicle combina-

tions, which leads to an increase in complexity around distribution centers.
For example, a double or triple tractor-trailer can quickly get stuck when
making wrong maneuvers.

• Localization systems are needed to determine the position of the trucks and
of the objects.

• Using the localization system, articulated vehicles can be monitored and posi-
tion data could be made available.

• Using the vehicle’s dynamics a control system for a truck can be created;
a path-following controller can use the sensor information to maneuver the
vehicle.

546 I. Barosan et al.

To test all the aforementioned aspects of autonomously driving trucks in a
distribution center, a lot of financial and human resources are needed. It is rather
difficult to build a real setup for testing and taking into account all the specified
aspects. However, building a virtual testing and simulation environment for a
distribution center is an affordable solution.

To design control systems that can support articulated vehicles in distribu-
tion centers, a virtual testing environment is needed. Currently, at Eindhoven
University of Technology (TU/e) scaled models of articulated vehicles were devel-
oped. This is a necessary foundation for creating truck controllers before using
them on large scale vehicles. These scale models are integrated into a setup called
TruckLab, shown in Fig. 1 (left). The TruckLab represents a scaled model with
scale 1:13.3 of the Jumbo distribution center in Veghel, The Netherlands, Fig. 1
(right).

To efficiently use the testing facilities of the TruckLab, an entire Virtual Sim-
ulation Environment was developed, which implements the supervisory control
of the distribution center, the controllers of the autonomous driving trucks and
the communication between the trucks and the distribution center.

To simulate the functionality of the distribution center, a Digital Twin (DT)
of an autonomous driving truck was developed. Our DT is based on a five-
dimensional framework approach [12], which consist of:

• Physical Entity (PE) - the mock-up truck, which contains various subsys-
tems, sensory devices, and actuators. The sensors collect real-time states of
the mock-up truck.

• Virtual Entity (VE) - the digital truck, a faithful mirror image of the
physical entity containing the geometric parameters of the physical entity,
such as shapes, sizes, and assembly relations. Also, the physical proper-
ties (e.g., speed, wear, and force) reflecting the physical phenomena of the
entity, are part of the virtual entity. Moreover, we implemented in the VE
the truck’s dynamics, the numerical multi-body capabilities, and collision
detection mechanism. The VE was integrated into the Unity Game Engine.

• The Connection (CN) - connects the PE and the VE. Also, the CN con-
nects both entities to the provided services. All the connection are bidirec-
tional.

• The Digital Twin Data (DD) - is denoted as the data from the PE, mainly
including the operation states and working conditions. Also, the DD refers to
the data from the VE and consists of model parameters and model operation
data.

• The Services (SRs) - the services for both the PE and the VE. The SRs
make the PE work as expected through real-time regulation, and sustains
high fidelity of the VE with the PE through model parameters calibration.
In our paper we consider only the monitoring service for the PE. For the VE,
the SRs consist of construction service, calibration service, and test service
for the SysML and Simulink models.

The development of the Digital Twin implied the integration of four major
automotive domains: vehicle dynamics, real-time software engineering, power

Development of a Virtual Simulation Environment and a Digital Twin 547

trains and human machine interface. To tackle the complexity of the Digital
Twin, we used a Model-Based Systems Engineering (MBSE) approach based
on SysML. As a MBSE methodology the SYSMOD [14] was applied. For the
elicitation and understanding of the requirements, the Thinking in Time TRIZ
tool [15] was used. For the analysis of the Digital Twin solutions space we used
the TRIZ Contradiction Toolkit. We model the requirements, the use cases, and
the architecture and the behaviour of the Digital Twin in a SysML modeling
environment using the IBM Rhapsody and MATLAB Simulink. Also, base on
the Unity Game Engine, a Virtual Environment of the TruckLab was created -
The Virtual Truck Lab, which represents the scaled Jumbo distribution center.
In addition, the Digital Twin and the Virtual Truck Lab were integrated into
VSE.

3 Related Work

Several projects have been implemented in the TruckLab related to coopera-
tive driving, collision avoidance, autonomous controlling, and localization of the
trucks [17,18]. The main objective of the projects was to autonomously control
the vehicle using a prerecorded input of a joystick controller [20]. The results of
the tests were not optimal. The vehicle was not able to follow the course while
driving backward [19]. This was because of poor road surface conditions and the
limited accuracy of the localization system used. However, the path-following
controllers implemented were capable of controlling an articulated vehicle both
forward and backward. These path-following controllers were integrated into our
VSE for testing purposes.

Hertogh had created a virtual environment and supervisory control for the
TruckLab [20]. He integrated the following components in his virtual environ-
ment: a path-following controller, a VRML 3D representation of the TruckLab,
and the scaled mock-up of a tractor semi-trailer combination. Hertogh made the
first attempt to create a Digital Twin for a truck semi-trailer combination. How-
ever, the virtual environment and supervisory control were not flexible enough
to facilitate the configuration of vehicle physics: a rigid body, collision detection,
the wheels controllers, the vehicle’s suspension and the axles. Moreover, the 3D
virtual environment is not easily adjustable. In VRML every object needs to be
defined with an orientation, position and visual components, making the creation
of a large 3D scene difficult and time-consuming.

In our implementation, we use the Unity Game Engine, which is flexible
and optimized for large and complex 3D scenes. Moreover, a SysML modeler
is integrated into the VSE, which makes possible the development of any test
driving scenario in the TruckLab or the virtual TruckLab using the Digital Twin.

The idea of creating a virtual environment for testing is not new. Coupling a
3D virtual environment with simulation tools have been used in different domains
[21,22]. There is a large variety of vehicle driving simulators using virtual envi-
ronments. These vehicle driving simulators are built and used to obtain insights
that will be relevant to future real-world applications [23–25]. However, they

548 I. Barosan et al.

are custom made and do not provide a comprehensive development platform for
modeling and simulating new applications.

In recent years, autonomous driving has become an important research area.
Many new tools have been developed to support autonomous driving research.
The predominantly used open-source simulation engines to simulate training
data in autonomous driving research are CARLA [26], TORCS [27] and AirSim
[28]. CARLA is an open-source simulator developed from the ground up to sup-
port the development, training, and validation of autonomous driving systems.
CARLA provides open digital assets for urban layouts, buildings, vehicles. Air-
Sim, is released by Microsoft to support the development of autonomous vehicles
like drones, cars and more. AirSim main goal is to narrow the gap between simu-
lation and reality. TORCS, The Open Racing Car Simulator is a highly portable
multi-platform car racing simulation. TORCS can be used as an ordinary car
racing game, as an AI racing game, and as a research platform.

From the three mentioned simulation engines, CARLA was a good candidate
for our virtual simulation environment. However, the already available integra-
tion between the Unity Game Engine and MATLAB Simulink was decisive for
our design decision to use Unity Game Engine instead of CARLA.

To conclude, we created a general flexible and robust VSE for comprehensive
testing of driving scenarios, by integration of three primary environments:

• IBM Rhapsody - a SysML modeling tool.
• MATLAB Simulink - a graphical programming environment for modeling,

simulating and analyzing multi-domain dynamical systems.
• Unity Game Engine - a virtual reality and games development platform.

4 System Design

4.1 The Virtual Truck Lab and the Digital Twin

The TruckLab setup at the Eindhoven University of Technology is a demonstra-
tive setup that allows testing of autonomous articulated vehicles. The TruckLab
consists of two tractor-semitrailers combinations, a distribution center with a
docking station, a video camera-based localization system, a computational unit
and a communication system.

To address the design and test complexity of the Virtual Truck Lab, we used
a SysML based Model Driven System Engineering approach. All the aspects
related to requirements, structure and behavior of the Virtual Truck Lab had
been modeled using the SysML diagrams. Figure 2 (right), present the overall
architecture of the Virtual Truck Lab, where the DigitalTwinTruck component
implements the Digital Twin of the truck, EnvironmentDC implements the 3D
environment of the distribution center, Obstacles implements the collision detec-
tion management for the truck, and the LocalizationSystem component imple-
ments the localization system of the TruckLab.

To create a 3D virtual environment for the TruckLab set up a suitable 3D vir-
tual framework development was need. The framework must support and bring

Development of a Virtual Simulation Environment and a Digital Twin 549

Fig. 2. Left, the 3D representation of the Truck Lab, including all the 3D assets: the
buildings, the docking stations, the parking area, the obstacles inside the distribution
center and the digital twin truck. Right, the high level components of the Virtual
Truck Lab’s architecture containing: the virtual Truck lab, the digital twin truck with
its truck trailer combination, the truck manager, the collision manager.

together several core areas. We needed to add 2D and 3D graphical objects and
assets in our 3D environment; assembled those assets into scenes and environ-
ments; adding lighting, audio, special effects, physics and animation, interactiv-
ity. The framework should be flexible enough to allow the development of plug-
ins for MATLAB/Simulink and SysML modelers, by example IBM Rhapsody
or Enterprise Architect. Also, because it was nearly impossible to simulate the
truck’s dynamics and collision detection of the truck with objects of any shapes
in the Simulink, it was required to use a more general simulation environment.
Taking these aspects into consideration, Unity Game Engine was selected for this
purpose. Also, Unity Game Engine is using NVIDIA PhysX engine to simulate
the multi-body problem in real-time, in the presence of collision, friction and
joint constraints. Besides its efficient numerical multi-body simulation capabili-
ties, Unity Game Engine can render the scene with state-of-art technologies and
provide a realistic graphical output of the scene that can be used for demon-
stration purposes. This graphical output can also be used to feed autonomous
driving algorithms in the possible future use-cases.

Using the Unity Game Engine framework a 3D replica of the TruckLab was
built, as presented in Fig. 2 (left). In the 3D scene the docking station, a dummy
pedestrian and the 3D representation of the Digital Twin of the truck are ren-
dered.

The vehicles used in the TruckLab setup are tractor-semitrailers. The
autonomous movement of the tractor-semitrailer in a distribution center requires
making an autonomous movement from the parking station to one of the docking
stations and back. The initial movement requires forward mode driving, whereas
docking requires reverse mode driving as the semi-trailer must be presented to
the docking station to unload the goods into the distribution center.

The Digital Twin must behave in the same way as its real counterpart vehi-
cle, the mock-up truck. The Digital Twin must allow inputs and outputs for
different parameters, which are needed to control the vehicle autonomously in

550 I. Barosan et al.

the distribution center. For example, two critical parameters, the steering angle
and the speed are generated by a path-following controller which uses a refer-
ence path, so that the vehicle maneuvers to the reference path and follows it.
To replicate the real truck, we needed to design the Digital Twin’s structure
and integrate it into the Unity Game Engine. Every aspect of the actual vehicle
should be modeled into the Digital Twin counterpart such that the Digital Twin
can be used in different testing scenarios in the distribution centers.

Figure 3 (left), shows the top level view of the architecture of the Digital
Twin’s Truck component using a SysML Block Definition diagram. There are a
few Truck’s components which are worthwhile to mention. The VehiclePhysic-
sTruck contains the key aspects necessary for the numerical multi-body sim-
ulation capabilities of the truck. The VehiclePhysicsTruck is based on NWH’s
Physics Package [16], suitable for a wide range of vehicles including a wheel
controller 3D for wheel physics used by the WheelController component.

The TrailerAttachementPoint controls the attachment of the semi-trailer to
the tractor, which allows the coupling and decoupling of the semi-trailer from
the tractor. The Camera component presents different views from the 3D scenes
to the user: one from the cabin, one from the front of the truck. The Body
component describes the main components of the truck’s body. Every component
of the Digital Twin has its data attributes and behavior, which are implemented
in Unity Game Engine using C# scripts. Also, every component has a GUI
which facilitates the interaction between the user and the component. Similar to
the DigitalTruck component, the DigitalTrailer architecture is shown in Fig. 3
(right). The Digital Trailer has a body, wheels, wheels controllers, lights, an
attachment point, and physics properties. The body has a suspension, doors,
and a trailer interior and exterior components. Also, the VehiclePhysicsTrailer
is implemented based on NWH’s Physics Package [16].

Fig. 3. Left, the high level Digital Truck’s Architecture containing the wheels con-
trollers, the trailer attachment point, the vehicle physics, the cameras, the lights and
the truck body. Right, the abstract architecture of the Digital Trailer’s Architecture,
modeling the same abstract components as for the Digital Truck’s Architecture.

Development of a Virtual Simulation Environment and a Digital Twin 551

4.2 Setting Up a Vehicle

After the Truck and the Trailer component have been defined, we need to set up
a vehicle. In our case, the following components have to be set up for the Vehi-
clePhysicsTruck and the VehiclePhysicsTrailer : a rigid body, collision detection,
wheels controllers, vehicle’s suspension and the axles. For example, the axle’s
functionality is implemented in a C# script that contains variables defining how
much torque the axle will receive, and all the geometry related data for each of
the axle and its wheels, like the steer coefficient, Ackermann percent, toe angle,
caster angle, camber at top and the Anti Roll Bar Force. The amount of power
an axle will receive is stored in a variable as a ratio for both the front and the
rear axles. Similarly, we have variables storing the braking coefficient along with
the hand brake coefficient that defines what fraction of the total brake and hand
brake torque the axle will receive.

For setting up a truck, the Vehicle Physics provides the following parameters:
Sound, Steering, Effects, Engine, Transmission, Axles, Brakes, Tracks,
Driving Assists, Traction control system, Damage, Trailer Handler,
Ground Detection. NWH’s Physics Package [16] presents a complete descrip-
tion of these parameters and theirs scripts.

4.3 The Virtual Simulation Environment - VSE

After the Virtual Truck Lab and the Digital Twin of the autonomous truck were
developed, a Virtual Simulation Environment was built, as presented in Fig. 4
(left). VSE integrates these two components for testing different driving use-cases
in the distribution center. The intended simulations shall be able to simulate
truck dynamics and collision detection of the truck with its environment, which
in this case is the docking station and the distribution center area.

Fig. 4. Left, the architecture of the Virtual Simulation Environment. Right, the
Simulink implementation of collision detection. The colors indicate: the truck’s digital
components (yellow), the tools we integrate (blue) and the Visual Simulation Environ-
ments (green). (Color figure online)

The VSE is made up of a SysML modeling tool - IBM Rhapsody, a simulation
tool - Simulink, the Virtual Truck Lab, and the actual mock-up truck. Using the
Simulation Environment different scenario-based can be implemented for Digital-
Twin-in-Loop testing. The structure and behavior of the VSE is modeled in IBM

552 I. Barosan et al.

Rhapsody, including the structure and behavior of the distribution center, and
the structure and behavior of the Digital Twin of the autonomously driving
truck.

The path planning and path-following, the kinematic model of the tractor-
semitrailer combination, and the collision detection mechanism are implemented
in Simulink, as presented in Fig. 4 (right).

The communication between IBM Rhapsody and Simulink is implemented
by a Functional Mock-up Interface (FMI). Rhapsody-Simulink integration does
not provide interaction with Unity. Therefore, TCP/IP is used to establish a
reliable connection between Rhapsody-Simulink and Unity, which is necessary
for the DTIL testing.

A TCP/IP interface is provided to control the Digital Twin and the mock-up
trucks. The steering and acceleration control signals are sent through this inter-
face. The mock-up trucks use Raspberry Pi hardware controllers and different
sensors and actuators. The truck’s linear velocity and position of three ArUco
markers, placed on top of the trucks, are sent back as feedback. It is possible
to use any external tools to communicate and control the muck-up trucks in
the simulated docking station. Collision information of the truck with objects in
the scene are also available through a similar interface. As mentioned in Sect. 4,
using the Virtual Truck Lab environment, it is possible to customize vehicle
dynamics parameters such as engine characteristics, suspension system, steer-
ing, transmission. For the customization of the parameters the Vehicle Physics
by NWH is used.

4.4 Testing of VSE

To test and validate the VSE, including the Virtual Truck Lab and the Digital
Twin, a few use-cases scenarios were implemented. We have implemented dif-
ferent scenarios in which some boundary conditions were tested, including the
accuracy of the truck path controller, the collision detection between crossing
trucks, etc. For example, when all the docks are occupied, based on a predefined
priority list, the trucks can leave to the allocated parking places.

There are many aspects that we have considered during the testing of the
DT, for example:

• What is happening when the trucks cross each other path?
• Should the truck’s path be computed dynamically of predefined?
• What is happening when the communication between the DC and the trucks,

or V2V failed?

In all mentioned situations the DT behaved accordingly. However, during the
tests, we encountered some challenges related to the path-controller. Once a path
is generated using the specific algorithm, it is essential to ensure that the truck
follows that designed path. To facilitate the tracking of the truck and reduce any
deviations from the path, specific control strategies need to be defined. Specific
control strategies need to be defined to facilitate the tracking of the truck and

Development of a Virtual Simulation Environment and a Digital Twin 553

reduce any deviations from the path. Before the controller design, it is essential
to understand the truck model. During the forward motion of the truck, its
position is monitored by monitoring the location of the front axle of the tractor.
In case, it is required, a correction input, a steering angle, and velocity should
be given to reduce deviation from the path. This correction input leads to a
stable system as the point of measurement and the point of control coincide
and so the trailer perfectly follows the tractor. However, during reverse driving,
since the truck’s position is monitored by monitoring the rear axle of the trailer,
the required correction input should be given as a steering angle, otherwise, the
system is unstable. Therefore, for designing control strategies, the two motions
that are forward and reverse, are treated separately. This is enabled by defining
the direction of motion at each instant of time, which is done in the path panning
phase.

In this paper, we presented the following use cases scenario, as example:

• After arrival at the distribution center, the driver parks the truck in a desig-
nated location.

• The controller of the distribution center calls the truck to the dock at a
specific location.

• A route is determined, the truck drives to the correct dock and communicates
with other trucks for optimization and collision prevention, and reverses to
allow access to the rear doors.

• The cargo is unloaded from the truck.
• After unloading, the truck is directed to another dock to load goods.
• The truck drives autonomously to the parking spot again.The driver pick up

the truck and drives towards the supermarket.

Fig. 5. Left, the initial parking position of the Truck inside the distribution center.
Right, the truck parked at the designated docking station.

To test the mentioned scenario an actual simulation of tractor semi-trailer
system was done. The simulation controlled the tractors velocity using a path-
following controller. The throttle signal was going to be the control signal pro-
duced by the speed controller. During the simulation, the tractor semi-trailer

554 I. Barosan et al.

combination started to move from its initial position until it arrived at the des-
ignated docking station.

Figure 5 (left), shows a screen-shot of the truck parked at the designated
location inside the distribution center. After parking, the driver was able to
monitor and to interact with the truck using a GUI. Figure 6 (left), presents an
example of a GUI implemented in IBM Rhapsody, which displays information
about the state of the truck. Also, using the GUI the DC operator can: allocate a
docking station or a parking location for a specific track, monitor the state of the
docking station, assign a parking place for the truck, halt the entire system in
case of a emergency, monitor the truck driving autonomously, change the camera
view of a truck and monitor the environment. Moreover, the driver can switch
on/off the autonomous mode of the truck.

Fig. 6. Left, a GUI used: to monitor the truck’s state, to select a docking station and
monitor its state, to select a parking destination for the truck. Right, cabin camera
view showing the environment from the driver’s perspective.

While running, it was possible the choose between 3 cameras available in the
scene. The first and default camera provided a 2D (orthographic projection) top
view of the truck parking station. The second camera offered a third perspective
of the tractor semi-trailer combination. The third camera provided view of the
driver, which included a cockpit view of the tractor with a dashboard and driving
wheel, and also the tractor’s side mirror. Switching between camera’s does not
affect the scene simulation and only provides different views of the truck for
better viewing the current simulation state. While the scene was running, it was
also possible to reset the states of the scene. Figure 6 (right) shows the view from
the cabin using the second camera.

The user could select between manual control of the tractor semi-trailer com-
bination or using a network interface to control it by an external program, by
example, Simulink or IBM Rhapsody. Figure 7 shows a collision test of the truck
with an external object, in this case, a pedestrian. When the truck touched the
bounding box of an object, it stopped. Also, the color of the cylinder around the
pedestrian changes from green to red in case of a collision, as seen in the Fig. 7
(right).

Development of a Virtual Simulation Environment and a Digital Twin 555

Fig. 7. The collision detection mechanism in action: left, the green cylinder indicates
no collision; right, the red cylinder indicates an eminent collision with a pedestrian.
(Color figure online)

After a route is determined, the truck drove to the correct dock and commu-
nicated with other trucks for optimization and collision prevention, and reversed
to allow access to the rear doors. Figure 5 (right), shows the truck parked at
the designated docking station. During docking time the truck was unloaded or
loaded with specific goods and then drove to the designated parking location.

5 Conclusions and Future Work

Research in autonomous driving in distribution centers is hindered by infras-
tructure costs and logical difficulties of training and testing of the system in
the physical world. This paper presented an overview of the development of a
VSE for an autonomously driving truck in a distribution center. Also, the paper
described the steps taken for the development of a DT for an autonomous driving
truck.

The DT was designed using a Model-Based System Engineering approach
based on SysML. The VSE, based on the Unity Game Engine, Simulink, and
IBM Rhapsody offers considerable possibilities for testing. The pairing of the
Digital Twin model with the physical world was realized at the TruckLab of the
Eindhoven University of Technology. Different kinematics models for the truck
and trailers were used. Also, different path-controllers were implemented and
tested. The tests showed good accuracy of the truck’s localization, dynamics
and collision detection with objects located in the distribution center. Using the
DT, many scenarios related to docking, driving, and parking in the Distributed
Center’s areas were tested and simulated, making the VSE a vital testing tool
for engineers.

The Virtual Simulation Environment allows the integration of many trucks
making possible the development and testing of applications using platooning
and multi-trucks driving scenarios. Also, it is possible to define different truck
and trailer combinations using the setup mechanism for vehicles, making the
Virtual Simulation Environment very flexible for testing different use-case sce-
narios. However, a future improvement of the VSE will be to create a live-link
between the SysML modeling tool and the Unity Game Engine. The live-link

556 I. Barosan et al.

will allow a direct conversion of the SysML architecture and behavior of trucks
and the distribution center as a 3D object into Unity Game Engine. In this way,
the entire structure and the behavior of the truck will be visualized together
with its 3D representation; in the same environment, in this case, the Unity
Game Engine. Also, the path-controller, which ensures that the trucks follows
the designed path during the reverse driving, need to be improved. Therefore, the
forward and reverse motions have to be treated separately for designing control
strategies. This is enabled by defining the direction of motion at each instant of
time, which is done in the path panning phase. Also, the integration of CARLA
simulation tool in our VSE is another area of future research.

References

1. Dajsuren, Y., van den Brand, M.G.J.: Automotive Systems and Software Engi-
neering State of the Art and Future Trends. Springer, Heidelberg (2019). https://
doi.org/10.1007/978-3-030-12157-0

2. Ebert, C., Favaro, J.: Automotive Software 34, 33–39 (2017)
3. Frangoule, A.: Self-driving trucks are being tested on public roads in Vir-

ginia, September 2019. https://www.cnbc.com/2019/09/10/self-driving-trucks-
are-being-tested-on-public-roads-in-virginia.html

4. Baum Hedlund Law, SAmazon Tests Self-Driving Trucks, Invests in Tech
Startup, August 2019. https://medium.com/@baumhedlund/amazon-tests-self-
driving-trucks-invests-in-tech-startup-a39ba986162b

5. O’Dell, J.: Daimler starts highway test of autonomous freightliner truck,
September 2019. https://www.trucks.com/2019/09/09/daimler-starts-highway-
test-autonomous-freightliner-truck

6. van Duin, J.R., van Kolck, A., Anand, N., Taniguchi, E., et al.: Towards an agent-
based modelling approach for the evaluation of dynamic usage of urban distribution
centres. Procedia-Soc. Behav. Sci. 39, 333–348 (2012)

7. Netherlands office for Science and Special Report Technology, Smart logistics in
the Netherlands, Association for Computing Machinery, pp. 5–6 (2018)

8. KPMG: Autonomous Vehicles Readiness Index 2019, pp. 5–6 (2019)
9. Gerrits, B.: Multi-agent system design for automated docking of semi-trailers by

means of autonomous vehicles, University of Twente, pp. 5–6 (2016)
10. Trans. Info, November 2019. https://trans.info/en/lack-of-drivers-in-the-

netherlands-every-second-company-has-trouble-finding-workers-79697
11. Rosen, R., Von Wichert, G., Lo, G., Bettenhausen, K.D.: About the importance of

autonomy and digital twins for the future of manufacturing. IFAC-PapersOnLine
48(3), 567–572 (2015)

12. Tao, F., Zhang, M., Liu, Y., Nee, A.Y.C.: Digital twin driven prognostics and
health management for complex equipment. CIRP Ann. Manuf. Technol. 67(1),
169–172 (2018)

13. Berg, T.: Driver keeps hands off as eaton system docks a trailer, May 2017.
https://www.truckinginfo.com/159971/driver-keeps-hands-off-as-eaton-system-
docks-a-trailer

14. Weilkiens, T.: SYSMOD - The Systems Modeling Toolbox, 2nd edn. MBSE4U
(2016)

15. Gadd, K., Goddard, C.: TRIZ for Engineers: Enabling Inventive Problem Solving.
Wiley, Hoboken (2011)

https://doi.org/10.1007/978-3-030-12157-0
https://doi.org/10.1007/978-3-030-12157-0
https://www.cnbc.com/2019/09/10/self-driving-trucks-are-being-tested-on-public-roads-in-virginia.html
https://www.cnbc.com/2019/09/10/self-driving-trucks-are-being-tested-on-public-roads-in-virginia.html
https://medium.com/@baumhedlund/amazon-tests-self-driving-trucks-invests-in-tech-startup-a39ba986162b
https://medium.com/@baumhedlund/amazon-tests-self-driving-trucks-invests-in-tech-startup-a39ba986162b
https://www.trucks.com/2019/09/09/daimler-starts-highway-test-autonomous-freightliner-truck
https://www.trucks.com/2019/09/09/daimler-starts-highway-test-autonomous-freightliner-truck
https://trans.info/en/lack-of-drivers-in-the-netherlands-every-second-company-has-trouble-finding-workers-79697
https://trans.info/en/lack-of-drivers-in-the-netherlands-every-second-company-has-trouble-finding-workers-79697
https://www.truckinginfo.com/159971/driver-keeps-hands-off-as-eaton-system-docks-a-trailer
https://www.truckinginfo.com/159971/driver-keeps-hands-off-as-eaton-system-docks-a-trailer

Development of a Virtual Simulation Environment and a Digital Twin 557

16. NWH Vehicle Physics Manual. http://nwhcoding.com
17. Rajagopalan, S.: MATLAB based Control of a Scaled Tractor Semi-trailer, D&C

2017031, Eindhoven University of Technology (2017)
18. Hertogh, M.A.M.: Automatic docking of articulated vehicles, D&C 201703, Eind-

hoven University of Technology (2017)
19. Lousberg, T.A.H.: Building a MATLAB/Simulink-based truck simulator, D&C

2016012, Eindhoven University of Technology (2016)
20. Hertogh, M.A.M.: Development of a virtual environment and supervisory control

for TruckLab, D&C 2018.031, Eindhoven University of Technology (2018)
21. Waas, T., Kucera, M., Földi, A.: Simulation environment for real-time applica-

tions 3D visualisation/simulation environment for testing real-time electronic con-
trol units. In: 2013 Proceedings of the 11th Workshop on Intelligent Solutions in
Embedded Systems (WISES) (2013)

22. Tsai, P.-S., Wu, T.-F., Hu, N.-T., Tang, J.-H., Chen, J.-Y.: Virtual reality to
implement driving simulation for combining CAN BUS and automotive sensors. In:
IEEE International Conference on Information, Communication and Engineering
IEEE-ICICE (2017)

23. Lindemann, P., Rigoll, G.: A diminished reality simulation for driver-car interaction
with transparent cockpits. In: IEEE Virtual Reality (VR) (2017)

24. Kucera, E., Haffner, O., Leskovský, R.: Interactive and virtual/mixed reality appli-
cations for mechatronics education developed in unity engine. In: Proceedings of
the 29th International Conference Cybernetics & Informatics (K&I) (2018)

25. Yang, C.-W., Lee, T.-H., Huang, C.-L., Hsu, K.-S.: Unity 3D production and envi-
ronmental perception vehicle simulation platform. In: Proceedings of the IEEE
International Conference on Advanced Materials for Science and Engineering
IEEE-ICAMSE (2016)

26. Dosovitskiy, A., Ros, G., Codevilla, F., Lopez, A., Koltun, V.: CARLA: an open
urban driving simulator. In: Proceedings of the 1st Annual Conference on Robot
Learning, pp. 1–16 (2017)

27. Shah, S., Dey, D., Lovett, C., Kapoor, A.: AirSim: High-Fidelity Visual and Phys-
ical Simulation for Autonomous Vehicles. In: Hutter, M., Siegwart, R. (eds.) Field
and Service Robotics. SPAR, vol. 5, pp. 621–635. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-67361-5 40

28. Wymann, B., Dimitrakakisy, C., Sumnery, A., Guionneauz, C.: Torcs: the open
racing car simulator (2015)

http://nwhcoding.com
https://doi.org/10.1007/978-3-319-67361-5_40
https://doi.org/10.1007/978-3-319-67361-5_40

Author Index

Abusair, Mai 180
Ali, Mubashir 17
Antonino, Pablo Oliveira 326, 477, 490
Armstrong, Robert 311
Asmus, Rinat 509

Bachorek, Adam 326
Barosan, Ion 542
Basmenj, Arash Arjmandi 542
Becker, Stefen 381
Becker, Steffen 82
Bertout, Antoine 279
Bogner, Justus 215
Breitenbücher, Uwe 82
Brüggemann-Klein, Anne 138
Buhnova, Barbora 125
Butler, Michael 311

Cámara, Javier 55
Camilli, Matteo 420
Cankar, Matija 247, 260
Čaušević, Aida 463
Cauwels, Matthew 340
Chouhan, Sudhanshu G. R. 542
Collart-Dutilleul, Simon 411

Dautrevaux, Bernard 279
De Sanctis, Martina 195
Dehury, Chinmaya 241
Deshpande, Niranjana 170
Di Marco, Antinisca 180
Dollinger, Friederike 509
Dreiser, Marc 509

Engels, Gregor 95

Farshidi, Siamak 68
Filieri, Antonio 269
Frank, Markus 381
Frank, Sebastian 107

Giotis, Giorgos 241
Goldberg, Patricia 138

Grohmann, Johannes 228
Grolleau, Emmanuel 279
Grua, Eoin Martino 195

Hage, Hassan 527
Hakamian, Alireza 381
Hammer, Abigail 340
Hansson, Hans 463
Happe, Lucia 125
Hashemi, Vahid 527
Hatcliff, John 294
Hertz, Benjamin 340
Hoang, Thai Son 311
Hulette, Geoffrey 311
Hutzelmann, Thomas 518

Idani, Akram 358, 411
Inverardi, Paola 180

Jahić, Jasmin 155
Jakovits, Pelle 241
Jamil, Roy 279
Jansen, Slinger 68
Jones, Phillip H. 340

Kotegov, Ivan 269
Koziolek, Anne 228
Kuhn, Thomas 326, 477, 490

Lago, Patricia 195
Leander, Björn 463
Lindström, Tomas 463
Luzar, Anže 247, 260

Manrique, David 542
Mantwill, Frank 527
Mashinchi, Jason 55
Matusek, Daniel 27
Mauksch, Dominik 518
Mazkatli, Manar 228
Morris, Karla 311

Nyokabi, Anne 138

Palma, Francis 443
Pérez, Boris 5
Petrovska, Ana 138
Pretschner, Alexander 518

Quin, Federico 38

Riccobene, Elvinia 395
Robby 294
Roitsch, Robin 155
Rozier, Kristin Y. 340

Scandurra, Patrizia 395
Schnicke, Frank 477, 490
Schwichtenberg, Bahar 95
Sharaf, Mohammad 180
Sharma, Naveen 170
Snook, Colin 311

Speth, Sandro 82
Srirama, Satish Narayana 241
Stanovnik, Sašo 247
Svensson, Rasmus 443

Tamburri, Damian A. 260
Tatrous, Adell 443
Thiagarajan, Hariharan 294
Tountopoulos, Vasilis 241

van Hoorn, André 107
Voneva, Sonya 228

Wagner, Stefan 215

Yar, Asfand 411

Zimmermann, Alfred 215

560 Author Index

	Preface
	Organization
	Contents
	ECSA 2020 Doctoral Symposium Track
	ECSA 2020 Doctoral Symposium Track
	Organization
	Doctoral Symposium Chairs
	Doctoral Symposium Program Committee
	Additional Reviewers

	A Semiautomatic Approach to Identify Architectural Technical Debt from Heterogeneous Artifacts
	1 Introduction
	2 Related Work
	3 Work Plan
	3.1 Systematic Literature Review
	3.2 Survey of the State-of-the-Practice on TD
	3.3 Supporting Software Architects

	4 Expected Results
	References

	Big Data and Machine Intelligence in Software Platforms for Smart Cities
	1 Introduction
	2 Related Work
	3 Proposed Approach
	4 Expected Results and Evaluation
	5 Conclusion
	References

	Decentralized Self-adaptation in Large-Scaled Systems of Systems
	1 Motivation
	2 Foundations
	3 Research Gap and Research Questions
	4 Approach
	5 Methodology
	6 Future Work and Research Plan
	7 Conclusion
	References

	Systematic Approach to Engineer Decentralized Self-adaptive Systems
	1 Introduction
	2 Related Work
	2.1 Decentralized Approaches to Architecture-Based Adaptation
	2.2 Formal Approaches to Architecture-Based Adaptation
	2.3 Executable Models and Multi-agent Systems
	2.4 Related PhD Studies

	3 Scientific Approach
	4 Solution: Framework and Executable Language
	4.1 Evaluation

	5 Expected Contributions
	5.1 State of the Art Overview of Decentralized Self-adaptive Systems
	5.2 Framework for Decentralized Self-adaptive Systems
	5.3 Executable Modeling Language for Decentralized Self-adaptive Systems

	6 Critical Reflection
	7 Conclusion
	References

	ECSA 2020 Tool Demos Track
	ECSA 2020 Tool Demos Track
	Organization
	Tool Demos Chairs
	Tool Demos Program Committee
	Additional Reviewers

	Voyager: Software Architecture Trade-off Explorer
	1 Introduction
	2 Background and Related Work
	3 Voyager
	3.1 Implementation
	3.2 Solution Explorer
	3.3 Quality Attributes
	3.4 Architectural Configurations
	3.5 Design Space Visualisation
	3.6 Reports
	3.7 Data Sources and Extensibility

	4 Evaluation
	4.1 User Study Design
	4.2 Experiment Design
	4.3 Analysis and Results

	5 Discussion and Future Work
	References

	A Decision Support System for Pattern-Driven Software Architecture
	1 Introduction
	2 Decision Support System
	3 A Practical Running Example
	4 Related Work
	5 Evaluation
	6 Conclusion
	References

	Gropius — A Tool for Managing Cross-component Issues
	1 Introduction
	2 Problem Statement and Use Case
	3 Architecture
	3.1 Front-End and the Graphical CrossComponentIssueModeller
	3.2 Backend and Adapter
	3.3 Persistence and Synchronization

	4 Related Research and Industry Efforts
	5 Conclusion
	References

	SecoArc: A Framework for Architecting Healthy Software Ecosystems
	1 Introduction
	2 Challenges
	3 The SecoArc Framework
	3.1 Overview of Architecture
	3.2 Modeling Language
	3.3 Architectural Analysis Technique

	4 Case Study: On-The-Fly Computing
	4.1 Architectural Modeling
	4.2 Analysis Results

	5 Discussion
	6 Related Work
	7 Conclusion and Future Work
	References

	SQuAT-Vis: Visualization and Interaction in Software Architecture Optimization
	1 Introduction
	2 Related Work
	3 Use Cases
	3.1 Candidate Selection
	3.2 Stopping Criterion
	3.3 Candidate Implementation
	3.4 Result Explanation

	4 SQuAT-Vis Concepts
	4.1 Data Types
	4.2 Visualizations
	4.3 Groups and Tags

	5 SQuAT-Vis Views
	5.1 Population View
	5.2 Candidates View
	5.3 Architecture View

	6 Architecture and Technologies
	7 Evaluation
	7.1 Description
	7.2 Results and Discussion

	8 Conclusion
	References

	ECSA 2020 Gender Diversity in Software Architecture and Software Engineering Track
	ECSA 2020 Gender Diversity in Software Architecture and Software Engineering Track
	Organization
	Gender Diversity in Software Architecture and Software Engineering Chairs
	Gender Diversity in Software Architecture and Software Engineering Program Committee

	Girl-Friendly Computer Science Classroom: Czechitas Experience Report
	1 Introduction
	2 Research Background on Gender Tendencies
	3 Practice Background on Czechitas
	4 Methodology
	5 Recommendations on Girl-Friendly Classroom Design
	5.1 By Creating Safe Environment
	5.2 By Segregation
	5.3 By Personalised Learning

	6 Conclusion
	References

	Mining Gender Bias: A Preliminary Study on Implicit Biases and Gender Identity in the Department of Computer Science at the Technical University of Munich
	1 Introduction and Motivation
	2 Previous Work
	2.1 Unconscious Bias Awareness Training
	2.2 Implicit Association Test

	3 Method
	3.1 Questionnaire Creation
	3.2 Explicit (Self-reporting) Questions
	3.3 Implicit Questions

	4 Data Collection
	5 Implementation of the Questionnaire
	6 Results
	6.1 Data Exploration of the Explicit (Self-reporting) Questions
	6.2 Data Exploration of the Implicit Questions
	6.3 Data Analysis of the Implicit Questions

	7 Conclusion
	References

	CASA - 3rd International Workshop on Context-aware, Autonomous and Smart Architecture
	International Workshop on Context-aware, Autonomous and Smart Architecture (CASA)
	Organization
	Workshop Chairs
	Workshop Program Committee

	State of the Practice Survey: Predicting the Influence of AI Adoption on System Software Architecture in Traditional Embedded Systems
	1 Introduction
	2 Related Work
	2.1 AI, Neural Networks, and Machine Learning
	2.2 Solution Adequacy Check and SWOT Analysis

	3 Survey Setup
	3.1 Setup, Motivation, and Rationale
	3.2 AI Knowledge, Expected Benefits, and Engineering Practices
	3.3 Requirements, Limitations, and Decision-Making Process
	3.4 Company Profiles

	4 Survey Results
	4.1 Internal Knowledge of AI
	4.2 Expected Benefits from Adopting AI
	4.3 Existing Software Engineering and Architecture Practices
	4.4 Quality, Technical, Commercial, and Organizational Requirements and Limitations
	4.5 Enhancing Decision-Making Process for AI Adoption
	4.6 Survey Results According to the Existing Software Architecture Practices
	4.7 Survey Results According to Internal Knowledge that Companies Have Regarding AI
	4.8 State of the Practice Summary

	5 Conclusion and Future Work
	References

	Composition Algorithm Adaptation in Service Oriented Systems
	1 Introduction
	2 Related Work
	3 Solution Overview
	3.1 Composition Algorithm Adaptation

	4 Experimental Evaluation
	5 Conclusion and Future Work.
	References

	A Statistical Approach for Context-Awareness of Mobile Applications
	1 Introduction
	2 Background
	2.1 Context Concepts
	2.2 Context Modeling Approach

	3 Statistical Approach for Context-Awareness
	3.1 Defining Context Variables States
	3.2 Building Contextual Situations Model
	3.3 Computing Transition Matrix

	4 Running the Approach on OSApp Mobile Application
	5 Conclusion
	References

	A Reference Architecture for Personalized and Self-adaptive e-Health Apps
	1 Introduction
	2 Background
	3 Related Work
	4 Reference Architecture
	5 Components Supporting Self-adaptation
	5.1 AI Personalization Adaptation
	5.2 User Driven Adaptation Manager
	5.3 Smart Objects Manager
	5.4 Internet Connectivity Manager
	5.5 Environment Driven Adaptation Manager

	6 Discussion
	7 Conclusions and Future Work
	References

	CSE/QUDOS - Joint Workshop on Continuous Software Engineering and Quality-Aware DevOps
	Joint Workshop on Continuous Software Engineering and Quality-Aware DevOps (CSE/QUDOS)
	Organization
	Workshop Chairs
	CSE Steering Committee
	QUDOS Steering Committee
	Workshop Program Committee

	Collecting Service-Based Maintainability Metrics from RESTful API Descriptions: Static Analysis and Threshold Derivation
	1 Introduction
	2 Related Work
	3 The RAMA Approach
	4 Threshold Benchmarking
	4.1 Research Design
	4.2 Results

	5 Limitations and Threats to Validity
	6 Conclusion
	References

	Optimizing Parametric Dependencies for Incremental Performance Model Extraction
	1 Introduction
	2 Foundations
	2.1 Palladio
	2.2 Kieker
	2.3 Algorithms
	2.4 Continuous Integration of Performance Model

	3 Parametric Dependencies Example
	4 Approach
	5 Case Study
	5.1 Goal and Scenario
	5.2 Setup
	5.3 Results

	6 Related Work
	7 Conclusion and Future Work
	References

	Data Pipeline Architecture for Serverless Platform
	1 Introduction
	2 Methodology
	2.1 Pipeline Modelling

	3 Use Case: Tourism Promotion
	4 Conclusions and Future Works
	References

	Examination and Comparison of TOSCA Orchestration Tools
	1 Introduction
	1.1 DevOps and Orchestration
	1.2 Orchestration Tools
	1.3 OASIS TOSCA Standard

	2 Testing the Orchestration Tools
	2.1 xOpera
	2.2 Ystia Yorc and Alien4Cloud
	2.3 Indigo DC
	2.4 Cloudify

	3 The Comparison of TOSCA Orchestrators
	4 Results and Decisions
	5 Conclusions and Future Work
	References

	Auto-scaling Using TOSCA Infrastructure as Code
	1 Introduction
	2 Problem Definition
	2.1 Definition of Application Scaling

	3 Scaling Concepts
	4 Proposed Approach, Scaler Inside the Orchestrator
	4.1 Proposed Experiment and Evaluation Plan

	5 Discussion and Lessons Learned
	6 Conclusions and Future Work
	References

	Towards Coordinated Autoscaling and Application Brownout at the Orchestrator Level
	1 Introduction
	2 Background
	3 Coordinating Scaling and Dimming
	4 Preliminary Results
	5 Conclusions
	References

	DETECT - 3rd International Workshop on Modeling, Verification and Testing of Dependable Critical Systems
	International Workshop on Modeling, Verification and Testing of Dependable Critical Systems (DETECT)
	Organization
	Workshop Chairs
	Workshop Program Committee

	Measurement-Based Timing Analysis on Heterogeneous MPSoCs: A Practical Approach
	1 Introduction
	1.1 Timing Analysis Methods
	1.2 Measurement Techniques Characteristics
	1.3 Contributions

	2 Measurement Methods on a Core
	2.1 Stopwatch
	2.2 Linux Time Tools
	2.3 C Standard Functions
	2.4 Clock Cycles Counter
	2.5 Timer/Counter Chip
	2.6 Logic Analyzer
	2.7 Experimental Comparison

	3 Inter-core Timing Measurement
	3.1 Heterogeneous Asymmetric Multicores
	3.2 Inter-core Communication Technologies
	3.3 Measurement Methods
	3.4 Heterogeneous Migration

	4 Conclusion
	References

	Awas: AADL Information Flow and Error Propagation Analysis Framework
	1 Introduction
	2 Background
	3 Awas Tool Architecture
	4 Base Awas Dependence Graph and Visualization
	5 Property Propagation Graph and Visualization
	6 Awas Query Language
	7 Evaluation
	8 Conclusion and Future Work
	References

	Formal Verification of Run-to-Completion Style Statecharts Using Event-B
	1 Introduction
	2 Background
	2.1 SCXML
	2.2 Event-B
	2.3 UML-B State-Machines

	3 Run to Completion
	4 Description of the Sample Application
	5 SCXML Translation to Event-B
	6 Verification of Safety Properties
	7 Verification of Control Responses
	8 Conclusion
	References

	A Simulator Coupling Architecture for the Creation of Digital Twins
	1 Introduction
	2 State-of-the-Art and State-of-the-Practice
	3 Simulator Coupling Architecture
	3.1 Simulation Component-Based Digital Twins
	3.2 Simulation Components
	3.3 Extending and Connecting Views

	4 Application Example
	5 Conclusion
	References

	Integrating Runtime Verification into an Automated UAS Traffic Management System
	1 Introduction
	2 Preliminaries
	3 UTM System Definition
	4 UTM Runtime Specifications
	4.1 UTM Sub-system I/O
	4.2 Coverage of Real-World Specification Types
	4.3 Specification Validation

	5 Evaluation
	6 Conclusion
	References

	Dependability of Model-Driven Executable DSLs
	1 Introduction
	2 The Petri-Net DSL
	2.1 Structural and Contextual Semantics
	2.2 Execution Semantics
	2.3 Benchmark Overview

	3 Debugging the Traffic-Light Model
	3.1 Results
	3.2 Analysis

	4 Formal DSL Semantics: The Meeduse Technique
	4.1 Functional Model
	4.2 Execution Operations
	4.3 Semantics Coordination
	4.4 Debugging the Traffic Light

	5 Conclusion
	References

	FAACS-MDE4SA - Joint Workshop on Formal Approaches for Advanced Computing Systems and Model-Driven Engineering for Software Architecture
	Joint Workshop on Formal Approaches for Advanced Computing Systems and Model-Driven Engineering for Software Architecture (FAACS-MDE4SA)
	FAACS
	FAACS Organization
	FAACS Chairs
	FAACS Steering Committee
	FAACS Program Committee
	MDE4SA
	MDE4SA Organization
	MDE4SA Chairs
	MDE4SA Steering Committee
	MDE4SA Program Committee

	Defining a Formal Semantic for Parallel Patterns in the Palladio Component Model Using Hierarchical Queuing Petri Nets
	1 Introduction
	2 Foundations
	2.1 Software Performance Engineering (SPE)
	2.2 The PCM and the Palladio Bench
	2.3 Hierarchical Queueing Petri Nets

	3 Mapping of PCM Instances to HQPN
	3.1 Mapping of General PCM Components
	3.2 Mapping of Parallel Behavior to QPN
	3.3 Evaluation of the Mapping of Parallel ATs to QPN

	4 Future Work
	5 Related Work
	6 Conclusion
	References

	Model-Based Simulation at Runtime with Abstract State Machines
	1 Introduction
	2 Related Work on the Use of FMs@run.time
	3 Abstract State Machines and the ASMETA Toolset
	4 Runtime Simulation with ASMs
	4.1 Overall Approach and Outlook
	4.2 AsmetaS@run.time Simulation Environment

	5 Conclusion
	References

	Merging Railway Standard Notations in a Formal DSL-Based Framework
	1 Introduction
	2 Proposed Approach
	2.1 Overall Architecture
	2.2 Methodology
	2.3 The Core Meta-Model
	2.4 Defining the Additional Meta-Models
	2.5 Modeling

	3 Formal Semantics
	3.1 Static Semantics
	3.2 Dynamic Semantics
	3.3 Execution

	4 Conclusion
	References

	Continuous Formal Verification of Microservice-Based Process Flows
	1 Introduction
	2 Overview of the Approach
	3 Preliminaries
	3.1 Time Basic Petri Nets
	3.2 A Running Example

	4 Continuous Formal Verification
	4.1 Model Transformation and Model Checking
	4.2 Monitoring and Runtime Verification

	5 Experimental Validation
	6 Related Work
	7 Conclusion
	References

	IoT-ASAP - 4th International Workshop on Engineering IoT Systems: Architectures, Services, Applications, and Platforms
	International Workshop on Engineering IoT Systems: Architectures, Services, Applications, and Platforms (IoT-ASAP)
	Organization
	Workshop Chairs
	Workshop Steering Committee
	Workshop Program Committee
	Sponsor

	Defining Design Patterns for IoT APIs
	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Strategy for Design Pattern Definition
	3.2 Our Observations on URI Sections
	3.3 Template for Design Patterns Definition

	4 Design Patterns
	5 Case Study
	6 Conclusion and Future Work
	References

	SASI4 - 2nd Workshop on Systems, Architectures, and Solutions for Industry 4.0
	Workshop on Systems, Architectures, and Solutions for Industry 4.0 (SASI4)
	Organization
	Workshop Chairs
	Workshop Program Committee
	Additional Reviewer

	Access Control for Smart Manufacturing Systems
	1 Introduction
	2 Background
	2.1 Smart Manufacturing Concepts
	2.2 Cybersecurity Threats to Smart Manufacturing Systems
	2.3 Access Control Definitions
	2.4 Attribute Based Access Control (ABAC)

	3 Access Control Requirements on Smart Manufacturing
	3.1 Requirements Related to a Traditional Manufacturing System
	3.2 Requirements Related to Smart Manufacturing Systems
	3.3 Generic Access Control Requirements

	4 A Smart Manufacturing Scenario
	5 Fulfillment of Requirements
	6 Related Work
	7 Conclusions
	References

	Industrie 4.0 Virtual Automation Bus Architecture
	1 Introduction
	2 Industrie 4.0 Virtual Automation Bus
	2.1 Virtual Automation Bus Concept
	2.2 Model Provider Services

	3 Evaluating Deployments and Technologies
	3.1 Simple HTTP/REST Deployment
	3.2 Multi Network Scenario
	3.3 Deployment with Active Gateway
	3.4 Discussion

	4 Conclusion and Lessons Learned
	References

	Enabling Industry 4.0 Service-Oriented Architecture Through Digital Twins
	1 Introduction
	2 State of the Art and State of Practice
	2.1 Industry 4.0 and Digital Twins
	2.2 Service-Oriented Architecture
	2.3 Architecture of Plant Automation

	3 Industry 4.0 Use Cases
	3.1 Use-Case 1: Integration of New Devices
	3.2 Use-Case 2: On-The-Fly Product Change

	4 Enabling Industry 4.0 Service-Oriented Architecture
	4.1 Service Model
	4.2 Order and Product Model
	4.3 Plant Model
	4.4 Industry 4.0 Orchestration

	5 Approach Implementation and Experience Report
	5.1 Demonstrator Description
	5.2 Example Implementation of Digital Twins and Orchestration
	5.3 Experience Report

	6 Related Work
	7 Conclusion and Future Work
	References

	WASA - 6th International Workshop on Automotive System/Software Architecture
	International Workshop on Automotive System/Software Architecture (WASA)
	Organization
	Workshop Chairs
	Workshop Program Committee

	System Health Indicators in Mixed Criticality E/E Systems in Automated Driving Context
	1 Introduction
	2 Proposed Approach
	2.1 Meta-Model
	2.2 Health Indicator
	2.3 Run-Time System Health Management

	3 Health Indicators in Automated Driving Context
	3.1 Use Case
	3.2 Health Indicators of Automated Driving System
	3.3 Health Indicator Models

	4 Related Work
	5 Conclusion and Outlook
	References

	How to Conduct Experiments with a Real Car? Experiences and Practical Guidelines
	1 Introduction
	2 Constraints and Requirements
	2.1 Constraints
	2.2 Requirements

	3 Candidate Interfaces Between Setup and Car
	3.1 Isolation of Setup and Car
	3.2 Receiving Data from the Car
	3.3 Interaction Between Setup and Car

	4 Checklist of Organizing Experiments
	4.1 How to Compose the Research Team? (Risk, Budget, Usage)
	4.2 Where to Get a Suitable Car? (Budget, Usage)
	4.3 Where to Do Experimental Rides? (Risk, Budget, Usage)

	5 Best Practices and General Advice
	5.1 Structure the Available Time in Advance
	5.2 What If the Setup Does Not Work?
	5.3 Enduring Power Supply

	6 Conclusion and Outlook
	A Key-Questions from the Paper in Condensed Form
	A.1 Candidate Interfaces between Setup and Car
	A.2 Checklist of Organizing Experiments
	A.3 Best Practices and General Advice

	References

	Towards a Systems Engineering Based Automotive Product Engineering Process
	1 Introduction
	2 Related Work
	2.1 Methodology for Product Planning
	2.2 Design Methodology for Mechatronic Systems
	2.3 Systems Engineering/Model-Based Systems Engineering (MBSE)
	2.4 Research Gap

	3 Solution Approach
	3.1 Phase 1: SP – Setting a Pyramid
	3.2 Phase 2: NL – Neutralizing the Language
	3.3 Phase 3: LD – Logical Dependency
	3.4 Phase 4: CBM – Controlled by Milestones
	3.5 Phase 5: CSEA – Compliance with Systems Engineering Approach

	4 An Automotive Use Case
	5 Conclusion and Future Work
	References

	Development of a Virtual Simulation Environment and a Digital Twin of an Autonomous Driving Truck for a Distribution Center
	1 Introduction
	2 Context and Motivation
	3 Related Work
	4 System Design
	4.1 The Virtual Truck Lab and the Digital Twin
	4.2 Setting Up a Vehicle
	4.3 The Virtual Simulation Environment - VSE
	4.4 Testing of VSE

	5 Conclusions and Future Work
	References

	Author Index

