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Abstract. We present rtamt, an online monitoring library for Signal
Temporal Logic (STL) and its interface-aware variant (IA-STL), provid-
ing both discrete- and dense-time interpretation of the logic. We also
introduce rtamt4ros, a tool that integrates rtamt with Robotic Operating
System (ROS), a common environment for developing robotic applica-
tions. We evaluate rtamt and rtamt4ros on two robotic case studies.

1 Introduction

Robotic applications are complex autonomous cyber-physical systems (CPS).
Robotic Operating System (ROS) [1] provides a meta-operating system that
helps development of robotic applications. Verification remains a bottleneck, as
existing techniques do not scale to this level of complexity, thus making static
safety assurance a very costly, if not impossible, activity. Run-time assurance
(RTA) is an alternative approach for ensuring the safe operation of robotic CPS
that cannot be statically verified. RTA allows the use of untrusted components
in a system that implements a safe fallback mechanism for (1) detecting anoma-
lies during real-time system operations and (2) invoking a recovery mechanism
that brings the system back to its safe operation. Runtime verification (RV) pro-
vides a reliable and rigorous way for finding violations in system executions and
consequently represents a viable solution for the monitoring RTA component.

Formal specifications play an important role in RV and enable formulating
system properties. Signal Temporal Logic (STL) [2] is a formal specification
language used to describe CPS properties. It admits robustness semantics that
measure how far is an observed behavior from satisfying/violating a specification.

We introduce rtamt1, an online STL monitoring library. rtamt supports stan-
dard STL and its interface-aware extension (IA-STL) [3] as specification lan-
guages. It provides automated generation of online robustness monitors from
specifications under both discrete and continuous interpretation of time. We also
present rtamt4ros2, an extension that integrates rtamt to ROS, thus enabling the
use of specification-based RV methods in robotic applications. We assess the
library on two robotic applications.
1 https://github.com/nickovic/rtamt.
2 https://github.com/nickovic/rtamt4ros.
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Related Work. Several tools support offline monitoring of STL with quali-
tative (AMT2.0 [4]) and quantitative semantics (S-TaLiRo [5] and Breach [6]).
Reelay [7] implements past Metric Temporal Logic (MTL) monitors over discrete
and continuous time and with qualitative and quantitative semantics. PyMTL [8]
is a library for quantitative offline evaluation of MTL specifications. R2U2
tool [9] combines runtime observers for the discrete mission-time linear tem-
poral logic (mtLTL), with Bayesian networks, sensor filters and Boolean testers.
MONTRE [10] implements monitoring algorithms for timed regular expressions
(TRE). MONAA [11] implements an automata-based matching algorithms for
TREs. StreamLAB [12] and TeSSLa [13] are tools for evaluating real-time CPS
streams. The problem of online robustness monitoring was studied in [14], where
the authors propose an interval-based approach of online evaluation that allows
estimating the minimum and the maximum robustness with respect to both
the observed prefix and unobserved trace suffix. RVROS [15] is a specification-
agnostic monitoring framework for improving safety and security of robots using
ROS. To the best of our knowledge, rtamt/rtamt4ros is the only tool that imple-
ments online robustness STL monitors with both future and past operators and
ROS support.

2 RTAMT Design and Functionality
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Fig. 1. RTAMT architecture.

The main functionality of rtamt is the
automatic generation of online robust-
ness monitors from declarative specifi-
cations. Given an input signal in the
form of a sequence of (time, value)
pairs and a specification, rtamt com-
putes at different points in time how
robust is the observed signal to the
specification, i.e. how far is it from sat-
isfying or violating it. The library con-

sists of 3 major parts: (1) specifications expressed in a declarative specification
language, (2) a front-end with an Application Programming Interface (API) to
parse specifications and generate the monitor, and (3) a back-end that imple-
ments the actual evaluation algorithm used by the monitor. The rtamt library
uses a modular architecture depicted in Fig. 1. It uses ANTLR4 parser generator
to translate textual (IA-)STL specifications into an abstract parse tree (APT)
data structure used to build the actual monitor. The front-end implements the
Application Programming Interface (API) and the pre-processing steps such as
the translation of bounded-future (IA-)STL to past (IA-)STL in Python. The
back-end implements the monitoring algorithms in Python (for discrete-time
and dense-time interpretation) and C++ (for discrete-time interpretation). The
library is compatible with both Python 2.7 and 3.7.
Specification language in rtamt is STL with infinity-norm quantitative seman-
tics [16]. The library supports four variants of the specification language – stan-
dard STL and interface-aware STL [3] interpreted over discrete and dense time.
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IA-STL extends STL with an input/output signature of the variables and pro-
vides two additional semantic interpretations: (1) output robustness and (2)
input vacuity. Output robustness measures robustness of output signals with
respect to some fixed input. Input vacuity measures how vacuously is a speci-
fication satisfied with input signals only. rtamt accepts as input bounded-future
STL (bfSTL) that restricts the use of the future temporal operators (eventually,
always and until) to bounded intervals.

Parsing and preprocessing follows a two-step procedure. The first step
consists in translating the specification given in a textual form to an abstract
parse tree (APT). The translation uses ANTLR4 to generate a Python parser
for the (IA-)STL grammar. This translation is still not suitable for online mon-
itors – the specification may have future temporal operator that would require
clair-voyant monitoring capability. Hence, we implement the pastification proce-
dure [17] that translates the bfSTL formula φ into an equi-satisfiable past STL
formula ψ, which uses only past temporal operators and postpones the formula
evaluation from time index t, to the end of the (bounded) horizon t + h where
all the inputs necessary for computing the robustness degree are available.

Monitoring consists of evaluating in online fashion the past STL specifi-
cation according to its quantitative semantics, interpreted in discrete or dense
time 3.
Discrete-time monitors follow a time-triggered approach in which sensing of
inputs and output generation are done at a periodic rate. This choice is moti-
vated by [18], which shows that by weakening/strengthening real-time specifi-
cations, discrete-time evaluation of properties preserves important properties of
dense-time interpretation. This approach admits an upper bound on the use of
computation resources. rtamt implements two back-ends for STL monitors – one
in Python (for rapid prototyping) and one in C++ (for efficiency). rtamt uses
Boost.Python library to integrate the Python front-end with the C++ backend.
Dense-time monitors follow an event-driven approach. Their implementation
combines the incremental evaluation approach from [19] with the optimal stream-
ing algorithm to compute the min and max of a numeric sequence over a sliding
window from [20]. Unlike their discrete-time counterparts, continuous-time mon-
itors do not have bounds on memory requirements.
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Fig. 2. Integration of RTAMT to ROS.

Integration of RTAMT to ROS
ROS supports several messaging app-
roaches, including the subscriber and
publisher pattern. A publisher catego-
rizes a message into a class (called
topic in ROS) and sends it without-
knowing who will read the message.
A subscriber subscribes to a topic and

receives its associated messages, without knowing who sent the message4. The

3 Due to pastification, rtamt only needs to evaluate past temporal operators.
4 Unless the publisher encodes its identity into the message itself.



RTAMT: Online Robustness Monitors from STL 567

messages are received and processed in callback() functions. Common ROS appli-
cations associate a callback() function per subscribed variable.

rtamt4ros, illustrated in Fig. 2, integrates rtamt into ROS using rospy. The
integration is non-intrusive and provides the user with a generic and transparent
monitoring solution for (IA-)STL specifications. The ROS system under observa-
tion is implemented with ROS nodes, which interact by publishing and receiving
ROS messages on dedicated topics. To publish values of a variable x of type T
on a topic t, ROS node associates x and T to t. Similarly, we declare in the STL
specification variables that we want to monitor, declare their types and asso-
ciate them to ROS subscription/publication topics using annotations. Variable
names, their types and associated topics are specification-dependent. rtamt4ros
implements a dynamic subscription/publication mechanism that uses the con-
cepts of introspection and reflection (the ability to passively infer the type of an
object and actively change its properties at runtime). Given a (IA-)STL speci-
fication, rtamt4ros infers all the specification variables and dynamically creates
their associated subscribers and publishers. The use of reflection allows us to
associate a single callback() function to all specification variables, by passing the
variable object as an argument to the function. We use the callback() function
only to collect input data and the main ROS loop to make robustness monitor
updates.

3 Experiments and Use Scenario

We now present experiments performed using rtamt and rtamt4ros. We apply
rtamt and rtamt4ros on two ROS case studies: Simple Two Dimensional Simulator
(STDR) and Toyota’s Human Support Robot (HSR) platform [21]. We use the
STDR example to show step-by-step usage of the rtamt and rtamt4ros for online
monitoring of robotic applications. We note that rtamt is versatile and could be
used for instance for offline monitoring and non-robotic applications. We then
evaluate the computation time requirements of the library. The experiments
were performed on a Dell Latitude 7490 with an i7-8650U processor and 16 GB
of RAM, running Ubuntu 16.04 on a virtual machine.

Online Monitoring of Robotic Applications: STDR is a ROS-compliant
environment for easy multi-robot 2D simulation (see Fig. 3). We use a simple
robot controller with commands encoded as ROS Twist messages that expresses
velocity in free space consisting of its linear and angular parts. The robot state is
encoded as a ROS Odometry message that represents an estimate of the position
(pose) and velocity (twist) in free space. We then use the rtamt4ros and rtamt to
monitor its low-level requirement stating that every step in the command must
be followed by the observed response. The specification spec.stl requires that
at all times the distance between the linear velocity on the x dimension of the
command and the robot is smaller than 0.5. The user first needs to import data
types used in the specification (lines 1–3). Then, it declares variables used in
specification, with their data type and (optionally) their input/output signature
(lines 4, 6 and 8). Special comments in lines 5 and 7 are annotations that provide
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additional information about variables - in this case they associate variables to
ROS topics. Finally, line 9 defines the IA-STL property.

1 from geometry_msgs.msg import Twist

2 from nav_msgs.msg import Odometry

3 from rtamt_msgs.msg import FloatMessage

4 input Twist cmd

5 @ topic(cmd , robot0/cmd_vel)

6 output Odometry robot

7 @ topic(res , robot0/odom)

8 output FloatMessage out

9 out.value = always(abs(cmd.linear.x - robot.twist.twist.

linear.x) <= 0.5)

To monitor the IA-STL specification spec.stl with rtamt/rtamt4ros , it suf-
fices to run the following command in the ROS environment.

1 roscore rtamt4ros ros_stl_monitor.py --stl spec.stl --

period 100 --unit ms

Fig. 3. STDR simulator. Fig. 4. HSR service robotics applica-
tion.

HSR is a robot with 8 degrees of freedom (DoF), combining 3 DoF of its
mobile base, 4 DoF of the arm and 1 DoF of the torso lift (see Fig. 4). The
robot is equipped with ROS modules for localization, path planning and obstacle
avoidance. We used this example to experiment with system-level properties in
a multi-agent environment. We were interested in particular in monitoring the
following requirements: (1) no-collision requirement stating that two robots are
never closer than some dmin distance from each other, and (2) when robot 2 is
closer than d distance from robot 1, then robot 2 two goes in at most T seconds
within d′ distance of some location L. For this industrial application, we present
an abstracted formalization of the above requirements.
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1 out1 = always (abs(rob1.pos - rob2.pos) < d)

2 out2 = abs(rob1.pos - rob2.pos) < d implies

3 eventually [0:T](rob1.pos - L) < d’

This experiment demonstrates the use of the library in a sophisticated
ROS/Gazebo environment in an industrial case study. The addition of moni-
tors is orthogonal to the development of the application and the monitors are
non-intrusive.
Table 1. Timing requirement per
single monitor update.

k bound C++ (s) Python (s)

100 0.00014 0.00023

1k 0.0002 0.00085

10k 0.0008 0.029

100k 0.0047 0.31

1M 0.046 72

Timing Figures: For online monitors, the
most important quantitative measure is the
computation time of a single monitoring
update step. We compared the difference in
timing requirements between the C++ and
the Python implementation of the discrete-
time monitoring algorithm. We used for
the experiment the STL specification out =
always[0:k] (a + b > -2) where k is the
upper bound on the timing modality of the

always operator that we varied between 100 and 1 million. Table 1 summarized
the results of the experiment. The outcomes clearly demonstrate the efficiency
of the C++ back-end, especially for large upper bounds in temporal modalities.

4 Conclusions

In this paper, we presented rtamt a library for generating online monitors from
declarative specifications and rtamt4ros, its ROS extension, demonstrating their
usability and versatility two robotic case studies.
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