
ReachNN*: A Tool for Reachability
Analysis of Neural-Network Controlled

Systems

Jiameng Fan1(B), Chao Huang2, Xin Chen3, Wenchao Li1, and Qi Zhu2

1 Boston University, Massachusetts, USA
{jmfan,wenchao}@bu.edu

2 Northwestern University, Illinois, USA
{chao.huang,qzhu}@northwestern.edu

3 University of Dayton, Ohio, USA
xchen4@udayton.edu

Abstract. We introduce ReachNN*, a tool for reachability analysis
of neural-network controlled systems (NNCSs). The theoretical founda-
tion of ReachNN* is the use of Bernstein polynomials to approximate
any Lipschitz-continuous neural-network controller with different types
of activation functions, with provable approximation error bounds. In
addition, the sampling-based error bound estimation in ReachNN* is
amenable to GPU-based parallel computing. For further improvement in
runtime and error bound estimation, ReachNN* also features optional
controller re-synthesis via a technique called verification-aware knowledge
distillation (KD) to reduce the Lipschitz constant of the neural-network
controller. Experiment results across a set of benchmarks show 7× to
422× efficiency improvement over the previous prototype. Moreover, KD
enables proof of reachability of NNCSs whose verification results were
previously unknown due to large overapproximation errors. An open-
source implementation of ReachNN* is available at https://github.com/
JmfanBU/ReachNNStar.git.

Keywords: Neural-network controlled systems · Reachability ·
Bernstein polynomials · GPU acceleration · Knowledge distillation.

1 Introduction

There has been a growing interest in using neural networks as controllers in areas
of control and robotics, e.g., deep reinforcement learning [13], imitation learn-
ing [7,14], and model predictive control (MPC) approximating [3,9]. We consider

J. Fan and C. Huang contributed equally.
We acknowledge the support from NSF grants 1646497, 1834701, 1834324, 1839511,
1724341, ONR grant N00014-19-1-2496, and the US Air Force Research Laboratory
(AFRL) under contract number FA8650-16-C-2642.

c© Springer Nature Switzerland AG 2020
D. V. Hung and O. Sokolsky (Eds.): ATVA 2020, LNCS 12302, pp. 537–542, 2020.
https://doi.org/10.1007/978-3-030-59152-6_30

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59152-6_30&domain=pdf
https://github.com/JmfanBU/ReachNNStar.git
https://github.com/JmfanBU/ReachNNStar.git
https://doi.org/10.1007/978-3-030-59152-6_30


538 J. Fan et al.

neural-network controlled systems (NNCSs) that are closed-loop sampled-data
systems where a neural-network controller controls a continuous physical plant
in a periodic manner. Given a sampling period δ > 0, the neural-network (NN)
controller reads the state x of the plant at the time t = iδ for i = 0, 1, 2, . . . , feeds
it to a neural network to obtain the output u, and updates the control input
in the plant’s dynamics to u. Our tool ReachNN* aims to solve the following
reachability problem of NNCSs.

Problem 1. The reach-avoid problem of a NNCS is to decide whether from any
state in an initial set X0, the system can reach a target set Xf , while avoiding
an unsafe set Xu within the time interval [0, T ].

A major challenge facing reachability analysis for NNCSs is the presence of non-
linearity in the NN controllers. Existing reachability analysis tools for NNCSs
typically target specific classes of NN controllers [2,5,12,15]. Sherlock [5] and
NNV [15] for instance only consider neural networks with RELU activation
functions, while Verisig [12] requires the neural networks to have differentiable
activation functions such as tanh/Sigmoid.

In this paper, we present our tool ReachNN*, which is a significantly extended
implementation of our previous prototype ReachNN [11]. ReachNN* provides
two main features. First, it can verify an NNCS with any activation functions by
Bernstein polynomial approximation [11]. Second, based on the proportionality
relationship between approximation error estimation Lipschitz constant of the
NN controller, ReachNN* can use knowledge distillation (KD) [10] to retrain a
verification-friendly NN controller that preserves the performance of the original
network but has a smaller Lipschitz constant, as proposed in [6].

Another significant improvement in ReachNN* is the acceleration of the
sampling-based error analysis in ReachNN by using GPU-based parallel com-
puting. The sampling-based approach uniformly samples the input space for a
given sample density and evaluates the neural network controller and the poly-
nomial approximation at those sample points. We use the Lipschitz constant
of the neural network and the samples to establish an upper bound on the true
error (details in [11]). For networks with many inputs, this approach may require
many sample points to avoid a blowup in the overapproximation. Here, we make
the observation that the sampling-evaluation step is a single instruction, mul-
tiple data (SIMD) computation which is amenable to GPU-based acceleration.
Experimental results across a set of benchmarks show 7× to 422× efficiency
improvement over the previous prototype.

2 Tool Design

The architecture of ReachNN* is shown in Fig. 1. The input consists of three
parts: (1) a file containing the plant dynamics and the (bounded) reach-avoid
specification, (2) a file describing the NN controller, and (3) an optional target
Lipschitz constant for controller retraining. The tool then works as follows. For
every sampling step [iδ, (i + 1)δ] for i = 0, 1, 2 . . . , a polynomial approximation



ReachNN*: A Tool for Reachability Analysis of Neural-Network 539

Fig. 1. Structure of ReachNN*.

along with a guaranteed error bound for the NN controller output is computed
and then used to update the plant’s continuous dynamics. The evolution of the
plant is approximated by flowpipes using Flow*. During the flowpipe construc-
tion, it checks every computed flowpipe whether it lies entirely inside the target
set Xf and outside the avoid set Xu. The tool terminates when (1) the reachable
set at some time t ≤ T lies inside the target set and all computed flowpipes do
not intersect with the avoid set, i.e. the reach-avoid specification is satisfied; or
(2) an unsafe flowpipe is detected, i.e. it enters the avoid set Xu; or (3) the reach-
able set at some time t intersects with but is not entirely contained in Xf , in
which case the verification result is unknown. The tool also terminates if Flow*
fails due to a blowup in the size of the flowpipes. Along with the verification
result (Yes, No or Unknown), the tool generates a Gnuplot script for producing
the visualization of the computed flowpipes relative to X0, Xf and Xu.

When the tool returns Unknown, it is often caused by a large overapprox-
imation of the reachable set. As noted before, the overapproximation error is
directly tied to the Lipschitz constant of the network in our tool. In such cases,
the user can enable the knowledge distillation option to retrain a new neural net-
work. The retrained network has similar performance compared to the original
network but a smaller Lipschitz constant. The tool will then perform reachabil-
ity analysis on the retrained network. We describe the function of each model in
ReachNN* in more detail below.

[Polynomial Approximation Generator]. We implement this module in
Python. It generates the approximation function of a given neural network over
a general hyper-rectangle, with respect to a given order bound for the Bernstein
polynomials. The generated polynomial is represented as a list of monomials’
orders and the associated coefficients.



540 J. Fan et al.

[Approximation Error Analyzer]. This module is implemented in Python. It
first invokes a sub-module – Lipschitz constant analyzer, to compute a Lipschitz
constant of the neural network using a layer-by-layer analysis (see Sect. 3.2 of
[11] for details). Then, given the Lipschitz constant, this module estimates the
approximation error between a given polynomial and a given neural network
by uniformly sampling over the input space. To achieve a given precision, this
sampling-based error estimation may result in a large number of samples. In
ReachNN*, we leverage Tensorflow [1] to parallelize this step using GPUs.

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.4 -0.2  0  0.2  0.4  0.6  0.8  1  1.2

x1

x0

Target Set Avoid Set

(a) Before KD (12718 seconds)

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

-0.2  0  0.2  0.4  0.6  0.8  1  1.2

x1

x0

Target Set Avoid Set

(b) After KD (103 seconds)

Fig. 2. Reachability analysis results: Red lines represent boundaries of the obstacles
and form the avoid set. Green rectangle represents the target region. Blue rectangle
represents the computed flowpipes. (Color figure online)

[Flow*]. We use the C++ APIs in Flow* [4] to carry out the following tasks: (a)
flowpipe construction under continuous dynamics using symbolic remainders, (b)
checking whether a flowpipe intersects the given avoid set, (c) checking whether
a flowpipe lies entirely in the given target set, and (d) generating a visualization
file for the flowpipes.

[Knowledge Distillator]. This module is implemented in Python with GPU
support for retraining. The inputs for this module are the original NN, a target
Lipschitz constant number, and a user-specified tolerance of the training error
between the new network and the original network. The output is a retrained
network. Details of the distillation procedure can be found in [6]. We note that
this module also supports distilling the original network into a new network with
a different architecture, which can be specified as an additional input.

Example 1. Consider the following nonlinear control system [8]: ẋ0 = x1, ẋ1 =
ux2

1 − x0, where u is computed from a NN controller κ that has two hidden
layers, twenty neurons in each layer, and ReLU and tanh as activation func-
tions. Given a control stepsize δc = 0.2, we want to check if the system will
reach [0, 0.2] × [0.05, 0.3] from the initial set [0.8, 0.9] × [0.5, 0.6] while avoiding
[0.3, 0.8] × [−0.1, 0.4] over the time interval [0, 7].



ReachNN*: A Tool for Reachability Analysis of Neural-Network 541

Table 1. Comparison with ReachNN. We use l to represent the number of layers in the
neural network controller, n to represent the number of neurons in the hidden layers,
and ε̄ for the error bound in sampling-based analysis. We use the same benchmarks
from [11]. The dimensions of states are from 2 to 4 for these benchmarks. Time shows
the runtime of the reachability analysis module. The After KD results do not include
the runtime for knowledge distillation. The average runtime for knowledge distilla-
tion is 245 s (The runtime of the knowledge distillation module does not vary much
across different benchmarks.). Acc (short for acceleration) denotes the ratio between
the runtime of ReachNN and that of ReachNN* on the same NNCS without applying
knowledge distillation.

# NN Controller Setting Verification Result Time (Seconds) Acc

Act l n ε̄ Before KD After KD ReachNN [11] ReachNN* After KD

1 ReLU 3 20 0.001 Yes(35) – 3184 26 – 112×
sigmoid 3 20 0.005 Yes(35) – 779 76 – 10×
tanh 3 20 0.005 Unknown(35) Yes(35) 543 76 70 7×
ReLU + tanh 3 20 0.005 Yes(35) – 589 76 – 7×

2 ReLU 3 20 0.01 Yes(9) – 128 5 – 25×
sigmoid 3 20 0.001 Yes(9) – 280 13 – 21×
tanh 3 20 0.01 Unknown(7) Yes(7) 642 71 69 9×
ReLU + tanh 3 20 0.01 Yes(7) – 543 25 – 21×

6 ReLU 4 20 0.01 Yes(10) Yes(10) 7842 1126 12 7×
sigmoid 4 20 0.01 No(7) – 32499 77 – 422×
tanh 4 20 0.01 No(7) – 3683 11 – 334×
ReLU + tanh 4 20 0.01 Yes(10) Yes(10) 10032 1410 674 7×

The verification finished in 12718 s and the result is Unknown, which indi-
cates the computed flowpipes intersect with (and are not contained entirely in)
the avoid set or the target set. The flowpipes are shown in Fig. 2a. With KD
enabled, we retrain a new NN controller with the same architecture, a target
Lipschitz constant as 0 (0 means the knowledge distillator will try to minimize
the Lipschitz constant) and a regression error tolerance of 0.4. The resulting
flowpipes are shown in Fig. 2b. We can see that the new NN controller can be
verified to satisfy the reach-avoid specification. In addition, the verification for
the new NN controller is 123× faster compared to verifying the original NNCS.

3 Experiments

We provide a full comparison between ReachNN* and the prototype ReachNN
on all the examples in [11]. If the verification result is Unknown, we apply our
verification-aware knowledge distillation framework to synthesize a new NN con-
troller and check the resulting system with ReachNN*. All experiments are per-
formed on a desktop with 12-core 3.60 GHz Intel Core i7 and NVIDIA GeForce
RTX 2060 (ReachNN does not make use of GPU).

We highlight part of the results for Benchmark #1, #2 and #6 in
Table 1 due to space constraint (results on all benchmarks can be found in



542 J. Fan et al.

https://github.com/JmfanBU/ReachNNStar.git). ReachNN* achieves from 7×
to 422× efficiency improvement on the same NNCSs (across all benchmarks
also). In Benchmark #1 and #2 with Unknown results, we applied our knowl-
edge distillation procedure to obtain new NN controllers and performed reacha-
bility analysis again on the resulting systems. Observe that ReachNN* produces
a Yes answer for these systems. In addition, it took a shorter amount of time
to compute the verification results compared to ReachNN. In Benchmark #6,
ReachNN* took more than 1000 s to obtain a Yes result in two cases. We run
knowledge distillation for these two cases to evaluate whether KD can be ben-
eficial solely from an efficiency perspective. In both cases, ReachNN* with KD
significantly improves runtime compared to ReachNN* without KD.

References

1. Abadi, M., et al.: Tensorflow: a system for large-scale machine learning. In: OSDI,
pp. 265–283 (2016)

2. Bogomolov, S., Forets, M., Frehse, G., Potomkin, K., Schilling, C.: Juliareach: a
toolbox for set-based reachability. In: HSCC, pp. 39–44 (2019)

3. Chen, S., et al.: Approximating explicit model predictive control using constrained
neural networks. In: ACC, pp. 1520–1527. IEEE (2018)

4. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer for non-linear
hybrid systems. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp.
258–263. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-
8 18

5. Dutta, S., Chen, X., Sankaranarayanan, S.: Reachability analysis for neural feed-
back systems using regressive polynomial rule inference. In: HSCC, pp. 157–168
(2019)

6. Fan, J., Huang, C., Li, W., Chen, X., Zhu, Q.: Towards verification-aware knowl-
edge distillation for neural-network controlled systems. In: ICCAD. IEEE (2019)

7. Finn, C., Yu, T., Zhang, T., Abbeel, P., Levine, S.: One-shot visual imitation
learning via meta-learning. In: Conference on Robot Learning, pp. 357–368 (2017)

8. Gallestey, E., Hokayem, P.: Lecture notes in nonlinear systems and control (2019)
9. Hertneck, M., Köhler, J., Trimpe, S., Allgöwer, F.: Learning an approximate model

predictive controller with guarantees. IEEE Control Syst. Lett. 2(3), 543–548
(2018)

10. Hinton, G.E., Vinyals, O., Dean, J.: Distilling the knowledge in a neural network.
CoRR abs/1503.02531 (2015)

11. Huang, C., Fan, J., Li, W., Chen, X., Zhu, Q.: REACHNN: reachability analysis
of neural-network controlled systems. TECS 18(5s), 1–22 (2019)

12. Ivanov, R., Weimer, J., Alur, R., Pappas, G.J., Lee, I.: Verisig: verifying safety
properties of hybrid systems with neural network controllers. In: HSCC, pp. 169–
178 (2019)

13. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In:
International Conference on Learning Representation (2016)

14. Pan, Y., et al.: Agile autonomous driving using end-to-end deep imitation learning.
In: RSS (2018)

15. Tran, H.D., Cai, F., Diego, M.L., Musau, P., Johnson, T.T., Koutsoukos, X.: Safety
verification of cyber-physical systems with reinforcement learning control. TECS
18(5s), 1–22 (2019)

https://github.com/JmfanBU/ReachNNStar.git
https://doi.org/10.1007/978-3-642-39799-8_18
https://doi.org/10.1007/978-3-642-39799-8_18

	ReachNN*: A Tool for Reachability Analysis of Neural-Network Controlled Systems
	1 Introduction
	2 Tool Design
	3 Experiments
	References




