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Abstract. Hyperproperties are properties that describe the correctness
of a system as a relation between multiple executions. Hyperproperties
generalize trace properties and include information-flow security require-
ments, like noninterference, as well as requirements like symmetry, par-
tial observation, robustness, and fault tolerance. We initiate the study of
the specification and verification of hyperproperties of Markov decision
processes (MDPs). We introduce the temporal logic PHL (Probabilis-
tic Hyper Logic), which extends classic probabilistic logics with quan-
tification over schedulers and traces. PHL can express a wide range of
hyperproperties for probabilistic systems, including both classical appli-
cations, such as probabilistic noninterference, and novel applications in
areas such as robotics and planning. While the model checking problem
for PHL is in general undecidable, we provide methods both for proving
and for refuting formulas from a fragment of the logic. The fragment
includes many probabilistic hyperproperties of interest.

1 Introduction

Ten years ago, Clarkson and Schneider coined the term hyperproperties [10] for
the class of properties that describe the correctness of a system as a relation
between multiple executions. Hyperproperties include information-flow security
requirements, like noninterference [17], as well as many other types of system
requirements that cannot be expressed as trace properties, including symmetry,
partial observation, robustness, and fault tolerance. Over the past decade, a
rich set of tools for the specification and verification of hyperproperties have
been developed. HyperLTL and HyperCTL∗ [9] are extensions to LTL and
CTL∗ that can express a wide range of hyperproperties. There are a number of
algorithms and tools for hardware model checking [11,16], satisfiability checking
[15], and reactive synthesis [14] for hyperproperties.
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The natural next step is to consider probabilistic systems. Randomization
plays a key role in the design of security-critical and distributed systems. In fact,
randomization is often added specifically to implement a certain hyperproperty.
For example, randomized mutual exclusion protocols use a coin flip to decide
which process gets access to the critical resource in order to avoid breaking the
symmetry based on the process id [4]. Databases employ privacy mechanisms
based on randomizaton in order to guarantee (differential) privacy [13].

Previous work on probabilistic hyperproperties [2] has focussed on the speci-
fication and verification of probabilistic hyperproperties for Markov chains. The
logic HyperPCTL [2] extends the standard probabilistic logic PCTL with quan-
tification over states. For example, the HyperPCTL formula

∀s.∀s′. (inits ∧ inits′) → P( terminates) = P( terminates′)

specifies that the probability that the system terminates is the same from all ini-
tial states. If the initial state encodes some secret, then the property guarantees
that this secret is not revealed through the probability of termination.

Because Markov chains lack nondeterministic choice, they are a limited mod-
eling tool. In an open system, the secret would likely be provided by an external
environment, whose decisions would need to be represented by nondetermin-
ism. In every step of the computation, such an environment would typically set
the values of some low-security and some high-security input variables. In such a
case, we would like to specify that the publicly observable behavior of our system
does not depend on the infinite sequence of the values of the high-security input
variables. Similarly, nondeterminism is needed to model the possible strategic
decisions in autonomous systems, such as robots, or the content of the database
in a privacy-critical system.

In this paper, we initiate the study of hyperproperties for Markov decision
processes (MDPs). To formalize hyperproperties in this setting, we introduce
PHL, a general temporal logic for probabilistic hyperproperties. The nondeter-
ministic choices of an MDP are resolved by a scheduler1; correspondingly, our
logic quantifies over schedulers. For example, in the PHL formula

∀σ.∀σ′.P( terminateσ) = P( terminateσ′)

the variables σ and σ′ refer to schedulers. The formula specifies that the probabil-
ity of termination is the same for all of the possible (infinite) combinations of the
nondeterministic choices. If we wish to distinguish different types of inputs, for
example those that are provided through a high-security variable h vs. those pro-
vided through a low-security variable l, then the quantification can be restricted
to those schedulers that make the same low-security choices:

∀σ.∀σ′. (∀π : σ.∀π′ : σ′. (lπ ↔ lπ′)) → P( terminateσ) = P( terminateσ′)

The path quantifier ∀π : σ works analogously to the quantifiers in HyperCTL∗,
here restricted to the paths of the Markov chain induced by the scheduler
1 In the literature, schedulers are also known as strategies or policies.
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assigned to variable σ. The formula thus states that all schedulers that agree
on the low-security inputs induce the same probability of termination.

As we show in the paper, PHL is a very expressive logic, thanks to the com-
bination of scheduler quantifiers, path quantifiers and a probabilistic operator.
PHL has both classical applications, such as differential privacy, as well as novel
applications in areas such as robotics and planning. For example, we can quan-
tify the interference of the plans of different agents in a multi-agent system, such
as the robots in a warehouse, or we can specify the existence of an approximately
optimal policy that meets given constraints. A consequence of the generality of
the logic is that it is impossible to simply reduce the model checking problem to
that of a simpler temporal logic in the style of the reduction of HyperPCTL to
PCTL [2]. In fact, we show that the emptiness problem for probabilistic Büchi
automata (PBA) can be encoded in PHL, which implies that the model checking
problem for PHL is, in general, undecidable.

We present two verification procedures that approximate the model checking
problem from two sides. The first algorithm overapproximates the model checking
problem by quantifying over a combined monolithic scheduler rather than a tuple
of independent schedulers. Combined schedulers have access to more information
than individual ones, meaning that the set of allowed schedulers is overapproxi-
mated. This means that if a universal formula is true for all combined schedulers
it is also true for all tuples of independent schedulers. The second procedure is a
bounded model checking algorithm that underapproximates the model checking
problem by bounding the number of states of the schedulers. This algorithm is
obtained as a combination of a bounded synthesis algorithm for hyperproper-
ties, which generates the schedulers, and a model checking algorithm for Markov
chains, which computes the probabilities on the Markov chains induced by the
schedulers. Together, the two algorithms thus provide methods both for proving
and for refuting a class of probabilistic hyperproperties for MDPs.

Related Work. Probabilistic noninterference originated in information-flow secu-
rity [18,21] and is a security policy that requires that the probability of every
low trace should be the same for every low equivalent initial state. Volpano and
Smith [24] presented a type system for checking probabilistic noninterference
of concurrent programs with probabilistic schedulers. Sabelfeld and Sands [23]
defined a secure type system for multi-threaded programs with dynamic thread
creation which improves on that of Volpano and Smith. None of these works is
concerned with models combining probabilistic choice with nondeterminism, nor
with general temporal logics for probabilistic hyperproperties.

The specification and verification of probabilistic hyperproperties have
recently attracted significant attention. Abraham and Bonakdarpour [2] are the
first to study a temporal logic for probabilistic hyperproperties, called Hyper-
PCTL. The logic allows for explicit quantification over the states of a Markov
chain, and is capable of expressing information-flow properties like probabilis-
tic noninterference. The authors present a model checking algorithm for verify-
ing HyperPCTL on finite-state Markov chains. HyperPCTL was extended to a
logic called HyperPCTL* [25] that allows nesting of temporal and probabilistic
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operators, and a statistical model checking method for HyperPCTL* was pro-
posed. Our present work, on the other hand is concerned with the specification
and model checking of probabilistic hyperproperties for system models featuring
both probabilistic choice and nondeterminism, which are beyond the scope of all
previous temporal logics for probabilistic hyperproperties. Probabilistic logics
with quantification over schedulers have been studied in [6] and [3]. However,
these logics do not include quantifiers over paths.

Independently and concurrently to our work, probabilistic hyperproperties
for MDPs were also studied in [1] (also presented at ATVA’20). The authors
extend HyperPCTL with quantifiers over schedulers, while our new logic PHL
extends HyperCTL∗ with the probabilistic operator and quantifiers over sched-
ulers. Thus, HyperPCTL quantifies over states (i.e., the computation trees that
start from the states), while PHL quantifies over paths. Both papers show that
the model checking problem is undecidable for the respective logics. The differ-
ence is in how the approaches deal with the undecidability result. For both log-
ics, the problem is decidable when quantifiers are restricted to non-probabilistic
memoryless schedulers. [1] provides an SMT-based verification procedure for
HyperPCTL for this class of schedulers. We consider general memoryful sched-
ulers and present two methods for proving and for refuting formulas from a
fragment of PHL.

Due to lack of space we have omitted the proofs of our results and details of
the presented model checking procedures, which can be found in [12].

2 Preliminaries

Definition 1 (Markov Decision Process (MDP)). A Markov Decision Pro-
cess (MDP) is a tuple M = (S,Act ,P, ι,AP, L) where S is a finite set of states,
Act is a finite set of actions, P : S × Act × S → [0, 1] is the transition proba-
bility function such that

∑
s′∈S P(s, a, s′) ∈ {0, 1} for every s ∈ S and a ∈ Act,

ι : S → [0, 1] is the initial distribution such that
∑

s∈S ι(s) = 1, AP is a finite
set of atomic propositions and L : S → 2AP is a labelling function.

A finite path in an MDP M = (S,Act ,P, ι,AP, L) is a sequence s0s1 . . . sn

where for every 0 ≤ i < n there exists ai ∈ Act such that P(si, ai, si+1) > 0.
Infinite paths in M are defined analogously. We denote with Pathsfin(M) and
Paths inf (M) the sets of finite and infinite paths in M . For an infinite path
ρ = s0s1 . . . and i ∈ N we denote with ρ[i,∞) the infinite suffix sisi+1 . . ..
Given s ∈ S, define Pathsfin(M, s) = {s0s1 . . . sn ∈ Pathsfin(M) | s0 = s}, and
similarly Paths inf (M, s). We denote with Ms = (S,Act ,P, ιs,AP, L) the MDP
obtained from M by making s the single initial state, i.e., ιs(s) = 1 and ιs(t) = 0
for t 	= s.

For a set A we denote with D(A) the set of probability distributions on A.

Definition 2 (Scheduler). A scheduler for an MDP M = (S,Act ,P, ι,AP, L)
is a function S : (S · Act)∗S → D(Act) such that for all sequences
s0a0 . . . an−1sn ∈ (S · Act)∗S it holds that if S(s0a0 . . . an−1sn)(a) > 0 then
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∑
t∈S P(sn, a, t) > 0, that is, each action in the support of S(s0a0 . . . an−1sn) is

enabled in sn. We define Sched(M) to be the set consisting of all schedulers for
an MDP M .

Given an MDP M = (S,Act ,P, ι,AP, L) and a scheduler S for M , we
denote with MS the Markov chain of M induced by S, which is defined
as the tuple MS = ((S · Act)∗S,PS, ι, AP,LS) where for every sequence
h = s0a0 . . . an−1sn ∈ (S·Act)∗S it holds that PS(h, h·sn+1) =

∑
a∈Act S(h)(a)·

P(sn, a, sn+1) and LS(h) = L(sn). Note that MS is infinite even when M is
finite. The different types of paths in a Markov chain are defined as for MDPs.

Of specific interest are finite-memory schedulers, which are schedulers that
can be represented as finite-state machines. Formally, a finite-memory scheduler
for M is represented as a tuple TS = (Q, δ, q0, act), where Q is a finite set
of states, representing the memory of the scheduler, δ : Q × S × Act → Q
is a memory update function, q0 is the initial state of the memory, and act :
Q × S → D(Act) is a function that based on the current memory state and
the state of the MDP returns a distribution over actions. Such a representation
defines a function S : (S · Act)∗S → D(Act) as follows. First, let us define the
function δ∗ : Q × (S · Act)∗ → Q as follows: δ∗(q, ε) = q for all q ∈ Q, and
δ∗(q, s0a0 . . . snansn+1an+1) = δ(δ∗(q, s0a0 . . . snan), sn+1, an+1) for all q ∈ Q
and all s0a0 . . . snansn+1an+1 ∈ (S ·Act)∗. Now, we define the scheduler function
represented by TS by S(s0a0 . . . snansn+1) = act(δ∗(s0a0 . . . snan), sn+1).

Finite-memory schedulers induce finite Markov chains with simpler represen-
tation. A finite memory scheduler S represented by TS = (Q, δ, q0, act) induces
the Markov chain MS = (S × Q,PS, ιS, AP,LS) where PS((s, q), (s′, q′)) =∑

a∈Act act(q, s)(a) · P(s, a, s′) if q′ = δ(q, s), otherwise PS((s, q), (s′, q′)) = 0,
and ιS(s, q) = ι(s) if q = q0 and ιS(s, q) = 0 otherwise.

A scheduler S is deterministic if for every h ∈ (S · Act)∗S it holds that
S(h)(a) = 1 for exactly one a ∈ Act . By abuse of notation, a deterministic
scheduler can be represented as a function S : S+ → Act , that maps a finite
sequence of states to the single action in the support of the corresponding dis-
tribution. Note that for deterministic schedulers we omit the actions from the
history as they are uniquely determined by the sequence of states. We write
DetSched(M) for the set of deterministic schedulers for the MDP M .

A probability space is a triple (Ω,F ,Prob), where Ω is a sample space, F ⊆ 2Ω

is a σ-algebra and Prob : F → [0, 1] is a probability measure.
Given a Markov chain C = (S,P, ι, AP,L), it is well known how to associate a

probability space (ΩC , FC ,ProbC) with C. The sample space ΩC = Paths inf (C)
is the set of infinite paths in C, where the sets of finite and infinite paths for
a Markov chain are defined in the same way as for MDP. The σ-algebra FC is
the smallest σ-algebra that for each π ∈ Pathsfin(C) contains the set CylC(π) =
{ρ ∈ Paths inf (C) | ∃ρ′ ∈ Paths inf (C) : ρ = π · ρ′} called the cylinder set of the
finite path π. ProbC is the unique probability measure such that for each π =
s0 . . . sn ∈ Pathsfin(C) it holds that ProbC(Cyl(π)) = ι(s0) ·

∏n−1
i=0 P(si, si+1).
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Analogously, given any state s ∈ S we denote with (ΩC ,FC ,ProbC
s ) the

probability space for paths in C originating in the state s, i.e., the probability
space associated with the Markov chain Cs (where Cs is defined as for MDPs).

When considering a Markov chain MS induced by an MDP M and a sched-
uler S, we write ProbM,S and ProbM,S,s for the sake of readability.

3 The Logic PHL

In this section we define the syntax and semantics of PHL, the logic which we
introduce and study in this work. PHL allows for quantification over schedulers
and integrates features of temporal logics for hyper properties, such as Hyper-
LTL and HyperCTL∗ [9], and probabilistic temporal logics such as PCTL*.

3.1 Examples of PHL Specifications

We illustrate the expressiveness of PHL with two applications beyond
information-flow security, from the domains of robotics and planning.

Example 1 (Action Cause). Consider the question whether a car on a highway
that enters the opposite lane (action b) when there is a car approaching from the
opposite direction (condition p) increases the probability of an accident (effect e).
This can be formalized as the property stating that there exist two deterministic
schedulers σ1 and σ2 such that (i) in σ1 the action b is never taken when p is
satisfied, (ii) the only differences between σ1 and σ2 can happen when σ2 takes
action b when p is satisfied, and (iii) the probability of e being true eventually
is higher in the Markov chain induced by σ2 than in the one for σ1. To express
this property in our logic, we will use scheduler quantifiers quantifying over the
schedulers for the MDP. To capture the condition on the way the schedulers
differ, we will use path quantifiers quantifying over the paths in the Markov
chain induced by each scheduler. The atomic propositions in a PHL formula are
indexed with path variables when they are interpreted on a given path, and with
scheduler variables when they are interpreted in the Markov chain induced by
that scheduler. Formally, we can express the property with the PHL formula

∃σ1∃σ2. (∀π1 : σ1∀π2 : σ2. ( ¬(pπ1 ∧ bπ1)) ∧ ψ) ∧ P( eσ1) < P( eσ2),

where ψ =
(
(
∧

a∈Act( aπ1 ↔ aπ2)) ∨ (pπ2 ∧ bπ2)
)
W(

∨
q∈AP\Act(qπ1 	↔

qπ2)).
The two conjuncts of ∀π1 : σ1∀π2 : σ2. ( ¬(pπ1 ∧ bπ1)) ∧ ψ capture con-

ditions (i) and (ii) above respectively, and P( eσ1) < P( eσ2) formalizes (iii).
Here we assume that actions are represented in AP, i.e., Act ⊆ AP �

Example 2 (Plan Non-interference). Consider two robots in a warehouse, possi-
bly attempting to reach the same location. Our goal is to determine whether all
plans for the first robot to move towards the goal are robust against interferences
from arbitrary plans of the other robot. That is, we want to check whether for
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every plan of robot 1 the probability that it reaches the goal under an arbitrary
plan of robot 2 is close to that of the same plan for robot 1 executed under any
other plan for robot 2. We can express this property in PHL by using quantifiers
over schedulers to quantify over the joint deterministic plans of the robots, and
using path quantifiers to express the condition that in both joint plans robot 1
behaves the same. Formally, we can express the property with the PHL formula

∀σ1∀σ2. (∀π1 : σ1∀π2 : σ2. (move1π1 ↔ move1π2)) →
P( (goal1σ1

∧ ¬goal2σ1
)) − P( (goal1σ2

∧ ¬goal2σ2
)) ≤ ε,

where σ1 and σ2 are scheduler variables, π1 is a path variable associated with
the scheduler for σ1, and π2 is a path variable associated with the scheduler
for σ2. The condition ∀π1 : σ1∀π2 : σ2. (move1π1 ↔ move1π2) states that
in both joint plans robot 1 executes the same moves, where the proposition
move1 corresponds to robot 1 making a move towards the goal. The formula
P( (goal1σ1

∧ ¬goal2σ1
)) − P( (goal1σ2

∧ ¬goal2σ2
)) ≤ ε states that the

difference in the probability of robot 1 reaching the goal under scheduler σ1 and
the probability of it reaching the goal under scheduler σ2 does not exceed ε. �

3.2 Syntax

As we are concerned with hyperproperties interpreted over MDPs, our logic
allows for quantification over schedulers and quantification over paths.

To this end, let Vsched be a countably infinite set of scheduler variables and
let Vpath be a countably infinite set of path variables. According to the semantics
of our logic, quantification over path variables ranges over the paths in a Markov
chain associated with the scheduler represented by a given scheduler variable. To
express this dependency we will associate path variables with the corresponding
scheduler variable, writing π : σ for a path variable π associated with a scheduler
variable σ. The precise use and meaning of this notation will become clear below,
once we define the syntax and semantics of the logic.

Given a set AP of atomic propositions, PHL formulas over AP will use atomic
propositions indexed with scheduler variables or with path variables. We define
the sets of propositions indexed with scheduler variables as APVsched

= {aσ | a ∈
AP, σ ∈ Vsched} and with path variables as APVpath

= {aπ | a ∈ AP, π ∈ Vpath}.
PHL (Probabilistic Hyper Logic) formulas are defined by the grammar

Φ ::= ∀σ. Φ | Φ ∧ Φ | ¬Φ | χ | P � c

where σ ∈ Vsched is a scheduler variable, χ is a HyperCTL∗ formula, P is a
probabilistic expression defined below, �∈ {≤,≤,≥,≥}, and c ∈ Q.

Formulas in HyperCTL∗, introduced in [9], are constructed by the grammar

χ ::= aπ | χ ∧ χ | ¬χ | χ | χU χ | ∀π : σ. χ

where π is a path variable associated with a scheduler variable σ, and a ∈ AP.
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Probability expressions are defined by the grammar

P ::= P(ϕ) | P + P | c · P

where P is the probabilistic operator, c ∈ Q, and ϕ is an LTL formula [22] defined
by the grammar below, where a ∈ AP and σ is a scheduler variable.

ϕ ::= aσ | ϕ ∧ ϕ | ¬ϕ | ϕ | ϕU ϕ.

We call formulas of the form P � c probabilistic predicates.
A PHL formula Φ is well-formed if each path quantifier for π : σ that appears

in Φ is in the scope of a scheduler quantifier with the scheduler variable σ.
A PHL formula is closed if all occurrences of scheduler and path variables

are bound by scheduler and path quantifiers respectively.
In the following we consider only closed and well-formed PHL formulas.

Discussion. Intuitively, a PHL formula is a Boolean combination of formulas
consisting of a scheduler quantifier prefix followed by a formula without scheduler
quantifiers constructed from probabilistic predicates and HyperCTL∗ formulas
via propositional operators. Thus, interleaving path quantifiers and probabilistic
predicates is not allowed in PHL. This design decision is in line with the fact
that probabilistic temporal logics like PCTL∗ replace the path quantifiers with
the probabilistic operator that can be seen as their quantitative counterpart.
We further chose to not allow nesting of probabilistic predicates and temporal
operators, as in all the examples that we considered we never encountered the
need for nested P operators. Moreover, allowing arbitrary nesting of probabilistic
and temporal operators would immediately make the model checking problem
for the resulting logic undecidable, following from the results in [8].

3.3 Self-composition for MDPs

In order to define the semantics of PHL we first introduce the self-composition
operation for MDPs, which lifts to MDPs the well-known self-composition of
transition systems that is often used in the model checking of hyperproperties.

Let us fix, for the reminder of the section, an MDP M = (S,Act ,P, ι,AP, L).

Definition 3 (n-Self-composition of MDP). Let M = (S,Act ,P, ι,AP, L)
be an MDP and n ∈ N>0 be a constant. The n-self-composition of M is the MDP
Mn = (Sn,Actn, P̂, ι̂,AP, L̂) with the following components. Sn = {(s1, . . . , sn) |
si ∈ S for all 1 ≤ i ≤ n} is the set of states. Actn = {(a1, . . . , an) | ai ∈
Act for all 1 ≤ i ≤ n} is the set of actions. The transition probability function
P̂ is such that for every (s1, . . . , sn), (s′

1, . . . , s
′
n) ∈ Sn and (a1, . . . , an) ∈ Actn

we have P̂((s1, . . . , sn), (a1, . . . , an), (s′
1, . . . , s

′
n)) =

∏n
i=1 P(si, ai, s

′
i). The ini-

tial distribution such that ι̂((s1, . . . , sn)) = ι(s1) if s1 = . . . = sn = s and
ι̂((s1, . . . , sn)) = 0 otherwise. The labelling function L̂ : Sn → (2AP)n maps
states to n-tuples of subsets of AP (in contrast to Definition 1 where states are
mapped to subsets of AP) and is given by L̂((s1, . . . , sn)) = (L(s1), . . . , L(sn)).
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Naturally, a scheduler Ŝ ∈ Sched(Mn) induces a Markov chain Mn
̂S
.

Given schedulers S1, . . . ,Sn ∈ Sched(M), their composition, a scheduler
S : (Sn · Actn)∗Sn → D(Actn) for Mn, is denoted S = S1 ‖ . . . ‖ Sn

and such that for every h = (s1,1, . . . , s1,n)(a1,1, . . . , a1,n) . . . (sk,1, . . . , sk,n) ∈
(Sn · Actn)∗Sn and a = (ak+1,1, . . . , ak+1,n) ∈ Actn, S(h)(a) =∏n

i=1 Si(s1,ia1,i . . . sk,i)(ak+1,i).

3.4 Scheduler and Path Assignments

Let Vsched and Vpath be the sets of scheduler and path variables respectively.
A scheduler assignment is a vector of pairs Σ ∈

⋃
n∈N

(Vsched × Sched(M))n

that assigns schedulers to some of the scheduler variables. Given a scheduler
assignment Σ = ((σ1,S1), . . . , (σn,Sn)), we denote by |Σ| the length (number
of pairs) of the vector. For a scheduler variable σ ∈ Vsched we define Σ(σ) = Si

where i is the maximal index such that σi = σ. If such an index i does not exits,
Σ(σ) is undefined. For a scheduler assignment Σ = ((σ1,S1), . . . , (σn,Sn)), a
scheduler variable σ ∈ Vsched, and a scheduler S ∈ Sched(M) we define the
scheduler assignment Σ[σ �→ S] = ((σ1,S1), . . . , (σn,Sn), (σ,S)) obtained by
adding the pair (σ,S) to the end of the vector Σ.

Given the MDP M , let Σ = ((σ1,S1), . . . , (σn,Sn)) be a scheduler assign-
ment, and consider M |Σ|, the |Σ|-self composition of M . Σ defines a scheduler
for M |Σ|, which is the product of the schedulers in Σ, i.e., S = S1 ‖ . . . ‖ Sn.
Let MΣ be the Markov chain induced by S. If ŝ is a state in MΣ , we denote by
MΣ,ŝ the Markov chain obtained from MΣ by making ŝ the single initial state.

Note that the labeling function L̂ in M |Σ| maps the states in S|Σ| to |Σ|-
tuples of sets of atomic predicates, that is L̂(ŝ) = (L1, . . . , L|Σ|). Given a sched-
uler variable σ for which Σ(σ) is defined, we write L̂(ŝ)(σ) for the set of atomic
predicates Li, where i is the maximal position in Σ in which σ appears.

We define path assignments similarly to scheduler assignments. A path assign-
ment is a vector of pairs of path variables and paths in Paths inf (M). More
precisely, a path assignment Π is an element of

⋃
m∈N

(Vpath × Paths inf (M))m.
Analogously to scheduler assignments, for a path variable π and a path ρ ∈
Paths inf (M), we define Π(π) and Π[π �→ ρ]. For Π = ((π1, ρ1), . . . , (πn, ρn))
and j ∈ N, we define Π[j,∞] = ((π1, ρ1[j,∞]), . . . , (πn, ρn[j,∞])) to be the path
assignment that assigns to each πi the suffix ρi[j,∞] of the path ρi.

3.5 Semantics of PHL

We are now ready to define the semantics of PHL formulas. Recall that we con-
sider only closed and well-formed PHL formulas. PHL formulas are interpreted
over an MDP and a scheduler assignment. The interpretation of HyperCTL∗

formulas requires additionally a path assignment. Probabilistic expressions and
LTL formulas are evaluated in the Markov chain for an MDP induced by a
scheduler assignment. As usual, the satisfaction relations are denoted by |=.

For an MDP M and a scheduler assignment Σ we define
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M, Σ |= ∀σ.Φ iff for all S ∈ Sched(M) : M, Σ[σ �→ S] |= Φ;
M, Σ |= Φ1 ∧ Φ2 iff M, Σ |= Φ1 and M, Σ |= Φ2;
M, Σ |= ¬Φ iff M, Σ �|= Φ;
M, Σ |= χ iff M, Σ, Π∅ |= χ, where Π∅ is the empty path assignment;
M, Σ |= P �� c iff [[P ]]MΣ �� c.

For an MDP M , scheduler assignment Σ, and path assignment Π we define

M, Σ, Π |= aπ iff a ∈ L(Π(π)[0]);
M, Σ, Π |= χ1 ∧ χ2 iff M, Σ, Π |= χ1 and M, Σ, Π |= χ2;
M, Σ, Π |= ¬χ iff M, Σ, Π �|= χ;
M, Σ, Π |= χ iff M, Σ, Π[1, ∞] |= χ;
M, Σ, Π |= χ1 U χ2 iff there exists i ≥ 0 : M, Σ, Π[i, ∞] |= χ2 and

for all j < i : M, Σ, Π[j, ∞] |= χ1;
M, Σ, Π |= ∀π : σ. χ iff for all ρ ∈ Paths inf (C) : M, Σ, Π[π �→ ρ] |= χ,

where in the last item C is the Markov chain MΣ(σ) when Π is the empty path
assignment, and otherwise the Markov chain MΣ(σ),Π(π′)[0] where π′ is the path
variable associated with scheduler variable σ that was most recently added to
Π.

For Markov chain C of the form MΣ or MΣ,ŝ, where Σ is a scheduler assign-
ment and ŝ is a state in MΣ the semantics [[·]]C of probabilistic expressions is:

[[P(ϕ)]]C = ProbC({ρ ∈ Paths inf (C) | C, ρ |= ϕ});
[[P1 + P2]]C = [[P1]]C + [[P2]]C ; [[c · P ]]C = c · [[P ]]C ,

where the semantics of path formulas (i.e., LTL formulas) is defined by

C, ρ |= aσ iff a ∈ L̂(ρ[0])(σ);
C, ρ |= ϕ1 ∧ ϕ2 iff C, ρ |= ϕ1 and C, ρ |= ϕ2;
C, ρ |= ¬ϕ iff C, ρ 	|= ϕ;
C, ρ |= ϕ iff C, ρ[1,∞] |= ϕ;
C, ρ |= ϕ1 U ϕ2 iff there exists i ≥ 0 : C, ρ[i,∞] |= ϕ2 and

for all j < i : C, ρ[j,∞] |= ϕ1.

Note that ProbC({ρ ∈ Paths inf (C) | C, ρ |= ϕ}) is well-defined as it is a
known fact [7] that the set {ρ ∈ Paths inf (C) | C, ρ |= ϕ} is measurable.

We say that an MDP M satisfies a closed well-formed PHL formula Φ,
denoted M |= Φ iff M,Σ∅ |= Φ, where Σ∅ is the empty scheduler assignment.

Since PHL includes both scheduler and path quantification, the sets of deter-
ministic and randomized schedulers are not interchangeable with respect to the
PHL semantics. That is, there exists an MDP M and formula Φ such that if
quantifiers are interpreted over Sched(M), then M |= Φ, and if quantifiers are
interpreted over DetSched(M) then M 	|= Φ. See [12] for an example.
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3.6 Undecidability of PHL Model Checking

Due to the fact that PHL allows quantification over both schedulers and paths,
the model checking problem for PHL is undecidable. The proof is based on a
reduction from the emptiness problem for probabilistic Büchi automata (PBA),
which is known to be undecidable [5].

Theorem 1. The model checking problem for PHL is undecidable.

We saw in the previous section an example of a probabilistic hyperprop-
erty expressed as a PHL formulas of the form ∀σ1 . . . ∀σn.

(
(∀π1 : σ1 . . . ∀πn :

σn. ψ) → P � c
)
. Analogously to Theorem 1, we can show that the model

checking problem for PHL formulas of the form ∃σ1 . . . ∃σn. (∀π1 : σ1 . . . ∀πn :
σn. ψ ∧ P � c) is undecidable. The undecidability for formulas of the form
∀σ1 . . . ∀σn.

(
(∀π1 : σ1 . . . ∀πn : σn. ψ) → P � c

)
then follows by duality. In the

next two sections, we present an approximate model checking procedure and a
bounded model checking procedure for PHL formulas in these two classes.

However, since there are finitely many deterministic schedulers with a given
fixed number of states, the result stated in the next theorem is easily established.

Theorem 2. For any constant b ∈ N, the model checking problem for PHL
restricted to deterministic finite-memory schedulers with b states is decidable.

Φ = ∀σ1 . . . ∀σn. (∀π1 : σ1 . . . ∀πn : σn. ψ) → c1 · P(ϕ1) + . . . + ck · P(ϕk) �� c
)

M

construct
safety automaton

ψ

compute
self-composition

n

compute Mn ⊗ Dψ

Mn Dψ

construct Rabin automata

ϕ1 ϕk

...

M̂χ ⊗ A1 ⊗ · · · ⊗ Ak

M̂χ

A1 Ak

...

...

M

Fig. 1. Approximate model checking of PHL formulas of the form (1).

4 Approximate Model Checking

In this section we provide a sound but incomplete procedure for model checking
a fragment of PHL. The fragment we consider consists of those PHL formulas
that are positive Boolean combinations of formulas of the form

Φ = ∀σ1 . . . ∀σn.
(
χ → c1 · P(ϕ1) + . . . + ck · P(ϕk) � c

)
(1)
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where χ = ∀π1 : σ1 . . . ∀πn : σn. ψ and the formula ψ does not contain path
quantifiers and describes an n-safety property (i.e., a safety property on Mn

[10]). The PHL formula in Example 2 falls into this class.
The formula ψ contains at most one path variable associated with each sched-

uler variable in {σ1, . . . σn}. This allows us to use the classical self-composition
approach to obtain an automaton for χ. Requiring that ψ describes an n-safety
property enables us to consider a deterministic safety automaton for χ which,
intuitively, represents the most general scheduler in Mn, such that every sched-
uler that refines it results in a Markov chain in which all paths satisfy ψ.

Since for every Markov chain C we have ProbC({π ∈ Paths inf (C) | π |=
ϕ}) = 1 − ProbC({π ∈ Paths inf (C) | π |= ¬ϕ}), it suffices to consider the case
when � is ≤ (or <) and ci ≥ 0 for each i = 1, . . . , k.

We now describe a procedure for checking whether a given MDP M =
(S,Act ,P, ι,AP, L) satisfies a PHL formula Φ of the form (1). If the answer
is positive, then we are guaranteed that M |= Φ, but otherwise the result is
inconclusive. The method, outlined in Fig. 1, proceeds as follows.

We first compute a deterministic safety automaton Dψ for the n-hypersafety
property ψ. The language of Dψ is defined over words in (Sn)ω. It holds that
w ∈ L(Dψ) if and only if for an arbitrary scheduler assignment Σ it holds that
M,Σ,Πw |= ψ, where Πw is the path assignment corresponding to the word w.
As a second step we construct the n-self-composition MDP Mn, and then build
the product of Mn with the deterministic safety automaton Dψ. The language
of the resulting automaton M̂χ consists of the n-tuples of infinite paths in M
such that each such tuple satisfies the n-hypersafety property ψ.

After constructing the MDP M̂χ, our goal is to check that for every sched-
uler assignment Σ = ((σ1,S1), . . . , (σn,Sn)) for M such that S = S1 ‖ . . . ‖
Sn ∈ Sched(M̂χ) the inequality

∑k
i=1(ci · Prob

̂Mχ,S
(ϕi)) ≤ c is satisfied. That

would mean, intuitively, that every scheduler assignment that satisfies χ also
satisfies the above inequality, which is the property stated by Φ. Note that, if we
establish that maxS=S1‖...‖Sn

∑k
i=1(ci ·Prob̂Mχ,S

(ϕi)) ≤ c, then we have estab-

lished the above property. Computing exactly the value maxS=S1‖...‖Sn

∑k
i=1(ci·

Prob
̂Mχ,S

(ϕi)), however, is not algorithmically possible in light of the undecid-
ability results in the previous section. Therefore, we will overapproximate this
value by computing a value c∗ ≥ maxS=S1‖...‖Sn

∑k
i=1(ci · Prob

̂Mχ,S
(ϕi)) and

if c∗ ≤ c, then we can conclude that the property holds. The value c∗ is com-
puted as c∗ = max

̂S∈Sched(̂Mχ)

∑k
i=1(ci · Prob

̂Mχ,̂S
(ϕi)). For the schedulers Ŝ

considered in this maximization, it is not in general possible to decompose Ŝ
into schedulers S1, . . . ,Sn ∈ Sched(M). Therefore we have that

max
̂S∈Sched(̂Mχ)

k∑

i=1

(ci · Prob
̂Mχ,̂S

(ϕi)) ≥ max
S=S1‖...‖Sn

k∑

i=1

(ci · Prob
̂Mχ,S

(ϕi)),

which implies that c∗ has the desired property. We compute c∗ as follows.
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We construct deterministic Rabin automata A1, . . . ,Ak for the formulas
ϕ1, . . . , ϕk. We compute the product M̃ of the MDP M̂χ constructed earlier
and A1, . . . ,Ak. Let S̃ be the set of states of M̃ . We consider each combination
of formulas in {ϕ1, . . . , ϕk}, i.e., each subset I ⊆ {1, . . . , k} such that I 	= ∅. For
each I, we take the conjunction of the accepting conditions of the deterministic
Rabin automata Ai for i ∈ I and apply the methods in [7] to compute the so
called success set UI ⊆ S̃ for this conjunction. Intuitively, in the states in UI

there exists a scheduler that can enforce the conjunction of the properties in I.
Finally, we solve the linear program that asks to minimize

∑
s̃∈˜S xs̃ subject

to (i) xs̃ ≥ 0 for all s̃ ∈ S̃, (ii) xs̃ ≥
∑

i∈I ci for all I ⊆ {1, . . . , k} and s̃ ∈ UI

and (iii) xs̃ ≥
∑

˜t∈˜S P(s̃, a, t̃) · x
˜t for all s̃ ∈ S̃ and a ∈ Actn. If (x∗

s̃)s∈˜S is the
optimal solution of the linear program, let c∗ =

∑
s̃∈˜S ι̃(s̃) · x∗

s̃.
If c∗ ≤ c, then for all tuples of schedulers S1, . . . ,Sn we have that if

MS1‖...‖Sn
|= χ, then for their product S = S1 ‖ . . . ‖ Sn it holds that

∑k
i=1(ci · ProbMn,S(ϕi)) ≤ c, and we conclude that M |= Φ. If, on the other

hand, we have c∗ > c, then the result is inconclusive. When this is the case, we
can use bounded model checking to search for counterexamples to formulas of
the form (1). For the procedure above, we establish the following result.

Theorem 3 (Complexity). Given an MDP M = (S,Act ,P, ι,AP, L) and a
PHL formula Φ of the form (1) the model checking procedure above runs in time
polynomial in the size of M and doubly exponential in the size of Φ.

create
consistency constraint

χ M

HyperLTL
synthesis

ϕχ
M

b unrealizable

construct
self-composition

n M

apply scheduler

Mn

S̃

probabilistic
model checking

C̃
P �� c

�

ϕ = ∃σ1 . . . ∃σn. χ ∧ P �� c

ϕS

Fig. 2. Bounded model checking of MDPs against PHL formulas for the form (2).

5 Bounded Model Checking

We present a bounded model-checking procedure for PHL formulas of the form

Φ = ∃σ1 . . . ∃σn.
(
χ ∧ c1 · P(ϕ1) + . . . + ck · P(ϕk) � c

)
(2)



Probabilistic Hyperproperties of Markov Decision Processes 497

where χ = ∀π1 : σ1 . . . ∀πn : σn. ψ is in the ∀∗ fragment of HyperLTL [14]. An
example of a formula in this fragment is the formula in Example 1. By finding
a scheduler assignment that is a witness for a PHL formula of the form (2) we
can find counterexamples to PHL formulas of the form (1).

Given an MDP M = (S,Act ,P, ι,AP, L), a bound b ∈ N, and a PHL formula
Φ = ∃σ1 . . . ∃σn.

(
χ ∧ c1·P(ϕ1) +. . .+ ck·P(ϕk) � c

)
, the bounded model checking

problem for M, b and Φ is to determine whether there exists a deterministic
finite-memory scheduler S̃ = S1|| . . . ||Sn for Mn composed of deterministic
finite-memory schedulers Si = (Qi, δi, qi

0, act i) for M for i ∈ {1, . . . , n}, with
|S| = b such that Mn

˜S
|= χ ∧

∑k
i=1(ci · P(ϕi)) � c.

Our bounded model checking procedure employs bounded synthesis for the
logic HyperLTL [14] and model checking of Markov chains [19]. The flow of our
procedure is depicted in Fig. 2. The procedure starts by checking whether there
is a scheduler S̃ for Mn composed of schedulers S1, . . . ,Sn for M that satisfies
the constraint given by the hyperproperty χ. This is done by synthesizing a
scheduler of size b for the HyperLTL formula ϕχ

M composed of the formula
χ, an encoding of M , which ensures that the schedulers S1, . . . ,Sn defining S̃
follow the structure of M , and an additional consistency constraint that requires
S̃ to be a composition of n schedulers S1, . . . ,Sn for M .

If ϕχ
M is realizable, then the procedure proceeds by applying the synthesized

scheduler S̃ to the n-self-composition of the MDP M , which results in a Markov
chain C̃ = Mn

˜S
. To check whether the synthesized scheduler also satisfies the

probabilistic constraint P � c, we apply a probabilistic model checker to the
Markov chain C̃ to compute for each ϕi the probability Prob

˜C(ϕi), and then we
evaluate the probabilistic predicate P � c. If C̃ satisfies P � c, then Mn

˜S
|=

χ ∧
∑k

i=1(ci · P(ϕi)) � c, implying that M |= Φ. If not, we return back to the
synthesizer to construct a new scheduler. In order to exclude the scheduler S̃
from the subsequent search, a new constraint ϕ

˜S is added to ϕχ
M . The formula

ϕ
˜S imposes the requirement that the synthesized scheduler should be different

from S̃. This process is iterated until a scheduler that is a witness for Φ is found,
or all schedulers within the given bound b have been checked. The complexity
of the procedure is given in the next theorem and follows from complexity of
probabilistic model checking [19] and that of synthesis for HyperLTL [14].

Theorem 4 (Complexity). Given an MDP M = (S,Act ,P, ι,AP, L), a bound
b ∈ N, and a PHL formula Φ = ∃σ1 . . . ∃σn.χ ∧ c1·P(ϕ1) +. . .+ ck·P(ϕk) � c, the
bounded model checking problem for M, b and Φ can be solved in time polynomial
in the size of M , exponential in b, and exponential in the size of Φ.

5.1 Evaluation

We developed a proof-of-concept implementation of the approach in Fig. 2. We
used the tool BoSyHyper [14] for the scheduler synthesis and the tool PRISM
[20] to model check the Markov chains resulting from applying the synthesized
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Table 1. Experimental results from model checking plan non-interference.

Benchmark MDP size # Iterations Synthesis time (s) Model checking time (s)

Arena 3 16 6 12.04 2.68

Arena 4 36 5 17.23 2.19

Arena 5 81 5 18.49 2.76

Arena 7 256 5 19.46 3.01

Arena 9 625 7 168.27 4.72

3-Robots Arena 4 36 9 556.02 4.5

scheduler to the self-composition of the input MDP. For our experiments, we
used a machine with 3.3 GHz dual-core Intel Core i5 and 16 GB of memory.

Table 1 shows the results of model checking the “plan non-interference” spec-
ification introduced in Sect. 3.1 against MDP’s representing two robots that try
to reach a designated cell on grid arenas of different sizes ranging from 3-grid to
a 9-grid arena. In the last instance, we increased the number of robots to three
to raise the number of possible schedulers. The specification thus checks whether
the probability for a robot to reach the designated area changes with the move-
ments the other robots in the arena. In the initial state, every robot is positioned
on a different end of the grid, i.e., the farthest point from the designated cell.

Table 2. Detailed experimental results
for the 3-Robots Arena 4 benchmark.

Iteration Synthesis (s) Model checking (s)
1 3.723 0.504
2 3.621 0.478
3 3.589 0.469
4 3.690 0.495
5 3.934 0.514
6 4.898 0.528
7 11.429 0.535
8 60.830 0.466
9 460.310 0.611

In all instances in Table 1, the specifi-
cation with ε = 0.25 is violated. We give
the number of iterations, i.e., the number
of schedulers synthesized, until a coun-
terexample was found. The synthesis and
model checking time represent the total
time for synthesizing and model checking
all schedulers. Table 1 shows the feasibil-
ity of approach, however, it also demon-
strates the inherent difficulty of the syn-
thesis problem for hyperproperties.

Table 2 shows that the time needed for the overall model checking approach
is dominated by the time needed for synthesis: The time for synthesizing a sched-
uler quickly increases in the last iterations, while the time for model checking
the resulting Markov chains remains stable for each scheduler. Despite recent
advances on the synthesis from hyperproperties [14], synthesis tools for hyper-
properties are still in their infancy. PHL model checking will directly profit from
future progress on this problem.

6 Conclusion

We presented a new logic, called PHL, for the specification of probabilistic tem-
poral hyperproperties. The novel and distinguishing feature of our logic is the
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combination of quantification over both schedulers and paths, and a probabilis-
tic operator. This makes PHL uniquely capable of specifying hyperproperties of
MDPs. PHL is capable of expressing interesting properties both from the realm
of security and from the planning and synthesis domains. While, unfortunately,
the expressiveness of PHL comes at a price as the model checking problem for
PHL is undecidable, we show how to approximate the model checking problem
from two sides by providing sound but incomplete procedures for proving and for
refuting universally quantified PHL formulas. We developed a proof-of-concept
implementation of the refutation procedure and demonstrated its principle fea-
sibility on an example from planning.

We believe that this work opens up a line of research on the verification
of MDPs against probabilistic hyperproperties. One direction of future work
is identifying fragments of the logic or classes of models that are practically
amenable to verification. Furthermore, investigating the connections between
PHL and simulation notions for MDPs, as well studying the different synthesis
questions expressible in PHL are both interesting avenues for future work.
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