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Abstract. The search for a proof of correctness and the search for coun-
terexamples (bugs) are complementary aspects of verification. In order
to maximize the practical use of verification tools it is better to pursue
them at the same time. While this is well-understood in the termina-
tion analysis of programs, this is not the case for the language inclusion
analysis of Büchi automata, where research mainly focused on improving
algorithms for proving language inclusion, with the search for counterex-
amples left to the expensive complementation operation.

In this paper, we present IMC2, a specific algorithm for proving Büchi
automata non-inclusion L(A) �⊆ L(B), based on Grosu and Smolka’s
algorithm MC2 developed for Monte Carlo model checking against LTL
formulas. The algorithm we propose takes M = �ln δ/ ln(1 − ε)� random
lasso-shaped samples from A to decide whether to reject the hypoth-
esis L(A) �⊆ L(B), for given error probability ε and confidence level
1− δ. With such a number of samples, IMC2 ensures that the probability
of witnessing L(A) �⊆ L(B) via further sampling is less than δ, under
the assumption that the probability of finding a lasso counterexample is
larger than ε. Extensive experimental evaluation shows that IMC2 is a
fast and reliable way to find counterexamples to Büchi automata inclu-
sion.

1 Introduction

The language inclusion checking of Büchi automata is a fundamental prob-
lem in the field of automated verification. Specially, in the automata-based
model checking [25] framework, when both system and specification are given
as Büchi automata, the model checking problem of verifying whether some sys-
tem’s behavior violates the specification reduces to a language inclusion problem
between the corresponding Büchi automata.
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In this paper, we target at the language inclusion checking problem of Büchi
automata. Since this problem has already been proved to be PSPACE-complete
[18], researchers have been focusing on devising algorithms to reduce its practical
cost. A näıve approach to checking the inclusion between Büchi automata A and
B is to first construct a complement automaton Bc such that L(Bc) = Σω \L(B)
and then to check the language emptiness of L(A) ∩ L(Bc), which is the algorithm
implemented in SPOT [11], a highly optimized symbolic tool for manipulating
LTL formulas and ω-automata.

The bottleneck of this approach is computing the automaton Bc, which can
be exponentially larger than B [26]. As a result, various optimizations—such as
subsumption and simulation—have been proposed to avoid exploring the whole
state-space of Bc, see, e.g., [1,2,9,10,13,14]. For instance, RABIT is currently the
state-of-the-art tool for checking language inclusion between Büchi automata,
which has integrated the simulation and subsumption techniques proposed in
[1,2,9]. All these techniques improving the language inclusion checking, however,
focus on proving inclusion. In particular, the simulation techniques in [9,13] are
specialized algorithms mainly proposed to obtain such proof, which ensures that
for every initial state qa of A, there is an initial state qb of B that simulates every
possible behavior from qa.

From a practical point of view, it is widely believed that the witness of a
counterexample (or bug) found by a verification tool is equally valuable as a
proof for the correctness of a program; we would argue that showing why a
program violates the specification is also intuitive for a programmer, since it
gives a clear way to identify and correct the error. Thus, the search for a proof
and the search for counterexamples (bugs) are complementary activities that
need to be pursued at the same time in order to maximize the practical use
of verification tools. This is well-understood in the termination analysis of pro-
grams, as the techniques for searching the proof of the termination [6,7,20] and
the counterexamples [12,16,21] are evolving concurrently. Counterexamples to
Büchi automata language inclusion, instead, are the byproducts of a failure while
proving language inclusion. Such a failure may be recognized after a considerable
amount of efforts has been spent on proving inclusion, in particular when the
proposed improvements are not effective. In this work, instead, we focus directly
on the problem of finding a counterexample to language inclusion.

The main contribution is a novel algorithm called IMC2 for showing language
non-inclusion based on sampling and statistical hypothesis testing. Our algo-
rithm is inspired by the Monte Carlo approach proposed in [15] for model check-
ing systems against LTL specifications. The algorithm proposed in [15] takes as
input a Büchi automaton A as system and an LTL formula ϕ as specification
and then checks whether A �|= ϕ by equivalently checking L(A) �⊆ L(Bϕ), where
Bϕ is the Büchi automaton constructed for ϕ. The main idea of the algorithm
for showing L(A) �⊆ L(Bϕ) is to sample lasso words from the product automaton
A × Bc

ϕ for L(A) ∩ L(Bc
ϕ); lasso words are of the form uvω and are obtained as

soon as a state is visited twice. If one of such lasso words is accepted by A×Bc
ϕ,

then it is surely a witness to L(A) �⊆ L(Bϕ), i.e., a counterexample to A |= ϕ.
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Since in [15] the algorithm gets an LTL formula ϕ as input, the construction of
Bc

ϕ reduces to the construction of B¬ϕ and it is widely assumed that the trans-
lation into a Büchi automaton is equally efficient for a formula and its negation.
In this paper, we consider the general case, namely the specification is given as
a generic Büchi automaton B, where the construction of Bc from B can be very
expensive [26].

To avoid the heavy generation of Bc, the algorithm IMC2 we propose directly
sampling lasso words in A, without making the product A × Bc. We show that
usual lasso words, like the ones used in [15], do not suffice in our case, and
propose a rather intriguing sampling procedure. We allow the lasso word uvω

to visit each state of A multiple times, i.e., the run σ of A on the finite word
uv can present small cycles on both the u and the v part of the lasso word.
We achieve this by setting a bound K on the number of times a state can be
visited: each state in σ is visited at most K − 1 times, except for the last state
of σ that is visited at most K times. We show that IMC2 gives a probabilistic
guarantee in terms of finding a counterexample to inclusion when K is sufficiently
large, as described in Theorem 4. This notion of generalized lasso allows our
approach to find counterexamples that are not valid lassos in the usual sense.
The extensive experimental evaluation shows that our approach is generally very
fast and reliable in finding counterexamples to language inclusion. In particular,
the prototype tool we developed is able to manage easily Büchi automata with
very large state space and alphabet on which the state-of-the-art tools such
as RABIT and SPOT fail. This makes our approach fit very well among tools
that make use of Büchi automata language inclusion tests, since it can quickly
provide counterexamples before having to rely on the possibly time and resource
consuming structural methods, in case an absolute guarantee about the result
of the inclusion test is desired.

Organization of the Paper. In the remainder of this paper, we briefly recall some
known results about Büchi automata in Sect. 2. We then present the algorithm
IMC2 in Sect. 3 and give the experimental results in Sect. 4 before concluding the
paper with some remark in Sect. 5.

All missing proofs can be found in the report [23].

2 Preliminaries

Büchi Automata. Let Σ be a finite set of letters called alphabet. A finite
sequence of letters is called a word. An infinite sequence of letters is called an
ω-word. We use |α| to denote the length of the finite word α and we use λ to
represent the empty word, i.e., the word of length 0. The set of all finite words
on Σ is denoted by Σ∗, and the set of all ω-words is denoted by Σω. Moreover,
we also denote by Σ+ the set Σ∗ \ {λ}.

A nondeterministic Büchi automaton (NBA) is a tuple B = (Σ,Q,QI ,T,
QF ), consisting of a finite alphabet Σ of input letters, a finite set Q of states
with a non-empty set QI ⊆ Q of initial states, a set T ⊆ Q×Σ×Q of transitions,
and a set QF ⊆ Q of accepting states.
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A run of an NBA B over an ω-word α = a0a1a2 · · · ∈ Σω is an infinite
alternation of states and letters ρ = q0a0q1a1q2 · · · ∈ (Q×Σ)ω such that q0 ∈ QI

and, for each i ≥ 0,
(
ρ(i), ai, ρ(i+1)

)
∈ T where ρ(i) = qi. A run ρ is accepting if

it contains infinitely many accepting states, i.e., Inf(ρ)∩QF �= ∅, where Inf(ρ) =
{ q ∈ Q | ∀i ∈ N.∃j > i : ρ(j) = q }. An ω-word α is accepted by B if B has an
accepting run on α, and the set of words L(B) = {α ∈ Σω | α is accepted by B }
accepted by B is called its language.

We call a subset of Σω an ω-language and the language of an NBA an ω-
regular language. Words of the form uvω are called ultimately periodic words. We
use a pair of finite words (u, v) to denote the ultimately periodic word w = uvω.
We also call (u, v) a decomposition of w. For an ω-language L, let UP(L) =
{uvω ∈ L | u ∈ Σ∗, v ∈ Σ+ } be the set of all ultimately periodic words in L.
The set of ultimately periodic words can be seen as the fingerprint of L:

Theorem 1 (Ultimately Periodic Words [8]). Let L, L′ be two ω-regular
languages. Then L = L′ if, and only if, UP(L) = UP(L′).

An immediate consequence of Theorem 1 is that, for any two ω-regular languages
L1 and L2, if L1 �= L2 then there is an ultimately periodic word xyω ∈

(
UP(L1)\

UP(L2)
)
∪

(
UP(L2)\UP(L1)

)
. It follows that xyω ∈ L1\L2 or xyω ∈ L2\L1. Let

A, B be two NBAs and assume that L(A)\L(B) �= ∅. One can find an ultimately
periodic word xyω ∈ L(A) \ L(B) as a counterexample to L(A) ⊆ L(B).

Language inclusion between NBAs can be reduced to complementation, inter-
section, and emptiness problems on NBAs. The complementation operation of
an NBA B is to construct an NBA Bc accepting the complement language of
L(B), i.e., L(Bc) = Σω \ L(B).

Lemma 1 (cf. [17,19]). Let A, B be NBAs with na and nb states, respectively.

1. It is possible to construct an NBA Bc such that L(Bc) = Σω \ L(B) whose
number of states is at most (2nb + 2)nb × 2nb , by means of the complement
construction.

2. It is possible to construct an NBA C such that L(C) = L(A) ∩ L(Bc) whose
number of states is at most 2×na ×(2nb +2)nb ×2nb , by means of the product
construction. Note that L(A) ⊆ L(B) holds if and only if L(C) = ∅ holds.

3. L(C) = ∅ is decidable in time linear in the number of states of C.

Further, testing whether an ω-word w is accepted by a Büchi automaton B can
be done in time polynomial in the size of the decomposition (u, v) of w = uvω.

Lemma 2 (cf. [17]). Let B be an NBA with n states and an ultimately periodic
word (u, v) with |u| + |v| = m. Then checking whether uvω is accepted by B is
decidable in time and space linear in n × m.

Random Sampling and Hypothesis Testing. Statistical hypothesis testing
is a statistical method to assign a confidence level to the correctness of the
interpretation given to a small set of data sampled from a population, when this
interpretation is extended to the whole population.
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Let Z be a Bernoulli random variable and X the random variable with param-
eter pZ whose value is the number of independent trials required until we see
that Z = 1. Let δ be the significance level that Z = 1 will not appear within N
trials. Then N = �ln δ/ ln(1 − pZ)� is the number of attempts needed to get a
counterexample with probability at most 1 − δ.

If the exact value of pZ is unknown, given an error probability ε such that
pZ ≥ ε, we have that M = �ln δ/ ln(1−ε)� ≥ N = �ln δ/ ln(1−pZ)� ensures that
pZ ≥ ε =⇒ Pr[X ≤ M ] ≥ 1 − δ. In other words, M is the minimal number
of attempts required to find a counterexample with probability 1 − δ, under
the assumption that pZ ≥ ε. See, e.g., [15,27] for more details about statistical
hypothesis testing in the context of formal verification.

3 Monte Carlo Sampling for Non-inclusion Testing

In this section we present our Monte Carlo sampling algorithm IMC2 for testing
non-inclusion between Büchi automata.

3.1 MC2: Monte Carlo Sampling for LTL Model Checking

In [15], the authors proposed a Monte Carlo sampling algorithm MC2 for veri-
fying whether a given system A satisfies a Linear Temporal Logic (LTL) speci-
fication ϕ. MC2 works directly on the product Büchi automaton P that accepts
the language L(A) ∩ L(B¬ϕ). It essentially checks whether L(P) is empty.

First, MC2 takes two statistical parameters ε and σ as input and computes
the number of samples M for this experiment. Since every ultimately periodic
word xyω ∈ L(P) corresponds to some cycle run (or “lasso”) in P, MC2 can just
find an accepting lasso whose corresponding ultimately periodic word xyω is
such that xyω ∈ L(P). In each sampling procedure, MC2 starts from a randomly
chosen initial state and performs a random walk on P’s transition graph until
a state has been visited twice, which consequently gives a lasso in P. MC2 then
checks whether there exists an accepting state in the repeated part of the sampled
lasso. If so, MC2 reports it as a counterexample to the verification, otherwise it
continues with another sampling process if necessary. The correctness of MC2 is
straightforward, as the product automaton P is non-empty if and only if there
is an accepting lasso.

3.2 The Lasso Construction Fails for Language Inclusion

The Monte Carlo Sampling algorithm in [15] operates directly on the product.
For language inclusion, as discussed in the introduction, this is the bottleneck
of the construction. Thus, we aim at a sampling algorithm operating on the
automata A and B, separately. With this in mind, we show first that, directly
applying MC2 can be incomplete for language inclusion checking.
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s1 s2

A

a

b

b

q1 q2

B

b

b

Fig. 1. Two NBAs A and B.

Example 1. Consider checking the language inclusion of the Büchi automata
A and B in Fig. 1. As we want to exploit MC2 to find a counterexample to
the inclusion, we need to sample a word from A that is accepted by A but
not accepted by B. In [15], the sampling procedure is terminated as soon as a
state is visited twice. Thus, the set of lassos that can be sampled by MC2 is
{s1as1, s1bs2bs2}, which yields the set of words {aω, bω}. It is easy to see that
neither of these two words is a counterexample to the inclusion. The inclusion,
however, does not hold: the word abω ∈ L(A) \ L(B) is a counterexample. ♦

According to Theorem 1, if L(A)\L(B) �= ∅, then there must be an ultimately
periodic word xyω ∈ L(A)\L(B) as a counterexample to the inclusion. It follows
that there exists some lasso in A whose corresponding ultimately periodic word
is a counterexample to the inclusion. The limit of MC2 in checking the inclusion
is that MC2 only samples simple lasso runs, which may miss non-trivial lassos
in A that correspond to counterexamples to the inclusion. The reason that it
is sufficient for checking non-emptiness in the product automaton is due to the
fact that the product automaton already synchronizes behaviors of A and B¬ϕ.

In the remainder of this section, we shall propose a new definition of lassos by
allowing multiple occurrences of states, which is the key point of our extension.

3.3 IMC2: Monte Carlo Sampling for Inclusion Checking

We now present our Monte Carlo sampling algorithm called IMC2 specialized for
testing the language inclusion between two given NBAs A and B.

We first define the lassos of A in Definition 1 and show how to compute the
probability of a sample lasso in Definition 2. Then we prove that with our defini-
tion of the lasso probability space in A, the probability of a sample lasso whose
corresponding ultimately periodic word xyω is a counterexample to the inclusion
is greater than 0 under the hypothesis L(A) �⊆ L(B). Thus we eventually get
for sure a sample from A that is a counterexample to the inclusion, if inclusion
does not hold. In other words, we are able to obtain a counterexample to the
inclusion with high probability from a large amount of samples.

In practice, a lasso of A is sampled via a random walk on A’s transition
graph, starting from a randomly chosen initial state and picking uniformly one
outgoing transition. In the following, we fix a natural number K ≥ 2 unless
explicitly stated otherwise and two NBAs A = (Σ,Q,QI ,T, QF ) and B. We
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assume that each state in A can reach an accepting state and has at least one
outgoing transition. Note that each NBA A with L(A) �= ∅ can be pruned
to satisfy such assumption; only NBAs A′ with L(A′) = ∅ do not satisfy the
assumption, but for these automata the problem L(A′) ⊆ L(B) is trivial.

Definition 1 (Lasso). Given two NBAs A, B and a natural K ≥ 2, a finite
run σ = q0a0q1 · · · an−1qnanqn+1 of A is called a K-lasso if (1) each state in
{q0, . . . , qn} occurs at most K − 1 times in q0a0q1 · · · an−1qn and (2) qn+1 = qi

for some 0 ≤ i ≤ n (thus, qn+1 occurs at most K times in σ). We write σ⊥ for
the terminating K-lasso σ, where ⊥ is a fresh symbol denoting termination. We
denote by SK

A the set of all terminating K-lassos for A.
We call σ⊥ ∈ SK

A a witness for L(A) \ L(B) �= ∅ if the associated ω-word
(a0 · · · ai−1, ai · · · an) is accepted by A but not accepted by B.

It is worth noting that not every finite cyclic run of A is a valid K-lasso. Consider
the NBA A shown in Fig. 1 for instance: the run s1as1bs2bs2 is not a lasso when
K = 2 since by Definition 1 every state except the last one is allowed to occur at
most K − 1 = 1 times; s1 clearly violates this requirement since it occurs twice
and it is not the last state of the run. The run s1bs2bs2 instead is obviously a
valid lasso when K = 2.

Remark 1. A K-lasso σ is also a K ′-lasso for any K ′ > K. Moreover, a ter-
minating K-lasso can be a witness without being an accepting run: according
to Definition 1, a terminating K-lasso σ⊥ is a witness if its corresponding word
uvω is accepted by A but not accepted by B. This does not imply that σ is an
accepting run, since there may be another run σ′ on the same word uvω that is
accepting.

In order to define a probability space over SK
A , we first define the probability

of a terminating K-lasso of A. We denote by #(σ, q) the number of occurrences
of the state q in the K-lasso σ.

Definition 2 (Lasso Probability). Given an NBA A, a natural number
K ≥ 2, and a stopping probability p⊥ ∈ (0, 1), the probability Prp⊥ [σ⊥] of a
terminating K-lasso σ⊥ = q0a0 · · · qnanqn+1⊥ ∈ SK

A is defined as follows:

Prp⊥ [σ⊥] =

{
Pr′

p⊥ [σ] if #(σ, qn+1) = K,

p⊥ · Pr′
p⊥ [σ] if #(σ, qn+1) < K;

Pr′
p⊥ [σ] =

⎧
⎪⎨

⎪⎩

1
|QI | if σ = q0;

Pr′
p⊥ [σ′] · π[qlalql+1] if σ = σ′alql+1 and #(σ′, ql) = 1;

(1−p⊥) · Pr′
p⊥ [σ′] · π[qlalql+1] if σ = σ′alql+1 and #(σ′, ql) > 1,

where π[qaq′] = 1
m if (q, a, q′) ∈ T and |T(q)| = m, 0 otherwise.

We extend Prp⊥ to sets of terminating K-lassos in the natural way, i.e., for
S ⊆ SK

A , Prp⊥ [S] =
∑

σ⊥∈S Prp⊥ [σ⊥].
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Assume that the current state of run σ is q. Intuitively, if the last state s of the
run σ has been already visited at least twice but less than K times, the run σ
can either terminate at s with probability p⊥ or continue with probability 1−p⊥
by taking uniformly one of the outgoing transitions from the state q. However,
as soon as the state q has been visited K times, the run σ has to terminate.

〈λ, 1〉

〈s1, 1〉

〈s1bs2, 1
2
〉

〈s1bs2bs2, 1
2
〉 〈s1bs2bs2⊥, 1

4
〉

〈s1bs2bs2bs2, 1
4
〉 〈s1bs2bs2bs2⊥, 1

4
〉

〈s1as1,
1
2
〉〈s1as1⊥, 1

4
〉

〈s1as1as1,
1
8
〉〈s1as1as1⊥, 1

8
〉 〈s1as1bs2,

1
8
〉

〈s1as1bs2bs2,
1
8
〉〈s1as1bs2bs2⊥, 1

16
〉

〈s1as1bs2bs2bs2,
1
16

〉〈s1as1bs2bs2bs2⊥, 1
16

〉

Fig. 2. An instance T of the trees used in the proof of Theorem 2. Each leaf node is
labeled with a terminating 3-lasso σ⊥ ∈ S3

A,B for the NBAs A and B shown in Fig. 1,
and its corresponding probability value Pr 1

2
[σ⊥].

Theorem 2 (Lasso Probability Space). Let A be an NBA, K ≥ 2, and
a stopping probability p⊥ ∈ (0, 1). The σ-field (SK

A , 2SK
A ) together with Prp⊥

defines a discrete probability space.

Proof (sketch). The facts that Prp⊥ [σ] is a non-negative real value for each σ ∈ S
and that Prp⊥ [S1 ∪ S2] = Prp⊥ [S1] + Prp⊥ [S2] for each S1, S2 ⊆ SK

A such that
S1 ∩ S2 = ∅ are both immediate consequences of the definition of Prp⊥ .

The interesting part of the proof is about showing that Prp⊥ [SK
A ] = 1. To

prove this, we make use of a tree T = (N, 〈λ, 1〉, E), like the one shown in Fig. 2,
whose nodes are labelled with finite runs and probability values. In particular, we
label the leaf nodes of T with the terminating K-lassos in SK

A while we use their
finite run prefixes to label the internal nodes. Formally, the tree T is constructed
as follows. Let P = {σ′ ∈ Q × (Σ × Q)∗ | σ′ is a prefix of some σ⊥ ∈ SK

A } be
the set of prefixes of the K-lassos in SK

A . T ’s components are defined as follows.

– N =
(
P × (0, 1]

)
∪

(
SK

A × (0, 1]
)

∪ {〈λ, 1〉} is the set of nodes,
– 〈λ, 1〉 is the root of the tree, and
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– E ⊆
(
{〈λ, 1〉} ×

(
P × (0, 1]

))
∪

(
P × (0, 1]

)2

∪
((

P × (0, 1]
)
×

(
SK

A × (0, 1]
))

is the set of edges defined as

E = { (〈λ, 1〉, 〈q, 1
|QI |

〉) | q ∈ QI }

∪ {
(
〈σ, p〉, 〈σaq,

p

|T(σl)|
〉
)

| σaq ∈ P ∧ #(σ, σl) = 1 }

∪ {
(
〈σ, p〉, 〈σaq,

p · (1 − p⊥)
|T(σl)|

〉
)

| σaq ∈ P ∧ #(σ, σl) > 1 }

∪ {
(
〈σ, p〉, 〈σ⊥, p〉

)
| σ⊥ ∈ SK

A ∧ #(σ, σl) = K }
∪ {

(
〈σ, p〉, 〈σ⊥, p · p⊥〉

)
| σ⊥ ∈ SK

A ∧ #(σ, σl) < K }

where σl denotes the last state sn of the finite run σ = s0a0s1 . . . an−1sn.

Then we show a correspondence between the reachable leaf nodes and the
terminating K-lassos with their Prp⊥ probability values, and that the probability
value in each internal node equals the sum of the probabilities of its children.
By the finiteness of the reachable part of the tree we then derive Prp⊥ [SK

A ] = 1.
��

Example 2 (Probability of lassos). Consider the Büchi automaton A of Fig. 1
and p⊥ = 1

2 . For K = 2, there are only two terminating 2-lassos, namely s1as1⊥
and s1bs2bs2⊥. According to Definition 2, we know that each lasso occurs with
probability 1

2 and they are not witnesses since the corresponding ultimately
periodic words aω and bbω do not belong to the language L(A) \ L(B). If we set
K = 2 to check whether L(A) ⊆ L(B), we end up concluding that the inclusion
holds with probability 1 since the probability to find some lasso of A related to
the ω-word abω ∈ L(A) \ L(B) is 0. If we want to find a witness K-lasso, we
need to set K = 3 at least, since now the terminating 3-lasso s1as1bs2bs2⊥ with
corresponding ω-word abbω ∈ L(A)\L(B) can be found with probability 1

16 > 0.
We remark that the Monte Carlo method proposed in [15] uses lassos that

are a special instance of Definition 2 when we let K = 2 and p⊥ = 1, thus their
method is not complete for NBA language inclusion checking. ♦

According to Theorem2, the probability space of the sample terminating K-
lassos in A can be organized in the tree, like the one shown in Fig. 2. Therefore,
it is easy to see that the probability to find the witness 3-lasso s1as1bs2bs2⊥ of
A is 1

16 , as indicated by the leaf node 〈s1as1bs2bs2⊥, 1
16 〉.

Definition 3 (Lasso Bernoulli Variable). Let K ≥ 2 be a natural num-
ber and p⊥ a stopping probability. The random variable associated with the
probability space (SK

A , 2SK
A ,Prp⊥) of the NBAs A and B is defined as fol-

lows: pZ = Prp⊥ [Z = 1] =
∑

σ⊥∈Sw
Prp⊥ [σ⊥] and qZ = Prp⊥ [Z = 0] =∑

σ⊥∈Sn
Prp⊥ [σ⊥], where Sw, Sn ⊆ SK

A are the set of witness and non-witness
lassos, respectively.
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Under the assumption L(A) \ L(B) �= ∅, there exists some witness K-lasso
σ⊥ ∈ Sw that can be sampled with positive probability if Prp⊥ [Z = 1] > 0, as
explained by Example 3.

Example 3. For the NBAs A and B shown in Fig. 1, K = 3, and p⊥ = 1
2 , the

lasso probability space is organized as in Fig. 2. The lasso Bernoulli variable has
associated probabilities pZ = 1

8 and qZ = 7
8 since the only witness lassos are

s1as1bs2bs2⊥ and s1as1bs2bs2bs2⊥, both occurring with probability 1
16 . ♦

Therefore, if we set K = 3 and p⊥ = 1
2 to check the inclusion between A

and B from Fig. 1, we are able to find with probability 1
8 the ω-word abω as a

counterexample to the inclusion L(A) ⊆ L(B). It follows that the probability we
do not find any witness 3-lasso after 50 trials would be less than 0.002, which
can be made even smaller with a larger number of trials.

q1 q2 q3 . . . qK

qb

b

a

b

a

b

a a

b

b

Fig. 3. NBA KK making pZ = 0 when checking L(A) ⊆ L(KK) by means of sampling
terminating K-lassos from A shown in Fig. 1.

As we have seen in Example 2, the counterexample may not be sampled with
positive probability if K is not sufficiently large, that is the main problem with
MC2 algorithm from [15] for checking language inclusion. The natural question
is then: how large should K be for checking the inclusion? First, let us discuss
about K without taking the automaton B into account. Consider the NBA A
of Fig. 1: it seems that no matter how large K is, one can always construct an
NBA K with K+1 states to make the probability pZ = 0, as the counterexample
albω ∈ L(A) \ L(B) can not be sampled for any l ≥ K. Figure 3 depicts such
NBA K, for which we have L(K) = {bω, abω, aabω, . . . , aK−1bω}. One can easily
verify that the counterexample albω can not be sampled from A when l ≥ K, as
sampling this word requires the state s1 to occur l + 1 times in the run, that is
not a valid K-lasso. This means that K is a value that depends on the size of B.
To get a K sufficiently large for every A and B, one can just take the product
of A with the complement of B and check how many times in the worst case a
state of A occurs in the shortest accepting run of the product.

Lemma 3 (Sufficiently Large K). Let A, B be NBAs with na and nb states,
respectively, and Z be the random variable defined in Definition 3. Assume that
L(A) \ L(B) �= ∅. If K ≥ 2 × (2nb + 2)nb × 2nb + 1, then Prp⊥ [Z = 1] > 0.
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Algorithm 1. IMC2 Algorithm
1: procedure IMC2(A, B, K, p⊥, ε, δ)
2: M := �ln δ/ ln(1 − ε)�;
3: for (i := 1; i ≤ M ; i++) do
4: (u, v) := sample(A, K, p⊥);
5: if membership(A, (u, v)) then
6: if not membership(B, (u, v)) then
7: return (false, (u, v));

8: return true;

Remark 2. We want to stress that choosing K as given in Lemma 3 is a sufficient
condition for sampling a counterexample with positive probability; choosing this
value, however, is not a necessary condition. In practice, we can find counterex-
amples with positive probability with K being set to a value much smaller than
2 × (2nb + 2)nb × 2nb + 1, as experiments reported in Sect. 4 indicate.

Now we are ready to present our IMC2 algorithm, given in Algorithm1. On
input the two NBAs A and B, the bound K, the stopping probability p⊥, and
the statistical parameters ε and δ, the algorithm at line 2 first computes the
number M of samples according to ε and δ. Then, for each ω-word (u, v) = uvω

associated with a terminating lasso sampled at line 4 according to Definitions 1
and 2, it checks whether the lasso is a witness by first (line 5) verifying whether
uvω ∈ L(A), and then (line 6) whether uvω /∈ L(B). If the sampled lasso is indeed
a witness, a counterexample to L(A) ⊆ L(B) has been found, so the algorithm
can terminate at line 7 with the correct answer false and the counterexample
(u, v). If none of the M sampled lassos is a witness, then the algorithm returns
true at line 8, which indicates that hypothesis L(A) �⊆ L(B) has been rejected
and L(A) ⊆ L(B) is assumed to hold. It follows that IMC2 gives a probabilistic
guarantee in terms of finding a counterexample to inclusion when K is sufficient
large, as formalized by the following proposition.

Proposition 1. Let A, B be two NBAs and K be a sufficiently large number. If
L(A)\L(B) �= ∅, then IMC2 finds a counterexample to the inclusion L(A) ⊆ L(B)
with positive probability.

In general, the exact value of pZ , the probability of finding a word accepted
by A but not accepted by B, is unknown or at least very hard to compute. Thus,
we summarize our results about IMC2 in Theorems 3 and 4 with respect to the
choice of the statistical parameters ε and δ.

Theorem 3 (Correctness). Let A, B be two NBAs, K be a sufficiently large
number, and ε and δ be statistical parameters. If IMC2 returns false, then L(A) �⊆
L(B) is certain. Otherwise, if IMC2 returns true, then the probability that we
would continue and with probability pZ ≥ ε find a counterexample is less than δ.

Theorem 4 (Complexity). Given two NBAs A, B with na and nb states,
respectively, and statistical parameters ε and δ, let M = �ln δ/ ln(1 − ε)� and
n = max(na, nb). Then IMC2 runs in time O(M · K · n2) and space O(K · n2).
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4 Experimental Evaluation

We have implemented the Monte Carlo sampling algorithm proposed in Sect. 3
in ROLL [22] to evaluate it. We performed our experiments on a desktop PC
equipped with a 3.6 GHz Intel i7-4790 processor with 16 GB of RAM, of which
4 GB were assigned to the tool. We imposed a timeout of 300 s (5 min) for each
inclusion test. In the experiments, we compare our sampling inclusion test algo-
rithm with RABIT 2.4.5 [1,2,9] and SPOT 2.8.4 [11]. ROLL and RABIT are
written in Java while SPOT is written in C/C++. This gives SPOT some advan-
tage in the running time, since it avoids the overhead caused by the Java Virtual
Machine. For RABIT we used the option -fastc while for ROLL we set param-
eters ε = 0.1% and δ = 2%, resulting in sampling roughly 4 000 words for testing
inclusion, p⊥ = 1

2 , and K to the maximum of the number of states of the two
automata. The automata we used in the experiment are represented in two for-
mats: the BA format used by GOAL1 [24] and the HOA format [4]. RABIT
supports only the former, SPOT only the latter, while ROLL supports both.
We used ROLL to translate between the two formats and then we compared
ROLL (denoted ROLLH) with SPOT on the HOA format and ROLL (denoted
ROLLB) with RABIT on the BA format. When we present the outcome of the
experiments, we distinguish them depending on the used automata format. This
allows us to take into account the possible effects of the automata representation,
on both the language they represent and the running time of the tools.

Table 1. Experiment results on random automata with fixed state space and alphabet.

Tool Included Not included Timeout Memory out Other failures

SPOT 1 803 10 177 + 53 1 780 670 1 517

ROLLH 2 497(5) 10 177 + 3194 119 0 13

ROLLB 2 501(45) 12 436 + 1054 0 0 9

RABIT 2 205 12 436 + 45 306 1 008 0

4.1 Experiments on Randomly Generated Büchi Automata

To run the different tools on randomly generated automata, we used SPOT to
generate 50 random HOA automata for each combination of state space size |Q| ∈
{10, 20, . . . , 90, 100, 125, . . . , 225, 250} and alphabet size |Σ| ∈ {2, 4, . . . , 18, 20},
for a total of 8 000 automata, that we have then translated to the BA format.
We then considered 100 different pairs of automata for each combination of state
space size and alphabet size (say, for instance, 100 pairs of automata with 50

1 GOAL is omitted in our experiments as it is shown in [9] that RABIT performs
much better than GOAL.
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states and 10 letters or 100 pairs with 175 states and 4 letters). The resulting
16 000 experiments are summarized in Table 1.

For each tool, we report the number of inclusion test instances that resulted
in an answer for language inclusion and not inclusion, as well as the number
of cases where a tool went timeout, ran out of memory, or failed for any other
reason. For the “included” case, we indicate in parenthesis how many times
ROLL has failed to reject the hypothesis L(A) ⊆ L(B), that is, ROLL returned
“included” instead of the expected “not included”. For the “non included” case,
instead, we split the number of experiments on which multiple tools returned
“not included” and the number of times only this tool returned “not included”;
for instance, we have that both SPOT and ROLLH returned “not included” on
10 177 cases, that only SPOT returned so in 53 more experiments (for a total of
10 230 “not included” results), and that only ROLLH identified non inclusion in
3 194 additional experiments (for a total of 13 371 “not included” results).

We can see in Table 1 that both ROLLH and ROLLB were able to solve
many more cases than their counterparts SPOT and RABIT, respectively, on
both “included” and “not included” outcomes. In particular, we can see that both
ROLLH and ROLLB have been able to find a counterexample to the inclusion
for many cases (3 194 and 1 052, respectively) where SPOT on the HOA format
and RABIT on the BA format failed, respectively.

On the other hand, there are only few cases where SPOT or RABIT proved
non inclusion while ROLL failed to do so. In particular, since ROLL implements
a statistical hypothesis testing algorithm for deciding language inclusion, we can
expect few experiments where ROLL fails to reject the alternative hypothesis
L(A) ⊆ L(B). In the experiments this happened 5 (ROLLH) and 45 (ROLLB)
times; this corresponds to a failure rate of less than 0.6%, well below the choice
of the statistical parameter δ = 2%.

Regarding the 13 failures of ROLLH and the 9 ones of ROLLB, they are all
caused by a stack overflow in the strongly connected components (SCC) decom-
position procedure for checking membership uvω ∈ L(A) or uvω ∈ L(B) (i.e.,
L(A) ∩ {uvω} = ∅ or L(B) ∩ {uvω} = ∅, cf. [17]) at lines 5 and 6 of Algo-
rithm 1, since checking whether the sampled lasso is an accepting run of A does
not suffice (cf. Remark 1). The 119 timeouts of ROLLH occurred for 3 pairs of
automata with 200 states and 20 letters, 12/21 pairs of automata with 225 states
and 18/20 letters, respectively, and 40/43 pairs of automata with 250 states and
18/20 letters, respectively. We plan to investigate why ROLLH suffered of these
timeouts while ROLLB avoided them, to improve ROLL’s performance.

About the execution running time of the tools, they are usually rather fast
in giving an answer, as we can see from the plot in Fig. 4. In this plot, we
show on the y axis the total number of experiments, each one completed within
the time marked on the x axis; the vertical gray line marks the timeout limit.
The plot is relative to the number of “included” and “not included” outcomes
combined together; the shape of the plots for the two outcomes kept separated is
similar to the combined one we present in Fig. 4; the only difference is that in the
“not included” case, the plots for ROLLB and ROLLH would terminate earlier,
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Fig. 4. Experiment running time on the random automata with fixed state space and
alphabet.

since all experiments returning “not included” are completed within a smaller
time than for the “included” case. As we can see, we have that ROLL rather
quickly overcame the other tools in giving an answer. This is likely motivated by
the fact that by using randomly generated automata, the structure-based tools
such as RABIT and SPOT are not able to take advantage of the symmetries or
other structural properties one can find in automata obtained from, e.g., logical
formulas. From the result of the experiments presented in Table 1 and Fig. 4,
we have that the use of a sampling-based algorithm is a very fast, effective, and
reliable way to rule out that L(A) ⊆ L(B) holds. Moreover, we also conclude that
IMC2 complements existing approaches rather well, as it finds counterexamples
to the language inclusion for a lot of instances that other approaches fail to
manage.

4.2 Effect of the Statistical Parameters ε and δ

To analyze the effect of the choice of ε and δ on the execution of the sampling
algorithm we proposed, we have randomly taken 100 pairs of automata where,
for each pair (A,B), the automata A and B have the same alphabet but possibly
different state space. On these 100 pairs of automata, we repeatedly ran ROLLH

10 times with different values of ε in the set {0.00001, 0.00051, . . . , 0.00501} and
of δ in the set {0.0001, 0.0051, . . . , 0.0501}, for a total of 121 000 inclusion tests.
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The choice of ε and δ plays essentially no role in the running time for the cases
where a counterexample to the language inclusion is found: the average running
time is between 1.67 and 1.77 s. This can be expected, since ROLL stops its
sampling procedure as soon as a counterexample is found (cf. Algorithm 1). If
we consider the number of experiments, again there is almost no difference, since
for all combinations of the parameters it ranges between 868 and 870.

On the other hand, ε and δ indeed affect the running time for the “included”
cases, since they determine the number M of sampled words and all such words
have to be sampled and tested before rejecting the “non included” hypothesis.
The average running time is 1 s or less for all choices of ε �= 0.00001 and δ, while
for ε = 0.00001, the average running time ranges between 12 and 36 s when δ
moves from 0.0501 to 0.0001, which corresponds to testing roughly 300 000 to
1 000 000 sample words, respectively.

4.3 Effect of the Lasso Parameters K and p⊥

At last, we also experimented with different values of K and p⊥ while keeping the
statistical parameters unchanged: we have generated other 100 pairs of automata
as in Sect. 4.2 and then checked inclusion 10 times for each pair and each com-
bination of K ∈ {2, 3, 4, 5, 6, 8, 11, 51, 101, 301} and p⊥ ∈ {0.05, 0.1, . . . , 0.95}.

As one can expect, low values for p⊥ and large values of K allow IMC2 to find
more counterexamples, at the cost of a higher running time. It is worth noting
that K = 2 is still rather effective in finding counterexamples: out of the 1 000
executions on the pairs, IMC2 returned “non included” between 906 and 910
times; for K = 3 it ranged between 914 and 919 for p⊥ ≤ 0.5 and between 909
and 912 for p⊥ > 0.5. Larger values of K showed similar behavior. Regarding the
running time, except for K = 2 the running time of IMC2 is loosely dependent
on the choice of K, for a given p⊥; this is likely motivated by the fact that
imposing e.g. K = 51 still allows IMC2 to sample lassos that are for instance
4-lassos. Instead, the running time is affected by the choice of p⊥ for a given
K ≥ 3: as one can expect, the smaller p⊥ is, the longer IMC2 takes to give an
answer; a small p⊥ makes the sampled words uvω ∈ L(B1) to be longer, which
in turn makes the check uvω ∈ L(B2) more expensive.

Experiments suggest that taking 0.25 ≤ p⊥ ≤ 0.5 and 3 ≤ K ≤ 11 gives a
good tradeoff between running time and number of “non included” outcomes.
Very large values of K, such as K > 50, are usually not needed, also given the
fact that usually lassos with several repetitions occur with rather low probability.

5 Conclusion and Discussion

We presented IMC2, a sample-based algorithm for proving language non-inclusion
between Büchi automata. Experimental evaluation showed that IMC2 is very
fast and reliable in finding such witnesses, by sampling them in many cases
where traditional structure-based algorithms fail or take too long to complete
the analysis. We believe that IMC2 is a very good technique to disprove L(A) ⊆
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L(B) and complements well the existing techniques for checking Büchi automata
language inclusion. As future work, our algorithm can be applied to scenarios like
black-box testing and PAC learning [3], in which inclusion provers are either not
applicable in practice or not strictly needed. A uniform word sampling algorithm
was proposed in [5] for concurrent systems with multiple components. We believe
that extending our sampling algorithms to concurrent systems with multiple
components is worthy of study.
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