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Preface

This volume contains the papers presented at the 18th International Symposium on
Automated Technology for Verification and Analysis (ATVA 2020) held in Hanoi,
Vietnam, during October 19–23, 2020.

The ATVA series of symposia is dedicated to promoting research in theoretical and
practical aspects of automated analysis, verification, and synthesis by providing an
international venue for the researchers to present new results. At the same time, they
provide a forum for interaction between the regional and international research com-
munities and industry in the field.

ATVA 2020 received 75 full paper submissions coauthored by researchers from 29
countries. Each submission was reviewed by at least three Program Committee (PC)
members with the help from reviewers outside the PC. After 10 days of online dis-
cussions, the committee decided to accept 32 papers for presentation at the conference.

We would like to express our gratitude to all the researchers who submitted their
work to the symposium. We are particularly thankful to all colleagues who served on
the PC, as well as the external reviewers, whose hard work in the review process helped
us prepare the conference program. The international diversity of the PC as well as
external reviewers is noteworthy as well: PC members and external reviewers have
affiliations with institutes in 20 countries.

Special thanks go to the three invited speakers – Tobias Nipkow, from TU Munich,
Germany; Klaus Havelund, from CalTech and NASA JPL, USA; and David Dill, from
Stanford University, USA. The papers of the two first invited talks are included in this
volume.

A number of colleagues have worked very hard to make this conference a success.
We wish to express our thanks to the Local Organizing Committee: Hung Pham Ngoc,
Hieu Vo Dinh, and many student volunteers. We would also like to thank the
University of Engineering and Technology of the Vietnam National University, Hanoi,
Vietnam, the host of the conference, who provided various support and facilities for
organizing the conference and its tutorials. Finally, we are thankful for the institutional
and financial support from Vingroup Innovation Foundation (VINIF) and Toshiba
Software Development in Vietnam (TSDV).

The conference program was prepared with the help of EasyChair. We thank
Springer for continuing to publish the conference proceedings.

October 2020 Dang Van Hung
Oleg Sokolsky
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First-Order Timed Runtime Verification
Using BDDs

Klaus Havelund1(B) and Doron Peled2(B)

1 Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
klaus.havelund@jpl.nasa.gov

2 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
doron.peled@gmail.com

Abstract. Runtime Verification (RV) expedites the analyses of execution traces
for detecting system errors and for statistical and quality analysis. Having started
modestly, with checking temporal properties that are based on propositional
(yes/no) values, the current practice of RV often involves properties that are
parameterized by the data observed in the input trace. The specifications are
based on various formalisms, such as automata, temporal logics, rule systems
and stream processing. Checking execution traces that are data intensive against
a specification that requires strong dependencies between the data poses a non-
trivial challenge; in particular if runtime verification has to be performed online,
where many events that carry data appear within small time proximities. Towards
achieving this goal, we recently suggested to represent relations over the observed
data values as BDDs, where data elements are enumerated and then converted into
bit vectors. We extend here the capabilities of BDD-based RV with the ability to
express timing constraints, where the monitored events include clock values. We
show how to efficiently operate on BDDs that represent both relations on (enu-
merations of) values and time dependencies. We demonstrate our algorithm with
an efficient implementation and provide experimental results.

1 Introduction

Runtime verification provides techniques for monitoring system executions, online and
offline, against a formal specification. The monitored system is instrumented to report
to the monitor on the occurrence of relevant events that may also include related data
values. The monitor observes the input events and keeps some internal summary of
the prefix of the execution observed so far, which allows computing whether an evi-
dence for a violation of the specification is already available. RV can complement the
use of testing and verification techniques during the system development, e.g. by per-
forming offline log file analysis. It can also be used online as part of protecting a sys-
tem against an unwanted situation and averting it [26]. This is particularly important in

The research performed by the first author was carried out at Jet Propulsion Laboratory, Califor-
nia Institute of Technology, under a contract with the National Aeronautics and Space Admin-
istration. The research performed by the second author was partially funded by Israeli Science
Foundation grant 1464/18: “Efficient Runtime Verification for Systems with Lots of Data and its
Applications”.

c© Springer Nature Switzerland AG 2020
D. V. Hung and O. Sokolsky (Eds.): ATVA 2020, LNCS 12302, pp. 3–24, 2020.
https://doi.org/10.1007/978-3-030-59152-6_1
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4 K. Havelund and D. Peled

safety-critical systems such as aerospace systems, transportation systems, power plants,
and medicine.

One main challenge in applying RV is to increase the scope of the properties that can
be monitored. The goal is to provide algorithms for monitoring richer, and yet succinct
specification formalisms while ensuring that the algorithms are efficient enough to catch
up with the speed of information arrival; especially if we want to apply them online. We
recently suggested to use BDDs [11,12] to represent relations between data elements
that appear during the execution. We extend this approach and present here a BDD-
based algorithm for full first-order linear temporal logic with time constraints. Consider
the following property (the syntax and semantics will be described later).

(close → Popen) (1)

It expresses that when close happens, open must have already happened (P stands for
previously). To monitor this property, it is enough to remember if open was reported
to the monitor so that it can be checked when close is reported. The classical algo-
rithm [23] keeps two sets of Boolean variables, pre and now, in the summary, for
the previous and the current value of each subformula, respectively. These variables
are updated every time a new event is reported. For example, for the property Popen
(open has happened in the past), we keep pre(Popen) and now(Popen) and update
now(Popen) := now(open)∨pre(Popen), where now(open) is true if open holds in the
most recent event. An example of a first-order temporal specification is the following.

∀ f (close( f ) → Popen( f )) (2)

It asserts that every file that is closed was opened before. Here, we need to keep in the
summary a set of all the opened files so that we can compare them to the closing of files.
In general, the summary in this case extends the one used for the propositional case by
keeping for each subformula the set of assignments, essentially a relation between the
values assigned to the free variables that satisfy it: pre for the prefix without the last
event, and now for the current prefix. These sets can be updated using database oper-
ations between relations, corresponding to the Boolean operations in the propositional
case.

An extension of the logic, in another dimension, allows the properties to refer to the
progress of time. The reported events appear with some integer timing value. We do not
assume that the system reports to the monitoring program in each time unit or that only
a single event occurs within a time unit. We also leave open the unit of measurement
for time values (seconds, minutes, etc.). An example of such a specification is

∀ f (closed( f ) → P≤20 open( f )) (3)

which asserts that every file f that is closed was opened not longer than 20 time units
before.

An RV algorithm for first-order LTL was presented in [7], and implemented in the
MonPoly tool, based on two alternative approaches: one allows unrestricted negation and
the relations are represented as regular sets and, subsequently, automata [25]; another
one with restricted negation in which relations are represented explicitly and are sub-
jected to database operators (e.g., join). In [7], an RV algorithm for first-order temporal
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logic with time constraints was presented. In [19], an algorithm that performs RV on
first-order logic using BDDs was suggested and a related tool was constructed. BDDs
are directed acyclic graphs that can often achieve a very compact representation of
Boolean functions. In this context, a BDD represents the relationship between values of
free variables that satisfy a given subformula in the summary. In that work, instead of
representing the data values themselves, enumerations of these values were used. This
allows a relatively short representation of big data values and using BDDs over a rel-
atively small number of bits. It helps obtaining a good compactness for the BDDs due
to common patterns in adjacent enumerations. The algorithm for the first-order logic is
simple and quite similar to the propositional algorithm. Using a special reserved value
to represent all the values that were not seen before allows the algorithm to easily deal
with unconstrained negation.

In this work, we build upon this latter BDD-based construction and extend it to
include in the temporal logic also timing constraints. This includes adapting the RV
algorithm to reflect the timing constraints and extending the BDD representation to rep-
resent timing information as well as data values. We do this while keeping the summary
compact and easy to update using BDD operations. We show how to perform updates on
relations over both (enumerations of) data values and timing values, including Boolean
and simple arithmetical operations. This is quite a nontrivial use of BDDs, applied to
the context of runtime verification. Albeit the mixed use of the BDD representation and
the addition of timing constraints, we manage to keep the basic algorithm similar to
the propositional one. We follow the theory with an implementation that extends that
of [19] and present experimental results.

Related Work. RV over propositional logic with timing constraints appears in [10,33].
In [16], an RV algorithm for propositional LTL that returns optimal (minimal or max-
imal) values that make the specification correct with respect to the observed trace
was presented. Other work on data-centric runtime verification include the systems
based on trace slicing, where data values are mapped to copies of propositional
automata [1,29,31], formula rewriting [5,17], and rule-based monitoring [4,6,18], tree-
automata [3] and SMT solving [13]. Applying arithmetic operations to sets of values,
represented using BDD appeared in [14].

2 Propositional Past LTL with Timing

RV is often restricted to monitoring executions against specification properties that con-
tain only the past modalities [27], where it is implicitly assumed that the specification
needs to hold for all the prefixes of the execution1. These properties correspond to tem-
poral safety properties [2], where a failure can always be detected on a finite prefix as
soon as it occurs [10]. Expressing safety properties in this form allows an efficient run-
time verification algorithm that is only polynomial in the size of the specification [23].
The syntax of propositional past timed linear temporal logic is as follows:

ϕ ::= true | p |(ϕ∧ϕ) |¬ϕ |(ϕSϕ) |(ϕS≤δϕ) |(ϕZ≤δϕ) |(ϕS>δϕ) | �ϕ
1 This is equivalent to saying that the specification is of the form �ϕ, where ϕ contains only
past modalities; we omit here the implied �, which is a future modality.
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where p is a proposition from a finite set of propositions P, with S standing for since,
and � standing for previous-time. The formula (ϕSψ) has the standard interpretation
that ψ must be true in the past and ϕ must be true since then. The formula �ϕ is true
in the current state if ϕ is true in the previous state. The formula (ϕS≤δψ) has the same
meaning as (ϕSψ), except that ψ must have occurred within δ time units. The formula
ϕZ≤δψ is similar to ϕS≤δψ, except that it requires ψ to be satisfied in the past; it is not
sufficient if ψ is satisfied in the current state. Finally, (ϕS>δψ) has the same meaning as
(ϕSψ), except that ψ must have occurred more than δ time units ago. One can also write
(ϕ∨ψ) instead of ¬(¬ϕ∧¬ψ), (ϕ → ψ) instead of (¬ϕ∨ψ), P ϕ (previous ϕ) instead
of (true S ϕ) and Hϕ (history ϕ) instead of ¬P¬ϕ. We also define P≤δϕ = (trueS≤δϕ),
P>δϕ = (trueS>δϕ),H≤δϕ = ¬P≤δ¬ϕ,H>δϕ = ¬P>δ¬ϕ, (ϕR≤δψ) = ¬(¬ϕS≤δ¬ψ)
and (ϕR>δψ) = ¬(¬ϕS>δ¬ψ).

LTL formulas are interpreted over executions ξ = 〈P,L,τ〉, where
– P is a finite set of propositions,
– L : N �→ 2P, where N are the positive integers,
– τ : N �→ N is a monotonic function (representing clock values). We may, but do not
have to, assume that τ(1) = 0.

We will refer to ξ(i) = 〈i,L(i),τ(i)〉 as the ith event in ξ, which satisfies the propositions
L(i) and occurs at time τ(i). The semantics is defined as follows:

– ξ, i |= true.
– ξ, i |= p if p ∈ L[i].
– ξ, i |= ¬ϕ if not ξ, i |= ϕ.
– ξ, i |= (ϕ∧ψ) if ξ, i |= ϕ and ξ, i |= ψ.
– ξ, i |= (ϕS ψ) if for some 1 ≤ j ≤ i, ξ, j |= ψ, and for all j < k ≤ i it holds that

ξ,k |= ϕ.
– ξ, i |= (ϕS≤δψ) if there exists some 1≤ j ≤ i, such that τ(i)−τ( j)≤ δ and ξ, j |= ψ,
and for all j < k ≤ i it holds that ξ,k |= ϕ.

– ξ, i |= (ϕZ≤δψ) if there exists some 1≤ j < i, such that τ(i)−τ( j)≤ δ and ξ, j |=ψ,
and for all j < k ≤ i it holds that ξ,k |= ϕ.

– ξ, i |= (ϕS>δψ) if there exists some 1≤ j < i, such that τ(i)−τ( j) > δ and ξ, j |=ψ,
and for all j < k ≤ i it holds that ξ,k |= ϕ.

– ξ, i |= �ϕ if i > 1 and ξ, i−1 |= ϕ.

We say that an execution ξ satisfies a property ϕ iff for every i, it holds that ξ, i |= ϕ.
Note that this is discrete time semantics. We also do not require that every time instance
must have a corresponding event. Thus, (ϕS ψ)means that ϕ has been holding for every
reported event since ψ held.

3 Runtime Verification for Propositional Past LTL

3.1 Algorithm for Propositional Past LTL Without Time Constraints

The dynamic programming algorithm for propositional past LTL without timing con-
straints described in [23] is based on the observation that the semantics of the past time
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formulas �ϕ and (ϕS ψ) in the current step i is defined in terms of the semantics in the
previous step i−1 of a subformula. The algorithm operates on a summary that includes
two vectors (arrays) of Boolean values indexed by subformulas: pre for the previous
observed prefix, which excludes the last seen event, and now for the current prefix,
which includes the last seen event. The algorithm is as follows.

1. Initially, for each subformula ϕ of the specification η, now(ϕ) := false.
2. Observe the next event2 〈i,L(i),τ(i)〉 as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ then

now(ϕ) is updated before now(ψ).
– now(p) := (p ∈ L(i)).
– now(true) := true.
– now((ϕ∧ψ)) := now(ϕ)∧now(ψ).
– now(¬ϕ) := ¬now(ϕ).
– now((ϕSψ)) := now(ψ)∨ (now(ϕ)∧pre((ϕSψ))).
– now(� ϕ) := pre(ϕ).

5. if now(η) = false then report “error”.
6. Goto step 2.

3.2 RV for Propositional Past LTL with Timing Constraints

We describe the additions to the algorithm in Sect. 3.1 for the subformulas that contain
timing constraints, i.e., (ϕS≤δψ), (ϕZ≤δψ) and (ϕS>δψ). For each of these subformu-
las, we add to the summary two integer variables τpre and τnow, which represent timers
that measure the time since a point that is relevant for calculating their truth value in
the current state. These variables are initialized to −1 and their values will be updated
based on the time difference Δ = τ(i)− τ(i−1) between the current event ξ(i) and the
previous one ξ(i−1).

The Propositional Algorithm for (ϕS≤δ ψ)
This subformula asserts that at position i in the trace, there is some earlier (or current)
position j, where τ(ei)−τ(e j)≤ δ and where (ϕSψ) started to hold, until and including
the current event. The summary needs to remember not only that ψ has happened and
ϕ kept holding since, but also to update the time duration that has passed. There can
be multiple such positions j where ψ held, but we only need to refer to the last (most
recent) such position j, since it has the smallest value, hence also the time constraint
will be the latest to expire.

The summary has the integer time variables τnow(ϕS≤δψ) and τpre(ϕS≤δψ), which
can have the values [−1 . . .δ]. This value is the distance from the most recent point
where (ϕSψ) started to hold within an interval of δ time units. The values from [0 . . .δ]
correspond to the case where pre/now(ϕS≤δψ) = true and −1 corresponds to the case
where pre/now(ϕS≤δψ) = false. The update rule for τnow(ϕS≤δψ) and now(ϕS≤δψ)
is as follows:
2 We ignore at this point the clock value component τ(i).
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if now(ψ) then τnow(ϕS≤δψ) := 0 [restart timer]
else if τpre(ϕS≤δψ) 
= −1 and now(ϕ) then [(ϕS≤δψ) continues to hold?]
if τpre(ϕS≤δψ)+Δ > δ then [distance too big?]

τnow(ϕS≤δψ) := −1 [(ϕS≤δψ) does not hold]
else τnow(ϕS≤δψ) := τpre(ϕS≤δψ)+Δ [update distance]

else τnow(ϕS≤δψ) := −1 ; [(ϕS≤δψ) does not hold]
now(ϕS≤δψ) := (τnow(ϕS≤δψ) 
= −1)

The Propositional Algorithm for (ϕZ≤δψ)
This subformula is similar to (ϕS≤δψ), but requires that ψ has happened in the past,
excluding the current time, and not more than δ time units in the past; if ψ holds now,
this is not sufficient for (ϕZ≤δψ) to hold. This modality is required to express properties
such as

∀ f open( f ) → ¬(trueZ≤20 open( f ))

which asserts that we have not witnessed two openings of the same file in proximity of
20 ticks or less. Note that the previous-time � operator does not help in expressing the
above property, since � refers to the previous event, which is not guaranteed to have
occurred exactly one clock tick earlier. The algorithm sets the timer to the distance from
the last event, if ϕ holds now, and ψ held in the previous event. Then it updates the timer
by adding Δ as long as ϕ continues to hold and we are within the time distance δ.

if now(ϕ) then
if pre(ψ) and Δ ≤ δ then τnow(ϕZ≤δψ) := Δ [initiate timer]
else
if τpre(ϕZ≤δψ) 
= −1 and τpre(ϕZ≤δψ)+Δ ≤ δ then [distance still OK?]

τnow(ϕZ≤δψ) := τpre(ϕZ≤δψ)+Δ [update distance]
else τnow(ϕZ≤δψ) := −1

else τnow(ϕZ≤δψ) := −1 ;
now(ϕZ≤δψ) := (τnow(ϕZ≤δψ) 
= −1)

The Propositional Algorithm for (ϕS>δψ)
We update τnow(ϕS>δψ), which is the current time distance to where (ϕSψ) (the
untimed version of the subformula) started to hold. We update it according to the
earliest (i.e., furthest in the past) occurrence where this held, since this is the larger
distance, hence the first to satisfy the timing constraint. If this occurrence becomes
irrelevant (since ϕ does not hold in the current prefix) then later observed occurrences
become irrelevant too. When this happens, we either zero the counter, in case that ψ
currently holds, or otherwide set it to −1 to signal that (ϕSψ) does not currently hold.
We restrict the counter to δ+1; any value that is bigger than that will result in the same
conclusion, and we want to keep that value small3. Now ϕS>δψ currently holds when
the value of this counter is bigger than δ.

3 In fact, when Δ > δ, we use δ+1 instead.
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if now(ϕ)∧ τpre(ϕS>δψ) ≥ 0 then
τnow(ϕS>δψ) :=min(τpre(ϕS>δψ)+Δ,δ+1)

else if now(ψ) then τnow(ϕS>δψ) := 0 [ restart counter ]
else τnow(ϕS>δψ) := −1 ; [(ϕS>δψ) does not hold]
now(ϕS>δψ) := (τpre(ϕS>δψ)> δ)

4 First-Order Past LTL

First-order past LTL allows quantification over the values of variables that appear as
parameters in the specification. In the context of RV, these values can appear within the
monitored events. For example, close( f ) indicating that f is being closed. We saw in
the introduction Property (2), which asserts that a file cannot be closed unless it was
opened before. A more refined specification requires that a file can be closed only if it
was opened before, but also has not been closed since:

∀ f (close( f ) −→ �(¬close( f )S open( f ))) (4)

An assignment over a set of variablesW maps each variable x ∈W to a value from its
associated domain. For example [x → 5,y → “abc”] is an assignment that maps x to 5
and y to “abc”. A predicate consists of a predicate name and a variable or a constant of
the same type4. E.g., if the predicate name p and the variable x are associated with the
domain of strings, then p(“gaga”), p(“lady”) and p(x) are predicates. The predicates G
with constant parameters are called ground predicates. A model, i.e., an execution (or a
trace), ξ is a pair 〈L,τ〉, where
1. L : N �→ 2G, and
2. τ : N �→ N is a monotonic function representing integer clock values.

An event in ξ is a triple ξ(i) = 〈i,L(i),τ(i)〉 for i ≥ 1.

4.1 Syntax

As in the propositional case, we restrict ourselves to safety properties, hence introduce
only the past modalities.

ϕ ::= true | p(a) | p(x) | (ϕ∧ϕ) |¬ϕ | (ϕSϕ) | (ϕS≤δϕ) | (ϕZ≤δϕ) | (ϕS>δϕ) | �ϕ | ∃x ϕ

We can also define ∀xϕ as ¬∃¬ϕ, and all the additional operators defined for the propo-
sitional case in Sect. 2.

4 For simplicity of the presentation, but without restricting the algorithms or the implementa-
tion, we present here only unary predicates.
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4.2 Semantics

Let free(ϕ) be the set of free, i.e., unquantified, variables of subformula ϕ. Let γ [x �→ a]
be an assignment that agrees with the assignment γ, except for the binding x �→ a. Then
γ,ξ, i |= ϕ, where γ is an assignment that contains free(ϕ), and i ≥ 1, is defined as
follows:

– γ,ξ, i |= true.
– γ,ξ, i |= p(a) if p(a) ∈ L(i).
– γ[x �→ a],ξ, i |= p(x) if p(a) ∈ L[i].
– γ,ξ, i |= (ϕ∧ψ) if γ,ξ, i |= ϕ and γ,ξ, i |= ψ.
– γ,ξ, i |= ¬ϕ if not γ,ξ, i |= ϕ.
– γ,ξ, i |= (ϕS ψ) if there exists some 1 ≤ j ≤ i, such that γ,ξ, j |= ψ and and for all

j < k ≤ i it holds that γ,ξ,k |= ϕ.
– γ,ξ, i |= (ϕ S≤δ ψ) if there exists some 1 ≤ j ≤ i, such that τ(i)− τ( j) ≤ δ and

γ,ξ, j |= ψ, and for all j < k ≤ i it holds that γ,ξ,k |= ϕ.
– γ,ξ, i |=(ϕZ≤δψ) if there exists some 1≤ j < i, such that τ(i)−τ( j)≤ δ and γ,ξ, j |=

ψ, and for all j < k ≤ i it holds that γ,ξ,k |= ϕ.
– γ,ξ, i |=(ϕS>δψ) if there exists some 1≤ j < i, such that τ(i)−τ( j)> δ and γ,ξ, j |=

ψ, and for all j < k ≤ i it holds that γ,ξ,k |= ϕ.
– γ,ξ, i |= �ϕ if i> 1 and γ,ξ, i−1 |= ϕ.
– γ,ξ, i |= ∃x ϕ if there exists a ∈ domain(x) such that γ[x �→ a],ξ, i |= ϕ.

We write ξ |= ϕ for a formula ϕ without free variables when ε,ξ, i |= ϕ for each i, where
ε is the empty assignment.

5 RV for First-Order Past LTL Using BDDs

We describe an algorithm for monitoring first-order past LTL properties with time con-
straints. The untimed version and an implementation of it was presented in [19].

5.1 RV for First-Order Past LTL Without Time Constraints Using BDDs

For the purpose of self containment, we first present the RV algorithm for the first-order
past LTL without timing constraints, as presented in [19]. Then, in the next section we
will show how to expand this into the logic with time constraints.

Using BDDs to Represent Relations
Our algorithm is based on representing relations between data elements (and, as we
discuss later, timers, which are small integers) using Ordered Binary Decision Diagrams
(OBDD, although we write simply BDD) [11]. A BDD is a compact representation for
a Boolean valued function as a directed acyclic graph (DAG), see, e.g., Figs. 1 and 2.

A BDD is obtained from a tree that represents a Boolean formula with some Boolean
variables x1 . . .xk by gluing together isomorphic subtrees. Each non-leaf node is labeled
with one of the Boolean variables. A non-leaf node xi is the source of two arrows leading
to other nodes. A dotted-line arrow represents that xi has the Boolean value false (i.e.,
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0), while a thick-line arrow represents that it has the value true (i.e., 1). The nodes in the
DAG have the same order along all paths from the root (hence the letter ‘O’ in OBDD).
However, some of the nodes may be absent along some paths, when the result of the
Boolean function does not depend on the value of the corresponding Boolean variable.
Each path leads to a leaf node that is marked by either true or false, corresponding to
the Boolean value returned by the function for the Boolean values on the path.

A Boolean function, and consequently a BDD, can represent a set of integer values
as follows. Each integer value is, in turn, represented using a bit vector: a vector of bits
x1 . . .xk represents the integer value x1 × 1+x2 × 2+ . . .xk × 2k, where the bit value of
xi is 1 for true and 0 for false and where x1 is the least significant bit, and xk is the most
significant. For example, the integer 6 can be represented as the bit vector 110 (the most
significant bit appears to the left) using the bits x1 = 0, x2 = 1 and x3 = 1. To represent
a set of integers, the BDD returns true for any combination of bits that represent an
integer in the set. For example, to represent the set {4,6}, we first convert 4 and 6
into the bit vectors 100 and 110, respectively. The Boolean function over x1,x2,x3 is
(¬x1 ∧ x3), which returns true exactly for these two bit vector combinations.

This can be extended to represent relations, or, equivalently, a set of tuples over
integers. The Boolean variables are partitioned into n bitstrings x1 = x11, . . . ,x

1
k1
, xn =

xn1, . . . ,x
n
kn
, each representing an integer number, forming the bit string5:

x11, . . . ,x
1
k1 , . . . ,x

n
1, . . . ,x

n
kn .

Using BDDs over Enumerations of Values

The summary for the first-order RV algorithm without timing constraints consists of
BDDs pre(ϕ) and now(ϕ) for all subformulas of the monitored property. In the propo-
sitional case, these summary elements have Boolean values. For the first-order case,
each summary element for a subformula ϕ is conceptually a relation between values of
the free variables in ϕ. However, instead of representing these values directly, accord-
ing to their different domains (e.g., integers, strings), these relations are represented as
BDDs over the enumerations of values, and not directly over the values themselves.

During RV, when a value (associated with a variable in the specification) appears
for the first time in an observed event, we assign to it a new enumeration. Values can
be assigned consecutive enumeration values; however, a refined algorithm can reuse
enumerations that were used for values that can no longer affect the verdict of the RV
process, see [21]. We use a hash table to point from the value to its enumeration so
that in subsequent appearances of this value the same enumeration will be used. For
example, if the runtime verifier sees the input events open(a), open(b), open(c), it may
encode them as the bit vectors 000, 001 and 010, respectively.

The described results in several advantages:

1. It allows a shorter representation of very big values in the BDDs; the values are
compacted into a smaller number of bits. Furthermore, if a big data value occurs
multiple times, we avoid representing that big value multiple times in the BDDs.

5 In the implementation the same number of bits are used for all variables: k1 = k2 = . . . = kn.
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2. It contributes to the compactness of the BDDs because enumerations of values that
are not far apart often share large bit patterns.

3. The first-order RV algorithm is simple and very similar to the propositional algo-
rithm; the Boolean operators over summary elements: conjunction, disjunction and
negation, are replaced by the same operators over BDDs. This also simplifies the
implementation.

4. Given an efficient BDD package, the implementation can be very efficient. On can
also migrate between BDD packages.

5. Full use of negation also follows easily.

Example 1 - BDDs without Time

As an example consider the following formula concerning the correctness of command
execution. It states that for all commands m, if the command succeeds execution, then
there must have been a dispatch of that command in the past with some priority p, and
no failure since the dispatch:

∀m(suc(m) → ∃p(¬fail(m) S dis(m, p))) (5)

Let us apply this property to the first two events of the following trace, where each
event includes a single ground predicate. It consists of the dispatch of two commands,
sending of telemetry data and success of the two commands:

〈dis(stop,1),dis(off ,2), tel(speed,2),suc(stop),suc(off )〉 (6)

We shall now focus on the current assignments to the free variables m and p satisfying
the subformula ϕ = ¬fail(m) S dis(m, p), represented as a BDD. After the first event
dis(stop,1) this BDD corresponds to the assignment [m �→ stop, p �→ 1]. The algorithm
(to be shown below) will for each variable enumerate the data observed in events, in this
case6, assume that stop gets enumerated as 6 (binary 110) and 1 also gets enumerated as
6 (binary 110) (note that values for different variables get enumerated individually, and
therefore can be mapped to the same enumerations). This mapping is recorded in the
hash map for each variable from values to enumerations. Say we represent the enumera-
tion for the value of each of the variablesm and p using three bits:m1m2m3 and p1p2p3,
with m1 and p1 being the least significant bits. The assignment [m �→ stop, p �→ 1] will
then be represented by a BDD which accepts the bit vector m1m2m3p1p2p3 = 011011.
This BDD is shown in Fig. 1a. The BDD has 6 nodes, named 0, . . . ,5. The nodes 0,
1 and 2 represent m1m2m3, and the nodes 3, 4 and 5 represent p1p2p3. Following the
arrows from node 0 on the top to the leaf node 1 (true) at the bottom, we indeed see the
binary pattern 011011 (dotted-line arrows = 0 and thick-line arrows = 1).

Consider now the second event dis(off ,2). Here off gets enumerated as 5 (binary
101), just as 2 gets enumerated as 5 (binary 101) - again, variables get enumerated
individually. The BDD in Fig. 1b represents the set of assignments: {[m �→ stop, p �→
1], [m �→ off , p �→ 2]}. The BDD is the union of the BDD in Fig. 1a and a BDD repre-
senting the path 101101.

6 The example BDDs are generated by our tool.
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(a) BDD after first event.
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(b) BDD after second event.

Fig. 1. The BDDs for the formula (¬fail(m) S dis(m, p)) after the first event and after the second
event.

The BDD-based Algorithm for First-order Past LTL

We use a hash table to map values to their enumerations. When a ground predicate p(a)
occurs in the execution matching with p(x) in the monitored property, the procedure
lookup(x,a) is used to return the enumeration of a: it checks if a is already hashed. If
not, i.e., this is a’s first occurrence, then it will be hashed and assigned a new enumera-
tion that will be returned by lookup. Otherwise, lookup returns the value hashed under
a, which is the enumeration that a received before. A better compactness is achieved
where each value is hashed separately for each variable x that matches it in the specifi-
cation formula, hence lookup(x,a) is not necessarily the same as lookup(y,a).

We can use a counter for each variable x, counting the number of different values
appearing so far for x. When a new value appears, this counter is incremented and the
value is converted to a Boolean representation (a bit vector). Note, however, that any
enumeration scheme is possible, as shown in Example 1 above.

The function build(x,A) returns a BDD that represents the set of assignments where
x is mapped to (the enumeration of) v for v ∈ A. This BDD is independent of the val-
ues assigned to any variable other than x, i.e., they can have any value. For example,
assume that we use three Boolean variables (bits) x1, x2 and x3 for representing enu-
merations over x (with x1 being the least significant bit), and assume that A = {a,b},
lookup(x,a) = 001, and lookup(x,b) = 011. Then build(x,A) is a BDD representation
of the Boolean function x1 ∧¬x3.

Intersection and union of sets of assignments are translated simply to conjunc-
tion and disjunction of their BDD representation, respectively, and complementation
becomes BDD negation. We will denote the Boolean BDD operators for conjunction,
disjunction and negation as

∧
,
∨

and ¬ (confusion should be avoided with the corre-
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sponding operations applying on propositions). To implement the existential (universal,
respectively) operators, we use the BDD existential (universal, respectively) operators
over the Boolean variables that represent (the enumerations of) the values of x. Thus,
if Bϕ is the BDD representing the assignments satisfying ϕ in the current state of the
monitor, then ∃x1, . . . ,xk(Bϕ) is the BDD that is obtained by applying the BDD exis-
tential quantification repeatedly on the BDD variables x1 . . . ,xk. Finally, BDD(⊥) and
BDD(�) are the BDDs that return uniformally false or true, respectively.

The dynamic programming algorithm, shown below, works similarly to the algo-
rithm for the propositional case shown in Sect. 3. That is, it operates on two vectors
(arrays) of values indexed by subformulas: pre for the state before the last event, and
now for the current state after the last event. However, while in the propositional case
the vectors contain Boolean values, in the first-order case they contain BDDs.

1. Initially, for each subformula ϕ of the specification η, now(ϕ) := BDD(⊥).
2. Observe a new event (as a set of ground predicates) s as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ϕ is a subformula of ψ then

now(ϕ) is updated before now(ψ).
– now(true) := BDD(�).
– now(p(a)) := if p(a) ∈ s then BDD(�) else BDD(⊥).
– now(p(x)) := build(x,A) where A= {a | p(a) ∈ s}.
– now((ϕ∧ψ)) := now(ϕ)

∧
now(ψ).

– now(¬ϕ) := ¬now(ϕ).
– now((ϕ S ψ)) := now(ψ)

∨
(now(ϕ)

∧
pre((ϕSψ))).

– now(� ϕ) := pre(ϕ).
– now(∃x ϕ) := ∃x1, . . . ,xk now(ϕ).

5. if now(η) = BDD(⊥) then report “error”.
6. Goto step 2.

An important component of the algorithm is that, at any point during monitoring, enu-
merations that are not used in the pre and now BDDs represent all values that have not
been seen so far in the input events. We specifically reserve one enumeration, with bit
vector value of 11 . . .11 (i.e., all ones), to represent all values not seen yet. This trick
allows us to use a finite representation and quantify existentially and universally over all
values in infinite domains while allowing unrestricted use of negation in the temporal
specification.

5.2 The BDD-based Algorithm for First-Order Past LTL with Time Constraints

We describe now changes to the algorithm in Sect. 5.1 for handling the subformulas
with the timing constraints (ϕS≤δψ), (ϕZ≤δψ) and (ϕS>δψ).

BDDs Representing Relations Over Data and Time

Analogously to the propositional case, in the first-order case we need to add to the
summary, for subformulas with timing constraints, in addition to the BDDs for pre(ϕ)
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and now(ϕ), also BDDs of the time τpre(ϕ) and τnow(ϕ). These BDDs contain the
relevant time that has passed that is needed in order to check the timing constraint.

Each assignment or tuple in such a BDD is over some number of data data variables
x1 . . .xn and, in adddition, a timing variable t, forming the BDD bits:

x11, . . . ,x
1
k , . . . ,x

n
1, . . . ,x

n
k , t1, . . . , tm

These integer values are, either,

1. enumerations of data values, for each xi, as explained above, or
2. the time t that has passed since the event that causes the tuple of data values to be

included.

In order to keep the representation finite and small, 2δ+1 is used as the limit on t. That
is, after we update t, we compare it against δ. When t goes beyond δ we can store just
δ+1 since we just need to know that it passed δ. During computation, when we observe
a Δ that is bigger than δ, we cut it down to δ+1 for the same reason, before we add to
t. Finally, since adding Δ = δ+ 1 to a t ≤ δ gives max 2δ+ 1, then this is the biggest
number we need to store in a BDD. Consequently, the number of bits needed to store
time is log2(2δ+1).

Example 2 - BDDs with Time
We add a timing constraint to the formula (5) in Example 1, stating that when a com-
mand succeeds it must have been dispatched in the past within 3 time units:

∀m(suc(m) → ∃p(¬fail(m) S≤3 dis(m, p))) (7)

Let us apply this property to the first two events of the following trace, which is the
trace (6) from Example 1, augmented with clock values following @-signs. We keep
the time constraint and clock values small and consecutive, to keep the BDD small for
presentation purposes:

〈dis(stop,1)@1,dis(off ,2)@2, tel(speed,2)@3,suc(stop)@4,suc(off )@5〉 (8)

The BDD for the subformula ϕ =¬fail(m) S≤3 dis(m, p) at the third event tel(speed,2),
shown in Fig. 2, reflects that two (010 in binary) time units have passed since dis(stop,1)
occurred, and one time unit (001 in binary) has passed since dis(off ,2) has occurred.
The BDD is effectively an augmentation of the BDD in Fig. 1b, with the additional three
nodes 6, 7, and 8, representing respectively the bits t1, t2, and t3 for the timer value, with
t1 (node 6) being the least significant bit.

BDD Update Operators on Relations Over Data and Time Constraints
When a new event occurs, depending on the type of the subformula with timing con-
straint, we need to update the timers in τnow that count the time that has passed since
a tuple of values has entered. Subsequently, τpre will be updated when the next event
will occur. The difference between the clock value of the current event and the clock
value of the previous one is Δ, and the timer is incremented, as explained above, by
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Fig. 2. The BDD for the formula (¬fail(m) S≤3 dis(m, p)) at the third event.

min(Δ,δ+1). We also need to be able to check whether after adding Δ, the value of the
time difference exceeds the time constraint δ.

Abstractly, given a relation R over data elements and time values, we need to con-
struct two relations7:

– R+Δ = {(x1, . . . ,xn, t+Δ)|(x1, . . . ,xn, t) ∈ R}. This can be done by
1. Constructing a relation T = {(t, t ′) | t ≥ 0∧ t ′ = t+Δ}.
2. Taking the join of R and T . The join is basically the tuples that agree on the

values of their common variables.
3. Projecting out the (old) t values, and then renaming the (new) t ′ values as t.

– R > δ = {(x1, . . . ,xn, t) ∈ R | t > δ}. This can by done by
1. Constructing Tδ = {t | t > δ}.
2. Taking the join between R and Tδ.

We show now how to translate these set operators into BDDs. For R+Δ, we construct
a Boolean formula addconst(t, t ′,Δ) that expresses relation T between the Boolean
variables of t and t ′. For R > δ, we construct a Boolean formula gtconst(t,δ) that cor-
responds to Tδ. These formulas are translated to BDDs. Then, taking the join of two
BDDs is done by first completing the two BDDs to be over the same bits; since the
BDDs are independent of the missing bits, this is trivial, keeping the same BDD struc-
ture. Then the intersection between these BDDs is obtained via the BDD conjunction
(
∧
) operator.

7 Recall that all values are restricted to 2δ+1 and if Δ > δ, then δ+1 is used instead of Δ.
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The Boolean formula addconst. The Boolean formula addconst(t, t ′,Δ) is satisfied by
a pair of integer values t and t ′, represented as the bit vectors t1 . . . tm and t ′1, . . . , t

′
m,

respectively, when t ′ = t+Δ. The integer constant Δ is represented using the bit vector
Δ1 . . .Δm. The formula uses the additional bits r1, . . . ,rm, where ri is the carry-over
from the ith bits, according to Binary addition. This allows presenting the formula in
an intuitive way, following standard binary addition and in obtaining a formula that
is linear in the number of bits. When translating the formula to a BDD, existential
quantification is applied to remove the Boolean variables r1, . . . ,rm.

addconst(t, t ′,Δ) = ∧1≤i≤m (t ′i ↔ (ti ⊕Δi ⊕ ri))
where r1 = false,

for 1 ≤ i< m: ri+1 = ((ri ∧ (ti ∨Δi))∨ (¬ri ∧ ti ∧Δi))

The formula gtconst. The formula gtconst(t,δ) is true when t is bigger than δ. Both
t and δ are integers represented as bit vectors t1 . . . tm and δ1 . . .δm, respectively. This
holds when there is an index 1 ≤ i ≤ m such that ti = 1 (true) and δi = 0 (false),
and where for m ≥ j > i, t j = δ j. When translating the formula to a BDD, existential
quantification is applied to the Boolean variables r0, . . . ,rm, which are used to propagate
the check from the least to the most significant bit.

gtconst(t,δ) = rm
where r0 = false,

for 1 ≤ i ≤ m: ri = ((ti ∧¬δi)∨ ((ti ↔ δi)∧ ri−1))

We describe now the additions required in Step 4 of the algorithm presented in Sect. 5.1.

The First-order Algorithm for (ϕ S≤δ ψ)
The BDDs pre/now(ϕS≤δψ) generalize the Boolean summaries for the propositional
past LTL, by representing enumerations of the values of the free variables that satisfy
this subformula, e.g., with the bits x11, . . . ,x

n
k . The BDDs τpre/τnow(ϕS≤δψ) relate the

values of the free variables that satisfy this subformula with the timer values that keep
the time elapsed since the point where the values of the free variables were observed.

Generalizing from the propositional case, we need to compare and update timing
values per each assignment to the free variables of a subformula (ϕS≤δψ). An example
is the assignments (tuples) {[x �→ me, y �→ 72, t �→ 6], [x �→ you, y �→ 62, t �→ 9]} for
the subformula (ϕS≤δψ), where t is assigned to the time units that has elapsed. We
represent that using BDDs, where the values for x and y follow the previous conventions,
with the bits x1 . . .xk and y1 . . .yk encoding the enumerations for the values for x and y,
respectively, and the bits t1, . . . , tm that represent the time passed since their introduction.

We will also use the following BDD constructions: rename(B, x, y) renames the
bits x1 . . .xk in the BDD B as y1 . . .yk and BDD0(x) is a BDD where all the xi bits are a
constant 0, representing the Boolean expression ¬x1 ∧ . . .∧¬xk.

The update of the BDD τnow(ϕS≤δψ) is similar to the updates of the if statements in
the propositional case, applied to all the values of the free variables of this subformula
and uses the BDD constructed from the formula gtconst. While in the propositional case
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we kept the values [−1,0, . . . ,δ], with−1 representing false, here we need only keep the
assignments for the free variables of the subformula that correspond to [0 . . .δ]. Tuples
of variable values that do not satisfy the time constraint are simply not represented by
the BDD. This simplifies the formalization.

τnow(ϕS≤δψ) := (now(ψ)
∧
BDD0(t))

∨
(¬now(ψ)∧now(ϕ)

∧

rename(∃t1 . . . tm (addconst(t, t ′,Δ)
∧¬gtconst(t ′,δ)∧τpre(ϕS≤δψ)), t ′, t)) ;

now(ϕS≤δψ) := ∃t1 . . . tm τnow(ϕS≤δψ)

That is, either ψ holds now and we reset the timer t to 0, or ψ does not hold now but
ϕ does, and the previous t value is determined by τpre(ϕS≤δψ), to which we add Δ,
giving t ′, which must not be greater than δ. Then t is removed by quantifying over it,
and t ′ renamed to t (t ′ becomes the new t). The BDD for now(ϕS≤δψ) is obtained from
τnow(ϕS≤δψ) by projecting out the timer value.

Note that the Boolean operators
∧
and

∨
on BDDs represent join and cojoin, respec-

tively. This means that before the operator is applied, its two parameters are extended
to have the same BDD variable bits (where the missing bits are assigned to all possible
combinations).

The First-Order Algorithm for (ϕ Z≤δ ψ)

The update of the BDD now(ϕZ≤δψ) is, conceptually, similar case-wise to the updates
of the if statements of the propositional case, applied to all the values of the free vari-
ables of this formula.

τnow(ϕZ≤δψ) :=
now(ϕ)

∧

((pre(ψ)∧Δ ≤ δ∧EQUAL(t,Δ))
∨

(¬pre(ψ)∧
rename(∃t1 . . . tm (addconst(t, t ′,Δ)∧¬gtconst(t ′,δ)∧τpre(ϕZ≤δψ)), t ′, t)));

now(ϕZ≤δψ) := ∃t1 . . . tm τnow(ϕZ≤δψ)

Where EQUAL(t,c) = ∃z1 . . .zm (BDD0(z)∧addconst(z, t,c)), expressing that t is
equal to c by adding z = 0 to c to obtain t. The formula says that ϕ must hold now
and one of two cases must hold. In the first case, ψ holds in the previous state, Δ ≤ δ,
and t is initialized to Δ. In the second case, ψ does not hold in the previous state, and
(using the same procedure as for the previous subformula) the previous t value is deter-
mined by τpre(ϕZ≤δψ), to which we add Δ, giving t ′, which must not be greater than
δ. Then t is removed by quantifying over it, and t ′ renamed to t (t ′ becomes the new t).
Note that Δ ≤ δ is a Boolean condition, and, depending on its value, can be translated
into the BDD representing the constants true or false.

The First-Order Algorithm for (ϕS>δψ)

Monitoring the subformula (ϕS>δψ) is, conceptually, similar case-wise to the proposi-
tional case.



First-Order Timed Runtime Verification Using BDDs 19

τnow(ϕS>δψ) :=
(now(ψ)

∧
(¬pre(ϕS>δψ)

∨¬now(ϕ))∧BDD0(t))
∨

(now(ϕ)
∧
rename(previous, t ′, t))

where previous= ∃t1 . . . tm (τpre(ϕS>δψ)
∧
((¬gtconst(t,δ)∧addconst(t, t ′, Δ))

∨

(gtconst(t, δ)
∧
EQUAL(t ′,δ+1)));

now(ϕS>δψ) := ∃t1 . . . tm (τnow(ϕS>δψ)
∧
gtconst(t,δ))

When ψ currently holds and either ϕS>δψ did not hold in the previous state or ϕ does
not hold now, we reset the timer t to 0. When ϕ holds we compute t ′ using the where-
clause as follows and then rename it to t; t takes its value from τpre(ϕS>δψ), which
is calculated based on the previous step. This means that (ϕS>δψ) held in the previous
step. If t was then not greater than δ, we add Δ to t to obtain t ′. Otherwise (t was already
greater than δ), we set t ′ to δ+1 to reduce the size of the time values we have to store.

6 Implementation and Evaluation

6.1 Implementation

The DEJAVU tool, previously presented in [19] for the untimed case, was extended to
capture the extension of the first-order LTL logic with time. The DEJAVU tool assumes
that each state contains one8 ground predicate, called an event. The tool, programmed
in Scala, reads a specification containing one or more properties, and generates a Scala
program, which can be applied to a log file containing events9 in CSV (Comma Sepa-
rated Value) format. The generated monitor program produces a verdict (true or false)
for each event in the log, although only failures are reported to the user. It uses the
JavaBDD package [24] for generating and operating BDDs. As an example, consider
the property (7) from Example 2. The generated monitor uses an enumeration of the
subformulas of the original formula in order to evaluate the subformulas bottom up for
each new event. Figure 3 (right) shows the decomposition of the formula into subfor-
mulas (an Abstract Syntax Tree - AST), indexed by numbers from 0 to 8, satisfying the
invariant that if a formula ϕ1 is a subformula of a formula ϕ2 then ϕ1’s index is bigger
than ϕ2’s index. The evaluation function of the generated monitor (∼900 LOC in total),
which is applied for each event, is shown in Fig. 3 (left). In each step the evaluate func-
tion re-computes the now array from highest to lowest index, and returns true (ok) iff
now(0) is not BDD(⊥).

6.2 Evaluation

We have performed an evaluation of DEJAVU by verifying variants of the properties
shown in Fig. 4 on a set of traces of varying length and structure. Each property is ver-
ified with, and without, time constraints. The command property is the previously dis-
cussed property (7) in Example 2. The access property is similar to a property evaluated

8 This restriction from the theory and algorithm presented above is made because our experience
shows that this is by far the most common case.

9 The tool can also be applied for online monitoring with some small adjustments.
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Fig. 3.Monitor (left) and AST (right) for the property.

in [19]. It states that if a file f is accessed by a user u, then the user should have logged
in within 50 time units and not yet logged out, and the file should have been opened
within 50 time units and not yet closed. The next properties concern operations of the
Mars rover Curiosity [28]. The boots property concerns booting of instruments (passed
as event parameters). A boot is initiated by a boot-start and terminated by a boot-end.
The property states that for any instrument, we do not want to see a double boot (a
boot followed by a boot), where the boots last longer than 20 s, and where the distance
between the boots is less than 5 s. Finally, the mobraces and armraces properties fol-
low the same pattern but for two different constants. The mobraces property states that
during the execution of the command MOB PRM (a dispatch of the command followed
by the success of the command), which reports mobility parameters to ground; there
should be no error in radio transmission of telemetry to ground. In addition the com-
mand must succeed in no more than 5 s. The armraces property states the same for the
ARM PRM command that transmits robotic arm parameters to ground. These two last
properties in fact reflect a known (benign) race condition in the software of the Curios-
ity rover, caused when a thread servicing the radio is starved and generates the warning
tr err which indicates missing telemetry. This happens because the thread is preempted
by higher priority threads that are processing one of two commands MOB PRM and
ARM PRM.

Table 1 shows the results of the evaluation, performed on a Mac Pro laptop, running
the Mac OS X 10.14.6 operating system, with a 2.9GHz Intel Core i9 processor and
32 GB of memory. Each property is evaluated on one or more traces, numbered 1–
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Fig. 4. Evaluation properties.

15. Six of these traces are taken from [19] (traces nr. 1, 2, 3 and 7, 8, 9), and which
are very data heavy, requiring lots of data to be stored by the monitor. The remaining
traces require storing less information (and perhaps are more realistic). Traces 1–13
were generated for the experiment and are artificial, stress testing DEJAVU. Traces 14
and 15 are real logs of events reported by the Mars Curiosity rover, transmitted to JPL’s
ground operations (trace 14 is a prefix of the longer trace 15). For each trace is shown
length in number of events, depth in terms of how many data values must be stored by
the monitor, and whether it was verified without time constraints (no constr.) or with
time constraints. A depth for the ACCESS property of e.g. 5,000 can mean that there
at some point has been 5,000 users that have logged in and not yet logged out. Events
in the logs 1–12 have consecutive clock values 1, 2, 3, . . .. Resulting trace analysis
times are provided in minutes and seconds. In addition the factor of slowdown is shown
for verifying with time constraints compared to verification without time constraints
(execution time with constraints divided by execution time without constraints).

The interpretation of the results is as follows. By observing the factor numbers in the
rightmost column, it is clear that there is a cost to monitoring timed properties compared
to monitoring properties without time constraints. This holds for all traces. Furthermore,
the larger the time constraints, the more calculations the monitor has to perform on bit
strings representing time values. The performance of DEJAVU is acceptable for time
constraints that require no more than 7 bits of storage. We observed, however, that
going beyond 7 bits causes the monitor execution to become considerably slower. This
corresponds to time constraints beyond 63.5 (note that for a time constraint of δ one
needs log2(2δ+1) bits, see page page 13). The reason for this is not understood at the
time of writing, and remains to be explored.
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Table 1. Evaluation data. The factors (rightmost column) show how much slower verification of
formulas with time constraints are compared to the untimed version of those formulas.

Property Trace nr. Trace length Depth Time constraint Time Factor

COMMANDS 1 11,004 8,000 no constr. 1.0 s

50 1.8 s 1.8

2 110,004 80,000 no constr. 1.7 s

50 13.2 s 7.8

3 1,100,004 800,000 no constr. 9.3 s

50 2min 5.8 s 13.5

4 10,050 25 no constr. 0.7 s

50 1.0 s 1.4

5 100.050 25 no constr. 1.1 s

50 1.8 1.6

6 1,000,050 25 no constr. 2.6 s

50 5.9 s 2.3

ACCESS 7 11,006 5000 no constr. 0.9 s

50 3.7 s 4.1

8 110,006 50,000 no constr. 2.2 s

50 16.7 s 7.6

9 1,100,006 500,000 no constr. 15.2 s

50 3min 53.9 s 15.4

10 10.100 25 no constr. 0.8 s

50 1.7 s 2.1

11 100,100 25 no constr. 1.1s

50 8.4 s 7.6

12 1,000,100 25 no constr. 2.6 s

50 1min 15.9 s 29.2

BOOTS 13 10,012 low no constr. 0.2 s

2 0.4 s 2.0

20 0.8 s 4.0

50 5.1 s 25.5

60 7.2 s 36.0

MOB + ARM RACES 14 50,000 low no constr. 0.3 s

10 0.7 s 2.3

60 1.0 s 3.3

15 96,795 low no constr. 0.5 s

10 1.0 s 2.0

60 1.6 s 3.2

7 Conclusions

We extended the theory and implementation of runtime verification for first-order past
(i.e., safety) temporal logic from [19] to include timing constraints. The untimed algo-
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rithm was based on representing relations over data values using BDDs. The use of
BDDs over enumerations of the data values as integers, and subsequently, bit vec-
tors, allowed an efficient representation that was shown, through an implementation
and experiments, to allow the monitoring of large execution traces.

This was extended here to allow timing constraints, as in (ϕS≤δϕ), (ϕZ≤δϕ) and
(ϕS>δϕ), with each event in the input trace including an integer clock value. The addi-
tion of timing constraints was done by extending the BDDs to represent relations over
both enumeration of data and timer values. This required the use of nontrivial operations
over BDDs that allow updating relations while performing arithmetic operations on the
timer values. We extended the tool DEJAVU, and reported on some of the experimental
results performed with time constraints.
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23. Havelund, K., Roşu, G.: Synthesizing monitors for safety properties. In: Katoen, J.-P.,
Stevens, P. (eds.) TACAS 2002. LNCS, vol. 2280, pp. 342–356. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-46002-0 24

24. JavaBDD. http://javabdd.sourceforge.net
25. Henriksen, J.G.: Mona: monadic second-order logic in practice. In: Brinksma, E., Cleave-

land, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995. LNCS, vol. 1019,
pp. 89–110. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-60630-0 5

26. Könighofer, B.: Shield synthesis. Form. Methods Syst. Des. 51(2), 332–361 (2017)
27. Manna, Z., Pnueli, A.: Completing the temporal picture. Theor. Comput. Sci. 83, 91–130

(1991)
28. Mars Science Laboratory (MSL) mission website: http://mars.jpl.nasa.gov/msl
29. Meredith, P.O.,Jin, D., Griffith, D., Chen, F., Rosu, G.: An overview of the MOP runtime ver-

ification framework. Int. J. Softw. Tools Technol. Transfer 14(3), 249–289. Springer (2012).
https://doi.org/10.1007/s10009-011-0198-6

30. Peled, D., Havelund, K.: Refining the safety–liveness classification of temporal properties
according to monitorability. In: Margaria, T., Graf, S., Larsen, K.G. (eds.) Models, Mindsets,
Meta: The What, the How, and the Why Not?. LNCS, vol. 11200, pp. 218–234. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-22348-9 14

31. Reger, G., Cruz, H.C., Rydeheard, D.: MARQ: monitoring at Runtime with QEA. In: Baier,
C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 596–610. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46681-0 55
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Abstract. This article surveys the state of the art of verifying standard
textbook algorithms. We focus largely on the classic text by Cormen
et al. Both correctness and running time complexity are considered.

1 Introduction

Correctness proofs of algorithms are one of the main motivations for computer-
based theorem proving. This survey focuses on the verification (which for
us always means machine-checked) of textbook algorithms. Their often tricky
nature means that for the most part they are verified with interactive theorem
provers (ITPs).

We explicitly cover running time analyses of algorithms, but for reasons of
space only those analyses employing ITPs. The rich area of automatic resource
analysis (e.g. the work by Jan Hoffmann et al. [103,104]) is out of scope.

The following theorem provers appear in our survey and are listed here in
alphabetic order: ACL2 [111], Agda [31], Coq [25], HOL4 [181], Isabelle/HOL
[150,151], KeY [7], KIV [63], Minlog [21], Mizar [17], Nqthm [34], PVS [157],
Why3 [75] (which is primarily automatic). We always indicate which ITP was
used in a particular verification, unless it was Isabelle/HOL (which we abbreviate
to Isabelle from now on), which remains implicit. Some references to Isabelle
formalizations lead into the Archive of Formal Proofs (AFP) [1], an online library
of Isabelle proofs.

There are a number of algorithm verification frameworks built on top of
individual theorem provers. We describe some of them in the next section. The
rest of the article follows the structure and contents of the classic text by Cormen
et al. [49] (hereafter abbreviated by CLRS ) fairly closely while covering some
related material, too. Material present in CLRS but absent from this survey
usually means that we are not aware of a formalization in a theorem prover.

Because most theorem provers are built on a logic with some kind of func-
tional programming language as a sublanguage, many verifications we cite per-
tain to a functional version of the algorithm in question. Therefore we only
mention explicitly if a proof deals with an imperative algorithm.

It must be emphasized that this survey is biased by our perspective and covers
recent work by the authors in more depth. Moreover it is inevitably incomplete.
We encourage our readers to notify us of missing related work.
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2 Programming and Verification Frameworks

In this section we will describe how the various systems that appear in our survey
support program verification. The theorem provers ACL2, Agda, Coq, HOL,
Isabelle, Minlog, Nqthm and PVS are based on logics that subsume a functional
programming language. By default that is the language algorithms must be
formulated in. ACL2 and Nqthm are special in two regards: their logic contains
the programming language Lisp whereas the other theorem provers typically rely
on some sort of compiler into functional languages like SML, OCaml, Haskell,
Scala and even JavaScript; ACL2 also supports imperative features [35] directly.

KeY and KIV are primarily program verification systems but with inbuilt
provers. They support modular verification and stepwise refinement. KeY focuses
on the verification of Java programs, KIV on refinement and the automatic
generation of executable programs in multiple target languages.

Why3 also falls into the program verification category. It has its own pro-
gramming and specification language WhyML, which is mostly functional but
with mutable record fields and arrays. Verification conditions are discharged
by Why3 with the help of various automated and interactive theorem provers.
WhyML can be translated into OCaml but can also be used as an intermediate
language for the verification of C, Java, or Ada programs.

Mizar is the odd one out: it does not have any built-in notion of algorithm
and its proofs about algorithms are at an abstract mathematical level.

There are various approaches for algorithm verification. Two important cat-
egories are the following:

Explicit Programming Language (Deep Embedding). One can define
a programming language – functional or imperative – with a convenient set
of constructs, give it a formal semantics, and then express an algorithm as a
program in this language. Additionally, a cost model can be integrated into the
semantics to enable formal reasoning about running time or other resource use.
The actual analysis is then typically done with some sort of program logic (e.g.
a Hoare-style calculus). When embedded in a theorem prover, this approach is
often referred to as a deep embedding.

Directly in the Logic (No Embedding). As was mentioned before, many
ITPs offer functionality to define algorithms directly in the logic of the system
– usually functionally. This approach is more flexible since algorithms can use
the full expressiveness of the system’s logic and not only some fixed restricted
set of language constructs. One possible drawback of this approach is that it
can be difficult or even impossible to reason about notions such as running time
explicitly. A possible workaround is to define an explicit cost function for the
algorithm, but since there is no formal connection between that function and
the algorithm, one must check by inspection that the cost function really does
correspond to the incurred cost. Another disadvantage is that, as was said earlier,
most logics do not have builtin support for imperative algorithms.
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Hybrids between these two approaches also exist (such as shallow embed-
dings). And, of course, the different approaches can be combined to reap the
advantages of all of them; e.g. one can show a correspondence between the run-
ning time of a deeply-embedded algorithm and a cost function specified as a
recurrence directly in the logic, so that results obtained about the latter have a
formal connection to the former.

Imperative Verification Frameworks. As examples of such combined
approaches, both Coq and Isabelle provide frameworks for the verification of
imperative algorithms that are used to verify textbook algorithms.

The CFML tool [41] allows extracting a characteristic formula – capturing
the program behaviour, including effects and running time – from a Caml pro-
gram and importing it into Coq as an axiom. The CFML library provides tactics
and infrastructure for Separation Logic with time credits [42] that allow to verify
both functional correctness and running time complexity.

Sakaguchi [176] presented a library in Coq that features a state-monad and
extraction to OCaml with mutable arrays.

Imperative-HOL is a monadic framework with references and arrays by Bul-
wahn et al. [38] which allows code generation to ML and Haskell with references
and mutable arrays. Lammich [118] presents a simplified fragment of LLVM,
shallowly embedded into Isabelle, with a code generator to LLVM text. Both
Imperative-HOL and Isabelle-LLVM come with a Separation Logic framework
and powerful proof tools that allow reasoning about imperative programs. Zhan
and Haslbeck [201] extend Imperative-HOL with time and employ Separation
Logic with time credits.

Isabelle Refinement Framework. There are several techniques for verifying
algorithms and data structures. Many verification frameworks start in a “bottom-
up” manner from a concrete implementation and directly generate verification
conditions which are then discharged automatically or interactively. Another
technique is to model an algorithm purely functionally, prove its correctness
abstractly and then prove that it is refined by an imperative implementation. For
example, Lammich [122] and Zhan [200] employ this technique for the verification
of algorithms in Imperative-HOL.

A third approach is best described as “top-down”: an abstract program cap-
turing the algorithmic idea is proved correct, refined stepwise to a more concrete
algorithm and finally an executable algorithm is synthesized. The Isabelle Refine-
ment Framework [127] constitutes the top layer of a tool chain in Isabelle that
follows that approach. It allows specifying the result of programs in a nondeter-
minism monad and provides a calculus for stepwise refinement. A special case
is data refinement, where abstract datatypes (e.g. sets) are replaced by concrete
datatypes (e.g. lists). Many algorithms have been formalized in this framework
and we will mention some of them in the main part of this paper. Lammich pro-
vides two backends to synthesize an executable program and produce a refine-
ment proof from an abstract algorithm: The Autoref tool [114] yields a purely
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functional implementation by refining abstract datatypes with data structures
from the Isabelle Collections Framework [121]. The Sepref tool [118,119] syn-
thesizes efficient imperative implementations in Imperative-HOL and LLVM.
Haslbeck and Lammich [95] extended the Isabelle Refinement Framework and
Sepref to reason abstractly about the running time of programs and synthe-
size programs that preserve upper bounds through stepwise refinement down to
Imperative-HOL with time [201].

2.1 Approaches for Randomized Algorithms

There are various approaches for reasoning about randomized algorithms in a
formal way. Analogously to the non-randomized setting described in Sect. 2,
there again exists an entire spectrum of different approaches:

– fully explicit/deeply-embedded approaches
– “no embedding” approaches that model randomized algorithms directly in the

logic as functions returning a probability distribution
– shallow embeddings, e.g. with shallow deterministic operations but explicit

random choice and explicit “while” loops. Examples are the approaches by
Petcher and Morrisett [165] in Coq and by Kaminski et al. [110] on paper
(which was formalized by Hölzl [105]).

– combined approaches that start with a program in a deeply-embedded prob-
abilistic programming language and then relate it to a distribution specified
directly in the logic, cf. e.g. Tassarotti and Harper [188].

Next, we will explore the different approaches that exist in an ITP setting to
represent probability distributions. This is crucial in the “no embedding” app-
roach, but even in the other cases it is useful to be able to give a formal semantics
to the embedded programming language, prove soundness of a program logic,
etc. The first work known to us on formalizing randomized algorithms is by
Hurd [109] and represented randomized algorithms as deterministic algorithms
taking an infinite sequence of random bits as an additional input. However, it
seems that later work preferred another approach, which we will sketch in the
following.

Generally, the idea is to have a type constructor M of probability distribu-
tions, i.e. M(α) is the type of probability distributions over elements of type α.
This type constructor, together with two monadic operations return : α → M(α)
and bind : M(α) → (α → M(β)) → M(β), forms the Giry monad [84], which
in our opinion has emerged as the most powerful and natural representation for
randomized programs in an ITP setting.

The exact definition and scope of M(α) varies. The following approaches are
found in popular ITPs:

– For their formalization of quicksort in Coq, Van der Weegen and McKinna
[193] represented distributions as trees whose leaves are deterministic results
and whose nodes are uniformly random choices. While well-suited for their
use case, this encoding is not ideal for more general distributions.
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– Isabelle mostly uses probability mass functions (PMFs), i.e. functions α →
[0, 1] that assign a probability to each possible result (which only works for
distributions with countable support). The same approach is also used by
Tassarotti and Harper [187] in Coq.

– As an earlier variation of this, Audebaud and Paulin-Mohring [14] used the
CPS-inspired encoding (α → [0, 1]) → [0, 1] of PMFs in Coq.

– Isabelle contains a very general measure theory library [106] in which distri-
butions are functions Set(α) → [0, 1] that assign a probability to every mea-
surable set of results. This is the most expressive representation and allows
for continuous distributions (such as Gaussians) as well. It can, however, be
tedious to use due to the measurability side conditions that arise. PMFs are
therefore preferred in applications in Isabelle whenever possible.

The main advantage of having probability distributions in the logic as first-class
citizens is again expressiveness and flexibility. It is then even possible to prove
that two algorithms with completely different structure have not just the same
expected running time, but exactly the same distribution. For imperative ran-
domized algorithms or fully formal cost analysis, one must however still combine
this with an embedding, as done by Tassarotti and Harper [188].

One notable system that falls somewhat outside this classification is Ellora by
Barthe et al. [19]. This is a program logic that is embedded into the EasyCrypt
theorem prover [18], which is not a general-purpose ITP but still general enough
to allow analysis of complex randomized algorithms.

This concludes the summary of the verification frameworks we consider. The
rest of the paper is dedicated to our survey of verified textbook foundations and
algorithms. We roughly follow the structure and contents of CLRS.

3 Mathematical Foundations

3.1 Basic Asymptotic Concepts

Landau symbols (“Big-O”, “Big-Theta”, etc.) are common in both mathematics
and in the analysis of algorithms. The basic idea behind e.g. a statement such as
f(n) ∈ O(g(n)) is that f(n) is bounded by some multiple of g(n), but different
texts sometimes differ as to whether “bounded” means f(n) ≤ g(n) or f(n) ≤
|g(n)| or even |f(n)| ≤ |g(n)|. Usually (but not always), the inequality need also
only hold “for sufficiently large n”. In algorithms contexts, f and g are usually
functions from the naturals into the non-negative reals so that these differences
rarely matter. In mathematics, on the other hand, the domain of f and g might
be real or complex numbers, and the neighbourhood in which the inequality
must hold is often not n → ∞, but e.g. n → 0 or a more complicated region.
Finding a uniform formal definition that is sufficiently general for all contexts is
therefore challenging.

To make matters worse, informal arguments involving Landau symbols often
involve a considerable amount of hand-waving or omission of obvious steps: con-
sider, for instance, the fact that
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exp
(

x + 1√
x + 1

)
xa(log x)b ∈ O

(
ex

)
. (1)

This is intuitively obvious, since the first factor on the left-hand side is “roughly”
equal to ex/2. This is exponentially smaller than the ex on the right-hand side and
therefore eclipses the other, polynomial–logarithmic factors. Doing such argu-
ments directly in a formally rigorous way is very tedious, and simplifying this
process is a challenging engineering problem.

Another complication is the fact that pen-and-paper arguments, in a slight
abuse of notation, often use O(g(n)) as if it were one single function. The
intended meaning of this is “there exists some function in O(g(n)) for which this
is true”. For example, one writes e

√
n+1 = e

√
n+O(1/

√
n), meaning “there exists

some function g(n) ∈ O(1/
√

n) such that e
√
n+1 = e

√
n+g(n).” This notation is

very difficult to integrate into proof assistants directly.
Few ITPs have support for Landau-style asymptotics at all. In the following,

we list the formalizations that we are aware of:

– Avigad et al. [15] defined “Big-O” for their formalization of the Prime Number
Theorem, including the notation f =o g +o O(h) for f(x) = g(x) + O(h(x))
that emulates the abovementioned abuse of notation at least for some simple
cases. However, their definition of O is somewhat restrictive and no longer
used for new developments.

– Eberl defined the five Landau symbols from CLRS and the notion of asymp-
totic equivalence (“∼”). These are intended for general-purpose use. The
neighbourhood in which the inequality must hold is n → ∞ by default, but
can be modified using filters [107], which allow for a great degree of flexibility.
This development is now part of the Isabelle distribution. A brief discussion
of it can be found in his article on the Akra–Bazzi theorem [59].

– Guéneau et al. [87] (Coq) define a “Big-O-like domination relation for running
time analysis, also using filters for extra flexibility.

– Affeldt et al. [6] (Coq) define general-purpose Landau symbols. Through sev-
eral tricks, they fully support the abovementioned “abuse of notation”.

It seems that the filter-based definition of Landau symbols has emerged as the
canonical one in an ITP context. For algorithm analysis, the filter in question is
usually simply n → ∞ so that this extra flexibility is not needed, but there are
two notable exceptions:

– Multivariate “Big-O” notation is useful e.g. if an algorithm’s running time
depends on several parameters (e.g. the naïve multiplication of two numbers
m and n, which takes O(mn) time). This can be achieved with product filters.

– Suppose we have some algorithm that takes O(log n) time on sorted lists xs for
large enough n, where n = |xs| is the length of the list. This can be expressed
naturally as time(xs) ∈ OF (log |xs|) w.r.t. a suitable filter F . For instance, in
Isabelle, this filter can be written as

length going-to at_top within {xs. sorted xs} .
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In addition to that, Coq and Isabelle provide mechanisms to facilitate asymptotic
reasoning:

– Affeldt et al. [6] provide a proof method called “near” in Coq that imitates
the informal pen-and-paper reasoning style where in asymptotic arguments,
one can assume properties as long as one can later justify that they hold
eventually. This can lead to a more natural flow of the argument.

– Motivated by the proof obligations arising from applications of the Master
theorem, Eberl [59] implemented various simplification procedures in Isabelle
that rewrite Landau-symbol statements into a simpler form. Concretely, there
are procedures to

• cancel common factors such as f(x)g(x) ∈ O(f(x)h(x)),
• cancel dominated terms, e.g. rewriting f(x)+ g(x) ∈ O(h(x)) to f(x) ∈
O(h(x)) when g(x) ∈ o(f(x)) and
• simplify asymptotic statements involving iterated logarithms, e.g.
rewriting xa(log x)b ∈ O(xc(log log x)d) to equations/inequalities of a,
b, c, d.

– Lastly, Eberl [60] provides an Isabelle proof method to prove limits and
Landau-symbol statements for a large class of real-valued functions. For
instance, it can solve the asymptotic problem (1) mentioned earlier fully auto-
matically.

3.2 The Master Theorem

CLRS present the Master theorem for divide-and-conquer recurrences and use
it in the running time analysis of several divide-and-conquer algorithms. They
also briefly mention another result known as the Akra–Bazzi theorem and cite
the streamlined version due to Leighton [130]. This result generalizes the Master
theorem in several ways:

– The different sub-problems being solved by recursive calls are not required to
have the same size.

– The recursive terms are not required to be exactly f(�n/b	) or f(
n/b�) but
can deviate from n/b by an arbitrary sub-linear amount.

– While the “balanced” case of the original Master theorem requires f(n) ∈
Θ(nlogb a(log n)k), the Akra–Bazzi theorem also works for a much larger class
of functions.

The only formalized result related to this that we are aware of is Eberl’s
formalization of Leighton’s version of the Akra–Bazzi theorem [59]. CLRS state
that the Akra–Bazzi Theorem “can be somewhat difficult to use” – probably
due to its rather technical side conditions and the presence of an integral in the
result. However, Eberl’s formalization provides several corollaries that combine
the first and second advantage listed above while retaining the ease of application
of the original Master theorem.

Eberl gives some applications to textbook recurrences (mergesort, Karatsuba
multiplication, Strassen multiplication, median-of-medians selection). Zhan and
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Haslbeck [201] also integrated Eberl’s work into their work on verifying the
asymptotic time complexity of imperative algorithms (namely imperative ver-
sions of mergesort, Karatsuba and median-of-medians). Rau and Nipkow [173]
used Eberl’s Master theorem to prove the O(n log n) running time of a closest-
pair-of-points algorithm.

4 Sorting and Order Statistics

4.1 Sorting

Verification of textbook sorting algorithms was a popular pastime in the early
theorem proving days (e.g. [32]) but is now more of historic interest. To show
that the field has progressed, we highlight three verifications of industrial code.

The sorting algorithm TimSort (combining mergesort and insertion sort) is
the default implementation for generic arrays and collections in the Java stan-
dard library. De Gouw et al. [86] first discovered a bug that can lead to an
ArrayIndexOutOfBoundsException and suggested corrections. Then De Gouw
et al. [85] verified termination and exception freedom (but not full functional
correctness) of the actual corrected code using KeY.

Beckert et al. [20], again with KeY, verified functional correctness of the other
implementation of sorting in the Java standard library, a dual pivot quicksort
algorithm.

Lammich [120] verified a high-level assembly-language (LLVM) implementa-
tion of two sorting algorithms: introsort [140] (a combination of quicksort, heap-
sort and insertion sort) from the GNU C++ library (libstdc++) and pdqsort,
an extension of introsort from the Boost C++ libraries. The verified implemen-
tations perform on par with the originals.

Additionally, we mention a classic meta result that is also presented in CLRS:
Eberl [56] formally proved the Ω(n log n) lower bound for the running time of
comparison-based sorting algorithms in Isabelle.

4.2 Selection in Worst-Case Linear Time

Eberl [57] formalized a functional version of the deterministic linear-time selec-
tion algorithm from CLRS including a worst-case analysis for the sizes of the
lists in the recursive calls. Zhan and Haslbeck [201] refined this to an imperative
algorithm, including a proof that it indeed runs in linear time using Eberl’s for-
malization of the Akra–Bazzi theorem (unlike the elementary proof in CLRS).
However, the imperative algorithm they formalized differs from that in CLRS
by some details. Most notably, the one in CLRS is in-place, whereas the one
by Zhan and Haslbeck is not. Formalizing the in-place algorithm would require
either a stronger separation logic framework or manual reasoning to prove that
the recursive calls indeed work on distinct sub-arrays.
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5 Data Structures

5.1 Elementary Data Structures

We focus again on two noteworthy verifications of actual code. Polikarpova et al.
[167,168] verify EiffelBase2, a container library (with emphasis on linked lists,
arrays and hashing) that was initially designed to replace EiffelBase, the stan-
dard container library of the Eiffel programming language [136]. A distinguishing
feature is the high degree of automation of their Eiffel verifier called AutoProof
[78]. The verification uncovered three bugs. Hiep et al. [100] (KeY) verified the
implementation of a linked list in the Java Collection framework and found an
integer overflow bug on 64-bit architectures.

5.2 Hash Tables

The abstract datatypes sets and maps can be efficiently implemented by hash
tables. The Isabelle Collections Framework [121] provides a pure implementa-
tion of hash tables that can be realized by Haskell arrays during code genera-
tion. Lammich [116,122] also verified an imperative version with rehashing in
Imperative-HOL. Filliâtre and Clochard [72] (Why3) verified hash tables with
linear probing. Pottier [170] verified hash tables in CFML with a focus on iter-
ators. Polikarpova et al. (see above) also verified hash tables. These references
only verify functional correctness, not running times.

5.3 Binary Search Trees

Unbalanced binary search trees have been verified many times. Surprisingly,
the functional correctness, including preservation of the BST invariant, almost
always require a surprising amount of human input (in the form of proof steps
or annotations). Of course this is even more the case for balanced search trees,
even ignoring the balance proofs. Most verifications are based on some variant
of the following definition of BSTs: the element in each node must lie in between
the elements of the left subtree and the elements of the right subtree. Nipkow
[146] specifies BSTs as trees whose inorder list of elements is sorted. With this
specification, functional correctness proofs (but not preservation of balancedness)
are fully automatic for AVL, red-black, splay and many other search trees.

5.4 AVL and Red-Black Trees

Just like sorting algorithms, search trees are popular case studies in verification
because they can often be implemented concisely in a purely functional way. We
merely cite some typical verifications of AVL [47,74,152,172] and red-black trees
[12,41,52,74] in various theorem provers.

We will now consider a number of search trees not in CLRS.
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5.5 Weight-Balanced Trees

Weight-balanced trees were invented by Nievergelt and Reingold [143,144] (who
called them “trees of bounded balance”). They are balanced by size rather than
height, where the size |t| of a tree t is defined as the number of nodes in t. A
tree is said to be α-balanced, 0 ≤ α ≤ 1/2, if for every non-empty subtree t with
children l and r, α ≤ |l|+1

|t|+1 ≤ 1−α. Equivalently we can require min(|l|,|r|)+1
|t|+1 ≤ α.

Insertion and deletion may need to rebalance the tree by single and double
rotations depending on certain numeric conditions. Blum and Mehlhorn [28]
discovered a mistake in the numeric conditions for deletion, corrected it and
gave a very detailed proof. Adams [5] used weight-balanced trees in an actual
implementation (in ML) but defined balancedness somewhat differently from
the original definition. Haskell’s standard implementation of sets, Data.Set, is
based on Adams’s implementation. In 2010 it was noticed that deletion can
break α-balancedness. Hirai and Yamamoto [102], unaware of the work by Blum
and Mehlhorn, verified their own version of weight-balanced trees in Coq, which
includes determining the valid ranges of certain numeric parameters. Nipkow
and Dirix [149] provided a verified framework for checking validity of specific
values for these numeric parameters.

5.6 Scapegoat Trees

These trees are due to Anderson [11], who called them general balanced trees,
and Galperin and Rivest [81], who called them scapegoat trees. The central idea:
don’t rebalance every time, rebuild a subtree when the whole tree gets “too
unbalanced”, i.e. when the height is no longer logarithmic in the size, with a
fixed multiplicative constant. Because rebuilding is expensive (in the worst case
it can involve the whole tree) the worst case complexity of insertion and deletion
is linear. But because earlier calls did not need to rebalance, the amortized com-
plexity is logarithmic. The analysis by Anderson was verified by Nipkow [147].

5.7 Finger Trees

Finger trees were originally defined by reversing certain pointers in a search
tree to accelerate operations in the vicinity of specific positions in the tree
[88]. A functional version is due to Hinze and Paterson [101]. It can be used
to implement a wide range of efficient data structures, e.g. sequences with access
to both ends in amortized constant time and concatenation and splitting in
logarithmic time, random access-sequences, search trees, priority queues and
more. Functional correctness was verified by Sozeau [182] (Coq) and by Nordhoff
et al. [155]. The amortized complexity of the deque operations was analysed by
Danielsson [50] (Agda).

5.8 Splay Trees

Splay trees [179] are self-adjusting binary search trees where items that have
been searched for are rotated to the root of the tree to adjust to dynamically
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changing access frequencies. Nipkow [145,146] verified functional correctness and
amortized logarithmic complexity.

5.9 Braun Trees

Braun trees are binary trees where for each node the size of the left child is
the same or one larger than the size of the right child [108,174]. They lend
themselves to the implementation of extensible arrays and priority queues in a
purely functional manner [162]. They were verified by Nipkow and Sewell [153]
in great depth. McCarthy et al. [133] demonstrate their Coq library for running
time analysis by proving the logarithmic running time of insertion into Braun
trees.

6 Advanced Design and Analysis Techniques

6.1 Dynamic Programming

It is usually easy to write down and prove correct the recursive form of a dynamic
programming problem, but it takes work to convert it into an efficient implemen-
tation by memoizing intermediate results. Wimmer et al. [196] automated this
process: a recursive function is transformed into a monadic one that memoizes
results, and a theorem stating the equivalence of the two functions is proved
automatically. The results are stored in a so-called state monad. Two state mon-
ads were verified: a purely functional state monad based on search trees and
the state monad of Imperative-HOL using arrays. The imperative monad yields
implementations that have the same asymptotic complexity as the standard
array-based algorithms. Wimmer et al. verify two further optimizations: bottom-
up order of computation and an LRU cache for reduced memory consumption.
As applications of their framework, they proved the following algorithms cor-
rect (in their recursive form) and translated them into their efficient array-based
variants: Bellman-Ford, CYK (context-free parsing), minimum edit distance and
optimal binary search trees. Wimmer [195] also treated Viterbi’s algorithm in
this manner.

Nipkow and Somogyi [154] verified the straightforward recursive cubic algo-
rithm for optimal binary search trees and Knuth’s quadratic improvement [113]
(but using Yao’s simpler proof [199]) and applied memoization.

6.2 Greedy Algorithms

One example of a greedy algorithm given in CLRS is Huffman’s algorithm. It
was verified by Théry [189] (Coq) and Blanchette [27]. For problems that exhibit
a matroid structure, greedy algorithms yield optimal solutions. Keinholz [112]
formalizes matroid theory. Haslbeck et al. [95,96] verify the soundness and run-
ning time of an algorithm for finding a minimum-weight basis on a weighted
matroid and use it to verify Kruskal’s algorithm for minimum spanning trees.
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7 Advanced Data Structures

7.1 B-Trees

We are aware of two verifications of imperative formulations of B-trees. Malecha
et al. [131] used Ynot [141], an axiomatic extension to Coq that provides facilities
for writing and reasoning about imperative, pointer-based code. The verification
by Ernst et al. [64] is unusual in that it combines interactive proof in KIV with
the automatic shape analysis tool TVLA [175].

7.2 Priority Queues

We start with some priority queue implementations not in CLRS. Priority queues
based on Braun trees (see Sect. 5.9) were verified by Filliâtre [70] (Why3) and
Nipkow and Sewell [153]. Two self-adjusting priority queues are the skew heap
[180] and the pairing heap [77]. Nipkow and Brinkop [145,148] verified their
functional correctness (also verified in Why3 [69,164]) and amortized logarith-
mic running times. Binomial heaps (covered in depth in the first edition of CLRS)
were verified by Meis et al. [135] (together with skew binomial heaps [36]), Fil-
liâtre [71] (Why3) and Appel [13] (Coq).

The above heaps are purely functional and do not provide a decrease-key
operation. Lammich and Nipkow [124] designed and verified a simple, efficient
and purely functional combination of a search tree and a priority queue, a “pri-
ority search tree”. The salient feature of priority search trees is that they offer an
operation for updating (not just decreasing) the priority associated with some
key; its efficiency is the same as that of the update operation.

Lammich [117] verified an imperative array-based implementation of priority
queues with decrease-key.

7.3 Union-Find

The union-find data structure for disjoint sets is a frequent case-study: it was
formalized in Coq [48,176,192] and Isabelle [122]. Charguéraud, Pottier and
Guéneau [42,43,87] were the first to verify the amortized time complexity
O(α(n)) in Coq using CFML. Their proof follows Alstrup et al. [10].

8 Graph Algorithms

8.1 Elementary Graph Algorithms

Graph-searching algorithms are so basic that we only mention a few notable ones.
BFS for finding shortest paths in unweighted graphs was verified by participants
of a verification competition [76] (in particular in KIV). Lammich and Sefidgar
[125] verified BFS for the Edmonds–Karp algorithm. Lammich and Neumann
[123] as well as Pottier [169] (Coq) verified DFS and used it for algorithms of dif-
ferent complexity, ranging from a simple cyclicity checker to strongly connected
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components algorithms. Wimmer and Lammich [198] verified an enhanced ver-
sion of DFS with subsumption. Bobot [29] verified an algorithm for topological
sorting by DFS in Why3.

Strongly Connected Components. There are several algorithms for finding
strongly connected components (SCCs) in a directed graph. Tarjan’s algorithm
[186] was verified by Lammich and Neumann [123,142]. Chen et al. verified Tar-
jan’s algorithm in Why3, Coq and Isabelle and compared the three formaliza-
tions [45,46]. Lammich [115] verified Gabow’s algorithm [79] (which was used in
a verified model checker [65]), and Pottier [169] (Coq) verified the SCC algorithm
featured in CLRS, which is attributed to Kosaraju.

8.2 Minimum Spanning Trees

Prim’s algorithm was first verified by Abrial et al. [4] in B [3] and on a more
abstract level by Lee and Rudnicki [129] (Mizar). Guttmann [89,90] verified
a formulation in relation algebra, while Nipkow and Lammich [124] verified a
purely functional version.

Kruskal’s algorithm was verified by Guttmann [91] using relation algebras.
Functional correctness [97] and time complexity [95] of an imperative implemen-
tation of Kruskal’s algorithm were verified by Haslbeck, Lammich and Biendarra.

8.3 Shortest Paths

The Bellman-Ford algorithm was verified as an instance of dynamic program-
ming (see Sect. 6.1).

Dijkstra’s Algorithm. Dijkstra’s algorithm has been verified several times.
The first verifications were conducted by Chen, Lee and Rudnicki [44,129]
(Mizar) and by Moore and Zhang [138] (ACL2). While these formalizations
prove the idea of the algorithm, they do not provide efficient implementations.
Charguéraud [41] verifies an OCaml version of Dijkstra’s algorithm parameter-
ized over a priority queue data structure (without a verified implementation). A
notable point is that his algorithm does not require a decrease-key operation.

Nordhoff and Lammich [156] use their verified finger trees (see Sect. 5.7)
that support decrease-key to obtain a verified functional algorithm. Lammich
later refined the functional algorithm down to an imperative implementation
using arrays to implement the heap [117]. Zhan [200] also verified the imperative
version using his auto2 tool. Finally, Lammich and Nipkow [124] used their red-
black tree based priority queues that also support decrease-key to obtain a
simple functional implementation.

The Floyd–Warshall Algorithm. Early verifications by Paulin-Mohring [161]
(Coq), Berger et al. [22] (Minlog), and Berghofer [23] relied on program extrac-
tion from a constructive proof and only targeted the Warshall algorithm for com-
puting the transitive closure of a relation. Filliâtre and Clochard [73] (Why3)
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verified an imperative implementation of the Warshall algorithm. Wimmer [194]
verified the functional correctness of the Floyd–Warshall algorithm for the APSP
problem including detection of negative cycles. The main complication is to prove
that destructive updates can be used soundly. This and the detection of negative
cycles are left as an exercise to the reader in CLRS. The resulting functional
implementation (with destructive updates) was later refined to an imperative
implementation by Wimmer and Lammich [197].

8.4 Maximum Network Flow

The first verification of the Ford–Fulkerson method, at an abstract level, was
by Lee [128] (Mizar). Lammich and Sefidgar [125] verified the Ford–Fulkerson
method and refined it down to an imperative implementation of the Edmonds–
Karp algorithm. They proved that the latter requires O(|V | · |E|) iterations. On
randomly generated networks, their code is competitive with a Java implemen-
tation by Sedgewick and Wayne [177]. In further work [126] they verified the
generic push–relabel method of Goldberg and Tarjan and refined it to both the
relabel-to-front and the FIFO push–relabel algorithm. They also performed a
running time analysis and benchmarked their algorithms against C and C++
implementations.

Haslbeck and Lammich [95] provided a proper running time analysis of the
Edmonds–Karp algorithm and proved the complexity O(|V | · |E| · (|V | + |E|)).

8.5 Matching

Edmonds’ famous blossom algorithm [62] for finding maximum matchings in
general graphs was verified by Abdulaziz [2].

Hamid and Castelberry [92] (Coq) verified the Gale–Shapley algorithm [80]
for finding stable marriages.

9 Selected Topics

9.1 Matrix Operations

Palomo-Lozano et al. formalized Strassen’s algorithm for matrix multiplication
in ACL2 [158], but only for square matrices whose size is a power of two. Dénès
et al. formalized a slightly more efficient variant of it known as Winograd’s
algorithm in Coq [51] for arbitrary matrices. Garillot et al. formalized the LUP
decomposition algorithm from CLRS in Coq [83].

9.2 Linear Programming

The simplex algorithm was formalized by Allamigeon and Katz [9] (Coq) and
by Spasić and Marić [132,183]. The latter was repurposed into an incremental
algorithm that can emit unsatisfiable cores by Bottesch et al. [30]. Parsert and
Kaliszyk [159] extended this to a full solver for linear programming.
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9.3 Polynomials and FFT

The recursive Fast Fourier Transform was formalized in various systems. We are
aware of the formalizations in ACL2 by Gamboa [82], in Coq by Capretta [39],
in HOL4 by Akbarpour and Tahar [8] and in Isabelle by Ballarin [16].

9.4 Number-Theoretic Algorithms

Most of the basic number theory shown in CLRS (GCDs, modular arithmetic,
Chinese remainder theorem) is available in the standard libraries of various
systems and we will therefore not give individual references for this and focus
entirely on the algorithms.

Hurd formalized the Miller–Rabin test [109] in HOL4. Stüwe and Eberl [185]
formalized Miller–Rabin and some other related tests (Fermat1 and Solovay–
Strassen) in Isabelle. In all cases, what was shown is that a prime is always
correctly classified as prime and that a composite is correctly classified with
probability at least 1

2 . The running time analysis is not particularly interesting
for these algorithms, and although they are randomized algorithms, the random-
ness is of a very simple nature and thus not very interesting either.

Beyond the primality-testing algorithms in CLRS, Chan [40] gave a HOL4
formalization of the correctness and polynomial running time of the AKS, which
was the first deterministic primality test to be proved to run in polynomial time.

9.5 String Matching

The Knuth–Morris–Pratt algorithm was verified by Filliâtre in Coq and Why3
[67,68]. Hellauer and Lammich [99] verified a functional version of this algorithm
and refined it to Imperative-HOL. Lammich [118] synthesized verified LLVM
code. The Boyer–Moore string searching algorithm [33] was covered in the first
edition of CLRS. Boyer and Moore [34] (Nqthm) and Moore and Martinez [137]
(ACL2) verified different variants of this algorithm; Toibazarov [190] verified the
preprocessing phase of the variant considered by Moore and Martinez. Besta and
Stomp [26] (PVS) verified the preprocessing phase of the original algorithm.

9.6 Computational Geometry

Convex hull algorithms have been popular verification targets: Pichardie and
Bertot [166] (Coq) verified an incremental and a package wrapping algorithm,
Meikle and Fleuriot [134] verified Graham’s scan and Brun et al. [37] (Coq)
verified an incremental algorithm based on hypermaps. Dufourd and Bertot
[24,53] (Coq) verified triangulation algorithms based on hypermaps.

Rau and Nipkow [173] verified the divide-and-conquer closest pair of points
algorithm and obtained a competitive implementation.

1 The Fermat test is called Pseudoprime in CLRS.



40 T. Nipkow et al.

9.7 Approximation and Online Algorithms

Stucke [184] (Coq and Isabelle) verified an approximation algorithm for vertex
colouring in relation algebra. Eßmann et al. [66] verified three classic algorithms
and one lesser-known one for vertex cover, independent set, load balancing and
bin packing. Haslbeck and Nipkow [98] formalized online algorithms and verified
several deterministic and randomized algorithms for the list update problem.

9.8 Randomized Algorithms

In addition to the randomized algorithms from CLRS, we will also list some from
the classic textbook Randomized Algorithms by Motwani and Raghavan [139].
All work was done using PMFs unless stated otherwise (refer to Sect. 2.1 for a
discussion of the various approaches).

The first work on a non-trivial randomized algorithm in an ITP was probably
Hurd’s [109] previously-mentioned formalization of the Miller–Rabin primality
test in HOL (using an infinite stream of random bits to encode the randomness).
The primality tests formalized by Stüwe and Eberl [185] are technically also
randomized algorithms, but the probabilistic content is very small.

The expected running time of the coupon collector problem was treated by
Kaminski et al. [110] using their Hoare-style calculus for the pGCL language (on
paper). Hölzl [105] formalized their approach in Isabelle.

Barthe et al. analyzed several probabilistic textbook problems using a pro-
gram logic called Ellora [19], which is embedded into the EasyCrypt system [18]:

– expected running time of the coupon collector problem
– tail bounds on the running time of Boolean hypercube routing
– probability of incorrectly classifying two different polynomials as equal in

probabilistic polynomial equality checking

The correctness of CLRS’s Randomize-In-Place, also known as the Fisher–
Yates shuffle, was verified by Eberl [54].

The correctness and expected running time of randomized quicksort was
formalized by Van der Weegen and McKinna [193] (Coq) using their “decision
tree” approach mentioned earlier and by Eberl [58,61]. Both additionally treated
the case of average-case deterministic quicksort: Van der Weegen and McKinna
proved that its expected running time is O(n log n), whereas Eberl additionally
proved that it has exactly the same distribution as randomized quicksort.

Eberl [55,61] proved that random binary search trees (BSTs into which ele-
ments are inserted in random order) have logarithmic expected height and inter-
nal path length. He also proved that the distribution of the internal path length
is precisely the same as that of the running time of randomized quicksort.

Haslbeck et al. [61,94] formalized randomized treaps [178] and proved that
their distribution is precisely equal to that of random BSTs, regardless of which
order the elements are inserted. The analysis is particularly noteworthy because
it involves continuous distributions of trees, which require a non-trivial amount
of measure theory.
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Haslbeck and Eberl [93] also defined skip lists [171] and formally analyzed
two of the most algorithmically interesting questions about them, namely the
expected height and the expected path length to an element.

Tassarotti and Harper [187] developed a general cookbook-style method for
proving tail bounds on probabilistic divide-and-conquer algorithms in Coq. They
applied this method to the running time of randomized quicksort and the height
of random BSTs. Later [188] they used a hybrid approach that combines a pro-
gram logic for a deeply embedded imperative language with high-level reasoning
in Coq to analyze skip lists (restricted to two levels for simplicity).

Acknowledgements. We thank Andrew Appel, Gilles Barthe, Arthur Charguéraud,
Cyril Cohen, Gidon Ernst, Jean-Christophe Filliâtre, Walter Guttmann, Reiner Hähnle,
Peter Lammich, J Moore, Joseph Tassarotti, Laurent Théry, René Thiemann and Simon
Wimmer for their help in compiling this survey and Jasmin Blanchette for nitpicking.

This research is supported by DFG Koselleck grant NI 491/16-1.

References

1. Archive of Formal Proofs. http://www.isa-afp.org
2. Abdulaziz, M., Mehlhorn, K., Nipkow, T.: Trustworthy graph algorithms (invited

talk). In: Rossmanith, P., Heggernes, P., Katoen, J. (eds.) 44th International
Symposium on Mathematical Foundations of Computer Science, MFCS 2019.
LIPIcs, vol. 138, pp. 1:1–1:22. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019). https://doi.org/10.4230/LIPIcs.MFCS.2019.1

3. Abrial, J.: The B-book - Assigning Programs to Meanings. Cambridge University
Press (1996). https://doi.org/10.1017/CBO9780511624162

4. Abrial, J.-R., Cansell, D., Méry, D.: Formal derivation of spanning trees algo-
rithms. In: Bert, D., Bowen, J.P., King, S., Waldén, M. (eds.) ZB 2003. LNCS,
vol. 2651, pp. 457–476. Springer, Heidelberg (2003). https://doi.org/10.1007/3-
540-44880-2_27

5. Adams, S.: Efficient sets - a balancing act. J. Funct. Program. 3(4), 553–561
(1993). https://doi.org/10.1017/S0956796800000885

6. Affeldt, R., Cohen, C., Rouhling, D.: Formalization techniques for asymptotic
reasoning in classical analysis. J. Form. Reasoning 11(1), 43–76 (2018). https://
doi.org/10.6092/issn.1972-5787/8124

7. Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Schmitt, P.H., Ulbrich, M. (eds.):
Deductive Software Verification - The KeY Book - From Theory to Practice,
LNCS, vol. 10001. Springer, Cham (2016), https://doi.org/10.1007/978-3-319-
49812-6

8. Akbarpour, B., Tahar, S.: A methodology for the formal verification of FFT algo-
rithms in HOL. In: Hu, A.J., Martin, A.K. (eds.) FMCAD 2004. LNCS, vol.
3312, pp. 37–51. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-
30494-4_4

9. Allamigeon, X., Katz, R.D.: A formalization of convex polyhedra based on the
simplex method. In: Ayala-Rincón, M., Muñoz, C.A. (eds.) ITP 2017. LNCS,
vol. 10499, pp. 28–45. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
66107-0_3

http://www.isa-afp.org
https://doi.org/10.4230/LIPIcs.MFCS.2019.1
https://doi.org/10.1017/CBO9780511624162
https://doi.org/10.1007/3-540-44880-2_27
https://doi.org/10.1007/3-540-44880-2_27
https://doi.org/10.1017/S0956796800000885
https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.6092/issn.1972-5787/8124
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-319-49812-6
https://doi.org/10.1007/978-3-540-30494-4_4
https://doi.org/10.1007/978-3-540-30494-4_4
https://doi.org/10.1007/978-3-319-66107-0_3
https://doi.org/10.1007/978-3-319-66107-0_3


42 T. Nipkow et al.

10. Alstrup, S., Thorup, M., Gørtz, I.L., Rauhe, T., Zwick, U.: Union-find with con-
stant time deletions. ACM Trans. Algorithms 11(1), 6:1–6:28 (2014). https://doi.
org/10.1145/2636922

11. Andersson, A.: Improving partial rebuilding by using simple balance criteria. In:
Dehne, F., Sack, J.-R., Santoro, N. (eds.) WADS 1989. LNCS, vol. 382, pp. 393–
402. Springer, Heidelberg (1989). https://doi.org/10.1007/3-540-51542-9_33

12. Appel, A.W.: Efficient verified red-black trees (2011). https://www.cs.princeton.
edu/~appel/papers/redblack.pdf

13. Appel, A.W.: Verified Functional Algorithms, August 2018. https://
softwarefoundations.cis.upenn.edu/vfa-current/index.html

14. Audebaud, P., Paulin-Mohring, C.: Proofs of randomized algorithms in Coq. Sci.
Comput. Program. 74(8), 568–589 (2009). https://doi.org/10.1016/j.scico.2007.
09.002

15. Avigad, J., Donnelly, K., Gray, D., Raff, P.: A formally verified proof of the prime
number theorem. ACM Trans. Comput. Logic 9(1) (2007). https://doi.org/10.
1145/1297658.1297660

16. Ballarin, C.: Fast Fourier Transform. Archive of Formal Proofs, October 2005.
http://isa-afp.org/entries/FFT.html, Formal proof development

17. Bancerek, G., et al.: Mizar: state-of-the-art and beyond. In: Kerber, M., Carette,
J., Kaliszyk, C., Rabe, F., Sorge, V. (eds.) CICM 2015. LNCS (LNAI), vol. 9150,
pp. 261–279. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-20615-
8_17

18. Barthe, G., Dupressoir, F., Grégoire, B., Kunz, C., Schmidt, B., Strub, P.-Y.:
EasyCrypt: a tutorial. In: Aldini, A., Lopez, J., Martinelli, F. (eds.) FOSAD 2012-
2013. LNCS, vol. 8604, pp. 146–166. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-10082-1_6

19. Barthe, G., Espitau, T., Gaboardi, M., Grégoire, B., Hsu, J., Strub, P.-Y.: An
assertion-based program logic for probabilistic programs. In: Ahmed, A. (ed.)
ESOP 2018. LNCS, vol. 10801, pp. 117–144. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89884-1_5

20. Beckert, B., Schiffl, J., Schmitt, P.H., Ulbrich, M.: Proving JDK’s dual pivot
quicksort correct. In: Paskevich and Wies [160], pp. 35–48, https://doi.org/10.
1007/978-3-319-72308-2_3

21. Berger, U., Miyamoto, K., Schwichtenberg, H., Seisenberger, M.: Minlog - a tool
for program extraction supporting algebras and coalgebras. In: Corradini, A.,
Klin, B., Cîrstea, C. (eds.) CALCO 2011. LNCS, vol. 6859, pp. 393–399. Springer,
Heidelberg (2011). https://doi.org/10.1007/978-3-642-22944-2_29

22. Berger, U., Schwichtenberg, H., Seisenberger, M.: The Warshall algorithm and
Dickson’s lemma: two examples of realistic program extraction. J. Autom. Rea-
soning 26(2), 205–221 (2001). https://doi.org/10.1023/A:1026748613865

23. Berghofer, S.: Program extraction in simply-typed higher order logic. In: Geu-
vers, H., Wiedijk, F. (eds.) TYPES 2002. LNCS, vol. 2646, pp. 21–38. Springer,
Heidelberg (2003). https://doi.org/10.1007/3-540-39185-1_2

24. Bertot, Y.: Formal verification of a geometry algorithm: a quest for abstract
views and symmetry in coq proofs. In: Fischer, B., Uustalu, T. (eds.) ICTAC
2018. LNCS, vol. 11187, pp. 3–10. Springer, Cham (2018). https://doi.org/10.
1007/978-3-030-02508-3_1

25. Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Develop-
ment - Coq’Art: The Calculus of Inductive Constructions. Texts in Theoretical
Computer Science. An EATCS Series, Springer, Cham (2004). https://doi.org/
10.1007/978-3-662-07964-5

https://doi.org/10.1145/2636922
https://doi.org/10.1145/2636922
https://doi.org/10.1007/3-540-51542-9_33
https://www.cs.princeton.edu/~appel/papers/redblack.pdf
https://www.cs.princeton.edu/~appel/papers/redblack.pdf
https://softwarefoundations.cis.upenn.edu/vfa-current/index.html
https://softwarefoundations.cis.upenn.edu/vfa-current/index.html
https://doi.org/10.1016/j.scico.2007.09.002
https://doi.org/10.1016/j.scico.2007.09.002
https://doi.org/10.1145/1297658.1297660
https://doi.org/10.1145/1297658.1297660
http://isa-afp.org/entries/FFT.html
https://doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/978-3-319-20615-8_17
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-10082-1_6
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-319-89884-1_5
https://doi.org/10.1007/978-3-319-72308-2_3
https://doi.org/10.1007/978-3-319-72308-2_3
https://doi.org/10.1007/978-3-642-22944-2_29
https://doi.org/10.1023/A:1026748613865
https://doi.org/10.1007/3-540-39185-1_2
https://doi.org/10.1007/978-3-030-02508-3_1
https://doi.org/10.1007/978-3-030-02508-3_1
https://doi.org/10.1007/978-3-662-07964-5
https://doi.org/10.1007/978-3-662-07964-5


Verified Textbook Algorithms 43

26. Besta, M., Stomp, F.A.: A complete mechanization of correctness of a string-
preprocessing algorithm. Formal Methods Syst. Des. 27(1–2), 5–17 (2005).
https://doi.org/10.1007/s10703-005-2243-0

27. Blanchette, J.C.: Proof pearl: Mechanizing the textbook proof of Huffman’s algo-
rithm. J. Autom. Reasoning 43(1), 1–18 (2009). https://doi.org/10.1007/s10817-
009-9116-y

28. Blum, N., Mehlhorn, K.: On the average number of rebalancing operations in
weight-balanced trees. Theor. Comput. Sci. 11, 303–320 (1980). https://doi.org/
10.1016/0304-3975(80)90018-3

29. Bobot, F.: Topological sorting (2014). http://toccata.lri.fr/gallery/topological_
sorting.en.html, formal proof development

30. Bottesch, R., Haslbeck, M.W., Thiemann, R.: Verifying an incremental theory
solver for linear arithmetic in Isabelle/HOL. In: Herzig, A., Popescu, A. (eds.)
FroCoS 2019. LNCS (LNAI), vol. 11715, pp. 223–239. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-29007-8_13

31. Bove, A., Dybjer, P., Norell, U.: A brief overview of agda – a functional language
with dependent types. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.)
TPHOLs 2009. LNCS, vol. 5674, pp. 73–78. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-03359-9_6

32. Boyer, R.S., Moore, J S.: Proving theorems about LISP functions. In: Nilsson,
N. (ed.) International Joint Conference on Artificial Intelligence. pp. 486–493.
William Kaufmann (1973) http://ijcai.org/Proceedings/73/Papers/053.pdf

33. Boyer, R.S., Moore, J.S.: A fast string searching algorithm. Commun. ACM
20(10), 762–772 (1977). https://doi.org/10.1145/359842.359859

34. Boyer, R.S., Moore, J.S.: A computational logic handbook, Perspectives in Com-
puting, vol. 23. Academic Press, New York (1979)

35. Boyer, R.S., Strother Moore, J.: Single-threaded objects in ACL2. In: Krishna-
murthi, S., Ramakrishnan, C.R. (eds.) PADL 2002. LNCS, vol. 2257, pp. 9–27.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45587-6_3

36. Brodal, G.S., Okasaki, C.: Optimal purely functional priority queues. J. Funct.
Program. 6(6), 839–857 (1996). https://doi.org/10.1017/S095679680000201X

37. Brun, C., Dufourd, J., Magaud, N.: Designing and proving correct a convex
hull algorithm with hypermaps in Coq. Comput. Geom. 45(8), 436–457 (2012).
https://doi.org/10.1016/j.comgeo.2010.06.006

38. Bulwahn, L., Krauss, A., Haftmann, F., Erkök, L., Matthews, J.: Imperative func-
tional programming with Isabelle/HOL. In: Mohamed, O.A., Muñoz, C., Tahar, S.
(eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 134–149. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-71067-7_14

39. Capretta, V.: Certifying the fast Fourier transform with coq. In: Boulton, R.J.,
Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 154–168. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-44755-5_12

40. Chan, H.L.J.: Primality testing is polynomial-time: a mechanised verification of
the AKS algorithm. Ph.D. thesis, Australian National University (2019). https://
openresearch-repository.anu.edu.au/bitstream/1885/177195/1/thesis.pdf

41. Charguéraud, A.: Program verification through characteristic formulae. In:
Hudak, P., Weirich, S. (eds.) Proceeding of the 15th ACM SIGPLAN Interna-
tional Conference on Functional Programming. ICFP 2010, pp. 321–332. ACM
(2010). https://doi.org/10.1145/1863543.1863590

https://doi.org/10.1007/s10703-005-2243-0
https://doi.org/10.1007/s10817-009-9116-y
https://doi.org/10.1007/s10817-009-9116-y
https://doi.org/10.1016/0304-3975(80)90018-3
https://doi.org/10.1016/0304-3975(80)90018-3
http://toccata.lri.fr/gallery/topological_sorting.en.html
http://toccata.lri.fr/gallery/topological_sorting.en.html
https://doi.org/10.1007/978-3-030-29007-8_13
https://doi.org/10.1007/978-3-642-03359-9_6
https://doi.org/10.1007/978-3-642-03359-9_6
http://ijcai.org/Proceedings/73/Papers/053.pdf
https://doi.org/10.1145/359842.359859
https://doi.org/10.1007/3-540-45587-6_3
https://doi.org/10.1017/S095679680000201X
https://doi.org/10.1016/j.comgeo.2010.06.006
https://doi.org/10.1007/978-3-540-71067-7_14
https://doi.org/10.1007/3-540-44755-5_12
https://openresearch-repository.anu.edu.au/bitstream/1885/177195/1/thesis.pdf
https://openresearch-repository.anu.edu.au/bitstream/1885/177195/1/thesis.pdf
https://doi.org/10.1145/1863543.1863590


44 T. Nipkow et al.

42. Charguéraud, A., Pottier, F.: Machine-checked verification of the correctness and
amortized complexity of an efficient union-find implementation. In: Urban, C.,
Zhang, X. (eds.) ITP 2015. LNCS, vol. 9236, pp. 137–153. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22102-1_9

43. Charguéraud, A., Pottier, F.: Verifying the correctness and amortized complexity
of a union-find implementation in separation logic with time credits. J. Autom.
Reasoning 62(3), 331–365 (2019). https://doi.org/10.1007/s10817-017-9431-7

44. Chen, J.C.: Dijkstra’s shortest path algorithm. Formalized Mathematics 11(3),
237–247 (2003). http://fm.mizar.org/2003-11/pdf11-3/graphsp.pdf

45. Chen, R., Cohen, C., Lévy, J., Merz, S., Théry, L.: Formal proofs of Tar-
jan’s strongly connected components algorithm in Why3, Coq and Isabelle.
In: Harrison, J., O’Leary, J., Tolmach, A. (eds.) 10th International Conference
on Interactive Theorem Proving, ITP 2019. LIPIcs, vol. 141, pp. 13:1–13:19.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.
4230/LIPIcs.ITP.2019.13

46. Chen, R., Lévy, J.: A semi-automatic proof of strong connectivity. In: Paskevich
and Wies [160], pp. 49–65. https://doi.org/10.1007/978-3-319-72308-2_4

47. Clochard, M.: Automatically verified implementation of data structures based on
AVL trees. In: Giannakopoulou, D., Kroening, D. (eds.) VSTTE 2014. LNCS,
vol. 8471, pp. 167–180. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-12154-3_11

48. Conchon, S., Filliâtre, J.: A persistent union-find data structure. In: Russo, C.V.,
Dreyer, D. (eds.) Workshop on ML, 2007. pp. 37–46. ACM (2007). https://doi.
org/10.1145/1292535.1292541

49. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to
Algorithms, 3rd Edition. MIT Press (2009). http://mitpress.mit.edu/books/
introduction-algorithms

50. Danielsson, N.A.: Lightweight semiformal time complexity analysis for purely
functional data structures. In: Necula, G.C., Wadler, P. (eds.) Proceedings of the
35th ACM SIGPLAN-SIGACT Symposium on Principles of Programming Lan-
guages, POPL 2008. pp. 133–144. ACM (2008). https://doi.org/10.1145/1328438.
1328457

51. Dénès, M., Mörtberg, A., Siles, V.: A refinement-based approach to computa-
tional algebra in Coq. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol.
7406, pp. 83–98. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-
32347-8_7

52. Dross, C., Moy, Y.: Auto-active proof of red-black trees in SPARK. In: Barrett, C.,
Davies, M., Kahsai, T. (eds.) NFM 2017. LNCS, vol. 10227, pp. 68–83. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-57288-8_5

53. Dufourd, J.-F., Bertot, Y.: Formal study of plane Delaunay triangulation. In:
Kaufmann, M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 211–226.
Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14052-5_16

54. Eberl, M.: Fisher-yates shuffle. Archive of Formal Proofs, September 2016. http://
isa-afp.org/entries/Fisher_Yates.html, Formal proof development

55. Eberl, M.: Expected shape of random binary search trees. Archive of Formal
Proofs, April 2017. http://isa-afp.org/entries/Random_BSTs.html, Formal proof
development

56. Eberl, M.: Lower bound on comparison-based sorting algorithms. Archive of For-
mal Proofs, March 2017. http://isa-afp.org/entries/Comparison_Sort_Lower_
Bound.html, Formal proof development

https://doi.org/10.1007/978-3-319-22102-1_9
https://doi.org/10.1007/s10817-017-9431-7
http://fm.mizar.org/2003-11/pdf11-3/graphsp.pdf
https://doi.org/10.4230/LIPIcs.ITP.2019.13
https://doi.org/10.4230/LIPIcs.ITP.2019.13
https://doi.org/10.1007/978-3-319-72308-2_4
https://doi.org/10.1007/978-3-319-12154-3_11
https://doi.org/10.1007/978-3-319-12154-3_11
https://doi.org/10.1145/1292535.1292541
https://doi.org/10.1145/1292535.1292541
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1145/1328438.1328457
https://doi.org/10.1145/1328438.1328457
https://doi.org/10.1007/978-3-642-32347-8_7
https://doi.org/10.1007/978-3-642-32347-8_7
https://doi.org/10.1007/978-3-319-57288-8_5
https://doi.org/10.1007/978-3-642-14052-5_16
http://isa-afp.org/entries/Fisher_Yates.html
http://isa-afp.org/entries/Fisher_Yates.html
http://isa-afp.org/entries/Random_BSTs.html
http://isa-afp.org/entries/Comparison_Sort_Lower_Bound.html
http://isa-afp.org/entries/Comparison_Sort_Lower_Bound.html


Verified Textbook Algorithms 45

57. Eberl, M.: The median-of-medians selection algorithm. Archive of For-
mal Proofs, December 2017. http://isa-afp.org/entries/Median_Of_Medians_
Selection.html, Formal proof development

58. Eberl, M.: The number of comparisons in quicksort. Archive of Formal Proofs,
March 2017. http://isa-afp.org/entries/Quick_Sort_Cost.html, Formal proof
development

59. Eberl, M.: Proving divide and conquer complexities in Isabelle/HOL. J. Autom.
Reasoning 58(4), 483–508 (2017). https://doi.org/10.1007/s10817-016-9378-0

60. Eberl, M.: Verified real asymptotics in Isabelle/HOL. In: Proceedings of the
International Symposium on Symbolic and Algebraic Computation. ISSAC 2019.
ACM, New York (2019). https://doi.org/10.1145/3326229.3326240

61. Eberl, M., Haslbeck, M.W., Nipkow, T.: Verified analysis of random binary tree
structures. In: J. Automated Reasoning (2020). https://doi.org/10.1007/s10817-
020-09545-0

62. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 44–467 (1965). https://
doi.org/10.4153/CJM-1965-045-4

63. Ernst, G., Pfähler, J., Schellhorn, G., Haneberg, D., Reif, W.: KIV: overview
and verifythis competition. Int. J. Softw. Tools Technol. Transf. 17(6), 677–694
(2015). https://doi.org/10.1007/s10009-014-0308-3

64. Ernst, G., Schellhorn, G., Reif, W.: Verification of B+ trees by integration of
shape analysis and interactive theorem proving. Software Syst. Model. 14(1), 27–
44 (2015). https://doi.org/10.1007/s10270-013-0320-1

65. Esparza, J., Lammich, P., Neumann, R., Nipkow, T., Schimpf, A., Smaus, J.-G.:
A fully verified executable LTL model checker. In: Sharygina, N., Veith, H. (eds.)
CAV 2013. LNCS, vol. 8044, pp. 463–478. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39799-8_31

66. Eßmann, R., Nipkow, T., Robillard, S.: Verified approximation algorithms. In:
Peltier and Sofronie-Stokkermans [163], pp. 291–306. https://doi.org/10.1007/
978-3-030-51054-1_17

67. Filliâtre, J.C.: Knuth-Morris-Pratt string searching algorithm. http://toccata.lri.
fr/gallery/kmp.en.html, formal proof development

68. Filliâtre, J.-C.: Proof of imperative programs in type theory. In: Altenkirch, T.,
Reus, B., Naraschewski, W. (eds.) TYPES 1998. LNCS, vol. 1657, pp. 78–92.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48167-2_6

69. Filliâtre, J.C.: Skew heaps (2014). http://toccata.lri.fr/gallery/skew_heaps.en.
html, formal proof development

70. Filliâtre, J.C.: Purely applicative heaps implemented with Braun trees (2015).
http://toccata.lri.fr/gallery/braun_trees.en.html, formal proof development

71. Filliâtre, J.C.: Binomial heaps (2016). http://toccata.lri.fr/gallery/binomial_
heap.en.html, formal proof development

72. Filliâtre, J.C., Clochard, M.: Hash tables with linear probing (2014). http://
toccata.lri.fr/gallery/linear_probing.en.html, formal proof development

73. Filliâtre, J.C., Clochard, M.: Warshall algorithm (2014), http://toccata.lri.fr/
gallery/warshall_algorithm.en.html, formal proof development

74. Filliâtre, J.-C., Letouzey, P.: Functors for proofs and programs. In: Schmidt, D.
(ed.) ESOP 2004. LNCS, vol. 2986, pp. 370–384. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24725-8_26

75. Filliâtre, J.-C., Paskevich, A.: Why3 — where programs meet provers. In:
Felleisen, M., Gardner, P. (eds.) ESOP 2013. LNCS, vol. 7792, pp. 125–128.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37036-6_8

http://isa-afp.org/entries/Median_Of_Medians_Selection.html
http://isa-afp.org/entries/Median_Of_Medians_Selection.html
http://isa-afp.org/entries/Quick_Sort_Cost.html
https://doi.org/10.1007/s10817-016-9378-0
https://doi.org/10.1145/3326229.3326240
https://doi.org/10.1007/s10817-020-09545-0
https://doi.org/10.1007/s10817-020-09545-0
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.4153/CJM-1965-045-4
https://doi.org/10.1007/s10009-014-0308-3
https://doi.org/10.1007/s10270-013-0320-1
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-642-39799-8_31
https://doi.org/10.1007/978-3-030-51054-1_17
https://doi.org/10.1007/978-3-030-51054-1_17
http://toccata.lri.fr/gallery/kmp.en.html
http://toccata.lri.fr/gallery/kmp.en.html
https://doi.org/10.1007/3-540-48167-2_6
http://toccata.lri.fr/gallery/skew_heaps.en.html
http://toccata.lri.fr/gallery/skew_heaps.en.html
http://toccata.lri.fr/gallery/braun_trees.en.html
http://toccata.lri.fr/gallery/binomial_heap.en.html
http://toccata.lri.fr/gallery/binomial_heap.en.html
http://toccata.lri.fr/gallery/linear_probing.en.html
http://toccata.lri.fr/gallery/linear_probing.en.html
http://toccata.lri.fr/gallery/warshall_algorithm.en.html
http://toccata.lri.fr/gallery/warshall_algorithm.en.html
https://doi.org/10.1007/978-3-540-24725-8_26
https://doi.org/10.1007/978-3-642-37036-6_8


46 T. Nipkow et al.

76. Filliâtre, J., Paskevich, A., Stump, A.: The 2nd verified software competition:
Experience report. In: Proceedings of the 1st International Workshop on Com-
parative Empirical Evaluation of Reasoning Systems, pp. 36–49 (2012). http://
ceur-ws.org/Vol-873/papers/paper_6.pdf

77. Fredman, M.L., Sedgewick, R., Sleator, D.D., Tarjan, R.E.: The pairing heap: a
new form of self-adjusting heap. Algorithmica 1(1), 111–129 (1986). https://doi.
org/10.1007/BF01840439

78. Furia, C.A., Nordio, M., Polikarpova, N., Tschannen, J.: Autoproof: auto-active
functional verification of object-oriented programs. Int. J. Softw. Tools Technol.
Transf. 19(6), 697–716 (2017). https://doi.org/10.1007/s10009-016-0419-0

79. Gabow, H.N.: Path-based depth-first search for strong and biconnected com-
ponents. Inf. Process. Lett. 74(3–4), 107–114 (2000). https://doi.org/10.1016/
S0020-0190(00)00051-X

80. Gale, D., Shapley, L.S.: College admissions and the stability of marriage. Am.
Math. Monthly 69(1), 9–15 (1962)

81. Galperin, I., Rivest, R.L.: Scapegoat trees. In: Ramachandran, V. (ed.) Pro-
ceedings of the Fourth Annual ACM/SIGACT-SIAM Symposium on Discrete
Algorithms, pp. 165–174. ACM/SIAM (1993). http://dl.acm.org/citation.cfm?
id=313559.313676

82. Gamboa, R.: The correctness of the fast Fourier transform: a structured proof in
ACL2. Formal Methods Syst. Des. 20(1), 91–106 (2002)

83. Garillot, F., Gonthier, G., Mahboubi, A., Rideau, L.: Packaging mathematical
structures. In: Berghofer, S., Nipkow, T., Urban, C., Wenzel, M. (eds.) TPHOLs
2009. LNCS, vol. 5674, pp. 327–342. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-03359-9_23

84. Giry, M.: A categorical approach to probability theory. In: Banaschewski, B. (ed.)
Categorical Aspects of Topology and Analysis. LNM, vol. 915, pp. 68–85. Springer,
Heidelberg (1982). https://doi.org/10.1007/BFb0092872

85. de Gouw, S., de Boer, F.S., Bubel, R., Hähnle, R., Rot, J., Steinhöfel, D.: Verifying
OpenJDK’s sort method for generic collections. J. Autom. Reasoning 62(1), 93–
126 (2019). https://doi.org/10.1007/s10817-017-9426-4

86. de Gouw, S., Rot, J., de Boer, F.S., Bubel, R., Hähnle, R.: OpenJDK’s
Java.utils.Collection.sort() is broken: the good, the bad and the worst case. In:
Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS, vol. 9206, pp. 273–289.
Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21690-4_16

87. Guéneau, A., Charguéraud, A., Pottier, F.: A fistful of dollars: formalizing asymp-
totic complexity claims via deductive program verification. In: Ahmed, A. (ed.)
ESOP 2018. LNCS, vol. 10801, pp. 533–560. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-89884-1_19

88. Guibas, L.J., McCreight, E.M., Plass, M.F., Roberts, J.R.: A new representation
for linear lists. In: Hopcroft, J.E., Friedman, E.P., Harrison, M.A. (eds.) Proceed-
ings of the 9th Annual ACM Symposium on Theory of Computing, pp. 49–60.
ACM (1977). https://doi.org/10.1145/800105.803395

89. Guttmann, W.: Relation-algebraic verification of Prim’s minimum spanning tree
algorithm. In: Sampaio, A., Wang, F. (eds.) ICTAC 2016. LNCS, vol. 9965, pp.
51–68. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46750-4_4

90. Guttmann, W.: An algebraic framework for minimum spanning tree problems.
Theor. Comput. Sci. 744, 37–55 (2018). https://doi.org/10.1016/j.tcs.2018.04.
012

http://ceur-ws.org/Vol-873/papers/paper_6.pdf
http://ceur-ws.org/Vol-873/papers/paper_6.pdf
https://doi.org/10.1007/BF01840439
https://doi.org/10.1007/BF01840439
https://doi.org/10.1007/s10009-016-0419-0
https://doi.org/10.1016/S0020-0190(00)00051-X
https://doi.org/10.1016/S0020-0190(00)00051-X
http://dl.acm.org/citation.cfm?id=313559.313676
http://dl.acm.org/citation.cfm?id=313559.313676
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/978-3-642-03359-9_23
https://doi.org/10.1007/BFb0092872
https://doi.org/10.1007/s10817-017-9426-4
https://doi.org/10.1007/978-3-319-21690-4_16
https://doi.org/10.1007/978-3-319-89884-1_19
https://doi.org/10.1007/978-3-319-89884-1_19
https://doi.org/10.1145/800105.803395
https://doi.org/10.1007/978-3-319-46750-4_4
https://doi.org/10.1016/j.tcs.2018.04.012
https://doi.org/10.1016/j.tcs.2018.04.012


Verified Textbook Algorithms 47

91. Guttmann, W.: Verifying minimum spanning tree algorithms with stone relation
algebras. J. Log. Algebraic Methods Program 101, 132–150 (2018). https://doi.
org/10.1016/j.jlamp.2018.09.005

92. Hamid, N.A., Castleberry, C.: Formally certified stable marriages. In: Proceedings
of the 48th Annual Southeast Regional Conference. ACM SE 2010. ACM (2010).
https://doi.org/10.1145/1900008.1900056

93. Haslbeck, M.W., Eberl, M.: Skip lists. Archive of Formal Proofs, January 2020.
http://isa-afp.org/entries/Skip_Lists.html, Formal proof development

94. Haslbeck, M.W., Eberl, M., Nipkow, T.: Treaps. Archive of Formal Proofs, Febru-
ary 2018. http://isa-afp.org/entries/Treaps.html, Formal proof development

95. Haslbeck, M.P.L., Lammich, P.: Refinement with time – refining the run-
time of algorithms in Isabelle/HOL. In: Harrison, J., O’Leary, J., Tolmach, A.
(eds.) Interactive Theorem Proving, ITP 2019. LIPIcs, vol. 141, pp. 20:1–20:18.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019). https://doi.org/10.
4230/LIPIcs.ITP.2019.20

96. Haslbeck, M.P.L., Lammich, P., Biendarra, J.: Kruskal’s algorithm for minimum
spanning forest. Archive of Formal Proofs, February 2019. http://isa-afp.org/
entries/Kruskal.html, Formal proof development

97. Haslbeck, M.P.L., Lammich, P., Biendarra, J.: Kruskal’s algorithm for mini-
mum spanning forest. Arch. Formal Proofs 2019 (2019), https://www.isa-afp.
org/entries/Kruskal.html

98. Haslbeck, M.P.L., Nipkow, T.: Verified analysis of list update algorithms. In: Lal,
A., Akshay, S., Saurabh, S., Sen, S. (eds.) Foundations of Software Technology
and Theoretical Computer Science, FSTTCS 2016. LIPIcs, vol. 65, pp. 49:1–49:15.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2016). https://doi.org/10.
4230/LIPIcs.FSTTCS.2016.49, https://doi.org/10.4230/LIPIcs.FSTTCS.2016.49

99. Hellauer, F., Lammich, P.: The string search algorithm by knuth, morris and pratt.
Archive of Formal Proofs, December 2017. http://isa-afp.org/entries/Knuth_
Morris_Pratt.html, Formal proof development

100. Hiep, H.-D.A., Maathuis, O., Bian, J., de Boer, F.S., van Eekelen, M., de Gouw,
S.: Verifying OpenJDK’s LinkedList using KeY. TACAS 2020. LNCS, vol. 12079,
pp. 217–234. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45237-
7_13

101. Hinze, R., Paterson, R.: Finger trees: a simple general-purpose data struc-
ture. J. Funct. Program. 16(2), 197–217 (2006). https://doi.org/10.1017/
S0956796805005769

102. Hirai, Y., Yamamoto, K.: Balancing weight-balanced trees. J. Funct. Program.
21(3), 287–307 (2011). https://doi.org/10.1017/S0956796811000104

103. Hoffmann, J.: Types with potential: polynomial resource bounds via automatic
amortized analysis. Ph.D. thesis, Ludwig Maximilians University Munich (2011).
http://edoc.ub.uni-muenchen.de/13955/

104. Hoffmann, J., Aehlig, K., Hofmann, M.: Multivariate amortized resource analysis.
ACM Trans. Program. Lang. Syst. 34(3), 14:1–14:62 (2012). https://doi.org/10.
1145/2362389.2362393

105. Hölzl, J.: Formalising semantics for expected running time of probabilistic pro-
grams. In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 475–
482. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43144-4_30

106. Hölzl, J., Heller, A.: Three chapters of measure theory in Isabelle/HOL. In: van
Eekelen, M., Geuvers, H., Schmaltz, J., Wiedijk, F. (eds.) ITP 2011. LNCS, vol.
6898, pp. 135–151. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-
642-22863-6_12

https://doi.org/10.1016/j.jlamp.2018.09.005
https://doi.org/10.1016/j.jlamp.2018.09.005
https://doi.org/10.1145/1900008.1900056
http://isa-afp.org/entries/Skip_Lists.html
http://isa-afp.org/entries/Treaps.html
https://doi.org/10.4230/LIPIcs.ITP.2019.20
https://doi.org/10.4230/LIPIcs.ITP.2019.20
http://isa-afp.org/entries/Kruskal.html
http://isa-afp.org/entries/Kruskal.html
https://www.isa-afp.org/entries/Kruskal.html
https://www.isa-afp.org/entries/Kruskal.html
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.49
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.49
https://doi.org/10.4230/LIPIcs.FSTTCS.2016.49
http://isa-afp.org/entries/Knuth_Morris_Pratt.html
http://isa-afp.org/entries/Knuth_Morris_Pratt.html
https://doi.org/10.1007/978-3-030-45237-7_13
https://doi.org/10.1007/978-3-030-45237-7_13
https://doi.org/10.1017/S0956796805005769
https://doi.org/10.1017/S0956796805005769
https://doi.org/10.1017/S0956796811000104
http://edoc.ub.uni-muenchen.de/13955/
https://doi.org/10.1145/2362389.2362393
https://doi.org/10.1145/2362389.2362393
https://doi.org/10.1007/978-3-319-43144-4_30
https://doi.org/10.1007/978-3-642-22863-6_12
https://doi.org/10.1007/978-3-642-22863-6_12


48 T. Nipkow et al.

107. Hölzl, J., Immler, F., Huffman, B.: Type classes and filters for mathematical
analysis in Isabelle/HOL. In: Blazy, S., Paulin-Mohring, C., Pichardie, D. (eds.)
ITP 2013. LNCS, vol. 7998, pp. 279–294. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39634-2_21

108. Hoogerwoord, R.R.: A logarithmic implementation of flexible arrays. In: Bird,
R.S., Morgan, C.C., Woodcock, J.C.P. (eds.) MPC 1992. LNCS, vol. 669, pp.
191–207. Springer, Heidelberg (1993). https://doi.org/10.1007/3-540-56625-2_14

109. Hurd, J.: Verification of the Miller-Rabin probabilistic primality test. J. Log. Alge-
braic Methods Program. 56(1–2), 3–21 (2003). https://doi.org/10.1016/S1567-
8326(02)00065-6

110. Kaminski, B.L., Katoen, J.-P., Matheja, C., Olmedo, F.: Weakest precondition
reasoning for expected run–times of probabilistic programs. In: Thiemann, P.
(ed.) ESOP 2016. LNCS, vol. 9632, pp. 364–389. Springer, Heidelberg (2016).
https://doi.org/10.1007/978-3-662-49498-1_15

111. Kaufmann, M., Moore, J.S., Manolios, P.: Computer-Aided Reasoning: An App-
roach. Kluwer Academic Publishers, Norwell (2000)

112. Keinholz, J.: Matroids. Archive of Formal Proofs, November 2018. http://isa-afp.
org/entries/Matroids.html, Formal proof development

113. Knuth, D.E.: Optimum binary search trees. Acta Inf. 1, 14–25 (1971). https://
doi.org/10.1007/BF00264289

114. Lammich, P.: Automatic data refinement. In: Blazy, S., Paulin-Mohring, C.,
Pichardie, D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 84–99. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-39634-2_9

115. Lammich, P.: Verified efficient implementation of Gabow’s strongly connected
component algorithm. In: Klein, G., Gamboa, R. (eds.) ITP 2014. LNCS, vol.
8558, pp. 325–340. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-
08970-6_21

116. Lammich, P.: Refinement to Imperative/HOL. In: Urban and Zhang [191], pp.
253–269. https://doi.org/10.1007/978-3-319-22102-1_17

117. Lammich, P.: Refinement based verification of imperative data structures. In:
Avigad, J., Chlipala, A. (eds.) Proceedings of the 5th ACM SIGPLAN Conference
on Certified Programs and Proofs, pp. 27–36. ACM (2016). https://doi.org/10.
1145/2854065.2854067

118. Lammich, P.: Generating verified LLVM from Isabelle/HOL. In: Harrison, J.,
O’Leary, J., Tolmach, A. (eds.) Interactive Theorem Proving, ITP 2019. LIPIcs,
vol. 141, pp. 22:1–22:19. Schloss Dagstuhl - Leibniz-Zentrum für Informatik
(2019). https://doi.org/10.4230/LIPIcs.ITP.2019.22

119. Lammich, P.: Refinement to imperative HOL. J. Autom. Reasoning 62(4), 481–
503 (2019). https://doi.org/10.1007/s10817-017-9437-1

120. Lammich, P.: Efficient verified implementation of Introsort and Pdqsort. In:
Peltier, N., Sofronie-Stokkermans, V. (eds.) IJCAR 2020. LNCS (LNAI), vol.
12167, pp. 307–323. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-
51054-1_18

121. Lammich, P., Lochbihler, A.: The Isabelle collections framework. In: Kaufmann,
M., Paulson, L.C. (eds.) ITP 2010. LNCS, vol. 6172, pp. 339–354. Springer, Hei-
delberg (2010). https://doi.org/10.1007/978-3-642-14052-5_24

122. Lammich, P., Meis, R.: A Separation Logic Framework for Imperative
HOL. Archive of Formal Proofs, November 2012. http://isa-afp.org/entries/
Separation_Logic_Imperative_HOL.html, Formal proof development

https://doi.org/10.1007/978-3-642-39634-2_21
https://doi.org/10.1007/978-3-642-39634-2_21
https://doi.org/10.1007/3-540-56625-2_14
https://doi.org/10.1016/S1567-8326(02)00065-6
https://doi.org/10.1016/S1567-8326(02)00065-6
https://doi.org/10.1007/978-3-662-49498-1_15
http://isa-afp.org/entries/Matroids.html
http://isa-afp.org/entries/Matroids.html
https://doi.org/10.1007/BF00264289
https://doi.org/10.1007/BF00264289
https://doi.org/10.1007/978-3-642-39634-2_9
https://doi.org/10.1007/978-3-319-08970-6_21
https://doi.org/10.1007/978-3-319-08970-6_21
https://doi.org/10.1007/978-3-319-22102-1_17
https://doi.org/10.1145/2854065.2854067
https://doi.org/10.1145/2854065.2854067
https://doi.org/10.4230/LIPIcs.ITP.2019.22
https://doi.org/10.1007/s10817-017-9437-1
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.1007/978-3-030-51054-1_18
https://doi.org/10.1007/978-3-642-14052-5_24
http://isa-afp.org/entries/Separation_Logic_Imperative_HOL.html
http://isa-afp.org/entries/Separation_Logic_Imperative_HOL.html


Verified Textbook Algorithms 49

123. Lammich, P., Neumann, R.: A framework for verifying depth-first search algo-
rithms. In: Leroy, X., Tiu, A. (eds.) Proceedings of the 2015 Conference on Cer-
tified Programs and Proofs. CPP 2015, pp. 137–146. ACM (2015). https://doi.
org/10.1145/2676724.2693165

124. Lammich, P., Nipkow, T.: Proof pearl: purely functional, simple and efficient pri-
ority search trees and applications to Prim and Dijkstra. In: Harrison, J., O’Leary,
J., Tolmach, A. (eds.) Interactive Theorem Proving, ITP 2019. LIPIcs, vol.
141, pp. 23:1–23:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2019).
https://doi.org/10.4230/LIPIcs.ITP.2019.23

125. Lammich, P., Sefidgar, S.R.: Formalizing the Edmonds-Karp algorithm. In:
Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 219–234.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43144-4_14

126. Lammich, P., Sefidgar, S.R.: Formalizing network flow algorithms: a refinement
approach in Isabelle/HOL. J. Autom. Reasoning 62(2), 261–280 (2019). https://
doi.org/10.1007/s10817-017-9442-4

127. Lammich, P., Tuerk, T.: Applying data refinement for monadic programs to
Hopcroft’s algorithm. In: Beringer, L., Felty, A. (eds.) ITP 2012. LNCS, vol.
7406, pp. 166–182. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32347-8_12

128. Lee, G.: Correctnesss of Ford-Fulkerson’s maximum flow algorithm. Formalized
Math. 13(2), 305–314 (2005). http://fm.mizar.org/2005-13/pdf13-2/glib_005.
pdf

129. Lee, G., Rudnicki, P.: Correctness of Dijkstra’s shortest path and Prim’s minimum
spanning tree algorithms. Formal. Math. 13(2), 295–304 (2005). http://fm.mizar.
org/2005-13/pdf13-2/glib_004.pdf

130. Leighton, T.: Notes on better master theorems for divide-and-conquer recur-
rences (MIT lecture notes) (1996), https://courses.csail.mit.edu/6.046/spring04/
handouts/akrabazzi.pdf

131. Malecha, J.G., Morrisett, G., Shinnar, A., Wisnesky, R.: Toward a verified rela-
tional database management system. In: Hermenegildo, M.V., Palsberg, J. (eds.)
Proceedings of the 37th ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, POPL 2010, pp. 237–248. ACM (2010). https://doi.
org/10.1145/1706299.1706329

132. Marić, F., Spasić, M., Thiemann, R.: An incremental simplex algorithm with
unsatisfiable core generation. Archive of Formal Proofs, August 2018. http://isa-
afp.org/entries/Simplex.html, Formal proof development

133. McCarthy, J., Fetscher, B., New, M., Feltey, D., Findler, R.B.: A coq library for
internal verification of running-times. In: Kiselyov, O., King, A. (eds.) FLOPS
2016. LNCS, vol. 9613, pp. 144–162. Springer, Cham (2016). https://doi.org/10.
1007/978-3-319-29604-3_10

134. Meikle, L.I., Fleuriot, J.D.: Mechanical theorem proving in computational geome-
try. In: Hong, H., Wang, D. (eds.) ADG 2004. LNCS (LNAI), vol. 3763, pp. 1–18.
Springer, Heidelberg (2006). https://doi.org/10.1007/11615798_1

135. Meis, R., Nielsen, F., Lammich, P.: Binomial heaps and skew binomial heaps.
Archive of Formal Proofs, October 2010. http://isa-afp.org/entries/Binomial-
Heaps.html, Formal proof development

136. Meyer, B.: Eiffel: The Language. Prentice-Hall (1991). http://www.eiffel.com/
doc/#etl

https://doi.org/10.1145/2676724.2693165
https://doi.org/10.1145/2676724.2693165
https://doi.org/10.4230/LIPIcs.ITP.2019.23
https://doi.org/10.1007/978-3-319-43144-4_14
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/s10817-017-9442-4
https://doi.org/10.1007/978-3-642-32347-8_12
https://doi.org/10.1007/978-3-642-32347-8_12
http://fm.mizar.org/2005-13/pdf13-2/glib_005.pdf
http://fm.mizar.org/2005-13/pdf13-2/glib_005.pdf
http://fm.mizar.org/2005-13/pdf13-2/glib_004.pdf
http://fm.mizar.org/2005-13/pdf13-2/glib_004.pdf
https://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf
https://courses.csail.mit.edu/6.046/spring04/handouts/akrabazzi.pdf
https://doi.org/10.1145/1706299.1706329
https://doi.org/10.1145/1706299.1706329
http://isa-afp.org/entries/Simplex.html
http://isa-afp.org/entries/Simplex.html
https://doi.org/10.1007/978-3-319-29604-3_10
https://doi.org/10.1007/978-3-319-29604-3_10
https://doi.org/10.1007/11615798_1
http://isa-afp.org/entries/Binomial-Heaps.html
http://isa-afp.org/entries/Binomial-Heaps.html
http://www.eiffel.com/doc/#etl
http://www.eiffel.com/doc/#etl


50 T. Nipkow et al.

137. Moore, J S., Martinez, M.: A mechanically checked proof of the correctness of
the Boyer-Moore fast string searching algorithm. In: Broy, M., Sitou, W., Hoare,
T. (eds.) Engineering Methods and Tools for Software Safety and Security, pp.
267–284. IOS Press (2009)

138. Moore, J.S., Zhang, Q.: Proof pearl: Dijkstra’s shortest path algorithm verified
with ACL2. In: Hurd, J., Melham, T. (eds.) TPHOLs 2005. LNCS, vol. 3603, pp.
373–384. Springer, Heidelberg (2005). https://doi.org/10.1007/11541868_24

139. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University
Press, Cambridge (1995)

140. Musser, D.R.: Introspective sorting and selection algorithms. Softw. Pract. Exp.
27(8), 983–993 (1997). https://doi.org/10.1002/(SICI)1097--024X(199708)27:
8<983::AID-SPE117>3.0.CO;2-%23

141. Nanevski, A., Morrisett, G., Shinnar, A., Govereau, P., Birkedal, L.: Ynot: depen-
dent types for imperative programs. In: Hook, J., Thiemann, P. (eds.) Proceeding
of the 13th ACM SIGPLAN International Conference on Functional Program-
ming, ICFP 2008. pp. 229–240. ACM (2008). https://doi.org/10.1145/1411204.
1411237

142. Neumann, R.: CAVA – A Verified Model Checker. Ph.D. thesis, Technische
Universität München (2017). http://nbn-resolving.de/urn/resolver.pl?urn:nbn:
de:bvb:91-diss-20170616-1342881-1-9

143. Nievergelt, J., Reingold, E.M.: Binary search trees of bounded balance. In: Fischer,
P.C., Zeiger, H.P., Ullman, J.D., Rosenberg, A.L. (eds.) Proceedings of the 4th
Annual ACM Symposium on Theory of Computing, pp. 137–142. ACM (1972).
https://doi.org/10.1145/800152.804906

144. Nievergelt, J., Reingold, E.M.: Binary search trees of bounded balance. SIAM J.
Comput. 2(1), 33–43 (1973). https://doi.org/10.1137/0202005

145. Nipkow, T.: Amortized complexity verified. In: Urban and Zhang [191], pp. 310–
324. https://doi.org/10.1007/978-3-319-22102-1_21

146. Nipkow, T.: Automatic functional correctness proofs for functional search trees.
In: Blanchette, J.C., Merz, S. (eds.) ITP 2016. LNCS, vol. 9807, pp. 307–322.
Springer, Cham (2016). https://doi.org/10.1007/978-3-319-43144-4_19

147. Nipkow, T.: Verified root-balanced trees. In: Chang, B.E. (ed.) Programming
Languages and Systems, APLAS 2017. LNCS, vol. 10695, pp. 255–272. Springer
(2017). https://doi.org/10.1007/978-3-319-71237-6_13

148. Nipkow, T., Brinkop, H.: Amortized complexity verified. J. Autom. Reasoning
62(3), 367–391 (2019). https://doi.org/10.1007/s10817-018-9459-3

149. Nipkow, T., Dirix, S.: Weight-balanced trees. Archive of Formal Proofs,
March 2018. http://isa-afp.org/entries/Weight_Balanced_Trees.html, Formal
proof development

150. Nipkow, T., Klein, G.: Concrete Semantics - With Isabelle/HOL. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10542-0, http://www.concrete-
semantics.org/

151. Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL. LNCS, vol. 2283. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45949-9

152. Nipkow, T., Pusch, C.: AVL trees. Archive of Formal Proofs, March 2004. http://
isa-afp.org/entries/AVL-Trees.html, Formal proof development

153. Nipkow, T., Sewell, T.: Proof pearl: Braun trees. In: Blanchette, J., Hritcu, C.
(eds.) Proceedings of the 9th ACM SIGPLAN International Conference on Cer-
tified Programs and Proofs, CPP 2020, pp. 18–31. ACM (2020). https://doi.org/
10.1145/3372885.3373834

https://doi.org/10.1007/11541868_24
https://doi.org/10.1002/(SICI)1097--024X(199708)27:8<983::AID-SPE117>3.0.CO;2-%23
https://doi.org/10.1002/(SICI)1097--024X(199708)27:8<983::AID-SPE117>3.0.CO;2-%23
https://doi.org/10.1145/1411204.1411237
https://doi.org/10.1145/1411204.1411237
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20170616-1342881-1-9
http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:91-diss-20170616-1342881-1-9
https://doi.org/10.1145/800152.804906
https://doi.org/10.1137/0202005
https://doi.org/10.1007/978-3-319-22102-1_21
https://doi.org/10.1007/978-3-319-43144-4_19
https://doi.org/10.1007/978-3-319-71237-6_13
https://doi.org/10.1007/s10817-018-9459-3
http://isa-afp.org/entries/Weight_Balanced_Trees.html
https://doi.org/10.1007/978-3-319-10542-0
http://www.concrete-semantics.org/
http://www.concrete-semantics.org/
https://doi.org/10.1007/3-540-45949-9
http://isa-afp.org/entries/AVL-Trees.html
http://isa-afp.org/entries/AVL-Trees.html
https://doi.org/10.1145/3372885.3373834
https://doi.org/10.1145/3372885.3373834


Verified Textbook Algorithms 51

154. Nipkow, T., Somogyi, D.: Optimal binary search trees. Archive of Formal Proofs,
May 2018. http://isa-afp.org/entries/Optimal_BST.html, Formal proof develop-
ment

155. Nordhoff, B., Körner, S., Lammich, P.: Finger trees. Archive of Formal Proofs,
October 2010. http://isa-afp.org/entries/Finger-Trees.html, Formal proof devel-
opment

156. Nordhoff, B., Lammich, P.: Dijkstra’s shortest path algorithm. Archive of Formal
Proofs, January 2012. http://isa-afp.org/entries/Dijkstra_Shortest_Path.html,
Formal proof development

157. Owre, S., Shankar, N.: A brief overview of PVS. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 22–27. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7_5

158. Palomo-Lozano, F., Inmaculada Medina-Bulo, J.A.A.J.: Certification of matrix
multiplication algorithms. In: Theorem Proving in Higher Order Logics, Supple-
mental Proceedings, TPHOLs 2001 (2001)

159. Parsert, J., Kaliszyk, C.: Linear programming. Archive of Formal Proofs, August
2019. http://isa-afp.org/entries/Linear_Programming.html, Formal proof devel-
opment

160. Paskevich, A., Wies, T. (eds.): VSTTE 2017. LNCS, vol. 10712. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-72308-2

161. Paulin-Mohring, C.: Extraction de programmes dans le Calcul des Construc-
tions. (Program Extraction in the Calculus of Constructions). Ph.D. thesis, Paris
Diderot University, France (1989). https://tel.archives-ouvertes.fr/tel-00431825

162. Paulson, L.C.: ML for the Working Programmer, 2nd edn. Cambridge University
Press, Cambridge (1996)

163. Peltier, N., Sofronie-Stokkermans, V. (eds.): IJCAR 2020. LNCS (LNAI), vol.
12167. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51054-1

164. Pereira, M.: Pairing heaps (2016). http://toccata.lri.fr/gallery/pairing_heap.en.
html, formal proof development

165. Petcher, A., Morrisett, G.: The foundational cryptography framework. In: Focardi,
R., Myers, A. (eds.) POST 2015. LNCS, vol. 9036, pp. 53–72. Springer, Heidelberg
(2015). https://doi.org/10.1007/978-3-662-46666-7_4

166. Pichardie, D., Bertot, Y.: Formalizing convex hull algorithms. In: Boulton, R.J.,
Jackson, P.B. (eds.) TPHOLs 2001. LNCS, vol. 2152, pp. 346–361. Springer, Hei-
delberg (2001). https://doi.org/10.1007/3-540-44755-5_24

167. Polikarpova, N., Tschannen, J., Furia, C.A.: A fully verified container library. In:
Bjørner, N., de Boer, F. (eds.) FM 2015. LNCS, vol. 9109, pp. 414–434. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19249-9_26

168. Polikarpova, N., Tschannen, J., Furia, C.A.: A fully verified container library.
Formal Asp. Comput. 30(5), 495–523 (2018). https://doi.org/10.1007/s00165-
017-0435-1

169. Pottier, F.: Depth-first search and strong connectivity in Coq. In: Journées Fran-
cophones des Langages Applicatifs (JFLA), January 2015. http://gallium.inria.
fr/~fpottier/publis/fpottier-dfs-scc.pdf

170. Pottier, F.: Verifying a hash table and its iterators in higher-order separation logic.
In: ACM SIGPLAN Conference on Certified Programs and Proofs (CPP), pp.
3–16, January 2017. https://doi.org/10.1145/3018610.3018624, http://gallium.
inria.fr/~fpottier/publis/fpottier-hashtable.pdf

171. Pugh, W.: Skip lists: a probabilistic alternative to balanced trees. Commun. ACM
33(6), 668–676 (1990). https://doi.org/10.1145/78973.78977

http://isa-afp.org/entries/Optimal_BST.html
http://isa-afp.org/entries/Finger-Trees.html
http://isa-afp.org/entries/Dijkstra_Shortest_Path.html
https://doi.org/10.1007/978-3-540-71067-7_5
http://isa-afp.org/entries/Linear_Programming.html
https://doi.org/10.1007/978-3-319-72308-2
https://tel.archives-ouvertes.fr/tel-00431825
https://doi.org/10.1007/978-3-030-51054-1
http://toccata.lri.fr/gallery/pairing_heap.en.html
http://toccata.lri.fr/gallery/pairing_heap.en.html
https://doi.org/10.1007/978-3-662-46666-7_4
https://doi.org/10.1007/3-540-44755-5_24
https://doi.org/10.1007/978-3-319-19249-9_26
https://doi.org/10.1007/s00165-017-0435-1
https://doi.org/10.1007/s00165-017-0435-1
http://gallium.inria.fr/~fpottier/publis/fpottier-dfs-scc.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-dfs-scc.pdf
https://doi.org/10.1145/3018610.3018624
http://gallium.inria.fr/~fpottier/publis/fpottier-hashtable.pdf
http://gallium.inria.fr/~fpottier/publis/fpottier-hashtable.pdf
https://doi.org/10.1145/78973.78977


52 T. Nipkow et al.

172. Ralston, R.: ACL2-certified AVL trees. In: Eighth International Workshop on the
ACL2 Theorem Prover and Its Applications. ACL2 2009, pp. 71–74. ACM (2009).
https://doi.org/10.1145/1637837.1637848

173. Rau, M., Nipkow, T.: Verification of closest pair of points algorithms. In: Peltier
and Sofronie-Stokkermans [163], pp. 341–357. https://doi.org/10.1007/978-3-030-
51054-1_20

174. Rem, M., Braun, W.: A logarithmic implementation of flexible arrays (1983).
memorandum MR83/4. Eindhoven University of Technology

175. Sagiv, S., Reps, T.W., Wilhelm, R.: Parametric shape analysis via 3-valued logic.
ACM Trans. Program. Lang. Syst. 24(3), 217–298 (2002). https://doi.org/10.
1145/514188.514190

176. Sakaguchi, K.: Program extraction for mutable arrays. In: Gallagher, J.P., Sulz-
mann, M. (eds.) FLOPS 2018. LNCS, vol. 10818, pp. 51–67. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-90686-7_4

177. Sedgewick, R., Wayne, K.: Algorithms, 4th Edition. Addison-Wesley, Upper Sad-
dle River (2011)

178. Seidel, R., Aragon, C.R.: Randomized search trees. Algorithmica 16(4/5), 464–
497 (1996). https://doi.org/10.1007/BF01940876

179. Sleator, D.D., Tarjan, R.E.: Self-adjusting binary search trees. J. ACM 32(3),
652–686 (1985). https://doi.org/10.1145/3828.3835

180. Sleator, D.D., Tarjan, R.E.: Self-adjusting heaps. SIAM J. Comput. 15(1), 52–69
(1986). https://doi.org/10.1137/0215004

181. Slind, K., Norrish, M.: A brief overview of HOL4. In: Mohamed, O.A., Muñoz, C.,
Tahar, S. (eds.) TPHOLs 2008. LNCS, vol. 5170, pp. 28–32. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-71067-7_6

182. Sozeau, M.: Program-ing finger trees in Coq. In: Hinze, R., Ramsey, N. (eds.) Pro-
ceedings of the 12th ACM SIGPLAN International Conference on Functional Pro-
gramming. ICFP 2007, pp. 13–24. ACM (2007). https://doi.org/10.1145/1291220.
1291156

183. Spasić, M., Marić, F.: Formalization of incremental simplex algorithm by step-
wise refinement. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol.
7436, pp. 434–449. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-32759-9_35

184. Stucke, I.: Reasoning about cardinalities of relations with applications supported
by proof assistants. In: Höfner, P., Pous, D., Struth, G. (eds.) RAMICS 2017.
LNCS, vol. 10226, pp. 290–306. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-57418-9_18

185. Stüwe, D., Eberl, M.: Probabilistic primality testing. Archive of Formal Proofs,
February 2019. http://isa-afp.org/entries/Probabilistic_Prime_Tests.html, For-
mal proof development

186. Tarjan, R.E.: Depth-first search and linear graph algorithms. SIAM J. Comput.
1(2), 146–160 (1972). https://doi.org/10.1137/0201010

187. Tassarotti, J., Harper, R.: Verified tail bounds for randomized programs. In: Avi-
gad, J., Mahboubi, A. (eds.) ITP 2018. LNCS, vol. 10895, pp. 560–578. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-94821-8_33

188. Tassarotti, J., Harper, R.: A separation logic for concurrent randomized pro-
grams. Proc. ACM Program. Lang. 3(POPL), 64:1–64:30 (2019). https://doi.
org/10.1145/3290377

189. Théry, L.: Formalising Huffman’s algorithm. Research report, Università degli
Studi dell’Aquila (2004) https://hal.archives-ouvertes.fr/hal-02149909

https://doi.org/10.1145/1637837.1637848
https://doi.org/10.1007/978-3-030-51054-1_20
https://doi.org/10.1007/978-3-030-51054-1_20
https://doi.org/10.1145/514188.514190
https://doi.org/10.1145/514188.514190
https://doi.org/10.1007/978-3-319-90686-7_4
https://doi.org/10.1007/BF01940876
https://doi.org/10.1145/3828.3835
https://doi.org/10.1137/0215004
https://doi.org/10.1007/978-3-540-71067-7_6
https://doi.org/10.1145/1291220.1291156
https://doi.org/10.1145/1291220.1291156
https://doi.org/10.1007/978-3-642-32759-9_35
https://doi.org/10.1007/978-3-642-32759-9_35
https://doi.org/10.1007/978-3-319-57418-9_18
https://doi.org/10.1007/978-3-319-57418-9_18
http://isa-afp.org/entries/Probabilistic_Prime_Tests.html
https://doi.org/10.1137/0201010
https://doi.org/10.1007/978-3-319-94821-8_33
https://doi.org/10.1145/3290377
https://doi.org/10.1145/3290377
https://hal.archives-ouvertes.fr/hal-02149909


Verified Textbook Algorithms 53

190. Toibazarov, E.: An ACL2 proof of the correctness of the preprocessing for a variant
of the Boyer-Moore fast string searching algorithm. Honors thesis, Computer Sci-
ence Dept., University of Texas at Austin (2013). see www.cs.utexas.edu/users/
moore/publications/toibazarov-thesis.pdf

191. Urban, C., Zhang, X. (eds.): ITP 2015. LNCS, vol. 9236. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-22102-1

192. Vafeiadis, V.: Adjustable references. In: Blazy, S., Paulin-Mohring, C., Pichardie,
D. (eds.) ITP 2013. LNCS, vol. 7998, pp. 328–337. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-39634-2_24

193. van der Weegen, E., McKinna, J.: A machine-checked proof of the average-case
complexity of quicksort in Coq. In: Berardi, S., Damiani, F., de’Liguoro, U. (eds.)
TYPES 2008. LNCS, vol. 5497, pp. 256–271. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-02444-3_16

194. Wimmer, S.: Formalized timed automata. In: Blanchette, J.C., Merz, S. (eds.)
ITP 2016. LNCS, vol. 9807, pp. 425–440. Springer, Cham (2016). https://doi.
org/10.1007/978-3-319-43144-4_26

195. Wimmer, S.: Hidden Markov models. Archive of Formal Proofs, May 2018. http://
isa-afp.org/entries/Hidden_Markov_Models.html, Formal proof development

196. Wimmer, S., Hu, S., Nipkow, T.: Verified Memoization and dynamic program-
ming. In: Avigad, J., Mahboubi, A. (eds.) ITP 2018. LNCS, vol. 10895, pp. 579–
596. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94821-8_34

197. Wimmer, S., Lammich, P.: The Floyd-Warshall algorithm for shortest paths.
Archive of Formal Proofs, May 2017. http://isa-afp.org/entries/Floyd_Warshall.
html, Formal proof development

198. Wimmer, S., Lammich, P.: Verified model checking of timed automata. In: Beyer,
D., Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 61–78. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-89960-2_4

199. Yao, F.F.: Efficient dynamic programming using quadrangle inequalities. In:
Miller, R.E., Ginsburg, S., Burkhard, W.A., Lipton, R.J. (eds.) Proceedings of
the 12th Annual ACM Symposium on Theory of Computing, pp. 429–435. ACM
(1980). https://doi.org/10.1145/800141.804691

200. Zhan, B.: Efficient verification of imperative programs using Auto2. In: Beyer, D.,
Huisman, M. (eds.) TACAS 2018. LNCS, vol. 10805, pp. 23–40. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-89960-2_2

201. Zhan, B., Haslbeck, M.P.L.: Verifying asymptotic time complexity of imperative
programs in Isabelle. In: Galmiche, D., Schulz, S., Sebastiani, R. (eds.) IJCAR
2018. LNCS (LNAI), vol. 10900, pp. 532–548. Springer, Cham (2018). https://
doi.org/10.1007/978-3-319-94205-6_35

www.cs.utexas.edu/users/moore/publications/toibazarov-thesis.pdf
www.cs.utexas.edu/users/moore/publications/toibazarov-thesis.pdf
https://doi.org/10.1007/978-3-319-22102-1
https://doi.org/10.1007/978-3-642-39634-2_24
https://doi.org/10.1007/978-3-642-02444-3_16
https://doi.org/10.1007/978-3-642-02444-3_16
https://doi.org/10.1007/978-3-319-43144-4_26
https://doi.org/10.1007/978-3-319-43144-4_26
http://isa-afp.org/entries/Hidden_Markov_Models.html
http://isa-afp.org/entries/Hidden_Markov_Models.html
https://doi.org/10.1007/978-3-319-94821-8_34
http://isa-afp.org/entries/Floyd_Warshall.html
http://isa-afp.org/entries/Floyd_Warshall.html
https://doi.org/10.1007/978-3-319-89960-2_4
https://doi.org/10.1145/800141.804691
https://doi.org/10.1007/978-3-319-89960-2_2
https://doi.org/10.1007/978-3-319-94205-6_35
https://doi.org/10.1007/978-3-319-94205-6_35


Neural Networks and Machine Learning



Verifying Recurrent Neural Networks
Using Invariant Inference

Yuval Jacoby1(B), Clark Barrett2(B), and Guy Katz1(B)

1 The Hebrew University of Jerusalem, Jerusalem, Israel
{yuval.jacoby,g.katz}@mail.huji.ac.il

2 Stanford University, Stanford, USA
clarkbarrett@stanford.edu

Abstract. Deep neural networks are revolutionizing the way complex
systems are developed. However, these automatically-generated networks
are opaque to humans, making it difficult to reason about them and guar-
antee their correctness. Here, we propose a novel approach for verifying
properties of a widespread variant of neural networks, called recurrent
neural networks. Recurrent neural networks play a key role in, e.g., speech
recognition, and their verification is crucial for guaranteeing the reliabil-
ity of many critical systems. Our approach is based on the inference of
invariants, which allow us to reduce the complex problem of verifying
recurrent networks into simpler, non-recurrent problems. Experiments
with a proof-of-concept implementation of our approach demonstrate
that it performs orders-of-magnitude better than the state of the art.

1 Introduction

The use of recurrent neural networks (RNN s) [13] is on the rise. RNNs are
a particular kind of deep neural networks (DNNs), with the useful ability to
store information from previous evaluations in constructs called memory units.
This differentiates them from feed-forward neural networks (FFNNs), where each
evaluation of the network is performed independently of past evaluations. The
presence of memory units renders RNNs particularly suited for tasks that involve
context, such as machine translation [7], health applications [25], speaker recog-
nition [34], and many other tasks where the network’s output might be affected
by previously processed inputs.

Part of the success of RNNs (and of DNNs in general) is attributed to their
very attractive generalization properties: after being trained on a finite set of
examples, they generalize well to inputs they have not encountered before [13].
Unfortunately, it is known that RNNs may react in highly undesirable ways to
certain inputs. For instance, it has been observed that many RNNs are vulner-
able to adversarial inputs [6,32], where small, carefully-crafted perturbations
are added to an input in order to fool the network into a classification error.
This example, and others, highlight the need to formally verify the correctness
of RNNs, so that they can reliably be deployed in safety-critical settings. How-
ever, while DNN verification has received significant attention in recent years
c© Springer Nature Switzerland AG 2020
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(e.g., [2,4,5,8,10,12,15,19,20,26,27,33,35,36]), almost all of these efforts have
been focused on FFNNs, with very little work done on RNN verification.

To the best of our knowledge, the only existing general approach for RNN
verification is via unrolling [1]: the RNN is duplicated and concatenated onto
itself, creating an equivalent feed-forward network that operates on a sequence
of k inputs simultaneously, as opposed to one at a time. The FFNN can then
be verified using existing verification technology. The main limitation of this
approach is that unrolling increases the network size by a factor of k (which,
in real-world applications, can be in the hundreds [34]). Because the complexity
of FFNN verification is known to be worst-case exponential in the size of the
network [18], this reduction gives rise to FFNNs that are difficult to verify—and
is hence applicable primarily to small RNNs with short input sequences.

Here, we propose a novel approach for RNN verification, which affords far
greater scalability than unrolling. Our approach also reduces the RNN verifica-
tion problem into FFNN verification, but does so in a way that is independent
of the number of inputs that the RNN is to be evaluated on. Specifically, our
approach consists of two main steps: (i) create an FFNN that over-approximates
the RNN, but which is the same size as the RNN; and (ii) verify properties over
this over-approximation using existing techniques for FFNN verification. Thus,
our approach circumvents any duplication of the network or its inputs.

In order to perform step (i), we leverage the well-studied notion of inductive
invariants: our FFNN encodes time-invariant properties of the RNN, which hold
initially and continue to hold after the RNN is evaluated on each additional
input. Automatic inference of meaningful inductive invariants has been studied
extensively (e.g., [28,30,31]), and is known to be highly difficult [29]. We propose
here an approach for generating invariants according to predefined templates. By
instantiating these templates, we automatically generate a candidate invariant
I, and then: (i) use our underlying FFNN verification engine to prove that I
is indeed an invariant; and (ii) use I in creating the FFNN over-approximation
of the RNN, in order to prove the desired property. If either of these steps fail,
we refine I (either strengthening or weakening it, depending on the point of
failure), and repeat the process. The process terminates when the property is
proven correct, when a counter-example is found, or when a certain timeout
value is exceeded.

We evaluate our approach using a proof-of-concept implementation, which
uses the Marabou tool [20] as its FFNN verification back-end. When compared
to the state of the art on a set of benchmarks from the domain of speaker recog-
nition [34], our approach is orders-of-magnitude faster. Our implementation,
together with our benchmarks and experiments, is available online [16].

The rest of this paper is organized as follows. In Sect. 2, we provide a brief
background on DNNs and their verification. In Sect. 3, we describe our approach
for verifying RNNs via reduction to FFNN verification, using invariants. We
describe automated methods for RNN invariant inference in Sect. 4, followed by
an evaluation of our approach in Sect. 5. We then discuss related work in Sect. 6,
and conclude with Sect. 7.
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2 Background

2.1 Feed-Forward Neural Networks and Their Verification

An FFNN N with n layers consists of an input layer, n−2 hidden layers, and an
output layer. We use si to denote the dimension of layer i, which is the number
of neurons in that layer. We use vi,j to refer to the j-th neuron in the i-th layer.
Each hidden layer is associated with a weight matrix Wi and a bias vector bi.
The FFNN input vector is denoted as v1, and the output vector of each hidden
layer 1 < i < n is vi = f (Wivi−1 + bi), where f is some element-wise activation
function (such as ReLU(x) = max (0, x)). The output layer is evaluated similarly,
but without an activation function: vn = Wn−1vn−1 + bn. Given an input vector
v1, the network is evaluated by sequentially calculating vi for i = 2, 3, . . . , n, and
returning vn as the network’s output.

v1,1

v2,1

v2,2

v3,1

1

−1

1

2

Fig. 1. A simple feed-forward
neural network.

A simple example appears in Fig. 1. This
FFNN has a single input neuron v1,1, a single
output neuron v3,1, and two hidden neurons v2,1
and v2,2. All bias values are assumed to be 0, and
we use the common ReLU(x) = max(0, x) func-
tion as our activation function. When the input
neuron is assigned v1,1 = 4, the weighted sum
and activation functions yield v2,1 = ReLU(4) =
4 and v2,2 = ReLU(−4) = 0. Finally, we obtain
the output v3,1 = 4.

FFNN Verification. In FFNN verification we seek inputs that satisfy cer-
tain constraints, such that their corresponding outputs also satisfy certain con-
straints. Looking again at the network from Fig. 1, we might wish to know
whether v1,1 ≤ 5 always entails v3,1 < 20. Negating the output property, we
can use a verification engine to check whether it is possible that v1,1 ≤ 5 and
v3,1 ≥ 20. If this query is unsatisfiable (UNSAT), then the original property holds;
otherwise, if the query is satisfiable (SAT), then the verification engine will pro-
vide us with a counter-example (e.g., v1,1 = −10, v3,1 = 20 in our case).

Formally, we define an FFNN verification query as a triple 〈P,N,Q〉, where
N is an FFNN, P is a predicate over the input variables x, and Q is a predicate
over the output variables y. Solving this query entails deciding whether there
exists a specific input assignment x0 such that P (x0) ∧ Q(N(x0)) holds (where
N(x0) is the output of N for the input x0). It has been shown that even for simple
FFNNs and for predicates P and Q that are conjunctions of linear constraints,
the verification problem is NP-complete [18]: in the worst-case, solving it requires
a number of operations that is exponential in the number of neurons in N .

2.2 Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are similar to FFNNs, but have an addi-
tional construct called a memory unit. Memory units allow a hidden neuron to
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store its assigned value for a specific evaluation of the network, and have that
value become part of the neuron’s weighted sum computation in the next eval-
uation. Thus, when evaluating the RNN in time step t + 1, e.g. when the RNN
reads the t + 1’th word in a sentence, the results of the t previous evaluations
can affect the current result.

A simple RNN appears in Fig. 2. There, node ṽ2,1 represents node v2,1’s
memory unit (we draw memory units as squares, and mark them using the tilde
sign). When computing the weighted sum for node v2,1, the value of ṽ2,1 is also
added to the sum, according to its listed weight (1, in this case). We then update
ṽ2,1 for the next round, using the vanilla RNN update rule: ṽ2,1 := v2,1. Memory
units are initialized to 0 for the first evaluation, at time step t = 1.

Time Step v1,1 v2,1 ṽ2,1 v3,1

1 0.5 0.5 0 0.5
2 1.5 2 0.5 2
3 -1 1 2 1
4 -3 0 1 0 v1,1

ṽ2,1

v2,1 v3,1
1

1

1

Fig. 2. An illustration of a toy RNN with the ReLU activation function. Each row of
the table represents a single time step, and depicts the value of each neuron for that
step. Using a t superscript to represent time step t, we observe that vt

2,1 is computed
as max (0, ṽt

2,1 + vt
1,1), according to the ReLU function.

The FFNN definitions are extended to RNNs as follows. We use the t super-
script to indicate the timestamp of the RNN’s evaluation: e.g., v4

3,2 indicates
the value that node v3,2 is assigned in the 4’th evaluation of the RNN. We
associate each hidden layer of the RNN with a square matrix Hi of dimen-
sion si, which represents the weights on edges from memory units to neurons.
Observe that each memory unit in layer i can contribute to the weighted sums
of all neurons in layer i, and not just to the neuron whose values it stores.
For time step t > 0, the evaluation of each hidden layer 1 < i < n is now
computed by vt

i = f
(
Wiv

t
i−1 + Hiṽ

t
i + bi

)
, and the output values are given by

vt
n = Wnvt

n−1+Hnvt−1
n +bn. By convention, we initialize memory units to 0 (i.e.

for every memory unit ṽ, ṽ1 = 0). For simplicity, we assume that each hidden
neuron in the network has a memory unit. This definition captures also “regular”
neurons, by setting the appropriate entries of H to 0.

While we focus here on vanilla RNNs, our technique could be extended to,
e.g., LSTMs or GRUs; we leave this for future work.

RNN Verification. We define an RNN verification query as a tuple
〈P,N,Q, Tmax〉, where P is an input property, Q is an output property, N is
an RNN, and Tmax ∈ N is a bound on the time interval for which the property
should hold. P and Q include linear constraints over the network’s inputs and
outputs, and may also use the notion of time.
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As a running example, consider the network from Fig. 2, denoted by N ,
the input predicate P =

∧5
t=1(−3 ≤ vt

1,1 ≤ 3), the output predicate Q =
∨5

t=1(v
t
3,1 ≥ 16), and the time bound Tmax = 5. This query searches for an

evaluation of N with 5 time steps, in which all input values are in the range
[−3, 3], and such that at some time step the output value is at least 16. By the
weights of N , it can be proved that vt

3,1 is at most the sum of the ReLUs of
inputs so far, vt

3,1 ≤ ∑t
i=1 ReLU(vi

1,1) ≤ 3t; and so vt
3,1 ≤ 15 for all 1 ≤ t ≤ 5,

and the query is UNSAT.

2.3 Inductive Invariants

Inductive invariants [29] are a well-established way to reason about software
with loops. Formally, let 〈Q, q0, T 〉 be a transition system, where Q is the set
of states, q0 ∈ Q is an initial state, and T ⊆ Q × Q is a transition relation. An
invariant I is a logical formula defined over the states of Q, with two properties:
(i) I holds for the initial state, i.e. I(q0) holds; and (ii) I is closed under T , i.e.
(I(q) ∧ 〈q, q′〉 ∈ T ) ⇒ I(q′). If it can be proved (in a given proof system) that
formula I is an invariant, we say that I is an inductive invariant.

Invariants are particularly useful when attempting to verify that a given
transition system satisfies a safety property. There, we are given a set of bad
states B, and seek to prove that none of these states is reachable. We can do so
by showing that {q ∈ Q | I(q)}∩B = ∅. Unfortunately, automatically discovering
invariants for which the above holds is typically an undecidable problem [29].
Thus, a common approach is to restrict the search space—i.e., to only search for
invariants with a certain syntactic form.

3 Reducing RNN Verification to FFNN Verification

3.1 Unrolling

To date, the only available general approach for verifying RNNs [1] is to trans-
form the RNN in question into a completely equivalent, feed-forward network,
using unrolling. An example appears in Fig. 3. The idea is to leverage Tmax,
which is an upper bound on the number of times that the RNN will be evalu-
ated. The RNN is duplicated Tmax times, once for each time step in question,
and its memory units are removed. Finally, the nodes in the i’th copy are used
to fill the role of memory units for the i + 1’th copy of the network.

While unrolling gives a sound reduction from RNN verification to FFNN ver-
ification, it unfortunately tends to produce very large networks. When verifying
a property that involves t time steps, an RNN network with n memory units will
be transformed into an FFNN with (t − 1) · n new nodes. Because the FFNN
verification problem becomes exponentially more difficult as the network size
increases [18], this renders the problem infeasible for large values of t. As scal-
ability is a major limitation of existing FFNN verification technology, unrolling
can currently only be applied to small networks that are evaluated for a small
number of time steps.
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v11,1 v21,1 v31,1 v41,1 v51,1

v12,1 v22,1 v32,1 v42,1 v52,1

v13,1 v23,1 v33,1 v43,1 v53,1

1 1 1 1 1

1 1 1 1 1

1 1 1 1

Fig. 3. Unrolling the network from Fig. 2, for Tmax = 5 time steps. The edges in red
fill the role of the memory units of the original RNN. The number of neurons in the
unrolled network is 5 times the number of neurons in the original. (Color figure online)

3.2 Circumventing Unrolling

We propose a novel alternative to unrolling, which can reduce RNN verification
to FFNN verification without the blowup in network size. The idea is to trans-
form a verification query ϕ = 〈P,N,Q, Tmax〉 over an RNN N into a different
verification query ϕ̂ = 〈P̂ , N̂ , Q̂〉 over an FFNN N̂ . ϕ̂ is not equivalent to ϕ, but
rather over-approximates it: it is constructed in a way that guarantees that if
ϕ̂ in UNSAT, then ϕ is also UNSAT. As is often the case, if ϕ̂ is SAT, either the
original property truly does not hold for N , or the over-approximation is too
coarse and needs to be refined; we discuss this case later.

A key point in our approach is that ϕ̂ is created in a way that captures
the notion of time in the FFNN setting, and without increasing the network
size. This is done by incorporating into P̂ an invariant that puts bounds on the
memory units as a function of the time step t. This invariant does not precisely
compute the values of the memory units—instead, it bounds each of them in
an interval. This inaccuracy is what makes ϕ̂ an over-approximation of ϕ. More
specifically, the construction is performed as follows:

1. N̂ is constructed from N by adding a new input neuron, t, to represent time.
In line with standard FFNN definitions, t is treated as a real number.

2. For every node v with memory unit ṽ, in N̂ we replace ṽ with a regular
neuron, vm, which is placed in the input layer. Neuron vm will be connected
to the network’s original neurons with the original weights, just as ṽ was.1

3. We set P̂ = P ∧ (1 ≤ t ≤ Tmax) ∧ I, where I is a formula that bounds the
values of each new vm node as a function of the time step t. The constraints
in I constitute the invariant over the memory units’ values.

4. The output property is unchanged: Q̂ = Q.

We name ϕ̂ and N̂ constructed in this way the snapshot query and the snap-
shot network, respectively, and denote ϕ̂ = S(ϕ) and N̂ = S(N). The intuition
behind this construction is that query ϕ̂ encodes a snapshot (an assignment of t)

1 Note that we slightly abuse the definitions from Sect. 2, by allowing an input neuron
to be connected to neurons in layers other than its preceding layer.
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in which all constraints are satisfied. At this point in time, the vm nodes repre-
sent the values stored in the memory units (whose assignments are bounded by
the invariant I); and the input and output nodes represent the network’s inputs
and outputs at time t. Clearly, a satisfying assignment for ϕ̂ does not necessarily
indicate a counter-example for ϕ; e.g., because the values assigned to vm might
be impossible to obtain at time t in the original network. However, if ϕ̂ is UNSAT
then so is ϕ, because there does not exist a point in time in which the query
might be satisfied. Note that the construction only increases the network size by
1 (the vm neurons replace the memory units, and we add a single neuron t).

Time-Agnostic Properties. In the aforementioned construction of ϕ̂, the
original properties P and Q appear, either fully or as a conjunct, in the new
properties P̂ and Q̂. It is not immediately clear that this is possible, as P and
Q might also involve time. For example, if P is the formula v7

1,2 ≥ 10, it cannot
be directly incorporated into P̂ , because N̂ has no notion of time step 7.

For simplicity, we assume that P and Q are time-agnostic, i.e. are given in
the following form: P =

∧Tmax
t=1 ψ1 and Q =

∨Tmax
t=1 ψ2, where ψ1 and ψ2 contain

linear constraints over the inputs and outputs of N , respectively, at time stamp t.
This formulation can express queries in which the inputs are always in a certain
interval, and a bound violation of the output nodes is sought. Our running
example from Fig. 2 has this structure. When the properties are given in this
form, we set P̂ = ψ1 and Q̂ = ψ2, with the t superscripts omitted for all neurons.
This assumption can be relaxed significantly; see Sect. 8 of the appendix in the
full version of the paper [17].

t

vm2,1

v1,1 v2,1 v3,1

1

1 1

Fig. 4. The feed-forward snap-
shot network N̂ for the RNN
from Fig. 2.

Example. We demonstrate our approach on the
running example from Fig. 2. Recall that P =∧5

t=1(−3 ≤ vt
1,1 ≤ 3), and Q =

∨5
t=1(v

t
3,1 ≥ 16).

First, we build the snapshot network N̂ (Fig. 4)
by replacing the memory unit ṽ2,1 with a regu-
lar neuron, vm

2,1, which is connected to node v2,1
with weight 1 (the same weight previously found
on the edge from ṽ2,1 to v2,1), and adding neu-
ron t to represent time. Next, we set P̂ to be the
conjunction of (i) P , with its internal conjunc-
tion and t superscripts omitted; (ii) the time constraint 1 ≤ t ≤ 5; and (iii) the
invariant that bounds the values of vm

2,1 as a function of time: vm
2,1 ≤ 3(t − 1).

Our new verification query is thus:

〈v1,1 ∈ [−3, 3] ∧ t ∈ [1, 5] ∧ (vm
2,1 ≤ 3(t − 1))

︸ ︷︷ ︸
P̂

, N̂ , v3,1 ≥ 16
︸ ︷︷ ︸

Q̂

〉

This query is, of course, UNSAT, indicating that the original query is also UNSAT.
Note that the new node t is added solely for the purpose of including it in
constraints that appear in P̂ .
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The requirement that I be an invariant over the memory units of N ensures
that our approach is sound. Specifically, it guarantees that I allows any assign-
ment for vm that the original memory unit ṽ might be assigned. This is formu-
lated in the following lemma (whose proof, by induction, is omitted):

Lemma 1. Let ϕ = 〈P,N,Q, Tmax〉 be an RNN verification query, and let ϕ̂ =
〈P̂ , N̂ , Q̂〉 be the snapshot query ϕ̂ = S(ϕ). Specifically, let P̂ = P ∧ (1 ≤ t ≤
Tmax) ∧ I, where I is an invariant that bounds the values of each vm. If ϕ̂ is
UNSAT, then ϕ is also UNSAT.

3.3 Constructing ϕ̂ : Verifying the Invariant

A key assumption in our reduction from RNN to FFNN verification was that we
were supplied some invariant I, which bounds the values of the vm neurons as
a function of the time t. In this section we make our method more robust, by
including a step that verifies that the supplied formula I is indeed an invariant.
This step, too, is performed by creating an FFNN verification query, which can
then be dispatched using the back-end FFNN verification engine. (We treat
I simultaneously as a formula over the nodes of S(N) and those of N ; the
translation is performed by renaming every occurrence of vm to ṽt, or vice versa.)

First, we adjust the definitions of an inductive invariant (Sect. 2.3) to the
RNN setting. The state space Q is comprised of states q = 〈A, t〉, where A
is the current assignment to the nodes of N (including the assignments of the
memory units), and t ∈ N represents time step. For another state q′ = 〈A′, t′〉,
the transition relation T (q, q′) holds if and only if: (i) t′ = t + 1; i.e., the time
step has advanced by one; (ii) for each neuron v and its memory unit ṽ it
holds that A′[ṽ] = A[v]; i.e., the vanilla RNN update rule holds; and (iii) the
assignment A′ of all of the network’s neurons constitutes a proper evaluation of
the RNN according to Sect. 2; i.e., all weighted sums and activation functions
are computed properly. A state q0 is initial if t = 1, ṽ = 0 for every memory unit,
and the assignment of the network’s neurons constitutes a proper evaluation of
the RNN.

Next, let I be a formula over the memory units of N , and suppose we wish
to verify that I is an invariant. Proving that I is in invariant amounts to proving
that I(q0) holds for any initial state q0, and that for every two states q, q′ ∈ Q,
I(q)∧T (q, q′) → I(q′). Checking whether I(q0) holds is trivial. The second check
is more tricky; here, the key point is that because q and q′ are consecutive states,
the memory units of q′ are simply the neurons of q. Thus, we can prove that I
holds for q′ by looking at the snapshot network, assuming that I holds initially,
and proving that I[vm 
→ v, t 
→ t + 1], i.e. the invariant with each memory unit
vm renamed to its corresponding neuron v and the time step advanced by 1, also
holds. The resulting verification query, which we term ϕI , can be verified using
the underlying FFNN verification back-end.

We illustrate this process using the running example from Fig. 2. Let I =
vm
2,1 ≤ 3(t−1). I holds at every initial state q0; this is true because at time t = 1,

vm
2,1 = 0 ≤ 3 · 0. Next, we assume that I holds for state q = 〈A, t〉 and prove
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that it holds for q = 〈A′, t + 1〉. First, we create the snapshot FFNN N̂ , shown
in Fig. 4. We then extend the original input property P =

∧5
t=1(−3 ≤ vt

1,1 ≤ 3)
into a property P ′ that also captures our assumption that the invariant holds at
time t: P ′ = (−3 ≤ v1,1 ≤ 3) ∧ (vm

2,1 ≤ 3(t − 1)). Finally, we prepare an output
property Q′ that asserts that the invariant does not hold for v2,1 at time t + 1,
by renaming vm

2,1 to v2,1 and incrementing t: Q′ = ¬(v2,1 ≤ 3(t + 1 − 1)). When
the FFNN verification engine answers that ϕI = 〈P ′,S(N), Q′〉 is UNSAT, we
conclude that I is indeed an invariant. In cases where the query turns out to be
SAT, I is not an invariant, and needs to be refined.

Given a formula I, the steps described so far allow us to reduce RNN veri-
fication to FFNN verification, in a completely sound and automated way. Next
we discuss how to automate the generation of I, as well.

4 Invariant Inference

4.1 Single Memory Units

In general, automatic invariant inference is undecidable [29]; thus, we employ
here a heuristic approach, that uses linear templates. We first describe the app-
roach on a simple case, in which the network has a single hidden node v with
a memory unit, and then relax this limitation. Note that the running example
depicted in Fig. 2 fits this case. Here, inferring an invariant according to a linear
template means finding values αl and αu, such that αl ·(t−1) ≤ ṽt ≤ αu ·(t−1).
The value of ṽt is thus bounded from below and from above as a function of
time. In our template we use (t − 1), and not t, in order to account for the fact
that ṽt contains the value that node v was assigned at time t− 1. For simplicity,
we focus only on finding the upper bound; the lower bound case is symmetrical.
We have already seen such an upper bound for our running example, which was
sufficiently strong for proving the desired property: ṽt

2,1 ≤ 3(t − 1).
Once candidate α’s are proposed, verifying that the invariant holds is per-

formed using the techniques outlined in Sect. 3. There are two places where
the process might fail: (i) the proposed invariant cannot be proved (ϕI is SAT),
because a counter-example exists. This means that our invariant is too strong,
i.e. the bound is too tight. In this case we can weaken the invariant by increasing
αu; or (ii) the proposed invariant holds, but the FFNN verification problem that
it leads to, ϕ̂, is SAT. In this case, the invariant is too weak : it does not imply
the desired output property. We can strengthen the invariant by decreasing αu.

This search problem leads us to binary search strategy, described in Algo-
rithm 1. The search stops, i.e. an optimal invariant is found, when ub− lb ≤ ε for
a small constant ε. The algorithm fails if the optimal linear invariant is found,
but is insufficient for proving the property in question; this can happen if ϕ is
indeed SAT, or if a more sophisticated invariant is required.

Discussion: Linear Templates. Automated invariant inference has been stud-
ied extensively in program analysis (see Sect. 6). In particular, elaborate tem-
plates have been proposed, which are more expressive than the linear template
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Algorithm 1. Automatic Single Memory Unit Verification(P,N,Q, Tmax)
1: lb ← −M , ub ← M � M is a large constant
2: while ub − lb ≥ ε do
3: αu ← ub+lb

2
, I ← vm

2,1 ≤ αu · (t − 1)
4: if ϕI is UNSAT then
5: Construct ϕ̂ using invariant I
6: if ϕ̂ is UNSAT then
7: return True
8: ub ← αu � Invariant too weak
9: else

10: lb ← αu � Invariant too strong

11: return False

that we use. The approach we presented in Sect. 3 is general, and is compatible
with many of these templates. Our main motivation for focusing on linear tem-
plates is that most FFNN verification tools readily support linear constraints,
and can thus verify the ϕI queries that originate from linear invariants. As we
demonstrate in Sect. 5, despite their limited expressiveness, linear invariants are
already sufficient for solving many verification queries. Extending the technique
to work with more expressive invariants is part of our ongoing work.

Multiple Memory Units in Separate Layers. Our approach can be
extended to RNNs with multiple memory units, each in a separate layer, in
an iterative fashion: an invariant is proved separately for each layer, by using
the already-proved invariants of the previous layers. As before, we begin by
constructing the snapshot network in which all memory units are replaced by
regular neurons. Next, we work layer by layer and generate invariants that
over-approximate each memory unit, by leveraging the invariants established
for memory units in the previous layers. Eventually, all memory units are over-
approximated using invariants, and we can attempt to prove the desired property
by solving the snapshot query. An example and the general algorithm for this
case appears in Sect. 9 of the appendix in the full version of the paper [17].

4.2 Layers with Multiple Memory Units

v1,1

ṽ2,1

ṽ2,2

v2,1

v2,2

v3,1

-1

2

1

-1

1

1

1

1

Fig. 5. An RNN where both memory
units affect both neurons of the hidden
layer: vt

2,1 = ReLU(ṽt
2,1 + ṽt

2,2 − vt
1,1);

and vt
2,2 = ReLU(−ṽt

2,1 + ṽt
2,2 +2vt

1,1).

We now extend our approach to support
the most general case: an RNN with layers
that contain multiple memory units. We
again apply an iterative, layer-by-layer
approach. The main difficulty is in infer-
ring invariants for a layer that has multi-
ple memory units, as in Fig. 5: while each
memory unit belongs to a single neuron,
it affects the assignments of all other neu-
rons in that layer. We propose to handle
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this case using separate linear invariants for upper- and lower-bounding each of
the memory units. However, while the invariants have the same linear form as in
the single memory unit case, proving them requires taking the other invariants
of the same layer into account. Consider the example in Fig. 5, and suppose we
have α1

l , α
1
u and α2

l , α
2
u for which we wish to verify that

α1
l · (t − 1) ≤ ṽt

2,1 ≤ α1
u · (t − 1) α2

l · (t − 1) ≤ ṽt
2,2 ≤ α2

u · (t − 1) (1)

In order to prove these bounds we need to dispatch an FFNN verification query
that assumes Eq. 1 holds and uses it to prove the inductive step:

ṽt+1
2,1 = vt

2,1 = ReLU(−ṽt
1,1 + ṽt

2,1 + ṽt
2,2) ≤ α1

u · (t + 1 − 1) (2)

Similar steps must be performed for ṽt+1
2,1 ’s lower bound, and also for ṽt+1

2,2 ’s lower
and upper bounds. The key point is that because Eq. 2 involves ṽt

2,1 and ṽt
2,2,

multiple α terms from Eq. 1 may need to be used in proving it. This interde-
pendency means that later changes to some α value might invalidate previously
acceptable assignments for other α values. This adds a layer of complexity that
did not exist in the cases that we had considered previously.

For example, consider the network in Fig. 5, with P =
∧3

t=1 −3 ≤ vt
1,1 ≤ 3,

and Q =
∨3

t=1 vt
3,1 ≥ 100. Our goal is to find values for α1

l , α
1
u and α2

l , α
2
u that

will satisfy Eq. 1. Let us consider α1
l = 0, α1

u = 8, α2
l = 0 and α2

u = 0. Using
these values, the induction hypothesis (Eq. 1) and the bounds for v1,1, we can
indeed prove the upper bound for ṽt+1

2,1 :

ṽt+1
2,1 = vt

2,1 = ReLU(−ṽt
1,1 + ṽt

2,1 + ṽt
2,2) ≤ ReLU(3 + 8(t − 1) + 0) ≤ 8t

Unfortunately, the bounds 0 ≤ ṽt
2,2 ≤ 0 are inadequate, because ṽt

2,2 can take
on positive values. We are thus required to adjust the α values, for example by
increasing α2

u to 2. However, this change invalidates the upper bound for ṽt+1
2,1 , i.e.

ṽt+1
2,1 ≤ 8t, as that bound relied on the upper bound for ṽt

2,2; Specifically, knowing
only that 1 ≤ t ≤ 3, −3 ≤ vt

1,1 ≤ 3, 0 ≤ ṽt
2,1 ≤ 8(t − 1) and 0 ≤ ṽt

2,2 ≤ 2(t − 1),
it is impossible to show that ṽt+1

2,1 = vt
2,1 ≤ 8t.

The example above demonstrates the intricate dependencies between the α
values, and the complexity that these dependencies add to the search process.
Unlike in the single memory unit case, it is not immediately clear how to find
an initial invariant that simultaneously holds for all memory units, or how to
strengthen this invariant (e.g., which α constant to try and improve).

Finding an Initial Invariant. We propose to encode the problem of find-
ing initial α values as a mixed integer linear program (MILP). The linear and
piecewise-linear constraints that the α values must satisfy (e.g., Eq. 2) can be
precisely encoded in MILP using standard big-M encoding [18]. There are two
main advantages to using MILP here: (i) an MILP solver is guaranteed to return
a valid invariant, or soundly report that no such invariant exists; and (ii) MILP
instances include a cost function to be minimized, which can be used to optimize
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the invariant. For example, by setting the cost function to be
∑

αu − ∑
αl, the

MILP solver will typically generate tight upper and lower bounds.
The main disadvantage to using MILP is that, in order to ensure that the

invariants hold for all time steps 1 ≤ t ≤ Tmax, we must encode all of these steps
in the MILP query. For example, going back to Eq. 2, in order to guarantee that
vt+1
2,1 = ReLU(−vt

1,1 + vt
2,1 + vt

2,2) ≤ α1
u · t, we would need to encode within our

MILP instance the fact that
∧Tmax

t=1

(
ReLU(−vt

1,1 + vt
2,1 + vt

2,2) ≤ α1
u · t

)
. This

might render the MILP instance difficult to solve for large values of Tmax. How-
ever, we stress that this approach is quite different from, and significantly easier
than, unrolling the RNN. The main reason is that these MILP instances are
each generated for a single layer (as opposed to the entire network in unrolling),
which renders them much simpler. Indeed, in our experiments (Sect. 5), solv-
ing these MILP instances was never the bottleneck. Still, should this become a
problem, we propose to encode only a subset of the values of t ∈ {1, . . . , Tmax},
making the problem easier to solve; and should the α assignment fail to produce
an invariant (this will be discovered when ϕI is verified), additional constraints
could be added to guide the MILP solver towards a correct solution. We also
describe an alternative approach, which does not require the use of an MILP
solver, in Sect. 10 of the appendix in the full version of the paper [17].

Strengthening the Invariant. If we are unable to prove that ϕ̂ is UNSAT for
a given I, then the invariant needs to be strengthened. We propose to achieve
this by invoking the MILP solver again, this time adding new linear constraints
for each α, that will force the selection of tighter bounds. For example, if the
current invariant is αl = 3, αu = 7, we add constraints specifying that αl ≥ 3+ ε
and αu ≤ 7 − ε for some small positive ε—leading to stronger invariants.

5 Evaluation

Our proof-of-concept implementation of the approach, called RnnVerify, reads
an RNN in TensorFlow format. The input and output properties, P and Q,
and also Tmax, are supplied in a simple proprietary format, and the tool then
automatically: (i) creates the FFNN snapshot network; (ii) infers a candidate
invariant using the MILP heuristics from Sect. 4; (iii) formally verifies that I is
an invariant; and (iv) uses I to show that ϕ̂, and hence ϕ, are UNSAT. If ϕ̂ is SAT,
our module refines I and repeats the process for a predefined number of steps.

For our evaluation, we focused on neural networks for speaker recognition—a
task for which RNNs are commonly used, because audio signals tend to have
temporal properties and varying lengths. We applied our verification technique
to prove adversarial robustness properties of these networks, as we describe next.

Adversarial Robustness. It has been shown that alarmingly many neural
networks are susceptible to adversarial inputs [32]. These inputs are generated



Verifying Recurrent Neural Networks Using Invariant Inference 69

by slightly perturbing correctly-classified inputs, in a way that causes the mis-
classification of the perturbed inputs. Formally, given a network N that classifies
inputs into labels l1, . . . , lk, an input x0, and a target label l �= N(x0), an adver-
sarial input is an input x such that N(x) = l and ‖x − x0‖ ≤ δ; i.e., input x is
very close to x0, but is misclassified as label l.

Adversarial robustness is a measure of how difficult it is to find an adversar-
ial example—and specifically, what is the smallest δ for which such an exam-
ple exists. Verification can be used to find adversarial inputs or rule out their
existence for a given δ, and consequently can find the smallest δ for which an
adversarial input exists [3].

Speaker Recognition. A speaker recognition system receives a voice sample
and needs to identify the speaker from a set of candidates. RNNs are often
applied in implementing such systems [34], rendering them vulnerable to adver-
sarial inputs [23]. Because such vulnerabilities in these systems pose a security
concern, it is important to verify that their underlying RNNs afford high adver-
sarial robustness.

Benchmarks. We trained 6 speaker recognition RNNs, based on the VCTK
dataset [37]. Our networks are of modest, varying sizes of approximately 220
neurons: they each contain an input layer of dimension 40, one or two hidden
layers with d ∈ {2, 4, 8} memory units, followed by 5 fully connected, memoryless
layers with 32 nodes each, and an output layer with 20 nodes. The output nodes
represent the possible speakers between which the RNNs were trained to distin-
guish. In addition, in order to enable a comparison to the state of the art [1], we
trained another, smaller network, which consists of a single hidden layer. This
was required to accommodate technical constraints in the implementation of [1].
All networks use ReLUs as their activation functions.

Next, we selected 25 random, fixed input points X = {x1, . . . , x25}, that do
not change over time; i.e. xi ∈ R

40 and x1
i = x2

i = . . . for each xi ∈ X. Then, for
each RNN N and input xi ∈ X, and for each value 2 ≤ Tmax ≤ 20, we computed
the ground-truth label l = N(xi), which is the label that received the highest
score at time step Tmax. We also computed the label that received the second-
highest score, lsh, at time step Tmax. Then, for every combination of N , xi ∈ X,
and value of Tmax, we created the query 〈∧Tmax

t=1 (‖x′t−xt
i‖L∞ ≤ 0.01), N, lsh ≥ l〉.

The allowed perturbation, at most 0.01 in L∞ norm, was selected arbitrarily. The
query is only SAT if there exists an input x′ that is at distance at most 0.01 from
x, but for which label lsh is assigned a higher score than l at time step Tmax. This
formulation resulted in a total of 2850 benchmark queries over our 6 networks.
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Fig. 6. Average running time (in sec-
onds) of RnnVerify and RNSVerify, as
a function of Tmax.

Results. We began by comparing
our technique to the state-of-the-art,
unrolling-based RNSVerify tool [1], using
the small network we had trained. Each
dot in Fig. 6 represents a tool’s aver-
age run time on the 25 input points, for
a specific Tmax. Both methods returned
UNSAT on all queries; however, the run-
times clearly demonstrate that our app-
roach is far less sensitive to large Tmax

values. In a separate experiment, our tool
was able to solve a verification query on
the same network with Tmax = 180 in
2.5 s, whereas RNSVerify timed out after
24 h.

Next, we used RnnVerify on all 2850 benchmark queries on the 6 larger
networks. The results appear in Sect. 11 of the appendix in the full version of
the paper [17], and are summarized as follows: (i) RnnVerify terminated on
all benchmarks, with a median runtime of 5.39 s and an average runtime of
48.67 s. The maximal solving time was 5701 s; (ii) 85% of RnnVerify’s runtime
was spent within the underlying FFNN verification engine, solving ϕI queries.
This indicates that as the underlying FFNN verification technology improves,
our approach will become significantly more scalable; (iii) for 1919 (67%) of
the benchmarks, RnnVerify proved that the RNN was robust around the tested
point. For the remaining 931 benchmarks, the results are inconclusive: we do
not know whether the network is vulnerable, or whether more sophisticated
invariants are needed to prove robustness. This demonstrates that for a majority
of tested benchmarks, the linear template proved useful; and (iv) RnnVerify
could generally prove fewer instances with larger values of Tmax. This is because
the linear bounds afforded by our invariants become more loose as t increases,
whereas the neuron’s values typically do not increase significantly over time.
This highlights the need for more expressive invariants.

6 Related Work

Due to the discovery of undesirable behaviors in many DNNs, multiple
approaches have been proposed for verifying them. These include the use of
SMT solving [15,18,20,24], LP and MILP solving [8,33], symbolic interval prop-
agation [35], abstract interpretation [9,10], and many others (e.g., [2,11,14,21,
26,27]). Our technique focuses on RNN verification, but uses an FFNN verifi-
cation engine as a back-end. Consequently, it could be integrated with many of
the aforementioned tools, and will benefit from any improvement in scalability
of FFNN verification technology.

Whereas FFNN verification has received a great deal of attention, only little
research has been carried out on RNN verification. Akintunde et al. [1] were the
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first to propose such a technique, based on the notion of unrolling the network
into an equivalent FFNN. Ko et al. [22] take a different approach, which aims
at quantifying the robustness of an RNN to adversarial inputs—which can be
regarded as an RNN verification technique tailored for a particular kind of prop-
erties. The scalability of both approaches is highly sensitive to the number of
time steps, Tmax, specified by the property at hand. In this regard, the main
advantage of our approach is that it is far less sensitive to the number of time
steps being considered. This affords great potential for scalability, especially for
long sequences of inputs. A drawback of our approach is that it requires invariant
inference, which is known to be challenging.

In a very recent paper, Zhang et al. [38] propose a verification scheme aimed
at RNNs that perform cognitive tasks. This scheme includes computing polytope
invariants for the neuron layers of an RNN, using abstract interpretation and
fixed-point analysis. We consider this as additional evidence of the usefulness of
invariant generation in the context of RNN verification.

Automated invariant inference is a key problem in program analysis. A
few notable methods for doing so include abstract-interpretation (e.g., [30]);
counterexample-guided approaches (e.g., [28]); and learning-based approaches
(e.g., [31]). It will be interesting to apply these techniques within the context of
our framework, in order to more quickly and effectively discover useful invariants.

7 Conclusion

Neural network verification is becoming increasingly important to industry, regu-
lators, and society as a whole. Research to date has focused primarily on FFNNs.
We propose a novel approach for the verification of recurrent neural networks—a
kind of neural networks that is particularly useful for context-dependent tasks,
such as NLP. The cornerstone of our approach is the reduction of RNN veri-
fication to FFNN verification through the use of inductive invariants. Using a
proof-of-concept implementation, we demonstrated that our approach can tackle
many benchmarks orders-of-magnitude more efficiently than the state of the art.
These experiments indicate the great potential that our approach holds. In the
future, we plan to experiment with more expressive invariants, and also to apply
compositional verification techniques in order to break the RNN into multiple,
smaller networks, for which invariants can more easily be inferred.
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Abstract. In this paper, we propose a framework for performing state space
exploration of closed loop control systems. Our approach involves approximat-
ing sensitivity and a newly introduced notion of inverse sensitivity by a neural
network. We show how the approximation of sensitivity and inverse sensitivity
can be used for computing estimates of the reachable set. We then outline algo-
rithms for performing state space exploration by generating trajectories that reach
a neighborhood. We demonstrate the effectiveness of our approach by applying it
not only to standard linear and nonlinear dynamical systems, but also to nonlinear
hybrid systems and also neural network based feedback control systems.

Keywords: State space exploration · Sensitivity · Inverse Sensitivity · Neural
Networks · Testing · Approximation · Falsification

1 Introduction

Advances in hardware and software have made it easier to integrate sophisticated con-
trol algorithms in embedded devices. While such control algorithms might improve
the performance of the system, they make the task of verification and validation very
challenging. In a typical work flow, after deploying the control algorithm, the control
designer generates a few test cases and checks if the specification is satisfied. Given
that the state space is continuous and the dynamics are often nonlinear, finding the tra-
jectory that violates the specification is similar to searching for a needle in a haystack.
For example, consider a regulation application where the output of the control system
is required to eventually converge to a set point s within the error threshold of δ. There-
fore, the output should remain in the interval [s−δ, s+δ] after a specified settling time.
The control designer would first test the control algorithm by generating a test suite.
If all of the executions in the test suite satisfy the specification, the control designer
would like to generate test cases that are close to violating the specification. Given the
nonlinearity of the dynamics, the control designer does not have a method to generate
the next test input that results in a higher value of error than observed in the test suite.

In some instances, the designer can encode the property as a temporal logic for-
mula and use off-the-shelf falsification tools for generating a trajectory that violates
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the specification. Such an approach has a few drawbacks. First, falsification tools are
geared towards finding a trajectory that violates the given specification, not necessarily
to help the control designer in state space exploration. Second, if the specification (error
threshold δ or the settling time) is changed, the results from the falsification analysis
are no longer useful. Finally, the falsification tools require the specification to be pro-
vided in a temporal logic such as signal temporal logic or metric temporal logic. While
such specification might be useful in the verification and deployment phase, they are a
hindrance during the design and exploration phase. Currently there are no tools that aid
control designer in performing systematic testing of closed loop control systems.

In this paper, we present NeuralExplorer, a technique for performing state space
exploration of closed loop control systems using neural networks. NeuralExplorer can
supplement the testing procedure by helping the designer generate test cases that reach a
target or a neighborhood. The artifact that helps us in this endeavor is sensitivity. Infor-
mally, sensitivity of a closed loop system is the change in the trajectory of the system
as a result of perturbing the initial condition. The backward time notion of sensitivity is
called inverse sensitivity. Given a sample set of trajectories, we train a neural network
to approximate the sensitivity and inverse sensitivity functions. These neural networks
are then used to generate a trajectory (or trajectories) that reaches a destination (or a
neighborhood around it).

Our framework has three primary advantages. First, since NeuralExplorer relies
only on the sample test cases, it does not require a model of the system and can be
applied to a black-box systems. Second, since sensitivity is a fundamental property of
the closed loop system, approximating it using a neural network is generalizable to
trajectories that are beyond the test cases generated by the control designer. Third, a
control designer can develop intuition about the convergence and divergence of trajec-
tories by querying the neural network. In evaluating our framework, we were not only
able to perform state space exploration for standard linear and nonlinear dynamical
systems, but also for nonlinear hybrid systems and neural network based feedback con-
trol systems. We believe that NeuralExplorer is useful for generating corner cases and
supplements some of the existing testing and reachable set computation procedures.

2 Related Work

Reachability analysis is often employed for proving the safety specification of
safety critical control system [4,11]. Some of the recent works in this domain are
SpaceEx [22], Flow* [9], CORA [3] and HyLAA [7]. These techniques use a sym-
bolic representation for the reachable set of states. While these are useful for proving
that the safety specification is satisfied, generating counterexamples using reachability
analysis is still an area of research [24].

For generating trajectories that violate a given safety specification, falsification tech-
niques are widely applied [15,19]. In these techniques, the required specification is
specified in a temporal logic such as Metric Temporal Logic (MTL) [31] or Signal
Temporal Logic (STL) [32,35]. Given a specification, falsification techniques generate
several sample trajectories and use various heuristics [2,12,23,38,43,48] for generat-
ing trajectories that violate the specification. Prominent tools in this domain include
S-Taliro [5] and Breach [13].
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Bridging falsification and reachability are simulation driven verification meth-
ods [14,16,20,28]. These methods compute an upper bound on the sensitivity of the
trajectories and compute an overapproximation of the reachable set using sample tra-
jectories. While these techniques bridge the gap between falsification and verification,
they suffer from curse of dimensionality. That is, the number of trajectories generated
might increase exponentially with the dimensions. C2E2 [17], and DryVR [21] are some
of the well known tools in this domain.

Given the rich history of application of neural networks in control [33,36,37] and
the recent advances in software and hardware platforms, neural networks are now being
deployed in various control tasks. As a result, many verification techniques are now
being developed for neural network based control systems [18,30,44,47]. Additionally,
techniques for verification of neural networks deployed in other domains have been
proposed [27,45,46].

In this paper, we use neural networks to approximate an underlying property of sen-
sitivity and inverse sensitivity. We believe that this is a valid approach because recently,
many neural network based frameworks for learning the dynamics or their properties
have been proposed [8,34,39–42].

3 Preliminaries

We denote the elements of the state space as x to be elements inRn. Vectors are denoted
as v. We denote the dynamics of the plant as

ẋ = f(x, u) (1)

Where x is the state space of the system that evolves in Rn and u is the input space
in Rm.

Definition 1 (Unique Trajectory Feedback Functions). A feedback function u =
g(x) is said to be unique trajectory feedback function if the closed loop system ẋ =
f(x, g(x)) is guaranteed existence and uniqueness of the solution for the initial value
problem for all initial points x0 ∈ R

n.

Notice that for a feedback function to give a unique trajectory feedback, it need not
be differentiable. From the sufficient conditions of ODE solutions, it is sufficient if g(x)
is continuous and is lipschitz.

Definition 2 (Trajectories of Closed Loop System). Given a unique trajectory feed-
back function u = g(x), a trajectory of closed loop system ẋ = f(x, g(x)), denoted as
ξg(x0, t) (t ≥ 0), is the solution of the initial value problem of the differential equation
ẋ = f(x, g(x)) with initial condition x0. We often drop the feedback function g when it
is clear from the context.

We extend the notion of trajectory to include backward time trajectories as well.
Given t > 0, the backward time trajectory ξg(x0,−t) = x such that ξg(x, t) = x0. We
denote backward time trajectory as ξ−1(x0, t).

Given x0, x1 ∈ R
n and t > 0 such that ξ(x0, t) = x1, then ξ−1(x1, t) = x0. It is

trivial to observe that ξ−1(ξ(x0, t), t) = x0.
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Definition 3 (Sensitivity of Trajectories). Given an initial state x0, vector v, and time
t, the sensitivity of the trajectories, denoted as Φ(x0, v, t) is defined as.

Φ(x0, v, t) = ξ(x0 + v, t) − ξ(x0, t).

Informally, sensitivity is the vector difference between the trajectories starting from
x0 and x0 + v after time t. We extend the definition of sensitivity to backward time
trajectories as

Φ−1(x0, v, t) = ξ−1(x0 + v, t) − ξ−1(x0, t).

We call Φ−1(x0, v, t) as inverse sensitivity function. Informally, inverse sensitivity
function gives us the perturbation of the initial condition that is required to displace
the trajectory passing through x0 by v. Observe that ξ(ξ−1(x0, t) +Φ−1(x0, v, t), t) =
x0 + v.

For general nonlinear differential equations, analytic representation of the trajecto-
ries of the ODEs need not exist. If the closed loop system is a smooth function, then the
infinite series for the trajectories is given as

ξ(x0, t) = x0 + Lf (x0)t + L2
f (x0)

t2

2!
+ L3

f (x0)
t3

3!
+ . . . . (2)

Where Li
f is the ith order Lie-derivative over the field f(x, g(x)) at the state x0.

Hence, one can write the sensitivity function as

Φ(x0, v, t) = v + (Lf (x0 + v) − Lf (x0))t + (L2
f (x0 + v) − L2

f (x0))
t2

2!
+ . . . . (3)

Φ−1(x0, v, t) is obtained by substituting −f for f in Eq. 3. When the closed
loop dynamics is linear, i.e., ẋ = Ax, it is easy to observe that Φ(x0, v, t) = eAtv,
Φ−1(x0, v, t) = e−Atv where eAt (e−At) is the matrix exponential of the matrix At
(−At). Observe that for linear systems, the inverse sensitivity function is independent of
the state x0. For nonlinear dynamical systems, one can truncate the infinite series up to
a specific order and obtain an approximation. However, for hybrid systems that have
state based mode switches, or for feedback functions where the closed loop dynamics
is not smooth or is discontinuous, such an infinite series expansion is hard to compute.
The central idea in this paper is to approximate Φ and Φ−1 using a neural network and
perform state space exploration using such neural networks.

4 Neural Network Approximations of Sensitivity and Inverse
Sensitivity

Given a domain of operation D ⊆ R
n, one can generate a finite set of trajectories for

testing the system operation in D. Often, these trajectories are generated using numer-
ical ODE solvers which return trajectories sampled at a regular time step. For approxi-
mating sensitivity and inverse sensitivity, we generate a finite number of time bounded
trajectories where the step size, time bound, and the number of trajectories are spec-
ified by the user. The trajectories can be generated either according to a probability
distribution specified by the user or from specific initial configurations provided by her.
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Given a sampling of a trajectory at regular time interval with step size h, i.e.,
ξ(x0, 0), ξ(x0, h), ξ(x0, 2h), . . ., ξ(x0, kh), we make two observations. First, any prefix
or suffix of this sequence is also a trajectory, albeit, of a shorter duration. Hence, from
a given set of trajectories, one can generate more virtual trajectories that have shorter
duration. Second, given two trajectories (real or virtual) starting from initial states x1

and x2, (x1 �= x2), We have the two following observations.

Φ(x1, x2 − x1, t) = ξ(x2, t) − ξ(x1, t) (4)

Φ−1(ξ(x1, t), ξ(x2, t) − ξ(x1, t), t) = x2 − x1. (5)

Given an initial set of trajectories, we generate virtual trajectories and use Eqs. 4
and 5 for generating all tuples 〈x0, v, t, vsen〉 and 〈x0, v, t, visen〉 such that vsen =
Φ(x0, v, t) and visen = Φ−1(x0, v, t). This data is then used for training and evaluation
of the neural network to approximate the sensitivity and inverse sensitivity functions.
We denote these networks as NN Φ and NN Φ−1 respectively.

4.1 Evaluation on Standard Benchmarks

For approximating the sensitivity and inverse sensitivity functions, we pick a stan-
dard set of benchmarks consisting of nonlinear dynamical systems, hybrid sys-
tems, and control systems with neural network feedback functions. Most of the
benchmarks are taken from standard hybrid systems benchmark suite [1,6,29]. The
benchmarks Brussellator, Lotka, Jetengine, Buckling, Vanderpol,
Lacoperon, Roesseler, Steam, Lorentz, and Coupled vanderpol are
continuous nonlinear systems, where Lorentz and Roesseler are chaotic as well.
SmoothHybrid Oscillator and HybridOscillator are nonlinear hybrid
systems. The remaining benchmarks Mountain Car and Quadrotor are selected
from [30], where the state feedback controller is given in the from of neural network.

For each benchmark, we generated a given number (typically 30 or 50) of trajec-
tories, where the step size for ODE solvers and the time bound are provided by the
user. We do not know how much data is required to obtain a required amount of accu-
racy. The trade offs between the amount of data required, training time, and accuracy of
the approximation is a subject of future research. The data used for training the neural
network is collected as described in previous subsection. We use 90% of the data for
training and 10% for testing.

We used Python Multilayer Perceptron implemented in Keras [10] library with
Tensorflow as the backend. The network has 8 layers with each layer having 512 neu-
rons. The optimizer used is stochastic gradient descent. The network is trained using
Levenberg-Marquardt backpropagation algorithm optimizing the mean absolute error
loss function, and the Nguyen-Widrow initialization.
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The activation function used to train the network is relu for all benchmarks except
Mountain car for which sigmoid performs better because the NN controller is
sigmoid-based. Note that the choice of hyper-parameters such as number of layers and
neurons, the loss and activation functions is empirical, and is motivated by our prior
work [25]. We evaluate the network performance using root mean square error (MSE)
and mean relative error (MRE) metrics. The training and evaluation are performed on a
system running Ubuntu 18.04 with a 2.20GHz Intel Core i7-8750H CPU with 12 cores
and 32 GB RAM. The network training time, MSE and MRE for learning inverse sen-
sitivity function are given in Table 1. The reader is addressed to [26] for the training
performance of the neural network tasked with learning sensitivity function.

Table 1. Learning inverse sensitivity function. Parameters and performance of neural net-
work tasked with learning inverse sensitivity function. The set of benchmarks includes nonlinear
dynamical, hybrid and neural network based feedback control systems. Time bound is number of
steps for which the system simulation is computed.

Benchmark Dims Step size
(sec)

Time bound Training
Time
(min)

MSE MRE

Continuous
Nonlinear
Dynamics

Brussellator 2 0.01 500 67.0 1.01 0.29

Buckling 2 0.01 500 42.0 0.59 0.17

Lotka 2 0.01 500 40.0 0.50 0.13

Jetengine 2 0.01 300 34.0 1.002 0.26

Vanderpol 2 0.01 500 45.50 0.23 0.23

Lacoperon 2 0.2 500 110.0 1.8 0.46

Roesseler 3 0.02 500 115.0 0.44 0.07

Lorentz 3 0.01 500 67.0 0.48 0.08

Steam 3 0.01 500 58.0 0.13 0.057

C-Vanderpol 4 0.01 500 75.0 0.34 0.16

Hybrid/NN
Systems

HybridOsc. 2 0.01 1000 77.0 0.31 0.077

SmoothOsc. 2 0.01 1000 77.5 0.23 0.063

Mountain Car 2 - 100 10.0 0.005 0.70

Quadrotor 6 0.01 120 25.0 0.0011 0.16
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Table 2. Evaluations. The results of reachTarget after iteration count 1 and 5. We compute
average absolute distance da and relative distance dr over 500 iterations of our algorithm for
each benchmark. Additionally, a range of values is obtained for da and dr by performing the
evaluation on 10 different targets.

Benchmark Dims Iteration count = 1 Iteration count = 5

da dr Time (ms) da dr Time (ms)

Brussellator 2 [0.19–1.87] [0.23–0.74] 11.38 [0.003–0.22] [0.01–0.12] 31.34

Buckling 2 [1.67–11.52 [0.17–0.45] 13.61 [0.36- 2.09] [0.06–0.31] 34.51

Lotka 2 [0.08–0.24] [0.21–0.45] 12.38 [0.02–0.07] [0.09–0.22] 34.28

Jetengine 2 [0.05 -0.20] [0.19–0.28] 15.96 [0.0004–0.05] [0.006–0.14] 38.26

Vanderpol 2 [0.29–0.58] [0.16–0.66] 12.34 [0.03–0.18] [0.04–0.16] 34.02

Lacoperon 2 [0.03–0.13] [0.12–0.28] 17.18 [0.003–0.03] [0.02–0.16] 37.34

Roesseler 3 [0.72–2.02] [0.20–0.34] 16.08 [0.21–0.63] [0.06–0.14] 38.26

Lorentz 3 [1.24–5.60] [0.29–0.58] 24.72 [0.20–0.70] [0.05–0.17] 60.18

Steam 3 [1.59–5.21] [0.31–0.67] 8.68 [0.41–1.8] [0.08–0.30] 69.80

C-Vanderpol 4 [0.87–1.72] [0.34–0.60] 17.44 [0.20–0.40] [0.07–0.18] 44.86

HybridOsc 2 [0.28–0.92] [0.13–0.29] 16.70 [0.03–0.31] [0.01–0.10] 45.82

SmoothOsc 2 [0.37–1.09] [0.13- 0.23] 52.22 [0.04–0.42] [0.02–0.18] 136.72

Mountain Car 2 [0.004–0.24] [0.08–0.22] 138.90 [0.0002–0.005] [0.03–0.12] 266.76

Quadrotor 6 [0.014–1.09] [0.10–0.67] 284.96 [0.004–0.04] [0.02–0.13] 668.78

5 Space Space Exploration Using Neural Network Approximation

In this section, we present various applications in the domain of state space exploration
using the neural network approximation of sensitivity and inverse sensitivity. The goal
of state space exploration is to search for trajectories that satisfy or violate a given speci-
fication. In this paper, we primarily concern ourselves with a safety specification, that is,
whether a specific trajectory reaches a set of states labelled as unsafe. In order to search
for such trajectories, we present four different algorithms that use neural networks that
approximate sensitivity and inverse sensitivity. The main reason for providing a vari-
ety of such algorithms is to demonstrate the flexibility of the framework and the wide
variety of ways in which it can be used. The reader is referred to [26] for additional
experimental results of these techniques.

5.1 Reaching a Specified Destination Using Inverse Sensitivity Approximation

In the course of state space exploration, after testing the behavior of the system for a
given set of test cases, the control designer might choose to explore the system behav-
ior that reaches a destination or approaches the boundary condition for safe operation.
Given a domain of operations D, we assume that the designer provides a desired target
state z (with an error threshold of δ) that is reached by a trajectory at time t. Our goal
is to generate a trajectory ξ such that ξ(t) visits a state in the δ neighborhood of z.

Our approach for generating the target trajectory is as follows. First, we generate a
random trajectory ξ from the initial state x, and compute the difference vector of target
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state z and ξ(t) (i.e., z − ξ(t)). We now use the neural network approximation of the
inverse sensitivity function and estimate the perturbation required in the initial set such
that the trajectory after time t goes through z (i.e., NNΦ−1(ξ(t), z − ξ(t), t)). Since the
neural network can only approximate the inverse sensitivity function, the trajectory after
the perturbation (i.e., x + NNΦ−1(ξ(t), z − ξ(t), t)) need not visit δ neighborhood of
the destination. However, we can repeat the procedure until a threshold on the number
of iterations is reached or the δ threshold is satisfied. The pseudo code of this procedure,
denoted as reachTarget, is given in Algorithm 1.1.

input : System simulator ξ, time bound T , trained neural network NNΦ−1 , time instance
t ≤ T , destination state z ∈ D, iteration count I , initial set θ, and threshold δ

output: State x ∈ θ, dr , da
Δ
= ||ξ(x, t) − z||2 such that da ≤ δ

1 x ← xrandom ∈ θ; i ← 1;
2 x0 ← ξ(x, t); da ← ||x0 − z||2;
3 dinit ← da; dr ← 1;
4 while (da > δ) & (i ≤ I) do
5 v ← x0 − z;
6 v−1 ← NNΦ−1(x0, v, t);
7 x ← x + v−1; x0 ← ξ(x, t);
8 da ← ||x0 − z||2; i ← i + 1;
9 end

10 dr ← da
dinit

;

11 return (x, dr, da);

Algorithm 1.1: reachTarget. Finding an initial state from which the simulation
goes within δ-neighborhood of destination z at time t. ‖·‖2 is the l2-norm. The
algorithm returns best candidate for the falsifying initial state, absolute distance
da, and relative distance dr wrt initial da.

In Algorithm 1.1, ξ(x, .) is the simulation generated by ξ for the state x; x0 is the
simulation state at time t; v−1 Δ= Φ−1(x0, v, t) is the inverse sensitivity function which
is learned using neural network NN Φ−1. The absolute distance da is the euclidean
distance between simulation state at time t and the destination z. dr is the relative
distance with respect to the initial absolute distance dinit. Since v−1 is an estimate
of the perturbation required in the initial set, a new anchor trajectory with initial state
x + v−1 is generated and the new distance da between ξ(x, t) and z is computed. The
while loop runs until either δ threshold is reached or iteration count I is exhausted.

Evaluation of reachTarget on Standard Benchmarks.We evaluate the performance
of reachTarget algorithm by picking a random target state z in the domain of interest
and let it generate a trajectory that goes through the neighborhood (δ = 0.01 or 0.001)
of the target at a specified time t. We use random target states in order to evaluate the
performance of the search procedure in the entire domain and not bias it to a specific
sub-space. Typically, reachTarget executes the loop in lines 4–9 for 10 times before
reaching the target. In Table 2, we present the relative and absolute distance between
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the target and the state reached by the trajectory generated by reachTarget after one or
five iterations of the loop. The demonstration of the procedure is shown in Fig. 1.

Fig. 1. Illustration of reachTarget. We highlight the result of executing reachTarget on
Coupled Vanderpol. Iteration 0 is the trajectory from xrandom. Subsequent 3 trajectories
are labeled as Iteration 1, 2 and 3 respectively. As shown, with each iteration, the trajectory moves
closer to the destination.

We now discuss a few variations of our algorithm and their evaluation approaches.
Uncertainty in time: The control designer might not be interested in reaching the tar-
get at a precise time instance as long as it lies within a bounded interval of time. In
such cases, one can iterate reachTarget for every step in this interval and generate a
trajectory that approaches the target. Consider the designer is interested in finding the
maximum distance (or, height) the car can go to on the left hill in Mountain Car.
By providing an ordered list of target states and a time interval, she can obtain the max-
imum distance as well the time instance at which it achieves the maxima. If there is no
state in the given initial set from which the car can go to a particular target, the app-
roach, as a side effect, can also provide a suitable initial candidate that takes the car as
close as possible to that target. Similarly, in Quadrotor, one can find an initial state
from which the system can go to a particular location during a given time interval.
Generalization: Based on our Mountain Car experiment, we observed that, for the
given initial set, the maximum distance the car can achieve on the left hill is approx.
1.17. However, even after expanding the initial set from [−0.55, −0.45][0.0, 0.0] to
[−0.60,−0.40][0.0, 0.0], our approach finds the maximum achievable distance (1.3019)
such that the car can still reach on the top of the right hill (shown in Fig. 2). This shows
that our neural network is able to generalize the inverse sensitivity over trajectories that
go beyond the test cases considered during the training process.
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Fig. 2. Generalization Computing the maximum distance the car can achieve on the left hill after
expanding the initial set.

Discussion: It can be observed from Table 2 that our technique is capable of achieving
below 10% relative distance in almost all cases after 5 iterations. That is, the trajec-
tory generated by reachTarget algorithm after 5 iterations is around 10% away from
the target than the initial trajectory. This was the case even for chaotic systems, hybrid
systems, and for control systems with neural network components. While training the
neural network might be time taking process, the average time for generating new tra-
jectories that approach the target is very fast (less than a second for all cases). The high
relative distance in some cases might be due to high dimensionality or large distance to
the target which may be reduced further with more iterations.

5.2 Falsification of Safety Specification

One of the widely used methods for performing state space exploration are falsifica-
tion methods [38,43]. Here, the specification is provided in some temporal logic such
as Signal or Metric Temporal Logic [31,35]. The falsifier then generates a set of test
executions and computes the robustness of trajectory with respect to the specification.
It then invokes heuristics such as stochastic global optimization for discovering a tra-
jectory that violates the specification.
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Given an unsafe set U , we provide a simple algorithm to falsify safety specifica-
tions. We generate a fixed number (m) of random states in the unsafe set U . Then,
using the reachTarget sub-routine, generate trajectories that reach a vicinity of the
randomly generated states in U . We terminate the procedure when we discover an exe-
cution that enters the unsafe set U . For Simulated annealing benchmark, we
compare the number of trajectories generated by S-Taliro with the trajectories gener-
ated using inverse sensitivity in Fig. 3. S-Taliro takes 121 s with quadratic optimization
and 11 s with analytical distance computation, NeuralExplorer obtains a falsifying tra-
jectory in 2.5 s. Similar performance gain is observed in a few other benchmarks.

(a) S-Taliro (b) NeuralExplorer

Fig. 3. Falsification in Simulated Annealing using S-Taliro and NeuralExplorer. The
red box in each of the figures denotes the unsafe set and the other box denotes the initial set. Each
of the points in the initial set represents a sample trajectory generated by the falsification engine.
(Color figure online)

Falsification using approximation of inverse sensitivity enjoys a few advantages
over other falsification methods. First, since our approach approximates the inverse
sensitivity, and we use the reachTarget sub-routine; if the approximation is accurate
to a certain degree, each subsequent trajectory generated would make progress towards
the destination. Second, if the safety specification is changed slightly, the robustness of
the trajectories with respect to new specification and the internal representation for the
stochastic optimization solver has to be completely recomputed. However, since our tra-
jectory generation does not rely on computing the robustness for previously generated
samples, our algorithm is effective even when the safety specification is modified.

The third and crucial advantage of our approach lies when the falsification tool does
not yield a counterexample. In those cases, the typical falsification tools cannot provide
any geometric insight into the reason why the property is not satisfied. However, using
an approximation of inverse sensitivity, the system designer can envision the required
perturbation of the reachable set in order to move the trajectory in a specific direction.
This geometric insight would be helpful in understanding why a specific trajectory does
not go into the unsafe set.
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Considering these advantages, the results demonstrated in Fig. 3 should not be sur-
prising. We also would like to mention that these advantages come at the computa-
tional price of training the neural networks to approximating the inverse sensitivity. We
observed that in some other examples, S-Taliro terminates with a falsification trajectory
faster than our approach. The reasons for such cases and methods to improve falsifica-
tion using NeuralExplorer are a topic of future work.

5.3 Density Based Search Methods for State Space Exploration

One of the most commonly used technique for performing state space exploration is
generation of trajectories from a set of random points generated using an apriori distri-
bution. Based on the proximity of these trajectories to the unsafe set, this probability
distribution can further be refined to obtain trajectories that move closer to the unsafe
set. However, one of the computational bottlenecks for this is the generation of trajecto-
ries. Since the numerical ODE solvers are sequential in nature, the refinement procedure
for probability distribution is hard to accelerate.

For this purpose, one can use the neural network approximation of sensitivity to
predict many trajectories in an embarassingly parallel way. Here, a specific set of ini-
tial states for the trajectories are generated using a pre-determined distribution. Only a
few of the corresponding trajectories for the initial states are generated using numerical
ODE solvers. These are called as anchor trajectories. The remainder of trajectories are
not generated, but rather predicted using the neural network approximation of sensitiv-
ity and anchor trajectories. That is, ξ(xi, t) + ΦNN (xi, xj − xi, t). Additionally, the
designer has the freedom to choose only a subset of the initial states for only a specific
time interval for prediction and refine the probability distribution for generating new
states. This would also allow us to specifically focus on a time interval or a trajectory
without generating the prefix of it. An example of predictive trajectory generation for
performing reachability analysis on Vanderpol oscillator is provided in Fig. 4.

5.4 Density Based Search for Falsification

Similar to the inverse sensitivity based falsification, one can use the density based
search space method for generating trajectories that reach a destination and violate a
safety specification. The forward density based search procedure would work as fol-
lows. First, an anchor trajectory is generated and time instances of this trajectory that
are closer to the unsafe set are identified. Then a set of new initial states are generated
according to an apriori decided distribution. Instead of generating the trajectories from
these initial states using ODE solvers, the predicted trajectories using the anchor tra-
jectory and neural network approximation of sensitivity are generated specifically for
the time intervals of interest. Then, the initial state with the predicted trajectory that is
closest to the unsafe set is chosen and a new anchor trajectory from the selected initial
state is generated. This process of generating anchor trajectory, new distribution of ini-
tial states is continued until you reach within the given threshold around the unsafe set.
Demonstration of this procedure for Vanderpol system is shown in Fig. 5. Notice that
this approach gives an underlying intuition about the geometric behavior of neighboring
trajectories.
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Fig. 4. State space exploration on Vanderpol. A cluster of points is sampled in the neigh-
borhood of a reference state. Actual trajectories as well as predicted trajectories obtained by the
neural network which approximates sensitivity function are shown. (Color figure online)

A similar method for density based estimation using inverse sensitivity approxima-
tion can also be devised. Instead of sampling the initial set, the density based method
for inverse sensitivity generates random states around the unsafe set to be reached and
then, using reachTarget, explores states in the initial set that reach these unsafe con-
figurations at a particular time instance. In addition, it maintains the distance of each
trajectory from the unsafe set. In this manner, one can classify states in the initial set
based on their respective trajectories’ distances to the unsafe set. This results into a
density map that can provide some geometric insights about initial configurations. An
example of such a density map generated is given in Fig. 6. In Fig 6(a), the trajectories
starting from the states in the bottom left side of the initial set either go into the unsafe
set or are much closer to it compared to the states in the upper right side. Also, observe
how the density map changes by changing the unsafe specification in Fig. 6(b).
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Fig. 5. Density based search for falsification using sensitivity in Vanderpol. The perturba-
tion in the neighborhood of reference state are greedily chosen in an iterative manner so as to
minimize the distance to unsafe state. The sampled states are classified based on their euclidean
distance to the unsafe state.

(a) Brusselator: For original unsafe spec (b) Brusslator: For a different unsafe spec

Fig. 6. Density based search for falsification using inverse sensitivity in Brusselator. The
initial states explored in the falsification process are colored according to their distance to the
unsafe set. These color densities help in identifying regions in the initial set potentially useful for
falsification. Notice the difference in the color densities as we select a difference unsafe spec.

6 Conclusion and Future Work

We presented NeuralExplorer framework for state space exploration of closed loop con-
trol systems using neural network. Our framework depends on computing neural net-
work approximations of two key properties of a dynamical system called sensitivity and
inverse sensitivity. We have demonstrated that for standard benchmarks, these functions
can be learned with less than 20% relative error. We demonstrated that our method can
not only be applied to standard nonlinear dynamical systems but also for control sys-
tems with neural network as feedback functions.

Using these approximations of sensitivity and inverse sensitivity, we presented new
ways to performing state space exploration. We also highlighted the advantages of the
falsification methods devised using the approximations. Additionally, we demonstrated
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that our techniques give a geometric insight into the behavior of the system and provide
more intuitive information to the user, unlike earlier black box methods. We believe that
these techniques can help the system designer in search of the desired executions.1

In future, we intend to extend this work to handle more generic systems such as
feedback systems with environmental inputs. We believe such a black-box method for
generating adversarial examples can be integrated into generative adversarial training
for training neural networks for control applications.
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Abstract. While abstraction is a classic tool of verification to scale it
up, it is not used very often for verifying neural networks. However, it
can help with the still open task of scaling existing algorithms to state-
of-the-art network architectures. We introduce an abstraction framework
applicable to fully-connected feed-forward neural networks based on clus-
tering of neurons that behave similarly on some inputs. For the particu-
lar case of ReLU, we additionally provide error bounds incurred by the
abstraction. We show how the abstraction reduces the size of the net-
work, while preserving its accuracy, and how verification results on the
abstract network can be transferred back to the original network.

1 Introduction

Neural networks (NN) are successfully used to solve many hard problems rea-
sonably well in practice. However, there is an increasing desire to use them also
in safety-critical settings, such as perception in autonomous cars [Che+17a],
where reliability has to be on a very high level and that level has to be guar-
anteed, preferably by a rigorous proof. This is a great challenge, in particular,
since NN are naturally very susceptible to adversarial attacks, as many works
have demonstrated in the recent years [Pap+16;AM18;Don+18;SVS19]. Conse-
quently, various verification techniques for NN are being developed these days.
Most verification techniques focus on proving robustness of the neural networks
[CNR17;Ehl17;Hua+17;Kat+17;Geh+18;Sin+19b], i.e. for a classification task,
when the input is perturbed by a small ε, the resulting output should be labeled
the same as the output of the original input. Reliable analysis of robustness
is computationally extremely expensive and verification tools struggle to scale
when faced with real-world neural networks [Dvi+18].
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Abstraction. [CGL94;Cla+00] is one of the very classic techniques used in for-
mal methods to obtain more understanding of a system as well as more efficient
analysis. Disregarding details irrelevant to the checked property allows for con-
structing a smaller system with a similar behaviour. Although abstraction-based
techniques are ubiquitous in verification, improving its scalability, such ideas
have not been really applied to the verification of NN, except for a handful of
works discussed later.

In this paper, we introduce an abstraction framework for NN. In contrast
to syntactic similarities, such as having similar weights on the edges from the
previous layer [ZYZ18], our aim is to provide a behavioural, semantic notion of
similarity, such as those delivered by predicate abstraction, since such notions are
more general and thus more powerful. Surprisingly, this direction has not been
explored for NN. One of the reasons is that the neurons do not have an explicit
structure like states of a program that are determined by valuations of given
variables. What are actually the values determining neurons in the network?

Note that in many cases, such as recognition of traffic signs or numbers,
there are finitely many (say k) interesting data points on which and on whose
neighbourhood the network should work well. Intuitively, these are the key points
that determine our focus, our scope of interest. Consequently, we propose the
following equivalence on neurons. We evaluate the k inputs, yielding for each
neuron a k-tuple of its activation values. This can be seen as a vector in R

k. We
stipulate that two neurons are similar if they have similar vectors, i.e, very close
to each other. To determine reasonable equivalence classes over the vectors, we
use the machine-learning technique of k-means clustering [HTF09]. While other
techniques, e.g. principal component analysis [Bis06], might also be useful, simple
clustering is computationally cheap and returns reasonable results. To summarize
in other words, in the lack of structural information about the neurons, we use
empirical behavioural information instead.

Applications. Once we have a way of determining similar neurons, we can merge
each equivalence class into a single neuron and obtain a smaller, abstracted NN.
There are several uses of such an NN. Firstly, since it is a smaller one, it may
be preferred in practice since, generally, smaller networks are often more robust,
smoother, and obviously less resource-demanding to run [Che+17b]. Note that
there is a large body of work on obtaining smaller NN from larger ones, e.g.
see [Che+17b;Den+20]. Secondly, and more interestingly in the safety-critical
context, we can use the smaller abstract NN to obtain a guaranteed solution
to the original problem (verifying robustness or even other properties) in two
distinct ways:

1. The smaller NN could replace the original one and could be easier to verify,
while doing the same job (more precisely, the results can be ε-different where
we can compute an upper bound on ε from the abstraction).

2. We can analyze the abstract NN more easily as it is smaller and then transfer
the results (proof of correctness or a counterexample) to the original one,
provided the difference ε is small enough.
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The latter corresponds to the classic abstraction-based verification scenario. For
each of these points, we provide proof-of-concept experimental evidence of the
method’s potential.

Our contribution is thus the following:

– We propose to explore the framework of abstraction by clustering based on
experimental data. For feed-forward NN with ReLU, we provide error bounds.

– We show that the abstraction is also usable for compression. The reduction
rate grows with the size of the original network, while the abstracted NN is
able to achieve almost the same accuracy as the original network.

– We demonstrate the verification potential of the approach: (i) In some cases
where the large NN was not analyzable (within time-out), we verified the
abstraction using existing tools; for other NN, we could reduce verification
times from thousands to hundreds of seconds. (ii) We show how to transfer a
proof of robustness by a verification tool DeepPoly [Sin+19a] on the abstract
NN to a proof on the original network, whenever the clusters do not have too
large radii.

Related Work. In contrast to compression techniques, our abstraction provides a
mapping between original neurons and abstract neurons, which allows for trans-
ferring the claims of the abstract NN to the original one, and thus its verification.

The very recent work [YGK19] suggests an abstraction, which is based solely
on the sign of the effect of increasing a value in a neuron. While we can demon-
strate our technique on e.g. 784 dimension input (MNIST) and work with gen-
eral networks, [YGK19] is demonstrated only on the Acas Xu [JKO18] networks
which have 5 dimensional input; our approach handles thousands of nodes while
the benchmark used in [YGK19] is of size 300. Besides, we support both clas-
sification and regression networks. Finally, our approach is not affected by the
number of outputs, whereas the [YGK19] grows exponentially with respect to
number of outputs.

[PA19] produces so called Interval Neural Networks containing intervals
instead of single weights and performs abstraction by merging these intervals.
However, they do not provide a heuristic for picking the intervals to merge,
but pick randomly. Further, the results are demonstrated only on the low-
dimensional Acas Xu networks.

Further, [SB15] computes a similarity measure between incoming weights and
then starts merging the most similar ones. It also features an analysis of how
many neurons to remove in order to not lose too much accuracy. However, it
does not use clustering on the semantic values of the activations, but only on
the syntactic values of the incoming weights, which is a very local and thus less
powerful criterion. Similarly, [ZYZ18] clusters based on the incoming weights
only and does not bound the error. [HMD16] clusters weights in contrast to our
activation values) using the k-means clustering algorithm. However, the focus
is on weight-sharing and reducing memory consumption, treating neither the
abstraction mapping nor verification.
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Finally, abstracting neural networks for verification purposes was first pro-
posed by [PT10], transforming the networks into Boolean constraints.

2 Preliminaries

We consider simple feedforward neural networks, denoted by D, consisting of
one input layer, one output layer and one or more hidden layers. The layers are
numbered 1, 2, . . . , L with 1 being the input layer, L being the output layer and
2, . . . , L − 1 being the hidden layers. Layer � contains n� neurons. A neuron is
a computation unit which takes an input h ∈ R, applies an activation function
φ : R → R on it and gives as output z = φ(h). Common activation functions
include tanh, sigmoid or ReLU [MHN13], however we choose to focus on ReLU
for the sake of simplicity, where ReLU(x) is defined as max(0, x). Neurons of one
layer are connected to neurons of the previous and/or next layers by means of
weighted connections. Associated with every layer � that is not an output layer
is a weight matrix W (�) = (w(�)

i,j ) ∈ R
n�+1×n� where w

(�)
i,j gives the weights of the

connections to the ith neuron in layer �+1 from the jth neuron in layer �. We use
the notation W

(�)
i,∗ = [w(�)

i,1 , . . . , w
(�)
i,n�

] to denote the incoming weights of neuron

i in layer � + 1 and W
(�)
∗,j = [w(�)

1,j , . . . , w
(�)
n�+1,j ]

ᵀ to denote the outgoing weights

of neuron j in layer �. Note that W
(�)
i,∗ and W

(�)
∗,j correspond to the ith row and

jth column of W (�) respectively. The input and output of a neuron i in layer �

is denoted by h
(�)
i and z

(�)
i respectively. We call h� = [h(�)

1 , . . . , h
(�)
n� ]ᵀ the vector

of pre-activations of layer � and z� = [z(�)1 , . . . , z
(�)
n� ]ᵀ the vector of activations of

layer �, where z
(�)
i = φ(�)(h(�)

i ). A vector b(�) ∈ R
n� called bias is also associated

with all hidden layers �.
In a feedforward neural network, information flows strictly in one direction:

from layer �m to layer �n where �m < �n. For an n1-dimensional input x ∈ X
from some input space X ⊆ R

n1 , the output y ∈ R
nL of the neural network D,

also written as y = D(x) is iteratively computed as follows:

h(0) = x

h(�+1) = W (�)z(�) + b(�+1) (1)

z(�+1) = φ(h(�+1)) (2)

y = z(L)

where φ(x) is the column vector obtained on applying φ component-wise to x.
We sometimes write z(�)(x) to denote the output of layer � when x is given as
input to the network.

We define a local robustness query to be a tuple Q = (D,x, δ) for some
network D, input x and perturbation δ ∈ R

|x| and call D to be robust with
respect to Q if ∀x′ ∈ [x − δ,x + δ] : D(x′) = D(x). In this paper, we only deal
with local robustness.
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3 Abstraction

In classic abstraction, states that are similar with respect to a property of inter-
est are merged for analysis. In contrast, for NN, it is not immediately clear which
neurons to merge and what similarity means. Indeed, neurons are not actually
states/configurations of the system; as such, neurons, as opposed to states with
values of variables, do not have inner structure. Consequently, identifying and
dropping irrelevant information (part of the structure) becomes more challeng-
ing. We propose to merge neurons which compute a similar function on some set
X of inputs, i.e., for each input x ∈ X to the network, they compute ε-close val-
ues. We refer to this as I/O-similarity. Further, we choose to merge neurons only
within the same layer to keep the analysis and implementation straightforward.

In Sect. 3.1, we show a straightforward way to merge neurons in a way that is
sensible if they are I/O-similar. In Sect. 3.2, we give a heuristic for partitioning
neurons into classes according to their I/O-similarity. While this abstraction
idea is not limited to verification of robustness, it preserves the robustness of
the original network particularly well, as seen in the experiments in Sect. 5.

3.1 Merging I/O-Similar Neurons

I/O-similar neurons can be merged easily without changing the behaviour of the
NN too much. First, we explain the procedure on an example.

Fig. 1. Before and after merge: neuron 4 is chosen as a representative of both 4 and 5.
On merging, the incoming weights of neuron 5 are deleted and its outgoing weight is
added to the outgoing weight of neuron 4.

Example 1. Consider the network shown in Fig. 1a. The network contains 2 input
neurons and 4 ReLU neurons. For simplicity, we skip the bias term in this exam-
ple network. Hence, the activations of the neurons in the middle layer are given as
follows: z3 = ReLU(w1z1+w4z2), z4 = ReLU(w2z1+w5z2), z5 = ReLU(w3z1+
w6z2); and the output of neuron 6 is z6 = ReLU(w7z3 + w8z4 + w9z5). Suppose
that for all inputs in the dataset, the activations of neurons 4 and 5 are ‘very’
close, denoted by z4 ≈ z5. Then, z6 = ReLU(w7z3 + w8z4 + w9z5).
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Algorithm 1. Abstract network D with given clustering KL

1: procedure Abstract(D, X, KL)
2: D̃ ← D
3: for � ← 2, . . . , L − 1 do
4: A ← {a(�)

i | a(�)
i = [z̃

(�)
i (x1), . . . , z̃

(�)
i (xN )] where xi ∈ X}

5: C ← kmeans(A, KL(�))
6: for C ∈ C do
7: W̃

(�)

∗,rep(C) ← ∑
i∈C W

(�)
∗,i

8: delete C \ {rep(C)} from D̃
return D̃

Since neurons 4 and 5 behave similarly, we abstract the network by merging
the two neurons as shown in Fig. 1b. Here, neuron 4 is chosen as a representative
of the “cluster” containing neurons 4 and 5, and the outgoing weight of the
representative is set to the sum of outgoing weights of all the neurons in the
cluster. Note that the incoming weights of the representative do not change. In
the abstracted network, the activations of the neurons in the middle layer are now
given by z̃3 = ReLU(w1z̃1 +w4z̃2) = z3 and z̃4 = ReLU(w2z̃1 +w5z̃2) = z4 with
neuron 5 being removed. The output of neuron 6 is therefore z̃6 = ReLU(w7z̃3+
(w8 + w9)z̃4) = ReLU(w7z3 + (w8 + w9)z4) = ReLU(w7z3 + w8z4 + w9z4) ≈ z6,
which illustrates that merging preserves the behaviour of the network.

Formally, the process of merging two neurons p and q belonging to the same
layer � works as follows. We assume, without loss of generality, that p is retained
as the representative. First, the abstract network D̃ is set to the original network
D. Next, W̃ (�−1) is set to W (�−1) with the qth row deleted. Further, we set the
outgoing weights of the representative p to the sum of outgoing weights of p and q,
W̃

(�)
∗,p = W

(�)
∗,p +W

(�)
∗,q . This procedure is naturally extendable to merging multiple

I/O-similar neurons. It can be applied repeatedly until all desired neurons are
merged. For the interested reader, the correctness proof and further technical
details are made available in [Ash+20, Appendix A.1].

Proposition 1 (Sanity Check). If for neurons p and q, for all considered
inputs x ∈ X to the network D, zp = zq, then the network D̃ produced as
described above, in which p and q are merged by removing q and letting p serve
as their representative, and by setting W̃

(�)
∗,p = W

(�)
∗,p + W

(�)
∗,q , will have the same

output as D on all inputs x ∈ X. In other words, ∀x ∈ X D(x) = D̃(x).

3.2 Clustering-Based Abstraction

In the previous section, we saw that multiple I/O-similar neurons can be merged
to obtain an abstract network behaving similar to the original network. However,
the quality of the abstraction depends on the choice of neurons used in the
merging. Moreover, it might be beneficial to have multiple groups of neurons
that are merged separately. While multiple strategies can be used to identify
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Algorithm 2. Algorithm to identify the clusters
1: procedure Identify-clusters(D, X, α)
2: D̃ ← D
3: for � ← 2, ..., L − 1 do � Loops through the layers
4: if accuracy(D̃) > α then
5: KL(�) ← BinarySearch(D̃, α, �) � Finds optimal number of clusters
6: D̃ ← Abstract(D̃, X, KL)

7: return KL

such groups, in this section, we illustrate this on one of them — the unsupervised
learning approach of k-means clustering [Bis06], as a proof-of-concept.

Algorithm 1 describes how the approach works in general. It takes as input
the original (trained) network D, an input set X and a function KL, which for
each layer gives the number of clusters to be identified in that layer. Each x ∈ X
is input into D̃ and for each neuron i in layer �, an |X|-dimensional vector of
observed activations a(�)i = [z(�)i (x1), . . . , z

(�)
i (x|X|)] is constructed. These vectors

of activations, one for each neuron, are collected in the set A. We can now use
the k-means algorithm on the set A to identify KL(�) clusters. Intuitively, k-
means aims to split the set A into KL(�) clusters such that the pairwise squared
deviations of points in the same cluster is minimized. Once a layer is clustered,
the neurons of each cluster are merged and the neuron closest to the centroid
of the respective cluster, denoted by rep(C) in the pseudocode, is picked as the
cluster representative. As described in Sect. 3.1, the outgoing connections of all
the neurons in a cluster are added to the representative neuron of the cluster
and all neurons except the representative are deleted.

While Algorithm 1 describes the clustering procedure, it is still a challenge
to find the right KL. In Algorithm 2, we present one heuristic to identify a good
set of parameters for the clustering. It is based on the intuition that merging
neurons closer to the output layer impacts the network accuracy the least, as the
error due to merging is not multiplied and propagated through multiple layers.
The overarching idea is to search for the best k-means parameter, KL(�), for
each layer � starting from the first hidden layer to the last hidden layer, while
making sure that the merging with the said parameter (KL) does not drop the
accuracy of the network beyond a threshold α.

The algorithm takes a trained network D as input along with an input set
X and a parameter α, the lower bound on the accuracy of the abstract network.
The first hidden layer (� = 2) is picked first and k-means clustering is attempted
on it. The parameter KL(�) is discovered using the BinarySearch procedure
which searches for the lowest k such that the accuracy of the network abstracted
with this parameter is the highest. We make a reasonable assumption here that
a higher degree of clustering (i.e. a small k) leads to a higher drop in accuracy.
Note that this might cause the BinarySearch procedure to work on a monotone
space and we might not exactly get the optimal. However, in our experiments,
the binary search turned out to be a sufficiently good alternative to brute-force
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search. The algorithm ensures that merging the clusters as prescribed by KL

does not drop the accuracy of the abstracted network below α.1 This process is
now repeated on D̃ starting with the next hidden layer. Finally, KL is returned,
ready to be used with Algorithm 1.

Now we present two results which bound the error induced in the network
due to abstraction. The first theorem applies to the case where we have clustered
groups of I/O-similar neurons in each layer for the set X of network inputs.

Let for each neuron i, ai = [zi(x1), . . . , zi(xN )] where xj ∈ X, and let D̃ =
Abstract(D,X,KL) for some given KL. Define ε(�), the maximal distance of
a neuron from the respective cluster representative, as

ε(�) = [ε(�)1 , . . . , ε(�)n�
]ᵀ where ε

(�)
i = ‖ai − arCi

‖ (3)

where ‖·‖ denotes the Euclidean norm operator, Ci denotes the cluster containing
i and rCi

denotes the representative of cluster Ci. Further, define the absolute
error due to abstraction in layer � as err(�) = z̃(�) − z(�).

Theorem 1 (Clustering-induced error). If the accumulated absolute error
in the activations of layer � is given by err(�) and ε(�+1) denotes the the maximal
distance of each neuron from their cluster representative (as defined in Eqn. 3)
of layer � + 1, then the absolute error err(�+1) for all inputs x ∈ X can be
bounded by

|err(�+1)| ≤ |W (�)err(�)| + ε(�+1)

and hence, the absolute error in the network output is given by err(L).

The second result considers the local robustness setting where we are inter-
ested in the output of the abstracted network when the input x ∈ X is perturbed
by δ ∈ R

|x|.

Theorem 2. If the inputs x ∈ X to the abstract network D̃ are perturbed by
δ ∈ R

|x|, then the absolute error in the network output due to both abstraction
and perturbation denoted by errtotal is bounded for every x ∈ X and is given by

|errtotal| ≤ |W̃ (L) . . . W̃ (1)δ| + |err(L)|
where W̃ (�) is the matrix of weights from layer � to � + 1 in D̃, L is the number
of layers in D̃ and err(L) is the accumulated error due to abstraction as given
by Theorem 1.

In other words, these theorems allow us to compute the absolute error pro-
duced due to the abstraction alone; or due to both (i) abstraction and (ii) per-
turbation of input. Theorem 2 gives us a direct (but näıve) procedure to perform
local robustness verification by checking if there exists an output neuron i with a
lower bound (D̃i(x)−(Etotal)i) greater than the upper bound (D̃j(x)+(Etotal)j)
of all other output neurons j. The proofs of both theorems can be found in
[Ash+20, Appendix A.2].
1 Naturally, the parameter α has to be less than or equal to the accuracy of D.
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4 Lifting Guarantees from Abstract NN to Original NN

In the previous section, we discussed how a large neural network could be
abstracted and how the absolute error on the output could be calculated and even
used for robustness verification. However, the error bounds presented in Theo-
rem 2 might be too coarse to give any meaningful guarantees. In this section,
we present a proof-of-concept approach for lifting verification results from the
abstracted network to the original network. While in general the lifting depends
on the verification algorithm, as a demonstrative example, we show how to per-
form the lifting when using the verification algorithm DeepPoly [Sin+19a] and
also how it can be used in conjunction with our abstraction technique to give
robustness guarantees on the original network.

We now give a quick summary of DeepPoly. Assume that we need to verify
that the network D labels all inputs in the δ-neighborhood of a given input x ∈ X
to the same class; in other words, check if D is locally robust for the robustness
query (D,x, δ). DeepPoly functions by propagating the interval [x − δ,x + δ]
through the network with the help of abstract interpretation, producing over-
approximations (a lower and an upper bound) of activations of each neuron. The
robustness query is then answered by checking if the lower bound of the neuron
representing one of the labels is greater than the upper bounds of all other
neurons. We refer the interested reader to [Sin+19a, Section 2] for an overview
of DeepPoly. Note that the algorithm is sound but not complete.

If DeepPoly returns the bounds l̃ and ũ for the abstract network D̃, the
following theorem allows us to compute [l̂, û] such that [l̂, û] ⊇ [l, u], where [l, u]
would have been the bounds returned by DeepPoly on the original network D.

Theorem 3 (Lifting guarantees). Consider the abstraction D̃ obtained by
applying Algorithm 1 on a ReLU feedforward network D. Let l̃(�) and ũ(�) denote
the lower bound and upper bound vectors returned by DeepPoly for the layer �,
and let W̃

(�)
+ = max(0, W̃ (�)) and W̃

(�)
− = min(W̃ (�), 0) denote the +ve and -ve

entries respectively of its �th layer weight matrix. Let ε(�) denote the vector of
maximal distances of neurons from their cluster representatives (as defined in
Eq. 3), and let x be the input we are trying to verify for a perturbation [−δ, δ].
Then for all layers � < L, we can compute

û(�) = max

(
0,

W̃
(�−1)
+ (û(�−1) + ε(�−1))

+ W̃
(�−1)
− (l̂(�−1) − ε(�−1))

+ b̃(�)

)
l̂(�) = max

(
0,

W̃
(�−1)
+ (l̂(�−1) − ε(�−1))

+ W̃
(�−1)
− (û(�−1) + ε(�−1))

+ b̃(�)

)

where û(1) = ũ(1) = u(1) = x + δ and l̂(1) = l̃(1) = l(1) = x − δ such that

[l̂, û] ⊇ [l, u]

where [l, u] is the bound computed by DeepPoly on the original network.
For output layer � = L, the application of the max(0, ·)-function is omitted,

the rest remains the same.
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In other words, this theorem allows us to compute an over-approximation
of the bounds computed by DeepPoly on the original network D by using only
the abstract network, thereby allowing a local robustness proof to be lifted from
the abstraction to the original network. Note that while this procedure is sound,
it is not complete since the bounds computed by Theorem 3 might still be too
coarse. An empirical discussion is presented in Sect. 5, an example of the proof
lifting can be seen in [Ash+20, Appendix A.5], and the proof is given in [Ash+20,
Appendix A.3].

5 Experiments

We now analyze the potential of our abstraction. In particular, in Sect. 5.1, we
look at how much we can abstract while still guaranteeing a high test accuracy for
the abstracted network. Moreover, we present verification results of abstracted
network, suggesting a use case where it replaces the original network. In Sect. 5.2,
we additionally consider lifting of the verification proof from the abstracted
network to the original network.

We ran experiments with multiple neural network architectures on the popu-
lar MNIST dataset [LeC98]. We refer to our network architectures by the short-
hand L × n, for example “6 × 100”, to denote a network with L fully-connected
feedforward hidden layers with n neurons each, along with a separate input
and output layers whose sizes depend on the dataset — 784 neurons in the
input layer and 10 in the output layer in the case of MNIST. We implemented
the abstraction technique described in Sect. 3.2 using the popular deep learn-
ing library TensorFlow [Aba+15] and the machine learning library Scikit-learn
[Ped+11]. For the verification, we used the DeepPoly implementation available
in the ERAN toolbox2.

Remark on Acas Xu. We do not run experiments on the standard NN veri-
fication case study Acas Xu [JKO18]. The Acas Xu networks are very com-
pact, containing only 6 layers with 50 neurons each. The training/test data for
these networks are not easily available, which makes it difficult to run our data-
dependent abstraction algorithm. Further, the network architecture cannot be
scaled up to observe the benefits of abstraction, which, we conjecture, become
evident only for large networks possibly containing redundancies. Moreover, the
specifications that are commonly verified on Acas Xu are not easily encodable
in DeepPoly.

5.1 Abstraction Results

First, we generated various NN architectures by scaling up the number of neu-
rons per layer as well as the number of layers themselves and trained them on
MNIST. We generated various NN architectures by scaling up the number of

2 Available at github.com/eth-sri/ERAN.

https://github.com/eth-sri/ERAN
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neurons per layer as well as the number of layers themselves and trained them
on MNIST. For doing so, we split the dataset into three parts: one for the train-
ing, one for validation and one for testing. The training is then performed on the
training dataset by using common optimizers and loss functions. The training
was stopped when the accuracy on the validation set did not increase anymore.
The NN on MNIST were trained on 60000 samples from the whole dataset. Of
these, 10% are split for validation, thus there are 54000 images for the training
itself and 6000 images for validation. The optimizer used for the training process
is ADAM, which is an extension to the stochastic gradient descent. To prevent
getting stuck in local minima, it includes the first and second moments of the
gradient. It is a common choice for the training of NN and performed reasonably
well in this application. Its parameter are set to the default from TensorFlow,
namely a learning rate of 0.001, β1 = 0.9, β2 = 0.999 and ε = 1e − 07.

For MNIST, the most reasonable loss function is the sparse categorical
crossentropy. The training process was stopped when the loss function on the
validation data did not decrease anymore. Usually, the process would stop after
at most 10 epochs. Then, we executed our clustering-based abstraction algorithm
(Algorithm 1) on each trained network allowing for a drop in accuracy on a test
dataset of at most 1%.

Size of the Abstraction. Table 1 gives some information about the quality of the
abstraction - the extent to which we can abstract while sacrificing accuracy of at
most 1%. We can see that increasing the width of a layer (number of neurons)
while keeping the depth of the network fixed increases the number of neurons
that can be merged, i.e. the reduction rate increases. We conjecture that there
is a minimum number of neurons per layer that are needed to simulate the
behavior of the original network. On the other hand, interestingly, if the depth
of the network is increased while keeping the width fixed, the reduction rate
seems to hover around 15–20%.

Figure 2 demonstrates the potential of the clustering-based abstraction pro-
cedure in compressing the network. Here, the abstraction is performed layer
after layer from layer 1 to layer 6. We cluster as much as possible permitting
the test accuracy of the network to drop by at most 1%. Unsurprisingly, we get
more reduction in the later (closer to output) layers compared to the initial.
We conjecture that this happens as the most necessary information is already
processed and computed early on, and the later layers transmit low dimensional
information. Interestingly, one may observe that in layers 4, 5 and 6, all network
architectures ranging from 50 to 500 neurons/layer can be compressed to an
almost equal size around 30 nodes/layer.

Verifying the Abstraction. As mentioned in the Sect. 1, we found that the
abstraction, considered as a standalone network, is faster to verify than the
original network. This opens up the possibility of verifying the abstraction and
replacing the original network with it, in real-use scenarios. In Fig. 3, we show
the time it takes to verify the abstract network using DeepPoly against the time
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Fig. 2. Plot depicting the sizes of the abstract networks when initialized with 4 different
architectures and after repetitively applying clustering-based abstraction on the layers
until their accuracy on the test set is approximately 95%.

Fig. 3. Accelerated verification after abstracting compared to verification of the origi-
nal. The abstracted NN are verified directly without performing proof lifting, as if they
were to replace the original one in their application. The time taken for abstracting
(not included in the verification time) is 14, 14, 20, 32, 37, 53, and 214 s respectively.

taken to verify the respective original network. Note that the reduction rate and
accuracy drop of the corresponding networks can be found in Table 1 above.
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Table 1. Reduction rate of abstracted neural networks with different architectures
along with the drop in accuracy (measured on an independent test set). In the top half,
the number of layers (depth) is varied and in the bottom half, the number of neurons
per layer (width) is increased. This table shows that the clustering-based abstraction
works better with wider networks. The networks were originally trained to reach an
accuracy on the test set of around 96.3% to 98.2%.

Network Arch. Accuracy Drop (%) Reduction Rate (%)

3 × 100 0.40 15.5

4 × 100 0.41 15.5

5 × 100 0.21 21.2

6 × 100 0.10 13.3

6 × 50 0.10 5.7

6 × 100 0.10 13.3

6 × 200 0.10 30.2

6 × 300 0.20 39.9

6 × 1000 0.01 61.7

Clearly, there is a significant improvement in the run time of the verification
algorithm; for the 6×1000 case, the verification algorithm timed out after 1 hour
on the original network while it finished in less than 21 mins on the abstract
network.

5.2 Results on Lifting Verification Proof

Finally, we ran experiments to demonstrate the working of the full verification
pipeline — involving clustering to identify the neurons that can be merged,
performing the abstraction (Sect. 3.2), running DeepPoly on the abstraction and
finally lifting the verification proof to answer the verification query on original
network (Sect. 4).

We were interested in two parameters: (i) the time taken to run the full
pipeline; and (ii) the number of verification queries that could be satisfied (out
of 200). We ran experiments on a 6 × 300 network that could be verified to
be locally robust for 197/200 images in 48 minutes by DeepPoly. The results
are shown in Table 2. In the best case, our preliminary implementation of the
full pipeline was able to verify robustness for 195 images in 36 mins — 13 s
for clustering and abstracting, 35 min for verification, and 5 s for proof lifting.
In other words, a 14.7% reduction in network size produced a 25% reduction
in verification time. When we pushed the abstraction further, e.g. last row of
Table 2, to obtain a reduction of 19.4% in the network size, DeepPoly could still
verify robustness of the abstracted network for 196 images in just 34 minutes
(29% reduction). However, in this case, the proof could not be lifted to the
original network as the over-approximations we obtained were too coarse.
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Table 2. Results of abstraction, verification and proof lifting of a 6 × 300 NN on 200
images to verify. The first column gives the number of neurons removed in layers 3, 4, 5
and 6 respectively. The second column shows the reduction in the size of the abstracted
network compared to the original. We also report the number of images for which the
original network could be proved robust by lifting the verification proof.

Removed Neurons Reduction Rate (%) Images Verified Verification Time (min)

15, 25, 100, 100 13.33 195 36

15, 50, 100, 100 14.72 195 36

25, 25, 100, 100 13.89 190 36

25, 50, 100, 100 15.28 190 36

25, 100, 100, 100 18.06 63 35

50, 100, 100, 100 19.44 0 34

This points to the interesting fact that the time taken in clustering and proof
lifting are indeed not the bottlenecks in the pipeline. Moreover, a decrease in the
width of the network indeed tends to reduce the verification time. This opens
the possibility of spending additional computational time exploring more pow-
erful heuristics (e.g. principal component analysis) in place of the näıve k-means
clustering in order to find smaller abstractions. Moreover, a counterexample-
guided abstraction refinement (CEGAR) approach can be employed to improve
the proof lifting by tuning the abstraction where necessary.

6 Conclusion

We have presented an abstraction framework for feed-forward neural networks
using ReLU activation units. Rather than just syntactic information, it reflects
the semantics of the neurons, via our concept of I/O-similarity on experimen-
tal values. In contrast to compression-based frameworks, the abstraction map-
ping between the original neurons and the abstract neurons allows for trans-
ferring verification proofs (transferring counterexamples is trivial), allowing for
abstraction-based verification of neural networks.

While we have demonstrated the potential of the new abstraction approach
by a proof-of-concept implementation, its practical applicability relies on sev-
eral next steps. Firstly, I/O-similarity with the Euclidean distance ignores even
any linear dependencies of the I/O-vectors; I/O-similarity with e.g. principal
component analysis thus might yield orders of magnitude smaller abstractions,
scaling to more realistic networks. Secondly, due to the correspondence between
the proofs, CEGAR could be employed: one can refine those neurons where the
transferred constraints in the proof become too loose. Besides, it is also desir-
able to extend the framework to other architectures, such as convolutional neural
networks.
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Abstract. Omega-regular properties—specified using linear time tem-
poral logic or various forms of omega-automata—find increasing use in
specifying the objectives of reinforcement learning (RL). The key prob-
lem that arises is that of faithful and effective translation of the objective
into a scalar reward for model-free RL. A recent approach exploits Büchi
automata with restricted nondeterminism to reduce the search for an
optimal policy for an ω-regular property to that for a simple reachabil-
ity objective. A possible drawback of this translation is that reachabil-
ity rewards are sparse, being reaped only at the end of each episode.
Another approach reduces the search for an optimal policy to an opti-
mization problem with two interdependent discount parameters. While
this approach provides denser rewards than the reduction to reachabil-
ity, it is not easily mapped to off-the-shelf RL algorithms. We propose a
reward scheme that reduces the search for an optimal policy to an opti-
mization problem with a single discount parameter that produces dense
rewards and is compatible with off-the-shelf RL algorithms. Finally, we
report an experimental comparison of these and other reward schemes
for model-free RL with omega-regular objectives.

1 Introduction

A significant challenge to widespread adoption of reinforcement learning (RL) is
the faithful translation of designer’s intent to the scalar reward signal required
by RL algorithms [19]. Logic-based specifications help in two ways: by precisely
capturing the intended objective, and by allowing its automatic translation to
a reward function. Omega-regular objectives, such as those expressed in Linear
Temporal Logic (LTL) [25] and by ω-automata [28], have recently been proposed
to specify learning objectives for both model-based [10,20] and model-free RL.

Model-free RL algorithms do not construct a model of the environment;
hence, they often scale better than model-based algorithms. However, applying
model-free RL to ω-regular properties requires one to address separate concerns:
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1. Finding the right automata representation to build product MDPs with
ω-regular acceptance conditions on the fly [13].

2. Translating the acceptance condition into a reward assignment that is appro-
priate for RL, such as reachability or maximizing an overall reward earned.

3. Computing policies that maximize expected reward with a RL technique, like
Q-learning, which normally applies discounting to the rewards.

In addressing these concerns, one strives to achieve an overall translation that
is faithful (maximizing reward means maximizing probability of achieving the
objective) and effective (RL quickly converges to optimal strategies). In this
paper, we focus on the second step, and explore its interplay with the third step
when using off-the-shelf RL tools and techniques.

The first approach to learning for ω-regular objectives used deterministic
Rabin automata [30]. While the reduction used from Rabin automata to rewards
does not have the required correctness properties [12]—there is still no direct
translation from Rabin automata to rewards—this work opened the door to
using reinforcement learning for temporal and ω-regular properties.

The problems with handling Rabin automata suggest that one should use
automata with simpler acceptance mechanisms, like Büchi automata. However,
Büchi automata require nondeterminism to recognize all ω-regular languages.
Nondeterministic machines can use unbounded look-ahead to resolve nondeter-
ministic choices. However, model checking and reinforcement learning (RL) for
Markov Decision Process (MDPs [29]) have a game setting, which restricts the
resolution of nondeterminism to be based on the past.

Being forced to resolve nondeterminism on the fly, an automaton may end
up rejecting words it should accept, so that using it can lead to incorrect results.
Due to this difficulty, initial solutions to game solving and probabilistic model
checking have been based on deterministic automata—usually with Rabin or
parity acceptance conditions. For two-player games, Henzinger and Piterman
proposed the notion of good-for-games (GFG) automata [16]. These are non-
deterministic automata that simulate [9,15,26] a deterministic automaton that
recognizes the same language. The existence of a simulation strategy means that
nondeterministic choices can be resolved without look-ahead.

On an MDP, however, the controller is not facing a strategic opponent who
may take full advantage of the automaton’s inability to resolve nondetermin-
ism on the fly. Vardi was the first to note that probabilistic model checking is
possible with Büchi automata only capable of restricted nondeterminism [37].
Limit deterministic Büchi automata (LDBA) [6,11,31] make no nondeterminis-
tic choice after seeing an accepting transition. They still recognize all ω-regular
languages and are, under mild restrictions [31], suitable for probabilistic model
checking.

The second generation of methods for reinforcement learning therefore used
such limit-deterministic Büchi automata [3,12,14]. These papers differ signifi-
cantly in how they translate the Büchi condition into rewards. The first approach
[12] reduces to reachability: in a nutshell, it translates traversing an accepting
transition to reaching a fresh target state with a low probability 1 − ζ, and to
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continuing to traverse the product MDP with high probability ζ. The second app-
roach [3] assigns fixed rewards whenever passing an accepting transition, while
using a complex discounting strategy: when passing an accepting transition, the
reward is given and a discount factor of γB ∈ ]0, 1[ is applied to the remaining
rewards, whereas when traversing a non-accepting transition no reward is given,
and a different discount factor γ ∈ ]0, 1[ is applied. For the approach to be cor-
rect, it is required that γB be a function of γ with the property that, when γ goes
to 1, 1−γ

1−γB(γ) goes to 0. The advantage of this method is that rewards appear
earlier, but at the cost of having two parameters (that are not independent of
each other), and an overhead in the calculation. The third approach [14] uses a
constant discount factor γ ∈ ]0, 1], which (while not technically correct [3,12])
usually works and provides good results in practice.

We use transformations on the reward structure from our reachability reduc-
tion in [12] to infer simple alternative total and discounted reward structures
that favor the same strategies as the reachability reduction from [12] and there-
fore inherit the correctness from there. The total reward structure keeps the
accepting sink, and simply provides a reward whenever an accepting transition
is taken, regardless of whether or not the sink is reached. We show that this
increases the expected payoff obtained from a strategy by a constant factor,
thus preserving preferences between different strategies.

The discounted reward structure does not introduce the accepting sink, but
works on the unadjusted product MDP. It uses a biased discount, where a dis-
count is only made when an accepting transition is passed. This is closely related
to [3], but keeps the vital separation of concerns that allows us to keep the proofs
simple and the method easy to use and understand: We introduce a reduction
that produces a faithful reward structure with a single variable ζ. Coupled to a
learning technique that uses discounted rewards, our approach is equivalent to
that of [3] (though it suggests that γ is really a function of γB , not the other way
round), but with a clear separation of concerns: the smaller factor γB (which
corresponds to ζ · γ in this setting) is the ingredient that makes the reward
structure faithful, the larger discount factor γ simply provides contraction.

A good reward scheme should promote fast learning by giving dense rewards
with low variance. It should also be compatible with off-the-shelf RL algorithms,
so that state-of-the-art algorithms may be used promptly and with little effort.
The rewards produced by the scheme of [12] tend to be sparse because they are
only possible at the end of an episode, when the target state is reached. On the
other hand, the reachability-based rewards can be directly used with any off-the-
shelf RL algorithm [17,32]. The total reward structure provides dense rewards
and is straightforward to integrate with off-the-shelf RL algorithms. However,
it is affected by the high variability of the return. Discounted rewards fix the
problem with variability, but require the implementations of RL algorithms to
accommodate state-dependent discounts.

While the reward transformations are ways to ‘shape’ rewards in the literal
sense of arranging them in a way that they appear early, they are orthogonal to
classic reward shaping techniques like adding potentials to MDP states [22,27].
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As an orthogonal approach, it is a potentially helpful addition to all the reward
schemes discussed above.

Reward machines [5,18] is a related notion of providing a formal structure to
specify rewards. Reward machines are Mealy machines where the inputs are the
observations of the MDP and the outputs are scalar rewards. The key difference
of reward machines from ours is that reward machines interpret specification of
finite traces (e.g. LTL on finite prefixes [8]). Moreover, they allow specification
of arbitrary scalar rewards for various events, while in our work the reward is
given strictly according to the formal specification.

This paper is organized as follows. After the preliminaries, we first introduce
the novel total reward and then the new faithful total rewards based on biased
discounts (Sects. 3.2 and 3.3) for good-for-MDP automata. In Sect. 4, we discuss
how to use Q-learning for this faithful reward scheme. In Sect. 5, we evaluate the
impact of the contributions of the paper on reinforcement learning algorithms.
Section 6 presents conclusions.

2 Preliminaries

A nondeterministic Büchi automaton is a tuple A = 〈Σ,Q, q0,Δ, Γ 〉, where
Σ is a finite alphabet, Q is a finite set of states, q0 ∈ Q is the initial state,
Δ ⊆ Q × Σ × Q are transitions, and Γ ⊆ Q × Σ × Q is the transition-based
acceptance condition.

A run r of A on w ∈ Σω is an ω-word r0, w0, r1, w1, . . . in (Q × Σ)ω such
that r0 = q0 and, for i > 0, it is (ri−1, wi−1, ri) ∈ Δ. We write inf(r) for the set
of transitions that appear infinitely often in the run r. A run r of A is accepting
if inf(r) ∩ Γ �= ∅.

The language, LA, of A (or, recognized by A) is the subset of words in Σω

that have accepting runs in A. A language is ω-regular if it is accepted by
a Büchi automaton. An automaton A = 〈Σ,Q,Q0,Δ, Γ 〉 is deterministic if
(q, σ, q′), (q, σ, q′′) ∈ Δ implies q′ = q′′. A is complete if, for all σ ∈ Σ and all
q ∈ Q, there is a transition (q, σ, q′) ∈ Δ. A word in Σω has exactly one run in
a deterministic, complete automaton.

A Markov decision process (MDP) M is a tuple 〈S, s0, A, T,Σ,L〉 where S
is a finite set of states, s0 is a designated initial state, A is a finite set of actions,
T : S × A → D(S), where D(S) is the set of probability distributions over S, is
the probabilistic transition function, Σ is an alphabet, and L : S × A × S → Σ
is the labeling function of the set of transitions. For a state s ∈ S, A(s) denotes
the set of actions available in s. For states s, s′ ∈ S and a ∈ A(s), we have that
T (s, a)(s′) equals Pr (s′|s, a).

A run of M is an ω-word s0, a1, . . . ∈ S × (A × S)ω such that
Pr (si+1|si, ai+1) > 0 for all i ≥ 0. A finite run is a finite such sequence. For
a run r = s0, a1, s1, . . . we define the corresponding labeled run as L(r) =
L(s0, a1, s1), L(s1, a2, s2), . . . ∈ Σω. We write Runs(M) (FRuns(M)) for the
set of runs (finite runs) of M and Runss(M) (FRunss(M)) for the set of runs
(finite runs) of M starting from state s. When the MDP is clear from the context
we drop the argument M.
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A strategy in M is a function μ : FRuns → D(A) such that for all finite runs
r we have supp(μ(r)) ⊆ A(last(r)), where supp(d) is the support of d and last(r)
is the last state of r. Let Runsμ

s (M) denote the subset of runs Runss(M) that
correspond to strategy μ and initial state s. Let ΣM be the set of all strategies.
A strategy μ is pure if μ(r) is a point distribution for all runs r ∈ FRuns and
we say that μ is stationary if last(r) = last(r′) implies μ(r) = μ(r′) for all runs
r, r′ ∈ FRuns. A strategy is positional if it is both pure and stationary.

The behavior of an MDP M under a strategy μ with starting state s is
defined on a probability space (Runsμ

s ,Fμ
s ,Prμ

s ) over the set of infinite runs of μ
from s. Given a random variable over the set of infinite runs f : Runs → R, we
write E

μ
s {f} for the expectation of f over the runs of M from state s that follow

strategy μ. A Markov chain is an MDP whose set of actions is singleton. For
any MDP M and stationary strategy μ, let Mμ be the Markov chain resulting
from choosing the actions in M according to μ.

Given an MDP M and an automaton A = 〈Σ,Q, q0,Δ, Γ 〉, we want to
compute an optimal strategy satisfying the objective that the run of M is in
the language of A. We define the semantic satisfaction probability for A and a
strategy μ from state s as:

PSemM
A (s, μ) = Pr μ

s

{
r∈Runsμ

s : L(r)∈LA
}

and

PSemM
A (s) = sup

μ

(
PSemM

A (s, μ)
)

.

A strategy μ∗ is optimal for A if PSemM
A (s, μ∗) = PSemM

A (s).
When using automata for the analysis of MDPs, we need a syntactic variant

of the acceptance condition. Given an MDP M = 〈S, s0, A, T,Σ,L〉 and an
automaton A = 〈Σ,Q, q0,Δ, Γ 〉, the product M × A = 〈S × Q, (s0, q0), A ×
Q,T×, Γ×〉 is an MDP augmented with an initial state (s0, q0) and accepting
transitions Γ×. The function T× : (S × Q) × (A × Q) −⇁ D(S × Q) is defined by

T×((s, q), (a, q′))((s′, q′)) =

{
T (s, a)(s′) if (q, L(s, a, s′), q′) ∈ Δ

0 otherwise.

Finally, Γ× ⊆ (S×Q)×(A×Q)×(S×Q) is defined by ((s, q), (a, q′), (s′, q′)) ∈ Γ×

if, and only if, (q, L(s, a, s′), q′) ∈ Γ and T (s, a)(s′) > 0. A strategy μ× on the
product defines a strategy μ on the MDP with the same value, and vice versa.
(For a stationary μ×, μ may need memory.) We define the syntactic satisfaction
probabilities as

PSatMA ((s, q), μ×) = Pr μ
s

{
r ∈ Runsμ×

(s,q)(M × A) : inf(r) ∩ Γ× �= ∅
}

PSatMA (s) = sup
μ×

(
PSatMA ((s, q0), μ×)

)
.

Note that PSatMA (s) = PSemM
A (s) holds for a deterministic A. In general,

PSatMA (s) ≤ PSemM
A (s) holds, but equality is not guaranteed because the opti-

mal resolution of nondeterministic choices may require access to future events.
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An automaton A is good for MDPs (GFM), if PSatMA (s0) = PSemM
A (s0)

holds for all MDPs M [13]. For an automaton to match PSemM
A (s0), its non-

determinism is restricted not to rely heavily on the future; rather, it must be
possible to resolve the nondeterminism on-the-fly. In this paper we only consider
GFM automata, which have this ability.

For ω-regular objectives, optimal satisfaction probabilities and strategies can
be computed using graph-theoretic techniques over the product structure. How-
ever, when the MDP transition structure is unknown, such techniques are not
applicable. Model-free reinforcement learning overcomes this limitation.

3 Faithful Translation of Objectives to Rewards

The problem we address is the following:

Given MDP M with unknown transition structure and a GFM Büchi automa-
ton A accepting an ω-regular objective ϕ, compute a strategy optimal for A,
that is, a strategy that maximizes the probability that M satisfies ϕ.

Reinforcement learning (RL) provides a framework to compute optimal strate-
gies from repeated interactions with an MDPs with unknown transition struc-
ture. It consists of maximizing the expectation of a scalar reward. Of the two
main approaches to RL, model-free and model-based, the former, which is asymp-
totically space-efficient [33], has been shown to scale well [35].

Bridging the gap between ω-regular specifications and model-free RL requires
a translation from specification to scalar reward such that a model-free RL algo-
rithm maximizing scalar rewards produces a policy that maximizes the probabil-
ity to satisfy the specification. We call this requirement faithfulness. Another key
requirement on such a translation is effectiveness: the reward should be formu-
lated to help mainstream RL algorithms (such as Q-learning [38]) to reliably and
quickly learn such optimal policies. We next present three solutions to the faith-
fulness requirement. From the approach of [12] we derive two reward schemes
that translate the maximization of satisfaction probability to total reward and
discounted reward problems. In Sects. 4 and 5 we discuss their effectiveness.

3.1 Reachability Rewards

The reduction from [12] (see Fig. 1) was the first faithful translation of ω-regular
objectives to scalar rewards for model-free RL. Maximizing the chance to realize
an ω-regular objective given by an MDP Büchi automaton A for an MDP M
is reduced to maximizing the chance to meet the reachability objective in the
augmented MDP Rζ (for ζ ∈]0, 1[) obtained from M × A by

– adding a new target state t (either as a sink with a self-loop or as a point
where the computation stops; we choose here the latter view) and by

– making the target t a destination of each accepting transition τ of M × A
with probability 1 − ζ and multiplying the original probabilities of all other
destinations of an accepting transition τ by ζ.
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Fig. 1. Reachability reward scheme.

We define the probability to reach the sink t in Rζ as

PSatR
ζ

t ((s, q), μ) = Pr μ
s {r ∈ Runsμ

(s,q)(R
ζ) : r reaches t}

PSatR
ζ

t (s) = sup
μ

(
PSatR

ζ

t ((s, q0), μ)
)

.

Theorem 1 ([12]). The following holds:

1. Rζ (for ζ ∈ ]0, 1[) and M × A have the same set of strategies.
2. For a positional strategy μ, the chance of reaching the target t in Rζ

μ is 1 if,
and only if, the chance of satisfying the Büchi objective in (M × A)μ is 1:
PSatR

ζ

t ((s0, q0), μ) = 1 ⇔ PSatMA ((s0, q0), μ) = 1.
3. There is a ζ0 ∈ ]0, 1[ such that, for all ζ ∈ [ζ0, 1[, an optimal reachability

strategy μ for Rζ is an optimal strategy for the Büchi objective in M × A:
PSatR

ζ

t ((s0, q0), μ) = PSatR
ζ

t (s0) ⇒ PSatMA ((s0, q0), μ) = PSatMA (s0).

3.2 Total and Dense Rewards

Theorem 1 proves the faithfulness of the translation to reachability of [12], which,
however, has a drawback. For ζ close to 1, the rewards occur late: they are sparse.
Addressing this concern leads to our second translation, which produces denser
rewards and reduces the problem to the maximization of total reward.

We build, for a GFM Büchi automaton A and an MDP M, the augmented
MDP T ζ (for ζ ∈ ]0, 1[) obtained from M × A in the same way as Rζ , i.e., by

– adding a new sink state t (as a sink where the computation stops) and
– by making the sink t a destination of each accepting transition τ of M × A

with probability 1−ζ and by multiplying the original probabilities of all other
destinations of an accepting transition τ by ζ.

Unlike Rζ , MDP T ζ is equipped with a total reward (also known as undiscounted
reward) objective, where taking an accepting (in M × A) transition τ provides
a reward of 1, regardless of whether it leads to the sink t.
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Let N(r) be the number of accepting transitions in a run r of T ζ . Then,

ETotalT
ζ

((s, q), μ) = E
μ
(s,q){N(r) : r ∈ Runsμ

(s,q)(T
ζ)}

ETotalT
ζ

(s) = sup
μ

(
ETotalT

ζ

((s, q0), μ)
)

.

Note that the set of runs with N(r) = ∞ has probability 0 in Runsμ
(s,q)(T ζ): they

are the runs that infinitely often do not move to t on an accepting transition,
where the chance that this happens at least n times is ζn for all finite n.

Theorem 2. The following holds:

1. MDP T ζ (for ζ ∈ ]0, 1[ ), MDP Rζ (for ζ ∈ ]0, 1[ ), and product MDP M × A
have the same set of strategies.

2. For a positional strategy μ, the expected reward for T ζ
μ is r if, and only if, the

chance of reaching the target t in Rζ
μ is r/(1 − ζ):

PSatR
ζ

t ((s0, q0), μ) = (1 − ζ)ETotalT
ζ

((s0, q0), μ).
3. The expected reward for T ζ

μ is in
[
0, (1 − ζ)−1

]
.

4. The chance of satisfying the Büchi objective in (M×A)μ is 1 if, and only if,
the expected reward for T ζ

μ is (1 − ζ)−1.
5. There is a ζ0 ∈ ]0, 1[ such that, for all ζ ∈ [ζ0, 1[, a strategy μ that maximizes

the reward for T ζ is an optimal strategy for the Büchi objective in M × A.

Proof. (1) Obvious, because all the states and their actions are the same apart
from the sink state t for which the strategy can be left undefined.

(2) The sink state t can only be visited once along any run, so the expected
number of times a run starting at (s0, q0) while using μ is going to visit
t is the same as its probability of visiting t , i.e., PSatR

ζ

t ((s0, q0), μ). The
only way t can be reached is by traversing an accepting transition and this
always happens with the same probability (1 − ζ). So the expected number
of visits to t is the expected number of times an accepting transition is used,
i.e., ETotalT

ζ

((s0, q0), μ), multiplied by (1 − ζ).
(3) follows from (2), because PSatR

ζ

t ((s0, q0), μ) cannot be greater than 1.
(4) follows from (2) and Theorem 1 (2).
(5) follows from (2) and Theorem 1 (3).

��

3.3 Discounted and Dense Rewards

The expected undiscounted reward for T ζ
μ can be viewed as the expected total

sum of dynamically discounted rewards for (M × A)μ, by giving a reward of ζi

when passing through an accepting transition when i accepting transitions have
been used before. We call these ζ-biased discounted rewards.
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Let D = M × A and, for a run r with N(r) = n accepting transitions, let
the ζ-biased discounted reward be Disctζ(r) =

∑n−1
i=0 ζi = 1−ζn

1−ζ if n < ∞ or
Disctζ(r) =

∑∞
i=0 ζi = 1

1−ζ if n = ∞. Let

EDisctDζ ((s, q), μ) = E
μ
(s,q)

{
Disctζ(r) : r ∈ Runsμ

(s,q)(D)
}

EDisctDζ (s) = sup
μ

(
EDisctDζ ((s, q0), μ)

)
.

Theorem 3. For every positional strategy μ, the expected reward for T ζ
μ is equal

to the expected total ζ-biased discounted reward for Dμ, i.e., for every start state
(s, q) we have: EDisctDζ ((s, q), μ) = ETotalT

ζ

((s, q), μ).

Proof. Note that for any start state (s, q) and n ≥ 0:

Pr μ
s

{
r ∈ Runsμ

(s,q)(T
ζ) : N(r) > n

}
= Pr μ

s

{
r ∈ Runsμ

(s,q)(D) : N(r) > n
}

· ζn .

This is because the only transition-wise difference between T ζ and D is that
every time an accepting transition is passed through in T ζ , the process stops
at the sink node with probability 1 − ζ. Therefore, in order to use more than n
accepting transitions in T ζ , the non-stopping option has to be chosen n times
in a row, each time with probability ζ.

For any random variable X : Ω → N∪{∞} we have EX =
∑

n≥0 Pr(X > n).

Now from the definition of EDisctDζ ((s, q), μ) and ETotalT
ζ

((s, q), μ) we get:

EDisctDζ ((s, q), μ) =
∑

n≥1

Pr μ
(s,q)

{
r ∈ Runsμ

(s,q)(D) : N(r) = n
}

·
∑

0≤i<n

ζi

+ Pr μ
(s,q)

{
r ∈ Runsμ

(s,q)(D) : N(r) = ∞
}

·
∑

i≥0

ζi

(∗)
=

∑

n≥0

Pr μ
(s,q)

{
r ∈ Runsμ

(s,q)(D) : N(r) > n
}

· ζn

=
∑

n≥0

Pr μ
(s,q)

{
r ∈ Runsμ

(s,q)(T
ζ) : N(r) > n

}

= ETotalT
ζ

((s, q), μ) ,

where (∗) follows by expanding the products and joining up the terms that have
a common factor of the form ζn. ��

This improves over [3] because it provides a clearer separation of concerns:
the only discount factor represents the translation to reachability. The use of
Q-learning [35] introduces two other parameters, the discount factor γ and the
learning rate α, with γ, α ∈ ]0, 1[. For fixed parameters, Q-learning works in
the limit when the parameters are chosen in the right order—e.g., lim

γ↑1
lim
α↓0

of

the expected value works, while lim
α↓0

lim
γ↑1

does not—and when experimenting with
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different learning approaches, it is useful to separate concerns, rather then mixing
parameters from the learning mechanism with those required for faithfulness.

Thus, using only one discount parameter, ζ, instead of two (called γ and γB

in [3]) parameters (that are not independent) to guarantee faithfulness provides
a clean separation of concerns: Reinforcement learning will still use a discount
for effectiveness, but the role of the two parameters is neatly separated. This for-
mulation offers a simpler proof, and provides better intuition: discount whenever
you have earned a reward. It also lends itself to implementation with convergent
RL algorithms—as long as they support state-dependent discounts. The discount
rate on accepting edges is multiplied by ζ instead of assigning a decaying reward
of ζi. This does not change the optimal strategies and the expected reward from
the initial state remains the same.

4 Q-Learning and Effectiveness

We next discuss the applicability of Q-learning to the faithful reward schemes
presented in Sect. 3. Recourse to Blackwell optimality allows us to deal also
with undiscounted rewards, even though a naive use of Q-learning may produce
incorrect results in this case.

Q-learning [38] is a well-studied model-free RL approach to compute an opti-
mal strategy for discounted rewards. Q-learning computes so-called Q-values for
every state-action pair. Intuitively, once Q-learning has converged to the fixed
point, Q(s, a) is the optimal reward the agent can get while performing action a
after starting at s. The Q-values can be initialized arbitrarily, but ideally they
should be close to the actual values. Q-learning learns over a number of episodes,
each consisting of a sequence of actions with bounded length. An episode can
terminate early if a sink-state or another non-productive state is reached. Each
episode starts at the designated initial state s0. The Q-learning process moves
from state to state of the MDP using one of its available actions and accu-
mulates rewards along the way. Suppose that in the i-th step, the process has
reached state si. It then either performs the currently (believed to be) optimal
action ai = maxa Qi(si+1, a) (so-called exploitation option) or, with probabil-
ity ε, picks uniformly at random one of the actions available at si (so-called
exploration option). Either way, the Q-value is updated as follows:

Qi+1(si, ai) = (1 − αi)Qi(si, ai) + αi(ri + γ · max
a

Qi(si+1, a)) ,

where αi ∈ ]0, 1[ is the learning rate and γ ∈ ]0, 1] is the discount factor. Note the
model-freeness: this update does not depend on the set of transitions nor their
probabilities. For all other pairs s, a we have Qi+1(s, a) = Qi(s, a), i.e., they are
left unchanged. Watkins and Dayan showed the convergence of Q-learning [38].

Theorem 4 (Convergence). For λ < 1, bounded rewards |ri| ≤ B and learn-
ing rates 0 ≤ αi < 1 satisfying:

∑∞
i=0 αi = ∞ and

∑∞
i=0 α2

i < ∞, we have that
Qi(x, a) → Q(s, a) as i → ∞ for all s, a ∈ S×A almost surely.
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Fig. 2. Q-learning with total
reward may converge to a wrong
fixed point or not at all. The
accepting transition is marked with
a green dot. (Color figure online)

However, in the total reward setting that
corresponds to Q-learning with discount fac-
tor γ = 1, Q-learning may not converge, or
converge to incorrect values as shown below.

Example 1. Consider the MDP in Fig. 2 with
reachability rewards (Sect. 3.1) and assume
the following parameters: α = ζ = 1/2, ε > 0,
γ = 1. All Q-values are initialized to 0. It
can be checked that after taking action a at
state 0 and reaching the sink-state t (with
probability 1 − ζ, not depicted) would result in setting Q(0,a) = (1 − α) ·
0 + α · 1 = 1/2. Repeating this n times in a row (with probability ≥ (ε/2)n)
would lead to Q(0,a) = 1 − 1/2n. Taking then m times action b (again with
positive probability), would result in setting Q(0,b) to (1 − 1/2m)(1 − 1/2n),
which tends to 1 as n and m increase. Note that the value of Q(0,b) can never
decrease as its update rule is Q(0,b) = maxa Q(0, a). Therefore, even if Q-
learning converges, maxa Q(0, a) can be far away from the actual value of state
0, which is clearly smaller than 3/4, as the dead-end node 2 with 0 reward
is reached with probability > ζ/2 = 1/4. The situation is even worse when
we consider total and dense reward (Section 3.2). Following the same learning
path (but never reaching the sink-state t) would result in Q(0,b) = n/2 and
Q(0,a) = (1 − 1/2m)n/2, and so Q(0, a) will almost surely diverge to ∞ as the
number of episodes increases.

To solve total-reward problems using Q-learning, we exploit the concept of
Blackwell-optimal strategies. Given an MDP M, we say that a strategy μ is
Blackwell-optimal if there exists a λ0 ∈ ]0, 1[ such that μ is λ-discount optimal
for all λ ∈ ]λ0, 1[. Moreover, if M has n states and all transition probabilities
are rational with numerator and denominator bounded from above by M , then
λ0 is bounded from above by 1 − ((n!)222n+3M2n2

)−1 [1,17,24]. The following
theorem enables the application of Q-learning for discounted reward problem for
total-reward when total rewards are bounded.

Theorem 5 (Blackwell-Optimality [23]). Let M be an MDP and ρ : S×A →
R be a reward function such that for every strategy μ of M expected total reward
is finite, then every Blackwell-optimal strategy is total-reward optimal.

All of the reward schemes introducted in the previous section can be reduced
to total reward objectives with bounded expected total reward and hence Q-
learning can be applied with discount factor left as a hyperparameter.

5 Experiments

We carried out our experiments in the tool Mungojerrie [12], which reads
MDPs described in the PRISM language [21], and ω-regular automata written
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in the HOA format [2,7]. Mungojerrie provides an interface for RL algorithms
akin to that of [4] and supports probabilistic model checking.

We compared four reward schemes. Reachability reward (RR) is the scheme
from [12]. Total reward (TR) is the scheme from Sect. 3.2. Discounted reward
(DR) is the scheme from Sect. 3.3, which is equivalent to that of [3]. We will
consider these methods the same in our analysis. Simple reward (SR) is a reward
mechanism which provides +1 reward on accepting edges and 0 reward otherwise,
similar to [30] restricted to Büchi objectives. Although this reward scheme is
known not to be faithful [12], we compare it to see its practical value.

Table 1. Q-learning results. Times are in seconds.

Name States Aut Prod Prob RR TR DR SR

twoPairs 4 4 16 1 0.04 0.04 0.06 1.23

riskReward 4 2 8 1 0.05, 0.05 0.30 0.07, 0.07 0.97

deferred 41 1 41 1 0.11 0.04, 0.23 0.12 1.43

grid5x5 25 3 75 1 1.56 6.97, 7.34 0.46 20.69

trafficNtk 122 13 462 1 0.09, 0.09 0.73 0.13, 0.14 2.11

windy 123 2 240 1 3.34, 3.64 29.37, 35.18 1.14 18.64

windyKing 130 2 256 1 1.02 20.55, 20.69 1.30 36.77

windyStoch 130 2 260 1 42.94, 52.28 56.57 4.28 67.55

frozenSmall 16 3 48 0.823 0.29, 0.48 0.83, 1.08 0.38 8.74

frozenLarge 64 3 192 1 0.94 6.47, 8.98 2.08 25.34

othergrid6 36 25 352 1 1.06, 1.17 5.31, 12.77 1.70 44.58

For our RL algorithm, we selected Q-learning [38] due to its widespread use
and convergence guarantees. As with any RL algorithm, the performance of Q-
learning depends on the hyperparameter values. We ran a grid search on the
RMACC Summit supercomputer [34] across hyperparameter combinations for
all examples and methods. The examples are taken from [12]. In the grid search,
we varied ζ (equivalently, γB), the exploration rate ε, the learning rate α, the
episode number, the episode length, and whether the learning rate decayed. The
variations made to these parameters were selected by hand. Statistics for each
grid point are based on three runs. The grid search required 207,900 runs and
took over 100 days of CPU time. All methods require a sufficiently high discount
factor. We used the very high value of γ = 0.99999 for all runs. A value so close
to 1 is prone to cause, in practice, many of the problems that may occur in the
undiscounted case. However, we also experimented with lower discount factors,
and they provided very similar results.

The selection of the “best” parameters from our grid search makes use of two
criteria. Criterion 1 is based on reward maximization. Given a reward scheme, an
automaton, and an MDP, there is a maximum reward achievable. In the spirit of
the model-free application of these methods, we estimated these maxima based
on the recorded initial value in the Q-table. This can be determined without
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knowledge of the structure of the MDP and without additional computation.
We then removed all sets of parameters which produced average values that
were not within 5% of the maximum. If Q-learning has converged, we know that
the value of the initial state of the Q-table is the value of the optimal strategy.
However, if Q-learning has overestimated these values, then this criterion will
select parameters that are the most prone to overestimation. Criterion 2 is based
on using full knowledge of the MDP and access to the model checker. We fixed
the strategies produced after learning completed and used the model checker to
compute the probability of satisfaction of the property under these strategies.
We then removed all sets of parameters which produced average values that were
not within 1% of the maximum probability of satisfaction of the property.

In Table 1, we report the fastest time of all parameter values that remain
after applying Criterion 1. Of these, we mark with bold red face those that fail
Criterion 2 and report the fastest time of all parameter values that remain after
applying both criteria.

Fig. 3. Plot depicting inaccurate estimation of Q-values for TR and SR.

5.1 Inaccuracies in Estimation of Q-Values

In order to understand the performance of these reward schemes with Q-learning
under our criteria, consider the example riskReward, which has two strategies:
one leads to an accepting edge at every step with probability 0.9; the other leads
to an accepting edge every other step with probability 1. This example shows that
SR is not a faithful reward scheme [12] because the strategy that maximizes the
probability of satisfaction does not maximize the SR reward. Since the strategy
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reported in Table 1 for SR is optimal for the satisfaction of the property, we
know that Q-learning did not converge to a reward-maximizing strategy for the
chosen values of the hyperparameters. From this, we can see that Criterion 1
may not rule out parameters that do not produce reward-maximizing strategies.
We believe that this is because Criterion 1 selects based on Q-values, which may
not be accurate estimates of the actual values obtained by optimal strategies.

In Fig. 3, for each method we plot the values of the initial state from the
Q-table of all grid points in increasing order. Each value in the figure was nor-
malized such that an optimal reward maximization strategy for that method has
a value of 1. Note that TR and SR do not have their values saturate like RR
and DR. When we apply Criterion 1 to TR and SR, we remove all parameters
that do not produce Q-values close to the top of the peaks that can be seen in
the figure. As this filters out most of the runs, this offers an explanation for the
longer running times of these methods. For SR, the Q-values do not converge.
This is likely due to the fact that with a very large discount factor, SR needs
more training than the other methods to converge to larger Q-values. For TR,
we overestimate the value by up to about 3.5 times. We believe that this is due
to Q-learning’s tendency to overestimate the value of the optimal strategy.

As we discussed in Sect. 4, these methods rely on the contraction provided
by discounting to be correct, and we have seen in Example 1 that in the undis-
counted case the Q-value can go to infinity even in the absence of a strategy that
wins with positive probability. While the contraction provided by the discount
factor counters this effect, for a discount factor as high as the one chosen in the
experiments the contraction is relatively weak. An extremely small learning rate
would be needed to contain this effect. Additionally, the high variance reward
of TR exacerbates the positive bias present in the estimator implemented by
Q-learning. Double Q-learning [36] is a technique that mitigates this overestima-
tion by using an estimator which is negatively biased. We believe that utilizing
such techniques warrants further investigation.

In summary, Table 1 suggests that RR and DR perform similarly. The lower
reward variance of DR explains why Criterion 1 selects optimal strategies for the
satisfaction of the property more often than with RR. SR takes longer than the
other methods under our criteria. On the other hand, TR is not well suited for Q-
learning. While its denser reward may help to guide the learner, the inaccuracy
in the Q-value estimates from this method negates this benefit. However, we do
not know if these issues extend to other RL algorithms or if other algorithms
may take better advantage of the denser reward of TR.

6 Discussion and Future Work

The three concerns to be addressed when applying model-free RL to ω-regular
properties are:

1. Finding the right automata representation.
2. Translating the acceptance condition into a faithful reward scheme.
3. Computing policies that maximize expected reward with an RL technique.
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In [13], we addressed the first concern by introducing Good-for-MDP automata.
This paper addresses the other two issues.

There have been two correct results for reinforcement learning of ω-regular
properties on MDPs. We have shown how to change the older of the two reward
schemes, [12], to allow for earlier rewards in Sect. 3.2, and to obtain a biased dis-
count scheme quite directly from there in Sect. 3.3. This biased discount scheme
is significantly simpler than the scheme suggested in [3], which uses two entangled
discount factors. Moreover, we have shown that the reward scheme from [3] can
be viewed as the result of using the simple biased discount scheme from Sect. 3.3
embedded in a standard discounted Q-learning. We have therefore connected
the known reward structures and provided simple intuitive explanations—in the
form of a separation of concerns—for the reward structure used in [3]. Besides
offering a simpler proof and new insights, it opens up an avenue of future work to
see if other RL techniques will benefit from ζ-biased discounted rewards without
the common detour through discounting.
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Abstract. We introduce a new algorithm that takes a Transition-based
Emerson-Lei Automaton (TELA), that is, an ω-automaton whose accep-
tance condition is an arbitrary Boolean formula on sets of transitions to
be seen infinitely or finitely often, and converts it into a Transition-
based Parity Automaton (TPA). To reduce the size of the output TPA,
the algorithm combines and optimizes two procedures based on a latest
appearance record principle, and introduces a partial degeneralization.
Our motivation is to use this algorithm to improve our LTL synthesis
tool, where producing deterministic parity automata is an intermediate
step.

1 Introduction

Let us consider the transformation of ω-automata with arbitrary Emerson-Lei
acceptance into ω-automata with parity acceptance. Our inputs are Transition-
based Emerson-Lei Automata (TELA), i.e., automata whose edges are labeled
with integer marks like 0 , 1 , 2 ,... and whose acceptance condition is a positive
Boolean formula over terms such as Fin( 1 ) or Inf( 2 ) that specifies which marks
should be seen infinitely or finitely often in accepting runs. Our algorithm pro-
cesses a TELA with any such acceptance condition, and outputs a TELA whose
acceptance can be interpreted as a parity max odd (resp. even) condition, i.e.,
the largest mark seen infinitely often along a run has to be odd (resp. even).
Figure 1 on page 9 and Fig. 3 on page 10 show an example of input and output.

While non-deterministic Büchi automata are the simplest ω-automata able to
represent all ω-regular languages, deterministic Büchi automata are less expres-
sive; as a consequence, applications that require determinism usually switch to
more complex acceptance conditions like Rabin, Streett, or parity. Parity can be
regarded as the simplest of the three, in the sense that any parity automaton can
be converted into a Rabin or a Streett automaton without changing its transition
structure. Parity acceptance is especially popular among game solvers, as parity
games can be solved with memoryless strategies and arise in many problems.

Our motivation comes from one such problem: reactive synthesis from LTL
specifications, i.e., building an I/O transducer whose input and output signals
satisfy an LTL specification ϕ [4]. The high-level approach taken by our ltlsynt
tool [20], or even by the SyntComp’19 winner Strix [18], is to transform the LTL
c© Springer Nature Switzerland AG 2020
D. V. Hung and O. Sokolsky (Eds.): ATVA 2020, LNCS 12302, pp. 127–143, 2020.
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formula into a deterministic transition-based parity automaton (DTPA), inter-
pret the DTPA as a parity game by splitting the alphabet on inputs and outputs,
then solve the game and use any winning strategy to synthesize a transducer.
Let us zoom on the first step: transforming an LTL formula into a DTPA.

One of the many methods to transform an LTL formula into a DTPA is to first
convert the LTL formula into a non-deterministic Büchi automaton, and then
determinize this automaton using some variant of Safra’s construction to obtain
a DTPA [22,23]. This is the current approach of ltlsynt [20]. However, since
the introduction of the HOA format [2] allowing the representation of TELA,
we have seen the development of several tools for converting LTL formulas into
TELA: for instance delag [21], ltl2da and ltl2na (all three part of newer
versions of Owl [13]), ltl3tela [19], or Spot’s ltl2tgba -G (see Sect. 5), all
trying to reduce the size of their output by using acceptance formulas more
closely related to the input LTL formulas. An alternative way to transform an
LTL formula into a DTPA is therefore to first transform the LTL formula into a
deterministic TELA, and then “paritize” the result. This paper focuses on such
a paritization procedure. Note that our construction preserves the deterministic
nature of its input but also works on non-deterministic automata.

Our procedure adapts for TELA, optimizes, and combines a few existing
transformation procedures. For instance there exists a procedure called SAR
(state appearance record) [16,17] that converts a state-based Muller automaton
into a state-based parity automaton, and a similar but more specialized proce-
dure called IAR (index appearance record) [16,17] for transforming a Rabin or
Streett automaton into a parity automaton. These two procedures are based on
a latest appearance record (LAR), i.e., a structure that keeps track of the latest
occurring state or the latest occurring unsatisfied Rabin/Streett pair (the term
LAR is sometimes used to describe SAR [10]). We describe the adaptation of
these two procedures in Sect. 3. In the context of a TELA, we introduce a sim-
plified SAR called CAR (color appearance record) that only tracks colors, and
the IAR algorithm has already been adapted by Křet́ınský et al. [15]. A third
transformation, also described in Sect. 3, can be used as a preprocessing before
the previous procedures: this is a partial degeneralization, i.e. an extension of
the classical degeneralization procedure [1,11] that will replace any sub-formula
of the form

∧
i Inf(mi) (resp.

∨
i Fin(mi)) by a single Inf(mj) (resp. Fin(mj)) in

the acceptance condition.
In Sect. 4 we present our “paritization” procedure that combines the above

procedures with some additional optimizations. Essentially the automaton is
processed one strongly-connected component (SCC) at a time, and for each
SCC the acceptance condition is simplified before choosing the most appropriate
transformation to parity.

This paritization procedure is implemented in Spot 2.9. In Sect. 5 we show
how the combination of all the improvements outperforms the straightforward
CAR algorithm in practice.
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2 Transition-Based Emerson-Lei Automata

Emerson-Lei Automata were defined [8] and named [24] in the 80s, and provide a
way to describe a Muller acceptance condition using a positive Boolean formula
over sets of states that must be visited finitely or infinitely often. Below we define
the transition-based version of those automata, as used in the Hanoi Omega-
Automata Format [2]. Instead of working directly with sets of transitions, we
label transitions by multiple colored marks, as can be seen in Figs. 1, 2 and 3.

Let M = {0, . . . , n−1} be a finite set of n contiguous integers called the set of
marks or colors, from now on also written M = { 0 , 1 , . . .} in our examples. We
define the set C(M) of acceptance formulas according to the following grammar,
where m stands for any mark in M :

α :: = � | ⊥ | Inf(m) | Fin(m) | (α ∧ α) | (α ∨ α)

Acceptance formulas are interpreted over subsets of M . For N ⊆ M we define
the satisfaction relation N |= α according to the following semantics:

N |= � N |= Inf(m) iff m ∈ N N |= α1 ∧ α2 iff N |= α1 and N |= α2

N �|= ⊥ N |= Fin(m) iff m /∈ N N |= α1 ∨ α2 iff N |= α1 or N |= α2

Intuitively, an Emerson-Lei automaton is an ω-automaton labeled by marks
and whose acceptance condition is expressed as a positive Boolean formula on
sets of marks that occur infinitely often or finitely often in a run. More formally:

Definition 1 (Transition-based Emerson-Lei Automata). A transition-
based Emerson-Lei automaton (TELA) is a tuple A = (Q,M,Σ, δ, q0, α) where
Q is a finite set of states, M is a finite set of marks, Σ is a finite input alphabet,
δ ⊆ Q × Σ × 2M × Q is a finite set of transitions, q0 ∈ Q is an initial state, and
α ∈ C(M) is an acceptance formula.

Given a transition d = (q1, �, A, q2) ∈ δ, we write d = q1
�,A−−→ q2. A run r of A

is an infinite sequence of transitions r = (si
�i,Ai−−−→ s′

i)i≥0 in δω such that s0 = q0
and ∀i ≥ 0, s′

i = si+1. Since Q is finite, for any run r, there exists a position

jr ≥ 0 such that for each i ≥ jr, the transition si
�i,Ai−−−→ s′

i occurs infinitely often
in r. Let Rep(r) =

⋃
i≥jr

Ai be the set of colors repeated infinitely often in r.
A run r is accepting if Rep(r) |= α, and we then say that A accepts the word
(�i)i≥0 ∈ Σω. The language L (A) is the set of words accepted by A. Two TELA
are equivalent if they have the same language. By extension, the language of a
state q ∈ Q is the language of the automaton using q as initial state.

Example 1. In the automaton of Fig. 1, the run r that repeats infinitely the two
transitions 0 12 4

3 has Rep(r) = { 2 , 3 , 4 } . Since Rep(r) satisfies
the acceptance condition (written below the automaton) r is an accepting run.

A TELA’s acceptance formula can be used to express many classical ω-
automata acceptance conditions, as shown in Table 1. Note that colors may
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Table 1. Shape of classical acceptance formulas. The variables m, m0, m1, . . . stand
for any acceptance marks in M = {0, 1, . . .} to allow multiple occurrences.

Büchi Inf(m)

generalized Büchi
∧

i Inf(mi)

co-Büchi Fin(m)

generalized co-Büchi
∨

i Fin(mi)

Rabin
∨

i (Fin(m2i) ∧ Inf(m2i+1))

Rabin-like
∨

i (Fin(m2i) ∧ Inf(m2i+1)) ∨ ∨
j Inf(mj) ∨ ∨

k Fin(mk)

Streett
∧

i (Inf(m2i) ∨ Fin(m2i+1))

Streett-like
∧

i (Inf(m2i) ∨ Fin(m2i+1)) ∧ ∧
j Inf(mj) ∧ ∧

k Fin(mk)

parity max even Inf(2k) ∨ (Fin(2k − 1) ∧ (Inf(2k − 2) ∨ (Fin(2k − 3) ∧ . . .)))

parity max odd Inf(2k + 1) ∨ (Fin(2k) ∧ (Inf(2k − 1) ∨ (Fin(2k − 2) ∧ . . .)))

appear more than once in most formulas; for instance (Fin( 0 ) ∧ Inf( 1 )) ∨
(Fin( 1 ) ∧ Inf( 0 )) is a Rabin acceptance formula.

The only unusual formulas of Table 1 are the Rabin-like and Streett-like condi-
tions. A Rabin-like formula

∨
i

(
Fin(m2i)∧ Inf(m2i+1)

)∨∨
j Inf(mj)∨∨

k Fin(mk)
can be converted into the Rabin formula

∨
i

(
Fin(m2i)∧ Inf(m2i+1)

)∨∨
j(Fin(a)∧

Inf(mj))∨∨
k(Fin(mk)∧ Inf(b)) by introducing two new marks a and b such that

a occurs nowhere in the automaton and b occurs everywhere. Therefore, with-
out loss of generality, we may describe algorithms over Rabin automata, but in
practice we implement those over Rabin-like acceptance conditions.

When discussing Rabin acceptance, it is common to mention the number
of Rabin pairs, i.e., the number of disjuncts in the formula; we use the same
vocabulary for Rabin-like, even if some of the pairs only have one term. Dually,
the number of pairs in a Streett-like formula is the number of conjuncts.

Remark 1. Formula Fin( 0 ) ∧ Inf( 1 ) can be seen as Rabin with one pair, or a
Streett-like with two pairs. Similarly, a generalized Büchi is also Streett-like.

Remark 2. Any sub-formula of the form
∨

i Inf(mi) (resp.
∧

i Fin(mi)) can be
replaced by a single Inf(a) (resp. Fin(a)) by introducing a mark a on all transi-
tions where any mi occurred. Thus, any parity automaton can be rewritten as
Rabin-like or Streett-like without adding or removing any transition: to produce
a Rabin-like (resp. Streett-like) acceptance, rewrite the parity acceptance for-
mula in disjunctive normal form (resp. CNF) and then replace each term of the
form

∧
i Fin(mi) (resp.

∨
i Inf(mi)) by a single Fin (resp. Inf).

Definition 2 (Strongly Connected Component). Let us consider a TELA
A = (Q,M,Σ, δ, q0, α). A strongly connected component (SCC) is a non-empty
set of states S ⊆ Q such that any ordered pair of distinct states of S can be
connected by a sequence of transitions of δ. We note A|S = (S,M,Σ, δ′, q′

0, α) a
sub-automaton induced by S, where δ′ = δ ∩ (S × Σ × 2M × S), and q′

0 ∈ S is
an arbitrary state of S. An SCC S is said accepting if L (A|S) �= ∅.
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3 Specialized Transformations

We describe three algorithms that transform the acceptance condition of a
TELA. The first two output an equivalent TELA with parity acceptance: CAR
(Sect. 3.1) works for any input, while IAR (Sect. 3.2) is specialized for Rabin-like
or Streett-like inputs. The third algorithm is a partial degeneralization (Sect. 3.3):
it takes an automaton with any acceptance formula α, and produces an automa-
ton where any generalized Büchi (resp. generalized co-Büchi) subformula of α
have been replaced by a Büchi (resp. co-Büchi) formula. Optimizations common
to these algorithms are listed in Sect. 3.4.

3.1 Color Appearance Record

Consider a set of marks M = {0, 1, . . ., n−1} and a TELA A = (Q,M,Σ, δ, q0, α).
Let Π(M) be the set of permutations of M . We can represent a permutation
σ ∈ Π(M) by a table 〈σ(0), σ(1), . . ., σ(n − 1)〉.

The Color Appearance Record (CAR) algorithm pairs such permutations of
colors with states of the input automaton in order to keep track of the history
of colors visited in the corresponding run of A, in the order they were last seen.
Output states are therefore elements of QCAR = Q × Π(M).

We update histories with a function U : Π(M)×M → Π(M)×2M , such that
U(σ, c) = (〈c, σ(0), σ(1), ..., σ(i − 1), σ(i + 1), ..., σ(n − 1)〉, {σ(0), σ(1), ..., σ(i)})
where i = σ−1(c) is the position of color c in σ. In other words, U(σ, c) moves c to
the front of σ by rotating the first i+1 elements: it returns the new permutation
and the set of rotated elements. This update function can be generalized to a
set of colors recursively as follows:

Ũ(σ, ∅) = (σ, ∅)
Ũ(σ, {c} ∪ C) = (ρ,R ∪ S) where (π,R) = Ũ(σ,C) and (ρ, S) = U(π, c)

That is to say, Ũ(σ,C) moves the colors in C to the front of σ and also returns
set of colors corresponding to the updated prefix. The order in which colors in C
are moved to the front of σ is unspecified and may affect the size of the output
automaton (see Sect. 3.4).

Let M ′ = {0, . . . , 2n+1} be the output marks. We define the transition relation
δCAR ⊆ QCAR × Σ × 2M′ × QCAR as follows:

δCAR=
{

(q, σ)
x,{c}−−−→(q′, π)

∣
∣
∣
∣ q

x,C−−→q′ ∈ δ, (π,R) = Ũ(σ,C), c = 2|R| + [R �|= α]
}

where [R �|= α] is a shorthand for 0 if R |= α and for 1 if R �|= α.

Theorem 1. For any TELA A = (Q,M,Σ, δ, q0, α) over the marks M = {0,
. . ., n − 1}, there exists an equivalent TELA A′ = (QCAR,M ′, Σ, δCAR, (q0,
π0), α′) where α′ is a parity max even formula over 2n + 1 colors. The initial
permutation can be any π0 ∈ Π(M).
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The proof is similar to that of the state appearance record algorithm [16], but we
track colors instead of states. The intuition is that any cycle r′ of A′ corresponds
to a cycle r of A. If the union of the colors visited by r is R, then all the states
in r′ necessarily have all colors of R to the front of their history, there will be at
least one transition t of r′ for which the number of colors rotated by Ũ is |R|, and
for all the other transitions this number will be lesser or equal. Therefore, the
color 2|R| + [R �|= α] selected for this transition t will be the highest of Rep(r′)
and will cause r′ to be accepting iff r is accepting.

Note that this construction may produce |Q| × n! states in the worst case.

Example 2. The CAR arrow at the top-right of Fig. 2 shows an application of
CAR on a small example. Let us ignore the fact that there is no initial state in
these “automata” and focus on how transitions of the output (above the arrow)
are built from the transitions of the input (below). Assuming we want to build
the successors of the output state (11, 〈0, 2, 1〉), we look for all successors of input
state 11. One option is 11 012 . We compute the history Ũ(〈0, 2, 1〉, { 2 })
of the destination state by moving 2 to the front of the current history, yielding
〈2, 0, 1〉. The destination state is therefore (01, 〈2, 0, 1〉). Two colors R = { 0 , 2 }
have been moved in the history by this transition, and since R |= α the transi-
tions is labeled by color 2×|R|+0 = 4 . Another successor is the loop 11 0 . In
this case, color 0 , already at the front of the history, is moved onto itself, so the
output is a loop. Since R = { 0 } �|= α , that loop is labeled by 2 × |R| + 1 = 3 .

3.2 Index Appearance Record

While CAR can be used to transform Rabin or Streett automata into parity
automata, there exists an algorithm more suitable for these subclasses of TELA.
Let A = (Q,M,Σ, δ, q0, α) be a TELA with a Rabin acceptance condition α =∨

i∈I (Fin(pi) ∧ Inf(ri)). We call (pi, ri) a Rabin pair, where pi is the prohibited
color, and ri the required color.

We define the set of index appearance records as the set Π(I) of permutations
of Rabin pair indices. The output states QIAR = Q × Π(I) are equipped with
such a record to track the history of indices of the Rabin pairs (pi, ri) in the
order the colors pi were last seen.

We update those IAR using a function U : Π(I) × I → Π(I), such that
U(σ, i) = 〈i, σ(0), σ(1), . . . , σ(j − 1), σ(j + 1), . . . , σ(|I| − 1)〉 where j = σ−1(i) is
the position of the index i in σ. In other words, U(σ, i) moves i to the front of σ
by rotating the first j + 1 elements. This update function can be generalized to
a set of indices recursively with Ũ(σ, ∅) = σ and Ũ(σ, {i} ∪ I) = Ũ(Ũ(σ, i), I).

When processing a transition labeled by colors C ⊆ M , we need to update
the history for all indices P (C) = {i ∈ I | pi ∈ C} of a prohibited color.

This construction builds an automaton with parity max odd acceptance over
the color M ′ = {0, 1, . . . , |I|+2} . The transitions δIAR ⊆ QIAR×Σ×2M ′ ×QIAR

of the output automaton can be defined as:
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δIAR =

{

(q, σ)
x,{c}−−−→ (q′, π)

∣
∣
∣
∣
∣

q
x,C−−→ q′ ∈ δ, π = Ũ(σ, P (C)), m = M(σ,C),

c = 2m + 1 + [m ≥ 0 ∧ pσ(m) ∈ C]

}

where M(σ,C) = max
({− 1

2} ∪ {
i ∈ {0, 1, |I| − 1} ∣

∣ pσ(i) ∈ C ∨ rσ(i) ∈ C
})

is
the rightmost index of σ corresponding to a pair with a color in C, or − 1

2 if no
such index exists.

Theorem 2 ([15]). For any TELA A = (Q,M,Σ, δ, q0, α) over the marks
M = {0, . . . , n − 1} and such that α is a Rabin condition, there exists an equiv-
alent TELA A′ = (QIAR,M ′, Σ, δIAR, (q0, π0), α′) where α′ is a parity max odd
acceptance formula over 2n+2 colors. The initial permutation π0 can be chosen
arbitrarily. A dual construction transforms Streett into parity max even.

For proof, we refer the reader to Löding [16] (for state-based acceptance) and
to Křet́ınský et al. [15] (who adapted it to TELA).

For the intuition behind the definition of c in δIAR, imagine a transition

(q, σ)
x,{c}−−−→ (q′, π) on a cycle r′ of A′, and a matching transition q

x,C−−→ q′ from
A. Assume the corresponding cycle r of the input automaton visits all colors in
C ′ = Rep(r). Because they are on the cycle r′, the IARs σ, π, and the others on
that cycle have all their indices P (C ′) to the left of the permutation. When we
scan the IAR σ from the right to the left to find the maximal index m = M(σ,C)
corresponding to a pair matching C, three situations can occur: (1) If m ≥ 0
and pσ(m) ∈ C, we know that we are in the left part, and that all Rabin pairs
of indices σ(0), . . . , σ(m) are not satisfied on this cycle: the transition is labeled
with c = 2m + 2 to indicate so. (2) If m ≥ 0 and pσ(m) /∈ C, it may be the case
that m is in the right part of the IAR, meaning that the Rabin pair of index
σ(m) is satisfied. We label the transition with c = 2m+1 to indicate acceptance,
but this might be canceled by a another transition emitting a higher even value
if pσ(i) appears elsewhere on this cycle. (3) Finally m = − 1

2 occurs when C = ∅,
in this case the transition is labeled by c = 0 as no pair is satisfied.

This procedure generates an automaton with |Q| × |I|! states in the worst
case, but unless colors occur multiple times in α, we usually have |I| ≤ n/2,
making IAR preferable to CAR.

Example 3. The arrow IAR in Fig. 2 shows an example of IAR at work on a
Rabin automaton with two pairs. The output transition 2〈01〉 2〈10〉4 , cor-
responds to a loop labeled by C = { 0 , 2 } in the input. Since 0 is prohibited
in Rabin pair 1, index 1 has to move to the front of the history. Furthermore,
the rightmost index of 〈01〉 with a color in C is also m = 1 and corresponds to
p1 = 0 ∈ C , this justifies that the output transition is labeled by 2m+1+1 = 4 .

3.3 Partial Degeneralization

We now define the partial degeneralization of a TELA A according to some
subset D of its colors. Our intent is to modify A in such a way that we can
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replace any sub-formula of the form
∧

d∈D Inf(d) in its acceptance condition α
by a single Inf(e) for some new color e. Similarly, any sub-formula of the form∨

d∈D Fin(d) will be replaced by Fin(e). We denote such a substitution of sub-
formulas by α[

∧
d∈D Inf(d) ← Inf(e)][

∨
d∈D Fin(d) ← Fin(e)].

The construction ensures that the runs of the output that see all colors of
D infinitely often also see e infinitely often. To do that, we consider an ordering
of {d0, d1, . . . d|D|−1} of D, and equip each state of the output automaton by a
level in L = {0, 1, . . . |D| − 1}. We jump from level i to level i + 1 whenever we
use a transition labeled by di; thus, we reach a level i only after having met the
i first colors of D. We jump down to level 0 when a transition t leaving a state
at level |D| − 1 is labeled by d|D|−1; moreover, since any cycle going through t
will have seen all colors in D, we can add the new color e to t.

An optimization, commonly done in degeneralization procedures [1,11], is
that transition labeled by multiple consecutive colors of D may skip several
levels. Let us define this skipping of levels more formally as a function S :
L × 2M → L × 2{e} that takes a level i and a set C of colors seen by some
transition, and returns the new level j and a subset that is either ∅ or {e} to
indicate whether the new color should be added to the output transition.

S(i, C) =

{
(j, ∅) if j < |D|
(j − |D|, {e}) if j ≥ |D| , where

j = max
(
k ∈ {i, i+1, . . ., i+|D|}∣∣{di, d(i+1) mod |D|, . . ., d(k+|D|−1) mod |D|} ⊆ C

)
.

Theorem 3. Let A = (Q,M,Σ, δ, q0, α) be a TELA, and let C ⊆ M be a set of
marks. Let D = {d0, d1, . . . , d|C|−1} be some ordering of the colors of C, and let
L = {0, 1, . . . , |C|} be a set of levels.

A is equivalent to its partial degeneralization according to C, defined by
automaton A′ = (Q′,M ′, Σ, δ′, (q0, i0), α′) where Q′ = Q×L, M ′ = M ∪{e} for
some new color e /∈ M , α′ = α[

∧
d∈D Inf(d) ← Inf(e)][

∨
d∈D Fin(d) ← Fin(e)],

and δ′ =
{

(q1, i)
�,C−−→ (q2, j)

∣
∣
∣ q1

�,C∩M−−−−→ q2 ∈ δ, S(i, C ∩ M) = (j, C \ M)
}
. The

initial level can be any i0 ∈ L.

First, note that this procedure does not remove any color from the automa-
ton. This is because even though subformulas of the form

∧
d∈D Inf(d) are

removed from α, other parts of α, preserved in α′, may still use colors in D.
Of course, colors that do not appear in α′ may be removed from the automaton
as a subsequent step, and this is done in our implementation.

Moreover, because the algorithm keeps all used colors, the construction is
valid for any subset D ⊆ M , even one that does not correspond to a conjunction
of Inf or disjunction of Fin in α. In such a case, the construction enlarges the
automaton without changing its acceptance condition.

Finally, in the case where α is a generalized Büchi condition over the marks
M , and D = M , then the resulting α′ will be Inf(e), and removing all the now
useless original colors will have the same effect as a classical degeneralization. In
this sense, the degeneralization is a special case of the partial degeneralization.
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Similarly, this procedure can also be seen as a generalization of the transforma-
tion of generalized-Rabin automata into Rabin automata [12].

Example 4. In Fig. 2, the arrow PD{1,3} denotes the application of a partial
degeneralization according to the set M = { 1 , 3 }. This allows to rewrite accep-
tance’s sub-formula Fin( 1 ) ∨ Fin( 3 ) as Fin( 4 ) with a new color. Output states
(q, i) are written as qi for brevity. The ordering of colors is d0 = 3 , d1 = 1 .

Fig. 1. Some arbitrary input TELA, to be paritized. For readability, letters are not
displayed.

3.4 Optimizations

We now describe several optimizations for the aforementioned constructions.

Jump to Bottom: The choice of the initial permutation π0 in the CAR, in the
IAR, or of the initial level i0 in the partial degeneralization is arbitrary. With a
bad selection of those values, a cycle can be turned into a lasso. For instance, if we
consider the input automaton x y0

1
, applying CAR with π0 = 〈0, 1〉 pro-

duces an automaton with the following structure: x〈01〉 y〈01〉 x〈10〉 ,
whereas π0 = 〈1, 0〉 would yield x〈10〉 y〈01〉 .

Instead of guessing the correct initialization, we simply use the fact that
two states (q, σ) and (q, π) recognize the same language: after the algorithm’s
execution, we redirect any transition leading to a state (q, σ) to the copy (q, π)
that lies in the bottommost SCC (in some topological ordering of the SCCs).
The initial state is changed similarly. The input and output automata should
have then the same number of SCCs.

This optimization applies to CAR, IAR, partial degeneralization, or combi-
nations of those. E.g., if partial degeneralization is used before CAR or IAR,
leading to states of the form ((q, i), σ), the search for an equivalent state in the
bottom SCC needs only consider q, and can simplify both constructions at once.

A similar simplification was initially proposed in the context of IAR for
simplifying one SCC at a time [15]. Heuristics used in degeneralization algorithms
to select initial level upon entering a new SCC [1] are then unnecessary.
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Fig. 2. Intermediate steps of the construction, handling the SCCs in different ways.
These steps are explained at various places through Sects. 3 and 4.

Fig. 3. Paritization of the automaton of Fig. 1, combining the transformed SCCs of
Fig. 2 after adjustment to a common acceptance condition.
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History Reuse: When processing an input transition labeled with multiple
colors, the insertion order of those colors (resp. Rabin pair indices) in front of
the history during an update of the CAR (resp. IAR) is arbitrary. Křet́ınský
et al. [15] suggested to check previously built states for one with a compatible
trail of the history, in order to avoid creating new states. While implementing
this optimization, we noticed that sometimes we can find multiple compatible
states: heuristically selecting the most recently created one (as opposed to the
oldest one) produces fewer states on average in our benchmark. It seems to create
tighter loops and larger “lasso prefixes” that can later be removed by the jump
to bottom optimization. Such history reuse can also be done a posteriori once a
candidate automaton has been built, to select better connections.

Heuristic Selection of Move Order: When an input transition is labeled
with multiple colors, but no compatible destination state already exists to apply
the previous optimization, we select the order in which colors are moved to the
front of the history using a heuristic. Colors that are common to all incoming
transitions of the destination states are moved last, so they end up at the begin-
ning of the history. For instance in the CAR construction of Fig. 2, this is how
the order 〈102〉 is chosen as destination history for transition 01 000 1 2 :
1 is common to all edges going to 00, so we want it at the front of the history.

SCC-aware Algorithms: These algorithms benefit from considering the SCCs
of the original automaton. For CAR and IAR, the histories attached can be
restricted to the colors present in the SCC [15]. The partial degeneralization
needs not modify SCCs that do not contain all the colors C to degeneralize.

Heuristic Ordering of Colors to Degeneralize: Our implementation of the
partial degeneralization tries to guess, for each SCC, an appropriate ordering
of the color to degeneralize: this is done by maintaining the order as a list
of equivalence classes of colors, and refining this order as new transitions are
processed. For instance if we degeneralize for the colors C = { 0 , 1 , 2 , 3 } ,
the initial order will be 〈{ 0 , 1 , 2 , 3 }〉 , then if the first transition we visit has
colors { 1 , 3 } the new order will be refined to 〈{ 1 , 3 }, { 0 , 2 }〉 and we jump
to level 2 as we have now seen the first equivalence class of size 2.

Propagation of Colors: To favor the grouping of colors in the dynamic order-
ing of the partial degeneralization, and in the history reuse optimization of IAR
and CAR, we propagate colors as much as possible in SCCs. Ignoring transitions
that are self-loops or that do not have both extremities in the same SCC, col-
ors common to all incoming transitions of a state can be copied to all outgoing
transitions and vice-versa. E.g., x y z0 0

1 2 is seen as the equivalent
x y z0

0
0 1

10 2 , showing that cycles with 1 always have 0 .
The next section goes one step further in SCC-awareness, by actually sim-

plifying the acceptance condition for each SCC according to the colors present.
The paritization strategy to apply (CAR, IAR, identity, ...) can then be chosen
independently for each SCC.
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4 Paritization with Multiple Strategies

We now describe our paritization algorithm taking as input a TELA A:

(1) Enumerate the SCCs Si of A. For each Si, perform the following operations:
(a) Consider the sub-automaton A|Si

.
(b) Simplify its acceptance condition by removing unused colors (Fin(i)

becomes �, and Inf(i) becomes ⊥ for any color i unused in A|Si
), or

dually, colors that appear everywhere. Colors that always appear together
can be replaced by a single color, and disjunctions of Inf or conjunctions
of Fin can be reduced as discussed in Remark 2.

(c) Propagate colors in the SCC (Sect. 3.4).
(d) If the simplified acceptance condition contains conjunctions of Inf or dis-

junctions of Fin, apply the partial degeneralization construction (maybe
multiple times) for all those terms, and remove unused colors. Since this
incurs a blowup of the state-space that is linear (maybe multiple times)
in the number of colors removed, it generally helps the CAR construction
which has a worst case factorial blowup in the number of colors. Also,
after this step, the acceptance condition might match more specialized
algorithms in the next step. Jump to step 1b as the acceptance changed.

(e) Transform the automaton A|Si
into a parity max automaton Ri using the

first applicable procedure from the following list:
– If L (A|Si

) is empty [3], strip all colors and set the acceptance con-
dition to ⊥, which is a corner case for parity max even formula. (For
parity max acceptances, transitions without color can be interpreted
as having color −1.);

– Do nothing if the acceptance is already a parity max formula;
– If the acceptance has the shape Inf(m0) ∨ (Fin(m1) ∧ (Inf(m2) ∨ ...))

of a parity max, renumber the colors m0,m1, . . . in decreasing order
to get a parity max formula;

– Adjust the condition to Inf( 0 ) and the labeling of the transitions if
this is a deterministic Rabin-like automaton that is Büchi-type (this
requires a transition-based adaptation of an algorithm by Krishnan
et al. [14]); note that Inf( 0 ) is also a parity max even formula.

– Dually, adjust the condition to Fin( 0 ) if this is a deterministic Streett-
like automaton that is co-Büchi-type, since Fin( 0 ) is also a parity max
odd formula.

– If the automaton is Rabin-like or Streett-like, apply IAR to obtain a
parity max automaton. When the acceptance formula can be inter-
preted as both Rabin-like or Streett-like we use the interpretation
with the fewest number of pairs (cf. Remark 1).

– Otherwise, apply CAR to obtain a parity max automaton.
(2) Now that each automaton A|Si

has been converted into an automaton Ri

whose parity acceptance is either max odd or max even, adjust those accep-
tance conditions by incrementing or decrementing the colors of some Ri so
that they can all use the same acceptance, and stitch all Ri together to form
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the final automaton R. For any transition of A that goes from state q in
SCC i to state q′ in SCC j, R should have a transition for each copy of q in
Ri and going to one copy of q′ in Rj . Similarly, the initial state of R should
be any copy of the initial state of A.

(3) As a final cleanup, the number of colors of R can be reduced by computing
the Rabin-index of the automaton [5].

Figures 1, 2 and 3 show this algorithm at work on a small example with three
SCCs. Figure 3 shows the result of step 2. Executing step 3 would reduce the
number of colors to 2 (or to 3 if uncolored transitions are disallowed).

We now comment the details of Fig. 2. The notation S+P refers to the Sim-
plification of the acceptance condition (step 1b) and the Propagation of colors
in the SCC (step 1c). On SCC 1, step 1b replaces 4 by 2 , because these always
occur together, and step 1c adds 2 on the transition from 1 to 0. After partial
degeneralization, the sub-formula Fin( 0 ) ∧ Fin( 4 ) can be fused into a single
Fin( 0 ) (see Remark 2) by simply replacing 4 by 0 in the automaton, and after
that the marks on the transitions before and after state 00 are propagated by
step 1c. The resulting automaton is neither Rabin-like nor Streett-like, so it is
transformed to parity using CAR; however the history of the states only have
3 colors to track instead of the original 5. In SCC2, Fin( 3 ) and Inf( 4 ) can be
replaced respectively by � and ⊥ because 3 and 4 are not used. The acceptance
condition is therefore reduced to the Rabin acceptance condition displayed, and
IAR can be used instead of CAR. (Using CAR would build at least 4 states.)
Finally SCC 3’s acceptance conditions reduces to Inf( 2 )∧Fin( 1 ) . Renumbering
the colors to Fin( 1 ) ∧ Inf( 0 ) gives us a parity max odd acceptance.

To stitch all these results together, as in Fig. 3, we adjust all automata to
use parity max odd : in SCC 1 this can be done for instance by decrementing all
colors and in SCC 3 by incrementing them (handling any missing color as −1).

Our implementation uses an additional optimization that we call the parity
prefix detection. If the acceptance formula has the shape Inf(m0) ∨ (Fin(m1) ∧
(Inf(m2) ∨ (...β))), i.e., it starts like a parity max formula but does not have
the right shape because of β, we can apply CAR or IAR using only β while
preserving the color m0,m1,m2, . . . of the parity prefix, and later renumber all
colors so the formula becomes parity max. This limits the colors that CAR and
IAR have to track, so it reduces the number of states in the worst case.

5 Experimental Evaluation

The simple CAR described in Sect. 3.1, without the optimizations of Sect. 3.4
was implemented in Spot 2.8 [7] as a function to parity(). It can be used by
Spot’s ltlsynt tool with option --algo=lar; in that case the LTL specification
ϕ passed to ltlsynt is converted to a deterministic TELA Aϕ with arbitrary
acceptance and then transformed into a parity automaton Pϕ with to parity()
before the rest of the LTL synthesis procedure is performed.

The TELA Aϕ built internally by ltlsynt can be obtained using Spot’s
ltl2tgba -G -D command: the construction is similar to the delag tool [21] and
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regards the original formula as a Boolean combination of LTL sub-formulas ϕi,
translating each ϕi to a deterministic TELA Aϕi

(by combining classical LTL-
to-generalized-Büchi translation [6] with specialized constructions for subclasses
of LTL [9], or a Safra-based procedure [23]), and combining those results using
synchronized products to obtain a TELA whose acceptance condition is the
Boolean combination of the acceptance conditions of all the Aϕi

.
In Spot 2.9, to parity() was changed to implement Sect. 4 and the opti-

mizations of Sect. 3.4. We are therefore in position to compare the improvements
brought by those changes on the transformation of Aϕ to Pϕ.1

We evaluate the improvements on two sets of automata:

syntcomp contains automata generated with ltl2tgba -G -D from LTL for-
mulas from the sequential TLSF track of SyntComp’2017. Among those
automata, we have removed those that already had a parity acceptance
(usually Büchi acceptance). The remaining set contains 32 automata with
a generalized-Büchi condition, and 84 with a condition that mixes Fin and Inf
terms (only 1 of these can be considered Rabin-like or Streett-like). The aver-
age number of accepting SCCs is 1.9 (min. 1, med. 1, max. 4). The average
number of states is 46 (min. 1, med. 13, max. 986).

randltl contains 273 automata built similarly, from random LTL formulas. Fur-
thermore, we have ensured that no automaton has parity acceptance, and all
of them use at least 5 colors (med. 5, avg. 5.2, max. 9). The average number
of accepting SCCs is 1.7 (min. 1, med. 1, max. 5). The average number of
states is 5.8 (min. 1, med. 4, max. 41). Only 13 of these automata have a
Rabin-like or Streett-like acceptance condition.

The improvement of our new paritization based on multiple strategies over
our old unoptimized CAR implementation is shown on Fig. 4.

Table 2 selectively disables some optimizations to evaluate their effect on
the number of output states. Configuration “all − x” means that optimization
x is disabled. Rabin to Büchi is the detection of Rabin-like (or Streett-like)
automata that are Büchi (or co-Büchi) realizable at step 1e. Parity prefix is
the optimization mentioned at the very end of Sect. 4. Simplify acc, propagate
colors, and partial degen correspond respectively to steps 1b and 1c, and 1d.
Partial degeneralization appears to be the most important optimization, because
in addition to reducing the number of colors, it may help to use IAR or even
simpler construction. The propagation of colors, which allows more flexibility in
the selection of histories, is the second best optimization. Hist. reuse corresponds
to the history reuse described in Sect. 3.4. all − reuse latest has history reuse
enabled, but uses the oldest compatible state instead of the latest—hence our
heuristic of using the latest compatible state. Finally Unoptimized CAR is a
straightforward implementation of CAR given for comparison.

To assert the effect of the improved paritization on ltlsynt, we ran the entire
SyntComp’17 benchmark (including formulas omitted before) with a timeout of
100 seconds, and counted the number of cases solved by different configurations

1 To reproduce these results, see https://www.lrde.epita.fr/∼frenkin/atva20/.

https://www.lrde.epita.fr/~frenkin/atva20/
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Fig. 4. Comparison of the new multi-strategy
paritization (Sect. 4) against the unoptimized
CAR (Sect. 3.1)

Table 2. Effect of disabling different
optimizations on the arithmetic and
geometric means of the number of
states on both benchmarks

configuration amean gmean

all 48.71 14.43

all − Rabin to Büchi 48.72 14.45

all − parity prefix 48.97 14.54

all − simplify acc 49.32 15.07

all − hist. reuse 51.01 15.18

all − reuse latest 51.05 15.29

all − propagate colors 55.69 16.91

all − partial degen 2165.50 20.20

unoptimized CAR 5375.02 45.16

Table 3. Number of SyntComp’17 cases solved by ltlsynt under different configura-
tions, with a timeout of 100 s. PAR-2 (penalized average runtime) sums the time of all
successful instances, plus twice the timeout for unsuccessful ones.

option approach to paritization # solved PAR-2

--algo=lar.old LTL to determ. TELA, then CAR of Sect. 3.1 175 7262 s

--algo=sd LTL to Büchi, then split input/output variables,
then Safra-based determinization [20]

177 6879 s

--algo=ds LTL to Büchi, then Safra-based determinization,
then split input/output variables [20]

180 6671 s

--algo=lar LTL to determ. TELA, then approach of Sect. 4 185 6296 s

of ltlsynt, as reported in Table 3. We can see that improving CAR with all the
tricks of Sect. 4 allowed the ltlsynt’s LAR-based approach to perform better
than ltlsynt’s Safra-based approaches.

6 Conclusion

We have presented a procedure that converts any TELA into a transition-based
parity automaton. Our algorithm combines algorithms that are transition-based
adaptations or generalizations of known procedures (e.g., CAR is a adaption of
the classical SAR and partial degeneration extends the standard generalization
technique), thus this paper can also be read as a partial survey of acceptance
condition transformations presented under a unified framework.

The CAR construction, which is the general case for our paritization algo-
rithm, produces smaller automata than the classical SAR, as it tracks colors
instead of states, and uses transition-based acceptance. We further improved
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this construction by applying more specialized algorithms in each SCC (IAR [15],
detection of Büchi-realizable SCCs [14], detection of empty SCCs [3], detection
of parity) after simplifying their acceptance.

The proposed partial degeneralization procedure is used as a preprocessing
step to reduce conjunctions of Inf or disjunction of Fin in the acceptance con-
dition, and to reduce the number of colors that CAR and IAR have to track.
Since partial degeneralization only causes a linear blowup in the number of col-
ors removed, it generally helps the CAR construction whose worst case scenario
incurs a factorial blowup in the number of colors. Furthermore, after partial
degeneralization, the acceptance condition may match more specialized algo-
rithms.

The implementation of the described paritization procedure is publicly avail-
able in Spot 2.9. While our motivation stems from one approach to produce
deterministic parity automata used in Spot, this paritization also works with
non-deterministic automata: it preserves the determinism of the input.

Acknowledgment. The unoptimized CAR definition of Sect. 3.1 was first imple-
mented in Spot by Maximilien Colange.
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LTL to small deterministic or nondeterministic Emerson-Lei automata. In: ATVA
2019, LNCS 11781, pp. 357–365. Springer, Cham (2019)

20. Michaud, T., Colange, M.: Reactive synthesis from LTL specification with Spot. In:
SYNT 2018 (2018). http://www.lrde.epita.fr/dload/papers/michaud.18.synt.pdf

21. Müller, D., Sickert, S.: LTL to deterministic Emerson-Lei automata. In: GandALF
2017, vol. 256 of EPTCS, pp. 180–194 (2017)

22. Piterman, N.: From nondeterministic büchi and streett automata to deterministic
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Abstract. Threshold automata are a formalism for modeling and ana-
lyzing fault-tolerant distributed algorithms, recently introduced by Kon-
nov, Veith, and Widder, describing protocols executed by a fixed but
arbitrary number of processes. We conduct the first systematic study
of the complexity of verification and synthesis problems for threshold
automata. We prove that the coverability, reachability, safety, and live-
ness problems are NP-complete, and that the bounded synthesis prob-
lem is Σ2

p complete. A key to our results is a novel characterization
of the reachability relation of a threshold automaton as an existential
Presburger formula. The characterization also leads to novel verification
and synthesis algorithms. We report on an implementation, and provide
experimental results.

Keywords: Threshold automata · Distributed algorithms ·
Parameterized verification

1 Introduction

Many concurrent and distributed systems consist of an arbitrary number of
communicating processes. Parameterized verification investigates how to prove
them correct for any number of processes [1].

Parameterized systems whose processes are indistinguishable and finite state
are often called replicated systems. A global state of a replicated system is com-
pletely determined by the number of processes in each state. Models of repli-
cated systems differ in the communication mechanism between processes. Vector
Addition Systems (VAS) and their extensions [2,7,9,11] can model rendez-vous,
multiway synchronization, global resets and broadcasts, and other mechanisms.
The decidability and complexity of their verification problems is well understood
[1,2,8,10,24].

Transition guards of VAS-based replicated systems are local : Whether a tran-
sition is enabled or not depends only on the current states of a fixed num-
ber of processes, independent of the total number of processes. Konnov et al.
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observed in [15] that local guards cannot model fault-tolerant distributed algo-
rithms. Indeed, in such algorithms often a process can only make a step if it
has received a message from a majority or some fraction of the processes. To
remedy this, they introduced threshold automata, a model of replicated systems
with shared-variable communication and threshold guards, in which the value of
a global variable is compared to an affine combination of the total numbers of
processes of different types. In a number of papers, Konnov et al. have devel-
oped and implemented verification algorithms for safety and liveness of threshold
automata [14–18]. Further, Kukovec et al. have obtained decidability and unde-
cidability results [19] for different variants of the model. However, contrary to
the VAS case, the computational complexity of the main verification problems
has not yet been studied.

We conduct the first systematic complexity analysis of threshold automata.1

In the first part of the paper we show that the parameterized coverability and
reachability problems are NP-complete. Parameterized coverability asks if some
configuration reachable from some initial configuration puts at least one pro-
cess in a given state, and parameterized reachability asks if it puts processes in
exactly a given set of states, leaving all other states unpopulated. The NP upper
bound is a consequence of our main result, showing that the reachability rela-
tion of threshold automata is expressible in existential Presburger arithmetic.
In the second part of the paper we apply this expressibility result to prove that
the model checking problem of Fault-Tolerant Temporal Logic (ELTLFT) [18] is
NP-complete, and that the problem of synthesizing the guards of a given automa-
ton, studied in [21], is Σ2

p complete. The last part of the paper reports on an
implementation of our novel approach to the parameterized (safety and liveness)
verification problems. We show that it compares favorably to ByMC, the tool
developed in [17].

2 Threshold Automata

We introduce threshold automata, illustrating the definitions on the example of
Fig. 2, a model of the Byzantine agreement protocol of Fig. 1.

Environments. Threshold automata are defined relative to an environment
Env = (Π,RC , N), where Π is a set of parameters ranging over N0, RC ⊆ N

Π
0 is

a resilience condition expressible as an integer linear formula, and N : RC → N0

is a linear function. Intuitively, a valuation of Π determines the number of pro-
cesses of different kinds (e.g., faulty) executing the protocol, and RC describes
the admissible combinations of parameter values. Finally, N associates to a each
admissible combination, the number of copies of the automaton that are going to
run in parallel, or, equivalently, the number of processes explicitly modeled. In
a Byzantine setting, faulty processes behave arbitrarily, and so we do not model

1 A full version of this paper containing additional details and proofs can be found at
https://arxiv.org/abs/2007.06248.

https://arxiv.org/abs/2007.06248
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1 va r myvali ∈ {0, 1}
2 va r accepti ∈ {false, true} ← false
3
4 whi le t r u e do (in one atomic step)
5 i f myvali = 1
6 and not s en t ECHO be f o r e
7 then send ECHO to a l l
8
9 i f received ECHO from at l e a s t

10 t + 1 d i s t i n c t p r o c e s s e s
11 and not s en t ECHO be f o r e
12 then send ECHO to a l l
13
14 i f received ECHO from at l e a s t
15 n − t d i s t i n c t p r o c e s s e s
16 then accepti ← true
17 od

Fig. 1. Pseudocode of a reliable broadcast
protocol from [26] for a correct process i,
where n and t denote the number of pro-
cesses, and an upper bound on the num-
ber of faulty processes. The protocol sat-
isfies its specification (if myval i = 1 for
every correct process i, then eventually
acceptj = true for some correct process
j) if t < n/3.

�0

�1

�2 �3

r2 : γ1 �→ x++

r1 :
→�� x++ r3 : γ2

sl1 : �

sl2:� sl3:�

Fig. 2. Threshold automaton modeling
the body of the loop in the protocol
from Fig. 1. Symbols γ1, γ2 stand for
the threshold guards x ≥ (t + 1) − f
and x ≥ (n − t) − f , where n and t are
as in Fig. 1, and f is the actual number
of faulty processes. The shared variable
x models the number of ECHO mes-
sages sent by correct processes. Pro-
cesses with myval i = b (line 1) start
in location �b (in green). Rules r1 and
r2 model sending ECHO at lines 7 and
12. The self-loop rules sl1, . . . , sl3 are
stuttering steps. (Color figure online)

them explicitly; in this case, the system consists of one copy of the automaton
for every correct process. In the crash fault model, processes behave correctly
until they crash, they must be modeled explicitly, and the system has a copy of
the automaton for each process, faulty or not.

Example 1. In the threshold automaton of Fig. 2, the parameters are n, f , and
t, describing the number of processes, the number of faulty processes, and the
maximum possible number of faulty processes, respectively. The resilience con-
dition is the set of triples (in, if , it) such that in/3 > it ≥ if ; abusing language,
we identify it with the constraint n/3 > t ≥ f . The function N is given by
N(n, t, f) = n − f , which is the number of correct processes.

Threshold Automata. A threshold automaton over an environment Env is
a tuple TA = (L, I, Γ,R), where L is a nonempty, finite set of local states (or
locations), I ⊆ L is a nonempty subset of initial locations, Γ is a set of global
variables ranging over N0, and R is a set of transition rules (or just rules),
formally described below.
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A transition rule (or just a rule) is a tuple r = (from, to, ϕ,u), where from
and to are the source and target locations, ϕ : Π ∪ Γ → {true, false} is a con-
junction of threshold guards, and u : Γ → {0, 1} is an update. We often let
r.from, r.to, r.ϕ, r.u denote the components of r. Intuitively, r states that a pro-
cess can move from from to to if the current values of Π and Γ satisfy ϕ, and
when it moves it updates the current valuation g of Γ by performing the update
g := g +u. Since all components of u are nonnegative, the values of global vari-
ables never decrease. A threshold guard ϕ has one of the following two forms:

– x ≥ a0 + a1 · p1 + . . . + a|Π| · p|Π|, called a rise guard, or
– x < a0 + a1 · p1 + . . . + a|Π| · p|Π|, called a fall guard,

where x ∈ Γ is a shared variable, p1, . . . , p|Π| ∈ Π are the parameters, and
a0, a1, . . . , a|Π| ∈ Q are rational coefficients. Since global variables are initialized
to 0, and they never decrease, once a rise (fall) guard becomes true (false) it
stays true (false). We call this property monotonicity of guards. We let Φrise,
Φfall, and Φ denote the sets of rise guards, fall guards, and all guards of TA.

Example 2. The rule r2 of Fig. 2 has �0 and �2 as source and target locations,
x ≥ (t + 1) − f as guard, and the number 1 as update (there is only one shared
variable, which is increased by one).

Configurations and Transition Relation. A configuration of TA is a triple
σ = (κ, g,p) where κ : L → N0 describes the number of processes at each
location, and g ∈ N

|Γ |
0 and p ∈ RC are valuations of the global variables and

the parameters. In particular,
∑

�∈L κ(�) = N(p) always holds. A configuration
is initial if κ(�) = 0 for every � /∈ I, and g = 0. We often let σ.κ, σ.g, σ.p denote
the components of σ.

A configuration σ = (κ, g,p) enables a rule r = (from, to, ϕ,u) if κ(from) >
0, and (g,p) satisfies the guard ϕ, i.e., substituting g(x) for x and p(pi) for pi in
ϕ yields a true expression, denoted by σ |= ϕ. If σ enables r, then TA can move
from σ to the configuration r(σ) = (κ′, g′,p′) defined as follows: (i) p′ = p, (ii)
g′ = g + u, and (iii) κ′ = κ + vr, where vr(from) = −1, vr(to) = +1, and
vr = 0 otherwise. We let σ → r(σ) denote that TA can move from σ to r(σ).

Schedules and Paths. A schedule is a (finite or infinite) sequence of rules. A
schedule τ = r1, . . . , rm is applicable to configuration σ0 if there is a sequence of
configurations σ1, . . . , σm such that σi = ri(σi−1) for 1 ≤ i ≤ m, and we define
τ(σ0) := σm. We let σ

∗−→ σ′ denote that τ(σ) = σ′ for some schedule τ , and say
that σ′ is reachable from σ. Further we let τ · τ ′ denote the concatenation of two
schedules τ and τ ′, and, given μ ≥ 0, let μ · τ the concatenation of τ with itself
μ times.
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A path or run is a finite or infinite sequence σ0, r1, σ1, . . . , σk−1, rk, σk, . . . of
alternating configurations and rules such that σi = ri(σi−1) for every ri in the
sequence. If τ = r1, . . . , r|τ | is applicable to σ0, then we let path(σ0, τ) denote
the path σ0, r1, σ1, . . . , r|τ |, σ|τ | with σi = ri(σi−1), for 1 ≤ i ≤ |τ |. Similarly, if
τ is an infinite schedule. Given a path path(σ, τ), the set of all configurations in
the path is denoted by Cfgs(σ, τ).

3 Coverability and Parameterized Coverability

We say that configuration σ covers location � if σ.κ(�) > 0. We consider the
following two coverability questions in threshold automata:

Definition 1 ((Parameterized) coverability). The coverability problem
consists of deciding, given a threshold automaton TA, a location � and an initial
configuration σ0, if some configuration reachable from σ0 covers �. The param-
eterized coverability problem consists of deciding, given TA and �, if there is an
initial configuration σ0 and a configuration reachable from σ0 that covers �.

Sometimes we also speak of the non-parameterized coverability problem,
instead of the coverability problem, to avoid confusion. We show that both prob-
lems are NP-hard, even when the underlying threshold automaton is acyclic. In
the next section, we show that the reachability and parameterized reachability
problems (which subsume the corresponding coverability problems) are both in
NP.

Theorem 1. Parameterized coverability in threshold automata is NP-hard, even
for acyclic threshold automata with only constant guards (i.e., guards of the form
x ≥ a0 and x < a0).

Proof. (Sketch.) We prove NP-hardness of parameterized coverability by a reduc-
tion from 3-SAT. The reduction is as follows: (See Fig. 3 for an illustrative exam-
ple). Let ϕ be a 3-CNF formula with variables x1, . . . , xn. For every variable xi we
will have two shared variables yi and ȳi. For every clause Cj , we will have a shared
variable cj . Intuitively, each process begins at some state �i and then moves to
either �i or ⊥i by firing either (�i,�i, ȳi < 1, yi++) or (�i,⊥i, yi < 1, ȳi++) respec-
tively. Moving to �i (⊥i resp.) means that the process has guessed the value
of the variable xi to be true (false resp). Once it has chosen a truth value, it
then increments the variables corresponding to all the clauses which it satisfies
and moves to a location �mid. If it happens that all the guesses were correct,
a final rule gets unlocked and processes can move from �mid to �F . The key
property we need to show is that if some process moves to �i then no other
process can move to ⊥i (and vice versa). This is indeed the case because if a
process moves to �i from �i, it would have fired the rule (�i,�i, ȳi < 1, yi++)
which increments the shared variable yi, and so falsifies the guard of the corre-
sponding rule (�i,⊥i, yi < 1, ȳi++), and therefore no process can fire it. Similarly,
if (�i,⊥i, yi < 1, ȳi++) is fired, no process can fire (�i,�i, ȳi < 1, yi++).
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�1

�1

⊥1

�2

�2

⊥2

�3

�3

⊥3

ȳ1 < 1 �→ y1++

y1 < 1 �→ ȳ1++

ȳ2 < 1 �→ y2++

y2 < 1 �→ ȳ3++

ȳ3 < 1 �→ y3++

y3 < 1 �→ ȳ3++

�mid

c1++

c2++

c1++ ∧ c2++

c1++

c2+
+

�F
c1 ≥ 1 ∧ c2 ≥ 1

Fig. 3. Threshold automaton TAϕ corresponding to the formula ϕ = (x1 ∨ ¬x2 ∨ x3) ∧
(¬x1 ∨ ¬x2 ∨ ¬x3). Note that setting x1 to true and x2 and x3 to false satisfies ϕ. Let
σ0 be the initial configuration obtained by having 1 process in each initial location �i,
1 ≤ i ≤ 3, and 0 in every other location. From �1 we increment y1 and from �2 and
�3 we increment ȳ2 and ȳ3 respectively, thereby making the processes go to �1, ⊥2, ⊥3

respectively. From there we can move all the processes to �mid, at which point the last
transition gets unlocked and we can cover �F .

A modification of the same construction proves

Theorem 2. The coverability problem is NP-hard even for acyclic threshold
automata with only constant rise guards (i.e., guards of the form x ≥ a0).

Constant Rise Guards. Theorem 2 puts strong constraints to the class of TAs
for which parameterized coverability can be polynomial, assuming P 
= NP. We
identify an interesting polynomial case.

Definition 2. An environment Env = (Π,RC , N) is multiplicative for a TA
if for every μ ∈ N>0 (i) for every valuation p ∈ RC we have μ · p ∈ RC and
N(μ ·p) = μ ·N(p), and (ii) for every guard ϕ := x � a0+a1p1+a2p2+ . . . akpk

in TA (where � ∈ {≥, <}), if (y, q1, q2, . . . , qk) is a (rational) solution to ϕ then
(μ · y, μ · q1, . . . , μ · qk) is also a solution to ϕ.

Multiplicativity is a very mild condition. To the best of our knowledge, all
algorithms discussed in the literature, and all benchmarks of [18], have multi-
plicative environments. For example, in Fig. 2, if the resilience condition t < n/3
holds for a pair (n, t), then it also holds for (μ · n, μ · t); similarly, the function
N(n, t, f) = n − f also satisfies N(μ · n, μ · t, μ · f) = μ · n − μ · f = μ · N(n, t, f).
Moreover, if x ≥ t + 1 − f holds in σ, then we also have μ · x ≥ μ · t + 1 − μ · f
in μ · σ. Similarly for the other guard x ≥ n − t − f .

This property allows us to reason about multiplied paths in large systems.
Namely, condition (ii) from Definition 2 yields that if a rule is enabled in σ, it is
also enabled in μ · σ. This plays a crucial role in Sect. 5 where we need the fact
that a counterexample in a small system implies a counterexample in a large
system.
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Theorem 3. Parameterized coverability of threshold automata over multiplica-
tive environments with only constant rise guards is P-complete.

Proof. (Sketch.) P-hardness is proved by giving a logspace-reduction from the
Circuit Value problem ([20]) which is well known to be P-hard. In the following,
we sketch the proof of inclusion in P.

Let TA = (L, I, Γ,R) be a threshold automaton over a multiplicative envi-
ronment Env = (Π,RC , N) such that the guard of each transition in R is a
constant rise guard. We construct the set L̂ of locations that can be reached by
at least one process, and the set of transitions R̂ that can occur, from at least
one initial configuration. We initialize two variables XL and XR by XL := I and
XR := ∅, and repeatedly update them until a fixed point is reached, as follows:

– If there exists a rule r = (�, �′, true,u) ∈ R \ XR such that � ∈ XL, then set
XL := XL ∪ {�′} and XR := XR ∪ {r}.

– If there exists a rule r = (�, �′, (∧1≤i≤q xi ≥ ci),u) ∈ R\XR such that � ∈ XL,
and there exists rules r1, r2, . . . , rq such that each ri = (�i, �

′
i, ϕi,ui) ∈ XR

and ui[xi] > 0, then set XL := XL ∪ {�′} and XR := XR ∪ {r}.

In the full version of the paper, we prove that after termination XL = L̂ holds.
Intuitively, multiplicativity ensures that if a reachable configuration enables a
rule, there are reachable configurations from which the rule can occur arbitrarily
many times. This shows that any path of rules constructed by the algorithm is
executable.

4 Reachability

We now consider reachability problems for threshold automata. Formally, we
consider the following two versions of the reachability problem:

Definition 3 ((Parameterized) reachability). The reachability problem
consists of deciding, given a threshold automaton TA, two sets L=0,L>0 of loca-
tions, and an initial configuration σ0, if some configuration σ reachable from σ0

satisfies σ.κ(�) = 0 for every � ∈ L=0 and σ.κ(�) > 0 for every � ∈ L>0. The
parameterized reachability problem consists of deciding, given TA and L=0,L>0,
if there is an initial configuration σ0 such that some σ reachable from σ0 satisfies
σ.κ(�) = 0 for every � ∈ L=0 and σ.κ(�) > 0 for every � ∈ L>0.

Notice that the reachability problem clearly subsumes the coverability prob-
lem and hence, in the sequel, we will only be concerned with proving that both
problems are in NP. This will be a consequence of our main result, showing
that the reachability relation of threshold automata can be characterized as an
existential formula of Presburger arithmetic. This result has several other con-
sequences. In Sect. 5 we use it to give a new model checking algorithm for the
fault-tolerant logic of [18]. In Sect. 7 we report on an implementation whose
runtime compares favorably with previous tools.
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Reachability Relation as an Existential Presburger Formula. Fix a
threshold automaton TA = (L, I, Γ,R) over an environment Env . We construct
an existential Presburger arithmetic formula φreach with (2|L|+2|Γ |+2|Π|) free
variables such that φreach(σ, σ′) is true iff σ′ is reachable from σ.

Let the context of a configuration σ, denoted by ω(σ), be the set of all rise
guards that evaluate to true and all fall guards that evaluate to false in σ. Given
a schedule τ , we say that the path path(σ, τ) is steady if all the configurations
it visits have the same context. By the monotonicity of the guards of threshold
automata, path(σ, τ) is steady iff its endpoints have the same context, i.e., iff
ω(σ) = ω(τ(σ)). We have the following proposition:

Proposition 1. Every path of a threshold automaton with k guards is the con-
catenation of at most k + 1 steady paths.

Using this proposition, we first construct a formula φsteady such that
φsteady(σ, σ′) holds iff there is a steady path path(σ, τ) such that τ(σ) = σ′.

The Formula φsteady . For every rule r ∈ R, let xr be a variable ranging over
non-negative integers. Intuitively, the value of xr will represent the number of
times r is fired during the (supposed) path from σ to σ′. Let X = {xr}r∈R. We
construct φsteady step by step, specifying necessary conditions for σ, σ′ and X
to satisfy the existence of the steady path, which in particular implies that σ′ is
reachable from σ.

Step 1. σ and σ′ must have the same values of the parameters, which must satisfy
the resilience condition, the same number of processes, and the same context:

φbase(σ, σ′) ≡ σ.p = σ′.p ∧ RC (σ.p) ∧ N(σ.p) = N(σ′.p) ∧ ω(σ) = ω(σ′).

Step 2. For a location � ∈ L, let out�1, . . . , out�a�
be all outgoing rules from � and

let in�
1, . . . , in

�
b�

be all incoming rules to �. The number of processes in � after the
execution of the path is the initial number, plus the incoming processes, minus
the outgoing processes. Since xr models the number of times the rule r is fired,
we have

φL(σ, σ′,X) ≡
∧

�∈L

⎛

⎝
a�∑

i=1

xin�
i
−

b�∑

j=1

xout�
j

= σ′.κ(�) − σ.κ(�)

⎞

⎠

Step 3. Similarly, for the shared variables we must have:

φΓ (σ, σ′,X) ≡
∧

z∈Γ

(
∑

r∈R
(xr · r.u[z]) = σ′.g[z] − σ.g[z]

)

Step 4. Since path(σ, τ) must be steady, if a rule is fired along path(σ, τ) then
its guard must be true in σ and so

φR(σ,X) ≡
∧

r∈R
xr > 0 ⇒ (σ |= r.ϕ)
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Step 5. Finally, for every rule r that occurs in path(σ, τ), the path must contain
a “fireable” chain leading to r, i.e., a set of rules S = {r1, . . . , rs} ⊆ R such that
all rules of S are executed in path(σ, τ), there is a process in σ at r1.from, and
the rules r1, . . . , rs form a chain leading from r1.from to r.from. We capture this
by the constraint

φappl(σ,X) ≡
∧

r∈R

⎛

⎝xr > 0 ⇒
∨

S={r1,r2,...,rs}⊆R
φr
chain(S, σ,X)

⎞

⎠

where

φr
chain (S, σ, X) ≡

∧

r∈S

xr > 0 ∧ σ.κ(r1.from) > 0 ∧
∧

1<i≤s

ri−1.to = ri.from ∧ rs = r

Combining the Steps. Define φsteady(σ, σ′) as follows:

φsteady(σ, σ′) ≡ φbase(σ, σ′) ∧
∃X ≥ 0. φL(σ, σ′,X) ∧ φΓ (σ, σ′,X) ∧ φR(σ,X) ∧ φappl(σ,X) .

where ∃X ≥ 0 abbreviates ∃xr1 ≥ 0, . . . ,∃xr|R| ≥ 0. By our discussion, it is
clear that if there is a steady path leading from σ to σ′, then φsteady(σ, σ′) is
satisfiable. The following theorem proves the converse.

Theorem 4. Let TA be a threshold automaton and let σ, σ′ ∈ Σ be two con-
figurations. Formula φsteady(σ, σ′) is satisfiable if and only if there is a steady
schedule τ with τ(σ) = σ′.

Observe that, while φsteady has exponential length in TA when constructed
näıvely (because of the exponentially many disjunctions in φappl), its satisfiability
is in NP. Indeed, we first non-deterministically guess one of the disjunctions for
each conjunction of φappl and then check in nondeterministic polynomial time
that the (polynomial sized) formula with only these disjuncts is satisfiable. This
is possible because existential Presburger arithmetic is known to be in NP [13].

The Formula φreach . By Proposition 1, every path from σ to σ′ in a threshold
automaton with a set Φ of guards can be written in the form

σ = σ0
∗−→ σ′

0 → σ1
∗−→ σ′

1 → σ2 . . . σK
∗−→ σ′

K = σ′

where K = |Φ| + 1, and σi
∗−→ σ′

i is a steady path for each 0 ≤ i ≤ K. It is easy
to see from the definition of the transition relation between configurations that
we can construct a polynomial sized existential Presburger formula φstep such
that φstep(σ, σ′) is true iff σ′ can be reached from σ by firing at most one rule.
Thus, we define φreach(σ, σ′) to be

∃σ0, σ′
0, . . . , σK , σ′

K

⎛

⎝σ0 = σ ∧ σ′
K = σ′ ∧

∧

0≤i≤K

φsteady (σi, σ
′
i) ∧

∧

0≤i≤K−1

φstep(σ
′
i, σi+1)

⎞

⎠
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Theorem 5. Given a threshold automaton TA, there is an existential Presburger
formula φreach such that φreach(σ, σ′) holds iff σ

∗−→ σ′.

As deciding the truth of existential Presburger formulas is in NP, we obtain:

Corollary 1. The reachability and parameterized reachability problems are in
NP.

Remark 1. In [14] an algorithm was given for parameterized reachability of
threshold automata in which the updates of all rules contained in loops are
equal to 0. Our algorithm does not need this restriction.

5 Safety and Liveness

We recall the definition of Fault-Tolerant Temporal Logic (ELTLFT), the fragment
of LTL used in [18] to specify and verify properties of a large number of fault-
tolerant algorithms. ELTLFT has the following syntax, where S ⊆ L is a set of
locations and guard ∈ Φ is a guard:

ψ ::= pf | Gψ | Fψ | ψ ∧ ψ cf ::= S = 0 | ¬(S = 0) | cf ∧ cf
pf ::= cf | gf ⇒ cf gf ::= guard | gf ∧ gf | gf ∨ gf

An infinite path path(σ, τ) starting at σ = (κ, g,p), satisfies S = 0 if κ(�) = 0
for every � ∈ S, and guard if (g,p) satisfies guard . The rest of the semantics is
standard. The negations of specifications of the benchmarks [3–6,12,22,23,25,26]
can be expressed in ELTLFT, as we are interested in finding possible violations.

Example 3. One specification of the algorithm from Fig. 1 is that if myval i = 1
for every correct process i, then eventually acceptj = true for some correct
process j. In the words of the automaton from Fig. 2, a violation of this property
would mean that initially all correct processes are in location �1, but no correct
process ever reaches location �3. In ELTLFT we write this as

{�0, �2, �3} = 0 ∧ G ({�3} = 0) .

This has to hold under the fairness constraint

GF

(
((x ≥ t + 1 ∨ x ≥ n − t) ⇒ {�0}=0) ∧ {�1}=0 ∧ (x ≥ n − t ⇒ {�2}=0)

)
.

As we have self-loops at locations �0 and �2, a process could stay forever in one
of these two states, even if it has collected enough messages, i.e., if x ≥ t + 1
or x ≥ n − t. This is the behavior that we want to prevent with such a fairness
constraint. Enough sent messages should force each process to progress, so the
location eventually becomes empty. Similarly, as the rule leading from �1 has a
trivial guard, we want to make sure that all processes starting in �1 eventually
(send a message and) leave �1 empty, as required by the algorithm.
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a

F b

F c loopst

GF e

loopend
d

a b c e

Fig. 4. The cut graph of a formula F (a ∧ F b ∧ F c ∧ G d ∧ GF e) (left) and one lasso
shape for a chosen topological ordering a ≤ F b ≤ F c ≤ loopst ≤ GF e ≤ loopend (right).

In this section we study the following problem:

Definition 4 (Parameterized safety and liveness). Given a threshold
automaton TA and a formula ϕ in ELTLFT, check whether there is an ini-
tial configuration σ0 and an infinite schedule τ applicable to σ0 such that
path(σ0, τ) |= ϕ.

Since parameterized coverability is NP-hard, it follows that parameterized
safety and liveness is also NP-hard. We prove that for automata with multi-
plicative environments (see Definition 2) parameterized safety and liveness is in
NP.

Theorem 6. Parameterized safety and liveness of threshold automata with mul-
tiplicative environments is in NP.

The proof, which can be found in the full version, is very technical, and we
only give a rough sketch here. The proof relies on two notions introduced in [18].
First, it is shown in [18] that every ELTLFT formula is equivalent to a formula in
normal form of shape φ0 ∧Fφ1 ∧ · · · ∧Fφk ∧Gφk+1, where φ0 is a propositional
formula and φ1, . . . , φk+1 are themselves in normal form. Further, formulas can
be put in normal form in polynomial time. The second notion introduced in [18]
is the cut graph Gr(ϕ) of a formula in normal form. For our sketch it suffices to
know that Gr(ϕ) is a directed acyclic graph with two special nodes loopst and
loopend , and every other node is a subformula of ϕ in normal form (see Fig. 4).

For a formula ϕ ≡ φ0 ∧ Fφ1 ∧ . . . ∧ Fφk ∧ Gφk+1, we will say that its local
proposition is φ0 and its global proposition is the local proposition of φk+1. It is
shown in [18] that, given ϕ = φ0∧Fφ1∧· · ·∧Fφk∧Gφk+1, some infinite path sat-
isfies ϕ iff there exists a topological ordering v0, v1, . . . , vc = loopst, vc+1, . . . , vl =
loopend of the cut graph and a path σ0, τ0, σ1, . . . , σc, τc, . . . , σl−1, τl−1, σl such
that, roughly speaking, (among other technical conditions) every configuration
σi satisfies the local proposition of vi and every configuration in Cfgs(σi, τi)
satisfies the global proposition of every vj where j ≤ i.

Using multiplicativity and our main result that reachability is definable in
existential Presburger arithmetic, we show that for every proposition p, we can
construct an existential formula φp(σ, σ′) such that: If there is a path between σ
and σ′, all of whose configurations satisfy p, then φp(σ, σ′) is satisfiable. Further,
if φp(σ, σ′) is satisfiable, then there is a path between 2 ·σ and 2 ·σ′ all of whose
configurations satisfy p. (Here 2 · σ = ((2 · σ.κ), (2 · σ.g), (2 · σ.p))). Then, once
we have fixed a topological ordering V = v0, . . . , vl, (among other conditions),
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we check if there are configurations σ0, . . . , σl such that for every i, σi satisfies
the local proposition of vi and for every j ≤ i, φpj

(σi, σi+1) is satisfiable where
pj is the global proposition of vj . Using multiplicativity, we then show that this
procedure is sufficient to check if the given specification ϕ is satisfied.

Our algorithm consists therefore of the following steps: (1) bring ϕ in nor-
mal form; (2) construct the cut graph Gr(ϕ); (3) guess a topological ordering
of the nodes of Gr(ϕ); (4) for the guessed ordering, check in nondeterministic
polynomial time if the required sequence σ0, . . . , σl exists.

Remark 2. From an algorithm given in [18] one can infer that parameterized
safety and liveness is in NP for threshold automata with multiplicative environ-
ments, where all cycles are simple, and rules in cycles have update 0. (The NP
bound was not explicitly given in [18].) Our algorithm only requires multiplica-
tivity.

6 Synthesis of Threshold Guards

We study the bounded synthesis problem for constructing parameterized thresh-
old guards in threshold automata satisfying a given specification.

Sketch Threshold Automata. Let an indeterminate be a variable that can take
values over rational numbers. We consider threshold automata whose guards can
contain indeterminates. More precisely, a sketch threshold automaton is a tuple
TA = (L, I, Γ,R), just as before, except for the following change. Recall that
in a threshold automaton, a guard is an inequality of one of the following two
forms:

x ≥ a0 + a1 · p1 + . . . + a|Π| · p|Π| or x < a0 + a1 · p1 + . . . + a|Π| · p|Π|

where a0, a1, . . . , a|Π| are rational numbers. In a sketch threshold automaton,
some of the a0, a1, . . . , a|Π| can be indeterminates. Moreover, indeterminates
can be shared between two or more guards.

Given a sketch threshold automaton TA and an assignment μ to the indeter-
minates, we let TA[μ] denote the threshold automaton obtained by substituting
the indeterminates by their values in μ. We define the bounded synthesis problem:

Given: An environment Env, a sketch threshold automaton TA with inde-
terminates v1, . . . , vm, a formula ϕ of ELTLFT, and a polynomial p.
Decide: Is there an assignment μ to v1, . . . , vm of size O(p(|TA| + |ϕ|))
(i.e., the vector (μ(v1), . . . , μ(vm)) of rational numbers can be encoded in
binary using O(p(|TA| + |ϕ|)) bits) such that TA[μ] satisfies ¬ϕ (i.e., such
that for every initial configuration σ0 in TA[μ], every infinite run starting
from σ0 satisfies ¬ϕ)?



156 A. R. Balasubramanian et al.

We say that an assignment μ to the indeterminates makes the environment
multiplicative if the conditions of Definition 2 are satisfied after plugging in the
assignment μ in the automaton. In the following, we will only be concerned with
assignments which make the environment multiplicative.

Since we can guess an assignment in polynomial time, by Theorem 6 it follows

Theorem 7. Bounded synthesis is in Σp
2 .

By a reduction from the Σ2-SAT problem, we also provide a matching lower
bound.

Theorem 8. Bounded synthesis is Σp
2 -complete.

The synthesis problem is defined as the bounded synthesis problem, but
lifting the constraint on the size of μ. While we do not know the exact complexity
of the synthesis problem, we can show that, for a large and practically motivated
class of threshold automata introduced in [21], the synthesis problem reduces to
the bounded synthesis problem. We proceed to describe and motivate the class.

The parameter variables of fault-tolerant distributed algorithms usually con-
sist of a variable n denoting the number of processes running the algorithm
and various “failure” variables for the number of processes exhibiting different
kinds of failures (for example, a variable t1 might be used to specify the number
of Byzantine failures, a variable t2 for crash failures, etc.). The following three
observations are made in [21]:

(1) The resilience condition of these algorithms is usually of the form n >
∑k

i=1 δiti where ti are parameter variables and δi are natural numbers.
(2) Threshold guards typically serve one of two purposes: to check if at least

a certain fraction of the processes sends a message (for example, x > n/2
ensures that a strict majority of processes has sent a message), or to bound
the number of processes that crash.

(3) The coefficients of the guards are rational numbers with small denominators
(typically at most 3).

By (2), the structure of the algorithm guarantees that the value of a variable
x never goes beyond n, the number of processes. Therefore, given a threshold
guard template x �� u ·π+v, where u is a vector of indeterminates, π is a vector
of parameter variables, v is an indeterminate, and �� is either ≥ or <, we are only
interested in assignments μ of u and v which satisfy 0 ≤ μ(u)·ν(π)+μ(v) ≤ n for
every valuation ν(π) of π respecting the resilience condition. Guards obtained
by instantiating guard templates with such a valuation μ are called sane guards
[21].

The following result is proved in [21]: Given a resilience condition n >
∑k

i=1 δiti, and an upper bound D on the denominator of the entries of μ (see
(1) and (3) above), the numerators of the entries of μ are necessarily of polyno-
mial size in k, δ1, . . . , δk. Therefore, the synthesis problem for sane guards and
bounded denominator, as introduced in [21], reduces to the bounded synthesis
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problem, and so it can be solved in Σp
2 time. Moreover, the reduction used in

Theorem 8 to prove Σp
2 -hardness yields sketch threshold automata with sane

guards, and so the the synthesis problem for sane guards and bounded denomi-
nator is also Σp

2 -complete.

7 Experimental Evaluation

Following the techniques presented in this paper, we have verified a number of
threshold-based fault-tolerant distributed algorithms.

Table 1. The experiments were run on a machine with Intel® CoreTM i5-7200U CPU
with 7.7 GiB memory. The time limit was set to be 5 h and the memory limit was set
to be 7 GiB. TLE (MLE) means that the time limit (memory limit) exceeded for the
particular benchmark.

Input Case (if more than one) Threshold automaton Time, seconds

|L| |R| Our tool ByMC

nbacg 24 64 11.84 10.29

nbacr 77 1031 490.79 1081.07

aba Case 1 37 202 251.71 751.89

aba Case 2 61 425 2856.63 TLE

cbc Case 1 164 2064 MLE MLE

cbc Case 2 73 470 2521.12 36.57

cbc Case 3 304 6928 MLE MLE

cbc Case 4 161 2105 MLE MLE

cf1s Case 1 41 280 50.5 55.87

cf1s Case 2 41 280 55.88 281.69

cf1s Case 3 68 696 266.56 7939.07

cf1s hand-coded TA 9 26 7.17 2737.53

c1cs Case 1 101 1285 1428.51 TLE

c1cs Case 2 70 650 1709.4 11169.24

c1cs Case 3 101 1333 TLE MLE

c1cs hand-coded TA 9 30 37.72 TLE

bosco Case 1 28 152 58.11 89.64

bosco Case 2 40 242 157.61 942.87

bosco Case 3 32 188 59 104.03

bosco hand-coded TA 8 20 20.95 510.32



158 A. R. Balasubramanian et al.

Benchmarks. Consistent broadcast (strb) [26] is given in Fig. 1 and its thresh-
old automaton is depicted in Fig. 2. The algorithm is correct if in any execution
either all correct processes or none set accept to true; moreover, if all correct
processes start with value 0 then none of them accept, and if all correct processes
start with value 1 then they all accept. The algorithm is designed to tolerate
Byzantine failures of less than one third of processes, that is, if n > 3t. Folklore
Reliable Broadcast (frb) [5] that tolerates crash faults and Asynchronous Byzan-
tine agreement (aba) [3] satisfy the same specifications as consistent broadcast,
under the same resilience condition.

Non-blocking atomic commit (nbacr) [23] and (nbacg) [12] deal with faults
using failure detectors. We model this by introducing a special location such that
a process is in it if and only if it suspects that there is a failure of the system.

Condition-based consensus (cbc) [22] reaches consensus under the condition
that the difference between the numbers of processes initialized with 0 and 1
differ by at least t, an upper bound on the number of faults. We also check
algorithms that allow consensus to be achieved in one communication step, such
as cfcs [6], c1cs [4], as well as Byzantine One Step Consensus bosco [25].

Evaluation. Table 1 summarizes our results and compares them with the results
obtained using the ByMC tool [17]. Due to lack of space, we have omitted those
experiments for which both ByMC and our tool took less than 10 s.

We implemented our algorithms in Python and used Z3 as a back-end SMT
solver for solving the constraints over existential Presburger arithmetic. Our
implementation takes as input a threshold automaton and a specification in
ELTLFT and checks if a counterexample exists. We apply to the latest version of
the benchmarks of [17]. Each benchmark yields two threshold automata, a hand-
coded one and one obtained by a data abstraction of the algorithm written in
Parametric Promela. For automata of the latter kind, due to data abstraction, we
have to consider different cases for the same algorithm. We test each automaton
against all specifications for that automaton.

Our tool outperforms ByMC in all automata with more than 30 states, with
the exception of the second case of cbc. It performs worse in most small cases,
however in these cases, both ByMC and our tool take less than 10 s. ByMC works
by enumerating all so-called schemas of a threshold automaton, and solving a
SMT problem for each of them; the number of schemas can grow exponentially
in the number of guards. Our tool avoids the enumeration. Since the number of
schemas for the second case of cbc is just 2, while the second case of aba and
third case of cf1s have more than 3000, avoiding the enumeration seems to be
key to our better performance.
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Abstract. Good-For-Games (GFG) automata are nondeterministic
automata that can resolve their nondeterministic choices based on the
past. The fact that the synthesis problem can be reduced to solving a
game on top of a GFG automaton for the specification (that is, no deter-
minization is needed) has made them the subject of extensive research in
the last years. GFG automata are defined for general alphabets, whereas
in the synthesis problem, the specification is over an alphabet 2I∪O, for
sets I and O of input and output signals, respectively. We introduce
and study (I/O)-aware GFG automata, which distinguish between non-
determinism due to I and O: both should be resolved in a way that
depends only on the past; but while nondeterminism in I is hostile, and
all I-futures should be accepted, nondeterminism in O is cooperative,
and a single O-future may be accepted. We show that (I/O)-aware GFG
automata can be used for synthesis, study their properties, special cases
and variants, and argue for their usefulness. In particular, (I/O)-aware
GFG automata are unboundedly more succinct than deterministic and
even GFG automata, using them circumvents determinization, and their
study leads to new and interesting insights about hostile vs. collaborative
nondeterminism, as well as the theoretical bound for realizing systems.

1 Introduction

Synthesis is the automated construction of systems from their specifications [6,
18]. The system should realize the specification, namely satisfy it against all
possible environments. More formally, the specification is a language L of infinite
words over an alphabet 2I∪O, where I and O are sets of input and output
signals, respectively, and the goal is to build a reactive system that outputs
assignments to the signals in O upon receiving assignments to the signals in I,
such that the generated sequence of assignments, which can be viewed as an
infinite computation in (2I∪O)ω, is in L [18]. The common approach for solving
the synthesis problem is to define a two-player game on top of a deterministic
automaton D for L. The positions of the game are the states of D. In each
round of the game, one player (the environment) provides an input assignment
in 2I , the second player (the system) responds with an output assignment in
2O, and the game transits to the corresponding successor state. The goal of the
system is to respond in a way so that the sequence of visited positions satisfies the
c© Springer Nature Switzerland AG 2020
D. V. Hung and O. Sokolsky (Eds.): ATVA 2020, LNCS 12302, pp. 161–178, 2020.
https://doi.org/10.1007/978-3-030-59152-6_9
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acceptance condition of D. Thus, the generated computation is in L. The system
has a winning strategy in the game iff the language L is (I/O)-realizable [9].

Now, if one replaces D by a nondeterministic automaton A for L, the sys-
tem has to respond not only with an output, but also with a transition of A
that should be taken. This is problematic, as this choice of a transition should
accommodate all possible future choices of the environment. In particular, if dif-
ferent future choices of the environment induce computations that are all in the
language of A yet require different nondeterministic choices, the system cannot
win. Thus, it might be that L is realizable and still the system has no winning
strategy in the game.

Some nondeterministic automata are, however, good for games. The study
of such automata started in [13], by means of tree automata for derived lan-
guages. It then continued by means of good for games (GFG) word automata
[11].1 Intuitively, a nondeterministic automaton A is GFG if it is possible to
resolve its nondeterminism in a manner that only depends on the past and still
accepts all the words in the language. Formally, A over an alphabet Σ and state
space Q is GFG if there is a strategy g : Σ∗ → Q, such that for every word
w = σ1 · σ2 · · · ∈ Σω, the sequence g(w) = g(ε), g(σ1), g(σ1 · σ2), . . . is a run of
A on w, and whenever w is accepted by A, the run g(w) is accepting. Thus, the
strategy g, which witnesses A’s GFGness, maps each word x ∈ Σ∗ to the state
that is visited after x is read. Obviously, there exist GFG automata: deterministic
ones, or nondeterministic ones that are determinizable by pruning (DBP); that
is, ones that just add transitions on top of a deterministic automaton.2 In terms
of expressive power, it is shown in [13,17] that GFG automata with an accep-
tance condition γ (e.g., Büchi) are as expressive as deterministic γ automata.
In terms of succinctness, GFG automata on infinite words are more succinct
(possibly even exponentially) than deterministic ones [4,12]. Further research
studies decidability, typeness, complementation, construction, and minimization
for GFG automata [1,3,5,12], as well as GFG automata for ω-pushdown lan-
guages [15]. Beyond its computational advantages, the use of GFG automata
circumvents cumbersome determinization constructions that traditional synthe-
sis algorithms involve [14,19].

Recall that in order to be GFG, an automaton needs a strategy g : Σ∗ → Q
that resolves nondeterminism in a way that depends only on the past. We argue
that this is a too strong requirement for the synthesis problem. There, Σ = 2I∪O,
and we suggest to distinguish between nondeterminism due to the 2I component
of each letter, which is hostile, and nondeterminism due to the 2O component,
which is cooperative. As a simple example, consider the nondeterministic Büchi
(in fact, looping) automaton A1 over 2{a,b} appearing in Fig. 1. The Boolean

1 GFGness is also used in [7] in the framework of cost functions under the name
“history-determinism”.

2 In fact, DBP automata were the only examples known for GFG automata when the
latter were introduced in [11]. As explained there, however, even DBP automata are
useful in practice, as their transition relation is simpler than the one of the embodied
deterministic automaton and it can be defined symbolically.
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assertions on the transitions describe the letters with which they can be taken.
For example, the transition from q0 to q1 can be taken with the letters {a} or
{a, b}. Note that A1 is not GFG. Indeed, a strategy g : (2{a,b})∗ → Q neglects
either the word {a}ω, in the case g({a}) = q1, or the word {a} · {a, b}ω, in the
case g({a}) = q2. Assume that a is an input signal and b is an output signal,
and that we play the synthesis game on top of A1. Since the system controls
the assignment to b, it wins the game: on input {a}, it can proceed to q1, and
keep assigning true to b, staying forever in q1, or it can proceed to q2 and keep
assigning false to b, staying forever in q2.

q0

q1

q2

q3

a

a

¬a

b

¬b

true

Fig. 1. The automaton A1 is not GFG, yet is ({a}/{b})-aware GFG.

We introduce and study (I/O)-aware GFG automata, which distinguish
between nondeterminism due to I and O: both should be resolved in a way
that depends on the past; but while nondeterminism in I is hostile, and the
strategy witnessing the GFGness should address all possible “I-futures”, non-
determinism in O is cooperative, and a single “O-future”, which the strategy
chooses, is sufficient. More formally, an automaton A over 2I∪O is (I/O)-aware
GFG if for every word wI ∈ (2I)ω, if wI is hopeful, namely it can be paired with
a word wO ∈ (2O)ω to a computation accepted by A, then the pairing as well
as the accepting run of A can be produced in an on-line manner, thus in a way
that only depends on the past. For example, the automaton A1 from Fig. 1 is
({a}/{b})-aware GFG, as given the a-component of a letter, there is a strategy
that pairs it with a b-component and a transition of A1 in a way that all the
hopeful words in (2{a})ω are paired with a word in (2{b})ω and an accepting run
on the obtained computation.

After introducing (I/O)-aware GFG automata, our first set of results con-
cerns their applications and decidability. First, we show that nondeterminisitic
(I/O)-aware GFG automata are sound and complete for (I/O)-realizability: the
system has a winning strategy in a game played on them iff the specification is
(I/O)-realizable. Note that using a nondeterministic automaton is always sound.
The use of deterministic automata, then GFG automata, and now (I/O)-aware
GFG automata, is required for the completeness. We conclude that the synthe-
sis problem for (I/O)-aware GFG automata with acceptance condition γ can
be solved in the same complexity as deciding games with γ winning conditions.
Thus, it coincides with the complexity for deterministic automata. In particular,
for (I/O)-aware nondeterministic Büchi automata, the synthesis problem can
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be solved in quadratic time. Then, we study the problem of deciding whether
a given nondeterministic automaton is (I/O)-aware GFG. We show that the
problem is reducible to the problem of deciding whether the projection of A on
I is GFG, and following [3], conclude that it is polynomial for Büchi automata.
We also extend the notion of DBP automata to the (I/O)-aware setting, and
study the relation between DBP and (I/O)-aware DBP automata, as well as the
relation between (I/O)-aware DBP and (I/O)-aware GFG automata.

It is tempting to believe that the more signals we identify as outputs, the
“more (I/O)-aware GFG” the automaton is. Our second set of results has to
do with the fact that the above intuition is wrong. Essentially, this follows
from the fact that while nondeterminism in O is cooperative, a strategy that
witnesses (I/O)-aware GFGness has to “cover” only hopeful input words, and
the identification of signals as outputs may make some input words hopeful.
In particular, while all deterministic automata are GFG, not all deterministic
automata are (I/O)-aware GFG. In order to address this phenomenon, we intro-
duce (I+/O−)-aware GFG automata: an automaton A is (I+/O−)-aware GFG
if there is a partition 〈I ′, O′〉 of I ∪ O such that I ⊆ I ′ and A is (I ′/O′)-aware
GFG. Intuitively, since I ⊆ I ′, then the system has less control in the 〈I ′, O′〉
partition, which we show to imply that (I+/O−)-aware GFG automata are sound
and complete for (I/O)-realizablity. As discussed above, however, the connec-
tion between controlability and GFGness is not monotone. Consequently, while
deciding (I/O)-aware GFGness for Büchi automata is polynomial, we show that
deciding their (I+/O−)-aware GFGness requires a check of all possible partitions
of I ∪ O, and is NP-complete in |I ∪ O|.

(I/O)-aware GFG automata significantly extend the type of automata that
are sound and complete for (I/O)-realizability. A natural problem that follows is
the generation of small (I+/O−)-aware GFG automata. Our third set of results
concerns this challenge, and its tight relation to the problem of generating small
realizing (I/O)-transducers. We describe two heuristics in this front. In the first,
we introduce the notion of (I/O)-coverage between automata, which together
with (I/O)-aware GFGness entails preservation of (I/O)-realizability. We then
discuss generation of small (I/O)-covering automata, showing that (I/O)-aware
GFG automata are unboundedly more succinct than deterministic and even
GFG automata. Intuitively, while an automaton may need a large state space
in order to recognize all computations, an (I/O)-aware GFG automaton that is
used for synthesis may reject some of the computations, as long as it covers all
hopeful input words. While (I/O)-covering GFG automata under-approximate
the specification, our second heuristic is counter-example guided inductive syn-
thesis (CEGIS), and it generates over-approximating GFG automata. Unlike
earlier CEGIS efforts [2,20,21], our starting point is an LTL formula, and we
iteratively refine GFG automata that over-approximate the specification and its
complement. Our GFG automata are obtained by applying the subset construc-
tion on the nondeterministic automaton and adding nondeterministic transitions
to states associated with strict subsets of the successor subset. Working with the
subset construction is always sound and complete for safety automata. For Büchi
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automata, refinement steps are needed in cases richer information that is needed
for keeping track of visits in accepting states. Working with GFG automata, we
let the winning strategy use small subsets, in particular follow the nondetermin-
istic automaton when possible.

2 Preliminaries

2.1 Automata

A nondeterministic word automaton over a finite alphabet Σ is A =
〈Σ,Q, q0, δ, α〉, where Q is a set of states, q0 ∈ Q is an initial state, δ : Q × Σ →
2Q \ {∅} is a total transition function, and α is an acceptance condition. We
say that A is deterministic if for every q ∈ Q and σ ∈ Σ, we have that
|δ(q, σ)| = 1. A run of A on an infinite word σ0, σ1, · · · ∈ Σω is a sequence of
states r = q0, q1, . . . , where for every position i ≥ 0, we have that qi+1 ∈ δ(qi, σi).
We use inf(r) to denote the set of states that r visits infinitely often. Thus,
inf(r) = {q : qi = q for infinitely many i-s}.

We consider parity acceptance condition, where α : Q → {1, . . . , k}, and a
run r is accepting iff minq∈inf(r)(α(q)) is even. We also consider Büchi acceptance
condition, where α ⊆ Q, and a run is accepting iff it visits states in α infinitely
often; that is, α ∩ inf(r) �= ∅. Finally, we consider looping automata, which are a
special case of Büchi automata in which all states except for one rejecting sink
are in α (equivalently, α = Q and the transition function need not be total). The
language of A, denoted L(A), is the set of all words w ∈ Σω such that A has an
accepting run on w.

We use three letter acronyms in {D,N} × {P,B,L} × {W} to denote classes
of word automata. The first letter indicates whether this is a deterministic or
nondeterministic automaton, and the second indicates the acceptance condition.
For example, NLW is a nondeterministic looping automaton.

We say that a nondeterministic automaton is good for games (GFG, for
short) if its nondeterminism can be resolved based on the past [11]. Formally, a
nondeterministic automaton A = 〈Σ,Q, q0, δ, α〉 is GFG if there exists a func-
tion g : Σ∗ → Q such that the following hold: (1) g(ε) = q0, (2) The strat-
egy g is compatible with δ; thus, for every w · σ ∈ Σ∗ × Σ, we have that
g(w · σ) ∈ δ(g(w), σ), and (3) The strategy g “covers” all words in L(A); thus
for every word w = σ0 · σ1 · · · ∈ L(A), the run that g induces on w, namely
g(ε), g(σ0), g(σ0 · σ1), . . . , is accepting. We then say that g witnesses the GFG-
ness of A.

2.2 Games

A game is a tuple G = 〈Vand, Vor, E, α〉, where Vand and Vor are disjoint sets of
positions, owned by Player and and Player or, respectively. Let V = Vand∪Vor.
Then, E ⊆ V × V is an edge relation, and α is a winning condition, defining a
subset of V ω. A play is an infinite sequence of positions v0, v1, · · · ∈ V ω, such
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that for every index i ≥ 0, we have that 〈vi, vi+1〉 ∈ E. A play π ∈ V ω is winning
for Player or if π satisfies α, and is winning for Player and otherwise. We focus
here on Büchi games, where α ⊆ V and π satisfies α if it visits the positions in
α infinitely often.

Starting from some position v0 ∈ V , the players generate a play in G as
follows. In every round, if the current position is v ∈ Vj , for j ∈ {and,or},
then Player j chooses a successor v′ of v, and the play proceeds to position v′.
A strategy for a player j ∈ {and,or} is a function fj : V ∗ × Vj → V such that
for every u ∈ V ∗ and v ∈ Vj , we have that 〈v, fj(u, v)〉 ∈ E. Thus, a strategy for
Player j maps the history of the game so far, when it ends in a position v owned
by Player j, to a successor of v. Two strategies fand, for, and an initial position
v0 induce a play π = v0, v1, v2 · · · ∈ V ω, where for every i ≥ 0, if vi ∈ Vj , for
j ∈ {and,or}, then vi+1 = fj((v0, . . . , vi−1), vi). We say that π is the outcome
of for, fand, and v0, and denote π = outcome(for, fand, v0).

We say that a position v ∈ V is winning for Player or if there exists a
strategy for such that for every strategy fand, we have that outcome(for, fand, v)
is winning for Player or. We then say that for is a winning strategy of Player
or from v. We define similarly winning positions and strategies for Player and.

It is known that Büchi games are determined. That is, every position in a
Büchi game is winning for exactly one of the players. Solving a game is decid-
ing which vertices are winning for every player. Büchi games can be solved in
quadratic time [22].

2.3 Synthesis

Consider two finite sets I and O of input and output signals, respectively. For
two words wI = i0 · i1 · i2 · · · ∈ (2I)ω and wO = o0 · o1 · o2 · · · ∈ (2O)ω, we
define wI ⊕ wO as the word in (2I∪O)ω obtained by merging wI and wO. Thus,
wI ⊕ wO = (i0 ∪ o0) · (i1 ∪ o1) · (i2 ∪ o2) · · · .

An (I/O)-transducer models a finite-state system that generates assign-
ments to the output signals while interacting with an environment that gen-
erate assignments to the input signals. Formally, an (I/O)-transducer is T =
〈I,O, S, s0, ρ, τ〉, where S is a set of states, s0 ∈ S is an initial state, ρ : S×2I →
S is a transition function, and τ : S → 2O is a labelling function on the states.
Intuitively, T models the interaction of an environment that generates at each
moment in time a letter in 2I with a system that responds with letters in 2O. Con-
sider an input word wI = i0 · i1 · · · · ∈ (2I)ω. The run of T on wI is the sequence
s0, s1, s2 . . . such that for all j ≥ 0, we have that sj+1 = ρ(sj , ij). The output of
T on wI is then wO = o1 · o2 · · · · ∈ (2O)ω, where oj = τ(sj) for all j ≥ 1. Note
that the first output assignment is that of s1, thus τ(s0) is ignored. This reflects
the fact that the environment initiates the interaction. The computation of T on
wI , denoted T (wI), is then wI ⊕wO. Thus, T (wI) = i0∪o1, i1∪o2, . . . ∈ (2I∪O)ω.

For an automaton A over 2I∪O, we say that T (I/O)-realizes A if for every
input word wI ∈ (2I)ω, the computation of T on wI is in L(A). If there exists
an (I/O)-transducer T that (I/O)-realizes A, then we say that A is (I/O)-
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realizable. The synthesis problem is to decide, given an automaton A, whether
A is (I/O)-realizable, and if so, to return an (I/O)-transducer that realizes it.

Given an NBW A = 〈2I∪O, Q, q0, δ, α〉 with a total δ, we define the synthesis
game Gsyn(A, I, O) as follows. Intuitively, the game is played over Q, and starts
at q0. Let q be the position of the game at the beginning of some round. The
round proceeds as follows: first, Player and, who represents the environment,
chooses a letter i ∈ 2I . Then, Player or, who represents the system, chooses a
letter o ∈ 2O and a state q′ such that q′ ∈ δ(q, i ∪ o), and the game proceeds to
q′. Formally, we define Gsyn(A, I, O) = 〈Vand, Vor, E, α〉, where Vand = Q, Vor =
Q × 2I , and E = {〈q, 〈q, i〉〉 : q ∈ Vand and i ∈ 2I} ∪ {〈〈q, i〉, q′〉 : there is o ∈
2O such that q′ ∈ δ(q, i ∪ o)}.

We say that an automaton A over alphabet 2I∪O is sound and complete for
(I/O)-realizability when A is (I/O)-realizable iff q0 is a winning state for Player
or in Gsyn(A, I, O). Note that all NBWs are sound for (I/O)-realizability, in
the sense that if q0 is a winning state for the system in Gsyn(A, I, O), then A
is (I/O)-realizable. However, there are (I/O)-realizable NBWs for which q0 is
not winning for Player or. The inherent difficulty in A being nondeterministic
lies in the fact that each move of Player or to a successor state in A should
accommodate all possible future choices of Player and. If different future choices
of Player and induce computations that are all in the language of A yet require
different nondeterministic choices, then Player or cannot win.

3 (I/O)-Aware Good-for-Games Automata

For an automaton A over 2I∪O and a word wI ∈ (2I)ω, we say that wI is
hopeful in A if there exists a word wO ∈ (2O)ω such that wI ⊕ wO ∈ L(A).
Consider a nondeterministic automaton A = 〈2I∪O, Q, q0, δ, α〉, and let g :
(2I)∗ → 2O × Q be a function. We denote the first and second components
of g by gO and gQ, respectively. That is, for a word wI ∈ (2I)∗, we have that
g(wI) = 〈gO(wI), gQ(wI)〉. We say that A is (I/O)-aware GFG if there exists a
function g : (2I)∗ → 2O × Q such that the following hold.

1. g(ε) = 〈∅, q0〉,
2. The strategy g is compatible with δ. Thus for every wI ∈ (2I)∗ and i ∈ 2I ,

we have that gQ(wI · i) ∈ δ(gQ(wI), i ∪ gO(wI)), and
3. The strategy g “covers” all input words that are hopeful in A. Thus for every

wI that is hopeful in A, we have that gQ(wI) = gQ(ε), gQ(i0), gQ(i0 · i1), . . .
is an accepting run on wI ⊕ (gO(ε) · gO(i0) · gO(i0 · i1) · · · ).

Example 1. Consider the nondeterministic Büchi (in fact, looping) automaton
A2 over 2{a,b,c} appearing in Fig. 2. Missing transitions lead to a rejecting sink.

Note that A2 is not GFG. Indeed, a strategy g : (2{a,b,c})∗ → Q neglects
either the word {a, b}ω, in the case g({a, b}) = q1, or the word {a, b} · {a, b, c}ω,
in the case g({a, b}) = q2.

Assume that a and b are input signals and c is an output signal. Now, a
function g : (2{a,b})∗ → 2{c} × Q such that g(ε) = 〈∅, q0〉, g({a, b}) = 〈∅, q2〉,
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q0

q1

q2

q3
q4

a ∧ b

a ∧ b

a ∧ ¬b

a ∧ b ∧ c

a ∧ b ∧ ¬c

¬a ∧ b

¬a ∧ ¬b

true

Fig. 2. The automaton A2 is not GFG, yet is ({a, b}/{c})-aware GFG.

g({a}) = 〈∅, q3〉 and g(∅ · (2{a,b})∗) = g({a} · {b} · (2{a,b})∗) = g({a, b} · {a, b} ·
(2{a,b})∗) = 〈∅, q4〉, witnesses that A2 is ({a, b}/{c})-aware GFG. Intuitively,
identifying c as an output enables A2 to accept only one of the words {a, b}ω

and {a, b} · {a, b, c}ω. 
�

As demonstrated in Example 1, the distinction between the nondeterminism
in I and O makes some automata good for games. Beyond being applicable to
more specifications, the cooperative nature of the nondeterminism in O makes
(I/O)-aware GFG automata unboundedly more succinct than GFG automata.
Indeed, a GFG automaton may need a large state space in order to recognize
all computations, whereas an (I/O)-aware GFG automaton only needs to cover
all hopeful input words. Similarly, determinization, even in GFG automata, may
be needed in order to accept in an on-line manner all computations, and is not
needed if we only care to accept a subset of them. We get back to this point in
Sect. 7.

Remark 1 [(I/O)-aware DBP automata]. Translating LTL formulas to non-
deterministic automata, one typically uses the Büchi acceptance condition [23],
which motivates our focus on NBWs. For safety properties, one ends up with
NLWs – nondeterministic looping automata. As studied in [4,16], GFG NLWs
are determinizable by prunning (DBP, for short); that is, their transition function
embodies a deterministic transition function that recognizes the same language.
Extending the study to the (I/O)-aware setting is possible: We say that an NBW
A is (I/O)-aware DBP if it is possible to resolve the nondeterministic choices of
A by choosing, for every state q and assignment i ∈ 2I , a transition from q that
agrees with i, in a way that covers all input sequences that are hopeful in A. In
the full version, we define (I/O)-aware DBP automata formally and show that
all the known results about DBPness extend easily to the (I/O)-aware setting.
In particular, while every (I/O)-aware DBP automaton is (I/O)-aware GFG,
the reverse direction is valid only for (I/O)-aware GFG NLWs. 
�

4 Synthesis with (I/O)-Aware GFG Automata

In this section we show that, as has been the case with GFG automata, (I/O)-
aware GFG automata are sound and complete for (I/O)-realizability. Also, in
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spite of their succinctness, the complexity of the synthesis problem for (I/O)-
aware GFG automata coincides with that of deterministic automata, and the
problem of deciding whether a given automaton is (I/O)-aware GFG is not
more complex than the problem of deciding whether a given automaton is GFG.

Theorem 1. (I/O)-aware GFG automata are sound and complete for (I/O)-
realizability.

Proof. Consider an (I/O)-aware GFG automaton A = 〈2I∪O, Q, q0, δ, α〉. We
show that q0 is winning for Player or (the system) in Gsyn(A, I, O) iff A is
(I/O)-realizable.

The first direction holds for general automata: if Player or wins
Gsyn(A, I, O), then his winning strategy induces an (I/O)-transducer that
(I/O)-realizes A.

For the other direction, assume that A is a realizable (I/O)-aware GFG
automaton. Let g : (2I)∗ → 2O × Q be a function that witnesses A’s (I/O)-aware
GFGness, and let Gsyn(A, I, O) = 〈Q,Q × 2I , E, α〉 be the synthesis game. We
describe a winning strategy for Player or in Gsyn(A, I, O). Consider a prefix of
a play q0, 〈q0, i0〉, q1, 〈q1, i1〉, . . . , qk, 〈qk, ik〉. A winning strategy for Player or is
to move from 〈qk, ik〉 to gQ(i0 · i1 · · · ik). By the second condition on (I/O)-aware
GFGness, the function g is compatible with δ, and so the above move exists. In
addition, since A is realizable, then all the words in (2I)ω are hopeful in A. Then,
by the third condition on (I/O)-aware GFGness, we have that the run that gQ

produces is accepting. Therefore, this strategy is indeed winning for Player or. 
�

Example 2. Consider again the automaton A2 from Example 1. Let I = {a, b}
and O = {c}. It is easy to see that Playeror does not win the synthesis game on A2.
Indeed, Player and can win by starting with input {b}. Since A2 is ({a, b}/{c})-
aware GFG, we can conclude that A2 is not ({a, b}/{c})-realizable. 
�

The following corollary follows immediately from Theorem1 and from the
known complexity of deciding Büchi games [22].

Corollary 1. The synthesis problem for (I/O)-aware automata with acceptance
condition γ can be solved in the complexity of deciding games with winning condi-
tion γ. In particular, the synthesis problem for (I/O)-aware NBWs can be solved
in quadratic time.

We turn to study the complexity of deciding whether a given automaton is
(I/O)-aware GFG. For an NBW A = 〈2X , Q, q0, δ, α〉 and a partition 〈I,O〉 of
X, we define the projection of A on I as A|I = 〈2I , Q, q0, δ

′, α〉, where for every
two states q1, q2 ∈ Q and letter i ∈ 2I , we have that q2 ∈ δ′(q1, i) iff there exists
o ∈ 2O such that q2 ∈ δ(q1, i ∪ o). Thus, A|I is obtained from A by hiding the
2O-component in its transitions. Note that A|I accepts all the words in (2I)ω

that are hopeful in A.

Lemma 1. For every automaton A over 2X and every partition 〈I,O〉 of X,
we have that A is (I/O)-aware GFG iff A|I is GFG.
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Lemma 1 implies the following. The result for NBWs also uses [3].

Corollary 2. Consider an acceptance condition γ. The complexity of deciding
(I/O)-aware GFGness for γ automata coincides with the complexity of decid-
ing GFGness for γ automata. In particular, deciding (I/O)-aware GFGness for
NBWs can be done in polynomial time.

5 Non-monotonicity of (I/O)-Aware GFGness

For a set X of signals and two partitions 〈I,O〉 and 〈I ′, O′〉 of X to input
and output signals, we say that 〈I,O〉 has less control than 〈I ′, O′〉 if I ′ ⊆ I
(equivalently, O′ ⊇ O). That is, in 〈I ′, O′〉, the system assigns values to all
the signals in O and possibly some more, which have been assigned by the
environment in the partition 〈I,O〉.

Consider a specification NBW A over the alphabet 2X . It is not hard to
see that if 〈I,O〉 has less control than 〈I ′, O′〉 and A is (I/O)-realizable, then
A is also (I ′/O′)-realizable. Indeed, an (I ′/O′)-transducer that realizes A can
be obtained from an (I/O)-transducer that realizes A by moving the signals
in I \ I ′ from the transitions to the output function, and arbitrarily pruning
nondeterminism. On the other hand, as we shall see below, the NBW A may be
(I/O)-aware GFG and not (I ′/O′)-aware GFG, and vice-versa. We first study
the two extreme partitions, namely the ones when the system has all or no
control.

Lemma 2. Every NBW over 2X is (∅/X)-aware GFG. Every NBW over 2X is
(X/∅)-aware GFG iff it is GFG.

We continue to the general case, showing that the identification of signals as
input or output can both improve and harm (I/O)-aware GFGness. We start
with an example.

Example 3. Consider again the NLW A2 from Example 1. As we have seen
there, A2 is not GFG, yet is ({a, b}/{c})-aware GFG. Here, we claim that A2

is not ({a}/{b, c})-aware GFG. Thus, identifying b as an output signal harms
(I/O)-aware GFGness. Indeed, a function that attempts to witness ({a}/{b, c})-
aware GFGness is g : (2{a})∗ → 2{b,c} ×Q, and it neglects either the word {a}ω,
in the case gQ({a}) = q3, or the word {a} · ∅ω, in the case gQ({a}) ∈ {q1, q2}. 
�

In Theorem 2 below we generalize Example 3 and show that the alterna-
tion between positive and negative effect of control on (I/O)-aware GFGness is
unboundedly long. The proof can be found in the full version.

Theorem 2 [(I/O)-aware GFGness is not monotone]. For every k ≥ 1,
we can define a DLW Ak over an alphabet 2{x1,x2...,x2k}, such that for all 1 ≤
j ≤ k, we have that Ak is not ({x1, . . . , x2j−1}/{x2j , . . . , x2k})-aware GFG and
is ({x1, . . . , x2j}/ {x2j+1, . . . , x2k})-aware GFG.
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When, however, the specification is (I/O)-realizable, then monotonicity holds
for partitions that have less control than 〈I,O〉:

Theorem 3. Consider an (I/O)-realizable NBW A and a partition 〈I ′, O′〉 that
has less control than 〈I,O〉. If A is (I ′/O′)-aware GFG, then A is also (I/O)-
aware GFG.

Proof. Consider an (I/O)-realizable NBW A = 〈2I∪O, Q, q0, δ, α〉, and let
〈I ′, O′〉 be a partition that has less control than 〈I,O〉. That is, I ⊆ I ′. Assume
that A is (I ′/O′)-aware GFG and let g′ : (2I′

)∗ → 2O′ × Q and f : (2I)∗ → 2O

be functions that witness A’s (I ′/O′)-aware GFGness and (I/O)-realizability,
respectively. We define a function g : (2I)∗ → 2O × Q that witnesses A’s (I/O)-
aware GFGness.

Essentially, we construct g as follows. Given a word wI ∈ (2I)∗, we first use
f in order to extend wI to a word over 2I′

, and then apply g′ on the extended
word. Formally, for wI = i0, i1, · · · ∈ (2I)∗, let wO = f(i0), f(i0 · i1), · · · ∈ (2O)∗.
That is, wO is the word that f pairs with wI . Let C = O\O′ be the set of signals
for which control is lost in the transition from the partition 〈I,O〉 to 〈I ′, O′〉. Let
u ∈ (2C)∗ be the projection of wO on C. That is, u = f(i0)∩C, f(i0 ·i1)∩C, · · · ∈
(2C)∗. Note that C = I ′ \ I. Thus, we can define wI′ = wI ⊕ u ∈ (2I′

)∗, and we
define g(wI) = 〈g′

O(wI′) ∪ c, g′
Q(wI′)〉, where c is the last letter of u.

Since A is (I ′/O′)-aware GFG, the function g′ induces an accepting run of
A on every word in (2I′

)ω that is hopeful in A. This holds also for the word
generated above, and so the function g witnesses A’s (I/O)-aware GFGness. 
�

6 (I+/O−)-Aware Good-for-Games Automata

The non-monotonicity of the behavior of the signals discussed in Sect. 5 points
to a bothering situation. In particular, an automaton may be GFG, in fact even
deterministic, and hence be sound and complete for (I/O)-realizability, and still
not be (I/O)-aware GFG. In this section we address this by defining (I+/O−)-
aware GFG automata, which consider, given A, all the partitions of I ∪ O with
respect to which A is sound and complete for (I/O)-realizability.

For an NBW A = 〈2I∪O, Q, q0, δ, α〉, we say that A is (I+/O−)-aware GFG if
there exists a partition 〈I ′, O′〉 that has less control than 〈I,O〉, namely I ⊆ I ′,
such that A is (I ′/O′)-aware GFG. Note that every (I/O)-aware GFG automa-
ton is (I+/O−)-aware GFG. In fact, by Lemma2, every GFG automaton is
(I+/O−)-aware GFG. However, as Lemma 2 implies, there are (I+/O−)-aware
GFG automata that are not GFG or not (I/O)-aware GFG. We first argue that
(I+/O−)-aware GFG automata are sound and complete for (I/O)-realizability.

Theorem 4. (I+/O−)-aware GFG automata are sound and complete for
(I/O)-realizability.

Proof. Let A = 〈2I∪O, Q, q0, δ, α〉 be an (I+/O−)-aware GFG automaton, and
let 〈I ′, O′〉 be a partition that has less control than 〈I,O〉 and for which A is
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(I ′/O′)-aware GFG. We show that Player or wins Gsyn(A, I, O) iff A is (I/O)-
realizable. The first direction holds for general NBWs. For the other direction,
assume that A is (I/O)-realizable. Then, as 〈I ′, O′〉 has less control than 〈I,O〉,
Theorem 3 implies that A is (I/O)-aware GFG. Therefore, by Theorem1, Player
or wins Gsyn(A, I, O). 
�

Theorem 4 enables us to extend Corollary 1 to (I+/O−)-aware GFG
automata:

Corollary 3. The synthesis problem for (I+/O−)-aware automata with accep-
tance condition γ can be solved in the complexity of deciding games with winning
condition γ. In particular, the synthesis problem for (I+/O−)-aware NBWs can
be solved in quadratic time.

We turn to study the complexity of deciding (I+/O−)-aware GFGness. As
we shall see, the non-monotonicity suggests that one should check all possible
partitions of I ∪ O. Formally, we have the following. The NP-hardness proof
relate the choice of a partition with a choice of a satisfying assignment to a
3CNF formula.

Theorem 5. Consider an NBW A = 〈2I∪O, Q, q0, δ, α〉. The problem of decid-
ing whether A is (I+/O−)-aware GFG is polynomial in |Q| and NP-complete in
|I ∪ O|.

7 (I/O)-Awareness and Synthesis

A natural problem that follows from our results is the generation of small
(I+/O−)-aware GFG automata. Thus, given an NBW A, return a minimal
(I+/O−)-aware GFG automaton equivalent to A. In this section we argue
that the equivalence requirement is too strong and can be relaxed to produce
even smaller automata. We relate the problem of generating (I/O)-aware GFG
automata with that of generating realizing (I/O)-transducers, and show how
it sheds light on an important open problem, namely whether minimal realiz-
ing transducers for NBW specifications with n states need 2O(n log n) or only
2O(n) states. We also suggest a heuristic algorithm that solves synthesis given a
specification and its negation, possibly avoiding determinization and getting a
transducer with less than 2O(n log n) states.

7.1 Minimal (I/O)-Transducers

We start with the definition of covering automata, which replaces the equivalence
condition. For two automata A and A′ over 2I∪O, we say that A′ (I/O)-covers
A if L(A′) ⊆ L(A) and L(A|I) = L(A′

|I). Thus, every word in (2I)ω that is
hopeful in A is hopeful also in A′, and A′ does not extend the language of A.
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3 Moreover, A′ (I+/O−)-covers A if there is a partition 〈I ′, O′〉 that has less
control than 〈I,O〉 such that L(A′) ⊆ L(A) and L(A|I′) = L(A′

|I′). We then say
that A′ (I+/O−)-covers A with 〈I ′, O′〉. Note that if A′ (I/O)-covers A, then A′

also (I+/O−)-covers A (with the partition 〈I,O〉), yet, as has been the case with
(I+/O−)-awareness, allowing coverage with partitions with less control strictly
strengthen the definition, and, as we show below, is still sound and complete for
(I/O)-realizability.

Theorem 6. Consider two automata A and A′ over 2I∪O. If A′ (I+/O−)-
covers A with 〈I ′, O′〉 and is (I ′/O′)-aware GFG, then A′ is sound and complete
for (I/O)-realizability of A.

Proof. We prove that Player or wins Gsyn(A′, I, O) iff A is (I/O)-realizable.
The first direction is easy: if Player or wins Gsyn(A′, I, O), then A′ is (I/O)-
realizable. Since L(A′) ⊆ L(A), then every transducer that (I/O)-realizes A′

also (I/O)-realizes A, thus A is (I/O)-realizable.
For the other direction, assume that A is (I/O)-realizable, and let T be

a transducer that (I/O)-realizes A. Consider a word wI ∈ (2I)ω. Let wI′ =
T (wI)∩(2I′

)ω, that is, wI′ is the projection on I ′ of the computation of T on wI .
Clearly, wI′ ∈ L(A|I′), and therefore, wI′ ∈ L(A′

|I′). Let g : (2I′
)∗ → 2O′ ×Q be

a function that witnesses that A′ is (I ′/O′)-aware GFG. We describe a winning
strategy for Player or in Gsyn(A′, I, O). Recall that in Gsyn(A′, I, O), Player or
responds to a sequence of input letters over 2I with an output letter in 2O and
an according transition. Essentially, Player or uses T in order to extend a given
sequence of input letters in (2I)∗ to a sequence of letters in (2I′

)∗, and then
plays accordingly to g. Formally, we extend the notion of computations of T to
finite words. Consider a prefix of a play q0, 〈q0, i0〉, q1, 〈q1, i1〉, . . . , qk, 〈qk, ik〉.
A winning strategy for Player or in Gsyn(A′, I, O) is to move from 〈qk, ik〉 to
gQ((2I′

)∗ ∩ T (wI)), where wI = i0 · i1 · · · ik. Recall that for all wI ∈ (2I)ω,
we have that wI′ is hopeful in A′. Therefore, the above strategy is winning for
Player or. 
�

Theorem 6 implies that one can solve synthesis for an automaton A by con-
structing an (I ′/O′)-aware GFG automaton A′ that (I+/O−)-covers A with
〈I ′, O′〉, rather than an equivalent one, and solving Gsyn(A′, I, O).

Remark 2. Note that for A′ to (I+/O−)-cover A with 〈I ′, O′〉, the L(A|I) =
L(A′

|I) requirement is strengthened to L(A|I′) = L(A′
|I′). This is crucial. That

is, it may be the case that A is realizable, yet Player or loses Gsyn(A′, I, O)
for an (I+/O−)-aware GFG automaton A′ such that L(A|I) = L(A′

|I) and
L(A′) ⊆ L(A). As an example, consider an automaton A over 2{a,b,c} with
L(A) = (2{a,b,c})ω, and the automaton A2 from Example 1. Let I = {a} and

3 Note that the definition is different than open implication in [10], where A′ open
implies A if every (I/O)-transducer that (I/O)-realizes A′ also (I/O)-realizes A′.
For example, an empty A′ open implies every unrealizable A, yet need not (I/O)-
cover it.
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O = {b, c}. It is easy to see that all the words in (2{a})ω are hopeful in A2,
and that L(A2) ⊆ L(A). In addition, A is clearly realizable. Recall that A2 is
({a, b}/{c})-aware GFG, thus it is (I+/O−)-aware GFG. Yet, Player or looses
Gsyn(A2, I, O). Indeed, a winning strategy for Player and is to start with input
{a}, and then choose input ∅ if Player or responds with output in which b is
true, and choose input {a} otherwise. 
�

We turn to study the size of a minimal (I/O)-covering (I/O)-aware GFG
NBW. Since unboundedly large parts of the specification automaton may not be
needed for its realization, we have the following.

Lemma 3. Consider an NBW A. An (I/O)-aware GFG NBW that (I/O)-
covers A may be unboundedly smaller than any GFG automaton equivalent to A.

Theorem 7. Consider an (I/O)-realizable NBW A. The size of a minimal
(I/O)-aware GFG NBW that (I/O)-covers A coincides with the size of a mini-
mal (I/O)-transducer that (I/O)-realizes A.

Proof. It is easy to see that if A is realizable, then an (I/O)-transducer that
(I/O)-realizes A can be viewed as an (I/O)-aware GFG NLW that (I/O)-covers
A. Conversely, a winning strategy for the system on Gsyn(A, I, O), for an (I/O)-
aware GFG NBW A, can be viewed as an (I/O)-transducer that (I/O)-realizes
A. Note that since our definition of (I/O)-transducers has the output assign-
ments in the states, we actually need 2|O| copies of each state. These copies,
however, are not needed if one considers (I/O)-transducers with output assign-
ments on the transitions. 
�

We continue to the problem of generating small covering (I/O)-aware GFG
NBWs. By Theorem 7, the latter coincides with the problem of generating small
realizing transducers. The currently known upper bound for the size of a realizing
transducer, starting with a specification NBW A with n states, is 2O(n log n), and
is based on playing the synthesis game on a deterministic automaton equivalent
to A. Unlike the case of determinization, no matching lower bound is known.
Below we relate the existence of such a lower bound with the existence of an
NBW that is easy to complement yet hard to determinize.

Theorem 8. Let n ≥ 1. If there is an NBW An with n states such that (1)
An is easy to complement: there is an NBW A′

n with O(n) states such that
L(A′

n) = Σω \ L(An), yet (2) An is hard to determinize: a DBW equivalent to
An needs at least 2O(n log n) states, then there is a realizable NBW Bn with O(n)
states such that the minimal realizing transducer for Bn needs at least 2O(n log n)

states.

Proof. Let Σ be the alphabet of An. We define Bn over Σ ×{0, 1} so that L(Bn)
contains all words w⊕v such that w ∈ L(An) iff v has infinitely many 1’s. Thus,
the projection on Σ is in L(An) iff the projection on {0, 1} has infinitely many
1’s.
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It is not hard to see that we can define Bn by an NBW with O(n) states.
Indeed, we can define Bn as the union of an NBW B1

n for words w ⊕ v such that
w ∈ L(An) and v has infinitely many 1’s and an NBW B2

n for words w ⊕ v such
that w �∈ L(An) and v has finitely many 1’s. The NBW B1

n is the product of
An, which has n states, with a 2-state DBW for “infinitely many 1’s”, so its size
is O(n). The NBW B2

n is the product of an NBW that complements An, and
which, by Condition (1), has O(n) states, with a 3-state NBW for “only finitely
many 1’s”. So the size of B2

n is also O(n).
Now, if we view Σ as an input alphabet and view {0, 1} as an output alphabet,

then a (Σ/{0, 1})-transducer for Bn induces a DBW for A of the same size
(note we refer here to Σ and {0, 1} as input and output alphabets, rather than
signals, but this is a technical issue, as we could have encoded them). To see
this, consider a (Σ/{0, 1})-transducer Tn = 〈Σ, {0, 1}, S, s0, ρ, τ〉 that realizes
Bn, and let Dn = 〈Σ,S, s0, ρ, α〉 be a DBW with α = {s : τ(s) = 1}. We claim
that L(Dn) = L(An). Indeed, since Tn realizes Bn, then for every input word
w ∈ Σω, the computation of Tn on w has infinitely many 1’s iff w ∈ L(An).
Hence, the run of Dn on w visits α infinitely often iff w ∈ L(An). Hence, by
Condition (2), the transducer Tn needs at least 2O(n log n) states. 
�

Remark 3. Theorem 8 refers to languages that are DBW-recognizable. It is easy
to extend it to all ω-regular languages by considering DPWs. 
�

7.2 Using Over-Approximating GFG Automata

In Sect. 7.1, we suggest the use of GFG automata that under-approximate the
specification. In this section we suggest a heuristic that starts with an LTL for-
mula ϕ and is based on GFG automata that over-approximate NBWs for ϕ
and ¬ϕ. The GFG automaton that over approximates an NBW A is obtained
by applying the subset construction on A and adding nondeterministic transi-
tions to states associated with strict subsets of the successor subset. By working
with the over-approximations of both ϕ and ¬ϕ, we iteratively refine the subset
construction, adding information that makes the state spaces closer to that of
DPWs for ϕ and ¬ϕ. This continues until we get a transducer that realizes ϕ or
¬ϕ, typically much earlier than full determinization is performed. Our method
follows the counter-example guided inductive synthesis (CEGIS) [2,20,21] app-
roach, which iteratively computes candidate solutions to the synthesis problem,
and refines them accordingly to counterexample traces. However, program exe-
cutions in CEGIS are finite, while the reactive systems that we consider produce
infinite interactions.

We now describe the heuristic in more detail. For an NBW A =
〈2I∪O, Q, q0, δ, α〉, the nondeterministic subset construction of A is NSC(A) =
〈2I∪O, 2Q, {q0}, δ′, α′〉, where S′ ∈ δ′(S, σ) iff S′ ⊆ ∪q∈Sδ(q, σ), and S ∈ α′ iff
S ∩ α �= ∅. That is, NSC(A) extends the subset construction of A by adding
transitions, for every S ∈ 2Q and σ ∈ 2I∪O, to all the subsets of δ(S, σ). Note
that α′ contains all sets whose intersection with α is not empty, and so NSC(A)
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over-approximates A, thus L(A) ⊆ L(NSC(A)). In addition, NSC(A) is DBP,
and so it is GFG with respect to the deterministic subset construction of A.

Given an LTL formula ϕ, let Aϕ and A¬ϕ be NBWs for ϕ and ¬ϕ, respec-
tively. By determinacy of games, Aϕ is (I/O)-realizable iff A¬ϕ is not (O/I)-
realizable.4 We use Ãϕ and Ã¬ϕ to denote the over-approximations of Aϕ and
A¬ϕ, respectively, generated during the algorithm. Initially, Ãϕ = NSC(Aϕ)
and Ã¬ϕ = NSC(A¬ϕ). In every iteration, we solve both Gsyn(Ãϕ, I, O) and
Gsyn(Ã¬ϕ, O, I). Since we work with over-approximations, the following three
outcomes are possible.

1. Player and wins Gsyn(Ã¬ϕ, O, I). Then, we conclude that ϕ is realizable, the
winning strategy for Player and induces a transducer that realizes ϕ, and we
are done.

2. Player and wins Gsyn(Ãϕ, I, O). Then, we conclude that ϕ is not realizable,
and we are done.

3. Player or wins in both games. Note this is possible only due to the over-
approximation. We model-check the single computation w that is the outcome
of the interaction of the winning strategies of Player or in the games. If
w |= ϕ, we conclude that Ãϕ needs to be refined. At this point we may also
model check the transducer induced by the winning strategy of Player or
in Gsyn(Ã¬ϕ, O, I), and conclude that ϕ is not realizable if the transducer
satisfies ¬ϕ. Dually, if w �|= ϕ, we conclude that Ã¬ϕ needs to be refined, and
we may model check the transducer induced by the winning strategy of Player
or in Gsyn(Ãϕ, I, O), and conclude it realizes ϕ. If model checking fails, or
if we decide to skip it, we refine (possibly both Aϕ and A¬ϕ, one according
to w and one with respect to the counterexample obtained from the model
checking) and continue to the next iteration.

It is left to describe the refinement. Essentially, the refinement of Ãϕ (and
similarly for Ã¬ϕ) with respect to a counterexample word w excludes w from
Ãϕ, and is done in a way that eventually results in a GFG automaton for Aϕ,
unless the procedure halts in an earlier iteration. The refinement may use any
on-the-fly determinization construction whose state space consists of information
on top of the subset construction (e.g., Safra trees [19] or reduced trees [8]). Let
Dϕ be a DPW for Aϕ, and let r be the run of Dϕ on w. By the way we defined
and have refined Ãϕ so far, the states in r can be mapped to the states of Ãϕ.
For example, in the first iteration, where the states of Ãϕ are subsets of states
in Aϕ, we use the fact that each state in Dϕ is associated with such a subset. We
use this mapping in order to refine states of Ãϕ that are mapped to by different
states along r, and update the acceptance condition of Ãϕ accordingly. See the
full version for an example.
4 A more precise definition of the dual setting adds to the realizability notation the

parameter of “who moves first”. Then, Aϕ is (I/O)-realizable with the environment
moving first iff A¬ϕ is not (O/I)-realizable with the system (that is, the player that
generates signals in O) moving first. Adding this parameter is easy, yet makes the
writing more cumbersome, so we give it up.
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As with other counterexample-guided refinement methodologies, several
heuristics concerning the choice of a counterexample are possible. Here, we also
suggest heuristics for the choice of winning strategy in both Gsyn(Ãϕ, I, O) and
Gsyn(Ã¬ϕ, O, I). This is where the GFGness of the nondeterministic subset con-
struction plays a role. We say that a winning strategy for a player is minimalistic
if for every state associated with a subset S ⊆ 2Q that she chooses, every state
that is associated with a subset S′ ⊂ S is losing for her. By choosing minimal-
istic strategies, we avoid determinization associated with large sets, whenever
possible. In fact, when Aϕ is (I/O)-aware GFG, a winning strategy may coin-
cide with the GFG strategy. In addition, in the case Player or wins both of the
games, we can consider several winning strategies, and either refine or check the
induced transducer with respect to each one of them.

In the worst case, the algorithm halts when either Ãϕ or Ã¬ϕ is a DPW
for ϕ or ¬ϕ, respectively. Thus, their size bounds the number of iterations. In
each iteration, we solve two parity games, check whether a single computation
satisfies ϕ, and optionally model-check a transducer – all these are done in less
than exponential time, and so the overall time complexity is doubly exponential
in |ϕ|, meeting the lower bound for LTL synthesis.
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In: Halldórsson, M.M., Iwama, K., Kobayashi, N., Speckmann, B. (eds.) ICALP
2015. LNCS, vol. 9135, pp. 299–310. Springer, Heidelberg (2015). https://doi.org/
10.1007/978-3-662-47666-6 24

13. Kupferman, O., Safra, S., Vardi, M.Y.: Relating word and tree automata. Ann.
Pure Appl. Logic 138(1–3), 126–146 (2006)

14. Kupferman, O., Vardi, M.Y.: Safraless decision procedures. In: Proceedings of the
46th FOCS (2005)

15. Lehtinen, K., Zimmermann, M.: Good-for-games ω-pushdown automata. In: Pro-
ceedings of the 35th LICS (2020)

16. Morgenstern, G.: Expressiveness results at the bottom of the ω-regular hierarchy.
M.Sc. thesis, The Hebrew University (2003)
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Abstract. We propose a partial order reduction method for reachabil-
ity analysis of networks of timed automata interacting via synchronous
channel communication and via shared variables. Our method is based
on (classical) symbolic delay transition systems and exploits the urgent
behavior of a system, where time does not introduce dependencies among
actions. In the presence of urgent behavior in the network, we apply par-
tial order reduction techniques for discrete systems based on stubborn
sets. We first describe the framework in the general setting of symbolic
delay time transition systems and then instantiate it to the case of timed
automata. We implement our approach in the model checker Uppaal and
observe a substantial reduction in the reachable state space for case stud-
ies that exhibit frequent urgent behaviour and only a moderate slowdown
on models with limited occurence of urgency.

1 Introduction

Partial order reduction techniques [4] based on persistent sets [14], ample sets [22]
or stubborn sets [17,27] have proved beneficial for the state space exploration
of systems that exhibit high degree of concurrency. As many actions in such
systems can be (in a syntax-driven manner) considered as independent, these
techniques will explore only a subset of the possible interleavings of independent
actions while preserving the property of the system we are interested in.

The techniques of partial order reductions for untimed system have only
recently been extended to timed systems with indication of success. For more
than two decades timed systems have resisted several partial order reduction
attempts, largely caused by the fact that time introduces additional dependencies
between actions that will normally be considered as independent. In [15] the
authors show a potential for stubborn reductions for networks of timed automata,
however using only approximate abstraction approach. A new idea of exploiting
urgency in timed systems in order to facilitate efficient partial order reduction
appeared in [8] in the context of timed-arc Petri nets with discrete time.

We take the idea of urgency-based [23] partial order reduction one step fur-
ther and extend the method towards the case of networks of extended timed
automata in the Uppaal style, including handshake and broadcast communica-
tion primitives, communication over shared variables as well as a C-like imper-
ative programming language allowing for complex computation over discrete
c© Springer Nature Switzerland AG 2020
D. V. Hung and O. Sokolsky (Eds.): ATVA 2020, LNCS 12302, pp. 179–195, 2020.
https://doi.org/10.1007/978-3-030-59152-6_10
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structured variables. Our main contribution is a partial order reduction method
for urgent behavior based on the classical (zone-based) symbolic semantics for
networks of timed automata and its efficient implementation in the industrial
strength real-time verification tool Uppaal. An additional challenge is to develop
static analysis for the rich modeling language of Uppaal and combine it with
symbolic model checking techniques in a sound way. On a number of experiments
we show the applicability of the proposed method w.r.t. state-space and time
reduction.
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(b) Fragment of the full and reduced transition systems for the system in Figure 1a

Fig. 1. Simplified fire alarm system

Fire Alarm System Example. To illustrate the effect of our urgency-based partial
order reduction technique, we consider a simplified version of an industrial fire
alarm system [11]. The system uses a communication protocol based on the
Time Division Multiple Access (TDMA) paradigm, and has over 100 sensors
each of them assigned a unique time slot for sending and receiving messages.
Figure 1a shows a down-scaled and simplified version of the system with three
sensors, each modeled as a timed automaton. Each sensor has its own clock
xi, with the corresponding TDMA slot modeled by guards in (xi ≥ 1500) and
invariants (xi ≤ 1500). At the end of the TDMA cycle i.e. when xi = 1500 every
sensor resets its clock and goes back to its initial location. Figure 1b left shows
the fragment of the reachable transition system starting at the configuration
s = ((l1,3, l2,3, l3,3), x1 = x2 = x3 = 1500) where time progress is disabled due
to the invariants xi ≤ 1500. The transitions are induced by the edges ei =
〈li,3, τ, xi ≥ 1500, xi = 0, li,0〉. States of the form ◦ denote the so-called zero
time states where time cannot progress, whereas the filled state • denotes a
situation where time can delay. Figure 1b right shows the corresponding reduced
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transition system that contains only one interleaving sequence that allows us to
reach the state where time can delay again.

Related Work. The most related work in [8] presents an urgent partial order
reduction method for discrete time systems based on stubborn set construc-
tion [17,27]. The method is instantiated to timed-arc Petri nets and compared
to our case, it does not consider discrete data structures nor any communica-
tion primitives. In our work we focus on continuous time systems modeled as
networks of timed automata, requiring us to use symbolic transition system as
the underlying semantic model. The idea of applying partial order reduction for
independent events that happen at the same time also appeared in [9] however
this methods is not as efficient as ours because it is static (precomputed before
the state space exploration). In our approach we apply a dynamic reduction that
on-the-fly identifies independent actions even in the presence of communication
between the components, possibly sharing some resources.

Partial order reduction techniques applied to timed automata [2] include the
early works [7,10,19] based on the notion of local and global clocks or the concept
of covering as generalized dependencies. However, there is not provided any
experimental evaluation of the proposed techniques. There exist also techniques
based on event zones [18,21] and on merging zones from different interleaved
executions [25]. These are exact techniques comparable to approximate convex-
hull abstraction which is by now superseded by the exact LU-abstraction [5].
More recently, over-approximative methods based on abstracted zone graphs
were also studied in [15]. The main difference is that our approach is an exact
method that is applicable directly to the state-of-the-art techniques implemented
in Uppaal.

Finally, quasi-equal clocks [16] are clocks for which in all computations their
values are equal or if one clock gets reset then a reset must urgently eventually
occur also for the other clocks, assuming that resets occur periodically. Reduc-
tions using quasi-equal clocks yield exponential savings and have been used to
verify a number of industrial systems. However, this approach is based on syn-
tactic transformations and requires a method for detecting quasi-equal clocks
[20]. Our approach fully automatizes reductions based on quasi-equal clocks and
further generalizes to scenarios where clock resets have irregular reset periods.

2 Partial Order Reduction for Symbolic Delays

We describe the general idea of our partial order reduction technique in terms
of symbolic delay transition systems. Intuitively a symbolic delay corresponds
to time elapsing in the zone graph for timed automata or flow in the region
graph of a hybrid system. Let A be a set of actions and δ a symbolic delay with
A ∩ {δ} = ∅.

Definition 1 (Symbolic Delay Transition System). A symbolic delay
transition system is a tuple (S, s0,−→) where S is a set of states, s0 ∈ S is
the initial state, and −→⊆ S × (A ∪ {δ}) × S is the transition relation.
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If (s, α, s′) ∈−→ we write s
α−→ s′. In this paper we consider only deterministic

systems: a transition system is deterministic if s
α−→ s′ and s

α−→ s′′ implies s′ =
s′′. For the rest of this section, let us assume a fixed symbolic delay transition
system (S, s0,−→) and a set of goal states G ⊆ S.

A state s ∈ S is zero time if it can not delay, denoted by zt(s) and defined
by zt(s) iff ∀s′ ∈ S, α ∈ A ∪ {δ}. s

α−→ s′ =⇒ α ∈ A. A reduction is a
function St : S → 2A. A reduced transition relation is a relation −→

St
⊆−→ such

that s
α−→
St

s′ iff s
α−→ s′ and α ∈ St(s) ∪ {δ}. For a given state s ∈ S we define

St(s) def= A \ St(s) to be the set of all actions not in St(s). Given a sequence of
labels w = α1α2α3 . . . αn ∈ (A ∪ {δ})∗ we write s

w−→ s′ iff s
α1−→ . . .

αn−−→ s′. If
a sequence w of length n is such that s

w−→ s′ we also write s −→n s′. The set of
enabled actions at state s ∈ S is En(s) def= {a ∈ A | ∃s′ ∈ S. s

a−→ s′}.
The reachability problem, given a symbolic delay transition system (S, s0,−→)

and a set of goal states G, is to decide whether there is s′ ∈ G such that s0 −→∗ s′.

Definition 2 (Reachability Preserving Reduction). A reduction St is
reachability preserving if it satisfies the following conditions:

(Z) ∀s ∈ S. ¬zt(s) =⇒ En(s) ⊆ St(s)
(D) ∀s, s′ ∈ S. ∀w ∈ St(s)

∗
. zt(s) ∧ s

w−→ s′ =⇒ zt(s′)
(R) ∀s, s′ ∈ S. ∀w ∈ St(s)

∗
. zt(s) ∧ s

w−→ s′ ∧ s �∈ G =⇒ s′ �∈ G

(W) ∀s, s′ ∈ S. ∀w ∈ St(s)
∗
. ∀a ∈ St(s). zt(s) ∧ s

wa−−→ s′ =⇒ s
aw−−→ s′

If a delay is possible at state s Condition Z will ensure that there is no reduc-
tion. Condition D ensures that states which can delay are preserved. Condition
R ensures that goal states are preserved and finally Condition W corresponds to
the classical stubborn set requirement that stubborn actions can be commuted
to the beginning of the execution. The following theorem was proved in [8] for
the case of timed transitions systems.

Theorem 1 (Reachability Preservation). Let St be a reachability preserv-
ing reduction. Let s ∈ S and s −→n s′ for some s′ ∈ G then s −→

St
m s′′ for some

s′′ ∈ G where m ≤ n.

3 Extended Timed Automata (XTA)

We apply our method to the theory of timed automata [2]. Our formal model
is extended timed automata and it is an abstract representation of modeling
formalism used in the tool Uppaal [6].

Clocks and Discrete Variables. Let X be a set of clocks. A clock valuation is a
function μ : X → R≥0. We use V(X) to denote the sets of all valuations for
clocks in X. Let V be a set of discrete variables. The function D assigns to
each variable v ∈ V a finite domain D(v). A variable valuation is a function
ν : V → ⋃

v∈V D(v) that maps variables to values such that ν(v) ∈ D(v). We
use V(V ) to denote the set of all variable valuations. We let μ0 resp. ν0 to denote
the valuation that maps every clock resp. variable to the value 0.
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Expressions. We use expr to denote an expression over V . We assume that
expressions are well typed and for expression expr we use D(expr) to denote
its domain. Given a variable valuation ν and an expression expr, we use exprν ∈
D(expr) to denote the value of expr under ν. We use V (expr) ∈ 2V to denote the
set of variables in expr such that for all v ∈ V (expr) and for all ν, ν′ ∈ V(V ) if
ν(v) = ν′(v) then exprν = exprν

′
.

Constraints. The set B(X) is the set of clock constraints generated by the gram-
mar φ ::= x �� expr | φ1 ∧ φ2, where x ∈ X, D(expr) is the domain of all natural
numbers N and ��∈ {<,≤,≥, >}. The set B(V ) is a set of Boolean variable con-
straints over V . The set B(X,V ) of constraints comprises B(X), B(V ), and con-
junctions over clock and variable constraints. Given a constraint φ ∈ B(X,V ),
we use X(φ) to denote the set of clocks in φ, and V (φ) to denote the set of
variables in φ. We define the evaluation of a constraint φ ∈ B(X,V ) as φν where
expressions in φ are evaluated under ν.

Updates. A clock update is of the form x := expr where x ∈ X, and D(expr) = N.
A variable update is of the form v := expr where v ∈ V and D(v) = D(expr).
The set U(X,V ) of updates contains all finite, possibly empty sequences of clock
and variable updates. Given clock valuation μ ∈ V(X), variable valuation ν ∈
V(V ), and update r ∈ U(X,V ), we use rν to denote the update resulting after
evaluating all expressions in r under ν, we use X(r) to denote the set of clocks
in r, and V (r) to denote the set of variables in r. We let �rν� : V(X) ∪ V(V ) →
V(X) ∪ V(V ) be a map from valuations to valuations. We use μ[rν ] to denote
the updated clock valuation �rν�(μ). Analogously, for variable valuation ν′, we
use ν′[rν ] to denote the updated variable valuation �rν�(ν′).

Channels. Given a set C of channels, the set H(C) of synchronizations over
channels is generated by the grammar h ::= c[expr]! | c[expr]? | τ , where c ∈ C,
D(expr) = N, and τ represents an internal action. Given a variable valuation
ν, for synchronization h of the form c[expr]! we use hν to denote c[exprν ]!, and
similar for synchronizations of the form c[expr]?.

Definition 3 (Extended Timed Automata XTA). A extended timed
automaton A is a tuple (L,Lu, Lc, l0,X, V,H(C), E, I) where: L is a set of loca-
tions, Lu ⊆ L denotes the set of urgent locations in L, Lc ⊆ L denotes the set of
committed locations in L and Lu ∩ Lc = ∅, l0 ∈ L is the initial location, X is a
nonempty the set of clocks, V is the set of variables, H(C) is a set of channels
expressions for set of channels C, E ⊆ L×H(C)×B(X)×B(V )×U(X,V )×L
is a set of edges between locations with a channel expressions, a clock guard, a
variable guard, an update set, and I : L → B(X) assigns clock invariants to
locations.

Definition 4 (Network of XTA). A network N of XTA consists of a finite
sequence A1, . . . ,An of XTA, where Ai = (Li, L

u
i , Lc

i , l
0
i ,Xi, Vi,H(C)i, Ei, Ii)

for 1 ≤ i ≤ n. Locations are pairwise disjoint i.e. Li ∩ Lj = ∅ for 1 ≤ i, j ≤ n
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and i �= j. The set of locations is L = ∪n
i=1Li, analogously for urgent Lu and

committed Lc locations. The set of clocks is X = ∪n
i=1Xi and the set of variables

is V = ∪n
i=1Vi. The set of channel expressions is H(C) = ∪n

i=1H(C)i. The
set of edges is E = ∪n

i=1Ei. A location vector is a vector l = (l1, . . . , ln), and
l0 = (l01, . . . , l

0
n) is the initial location vector. The invariant function over location

vectors is I(l) =
∧

i Ii(li).

We write l[l′i/li] to denote the vector where the i-th element li of l is replaced
by l′i. We write li to denote the i-th element of l.

Zones. We assume the canonical satisfaction relation “|=” between valuations
and constraints in B(X) and B(V ). The set B+(X) of extended clock constraints
is generated by the grammar φ ::= x �� c | φ1 ∧ φ2 | x − y �� c, where x, y ∈ X,
c ∈ N and ��∈ {<, ≤, ≥, >}. A zone �Z� is a set of clock valuations described
by an extended clock constraint Z ∈ B+(X) where �Z�

def= {μ ∈ V(X) | μ |= Z}.
When it is clear from the context, we use Z and �Z� interchangeably. We define
Z↑ def= {μ+d | μ ∈ Z, d ∈ R≥0}, where for d ∈ R≥0, μ+d maps each clock x ∈ X

to the value μ(x) + d. For zone Z and update r we define Z[r] def= {μ[r] | μ ∈ Z}.
For timed automata we consider the set of actions A = 2E that corresponds

to the discrete transitions induced by the edges E, and δ is the delay action
induced by non-zero delay transitions. We can now define the symbolic semantics
of networks of timed automata in terms of a zone graph (see e.g. [1]).

Definition 5 (Semantics of a Network of XTA). Let N = A1, . . . ,An

be a network of TA. Its semantics is defined as a symbolic delay transition
system (zone graph) (S, s0,−→), where S ⊆ (Li × · · · × Ln) × B+(X) × V(V ) is
the set of states comprising a location vector, a zone, and a variable valuation,
s0 = (l0, {μ0}, ν0) is the initial state, and −→⊆ S × (A∪{δ})×S is the transition
relation defined by:

– delay transition, (l, Z, ν) δ−→ (l, Z↑ ∧ I(l)ν , ν) if li �∈ Lu
i ∪ Lc

i for 1 ≤ i ≤ n,
and ∃μ ∈ Z, d ∈ R≥0.d > 0 ∧ μ + d |= I(l)ν ,

– internal transition, (l, Z, ν)
{ei}−−−→ (l[l′i/li], Z ′, ν′) if ei = (li, τ, φ, ψ, r, l′i) ∈ Ei

s.t. Z ′ = (Z ∧ I(l)ν ∧φν)[rν ]∧ I(l[l′i/li])ν′
, where Z ′ �= ∅, ν′ = ν[rν ], ν |= ψν ,

and if lk ∈ Lc
k for some 1 ≤ k ≤ n then li ∈ Lc

i ,

– handshake transition, (l, Z, ν)
{ei,ej}−−−−→ (l[l′j/lj , l

′
i/li], Z ′, ν′) if there exists ei =

(li, hi!, φi, ψi, ri, l
′
i) ∈ Ei and ej = (lj , hj?, φj , ψj , rj , l

′
j) ∈ Ej s.t. hν

i = hν
j ,

and Z ′ = (Z ∧ I(l)ν ∧ φν
i ∧ φν

j )[rν
i ][rν

j ] ∧ I(l[l′j/lj , l
′
i/li])ν′

, where Z ′ �= ∅,
ν |= (ψν

i ∧ψν
j ), ν′ = ν[rν

i ][rν
j ], and if lk ∈ Lc

k for some 1 ≤ k ≤ n then li ∈ Lc
i

or lj ∈ Lc
j.

In the following, we are given a network of TA N = A1, . . . ,An with locations
L, clocks X, variables V , and induced symbolic transition system (S, s0,−→).

Definition 6 (Properties). A formula is given by the grammar φ ::=
deadlock | l | x �� c | ψv | φ1 ∧ φ2, where l ∈ L, x ∈ X, ��∈ {<,≤,≥, >},
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Fig. 2. Two components with actions a1 and a2. Actions are enabled at zone Z. Note
that executing a1 will disable a2 and vice versa.

c ∈ N, and ψv is a Boolean constraint for v ∈ V . Let (l, Z, ν) ∈ S be a state.
The satisfaction of a formula is inductively defined as follows:

(l, Z, ν) |= deadlock iff ∃μ ∈ Z,∀d ∈ R≥0.En((l, {μ + d}, ν)) = ∅
(l, Z, ν) |= l iff li = l for some i with 1 ≤ i ≤ n
(l, Z, ν) |= x �� c iff ∃μ ∈ Z. μ |= x �� c
(l, Z, ν) |= ψv iff ν |= ψv

(l, Z, ν) |= φ ∧ ψ iff (l, Z, ν) |= φ and (l, Z, ν) |= ψ

A network satisfies φ iff its initial state can reach a state that satisfies φ.

4 Reachability Preserving Reduction for XTA

In this section we provide syntactic based sound approximations for all the ele-
ments required by our technique. In Subsect. 4.1 we give a semantic definition
for independence of actions, then we describe a syntactic independence rela-
tion. In Subsect. 4.2 we identify the relevant actions which need to be included
in the stubborn set to preserve states which can delay. Finally, in Subsect. 4.3
we describe the stubborn sets for preserving goal states. For the rest of this
section we are given a network N = A1, . . . ,An, with edges E and components
Ai = (Li, L

u
i , Lc

i , li0 ,Xi, Vi,H(C)i, Ei, Ii), the corresponding transition system
(S, s0,−→) with actions A = 2E , and state s = (l, Z, ν).

4.1 Independence for Actions

The notion of independence of actions plays a key role in partial order reduction.
Intuitively two actions are independent if they can not disable each other and
they commute.
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Definition 7 (Independence of Actions). An independence relation for
state s ∈ S is a symmetric, anti-reflexive relation ��s⊆ A × A satisfying the
following conditions for each (a1, a2) ∈ ��s:

1. ∀s′ ∈ S. s
a1−→ s′ ∧ a2 ∈ En(s) =⇒ a2 ∈ En(s′)

2. a1 ∈ En(s) ∧ a2 ∈ En(s) =⇒ ∃s′ ∈ S. s
a1a2−−−→ s′ ∧ s

a2a1−−−→ s′

If (a1, a2) ∈ ��s they are independent at s denoted by a1 ��s a2. Otherwise
they are dependent at s denoted by a1 �s a2.

In what follows we will provide a syntactic independence relation on actions.
Toward this goal, first we define operations on actions and we define a syntactic
independence relation on operations.

Additional Notation. For a given edge e = (l, h, φ, ψ, r, l′) ∈ E we use src(e),
dst(e) to denote the source location l and the destination location l′ of edge
e. Given actions a, a′ ∈ A, for action a we define its preset as Pre(a) def=
{src(e) ∈ L | e ∈ a}, and its poset as Post(a) def= {dst(e) ∈ L | e ∈ a}. We use
Active(a) def= {Ai | Ai is in N and ∃l ∈ Pre(a). l ∈ Li} to denote the active com-
ponents for a. We use Parallel(a, a′) def= Active(a) ∩ Active(a′) = ∅ to denote that
actions a and a′ correspond to different components. For convenience we define
Operations for Actions in TA. The set of all operations is the set containing all
constraints and resets i.e. Op is the power set of B(X,V ) ∪ U(X,V ). The set of
operations for action a ∈ A is given by, Op(a) def= Guard(a) ∪ Update(a). Where
the set of guards is Guard(a) def=

⋃{φ ∧ ψ ∧ I(l) ∧ I(l′) | (l, h, φ, ψ, r, l′) ∈ a},
and the set of updates is Update(a) def=

⋃{r | (l, h, φ, ψ, r, l′) ∈ a}. Given
an operation op ∈ Op, the set of variables which op increments is given by
Inc(op) = {v ∈ V (op)|∃r ∈ op and r includes v := v + 1 with D(v) = N}. Anal-
ogously the set Dec(op) contains the variables which op decrements Dec(op) =
{v ∈ V (op)|∃r ∈ op and r includes v := v − 1 with D(v) = N}. The clocks
and variables the operation writes is given by Write(op) def=

⋃
r∈op′{xv | r ∈

U(X,V ) and xv := expr is in r}, where op′ is obtained from op by removing
increment and decrement updates, formally op′ = op \ {xv := expr ∈ op |
expr is of the form xv + 1 or xv − 1} The set Readleq(op) = {xv ∈ X ∪ V | xv ≤
expr ∈ op or xv < expr ∈ op} is the set containing clock and variables which
appear in less and equal comparisons. Analogously the set Readgeq(op) contains
clock and variables which appear in greater and equal comparisons in op. The
clocks and variables the operation reads is given by Read(op) def= X(op′)∪V (op′)
where op′ is obtained from op by removing less (greater) and equal compar-
isons, formally op′ = op \ {xv �� expr ∈ op |��∈ {≤<, >, ≥}}. Note that
given a zone, a clock constraint can modify (write to) other clocks. Finally
Γx(Z) def= {μ(x) | μ ∈ Z} is the set of real values for clock x in zone Z.

Definition 8 (Independence of Operations). Given operations op1, op2 ∈
Op and state s, operation op1 is independent of operation op2 at s denoted by
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op1 ���
s op2 iff the following hold:

(1) Read(op1) ∩ (Write(op2) ∪ Inc(op2) ∪ Dec(op2)) = ∅
(2) Readleq(op1) ∩ (Write(op2) ∪ Inc(op2)) = ∅
(3) Readgeq(op1) ∩ (Write(op2) ∪ Dec(op2)) = ∅
(4) Write(op1) ∩ (Write(op2) ∪ Inc(op2) ∪ Dec(op2)) = ∅
(5) Inc(op1) ∩ (Write(op2) ∪ Dec(op2)) = ∅
(6) Dec(op1) ∩ (Write(op2) ∪ Inc(op2)) = ∅
(7) {x | x ∈ X(op1) ∪ X(op2) and |Γx(Z)| �= 1 and op1, op2 ∈ B(X,V )} = ∅
If op1 ���

s op2 and op2 ���
s op1 the we write op1 ���

s op2 and say that op1 and
op2 are independent at s. We write op1 ��

s op2 iff op1 and op2 are dependent.

Intuitively two operations are independent if they read and write in different
variables, note that increments and decrements are treated specially. Addition-
ally for timed automata we need to consider that applying a guard affects a
number of clocks. As an example consider Fig. 2, we have that Z ∩ φx �= ∅ and
Z ∩ φy �= ∅. However, if we apply φx we have that (Z ∩ φx) ∩ φy = ∅ this
will cause the corresponding actions to disable each other. Condition (7) is not
satisfied for clocks x or y in zone Z. Therefore we have φx ��

s φy. Note that
Condition (7) is rather strong, since only zones which are lines or points will
satisfy it (which is often the case in urgent states), relaxing this condition is
subject of future work. Given two independent operations, we can conclude with
a number of rules which are useful for showing that two actions do not disable
each other and commute in extended timed automata.

Lemma 1. Given state s = (l, Z, ν), constraints φ, φ′ ∈ B(X), update r ∈
U(X), and variable valuations ν, ν1 ∈ V(V ). The following hold:
(1) if φ ���

s r then �(Z ∧ φν)[rν ]� = �Z[rν ] ∧ φν�
(2) if �(Z ∧ φν)[rν ] ∧ φν� �= ∅ then �(Z ∧ φν)[rν ] ∧ φν� = �(Z ∧ φν)[rν ]�
(3) if φ ���

s φ′ and μ ∈ �Z ∧ (φ′)ν� and �Z ∧ φν1� �= ∅ then μ ∈ �(Z ∧ φν1)�
(4) if ∀x ∈ X(φ).|Γx(Z)| = 1 and �Z ∧ φν� �= ∅ and �Z ∧ φν1� �= ∅ then

�Z ∧ φν� = �Z ∧ φν1�

Lemma 1 (1) states that if a reset is independent of a constraint then the
reset does not affect the constraint. Lemma 1 (2) does not require independent
operations, in our proofs it is used to remove redundant application of invariants
from components which are not involved in transitions. Lemma1 (3) implicitly
uses Condition (7) from Definition 8 to show that a valuation satisfying a guard
is preserved after applying another guard. Lemma1 (4) states that if a guard φ
has been updated (via increment or decrement which in our case always produce
a “bigger” constraint), then because of the shape of the zone the intersections
will produce the same set.

Definition 9 (Syntactic Independence of Actions). Given a state s =
(l, Z, ν) with l = (l1, . . . , ln) and two actions a1, a2 ∈ A�

s. Actions a1 and a2

are syntactically independent at state s denoted by a1 ���
s a2 if and only if the
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following conditions hold:
(Ind1) Pre(a1) ∩ Pre(a2) = ∅
(Ind2) ∃l ∈ F (a1). l ∈ Lc ⇐⇒ ∃l ∈ F (a2). l ∈ Lc for F ∈ {Pre,Post}.
(Ind3) ∀op1 ∈ Op(a1), op2 ∈ Op(a2). op1 ���

s op2
(Ind4) ∀i ∈ {1, 2}, op ∈ Op(ai), j ∈ {1, . . . , n}. lj �∈ Pre(ai) =⇒ op ���

s I(lj)

Condition (Ind1) ensures that the source locations for the actions are disjoint.
Condition (Ind2) takes into account the semantics of committed locations and
prevents actions from disabling each other. Condition (Ind3) ensures that all the
operations on the actions are independent. Finally Condition (Ind4) ensures that
the operations in actions ai for i ∈ {1, 2} do not modify the invariant of other
components which could disable action a3−i. When these syntactic conditions
are satisfied we have the following theorem.

Theorem 2. Given a zero time state s ∈ S and two actions a1, a2 ∈ A�
s. If

a1 ���
s a2 then a1 ��s a2.

Our analysis uses the current state s = (l, Z, ν) to conclude if two actions
are independent at s. In particular we use the zone Z in Definition 8 Condition
(7) to detect clock constraint dependencies. Due to this condition we can make
assumptions about the shape of the zone Z which allow us to conclude that if the
actions were syntactically independent at s then so they are in states reachable
via independent actions.

Corollary 1. Given state s, action a ∈ A�
s, and A′ = {a′ ∈ A�

s | a ��
s a′}.

Then ∀s′ ∈ S.a′ ∈ (A�
s\A′), w ∈ (A�

s\A′)∗. zt(s)∧s
w−→ s′ a′

−→ s′′ =⇒ a ���
s′a′.

4.2 Preserving Non-zero Time States

In order to satisfy Condition D from Definition 2, which ensures that the reduc-
tion preserves states that can delay, we need to include particular actions to the
stubborn set. In XTA time can not elapse at an urgent (committed) location or
if invariant is stopping time.

Definition 10 (Time Enabling Action). An action a ∈ A is a time enabling
action at zero time state s = (l, Z, ν) if executing a may cause time to elapse.
Formally tea�(a, s) iff (∃l ∈ Pre(a). l ∈ Lu ∪ Lc)

∨
(∀μ ∈ Z, d ∈ R≥0. μ + d |=

I(l) =⇒ d = 0).

Consider again Fig. 1a and the zero time state s = ((l1,3, l2,3, l3,3), x1 = x2 =
x3 = 1500) and actions ai = {(li,3, τ, xi ≥ 1500, xi = 0, li,0)}. The actions are
time enabling actions i.e. tea�(ai, s) for i ∈ {1, 2, 3}. Note that as long as a time
enabling action is enabled, time can not elapse. Thus executing independent
actions can not cause time to progress.

Lemma 2. Let s ∈ S, a ∈ En(s) with tea�(a, s) and Delay�
s

def= {a} ∪ {a′ ∈ A�
s |

a ��
s a′}. Then ∀s′ ∈ S,w ∈ (A�

s \ Delay�
s)

∗. s
w−→ s′ ∧ zt(s) =⇒ zt(s′).
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4.3 Preserving Goal States

In order to satisfy Condition R from Definition 2, which ensures that the reduc-
tion preserves goal states, we need to include actions whose execution is necessary
to reach a goal state.

Definition 11 (Interesting Actions for Properties). For formula ϕ and
state s such that s �|= ϕ. The set ϕ�

s ⊆ A�
s is defined recursively based on the

structure of ϕ as given by the following table:
Formula ϕ ϕ�

s

l {a ∈ A�
s | l ∈ Post(a)}

deadlock
pick a ∈ En(s) then {a}∪
{a′ ∈ A�

s | (Pre(a) ∩ Pre(a′) �= ∅) ∨ (Parallel(a, a′) ∧ a ��
s a′}

x �� c {a ∈ A�
s | ∃op ∈ Update(a). x �� c ��

s op}
ϕv for v ∈ V {a ∈ A�

s | ∃op ∈ Op(a). ϕv ��
s op}

ϕ1 ∧ ϕ2 (ϕi)�
s for some i ∈ {1, 2} where s �|= ϕi

Lemma 3. Given a state s, a formula ϕ, and the set ϕ�
s. Then ∀s′ ∈ S,w ∈

(A�
s \ ϕ�

s)
∗. s

w−→ s′ ∧ zt(s) ∧ s �|= ϕ =⇒ s′ �|= ϕ.

5 Computing Stubborn Sets in Uppaal

We shall first provide a high level algorithm to compute a reachability preserving
reduction for networks of timed automata and then discuss details related to the
implementation of our technique in the model checker Uppaal.

5.1 Algorithm

Assume a given network of XTA and reachability formula ϕ. During the reach-
ability analysis, we repeatedly use Algorithm1 at every generated state s to
compute a reduction St� that satisfies the conditions from Definition 2. At Line
1, we output En(s) should the state s be non-zero time state, thus satisfying
Condition Z. Line 3 includes all actions that are relevant for the preservation of
the reachability of states that can delay or belong to the goal states. Together
with Lemma 2 and Lemma 3 this ensures that Condition D and Condition R are
satisfied. Finally, the while loop starting at Line 5 ensures Condition W . The
while loop considers an action a ∈ St�s, if this action is not enabled then it will
include all necessary actions which can enable it. This is done by adding actions
which modify the location vector at Line 11, or by adding actions which modify
the guards in a at Line 14. In the case where action a is enabled then the for
loop at Line 16 includes all actions that are not independent with a.

Additionally, note that the set A�
s is finite and in each iteration the size of

St�s can only increase because the only operation applied to St�s is union. In the
worst case we have St�s = A�

s and hence the algorithm terminates.

Theorem 3 (Total Correctness). Let N be a network of XTA and ϕ a
formula. Algorithm1 terminates and St� is a reachability preserving reduction
where St�(s) is the output of Algorithm1 for every state s ∈ S.
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Algorithm 1. Computing conditional stubborn sets
Input Network A1, . . . , An, state s = (l, Z, ν), and formula ϕ.
Output Conditional stubborn set St�s
1: if ¬zt(s) then return En(s);

2: compute A�
s and ϕ�

s;
3: if ∀a ∈ ϕ�

s. ¬tea�(a, s) then pick a ∈ En(s) with tea�(a, s); ϕ� := ϕ� ∪ {a};
4: W := ϕ�

s; R := A�
s; St

�
s := W

5: while W �= ∅ and En(s) ∩ St�s �= En(s) do
6: Pick a ∈ W ; W := W \ {a}; St�s := St�s ∪ {a}; R := R \ {a};
7: if a �∈ En(s) then
8: for all e ∈ a do
9: if src(e) is not in l then
10: for all a′ ∈ R do
11: if src(e) ∈ Post(a′) then W := W ∪ {a′};
12: if exists g ∈ Guard({e}) such that s �|= g then
13: for all a′ ∈ R do
14: if ∃r ∈ Update(a′). g ��

s r then W := W ∪ {a′};
15: if a ∈ En(s) then
16: for all a′ ∈ R do
17: if (Pre(a) ∩ Pre(a′) �= ∅) ∨ (Parallel(a, a′) ∧ a ��

s a′) then
18: W := W ∪ {a′};
19: return St�s;

5.2 Implementation Details

Algorithm 1 is inserted as a state successor filter after the state successors are
computed. This filter passes through only the states that are the result of stub-
born actions. To improve the efficiency, the stubborn set is computed only when
the origin state is urgent and has more than one successor, otherwise the filter
just forwards all successors without any reduction. In the following we describe
a number of optimizations that we included in our implementation.

Reachable Actions. In previous sections we have defined A = 2E , as the set
of actions. This set is unnecessary large and unpractical. The set of reachable
actions from s can be semantically defined as As

def= {a ∈ A | ∃s′, s′′ ∈ S,w ∈
A∗. s

w−→ s′ a−→ s′′}. Our goal is to compute the smallest set A�
s such that

As ⊆ A�
s ⊆ A. Computing a small set has the advantage that potentially less

dependencies are introduced, additionally it will reduce the computation time
of stubborn sets. We implemented a static analysis in order to compute the set
A�

s. Our analysis exploits the fact that time can not elapse at a state s, and
thus actions that require a delay to become enabled need not be included in
A�

s. For the performance sake, the approximation A�
s is computed in two steps.

The first step is prior to state exploration and is only executed once. In this
step for each edge we compute the set of edges it can reach without doing a
delay operation. The starting edge is assumed to be enabled and thus we start
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with all possible clock assignments in conjunction with the source invariant. If
clocks are compared against constants, we add the constraints. Otherwise, if
integer variables appear on the guards, we relax (loose) all the information on
the affected clock. The second step is executed at every urgent state and it is
done by using precomputed data structures from the previous step that collect
for every enabled edge the set of edges it can reach and then composes them
into actions.

Broadcast Channels. Many Uppaal models use broadcast channels, however
the set of possible broadcast synchronizations is exponentially large in terms of
the number of potential receivers (in contrast to linear complexity of handshake
synchronizations) and hence untenable for larger networks. Instead of computing
all possible synchronizations, we compute one super-action for each broadcast
sending edge, combining all potential receiving edges from other processes—this
serves as a safe over-approximation. Such combined treatment avoids exponen-
tial blowup of broadcast actions at the cost of overly-conservative dependency
checks, which considers a super-set of associated variables instead of precise sets
involving a particular subset of receiving edges. In addition to broadcast syn-
chronizations, the static analysis also supports arrays and C-like structures by
expanding them into individual variables. Array indices, references and functions
calls are over-approximated by using the ranges from variable types.

Precomputed Data Structures. To make our implementation fast, we precompute
a number of data structures required by our technique. Examples include, edges
leading to locations, some property base sets, reachable edges from locations. In
particular, in order to compute the dependence between actions, the associated
variable sets are also precomputed in advance for each action. These variable sets
are then used to construct a dependency matrix over all reachable actions, thus
making the action dependency check a constant-time lookup during verification.

6 Experiments

Table 1 shows the results of our POR implementation applied on a number of
industrial case studies1. The experiments were run on a cluster with AMD EPYC
7551 processor with the timeout of 10 h (and 15GB of RAM) for all models except
for SecureRideSharing where the timeout was 48 h (and 200 GB of RAM). The
model instances are suffixed with a number indicating the increasing amount of
parallel components (sensors and the like).

FireAlarm is a simplified version of IndustFireAlarm [11] for the communica-
tion protocol of a wireless sensor network from German Company SeCa GmbH
as described in Sect. 1. The AGless300 corresponds to a requirement from EN-54
standard that a sensor failure is reported in less than 300 s. A stricter property
AGless100 is added to evaluate the performance when a property does not hold.

1 Reproducibility package https://github.com/DEIS-Tools/upor.

https://github.com/DEIS-Tools/upor
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Table 1. Experimental results. Satisfiability results agree for all queries. Queries with
* were not satisfied. The reduction is the ratio of performance without POR and with
POR. OOM indicates out of memory.

Model Query Without POR With POR Reduction ratio

States Time s States Time s States Time

FireAlarm4 AGnotdeadlock 27 <0.01 22 <0.01 1.23 –

FireAlarm20 AGnotdeadlock 1048635 148.41 270 0.01 3883.83 14841

FireAlarm100 AGnotdeadlock – OOM 5350 5.18 – –

IndustFireAlarm13 AGless100* 931496 97.57 24296 2.81 38.34 34.72

IndustFireAlarm15 AGless100* 3684136 571.75 27672 3.84 133.14 148.89

IndustFireAlarm17 AGless100* 14694312 2884.18 31496 5.09 466.55 566.64

IndustFireAlarm19 AGless100* 58734632 15878.47 35768 7.20 1642.1 2205.34

IndustFireAlarm30 AGless100* – OOM 67272 27.92 – –

IndustFireAlarm100 AGless100* – OOM 585272 2753.54 – –

IndustFireAlarm13 AGless300 3731370 439.50 102570 12.73 36.38 34.52

IndustFireAlarm15 AGless300 14742718 2570.36 116862 17.69 126.15 145.30

IndustFireAlarm17 AGless300 58784210 12833.69 132946 23.15 442.17 554.37

IndustFireAlarm19 AGless300 – OOM 150822 32.83 – –

IndustFireAlarm30 AGless300 – OOM 281172 128.08 – –

IndustFireAlarm100 AGless300 – OOM 2380752 12715.08 – –

IndustFireAlarm13 AGnotdeadlock 3731320 388.63 63618 4.96 58.65 78.35

IndustFireAlarm15 AGnotdeadlock 14742668 2215.16 65654 5.68 224.55 389.99

IndustFireAlarm17 AGnotdeadlock 58784160 11202.80 67818 6.47 866.79 1731.50

IndustFireAlarm19 AGnotdeadlock – OOM 70110 8.00 – –

IndustFireAlarm30 AGnotdeadlock – OOM 85004 17.85 – –

IndustFireAlarm100 AGnotdeadlock – OOM 270504 530.46 – –

SecureRideSharing6 AGlessMaxFail 200141 2.23 200141 5.60 1 0.40

SecureRideSharing7 AGlessMaxFail 7223770 95.60 7223770 252.61 1 0.38

SecureRideSharing8 AGlessMaxFail* 85622469 1467.49 85622469 3691.46 1 0.40

SecureRideSharing9 AGlessMaxFail* 1961298623 43548.8 1961298623 106223.46 1 0.41

SecureRideSharing6 AGnotdeadlock 200141 3.05 184973 6.3 1.08 0.48

SecureRideSharing7 AGnotdeadlock 7223770 122.29 2428033 93.21 2.98 1.31

SecureRideSharing8 AGnotdeadlock 97539581 2058.40 39387328 1845.46 2.48 1.12

SecureRideSharing9 AGnotdeadlock – OOM 944892374 55481.09 – –

TTAC4 AGnotdeadlock 12213203 308.40 11414483 379.51 1.07 0.81

TTAC5 AGnotdeadlock 217259289 6724.25 204152089 8679.56 1.06 0.77

TTPA6 AGnotdeadlock 668421 27.30 668421 55.82 1 0.49

TTPA7 AGnotdeadlock 3329080 166.34 3329080 337.06 1 0.49

TTPA8 AGnotdeadlock 18073077 1096.79 18073077 2229.04 1 0.49

FB14 AGnotdeadlock 98310 138.22 98310 139.5 1 0.99

FB15 AGnotdeadlock 196614 698.54 196614 702.61 1 0.99

FB16 AGnotdeadlock 393222 2794.58 393222 2788.83 1 1

Results show exponentially increasing savings in both number of states and com-
putation time.

The SecureRideSharing models a fault-tolerant, duplicate-sensitive aggrega-
tion protocol for wireless sensor networks [3,12]. This case study did not show
reductions until special treatment for broadcast synchronizations and variable
increments was implemented. The AGnotdeadlock property shows substantial
reductions, and one instance times out when POR is not used, however for the
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AGlessMaxFail query the state space is not reducible and the verification time
is more than doubled due to variables reverenced in the query.

The TTAC models a Timed Triggered Architecture protocol [13] used in
drive-by-wire vehicles. The TTPA models a Time-Triggered Protocol for SAE
class A sensor/actuator networks [26]. The model FB models the Field Buss
scheduling protocol [24]. These case studies were selected as they do not allow
for any state space reduction, thus allowing us to observe the time-overhead of
our method. This overhead varies from almost no overhead for the FB models
to twice as slow for the TTPA models.

7 Conclusion

We presented an application of partial order reduction based on stubborn sets
to the model of network of timed automata in the Uppaal style, including a
detailed analysis of both clock and discrete variable dependencies among the
different components. The method allows us to reduce the state space in the
situations where a sequence of mutually independent actions is performed while
the network is in an urgent configuration where time cannot elapse (caused
by the fact that at least one component is in urgent/committed location or
there is a clock invariant imposing the urgency). Our method is implemented in
the tool Uppaal and the experiments confirm that for the models with enough
independent concurrent behavior in urgent situations, we can achieve exponential
speedup in the reachability analysis. For models with limited urgent behavior,
the overhead of our method is still acceptable (with the worst-case ratio of about
0.4 slowdown). These results are highly encouraging, yet further optimizations
can be achieved by a more detailed static analysis of independent actions, one
of the directions for future research.

Acknowledgments. We thank Christian Herrera and Sergio Feo Arenis for providing
the models we use in our experimental section.
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Abstract. Threshold automata were introduced to give a formal seman-
tics to distributed algorithms in a way that supports automated verifica-
tion. While transitions in threshold automata are guarded by conditions
over the number of globally sent messages, conditions in the pseudocode
descriptions of distributed algorithms are usually formulated over the
number of locally received messages. In this work, we provide an auto-
mated method to close the gap between these two representations. We
propose threshold automata with guards over the number of received
messages and present abstractions into guards over the number of sent
messages, by eliminating the receive message counters. Our approach
allows us for the first time to fully automatically verify models of dis-
tributed algorithms that are in one-to-one correspondence with their
pseudocode. We prove that our method is sound, and present a crite-
rion for completeness w.r.t. LTL-X properties (satisfied by all our bench-
marks).

1 Introduction

In distributed algorithms, the actions that a process takes locally depend on the
messages it has received from the other processes in the system. To enable an
action, a process checks if a quorum has been obtained (e.g., majority, two-thirds,
etc.) by counting the received messages. Statements such as “wait until n − t
ECHO messages are received” or “if more than n/2 messages with the same value
are received”, where n is the number of processes and t is the upper bound on the
number of faults, are commonly found in the pseudocode of various algorithms.

The root cause that an action becomes enabled is not that enough messages
are received (which is information local to a process), but that enough processes
have sent messages (which is information global to the system). This leads to
redundancy when producing a formal model: the information about whether an
action is enabled is present in the global state of the system, as well as in the
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local state of the processes. As [11] shows, this redundancy may lead to spu-
rious counterexamples when applying abstraction-based model checking, which
prevents abstraction-based techniques from scaling beyond small examples.

Threshold automata [13] were introduced to model and verify asynchronous
fault-tolerant distributed algorithms. They are effective for verification, as they
eliminate this redundancy by only allowing expressions over the global variables
(i.e., the variables that count the number of sent messages). That is, it suffices
to translate the check whether a quorum has been obtained to a check whether
enough messages have been sent. For many algorithms, this translation can easily
be done manually, as was the case in [12] (and [20], for synchronous algorithms).

However, different classes of algorithms, such as, e.g., Ben-Or’s randomized
consensus algorithm [2], have more complex guards, where conditions over receive
variables can occur in negated form. To model such algorithms in the threshold
automata framework, one needs to translate negated conditions over receive vari-
ables to positive conditions over the global variables. Owing to implicit assump-
tions about the values of the receive and global variables, imposed by the asyn-
chronous computation and faulty environment, eliminating the receive variables
by hand becomes increasingly tedious and error-prone.

In this paper, we propose an automated method that translates guard expres-
sions over the local receive variables into guard expressions over the global
variables. We explicitly encode the relationship between the receive and global
variables using a so-called environment assumption. The input is a threshold
automaton, whose rules contain conditions over the receive variables, and an
environment assumption. The output is a threshold automaton where the receive
variables are eliminated. We make the following contributions:

1. We introduce a new variant of threshold automata that allows guards over
receive variables, and thus is a formalization which captures the constructs
that appear in the pseudocode found in the literature.

2. To eliminate the receive variables, we use quantifier elimination for Pres-
burger arithmetic [9,16,17]. This results in quantifier-free guard expressions
over the shared variables, and constitutes a valid input to ByMC [14].

3. We show that this method is sound, i.e., that the resulting system is an over-
approximation of the original system. For completeness, we present classes of
threshold automata for which eliminating receive message counters preserves
linear temporal properties without the next operator (LTL-X).

4. In our experiments, we specified several fault-tolerant distributed algorithms
with guards over receive variables. We implemented our technique in a pro-
totype, and used it to obtain guards over global variables. When comparing
the automatically generated automata to the manually constructed ones, we
found flaws, such as missing or redundant rules, or incorrect guards in the
manual benchmarks (which were done by some of the authors of this paper).

5. We verified the correctness of the resulting threshold automata using ByMC.

In this way, we establish a fully automated pipeline, that for a given algo-
rithm: starts from a formal model that captures its pseudocode, produces a
formal model suitable for verification, and automatically verifies its correctness.
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1 bool v := input_value({0, 1});
2 int rnd := 1;
3 while (true) do
4 send (R,rnd,v) to all;
5 wait for n - t messages (R,rnd, *);
6 if received more than (n + t) / 2
7 messages (R,rnd,w) then
8 send (P,rnd,w,D) to all;
9 else send (P,rnd,?) to all;

10 wait for n - t messages (P,rnd, *);
11 if received at least t + 1
12 message (P,rnd,w,D) then {
13 v := w;
14 if received more than (n + t) / 2
15 messages (P,rnd,w,D) then
16 decide w;
17 }
18 else v := random({0, 1});
19 rnd := rnd + 1;
20 od
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r1 : � �→
{ns(0)++}

r2 : � �→
{ns(1)++}
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r11

r4 r6r5

r3 : � }{→�

r7 : }{→��
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1
2

1
2

r4 : ψ1 ∧ nri(0) > (n + t)/2 �→ {ns(2)++} r5 : ψ1 ∧ nri(1) > (n + t)/2 {→� ns(3)++}
r6 : ψ1 ∧ nri(0) ≤ (n + t)/2 ∧ nri(1) ≤ (n + t)/2 {→� ns(4)++}
r8 : ψ2 ∧ nri(2) ≤ (n + t)/2 ∧ nri(3) ≤ (n + t)/2 ∧ nri(2) ≥ t + 1 }{→�
r9 : ψ2 ∧ nri(2) ≤ (n + t)/2 ∧ nri(3) ≤ (n + t)/2 ∧ nri(3) ≥ t + 1 }{→�
r10 : ψ2 ∧ nri(2) > (n + t)/2 }{→� r11 : ψ2 ∧ nri(3) > (n + t)/2 }{→�
r12 : ψ2 ∧ nri(2) < t + 1 ∧ nri(3) < t + 1 }{→�

Fig. 1. The pseudocode of the probabilistic Byzantine consensus protocol by Ben-
Or [2], with n > 5t, and its TA where ψ1 ≡ nri(0) + nri(1) ≥ n − t and ψ2 ≡ nri(2) +
nri(3) + nri(4) ≥ n − t. We use the notation r : ϕ �→ {ns(m)++ | m ∈ M}, where ϕ is
the rule guard, and {ns(m)++ | m ∈ M} is the set of increments of send variables.

2 Overview on Our Approach

We discuss our approach using the example in Fig. 1. It shows the pseudocode of
the probabilistic consensus algorithm by Ben-Or [2], which describes the behavior
of one process. A system consists of n processes, f of which are faulty; there is
an upper bound t ≥ f on the number of faults. We comment on some typical
peculiarities of the pseudocode in Fig. 1: v in line 4 is a program variable, w
in line 7 is an (implicitly) existentially quantified variable whose scope ranges
from line 6 to line 8 (similarly in lines 11–13 and lines 14–16). Besides, the
tuple notation of messages hides the different types of its components: In line 8,
the quadruple (P, rnd,w,D) is sent, where P and D are message tags (from
a finite domain), while rnd is an algorithm variable (integer), and w is the
mentioned existentially quantified variable. In the other branch, in line 9 the
triple (P, rnd, ?) is sent, that is, the “w,D” pair is replaced by the single tag ’?’.
We highlight these constructs to emphasize the difficulty of understanding the
algorithm descriptions given in pseudocode, as well as the need for formal models.
Irrespective of this formalization challenge, this algorithm and many other fault-
tolerant distributed algorithms typically contain the following constructs:
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– setting the values of local variables, e.g., line 13,
– sending a message of type m, for m ∈ M , e.g., line 4,
– waiting until enough messages of some type have been received, e.g., line 5.

Threshold Automata. In this paper, we present a method for obtaining a formal
model of a fault-tolerant distributed algorithm starting from its pseudocode. In
Sect. 3, we generalize threshold automata (TA) [13], and propose the extension
as a formalism to faithfully encode fault-tolerant distributed algorithms. The TA
specifies the behavior of one process; a parallel composition of multiple copies
of a TA specifies the behavior of a distributed system in a faulty environment.

The TA shown on the right in Fig. 1 models one iteration of the while-loop
starting in line 3. It resembles a control flow graph, where:

– the locations of the TA encode the values of the local variables and the value
of the program counter. For example, I0 encodes that a process sets v to 0 in
line 1, while E0 encodes the same assignment in line 13.

– sending a message m ∈ M is captured by incrementing the send variable
ns(m). For example, a process with initial value 0 sends (R, rnd, 0) in line 4.
We say that the message (R, rnd, 0) is of type 0, and model the sending by a
process moving from I0 to SR, and incrementing the variable ns(0).

– waiting until enough messages are received is modeled by keeping processes
in a so-called wait location, defined in Sect. 4. For example, once a process
sends a message in line 4, it moves to line 5, where it waits for n − t messages
that can be either (R, rnd, 0) or (R, rnd, 1). In the TA, the wait location SR
encodes that the process has sent a message of type either 0 or 1, and that it
now waits to receive at least n − t messages of type 0 or 1.

Eliminating Receive Variables. In Sect. 4, we introduce two types of TA: rcvTA,
which have local transitions guarded by expressions over local receive variables
nri(m), and sndTA, where the guards are over global send variables ns(m), for
m ∈ M . We use rcvTA to encode the behavior of a single process, and sndTA for
verification purposes. The approaches in [12,13] encoded distributed algorithms
using sndTA, and defined techniques for verifying safety and liveness properties
of systems of sndTA. Thus, to apply these techniques to systems of rcvTA, our
goal is to automatically generate sndTA, given a rcvTA.

In Sect. 5, we propose an abstraction from rcvTA to sndTA, which translates
guards over nri(m) to guards over ns(m), for m ∈ M , based on quantifier elimina-
tion. The translation incorporates the relationship between the send and receive
variables in asynchronous faulty environments, encoded using an environment
assumption Env. The environment assumption depends on the fault model; e.g.,
for Byzantine faults, Env has constraints of the kind: nri(m) ≤ ns(m) + f , that
is, a process can receive up to f messages more than the ones sent by correct
processes, where f is the number of faulty processes. Given a guard ϕ over the
receive variables, to obtain a guard ϕ̂ over the send variables, we apply quanti-
fier elimination to the formula ϕ′ ≡ ∃nri(0) . . . ∃nri(|M | − 1) (ϕ ∧ Env). This
produces a quantifier-free formula ϕ̂ over the send variables, equivalent to ϕ′.
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We implemented a prototype tool that automatically generates guards
over the send variables. We used Z3 [10] to automate the quantifier elimi-
nation step. We encoded several algorithms from the literature using rcvTA,
translated them to sndTA using our prototype tool, and used ByMC [14]
to verify their correctness, which we report on in Sect. 8. For instance, for
the guard ϕ6 ≡ nri(0) + nri(1) ≥ n − t ∧ nri(0) ≤ (n + t)/2 ∧ nri(1) ≤
(n + t)/2, of rule r6 in Fig. 1, our prototype tool applies quantifier elimi-
nation to the formula ∃nri(0) . . . ∃nri(4) (ϕ6 ∧ Env) and outputs the guard

is what remains of Env after eliminating nri(0), . . . , nri(4).

Soundness and Criteria for Completeness. In Sect. 6, we show that a system of
n copies of a generated sndTA is an overapproximation of a system of n copies of
the original rcvTA, i.e., we show that the translation is sound. This allows us to
check the properties of a system of n copies of rcvTA by checking the properties
of the system of n copies of sndTA. In general, the translation is not complete.
We characterize a class of TA, for which we show that the overapproximation
is precise w.r.t. LTL-X properties. We call these TA common, as they capture
common assumptions made by algorithm designers. A TA is common if a process
either: (1) does not wait for messages of the same type in different wait locations,
or (2) in a given wait location, it waits for more messages of the same type than
in any of its predecessor wait locations. We propose a formalization of these
two assumptions, which allows us to classify the TA of all our benchmarks as
common. In Sect. 7, we present a construction which given an infinite trace of
the system of n copies of sndTA, builds an infinite stutter-equivalent trace of the
system of n copies of a common rcvTA.

3 Threshold Automata

Let M denote the set of types of messages that can be sent and received by the
processes. A process i, for 1 ≤ i ≤ n, has three kinds of variables:

– local variables, xi, visible only to process i, that store values local to process i,
such as, e.g., an initial value or a decision value;

– receive variables nri(m), visible only to process i, that accumulate the number
of messages of types m ∈ M that were received by process i;

– send variables, ns(m), shared by all processes, that accumulate the number
of messages of types m ∈ M that were sent by the processes.

A threshold automaton TA is a tuple (L, I,R, Γ,Δ,Π,RC,Env) whose com-
ponents are defined below.

Locations L, I. The locations � ∈ L encode the current value of the process local
variables xi, together with information about the program counter. The initial
locations in I ⊆ L encode the initial values of the process local variables.

Variables Γ , Δ. The set Γ of shared variables contains send variables ns(m), for
m ∈ M , ranging over N. The set Δ of receive variables contains receive variables



Eliminating Message Counters in Threshold Automata 201

nri(m), for m ∈ M , ranging over N. Initially, the variables in Γ and Δ are set
to 0. As they are used to count messages, their value cannot decrease.

Parameters Π, Resilience Condition RC. We assume that the set Π of parame-
ters contains at least the parameter n, which denotes the total number of pro-
cesses. The resilience condition RC is a linear integer arithmetic expression over
the parameters from Π. Let π be the |Π|-dimensional parameter vector, and let
p ∈ N

|Π| be its valuation. If p satisfies the resilience condition RC, we call it an
admissible valuation of π, and define the set PRC = {p ∈ N

|Π| | p |= RC} of
admissible valuations of π. The mapping N : PRC → N maps p ∈ PRC to the
number N(p) of processes that participate in the algorithm. For each process i,
we assume 1 ≤ i ≤ N(p).

For example, the algorithm in Fig. 1 has three parameters: n, t, f ∈ Π. The
resilience condition is n > 5t ∧ t ≥ f . An admissible valuation p ∈ PRC is
〈6, 1, 1〉, as p[n] > 5p[t] ∧ p[t] ≥ p[f ].

Rules R. The set R of rules defines how processes move from one location
to another. A rule r ∈ R is a tuple (from, to, ϕ,u), where from, to ∈ L are
locations, ϕ is a guard, and u is a |Γ |-dimensional update vector of values from
the set {0, 1}. The guard ϕ is used to check whether the rule can be executed,
and will be defined below. The update vector u captures the increment of the
shared variables.

For example, in Fig. 1, executing the rule r1 = (I0, SR,�,u) moves a process
i from location I0 to location SR, by incrementing the value of ns(0). That is,
r1.u[ns(0)] = 1, and for every other shared variable g ∈ Γ , with g 
= ns(0), we
have r1.u[g] = 0. Observe that the guard of r1 is r1.ϕ = �, which means that r1
can be executed whenever process i is in location I0.

Propositions. Let γ denote the |Γ |-dimensional shared variables vector, and δ
the |Δ|-dimensional receive variables vector. To express guards and temporal
properties, we consider the following propositions:

– �-propositions, p(�), for � ∈ L, (which will be used in Sect. 6),
– r-propositions, a · δ ≥ b · π + c, such that a ∈ Z

|Δ|,b ∈ Z
|Π|, c ∈ Z,

– s-propositions, a · γ ≥ b · π + c, such that a ∈ Z
|Γ |,b ∈ Z

|Π|, c ∈ Z.

Guards. A guard ϕ is a Boolean combination of r-propositions and s-
propositions. We denote by VarsΔ(ϕ) = {nri(m) ∈ Δ | nri(m) occurs in ϕ}
the set of receive variables that occur in the guard ϕ. A guard ϕ is evaluated
over tuples (d,g,p), where d ∈ N

|Δ|,g ∈ N
|Γ |,p ∈ PRC are valuations of

the vectors δ of receive variables, γ of shared variables, and π of parameters.
We define the semantics of r-propositions and s-propositions, the semantics of
the Boolean connectives is standard. An r-proposition holds in (d,g,p), i.e.,
(d,g,p) |= a · δ ≥ b · π + c iff (d,p) |= a · δ ≥ b · π + c iff a · d ≥ b · p + c.
Similarly for s-propositions, we have (d,g,p) |= a · γ ≥ b · π + c iff
(g,p) |= a · γ ≥ b · π + c iff a · g ≥ b · p + c.



202 I. Stoilkovska et al.

The guard r4.ϕ of rule r4 in the TA in Fig. 1 is a conjunction of two r-
propositions, as nri(0) > (n + t)/2 is equivalent to 2nri(0) ≥ n + t + 1. We have
VarsΔ(r4.ϕ) = {nri(0), nri(1)} and VarsΓ (r4.ϕ) = ∅.

Environment Assumption Env. The environment assumption Env is a conjunc-
tion of linear integer arithmetic constraints on the values of the receive, shared
variables, and parameters. It is used to faithfully model the assumptions imposed
by the fault model and the message communication. For example, for Byzantine
faults, we have the environment assumption

where M(r.ϕ) are the message types of the receive variables that occur in the
guard r.ϕ, i.e., m ∈ M(r.ϕ) iff nri(m) ∈ VarsΔ(r.ϕ). The constraint Env(r.ϕ)
states that the number of received messages of types in M ′ ⊆ M(r.ϕ), is bounded
by the number of sent messages of types in M ′ and the number f of faults.

4 Modeling Distributed Algorithms with TA

The definition of TA we presented in Sect. 3 is very general. To faithfully model
the sending and receiving of messages in fault-tolerant distributed algorithms,
we introduce elementary TA, by imposing several restrictions on the locations
and the guards on the rules.

We first define wait locations. A location � ∈ L is a wait location iff (W1) there
exists exactly one r ∈ R with r = (�, �,�,0), and (W2) there exists at least one
r ∈ R with r = (�, �′, ϕ,u), with � 
= �′, where r.ϕ 
= �. A process in a wait
location � ∈ L uses the self-loop rule (W1) to stay in � while it awaits to receive
enough messages, until some guard of a (W2) is satisfied. The process uses the
rules (W2) to move to a new location once the number of messages passes some
threshold. The self-loop rule is unguarded and updates no shared variables, that
is, its guard is � and its update vector is 0. The outgoing rules that are not
self-loops are guarded and can contain updates of shared variables.

In Fig. 1, SR is a wait location, as it has a self-loop rule r3 = (SR, SR,�,0)
as well as three guarded outgoing rules, r4, r5, and r6, that are not self-loops.

Definition 1. A threshold automaton TA = (L, I,R, Γ,Δ,Π,RC,Env) is ele-
mentary iff r.from is a wait location for every r ∈ R, with r.ϕ 
= �.

We now define the two kinds of elementary TA: receive and send TA. To do
so, we introduce a receive guard, as a Boolean combination of r-propositions and
s-propositions, and a shared guard, as a Boolean combination of s-propositions.

Definition 2 (Receive TA). The elementary TA (L, I,RΔ, Γ,Δ,Π,RC,
EnvΔ) is a receive TA (denoted by rcvTA) if r.ϕ is a receive guard, for r ∈ RΔ.

Definition 3 (Send TA). The elementary TA (L, I,RΓ , Γ,Δ,Π,RC,EnvΓ ) is
a send TA (denoted by sndTA) if Δ = ∅, and r.ϕ is a shared guard, for r ∈ RΓ .
We omit Δ from the signature, and define sndTA = (L, I,RΓ , Γ,Π,RC,EnvΓ ).
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For example, the TA in Fig. 1 is a rcvTA. In the remainder of this section, we
define the semantics of the parallel composition of N(p) copies of receive and
send TA as an asynchronous transition system and counter system, respectively.

4.1 Asynchronous Transition System ATS(p)

Definition 4 (ATS(p)). Given a rcvTA and p ∈ PRC , the triple ATS(p) =
〈S(p), S0(p), T (p)〉 is an asynchronous transition system, where S(p), S0(p),
are the set of states and initial states, and T (p) is the transition relation.

A state s ∈ S(p) is a tuple s = 〈�,g,nr1, . . . ,nrN(p),p〉, where � ∈ LN(p) is
a vector of locations, such that �[i] ∈ L, for 1 ≤ i ≤ N(p), is the current location
of the process i, the vector g ∈ N

|Γ | is a valuation of the shared variables vector
γ, and the vector nri ∈ N

|M |, is a valuation of the receive variables vector
δ for process i. Each state s ∈ S(p) satisfies the constraints imposed by the
environment assumption EnvΔ. A state s0 is initial, i.e., s0 ∈ S0(p) ⊆ S(p), if
� ∈ IN(p), and g,nr1, . . . ,nrN(p) are initialized to 0.

A receive guard r.ϕ, for r ∈ RΔ, is evaluated over tuples (s, i), where s ∈ S(p)
and 1 ≤ i ≤ N(p). We define (s, i) |= r.ϕ iff (s.nri, s.g, s.p) |= r.ϕ.

Given two states, s, s′ ∈ S(p), we say that (s, s′) ∈ T (p), if there exists a
process i, for 1 ≤ i ≤ N(p), and a rule r ∈ RΔ such that: (T1) s.�[i] = r.from and
(s, i) |= r.ϕ, (T2) s′.g = s.g+ r.u, (T3) s′.�[i] = r.to, (T4) s.nri[m] ≤ s′.nri[m],
for m ∈ M , and (T5) for all j such that 1 ≤ j ≤ N(p) and j 
= i, we have
s′.�[j] = s.�[j] and s′.nrj [m] = s.nrj [m], for m ∈ M . A rule r ∈ RΔ is enabled
in a state s ∈ S(p) if there exists a process i with 1 ≤ i ≤ N(p) such that (T1)
holds. A state s′ ∈ S(p) is the result of applying r to s if there exists a process
i, with 1 ≤ i ≤ N(p), such that r is enabled in s and if s′ satisfies (T2) to (T5).

A path in ATS(p) is the finite sequence {si}k
i=0 of states, such that (si, si+1) ∈

T (p), for 0 ≤ i < k. A path {si}k
i=0 is an execution if s0 ∈ S0(p).

4.2 Counter System CS(p)

Definition 5 (CS(p) [13]). Given a sndTA and p ∈ PRC , the triple CS(p) =
〈Σ(p), I(p), R(p)〉 is a counter system, where Σ(p), I(p) are the sets of config-
urations and initial configurations, and R(p) is the transition relation.

A configuration σ ∈ Σ(p) is the triple σ = 〈κ,g,p〉, where the vector
κ ∈ N

|L| is a vector of counters, s.t. σ.κ[�], for � ∈ L, counts how many
processes are in location �, and the vector g ∈ N

|Γ | is the valuation of the
shared variables vector γ. Every configuration σ ∈ Σ(p) satisfies the constraint

and the environment assumption EnvΓ . A configuration σ0

is initial, i.e., σ0 ∈ I(p) ⊆ Σ(p), if σ0.κ[�] = 0, for � ∈ L \ I, and σ0.g = 0.
A shared guard r.ϕ, for r ∈ RΓ , is evaluated over σ ∈ Σ(p) as follows. As r.ϕ

is a Boolean combination of s-propositions, we have σ |= r.ϕ iff (σ.g, σ.p) |= r.ϕ.
Given σ, σ′ ∈ Σ(p), we say that (σ, σ′) ∈ R(p) if there exists a rule

r ∈ RΓ such that: (R1) σ.κ[r.from] ≥ 1 and σ |= r.ϕ, (R2) σ′.g = σ.g + r.u,
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(R3) σ′.κ[r.from] = σ.κ[r.from] − 1 and σ′.κ[r.to] = σ.κ[r.to] + 1, and (R4) for
all � ∈ L \ {r.from, r.to}, we have σ′.κ[�] = σ.κ[�]. The rule r ∈ RΓ is enabled
in σ ∈ Σ(p) if it satisfies condition (R1). We call σ′ ∈ Σ(p) the result of apply-
ing r to σ, if r is enabled in σ and σ′ satisfies the conditions (R2) to (R4).

The path and execution in CS(p) are defined analogously as for ATS(p).

5 Abstracting rcvTA to sndTA

We perform the abstraction from rcvTA to sndTA in two steps. First, we add the
environment assumption EnvΔ as a conjunct to every receive guard occurring on
the rules of the rcvTA. Second, we eliminate the receive variables to obtain the
shared guards and environment assumption EnvΓ of sndTA.

Let rcvTA = (L, I,RΔ, Γ,Δ,Π,RC,EnvΔ) be a receive TA and let rcvTA′ =
(L, I,R′

Δ, Γ,Δ,Π,RC,EnvΔ) be the receive TA obtained by adding the environ-
ment assumption EnvΔ as a conjunct to every receive guard r.ϕ, for r ∈ RΔ.

Definition 6. Given a rule r ∈ RΔ, its corresponding rule in rcvTA′ is the rule
r′ ∈ R′

Δ, such that r′.from = r.from, r′.to = r.to, r′.u = r.u, and

r′.ϕ = addEnvΔ(r.ϕ) , where addEnvΔ(r.ϕ) =

®
� if r.ϕ = �
r.ϕ ∧ EnvΔ otherwise

Proposition 1. For every rule r ∈ RΔ, state s ∈ S(p), and process i, for
1 ≤ i ≤ N(p), we have (s, i) |= r.ϕ iff (s, i) |= addEnvΔ(r.ϕ).

Proposition 1 follows from Definitions 4 and 6. As a result of it, composing
N(p) copies of rcvTA and N(p) copies of rcvTA′ results in the same ATS(p).

Given the rcvTA′ = (L, I,R′
Δ, Γ,Δ,Π,RC,EnvΔ), obtained from rcvTA by

Definition 6, we now construct a sndTA = (L, I,RΓ , Γ,Π,RC,EnvΓ ) whose loca-
tions, shared variables, and parameters are the same as in rcvTA and rcvTA′, and
whose rules RΓ and the environment assumption EnvΓ are defined as follows.

Definition 7. Given a rule r′ ∈ R′
Δ, its corresponding rule in sndTA is the rule

r̂ ∈ RΓ , such that r̂.from = r′.from, r̂.to = r′.to, r̂.u = r′.u, and

r̂.ϕ = eliminateΔ(r′.ϕ), with eliminateΔ(r′.ϕ) =

®
� if r′.ϕ = �
QE(∃δ r′.ϕ) otherwise

where δ is the |Δ|-dimensional vector of receive variables, and QE is a quantifier
elimination procedure for linear integer arithmetic.

The environment assumption EnvΓ of sndTA is the formula
eliminateΔ(EnvΔ).

To obtain the shared guards of a sndTA, we apply quantifier elimination to
eliminate the existentially quantified variables from the formula ∃δ r.ϕ ∧ EnvΔ,
where r.ϕ is a receive guard. The result is a quantifier-free formula over the
shared variables, which is logically equivalent to ∃δ r.ϕ ∧ EnvΔ. We obtain the
environment assumption EnvΓ of a sndTA in a similar way. The following propo-
sition is a consequence of Definition 7 and quantifier elimination.
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Proposition 2. For every rule r′ ∈ R′
Δ and state s ∈ S(p), if there exists a

process i, with 1 ≤ i ≤ N(p), such that (s, i) |= r′.ϕ, then s |= eliminateΔ(r′.ϕ).

The converse of the above proposition does not hold in general, i.e., if r.ϕ
is a receive guard, s |= eliminateΔ(r′.ϕ) does not imply (s, i) |= r.ϕ, for some
1 ≤ i ≤ N(p). However, by quantifier elimination, s |= eliminateΔ(r′.ϕ) implies
s |= ∃δ r′.ϕ.

6 Soundness

The construction of sndTA defined in Sect. 5 is sound. Given a rcvTA and its
corresponding sndTA, we show that there exists a simulation relation between
the system ATS(p) = 〈S(p), S0(p), T (p)〉, induced by rcvTA, and the counter
system CS(p) = 〈Σ(p), I(p), R(p)〉, induced by sndTA. From this, we conclude
that every ACTL∗ formula over a set AP of atomic propositions that holds in
CS(p) also holds in ATS(p). In this paper, the set AP of atomic propositions
contains �-propositions and s-propositions (cf. Sect. 3).

Evaluating AP. We define two labeling functions: λS(p) and λΣ(p). The function
λS(p) : S(p) → 2AP assigns to a state s ∈ S(p) the set of atomic propositions
from AP that hold in s. The function λΣ(p) : Σ(p) → 2AP is defined analogously.
We define the semantics of �-propositions: p(�) holds in s ∈ S(p), i.e., s |= p(�),
iff there exists a process i, with 1 ≤ i ≤ N(p), such that s.�[i] = �. The �-
proposition p(�) holds in σ ∈ Σ(p), that is, σ |= p(�) iff σ.κ[�] ≥ 1.

Simulation. A binary relation R ⊆ S(p) × Σ(p) is a simulation relation [1] if:

1. for every s0 ∈ S0(p), there exists σ0 ∈ I(p) such that (s0, σ0) ∈ R,
2. for every (s, σ) ∈ R it holds that:

(a) λS(p)(s) = λΣ(p)(σ),
(b) for every state s′ ∈ S(p) such that (s, s′) ∈ T (p), there exists a configu-

ration σ′ ∈ Σ(p) such that (σ, σ′) ∈ R(p) and (s′, σ′) ∈ R.

We introduce an abstraction mapping from the set S(p) of states of ATS(p) to
the set Σ(p) of configurations of CS(p).

Definition 8. The abstraction mapping αp : S(p) → Σ(p) maps s ∈ S(p) to
σ ∈ Σ(p), s.t. σ.κ[�] = |{i | s.�[i] = �}|, for � ∈ L, σ.g = s.g, and σ.p = s.p.

The main result of this section is stated in the theorem below. It follows
from: (i) a state s in ATS(p) and its abstraction σ = αp(s) in CS(p) satisfy the
same atomic propositions, a consequence of the semantics of atomic propositions,
and (ii) if a rule r ∈ RΔ is enabled in s, then the rule r ∈ RΓ , obtained by
Definitions 6 and 7, is enabled in σ, a consequence of Propositions 1 and 2.

Theorem 1. The binary relation R = {(s, σ) | s ∈ S(p), σ ∈ Σ(p), σ = αp(s)}
is a simulation relation.
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7 Sufficient Condition for Completeness

We introduce the class of common rcvTA, that formalizes assumptions often
implicitly assumed by distributed algorithms designers. In a common rcvTA, for
every two wait locations � and �′, where �′ is reachable from �, either: (1) a
process waits for messages of different types in � and �′, or (2) a process waits
for more messages of the same type in �′ than in �. Below, we give one possi-
ble formalization of common rcvTA, which allows us to establish stutter-trace
inclusion [1] between the counter system CS(p) and the system ATS(p).

Theorem 2. Let rcvTA be common, and sndTA its corresponding send TA. For
every execution of CS(p) induced by sndTA, there exists a stutter-equivalent exe-
cution of ATS(p) induced by the common rcvTA.

From Theorem 2, every LTL-X formula satisfied in ATS(p) is also satisfied in
CS(p). As LTL-X is a fragment of ACTL∗, a consequence of Theorems 1 and 2 is:

Corollary 1. Let rcvTA be common, and sndTA its corresponding send TA. Let
φ be an LTL-X formula over the set AP of atomic propositions. For a given
p ∈ PRC , we have ATS(p) |= φ iff CS(p) |= φ.

We define the properties of common rcvTA, that allow us to show Theorem 2.

Definition 9. A guard ϕ is monotonic iff for every d,d′ ∈ N
|Δ|, g,g′ ∈ N

|Γ |,
p ∈ PRC , (d,g,p) |= ϕ, d[m] ≤ d′[m], for m ∈ M , and g[g] ≤ g′[g], for g ∈ Γ ,
implies (d′,g′,p) |= ϕ.

The monotonicity of the guards captures constraints imposed by the message
communication and distributed computation. It states that a monotonic guard
changes its truth value at most once as the processes update the values of the
receive and shared variables.

Definition 10. Let PΔ = {D1, . . . , Dk} be a partition over the set Δ of receive
variables. An environment assumption EnvΔ is:

– PΔ-independent iff EnvΔ is of the form , where ψD is a
subformula of EnvΔ, such that VarsΔ(ψD) = D.

– D-closed under joins, for D ∈ PΔ, iff for every d,d′ ∈ N
|Δ|, g ∈ N

|Γ |, and
p ∈ PRC , such that d[m] = d′[m], for nri(m) ∈ Δ \ D, we have (d,g,p) |=
EnvΔ and (d′,g,p) |= EnvΔ implies (max{d,d′},g,p) |= EnvΔ.

The constraints of a PΔ-independent environment assumption EnvΔ are
expressions over disjoint sets of variables. Under PΔ-independence, for an envi-
ronment assumption EnvΔ which is D-closed under joins, for D ∈ PΔ, there
exists a maximal valuation of the variables in D such that EnvΔ is satisfied.

For Byzantine faults, EnvΔ is D-closed under joins for some D ∈ PΔ iff |D| =
1. To show a counterexample for |D| > 1, consider some D = {nri(0), nri(1)}
of size 2. Let ϕ be the receive guard ϕ = nri(0) + nri(1) ≥ n − t. Then, EnvΔ
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has the following three conjuncts: (i) nri(0) ≤ ns(0) + f , (ii) nri(1) ≤ ns(1) + f ,
and (iii) nri(0) + nri(1) ≤ ns(0) + ns(1) + f . Consider f = ns(0) = ns(1) = 1,
nri(0) = 2, nri(1) = 1, and nri(0) = 1, nri(1) = 2. Taking the maximum of these
two valuations violates the constraint (iii). We remark that for crash faults, EnvΔ

is always D-closed under joins for all D ∈ PΔ.
The rule r is a predecessor of rule r′, for r, r′ ∈ RΔ, iff r.ϕ 
= �, r′.ϕ 
= �,

and r′.from is reachable from r.from by a path that starts with r.

Definition 11. A rcvTA = (L, I,RΔ, Γ,Δ,Π,RC,EnvΔ) is common iff

– there exists a partition PΔ, where VarsΔ(r.ϕ) ∈ PΔ, for r ∈ RΔ,
– EnvΔ is PΔ-independent
– for every two rules r, r′ ∈ RΔ, such that r is a predecessor of r′ either

1. VarsΔ(r.ϕ) ∩ VarsΔ(r′.ϕ) = ∅, or
2. EnvΔ is VarsΔ(r′.ϕ)-closed under joins and the guard r′.ϕ is monotonic.

The rcvTA of all our benchmarks are common. They are either: Byzan-
tine, with non-overlapping variables on the guards outgoing of wait locations
or with partition elements of size 1; or crash-faulty. Consider Fig. 1. We have
PΔ = {VarsΔ(rSR.ϕ),VarsΔ(rSP .ϕ)}, where VarsΔ(rSR.ϕ) = {nri(0), nri(1)},
and VarsΔ(rSP .ϕ) = {nri(2), nri(3), nri(4)}. For Byzantine faults and the par-
tition PΔ, we have EnvΔ is PΔ-independent. For rSP ∈ {r8, . . . , r12} and its
predecessors rSR ∈ {r4, . . . , r6} SR, we have VarsΔ(rSP ) ∩ VarsΔ(rSR) = ∅.

Stutter-Equivalent Executions. Let rcvTA be common, and let sndTA be its cor-
responding send TA. Given an infinite execution execCS = {σj}j∈N in CS(p),
induced by sndTA, we construct an infinite execution execATS = {si}i∈N in
ATS(p), induced by the common rcvTA, which is stutter-equivalent to execCS
as follows:

1. constructing the initial state s0 of execATS, and
2. for every transition (σ, σ′) in execCS, extending the execution execATS either

by a single transition or by a path consisting of two transitions.

The construction satisfies the following invariants: (I1) given σ ∈ Σ(p), which
is the origin of the transition (σ, σ′) in step 2, and the state s ∈ S(p) at the
tail of execATS before executing step 2, it holds that σ = αp(s), and (I2) for
every process i, with 1 ≤ i ≤ N(p), and s ∈ S(p) at the tail of execATS, it holds
that s.nri[m] = 0, for m ∈ M , such that nri(m) occurs on guards of rules that
process i has not applied before reaching s.�[i].

Constructing the Initial State. Let σ0 ∈ I(p) be the initial configuration of
execCS. We construct a state s0 ∈ S(p) such that σ0 = αp(s0), where s0.nri[m] =
0, for m ∈ M and 1 ≤ i ≤ N(p).

Proposition 3. Given σ0 ∈ I(p), the state s0 ∈ S(p), such that σ0 = αp(s0)
and s0.nri[m] = 0, for m ∈ M and 1 ≤ i ≤ N(p), is an initial state in ATS(p).
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Extending the Execution execATS. The construction of execATS proceeds itera-
tively: given a transition (σ, σ′) in execCS, the execution execATS is extended by
a single transition or a path consisting of two transitions. Let r ∈ RΔ denote the
rule in rcvTA, which was used to construct the rule r ∈ RΓ , that was applied in
the transition (σ, σ′). Let s be the state at the tail of execATS. By the invariant
of the construction, αp(s) = σ. There are two cases:

1. r is enabled in s – execATS is extended by a single transition (s, s′),
2. r is not enabled in s – execATS is extended by two transitions: (s, s′), (s′, s′′).

When r is enabled in s, the construction picks such a process i, and applies the
rule r to the state s, such that the receive variables of process i are not updated.
The result is the state s′, such that: (A1) s′.�[i] = r.to and s′.g = s.g + r.u,
(A2) s′.nri[m] = s.nri[m], for m ∈ M , that is, the process i does update its
receive variables, (A3) for all j such that 1 ≤ j ≤ N(p), and i 
= j, we have
s′.�[j] = s.�[j] and s′.nrj [m] = s.nrj [m], for m ∈ M .

Proposition 4. Suppose r is enabled in s. Let s′ ∈ S(p) be obtained by applying
(A1)–(A3). Then, (s, s′) ∈ T (p) is a transition in ATS(p).

In the case when r is not enabled in s, there is no process i, with 1 ≤ i ≤ N(p)
and s.�[i] = r.from, such that (s, i) |= r.ϕ. This can happen if r.ϕ is a receive
guard, i.e., � = r.from is a wait location. By σ.κ[�] ≥ 1 and the invariant (I1),
there exists a process i in the wait location �. The construction extends execATS
with: one transition in which the receive variables of process i are updated to
values nr ∈ N

|Δ|, such that r.ϕ becomes enabled, and a second transition in
which process i applies the rule r, without updating its receive variables.

By quantifier elimination and Definition 11, we can find values nr that satisfy
r.ϕ, where only the values of variables in VarsΔ(r.ϕ) get updated, i.e., where
nr[m] = s.nri[m] for nri(m) ∈ Δ\VarsΔ(r.ϕ). For the values nr[m], for nri(m) ∈
VarsΔ(r.ϕ), we take the maximum of s.nri[m] and the values for nri(m) in some
arbitrary valuation that satisfies r.ϕ. Thus, process i can apply the self-loop rule
r′ = (�, �,�,0) to update its receive variables to nr. The result is a state s′, such
that: (B1) s′.�[i] = s.�[i] and s′.g = s.g, (B2) s′.nri[m] = nr[m], for m ∈ M ,
(B3) for all j such that 1 ≤ j ≤ N(p), and i 
= j, we have s′.�[j] = s.�[j] and
s′.nrj [m] = s.nrj [m], for m ∈ M . The rule r is enabled in s′, as s′.�[i] = � and
(s′, i) |= r.ϕ, and is applied to s′, using (A1)–(A3), resulting in the state s′′.

Proposition 5. Suppose r is not enabled in s. Let s′ ∈ S(p) be obtained by
applying (B1)–(B2). Then, (s, s′) ∈ T (p) is a transition in ATS(p).

We sketch how to prove Proposition 5 using the assumptions from Defi-
nition 11. If there exists a predecessor rp of the rule r, such that VarsΔ(rp.ϕ)
and VarsΔ(r.ϕ) overlap, the monotonicity of r.ϕ ensures that (nr, s.g, s.p) |= r.ϕ,
which implies (s′, i) |= r.ϕ. Using PΔ-independence and VarsΔ(r.ϕ)-closure under
joins of EnvΔ we can reason only about the variables from VarsΔ(r.ϕ) to show
that (nr, s.g, s.p) |= EnvΔ, from which s′ |= EnvΔ follows. Otherwise, i.e., if
VarsΔ(rp.ϕ) and VarsΔ(r.ϕ) do not overlap, (s′, i) |= r.ϕ and s′ |= EnvΔ follow
from the PΔ-independence of EnvΔ and the invariant (I2).
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Table 1. The algorithms we encoded as rcvTA and the model checking results. The
columns stand for: QE – the time to produce a sndTA for a given rcvTA as input;
|Φ| – the number of properties checked with ByMC; sndTA |= φ and TA |= φ – the
time ByMC took to verify all the properties of the automatically generated sndTA and
the manually encoded TA, respectively; ⇒ – if all, some, or none of the sndTA guards
imply the manual TA guards; +L, F – guard implications after adding lemmas or fixes.

Algorithm Reference Faults QE |Φ| sndTA |= φ TA |= φ ⇒ +L, F

ABA [7, Fig. 3] Byzantine 0.43 s 3 0.94 s 0.8 s all –

Ben-Or-Byz [2, Prot. B] Byzantine 1.04 s 4 36.4 s 0.64 s some all

Ben-Or-clean [2, Prot. A] clean crash 0.78 s 4 2m 8 s 1.03 s some all

Ben-Or-crash [2, Prot. A] crash 1.31 s 4 4×M.O 23 h, 2×M.O some all

Bosco [18, Alg. 1] Byzantine 2.01 s 5 30 h 5m 9m 14 s some some

CC-clean [15, Fig. 1] clean crash 0.65 s 3 0.95 s 0.67 s all –

CC-crash [15, Fig. 1] crash 0.33 s 3 1 h 59m 40.8 s all –

FRB [8, Fig. 4] crash 0.14 s 3 3.66 s 0.97 s none all

RS-Bosco [18, Alg. 2] Byzantine 9.51 s 5 – – some some

STRB [19, Fig. 2] Byzantine 0.31 s 3 0.97 s 0.75 s all –

Stutter-equivalence. For a given common rcvTA and its corresponding sndTA,
the construction produces an infinite execution execATS in ATS(p), given an
infinite execution execCS in CS(p). Propositions 3, 4 and 5 ensure that execATS
is an execution in ATS(p). The invariants (I1) and (I2) are preserved during the
construction. When r is enabled in s, it is easy to check that αp(s′) = σ′, where
s′ is obtained by (A1)–(A3), and no receive variables are updated. When r is
not enabled in s, we have αp(s′) = σ, and αp(s′′) = σ′ where s′ is obtained by
(B1)–(B2), and s′′ by (A1)–(A3). Here, only the receive variables of process i
occurring on the rule r applied in s′ are updated. Stutter-equivalence follows
from (I1) and because s and σ satisfy the same atomic propositions.

8 Experimental Evaluation

In our experimental evaluation, we: (1) encoded several distributed algorithms
from the literature as rcvTA, (2) implemented the method from Sect. 5 in a
prototype tool that produces the corresponding sndTA, (3) compared the out-
put to the existing manual encodings from the benchmark repository [3], and
(4) verified the properties of the sndTA using the tool ByMC [14].

Encoding rcvTA. To encode distributed algorithms as rcvTA, we extended the
TA format defined by ByMC with declarations of receive variables and environ-
ment constraints. For each of our benchmarks (Table 1), there already exists a
manually produced TA. For some crash-tolerant benchmarks, we also encoded a
“clean crash” variant, where the crashed processes do not send messages.
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Applying Quantifier Elimination. We implemented a script that parses the input
rcvTA, and creates a sndTA according to the abstraction from Sect. 5, whose rules
have shared guards, obtained by applying Z3 [10] tactics for quantifier elimina-
tion [5,6], to formulas of the form ∃δ r.ϕ ∧ EnvΔ, where r.ϕ is a receive guard.
For all our benchmarks, the sndTA is generated within seconds (cf. Table 1).

Analyzing the sndTA. We used Z3 to check whether the guards for the auto-
matically generated sndTA imply the guards of the manually encoded TA from
the benchmark repository [3]. With this check we are able to either verify that
the earlier, manually encoded, TA faithfully model the benchmark algorithms,
or detect discrepancies, which we investigated further. Due to our completeness
result (Section 7), our technique produces the strongest possible guards. Hence,
we expected implication for all the benchmarks we considered. This is indeed
the case for ABA, CC-*, and STRB. To our surprise, the implication did not hold
for all the guards of the other benchmarks.

For Ben-Or-crash and FRB, we found flaws in the manual encodings. These
algorithms tolerate crash faults, where the number of messages sent by faulty
processes is stored in shared variables nsf (m), and the environment assumption
has constraints of the form nri(m) ≤ ns(m) + nsf (m). We identified that the
variables nsf (m) did not occur in the manual guards, that is, it was assumed that
nri(m) ≤ ns(m). We fixed the manual guards by adding the variables nsf (m).
This made the benchmark Ben-Or-crash harder to check than previously reported
in [4]: For the corrected TA, ByMC checked two properties in a day and ran out
of memory for the other two (and for all four properties when checking the
sndTA). By adding nsf (m) to the manual guards of FRB we verified that the
automatically generated guards are indeed stronger.

For all the Ben-Or-* benchmarks, we had to add lemmas to the environment
assumption EnvΔ in order to verify that the automatically generated guards
imply the manual guards. The key finding is that these lemmas were implicitly
used in the manual encoding of the benchmarks in [4]. For instance, to get
guards for r8, . . . , r12 in Fig. 1 that imply the manual guards, we added the
lemma ns(2) = 0 ∨ ns(3) = 0 to EnvΔ. To ensure soundness, it suffices to check
(with Z3) that the rules which increment ns(2) or ns(3) cannot both be enabled.

For the most complicated benchmarks, Bosco and RS-Bosco, we could not find
the right lemmas which ensure that all automatically generated guards imply all
manual guards. Further, after inspecting the manual guards for several hours,
we were not able to establish if the manual guards which are not implied are
indeed wrong. Still, we successfully verified the properties of sndTA for Bosco
with ByMC. Checking the manual TA for RS-Bosco requires running ByMC on
an MPI cluster, to which we currently have no access. Hence, we could not verify
RS-Bosco.

Model Checking with ByMC. We verified the properties of eight out of ten sndTA
that our script produced. We ran ByMC with both the automatically generated
sndTA and the already existing manual TA as input (the results are in Table 1).
The timeout for ByMC was set to 24 h for each property that we checked. The
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experiments were run on a machine with 2,8 GHz Quad-Core Intel Core i7 and
16 GB. We used Z3 v4.8.7 and ByMC v2.4.2.

Quantifier elimination for ∃δ r.ϕ ∧ EnvΔ in Presburger arithmetic may pro-
duce a quantifier-free formula which contains divisibility constraints; that are
not supported by ByMC. We encountered divisibility constraints in the auto-
matically generated guards for the benchmarks Bosco and RS-Bosco. To apply
ByMC, we extend our analysis by a phase that generates different versions of
the rcvTA according to the different evaluations of the divisibility constraints.
For example, if the divisibility constraint n%2 = 0 occurs on a guard, we create
two versions of the rcvTA: one where n is odd, and one where n is even. Based
on these two rcvTA, our script produces two sndTA, which we check with ByMC.

9 Conclusions

Our automated method helped in finding glitches in the existing encoding of sev-
eral benchmarks, which confirms our motivation of automatically constructing
threshold automata. In addition to the glitches discussed in Sect. 8, we found the
following problems in manual encodings: redundant rules (whose guards always
evaluate to false), swapped guards (on rules r, r′, where the guard of r should
be r′.ϕ, and vice versa), and missing rules (that were omitted). This indicates
that there is a real benefit of producing guards automatically.

However, our experimental results show that ByMC performs worse on the
sndTA than on the manual TA. Since the automatically generated guards have
more s-propositions than the manual guards, the search space that ByMC
explores is larger than for the manual TA. In this paper, we focus on sound-
ness and completeness of the translation rather than on efficiency. We suggest
that a simplification step which eliminates redundant s-propositions will lead to
a performance comparable to manual encodings, and we leave that for future
work.
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15. Mostéfaoui, A., Mourgaya, E., Parvédy, P.R., Raynal, M.: Evaluating the condition-

based approach to solve consensus. In: DSN (2003)
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Abstract. In this paper, we introduce the context-aware probabilistic
temporal logic (CAPTL) that provides an intuitive way to formalize sys-
tem requirements by a set of PCTL objectives with a context-based prior-
ity structure. We formally present the syntax and semantics of CAPTL
and propose a synthesis algorithm for CAPTL requirements. We also
implement the algorithm based on the PRISM-games model checker.
Finally, we demonstrate the usage of CAPTL on two case studies: a
robotic task planning problem, and synthesizing error-resilient scheduler
for micro-electrode-dot-array digital microfluidic biochips.

Keywords: Markov-decision process · Temporal logic · Model
checking · Probabilistic systems · Synthesis

1 Introduction

The correct-by-design paradigm in Cyber-Physical Systems (CPS) has been a
central concept during the design phase of various system components. This
paradigm requires the abstraction of both the system behavior and the design
requirements [22,23]. Typically, the system behavior is modeled as a discrete
Kripke structure, with nondeterministic transitions representing various actions
or choices that need to be resolved. In systems where probabilistic behavior is
prevalent, formalisms such as Markov decision processes (MDPs) are best suited.
The applications of correct-by-design synthesis paradigm span CPS fields such as
robot path and behavior planning [6,18], smart power grids [24], safety-critical
medical devices [15], and autonomous vehicles [25].

Temporal logic (TL) can be utilized to formalize CPS design requirements.
For example, Linear Temporal Logic (LTL) [2] is used to capture safety and
reachability requirements over Boolean predicates defined over the state space.
Similarly, computation tree logic (CTL) [2] allows for expressing requirements
over all computations branching from a given state. Probabilistic computation
tree logic (PCTL) can be viewed as a probabilistic variation of CTL to reason
about the satisfaction probabilities of temporal requirements.

The choice of which TL to use is both a science and an art. Nevertheless,
fundamental factors include expressiveness (i.e., whether the design requirements
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of interest can be expressed by the logic), and the existence of model checkers
that can verify the system model against the design requirement, synthesize
winning strategies, or generate counterexamples. Although prevalent TLs can be
inherently expressive, two notions are oftentimes overlooked, namely, how easy
it is to correctly formalize the design requirements, and whether existing model
checkers are optimized for such requirements. The more complex it becomes to
formalize a given requirement, the more likely it is that human error is introduced
in the process.

In particular, we focus in this paper on requirements that are naturally spec-
ified as a set of various objectives with an underlying priority structure. For
instance, the objective of an embedded controller might be focused on achieving
a primary task. However, whenever the chances of achieving such task fall below
a certain threshold, the controller shall proceed with a fail-safe procedure. Such
requirement, while being easy to state and understand, can prove challenging
when formalized for two reasons. First, multiple objectives might be involved
with a priority structure, i.e., one objective takes priority over another. Second,
the context upon which the objectives are switched is of probabilistic nature, i.e.,
it requires the ability to prioritize objectives based on probabilistic invariants.

To this end, in this work we consider the problem of modeling and synthesis
of CPS modeled as MDPs, with context-based probabilistic requirements, where
a context is defined over probabilistic conditions. We tackle this problem by
introducing the context-aware probabilistic temporal logic (CAPTL). CAPTL
provides intuitive means to formalize design requirements as a set of objectives
with a priority structure. For example, a requirement can be defined in terms of
primary and secondary objectives, where switching from the former to the latter
is based upon a probabilistic condition (i.e., a context). The ability to define
context as probabilistic conditions sets CAPTL apart from similar TLs.

In addition to providing the syntax and semantics of CAPTL for MDPs,
we investigate the problem of synthesizing winning strategies based on CAPTL
requirements. Next, we demonstrate how the synthesis problem can be reduced
to a set of PCTL-based synthesis sub-problems. Moreover, for deterministic
CAPTL requirements with persistence objectives, we propose an optimized
synthesis algorithm. Finally, we implement the algorithm on top of PRISM-
games [19], and we show experimental results for two case studies where we
synthesize a robotic task planner, and an error-resilient scheduler for microflu-
idic biochips.

The rest of this section discusses related work. Preliminaries and a motivating
example are provided in Sect. 2. In Sect. 3 we introduce the syntax and semantics
of CAPTL. The CAPTL-based synthesis problem is introduced in Sect. 4, where
we first explore how a CAPTL requirement can be approached using PCTL,
followed by our proposed synthesis algorithm. For evaluation, we consider two
case studies in Sect. 5. Finally, we conclude the paper in Sect. 6. Full proofs can
be found in the extended version of this paper [9].
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Related Work. The problem of multi-objective model checking and synthe-
sis has been studied in literature, spanning both MDPs and stochastic games,
for various properties, including reachability, safety, probabilistic queries, and
reward-based requirements [11,13,14]. Our work improves upon the multi-
objective synthesis paradigm by enabling priorities over the multiple objectives
as we will show in Sect. 2. One prevalent workaround is to define multiple reward
structures, where states are assigned tuples of real numbers depicting how favor-
able they are with respect to multiple criteria. The synthesis problem is then
reduced to an optimization problem over either a normalized version of the
rewards (i.e., assigning weights), or one reward with logical constraints on the
others [1,7]. Results are typically presented as Pareto curves, depicting feasible
points in the reward space [14]. Our work differs in two aspects. First, we use
probabilities as means to define priorities rather than reward structures. Second,
the mechanics needed to define context-based priorities are an integral part of
CAPTL.

Perhaps the closest notion to our context-based prioritization scheme are
probabilistic invariant sets (PIS) [17]. Both CAPTL and PIS involve the identi-
fication of state-space subsets that maintain a probability measure within specific
bounds. While prevalent in the field of probabilistic programs [3], PIS was not
considered in the field of CPS synthesis, despite the fact that (non-probabilistic)
invariant sets are used in controller design [4]. The problem of merging strategies
for MDPs that correspond to different objectives has been investigated [5,27].
Our approach, however, is primarily focused on formalizing the notion of context-
based priorities within the specification logic itself rather than altering the origi-
nal model. While one can argue that PCTL alone can be used to define priorities
by utilizing nested probabilistic operators, the nesting is typically limited to qual-
itative operators [20]. In contrast, CAPTL relaxes such limitation by allowing
quantitative operators as well. Moreover, CAPTL-based synthesis provides an
insight into which objective is being pursued at a given state.

2 Problem Setting

Preliminaries. For a measurable event E, we denote its probability by Pr(E).
The powerset of A is denoted by P(A). We use R, N and B for the set of reals,
naturals and Booleans, respectively. For a sequence or a vector π, we write π[i],
i ∈ N, to denote the i-th element of π.

We formally model the system as an MDP. MDPs feature both probabilistic
and nondeterministic transitions, capturing both uncertain behaviors and non-
deterministic choices in the modeled system, respectively. We adopt the following
definition for a system model as an MDP [2].

Definition 1 (System Model). A system model is an MDP M =
(S,Act ,P, s0,AP , L) where S is a finite set of states; Act is a finite set of
actions; P : S × Act × S → [0, 1] is a transition probability function s.t.∑

s′∈S P(s, a, s′) ∈ {0, 1} for a ∈ Act; s0 is an initial state; AP is a set of
atomic propositions; and L : S → P(AP) is a labeling function.
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Given a system M, a path is a sequence of states π = s0s1 . . . , such that
P(si, ai, si+1) > 0 where ai ∈ Act(si) for all i ≥ 0. The trace of π is defined
as trace(π) = L(s0)L(s1) · · · . We use FPathM,s (IPathM,s) to denote the set of
all finite (infinite) paths of M starting from s ∈ S. We use PathsM,s to denote
the set of all finite and infinite paths starting from s ∈ S. If P(s, a, s′) = p and

p > 0, we write s
a,p

s′ to denote that, with probability p, taking action a in
state s will yield to state s′. We define the cardinality of M as |M| = |S| + |P|,
where |P| is the number of non-zero entries in P.

A strategy (also known as a policy or a scheduler) defines the behavior upon
which nondeterministic transitions in M are resolved. A memoryless strategy
uses only the current state to determine what action to take, while a memory-
based strategy uses previous states as well. We focus in this work on pure memo-
ryless strategies, which are shown to suffice for PCTL reachability properties [2].

Definition 2 (Strategy). A (pure memoryless) strategy of M = (S,Act ,P,
s0,AP , L) is a function σ : S → Act that maps states to actions.

By composing M and σ, nondeterministic choices in M are resolved, reducing
the model to a discrete-time Markov chain (DTMC), denoted by Mσ. We use
Prσ

M,s to denote the probability measure defined over the set of infinite paths
IPathσ

M,s. The function Reach(M, s, σ) denotes the set of reachable states in M
starting from s ∈ S under strategy σ, while Reach(M, s) denotes the set of all
reachable states from s under any strategy.

We use probabilistic computation tree logic (PCTL) to formalize system objec-
tives as temporal properties with probabilistic bounds, following the grammar

Φ ::= � | a | ¬Φ | Φ ∧ Φ | PJ [ϕ], ϕ ::= XΦ | ΦUΦ | ΦU≤k Φ,

where J ⊆ [0, 1], and X and U denote the next and until temporal modalities,
respectively. Other derived modalities include ♦ (eventually), � (always), and
W (weak until). Given a system M and a strategy σ, the PCTL satisfaction
semantics over s ∈ S and π ∈ Pathsσ

M,s is defined as follows [2,12]:

s, σ |= a ⇔ a ∈ L(s)
s, σ |= ¬Φ ⇔ s 	|= Φ
s, σ |= Φ1 ∧ Φ2 ⇔ s |= Φ1 ∧ s |= Φ2

s, σ |= PJ [ϕ] ⇔ Pr {π | π |= ϕ}∈J
π, σ |= XΦ ⇔ π[1] |= Φ
π, σ |= Φ1 UΦ2 ⇔ ∃j ≥ 0.

(
π[j] |= Φ2 ∧ (∀0 ≤ k < j. π[k] |= Φ1)

)

π, σ |= Φ1 U
≤n Φ2 ⇔ ∃0 ≤ j ≤ n.

(
π[j] |= Φ2 ∧ (∀0 ≤ k < j. π[k] |= Φ1)

)

PCTL can be extended with quantitative queries of the form Pmin[ϕ]
(Pmax[Φ]) to compute the minimum (maximum) probability of achieving ϕ
[12,26], i.e.,

Pmin[ϕ] = inf
σ∈Σ

Prσ
M,s ({π | π |= ϕ}) , Pmax[ϕ] = sup

σ∈Σ
Prσ

M,s ({π | π |= ϕ}) .

We will denote such queries as Popt (read: optimal), where opt ∈ {max,min}.
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Fig. 1. A motivating example of a robot (left) and part of its model (right).

Motivating Example. Consider the simple grid-world shown in Fig. 1(left).
The robot can move between rooms through doorways where obstacles can
be probabilistically encountered (e.g., closed doors), requiring the robot to
consume more power. The robot state is captured as a tuple s : (g, h, x, y),
where g ∈ {on, sleep, error} is the robot’s status, h ∈ {0, 1, . . . , 10} is the
robot’s battery level, and x and y are its current coordinates. As shown
in Fig. 1(right), the system can be modeled as M = (S,Act ,P, s0,AP , L),
where Act = {N,S,E,W, sleep, error}, and s0 = (0, 10, 1, 1). Suppose that the
main objective for the robot is to reach the goal with a charge h > 3 (objective
A). However, if the probability of achieving objective A is less than 0.8, the
robot should prioritize reaching the charging station and switch to sleep mode
(objective B). Moreover, if the probability of achieving objective B falls below
0.7, the robot should stop and switch to err mode, preferably in one of the safe
zones (objective C).

Now let us examine how such requirements can be formalized. Let ϕA =
♦(goal ∧ (h > 3) ∧ on), ϕB = ♦(chrg ∧ (h > 3) ∧ on), and ϕC = ♦(error).
One can use PCTL to capture each objective separately as the reachability
queries ΦA = Pmax[ϕA], ΦB = Pmax[ϕB ], and ΦC = Pmax[ϕC ]. A multi-
objective query Φ1 = ΦA ∨ ΦB ∨ ΦC does not capture the underlying prior-
ity structure in the original requirements. In fact, an optimal strategy for Φ1

always chooses the actions that reflect the objective with the highest probabil-
ity of success, resulting in a strategy where the robot simply signals an error
from the very initial state. Similarly, the use of Φ2 = Pmax[ϕAWϕB ] does not
provide means to specify the context upon which switching from ϕA to ϕB

occurs. Attempts featuring multi-objective queries with nested operators, such
as Φ3 = Pmax[ϕA ∧ Pmax≥0.8[ϕA]] ∨ Pmax[ϕB ∧ Pmax<0.8[ϕA]], have several
drawbacks. First, correctly formalizing the requirement is typically cumbersome
and hard to troubleshoot. Second, to the best of our knowledge, nested queries
in the form of Popt∈J are not supported by model checkers. Third, the semantics
of the formalized requirement is potentially different from the original one. For
instance, Φ3 allows the system to pursue ϕA even after switching to ϕB if the
probability of achieving ϕA rises again above 0.8—a behavior that was not called
for in the original requirement.

Consequently, in this paper we focus on two problems: the formalization of
PCTL objectives with an underlying context-based priority structure, and the
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q0 : Pmax [ϕ0] q1 : Pmax [ϕ1]

q2 : Pmax [ϕ2] q3 : Pmax [ϕ3]

w01 : Pmax<0.85 [ϕ0]

w23 : Pmax<0.8 [ϕ2]

w02 : Pmax<0.75 [ϕ0] w13 : Pmax<0.7 [ϕ1]

ϕ0 : ♦ (goal ∧ (h>3) ∧ on)

ϕ1 : ♦ (chrg ∧ (h>3) ∧ sleep)

ϕ2 : ♦ (safe ∧ sleep)

ϕ3 : ♦ (error)

Fig. 2. The CAPTL requirement for the running example.

synthesis of strategies for such objectives. The first problem is addressed by
introducing CAPTL in Sect. 3, while the second is addressed in Sect. 4. We will
use this motivating example as a running one throughout the rest of this paper.

3 Context-Aware Temporal Logic

CAPTL Syntax. CAPTL features two pertinent notions, namely, objectives
and contexts. Let M be our system model, and let Ξ be the set of all possible
PCTL path formulas defined for M. In CAPTL, we define an objective q as
a conjunctive optimization query q =

∧m
i=1 Popt [ϕi] , ϕi ∈ Ξ, m > 0. When

m > 1, q resembles a multi-objective optimization query in the conjunctive
form. Otherwise, in the simplest form where m = 1, q is a single-objective query.

A context w〈q,q′〉 marks a state where switching from objective q to objective
q′ is required. Formally, we define a context w over Ξ as a set of satisfaction
queries in the disjunctive normal form w =

∨n
j=1

∧m
i=1 Popt∈Jij

[ϕi,j ] , ϕij ∈
Ξ, J ⊆ [0, 1]. Intuitively, in a state where w〈q,q′〉 is satisfied, the system switches
from q to q′. Notice that the context definition utilizes the operator Popt∈Jij

with
an interval, i.e., a context is evaluated at a given state as a boolean value in B.
In contrast, the objective definition utilizes the operator Popt without intervals,
i.e., a quantitative optimization query that can return a numerical value in [0, 1].

A CAPTL requirement defines a set of objectives to be satisfied, in addition
to a set of contexts, representing the probabilistic conditions upon which objec-
tives are prioritized. Formally, we define the syntax of a CAPTL requirement as
follows.

Definition 3 (CAPTL Requirement). Given a set of PCTL path formulas
Ξ, a CAPTL requirement is a tuple A = (Q,W,Ξ, ↪→, q0) where

– Q ⊂ {∧m
i=1 Popt [ϕi] | ϕi ∈ Ξ} is a finite nonempty set of objectives over Ξ,

– W ⊂
{∨n

j=1

∧m
i=1 Popt∈Jij

[ϕi,j ] | ϕij ∈ Ξ, Jij ⊆ [0, 1]
}

is a set of contexts,
– ↪→ ⊆ Q × W × Q is a conditional transition relation, and
– q0 ∈ Q is an initial objective.

In a CAPTL requirement A, each state q ∈ Q represents an objective, i.e., an
optimization query to be satisfied. The conditional transition relation ↪→ defines
how objectives are allowed to change. For instance, if q

w
↪−→ q′, a shorthand for

(q, w, q′) ∈ ↪→, then the objectives are switched from q to q′ if w is satisfied.
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Notice that contexts are used as labels for the conditional transition relation. In
the rest of this paper, we will overload the notation and use W : Q → P(W )
to denote the set of contexts emerging from a given objective. We will also use
Q(q, w) = q′ to denote that objective q has a context w that leads to q′.

Example 1. For the running example, Fig. 2 shows an example of a CAPTL
requirement A where Q = {q0, q1, q2, q3}, W = {w01, w02, w13, w23}, and ↪→=
{〈q0, w01, q1〉, 〈q0, w02, q2〉, 〈q1, w13, q3〉, 〈q0, w23, q3〉}. The requirement starts by priori-
tizing q0 = Pmax [ϕ0]. If Pmax [ϕ0] ∈ [0.75, 0.85), the context w01 becomes true,
and by executing q0

w01
↪−−→ q1, q1 = Pmax [ϕ1] is prioritized. Similarly, if Pmax [ϕ0] ∈

[0, 0.75), w02 becomes true, executing q0
w02

↪−−→ q2 where q2 = Pmax [ϕ2] is prior-
itized. Notice that objectives can have a single context, e.g., W (q1) = {w13};
multiple contexts, e.g., W (q0) = {w01, w02}; or none, e.g., W (q3) = ∅.

CAPTL Semantics for MDPs. We progressively define CAPTL semantics
for MDPs by first defining the satisfaction semantics for objectives and contexts.
Let q = Pmax [ϕ] be the objective at state s, and let Σ be the set of all strategies
for M. We say that s, σ∗ |= q if σ∗ ∈ Σ such that

Prσ∗,s
M = sup

σ∈Σ
Prσ

M,s

({
π ∈ Pathsσ

M,s | π |= ϕ
})

. (1)

In that case, we call σ∗ a local strategy, i.e., an optimal strategy w.r.t. 〈q, s〉.
Definition 4 (Local Strategy). Let qi = Popt [ϕi] be an objective. A local
(optimal) strategy for 〈qi, si〉 is a strategy σ〈qi,si〉 ∈ Σ such that

Pr
σ〈qi,si〉
M,si

= opt
σ∈Σ

Prσ
M,si

({
π ∈ Pathsσ

M,si
| π |= ϕi

})

Next, let (q, w, q′) ∈ ↪→, where w = P≤c [ϕ]. Let sk ∈ Reach(M, s, σ∗), where
σ∗ is the local strategy for 〈q, s〉. We say that sk |= w if

sup
σ∈Σ

Prσ
M,sk

({
π ∈ Pathsσ

M,sk
| π |= ϕ

}) ≤ c. (2)

Note that contrary to (1), the set of paths {π} in (2) is not limited to those
induced by the local strategy σ∗. Moreover, if ∃π = s . . . si . . . sk ∈ FPathσ

M,s

s.t. si |= w, and si 	|= w for all i < k, then sk is called a switching state, i.e., the
first state on a path π to satisfy w, triggering a switch from q to q′.

Definition 5 (Switching Set). Let q = Popt [ϕ] and σ∗ ∈ Σ such that s0, σ
∗ |=

q. The corresponding switching set Sq ⊆ Reach(M, s0, σ
∗) is defined as

Sq =

{
sk | ∃π = s0 . . . si . . . sk ∈ FPathσ∗

M,s0 s.t. si �|=
∨

w∈W (q)

w, ∀i < k; sk |=
∨

w∈W (q)

w

}
.

We use Sq′
q to denote the set of switching states from q to q′.

An objective is active in a state s if it is being pursued at that state.
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Definition 6 (Active Objective). Let A = (Q,W,Ξ, ↪→, q0) and M =
(S,Act ,P, s0,AP , L). An activation function g : S → P(Q) is defined induc-
tively as: (i) g(s0) � q0; and (ii) g(s) � q′ if g(s) � q and s ∈ Sq′

q . We say
objective q ∈ Q is active at state s ∈ S if g(s) � q.

As captured in Definition 4, local strategies are tied to their respective
objectives. Consequently, a local strategy is switched whenever an objective is
switched as well, and the new local strategy substitutes its predecessor. We call
the set of local strategies a strategy profile, and the resulting behavior a protocol.

Definition 7 (Protocol). Let A = (Q,W,Ξ, ↪→, q0) and M = (S,Act ,P, s0,
AP , L). Given a strategy profile σ =

{
σ〈q,s〉 . . .

}
, the induced (optimal) protocol

is a (partial) function Π : Q × S � Act ∪ P(W ) such that

– Π(q, s) = σ〈q,s〉(s) ∈ Act iff q ∈ g(s) and s 	∈ Sq; and
– Π(q, s) � w〈q,q′〉, where w〈q,q′〉 ∈ W , iff q ∈ g(s) and s ∈ Sq′

q .

Given 〈q, s〉, a protocol assigns either an optimal action based on the local
strategy associated with q, or a context to switch the active objective itself. We
will use P to denote the set of all possible protocols.

Definition 8 (System-Protocol Composition). Let M = (S,Act ,P, s0,
AP , L) and Π : Q × S � Act ∪ P(W ) be a compatible protocol. Their compo-
sition is defined as MΠ =

(
Q̂,Act ∪ W, P̂, ŝ0, L̂

)
where Q̂ ⊆ Q × S, ŝ0 = 〈q0, s0〉,

and

P̂ (〈q, s〉, a, 〈q′, s′〉) =

⎧
⎨

⎩

P (s, a, s′) if Π(q, s) = a, q′ = q,
1 if Π(q, s) = w, s′ = s, q′ = Q(q, w),
0 otherwise.

We now define the CAPTL satisfaction semantics as follows.

Definition 9 (CAPTL Satisfaction Semantics). Let A = (Q,W,Ξ, ↪→, q0),
M = (S,Act ,P, s0,AP , L), and Π : Q × S � Act ∪ P(W ). The CAPTL satis-
faction semantics is defined inductively as follows:

M,Π |= q ⇔ PrMΠ ({π ∈ PathsMΠ | last(π) = 〈q, s′〉, s′ |= q}) � 1,

M,Π |=c A ⇔ PrMΠ ({π ∈ PathsMΠ | last(π) = 〈q, s′〉, s′ |= q, q ∈ Q}) = c,

M,Π |= A ⇔ M,Π |=�1 A.

CAPTL semantics dictate that M and Π satisfy A if every path π ∈
PathsMΠ ends with a state s ∈ S where q � g(s) and s |= q, i.e., the system
reaches some state s where some objective q is both active and satisfied.
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CAPTL Fragments. A CAPTL requirement is nondeterministic if for some
q ∈ Q, ∃wi, wj ∈ W (q) such that Sqi

q ∩ S
qj
q 	= ∅. That is, at least one objective

has two or more contexts that can be active at the same state. If that is not the
case, then the CAPTL requirement is deterministic. We now identify a fragment
of deterministic CAPTL requirements where the following two conditions are
met. First, every q ∈ Q is a quantitative PCTL persistence objective. Second,
every w ∈ W (q) is a qualitative PCTL persistence objective over the same
persistence set as in q. This is formally captured in the following definition.

Definition 10 (Persistence CAPTL). A CAPTL requirement A =
(Q,W,Ξ, ↪→, q0) is persistent if (i) every q ∈ Q is of the form q = Pmax[♦�B]
for some B ⊆ S and (ii) if W (q) 	= ∅ then for any w〈q,qj〉 ∈ W (q), it holds that
w〈q,qj〉 = Pmax∈Jj

[♦�B] where (Jj) are disjoint intervals satisfying ∪jJj = [0, c)
for some 0 < c ≤ 1.

A persistence CAPTL (P-CAPTL) requirement allows for defining persis-
tence objectives, where each objective maximizes the probability of (i.e., pri-
oritizes) reaching a corresponding persistence set. Contexts in this case can be
understood as lower bounds of their respective objectives. That is, an objective
is pursued as long as, at any transient state, the probability of achieving such
objective does not drop below a certain threshold. The requirement also ensures
that at most one context is satisfied at any state, eliminating any nondetermin-
ism in A.

Example 2. Continuing Example 1, Fig. 3 shows the persistence CAPTL require-
ment for the robot. Notice that all objectives are in the form Pmax[♦�B]. Also,
the intervals [0.75, 0.85) and [0, 0.75) of w01 and w02, respectively, are disjoint,
hence at most one context in W (q0) = {w01, w02} can be satisfied at any state.

q0 : Pmax [ϕ0] q1 : Pmax [ϕ1]

q2 : Pmax [ϕ2] q3 : Pmax [ϕ3]

w01:Pmax∈[0.75,0.85) [ϕ0]

w23 : Pmax<0.8 [ϕ2]

w02 : Pmax<0.75 [ϕ0] w13 : Pmax<0.7 [ϕ1]

ϕ0 :♦� (goal∧(h>3)∧on)

ϕ1 :♦� (chrg∧(h>3)∧sleep)

ϕ2 :♦� (safe∧sleep)

ϕ3 :♦� (error)

Fig. 3. The persistence CAPTL requirement for the running example.

4 CAPTL-Based Synthesis

In this section we first define the synthesis problem for CAPTL requirements.
Next, we examine a general procedure for deterministic CAPTL where the syn-
thesis problem is reduced to solving a set of PCTL-based strategy synthesis
problems. Finally, we utilize the underlying structure of persistence properties
to propose a synthesis procedure optimized for P-CAPTL requirements.
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In the rest of this section, let M = (S,Act ,P, s0,AP , L) and A =
(Q,W,Ξ, ↪→, q0). We assume that a probabilistic model checker is given (e.g.,
PRISM-games [19] or Uppaal Stratego [8]) that can accept an MDP-based
model M and a PCTL formula Φ as inputs, and provides the following functions:

– Reach :: (M, s) �→ R ⊆ S returns the set of reachable states R =
Reach(M, s).

– Verify :: (M, s, Φ) �→ b ∈ B returns the Boolean value � if M, s |= Φ, and
returns ⊥ otherwise.

– Synth :: (M, s, Φ) �→ (σ, c) returns a policy σ ∈ Σ s.t. Pr (Mσ
s |= Φ) = c for

some c ∈ [0, 1].

We also assume that the model checker functions terminate in finite time and
return correct answers. We now define the CAPTL synthesis problem as follows.

Definition 11 (CAPTL Synthesis Problem). Given M = (S,Act ,P,
s0,AP , L) and A = (Q,W,Ξ, ↪→, q0), the CAPTL synthesis problem seeks to
find a protocol Π : Q × S � Act ∪ W such that M,Π |= A.

PCTL-Based Approach. The synthesis problem can be reduced to solving a
set of PCTL-based synthesis queries as demonstrated in Algorithm 1. Starting
with 〈q0, s0〉, the algorithm verifies whether any context w ∈ W (q0) is satis-
fied, and if true, adds w to the protocol and switches to the next objective. If
no context is satisfied, the algorithm synthesizes a local strategy and adds the
corresponding optimal action to the protocol.

Proposition 1. Algorithm 1 terminates; and returns Π, c iff M,Π |=c A.

Synthesis for P-CAPTL. We now propose a synthesis algorithm optimized
for persistence CAPTL. To this end, we show that for a given persistence objec-
tive, synthesizing a local strategy in the initial state suffices. In a manner similar
to switching states (see Definition 5), we devise a partition of reachable states
for every objective. We will use those concepts to define a system-CAPTL com-
position and show that it is bisimilar to MΠ .

Let R = Reach(M, s0). We first note that given M and q = Popt[♦�B], exist-
ing model checking and synthesis algorithms typically compute a least fixed point
(LFP) vector xq ∈ [0, 1]|R|, where xq[s] is the optimal probability of satisfying
♦�B at state s ∈ R (e.g., see [2,16]). That is, when Synth (M, s0, q) is called, xq

is computed, but only c = xq[s0] is returned (i.e., the value at the initial state).
We exploit this fact by implementing a function ReachP :: (M, s, q) �→ xq that
returns the LFP vector xq associated with q.

Lemma 1 (Local Strategy Dominance). Let M = (S,Act ,P, s0,AP , L)
and q = Pmax[♦�B]. For all s ∈ Reach(M, s0), σ〈q,s〉 = σ〈q,s0〉

∣
∣
Reach(M,s)

.

Lemma 1 signifies that a local strategy for q in the initial state (i.e., σ〈q,s0〉)
subsumes all local strategies for the same probabilistic reachability objective in
every s ∈ R. Next, for every q ∈ Q, let us define the following partition of R:
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Algorithm 1: PCTL-Based Synthesis
Input: M = (S,Act ,P, s0,AP , L), A = (Q, W, Ξ, ↪→, q0)
Result: Π, c such that M, Π |=c A

1 foreach q ∈ Q do Ŝq ← ∅, S̄q ← ∅

2 Π ← ∅, Ŝq0 ← {s0}, q ← q0, C ← 0Q×S ∈ [0, 1]Q×S , repeat ← �
3 while Ŝq �= ∅ do

4 Let s ∈ Ŝq, Ŝq ← Ŝq \ {s}, S̄q ← S̄q ∪ {s}
5 while repeat do repeat ← ⊥
6 foreach w ∈ W (q) do
7 if Verify (M, s, w) = � then
8 Π ← Π ∪ {(s, q, w)}, q ← Q(q, w), repeat ← �, break

9 (σ,C(q, s)) ← Synth (M; s, q), Π ← Π ∪ {(s, q, σ(s))}
10 Ŝq ← Ŝq ∪ (

Post (M, s, σ(s)) \ S̄q

)
11 c ← Verify

(
MΠ , 〈q0, s0〉, P

[
♦

∨
q∈Q(〈q, s〉 ∧ C(q, s)=1)

])

– Rq
q = {s ∈ R | ∀w = Pmax∈J [♦�B] ∈ W (q), xq[s] 	∈ J}, i.e., the states in R

where, if q is active, keep pursuing q.
– Rq′

q = {s ∈ R | ∃w = Pmax∈J [♦�B] ∈ W (q),xq[s] ∈ J, Q(q, w) = q′}, i.e., the
states in R where, if q is active, switch to q′.

Lemma 2 (Partitioning). Let M = (S,Act ,P, s0,AP , L), A = (Q,W,Ξ, ↪→
, q0), and R = Reach(M, s0). For every q ∈ Q,

⋃
q′∈Q Rq′

q = R; and Rq′
q ∩Rq′′

q =
∅ for every q′ 	= q′′.

Proof Sketch. From Definition 10, the intervals (Jw)w∈W (q) are disjoint; hence

(Rq′
q )q′ 
=q are disjoint as well, and that Rq

q = R/
(⋃

q′ 
=q Rq′
q

)
. ��

Example 3. Returning to the P-CAPTL requirement specified in the running
example (see Fig. 3), Fig. 4 depicts the partitioning of the state-space based on
q0, q1, q2 and q3. Notice that for any q ∈ Q, the sets (Rq′

q )q′∈Q are pairwise
disjoint, where ∪q′∈QRq′

q = Reach(M, s0). For example, Rq0
q0 , Rq1

q0 and Rq2
q0 do

not intersect, and their union spans R = Reach(M, s0). In this case, Rq3
q0 = ∅

since there is no direct context emerging from q0 to q3.

Definition 12 (System-CAPTL Composition). Let M = (S,Act ,P, s0,
AP , L), A = (Q,W,Ξ, ↪→, q0), and σ = {σ〈q,s0〉 | q ∈ Q}. Their compo-
sition is defined as the automaton Mσ

A = (V,Act ,Pv,→′, v0,AP , L̄) where
V ⊆ S × Q × Γ , and Γ = { 1 , 2 }; Act = Act ∪ W ∪ {τ}, where τ is a stutter
action; v0 = 〈s0, q0, 2 〉; L̄ : V → P(AP) such that L̄(〈s, q, γ〉) = L(s); and the
transition relation →′ is defined using the following compositional rules:
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S \ R R=1
q Rq

q Rq1
q0 Rq2

q0 Rq3
q1 Rq3

q2

q 3

g 0
g 1

g 2

q 2

g 0
g 1

g 2

h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0

q 1

g 0
g 1

g 2

h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0

q 0

g 0
g 1

g 2

Fig. 4. Partitioning the state-space of the running example using q0, q1, q2, and q3.
For example, 〈q1, g0, h5, 2, 1〉 = � indicates that s : 〈g, h, x, y〉 = 〈0, 5, 2, 1〉 ∈ Rq3

q1 .

The rules in Definition 12 are interpreted as follows. The state space V is
partitioned into V 1 (where M actions are allowed) and V 2 (where A actions are
allowed), resembling a turn-based 2-player game. [R1] ensures that, if q is active
in s, then only the transitions with the optimal action σ〈q,s0〉(s) are allowed.
[R2] ensures that, if s ∈ Rq

q, the active objective remains unchanged. If s ∈ Rq′
q ,

however, [R3] enforces switching the active objective to q′. The action τ is a
stutter since , L̄(v) = L̄(v′).

Lemma 3 (Induced DTMC). Mσ
A constructed using Definition 12 is a

DTMC.

Lemma 3 dictates that the probability measure PrMσ
A is well-defined. We

will now use the notion of stutter equivalence [2] to prove that Mσ
A is bisim-

ilar to MΠ . Basically, two paths π1 and π2 are stutter-equivalent, denoted
by π1 � π2, if there exists a finite sequence A0 . . . An ∈ (P(AP))+ such that
trace(π), trace(π̂) ∈ A+

0 A+
1 . . . A+

n , where A+ = {A,AA, . . .} is the set of finite,
non-empty repetitions.

Theorem 1 (Stutter-Equivalence). Let M, A, and Π ∈ P be such that
M,Π |= A. For every π ∈ FPathMΠ there exists π̂ ∈ FPathMσ

A such that π � π̂
and PrMΠ (π) = PrMσ

A(π̂). For every π̂ ∈ FPathMσ
A , where last(π̂) ∈ V 2 , there

exists π̂ ∈ FPathMΠ such that π̂ � π and PrMσ
A(π̂) = PrMΠ (π).

Proof Sketch. We show that for every execution fragment
there exists Moreover, for every

there exists . Using induction, we
show that for every arbitrary execution 
 there exists 
̂ such that 
 � 
̂, where

trace(
) = (A0 + A0A0) (A1 + A1A1) . . . (An + AnAn) ∈ (P(AP ))+

trace(
̂) = (A0A0) (A1A1) . . . (AnAn) ∈ (P(AP ))+

and Pr(
) = Pr(
̂). Similarly, the other direction can be shown for every last(
̂)
that ends with last(
̂) ∈ V 2 . ��
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We use Theorem 1 to devise the protocol synthesis procedure summarized in
Algorithm 2. In the first part (lines 1–8), the procedure starts by synthesizing
a local strategy σ〈q0,s0〉 and obtaining the associated LFP vector xq0 ∈ [0, 1]R.
Next, R is partitioned using xq0 to obtain (Rq

q0)q∈Q. If Rq
q0 	= ∅ for some q 	= q0,

the same procedure is repeated for q to obtain 〈q, s0〉, xq and (Rq′
q )q′∈Q. In the

second part (lines 9–16), three modules are constructed based on Definition 12.
The resulting parallel composition constitutes Mσ

A, which mimics a stochastic 2-
player game between M̂ (player 1 ) and Â (player 2 ), where the players’ choices
are already resolved by σ̂. Finally, Π is populated by a query that checks for the
CAPTL satisfaction condition (line 17), i.e., a state 〈s, qi, γ〉 is reached where
qi = Pmax[♦�Bi] is active, and �Bi holds. Notice that, based on the results from
Lemma 1, Algorithm 2 synthesizes a local strategy at most once for every q ∈ Q,
compared to Algorithm 1 where synthesis is performed at every reachable state.

Theorem 2. Algorithm 2 terminates; and returns Π, c iff M,Π |=c A.

h10 h9 h8 h7 h6 h5 h4 h3 h2 h1 h0

q a
ct
=
q 0

q a
ct
=
q 1

q a
ct
=
q 2

q a
ct
=
q 3

V \RV

North
East
Sleep
Error
Stop
w01
w02
w13
w23 g 0

g 1
g 2

g 0
g 1

g 2
g 0

g 1
g 2

g 0
g 1

g 2

Fig. 5. The protocol synthesized based on
the CAPTL requirement in Fig. 3, where
RV = Reach(Mσ

A, v0).

Example 4. (Protocol Synthesis). For
the CAPTL requirement in Example 2
(see Fig. 3), Fig. 5 shows a visual rep-
resentation of the protocol synthesized
using Algorithm 2, where blue markers
indicate actions in Act , and red markers
indicate actions in W . While pursuing
q0, the robot can achieve the task by
moving N(�), N(�), E(�) if no obsta-
cles are encountered, or if obstacles
are encountered only once while mov-
ing E(�). Switching from q0 to q1 via
w01(

�) occurs in one state (0, 7, 1, 2);
while switching from q0 to q2 via
w02(�) occurs in four states (0, 8, 1, 1),
(0, 4, 3, 1), (2, 7, 2, 3) and (0, 4, 1, 3).

5 Experimental Evaluation

We demonstrate the use of CAPTL for protocol synthesis and analysis on two
case studies. The first extends the robot task planning problem introduced
in Sect. 2. The second considers the problem of synthesizing an error-resilient
scheduler for digital microfluidic biochips. To this end, we implemented Algo-
rithm 2 in MATLAB on top of a modified version of PRISM-games [19] (v4.4),
where ReachP functionality was added. The experiments presented in this
section were run on an Intel Core i7 2.6 GHz CPU with 16 GB RAM.
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Algorithm 2: Synthesis Procedure for P-CAPTL
Input: M = (S,Act ,P, s0,AP , L), A = (Q, W, Ξ, ↪→, q0)
Result: Π, c such that M, Π |=c A

1 foreach (q, q′) ∈ Q × Q do Rq′
q ← ∅ // Initialize

2 Π ← ∅, Q̂ ← {q0}, Q̄ ← ∅, R ← Reach(M, s0)
3 while Q̂ �= ∅ do // Partition R

4 Let q ∈ Q̂, Q̂ ← Q̂ \ {q}, Q̄ ← Q̄ ∪ {q}, Rq
q ← R

5 σ〈q,s0〉 ← Synth (M; s0, q), xq ← ReachP M, s0, σ〈q,s0〉
)

6 foreach w ∈ W (q) where q′ = Q(q, w) do
7 Rq′

q ← {s | xq[s] ∈ Jw}, Rq
q ← Rq

q \ Rq′
q

8 if Rq′
q �= ∅ ∧ q′ �∈ Q̄ then Q̂ ← Q̂ ∪ {q′}

9 construct M̂ module such that // Construct Mσ
A

10 foreach [a] s → pi : (s′
i) do add [a] s ∧ 1 → pi : (s′

i) ∧ ( 2 )
11 construct Â module such that
12 foreach q ∈ Q̄ do add [τ ] qact = q ∧ 2 ∧ L(Rq

q ; s) → (qact = q) ∧ ( 1 )
13 foreach q

w
q′ do add [w] qact=q ∧ 2 ∧ L(Rq′

q ; s) → (qact = q′) ∧ ( 2 )
14 construct σ̂ module such that
15 foreach σ〈q,s0〉 �= ∅ and s ∈ R do add [σ〈q,s0〉(s)] qact = q ∧ s → 

16 Mσ

A ← M̂ ‖ Â ‖ σ̂

17 (Π, c) ← Synth
(
Mσ

A, 〈q0, s0, 2 〉, P[
∨

qi∈Q ♦�(qact = qi) ∧ Bi]
)

Robotic Task Planner. Table 1 summarizes the performance results for run-
ning Algorithm 2 on various sizes of the running example. Notice that the number
of choices in Mσ

A always matches the number of states, which agrees with the
results from Lemma 3. In the three models, q0 is always active in s0, and thus
is always verified. As the grid size grows larger, the probability of reaching the
goal—and hence satisfying q0—becomes lower, dropping below 0.85 at the initial
state in both (6 × 6) and (9 × 9). As a result, q1 is never active (and hence is
never verified) in the second and third models. We also notice that the total time
required to run Algorithm 2 does not necessarily grow as the size of the problem
grows. In fact, the total time required for (6 × 6) and (9 × 9) is lower than the
one for (3 × 3). This is primarily due to the fact that q1 is never reached or
verified in the second and third models as we described. When comparing the
model size for M and Mσ

A, we notice that |Mσ
A| < |M|, with the difference

being in orders of magnitude for larger models. However, the time required to
construct Mσ

A is longer than the time required to construct M.

MEDA-Biochip Scheduler. We now consider synthesizing error-resilient
scheduler for micro-electrode-dot-array (MEDA) digital microfluidic biochips,
where we borrow examples from [10,21]. A biochip segment consists of a W×H
matrix of on-chip actuators and sensors to manipulate microfluidic droplets,
and is further partitioned into 3 × 3 blocks. Two reservoirs are used to dis-
pense droplets A and B. Various activation patterns can be applied to manipulate
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Fig. 6. The MEDA biochip scheduler model (left) and the droplet model (right).

q0 : Pmax [♦�mixed ] q1 : Pmax [♦�salvaged ] q2 : Pmax [♦�aborted ]

w01 : Pmax∈[0.7,0.85) [♦�mixed ] w12 : Pmax<0.7 [♦�salvaged ]

w02 : Pmax<0.7 [♦�mixed ]

Fig. 7. P-CAPTL requirement for a MEDA-biochip segment scheduler.

the droplets, including moving (moving droplets individually), flushing (moving
both droplets at the same time in the same direction) and mixing (merging
two droplets occupying the same block). As the biochip degrades, the actuators
become less reliable, and an actuation command may not result in the droplet
moving as expected. The probability of an error occurring is proportional to the
total number of errors occurred in the same block.

Figure 6 shows part of the segment scheduler (left) and the droplet (right)
models. Initially, the scheduler can dispense both droplets through the dispense
action, where the droplet location (x, y) can probabilistically deviate from the
dispenser location (x0, y0) with error ε. Subsequently, droplets can be individ-
ually manipulated via mvA[d] and mvB [d] actions where d is the direction, or
together via flush. The probability of successful manipulation (1 − p(e�)) depends
on both the number of errors within the same block (e�) and the activation pat-
tern used. The scheduler executes update to sense droplet locations and register
errors.

The primary task of the scheduler is to perform a mixing operation within the
given segment (q0). However, if the droplets are dispensed and (due to faulty
blocks) the probability of a successful mixing operation is below 0.85 (w01),
salvaging the dispensed droplets by moving them to an adjacent segment is
prioritized (q1). If the mixing probability drops below 0.7 (w02), or if the sal-
vaging probability drops below 0.7 (w12), the scheduler is to abort the operation
(q2). The aforementioned requirements are formalized using CAPTL as shown
in Fig. 7. The set of objectives is Q = {q0, q1, q2}, and the set of contexts is
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Table 1. Protocol synthesis performance results for the robotic task planner (C1) and
the MEDA-biochip scheduler (C2). (St.: states, Tr.: transitions, Ch.: choices).

Model M Size Mσ
A Size Construction/Synthesis Time (sec)

Size St. Tr. Ch. St. Tr. Ch. M q0 q1 q2 q3 Mσ
A qA Total

C1 3×3 233 1,117 745 142 163 142 0.438 0.031 0.029 0.033 0.106 0.557 0.052 25.5
6×6 595 2,692 1,874 159 190 159 0.495 0.041 – 0.083 0.260 0.662 0.112 24.2
9×9 733 3,242 2,278 96 116 96 0.508 0.037 – 0.059 0.313 0.691 0.083 21.9

C2 8×5 2,851 8,269 5,678 2,576 2,929 2,576 1.308 2.348 0.433 3.122 – 17.95 3.585 60.53
11×5 8,498 25,502 17,214 4,167 4,673 4,167 2.013 7.212 1.577 9.928 – 79.77 5.84 149.6
11×8 15,290 47,602 31,316 3,223 3,653 3,223 2.065 12.36 2.536 18.61 – 109.2 4.498 218.5
14×8 61,489 201,469 130,718 1,016 1,339 1,016 4.545 48.07 10.67 68.40 – 289.9 1.289 450.4

defined as W = {w01, w02, w12}. The performance results for running Algo-
rithm 2 on three different segment sizes is reported in Table 1.

6 Conclusion

In this paper we have introduced context-aware probabilistic temporal logic
(CAPTL). The logic provides intuitive means to formalize requirements that
comprises a number of objectives with an underlying priority structure. CAPTL
allows for defining context (i.e., probabilistic conditions) as the basis for switch-
ing between two different objectives. We have presented CAPTL syntax and
semantics for MDPs. We have also investigated the CAPTL synthesis problem,
both from PCTL and CAPTL-based approaches, where we have shown that
the latter provides significant performance improvements. To demonstrate our
work, we have presented two case studies. As this work has primarily consid-
ered CAPTL semantics for MDPs, further investigation is required to generalize
the results for stochastic multi-player games. Another research direction involves
expanding the results to include PCTL fragments beyond persistence objectives,
such as safety, bounded reachability and reward-based objectives.
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Abstract. We develop a monitoring algorithm for metric dynamic logic, an
extension of metric temporal logic with regular expressions. The monitor com-
putes whether a given formula is satisfied at every position in an input trace of
time-stamped events. Our monitor follows the multi-head paradigm: it reads the
input simultaneously at multiple positions and moves its reading heads asyn-
chronously. This mode of operation results in unprecedented space complexity
guarantees for metric dynamic logic: The monitor’s memory consumption nei-
ther depends on the event-rate, i.e., the number of events within a fixed time-unit,
nor on the numeric constants occurring in the quantitative temporal constraints in
the given formula. We formally prove our algorithm correct in the Isabelle proof
assistant, integrate it in the Hydra monitoring tool, and empirically demonstrate
its strong performance.

1 Introduction

In runtime verification, monitoring is the task of detecting whether a system execution
trace adheres to a given specification. One typically distinguishes online monitors that
observe the trace event-wise as the system’s execution proceeds from offline monitors
that read the recorded trace from a log file, possibly after the system has finished its
execution.

We have recently proposed third mode of operation for monitors: multi-head moni-
toring [20,22]. Conceptually, a multi-head monitor has multiple pointers, called reading
heads, into a single log file. The reading heads move over the file, independently of each
other. In contrast to an offline monitor’s random access to the log, a multi-head mon-
itor’s heads are restricted to move only in one direction, from left to right. Thus, an
online monitor can be seen as the special case of a multi-head monitor that uses a single
head.

In our previous work [20], we have demonstrated the benefits of multi-head moni-
toring for metric temporal logic (MTL) [17]. MTL is a widely used propositional spec-
ification language capable of expressing qualitative (e.g., happens before) and quanti-
tative (e.g., within the last hour) temporal relationships. Our multi-head MTL monitor
supports arbitrarily nested past and bounded future operators and produces a stream of
Boolean verdicts denoting the formula’s satisfaction (or violation) at each position in
the trace. The monitor uses as many reading heads as there are leaves in the formula’s
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syntax tree. Its worst-case memory consumption is linear in the formula’s temporal size,
which is the sum of the formula’s size (number of operators) and all metric constants
occurring in the formula (the boundaries of intervals expressing quantitative temporal
relationships). However, the monitor is event-rate independent [1], i.e., its space com-
plexity does not depend on the trace length, the event rate, or other trace characteristics
(assuming registers to store numbers as the underlying model of computation). The
strong theoretical guarantees for our multi-head MTL monitor translate into practice:
the monitor’s implementation significantly outperforms its competitors with respect to
both memory usage and the average time spent processing an event.

In this paper, we continue our investigation of the multi-head paradigm. We improve
over our MTL monitor along three axis: (1) we consider a more expressive specification
language than MTL, (2) we generalize the time domain to support both dense and dis-
crete time, and (3) we achieve a space complexity that no longer depends on the metric
constants occurring in the formula (again assuming the register model). As our spec-
ification language, we use metric dynamic logic (MDL) [1] (Sect. 2), an extension of
MTL with regular expressions. The use of regular expressions instead of MTL’s tempo-
ral operators increases the logic’s expressiveness, which has prompted de Giacomo and
Vardi to advocate linear dynamic logic (MDL’s non-metric variant) over linear temporal
logic [10].

Our main contribution is a space-efficient multi-head MDL monitor. On a high-
level (Sect. 3), it resembles our multi-head MTL monitor [20]. In both logics, the main
challenge for space-efficiency stems from the presence of both past and future opera-
tors, which may require the monitor to buffer the verdicts from the recursive subfor-
mula evaluation until a verdict for the overall formula can be produced. For MTL, the
key insight is that a multi-head monitor can compress the information needed to eval-
uate MTL’s temporal operators due to the simple fixed patterns of the direct subformu-
las’ verdicts that the MTL semantics enforces. In contrast, MDL’s regular expressions
yield patterns that are neither simple nor fixed. We develop a data structure, called a
window, that supports the space-efficient compression for this general case (Sect. 4).
Consequently, our monitor is the first event-rate independent algorithm for MDL that
outputs a stream of Boolean verdicts. Moreover, our new data structure’s time and space
complexity is independent of the formula’s metric constants, a property we call interval-
obliviousness, which the MTL monitor does not offer. Interval-obliviousness is relevant:
large constants like 259200 (three days expressed in seconds) often occur in realistic
specifications [2,3].

The improvements over the multi-head MTL monitor come at a price: our MDL
monitor’s space consumption depends exponentially on the formula size. This follows
alone from the fact that we will construct deterministic automata (on the fly) from the
regular expressions occurring in the formula. Similarly, the number of required reading
heads may be exponential in the formula size. In practice, however, specifications are
small, while the traces are huge. It usually poses no problem for monitors to be expo-
nential in the formula size, whereas a linear dependence on the trace or on the large
numeric constants occurring in the formula is prohibitive. Our empirical evaluation of
our multi-head MDL monitor confirms this “monitoring folk wisdom” (Sect. 5).
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We used the Isabelle proof assistant to verify our monitor’s functional correct-
ness [21]. We proved its time and space complexity bounds on paper [23, Sect. 4.5].

Related Work. Event-rate independence is impossible to achieve for single-head mon-
itors that support past and future temporal operators and output Boolean verdicts for
every position in the trace (as we argue in Sect. 3.3). The multi-head paradigm over-
comes this limitation for MTL [20]. Recently, we have used the multi-head model of
computation to eliminate non-determinism from functional finite-state transducers [22].
This theoretical result provides a stepping stone towards our multi-head MDL monitor.
Our core data structure resembles the multi-head transducer for the all-suffix regular
matching problem studied in that work. However, significant extensions were necessary
to handle quantitative temporal constraints, past operators, and the arbitrary nesting of
formulas and regular expressions; these are all aspects not present in the transducer
setting.

An alternative approach to achieving event-rate independence is to relax the require-
ment to output Boolean verdicts. Instead, an out-of-order mixture of Boolean and equiv-
alence verdicts can be used to denote that the verdict is presently unknown, but will be
equivalent to some other (also presently unknown) verdict [1]. This relaxation resulted
in Aerial [7], the first event-rate independent MDL monitor. Our algorithm produces
much more intelligible output, while also being event-rate independent. Moreover,
Aerial’s space and per-event-time complexity depend linearly on the sum of the for-
mula’s metric constants, whereas our monitor is interval-oblivious. This weakness of
Aerial was also observed and improved upon empirically in the Reelay monitor for
past-only MTL [25]. Reelay’s space complexity, however, is still linear in the sum of
the formula’s constants.

Stream runtime verification (SRV) [24], pioneered by LOLA [9], generalizes logic-
based specifications to recursive programs using stream expressions. Some specifica-
tions expressed in these languages can be efficiently monitored in constant space, but
this fragment is rather restricted: specifications may refer to a bounded number of future
events and the bound must be fixed statically. In contrast, MTL’s and MDL’s metric
constraints, even if bounded, may require the monitor to wait for an unbounded number
of future events before being able to output a verdict for an earlier position. (Metric
constraints bound time, which is different from counting events.) Metric extensions of
SRV languages were recently proposed [8,11,12]. They inherit the restricted efficiently
monitorable fragment from non-metric SRV languages. A similar restriction applies
to quantified regular expressions [18], which can be evaluated in constant space, but
support neither metric constraints nor dependencies on future events.

Beyond propositional specification languages, first-order monitors [4,13,15],
implemented in tools like MonPoly [6] and DejaVu [14], also produce streams of ver-
dicts. Event-rate independence is however out of reach for these algorithms [4].

2 Metric Dynamic Logic

We recapitulate metric dynamic logic (MDL) [1]. While previous works on MDL
focused on natural numbered time-stamps, we consider an abstract time domain T. We
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assume that T forms an additive commutative monoid (T,+, 0), a partial order (T, <),
and a join-semilattice (T, �). The partial order must be consistent with � and +, i.e.,
a ≤ a � b, b ≤ a � b, a ≤ c ∧ b ≤ c =⇒ a � b ≤ c, and b < c =⇒ a+ b < a+ c,
for all a, b, c ∈ T. Moreover, we assume the existence of an order-preserving embed-
ding ι of natural numbers into T satisfying ∀τ ∈ T. ∃n ∈N. τ < ι(n). For example, these
assumptions are satisfied by both the discrete natural numbers T=N and the dense real
numbers T= R.

Further, let I be the set of non-empty intervals over T. We write I’s elements as [l,r],
where l ∈ T, r ∈ T ∪ {∞}, l ≤ r, and [l,r] = {x ∈ T | l ≤ x ≤ r}. We also define the
operation of shifting an interval [l,r]∈ I by a time-stamp τ∈T as τ+[l,r] = [τ+ l, τ+r].
An event stream ρ= 〈(πi, τi)〉i∈N is an infinite sequence of sets of atomic propositions
πi ⊆ Σ along with their time-stamps τi ∈ T, which is monotone (∀i. τi ≤ τi+1) and pro-
gressing (∀τ. ∃i. τ < τi). The event stream’s indices i ∈ N are called time-points. Con-
secutive time-points may carry the same time-stamp, and there might be time-stamps
that no time-point carries. MDL’s syntax is defined as follows, where p ∈ Σ and I ∈ I.

ϕ= p | ¬ϕ | ϕ ∨ ϕ | |r〉I | 〈r|I r = � | ϕ? | r + r | r · r | r∗

Aside from Boolean operators, MDL contains the regular expression modalities.
The future match operator |r〉I expresses that there exists some future time-point j
whose time-stamp is in the interval τ + I, where τ is the current time-point’s time-
stamp, and the regular expression r matches the portion of the event stream from the
current point up to j. The past match operator 〈r|I expresses the dual property about a
past time-point. Regular expressions themselves may nest arbitrary MDL formulas via
the ? operator. We call the subformulas ϕ occurring as ϕ? in a regular expression r the
direct tests of r, thereby excluding any further ? operators that occur in ϕ itself. Reg-
ular expressions in MDL match portions of the event stream, i.e., words over 2Σ . The
expression � matches any character and ϕ? matches the empty word starting at time-
point i if the formula ϕ holds at i. Moreover, +, ·, and ∗ are the standard alternation,
concatenation, and (Kleene) star operators.

We define the point-based semantics [5] of formulas and regular expressions by
mutual recursion. A formula is evaluated over a fixed event stream ρ= 〈(πi, τi)〉i∈N at a
time-point i ∈N. We write i |= ϕ if ϕ is true at i, whereby we omit the explicit reference
to ρ. The regular expression r’s semantics for a fixed ρ is a relation R(r) ⊆ N×N,
where (i, j) ∈ R(r) are the starting and ending time-points of a match. Overload-
ing notation, · and ∗ denote relation composition and the reflexive transitive closure.

i |= p iff p ∈ πi
i |= ¬ϕ iff i �|= ϕ
i |= ϕ ∨ ψ iff i |= ϕ ∨ i |= ψ
i |= |r〉I iff ∃ j ≥ i. τ j ∈ τi + I ∧ (i, j) ∈ R(r)
i |= 〈r|I iff ∃ j ≤ i. τi ∈ τ j + I ∧ ( j, i) ∈ R(r)

R(�) = {(i, i + 1) | i ∈ N}
R(ϕ?) = {(i, i) | i |= ϕ}

R(r + s) = R(r) ∪ R(s)
R(r · s) = R(r) · R(s)

R(r∗) = R(r)∗

We assume that intervals [l, r] of future match operators are bounded, i.e., r �= ∞, and
employ the usual syntactic sugar for additional constructs: true= p ∨ ¬p, false=¬true,
and ϕ ∧ ψ= ¬(¬ϕ ∨ ¬ψ). Given formulas ϕ and ψ, we define the MTL operators next
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�I ϕ as |� ·ϕ?〉I , previous �I ϕ as 〈ϕ? ·�|I , until ϕ UI ψ as |(ϕ? ·�)∗ ·ψ?〉I , and since
ϕ SI ψ as 〈ψ? · (� ·ϕ?)∗|I . These abbreviations faithfully implement MTL’s point-based
semantics.

Example 1. Many systems for user authentication follow a policy like: “A user should
not be able to authenticate after entering a wrong password three times within the last
hour without successfully authenticating in between.” For a fixed user, we write ✗ for
the event “User entered a wrong password” and ✓ for “User has successfully authenti-
cated.” Additionally, we abbreviate ϕ? · � by ϕ. (This abbreviation is only used when ϕ
appears in a regular expression position, e.g., as an argument of · or ∗). Then the MDL
formula ✓ ∧ 〈(✗ · (¬✓)∗ · ✗ · (¬✓)∗ · ✗ · (¬✓)∗

)|[0,3600] captures this policy’s viola-
tions: it is satisfied at time-points at which the fixed user successfully authenticated
after entering wrong credentials three times in the last 3600 s, without intermediate
successful authentications. We can express this property in MTL by nesting six tempo-
ral operators, namely one since and one previous operator for each of the ✗ subformulas.
Yet, it is unclear which intervals to use as arguments to these operators beyond the fact
that their upper bounds should sum up to 3600. For T=N, a rather impractical solution
exploits that there are finitely many ways to split the interval [0,3600] and constructs the
disjunction of all possible splits, which yields

(3605
5

)
= 5059876272308221 disjuncts

in this case. For T = R, the previous solution no longer works and we conjecture that
no equivalent MTL formula exists. MDL remediates these difficulties regardless of the
time domain.

3 High-Level Overview

Our multi-head MDL monitor follows the monitored formula’s recursive structure. We
describe below the main ideas for propositions, Boolean, and temporal match operators.

3.1 Propositions and Boolean Operators

For an atomic proposition, a one-head monitor scans the trace and returns the cor-
responding Boolean verdicts. We view non-atomic formulas as being evaluated on
streams of Boolean verdicts produced by submonitors for their subformulas. For ϕ ∨ ψ,
we evaluate bϕ ∨ bψ over the atomic propositions bϕ and bψ, which denote the satis-
faction of ϕ and ψ at each time-point. The monitor for ϕ ∨ ψ uses a single head to
combine its inputs bϕ and bψ at each time-point based on the semantics of ∨. Negation
is evaluated similarly.

3.2 Temporal Match Operators

For a formula ϕ of the form |r〉I or 〈r|I , we first convert r into an automaton over the
alphabet Bk, where k is the number of r’s direct tests. For each time-point, the automa-
ton’s input symbol is constructed from k Boolean verdicts for r’s direct tests at this
time-point.
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Key to our work is a data structure, called a window, that maintains a summary of
the automaton runs on a finite subword of the automaton’s input stream. The subword
starts at a position i and ends at j. For a future match formula ϕ = |r〉I , the position
i is the time-point at which we need to produce ϕ’s next Boolean verdict and j is a
suitable lookahead time-point, determined by ϕ’s interval I, which makes it possible to
evaluate ϕ. Note that i and j can be arbitrarily far apart, but the window’s size does not
depend on this distance.

For a past match formula ϕ= 〈r|[a,b], the verdicts are computed at the window’s end
j. The window’s start i is the earliest time-point with τ j �∈ τi+ [a,∞] or it equals j if
a= 0. The data structure uses two reading heads, a start head at i and an end head at j,
to support operations that advance the window’s start and end. Advancing the window’s
start requires a third auxiliary reading head that is obtained by cloning the start head.
As with all reading heads, this additional head may move asynchronously after cloning.

Finally, the multi-head monitor M for the temporal match formula ϕ maintains the
window data structure and uses it to compute the Boolean verdicts for ϕ. To assemble
the next input symbol for the automaton, M runs k submonitors for r’s direct tests. In
particular, a reading head of the window data structure corresponds to the states of the
k submonitors and thus cloning the reading head means cloning these submonitors.

3.3 Relation to Our Multi-head Monitor for MTL

Our multi-head MTL monitor [20] coincides with our MDL monitor except for the
temporal operator cases. For MTL, we use a different data structure that only requires
a single reading head per temporal operator. This is possible due to the special form of
the regular expressions corresponding to MTL’s operators. Although simpler, the MTL
data structure is not interval-oblivious. Moreover, its time-stamps are fixed to the natural
numbers.

In more detail, for since and until, the MTL monitor’s state contains all time-stamp
differences of relevant (for the interval) past or future matches. These time-stamp dif-
ferences are stored compactly to avoid a linear dependence on the trace length. Yet, the
number of stored time-stamp differences depends on the interval bounds.

For the until operator ϕ UI ψ, producing a Boolean verdict at a time-point is delayed
as long as all time-points satisfy ϕ and no time-point within the interval satisfies ψ.
Nevertheless, all delayed time-points with the same time-stamp are guaranteed to be
resolved to the same Boolean verdict. Hence, our MTL monitor stores only the number
of delayed time-points for each time-stamp relevant for the interval. For MDL, it no
longer holds that all delayed time-points with the same time-stamp must resolve to
the same Boolean verdict. To see this, consider the formula |ϕ? · (�)∗ · ψ?〉[0,0], which
holds at time-point i iff ϕ holds at i and ψ holds at some time-point j ≥ i with τi = τ j.
Producing a Boolean verdict at a time-point i for this formula must be delayed as long
as no time-point j with the same time-stamp τ j = τi satisfies ψ. But if there exists such
a time-point j, then all delayed time-points k, for i ≤ k ≤ j, are resolved to true iff ϕ is
satisfied at k. Hence, the information to compute the Boolean verdicts for the delayed
time-points cannot be compressed sublinearly with respect to the event rate. Our remedy
is to use multiple reading heads, i.e., to run two monitors for ϕ and ψ, which process
the time-points asynchronously.



Multi-head Monitoring of Metric Dynamic Logic 239

4 Evaluating Temporal Match Operators

We now formally define the multi-head monitors for the past and future temporal match
formulas 〈r|I and |r〉I . First, we focus on a fixed regular expression r independently of
both the interval I and whether r is used in a past or future match.

Let k be the number of direct tests of r and let ψ j, for all 1 ≤ j≤ k, be the j-th direct
test of r (according to some formula ordering). The i-th input symbol bi ∈ B

k of the
automaton, defined formally in Sect. 4.1, reflects the formula ψ j’s satisfaction at time-
point i, i.e., bij iff i |= ψ j. To compute the input symbol bi, a multi-head submonitor is
run for each formula ψ j, i.e., k synchronous multi-head monitors are run to compute bi.

Our window data structure, defined formally in Sect. 4.2, reads the input symbols
with multiple one-way reading heads. It has two heads positioned at the window’s start
and end. Advancing a head to the next time-point means advancing the corresponding k
submonitors to the next time-point and assembling the next input symbol from their k
Boolean verdicts. To update the window’s state, a monitor may clone and advance the
head at the window’s start to read subsequent input symbols. Cloning does not affect
the original reading head, i.e., there are always two heads at the window’s start and end.

4.1 Translating Regular Expressions

We first convert MDL’s regular expressions into nondeterministic automata with ε-
transitions over an alphabet of vectors bi ∈ B

k. A slight peculiarity, due to MDL’s
semantics, requires our automata to consider the current input symbol even in ε-
transitions. More precisely, a regular expression ψ? always matches at most a single
time-point, i.e., according to its semantics, only pairs of the form (i, i) are included in
R(ψ?). In particular, even the regular expression ψ? · ϕ? matches at most a single time-
point i, specifically (i, i) ∈ ψ? · ϕ? iff i |= ψ and i |= ϕ. Matching such an expression
therefore does not consume an input symbol. In contrast, matching the regular expres-
sion � is independent of the current input symbol bi, but always consumes an input
symbol.

A textbook ε-NFA’s transitions are labeled by an input symbol or ε. In contrast, we
distinguish three types of edges in the transition graph of our ε-NFA:

Fig. 1. The ε-NFA for (p? · �)∗, with the dashed rectangle showing the ε-NFA for p? · �

– conditional ε-transition labeled by ψ j: observes the current input symbol bi and can
be taken if bij = true; does not consume an input symbol;

– unconditional ε-transition: can always be taken; does not consume an input symbol;
– �-transition: can always be taken; consumes the current input symbol.
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To construct the transition graph, we use Thompson’s standard construction mildly
adapted to MDL regular expressions and the three types of edges in the transition graph.
Because our window data structure described in the next section requires a deterministic
automaton, we further determinize the obtained ε-NFA AN using the subset construc-
tion. A difficulty arises from the conditional ε-transitions, which makes the ε-closure of
a set of states S (i.e., the set of states reachable from a state in S using only ε-transitions)
dependent on the input symbol. Thus, we compute the ε-closure of a set of states S with
respect to the input symbol in both the transition function and while checking if the set
of states S is accepting. To summarize, we convert an MDL regular expression r into a
DFA AD = (Q, Bk, δ, q0, F) where

– Q is the set of states of AD consisting of all subsets of the set of states of AN ;
– δ : Q × B

k → Q is the transition function for a state relative to an input symbol;
– q0 is the initial state of AD, which is a singleton consisting of the initial state of AN ;
– F : Q × B

k → B is the accepting function for a state relative to an input symbol.

We label AN’s nondeterministic states by q̃ and AD’s deterministic states by q.

Example 2. Figure 1 shows the ε-NFA computed for the regular expression (p? · �)∗.

4.2 The Window Data Structure

Given a pair of time-points (i, j) with i ≤ j, we say that the DFA AD reaches a state
q′ from a state q on (i, j), denoted q �(i, j) q

′, iff the state q′ is reached by running
AD from the state q at time-point i until time-point j. In particular, we have q �(i,i) q,
for all q and i. Furthermore, we say that AD accepts from a state q on (i, j), denoted
q �(i, j) , iff the state q′ reached by AD from q on (i, j) is accepting with respect to
the time-point j, i.e., F(q′, b j) holds. We also use the following notation: dom( f ) of a
partial function f : X → Y denotes f ’s domain, i.e., dom( f ) = {x ∈ X | f (x) �=⊥}. For
a pair tstp ∈ T×N of a time-stamp and time-point, ts(tstp) denotes the time-stamp and
tp(tstp) the time-point.

The window data structure consists of a pair of time-points (i, j) with i ≤ j and
two partial functions s : Q → Q × ((T × N) ∪ {⊥}) and e : Q → T. The function s
represents the runs of AD from a given state at the window’s start to the state reached
at the window’s end and the last time-point (along with the corresponding time-stamp)
within the window at which the run was in an accepting state (if such a time-point exits).
The function e stores the time-stamp of the latest time-point before the window’s start
from which a given state at the window’s end can be reached from the initial state.

Figure 2 visualizes the window data structure. Formally, the window is comprised
of the table on the left. Figure 2 shows AD’s runs justifying the table’s content. The indi-
vidual runs are depicted by arrows from the initial state q0. Whether a state is accepting
depends on the current input symbol, which explains why a single state (e.g., p) may
be both accepting and non-accepting at different time-points. We use standard notation
for accepting states, including the smaller circles, which denote states whose name is
irrelevant.

The domain of s are all the states reached by running AD from the initial state at a
time-point before the window’s start i until i (including the initial state itself obtained by
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Fig. 2. The window data structure with start i and end j

running from i to i). The value of s(q) = (q′, tstp) for a state q ∈ dom(s) is obtained by
running AD further from the state q at the window’s start i until the window’s end j to a
state q′. For example, the state r at the window’s end j is reached from the states o and
p at the window’s start i in Fig. 2. Moreover, tstp is the maximum time-point after i and
strictly before j such that the current state in the run from q to q′ is accepting. Hence,
we have s(o) = (r,⊥) in Fig. 2 because there is no such accepting state strictly before
j in the run from the state o to r. In contrast, we have s(p) = (r,(τl1 , l1)) because the
run from p to r contains an accepting state at time-point l1 (which is the only accepting
time-point in this run and thus also the maximum one). Similarly, we have s(q0) =
(p,(τl4 , l4)) because the time-point l4 is the maximum of the two accepting time-points
in the run from the initial state q0 at time-point i to the state p at time-point j.

The domain of e are all the states reached by running AD from the initial state at
a time-point strictly before the window’s start i until the window’s end j. The value
of e(q) = τ for a state q ∈ dom(e) is the time-stamp of the maximum time-point from
which q was reached from the initial state q0. For example, e(p)= τi−1 in Fig. 2 because
p is reached by running from q0 at time-point i− 1 until j. Note that p is also reached by
running from i, but i is not strictly before the window’s start and is thus not considered.

Formally, a window satisfies the invariant window(i, j, s,e) if the following holds:

– the window’s start and end heads are at positions i and j;
– the domain of s, i.e., dom(s), are all states q such that q0 �(l,i) q, for some l ≤ i;
– the domain of e, i.e., dom(e), are all states q such that q0 �(l, j) q, for some l < i;
– for any q ∈ dom(s): s(q) = (q′, tstp), where q �(i, j) q

′ and tstp= (τl, l) for the max-
imum time-point l with i ≤ l < j and q �(i,l) , or tstp= ⊥ if no such l exists;

– for any q ∈ dom(e): e(q) = τ, where τ= τl is the time-stamp of the maximum time-
point l < i such that q0 �(l, j) q.
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Fig. 3. The trace and windows for Example 3

We now exemplify the window data structure by tracing its evolution through a
sequence of window updates, which we manually selected. In the actual monitor, the
update sequence is derived from the time-stamps in the event stream and the match
operator’s intervals. An update consists of advancing the window’s start or end by one.
We sketch the algorithms advs and adve that implement the window’s start and end
updates and their invariants in Sect. 4.3. The algorithms’ pseudocode is given in our
extended report [23, Sect. 4.3]. Their integration into the monitors for the match opera-
tors is described and the time and space complexity of the overall monitor is analyzed
in Sect. 4.4.

Example 3. Consider again the MDL regular expression r = (p? · �)∗ from Example 2
with the corresponding ε-NFA in Fig. 1. We consider the trace given in Fig. 3 and the
sequence of window updates, where the window’s end is advanced twice followed by
advancing the window’s start. Figure 3 depicts the window’s state after initialization
(i = 0 and j = 0) and after each update. Recall that a deterministic state is a subset
of the nondeterministic states in Fig. 1. For instance, the initial deterministic state is
q0 = {q̃0}.

After advancing the window’s end, e remains unchanged (its domain stays empty
until the window’s start advances). To update s, we perform a transition from {q̃0}
at time-point 0 and arrive at the next state {q̃4}. Because the state {q̃0} is accepting
at time-point 0, we add time-point 0 (along with the corresponding time-stamp 10) to
s({q̃0}).

To advance the window’s end once more, no update of e is needed. To update s,
we perform a transition from {q̃4} at time-point 1 and arrive at the state {}. Because
{q̃4} is accepting at time-point 1, we update the time-stamp to 20 and time-point to 1
in s({q̃0}).

We now advance the window’s start, i.e., update the window to (1,2). To this end,
we set e({}) = 10 because from s({q̃0}) = ({},(20,1)) we derive that the state {} is
reached at the window’s end 2 starting from the initial deterministic state {q̃0} at time-
point 0. Next, we perform a transition (at time-point 0) from the state {q̃0} in dom(s),
which yields the state {q̃4}. Since the maximum accepting time-point 1 is within the
new window (1,2), we keep it and arrive at s({q̃4}) = ({},(20,1)). To compute s({q̃0})
for the initial deterministic state {q̃0}, we perform two runs starting at time-point 1, one
from {q̃0} and one from {q̃4}, until the two states in the runs collapse or the window’s
end is reached. In this example, we carry out a single step and the two states collapse
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into {} at time-point 2 (and the window’s end is reached as well). Because time-point 1
in s({q̃4}) is strictly before the collapse at time-point 2, we cannot take it for s({q̃0}).
However, since {q̃0} is accepting at time-point 1, we have s({q̃0}) = ({},(20,1)).

4.3 Initialization and Update of the Window Data Structure

The algorithms initializing and updating the window data structure are defined in our
extended report [23, Sect. 4.3]. Here, we focus on their interfaces in terms of invariants.
The window is initialized to time-points (0,0) using initw, which also establishes the
invariant.

Lemma 1. The invariant window(initw) holds for the initial window.

The window (i, j, s,e) can be updated to time-points (i, j + 1) using the function
adve. This function updates s and e by performing transitions from states in the image
of s and domain of e at the window’s end. Overall, adve preserves the window invariant.

Lemma 2. Assume that the invariant window(i, j, s,e) holds. Then the invariant holds
after advancing the window’s end, i.e., window(adve(i, j, s,e)).

To advance the window’s start, we must advance the domain of s and then compute
s(q0) at the new window’s start. We first generalize the part of the window invariant
characterizing s to take into account that s(q0) might not be computed yet. To this end,
we define the generalized invariant svalid(i, i′, j, s), which asserts that s is valid for the
window (i′, j), but its domain contains only states reached by running from a time-point
before i. In particular, window(i, j, s,e) implies svalid(i, i, j, s). Formally, svalid(i, i′, j, s)
holds if:

– dom(s) consists of all states q such that q0 �(l,i′) q, for some l ≤ i;
– for any q ∈ dom(s): s(q) = (q′, tstp), where q �(i′, j) q

′ and tstp = (τl, l) for the
maximum time-point l with i′ ≤ l < j and q�(i′,l) , or tstp=⊥ if no such l exists.

The auxiliary function advd updates s by advancing time-point i′ in the invariant
svalid(i, i′, j, s). This function is used when advancing the domain of s from i to i+ 1
and when computing s(q0). The invariant svalid(i, i′, j, s) is preserved by advd.

Lemma 3. Assume that the invariant svalid(i, i′, j, s) holds and that i′ < j. Then the
invariant holds for the updated function s, i.e., svalid(i, i′ +1, j,advd(s, i′, τi′ ,bi

′
)).

The window (i, j, s,e) with i < j can be updated to the time-points (i + 1, j) using
the function advs. This function first updates e to account for the run q0 �(i, j) q

′. Next
advs updates s. First, the domain of s is advanced by advd. This way, the invariant on
s becomes svalid(i, i + 1, j, s). To establish window(i + 1, j, s,e), however, svalid(i +
1, i + 1, j, s) is required. Thus, it remains to compute the value of s(q0) and update s
accordingly. To this end, advs performs runs from q0 as well as from all states in dom(s)
until the current state qcur in the run from q0 collapses with the current state of the run
from a state q ∈ dom(s) or the window’s end is reached. Overall, advs preserves the
window invariant.

Lemma 4. Assume that the invariant window(i, j, s,e) holds and that i < j. Then the
invariant holds after advancing the window’s start, i.e., window(advs(i, j, s,e)).
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4.4 Multi-head Monitors for Temporal Match Operators

The algorithms implementing a step of our multi-head monitor for a past or future
temporal match operator are defined using pseudocode in Fig. 4.

To determine the Boolean verdict at a time-point j for a past match formula 〈r|[a,b],
we must check if there exists a match from a time-point l ≤ j such that τ j ∈ τl + [a,b],
i.e., τl + a ≤ τ j ≤ τl + b. Our multi-head monitor maintains a window (i, j, s,e) such
that the invariant window(i, j, s,e) holds and τl+a ≤ τ j, for all l < i.

Fig. 4. Multi-head monitor’s evaluation step on a past or future match operators

The algorithm evalP first adjusts the window so that the time-points l < i strictly
before the window’s start are exactly those with l < j and τl + a ≤ τ j. Using
window(i, j, s,e), the first disjunct on line 7 then checks if there exists a match in the
interval from a time-point l < j. The second disjunct checks a potential match in the
interval of the form ( j, j). Finally, we show that given a valid monitor’s state, evalP
computes a sound Boolean verdict at time-point j and returns a valid monitor’s state at
the next time-point j+1.

Lemma 5. Assume that the invariant window(i, j, s,e) holds and τl + a ≤ τ j, for all
l < i. Let (β,(i′, j′, s′,e′)) = evalP((a,b),(i, j, s,e)). Then, (i) β iff j � 〈r|[a,b], (ii) j′ =
j + 1, (iii) window(i′, j′, s′,e′), and (iv) τl + a ≤ τ j′ , for all l < i′.

To determine the Boolean verdict at a time-point i for a future match formula |r〉[a,b],
we need to check if there exists a match until a time-point l ≥ i such that τl ∈ τi + [a,b],
i.e., τi + a ≤ τl ≤ τi + b. Our multi-head monitor maintains a window (i, j, s,e) such
that the invariant window(i, j, s,e) holds and τl ≤ τi + b, for all i ≤ l < j.

The algorithm evalF first adjusts the window so that the time-points i ≤ l < j are
exactly those with τl ≤ τi + b. Using window(i, j, s,e), the function evalF then checks
if there exists a match within the interval (lines 7–8). Finally, we show that given a valid
monitor’s state, evalF computes a sound Boolean verdict at time-point i and returns a
valid monitor’s state at the next time-point i + 1.
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Lemma 6. Assume that the invariant window(i, j, s,e) holds and τl ≤ τi + b for all
i ≤ l < j. Let (β,(i′, j′, s′,e′)) = evalF((a,b),(i, j, s,e)). Then, (i) β iff i � |r〉[a,b], (ii) i′ =
i + 1, (iii) window(i′, j′, s′,e′), and (iv) τl ≤ τi′ + b for all i′ ≤ l < j′.

The soundness and completeness of the overall multi-head monitor follows by
induction on the structure of MDL formulas using Lemmas 5 and 6 for the cases of
temporal match formulas. We denote by init(ϕ) the initial multi-head monitor’s state
for an MDL formula ϕ and by eval(v) the evaluation function of the multi-head moni-
tor’s state v (both omitted). Then, soundness and completeness amount to the following
theorem.

Theorem 1. Let ϕ be a bounded-future MDL formula, n ∈ N, and v the multi-head
monitor’s state after applying n times the evaluation function eval starting from init(ϕ).
Let eval(v) = (v′,(t, β)). Then, (i) t = τn and (ii) β iff n � ϕ.

We state complexity bounds and prove them in our extended report [23, Sect. 4.5].

Theorem 2. The amortized time complexity of evaluating an MDL formula ϕ is at most
2O(|ϕ|) basic steps of computation. The space complexity of storing the multi-head mon-
itor’s state for evaluating the formula ϕ is at most 2O(|ϕ|) registers representing deter-
ministic automata states, time-stamps, and indices into the trace.

5 Implementation and Evaluation

We have implemented our multi-head MDL monitor in a tool called HYDRA(MDL),
consisting of roughly 3500 lines of C++ code [21]. Our implementation mirrors the
structure of the multi-head monitor presented here and consists of C++ classes for mon-
itoring atomic predicates, Boolean operators, and temporal match operators. In fact, the
implementation extends HYDRA(MTL) [20] with classes for the temporal match oper-
ators.

In addition, we have exported OCaml code from our Isabelle formalization and
augmented this verified core with unverified OCaml and C code for parsing the formula
and log file. We call the resulting tool VYDRA(MDL). We have used it to successfully
test the correctness of HYDRA(MDL) on thousands of pseudo-random formulas and
traces.

To evaluate our tools’ performance, we conduct a set of experiments comparing
HYDRA(MDL) and VYDRA(MDL) with HYDRA(MTL) [20], AERIAL [7], REELAY

[26], R2U2 [19] and PCRE [16], a library used in many regular expression engines,
e.g., grep. We distinguish AERIAL(MDL) that supports MDL as defined in this paper
and AERIAL(MTL) that is optimized for MTL formulas. Similarly, REELAY supports
past-only MTL and untimed past-only regular expressions. Moreover, time-stamps for
past-only MTL are (implicitly) equal to the time-points for REELAY (in particular, they
are not explicitly part of the log). R2U2 restricts the time-stamps in the same way.
In addition to past-only MTL, it supports future-only MTL, but not formulas mixing
past and future operators. Because we focus on MDL and interval-obliviousness, we
only include REELAY and R2U2 in an experiment that demonstrates that both tools are
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not interval-oblivious even in the restricted setting of past-only MTL with time-stamps
coinciding to time-points. Finally, PCRE supports tests similar to MDL, but restricts
them to be star-free.

The time-stamps and time-points used in our algorithm are represented as 32-bit
integers in HYDRA(MDL) and as arbitrary precision integers in VYDRA(MDL). The
other tools used in our experiments use bounded-precision machine integers as their
representation. In our complexity analysis, we use an abstract model of computation,
treating such values as being stored in registers that can be manipulated in a basic
computation step.

We run our experiments on an Intel Core i7-8550U computer with 32 GB RAM. We
measure the tools’ total execution time and maximal writeable memory usage using a
custom tool. Each experiment is repeated three times to minimize the impact of the exe-
cution environment. Each unfilled data point in our plots shows the average for the tool
invocations with the same input parameters. We omit the negligible standard deviations.
Each filled data point shows the average over a collection of a tool’s data points with
the same x-coordinate. We include trend lines over the filled data points in all plots.
Note that the y-axis is always plotted in the logarithmic scale. Consequently, an expo-
nential growth of a quantity looks linear and a polynomial growth looks logarithmic in
the plots.

Fig. 5. The setup of the first two experiments
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We now describe the experiments. In the first two experiments, HYDRA(MDL),
VYDRA(MDL), and AERIAL are benchmarked on pseudo-random formulas and traces.
In the first experiment (IO), the formulas are of a fixed size, with the time-stamp inter-
vals of match operators scaled by a given scaling factor. In the second experiment (SZ),
the formulas grow in size with small bounds in the intervals of match operators. In both
experiments, the traces are of a fixed size. The parameters of the first two experiments
are summarized in Fig. 5. The pseudo-random formulas are produced by mutually recur-
sive generators for formula and regular expressions for a predefined size and maximum
interval bounds. The pseudo-random traces are produced by a generator for a predefined
event rate er [1]. Each trace contains events with 2000 different time-stamps.

Figure 6 summarizes the results for the experiments IO and SZ. The experiment IO
shows that neither the time nor space complexity of HYDRA(MDL) and VYDRA(MDL)
depends on the numerical values in the intervals, i.e., both tools are interval-oblivious.
AERIAL(MDL)’s time complexity grows with increasing interval bounds because the
algorithm works with formulas whose intervals are shifted by offsets up to the numer-
ical bounds in the intervals [1]. Similarly, AERIAL(MDL)’s space complexity grows
with increasing interval bounds, but it is dominated by the constant overhead of the
runtime environment before AERIAL(MDL) times out. The experiment SZ shows that
HYDRA(MDL) outperforms AERIAL(MDL) also when increasing the formulas’ size.

The worst-case experiment (WC) reported in our previous work [20] results in space
complexity of online monitoring that is exponential in the formula size. Here, all traces
are of a fixed size, but their patterns depend on the parameter n ∈ N. Our previous
work [20] describes the traces and formulas.

Figure 7 summarizes the evaluation results. We observe that HYDRA(MDL)’s and
VYDRA(MDL)’s time complexity is polynomial, whereas AERIAL(MDL)’s is exponen-
tial. (Recall that all y-axes are in logarithmic scale.) HYDRA(MTL) is the fastest here,
as it is optimized for the more restricted logic.

The REELAY comparison experiment (RL) is conducted on formulas and traces
described by Ulus [25]. The formulas are of the form: DELAY(n) = p S[n,n] q. A trace,
parameterized by n ∈ N, is constructed with p being always true and q being true at
every other time-point (with time-stamps being equal to time-points). Figure 7 sum-
marizes the results for this experiment. It confirms that the time complexity of both
AERIAL(MTL) and REELAY grows when increasing n, i.e., neither of these tools is
interval-oblivious. For AERIAL(MTL), the reason is again that the algorithm consid-
ers all interval-shifted formulas. The algorithm implemented in REELAY combines
interval-shifted formulas with consecutive offsets. Nevertheless, the event pattern in the
log files used in the experiment prevents this optimization and shows that REELAY’s
time and space complexity still depends on the interval bounds in the worst-case. Also,
R2U2’s space complexity depends on the interval bounds. Its time complexity is com-
parable to HYDRA(MDL)’s on this simple formula. In contrast, the time complexity of
HYDRA(MTL), HYDRA(MDL), and VYDRA(MDL) is confirmed to be independent of
the parameter n. Finally, the experiment shows that HYDRA(MTL)’s space complexity
is not interval-oblivious.

The PCRE comparison experiment (RE) is conducted on formulas of the form:Ψn =
〈(a? · � · b? · �)∗|[2n,2n], which correspond to rn = (?<=(ab){n}). using the syntax
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of Perl compatible regular expressions. We point out that lookbehinds do not consume
matched symbols and thus produce overlapping matches (just like in MDL). The text in
which the regular expressions rn are searched consists of 105 occurrences of the pattern
ab, i.e., a total of 2 · 105 symbols. For HYDRA(MDL) and VYDRA(MDL), this text is
encoded into a log whose events correspond to the text’s symbols.

The log’s time-stamps are consecutive integers denoting the number of symbols
up to the respective position. The evaluation results are summarized in Fig. 8. Because
PCRE starts a new search for matching (ab){n} at each position in the text, its
time complexity grows linearly in the parameter n. In contrast, HYDRA(MDL)’s and
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VYDRA(MDL)’s time complexity does not depend on n, as the parameter n only occurs
in the interval bounds of Ψn.

6 Conclusion

We presented a new monitoring algorithm for metric dynamic logic (MDL) that follows
the multi-head paradigm. Our monitor is the first event-rate independent (assuming reg-
isters) monitor for MDL that produces a stream of Boolean verdicts. This is a significant
improvement over the event-rate independent monitor AERIAL in terms of the monitor’s
interface: Boolean verdicts are much easier for humans to understand than AERIAL’s
non-standard equivalence verdicts. Additionally, our monitor is interval-oblivious: The
constants occurring in the formula’s metric constraints have no impact on the monitor’s
time- and memory consumption. To our knowledge, this property is unprecedented for
monitors for metric specification languages in the point-based setting.

Our algorithm may, however, require exponentially many heads in the monitored
formula’s size. This exponential dependence seems daunting in theory, but it seems
to be unproblematic in practice. We have validated this claim by implementing our
algorithm in the HYDRA(MDL) tool and evaluating its performance in a series of case
studies. For example, HYDRA(MDL) can process randomly generated MDL formulas
with 50 operators on traces with 20000 events in about 100 ms on average.
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Abstract. Discrete-time Markov Chains (MCs) and Markov Decision
Processes (MDPs) are two standard formalisms in system analysis. Their
main associated quantitative objectives are hitting probabilities, dis-
counted sum, and mean payoff. Although there are many techniques
for computing these objectives in general MCs/MDPs, they have not
been thoroughly studied in terms of parameterized algorithms, particu-
larly when treewidth is used as the parameter. This is in sharp contrast
to qualitative objectives for MCs, MDPs and graph games, for which
treewidth-based algorithms yield significant complexity improvements.
In this work, we show that treewidth can also be used to obtain faster
algorithms for the quantitative problems. For an MC with n states and
m transitions, we show that each of the classical quantitative objectives
can be computed in O((n + m) · t2) time, given a tree decomposition of
the MC with width t. Our results also imply a bound of O(κ ·(n+m) ·t2)
for each objective on MDPs, where κ is the number of strategy-iteration
refinements required for the given input and objective. Finally, we make
an experimental evaluation of our new algorithms on low-treewidth MCs
and MDPs obtained from the DaCapo benchmark suite. Our experiments
show that on low-treewidth MCs and MDPs, our algorithms outperform
existing well-established methods by one or more orders of magnitude.
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1 Introduction

MCs. Perhaps the most standard formalism for modeling randomness in
discrete-time systems is that of discrete-time Markov Chains (MCs). MCs have
immense applications in verification, and are used to express randomness both
in the system and in the environment [11]. Besides the theoretical appeal, the
analysis of MCs is also a core component in several model checkers [19,30].

MDPs. When the system exhibits both stochastic and non-deterministic behav-
ior, the standard model of MCs is lifted to Markov Decision Processes (MDPs).
For example, MDPs are used to model stochastic controllers, where the non-
determinism models freedom of the controller and randomness models the behav-
ior of the system. MDPs are also a topic of active study in verification [14].

Quantitative Analysis. Three of the most standard analysis objectives for
MCs are the following: The hitting probabilities objective takes as input a set
of target vertices T of the MC, and asks to compute for each vertex u, the
probability that a random walk from u eventually hits T. The discounted sum
objective takes as input a discount factor λ ∈ (0, 1) and a reward function R
that assigns a reward to each edge. The task is to compute for each vertex u the
expected reward of a random walk starting from u, where the value of the walk
is the sum of the rewards along its edges, discounted by the factor λ at each
step1. Finally, the mean payoff objective is similar to discounted sum, except
that the value of a walk is the long-run average of the rewards along its edges. In
MDPs, the analyses ask for a strategy that maximizes the respective quantity.

Analysis Algorithms. Given the importance of quantitative objectives for MCs
and MDPs, there have been various techniques for solving them efficiently. For
MCs, the hitting probabilities and discounted sum objectives reduce to solving
a system of linear equations [32]. For MDPs, all three objectives reduce to solv-
ing a linear program [32]. Besides the LP formulation, two popular approaches
for solving quantitative objectives on MDPs are value iteration [3] and strategy
iteration [28]. Value iteration is the most commonly used method in verification
and operates by computing optimal policies for successive finite horizons. How-
ever, this process leads only to approximations of the optimal values, and for
some objectives no stopping criterion for the optimal strategy is known [2]. In
cases where such criteria are known (e.g. [35]), the number of iterations neces-
sary before the numbers can be rounded to provide an optimal solution can be
extremely high [10]. Nevertheless, value iteration has proved to be very successful
in practice and is included in many probabilistic model checkers, such as [19,30].
On the other hand, strategy iteration lies on the observation that given a fixed
strategy, the MDP reduces to an MC, and hence one can compute the value of
each vertex using existing techniques on MCs. Then, the strategy can be refined
to a new strategy that improves the value of each vertex. The running time of
strategy iteration can be written as O(κ · f), where κ is the number of strategy
1 The undiscounted sum objective is obtained by letting λ = 1 and our algorithms

for discounted sum can be slightly modified to handle this case, too.
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refinements and f is the time for evaluating the strategy. Although κ can be
exponentially large [20], it behaves as a small constant in practice, which makes
strategy iteration work well in practice [29].

Treewidth. Treewidth is a well-studied graph parameter. Many classes of graphs
which arise in practice have constant treewidth. An example is that Con-
trol Flow Graphs (CFGs) of goto-free programs in many programming lan-
guages have constant treewidth [17,26,37]. Treewidth has important algorith-
mic implications, as many graph problems admit (more) efficient solutions on
graphs of low treewidth [15,23,24,37]. In program analysis, treewidth has been
exploited to develop improvements for register allocation [37], algebraic-path
analysis [13], data-flow analysis [8,16], data-dependence analysis [7], and model
checking [22,33].

Our Contributions. The contributions of this work are as follows:

1. Theoretical Contributions. Our general theoretical result is a linear-time algo-
rithm for solving systems of linear equations whose primal graph has low
treewidth. Given a linear system S of m equations over n unknowns, and a
tree decomposition of the primal graph of S that has width t, our algorithm
solves S in time O((n + m) · t2). Given an MC M of treewidth t and a corre-
sponding tree decomposition, our algorithm directly implies similar running
times for the hitting probabilities and discounted sum objectives for M . In
addition, we develop an algorithm that solves the mean-payoff objective for
M in time O((n + m) · t2). Our results on MCs also imply upper-bounds
for the running time of strategy iteration on low-treewidth MDPs. Given an
MDP P with treewidth t and a quantitative objective, our results imply that
P can be solved in time O(κ · (n+m) · t2), where κ is the number of iterations
until strategy iteration stabilizes for the respective input and objective.

2. Practical Contributions. We develop two practical algorithms for solving
the hitting probabilities and discounted sum objectives on low-treewidth
MCs. Although these algorithms have the same worst-case complexity of
O((n + m) · t2) as our general solution, they avoid its most practically time-
consuming step, i.e. applying the Gram-Schmidt process, and replace it with
simple changes to the MC. We report on an implementation of these algo-
rithms and their performance in solving MCs and MDPs with low treewidth.

The existing works closest to this paper are [12,23]. The work of [12] consid-
ers the maximal end-component decomposition and the almost-sure reachability
set computation in low-treewidth MDPs. These are both qualitative objectives,
and thus very different from the quantitative objectives we consider here, which
cannot be solved by [12]. Specifically, the main problem solved by [12] is almost-
sure reachability, i.e. reachability with probability 1, which is a very special
qualitative case of computing hitting probabilities. The work of [23] develops an
algorithm for solving linear systems of low treewidth. Considering the compu-
tational complexity when applied to MCs/MDPs of treewidth t, the algorithms
we develop in this work are a factor t faster compared to [23]. On the practical
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side, the algorithms in [23] have more complicated intermediate steps, which we
expect will lead to large constant factors in the runtime of their implementations.

2 Preliminaries

Discrete Probability Distributions. Given a finite set X, a probability dis-
tribution over X is a function d : X → [0, 1] such that

∑
x∈X d(x) = 1. We

denote the set of all probability distributions over X by D(X).

Markov Chains (MCs). A Markov chain C = (V,E, δ) consists of a finite
directed graph (V,E) and a probabilistic transition function δ : V → D(V ),
such that for any pair u, v of vertices, we have δ(u)(v) > 0 only if (u, v) ∈ E.
In an MC C, we start a random walk from a vertex v0 ∈ V and at each step,
being in a vertex v, we probabilistically choose one of the successors of v and go
there. The probability with which a successor w is chosen is given by δ(v)(w).
Let O ⊆ V ω be a measurable set of infinite paths on V , we use the notation
Prv0(O) to denote the probability that our infinite random walk starting from
v0 is a member of O.

Markov Decision Processes (MDPs). A Markov decision process is a tuple
P = (V,E, V1, VP , δ) which consists of a finite directed graph (V,E), a parti-
tioning of V into two sets V1 and VP , and a probabilistic transition function
δ : VP → D(V ), such that for any (u, v) ∈ VP × V, we have δ(u)(v) > 0 only if
(u, v) ∈ E. We assume that all vertices of an MDP have at least one outgoing
edge. Intuitively, an MDP is a one-player game with two types of vertices: those
controlled by Player 1, i.e. V1, and those that behave probabilistically, i.e. VP .

Strategies. In an MDP P , a strategy is a function σ : V1 → V , such that for
every v ∈ V1 we have (v, σ(v)) ∈ E. Informally, a strategy is a recipe for Player
1 that tells her which successor to choose based on the current state2. Given an
MDP P with a strategy σ, we start a random walk from a vertex v0 ∈ V and
at each step, being in a vertex v, choose the successor as follows: (i) if v ∈ V1,
then we go to σ(v), and (ii) if v ∈ VP we act as in the case of MCs, i.e. we go
to each successor w with probability δ(v)(w). As before, given a measurable set
O ⊆ V ω of infinite paths on V , we define Prσv0

(O) as the probability that our
infinite random walk becomes a member of O. Note that an MDP with a fixed
strategy σ is basically an MC, in which for every v ∈ V1 we have δ(v)(σ(v)) = 1.

Hitting Probabilities [32]. Let C = (V,E, δ) be an MC and T ⊆ V a des-
ignated set of target vertices. We define Hit(T) ⊆ V ω as the set of all infinite
sequences of vertices that intersect T. The Hitting probability HitPr(u,T) is
defined as Pru(Hit(T)). In other words, HitPr(u,T) is the probability of eventu-
ally reaching T, assuming that we start our random walk at u. In case of MDPs,
we assume that the player aims to maximize the hitting probability by choosing
the best possible strategy. Therefore, we define HitPr(u,T) as maxσ Prσu(Hit(T)).
2 We only consider pure memoryless strategies because they are sufficient for our use-

cases, i.e. there always exists an optimal strategy that is pure and memoryless [29].
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Discounted Sums of Rewards [34]. Let C = (V,E, δ) be an MC and R : E →
R a reward function that assigns a real value to each edge. Also, let λ ∈ (0, 1)
be a discount factor. Given an infinite path π = v0, v1, . . . over (V,E), we define
the total reward R(π) of π as

∑∞
i=0 λi · R(vi, vi+1) = R(v0, v1) + λ · R(v1, v2) + λ2 · R(v2, v3) + . . . .

For u ∈ V we define ExpDisSum(u) as the expected value of the reward of our
random walk if we begin it at u, i.e. ExpDisSum(u) := Eu[R(π)]. As in the
previous case, when considering MDPs, we assume that the player aims to max-
imize the discounted sum, hence given an MDP P = (V,E, V1, VP , δ), a reward
function R and a discount factor λ, we define ExpDisSum(u) := maxσ E

σ
u[R(π)].

Mean Payoff [29,34]. Let C be an MC and R a reward function. Given an
infinite path π = v0, v1, . . . over C, we define the n-step average reward of π as

R(π[0..n]) := 1
n

∑n
i=1 R(vi−1, vi).

Given a start vertex u ∈ V, the expected long-time average or mean payoff
value from u is defined as ExpMP(u) := limn→∞ Eu[R(π[0..n])]. In other words,
ExpMP(u) captures the expected reward per step in a random walk starting at
u. For an MDP P , we define ExpMP(u) := maxσ limn→∞ E

σ
u[R(π[0..n])]. The

limits in the former definitions are guaranteed to exist [29,34].

Problems. We consider the following problems for both MCs and MDPs:

– Given a target set T compute HitPr(u,T) for every vertex u.
– Given a reward function R and a discount factor λ compute ExpDisSum(u)

for every vertex u.
– Given a reward function R, compute ExpMP(u) for every vertex u.

Solving MCs [32]. A classical approach to the above problems for MCs is to
reduce them to solving systems of linear equations. In case of hitting probabili-
ties, we define one variable xu for each vertex u, whose value in the solution to
the system would be equal to HitPr(u,T). The system is constructed as follows:

– We add the equation xt = 1 for every t ∈ T, and
– For every vertex u �∈ T with successors u1, . . . , uk, we add the equation xu =∑k

i=1 δ(u)(ui) · xui
.

If every vertex can reach a target, then it is well-known that the resulting sys-
tem has a unique solution in which the value assigned to each xu is equal to
HitPr(u,T). A similar approach can be used in the case of discounted sums. We
define one variable yu per vertex u and if the successors of u are u1, . . . , uk, then
we add the equation yu =

∑k
i=1 δ(u)(ui) · (R(u, ui) + λ · yui

).

Primal Graphs. Let S be a system of linear equations with m equations and n
unknowns (variables). The primal graph G(S) of S is an undirected graph with
n vertices, each corresponding to one unknown in S, in which there is an edge
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Fig. 1. A graph G (left) and a tree decomposition of G with width 2 (right).

between two unknowns x and y iff there exists an equation in S that contains
both x and y with non-zero coefficients.

Solving MDPs. There are two classical approaches to solving the above prob-
lems for MDPs. One is to reduce the problem to Linear Programming (LP) in
a manner similar to the reduction from MC to linear systems [21]. The other
approach is to use dynamic programming [3]. We consider a widely-used variety
of dynamic programming, called strategy iteration or policy iteration [28].

Strategy Iteration (SI) [3]. In SI we start with an arbitrary initial strategy
σ0 and attempt to find a better strategy in each step. Formally, assume that
our strategy after i iterations is σi. Then, we compute vali(u) = HitPrσi(u,T)
for every vertex u. This is equivalent to computing hitting probabilities in the
MC that is obtained by considering our MDP together with the strategy σi.
We use the values vali(u) to obtain a better strategy σi+1 as follows: for every
vertex v ∈ V1 with successors v1, v2, . . . , vk, we set σi+1(v) = arg maxvj

vali(vj).
In case of discounted sum, we let vali(u) = ExpDisSumσi(u) and σi+1(v) =
arg maxvj

R(v, vj) + λ · vali(vj). We repeat these steps until we reach a point
where our strategy converges. It is well-known that strategy iteration always
converges to the optimal strategy σκ, and at that point the values valκ will be
the desired hitting probabilities/discounted sums [21,28]. Given that SI solves
the classic problems above on MDPs by several calls to a procedure for solving
the same problems on MCs, our runtime improvements for MCs are naturally
extended to MDPs. So, in the sequel we focus on MCs.

Tree Decompositions [36]. Given a directed or undirected graph G = (V,E),
a tree decomposition of G is a tree (T,ET ) such that:

– Each vertex b ∈ T of the tree is associated with a subset Vb ⊆ V of vertices
of the graph. For clarity, we reserve the word “vertex” for vertices of G and
use the word “bag” to refer to vertices of T . Also, we define Eb := {(u, v) ∈
E | u, v ∈ Vb}.

– Each vertex appears in at least one bag, i.e.
⋃

b∈T Vb = V.
– Each edge appears in at least one bag, i.e.

⋃
b∈T Eb = E.

– Each vertex appears in a connected subtree of T . In other words, for all
b, b′, b′′ ∈ T , if b′′ is in the unique path between b and b′, then Vb ∩ Vb′ ⊆ Vb′′ .
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Treewidth [36]. The width of a tree decomposition is the size of its largest
bag minus one, i.e. w(T ) = maxb∈T |Vb|−1. A tree decomposition of G is called
optimal if it has the smallest possible width. The treewidth tw(G) of G is defined
as the width of its optimal tree decomposition(s).

Computing Treewidth and Tree Decompositions. The problem of comput-
ing the treewidth of a graph is solvable in linear time when parameterized by the
treewidth itself [6]. The algorithm in [6] also finds an optimal tree decomposition
in linear time. Moreover, [37] proves control-flow graphs of structured programs
have constant treewidth and provides a linear-time algorithm for producing the
tree decomposition by a single parse of the program.

3 Algorithms for MCs with Constant Treewidth

We now consider quantitative problems on MCs. As mentioned before, our
improvements carry over to MDPs using SI. We build on classical state-
elimination algorithms such as those used in [18,27]. The main novelty of our
approach is that we use the tree decompositions to obtain a suitable order for
eliminating vertices. This specific ordering significantly reduces the runtime com-
plexity of classical state-elimination algorithms from cubic to linear.

3.1 A Simple Algorithm for Computing Hitting Probabilities

We begin by looking into the problem of computing hitting probabilities for
general MCs without exploiting the treewidth. Without loss of generality, we
can assume that our target set contains a single vertex. Otherwise, we add a
new vertex t and add edges with probability 1 from every target vertex to t.
This will keep the hitting probabilities intact. Consider our MC C = (V,E, δ)
and our target vertex t ∈ V. If there is only one vertex in the MC then there
is not much to solve. We just return that HitPr(t, t) = 1. Otherwise, we take
an arbitrary vertex u �= t and try to remove it from the MC to obtain a smaller
MC that can in turn be solved using the same method. We should do this
in a manner that does not change HitPr(v, t) for any vertex v �= u. Figure 2
shows how to remove a vertex u from C in order to obtain a smaller MC C =
(V \ {u}, E, δ)3. Basically, we remove u and all of its edges, and instead add
new edges from every predecessor u′ to every successor u′′. We also update the
transition function δ by setting δ(u′)(u′′) = δ(u′)(u′′) + δ(u′)(u) · δ(u)(u′′). It
is easy to verify that for every v �= u, we have HitPr(v, t) = HitPr(v, t). Hence,
we can compute hitting probabilities for every vertex v �= u in C instead of C.
Finally, if u1, u2, . . . , uk are the successors of u in C, we know that HitPr(u, t) =
∑k

i=1 δ(u)(ui) ·HitPr(ui, t) =
∑k

i=1 δ(u)(ui) ·HitPr(ui, t). Hence, we can easily
compute the hitting probability for u using this formula. A pseudocode of is
available in [1].

3 We always use C to denote an MC that is obtained from C by removing one vertex.
We apply this rule across our notation, e.g. δ is the respective transition function.
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u′ u u′′

u′ u′′

C

C

p1 p2

p1 · p2

u′ u u′′

u′ u′′

p1 p2

p1 · p2 + p3

p3

Fig. 2. Removing a vertex u. The vertex u′ is a predecessor of u and u′′ is one of its
successors. The left side shows the changes when there is no edge from u′ to u′′ and
the right side shows the other case, where (u′, u′′) ∈ E. Edge labels are δ values.

A special case arises when there is a self-loop transition from u to u. If
δ(u)(u) = 1, i.e. u is an absorbing trap, then we can simply remove u, noting
that HitPr(u, t) = 0. On the other hand if 0 < δ(u)(u) < 1, then we should
distribute δ(u)(u) proportionately among the other successors of u because stay-
ing for a finite number of steps in the same vertex u does not change the hitting
property of a path, and the probability of staying at u forever is 0.

Removing each vertex can take at most O(n2) time, given that it has O(n)
predecessors and successors. We should remove n − 1 vertices, leading to a total
runtime of O(n3), which is worse than the reduction to system of linear equations
and then applying Gaussian elimination. However, the runtime can be signifi-
cantly improved if we remove vertices in an order that guarantees every vertex
has a low degree upon removal.

3.2 Computing Hitting Probabilities in Constant Treewidth

The main idea behind our algorithm is simple: we take the algorithm from
the previous section and use tree decompositions to obtain an ordering for the
removal of vertices. Given that we can choose any bag in T as the root, without
loss of generality, we assume that the target vertex t is in the root bag4. We base
our approach on the following lemmas:

Lemma 1. Let l ∈ T be a leaf bag of the tree decomposition (T,ET ) of our MC
C, and let l̄ be the parent of l. If Vl ⊆ Vl̄, then (T \ {l}, ET \ {(l̄, l)}) is also a
valid tree decomposition for C.

Proof. We just need to check that all the required properties of a tree decompo-
sition hold after removal of l. Given that Vl ⊆ Vl̄, any vertex that appears in l is
also in l̄ and hence removal of l does not cause any vertex to be unrepresented
in the tree decomposition. The same applies to edges. Moreover, removing a leaf
bag cannot disconnect the previously-connected set of bags containing a vertex.

Lemma 2. Let l ∈ T be a bag of the tree decomposition (T,ET ) and assume
that the vertex u ∈ V only appears in Vl, i.e. it does not appear in the vertex set
of any other bag. Then, u has at most |Vl| predecessors/successors in C.
4 If |T| ≥ 2, we use the same technique as in the previous section to have only one

target t. To keep the tree decomposition valid, we add t to every bag.
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Proof. If u′ is a predecessor/successor of u, then there is an edge between them.
By definition, a tree decomposition should cover every edge. Hence, there should
be a bag b such that u, u′ ∈ Vb. By assumption, u only appears in Vl. Hence,
every predecessor/successor u′ must also appear in Vl.

The Algorithm. The above lemmas provide a convenient order for removing
vertices. At each step, we choose an arbitrary leaf bag l. If there is a vertex u
that appears only in Vl, then we eliminate u as in Fig. 2. In this case, Lemma 2
guarantees that u has O(t) predecessors and successors. Otherwise, Vl ⊆ Vl̄

(recall that each vertex appears in a connected subtree) and we can remove l
from our tree decomposition according to Lemma 1. See [1] for a pseudocode.

Example. Consider the graph and tree decomposition in Fig. 1 with an arbitrary
transition probability function δ and target vertex t = 6. On this example, our
algorithm would first choose an arbitrary leaf bag, say {7, 9} and then realize
that 9 has only appeared in this bag. Hence it removes vertex 9 from the MC
using the same procedure as in the previous section. In the next iteration, it
chooses the bag {7} and realizes that the set of vertices in this bag is a subset of
vertices that appear in its parent. Hence, it removes this unnecessary bag. The
algorithm continues similarly, until only the target vertex 6 remains, at which
point the problem is trivial. Figure 3 shows all the steps of our algorithm. Note
that because the width of our tree decomposition is 2, at each step when we are
removing a vertex u, it has at most 3 neighbors (counting itself).

Note that throughout this algorithm the tree decomposition remains valid,
because we are only adding edges between vertices that are already in the same
leaf bag l. Given that we remove at most O(n) bags and n − 1 vertices and that
removing each vertex takes only O(t2), the total runtime is O(n · t2).

Theorem 1. Given an MC with n vertices and treewidth t and an optimal tree
decomposition of the MC, our algorithm computes hitting probabilities from every
vertex to a designated target set in O(n · t2).

3.3 Computing Expected Discounted Sums in Constant Treewidth

We use a similar approach for handling the discounted sum problem. The only
difference is in how a vertex is removed. Given an MC C = (V,E, δ), a tree
decomposition (T,ET ) of C, a reward function R : E → R and a discount factor
λ ∈ (0, 1), we first add a new vertex called 1̂ to the MC. The vertex 1̂ is disjoint
from all other vertices and only has a single self-loop with probability 1 and
reward 1 − λ. In other words, we define δ(1̂)(1̂) = 1 and R(1̂, 1̂) = 1 − λ. We
also add 1̂ to the vertex set of every bag. The reason behind this gadget is that
we have ExpDisSum(1̂) = (1 − λ) · (1 + λ + λ2 + . . .) = 1.

In our algorithm, the requirement that for all u, v we should have 0 ≤
δ(u)(v) ≤ 1 is unnecessary and becomes untenable, too. Therefore, we allow
δ(u)(v) to have any real value, and use the linear system interpretation of C
as in Sect. 2, i.e. instead of considering C as an MC, we consider it to be a
representation of the linear system SC defined as follows:
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Fig. 3. The steps taken by our algorithm on the graph and tree decomposition in Fig. 1.
The target vertex t = 6 is shown in green. At each step the vertex/bag that is being
removed is shown in red. An active bag whose vertices, but not itself, are considered
for removal is shown in blue. After removing vertex 2, the graph has only one vertex
and the base case of the algorithm is run. (Color figure online)
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Fig. 4. Removing u from C (left) to obtain C (right). The vertex u′ is a predecessor
of u and u1, . . . , uk are its successors. Each edge is labelled with its δ and R values.

– For every vertex u ∈ V , the system SC contains one unknown yu, and
– For every vertex u ∈ V , whose successors are u1, u2, . . . , uk, the system SC

contains an equation eu := yu =
∑k

i=1 δ(u)(ui) · (R(u, ui) + λ · yui
) .

As mentioned in Sect. 2, in the solution to SC , the value assigned to the unknown
yu is equal to ExpDisSum(u) in the MC C. However, the definition above does
not depend on the fact that C is an MC and can also be applied if δ has arbitrary
real values.

Now suppose that we want to remove a vertex u �= 1̂ with successors
u1, . . . , uk from C. This is equivalent to removing yu from SC without chang-
ing the values of other unknowns in the solution. Given that we have yu =∑k

i=1 δ(u)(ui) · (R(u, ui) + λ · yui
) , we can simply replace every occurrence of

yu in other equations with the right-hand-side expression of this equation. If
u′ �= u is a predecessor of u, then we have yu′ = A+δ(u′)(u) ·(R(u′, u) + λ · yu) ,
where A is an expression that depends on other successors of u′. We can rewrite
this equation as yu′ = A + δ(u′)(u) · R(u′, u) +

∑k
i=1 δ(u′)(u) · δ(u)(ui) · λ ·

(R(u, ui) + λ · yui
). This is equivalent to obtaining a new C from C by removing

the vertex u and adding the following edges from every predecessor u′ of u:

– An edge (u′, 1̂), such that R(u′, 1̂) = 0 and δ(u′)(1) = 1
λ ·(δ(u′)(u)·R(u′, u)),

– An edge (u′, ui) to every successor ui of u, such that R(u′, ui) = R(u, ui)
and δ(u′)(ui) = δ(u′)(u) · δ(u)(ui) · λ.

This construction is shown in Fig. 4. Using this construction, the value of yv

remains the same in solutions of SC and SC . There are a few special cases,
e.g. when the graph has parallel edges or self-loops. See [1] for details.

As in the previous section, we can solve the problem on the smaller C and
then use the equation eu to compute the value of yu in the solution to SC . This
algorithm’s runtime can be analyzed exactly as before. We have to remove n
vertices and each removal takes O(n2) for a total runtime of O(n3). To obtain a
better algorithm that exploits tree decompositions, we can use the exact same
removal order as in the previous section, leading to the same runtime, i.e. O(n·t2).
Note that we have added 1̂ to the associated vertex set of every bag, so the tree
decomposition always remains valid throughout our algorithm.

Theorem 2. Given an MC with n vertices and treewidth t and an optimal
tree decomposition of the MC, the algorithm described in this section computes
expected discounted sums from every vertex of the MC in O(n · t2).
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3.4 Systems of Equations with Constant-Treewidth Primal Graphs

The ideas used in the previous section can be extended to obtain faster algo-
rithms for solving any linear system whose primal graph has a small treewidth.
However, new subtleties arise, given that general linear systems might have no
solution or infinitely many solutions. In contrast, the systems SC discussed in
the previous section were guaranteed to have a unique solution. We consider a
system S of m linear equations over n real unknowns as input, and assume that
its primal graph G(S) has treewidth t. Our algorithm for solving S is similar to
our previous algorithms, and is actually what most students are taught in junior
high school. We take an arbitrary unknown x and choose an arbitrary equation
e in which x appears with a non-zero coefficient. We then rewrite e as x = Rx,
where Rx is a linear expression based on other unknowns. Finally, we replace
every occurrence of x in other equations with Rx and solve the resulting smaller
system S. If S has no solutions or inifinitely many solutions, then so does S.
Otherwise, we evaluate Rx in the solution of S to get the solution value for x.
Using this algorithm, we have to remove O(n) unknowns. When removing x,
we might have to replace an expression of size O(n), i.e. Rx, in O(m) potential
other equations where x has appeared. Hence, the overall runtime is O(n2 · m).

Given a tree decomposition (T,ET ) of the primal graph G(S), we choose the
unknows in the usual order, i.e. we always choose an unknown x that appears
only in a leaf bag. If x does not appear in any equations, then we can simply
remove it and then S is satisfiable iff S is satisfiable. Moreover, if S is satisfiable,
then it has infinitely many solutions, given that x is not restricted. Otherwise,
there is an equation e in which x appears with non-zero coefficient, and hence
we can rewrite this equation as x = Rx. Note that x has O(t) neighbors in
G(S), given that it only appears in a leaf bag and all of its neighbors should also
appear in the same bag, hence the length of Rx is O(t), too. The problem is that
x might have appeared in any of the other O(m) equations. Hence, replacing it
with Rx in every equation will lead to a runtime of O(m · t). We repeat this for
every unknown, so our total runtime is O(n · m · t), which is not linear.

The crucial observation is that while x might have appeared in as many as
m equations, not all of them are linearly independent. Let Ex be the set of
equations containing x and l be the leaf bag in which x appears and assume that
Vl = {x, y1, . . . , yk−1}. Then the only unknowns that can appear together with
x in an equation are y1, . . . , yk−1. In other words, all equations in Ex are over Vl.
Hence, we can apply the Gram-Schmidt process on Ex to remove the unnecessary
equations and only keep at most k equations that form an orthogonal basis (or
alternatively realize that the system is unsatisfiable). Given that we are operating
in dimension k = O(t), this will take O(t2 · |Ex|) time. See [1] for a pseudocode.
As in previous algorithms, our approach always keeps the tree decomposition
valid. Moreover, as argued above, its runtime is O((n + m) · t2).
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Theorem 3. Given a system of m linear equations over n unknowns, its primal
graph, and a tree decomposition of the primal graph with width t, our algorithm
solves the system in time O((n + m) · t2).

The algorithm can easily be extended to find a basis for the solution set.
Moreover, it can also be combined with the algorithms in the previous sections
to solve the mean-payoff objective, hence we have:

Theorem 4 (Proof and Details in [1]). Given an MC with n vertices and
treewidth t and an optimal tree decomposition, expected mean payoffs from every
vertex can be computed in O(n · t2).

4 Experimental Results

We now report on a C/C++ implementation of our algorithms and provide a
performance comparison with previous approaches. See [1] for details.

Compared Approaches. We consider the hitting probability and discounted
sum problems for MCs and MDPs. In the case of MCs, we directly use our
algorithms from Sect. 3.2 and Sect. 3.3. For MDPs, we use strategy iteration,
where we use the above algorithms for the strategy evaluation step in each
iteration. We compare our approach with the following alternatives:

– Classical Approaches. In case of MCs, we compare against an implementation
of Gaussian elimination (Gauss). For MDPs, we consider our own implemen-
tation of value iteration (VI) and strategy iteration (SI).

– Numerical and Industrial Optimizers. We use Matlab [31] and Gurobi [25] to
solve systems of linear equalities corresponding to MCs. For MDPs, we use
Matlab [31], Gurobi [25] and lpsolve [4] to handle the corresponding LPs.

– Probabilistic Model Checkers. The model checkers Storm [19] and Prism [30]
have standard procedures for computing hitting probabilities, but not for
discounted sums. Hence, we compare with them on hitting probabilities only.

Benchmarks. We used CFGs of the 40 Java programs from the DaCapo suite [5]
as our benchmarks. They have between 33 and 103918 vertices and transitions.
To obtain MDPs, we randomly (with probability 1/2) turned each vertex into
a Player 1 or a probabilistic one. We assigned random probabilities to each
outgoing edge of a probabilistic vertex. To obtain MCs, we did the same, except
that all vertices are probabilistic. For the hitting probabilities problem, we chose
one random vertex from each connected component of the control flow graphs
as a target. In case of discounted sum, we uniformly chose a discount factor
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Fig. 5. Experimental results for computing hitting probabilities in MCs.

between 0 and 1 for each instance, and also assigned random integral rewards
between −1000 to 1000 to each edge. Finally, we used JTDec [9] to compute tree
decompositions. In each case the width of the obtained decomposition was no
more than 9. The time and memory used for computing a tree decomposition
are negligible, given that it is obtained by a single pass over the program. See [1]
for details of the benchmarks and the motivation for using them.

Results. The runtimes for computing the values of hitting probabilities and
discounted sums are shown in Figs. 5, 6, 7 and 8. The benchmarks are on the x-
axes and ordered by their size. Note that the y-axes are in logarithmic scale. For
example, Fig. 5 shows results for computing hitting probabilities in MCs, where
Prism is the slowest tool by far, while our approach comfortably beats every other
method. The gap is more apparent in MDPs (Figs. 7–8). Overall, we see that our
new algorithms consistently outperform both classical approaches like VI and SI,
and highly optimized solvers and model checkers like Gurobi, Prism and Storm,
by one or more orders of magnitude. Hence, the theoretical improvements are
also realized in practice. See [1] for raw numbers. It is also noteworthy that the
outputs of the different approaches agreed with each other within an error range
of 10−5. Finally, note that our approach is only applicable to instances with
small treewidth, such as CFGs of structured programs. For MCs/MDPs with
arbitrary treewidth, the problem of computing an optimal tree decomposition is
NP-hard [6].
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Fig. 6. Experimental results for computing expected discounted sums in MCs.

Fig. 7. Experimental results for computing hitting probabilities in MDPs.
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Fig. 8. Experimental results for computing expected discounted sums in MDPs.
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Abstract. We give a formal verification procedure that decides whether
a classifier ensemble is robust against arbitrary randomized attacks. Such
attacks consist of a set of deterministic attacks and a distribution over
this set. The robustness-checking problem consists of assessing, given a
set of classifiers and a labelled data set, whether there exists a random-
ized attack that induces a certain expected loss against all classifiers.
We show the NP-hardness of the problem and provide an upper bound
on the number of attacks that is sufficient to form an optimal random-
ized attack. These results provide an effective way to reason about the
robustness of a classifier ensemble. We provide SMT and MILP encod-
ings to compute optimal randomized attacks or prove that there is no
attack inducing a certain expected loss. In the latter case, the classi-
fier ensemble is provably robust. Our prototype implementation verifies
multiple neural-network ensembles trained for image-classification tasks.
The experimental results using the MILP encoding are promising both
in terms of scalability and the general applicability of our verification
procedure.

Keywords: Adversarial attacks · Ensemble classifiers · Robustness

1 Introduction

Recent years have seen a rapid progress in machine learning (ML) with a strong
impact to fields like autonomous systems, computer vision, or robotics. As a
consequence, many systems employing ML show an increasing interaction with
aspects of our everyday life, consider autonomous cars operating amongst pedes-
trians and bicycles. While studies indicate that self-driving cars, inherently rely-
ing on ML techniques, make around 80% fewer traffic mistakes than human
drivers [19], verifiable safety remains a major open challenge [5,13,23,26].
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In the context of self-driving cars, for instance, certain camera data may con-
tain noise that can be introduced randomly or actively via so-called adversarial
attacks. We focus on the particular problem of such attacks in image classifica-
tion. A successful attack perturbs the original image in a way such that a human
does not recognize any difference while ML misclassifies the image. A measure
of difference between the ground truth classification, for instance by a human,
and a potentially perturbed ML classifier is referred as the loss.

A standard way to render image classification more robust against adversarial
attacks is to employ a set of classifiers, also referred to as classifier ensembles [2,
3,20,21]. The underlying idea is to obscure the actual classifier from the attacker.
One possible formalization of the competition between an adversarial attacker
and the ensemble is that of a zero-sum game [20]: The attacker chooses first, the
ensemble tries to react to the attack with minimal loss — that is, choosing a
classifier that induces maximal classification accuracy.

0 1 2 3 4 5
x

y

Fig. 1. We depict a single data point in R
2 with label 1. The region to the left of the

solid vertical line corresponds to points labelled with 2 by one classifier; the region to
the right of the dashed line, those labelled with 2 by another classifier. Both (linear)
classifiers label all other points in R

2 with 1. (Hence, they correctly label the data
point with 1.) The dotted attack, moving the data point left, induces a misclassifi-
cation of the point by one of the classifiers. The solid attack, moving the data point
right, induces a misclassification of the point by one of the classifiers. Note that every
attack has a classifier which is “robust” to it, i.e. it does not misclassify the perturbed
point. However, if the attacker chooses an attack uniformly at random, both of them
misclassify the point with probability 1/2.

In this setting, the attacker may need to use randomization to behave opti-
mally (see Fig. 1, cf. [6]). Such an attack is called optimal if the expected loss is
maximized regardless of the choice of classifier.

Inspired by previous approaches for single classifiers [12,15], we develop a for-
mal verification procedure that decides if a classifier ensemble is robust against
any randomized attack. In particular, the formal problem is the following. Given
a set of classifiers and a labelled data set, we want to find a probability distri-
bution and a set of attacks that induce an optimal randomized attack. Akin to
the setting in [20], one can provide thresholds on potential perturbations of data
points and the minimum shift in classification values. Thereby, it may happen
that no optimal attack exists, in which case we call the classifier ensemble robust.
Our aim is the development of a principled and effective method that is able to
either find the optimal attack or prove that the ensemble is robust with respect
to the predefined thresholds.
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To that end, we first establish a number of theoretical results. First, we
show that the underlying formal problem is NP-hard. Towards computational
tractability, we also show that for an optimal attack there exists an upper bound
on the number of attacks that are needed. Using these results, we provide an SMT
encoding that computes suitable randomized attacks for a set of convolutional
neural networks with ReLU activation functions and a labelled data set. In case
there is no solution to that problem, the set of neural networks forms a robust
classifier ensemble, see Fig. 2. Together with the state-of-the-art SMT solver
Z3 [9], this encoding provides a complete method to solve the problem at hand.
Yet, our experiments reveal that it scales only for small examples. We outline the
necessary steps to formulate the problem as a mixed-integer linear programming
(MILP), enabling the use of efficient optimization solvers like Gurobi [14].

Verifier ROBUST/NOT ROBUST
Probabilities & attacks

Set of classifiers
Set of data points

Number of attacks
Max attack strength

Min prediction
perturbation

Fig. 2. The verifier takes as input a set of classifiers, a set of labelled data points, the
number of attacks, and the attack properties. If the verifier does not find a solution,
we can be sure is robust against any attack with the specific properties. Otherwise, it
returns the optimal attack.

In our experiments, we show the applicability of our approach by means of
a benchmark set of binary classifiers, which were trained on the MNIST and
German traffic sign datasets [10,25].

Related Work
It is noteworthy that there is some recent work on robustness checking of
decision-tree ensembles [22]. However, their approach is based on abstract inter-
pretation and is thus not complete. Other approaches for robustness checking of
machine learning classifiers focus on single classifiers (see, e.g., [7,12,15,18,24]).
Akin to our approach, some of these works employ SMT solving. In [4], MILP-
solving is used for verification tasks on (single) recurrent neural networks. In
contrast, our framework allows to compute attacks for classifier ensembles.

In [11], Dreossi et al. propose a robustness framework which unifies the opti-
mization and verification views on the robustness-checking problem and encom-
passes several existing approaches. They explicitly mention that their frame-
work applies to local robustness and argue most of the existing work on finding
adversarial examples and verifying robustness fits their framework. Our work,
when we have a single classifier and a singleton data set, fits precisely into their
framework. However, we generalize in those two dimensions by averaging over
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the robustness target value (in their jargon) for all points in a data set, and by
considering ensemble classifiers. This means that our point of view of the adver-
sarial environment is neither that of a white-box attacker nor is it a black-box
attacker. Indeed, we know the set of classifiers but we do not know what strat-
egy is used to choose which (convex combination of) classifiers to apply. Our
environment is thus a gray-box attacker.

2 Preliminaries

Let x be a vector (x1, . . . , xd) ∈ R
d. We write ‖x‖1 for the “Manhattan norm”

of x, that is
∑d

i=1 |xi|.
We will make use of a partial inverse of the max function. Consider a totally

ordered set Y and a function f : X → Y . Throughout this work we define the
arg max (arguments of the maxima) partial function as follows. For all S ⊆
X we set arg maxs∈S f(s) := m if m is the unique element of S such that
f(m) = maxs∈S f(s). If more than one element of S witnesses the maximum
then arg maxs∈S f(s) is undefined.

A probability distribution over a finite set D is a function μ : D → [0, 1] ⊆ R

with
∑

x∈D μ(x) = 1. The set of all distributions on D is Distr(D).

2.1 Neural Networks

We loosely follow the neural-network notation from [12,15]. A feed-forward neu-
ral network (NN for short) with d inputs and � outputs encodes a function
f : Rd → R

�. We focus on NNs with ReLU activation functions. Formally, the
function f is given in the form of

– a sequence W(1), . . . ,W(k) of weight matrices with W(i) ∈ R
di × di−1 , for all

i = 1, . . . , k, and
– a sequence B(1), . . . ,B(k) of bias vectors with B(i) ∈ R

di , for all i = 1, . . . , k.

Additionally, we have that d0, . . . , dk ∈ N with d0 = d and dk = �. We then set
f = g(k)(x) for all x ∈ R

d where for all i = 1, . . . , k we define

g(i)(x) := ReLU(W(i)g(i−1)(x) + B(i)),

and g(0)(x) := x. The ReLU function on vectors u is the element-wise maximum
between 0 and the vector entries, that is, if v = ReLU(u) then vi = max(0,ui).

We sometimes refer to each g(i) as a layer. Note that each layer is fully
determined by its corresponding weight and bias matrices.
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2.2 Neural-Network Classifiers

A data set X ⊆ R
d is a finite set of (real-valued) data points x ∈ R

d of dimension
d ∈ N>0. A classifier c : X → [�] is a partial function that attaches to each data
point a label from [�] = {1, . . . , �}, the set of labels. We denote the set of all
classifiers over X by C. An NN-encoded classifier is simply a partial function
f : Rd → R

k given as an NN that assigns to each data point x ∈ R
d the label

arg maxi∈[�] h(i) where h(i) = f(x)i. Intuitively, the label is the index of the
largest entry in the vector resulting from applying f to x. Note that if the image
of x according to f has several maximal entries then the arg max and the output
label are undefined.

Definition 1 (Labelled data set). A labelled data set X = (X, ct) consists
of a data set X and a total classifier ct for X, i.e. ct is a total function.

In particular, ct(x) is defined for all x ∈ X and considered to be the “ground
truth” classification for the whole data set X.

3 Problem Statement

We state the formal problem and provide the required notation. Recall that in
our setting we assume to have an ensemble of classifiers C ⊆ C. Such an ensemble
is attacked by a set of attacks that are selected randomly.

Definition 2 (Deterministic attack). A deterministic attack for a labelled
data set (X, ct) and a classifier c : X → [�] is a function δ : X → R

d. An attack
δ induces a misclassification for x ∈ X and c if c(x + δ(x)) �= ct(x) or if
c(x + δ(x)) is undefined. The set of all deterministic attacks is Δ. An attack is
ε-bounded if ‖δ(x)‖1 ≤ ε holds for all x ∈ X.

We sometimes call the value x + δ(x) the attack point. Note that the classifier
c is not perfect, that is, c(x) �= ct(x) for some x ∈ X, already a zero-attack
δ(x) = 0 leads to a misclassification.

We extend deterministic attacks by means of probabilities.

Definition 3 (Randomized attack). A finite set A ⊆ Δ of deterministic
attacks together with a probability distribution P ∈ Distr(A) is a randomized
attack (A,P). A randomized attack is ε-bounded if for all attacks δ ∈ A with
P(δ) > 0 it holds that ‖δ(x)‖1 ≤ ε for all x ∈ X.
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2-bounded
attacks

δ1 δ2

Fig. 3. The dotted diamond contains the set of all 2-bounded attacks in the setting
described in Fig. 1. Both δ1 and δ2 are therefore 2-bounded (deterministic) attacks.
Hence, any randomized attack with A = {δ1, δ2} is also 2-bounded.

In general, a loss function � : C×R
d ×R

d → R describes the penalty incurred
by a classifier with respect to a labelled data point and an attack. In this work,
we will focus on the widely used zero-one loss.

Definition 4 (Zero-one loss function). The (0–1)-loss function �0−1 : C ×
R

d × R
d → {0, 1} for a labelled data set (X, ct), a classifier c : X → [�], and a

deterministic attack δ ∈ A is given by the following for all x ∈ X

�0−1(c,x, δ(x)) =

{
0 if c(x + δ(x)) = ct(x)
1 otherwise.

In particular, the loss function yields one if the image of the classifier c
is undefined for the attack point x + δ(x). Note furthermore that the loss is
measured with respect to the ground truth classifier ct. Thereby, the classifier c
and the zero function as deterministic attack do not necessarily induce a loss of
zero with respect to ct. This assumption is realistic as, while we expect classifiers
to perform well with regard to the ground truth, we cannot assume perfect
classification in realistic settings.

We now connect a randomized attack to an ensemble, that is, a finite set
C ⊆ C of classifiers. In particular, we quantify the overall value a randomized
attack induces with respect to the loss function and the ensemble.

Definition 5 (Misclassification value). The misclassification value of a ran-
domized attack (A,P) with respect to a labelled data set X = (X, ct) and a finite
set of classifiers C ⊆ C is given by

Val(A,P) := min
c∈C

1
|X|

∑

x∈X

E
δ∼P

[�0−1(c,x, δ(x))]. (1)

This value is the minimum (over all classifiers) mean expected loss with respect
to the randomized attack and the classifiers from C. An optimal adversarial
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attack against C ⊆ C with respect to a labelled data set (X, ct) is a randomized
attack which maximizes the value Val(A,P) in Eq. (1).

We are now ready to formalize a notion of robustness in terms of ε-bounded
attacks and a robustness bound α ∈ R, as proposed in [20] for a set of classifiers.

Definition 6 (Bounded robustness). A set of classifiers C ∈ C for a labelled
data set (X, ct) is called robust bounded by ε and α (ε, α-robust) if it holds that

∀(A,P) ∈ 2Δ × Distr(A).Val(A,P) < α, (2)

where the (A,P) range over all ε-bounded randomized attacks.

P(δ1)

E(�0−1(·))
δ1, c1

δ2, c2

0.3

0.2 0.5

Fig. 4. Continuing with the example from Figs. 1 and 3, we now plot the expected loss
per attack and the corresponding classifier. (That is, the classifier which misclassifies
the perturbed point.) On the horizontal axis we have the probability x assigned to δ1

and we assume P(δ2) = 1−x. Note that x = 0.2 is such that the minimal expected loss,
i.e. the misclassification value, is strictly less than 0.3. Indeed, one classifier manages to
correctly classifier the perturbed point with probability 0.8 in this case. With x = 0.5
we see that the misclassification value is 0.5. Hence, the ensemble is not (2, 0.5)-robust.

In other words, an (ε, α)-robust ensemble is such that for all possible ε-
bounded random attacks (A,P), there is at least one classifier c ∈ C from the
ensemble such that

∑
x∈X Eδ∼P[�0−1(c,x, δ(x))] < α|X|. Conversely, an ensem-

ble is not (ε, α)-robust if there is an ε-bounded randomized attack with a mis-
classification value of at least α.

4 Theoretical Results

In this section we establish two key results that carry essential practical implica-
tion for our setting. First, we show that in order to obtain an optimal randomized
attack, only a bounded number of deterministic attacks is needed.1 Thereby, we

1 An analogue of this property had already been observed by Perdomo and Singer
in [20, Section 3] in the case when classifiers are chosen randomly.
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only need to take a bounded number of potential attacks into account in order
to prove the α-robustness of a set of classifiers and a given labelled data set.
Second, we establish that our problem is in fact NP-hard, justifying the use
of SMT and MILP solvers to (1) compute any optimal randomized attack and,
more importantly, to (2) prove robustness against any such attack.

4.1 Bounding the Number of Attacks

In the following, we assume a fixed labelled data set (X, ct). For every classifier
c ∈ C and every deterministic attack δ ∈ Δ, let us write Mc(δ) to denote the
value

∑
x∈X �0−1(c,x, δ(x)). Observe that 0 ≤ Mc(δ) ≤ |X| for all c ∈ C and

δ ∈ Δ. Furthermore, for all c ∈ C and randomized attacks (A,P) it holds that:
∑

x∈X

E
δ∼P

[�0−1(c,x, δ(x))] =
∑

x∈X

∑

δ∈A

P(δ) · �0−1(c,x, δ(x))

=
∑

δ∈A

P(δ)

(
∑

x∈X

�0−1(c,x, δ(x))

)

︸ ︷︷ ︸
=Mc(δ)

=
∑

δ∈A

P(δ) · Mc(δ)

We get that Eq. (2) from Definition 5 is false if and only if the following holds.

∃(A,P) ∈ 2Δ × Distr(A).∀c ∈ C.
∑

δ∈A

P(δ) · Mc(δ) ≥ α|X| (3)

Proposition 1 (Bounded number of attacks). Let α ∈ R and consider the
labelled data set (X, ct) together with a finite set of classifiers C ⊆ C. For all
randomized attacks (A,P), there exists a randomized attack (A′,P′) such that

– |A′| ≤ (|X| + 1)|C|,
– Val(A′,P′) = Val(A,P), and
– (A′,P′) is ε-bounded if (A,P) is ε-bounded.

Proof. We proceed by contradiction. Let (A,P) be an ε-bounded randomized
attack with a misclassification value of α such that |A| > (|X| + 1)|C|. Further
suppose that (A,P) is minimal (with respect to the size of A) amongst all such
randomized attacks. It follows that there are attacks δ, δ′ ∈ A such that Mc(δ) =
Mc(δ′) for all c ∈ C. We thus have that

P(δ) · Mc(δ) + P(δ′) · Mc(δ′) = (P(δ) + P(δ′)) · Mc(δ).

Consider now the randomized attack (A′,P′) obtained by modifying (A,P) so
that P(δ) = P(δ) + P(δ′) and δ′ is removed from A. From the above discussion
and Eq. (3) it follows that (A′,P′), just like (A,P), has a misclassification value
of α. Furthermore, since A′ ⊆ A, we have that (A′,P′) is ε-bounded and that
|A′| < |A|. This contradicts our assumption regarding the minimality of (A,P)
amongst ε-bounded randomized attacks with the same value α. ��



Robustness Verification for Classifier Ensembles 279

4.2 NP Hardness of Non-robustness Checking

It is known that checking whether linear properties hold for a given NN with
ReLU activation functions is NP-hard [15]. We restate this using our notation.

Proposition 2 (From)[15], Appendix I). The following problem is NP-
hard: Given an NN-encoded function f : Rn → R

m and closed nonnegative inter-
vals (Ik)n

1 , (O�)m
1 , decide whether there exists x ∈ ∏n

k = Ik such that f(x) ∈∏m
� = 1 O�.

Intuitively, determining whether there exists a point in a given box — that is, a
hypercube defined by a Cartesian product of intervals — from R

n whose image
according to f is in a given box from R

m is NP-hard. We will now reduce
this to the problem of determining if there is a randomized attack such that its
misclassification value takes at least a given threshold.

Theorem 1. The following problem is NP-hard: For a labelled data set X =
(X, ct), a set C of classifiers, and a value α ∈ Q, decide if there exists an ε-
bounded randomized attack (A,P) w.r.t. X and C such that Val(A,P) ≥ α.

Proof. We use Proposition 2 and show how to construct, for any NN-encoded
function g : Rn → R and any constraint � ≤ g(x) ≤ u, two classifiers c�, cu

such that a single deterministic attack δ causes 0, the single data point, to be
misclassified by both c� and cu if and only if the constraint holds. Note that the
ε bound can be chosen to be large enough so that it contains the box

∏n
k = 1 Ik

and that the identity function over nonnegative numbers is NN-encodable, that
is, using the identity matrix as weight matrix W and a zero bias vector B. For
every instance of the problem from Proposition 2 we can therefore construct
2(n + m) NNs that encodes all input and output constraints: 2n of them based
on the identity function to encode input constraints and 2m based on the input
NN from the given instance. It follows that determining if there exists an ε-
bounded deterministic attack δ that causes 0 to be simultaneously misclassified
by a given classifier ensemble is NP-hard. Hence, to conclude, it suffices to argue
that the latter problem reduces to our robustness-value threshold problem. The
result follows from Lemmas 1 and 2. ��

Enforcing Interval Constraints. Let g : Rn → R be an NN-encoded function
and �, u ∈ R with � ≤ u. Consider now the constraint � ≤ g(x) ≤ u. Henceforth
we will focus on the labelled data set (X, ct) with X = {0} and ct(x) = 1.

Lower-Bound Constraint. We obtain c� by adding to the NN encoding of g a
new final layer with weight and bias vectors

W =
(

0
1

)

,B =
(

�
0

)

to obtain the NN-encoded function g : Rn → R
2. Note that g(v) = (�, g(v))ᵀ

for all v ∈ R
n. It follows that c�(v) = 2 if g(v) > � and c�(v) is undefined if

g(v) = �. In all other cases the classifier yields 1.
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Upper-Bound Constraint. To obtain cu we add to the NN encoding of g two new
layers. The corresponding weight matrices and bias vectors are as follows.

W(1) = (1), B(1) = (−u), W(2) =
(

0
−1

)

, B(2) =
(

1
1

)

Let us denote by g : Rn → R
2 the resulting function. Observe that g(v) =

(1,max(0, 1 − max(0, g(v) − u)))ᵀ for all v ∈ R
n. Hence, we have that cu(v) is

undefined if and only if g(v) ≤ u and yields 1 otherwise.

Lemma 1. Let g : Rn → R be an NN-encoded function and consider the con-
straint � ≤ g(x) ≤ u. One can construct NN-encoded classifiers c� and cu, of
size linear with respect to g, for the labelled data set ({0}, {0 
→ 1}) such that
the deterministic attack δ : 0 
→ v

– induces a misclassification of 0 with respect to c� if and only if � ≤ g(v) and
– it induces a misclassification of 0 with respect to cu if and only if g(v) ≤ u.

We now show how to modify the NN to obtain classifiers c�, cu such that x is
misclassified by both c� and cu if and only if the constraint holds.

Enforcing Universal Misclassification. A randomized attack with misclas-
sification value 1 can be assumed to be deterministic. Indeed, from Eq. (3) it
follows that for any such randomized attack we must have Mc(δ) = |X| for all
δ ∈ A and all c ∈ C. Hence, we can choose any such δ ∈ A and consider the
randomized attack ({δ}, {δ 
→ 1}) which also has misclassification value 1.

Lemma 2. Consider the labelled data set X = (X, ct) with the finite set of
classifiers C ⊆ C. There exists an ε-bounded randomized attack (A,P) with
Val(A,P) = 1 if and only if there exists a deterministic attack δ such that

– ‖δ(x)‖1 ≤ ε for all x ∈ X and
– for all x ∈ X and all c ∈ C we have that either c(x+ δ(x)) is undefined or it

is not equal to ct(x).

With Lemmas 1 and 2 established, the proof of Theorem 1 is now complete.

5 SMT and MILP Encodings

In this section, we describe the main elements of our SMT and MILP encodings
to compute (optimal) randomized attacks or prove the robustness of classifier
ensembles. We start with a base encoding and will afterwards explain how to
explicitly encode the classifiers and the loss function.
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5.1 Base Problem Encoding

First, we assume a labelled data set X = (X, ct), the attack bound ε, and the
robustness bound α are input to the problem. In particular, the data set X =
{x1, . . . ,x|X|} ⊆ R

d has data points xj = (xj
1, . . . , x

j
d) ∈ R

d for 1 ≤ j ≤ |X|.
Furthermore, we assume the number |A| of attacks that shall be computed is
fixed. Recall that, to show that the set of classifiers is robust, we can compute a
sufficient bound on the number of attacks — see Sec. 4.1.

For readability, we assume the classifiers C and the loss function �0−1 are
given as functions that can directly be used in the encodings, and we will use
the absolute value |x| for x ∈ R. Afterwards, we discuss how to actually encode
classifiers and the loss function. We use the following variables:

– For the attacks from A, we introduce δ1, . . . , δ|A| with δi ∈ R
|X|×d for 1 ≤

i ≤ |A|. Specifically, δi shall be assigned all attack values for the i-th attack
from A. That is, δj

i is the attack for the data point xj = (xj
1, . . . , x

j
d) ∈ R

d

with δj
i = (δj,1

i , . . . , δj,d
i ) for 1 ≤ j ≤ |X|.

– We introduce p1, . . . , p|A| to form a probability distribution over deterministic
attacks; pi is assigned the probability to execute attack δi.

The classifier ensemble C is not ε, α-robust as in Definition 6 if and only if the
following constraints are satisfiable.

∀c ∈ C.

|X|∑

j = 1

|A|∑

i = 1

(
pi · �0−1(c,xj , δj

i )
)

≥ α · |X| (4)

∀i ∈ {1, . . . , |A|}, j ∈ {1, . . . , |X|}.
d∑

k = 1

|δj,k
i | ≤ ε (5)

|A|∑

i = 1

pi = 1 (6)

∀i ∈ {1, . . . , |A|}. pi ≥ 0 (7)

Indeed, (4) enforces the misclassification value to be at least α; (5) ensures an
ε-bounded randomized attack; finally, by (6) and (7) the probability variables
induce a valid probability distribution.

Specific Encodings. For the SMT encoding, we can make use of the max(·) native
to implement the absolute value. In particular for the MILP, however, we employ
so-called “big-M” tricks to encode max functions and a (restricted) product oper-
ation (cf. [7]). Specifically, the product is required to obtain the value resulting
from the multiplication of the loss function and probability variables.

As an example of “big-M” trick, suppose we have variables a ∈ Q∩ [0, 1], b ∈
{0, 1}, and a constant M ∈ Q such that M > a + b. We introduce a variable
c ∈ Q∩[0, 1] and add the following constraints which clearly enforce that c = ab.

c ≥ a − M(1 − b), c ≤ a + M(1 − b), c ≤ 0 + Mb .

Note that M can be chosen to be the constant 2 in this case.
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Encoding the Loss Function. We encode the zero-one loss function from Defi-
nition 4 as an if-then-else expression making use of the ground truth classifier
ct.We introduce one variable �c

i,j per classifier c ∈ C for all attacks δi ∈ A and
all datapoints xj ∈ X. In the SMT encoding, we can then define

�c
i,j = ITE ((c(xj + δj

i ) = ct(xj)), 0, 1) (8)

so that �c
i,j = �0−1(c,xj , δj

i ). In our MILP encoding we have to simulate the
ITE primitive using constraints similar to the ones mentioned above.

5.2 Classifier Encoding

As mentioned in the preliminaries, neural networks implement functions by way
of layer composition. Intuitively, the input of a layer is by a previous layer.
When fed forward, input values are multiplied by a weight, and a bias value
will be added to it. Matrix operations realized by a neural network can thus be
encoded as linear functions. For max-pooling operations and the ReLU activation
function, one can use the native max(·) operation or implement a maximum using
a “big-M trick”. For this, a suitable constant M has to be obtained beforehand
(cf. [7]). We also use a (discrete) convolution operation, as a linear function.

6 Experiments

In the previous section, we showed that our problem of neural network robustness
verification is NP-hard. Meaningful comparison between approaches, therefore,
needs to be experimental. To that end, we use classifiers trained on multiple
image data sets and report on the comparison between the SMT and MILP
encodings. In what follows, we analyze the running time behavior of the different
verifiers, the generated attacks and the misclassification value for the given data
points, and whether a set of classifiers is robust against predefined thresholds.

6.1 Experimental Setup

For each experiment, we define a set of classifiers C, our data points X , the
number of attacks |A|, and both the ε- and α-values. Then, we generate the
attacks A and the probability distribution P using SMT and MILP solvers. If
no randomized attack (A,P) is found (UNSAT), we have shown that our set of
classifiers is ε, α-robust with respect to the predefined thresholds.

Toolchain. Our NN robustness verifier2, is implemented as part of a Python 3.x
toolchain. We use the SMT solver Z3 [9] and the MILP solver Gurobi [14] with
their standard settings. To support arbitrary classifiers, we created a generic
pipeline using the TensorFlow API, and support Max-Pooling layers, convolu-
tional layers, and dense layers with ReLU activation functions [1]. We focus
on binary classifiers by defining certain classification boundaries. We train the
classifiers using the Adam optimizer [17] as well as stochastic gradient descent.
2 Available at https://tinyurl.com/ensemble-robustness.

https://tinyurl.com/ensemble-robustness
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Table 1. SMT versus MILP

Benchmark Information SMT MILP

ID Name |C| |A| |X | dim α ε Time Val(A, P) Time Val(A, P)

2 mnist 0 1 3 2 4 7 × 7 0.2 100 -TO- – 12.43 0.25

4 mnist 0 1 2convs 3 2 4 8 × 8 0.4 100 -TO- – 53.92 0.4

7 mnist 0 1 3 2 4 8 × 8 0.4 1000 -TO- – 0.34 0.4

8 mnist 0 1 3 2 4 8 × 8 0.9 1000 -TO- – 50.09 0.9

9 mnist 0 1 3 3 4 8 × 8 0.9 60 -TO- – 34.02 1

13 mnist 4 5 3 4 4 10 × 10 0.9 50 -TO- – 144.32 1

14 mnist 7 8 3 4 4 6 × 6 0.1 60 -TO- – 18.94 0.25

16 mnist 4 5 3 2 4 10 × 10 0.1 1000 155.73 0.38 101.16 0.1

17 mnist 4 5 3 3 4 10 × 10 0.1 80 403.25 0.25 101.47 0.25

18 mnist 4 5 3 2 4 10 × 10 0.15 80 216.65 0.38 44.26 0.15

19 mnist 4 5 3 2 4 10 × 10 0.2 100 156.63 0.38 54.36 0.25

22 mnist 7 8 3 2 4 6 × 6 0.9 0.1 -TO- – 4 robust

26 traffic signs 3 2 4 10 × 10 1 0.01 -TO- – 17 robust

27 traffic signs 3 2 4 10 × 10 1 0.1 -TO- – -TO- –

Table 2. MILP versus MaxMILP

Benchmark Information MILP MaxMILP

ID Name |C| |A| |lX| dim α ε Time Val(A, P) Time Val(A, P)

1 mnist 0 1 3 2 4 7× 7 0.1 1000 57.79 0.25 46.23 1*

3 mnist 0 1 2convs 3 2 4 8× 8 0.2 1000 738.76 0.5 93.54 1*

7 mnist 0 1 3 2 4 8× 8 0.4 1000 0.34 0.4 0.34 1*

10 mnist 0 1 3 4 4 8× 8 0.9 60 51.39 1 51.39 1*

14 mnist 7 8 3 4 4 6× 6 0.1 60 18.94 0.25 21.20 1

17 mnist 4 5 3 3 4 10× 10 0.1 80 101.47 0.25 88.39 1

20 mnist 3 6 2 9 2 8× 8 1 0.005 7 robust 7 robust

21 mnist 7 8 3 2 4 6× 6 1 0.1 4 robust 4 robust

24 mnist 0 2 3 27 4 9× 9 1 0.01 108 robust 108 robust

25 mnist 0 2 3 30 4 9× 9 1 0.01 120 robust 120 robust

28 traffic signs 3 3 4 10× 10 1 0.01 45 robust 45 robust

29 traffic signs 3 3 4 10× 10 1 0.01 –TO– - –TO– –

Data Sets. MNIST consists of 70 000 images of handwritten digits) [10] and is
widely used for benchmarking in the field of machine learning [8,16]. We trained
classifiers to have a test accuracy of at least 90%.

German traffic sign is a multi-class and single-image classification data set,
containing more than 50 000 images and more than 40 classes [25]. Traffic
sign recognition and potential attacks are of utmost importance for self-driving
cars [27]. We extracted the images for “Give way” and “priority” traffic signs
from the data set and trained classifiers on this subset to have an accuracy of at
least 80%.
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Optimal Attacks. As MILP inherently solves optimization problems, we augment
the base encoding from Eqs (4)–(7) with the following objective function:

max
|C|∑

k = 1

|X |∑

j = 1

|A|∑

i = 1

(
pi · �0−1(ck,xj , δj

i )
)

.

An optimal solution with respect to the objective may yield a randomized attack
inducing the maximal misclassification value among all ε-bounded attacks.3

Alternative Attacks. Our method generates attacks taking the whole ensemble
of classifiers into account, which is computationally harder than just considering
single classifiers [12,15] due to an increased number of constraints and vari-
ables in the underlying encodings. To showcase the need for our approach, we
implemented two other ways to generate attacks that are based on individual
classifiers and subsequently lifted to the whole ensemble. Recall that we assume
the attacker does not know which classifier from the ensemble will be chosen.

First, for the classifier ensemble C we compute — using a simplified version
of our MILP encoding — an optimal attack δc for each classifier c ∈ C. Each
such δc maximizes the misclassification value, that is, the loss, for the classifier c.
The attack set AC = {δc | c ∈ C} together with a uniform distribution DistrA

over AC form the so-called uniform attacker (AC ,DistrA).
Second, to compare with deterministic attacks, we calculate for each attack

from AC the misclassification value over all classifiers. The best deterministic
attack is any attack from AC inducing a maximal misclassification value.

6.2 Evaluation

We report on our experimental results using the aforementioned data sets and
attacks. For all experiments we used a timeout of 7200 s (TO). Each benchmark
has an ID, a name, the number |C| of classifiers, the number |A| of attacks, the
size |X | of the data set, the dimension of the image (dim), the robustness bound
α, and the attack bound ε. The names of the MNIST benchmarks are of the
form “mnist x y”, where x and y are the labels; the additional suffix “ nconvs”
indicates that the classifier has n convolutional layers. We provide an excerpt of
our experiments, full tables are available in the appendix.

SMT versus MILP. In Table 1, we report on the comparison between SMT
and MILP. Note that for these benchmarks, the MILP solver just checks the
feasibility of the constraints without an objective function. We list for both
solvers the time in seconds and the misclassification value Val(A,P), rounded
to 2 decimal places, for the generated randomized attack (A,P), if it can be
computed before the timeout. If there is no solution, the classifier ensemble C is
ε, α-robust, and instead of a misclassification value we list “robust”.

3 Note that we sum over classifiers instead of minimizing, as required in Val(A,P).
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We observe that SMT is only able to find solutions within the timeout for
small α and large ε values. Moreover, if the ensemble is robust, that is, the
problem is not satisfiable, the solver does not terminate for any benchmark.
Nevertheless, for some benchmarks (see Table 1, entries 16–19) the SMT solver
yields a higher misclassification value than the MILP solver — that is, it finds
a better attack. The MILP solver, on the other hand, solves most of our bench-
marks mostly within less than a minute, including the robust ones. Despite the
reasonably low timeout of 7200 s, we are thus able to verify the robustness of
NNs with around 6 layers. Running times visibly differ for other factors such as
layer types.

MILP versus MaxMILP. Table 2 compares some of the MILP results to those
where we optimize the mentioned objective function, denoted by MaxMILP. The
MILP solver Gurobi offers the possibility of so-called callbacks, that is, while an
intermediate solution is not proven to be optimal, it may already be feasible. In
case optimality cannot be shown within the timeout, we list the current (feasible)
solution, and mark optimal solutions with ∗. The misclassification value for the
MaxMILP solver is always 1. For robust ensembles, it is interesting to see that
the MaxMILP encoding sometimes needs less time.

Table 3. Attacker comparison

Benchmark Information UA BDA MaxMILP

ID Name |C| |A| |X| dim Epsilon Alpha Val(A, P) Val(A, P) Val(A, P)

3 mnist 0 1 2convs 3 2 4 8× 8 0.2 1000 0.33 0.25 1*

7 mnist 0 1 3 2 4 8× 8 0.4 1000 0.33 0.5 1*

8 mnist 0 1 3 2 4 8× 8 0.9 1000 0.33 0.5 1*

9 mnist 0 1 3 3 4 8× 8 0.9 60 0.33 0.5 1*

10 mnist 0 1 3 4 4 8× 8 0.9 60 0.33 0.5 1*

11 mnist 4 5 3 2 4 10× 10 0.2 100 0.33 0.25 1*

14 mnist 7 8 3 4 4 6× 6 0.1 60 0.33 0.5 1

15 mnist 7 8 3 10 4 6× 6 0.1 60 0.33 0.5 1

16 mnist 4 5 3 2 4 10× 10 0.1 1000 0.33 0.75 1*

17 mnist 4 5 3 3 4 10× 10 0.1 80 0.33 0.5 1

18 mnist 4 5 3 2 4 10× 10 0.15 80 0.33 0.5 1*

In Table 3, we compare the MaxMILP method to the uniform attacker (UA)
and the best deterministic attacker (BDA). What we can see is that the best
deterministic attacker usually achieves higher misclassification values than the
uniform attacker, but none of them are able to reach the actual optimum of 1.

Discussion of the Results. Within the timeout, our method is able to generate
optimal results for medium-sized neural networks. The running time is mainly
influenced by the number and type of the used layers, in particular, it is governed
by convolutional and max-pooling layers: these involve more matrix operations
than dense layers. As expected, larger values of the robustness bound α and
smaller values of the attack bound ε typically increase the running times.
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7 Conclusion and Future Work

We presented a new method to formally verify the robustness or, vice versa,
compute optimal attacks for an ensemble of classifiers. Despite the theoretical
hardness, we were able to, in particular by using MILP-solving, provide results
for meaningful benchmarks. In future work, we will render our method more
scalable towards a standalone verification tool for neural network ensembles.
Moreover, we will explore settings where we do not have white-box access to the
classifiers and employ state-of-the-art classifier stealing methods.
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Abstract. The verification problem in MDPs asks whether, for any pol-
icy resolving the nondeterminism, the probability that something bad
happens is bounded by some given threshold. This verification problem
is often overly pessimistic, as the policies it considers may depend on
the complete system state. This paper considers the verification problem
for partially observable MDPs, in which the policies make their decisions
based on (the history of) the observations emitted by the system. We
present an abstraction-refinement framework extending previous instan-
tiations of the Lovejoy-approach. Our experiments show that this frame-
work significantly improves the scalability of the approach.

1 Introduction

Markov decision processes are the model to reason about systems involving non-
deterministic choice and probabilistic branching. They have widespread usage
in planning and scheduling, robotics, and formal methods. In the latter, the
key verification question is whether for any policy, i.e., for any resolution of the
nondeterminism, the probability to reach the bad states is below a threshold [3].
The verification question may be efficiently analysed using a variety of techniques
such as linear programming, value iteration, or policy iteration, readily available
in mature tools such as Storm [16], Prism [23] and Modest [14].

However, those verification results are often overly pessimistic. They assume
that the adversarial policy may depend on the specific state. Consider a game
like mastermind, where the adversary has a trivial strategy if it knows the secret
they have to guess. Intuitively, to analyse an adversary that has to find a secret,
we must assume it cannot observe this secret. For a range of privacy, security,
and robotic domains, we may instead assume that the adversary must decide
based on system observations. Consider, e.g., surveillance problems, where the
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aim is to compute the probability that an intruder accesses a (physical or cyber)
location with critical information or infrastructure.

Partially observable MDPs [20,30] cater to this need. They extend MDPs
with observation labels, and restrict policies to be observation-based : paths with
the same observation traces are indistinguishable and yield the same decisions.
The verification problem for POMDPs with indefinite horizon specifications such
as unbounded undiscounted reachability is whether all observation-based policies
satisfy this specification, e.g., whether for each policy, a bad state is reached
with a probability less than 0.1. This problem is undecidable [25]. Intuitively,
undecidability follows from the fact that optimal policies require the full history.

Nevertheless, the analysis of POMDPs is a vibrant research area. Tradi-
tionally, the focus has been on finding some “good” policy, in planning, con-
trol, and robotics [21,32,36] and in software verification [10]. Many works
have been devoted to finding a policy that behaves “almost optimal” for dis-
counted or bounded reachability, most prominently (variants of) point-based
solvers [4,22,29,31,34]. These methods can be exploited to find policies for tem-
poral specifications [7]. Error bounds provided by those methods do require a
discounting factor (or a finite horizon). A notable exception is the recent Goal-
HSVI [17], which explores the computation tree and cuts off exploration using
sound bounds. Another popular approach to overcome the hardness of the prob-
lem is to limit the policies, i.e., by putting a (small) a-priori bound on the mem-
ory of the policy [1,9,13,19,26,28,35]. We remark that it is often undesirable to
assume small memory bounds on adversarial policies.

Orthogonally, we focus on the undiscounted and unbounded (aka the indefini-
tive horizon) case. Reachability in this case is the key question to soundly sup-
port temporal logic properties [3]. Discounting is optimistic about events in the
future, i.e., it under-approximates the probability that a bad state is reached
after many steps, and is therefore inadequate in some safety analyses. Further-
more, we do not make assumptions on the amount of memory the policies may
use. This means that we give absolute guarantees about the performance of an
optimal policy. While techniques for discounting, finite horizons, or finite mem-
ory policies may yield policies that are almost optimal in the unbounded case,
they are inadequate to prove the absence of better policies.

Like [27], we use a result from Lovejoy [24]. Whereas [27] focuses on sup-
porting a wider range of properties and partially-observable probabilistic timed
automata, we focus on the performance of the basic approach. In this paper, we
discuss a method constructing a finite MDP such that the optimal policy in this
MDP over-approximates the optimal observation-based policy in the POMDP.
Thus, model checking this MDP may be used to prove the absence of POMDP
policies. We use ideas similar to Goal-HSVI [17] in providing cut-offs: instead of
the computation tree, we do these cut-offs on top of the MDP.

Contributions. We provide a concise method for the verification problem that
builds upon the Lovejoy construction [24]. Contrary to [24,27], we describe a
flexible variant of the approach in terms of the underlying MDP. Among other
benefits, this enables an on-the-fly construction of this MDP, enables further
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Fig. 1. POMDP M as running example with 9 states, and 5 observations, partitioning
the states by the observation function yields: {s0, s5, s6}, {s1, s2}, {s3, s4}, {�}, {�}.

(tailored) abstractions on this MDP, and clarifies how to analyse this MDP using
standard methods. The approach is embedded in an automated abstraction-
refinement loop. Our implementation is part of the next release of the open-
source model checker Storm. Experiments show superior scalability over [27].

2 Preliminaries and Problem Statement

Models We introduce partially observable MDPs by first considering MDPs.

Definition 1 (MDP). A Markov decision process (MDP) is a tuple M =
〈S,Act ,P, sI 〉 with a countable set S of states, an initial state sI ∈ S, a finite
set Act of actions, and a transition function P : S × Act × S → [0, 1] with∑

s′∈S P(s, α, s′) ∈ {0, 1} for all s ∈ S and α ∈ Act.

Definition 2 (POMDP). A partially observable MDP (POMDP) is a tuple
M = 〈M,Z,O〉 where M = 〈S,Act ,P, sI 〉 is the underlying MDP with finite S,
Z is a finite set of observations, and O : S → Z is an observation function1.

We fix a POMDP M := 〈M,Z,O〉 with underlying MDP M := 〈S,Act ,P,
sI 〉. For s ∈ S and α ∈ Act , let postM (s, α) = {s′ ∈ S | P(s, α, s′) > 0}. The
set of enabled actions for s is given by Act(s) =

{
α ∈ Act | postM (s, α) �= ∅}.

W.l.o.g., we assume that states with the same observation have the same set of
enabled actions, i.e. ∀ s, s′ ∈ S : O(s) = O(s′) =⇒ Act(s) = Act(s′). Therefore,
we can also write Act(z) = Act(s) for observation z and state s with O(s) = z.

Policies. We want to make a statement about each possible resolution of the
nondeterminism. Nondeterminism is resolved using policies that map paths to
distributions over actions. A (finite) path is a sequence of states and actions, i.e.,
π̂ = s0

α0−→ s1
α1−→ . . .

αn−1−−−→ sn, such that αi ∈ Act(si) and si+1 ∈ postM (si, αi)
for all 0 ≤ i < n. Let last(π̂) denote the last state of π̂, and PathsM

fin denote
the set of all paths in an MDP. We may (by slight misuse of notation) lift the
observation function to paths: O(π̂) = O(s0)

α0−→ O(s1)
α1−→ . . .

αn−1−−−→ O(sn).
Two paths π̂1, π̂2 with O(π̂1) = O(π̂2) are observation-equivalent.

1 More general observation functions can be efficiently encoded in this formalism [11].
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Example 1. We depict a POMDP in Fig. 1. The following two paths are
observation-equivalent:

s0
a−→ s1

b−→ s4
a−→ � and s0

a−→ s2
b−→ s4

a−→ �

For finite set A let Dist(A) = {μ : A → [0, 1] | ∑
a∈A μ(a) = 1} be the set of

distributions over A and for μ ∈ Dist(A) let supp(μ) = {a ∈ A | μ(a) > 0}.

Definition 3 (Policies). A policy is a mapping σ : PathsM
fin → Dist(Act) that

for path π yields a distribution over actions with supp(σ(π)) ⊆ Act(last(π)). A
policy σ is observation-based, if for paths π̂, π̂′

O(π̂) = O(π̂′) implies σ(π̂) = σ(π̂′).

A policy σ is memoryless, if for paths π̂, π̂′

last(π̂) = last(π̂′) implies σ(π̂) = σ(π̂′).

Let ΣM
obs denote the set of observation-based policies for a POMDP M, and ΣM

all policies for an MDP M .

Reachability Probability. The reachability probability PrσM(s |= ♦Bad) to reach
a set of states Bad from s using a policy σ is defined as standard, by considering
the probability in the induced Markov chain (with state space PathsM

fin). For
details, consider e.g. [3]. We write PrσM(♦Bad) to denote PrσM(sI |= ♦Bad).

Problem 1. For a given POMDP M, a set Bad ⊆ S of bad states, and a
rational threshold λ ∈ (0, 1), decide whether supσ∈ΣM

obs
PrσM(♦Bad) ≤ λ.

We emphasise that the techniques in this paper are applicable to upper and lower
bounds, and to expected rewards properties2. LTL properties can be supported
by the standard encoding of the corresponding automaton into the MDP state
space. The technique also applies (but is inefficient) for λ ∈ {0, 1}.

Example 2. Consider the POMDP in Fig. 1. Using the (memoryless) policy σ =
{s3, s6 �→ a, si �→ b(i �= 3, 6)}, state � is reached with probability one, but
this policy is not observation-based: e.g. σ(s5) �= σ(s6). Now consider the policy
{si �→ a}, which is memoryless and observation-based. Indeed, this policy is
optimal among the memoryless observation policies (the probability to reach
� is 37/64 ≈ 0.57). A policy taking b in the first step and then resorting to
the memoryless policy {s0, s5, s6 �→ a, s1, s2, s3, s4 �→ b} is better: the induced
probability to reach � is 23/26 ≈ 0.639. The questions we aim to answer is
whether there exists a strategy that achieves probability 65/100 (yes), or even
7/10 (no).

2 The implementation discussed in Sect. 5 supports all these combinations.
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3 Belief MDPs and Their Approximation

A central notion in the analysis of POMDPs is belief : A distribution over the
states that describes the likelihood of being in a particular state given the
observation-based history O(π̂). We reformulate our problem in terms of the
belief MDP, a standard way of defining operational semantics of POMDPs, dis-
cuss some essential properties, and discuss abstractions of this infinite belief
MDP.

3.1 Infinite MDP Semantics

We first give an example and then formalise the belief MDP. The states B
of the belief MDP are the beliefs, i.e., B :=

{
b ∈ Dist(S ) | ∀ s, s′ ∈ supp(b) :

O(s) = O(s′)
}
. We write O(b) to denote the unique O(s) with s ∈ supp(b).
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b1: {s0 �→ 1}
b2: {s1 �→ 3/4, s2 �→ 1/4}
b3: {s3 �→ 15/16, s4 �→ 1/16}
b4: {s3 �→ 1/2, s4 �→ 1/2}
b5: {s0 �→ 1/2, s5 �→ 1/6, s6 �→ 1/3}
b6: {s1 �→ 14/27, s2 �→ 13/27}
b7: {s3 �→ 95/108, s4 �→ 13/108}
b8: {s3 �→ 28/81, s4 �→ 53/81}
b9: {s0 �→ 1/4, s5 �→ 25/72, s6 �→ 29/72}

Fig. 2. (Fraction of) the belief MDP of the running example. Beliefs are given in the
table on the right. Colours indicate O(bi). We omitted self-loops at the sink states.
(Color figure online)

Example 3. Figure 2 shows part of the belief MDP for the POMDP from Fig. 1.
We start with the belief that POMDP M is in the initial state s0. Upon executing
action a, we observe with probability 1/5 that M is in state s0, and with 4/5 that
M is in either state s1 or s2. In the first case, based on the observations, we
surely are in state s0. In the latter case, the belief is computed by normalising
the transition probabilities on the observation: The belief b1 indicates that M is
in s2 with probability

1/5
4/5 , and in s1 with probability

3/5
4/5 . Upon executing action

a again after observing that M is in s1 or s2, we reach state s3 with probability

b1(s1) · P(s1, a, s3) + b1(s2) · P(s2, a, s3) = 3/4 · 1 + 1/4 · 3/4 = 15/16.

In the following, let P(s, α, z) :=
∑

s′∈S [O(s′)=z] · P(s, α, s′) denote the prob-
ability3 to move to (a state with) observation z from state s using action α.
Then, P(b, α, z) :=

∑
s∈S b(s) · P(s, α, z) is the probability to observe z after

3 In the formula, we use Iverson brackets: [x] = 1 if x is true and 0 otherwise.
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taking α in b. We define the belief obtained by taking α from b, conditioned on
observing z:

�b|α, z�(s′) :=
[O(s′) = z] · ∑

s∈S b(s) · P(s, α, s′)
P(b, α, z)

.

Definition 4 (Belief MDP). The belief MDP of POMDP M = 〈M,Z,O〉
is the MDP bel(M) :=

〈
B,Act ,PB , bI

〉
with B as above, initial belief state

bI := {sI �→ 1}, and transition function PB given by

PB(b, α, b′) :=

{
PB(b, α,O(b′)) if b′ = �b|α,O(b′)�,
0 otherwise.

To ease further notation, we denote Bad := {b | ∑
s∈Bad b(s) = 1}, and we define

the (standard notion of the) value of a belief b,

V(b) := sup
σ∈Σbel(M)

Prσbel(M)(b |= ♦Bad) and for action α:

Vα(b) := sup
σ∈Σbel(M),σ(b)=α

Prσbel(M)(b |= ♦Bad).

Theorem 1. For any POMDP M and bI , the initial state of bel(M):

V(bI ) = sup
σ∈ΣM

obs

PrσM(♦Bad).

We can now restrict ourselves to memoryless deterministic schedulers, but face
a potentially infinite MDP4. Instead of solving Problem 1, we consider:

Problem 2. Given a belief MDP bel(M), a set Bad of bad beliefs, and a
threshold λ ∈ (0, 1), decide whether V(bI ) ≤ λ.

In the remainder of this section, we discuss two types of approximations, but not
before reviewing an essential property of the value in belief MDPs. We discuss
how we combine these abstractions in Sect. 4.

Value Function. Assuming a fixed total order on the POMDP states s1 < · · · <
sn, we interpret belief states as vectors b ∈ [0, 1]n where the ith entry corresponds
to b(si). In particular, we can encode a belief by a tuple 〈z, [0, 1]nz 〉, where nz

denotes the number of states with observation z. This encoding also justifies the
representation of beliefs in Fig. 3 and 4.

Figure 3(a) contains a typical belief-to-value plot for z = O(s3) = O(s4). On
the x-axis, we depict the belief to be in state s3 (from 1 to 0), and thus, the

4 In general, the set of states of the belief MDP is uncountable. However, a given belief
state b only has a finite number of successors for each action α, i.e. postbel(M)(b, α) is
finite, and thus the belief MDP is countably infinite. Acyclic POMDPs always give
rise to finite belief MDPs (but may be exponentially large).
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belief to be in state s4 (from 0 to 1). On the y-axis, we denote the value of the
belief. This value is constructed as follows: A policy takes action a or action b (or
randomise, more about that later). We have plotted the corresponding Va and Vb.
In Fig. 3(b), we depict the same functions for observing that we are in either s1
or s2. This plot can be constructed as the maximum of four policy applications.
Formally, the following relations hold (from the Bellman equations):
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Fig. 3. Illustrating the discretised belief approximation ideas. (Color figure online)

Lemma 1. Let Zero := {b | Prmax
M (b |= ♦Bad) = 0}. For each b �∈ (

Bad ∪ Zero
)
:

Vα(b) =
∑

b′
PB(b, α, b′) · V(b′), with V(b) = max

α∈Act(O(b))
Vα(b).

Furthermore: V(b) = 0 for b ∈ Zero, and V(b) = 1 for b ∈ Bad.

Remark 1. As we are over-approximating V, we do not need to precompute Zero.

Note that the function V is convex iff for each b1, b2 ∈ B and for each
α ∈ [0, 1], it holds that V(α · b1 + (1−α) · b2) ≤ α · V(b1) + (1−α) · V(b2).

For b ∈ (
Bad ∪ Zero

)
, the value function is constant and thus convex. The

n-step reachability for a particular action is a linear combination over the (n−1)-
step reachabilities, and we take the maximum over these values to get the n-
step reachability. The value V(b) is the limit for n towards infinity. As convex
functions are closed under linear combinations with non-negative coefficients,
under taking the maximum, and under taking the limit, we obtain:

Theorem 2. For any POMDP, the value-function V is convex.

3.2 Finite Exploration Approximation

One way to circumvent building the complete state space is to cut-off its explo-
ration after some steps, much like we depicted part of the belief POMDP in
Fig. 2. To ensure that the obtained finite MDP over-approximates the probabil-
ity to reach a bad state, we simply assume that all transitions we cut go to a bad
state immediately. Elaborate techniques for this approach (on general MDPs)
have been discussed in the context of verification [8], and have been successfully
adapted to other models [2,18,33]. It shares many ideas with the SARSOP and
GOAL-HSVI approaches for POMDPs [17,22]. This approach may be applied
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directly to belief MDPs, and we may use the POMDP M to guide the cut-off
process. In particular, using Theorem2 and that the maximising policy over all
policies is necessarily overapproximating the maximum over all observation-based
policies, we obtain the following inequality:

V(b) ≤
∑

s∈S

b(s) · V({s �→ 1}) ≤
∑

s∈S

b(s) · sup
σ∈ΣM

PrσM(s |= ♦Bad) (1)

We may use this inequality to cut-off with a less pessimistic value than assuming
that we reach the bad states with probability one.

Nevertheless, this approach has limited applicability on its own. It may well
get stuck in regions of the belief space that are not near the goal. From state
s5, s6 in Fig. 1 the maximal reachability according to the underlying MDP is 1,
which is too pessimistic to provide a good cut-off. Another issue is that the belief
converges slowly along b1, b5, b9 in Fig. 2, and that cut-offs do not immediately
allow to reason that the belief converged.

3.3 Discretised Belief Approximation

The idea of this approach is to select a finite set F ⊆ B of beliefs, and construct
an approximation of the belief MDP using only F as states. We refer to F as
the foundation. (Reachable) beliefs b not in F are approximated using beliefs in
NF (b), where NF (b) ⊆ F is the neighbourhood of b. We clarify the selection of
these neighbourhoods later, and we omit the subscript F whenever possible.

Definition 5. A neighbourhood N(b) of belief b is convex-containing, if there
exists δb ∈ Dist(N(b)) such that b =

∑
b′∈N(b) δb(b′) · b′.

s3

s4

(a)

s0 s5

s6

(b)

s0 s5

s6

(c)

s0 s5

s6

(d)

Fig. 4. Belief-spaces with foundation (diamonds), a belief state (blue star), a fixed
neighbourhood (red diamonds), and vertex-weights. (Color figure online)

Example 4. In Fig. 4, we depict various neighbourhoods. In Fig. 4(a), the belief
{s3 �→ 2/3, s4 �→ 1/3} lies in the neighbourhood

{{s3 �→ 1, }{s3, s4 �→ 1/2}}. All
other subfigures depict belief-spaces for observations where three states have
this observation (the third dimension implicitly follows). For the belief state
b5 = {s0 �→ 1/2, s5 �→ 1/6, s6 �→ 1/3} from Fig. 2 and a neighbourhood as in
Fig. 4(b), the vertex-weights δb follow straightforwardly from the belief. Observe
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that a small distance to a vertex induces a large weight. In Fig. 4(c), we adapt
the neighbourhood to x = {s5 �→ 1}, y = {s0 �→ 1}, z = {s5 �→ 1/4, s6 �→ 3/4}.
Then, the vertex weights follow from the following linear equations:

δb5(x) = 1/2, δb5(y) + 1/4 · δb5(z) = 1/6, and 3/4 · δb5(z) = 1/3.

From the convexity of the value function V (Theorem 2), it follows that:

Lemma 2. Given b, N(b) and δb as in Definition 5, it holds:

V(b) ≤
∑

b′∈N(b)

δb(b′) · V(b′).

We emphasise that this inequality also holds if one over-approximates the values
of the beliefs in the neighbourhood.
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b9
ab
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b

a

b
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a

a

b

a

b
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a
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a
b

1/5

3/5

1/5

1
1/3

2/3

1/2
1/2

1

1
2/5
3/5

23/40
17/40

1/2

1/2

3/4
1/4

1

1

1

1/4

3/4

1/2

1/18

4/9

1
1/3

2/3

5/12
7/12

b1: {s0 �→ 1}
b2: {s1 �→ 1}
b3: {s2 �→ 1}
b4: {s3 �→ 1}
b5: {s3, s4 �→ 1/2}
b6: {s4 �→ 1}
b7: {s5 �→ 1}
b8: {s6 �→ 1}
b9: {s5 �→ 1/4,

s6 �→ 3/4}

Fig. 5. Reachable fragment of the discretised belief MDP (fully observable). Actual
beliefs are given in the table on the right. Colours indicate O(bi) in the POMDP.
(Color figure online)

Example 5. Figure 3(c) depicts the belief-to-value from Fig. 3(a) and (in blue)
depicts the over-approximation based on Lemma 2. As neighbourhood, we use
{s3 �→ 1} and {s4 �→ 1}. In Fig. 3(d), we depict the over-approximation using
a partitioning into three neighbourhoods, using the foundation {s3 �→ 1},
{s3 �→ 1/4, s4 �→ 3/4}, {s3 �→ 3/4, s4 �→ 1/4} and {s4 �→ 1}. We see that
the outer neighbourhoods now yield a tight over-approximation, and the inner
neighbourhood yields a much better approximation compared to Fig. 3(c).

We select some finite foundation F such that for each reachable b in bel(M),
there exists a convex containing neighbourhood N(b). We call such a foundation
adequate. One small adequate F is {{s �→ 1} ∈ B | s ∈ M}.

Definition 6 (Discretised Belief MDP). Let F ⊆ B be an adequate foun-
dation. Let N be arbitrarily fixed such that N(b) ⊆ F is convex-containing for
any b. The discretised belief MDP of POMDP M = 〈M,Z,O〉 is the MDP



Verification of Indefinite-Horizon POMDPs 297

dbF (M) :=
〈F ,Act ,PF , bI

〉
with initial belief state bI = {sI �→ 1}, and—using

the auxiliary notation from before Definition 4—transition function PF given by

PF (b, α, b′) :=

{
δ�b|α,z�(b

′) · PB(b, α, z) if b′ ∈ N(�b|α, z�),
0 otherwise.

Example 6. Consider Fig. 5. We fixed F = {s �→ 1 | s ∈ S} ∪ {s3, s4 �→ 1/2} ∪
{s5 �→ 1/4, s6 �→ 3/4}. The weights for post (b2, b) and post (b1, b) follow from
the computations in Example 4. Observe that b8 is not reachable. The optimal
policy in this MDP induces probability 3/4, which is an upper bound on V(b1).

Theorem 3. For POMDP M with discretised belief MDP dbF (M) and b ∈ F

V(b) ≤ sup
σ∈ΣdbF (M)

PrσdbF (M)(b |= ♦Bad).

As the MDP is finite and fully observable, the supremum is achieved by a mem-
oryless policy, and we use MDP model checking to compute these values.

4 Abstraction-Refinement

In this section, we discuss a framework that combines the two types of abstrac-
tion discussed before. Roughly, the approach is a typical abstraction-refinement
loop. We start with an abstraction of the belief MDP; model checking this
abstraction yields an upper bound on the values V(b). In every iteration, we
update the MDP and then obtain more and more accurate bounds. The abstrac-
tion applies cut-offs on a discretised belief MDP with some foundation F . For the
refinement, we either explore beliefs that were previously cut off, we extend the
foundation F , or we rewire the successors b′ ∈ postbel(M)(b, α) of some belief b
and action α to a new NF (b′). Thus, rewiring updates neighbourhoods, typically
after refining the foundation. We give an example and then clarify the precise
procedure.
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(b) Adding b9, rewiring b10, exploring b2.

Fig. 6. Beliefs as in Fig. 5, with b10 = {s5 �→ 1/2, s6 �→ 1/2}.
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Example 7. In Fig. 6(a), we used a foundation as in Fig. 5, but with b10 replacing
b9. Furthermore, we used cut-offs in b2 and b3 with the overapproximation from
Eq. (1). In Fig. 6(b) we refined as follows: We extended the foundation with
b9 = {s5 �→ 1/4, s6 �→ 3/4}, we explored from b2, b9, and we rewired only 〈b10, b〉.

Algorithm 1 sketches the abstraction-refinement loop. The algorithm itera-
tively constructs an abstraction MDP A via a breath-first-search on the state
space of the discretised belief MDP dbF (M) (Lines 3 to 21). In Line 7, a heuristic
explore decides for each visited belief to either explore or cut-off. If we explore,
we may encounter a state that was previously explored. Heuristic rewire decides
in Line 9 whether we rewire, i.e., whether we explore the successors again (to
account for potentially updated neighbourhoods) or whether we keep the exist-
ing successor states. When cutting off, we use Eq. (1) to obtain an upper bound
U(b) for V(b) and add a transition to some bad state with probability U(b) and a
transition to a sink state with probability 1−U(b).5 The foundation is extended
in Line 20. This only has an effect in the next refinement step.

After building the MDP A, it is analysed in Line 19 using model checking.
This analysis yields a new upper bound U(bI ) ≥ V(bI ). The loop can be stopped
at any time, e.g., when threshold λ is shown as upper bound. Next, we describe
how the foundation F is initialised, extended, and iteratively explored.

Picking Foundations. The initial foundation. We discretise the beliefs using
the foundation F . The choice of this foundation is driven by the need to easily
determine the neighbourhood and the vertex-weights. Furthermore, the cardi-
nality of the neighbourhood affects the branching factor of the approximation
MDP. As [24], we use a triangulation scheme based on Freudenthal Triangu-
lation [12], illustrated by Fig. 4(d). Given fixed resolutions ηz ∈ N>0, z ∈ Z,
the triangulation scheme yields discretised beliefs b with ∀s : b(s) ∈ {i/ηz | z =
O(b), 0 ≤ i ≤ ηz}.

In the refinement loop shown in Algorithm 1, we initialise F (Line 1) by set-
ting the observation-dependent resolutions ηz to a fixed value ηinit . Notice that
it suffices to determine the neighbourhoods on-the-fly during the belief explo-
ration. To compute the neighbourhood, we find nz + 1 neighbours as intuitively
depicted in Fig. 4(d). The intricate computation of these neighbours [12] involves
changing the basis for the vector space, ordering the coefficients and adequately
manipulating single entries, before finally inverting the basis change, see [24] for
an example.

Extension of Foundation. The set Zextend of observations for which the foun-
dation will be extended is determined by assigning a score : Z → [0, 1]. Low
scoring observations are refined first. Intuitively, the score is assigned such that
a score close to 0 indicates that one of the approximated beliefs with observation
z is far away from all points in its neighbourhood, and a high score (close to 1)
then means that all approximated beliefs are close to one of their neighbours.

5 The implementation actually still connects b with already explored successors and
only redirects the ‘missing’ probabilities w.r.t. U(b′), b′ ∈ postdbF (M)(s, α) \ Sexpl .
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We set Zextend = {z ∈ Z | score(z) ≤ ρZ} for some threshold ρZ ∈ [0, 1]. When
the value of ρZ is iteratively increased towards 1, each observation is eventually
considered for refinement. Details are given in [6].

Input : POMDP M = 〈M, Z, O〉 with M = 〈S,Act,P, sI 〉, bad beliefs Bad, threshold λ
Output : An upper bound λ ≥ U(bI ) ≥ V(bI )

1 F ← initial adequate foundation

2 A ← MDP
〈

SA,Act,PA, bI

〉
with bI = {sI �→ 1} and SA = {bI }

3 repeat
4 Sexpl ← {bI }; Q ← FIFO Queue initially containing bI
5 while Q not empty do
6 take b from Q

7 if b ∈ SA or explore(b) then // decide to explore b or not
8 foreach α ∈ Act(b) do

9 if b /∈ SA or rewire(b, α) then // decide to rewire 〈b, α〉 or not
10 clear PA(b, α, b′) for all b′ ∈ SA // delete old transitions
11 foreach b′ ∈ postdbF (M)(b, α) do // cf. Definition 6
12 PA(b, α, b′) ← PF (b, α, b′)
13 if b′ /∈ Sexpl then

14 insert b′ into SA, Q, and Sexpl

15 else // keep the current successors
16 insert all b′ ∈ postA(b, α) \ Sexpl into Q and Sexpl

17 else // do not explore b

18 cutoff(b, A) // redirect outgoing transitions to Bad

19 U(bI ) ← supσ∈ΣA PrσA(bI |= ♦Bad) // MDP model checking
20 F ←extend(F) // consider refined neighbourhoods in next iteration
21 until U(bI ) ≤ λ

Algorithm 1: Abstraction-refinement loop.

Iterative Exploration. The iterative exploration is guided using an estimate
of how coarse the approximation is for the current belief state b, and by an
estimate of how likely we reach b under the optimal policy (which is unknown).
If either of these values is small, then the influence of a potential cut-off at b is
limited.

Bounds on Reaching the Bad State. We use a lower bound L(b) and an upper
bound U(b) for the value V(b). Equation (1) yields an easy-to-compute initial
over-approximation U(b). Running the refinement-loop improves this bound. For
the lower bound, we exploit that any policy on the POMDP under-approximates
the performance of the best policy. Thus, we guess some set of observation-based
policies6 on the POMDP and evaluate them. If these policies are memoryless,
the induced Markov chain is in the size of the POMDP and is typically easy to
evaluate. Using a better under-approximation (e.g., by picking better policies,
possibly exploiting the related work) is a promising direction for future research.

Estimating Reachability Likelihoods. As a naive proxy for this likelihood, we
consider almost optimal policies from the previous refinement step as well as the

6 We guess policies in ΣM
obs by distributing over actions of optimal policies for MDP M .
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distance of b to the initial belief bI . Since the algorithm performs a breadth-
first exploration, the distance from bI to b is reflected by the number of beliefs
explored before b.

State Exploration. In Line 7 of Algorithm 1, explore decides whether the succes-
sors of the current belief b are explored or cut off. We only explore the successors
of b if: (1) the approximation is coarse, i.e., if the relative gap between U(b) and
L(b) is above (a decreasing) ρgap

7. (2) the state is likely relevant for the optimal
scheduler, i.e., if (i) at most ρstep

8 beliefs were explored (or rewired) before and
(ii) b is reachable under a ρΣ -optimal policy9 from the previous refinement step.

Rewiring. We apply the same criteria for rewire in Line 9. In addition, we only
rewire the successors for action α if (i) α is selected by some ρΣ -optimal policy
and (ii) the rewiring actually has an effect, i.e. , for at least one successor the
foundation has been extended since the last exploration of b and α.

5 Experiments

Implementation. We integrated the abstraction-refinement framework in the
model checker Storm [16]. The implementation constructs the abstraction MDP
as detailed in Algorithm 1 using sparse matrices. The computation in Line 19
is performed using Storm’s implementation of optimistic value iteration [15],
yielding sound precision guarantees up to relative precision ε = 10−6. Our imple-
mentation supports arbitrary combinations of minimisation and maximisation
of reachability and reach-avoid specifications, and indefinite-horizon expected
rewards. For minimisation, lower and upper bounds are swapped. Additionally,
our implementation may compute lower bounds by iteratively exploring (a frag-
ment of) the belief MDP, without discretisation. The state-space exploration is
cut off after exploring an increasing number of states10.

Models. We use all sets of POMDPs from [27]. Small versions of these bench-
marks are omitted. We additionally introduced some variants, e.g., added uncer-
tainty to the movement in the grid examples. Finally, we consider three scalable
variants of typical grid-world planning domains in artificial intelligence, cf. [6].

Set-Up. We evaluate our implementation with and without the refinement loop.
In the former case, the refinement loop runs a given amount of time and we
report the results obtained so far. In the latter case, a single iteration of Algo-
rithm 1 is performed with a fixed triangulation resolution η—a set-up as in [27].
We compare with the implementation [27] in Prism. We used a simple SCC anal-
ysis to find POMDPs where the reachable belief MDP is finite. All POMDPs
7 ρgap is set to 0.1 initially and after each iteration we update it to ρgap/4.
8 ρstep is set to ∞ initially and after each iteration we update it to 4 · |SA|.
9 A policy σ is ρΣ -optimal if ∀b : Vσ(b)(b) + ρΣ ≥ V(b). We set ρΣ = 0.001.

10 In refinement step i, we explore 2i−1 · |S| · maxz∈Z |O−1(z)| states.
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Table 1. Results for POMDPs with infinite belief MDP.

Benchmark Data MDP bel(M) η = 4 η = 12 refine

Model φ S/Act Z Storm Prism Storm Prism Storm

t= 60 ρgap=0 ρgap = 0 ρgap = 0.2 t= 60 t=1800

Drone Pmax 1226 384 0.98 ≥ 0.84 TO ≤ 0.96 MO MO MO ≤ 0.97 ≤ 0.97†

4-1 3026 6 6.67 2 3

Drone Pmax 1226 761 0.98 ≥ 0.96 TO ≤0.98 MO ≤0.97 ≤0.97 ≤0.97 ≤0.97†

4-2 3026 7 < 1 194 173 3 4

Grid-av Pmax 17 4 1 ≥0.93 [0.21, 1.0] ≤1 MO ≤0.94 ≤0.94 ≤0.94 ≤0.94†

4-0.1 59 13 2.03 < 1 164 168 3 3

Grid Rmin 17 3 3.56 ≤4.7 [4.06, 4.7] ≥4.06 MO ≥4.59 ≥4.59 ≥4.56 ≥4.61†

4-0.1 62 13 2.02 < 1 264 268 3 4

Grid Rmin 17 3 4.57 ≤6.37 [5.4, 6.31] ≥5.4 MO ≥6.18 ≥6.18 ≥5.92 ≥5.92†

4-0.3 62 13 3.05 < 1 217 214 3 4

Maze2 Rmin 15 8 5.64 ≤6.32 [6.29, 6.32] ≥6.29 [6.32, 6.32] ≥6.32 ≥6.32 ≥6.32 ≥6.32†

0.1 54 14 1.35 < 1 4.91 < 1 < 1 7 8

Refuel Pmax 208 50 0.98 ≥0.67 TO ≤0.71 MO ≤0.68 ≤0.68 =0.67* =0.67*

06 574 10 < 1 2.08 2.08 59 59

Refuel Pmax 470 66 0.99 ≥0.45 MO ≤0.76 MO MO MO ≤0.75 ≤0.58†

08 1446 7 7.3 2 3

Rocks Rmin 6553 1645 16.5 ≤35.4 TO ≥19.9 MO ≥20 ≥20 =20* =20*

12 3·104 6 1.26 18.9 19.1 9 9

Rocks Rmin 1·104 2761 22 ≤44 MO ≥25.6 MO ≥26 ≥26 ≥25.9 ≥25.9

16 5·104 5 2.55 37.2 35.9 8 9

from [27] are in this category. We refer to the remaining POMDPs as infinite
belief POMDPs.

All experiments were run on 4 cores11 of an Intel R© Xeon R© Platinum 8160
CPU with a time limit of 1 h (unless indicated otherwise) and 32 GB RAM.

Results. We consider the infinite belief POMDPs in Table 1. The first columns
indicate the POMDP model instance, the type of the checked property (prob-
abilities (P ) or rewards (R), minimising or maximising policies), as well as the
number of states, state-action pairs, and observations of the POMDP. The col-
umn ‘MDP’ shows the model checking result on the underlying, fully-observable
MDP. The column ‘bel(M)’ considers the refinement loop for the non-discretised
belief MDP as discussed above and lists the best result obtained within 60 s, and
the number of iterations. The subsequent columns show our result for a single
approximation step with fixed resolution η and cut-off threshold ρgap , as well as
the results of Prism when invoked with resolution η. ‘TO’ and ‘MO’ indicate
a time-out (>1 h) and a memory-out (>32 GB), respectively. Each cell contains
the obtained bounds on the result and the analysis time in seconds. Finally, the
last two columns report on running the refinement loop for at most t (60 and
1800) s. The cells contain the best bound on the result and the number of loop
iterations of Algorithm 1. In addition, ∗ indicates that no further refinement was
possible (in this case the model-checking result corresponds to the precise value)
and † indicates that an MO occurred before t seconds.
11 Storm uses one core, Prism uses four cores in garbage collection only.
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Table 2. Results for POMDPs with finite belief MDP.

Benchmark Data MDP bel(M) η =4 η =12 refine

Model φ S/Act Z Storm Prism Storm Prism Storm

ρgap =0 ρgap =0 ρgap =0.2 t= 60 t= 1800

Crypt Pmax 1972 510 1 =0.33 [0.33, 0.79] ≤0.79 MO ≤0.33 ≤0.33 =0.33* =0.33*

4 4612 3.51 20.3 < 1 1.36 6.12 6 6

Crypt Pmax 7·104 6678 1 =0.2 MO ≤1 MO ≤0.84 ≤0.84 ≤0.97 ≤0.94

6 2·105 8.47 17.8 155 159 2 4

Grid-av Pmax 17 4 1 =0.93 [0.21, 1.0] ≤1 MO ≤0.94 ≤0.94 ≤0.93 ≤0.93†

4-0 59 < 1 1.51 < 1 < 1 < 1 9 26

Maze2 Rmin 15 8 5.08 =5.69 [5.69, 5.69] ≥5.69 [5.69, 5.69] ≥5.69 ≥5.69 =5.69* =5.69*

0 54 < 1 1.43 < 1 3.17 < 1 < 1 4 4

Netw-p Rmax 2·104 4909 566 =557 [557, 559] ≤560 TO ≤557 ≤566 ≤557 ≤557

2-8-20 3·104 612 503 2.17 4.25 < 1 10 18

Netw-p Rmax 2·105 2·104 849 TO TO ≤832 MO TO ≤849 ≤849 ≤825

3-8-20 3·105 514 8.2 0 2

Netw Rmin 4589 1173 2.56 =3.2 [3.03, 3.2] ≥2.97 [3.17, 3.2] ≥3.17 ≥3.16 ≥3.2 ≥3.2

2-8-20 6973 38.4 42.1 < 1 521 < 1 < 1 10 23

Netw Rmin 2·104 2205 3.88 MO [5.54, 6.77] ≥5.11 MO ≥6.35 ≥6.33 ≥6.26 ≥6.72†

3-8-20 3·104 1777 4.82 34.5 34.3 3 5

Nrp Pmax 125 41 1 =0.12 [0.13, 0.38] ≤0.38 [0.13, 0.22] ≤0.22 ≤0.22 =0.12* =0.12*

8 161 < 1 1.57 < 1 22.9 < 1 < 1 70 70

Table 2 provides the experimental results for benchmark models with finite
belief MDP. The columns are similar as in Table 1 except that column ‘bel(M)‘
indicates the model checking result and analysis time in seconds for the complete
finite belief MDP. The technical report [6] contains further experiments.

Discussion. Consider Table 1. First, our implementation outperforms the imple-
mentation of [27] by several orders of magnitude, most likely due to the on-the-
fly state-space construction, and by an engineering effort. This difference cannot
be explained by the currently implemented cut-offs; indeed, when choosing a
static foundation, cut-offs do not noticeably improve performance. Second, our
refinement loop avoids the need for a user-picked resolution, but a hand-picked
resolution is sometimes faster (e.g. Maze) or yields better results (e.g. Grid). On
the other hand, the refinement loop might find finite abstractions that concisely
represent the belief MDP reachable under the optimal policy (e.g. Rocks). Here,
cut-offs are essential. Third, often, the refinement loop finds the crucial part of
the abstraction within a minute, however, Refuel profits from extra time.

We want to share three further observations: First, it seems interesting to
investigate finite-belief POMDPs as these occur quite frequently (see Table 2)
and can be analysed straightforwardly. Second, the current bottleneck is the
bookkeeping of the belief states and the computation of neighbourhoods, not the
model checking. Finally, even more than for MDPs, the size of the POMDP (or
the number of observations) is not at all a proxy for the difficulty of verification.

Data Availability. The implementation, models, and log files are available at [5].
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6 Conclusion and Future Work

We presented an abstraction-refinement for solving the verification problem for
indefinite-horizon properties in POMDPs, e.g., for proving that all policies reach
a bad state with at most probability λ. As the original problem is undecidable, we
compute a sequence of over-approximations by iteratively refining an abstraction
of the belief MDP. Our prototype shows superior performance over [27] in Prism.
The next step is to integrate better under-approximations.
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17. Horák, K., Bosanský, B., Chatterjee, K.: Goal-HSVI: heuristic search value itera-
tion for goal POMDPs. In: IJCAI, pp. 4764–4770. ijcai.org (2018)

18. Jansen, N., Dehnert, C., Kaminski, B.L., Katoen, J.-P., Westhofen, L.: Bounded
model checking for probabilistic programs. In: Artho, C., Legay, A., Peled, D. (eds.)
ATVA 2016. LNCS, vol. 9938, pp. 68–85. Springer, Cham (2016). https://doi.org/
10.1007/978-3-319-46520-3 5

19. Junges, S., et al.: Finite-state controllers of POMDPs using parameter synthesis.
In: UAI, pp. 519–529. AUAI Press (2018)

20. Kaelbling, L.P., Littman, M.L., Cassandra, A.R.: Planning and acting in partially
observable stochastic domains. Artif. Intell. 101(1–2), 99–134 (1998)

21. Kochenderfer, M.J.: Decision Making Under Uncertainty. The MIT Press, Cam-
bridge (2015)

22. Kurniawati, H., Hsu, D., Lee, W.S.: SARSOP: efficient point-based POMDP plan-
ning by approximating optimally reachable belief spaces. In: Robotics: Science and
Systems. The MIT Press (2008)

23. Kwiatkowska, M., Norman, G., Parker, D.: PRISM 4.0: verification of probabilistic
real-time systems. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS,
vol. 6806, pp. 585–591. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-22110-1 47

24. Lovejoy, W.S.: Computationally feasible bounds for partially observed Markov deci-
sion processes. Oper. Res. 39(1), 162–175 (1991)

25. Madani, O., Hanks, S., Condon, A.: On the undecidability of probabilistic planning
and related stochastic optimization problems. Artif. Intell. 147(1–2), 5–34 (2003)

26. Meuleau, N., Kim, K., Kaelbling, L.P., Cassandra, A.R.: Solving POMDPs by
searching the space of finite policies. In: UAI, pp. 417–426. Morgan Kaufmann
(1999)

27. Norman, G., Parker, D., Zou, X.: Verification and control of partially observable
probabilistic systems. Real-Time Syst. 53(3), 354–402 (2017)

28. Pajarinen, J., Peltonen, J.: Periodic finite state controllers for efficient POMDP
and DEC-POMDP planning. In: NIPS, pp. 2636–2644 (2011)

29. Pineau, J., Gordon, G.J., Thrun, S.: Point-based value iteration: an anytime algo-
rithm for POMDPs. In: IJCAI, pp. 1025–1032. Morgan Kaufmann (2003)

30. Russell, S.J., Norvig, P.: Artificial Intelligence - A Modern Approach. Pearson
Education (2010)

31. Shani, G., Pineau, J., Kaplow, R.: A survey of point-based POMDP solvers. Auton.
Agents Multi Agent Syst. 27(1), 1–51 (2013)

32. Thrun, S., Burgard, W., Fox, D.: Probabilistic Robotics. The MIT Press, Cam-
bridge (2005)

33. Volk, M., Junges, S., Katoen, J.P.: Fast dynamic fault tree analysis by model
checking techniques. IEEE Trans. Ind. Inform. 14(1), 370–379 (2018)

34. Walraven, E., Spaan, M.T.J.: Point-based value iteration for finite-horizon
POMDPs. J. Artif. Intell. Res. 65, 307–341 (2019)

35. Winterer, L., et al.: Motion planning under partial observability using game-based
abstraction. In: CDC, pp. 2201–2208. IEEE (2017)

36. Wongpiromsarn, T., Frazzoli, E.: Control of probabilistic systems under dynamic,
partially known environments with temporal logic specifications. In: CDC, pp.
7644–7651. IEEE (2012)

https://doi.org/10.1007/978-3-030-53291-8_26
https://doi.org/10.1007/978-3-319-46520-3_5
https://doi.org/10.1007/978-3-319-46520-3_5
https://doi.org/10.1007/978-3-642-22110-1_47
https://doi.org/10.1007/978-3-642-22110-1_47


Verification of a Generative Separation
Kernel

Inzemamul Haque1(B), D. D’Souza1, P. Habeeb1, A. Kundu2,
and Ganesh Babu2

1 Indian Institute of Science, Bangalore, India
inzemamul@iisc.ac.in

2 CAIR, Defence Research and Development Organization, Bangalore, India

Abstract. We present a formal verification of the functional correctness
of the Muen Separation Kernel. Muen is representative of the class of
modern separation kernels that leverage hardware virtualization support,
and are generative in nature in that they generate a specialized kernel for
each system configuration. We propose a verification framework called
conditional parametric refinement which allows us to formally reason
about generative systems. We use this framework to prove the correctness
of Muen. Our analysis of several system configurations shows that our
technique is effective in producing mechanized proofs of correctness, and
also in identifying issues that may compromise the separation property.

1 Introduction

A separation kernel (SK) is a small specialized operating system or microkernel,
that provides a sand-boxed or “separate” execution environment for a given set
of processes (or “subjects”). The subjects may communicate only via declared
memory channels, and are otherwise isolated from each other. Unlike a general
operating system these kernels have a fixed set of subjects to run according
to a specific schedule on the different CPUs of a processor-based system. Such
kernels are often employed in security and safety-critical applications in military
and aerospace domains, and the correct functioning of the kernel is of critical
importance in guaranteeing the secure and timely execution of the subjects.

One way of obtaining a high level of assurance in the correct functioning of a
system is to carry out a refinement-based proof of functional correctness [17,18],
as has been done in the context of OS verification [22,31]. Here one specifies
an abstract model of the system’s behaviour, and then shows that the system
implementation conforms to the abstract specification. Such a proof subsumes
standard security properties related to separation, like no-exfiltration/infiltration
and temporal and spatial separation of subjects considered for instance in [16].

Our aim here is to carry out a similar refinement-based proof of functional
correctness for the Muen separation kernel [6], which is an open-source represen-
tative of a class of modern separation kernels (including commercial products
[13,25,27,34,36]) that use hardware virtualization support and are generative
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in nature. By the latter we mean that these tools take an input specification
describing the subjects and the schedule of execution, and generate a tailor-
made processor-based system that includes subject binaries, page tables, and a
kernel that acts like a Virtual Machine Monitor (VMM).

There are several challenges in carrying out such an exercise. Each generated
system employs a mix of Ada, Assembly, hardware virtualization features, and
complex 4-level paging structures, and is challenging to reason about as a stand-
alone system. However, the main challenge lies in reasoning about the generative
aspect of such a system: we need to show that for every possible input specifi-
cation, the kernel generator produces a correct system. A possible approach to
handle this challenge could be to verify the generator code, along the lines of
the CompCert project [24]. However with the generator code running close to
41K LOC, with little compositional structure, this would be a formidable task.
Translation validation [30] is another possibility but would require manual effort
from scratch each time.

We overcame the challenge of virtualization by simply choosing to model
the virtualization layer (in this case Intel’s VT-x layer) along with the rest
of the hardware components like registers and memory, programmatically in
software. Thus we modeled VT-x components like the per-CPU VMX-Timer
and EPTP as 64-bit variables in Ada, and implicit structures like the VMCS
as a record with appropriate fields as specified by Intel [19]. Instructions like
VMLAUNCH were then implemented as methods that accessed these variables.
In many ways, virtualization turned out to be more of a boon than a bane. We
solved the problem of generativeness (and the problem of handling page tables
too), by leveraging a key feature of such systems: the kernel is essentially a
template which is largely fixed, independent of the input specification. The kernel
accesses variables which represent input-specific details like subject details and
the schedule, and these structures are generated by Muen based on the given
input specification. The kernel can thus be viewed as a parametric program,
much like a method that computes using its formal parameter variables. In fact,
taking a step back, the whole processor system generated by Muen can be viewed
as a parametric program with parameter values like the schedule, subject details,
page tables, and memory elements being filled in by the generator based on the
input specification. This view of Muen as a parametric program turned out to
be the key enabler for us.

Such a view suggests a novel two-step technique for verifying generative sys-
tems that can be represented as parametric programs. We call this approach
conditional parametric refinement. We first perform a general verification step
(independent of the input spec) to verify that the parametric program refines
a parametric abstract specification, assuming certain natural conditions on the
parameter values (for example injectivity of the page tables) that are to be filled
in. This first step essentially tells us that for any input specification P , if the
parameter values generated by the system generator satisfy the assumed condi-
tions, then the generated system is correct vis-a-vis the abstract specification. In
the second step, which is input-specific, we check that for a given input specifi-
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cation, the generated parameter values actually satisfy the assumed conditions.
This gives us an effective verification technique for verifying generative systems
that lies somewhere between verifying the generator and translation validation.

We carried out the first step of this proof technique for Muen, using the
Spark Ada [2] verification environment. The effort involved about 20K lines of
source code and annotation. No major issues were found, modulo some subjec-
tive assumptions we discuss in Sect. 4.3. We have also implemented a tool that
automatically and efficiently performs the Step 2 check for a given SK configura-
tion. The tool is effective in proving the assumptions, leading to machine-checked
proofs of correctness for 16 different input configurations, as well as in detect-
ing issues like undeclared sharing of memory components in some seeded faulty
configurations.

In the sequel we sketch the main components of our theory and its application
to the verification of Muen. For further details we refer the reader to the longer
version [15].

2 Conditional Parametric Refinement

2.1 Machines and Refinement

A convenient way to reason about systems such as Muen is to view them as an
Abstract Data Type or machine [1]. A machine A is essentially a set of states
along with a set of operations, each of which takes an argument, transforms the
current state, and returns an output value. We have a designated intialization
operation called init . The machine A induces a transition system TA in a natural
way, whose states are the states of A, and transitions from one state to another
are labelled by triples of the form (n, a, b), representing that operation n with
input a was invoked and the return value was b. We denote the language of
initialized sequences of operation calls produced by this transition system, by
Linit(A).

We will consider machines represented as a program in an imperative pro-
gramming language. Valuations for the variables of the program make up the
state of the machine, while each operation n is given by a method definition of
the same name. We call such a program a machine program. Figure 1(a) shows
a program in a C-like language, that represents a “set” machine with operations
init , add and elem. The set stores a subset of the numbers 0–3, in a Boolean
array of size 4. However, for certain extraneous reasons, it uses an array T to
permute the positions where information for an element x is stored. Thus to
indicate that x is present in the set the bit S[T [x]] is set to true.

Refinement [1,17,18] is a way of saying that a “concrete” machine conforms
to an “abstract” one, behaviourally. In our setting of total and deterministic
machines, we say that machine B refines machine A if Linit(B) ⊆ Linit(A).
Refinement is typically exhibited using a “gluing” relation ρ which relates the
states of B to those of A. We say ρ is adequate to show that B refines A if it
satisfies the conditions: (init) the states of B and A after initialization are related
by ρ, and (sim) if states p and q are related by ρ then after doing any operation n
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Fig. 1. (a) A machine program P implementing a set machine, (b) an abstract specifica-
tion A and gluing relation, (c) a parametric machine program Q[Usize, T ] representing
a parametric set machine, and (d) abstract parametric specification B[absUsize] and
parametric gluing predicate.

with input a in these states, the output values agree and the resulting states are
again ρ-related. To check the adequacy of a gluing relation, we can use Floyd-
Hoare logic based code-level verification tools (like VCC [7] for C, or GNAT
Pro [2] for Ada Spark), to phrase the refinement conditions (init) and (sim) as
pre/post annotations and carry out a machine-checked proof of refinement [12].
Figure 1(b) shows an abstract specification and a gluing relation, for the set
machine program of part (a).

2.2 Generative Systems and Parametric Refinement

A generative system is a program G that given an input specification I (in some
space of valid inputs), generates a machine program PI . As an example, one can
think of a set machine generator SetGen, that given a number k of type unsigned
int (representing the universe size), generates a program Pk similar to the one
in Fig. 1(a), which uses the constant k in place of the set size 4, and an array
Tk of size k, which maps each x in [0..k−1] to (x + 1)mod k. For every I, let
us say we have an abstract machine (again similar to the one in Fig. 1(b)) say
AI , describing the intended behaviour of the machine PI . Then the verification
problem of interest to us, for the generative system G, is to show that for each
input specification I, PI refines AI . This is illustrated in Fig. 2(a). We propose
a way to address this problem using refinement of parametric programs, which
we describe next.

Parametric Refinement. A parametric program is like a standard program,
except that it has certain read-only variables which are left uninitialized. These
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uninitialized variables act like “parameters” to the program. We denote by P [V̄ ]
a parametric program P with a list of uninitialized variables V̄ . As such a para-
metric program has no useful meaning, but if we initialize the variables V̄ with
the values v̄ passed to the program, we get a standard program which we denote
by P [v̄]. Let N be a set of operation names. A parametric machine program of
type N is a parametric program Q[V̄ ] containing a method fn for each operation
n ∈ N . The input/output types of fn may be dependent on and derived from
the parameter values. Given a parameter value v̄ for V̄ , we obtain the machine
program Q[v̄]. Each method fn now has a concrete input/output type which
we denote by I v̄n and Ov̄

n respectively. Figure 1(c) shows an example parametric
machine program Q[Usize, T ], representing a parametric version of the set pro-
gram in Fig. 1(a). Given a value 4 for Usize and a list [1, 2, 3, 0] for T , we get the
machine program Q[4, [1, 2, 3, 0]], which behaves similar to the one of Fig. 1(a).
We note that the input type of the methods add and elem depend on the value
of the parameter Usize.

Given two parametric machine programs Q[V̄ ] and B[Ū ] of type N , we are
interested in exhibiting a refinement relation between instances of Q[V̄ ] and
B[Ū ]. Let R be a relation on parameter values ū for Ū and v̄ for V̄ , given by a
predicate on the variables in Ū and V̄ . We say that Q[V̄ ] parametrically refines
B[Ū ] w.r.t. the condition R, if whenever two parameter values ū for Ū and v̄
for V̄ are such that R(ū, v̄) holds, then Q[v̄] refines B[ū]. We propose a way to
exhibit such a conditional refinement using a single “universal” gluing relation.
A parametric gluing relation on Q[V̄ ] and B[Ū ] is a relation π on the state
spaces SQ of Q[V̄ ] and SB of B[Ū ], given by a predicate on the variables of
Q[V̄ ] and B[Ū ]. We say π is adequate, with respect to the condition R, if the
following conditions are satisfied. In the conditions below, we use the standard
Hoare triple notation for total correctness {G} P {H}, to mean that a program
P , when started in a state satisfying predicate G, always terminates in a state
satisfying H. We use the superscript Q or B to differentiate the components
pertaining to the programs Q[V̄ ] and B[Ū ] respectively, and assume that the
programs have disjoint state spaces.

1. (type) For each n ∈ N : R(ū, v̄) =⇒ (IQ,v̄
n = IB,ū

n ∧ OQ,v̄
n = OB,ū

n ).

2. (init) {R} initB(); initQ() {π}.

3. (sim) For each n ∈ N : {R ∧ π} rB := fB
n (a); rQ := fQ

n (a) {π ∧ rB = rQ}.

We can now state the following theorem:

Theorem 1. Let Q[V̄ ] and B[Ū ] be parametric machine programs of type N .
Let R be a predicate on Ū and V̄ , and let π be an adequate parametric gluing
relation for Q[V̄ ] and B[Ū ] w.r.t. R. Then Q[V̄ ] parametrically refines B[Ū ]
w.r.t. the condition R. ��

Consider the parametric machine program Q[Usize, T ] in Fig. 1(c), and the
abstract parametric program in Fig. 1(d), which we call B[absUsize]. Consider
the condition R which requires that absUsize = Usize and T to be injective. Let
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π be the parametric gluing predicate ∀x : unsigned, (x < Usize) =⇒ S[T [x]] =
absS[x]). Then π can be seen to be adequate w.r.t. the condition R, and thus
Q[Usize, T ] parametrically refines B[absUsize] w.r.t. R.

Verifying Generative Systems using Parametric Refinement. Consider a gener-
ative system G that given a specification I, generates a machine program PI by
filling a template with values derived from I, and let AI be the abstract specifi-
cation for input I. Recall that our aim is to show that for each I, PI refines AI .
We achieve this by applying the following steps:

1. Associate a parametric program Q[V ] with G, such that for each I, G can
be viewed as generating the value vI for the parameter V , so that Q[vI ] is
behaviourally equivalent to PI . Q[V ] can be constructed from the template
which is filled by G.

2. Construct a parametric abstract specification B[U ], and concrete value uI for
each I, such that AI is equivalent to B[uI ].

3. Construct a condition R on the parameters U and V , and show that Q[V ]
parametrically refines B[U ] w.r.t. R, using an adequate gluing predicate.

4. For a given I, check if uI and vI satisfy R. If so, conclude that PI refines AI .

We note that the Steps 1–3 are done only once for G, while the last step needs
to be done for each I of interest. Figure 2 illustrates this approach.

As a final illustration in our running example, to verify the correctness of
the set machine generator SetGen, we use the parametric programs Q[Usize, T ]
and B[absUsize] to capture the concrete program generated and the abstract
specification respectively. We then show that Q[Usize, T ] parametrically refines
B[absUsize] w.r.t. the condition R, using the gluing predicate π, as described
above. We note that the actual values generated for the parameters in this case
(recall that these are values for the parameters Usize, absUsize and T ) do indeed
satisfy the conditions required by R, namely that Usize and absUsize be equal,
and T be injective. Thus we can conclude that for each input universe size k,
the machine program Pk refines Ak, and we are done.

)c()b()a(

R

B[U ]

Q[V ]

I

AI

PI

G
I

G

PI

AI

∀I :

AI ≡ B[uI ]

PI ≡ Q[vI ]

∀I s.t.R(uI , vI) :

Fig. 2. Proving correctness of a generative system using parametric refinement. (a) The
goal, (b) proof artifacts and obligation, and (c) the guarantee. Dashed arrows represent
refinement, dashed arrow with R at tail represents conditional refinement w.r.t. R.
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3 The Muen Kernel Generator

3.1 Intel X86/64 Processor

The kernel that Muen generates runs on an x86/64 processor with VMX sup-
port. We briefly describe this platform (see [19] for more details) and how to
view a processor-based system as a machine. Figure 3 depicts the processor sys-
tem and its components. The CPU components like the 64-bit general purpose
registers, model-specific registers like the Time Stamp Counter (TSC), and phys-
ical memory components are standard. The layer above shows components like
the VMCS pointer (VMPTR), the VMX-timer, and extended page table pointer
(EPTP), which are part of the VT-x layer of the VMX mode that supports vir-
tualization. The VMPTR on each CPU points to a VMCS structure, which is
used by the VMM (here the kernel) to control launch/exit of subjects. The CR3
register and the EPTP component (set by the active VMCS) control the virtual-
to-physical address translation. The top-most layer shows the kernel code that
runs on each CPU, with an “Init” component that runs on system initialization,
and a “Handler” component that handles VM-exits due to interrupts. The Muen
kernel essentially runs as a VMM, and subjects as VMs provided by the VMM.
To launch a subject in a VM, the kernel sets the VMPTR to point to one of the
VMCSs using the VMPTRLD instruction, and then calls VMLAUNCH which
sets the timer, CR3, and EPTP components from the VMCS fields. A subject is
caused to exit its VM and return control to the kernel by events like VMX-timer
expiry, page table exceptions, and interrupts.

We would like to view such a processor system as a machine of Sect. 2.1. The
state of the machine is the contents of all its components. The operations are
(a) Init, where the init code of the kernel is executed on each of the processors
starting with the BSP (CPU0); (b) Execute, which takes a CPU id and executes
the next instruction pointed to by the IP on that CPU. The instruction could be
one that does not access memory (like add), or one that accesses memory (like
mov) in which case the given address is translated via the page tables pointed
to by the CR3 and EPTP components; or (c) Event, which could be timer tick
event on a CPU causing the TSC to increment and the VMX-timer of the active

CPU1 CPU2 CPU3

Ker1 Ker2 Ker3

PT Memory

Timer

VMPTRVMPTR

Timer
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Timer Timer EPTP

CR3CR3CR3CR3

EPTPEPTPEPTP
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Fig. 3. An x86/64bit VMX processor. Shaded components are generated by Muen.
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VM to decrement. If the VMX-timer becomes 0, a VM exit is caused and the
corresponding handler invoked. Another kind of event is generated by external
interrupts. External interrupts cause a VM exit. The cause of all VM exits is
stored in the subject’s VMCS, which the handler checks and takes appropriate
action for.

3.2 Policy Specification

Virt Mem

Sub0

Chan (W)

Virt Mem

Sub1

Chan (R)

Channel Mem

The input specification to Muen is an XML file called
a policy. It specifies details of the host processor, sub-
jects to be run, and a precise schedule of execution on
each CPU of the host processor system. For each sub-
ject the policy specifies the size and starting addresses
of the components in its virtual memory which could
include shared memory components called channels.
The policy specifies the size and location of each channel in a subject’s virtual
address space, and read/write permissions, as depicted alongside.

The schedule is a sequence of major frames to be performed repeatedly. A
major frame specifies for each CPU a sequence of minor frames, which specifies
a subject and the number of ticks to run it. The beginning of each major frame
is a synchronization point for the CPUs. An example scheduling policy in XML
is shown in Fig. 4(a), while Fig. 4(b) shows the same schedule viewed as a clock.
The shaded portion depicts the passage of time (the tick count) on each CPU.

Fig. 4. (a) Example schedule, (b) its clock view, and (c) its implementation in Muen.

3.3 Muen Kernel Generator

Given a policy C, Muen generates the components of a processor system SC ,
which is meant to run according to the specified schedule. This is depicted
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in Fig. 3, where the Muen toolchain generates the shaded components of
the processor system, like the initial memory contents, page tables, and ker-
nel code. The toolchain generates a kernel for each CPU, to orchestrate the
execution of the subjects according to the specified schedule on that CPU.
The kernel is actually a template of code written in Spark Ada, and the
toolchain generates the constants for this template based on the given policy.

Fig. 5. Components of the generated ker-
nel. Shaded components are generated by
the toolchain.

The kernel uses data structures like
subject-specs to store details like page
table and VMCS address for each sub-
ject. To implement scheduling, the
kernel uses a multidimensional array
called scheduling-plans representing
the schedule for each CPU. The kernel
knows the number of ticks elapsed on
each CPU from the TSC register. It
uses a shared variable called CMSC,
which is updated by the BSP, to keep
track of the start of the current major
frame, as shown in Fig. 4(c). The
structure vector -routing is also gener-
ated by the toolchain to represent the
table which maps an interrupt vector
to the corresponding destination sub-
ject and the destination vector to be
sent to the destination subject. The
kernel also uses a data structure called global -events for each subject to save
pending interrupts when the destination subject is not active. The components
of the kernel are shown in Fig. 5.

At system startup the Init part of the kernel performs the initialization tasks
like setting up the VMCS for each subject, making use of the subject-specs
structure generated by Muen. The handler part of the kernel is invoked whenever
there is a VM exit. For instance if the exit is due to a VMX-timer expiry, it uses
scheduling-plans to decide whether to schedule the subject in the next minor
frame, or to wait for synchronization at the end of a major frame. If the exit is
due to an external interrupt, it uses vector -routing to decide the subject which
will handle the interrupt, and the destination vector which should be sent to
the handler subject. The structure global -events is used to store the pending
interrupt. When the handler subject becomes active, the pending interrupt is
injected via the VMCS and the pending interrupt is removed from global -events.

We have focussed on Ver. 0.7 of Muen. The toolchain implemented in Ada
and C, comprises about 41K LoC, while the kernel template is about 3K LoC in
Ada.
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4 Proof Overview

Given a policy C, let SC denote the processor system generated by Muen. Let TC

denote an abstract machine spec for the system SC (we describe TC next). Our
aim is to show that for each valid policy C, SC refines TC . We use the parametric
refinement technique of Sect. 2 to do this. We first
define a parametric program Q[V̄ ] that models the
generic system generated by Muen, so that for a
given policy C, if v̄C corresponds to the parameter
values generated by Muen, then SC and Q[v̄C ] are
behaviourally equivalent. In a similar way we define the abstract parametric
program B[Ū ], so that with appropriate parameters ūC , B[ūC ] captures the
abstract spec TC . Next we show that Q[V̄ ] parametrically refines B[Ū ] w.r.t.
a condition R. The figure alongside shows the proof artifacts and obligations.
Finally, for a given policy C, we check that the parameter values ūC and v̄C
satisfy the condition R. In the rest of this section we elaborate on the components
and steps of this proof.

4.1 Abstract Specification

The abstract specification TC implements a simple system that realizes the
behaviour specified by a policy C. In TC each subject s is run on a separate,
dedicated, single-CPU processor system Ms. The system Ms has its own CPU
with registers, and 264 bytes of physical memory VMem with permissions as
specified in the policy. The policy maps each subject to a CPU of the concrete
machine on which it is meant to run. To model this we use a set of logical CPUs
(corresponding to the number of CPUs specified in the policy), and we associate
with each logical CPU, the (disjoint) group of subjects mapped to that CPU.
Figure 6 shows a schematic representation of TC . To model channels, we use a
separate memory array chmem, as depicted in Sect. 3.2. Memory contents for
a subject s are fetched from VMems or from chmem accordingly. There is no
kernel in this system, but a supervisor whose job is to process events directed
to a logical CPU or subject, and to enable and disable subjects based on the
scheduling policy and the current “time”. Towards this end it maintains a flag
enableds for each subject s, which is set whenever the subject is enabled to run
based on the current time. To implement the specified schedule it keeps track of
time using the clock-like abstraction depicted in Fig. 4(b).

In the init operation the supervisor initializes the processor systems Ms,
permissions array perms, the channel memory chmem, and also the schedule-
related variables, based on the policy. The execute operation, given a logical CPU
id, executes the next instruction on the subject machine currently active for that
logical CPU id. An execute operation does not affect the state of other subject
processors, except possibly via the shared memory chmem. If the instruction
accesses an invalid memory address, the system is assumed to shut down in
an error state. Finally, for the event operation, which is a tick/interrupt event
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directed to a logical CPU or subject, the supervisor updates the scheduling state,
or pending event array, appropriately.

To represent the system TC concretely, we use an Ada program which we
call AC . AC is a programmatic realization of TC , with processor registers repre-
sented as 64-bit numeric variables, and memory as byte arrays of size 264. The
operations init , execute, and event are implemented as methods that implement
the operations as described above. Finally, we obtain a parametric program B[Ū ]
from AC , by parameterizing it as illustrated in Sect. 2. We call the list of param-
eters Ū . By construction, it is evident that if we generate appropriate values ūC

for the parameters in Ū , we will get a machine program B[ūC ] which is equivalent
in behaviour to AC .

4.2 Parametric Refinement Proof

We begin by describing how we view Muen as a parametric program. Let C be a
given policy. We first define a machine program PC that represents the processor
system SC generated by Muen. This is done similar to AC , except that we now
have a single physical memory array which we call PMem. Further, since the
processor system SC makes use of the VT-x components, we need to model these
components in PC as well. For example we represent each page table ptab, as
a 264 size array PT ptab of 64-bit numbers, with the translation ptab(a) of an
address a being modelled as PT ptab [a]. The operations init , execute, and event
are implemented as method calls. The init code comes from the Init component
of the kernel. In the execute method, memory accesses are translated via the
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active page table to access the physical memory PMem. The implementation
of the event operation comes from the Handler part of the kernel code. We
then move from PC to a parametric program Q[V̄ ], by using parameters such
as NSubs, scheduling-plans, subject-specs, PMem, and PT . Once again, for an
appropriate list of values v̄C generated by Muen from a given policy C, Q[v̄C ] is
equivalent to PC , which in turn is equivalent to SC .

Next we show that the parametric version of the Muen system Q[V̄ ] condi-
tionally refines the parametric abstract spec B[Ū ]. From Sect. 2.2, this requires
us to identify the condition R, and find a gluing relation π on the state of para-
metric programs Q and B such that the refinement conditions (type), (init), and
(sim) are satisfied. The key conjuncts of our condition R are:

– R1: The page tables ptabs associated with a subject s must be injective in that
no two virtual addresses, within a subject or across subjects, may be mapped
to the same physical address, unless specified to be part of a channel;

– R2: For each subject s, the permissions (rd/wr/ex/present) associated with
an address a should match with the permissions for a in ptabs;

– R3: For each subject s, no invalid virtual address is mapped to a physical
address by page table ptabs.

– R4: The values of the parameters (like NSubs, subject-specs, scheduling-plans
and IOBitmap) in the concrete should match with those in the abstract.

The gluing relation π has the following key conjuncts: The CPU register contents
of each subject in the abstract match with the register contents of the CPU
on which the subject is active, if the subject is enabled, and with the subject
descriptor, otherwise; For each subject s and valid address a in its virtual address
space, the contents of VMems(a) and PMem(ptabs(a)) should match; The value
(TSC − CMSC) on each CPU in the concrete, should match with how much the
ideal clock for the subject’s logical CPU is ahead of the beginning of the current
major frame in the abstract.

B[Ū ] Q[V̄ ] Combined

LoC LoA LoC LoA LoC LoA

793 0 1,914 0 13,970 6,214

We carry out the adequacy check for π,
described in Sect. 2.2, by constructing a “com-
bined” version of Q and B that has the dis-
joint union of their state variables, as well as
a joint version of their operations, and phrase
the adequacy conditions as pre/post conditions on the joint operations. We carry
out these checks using the Spark Ada tool [2] which uses provers Z3 [28], CVC4
[3], and Alt-Ergo [8] in the backend. We faced several challenges in carrying out
this proof to completion. For instance, to prove the kernel’s handling of the tick
event correct, we used 8 subcases to break up the reasoning into manageable
subgoals for both the engineer and the prover. The table alongside shows details
of our proof effort in terms of lines of code (LoC) and lines of annotations (LoA)
in the combined proof artifact. In the combined artifact the LoC count includes
comments and repetition of code due to case-splits. All the proof artifacts used
in this project are available at shorturl.at/ilqMU.



Verification of a Generative Separation Kernel 317

4.3 Checking Condition R

We now describe how to efficiently check that for a given policy C, the parameters
generated by Muen and those of the abstract specification, satisfy the condition
R. A naive way to check R would be to iterate over the virtual addresses for each
subject and check the conditions. This runs in time O(Nv) where Nv is the size
of the virtual address space (typically 248), and would take days to run. Instead
we exploit the fact that the actual size of the memory components is relatively
small. We make use of Muen’s B-policy which defines the physical address and
size of physical memory segments, and the mapping of virtual components to it,
so that checking R1 reduces to checking overlap of physical components. To check
R3, we exploit the fact that translation of a valid virtual address uses certain
entries of paging structures which have their “present” bit set to 1. We check
that the present bit is set only in the entries which are used for translation of
valid virtual addresses. These checks run in time O(Nu) where Nu is the actual
used virtual address space of a subject.

We implemented our algorithms above in C and Ada, using the Libxml2
library to process policy files, and a Linux utility xxd to convert the Muen image
and individual files from raw format to hexadecimal format. We ran our tool on

System Sub CPU PMem Image Time Check
(MB) (MB) (s) Passed

D7 Bochs 8 4 527.4 13.8 3.7 �
DL conf1 8 4 506.5 12.9 3.7 �
DL conf2 9 4 1552.7 15.1 6.8 �
DL conf3 12 4 1050.1 23.3 6.7 �
DL conf4 16 4 1571.4 15.1 9.2 �
D9 Bochs 10 2 532.9 16.2 4.9 ✗

D9 vtd 16 4 1057.8 18.4 5.9 ✗

D9 IntelNuc 10 2 567.0 16.2 5.5 ✗

16 system configs, 9 of
which (D7-*,D9-*) were
available as demo config-
urations from Muen. The
remaining configs (DL-
*) were configured by
us to mimic a Multi-
Level Security (MLS) sys-
tem from [32]. Details of
representative configs are
shown alongside. We used
the 3 configs D9-* (from Ver. 0.9 of Muen) as seeded faults to test our tool.
Ver. 0.9 of Muen generates implicit shared memory components, and this unde-
clared sharing was correctly flagged by our tool. The average running time on
a configuration was 5.6s. The experiments were carried out on an Intel Core i5
machine with 4GB RAM running Ubuntu 16.04.

Discussion. We believe that the property we have proved for Muen (namely
conformance to an abstract specification via a refinement proof) is the canonical
security property needed of a separation kernel. However security standards often
require specific basic security properties to be satisfied. In [15] we discuss how
some of these properties mentioned in [11,16] follow from our proof.

The validity of the verification proof carried out in this work depends on
several assumptions we have made. Apart from implicit assumptions like page
table translation and VMX instructions behave the way we have modelled them,
we made explicit assumptions like the 64-bit TSC counter does not overflow (it
would take years to happen), and a minor frame length is never more than 232
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ticks. If any of these assumptions are violated, the proof will not go through, and
we would have counter-examples to conformance with the abstract specification.
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Fig. 7. Components in Muen verification. Untrusted components are shown shaded
while non-automated (manual) steps are shown with dashed boxes.

Finally, we show the various components used in our verification in Fig. 7.
Each box represents a automated tool (full boxes) or manual transformation
carried out (dashed boxes). Components that we trust in the proof are unshaded,
while untrusted components are shown shaded.

We would like to mention that the developers of Muen were interested in
adding our condition checking tool to the Muen distribution, as they felt it
would strengthen the checks they carry out during the kernel generation. We
have updated our tool to work on the latest version (v0.9) of Muen, and handed
it over to the developers.

5 Related Work

We classify related work based on general OS verification, verification of sepa-
ration kernels, and translation validation based techniques.

Operating System Verification. There has been a great deal of work in formal
verification of operating system kernels in the last few decades. Klein [20] gives
an excellent survey of the work till around 2000. In recent years the most com-
prehensive work on OS verification has been the work on seL4 [21], which gave
a refinement-based proof of the functional correctness of a microkernel using the
Isabelle/HOL theorem prover. They also carry out an impressive verification of
page table translation [35]. The CertiKOS project [14] provides a technique for
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proving contextual functional correctness across the implementation stack of a
kernel, and also handles concurrency. Other recent efforts include verification of
a type-safe OS [37], security invariants in ExpressOS [26], and the Hyperkernel
project [29].

While verification of a general purpose OS is a more complex task than ours—
in particular a general kernel has to deal with dynamic creation of processes
while in our setting we have a fixed set of processes and a fixed schedule—the
techniques used there cannot readily reason about generative kernels like Muen.
We would also like to note here that while it is true in such verification one often
needs to reason about parametric components (like a method that computes
based on its parameters), the whole programs themselves are not parametric.
In particular, a standard operating system is not parametric: it begins with a
concrete initial state, unlike a parametric program in which the initial state has
unitialized parameters. Thus the techniques developed in this paper are needed
to reason about such programs. Finally, we point out that none of these works
address the use of VT-x virtualization support.

Verification of Separation Kernels. There has been substantial work in formal
verification of separation kernels/hypervisors. seL4 [21] can also be configured as
a separation kernel, and the underlying proof of functional correctness was used
to prove information flow enforcement. Heitmeyer et al. [16] proved data sep-
aration properties using a refinement-based approach for a special-purpose SK
called ED, in an embedded setting. As far as we can make out these systems are
not generative in nature, and either do not use or do not verify hardware virtu-
alization support. Additionally, unlike our work, none of these works (including
OS verification works) are post-facto: they are developed along with verification.

Dam et al. [10] verify a prototype SK called PROSPER, proving informa-
tion flow security on the specification and showing a bisimulation between the
specification and the implementation. PROSPER works for a minimal configu-
ration with exactly two subjects, and is not a generative system. The Verisoft
XT project [4] attempted to prove the correctness of Microsoft’s Hyper-V hyper-
visor [23] and Sysgo’s PikeOS, using VCC [7]. While the Hyper-V project was
not completed, the PikeOS memory manager was proved correct in [5]. Sanan
et al. [33] propose an approach towards verification of the XtratuM kernel [9] in
Isabelle/HOL, but the verification was not completed.

Translation Validation Techniques. Our verification problem can also be viewed
as translation validation problem, where the Muen generator translates the input
policy specification to an SK system. The two kinds of approaches here aim to
verify the generator code itself (for example the CompCert project [24]) which
can be a challenging task in our much less structured, post-facto setting; or aim
to verify the generated output for each specific instance [30]. Our work can be
viewed as a via-media between these two approaches: we leverage the template-
based nature of the generated system to verify the generator conditionally, and
then check whether the generated parameter values satisfy our assumed condi-
tions.
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6 Conclusion

In this work we have proposed a technique to reason about template-based gen-
erative systems, and used it to carry out effective post-facto verification of the
separation property of a complex, generative, virtualization-based separation
kernel. In future work we plan to extend the scope of verification to address
concurrency issues that we presently ignore in this work.

Acknowledgement. We thank the developers of Muen, Reto Buerki and Adrian-Ken
Rueegsegger, for their painstaking efforts in helping us understand the Muen separation
kernel. We also thank Arka Ghosh for his help in the proof of interrupt handling.
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Abstract. In this paper, we propose a decision procedure for a class of
string-manipulating programs which includes not only a wide range of
string operations such as concatenation, replaceAll, reverse, and finite
transducers, but also those involving the integer data-type such as length,
indexof, and substring. To the best of our knowledge, this represents one
of the most expressive string constraint languages that is currently known
to be decidable. Our decision procedure is based on a variant of cost reg-
ister automata. We implement the decision procedure, giving rise to a
new solver OSTRICH+. We evaluate the performance of OSTRICH+ on
a wide range of existing and new benchmarks. The experimental results
show that OSTRICH+ is the first string decision procedure capable of
tackling finite transducers and integer constraints, whilst its overall per-
formance is comparable with the state-of-the-art string constraint solvers.

1 Introduction

String-manipulating programs are notoriously subtle, and their potential bugs
may bring severe security consequences. A typical example is cross-site scripting
(XSS), which is among the OWASP Top 10 Application Security Risks [29]. Inte-
ger data type occurs naturally and extensively in string-manipulating programs.
An effective and increasingly popular method for identifying bugs, including
XSS, is symbolic execution [11]. In a nutshell, this technique analyses static
paths through the program being considered. Each of these paths can be viewed
as a constraint ϕ over appropriate data domains, and symbolic execution tools
demand fast constraint solvers to check the satisfiability of ϕ. Such constraint
solvers need to support all data-type operations occurring in a program.
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Typically, mainstream programming languages provide standard string func-
tions such as concatenation, replace, and replaceAll. Moreover, Web programming
languages usually provide complex string operations (e.g. htmlEscape and trim),
which are conveniently modelled as finite transducers, to sanitise malicious user
inputs [19]. Nevertheless, apart from these operations involving only the string
data type, functions such as length, indexOf, and substring, which can convert
strings to integers and vice versa, are also heavily used in practice; for instance, it
was reported [26] that length, indexOf, substring, and variants thereof, comprise
over 80% of string function occurrences in 18 popular JavaScript applications,
notably outnumbering concatenation. The introduction of integers exacerbates
the intricacy of string-manipulating programs, and poses new theoretical and
practical challenges in solver development.

When combining strings and integers, decidability can easily be lost; for
instance, the string theory with concatenation and letter counting functions is
undecidable [8,15]. Remarkably, it is still a major open problem whether the
string theory with concatenation (arguably the simplest string operation) and
length function (arguably the most common string-number function) is decid-
able [17,22]. One promising approach to retain decidability is to enforce a syn-
tactic restriction to the constraints. In the literature, these restriction include
solved forms [17], acyclicity [2,3,5], and straight-line fragment (aka programs in
single static assignment form) [12,14,18,21]. On the one hand, such a restriction
has led to decidability of string constraint solving with complex string opera-
tions (not only concatenation, but also finite transducers) and integer operations
(letter-counting, length, indexOf, etc.); see, e.g., [21]. On the other hand, there is
a lot of evidence (e.g. from benchmark) that many practical string constraints
do satisfy such syntactic restrictions.

Approaches to building practical string solvers could essentially be classified
into two categories. Firstly, one could support as many constraints as possible,
but primarily resort to heuristics, offering no completeness/termination guaran-
tee. This is a realistic approach since, as mentioned above, the problem involving
both string and integer data types is in general undecidable. Many solvers belong
to this category, e.g., CVC4 [20], Z3 [7,16], Z3-str3 [6], S3(P) [27,28], Trau [1] (or
its variants Trau+ [3] and Z3-Trau [9]), ABC [10], and Slent [32]. Completeness
guarantees are, however, valuable since the performance of heuristics can be diffi-
cult to predict. The second approach is to develop solvers for decidable fragments
supporting both strings and integers (e.g. [2,3,5,12,14,17,18,21]). Solvers in this
category include Norn [2], SLOTH [18], and OSTRICH [14]. The fragment with-
out complex string operations (e.g. replaceAll and finite transducers, but length)
can be handled quite well by Norn. The fragment without length constraints (but
replaceAll and finite transducers) can be handled effectively by OSTRICH and
SLOTH. Moreover, most existing solvers that belong to the first category do not
support complex string operations like replaceAll and finite transducers as well.
This motivates the following problem: provide a decision procedure that supports
both string and integer data type, with completeness guarantee and meanwhile
admitting efficient implementation.
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We argue that this problem is highly challenging. A deeper examination of the
algorithms used by OSTRICH and SLOTH reveals that, unlike the case for Norn,
it would not be straightforward to extend OSTRICH and SLOTH with integer
constraints. First and foremost, the complexity of the fragment used by Norn
(i.e. without transducers and replaceAll) is solvable in exponential time, even
in the presence of integer constraints. This is not the case for the straight-line
fragments with transducers/replaceAll, which require at least double exponential
time (regardless of the integer constraints). This unfortunately manifests itself
in the size of symbolic representations of the solutions. SLOTH [18] computes
a representation of all solutions “eagerly” as (alternating) finite transducers.
Dealing with integer data type requires to compute the Parikh images of these
transducers [21], which would result in a quantifier-free linear integer arithmetic
formula (LIA for short) of double exponential size, thus giving us a triple expo-
nential time algorithm, since LIA formulas are solved in exponential time (see
e.g. [30]). Lin and Barcelo [21] provided a double exponential upper bound in
the length of the strings in the solution, and showed that the double exponential
time theoretical complexity could be retained. This, however, does not result in
a practical algorithm since it requires all strings of double exponential size to
be enumerated. OSTRICH [14] adopted a “lazy” approach and computed the
pre-images of regular languages step by step, which is more scalable than the
“eager” approach adopted by SLOTH and results in a highly competitive solver.
It uses recognisable relations (a finite union of products of regular languages) as
symbolic representations. Nevertheless, extending this approach to integer con-
straints is not obvious since integer constraints break the independence between
different string variables in the recognisable relations.

Contribution. We provide a decision procedure for an expressive class of string
constraints involving the integer data type, which includes not only concate-
nation, replace/replaceAll, reverse, finite transducers, and regular constraints,
but also length, indexOf and substring. The decision procedure utilizes a vari-
ant of cost-register automata introduced by Alur et al. [4], which are called cost-
enriched finite automata (CEFA) for convenience. Intuitively, each CEFA records
the connection between a string variable and its associated integer variables.
With CEFAs, the concept of recognisable relations is then naturally extended
to accommodate integers. The integer constraints, however, are detached from
CEFAs rather than being part of CEFAs. This allows to preserve the indepen-
dence of string variables in the recognisable relation. The crux of the decision
procedure is to compute the backward images of CEFAs under string functions,
where each cost register (integer variable) might be split into several ones, thus
extending but still in the same flavour as OSTRICH for string constraints with-
out the integer data type [14]. Such an approach is able to treat a wide range of
string functions in a generic, and yet simple, way. To the best of our knowledge,
the class of string constraints considered in this paper is currently one of the
most expressive string theories involving the integer data type known to enjoy
a decision procedure.
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We implement the decision procedure based on the recent OSTRICH solver
[14], resulting in OSTRICH+. We perform experiments on a wide range of bench-
mark suites, including those where both replace/replaceAll/finite transducers and
length/indexOf/substring occur, as well as the well-known benchmarks Kaluza
and PyEx. The results show that 1) OSTRICH+ so far is the only string con-
straint solver capable of dealing with finite transducers and integer constraints,
and 2) its overall performance is comparable with the best state-of-the-art string
constraint solvers (e.g. CVC4 and Z3-Trau) which are short of completeness
guarantees.

The rest of the paper is structured as follows: Sect. 2 introduces the prelim-
inaries. Section 3 defines the class of string-manipulating programs with inte-
ger data type. Section 4 presents the decision procedure. Section 5 presents
the benchmarks and experiments for the evaluation. The paper is concluded
in Sect. 6. Missing proofs, implementation details and further examples can be
found in the full version [13].

2 Preliminaries

We write N and Z for the sets of natural and integer numbers, respectively. For
n ∈ N with n ≥ 1, [n] denotes {1, . . . , n}; for m,n ∈ N with m ≤ n, [m,n]
denotes {i ∈ N | m ≤ i ≤ n}. Throughout the paper, Σ is a finite alphabet,
ranged over by a, b, . . ..
Strings, Languages, and Transductions. A string over Σ is a (possibly empty)
sequence of elements from Σ, denoted by u, v, w, . . .. An empty string is denoted
by ε. We write Σ∗ (resp., Σ+) for the set of all (resp. nonempty) strings over
Σ. For a string u, we use |u| to denote the number of letters in u. In particular,
|ε| = 0. Moreover, for a ∈ Σ, let |u|a denote the number of occurrences of a in
u. Assume u = a0 · · · an−1 is nonempty and i < j ∈ [0, n − 1]. We let u[i] denote
ai and u[i, j] for the substring ai · · · aj .

Let u, v be two strings. We use u · v to denote the concatenation of u and v.
The string u is said to be a prefix of v if v = u ·v′ for some string v′. In addition,
if u �= v, then u is said to be a strict prefix of v. If v = u · v′ for some string
v′, then we use u−1v to denote v′. In particular, ε−1v = v. If u = a0 · · · an−1 is
nonempty, then we use u(r) to denote the reverse of u, that is, u(r) = an−1 · · · a0.

A transduction over Σ is a binary relation over Σ∗, namely, a subset of Σ∗×Σ∗.
We will use T1, T2, . . . to denote transductions. For two transductions T1 and T2, we
will use T1 ·T2 to denote the composition of T1 and T2, namely, T1 ·T2 = {(u,w) ∈
Σ∗ × Σ∗ | there exists v ∈ Σ∗ s.t. (u, v) ∈ T1 and (v, w) ∈ T2}.
Recognisable Relations. We assume familiarity with standard regular language.
Recall that a regular language L can be represented by a regular expression
e ∈ RegExp whereby we usually write L = L(e).

Intuitively, a recognisable relation is simply a finite union of Cartesian prod-
ucts of regular languages. Formally, an r-ary relation R ⊆ Σ∗ × · · · × Σ∗

is recognisable if R =
⋃n

i=1 L
(i)
1 × · · · × L

(i)
r where L

(i)
j is regular for each
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j ∈ [r]. A representation of a recognisable relation R =
⋃n

i=1 L
(i)
1 × · · · × L

(i)
r

is (A(i)
1 , . . . ,A(i)

r )1≤i≤n such that each A(i)
j is an NFA with L (A(i)

j ) = L
(i)
j .

The tuples (A(i)
1 , . . . ,A(i)

r ) are called the disjuncts of the representation and the
NFAs A(i)

j are called the atoms of the representation.
Automata Models. A (nondeterministic) finite automaton (NFA) is a tuple A =
(Q,Σ, δ, I, F ), where Q is a finite set of states, Σ is a finite alphabet, δ ⊆
Q × Σ × Q is the transition relation, I, F ⊆ Q are the set of initial and final
states respectively. For readability, we write a transition (q, a, q′) ∈ δ as q

a−→
δ

q′

(or simply q
a−→ q′). The size of an NFA A, denoted by |A|, is defined as the

number of transitions of A. A run of A on a string w = a1 · · · an is a sequence of
transitions q0

a1−→ q1 · · · qn−1
an−−→ qn with q0 ∈ I. The run is accepting if qn ∈ F .

A string w is accepted by an NFA A if there is an accepting run of A on w. In
particular, the empty string ε is accepted by A if I ∩F �= ∅. The language of A,
denoted by L (A), is the set of strings accepted by A. An NFA A is said to be
deterministic if I is a singleton and, for every q ∈ Q and a ∈ Σ, there is at most
one state q′ ∈ Q such that (q, a, q′) ∈ δ. It is well-known that finite automata
capture regular languages precisely.

A nondeterministic finite transducer (NFT) T is an extension of NFA with
outputs. Formally, an NFT T is a tuple (Q,Σ, δ, I, F ), where Q,Σ, I, F are as in
NFA and the transition relation δ is a finite subset of Q×Σ ×Q×Σ∗. Similarly
to NFA, for readability, we write a transition (q, a, q′, u) ∈ δ as q

a,u−−→
δ

q′ or

q
a,u−−→ q′. The size of an NFT T , denoted by |T |, is defined as the sum of

the sizes of the transitions of T , where the size of a transition q
a,u−−→ q′ is

defined as |u| + 3. A run of T over a string w = a1 · · · an is a sequence of
transitions q0

a1,u1−−−→ q1 · · · qn−1
an,un−−−−→ qn with q0 ∈ I. The run is accepting if

qn ∈ F . The string u1 · · · un is called the output of the run. The transduction
defined by T , denoted by T (T ), is the set of string pairs (w, u) such that
there is an accepting run of T on w, with the output u. An NFT T is said
to be deterministic if I is a singleton, and, for every q ∈ Q and a ∈ Σ there
is at most one pair (q′, u) ∈ Q × Σ∗ such that (q, a, q′, u) ∈ δ. In this paper,
we are primarily interested in functional finite transducers (FFT), i.e., finite
transducers that define functions instead of relations. (For instance, deterministic
finite transducers are always functional.)

We will also use standard quantifier-free/existential linear integer arithmetic
(LIA) formulae, which are typically ranged over by φ, ϕ, etc.

3 String-Manipulating Programs with Integer Data Type

In this paper, we consider logics involving two data-types, i.e., the string data-
type and the integer data-type. As a convention, u, v, . . . denote string constants,
c, d, . . . denote integer constants, x, y, . . . denote string variables, and i, j, . . .
denote integer variables.
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We consider symbolic execution of string-manipulating programs with
numeric conditions (abbreviated as SLint), defined by the following rules,

S ::= x := y · z | x := replaceAlle,u(y) | x := reverse(y) | x := T (y) |
x := substring(y, t1, t2) | assert (ϕ) | S;S,

ϕ ::= x ∈ A | t1 o t2 | ϕ ∨ ϕ | ϕ ∧ ϕ,

where e is a regular expression over Σ, u ∈ Σ∗, T is an FFT, A is an NFA,
o ∈ {=, �=,≥,≤, >,<}, and t1, t2 are integer terms defined by the following rules,

t ::= i | c | length(x) | indexOfv(x, i) | ct | t + t, where c ∈ Z, v ∈ Σ+.

We require that the string-manipulating programs are in single static assign-
ment (SSA) form. Note that SSA form imposes restrictions only on the assign-
ment statements, but not on the assertions. A string variable x in an SLint

program S is called an input string variable of S if it does not appear on the
left-hand side of the assignment statements of S. A variable in S is called an
input variable if it is either an input string variable or an integer variable.

Semantics. The semantics of SLint is explained as follows.

– The assignment x := y · z denotes that x is the concatenation of two strings
y and z.

– The assignment x := replaceAlle,u(y) denotes that x is the string obtained
by replacing all occurrences of e in y with u, where the leftmost and
longest matching of e is used. For instance, replaceAll(ab)+,c(aababaab) =
ac · replaceAll(ab)+,c(aab) = acac, since the leftmost and longest matching
of (ab)+ in aababaab is abab. Here we require that the language defined by e
does not contain the empty string, in order to avoid the troublesome definition
of the semantics of the matching of the empty string. The formal semantics
of the replaceAll function can be found in [12].

– The assignment x := reverse(y) denotes that x is the reverse of y.
– The assignment x := T (y) denotes that (y, x) ∈ T (T ).
– The assignment x := substring(y, t1, t2) denotes that x is equal to the return

value of substring(y, t1, t2), where

substring(y, t1, t2) =

{
ε if t1 < 0 ∨ t1 ≥ |y| ∨ t2 = 0

y[t1, min{t1 + t2 − 1, |y| − 1}] o/w

For instance, substring(abaab,−1, 1) = ε, substring(abaab, 3, 0) = ε, substring
(abaab, 3, 2) = ab, and substring(abaab, 3, 3) = ab.

– The conditional statement assert (x ∈ A) denotes that x belongs to L (A).
– The conditional statement assert (t1 o t2) denotes that the value of t1 is equal

to (not equal to, . . . ) that of t2, if o ∈ {=, �=,≥, >,≤, <}.
– The integer term length(x) denotes the length of x.
– The function indexOfv(x, i) returns the starting position of the first occur-

rence of v in x after the position i, if such an occurrence exists, and −1
otherwise. Note that if i < 0, then indexOfv(x, i) returns indexOfv(x, 0),
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and if i ≥ length(x), then indexOfv(x, i) returns −1. For instance,
indexOfAb(aaba,−1) = 1, indexOfAb(aaba, 1) = 1, indexOfAb(aaba, 2) = −1,
and indexOfAb(aaba, 4) = −1.

Path Feasibility Problem. Given an SLint program S, decide whether there
are valuations of the input variables so that S can execute to the end.

4 Decision Procedures for Path Feasibility

In this section, we present a decision procedure for the path feasibility problem
of SLint. A distinguished feature of the decision procedure is that it conducts
backward computation which is lazy and can be done in a modular way. To
support this, we extend a regular language with quantitative information of
the strings in the language, giving rise to cost-enriched regular languages and
corresponding finite automata (Sect. 4.1). The crux of the decision procedure is
thus to show that the pre-images of cost-enriched regular languages under the
string operations in SLint (i.e., concatenation ·, replaceAlle,u, reverse, FFTs T ,
and substring) are representable by so called cost-enriched recognisable relations
(Sect. 4.2). The overall decision procedure is presented in Sect. 4.3, supplied by
additional complexity analysis.

4.1 Cost-Enriched Regular Languages and Recognisable Relations

Let k ∈ N with k > 0. A k-cost-enriched string is (w, (n1, · · · , nk)) where w
is a string and ni ∈ Z for all i ∈ [k]. A k-cost-enriched language L is a subset
of Σ∗ × Z

k. For our purpose, we identify a “regular” fragment of cost-enriched
languages as follows.

Definition 1 (Cost-enriched regular languages). Let k ∈ N with k > 0. A
k-cost-enriched language is regular (abbreviated as CERL) if it can be accepted
by a cost-enriched finite automaton.

A cost-enriched finite automaton (CEFA) A is a tuple (Q,Σ,R, δ, I, F ) where

– Q,Σ, I, F are defined as in NFAs,
– R = (r1, · · · , rk) is a vector of (mutually distinct) cost registers,
– δ is the transition relation which is a finite set of tuples (q, a, q′, η) where

q, q′ ∈ Q, a ∈ Σ, and η : R → Z is a cost register update function.
For convenience, we usually write (q, a, q′, η) ∈ Δ as q

a,η−−→ q′.

A run of A on a k-cost-enriched string (a1 · · · am, (n1, · · · , nk)) is a transition
sequence q0

a1,η1−−−→ q1 · · · qm−1
am,ηm−−−−→ qm such that q0 ∈ I and ni =

∑

1≤j≤m

ηj(ri)

for each i ∈ [k] (Note that the initial values of cost registers are zero). The run
is accepting if qm ∈ F . A k-cost-enriched string (w, (n1, · · · , nk)) is accepted by
A if there is an accepting run of A on (w, (n1, · · · , nk)). In particular, (ε, n) is
accepted by A if n = 0 and I ∩ F �= ∅. The k-cost-enriched language defined by
A, denoted by L (A), is the set of k-cost-enriched strings accepted by A.
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The size of a CEFA A = (Q,Σ,R, δ, I, F ), denoted by |A|, is defined as the
sum of the sizes of its transitions, where the size of each transition (q, a, q′, η) is∑

r∈R

�log2(|η(r)|)
+3. Note here the integer constants in A are encoded in binary.

Remark 1. CEFAs can be seen as a variant of Cost Register Automata [4], by
admitting nondeterminism and discarding partial final cost functions. CEFAs
are also closely related to monotonic counter machines [21]. The main difference
is that CEFAs discard guards in transitions and allow binary-encoded integers in
cost updates, while monotonic counter machines allow guards in transitions but
restrict the cost updates to being monotonic and unary, i.e. 0, 1 only. Moreover,
we explicitly define CEFAs as language acceptors for cost-enriched languages.

Example 1 (CEFA for length). The string function length can be captured by
CEFAs. For any NFA A = (Q,Σ, δ, I, F ), it is not difficult to see that the cost-
enriched language {(w, length(w)) | w ∈ L (A)} is accepted by a CEFA, i.e.,
(Q,Σ, (r1), δ′, I, F ) such that for each (q, a, q′) ∈ δ, we let (q, a, q′, η) ∈ δ′, where
η(r1) = 1.

For later use, we identify a special Alen = ({q0}, Σ, (r1), {(q0, a, q0, η) |
η(r1) = 1}, {q0}, {q0}). In other words, Alen accepts {(w, length(w)) | w ∈ Σ∗}.

We can show that the function indexOfv(·, ·) can be captured by a CEFA
as well, in the sense that, for any NFA A and constant string v, we can
construct a CEFA AindexOfv accepting {(w, (n, indexOfv(w, n))) | w ∈ L (A),
n ≤ indexOfv(w, n) < |w|}. The construction is slightly technical and can be
found in the full version [13].

Note that AindexOfv does not model the corner cases in the semantics of
indexOfv, for instance, indexOfv(w, n) = −1 if v does not occur after the position
n in w.

Given two CEFAs A1 = (Q1, Σ,R1, δ1, I1, F1) and A2 = (Q2, Σ, δ2, R2,
I2, F2) with R1 ∩ R2 = ∅, the product of A1 and A2, denoted by A1 × A2,
is defined as (Q1 × Q2, Σ,R1 ∪ R2, δ, I1 × I2, F1 × F2), where δ comprises the
tuples ((q1, q2), σ, (q′

1, q
′
2), η) such that (q1, σ, q′

1, η1) ∈ δ1, (q2, σ, q′
2, η2) ∈ δ2, and

η = η1 ∪ η2.
For a CEFA A, we use R(A) to denote the vector of cost registers occurring

in A. Suppose A is CEFA with R(A) = (r1, · · · , rk) and i = (i1, · · · , ik) is a
vector of mutually distinct integer variables such that R(A) ∩ i = ∅. We use
A[i/R(A)] to denote the CEFA obtained from A by simultaneously replacing
rj with ij for j ∈ [k].

Definition 2 (Cost-enriched recognisable relations). Let (k1, · · · , kl) ∈ N
l

with kj > 0 for every j ∈ [l]. A cost-enriched recognisable relation (CERR)
R ⊆ (Σ∗×Z

k1)×· · ·×(Σ∗×Z
kl) is a finite union of products of CERLs. Formally,

R =
n⋃

i=1

Li,1 × · · · × Li,l, where for every j ∈ [l], Li,j ⊆ Σ∗ × Z
kj is a CERL.

A CEFA representation of R is a collection of CEFA tuples (Ai,1, · · · ,Ai,l)i∈[n]

such that L (Ai,j) = Li,j for every i ∈ [n] and j ∈ [l].
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4.2 Pre-images of CERLs Under String Operations

To unify the presentation, we consider string functions f : (Σ∗ × Z
k1) × · · · ×

(Σ∗ × Z
kl) → Σ∗. (If there is no integer input parameter, then k1, · · · , kl are

zero.)

Definition 3 (Cost-enriched pre-images of CERLs). Suppose that f :
(Σ∗ × Z

k1) × · · · × (Σ∗ × Z
kl) → Σ∗ is a string function, L ⊆ Σ∗ × Z

k0 is a
CERL defined by a CEFA A = (Q,Σ,R, δ, I, F ) with R = (r1, · · · , rk0). Then
the R-cost-enriched pre-image of L under f , denoted by f−1

R (L), is a pair (R, t)
such that

– R ⊆ (Σ∗ × Z
k1+k0) × · · · × (Σ∗ × Z

kl+k0);
– t = (t1, · · · , tk0) is a vector of linear integer terms where for each i ∈ [k0],

ti is a term whose variables are from
{

r
(1)
i , · · · , r

(l)
i

}
which are fresh cost

registers and are disjoint from R in A;
– L is equal to the language comprising the k0-cost-enriched strings

(
w0, t1

[
d
(1)
1 /r

(1)
1 , · · · , d

(l)
1 /r

(l)
1

]
, · · · , tk0

[
d
(1)
k0

/r
(1)
k0

, · · · , d
(l)
k0

/r
(l)
k0

])
,

such that

w0 = f ((w1, c1), · · · , (wl, cl)) for some ((w1, (c1,d1)), · · · , (wl, (cl ,dl))) ∈ R,

where cj ∈ Z
kj , dj = (d(j)1 , · · · , d

(j)
k0

) ∈ Z
k0 for j ∈ [l].

The R-cost-enriched pre-image of L under f , say f−1
R (L) = (R, t), is said to be

CERR-definable if R is a CERR.

Definition 3 is essentially a semantic definition of the pre-images. For the
decision procedure, one desires an effective representation of a CERR-definable
f−1

R (L) = (R, t) in terms of CEFAs. Namely, a CEFA representation of (R, t)

(where tj is over
{

r
(1)
j , · · · , r

(l)
j

}
for j ∈ [k0]) is a tuple ((Ai,1, · · · ,Ai,l)i∈[n], t)

such that (Ai,1, · · · ,Ai,l)i∈[n] is a CEFA representation of R, where R(Ai,j) =(
r′
j,1, · · · , r′

j,kj
, r

(j)
1 , · · · , r

(j)
k0

)
for each i ∈ [n] and j ∈ [l]. (The cost registers

r′
1,1, · · · , r′

1,k1
, · · · , r′

l,1, · · · , r′
l,kl

are mutually distinct and freshly introduced.)

Example 2 (substring−1
R (L)). Let Σ = {a} and L = {(w, |w|) | w ∈ L ((aa)∗)}.

Evidently L is a CERL defined by a CEFA A = (Q,Σ,R, δ, {q0}, {q0}) with Q =
{q0, q1}, R = (r1) and δ = {(q0, a, q1), (q1, a, q0)}. Since substring is from Σ∗ ×Z

2

to Σ∗, substring−1
R (L), the R-cost-enriched pre-image of L under substring, is the

pair (R, t), where t = r
(1)
1 (note that in this case l = 1, k0 = 1, and k1 = 2) and

R = {(w, n1, n2, n2) | w ∈ L (a∗), n1 ≥ 0, n2 ≥ 0, n1 + n2 ≤ |w|, n2 is even},

which is represented by (A′, t) such that A′ = (Q′, Σ,R′, δ′, I ′, F ′), where
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– Q′ = Q × {p0, p1, p2}, (Intuitively, p0, p1, and p2 denote that the current
position is before the starting position, between the starting position and
ending position, and after the ending position of the substring respectively.)

– R′ =
(
r′
1,1, r

′
1,2, r

(1)
1

)
,

– I ′ = {(q0, p0)}, F ′ = {(q0, p2), (q0, p0)} (where (q0, p0) is used to accept the
3-cost-enriched strings (w, n1, 0, 0) with 0 ≤ n1 ≤ |w|), and

– δ′ is
{

(q0, p0)
a,η1−−→ (q0, p0), (q0, p0)

a,η2−−→ (q1, p1), (q1, p1)
a,η2−−→ (q0, p1),

(q0, p1)
a,η2−−→ (q1, p1), (q1, p1)

a,η2−−→ (q0, p2), (q0, p2)
a,η3−−→ (q0, p2)

}

,

where η1(r′
1,1) = 1, η1(r′

1,2) = 0, η1(r
(1)
1 ) = 0, η2(r′

1,1) = 0, η2(r′
1,2) = 1, and

η2(r
(1)
1 ) = 1, η3(r′

1,1) = 0, η3(r′
1,2) = 0, and η3(r

(1)
1 ) = 0.

Therefore, substring−1
R (L) is CERR-definable.

It turns out that for each string function f in the assignment statements of
SLint, the cost-enriched pre-images of CERLs under f are CERR-definable.

Proposition 1. Let L be a CERL defined by a CEFA A = (Q,Σ,R, δ, I, F ).
Then for each string function f ranging over ·, replaceAlle,u, reverse, FFTs T ,
and substring, f−1

R (L) is CERR-definable. In addition,

– a CEFA representation of ·−1
R (L) can be computed in time O(|A|2),

– a CEFA representation of reverse−1
R (L) (resp. substring−1

R (L)) can be com-
puted in time O(|A|),

– a CEFA representation of (T (T ))−1
R (L) can be computed in time polynomial

in |A| and exponential in |T |,
– a CEFA representation of (replaceAlle,u)−1

R (L) can be computed in time poly-
nomial in |A| and exponential in |e| and |u|.
The proof of Proposition 1 is given in the full version [13].

4.3 The Decision Procedure

Let S be an SLint program. Without loss of generality, we assume that for every
occurrence of assignments of the form y := substring(x, t1, t2), it holds that t1
and t2 are integer variables. This is not really a restriction, since, for instance,
if in y := substring(x, t1, t2), neither t1 nor t2 is an integer variable, then we
introduce fresh integer variables i and j, replace t1, t2 by i, j respectively, and
add assert (i = t1) ; assert (j = t2) in S. We present a decision procedure for the
path feasibility problem of S which is divided into five steps.

Step I: Reducing to atomic assertions.
Note first that in our language, each assertion is a positive Boolean combina-
tion of atomic formulas of the form x ∈ A or t1 o t2 (cf. Sect. 3). Nondeter-
ministically choose, for each assertion assert (ϕ) of S, a set of atomic formulas
Φϕ = {α1, · · · , αn} such that ϕ holds when atomic formulas in Φϕ are true.
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Then each assertion assert (ϕ) in S with Φϕ = {α1, · · · , αn} is replaced by
assert (α1) ; · · · ; assert (αn), and thus S constrains atomic assertions only.

Step II: Dealing with the case splits in the semantics of indexOfv and
substring.
For each integer term of the form indexOfv(x, i) in S, nondeterministically choose
one of the following five options (which correspond to the semantics of indexOfv
in Sect. 3).

(1) Add assert (i < 0) to S, and replace indexOfv(x, i) with indexOfv(x, 0) in S.
(2) Add assert (i < 0) ; assert (x ∈ AΣ∗vΣ∗) to S; replace indexOfv(x, i) with −1

in S.
(3) Add assert (i ≥ length(x)) to S, and replace indexOfv(x, i) with −1 in S.
(4) Add assert (i ≥ 0) ; assert (i < length(x)) to S.
(5) Add

assert (i ≥ 0) ; assert (i < length(x)) ; assert (j = length(x) − i) ;
y := substring(x, i, j); assert (y ∈ AΣ∗vΣ∗)

to S, where y is a fresh string variable, j is a fresh integer variable, and
AΣ∗vΣ∗ is an NFA defining the language {w ∈ Σ∗ | v does not occur
as a substring in w}. Replace indexOfv(x, i) with −1 in S.

For each assignment y := substring(x, i, j), nondeterministically choose one
of the following three options (which correspond to the semantics of substring in
Sect. 3).

(1) Add the statements assert (i ≥ 0) ; assert (i + j ≤ length(x)) to S.
(2) Add the statements assert (i ≥ 0) ; assert (i ≤ length(x)) ; assert (i + j >

length(x)); assert (i′ = length(x) − i) to S, and replace y := substring(x, i, j)
with y := substring(x, i, i′), where i′ is a fresh integer variable.

(3) Add the statement assert (i < 0) ; assert (y ∈ Aε) to S, and remove y :=
substring(x, i, j) from S, where Aε is the NFA defining the language {ε}.

Step III: Removing length and indexOf.
For each term length(x) in S, we introduce a fresh integer variable i, replace
every occurrence of length(x) by i, and add the statement assert (x ∈ Alen[i/r1])
to S. (See Example 1 for the definition of Alen.)

For each term indexOfv(x, i) occurring in S, introduce two fresh integer vari-
ables i1 and i2, replace every occurrence of indexOfv(x, i) by i2, and add the
statements assert (I = i1) ; assert (x ∈ AindexOfv [i1/r1, i2/r2]) to S.

Step IV: Removing the assignment statements backwards.
Repeat the following procedure until S contains no assignment statements.

Suppose y := f(x1, i1, · · · , xl, il) is the last assignment of S, where
f : (Σ∗ × Z

k1) × · · · × (Σ∗ × Z
kl) → Σ∗ is a string function and

ij = (ij,1, · · · , ij,kj
) for each j ∈ [l].
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Let {A1, · · · ,As} be the set of all CEFAs such that assert (y ∈ Aj)
occurs in S for every j ∈ [s]. Let j ∈ [s] and R(Aj) = (rj,1, · · · , rj,�j ).
Then from Proposition 1, a CEFA representation of f−1

R(Aj)
(L (Aj)), say

((
B(1)

j,j′ , · · · ,B(l)
j,j′

)

j′∈[mj ]
, t

)

, can be effectively computed from A and f ,

where we write

R
(
B(j′′)

j,j′

)
=

(
(r′)(j

′′,1)
j , · · · , (r′)

(j′′,kj′′ )
j , r

(j′′)
j,1 , · · · , r

(j′′)
j,�j

)

for each j′ ∈ [mj ] and j′′ ∈ [l], and t = (t1, · · · , t�j ). Note that the cost reg-
isters (r′)(1,1)

j , · · · , (r′)(1,k1)
j , · · · , (r′)(l,1)j , · · · , (r′)(l,kl)

j , r
(1)
j,1 , · · · , r

(1)
j,�j

, · · · ,

r
(l)
j,1, · · · , r

(l)
j,�j

are mutually distinct and freshly introduced, moreover,

R
(
B(j′′)

j,j′
1

)
= R

(
B(j′′)

j,j′
2

)
for distinct j′

1, j
′
2 ∈ [mj ].

Remove y := f(x1, i1, · · · , xl, il), as well as all the statements
assert (y ∈ A1), · · · , assert (y ∈ As) from S. For every j ∈ [s], nondeter-
ministically choose j′ ∈ [mj ], and add the following statements to S,

assert
(
x1 ∈ B(1)

j,j′

)
; · · · ; assert

(
xl ∈ B(l)

j,j′

)
;Sj,j′,i1,··· ,il ;Sj,t

where

Sj,j′,i1,··· ,il ≡ assert
(
i1,1 = (r′)(1,1)

j,j′

)
; · · · ; assert

(
i1,k1 = (r′)(1,k1)

j,j′

)
;

· · ·
assert

(
il,1 = (r′)(l,1)j,j′

)
; · · · ; assert

(
il,kl

= (r′)(l,kl)
j,j′

)

and
Sj,t ≡ assert (rj,1 = t1) ; · · · , assert

(
rj,�j = t�j

)
.

Step V: Final satisfiability checking.
In this step, S contains no assignment statements and only assertions of the form
assert (x ∈ A) and assert (t1 o t2) where A are CEFAs and t1, t2 are linear integer
terms. Let X denote the set of string variables occurring in S. For each x ∈ X,
let Λx = {A1

x, · · · ,Asx
x } denote the set of CEFAs A such that assert (x ∈ A)

appears in S. Moreover, let φ denote the conjunction of all the LIA formulas
t1 o t2 occurring in S. It is straightforward to observe that φ is over R′ =⋃

x∈X,j∈[sx]
R(Aj

x). Then the path feasibility of S is reduced to the satisfiability
problem of LIA formulas w.r.t. CEFAs (abbreviated as SATCEFA[LIA] problem)
which is defined as

deciding whether φ is satisfiable w.r.t. (Λx)x∈X , namely, whether there
are an assignment function θ : R′ → Z and strings (wx)x∈X such that
φ[θ(R′)/R′] holds and (wx, θ(R(Aj

x))) ∈ L (Aj
x) for every x ∈ X and

j ∈ [sx].

This SATCEFA[LIA] problem is decidable and pspace-complete; The proof can
be found in the full version [13].
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Proposition 2. SATCEFA[LIA] is pspace-complete.

An example to illustrate the decision procedure can be found in the full
version [13].

Complexity Analysis of the Decision Procedure. Step I and Step II can be done
in nondeterministic linear time. Step III can be done in linear time. In Step
IV, for each input string variable x in S, at most exponentially many CEFAs
can be generated for x, each of which is of at most exponential size. Therefore,
Step IV can be done in nondeterministic exponential space. By Proposition 2,
Step V can be done in exponential space. Therefore, we conclude that the path
feasibility problem of SLint programs is in nexpspace, thus in expspace by
Savitch’s theorem [23].

Remark 2. In this paper, we focus on functional finite transducers (cf. Sect. 2).
Our decision procedure is applicable to general finite transducers as well with
minor adaptation. However, the expspace complexity upper-bound does not hold
any more, because the distributive property f−1(L1 ∩ L2) = f−1(L1) ∩ f−1(L2)
for regular languages L1, L2 only holds for functional finite transducers f .

5 Evaluations

We have implemented the decision procedure presented in the preceding section
based on the recent string constraint solver OSTRICH [14], resulting in a new
solver OSTRICH+. OSTRICH is written in Scala and based on the SMT solver
Princess [25]. OSTRICH+ reuses the parser of Princess, but replaces the NFAs
from OSTRICH with CEFAs. Correspondingly, in OSTRICH+, the pre-image
computation for concatenation, replaceAll, reverse, and finite transducers is reim-
plemented, and a new pre-image operator for substring is added. OSTRICH+
also implements CEFA constructions for length and indexOf. More details can
be found in the full version [13].

We have compared OSTRICH+ with some of the state-of-the-art solvers on
a wide range of benchmarks. We discuss the benchmarks in Sect. 5.1 and present
the experimental results in Sect. 5.2.

5.1 Benchmarks

Our evaluation focuses on problems that combine string with integer constraints.
To this end, we consider the following four sets of benchmarks, all in SMT-LIB 2
format.

Transducer+ is derived from the Transducer benchmark suite of
OSTRICH [14]. The Transducer suite involves seven transducers: toUpper
(replacing all lowercase letters with their uppercase ones) and its dual toLower,
htmlEscape and its dual htmlUnescape, escapeString, addslashes, and trim.
These transducers are collected from Stranger [33] and SLOTH [18]. Initially
none of the benchmarks involved integers. In Transducer+, we encode four
security-relevant properties of transducers [19], with the help of the func-
tions charAt and length:
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– idempotence: given T , whether ∀x. T (T (x)) = T (x);
– duality: given T1 and T2, whether ∀x. T2(T1(x)) = x;
– commutativity: given T1 and T2, whether ∀x. T2(T1(x)) = T1(T2(x));
– equivalence: given T1 and T2, whether ∀x. T1(x) = T2(x).

Table 1. Experimental results on different benchmark suites. ‘–’ means that the tool
is not applicable to the benchmark suite, and ‘inconclusive’ means that a tool gave up,
timed out, or crashed.

Benchmark Output CVC4 Z3-str3 Z3-Trau OSTRICH(1) OSTRICH(2) OSTRICH+

Transducer+

Total: 94

sat − − − 0 0 84

unsat − − − 1 1 4

inconcl. − − − 93 93 6

SLOG+(replaceall)

Total: 120

sat 104 − − 0 0 98

unsat 11 − − 7 5 12

inconcl. 5 − − 113 115 10

SLOG+(replace)

Total: 3,391

sat 1,309 878 − 0 169 584

unsat 2,082 2,066 − 2,079 2,075 2,082

inconcl. 0 447 − 1,312 1,147 725

PyEx-td

Total: 5,569

sat 4,224 4,068 4,266 68 96 4,141

unsat 1,284 1,289 1,295 95 93 1,203

inconcl. 61 212 8 5,406 5,380 225

PyEx-z3

Total: 8,414

sat 6,346 6,040 7,003 76 100 5,489

unsat 1,358 1,370 1,394 61 53 1,239

inconcl. 710 1,004 17 8,277 8,261 1,686

PyEx-zz

Total: 11,438

sat 10,078 8,804 10,129 71 98 9,033

unsat 1,204 1,207 1,222 91 61 868

inconcl. 156 1,427 87 11,276 11,279 1,537

Kaluza

Total: 47,284

sat 35,264 33,438 34,769 23,397 28,522 27,962

unsat 12,014 11,799 12,014 10,445 10,445 9,058

inconcl. 6 2,047 501 13,442 8,317 10,264

Total: 76,310
solved 75,278 70,959 72,092 36,391 41,718 61,857

unsolved 1,032 5,351 4,218 39,919 34,592 14,453

For instance, we encode the non-idempotence of T into the path feasibility
of the SLint program y := T (x); z := T (y);Sy �=z, where y and z are two fresh
string variables, and Sy �=z is the SLint program encoding y �= z (see the full
version [13] for the details ). We also include in Transducer+ three instances
generated from a program to sanitize URLs against XSS attacks (see the full
version [13] for the details), where Ttrim is used. In total, we obtain 94 instances
for the Transducer+ suite.

SLOG+ is adapted from the SLOG benchmark suite [31], containing
3,511 instances about strings only. We obtain SLOG+ by choosing a string vari-
able x for each instance, and adding the statement assert (length(x) < 2indexOfA
(x, 0)) for some a ∈ Σ. As in [14], we split SLOG+ into SLOG+(replace)
and SLOG+(replaceall), comprising 3,391 and 120 instances respectively.
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In addition to the indexOf and length functions, the benchmarks use regular
constraints and concatenation; SLOG+(replace) also contains the replace
function (replacing the first occurrence), while SLOG+(replaceall) uses the
replaceAll function (replacing all occurrences).

PyEx [24] contains 25,421 instances derived by the PyEx tool, a sym-
bolic execution engine for Python programs. The PyEx suite was generated by
the CVC4 group from four popular Python packages: httplib2, pip, pymongo,
and requests. These instances use regular constraints, concatenation, length,
substring, and indexOf functions. Following [24], the PyEx suite is further divided
into three parts: PyEx-td, PyEx-z3 and PyEx-zz, comprising 5,569, 8,414 and
11,438 instances, respectively.

Kaluza [26] is the most well-known benchmark suite in literature, contain-
ing 47,284 instances with regular constraints, concatenation, and the length func-
tion. The 47,284 benchmarks include 28,032 satisfiable and 9,058 unsatisfiable
problems in SSA form.

5.2 Experiments

We compare OSTRICH+ to CVC4 [20], Z3-str3 [34], and Z3-Trau [9], as well
as two configurations of OSTRICH [14] with standard NFAs. The configuration
OSTRICH(1) is a direct implementation of the algorithm in [14], and does not
support integer functions. In OSTRICH(2), we integrated support for the length
function as in Norn [2], based on the computation of length abstractions of
regular languages, and handle indexOf, substring, and charAt via an encoding
to word equations. The experiments are executed on a computer with an Intel
Xeon Silver 4210 2.20 GHz and 2.19 GHz CPU (2-core) and 8 GB main memory,
running 64bit Ubuntu 18.04 LTS OS and Java 1.8. We use a timeout of 30 s
(wall-clock time), and report the number of satisfiable and unsatisfiable problems
solved by each of the systems. Table 1 summarises the experimental results. We
did not observe incorrect answers by any tool.

There are two additional state-of-the-art solvers Slent and Trau+ which were
not included in the evaluation. We exclude Slent [32] because it uses its own
input format laut, which is different from the SMT-LIB 2 format used for our
benchmarks; also, Transducer+ is beyond the scope of Slent. Trau+ [3] inte-
grates Trau with Sloth to deal with both finite transducers and integer con-
straints. We were unfortunately unable to obtain a working version of Trau+,
possibly because Trau requires two separate versions of Z3 to run. In addition,
the algorithm in [3] focuses on length-preserving transducers, which means that
Transducer+ is beyond the scope of Trau+.

OSTRICH+ and OSTRICH are the only tools applicable to the problems in
Transducer+. With a timeout of 30 s, OSTRICH+ can solve 88 of the bench-
marks, but this number rises to 94 when using a longer timeout of 600 s. Given
the complexity of those benchmarks, this is an encouraging result. OSTRICH
can only solve one of the benchmarks, because the encoding of charAt in the
benchmarks using equations almost always leads to problems that are not in
SSA form.
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On SLOG+(replaceall), OSTRICH+ and CVC4 are very close:
OSTRICH+ solves 98 satisfiable instances, slightly less than the 104 instances
solved by CVC4, while OSTRICH+ solves one more unsatisfiable instance than
CVC4 (12 versus 11). The suite is beyond the scope of Z3-str3 and Z3-Trau,
which do not support replaceAll.

On SLOG+(replace), OSTRICH+, CVC4, and Z3-str3 solve a similar
number of unsatisfiable problems, while CVC4 solves the largest number of sat-
isfiable instances (1,309). The suite is beyond the scope of Z3-Trau which does
not support replace.

On the three PyEx suites, Z3-Trau consistently solves the largest number of
instances by some margin. OSTRICH+ solves a similar number of instances as
Z3-str3. Interpreting the results, however, it has to be taken into account that
PyEx includes 1,334 instances that are not in SSA form, which are beyond the
scope of OSTRICH+.

The Kaluza problems can be solved most effectively by CVC4. OSTRICH+
can solve almost all of the around 80% of the benchmarks that are in SSA form,
however.

OSTRICH+ consistently outperforms OSTRICH(1) and OSTRICH(2) in
the evaluation, except for the Kaluza benchmarks. For OSTRICH(1), this is
expected because most benchmarks considered here contain integer functions.
For OSTRICH(2), it turns out that the encoding of indexOf, substring, and charAt
as word equations usually leads to problems that are not in SSA form, and there-
fore are beyond the scope of OSTRICH.

In summary, we observe that OSTRICH+ is competitive with other solvers,
while is able to handle benchmarks that are beyond the scope of the other tools
due to the combination of string functions (in particular transducers) and inte-
ger constraints. Interestingly, the experiments show that OSTRICH+, at least
in its current state, is better at solving unsatisfiable problems than satisfiable
problems; this might be an artefact of the use of nuXmv for analysing products
of CEFAs. We expect that further optimisation of our algorithm will lead to
additional performance improvements. For instance, a natural optimisation that
is to be included in our implementation is to use standard finite automata, as
opposed to CEFAs, for simpler problems such as the Kaluza benchmarks. Such
a combination of automata representations is mostly an engineering effort.

6 Conclusion

In this paper, we have proposed an expressive string constraint language which
can specify constraints on both strings and integers. We provided an automata-
theoretic decision procedure for the path feasibility problem of this language.
The decision procedure is simple, generic, and amenable to implementation,
giving rise to a new solver OSTRICH+. We have evaluated OSTRICH+ on
a wide range of existing and newly created benchmarks, and have obtained
very encouraging results. OSTRICH+ is shown to be the first solver which is
capable of tackling finite transducers and integer constraints with completeness
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guarantees. Meanwhile, it demonstrates competitive performance against some
of the best state-of-the-art string constraint solvers.
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Abstract. Actual causality is increasingly well understood. Recent for-
mal approaches, proposed by Halpern and Pearl, have made this concept
mature enough to be amenable to automated reasoning. Actual causality
is especially vital for building accountable, explainable systems. Among
other reasons, causality reasoning is computationally hard due to the
requirements of counterfactuality and the minimality of causes. Previous
approaches presented either inefficient or restricted, and domain-specific,
solutions to the problem of automating causality reasoning. In this paper,
we present a novel approach to formulate different notions of causal rea-
soning, over binary acyclic models, as optimization problems, based on
quantifiable notions within counterfactual computations. We contribute
and compare two compact, non-trivial, and sound integer linear pro-
gramming (ILP) and Maximum Satisfiability (MaxSAT) encodings to
check causality. Given a candidate cause, both approaches identify what
a minimal cause is. Also, we present an ILP encoding to infer causality
without requiring a candidate cause. We show that both notions are effi-
ciently automated. Using models with more than 8000 variables, checking
is computed in a matter of seconds, with MaxSAT outperforming ILP in
many cases. In contrast, inference is computed in a matter of minutes.

1 Introduction

Actual causality is the retrospective linking of effects to causes [13,30]. As part of
their cognition, humans reason about actual causality to explain particular past
events, to control future events, or to attribute moral responsibility and legal
liability [14]. Similar to humans, it is useful for systems in investigating security
protocols [21], safety accidents [22], software or hardware models [5,9,23], and
database queries [28]. More importantly, actual causality is central for enabling
social constructs such as accountability in Cyber-Physical systems [16,17,19], in
information systems [10], and explainability in artificial intelligence systems [29].
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Attempts to formalize a precise definition of an actual cause go back to the
eighteenth century when Hume [15] introduced counterfactual reasoning. Simply
put, counterfactual reasoning concludes that event A is a cause of event B if B
does not occur if A does not occur. However, this simple reasoning cannot be used
with interdependent, multi-factorial, and complex causes [24]. Recently, Halpern
and Pearl formalized HP–a seminal model-based definition of actual causality
that addresses many of the challenges facing naive counterfactual reasoning [13].

Because of its formal foundation, HP enables automated causality reasoning.
We distinguish two notions of reasoning: checking and inference. Checking refers
to verifying if a candidate cause is an actual cause of an effect, i.e., answering the
question “is �X a cause of ϕ?” Inference involves finding a cause without any can-
didates, i.e., answering the question “why ϕ?” Using HP, causality checking is,
in general, DP

1 -complete and NP -complete for singleton (one-event) causes [12];
the difference is due to a minimality requirement in the definition (details in
Sect. 2). Intuitively, inference is at least as hard. The complexity led to restricted
(e.g., singleton causes, single-equation models [28]) utilizations of HP (Sect. 5).
All these utilizations exploit domain-specificities (e.g., database repairs [28,33]
[6]), which hinders taking advantage of the available approximations for general
queries. In prior work, we proposed an approach to check causality in acyclic
models with binary variables based on the satisfiability problem (SAT) [18].
The approach required enumerating all the satisfying assignments of a formula
(ALL-SAT), which obviously is impacted by the solver’s performance [35]. Thus,
previous approaches fail to automate answering queries for larger models.

Large models of causal factors are likely to occur especially when generated
automatically from other sources for purposes of accountability and explainabil-
ity [16,17,29]. Further, models of real-world accidents are sufficiently large to
require efficient approaches. For instance, a model of the 2002 mid-air collision
in Germany consists of 95 factors [34] (discussed in [17]). Thus, in this paper, we
present a novel approach to formulate actual causality computations in binary
models as optimization problems. We show how to construct quantifiable notions
within counterfactual computations, and use them for checking and inference.

We encode our checking approach as integer linear programs (ILP), or
weighted MaxSAT formulae [25]. Both are well-suited alternatives for Boolean
optimization problems. However, MaxSAT has an inherent advantage with
binary propositional constraints [25]. On the other hand, ILP has an expressive
objective language that allows us to tackle the problem of causality inference as
a multi-objective program. Accordingly, we contribute an approach with three
encodings. The first two cover causality checking, and better they can determine
a minimal HP cause from a potentially non-minimal candidate cause; we refer to
this ability as semi-inference. The third encoding tackles causality inference. All
these encodings benefit from the rapid development in solving complex and large
(tens of thousands of variables and constraints) optimization problems [2,20].

We consider our work to be the first to provide an efficient solution to the
problem of checking and inferring HP causality, for a large class of models (binary
models) without any dependency on domain-specific technologies. We contribute:
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1.) A sound formulation of causality computations for acyclic binary models as
optimization problems, 2.) A Java library1 that implements the approaches. 3.)
An empirical evaluation, using models from multiple domains, of the efficiency
and scalability of the approaches in comparison with previous work.

2 Halpern-Pearl Definition of Actual Causality

HP uses variables to describe the world, and structural equations to define its
mechanics [30]. The variables are split into exogenous and endogenous. The val-
ues of the former, called a context �u, are governed by factors that are not part
of the modeled world (they represent the environment). The endogenous vari-
ables, in contrast, are determined by equations of exogenous and endogenous
variables. In this formulation, we look at causes within a specified universe of
discourse represented by the endogenous variables, while exogenous variables are
not considered to be part of a cause but rather as given information. An equation
represents the semantics of the dependency of the endogenous variable on other
variables. Similar to Halpern, we limit ourselves to acyclic models in which we
can compute a unique solution for the equations given a context �u, which we
refer to as actual evaluation of the model. A binary model (Boolean variables
only) is formalized in Definition 1.

Definition 1. [30] Binary Causal Model
A causal model is a tuple M = (U ,V,R,F), where

– U , V are sets of exogenous variables and endogenous variables respectively,
– R associates with Y ∈ U ∪ V a set of possible values R(Y ), i.e., {0, 1},
– F maps X ∈ V to a function FX : (×U∈UR(U))× (×Y ∈V\{X}R(Y )) → {0, 1}

Definition 1 makes precise the fact that FX determines the value of X, given
the values of all the other variables. We summarize the causality notations before
defining the cause in Definition 2. A primitive event is a formula of the form
X = x, for X ∈ V and x is a value ∈ {0, 1}. A sequence of variables X1, ...,Xn

is abbreviated as �X. Analogously, X1 = x1, ...,Xn = xn is abbreviated �X = �x.
ϕ is a Boolean combination of such events. (M,�u) |= X = x if the variable X
has value x in the unique solution to the equations in M given context �u. The
value of variable Y can be overwritten by a value y (known as an intervention)
writing Y ← y (analogously �Y ← �y for vectors). Then, a causal formula is of
the form [Y1 ← y1, ..., Yk ← yk]ϕ, where Y1, ..., Yk are variables in V that make
ϕ hold when they are set to y1, .., yk. We write (M,�u) |= ϕ if the causal formula
ϕ is true in M given �u. Lastly, (M,�u) |= [�Y ← �y]ϕ holds if we replace variable
equations’ in �Y by equations of the form Y = y denoted by (M�Y =�y, �u) |= ϕ [13].

Definition 2. Actual Cause [12]
�X = �x is an actual cause of ϕ in (M,�u) if the following three conditions hold:
1 https://github.com/amjadKhalifah/HP2SAT1.0/tree/hp-optimization-library.

https://github.com/amjadKhalifah/HP2SAT1.0/tree/hp-optimization-library
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AC1. (M,�u) |= ( �X = �x) and (M,�u) |= ϕ.
AC2. There is a set �W of variables in V and a setting �x′ of the variables in �X
such that if (M,�u) |= �W = �w, then (M,�u) |= [ �X ← �x′, �W ← �w]¬ϕ.
AC3.

−→
X is minimal: no non-empty subset of �X satisfies AC1 and AC2.

AC1 checks that the cause �X = �x and the effect ϕ occurred within the actual
evaluation of M given context �u, i.e., the cause is sufficient for the occurrence
of the effect. AC2 checks the counterfactual (necessary) relation between the
cause and effect. It holds if there exists a setting �x′ for the cause variables �X
different from the actual evaluation �x (in binary models such a setting is the
negation of the actual setting [18]), and another set of variables �W , referred to
as a contingency set, that we use to fix variables at their actual values, such
that ϕ does not occur. The contingency set �W is meant to deal with issues such
as preemption and redundancy. Preemption is a problematic situation where
multiple possible causes coincide (illustrated by an example below) [24]; thus a
naive counterfactual check cannot determine the cause [23]. AC3 checks that �X is
minimal in fulfilling the previous conditions. To check a cause, we need to think
of two worlds (variable assignments): the actual world with all the values known
to us, and the counterfactual one in which the cause and effect take on different
values. Two factors further complicate the search for this counterfactual world.
First, finding an arbitrary �W , such that AC2 holds which is exponential in the
worst case. Second, no (non-empty) subset of �X is sufficient for constructing
such a counterfactual world. Halpern shows that checking causality is in general
DP

1 -complete [1,12], i.e., checking AC1 is P , checking AC2 is NP -complete, and
checking AC3 is co−NP -complete. Complexity considerations for binary models
suggest a reduction to SAT or ILP [12]; in this paper, we show concrete ILP and
MaxSAT formulations to check, and an ILP formulation to infer a cause.

Example : Throwing rocks [24] is a problematic example from philosophy: Suzy
and Billy both throw a rock at a bottle that shatters if one of them hits. We
know Suzy’s rock hits the bottle slightly earlier than Billy’s and both are accu-
rate throwers. Halpern models this story using the endogenous variables ST,
BT for “Suzy/Billy throws”, with values 0 (the person does not throw) and 1
(s/he does), SH,BH for “Suzy/Billy hits”, and BS for “bottle shatters.” Two
exogenous variables STexo, BTexo are used to set the values. The equations:

– ST = STexo – BT = BTexo – SH = ST
– BH = BT ∧ ¬SH – BS = SH ∨ BH

Assuming a context (exogenous variables’ values) �U = �u: STexo = 1, BTexo =
1 (both actually threw), the actual evaluation of the model is: ST = 1, BT = 1,
BH = 0, SH = 1, and BS = 1. Assume we want to check whether ST = 1 is a
cause of BS = 1, i.e., is Suzy’s throw a cause for the bottle shattering? Obviously,
AC1 is fulfilled as both appear in the actual evaluation. As a candidate cause, we
set ST = 0 (for binary models a candidate cause is negated to check counterfac-
tuality; see Lemma 1 in [18]). A first attempt with �W = ∅ shows that AC2 does
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not hold. However, if we randomly let �W = {BH}, i.e., we replace the equation of
BH with BH = 0, then AC2 holds because (M,�u) |= [ST ← 0, BH ← 0]BS = 0,
and AC3 automatically holds since the cause is a singleton. Thus, ST = 1 is a
cause of BS = 1. Let us check if ST = 1 ∧ BT = 1 is a cause for BS = 1.
AC1 and AC2 hold (obviously if they both did not throw, the bottle would not
shatter with a �W = ∅) but AC3 does not. As we saw earlier, ST = 1 alone
satisfies AC2. Hence ST = 1 ∧ BT = 1 are not a cause.

As opposed to the all-or-nothing treatment of causality, Chockler and Halpern
added ([8], modified in [13]) a notion of responsibility to a cause. They introduced
a metric, degree of responsibility (dr), that “measures the minimal number of
changes needed to make ϕ counterfactually depend on X.”2 Definition 3 shows
a shortened version of dr [8,13], which we use for causality inference in our work.

Definition 3. The degree of responsibility of X = x w.r.t. a cause �X = �x for
ϕ, denoted dr(( �X = �x), (X = x), ϕ), is 0 if X = x is not in �X = �x; otherwise is
1/(| �W | + | �X|) given that | �W | is the smallest set of variables that satisfies AC2.

3 Approach

Given the triviality of AC1, we presented in prior work, a SAT-based approach
to check causality, focusing on AC2 [18]. The contribution was in how AC2 is
encoded into a formula F , so that an efficient conclusion of �W without iterating
over the power-set of all variables, is possible. Briefly, F described a counterfac-
tual world that incorporated (1) ¬ϕ, (2) a context �u (size n), (3) a setting �x′ for a
candidate cause, �X, and (4) a method to infer �W , while maintaining the seman-
tics of M . Because checking is done in hindsight, we have the actual evaluation
of the variables. Thus, the first three requirements are represented using literals.
The semantics of M , given by each function FVi

corresponding to Vi (according
to Definition 1), is expressed using an equivalence operator between a variable
and its function, i.e., Vi ↔ FVi

. This is not done for the cause variables because
they are represented by a negation. To account for �W , we add a disjunction to
the equivalence sub-formula with the positive or negative literal of Vi, according
to its actual evaluation (1 or 0). With this representation of each variable, we
check if such a counterfactual world is satisfiable, and hence AC2 holds.

By generalizing F , we can also check minimality (AC3). Assume we remove
the restriction on the cause variables �X, of only be negated literals (allowing
them to take on their original values also), and call the new formula G. Then
G might be satisfiable for the negated cause �X = �x′ as well as all the other
combinations of the cause set. Analyzing all the satisfying assignments of G
(All-SAT), allows us to check minimality. Specifically, if we find an assignment
such that at least one conjunct of �X = �x takes on a value that equals the one
2 Their idea is often motivated with an example of 11 voters that can vote for Suzy or

Billy. If Suzy wins 6–5, we can show that each Suzy voter is a cause of her winning. If
Suzy wins 11–0, then each subset of size six of the voters is a cause. The authors argue
that in 11–0 scenario, “a voter feels less responsible” compared to 6–5 situation.
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computed from its equation, it means that it is not a required part of the cause,
and hence, the cause is not minimal. In many situations, All-SAT is problematic
and decreases the performance, especially if G is satisfiable for a large number
of assignments [35]. Equation 1 shows the construction of G. Because Yi is the
variable form, and yi is the value, we use f(Yi = yi) to convert the variable to a
positive or a negative literal, i.e., Y or ¬Y .

G := ¬ϕ ∧
∧

i=1...n

f(Ui = ui) ∧
∧

i=1...m,�∃j•Xj=Vi

(Vi ↔ FVi ∨ f(Vi = vi)) (1)

F and G aid us in checking if a candidate cause �X is a minimal, counterfactual
cause of ϕ. If it is not, we cannot use them to find a minimal cause from within �X,
i.e., semi-inference. We, also, cannot use them to find a cause without requiring
a candidate cause, i.e., inference. To efficiently achieve such abilities, we present
a novel formulation of causal queries as optimization problems.

3.1 Checking and Semi-inference Queries as Optimization Problems

In this section, we focus on the computation of the minimality requirement in
causality checking. For that, we conceptualize a technique to check AC2 and
AC3 as one problem (AC1 is explicitly checked solely). The result of solving this
problem can then be interpreted to conclude AC2, �W , AC3, and, better, what
is a minimal subset of the cause if AC3 is violated (semi-inference). To compare
the efficiency, we formulate the problem as an integer program and a MaxSAT
formula. Both techniques solve the problem based on an objective function— a
function whose value is minimized or maximized among feasible alternatives.

To quantify an objective for a causal check, we introduce an integer variable
that we call the distance. Similar to the Hamming distance, it measures the dif-
ference between the cause values when ϕ holds true, i.e., actual world, and when
it holds false, i.e., the counterfactual world. As shown in Eq. 2, it is computed
by counting the cause variables whose values assigned by a solver (x′

i) is differ-
ent from their value under the given context (xi). As we shall see, the distance
is equivalent to the size of the (minimal) cause within our check of a possibly
non-minimal cause. As such, the distance must be greater than 0, since a cause
is non-empty, and less or equal to the size of �X (�), i.e., 1 ≤ distance ≤ �.

distance =
�∑

i=1

d(i) s.t d(i) =

{
1 − x′

i, xi = 1
x′

i, xi = 0
(2)

According to AC3, our objective function is then to minimize the distance; we
encode a causality check as an optimization problem that minimizes the number
of cause variables while satisfying the constraints for AC2 (counterfactuality and
�W ). In the following, we present how to derive these constraints for the ILP
formulation and the MaxSAT encoding. Then, we discuss how to interpret the
results to (semi-)infer a minimal cause from a possibly non-minimal cause.

ILP is an optimization program with integer variables and linear constraints
and objectives. To formulate such a program, we need three elements: decision
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variables, constraints, and objective(s). Our decision variables are, in addition
to the distance, the set of exogenous and endogenous variables from the model,
i.e., �U ∪ �V . Since we only consider binary variables, their values are bound to
be 0 or 1. Since ILP and SAT solvers can be used as complementary tools, the
translation from SAT to ILP is standard [26]. Therefore, we reuse formula G
(Eq. 1) to create the constraints. Constraints from G contain the a.) effect not
holding true, b.) the context, c.) each endogenous variable either follows the
model equation or the actual value, i.e., part of the set �W , d.) each element
in the cause set �X = �x is not constrained, i.e., its equation is removed. Trans-
forming these constraints (on the Conjunctive Normal Form (CNF) level) into
linear inequalities is straightforward; we have clauses that can be reduced to ILP
directly, e.g., express y = x1 ∨ x2 as 1 ≥ 2 ∗ y − x1 − x2 ≥ 0 [26]. In addition, we
add a constraint to calculate the distance according to Eq. 2.

MaxSAT. The maximum satisfiability problem (MaxSAT) is an optimization
variant of SAT [25]. In contrast to SAT, which aims to find a satisfying assign-
ment of all the clauses in a formula, MaxSAT aims to find an assignment that
maximizes the number of satisfied clauses. Thus, MaxSAT allows the potential
that some clauses are unsatisfied. In this paper, we use partial MaxSAT solving,
which allows specific clauses to be unsatisfied, referred to as soft clauses; con-
trary to the hard clauses that must be satisfied [25]. A soft clause can be assigned
a weight to represent the cost of not satisfying it. In essence, a weighted partial
MaxSAT problem is a minimization problem that minimizes the cost over all
solutions. Unlike ILP, the objective in MaxSAT is immutable. Thus, we need to
construct our formula in a way that mimics the concept of the distance.

As shown in Eq. 3, the MaxSAT encoding also uses G (shown in Eq. 1) as a
base. G embeds all the mandatory parts of any solution. Thus, we use the CNF
clauses of G as hard clauses. On the other hand, we need to append the cause
variables ( �X) as soft clauses (underlined in Eq. 3). Since the solver would min-
imize the cost of unsatisfying the ( �X) clauses, we represent each cause variable
as a literal according to its original value (when ϕ holds). Because this is already
in CNF, it is easier to assign weights. We assign 1 as a cost for unsatisfying each
cause variable’s clause, i.e., when Xi is negated in the (solved) counterfactual
world. Then, the overall cost of unsatisfying the underlined parts of the formula
is the count of the negated causes, i.e., the size of the minimal cause. Essen-
tially, this concept maps directly to the distance, which the MaxSAT solver will
minimize. In contrast to ILP, we cannot specify a lower bound on the MaxSAT
objective. Thus, we need to express the non-emptiness of a cause, as hard clauses.
A non-empty cause means that at least one cause variable Xj does not take its
original value, and does not follow its equation due to an intervention. The first
conjunction (after G) in Eq. 3 ensures the first requirement, while the second
corresponds to the second case.

Gmax := G ∧ ¬(
∧

i=1...�

f(Xi = xi)) ∧ ¬(
∧

i=1...�

Xi ↔ FXi)∧
∧

i=1...�

f(Xi = xi) (3)

Results. With the above, we illustrated the formulation of a causal checking
problem. We now discuss how to translate their results to a causal answer once
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Algorithm 1. Interpreting the Optimization Problem’s Results
Input: causal model M , context 〈U1, . . . , Un〉 = 〈u1, . . . , un〉, effect ϕ, candidate cause

〈X1, . . . , X�〉 = 〈x1, . . . , x�〉, evaluation 〈V1, . . . , Vm〉 = 〈v1, . . . , vm〉
1: function CheckCause(M, �U = �u, ϕ, �X = �x, �V = �v)
2: if 〈U1 = u1 . . . Un = un, V1 = v′

1 . . . Vm = v′
m〉 = solve(�C, objective) then

3: �Xmin := 〈X ′
1...X

′
d〉 s.t. ∀i∀j • (i �= j ⇒ X ′

i �= X ′
j) ∧ (X ′

i = Vj ⇔ v′
j �= vj)

4: �W := 〈W1...Ws〉 s.t. ∀i∀j • (i �= j ⇒ Wi �= Wj) ∧ (Wi = Vj ⇔ v′
j = vj)

5: return �Xmin, �W
6: else return infeasible (unsatisfiable)
7: end if
8: end function

they are solved; Algorithm 1 formalizes this. The evaluation, in the input, is a list
of the variables in M and their values under �u. Assuming �C is a representation
of the optimization problem (a set of linear constraints (without the objective),
or hard/soft clauses), then in Line 2, we solve this problem and process the
results in Lines 3–4. The feasibility (satisfiability) of the problem implies that
either �X or a non-empty subset of it is a minimal cause (fulfills AC2 and AC3).
If distance (cost returned by the MaxSAT solver) equals the size of �X, then
the whole candidate cause is minimal. Otherwise, to find a minimal cause �Xmin

(semi-inference), we choose the parts of �X that have different values between the
actual and the solved values (Line 3). To determine �W , in Line 4, we take the
variables whose solved values are the same as the actual evaluation (potentially
including �X variables). Obviously, this is not a minimal �W , which is not a
requirement for checking HP [18]. If the model is infeasible or unsatisfiable, then
HP for the given �X (checking) and its subsets (semi-inference) does not hold.

Throwing Rocks Example: To illustrate our approach, we show the ILP and
MaxSAT encodings to answer the query is ST = 1, BT = 1 a cause of BS = 1?

min d s.t. {BS = 0, STexo = 1, BTexo = 1, −SH + BS ≥ 0, −BH + BS ≥ 0,

− ST + SH ≥ 0, BT − BH ≥ 0, −SH − BH ≥ −1, ST + BT + d = 2}
Gmax = ¬BS ∧ STexo ∧ BTexo ∧ (BS ↔ SH ∨ BH) ∧ ((SH ↔ ST ) ∨ SH) ∧

((BH ↔ BT ∧ ¬SH) ∨ ¬BH) ∧ ¬(ST ∧ BT ) ∧ (ST ∧ BT )

Both encodings are solved with a distance(d) (cost) value of 1, which indicates
that ST,BT is not minimal, and a cause of size 1 is (semi)-inferred, namely
ST . The optimal assignment (¬BS, STexo, BTexo,¬SH,¬BH,¬ST,BT ) showed
that the constraints can be guaranteed without changing the value of BT , which
violates AC3. This shows the enhancement of finding a minimal cause rather
than only checking AC3. Theorem 1 states the soundness of our approach (for
proofs see Appendix of https://arxiv.org/abs/2006.03363).

Theorem 1. The generated optimization problem (ILP program or Gmax) is
feasible iff AC3 holds for �X or a non-empty subset of �X.

https://arxiv.org/abs/2006.03363
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3.2 Causality Inference with ILP

The previous approaches utilized the candidate cause �X to help describe a coun-
terfactual world that proves �X is a cause of ϕ. In this section, we present a
method, ILPwhy, to infer causality (answer why ϕ? questions) without requir-
ing �X. Unlike checking, in inference, we cannot aid the solver in a description
of the counterfactual world (e.g., negating values of �X). Instead, we describe
characteristics of the actual cause that have caused an effect ϕ.

In addition to requirements of counterfactuality and minimality imposed by
the conditions in Definition 2, we utilize the degree of responsibility (dr) as a
mean to compare actual causes [8]. While the conditions are suitable for deter-
mining if �X is a cause, dr judges the “quality” of the cause based on an aggre-
gation of its characteristics. Because we may find multiple causes for which the
conditions hold, dr is reasonable for comparison. We require our answer to an
inference question to be an actual cause with the maximum dr. We come back
to this after we construct a formula G∗ that is the base of ILPwhy.

Both negating the effect formula (¬ϕ) and setting the context f(Ui = ui)
remain as in Eq. 1. Because the variables that appear in the effect formula cannot
be part of the cause, we represent each with the simple equivalence relation, i.e.,
Vi ↔ FVi

. The complicated part is representing the other variables because any
variable can be: a. a cause, b. a contingency-set, or c. a normal variable. Recall,
in a counterfactual computation, a cause does not follow its equation, and differs
from its original value; a contingency-set variable does not follow its equation
while keeping its original value; a normal variable follows its equation, regardless
of whether it equals the original value or not. Thus, we need to allow variables
to be classified in any category in the “best” possible way.

To that end, we represent each (non-effect) variable Vi with a disjunction
between the equivalence holding and not holding, and a disjunction between its
original value and its negation: ((Vi ↔ FVi

) ∨ ¬ (Vi ↔ FVi
)) ∧ (

Viorig ∨ ¬Viorig

)
.

Clearly, each disjunction is a tautology. However, this redundancy facilitates the
classification into the categories; more importantly, we can incentivize the solver
to classify those variables according to specific criteria.

To be able to guide the solver, we add auxiliary boolean variables (indicators)
to each clause (left and right parts of a disjunction). They serve two functions.
The first is to indicate which clauses hold. Since the two parts of the conjunction
are not mutually exclusive, i.e., a variable can follow its equation, yet have its
original value, we need two indicators C1C2. Secondly, similar to the concept
of distance from Subsect. 3.1, we use the indicators to describe the criteria
of the solution. For each variable Vi, C1

i is appended to the first two clauses:(
(Vi ↔ FVi

) ∧ C1
i

)∨(¬ (Vi ↔ FVi
) ∧ ¬C1

i

)
. Similarly C2 is appended to the other

clauses. As such, the category of each endogenous variable is determined based
on the values of C1 and C2. A cause variable would have a C1C2 : 00 (not
following the formula nor its original value); a contingency-set variable has a
C1C2 : 01; and a normal variable has a C1C2 : 10, or 11. Formula G∗ follows
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(equivalence relations of effect variables are omitted for space).

G∗ :=¬ϕ ∧
∧

i=1...n

f(Ui = ui) ∧
∧

i=1...m

((
(Vi ↔ FVi) ∧ C1

i

) ∨ (¬ (Vi ↔ FVi) ∧ ¬C1
i

))

∧ ((
Vorig ∧ C2

i

) ∨ (¬Vorig ∧ ¬C2
i

))

Theorem 2. Formula G∗ is satisfiable iff ∃ �X = �x such that AC2 holds for �X

We now discuss the objectives of this formulation. We aim to find an assign-
ment to the constraints in G∗ that corresponds to a cause with a maximum dr.
Recall that dr is 1/(| �X| + | �W |). Maximizing dr entails minimizing |X| + |W |.
Since the three sets (cause, contingency, and normal) form the overall model size
(excluding effect and exogenous variables), then minimizing |X| + |W | is equiv-
alent to maximizing the number of normal variables, which concludes our first
objective. The sum of C1 variables resembles the number of normal variables;
thus, objective1 is to maximize the sum of C1 variables.

The above formulation minimizes �X, and �W as a whole, following dr. For
our purpose, we think it is valid to look for causes with higher responsibility
first (fewer variables to negate or fix) and favor them over smaller causes. For
example, if an effect has two actual causes: one with 2 variables in �X, 3 in �W ,
and the second with 1 variable in �X, 5 in �W , we pick the first. That said, we still
want to distinguish between �X and �W in causes with the same dr. Assume we
have two causes: the first with 2 variables in �X, 3 in �W , and the second with 3
in �X, 2 in �W . Although both are optimal solutions to objective1, we would like
to pick the one with fewer causes. Thus, we add objective2 to minimize causes,
i.e., the number of variables with C1 and C2 equal to 0. We use hierarchical
objectives in ILP, for which the solver finds the optimal solution(s) based on the
first objective, and then use the second objective to optimize the solution(s).

We wrap-up with Algorithm 2, which omits the construction of G∗. We start
by turning G∗ into linear constraints in Line 2. The first objective obj1, which
maximizes dr by maximizing the sum of C1

i is added in Line 3. The second
objective, obj2, handles minimizing the size of the cause set. We process the
results after solving the program in Lines 5–7. The feasibility of the program
means we found a cause (size obj2) with the maximum dr for the effect. For
the details, we check the indicators of each variable. The cause is composed of
variables that have C1 and C2 equal 0; variables in �W , have C1 = 0 and C2 = 1.

Throwing Rocks Example. Assume we want to answer why did the bottle
shatter BS = 1? (given both threw). The generated program is not shown, but
it was solved with (obj1 = 2), i.e., two normal variables, and obj2 = 1, one cause
variable. Based on the indicators, SH = 1 is the actual cause of BS = 1, given
that BH = 0. This is the result of having C1

SH = 0 ∧ C2
SH = 0 as opposed

to C1
BH = 0 ∧ C2

BH = 1. The result is correct; SH is a cause of BS, with
the maximum dr. Previous references of this example concluded ST as a cause;
however, since SH is an identity function, this does not compromise our result.3

3 Arguably, the (geodesic) distance between the cause and effect nodes in the graph,
can be taken into consideration. In this paper, we do not consider this issue.
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Algorithm 2. Causality Inference using ILPwhy

Input: causal model M , context 〈U1, . . . , Un〉 = 〈u1, . . . , un〉, effect ϕ, evaluation
〈V1, . . . , Vm〉 = 〈v1, . . . , vm〉

1: function FindCause(M, �U = �u, ϕ, �V = �v)
2: 〈Con1, . . . Conn〉 = convertToILP(CNF(G∗))
3: obj1 = Maximize

∑m
i=1 C1

i s.t. obj1 ≤ |�V |
4: obj2 = Minimize

∑m
i=1(1 − C1

i ) ∗ (1 − C2
i ) s.t. |�V | ≥ obj2 ≥ 1

5: if 〈V1 = v′
1 . . . Vm = v′

m, C1
1 = c11 . . . C1

m = c1m, C2
1 = c21 . . . C2

m = c2m〉
↪→ = solve( �Con, obj1, obj2) then

6: �X ′ := 〈X ′
1...X

′
obj2〉 s.t. ∀i∀j • (i �= j ⇒ X ′

i �= X ′
j) ∧ (X ′

i = Vj ⇔ ¬c1j ∧ ¬c2j )

7: �W := 〈W1...Ws〉 s.t. ∀i∀j • (i �= j ⇒ Wi �= Wj) ∧ (Wi = Vj ⇔ (¬c1j ∧ c2j ))

8: return �X ′, �W
9: else return infeasible

10: end if
11: end function

4 Evaluation

To evaluate their efficiency, we implemented our strategies as an open-source
library. We used state of the art solvers: Gurobi [11] for ILP, and Open-WBO for
MaxSAT [27]. In this section, we evaluate the performance, in terms of execution
time and memory allocation, of the strategies in comparison with previous work.

Experiment Setup. Unfortunately, there are no standard data-sets to bench-
mark causality computations. Thus, we gathered a dataset of 37 models,
which included 21 small models (≤400 endogenous variables)–from domains
of causality, security, safety, and accident investigation– and 16 larger secu-
rity models from an industrial partner, in addition to artificially generated
models. The smaller models contained 9 illustrative examples from literature
(number of endogenous variables in brackets) such as Throwing − Rocks(5 ),
Railroad(4 ) [12], 2 variants of a safety model that describes a leakage in a subsea
production system LSP(41 ) and LSP2 (41 ) [7], and an aircraft accident model
(Ueberlingen, 2002) Ueb(95 ) [34], 7 generated binary trees, and a security model
obtained from an industrial partner which depicts how insiders within a com-
pany steal a master encryption key SMK . Because it can be parameterized by
the number of employees in a company, we have 14 variants of SMK , 2 small
ones SMK1 (36 ) and SMK8 (91 ), and 12 large models of sizes (550–7150). In
addition, we artificially generated 4 models: 2 binary trees with different heights,
denoted as BT (2047 − 4095 ), and 2 trees combined with non-tree random mod-
els, denoted as ABT (4103 ), and ABT2 (8207 ). We have evidence that such large
models are likely to occur when built automatically from architectures or inferred
from other sources [16,17]. Details on the models and the results can be found
online.4

4 Machine-readable models and their description available at https://git.io/Jf8iH.

https://git.io/Jf8iH
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We formulated a total of 484 checking queries that vary in the context, cause,
effect, and consequently differ in the result of AC1-AC3, the size of �W , and the
size of the minimal cause. For the smaller models, we specified the queries man-
ually according to their sources in literature and verified that our results match
the sources. The approaches, including previous ALL-SAT approach, answered
these queries in under a second; hence, we exclude them from our discussion. For
the larger models, we constructed a total of 224 checking queries. We specified
some effects (e.g., root of BT , or steal passphrase in SMK ) and used different
contexts, and randomly selected causes (sizes 1, 2, 3, 4, 10, 15, and 50) from the
models. Since we can reuse the checking queries for inference by omitting the
cause, we created 180 inference queries including 67 queries of large models.

We collected the results for: SAT - the original SAT-based approach [18], and
the presented three approaches: ILP, MaxSAT, and ILPwhy- the inference approach.
We ran each query for 30 warm-ups (dry-runs before collecting results to avoid
accounting for factors like JVM warm-up), and 30 measurement iterations on an
i7 Ubuntu machine with 16 GB RAM. We set the cut-off threshold to 2 h.

Discussion. Generally, we use cactus plots to compare the performance of the
approaches. The x-axis shows the number of queries an approach answered
ordered by the execution time, which is shown on the y-axis; a point (x, y)
on the plot reads as x queries can be answered in y or less. Next, we discuss
the overall trends of the results; however, since we are interested in notions of
checking, and inference, we also mention specific queries in which AC3 does not
hold.

As expected, the experiments confirmed the problems with the SAT
encoding— significant solver slow-down and memory exhaustion—[35]. Thus,
as shown in Fig. 1a, SAT only answered 187 of the 224 checking queries; for
the remaining either it ran out of memory or took more than 2 h. For instance,
queries on SMK (6600 ) checking causes of sizes 2, 3, 4 were not answered because
the program ran out of memory. With almost all answered queries, SAT took al
least two to four times as much as ILP, and up to twenty times as much as
MaxSAT. In extreme cases, SAT took around 113 mins to finish, whereas others
stayed under 5 s for the same cases. Memory allocation, shown in Fig. 1b, was
similar to the execution time. However, it showed less difference with ILP and
sometimes better allocation. Although it is not surprising that an ALL-SAT
encoding performs poorly in some situations, the key result is that both ILP and
MaxSAT provide more informative answers to a query while performing better.

According to our dataset, both ILP and MaxSAT, answered all queries in less
than 70–100 s. Especially for semi-inference, cases of non-minimal causes and a
minimal cause can be found, they are effective. For instance, with queries using
ABT (4103 ), we found causes of size 2, 5, and 11 out of candidate causes of sizes
5, 10, 15, and 50. All these queries were answered in around 5 s using ILP, and 2 s
using MaxSAT. For larger and more complex models e.g., SMK (7150 ), answering
similar queries jumped to 98 s with ILP and 71 s MaxSAT.

As shown in Fig. 1a and Fig. 1b, MaxSAT outperformed ILP in execution time
and memory; a scatter plot to compare them is shown in Fig. 1c. The proposi-
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tional nature of the problem gives an advantage to MaxSAT. Especially for easier
queries, as shown in Fig. 1c bottom left, MaxSAT is much faster because no linear
transformation is needed, which explains why the gap between the two decreases
among the larger queries. Further, we used Open-WBO —a solver that uses cores
to initiate (UN)SAT instances [27]— which performs better, especially when the
number of hard clauses is high [3]. That said, in addition to the comparison, we
used ILP for binary computations to incorporate quantifiable notions to infer
causality using multi-objective ILP in ILPwhy.

0 50 100 150 200 250

Queries

25

50

75

100

125

150

175

200

C
P
U
tim

e
(s
)

MaxSAT

ILP

SAT

(a) Cactus Plot of Execution Time

0 50 100 150 200 250

Queries

2

5

7

10

12

15

17

20

M
em

or
y
A
llo
ca
tio

n
(G

B
)

MaxSAT

ILP

SAT

(b) Cactus Plot of Memory Allocation

100 101 102 103 104

MaxSAT

100

101

102

103

104

IL
P

1000 sec. timeout

10
00

se
c.

ti
m
eo
ut

(c) Log-log Scatter Plot of ILP vs MaxSAT

0 50 100 150 200 250

Queries

200

400

600

800

1000

1200

1400

C
P
U
tim

e
(s
)

MaxSAT

ILP

SAT

ILPwhy

(d) Cactus Plot including ILPwhy

Fig. 1. Execution Time and Memory Results on the Larger Models

Although we have fewer inference queries (67), for comparison, we plot the
checking approaches with ILPwhy in Fig. 1d. ILPwhy answered 63 out of 67 queries.
In comparison, it was slower than the checking approaches. Still, it scaled to
large and complex queries. For instance, with basic tree models of 4000 variables
(BT11 , ABT ), it took 8 s, and scaled to 8000 variable ABT2 within 63 s. How-
ever, it slowed down with larger models with complex semantics, i.e., SMK dif-
ferent variants. For instance, SMK (5500 ) took 280 s, while SMK (6600 ) jumped
to 1400 s. The slow down is related to the memory allocation because the pro-
gram, finally, ran out of memory with queries on SMK (7150 ). Given sufficient
memory, we think ILPwhy computes inference for even larger models.

In summary, we argue that the three approaches efficiently automates actual
causality reasoning over binary models. Our MaxSAT encoding performs well for
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purposes of causality checking and semi-inference. Although slower, ILPwhy is
also efficient and scalable for purposes of inference.

5 Related Work

There are three versions of HP (original 2001, updated 2005, modified 2015 ) [13].
We use the latest because it solves issues with the previous versions, and reduces
the complexity [12]. To the best of our knowledge, no previous work tackled
the implementation of the (modified) HP. Still, we discuss the implementations
of previous versions. Previous work has proposed simplified adaptations of the
definition for various applications. First, in the domain of databases [6,28,33],
(updated) HP was utilized to explain conjunctive query results. The approaches
heavily depend on the correspondence between causes and domain-specific con-
cepts such as lineage, database repairs, and denial constraints. The simplification
in that line of work is the limitation to a single-equation causal model based on
the lineage of the query in [28], or no-equation model in [6,33], in addition to
the elimination of preemption treatment. Similar simplification has been made
for Boolean circuits in [9]. Second, in the context of software and hardware ver-
ification, (updated) HP is used to explain counterexamples returned by a model
checker [5]. The authors also restricted the definition to singleton causes and no-
equation models. Third, in [4,23], the authors adapted HP to debug models of
safety-critical systems. Similar to our approach, all the papers above use acyclic
binary models. However, they depend heavily on the correspondence between
causes and domain-specific concepts. Also, for efficiency, they relax the defini-
tion by restricting the model, i.e., one equation [28], no-equations [5,6,33], or by
restricting the cause, i.e., singleton [5,33]; the complexity is then relaxed, because
AC2 is straightforward (no �W ) or AC3 is not needed. While such limitations are
sufficient for the particular use-case, we argue that they cannot be used outside
their respective domains, e.g., for accountability. In contrast, our approach is a
general method to automate HP. We focus on the minimality, which, to the best
of our knowledge, no previous work has tackled. We employ optimization solv-
ing, which was not utilized before in this context. Alternatively, previous work
used SAT directly [18], indirectly [4], or answer set programming [6]. Sharing our
generality, Hopkins proposed methods to check (original) HP using search-based
algorithms [14]. Our approach scales to thousands of variables, while the results
presented in the search-based approaches showed a limit of 30 variables.

Fault tree analysis (FTA) is an established design-time method to analyze
safety risks of a system [32]. FTA’s primary analysis is the computation of min-
imal cut sets MCSs of a fault tee; a CS is a set of events that, together, cause
the top-level event. Approaches to determine MCS use Boolean manipulation, or
Binary decision diagrams [32]. These methods are similar to our computations;
however, the conceptual difference is the definition of a cause. While a cause cov-
ers two notions: sufficiency and necessity, a CS presents a sufficient cause only.
The occurrence of the events in the cut leads to the occurrence of the top-level
event. This roughly corresponds to AC1, while the minimality of the cut set
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corresponds to AC3. The difference lies in the necessity of the cause (AC2). An
MCS computation does not include this step, which is the core of actual causality
computation. Cut sets are all the enumerations that make the effect true. Simi-
larly, model-based diagnosis (MBD) aims to detect faulty components to explain
anomalies in system behavior [31]. The model is a set of logical expressions over
a set of components. MBD requires a set of observations that correspond to the
context �U ; using logical inference, MBD outputs a set of hypotheses for how
the system differs from its model, i.e., diagnoses. While MBD can be considered
as an approach to infer causality, it does not require counterfactuality of the
cause. Although MBD uses a notion of intervention (setting some components
to abnormal), this is not counterfactual reasoning. Instead, it is a sufficiency
check since MBD uses a behavioral model, i.e., a representation of the correct
behavior. Like FTA, diagnoses are sufficient causes, but not actual causes.

6 Conclusions and Future Work

According to HP, a set of events ( �X) causes an effect (ϕ) if (1) both actually
happen; (2) changing some values of �X while fixing a set �W of the remaining
variables at their original value leads to ϕ not happening; and (3) �X is minimal.
The complexity of the general problem has been established elsewhere. We show
that when restricting to binary models, the problem of checking or inferring
causality can effectively and efficiently be solved as an optimization problem.
The problem is not trivial because intuitively, we need to enumerate all sets �W
from condition (2) and need to check minimality for condition (3). We show how
to formulate both properties as an optimization problem instead which immedi-
ately gives rise to using a solver to determine if a cause satisfies all conditions,
or find one that does. For that, we define an objective function that encodes
the distance between cause values in the actual and counterfactual worlds. If
we now manage to optimize the problem with a smaller cause, then we know
that it satisfies condition (2) but is not minimal. With an additional objective
to quantify responsibility, we also formulate inference as an optimization prob-
lem. Using models with 8000 variables, which we deem realistic and necessary
for automatically inferred causal models, we show that our approaches answer
checking queries in seconds, and inference queries in minutes. In the future, we
plan to explore the extension of the approach to support non-binary models.
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Abstract. We address the problem of checking that an execution of a
shared memory concurrent program is sequentially consistent (SC). This
problem is NP-hard due to the necessity of finding a total order between
the write operations that induces an acyclic happen-before relation. We
propose an approach allowing to avoid falling systematically in the worst
case, and to check SCness in polynomial-time in most cases in practice.
The approach is based on a simple yet powerful saturation-based proce-
dure for computing write constraints that must hold for SCness, allowing
on one hand fast detection of SC violations, and on the other hand reduc-
ing drastically the search space for a total order witnessing SCness.

1 Introduction

Sequential Consistency (SC, for short) [19] is a fundamental model of shared
memory, where write and read operations are atomic, and operations issued by
different threads are interleaved arbitrarily while the order between operations
issued by a same thread is preserved. SC offers the best programming abstrac-
tion, since each write operation is considered to be immediately visible to all
threads. While adopting SC as a memory model is desirable by memory users as
it simplifies their task, implementing sequential consistency is extremely complex
and error prone due to various optimisations and complex caching mechanisms
that must be adopted in order to achieve acceptable performances. Therefore,
it is important to develop automated methods and tools for checking that the
executions of an implementation of the memory are sequentially consistent (for
every possible client, or for some given client). A crucial problem for develop-
ing SC conformance testing tools, is checking if a given single execution is SC.
This problem has been shown to be hard. Intuitively, it amounts in finding a
total order on write operations that explains the execution, in the sense that the
happen-before relation induced by this order (that includes causality and con-
flict constraints between writes and reads) is acyclic. It has been shown that the
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problem is NP-complete [15,17], which means that in the worst case, it is nec-
essary to enumerate the exponentially many possible store orderings in order to
solve the problem. Therefore, it is important to investigate methods that avoid
falling systematically in the worst case, and that are able to solve the problem
in polynomial time (in the size of the execution) as often as possible in practice.

In [25], we introduced gradual consistency checking (GCC, for short) to
address this issue. The approach consists in using weaker consistency models
(than SC) that are known to be polynomially checkable, such as causal consis-
tency, in two ways. First, finding violations for these “cheaper” models allows to
detect efficiently many of the SC violations. Second, and this is the important
point, GCC uses weak consistency models for which checking conformance is
based on computing, by a polynomial time fixpoint calculation, a set of order
constraints on writes that are included in every store order witnessing SC con-
formance, if any. So, computing these constraints reduces the number of pairs
of writes for which an order must be found non-deterministically. In [25], we
proposed for that a model called Convergence Causal Memory (CCM, for short)
that is stronger than all known variants of causal consistency, constructed by
combining the constraints imposed by CCv [8] and CM [3,20].

Then, a natural question is how far the GCC approach can be pushed (i.e.,
is CCM the strongest model that can be used in this approach)? This paper
tackles this question. Our main contribution is the definition of a new consistency
criterion called weak sequential consistency (wSC, for short) that can be used for
this purpose. wSC is defined using a simple saturation rule for introducing store
order constraints. Compared to the definition of CCM, the one of wSC is much
more natural and simpler. Interestingly, we prove that wSC is strictly stronger
than CCM. This is due to the fact that wSC saturation computes a larger set of
constraints on pairs of writes than CCM. Then, the question is still whether it
is possible to do better using a saturation-based approach. This question leads
to the following more general one: Given an execution that is SC, let us call the
SC-kernel of this execution the intersection of all store order relations allowing
to establish that the execution is SC (i.e., for which the induced happen-before
relation is acyclic). Then, is the store order imposed by wSC always equal to the
SC-kernel when the execution is SC? More generally, is it possible to compute
the SC-kernel of any execution using saturation when the execution is SC?1

First, we show that the wSC saturation rule does not compute the whole SC-
kernel in general. We analyze the reason of this by providing several families of
counterexamples. We show that there are order constraints that must be imposed
on pairs of writes to avoid happen-before cycles including not only one conflict
(as wSC saturation does), but several (actually any number) of conflicts involving
an arbitrary number of writes. Moreover, we show that in order to impose an
order constraint on pairs of writes, in some cases it is necessary to enumerate the

1 The facts that checking SC conformance is NP-hard and that saturation-based com-
putations are polynomial-time do not imply P = NP: given an arbitrary execution,
the saturation-based computation would lead to a set of store order constraints, but
whether they can be extended to a total order witnessing SC-ness must be checked.
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possible order of several other pairs of writes, and the number of these pairs can
be arbitrarily high. This shows that the design of a saturation-based schema for
computing the SC-kernel would require the addition of an unbounded number
of saturation rules. This provides and interesting insight on the hard instances
of the SC checking problem. (Though, this leaves open the theoretical question
of the complexity of computing the SC-kernel of an SC execution).

Nevertheless, an interesting question is how far is wSC saturation from com-
puting the SC-kernel in practice? We show experimentally that, interestingly, in
practice2, wSC allows to compute the full SC-kernel in most of the cases (more
than 74% of the considered executions), and in general it computes almost the
whole SC-kernel (around 99.9% of it). The experiments also show that CCM
computes 100% of the SC-kernel for only 0.7% of the executions of the consid-
ered benchmark. This shows that the wSC saturation rule is very powerful and
efficient in practice, despite its simplicity (and that it is theoretically not com-
plete). In fact, as discussed above, we could have considered other saturation
rules to define stronger and stronger consistency models approximating SC. But
our experiments show that the benefit would not be important w.r.t. what is
already achieved with wSC.

Furthermore, we compare the performances of GCC using CCM versus GCC
using wSC. In each case we apply the corresponding saturation procedure to
compute a partial order on writes (or partial store order), and then the comple-
tion of this order to a total order is done using a SAT solver. The two algorithms
obtained this way are called CCM+ENUM and wSC+ENUM. Our experiments
show that wSC+ENUM is significantly more efficient and more scalable than
CCM+ENUM.

Finally, we compare our methods with the approach implemented in DBCOP
[7] based on a polynomial search algorithm for checking SC-ness assuming that
the number of threads is fixed [1,7]. While DBCOP is efficient for a small num-
ber of threads, its performances degrade quite fast when this number grows,
whereas WSC+ENUM is efficient and scales very well in this case. Then, we
consider combining saturation with DBCOP. We use wSC saturation to com-
pute a large set of store order constraints that are given to DBCOP in order to
reduce the number of interleavings to be explored for SC conformance checking.
We obtain this way an efficient algorithm, called wSC+DBCOP, that has better
performances than both DBCOP and wSC+ENUM.

Related Work. The problem of checking whether a history is SC has been
proved to be NP-hard by Gibbons and Korach [17]. In [1,7], this problem is shown
to be polynomial in the size of the history when the number of threads is fixed.
The problem of verifying that a finite-state shared-memory implementations
(over a bounded number of threads, variables, and values) has been shown to be
undecidable by Alur et al. [5].

Several static techniques have been developed to prove that a shared-memory
implementation (or cache coherence protocol) satisfies SC [2,5,9–12,14,16,18,21,
22], however only few have addressed dynamic techniques such as testing and run-
time verification (which scale to more realistic implementations).
2 We consider executions of 4 cache coherence protocols within the Gem5 platform.
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The idea of using weaker approximations of a memory consistency model
(TSO) in order to detect violations has been used, e.g., in [23]. In that paper
the authors use a form of saturation that corresponds to a variant of causal
consistency (similar to convergence consistency [8]). However, their method is
not complete. This idea of saturation is generalized in the framework of gradual
consistency checking introduced in [25] where SC is approximated using several
variants of causal consistency (including a new one called CCM).

The McVerSi framework [13] addresses test generation (i.e., finding clients
that increase the probability of uncovering bugs in shared memory implementa-
tions). Their methodology for checking SC lies within the context of white-box
testing, i.e., the user is required to annotate the shared memory implementation
with events that define the store order in an execution. In the approach we follow,
the implementation is treated as a black-box requiring less user intervention.

2 Preliminaries

We introduce in this section basic notions that will be used throughout the
paper. We use similar notations and definitions as in [4,25].

Binary Relations. For a binary relation r ⊆ A×A over a given set A, we use r+

(resp. r∗) to denote the transitive (resp. reflexive transitive) closure of r. We use
r−1 to denote the inverse relation of r (i.e., (a, b) ∈ r−1 iff (b, a) ∈ r). We say that
r is a partial order if it is irreflexive (i.e., (a, a) /∈ r for all a ∈ A). We say that r is
total if, for every a, b ∈ A, we have either (a, b) ∈ r or (b, a) ∈ r. For two binary
relations r1 and r2, we use r1 ◦ r2 (resp. r1 ∪ r2) to denote the composition (resp.
union) of r1 and r2, i.e., (a, b) ∈ r1 ◦ r2 iff there is an c ∈ A such that (a, c) ∈ r1
and (c, b) ∈ r2 (resp. (a, b) ∈ r1 ∪ r2 iff (a, b) ∈ r1 or (a, b) ∈ r2).

Programs. We consider multi-threaded programs over a set of shared variables
Var = {x, y, . . .}. Let Val be an unspecified set of values and OId ⊆ N be a set
of operation identifiers. We assume that the set of (visible) operations issued
by the threads of the program are read and write operations. Formally, the set
Op of operations reading or writing a value v to a variable x is defined as Op =
{readi(x, v),writei(x, v) : i ∈ OId, x ∈ Var, v ∈ Val}. We omit operation identifiers
when it is clear from the context. We use R, (resp. W) to denote the set of read
(resp. write) operations. Given an operation o ∈ Op, we use var(o) to denote the
variable accessed by o. Let O be a subset of Op. We use R(O) (resp. W(O)) to
denote the set of read (resp. write) operations in O.

Histories. A history is an abstraction of a program execution. It consists of a
set of write or read operations ordered according to two relations: (1) a partial
program order po that totally orders operations issued by the same thread, and
(2) a write-read relation wr that identifies the write operation from which each
read operation gets it value. Formally, a history 〈O, po,wr〉 is a set of opera-
tions O along with a strict partial program order po and a write-read relation
wr ⊆ W(O) × R(O), such that the inverse of wr is a total function and if
(write(x, v), read(x′, v′)) ∈ wr, then x = x′ and v = v′. We assume that every
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history includes a write operation writing the initial value for each variable x.
These write operations precede all other operations in po. Mentioning these ini-
tial write operations is omitted when it is clear from the context.

In the following, we assume also that each value is written at most once.
This is not a restriction since shared-memory implementations (or cache coher-
ence protocols) are data-independent [24] in practice, i.e., their behavior doesn’t
depend on the concrete values read or written in the program, and therefore
any potential buggy behavior can be exposed by executions where each value is
written at most once. Observe that in this case, the write-read relation can be
easily extracted by just looking to the value fetched by each read operation.

t0:
write(x, 1)
read(y, 0)

t1:
write(y, 1)
read(x, 1)

(a) CCM, wSC and SC

t0:
write(x, 1)
read(y, 0)
write(y, 1)
read(x, 1)

t1:
write(x, 2)
read(y, 0)
write(y, 2)
read(x, 2)

(b) CCM but not wSC nor SC
t0:
read(z, 2)
write(y, 2)
read(x, 1)

t1:
write(x, 1)
write(y, 1)
write(z, 1)

t2:
write(t, 1)
write(s, 1)
write(z, 2)

t3:
read(z, 2)
write(x, 2)
read(y, 1)

t4:
read(z, 1)
write(t, 2)
read(s, 1)

t5:
read(z, 1)
write(s, 2)
read(t, 1)

(c) wSC but not SC

Fig. 1. Comparison of different consistency models.

Sequential Consistency. In the following, we recall the formal definition of
the Sequential Consistency (SC) memory model [4]. A history 〈O, po,wr〉
is sequentially consistent if there exists a total relation (called store order)
ww ⊆ W(O)×W(O) such that the relation po∪wr∪ww∪ rw is acyclic, where rw
is the read-write relation defined by rw = wr−1◦ww. Intuitively, rw expresses the
fact that when a read operation read(x, v) reads a value v from a write operation
write(x, v), and some other write operation write(x, v′) comes after write(x, v) in
the store order, then there is a conflict between read(x, v) and write(x, v′), and
read(x, v) must happen before write(x, v′).

Figure 1a shows a history that is SC. Since read(y, 0) should precede
write(y, 1), this history admits a total order where the operations of thread t0
are executed before thread t1 operations. Figure 1b presents a history that does
not satisfy SC. The reason is that a total order cannot be found. Since read(x, 1)
reads the value from write(x, 1) and read(x, 2) reads the value from write(x, 2),
all operations of t0 should be executed before the operations of t1, or vice versa.
This does not allow either t0 or t1 to read the value 0 on variable y.
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write(x, v) write(x, v′)

r

wr

R

rw[R]

(a) Read-write rw[R]

write(x, v) write(x, v′)

r
R

cf [R]

wr

(b) Conflict order cf[R]

write(x, v) write(x, v′)

r

o

lhbo

lhbo

wr

po∗

(c) Local happen-before lhbo

write(x, v) write(x, v′)

r

hbi

st′
i

wr

(d) Partial store order st′i

Fig. 2. Definitions of relations used to define consistency models.

Convergent Causal Memory. The gradual consistency checking approach for
checking SC in [25] relies on the use of a weak consistency model called Con-
vergent Causal Memory (CCM) as a polynomially checkable SC approximation.
CCM is defined as a strengthening of existing variants of causal consistency. We
omit here the definition of these variants and give directly the formal definition
of CCM as presented in [25] . For that, some preliminary notions must be intro-
duced. Given a binary relation R on the set of operations, let RWW (resp. RWR)
denotes the projection of R on pairs of writes (resp. pairs of writes and reads)
on the same variable. We define also the parametric read-write relation rw[R] as
follows: rw[R] = wr−1 ◦ RWW (see Fig. 2a), i.e.,

(read(x, v),write(x, v′)) ∈ rw[R] iff (write(x, v),write(x, v′)) ∈ R and
(write(x, v), read(x, v)) ∈ wr

Let co be the causality relation defined as the transitive closure of the union
of the program order and the write-read relation (i.e., co = (po ∪ wr)+). Then,
we consider a local happen-before relation defined with respect to each operation.
Given a history h = 〈O, po,wr〉, for every operation o in h, lhbo3 is the smallest
transitive relation such that:

– if two operations are causally related, and each one is causally related to o,
then they are related by the local happen-before relation lhbo, i.e., (o1, o2) ∈
lhbo if (o1, o2) ∈ co, (o1, o) ∈ co, and (o2, o) ∈ co∗, and

– two writes w1 and w2 are related by the local happen-before relation lhbo
(Fig. 2c) if w1 is lhbo-related to a read taking its value from w2, and that read
is issued before o by the same thread executing o, i.e.,

3 This relation was denoted hbo in [25]. We denote it lhbo to avoid confusion with
other happen-before relations considered in the paper.
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(write(x, v),write(x, v′)) ∈ lhbo if (write(x, v), read(x, v′)) ∈ lhbo,

(write(x, v′), read(x, v′)) ∈ wr, and
(read(x, v′), o) ∈ po∗, for some read(x, v′).

Finally, a history 〈O, po,wr〉 is conform to CCM if po ∪ wr ∪ pww ∪ rw[pww]
is acyclic, where the partial store order pww is defined by

pww = (lhbWW ∪ cf[lhb])+ with lhb =
( ⋃

o∈O

lhbo
)+

where the conflict relation cf[R] induced by a relation R is defined as cf[R] =
RWR ◦ wr−1 (Fig. 2b), i.e.,

(write(x, v),write(x, v′)) ∈ cf[R] iff (write(x, v), read(x, v′)) ∈ R and
(write(x, v′), read(x, v′)) ∈ wr, for some read(x, v′)

Notice that the relation rw used in the definition of SC corresponds to rw[ww]
according to this parametric definition.

3 Weak Sequential Consistency

We propose in this section a new consistency model (called Weak Sequential
Consistent) obtained by computing a partial store order using a simple saturation
rule. This partial store order is inductively defined unlike the SC case where the
total store order is existentially quantified. Formally, let st and hb be the smallest
relations such that:

st = ((hbWR ◦ wr−1) ∪ hbWW)+

hb = (po ∪ wr ∪ st ∪ rw[st])+

rw[st] = wr−1 ◦ st

Recall that hbWR (resp. hbWW) denote the projection of the relation hb on pairs
of writes and reads (resp. pairs of writes on the same variable). Intuitively,
the store order st contains the composition of the projection of happen-before
relation on pairs of writes and reads and write-read relation, union the projection
of happen-before on pairs of writes.

The happen-before relation is similar to the SC one (which corresponds to
po∪wr ∪ww ∪ rw), it is just that, the store order is deterministically computed
using the above saturation rule. Then, a history 〈O, po,wr〉 is weakly sequentially
consistent (wSC) if hb is acyclic.

Our first contribution consists in showing that wSC is stronger than CCM
(which is already stronger than all known variants of causal consistency) [25].

Lemma 1. If a history satisfies wSC, then it satisfies CCM.
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Proof. Let h = 〈O, po,wr〉 be a history satisfying wSC i.e., po ∪ wr ∪ st ∪ rw[st]
is acyclic. We prove that (po ∪ wr ∪ pww ∪ rw[pww])+ ⊆ hb (hence the history
satisfies also CCM). We will first show that for every operation o in h, lhbo ⊆ hb.
For that we will prove that hb satisfies the two properties of lhbo:

– If (o1, o2) ∈ co, (o1, o) ∈ co, and (o2, o) ∈ co∗ then (o1, o2) ∈ hb trivially holds
(since co ⊆ hb), and

– if (write(x, v), read(x, v′)) ∈ hb and (write(x, v′), read(x, v′)) ∈ wr then
(write(x, v),write(x, v′)) ∈ (hb◦wr−1) and hence (write(x, v),write(x, v′)) ∈ st
and (write(x, v),write(x, v′)) ∈ hb.

Thus, we have that lhbo ⊆ hb and hence lhb ⊆ hb.
Let us now show that pww = (lhbWW ∪ cf[lhb])+ ⊆ st. It is easy to see that

lhbWW ⊆ hbWW (since lhb ⊆ hb). By definition, we have also that cf[lhb] =
(lhbWR ◦ wr−1) and hence cf[lhb] ⊆ (hbWR ◦ wr−1). This implies that pww =
(lhbWW ∪ cf[lhb])+ ⊆ st = ((hbWR ◦wr−1)∪hbWW)+. Finally, it is easy to deduce
that (po ∪ wr ∪ pww ∪ rw[pww])+ ⊆ hb = (po ∪ wr ∪ st ∪ rw[st])+. �	

The reverse of this lemma does not hold. Figure 1b presents a history that
satisfies CCM but not wSC. A possible partial store order for CCM is to con-
sider that the writes of each thread are not visible to the other thread. The
history does not satisfy wSC. Since rw[st] is included in hb, read(y, 0) is visible
to write(y, 2) then write(x, 1) precedes read(x, 2) in hb. Thus, write(x, 2) should
be executed before write(x, 1). Similarly write(x, 2) precedes read(x, 1) in hb as
well and write(x, 1) should be executed before write(x, 2).

We prove now that wSC is indeed weaker than SC. For that, we need to
consider the subrelations of st and hb obtained by iterative least fixpoint cal-
culation. Let st =

⋃
i sti and hb =

⋃
i hbi where sti = (hbiWW ∪ st′i)

+ and st′i
(Fig. 2d) is defined by:

(write(x, v),write(x, v′)) ∈ st′i iff (write(x, v), read(x, v′)) ∈ hbi and
(write(x, v′), read(x, v′)) ∈ wr

where, for every i ≥ 0, hbi is defined by:

hb0 = (po ∪ wr)+

hbi+1 = (hbi ∪ sti ∪ rw[sti])+

We now show that the partial store order sti is included in any store order
ww witnessing for SC satisfaction.

Lemma 2. Let h = 〈O, po,wr〉 be a history and ww be a total store order such
that po∪wr∪ww∪ rw is acyclic. Then, sti ⊆ ww and hbi ⊆ (po∪wr∪ww∪ rw)+.

Proof. The proof is by induction on the index i of hbi and sti.

Base Case (i=0). We have hb0=(po ∪ wr)+ is included in (po ∪ wr ∪ ww ∪
rw)+. Since hb0 ⊆ (po ∪ wr ∪ ww ∪ rw)+, if (write(x, v), read(x, v′)) ∈ hb0
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and there exists a read(x, v′) such that (write(x, v′), read(x, v′)) ∈ wr, then
(write(x, v),write(x, v′)) ∈ ww. Otherwise, assuming by contradiction that
(write(x, v′),write(x, v)) ∈ ww, we get (read(x, v′),write(x, v)) ∈ rw. Since
write(x, v), read(x, v′)) ∈ hb0 ⊆ (po ∪ wr ∪ ww ∪ rw)+, this implies that
there is a cycle in (po ∪ wr ∪ ww ∪ rw)+ which is a contradiction. So,
(write(x, v),write(x, v′)) ∈ ww. Thus, st′0 is included in ww and hence st0 =
(hb0WW ∪ st′0)

+ is also in ww since hb0WW ⊆ ww (otherwise it leads to a contra-
diction since hb0 ⊆ (po ∪ wr ∪ ww ∪ rw)+ and (po ∪ wr ∪ ww ∪ rw)+ is acyclic).

Induction Step. Assume that hbi ⊆ (po ∪ wr ∪ ww ∪ rw)+ and sti ⊆ ww. Now,
let’s show that this holds for i + 1 as well. By induction hypothesis, sti ⊆
ww, so using the definition of rw[sti] we have rw[sti] ⊆ rw. Then, hbi+1 =
(hbi ∪ sti ∪ rw[sti])+ ⊆ (po ∪ wr ∪ ww ∪ rw)+. Now, we show that st′i+1 ⊆
ww. If (write(x, v), read(x, v′)) ∈ hbi and (write(x, v′), read(x, v′)) ∈ wr, then
(write(x, v),write(x, v′)) ∈ ww. Otherwise, using the same argument as in the
base case, we get that (read(x, v′),write(x, v)) ∈ rw and a contradiction of the
fact that (po∪wr∪ww∪rw)+ is acyclic. Hence, if (write(x, v),write(x, v′)) ∈ st′i+1

then (write(x, v),write(x, v′)) ∈ ww and so st′i+1 ⊆ ww. Furthermore, we have
hbi+1WW

⊆ ww since hbi+1 ⊆ (po ∪ wr ∪ ww ∪ rw)+ (otherwise it leads to a
contradiction of the fact that (po ∪ wr ∪ ww ∪ rw)+ is acyclic). Since sti+1 =
(hbi+1WW

∪ st′i+1)
+, st′i+1 ⊆ ww and hbi+1WW

⊆ ww, we get that sti+1 ⊆ ww (
since ww is a total store order). �	

As an immediate corollary of Lemma 2, we get:

Lemma 3. If a history satisfies SC, then it satisfies wSC.

Proof. The proof is by contradiction. Assume that a history h = 〈O, po,wr〉
satisfies SC and it does not satisfy wSC. Since h satisfies SC, then there exists
a total store order ww such that po ∪ wr ∪ ww ∪ rw is acyclic. Since h does
not satisfy wSC, this means that hb is cyclic. Since hb =

⋃
i hbi and hbi ⊆

(po∪wr ∪ww ∪ rw)+ (from Lemma 2), we can deduce that (po∪wr ∪ww ∪ rw)+

is also cyclic which constitutes a contradiction. �	
The reverse of the above lemma doesn’t hold. Figure 1c shows a history which

satisfies wSC but it is not SC. To show that it satisfies wSC, one can consider a
partial store order st where the writes write(z, 1) and write(z, 2) are not ordered.
In the other hand, since there is no valid store order for the writes write(z, 1)
and write(z, 2), this history does not satisfy SC.

Notice that, at each step of the calculation of hb and st, at least one pair of
operations is added to one of these two relations and that number of such pairs
is polynomially bounded (in the size of the computation). Thus, the acyclicity
of hb can be decided in polynomial time.

Theorem 1. Checking whether a history h satisfies wSC can be done in poly-
nomial time in the size of the history.
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4 The Sequential Consistency Kernel

Fig. 3. SC-Kernel counter example

Given a history h = 〈O, po,wr〉
that satisfies SC, we define the
SC-Kernel of h as the intersec-
tion of all store order orders
allowing to establish the SCness
of h. We know already, from
the previous section (Lemma 2),
that the store order st, com-
puted by the wSC saturation
procedure, is included in any total store order ww such that po∪wr ∪ww ∪ rw is
acyclic. This means that the computed st is always a subset of SC-Kernel. Then,
the question is whether the computed store order st is equal to SC-Kernel or
not.

In the following, we show that the saturation procedure of wSC may in
some cases not be able to compute the SC-Kernel (but rather a strict sub-
set of it). To see why, consider the history given in Fig. 3. The wSC rules do
not generate any st relation and therefore the saturation procedure of wSC
returns that the store order st is empty while the happens-before relation
hb is equal to (po ∪ wr)+. However, any total store order ww that allows
to show the SCness of this history should order write(x, 4) before write(x, 2)
(and hence the pair (write(x, 4),write(x, 2)) is in the SC-Kernel). We prove that
(write(x, 4),write(x, 2)) belongs to the SC-Kernel by contradiction. Assume that
(write(x, 4),write(x, 2)) is not in SC-Kernel. Then, there is a total store order
ww such that (1) (write(x, 2),write(x, 4)) is in ww (represented in Fig. 3 by a
dashed arrow) and (2) (po∪wr∪ww∪ rw)+ is acyclic (since the history h is SC).
However, if (write(x, 2),write(x, 4)) is in ww then (po ∪ wr ∪ ww ∪ rw)+ is not
acyclic (as shown in Fig. 3 by the dashed arrows) and which is a contradiction.

One way to overcome this problem is to include such a pattern in the defini-
tion of st′i used in the saturation procedure. Thus, the definition of st′i is updated
as follows: (write(x, v′),write(x, v)) ∈ st′i iff one of the following cases holds:

– (write(x, v′), read(x, v)) ∈ hbi and (write(x, v), read(x, v)) ∈ wr, or
– (write(z, vz),write(x, v)), (write(y, vy),write(x, v)), (write(x, v′),write(y, v′

y)),
(write(y, v′

y), read(z, vz)), (write(x, v′),write(z, v′
z)), (write(z, v′

z), read(y, vy))
are in hbi and (write(z, vz), read(z, vz)), (write(y, vy), read(y, vy)) are in wr.

Observe that the pattern added to st′i contains six write operations. Unfortu-
nately, this pattern is not enough to allow us to capture the SC-Kernel. In fact,
we can construct a family of counter-examples (see Fig. 4) such that in order
to capture all of them, we need to add to the relation st′i patterns involving a
strictly increasing number of writes (which is not feasible in practice).

One way to address the problem raised by the family of counter-examples
given in Fig. 4 is to guess for a given pair of writes write(x, v) and write(x, v′) that
are not related by the computed store relation st (i.e., (write(x, v),write(x, v′))
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and (write(x, v′),write(x, v)) are not in st) one possible order and check if it
can make the history h infeasible under SC and if it is the case we add the
other order to st. For instance, in the history given in Fig. 3, one would guess
that the (write(x, 2),write(x, 4)) is in st. This guess makes the history infeasible
under SC due to the existence of a cycle in (po ∪ wr ∪ ww ∪ rw)+ and hence
(write(x, 4),write(x, 2)) is added to st. Observe that this still results in a satu-
ration procedure which works in polynomial time since we are only allowed to
guess the order of at most two unrelated writes.

Fig. 4. SC-Kernel counter-examples with cycles involving an arbitrary number of writes

So the question is whether this extended saturation procedure calculates the
SC-Kernel. Alas, this is not true. Consider the history given in Fig. 5. The pre-
vious saturation procedure of wSC (augmented with the guessing of the order of
one pair of writes) results in an empty store order st. However, this history satis-
fies SC and (write(x, 1),write(x, 2)) and (write(t, 2),write(t, 1)) are in SC-Kernel.
In fact, ordering write(x, 2) before write(x, 1) and write(t, 2) before write(t, 1) cre-
ates a happens-before cycle in the top-left block of Fig. 5 (in similar manner to
the example given in Fig. 3). While ordering write(x, 2) before write(x, 1) and
write(t, 1) before write(t, 2) creates a happens-before cycle in the top-right block
of Fig. 5. Finally, ordering write(x, 1) before write(x, 2) and write(t, 1) before
write(t, 2) creates a happens-before cycle in the top-middle block of Fig. 5. This
shows the necessity of augmenting the saturation procedure with the enumera-
tion of the order between two pairs of writes in order to compute the SC-Kernel.
Even worst, we can easily extend the history given in Fig. 5 in order to force the
enumeration of the order between several pairs of writes in order to be able to
compute the SC-Kernel. The main idea is to add a number of blocks (in simi-
lar manner to the examples given in Figure 3 and Figure 4) to forbid all order
combinations between certain pairs of write except one.
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Fig. 5. SC-Kernel counter-example requiring the enumeration of the possible order
between two pairs of writes

5 Algorithms for Checking SC Conformance

We define in this section algorithms for SC checking that exploit the partial store
order st computed by the wSC saturation. Following the approach of gradual
consistency checking [25], we start by checking that the given history is wSC. If
not, then we conclude that it is not SC neither (by Lemma 3). If yes, we exploit st
in order to enhance the SC verification of the history. This verification amounts
in finding a total store order extending st. To solve this problem we adopt two
approaches, one is based on reducing the SC verification problem to SAT i.e., a
direct encoding of the axioms defining SC into a propositional formula, and the
second one is based on using the bounded-thread approach of [1,7] implemented
in the tool DBCOP. Both of these approaches are enhanced by the fact that
they will use the st constraints in order to reduce their search space. The two
obtained algorithms are called wSC+ENUM and wSC+DBCOP, respectively.

The algorithm wSC+ENUM uses an encoding of SC conformance of a given
history (defined with its po and wr constraints) as the satisfaction of a Boolean
formula. The latter expresses the constraints on the relations involved in the
definition of SC, including the fact that the store oder ww is a total order relation
(so every pair of writes must be order in one direction or the other), and that
the happen-before relation (i.e., (po ∪wr ∪ww ∪ rw)+) is transitive and acyclic.
Moreover, the order constraints corresponding to the relation st computed for
wSC are added to the formula since st ⊆ ww.

The algorithm wSC+DBCOP is based on the algorithm implemented in
DBCOP [7]. Given a history (again defined by its po and wr relations), DBCOP
searches for an interleaving of all the operations of the history that respects the
constraints imposed by SC. Then, wSC+DBCOP is an adaptation of DBCOP
that exploits st in addition to po and wr as fixed constraints during its search.

For our experiments in next section, we will compare wSC+ENUM and
wSC+DBCOP to each other, to DBCOP, and also to CCM+ENUM which is
the analogous of wSC+ENUM using CCM saturation instead of wSC saturation.
CCM+ENUM is the algorithm proposed in [25].



372 R. Zennou et al.

6 Experimental Results

We evaluate in this section the efficiency of our approach and its scalability. We
first report on the efficiency of the wSC saturation in computing the SC-kernel.
Then, we present an evaluation of the approach in checking SC conformance by
taking into account two parameters: the number of operations and the number of
threads. The experimental results consider three kinds of benchmarks: The first
one consists of only valid histories (i.e., satisfying SC). The second one consists of
invalid histories (i.e., violating SC). The third benchmark consists of mixture of
valid and invalid histories. These benchmarks are generated by running random
clients on realistic cache coherence protocols within the Gem5 simulator [6] in
system emulation mode. We use 4 cache coherence protocols that are available
in Gem5: MI, MEOSI Hammer, MESI Two Level, and MEOSI AMD Base.

Approximating the SC-Kernel. We know already that the store orders com-
puted by the saturation procedures of CCM and wSC are part of the SC-kernel
(Lemma 2). The questions are then what is the computed proportion of the SC-
kernel, and what is the proportion of the set of pairs of writes in the execution
that are not ordered by the saturation procedures. Our experimental results show
that wSC computes the SC-kernel in 74.24% of all the 1742 tested histories, and
that for the rest of the histories, it computes in average 99.97% of their kernel.
For CCM, we found that it computes the SC-kernel only in 0.7% of the same set
of executions. We also found that the wSC saturation procedure orders 98.51%
of the pairs of writes of a history in average, and that CCM orders in average
97,89% of the pairs of writes. This is interesting since in terms of coverage of
the sets of pairs of write, CCM is not far from wSC, however, only for very few
histories it can fully cover its SC-kernel.

SC Conformance Checking for Valid Histories. We consider in this section
the case of histories that satisfy SC. The experiments are made by varying the
number of operations and the number of threads. For each number of operations
(threads), we have tested 200 histories and computed the running time average.

Fig. 6. Checking SCness for valid histories
while varying the number of operations.

Figure 6 reports the running time
(in seconds) of the 4 algorithms
wSC+ENUM, CCM+ENUM, DPCOP,
and wSC+DBCOP while increasing
the number of operations from 200 to
800 (by an increase of 100) with a
fixed number of 6 threads. It shows
that for a relatively small number of
threads, DBCOP has the best per-
formances, while wSC+ENUM has
good performances and is clearly supe-
rior than CCM+ENUM. This can be
partly explained by the difference in
the coverage of store order constraints
between the two algorithms, but most



Boosting Sequential Consistency Checking Using Saturation 373

importantly by their time complexity.
In fact, the difference in the coverage
in average between the two algorithms is small (98.51% vs 97,89%). Thus, the
time complexity of the two algorithms plays also an important role: for CCM,
the saturation schema requires computing local happen-before relation for each
operation, which is very expensive compared with the much simpler saturation
schema in wSC.

(a) Comparing all approaches. (b) Comparison of wSC+ENUM,
CCM+ENUM and wSC+DBCOP.

Fig. 7. Checking SC for valid histories while varying the number of threads.

Figure 7 reports the running time while increasing the number of threads
from 4 to 16, by steps of 4. We have considered 50 operations per thread. Notice
that increasing the number of threads increases also the total number of oper-
ations. Figure 7(a) shows that the performances of DBCOP degrade beyond
8 threads, while the other algorithms exploiting saturation are more scalable.
wSC+DBCOP achieves the best performances while wSC+ENUM performs bet-
ter than CCM+ENUM. Figure 7(b) is a zoom of Figure 7(a) for a smaller time
scale in order to examine more closely the separation between CCM+ENUM,
wSC+ENUM, and wSC+DBCOP. It can be seen that the combination of wSC
saturation with DBCOP leads to an efficient procedure that takes advantage
from the DBCOP strategy for small number of threads, and exploits wSC satu-
ration to stay scalable when both the number of threads and operations increase.

SC Conformance Checking for (in)valid Histories. We now consider a
set of histories containing 50% of violations. The violations are generated by
randomly changing the write-read relation: for some reads, chosen randomly, we
modify the writes from which they get their values. The new writes are chosen
randomly within a bounded distance from their corresponding reads. As in the
previous paragraph, we consider histories with 4 to 16 threads and we test 200
histories for each number of threads. The experimental results are presented in
Fig. 8 and they are very similarly to the case with only valid histories.
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(a) Comparing all approaches. (b) Comparison of wSC+ENUM,
CCM+ENUM and wSC+DBCOP.

Fig. 8. Checking SC for a set of 50% of valid and 50% of invalid histories.

(a) Comparison of wSC, CCM and
DBCOP.

(b) Comparison of wSC and CCM.

Fig. 9. Checking SC for Invalid Histories.

SC Conformance Checking for Invalid Histories. In the following, we
consider invalide histories with 4 to 16 threads and 50 operations per thread.
For each number of threads, we consider 100 histories and compute the average
running time. Since all found violations are already wSC violations, we only
compare the saturation steps of wSC, CCM, and DBCOP. Figure 9b shows that
wSC is more efficient than CCM. In addition, wSC captures more SC violations:
1,25% of the violations are not captured by CCM. Figure 9 shows that wSC has
better performance, by factors of 70 times (in the 8 threads case) and higher,
compared to DBCOP. In fact, wSC terminates in less than 8 s for all the tested
histories. This shows the efficiency of wSC in detecting consistency violations.
Furthermore, wSC scales very well when increasing the number of threads (and
therefore the total number of operations).
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7 Conclusion

We have proposed an efficient approach for verifying the conformance of an
execution to SC (known to be NP-hard). The approach is based on using a
powerful saturation rule for computing in polynomial time a large subset of
the SC-kernel of the given execution. Our experimental results show that in
practice (1) this allows to catch very quickly almost all SC-violations, and (2)
our method allows to compute almost always the whole SC-kernel, and leaves
only a very small number of store order constraints to be found in order to check
SC-ness. We considered two ways for finding the remaining constraints: either
using SAT-solving, or using the search procedure of DBCOP. The latter option,
exploiting saturation to enhance DBCOP, is the best one experimentally, leading
to a performant and scalable algorithm. An interesting problem for future work
is the development of similar approaches for other consistency models for which
the conformance verification problem is NP-hard, such as for instance the Total
Store Order (TSO) model.
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Abstract. Stateless model checking (SMC) is an automatic technique
with low memory requirements for finding errors in concurrent programs
or for checking for their absence. To be effective, SMC tools require
algorithms that combat the combinatorial explosion in the number of
process/thread interactions that need to be explored. In recent years, a
plethora of such algorithms have emerged, which can be classified broadly
in those that explore interleavings (i.e., complete serializations of events)
and those that explore traces (i.e., graphs of events). In either case, an
SMC algorithm is optimal if it explores exactly one representative from
each class of equivalent executions. In this paper, we examine the par-
allelization of a state-of-the-art graph-based algorithm for SMC under
sequential consistency, based on the reads-from relation. The algorithm
is provably optimal, and in practice spends only polynomial time per
equivalence class. We present the modifications to the algorithm that
its parallelization requires and implementation aspects that allow us to
make it scalable. We report on the performance and scalability that we
were able to achieve on C/pthread programs, and how this performance
compares to that of other SMC tools. Finally, we argue for the inher-
ent advantages that graph-based algorithms have over interleaving-based
ones for achieving scalability when parallelism enters the picture.

1 Introduction

Stateless model checking (SMC) [12] is a fully automatic technique to systemati-
cally, and often exhaustively, test concurrent programs written in general-purpose
programming languages for bugs and other concurrency issues. The programs,
which must be data-deterministic and terminating, are executed many times
under the control of a stateless model checker, each time controlled to exhibit a
different interleaving. One approach to combating the combinatorial explosion
in the number of executions that need to be explored in SMC is called Dynamic
Partial-Order Reduction [2,11], which drives the scheduling of the program, and
systematically explores the different orderings of dependent events, for example
conflicting accesses to the same shared variable. Recently, a new kind of SMC
reduction algorithms [3,16,17] has emerged, which views program executions
not as schedules but as traces, i.e., labelled graphs of program events. These new
graph-based SMC algorithms are conceptually easier to understand and often
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Fig. 1. Simple program (left) and its three ReadsFrom-SMC traces. (Color figure
online)

simpler to implement in an efficient way. More importantly, as we will show in
this paper, they are more amenable to effective parallelization.

In either type of SMC algorithms, the partial order relation and the traces,
respectively, divide the interleavings of the program into equivalence classes. If
an algorithm explores exactly one representative from each equivalence class, we
say that it is optimal. Non-optimal algorithms may spend exponentially more
time than optimal ones exploring multiple different elements of each equivalence
class.

SMC algorithms have low memory requirements in practice, but run in time
at least linear in the number of different concurrency behaviours of the program.
In order to apply SMC to challenging programs, users are often required to care-
fully constrain the programs to minimize the number of concurrency behaviours
that are independent of the part of the program they want to test. Having the
ability to scale SMC algorithms using, for example, the nowadays abundant
availability of multicore machines could allow users to apply stateless model
checking more frequently, or to even more challenging programs. Last but not
least, we hold that it is particularly desirable to parallelize optimal SMC algo-
rithms, as the slowdown of non-optimality could easily trump the speedup gained
by parallelization, no matter how powerful a platform one uses.

One example of an optimal graph-based SMC algorithm is the recently pro-
posed ReadsFrom-SMC algorithm of Abdulla et al. [3], hereafter abbreviated
RF-SMC, which runs programs under the sequential consistency (SC) memory
model. In RF-SMC, traces consist of two types of edges: 1) “Program order”,
which contains the sequencing of operations from the program source code, but
also orderings like a thread-spawn event before the thread-start, and 2) “Reads-
from”, which associates read events with the corresponding write event from
which they got their value.

As an illustration, consider the program in Fig. 1. Two threads, t1 and t2,
access a shared variable x. Each thread writes to the variable and reads from
it into a local register, a resp. b. The three traces that RF-SMC will examine
are also shown in the figure. Program order is drawn with black arrows, and
Reads-from with green. We can see that either both threads read their own
writes, or both threads read the same write (from t1 resp. t2). When RF-SMC
explores the example program, it starts by running an arbitrary interleaving of
the program events and constructs the corresponding trace. Let us assume that



Parallel Graph-Based Stateless Model Checking 379

it is the first trace in Fig. 1. By analyzing the reads in this trace, the algorithm
discovers that the source writes can be changed, leading to the two other traces,
which it then proceeds to run, one at a time. They too will be analyzed, but will
only lead back to the initial trace. Here, there is an opportunity to parallelize
the algorithm by running and analyzing the second and third trace concurrently.

In this paper, we present Par-RF-SMC (Sect. 4), a parallel version of the
RF-SMC algorithm (Sect. 3), as well as an implementation on top of Nidhugg
and the changes that were needed to make the implementation parallel (Sect. 5).
We experimentally evaluate its performance and scalability in Sect. 6. The paper
ends by reviewing related work (Sect. 7) and some concluding remarks.

2 ReadsFrom-SMC by Example

Let us explore in depth how RF-SMC operates, using the program in Fig. 1 as
an example. The algorithm represents an execution as a sequence of events. Each
event records a side-effect of a program statement, such as a read or a write of
a shared variable. There are two write events here x = 1 and x = 2, denoted e1
and e2. Read events record from which write event they read (the rf relation).
The initialization of shared variables (x in the example) is also represented as
write events, but we will omit them for brevity.

The goal of the algorithm is to explore all the execution graphs of the pro-
gram, which we call traces. We represent a trace by a linearization of its events.
For example, we may represent the first trace in Fig. 1 by x = 1 a = xe1 x =
2 b = xe2 , where a = xe1 denotes the event where a = x reads from e1. Note
that these linearizations are not necessarily executions; i.e. read events do not
necessarily read from the most recent write event.

To structure the exploration, RF-SMC maintains traces in an exploration
tree. Branches of this tree are gradually pruned, achieving low memory con-
sumption in practice, but in this section, for simplicity, we will show complete
exploration trees.

The algorithm starts by running an arbitrary execution, and acquires its
corresponding trace. Let’s assume it is x = 1 a = xe1 x = 2 b = xe2 . The
exploration tree is initialized with the first trace. In Fig. 2, it is shown as the
leftmost trace, τ1. The algorithm then explores if any if the reads in this trace
can have their source writes changed. First, it considers if b=x could have read
from e1 instead, and generates a trace prefix x = 1 a = xe1 x = 2 b = xe1 . In
general, it may not always be possible to have read from this new source. In
order to test it, RF-SMC employs a procedure called GetWitness (Sect. 3.1).
This procedure will either report that the change would violate SC-consistency,
or produces a witness, an execution in which that source is realized. In this case,
the witness shown in the lower box in Fig. 2 is returned, and RF-SMC inserts
the prefix in the exploration tree to create a new b = xe1 node, and associates
it with the witness. Next, it considers if a = x could read from e2. For this, the
prefix x = 1a = xe2 would not be self-contained, since e2 : x = 2 is not included,
so the missing event(s) are appended to create the prefix x = 1 a = xe2 x = 2.
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Fig. 2. Exploring the program of Fig. 1: (left) the first trace and two witnesses from
it, shown in green. (middle) the tree of traces after the full exploration. (right) the
“discoverability” relation of the three traces: there is an edge from trace τ to trace τ ′

if τ ′ is discoverable from τ . This affects available concurrency. (Color figure online)

Again, note that the ordering of a linearization of a trace only needs to preserve
program order. This prefix will also be found to be consistent, so this prefix, and
its witness are inserted into the exploration tree, whose state at this point is as
in the left of Fig. 2.

The sequential algorithm could in principle continue with either of these two
witnesses, but will pick the leftmost one for space reduction reasons. Starting
from the b = xe1 node, the algorithm takes the witness out of the tree, extends
it to a complete execution, and adds any newly found nodes under b = xe1 .
In this case, the witness was already a complete execution. The algorithm then
again looks for new sources for the read events in the trace. However, this time
it finds that both the b = xe2 and a = xe2 nodes already exist in the exploration
tree, and so does nothing. Last, it backtracks to the witness for a = xe2 . This
time, the execution is not complete and a final b = xe2 event is added to the
end of the tree, to create the tree shown in the middle of Fig. 2. Once more,
the algorithm will consider if any reads-from sources can be changed. For a,
a = xe1 is still in the tree, but for b, the algorithm will generate the trace prefix
x = 1 a = xe2 x = 2 b = xe1 . (Note that this does not correspond to the b = xe1

node already in the tree.) However, this trace is not consistent, as, under SC,
there is no way to interleave the program statements so that both a reads 2 and
b reads 1. Thus, no more nodes are inserted into the exploration tree, and the
algorithm terminates at this point.

As we can see, most of the algorithm is agnostic to the order that the newly
found traces are explored. The only point where the logic differs is when the
exploration tree is checked to see if a certain node already exists. We may further
note that the only purpose of this check is to avoid redundant work, as the witness
or lack thereof would be identical to that found the last time that trace prefix
was checked. Simplifying slightly, the exploration of traces can be compared to
exploration of a strongly connected digraph, where the set of all nodes is found
by computing the neighbour sets of known nodes. Then, it should be clear why
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an algorithm on this form is parallelizable. Any time several new traces are
discovered, these could in principle be explored in parallel.

The rightmost part of Fig. 2 shows this digraph of traces as induced by this
example. If trace τ1 is explored first, traces τ2 and τ3 may be explored in parallel.
However, if exploration starts with trace τ2 or τ3, the remaining two traces
can only be explored sequentially. Thus, the scheduling decisions made during
arbitrary exploration can affect the available concurrency.

3 Sequential ReadsFrom-SMC

In this section, we review RF-SMC [3], a sequential SMC algorithm which opti-
mally explores the complete consistent traces of a given concurrent program.
The exploration algorithm is centered around a test GetWitness for checking
whether a given trace is consistent under SC, described in Sect. 3.1.

For a read event eR, let eR.src be the write event that it reads from, and
for any read or write event e, let e.var be the variable, or memory address,
that is accessed. Recall that traces are labelled graphs represented by some
linearization. We say that two traces τ and τ ′ are equivalent, denoted τ ≡ τ ′, if
they are linearizations of the same graph. For a trace τ , let ≤τ be the relation
containing all of the edges labelled “program order”, and rf be the relation
containing all edges labelled “reads-from”. Define a cut of τ to be a subsequence
τ ′ of τ such that whenever e and e′ are events in τ , such that τ ′ contains e and
e′ [≤τ ∪ rf]∗ e, then τ ′ also contains e′. That is, a cut is closed under causal
dependencies (in the sense of ≤τ ∪ rf). Note that a cut is also a trace.

For a trace τ and an event e ∈ τ let

pre(τ, e) denote the prefix of τ up to, but not including, e;
post(τ, e) denote the suffix of τ after, but not including, e;
predecs(τ, e) denote the minimal cut of τ which contains e, i.e., the set of events

(including e) on which e is causally dependent.

As an example, if τ is the trace τ3 in Fig. 2, i.e., τ := x=1 a=xe2 x=1 b=xe2 ,
then predecs(τ, b=xe1) is x=1 x=2 b=xe2 .

Algorithm 1 gives the pseudocode of RF-SMC(τ, E), where τ is an SC-
consistent trace and E is an execution and a witness for τ . Exploration begins
with a call RF-SMC(〈〉, 〈〉).

An important element in RF-SMC is to analyze an explored trace to see
whether another trace can be formed by changing the source of one of its read
events. In order to explore every consistent combination of sources for all the
reads in the program exactly once, the reads are organized in the exploration tree,
as shown in Sect. 2. For this to be sound, the order of read events in the traces
must be preserved throughout the exploration. However, sometimes read events
must be “lifted” because they are injected in the causal history of a prior read
event when its source is changed. The algorithm must not explore alternative
sources for lifted read events, or the algorithm might explore redundant traces,
and even be unsound. To avoid this, we extend the representation of events
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Algorithm 1: RF-SMC.

1 RF-SMC(τ, E)

2 extend E to a complete execution E · Ê where each event of Ê is unmarked

3 τ ′ := τ · Ê

4 for each read event eR ∈ Ê do schedules(pre(τ ′, eR)) := ∅
5 for each eR, eW ∈ τ ′ : eW .var = eR.var and eW �= eR.src and

6 (eR ∈ Ê or eW ∈ Ê) and unmarked(eR) and
7 MayRead(τ ′, eR, eW ) do
8 τ ′′ := pre(τ ′, eR)
9 π := predecs(τ ′, eW ) ∩ post(τ ′, eR)

10 σ := eR[src := eW ] · mark(π)

11 E′′ := GetWitness(τ ′′ · σ, E · Ê)
12 if E′′ �= 〈〉 and ¬∃ 〈σ′, −〉 ∈ schedules(τ ′′) : σ′ ≡ σ then
13 add 〈σ, E′′〉 to schedules(τ ′′)
14 for each read event eR ∈ Ê starting from the end do
15 τ ′′ := pre(τ ′, eR)
16 for each 〈σ, E′′〉 ∈ schedules(τ ′′) do RF-SMC(τ ′′ · σ, E′′)
17 erase schedules(τ ′′)

with a field whose value is either � or ⊥. When �, we say that the event is
marked ; when ⊥, that it is unmarked. For a sequence π of events, let mark(π)
be π but with each element marked. By marking any events that are “lifted”
in the exploration tree, RF-SMC will not analyse any such event for alternate
sources.

For some trace prefix τ in the exploration tree, RF-SMC represents the set
of children of that node by a set schedules(τ). Each element is a tuple 〈τ ′, E′〉
of the child trace τ ′ and a witness E′ of its consistency. As we saw in Sect. 2,
the exploration tree serves two purposes. First, for any read event eR in a trace
τ , the set schedules(pre(τ, eR)) keeps track of all read sources for eR that have
been found so far. Secondly, schedules also keeps track of what trace prefixes,
with associated executions, to explore in the future.

The algorithm is structured in three phases: i) exploration (lines 2–3); ii)
new-source-detection (lines 4–13); and iii) recursive-exploration (lines 14–17).

In the exploration phase, RF-SMC(τ, E) extends E to an arbitrary complete
execution E · Ê, and its complete trace τ ′ is computed. Correctness properties
are checked on E · Ê.

In the new-source-detection phase, for every read event eR, any possibly con-
sistent source eW from the same trace are considered. The MayRead(τ ′, eR, eW )
predicate checks whether eR reading from eW would cause a causal loop, or
whether there is another write event e′

W causally after eW and before eR. This
is an efficient necessary but not sufficient check for whether eR can read from eW .
If the check passes, the algorithm will construct the trace prefix τ ′′ ·σ containing
eR with the new source, as well as a sequence π of any new causal dependen-
cies of eR. On line 9, as an abuse of notation we take the intersection ∪ of two
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sequences, and mean the subsequence of both that contain the elements com-
mon to both sequences. Note that this is well-defined because both sequences
agree on the ordering of common elements. The trace prefix τ ′′ · σ is fed to the
GetWitness decision procedure, along with the current execution E · Ê as a
hint. If it is found to be consistent, and there is no equivalent node already in
the tree, it is inserted into the exploration tree along with the witness found by
GetWitness.

In the recursive-exploration phase, the algorithm calls itself recursively on
any consistent trace prefixes that were found by the new-source-detection phase,
starting from the bottom of the tree. Note that the recursive calls to RF-SMC
may add elements to schedules(τ ′′). When all sources of eR have been recursively
explored, the set schedules(τ ′′) may safely be erased to keep memory use low.

The algorithm satisfies the following three properties [3]: Soundness, Com-
pleteness, and Optimality (cf. Sect. 4).

3.1 Checking Consistency: The GetWitness Procedure

Let us briefly overview the GetWitness(τ, E) procedure. (For more details,
refer to our previous paper [3].) The procedure checks the consistency of τ ,
returning either a witness or 〈〉. It takes an execution E as a hint for the ordering
of write events to the same variable when it cannot infer the ordering, or when
any ordering is valid.

The core of the procedure is a sound but incomplete heuristic which runs
in polynomial time, but falls back on a sound and complete decision procedure
which is polynomial time when the number of threads is fixed [3]. The heuristic
is based on the concept of saturation. When a trace τ is saturated, the rf and ≤τ

relations are extended to a saturated-happens-before relation shb, which extends
≤τ ∪ rf by orderings that must be respected by any witness of τ . If shb is cyclic,
then τ is inconsistent.

3.2 Implementation

An implementation of RF-SMC is available in the tool Nidhugg [1]. In this
section, we describe that implementation.

Nidhugg takes C or C++ programs as input, but does its analysis on the
level of LLVM IR, produced by the Clang compiler. Executions are checked
for assertion violations and crashes, such as segmentation faults. For programs
that do not terminate in bounded time, and hence have an infinite trace space,
automatic loop bounding, sometimes called loop unrolling, can be requested by
the user. As with any bounding technique, this makes the exploration exhaustive
only up to the given bound, which means that bugs may be missed if they do
not manifest in any trace within the bound.

In order to do efficient trace equivalence comparison, as needed on line 12
of Algorithm 1, Nidhugg maintains a directed graph which is the union of all
(≤τ ∪ rf) graphs for all the traces in schedules. Each node is duplicated for every
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possible reads-from assignment and program-order predecessor node. Insertions
are interned, which means that if, when inserting a node for some event with
some predecessor set, there is already a node for that program event with the
same predecessor set, that node is reused. Thus, to compare two traces identified
by the nodes of their last events, it suffices to compare the nodes for reference
equality, which is an O(1) operation. In the source code of Nidhugg, this graph
is called the unfolding tree.

As an optimization, in addition to the schedules sets, Nidhugg maintains a
cache of traces that GetWitness has found to be inconsistent. Before querying
GetWitness, it checks both schedules(τ ′′) and the cache of inconsistent traces,
so that consistency is never queried for the same trace twice.

As an additional optimization, for every read event eR in τ tried in the new-
source-detection phase, Nidhugg caches the shb graph for pre(τ ′, eR). Then,
when shb is needed for a new trace τ ′′, the longest prefix of τ ′′ for which there is
an shb cached is found and reused, adding only the missing suffix of events and
re-saturating. In order to efficiently support this use, Nidhugg represents shb
graphs using persistent immutable data structures that provide O(1) copying
and O(log n) updates.

4 Parallelization of ReadsFrom-SMC

In this section, we present Par-RF-SMC, a parallel version of RF-SMC.
While the sequential version is expressed in a recursive form, Par-RF-SMC is
expressed in a task-based form, where each task explores one trace and spawns
zero or more new tasks. Algorithm 2 shows its code. The algorithm consists
of creating an initial task Par-RF-SMC(〈〉, 〈〉), and terminates when all tasks
have finished.

Recall from Sect. 3 that in RF-SMC, the global data structure schedules
serves two purposes. It keeps track of both all read sources that have been found
so far for any read event, as well as of what trace prefixes, with associated exe-
cutions, to explore in the future. In Par-RF-SMC, the trace prefixes to explore
in the future are kept as tasks and do not need to be stored as global variables,
but the set of all sources found for some read event eR in some trace τ is still
required to avoid redundant (duplicate) exploration. Therefore, Par-RF-SMC
uses a variable attempted(pre(τ, eR)), shared by all tasks, to keep track of this
set. This is the only shared data structure.

The algorithm of Par-RF-SMC is structured in three phases: i) exploration
(lines 2–3); ii) new-source-detection (lines 4–13); and iii) cleanup (lines 14–17).
As can be seen, there is no recursive-exploration phase. Instead, new tasks are
spawned for all new sources found in the new-source-detection phase, and then
the cleanup phase deletes all the attempted sets that are no longer needed after
all sub-tasks have finished.

The exploration phase is identical to that of RF-SMC. A trace prefix τ and
execution E is extended to an arbitrary complete execution E · Ê and corre-
sponding trace τ ′, and correctness properties are checked.
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Algorithm 2: Par-RF-SMC.

1 Par-RF-SMC(τ, E)

2 extend E to a complete execution E · Ê where each event of Ê is unmarked

3 τ ′ := τ · Ê

4 for each read event eR ∈ Ê do
5 attempted(pre(τ ′, eR)) := {pre(τ ′, eR) · eR}
6 for each eR, eW ∈ τ ′ : eW .var = eR.var and eW �= eR.src and

7 (eR ∈ Ê or eW ∈ Ê) and unmarked(eR) and
8 MayRead(τ ′, eR, eW ) do
9 τ ′′ := pre(τ ′, eR)

10 π := predecs(τ ′, eW ) ∩ post(τ ′, eR)
11 σ := eR[src := eW ] · mark(π)
12 if ¬∃σ′ ∈ attempted(τ ′′) : σ′ ≡ σ then
13 add σ to attempted(τ ′′) // atomically with the test above

14 E′′ := GetWitness(τ ′′ · σ, E · Ê)
15 if E′′ �= 〈〉 then spawn Par-RF-SMC(σ, E′′)
16 join all sub-tasks

17 for each read event eR ∈ Ê do erase attempted(pre(τ ′, eR))

The new-source-detection phase is very similar to that of RF-SMC. The
differences lie in the changes to the global data structure attempted. The set
attempted of possible sources for a read event is initialized on line 5, just like
schedules in RF-SMC. Possible alternative sources for reads are looped over
on line 6, however on line 12 we see the first difference. Before we invoke the
potentially expensive consistency check GetWitness, we first check that the
source eW for eR has not been previously attempted, by this or any other thread.
This ensures that the algorithm never queries consistency for the same trace
prefix twice. Thus lines 12 and 13 need to be executed atomically, for example
with a mutex guarding attempted(τ ′′). Finally, if we did not find this source in
attempted(τ ′′) and GetWitness found it to be consistent, we add the new trace
to the work-queue on line 15.

Just like RF-SMC, Par-RF-SMC satisfies the following three properties:

(i) Soundness: each complete trace explored by the algorithm is a consistent
trace of the program.

(ii) Completeness: the algorithm explores all consistent traces of the program.
(iii) Optimality : each trace is explored exactly once.

Proof. We can establish these properties by observing that any run of
Par-RF-SMC can be rearranged to produce an equivalent run of RF-SMC.
Every time the sequential algorithm adds an element to schedules for future
exploration, the parallel algorithm spawns a task with the same parameters,
and vice versa. Every time the parallel algorithm runs a new task, the sequential
algorithm makes a recursive call to itself. In order to be allowed to rearrange
the execution of the parallel algorithm like this, we must show that it does not
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affect the set of traces explored. To do that, it suffices to look at the only source
of scheduling non-determinism in the algorithm; the access to the attempted set.
When two tasks both try to insert equivalent σ’s into attempted, whichever of
them “wins” and gets to insert into attempted is exactly the one that will run
GetWitness and, if σ is consistent, the one that will spawn a task to explore
it. After that, the system is in the same state, no matter which task “won”. 
�

The order in which tasks are scheduled is not specified. The algorithm keeps
its correctness and optimality properties with any scheduling, but depth-first and
left-to-right policies minimize memory use. Work-stealing scheduling policies [7],
where each thread has its own depth-first queue but when empty “steals” a
shallowest task from another thread’s queue, may also be employed to maximize
locality while bounding the increase in memory use.

As was described at the end of Sect. 2, the scheduling of the arbitrary exe-
cution during the exploration phase on line 2 affects the amount of concur-
rency exposed to this algorithm. It is possible to devise a program where under
one scheduling, Par-RF-SMC would explore it entirely sequentially, and under
another scheduling, would find all other traces by examining the first one it
explores. However, we have neither encountered nor we expect realistic programs
with large numbers of traces to behave this way.

5 Implementation

Par-RF-SMC has been implemented in Nidhugg. The language Nidhugg is
written in, C++, does not have a task-based scheduler in its runtime system.
There are libraries that provide such functionality, but we chose to write our
own work-stealing task scheduler. The scheduler detects when there are no more
tasks in the queue or running, and terminates at that point. Figure 3 shows a
diagram of the components of the implementation.

In the sequential implementation, the schedules sets are stored as a stack,
one entry per read event. However, in our parallel version, the attempted sets
cannot be stored in a stack. Instead, they are organized in a tree. This tree is
effectively the exploration tree, as described in Sect. 2. Unlike the pseudocode of
Algorithm 2, our implementation does not do explicit deletions of attempted sets,
as on lines 16–17. Rather, nodes in this attempted tree are reference counted, and
each task holds references to the attempted sets of all read events in their input
traces. Every node in the tree has an associated mutex which is held during the
atomic check-and-insert operation on lines 12–13. The attempted tree is shown
in the middle of Fig. 3.

We preserve the unfolding tree data structure from sequential RF-SMC, but
we extend it with mutexes that guard the child lists used for interning. For the
special list of root nodes for each thread, we employ a readers-writer mutex due
to high contention and high hit-rate (i.e., most queries for a root node return an
interned node, and thus need not modify the list). The unfolding tree is shown
in the bottom of Fig. 3.
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Fig. 3. Components of Par-RF-SMC’s implementation in Nidhugg.

In sequential RF-SMC, the cache of shb graphs was represented using per-
sistent immutable data structures [21], which had structural sharing that was
memory managed through reference counting. These were stored along the sets
on the schedules stack. For Par-RF-SMC, we could simply move the cache into
the nodes of the attempted tree, and ensure that write-accesses were properly
synchronized. Luckily, the library that was used to provide these data struc-
tures was designed with threading in mind [21], and offered thread-safe atomic
reference counting. However, as we were benchmarking our implementation, we
found that the reference counting on these data structures became a scalability
bottleneck. We were able to lift this bottleneck by redesigning these data struc-
tures to be more tailored to the needs of Par-RF-SMC. In particular, because
nodes in the attempted tree are always erased after all of their children, and
because an shb graph is never updated after being installed into the cache, the
memory management can be designed so that each piece of memory has exactly
one owner, and thus does not require reference counting.

Nidhugg supports early termination when it finds an error in the program,
so naturally we wanted to support this in Par-RF-SMC. We achieve this by
telling the task scheduler to stop scheduling new tasks when an error is found.
Thus, once all tasks that were running at that point terminate, so does the
algorithm.

6 Performance and Scalability Evaluation

In this section, we report on the performance and scalability of Nidhugg/rfsc.
To put the numbers in perspective, we first compare its performance to three
other SMC tools that implement state-of-the-art algorithms. Subsequently, we
evaluate Nidhugg/rfsc’s scalability on a large multicore machine.

Tools. Let us briefly present the SMC tools we compare against and the algo-
rithms they employ. By VC-DPOR we refer to a prototype tool, based on
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Nidhugg, that implements the recently proposed Value-Centric Dynamic Par-
tial Order Reduction algorithm [9]. This algorithm, which is sensitive to the
values used by the events during an execution rather than the read events them-
selves, in principle provides a coarser partitioning than reads-from. However,
neither the VC-DPOR algorithm nor its implementation provide any optimal-
ity guarantees and often explore—partially—considerably more executions than
Nidhugg/rfsc, as we will soon see. The second tool, CDSChecker [20], is a
high-performance stateless model checker for C/C++11 programs. It employs
a variant of the interleaving-based DPOR algorithm of Flanagan and Gode-
froid [11]. Although CDSChecker’s implementation is well-engineered, the
tool often explores a significant number of executions that are redundant, as
this DPOR algorithm is not optimal. The last tool, GenMC [17], is a high-
performance generic stateless model checker for concurrent C programs. As its
algorithm is also graph-based, GenMC is the tool which is more similar to
Nidhugg/rfsc. However, rather than focusing on SC, GenMC provides a frame-
work into which consistency checks for different (weak) memory models and pro-
gram semantics can be plugged and even combined. GenMC offers a mode for
SMC under rf-equivalence, which is the default, as well as a mode that tracks
the modification order. We compare against the default mode of GenMC. In
this mode, GenMC is optimal when consistency checks are not needed for SMC
under SC. It is also faster than Nidhugg/rfsc, both due to not checking consis-
tency and due to being well-engineered.

Platform and Benchmarks. Our benchmarking platform is a machine with two
Intel(R) Xeon(R) Platinum 8168 CPUs (2.70 GHz each with 24 cores and hyper-
threading, giving a total of 48 physical/96 logical cores), has 192 GB of RAM
and ran Debian 10.3. All tools used Clang version 7.0.1 to translate the C source
to LLVM IR. For benchmarks, we use the subset of programs from our previ-
ous paper [3] that can be handled by most tools and, more importantly for this
paper, whose execution time is more than a few seconds, and hence their par-
allel execution makes sense. Refer to that paper for the programs’ origin and
characteristics, and to the artifact [4] of that paper for their sources.

Performance. Table 1 shows the results: number of executions that the various
tools explore and the time (in seconds) that this requires.1 Since all these pro-
grams have a scaling parameter, often the number of threads involved, we show

1 In Table 1, entries n/a signify that the tool cannot handle that program; a � symbol
that the benchmark does not complete after running for more than ten hours. The
circular-buffer program contains a concurrency error which only manifests itself for
parameter values ≥ 10. The CDSChecker tool finds this error immediately (within
the first few executions), hence the † symbols for its circular-buffer(10) entries. The
remaining three tools are not so lucky in their search, and catch the error after
exploring many executions. The parallel version of Nidhugg/rfsc detects this error
at a point that is influenced by the distribution of tasks to threads, which also
explains the slight variation in the curve of circular-buffer(10) in Fig. 4.
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Table 1. Performance comparison of four SMC tools in terms of the number of exe-
cutions that explore and the time (in secs) it takes to do so using one thread. The last
column shows the time performance of parallel Nidhugg/rfsc using 48 threads.

CDSCHECKER VC-DPOR GENMC NIDHUGG/

Benchmark Execs Time Execs Time Execs Time Execs Time Time

fib-bench(4) n/a n/a 70937 6.93 34205 0.88 19605 1.66 0.15
fib-bench(5) n/a n/a 788940 87.69 525630 33.48 218243 21.28 0.76
fib-bench(6) n/a n/a 8543518 1182.25 8149694 3718.86 2364418 255.03 8.31

parker(12) n/a n/a 6601 0.92 69658 11.61 9407 2.24 0.13
parker(16) n/a n/a 11425 1.76 203754 43.60 21195 5.85 0.23
parker(20) n/a n/a 17561 3.09 475210 132.08 40087 12.73 0.41

circular-buffer(8) 12870 0.72 303149 50.44 12870 3.21 12870 2.51 0.15
circular-buffer(9) 48620 2.91 1147421 226.36 48620 13.58 48620 10.32 0.39
circular-buffer(10) 2964067 635.99 59279 19.13 59280 13.90 0.52

casrot(9) 372735 27.24 n/a n/a 8597 0.08 8597 0.89 0.14
casrot(10) 3456845 284.27 n/a n/a 38486 0.30 38486 4.28 0.23
casrot(11) 35407921 3230.99 n/a n/a 182905 1.40 182905 22.39 0.89

lastzero(11) 184331 21.15 170515 33.09 7168 0.28 7168 1.13 0.13
lastzero(13) 1888624 255.84 1192108 317.12 32768 1.25 32768 5.89 0.26
lastzero(15) 19478080 3057.60 8264353 3061.91 147456 6.25 147456 30.76 1.00

readers(13) 13311 1.75 67108864 21224.93 8192 0.59 8192 1.25 0.14
readers(15) 53247 8.10 32768 2.46 32768 5.81 0.26
readers(17) 212991 37.24 131072 10.94 131072 25.23 0.89

sigma(7) 509861 48.08 46232 4.97 5040 0.23 5040 0.52 0.11
sigma(8) 9057756 977.89 409112 56.27 40320 1.67 40320 4.40 0.28
sigma(9) 180337837 22286.21 4037912 668.64 362880 15.94 362880 44.17 2.17

race-parametric(5) 34904 12.41 14967 3.92 8953 1.04 8953 3.60 0.21
race-parametric(6) 372436 134.75 88432 26.38 73789 8.24 73789 30.35 0.96
race-parametric(7) 4027216 1479.37 591352 209.40 616227 69.59 616227 255.43 7.69

approxds-append(5) 390728 25.69 121883 11.36 9945 0.60 9945 1.72 0.15
approxds-append(6) 30603290 2425.28 5353219 622.40 198936 12.83 198936 41.45 1.21
approxds-append(7) 4645207 342.52 4645207 1143.28 34.86

three rows for each. This allows to see the complexity of the different SMC algo-
rithms and their scalability in terms of the number of executions explored as the
state space increases. We notice the following:

– In terms of sequential performance, no tool is fastest overall. GenMC is
fastest in the last six benchmarks where it is optimal and explores the same
number of executions as Nidhugg/rfsc. However, when it is not optimal and
on circular-buffer, it is slower roughly by an order of magnitude compared
to other tools (Nidhugg/rfsc on fib-bench, VC-DPOR and Nidhugg/rfsc on
parker, and CDSChecker and Nidhugg/rfsc on circular-buffer).

– VC-DPOR explores significantly less executions only on one program (parker)
and only a few less on race-parametric(7). It is faster than the other tools
only on parker. In the remaining seven programs, it examines a big number
of partially explored executions —on readers even exponentially more!— and
its numbers explode.
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Fig. 4. Speedups (y-axes) obtained by running the benchmarks when varying the num-
ber of threads (x-axes) on a machine with 48 physical/96 logical cores.

– The performance of the sequential Nidhugg/rfsc is quite decent, but GenMC
is 2.4 to five times faster than Nidhugg/rfsc in the last four benchmarks
where both tools explore the same number of executions. Also, in the casrot
benchmark, GenMC is an order of magnitude faster. However, both tools
scale similarly and better than the other two.

– When parallelism enters the picture, Nidhugg/rfsc becomes the fastest tool
across the board. (The last column of Table 1 shows times when executing
with 48 threads, which is the number of physical cores in our machine.)
Note that this would not have been possible if Nidhugg/rfsc were exam-
ining a significant number of redundant executions (e.g., similar to those that
CDSChecker or VC-DPOR often explore).

Scalability. Let us now examine the scalability of Par-RF-SMC compared
to its sequential counterpart as implemented in Nidhugg/rfsc. Figure 4 shows
speedups obtained for executions of all benchmark/parameter combinations. All
graphs show a very similar picture. The speedup is almost linear up to 24 threads,
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which is the number of physical cores per chip on this machine, and becomes on
average 32× when using all 48 physical cores (which are located on two different
NUMA nodes). In most programs, there is a moderate speedup increase above
32× when hyperthreading is also used.

Two more points worth noting are that i) the speedups are in general highest
for the benchmark configuration with the largest parameter value (brown lines in
the plots), and ii) the speedup obtained for the configuration with the smallest
parameter value (blue lines) often drops when using more threads than physical
cores. This is due to threads not having much work to do after some point in
time during the execution of the benchmark and/or trying to steal from other
threads, causing memory traffic.

7 Related Work

To address the inherent complexity of testing concurrent software, researchers
have developed a variety of methods for finding and reproducing concurrency
errors. In the area of stateless model checking [12] numerous tools and research
prototypes [1,10,16,17,19,20] have been developed in the last decade, and SMC
has been successfully applied to important concurrent programs (e.g., [13,18]).

In recent years, a wide variety of SMC algorithms has been put forward
(e.g., [2,3,5,6,8,9,11,16,22,26]) with the aim to effectively combat the combi-
natorial explosion in the number of executions that must be explored. However,
only a selected few of them [2,3,6,17] come with optimality guarantees, and none
of them has been parallelized. To the best of our knowledge ReadsFrom-SMC
is the first optimal algorithm for SMC with a parallel implementation.

Still, non-optimal Dynamic Partial-Order Reduction (DPOR) algorithms
have been parallelized in the past (e.g., by Yang et al. [25] and by Simsa et
al. [23]), although the focus of those works has been on obtaining distributed
versions of these algorithms rather than algorithms suitable for running on mul-
ticores. Also, their focus has been on techniques and heuristics on how to avoid
situations where different workers end up exploring identical (N.B. not just from
the same equivalence class!) parts of the search space, due to the non-local nature
in which interleaving-based DPOR algorithms update their exploration frontier
and the need, for scalability, to avoid a central coordinator.

Of course, distributed execution and parallelization of explicit state model
checkers has also been investigated (e.g., [14,15,24]). Stateful exploration is less
common for software model checking and often suffers from memory explosion.

8 Concluding Remarks

We have presented Par-RF-SMC, the parallel version of a state-of-the-art
graph-based SMC algorithm for SC. The algorithm retains its main proper-
ties (soundness, completeness and, most importantly, optimality), can be imple-
mented with moderate additional effort on top of its sequential counterpart, and
achieves very good scalability; on average 32 times speedup on a 48 core machine.
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Our performance evaluation shows that parallel Nidhugg/rfsc currently outper-
forms all tools in its area, and offers the possibility for SMC to be applied to
programs which are currently very challenging.
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Abstract. To model check concurrent systems, it is convenient to dis-
tinguish between the data flow and the control. Correctness is specified
on the level of data flow whereas the system is configured on the level of
control. Petri nets with transits and Flow-LTL are a corresponding for-
malism. In Flow-LTL, both the correctness of the data flow and assump-
tions on fairness and maximality for the control are expressed in linear
time. So far, branching behavior cannot be specified for Petri nets with
transits. In this paper, we introduce Flow-CTL∗ to express the intended
branching behavior of the data flow while maintaining LTL for fairness
and maximality assumptions on the control. We encode physical access
control with policy updates as Petri nets with transits and give stan-
dard requirements in Flow-CTL∗. For model checking, we reduce the
model checking problem of Petri nets with transits against Flow-CTL∗

via automata constructions to the model checking problem of Petri nets
against LTL. Thereby, physical access control with policy updates under
fairness assumptions for an unbounded number of people can be verified.

1 Introduction

Petri nets with transits [8] superimpose a transit relation onto the flow relation
of Petri nets. The flow relation models the control in the form of tokens moving
through the net. The transit relation models the data flow in the form of flow
chains. The configuration of the system takes place on the level of the control
whereas correctness is specified on the level of the data flow. Thus, Petri nets
with transits allow for an elegant separation of the data flow and the control
without the complexity of unbounded colored Petri nets [14]. We use physical
access control [11–13] as an application throughout the paper. It defines and
enforces access policies in physical spaces. People are represented as the data
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flow in the building. The control defines which policy enforcement points like
doors are open to which people identified by their RFID cards [19]. Changing
access policies is error-prone as closing one door for certain people could be
circumvented by an alternative path. Therefore, we need to verify such updates.

Flow-LTL [8] is a logic for Petri nets with transits. It specifies linear time
requirements on both the control and the data flow. Fairness and maximality
assumptions on the movement of tokens are expressed in the control part. The
logic lacks branching requirements for the data flow. In physical access control,
branching requirements can specify that a person has the possibility to reach a
room but not necessarily has to visit it. In this paper, we introduce Flow -CTL∗

which maintains LTL to specify the control and adds CTL∗ to specify the data
flow. Fairness and maximality assumptions in the control part dictate which
executions, represented by runs, are checked against the data flow part.

This leads to an interesting encoding for physical access control in Petri nets
with transits. Places represent rooms to collect the data flow. Transitions rep-
resent doors between rooms to continue the data flow. The selection of runs
by fairness and maximality assumptions on the control restricts the branching
behavior to transitions. Hence, the data flow is split at transitions: Every room
has exactly one outgoing transition enabled unless all outgoing doors are closed.
This transition splits the data flow into all successor rooms and thereby repre-
sents the maximal branching behavior.

We present a reduction of the model checking problem of safe Petri nets with
transits against Flow-CTL∗ to the model checking problem of safe Petri nets
against LTL. This enables for the first time the automatic verification of physical
access control with policy updates under fairness and maximality assumptions
for an unbounded number of people. Policy updates occur for example in the
evening when every employee is expected to eventually leave the building and
therefore access is more restricted. Such a policy update should prevent people
from entering the building but should not trap anybody in the building.

Our reduction consists of three steps: First, each data flow subformula of
the given Flow-CTL∗ formula is represented, via an alternating tree automaton,
an alternating word automaton, and a nondeterministic Büchi automaton, by a
finite Petri net to guess and then to verify a counterexample tree. Second, the
original net for the control subformula of the Flow-CTL∗ formula and the nets
for the data flow subformulas are connected in sequence. Third, an LTL formula
encodes the control subformula, the acceptance conditions of the nets for the
data flow subformulas, and the correct skipping of subnets in the sequential
order. This results in a model checking problem of safe Petri nets against LTL.

The remainder of this paper is structured as follows: In Sect. 2, we motivate
our approach with an example. In Sect. 3, we recall Petri nets and their extension
to Petri nets with transits. In Sect. 4, we introduce Flow-CTL∗. In Sect. 5, we
express fairness, maximality, and standard properties for physical access control
in Flow-CTL∗. In Sect. 6, we reduce the model checking problem of Petri nets
with transits against Flow-CTL∗ to the model checking problem of Petri nets
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kitchen hall lab

Fig. 1. The layout of a simple building is shown. There are three rooms indicated by
gray boxes which are connected by doors indicated by small black boxes.

against LTL. Section 7 presents related work and Sect. 8 concludes the paper.
Further details can be found in the full version of the paper [10].

2 Motivating Example

We motivate our approach with a typical example for physical access con-
trol. Consider the very simple building layout in Fig. 1. There are three rooms
connected by two doors. An additional door is used to enter the building from
the outside. Only employees have access to the building. A typical specification
requires that employees can access the lab around the clock while allowing access
to the kitchen only during daytime to discourage too long working hours. Mean-
while, certain safety requirements have to be fulfilled like not trapping anybody
in the building. During the day, a correct access policy allows access to all rooms
whereas, during the night, it only allows access to the hall and to the lab.

Figure 2 shows a Petri nets with transits modeling the building layout from
Fig. 1. There are corresponding places (represented by circles) with tokens (rep-
resented by dots) for the three rooms: hall, lab, and kitchen. These places are
connected by transitions (represented by squares) of the form from→to for from
and to being rooms. The doors from the kitchen and lab to the hall cannot be
closed as this could trap people. For all other doors, places of the form ofrom→to

and cfrom→to exist to represent whether the door is open or closed.
In (safe) Petri nets, transitions define the movement of tokens: Firing a tran-

sition removes one token from each place with a black arrow leaving to the
transition and adds one token to each place with a black arrow coming from the
transition. Firing transition evening moves one token from place oh→k to place
ch→k as indicated by the single-headed, black arrows and one token from and to
each of the places hall, lab, and kitchen as indicated by the double-headed, black
arrows. Firing transitions modeling doors returns all tokens to the same places
while the transit relation as indicated by the green, blue, and orange arrows
represents employees moving through the building. Dashed and dotted arrows
only distinguish them from black arrows in case colors are unavailable.

Firing transition enterHall starts a flow chain modeling an employee entering
the building as indicated by the single-headed, green (dashed) arrow. Meanwhile,
the double-headed, blue (dotted) arrow maintains all flow chains previously in
hall. All flow chains collectively represent the data flow in the modeled system
incorporating all possible control changes. Firing transitions from→to, which
correspond to doors, continues all flow chains from place from to place to as
indicated by the single-headed, green (dashed) arrows and merges them with
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all flow chains in the place to as indicated by the double-headed, blue (dotted)
arrows. For example, firing transition hall→lab lets all employees in the hall
enter the lab. When employees leave the hall, their flow chain ends because it is
not continued as indicated by the lack of colored arrows at transition leaveHall.

hall

enterHall

leaveHall

lab

kitchen

oh→l

ch→l

oh→k

ch→k

evening

hall→[l,k]

hall→lab

hall→kitchen

lab→hall

kitchen→hall

Fig. 2. The Petri net with transits encoding the building from Fig. 1 is depicted. Rooms
are modeled by corresponding places, doors by transitions. Tokens in places starting
with o configure the most permissive access policy during the day. In the evening,
access to the kitchen is restricted. Employees in the building are modeled by the transit
relation depicted by green, blue, and orange arrows. (Color figure online)

Flow-CTL∗ allows the splitting of flow chains in transitions. Splitting flow
chains corresponds to branching behavior. Thus, when the doors to the lab and
kitchen are open, we represent this situation by one transition which splits
the flow chains. Transition hall→[l,k ] realizes this by the single-headed, green
(dashed) arrows from the hall to the lab and kitchen. Branching results in a flow
tree for the possible behavior of an employee whereas a flow chain represents
one explicit path from this flow tree, i.e., each employee has one flow tree with
possibly many flow chains. Notice that transition hall→[l,k ] can only be fired
during the day, because, when firing transition evening, access to the kitchen
is revoked. Then, only transition hall→lab can be fired for moving flow chains
from the hall. For simplicity, we restrict the example to only one time change
which implies that the transition hall→kitchen can never be fired. Firing tran-
sition evening continues all flow chains in the three places hall, lab, and kitchen,
respectively, as indicated by the distinctly colored, double-headed arrows. Thus,
we can specify requirements for the flow chains after the time change.

We specify the correctness of access policies with formulas of the logic Flow-
CTL∗. The formula AAGEFlab expresses persistent permission requiring that
all flow chains (A) on all paths globally (AG) have the possibility (EF) to reach
the lab. The formula AA((EFkitchen)Uevening) expresses dependent permission
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requiring that all flow chains on all paths (A) have the possibility to reach the
kitchen until (U) evening. Both properties require weak or strong fairness for
all transitions modeling doors to be satisfied. The second property additionally
requires weak or strong fairness for transition evening to be satisfied. Flow-CTL∗

and specifying properties with it are discussed further in Sect. 4 and Sect. 5.

3 Petri Nets with Transits

We recall the formal definition of Petri nets with transits [8] as extension of
Petri nets [17]. We refer the reader to the full paper for more details [10]. A
safe Petri net is a structure N = (P,T,F, In) with the set of places P, the
set of transitions T, the (control) flow relation F ⊆ (P × T) ∪ (T × P), and
the initial marking In ⊆ P. In safe Petri nets, each reachable marking contains
at most one token per place. The elements of the disjoint union P ∪ T are
considered as nodes. We define the preset (and postset) of a node x from Petri
net N as preN(x) = {y ∈ P ∪ T | (y, x) ∈ F} (and postN(x) = {y ∈ P ∪ T |
(x, y) ∈ F}). A safe Petri net with transits is a structure N = (P,T,F, In, Υ )
which additionally contains a transit relation Υ refining the flow relation of the
net to define the data flow. For each transition t ∈ T, Υ (t) is a relation of type
Υ (t) ⊆ (preN(t) ∪ {�}) × postN(t), where the symbol � denotes a start. With
� Υ (t) q, we define the start of a new data flow in place q via transition t and
with p Υ (t) q that all data in place p transits via transition t to place q. The
postset regarding Υ of a place p ∈ P and a transition t ∈ postN(p) is defined by
postΥ (p, t) = {p′ ∈ P | (p, p′) ∈ Υ (t)}.

The graphic representation of Υ (t) in Petri nets with transits uses a color
coding as can be seen in Fig. 2. Black arrows represent the usual control flow.
Other matching colors per transition are used to represent the transits of the
data flow. Transits allow us to specify where the data flow is moved forward,
split, and merged, where it ends, and where data is newly created. The data
flow can be of infinite length and at any point in time (possibly restricted by the
control) new data can enter the system at different locations.

As the data flow is a local property of each distributed component (possibly
shared via joint transitions) it is convenient that Petri nets with transits use
a true concurrency semantics to define the data flow. Therefore, we recall the
notions of unfoldings and runs [5,6] and their application to Petri nets with tran-
sits. In the unfolding of a Petri net N, every transition stands for the unique
occurrence (instance) of a transition of N during an execution. To this end,
every loop in N is unrolled and every backward branching place is expanded by
multiplying the place. Forward branching, however, is preserved. Formally, an
unfolding is a branching process βU = (NU , λU ) consisting of an occurrence net
NU and a homomorphism λU that labels the places and transitions in NU with
the corresponding elements of N. The unfolding exhibits concurrency, causal-
ity, and nondeterminism (forward branching) of the unique occurrences of the
transitions in N during all possible executions. A run of N is a subprocess
βR = (NR, ρ) of βU , where ∀p ∈ PR : |postNR

(p)| ≤ 1 holds, i.e., all nondeter-
minism has been resolved but concurrency is preserved. Thus, a run formalizes
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one concurrent execution of N. We lift the transit relation of a Petri net with
transits to any branching process and thereby obtain notions of runs and unfold-
ings for Petri nets with transits. Consider a run βR = (NR, ρ) of N and a finite
or infinite firing sequence ζ = M0[t0〉M1[t1〉M2 · · · of NR with M0 = InR. This
sequence covers βR if (∀p ∈ PR : ∃i ∈ N : p ∈ Mi) ∧ (∀t ∈ TR : ∃i ∈ N : t = ti),
i.e., all places and transitions in NR appear in ζ. Several firing sequences may
cover βR.

We define flow chains by following the transits of a given run. A (data) flow
chain of a run βR = (NR, ρ) of a Petri net with transits N is a maximal sequence
ξ = t0, p0, t1, p1, t2 . . . of connected places and transitions of NR with

(I) (�, p0) ∈ ΥR(t0),
(con) (pi−1, pi) ∈ ΥR(ti) for all i ∈ N\{0} if ξ is infinite and for all i ∈ {1, . . . n}

if ξ = t0, p0, t1, . . . , tn, pn is finite,
(max) if ξ = t0, p0, t1, . . . , tn, pn is finite there is no transition t ∈ TR and place

q ∈ PR such that (pn, q) ∈ ΥR(t).

A flow chain suffix ξ′ = t0, p0, t1, p1, t2 . . . of a run βR requires constraints (con),
(max), and in addition to (I) allows that the chain has already started, i.e.,
∃p ∈ PR : (p, p0) ∈ ΥR(t0).

A Σ-labeled tree over a set of directions D ⊂ N is a tuple (T, v), with a
labeling function v : T → Σ and a tree T ⊆ D∗ such that if x · c ∈ T for x ∈ D∗

and c ∈ D, then both x ∈ T and for all 0 ≤ c′ < c also x · c′ ∈ T holds. A
(data) flow tree of a run βR = (NR, ρ) represents all branching behavior in the
transitions of the run w.r.t. the transits. Formally, for each t0 ∈ TR and place
p0 ∈ PR with (�, p0) ∈ ΥR(t0), there is a TR ×PR-labeled tree τ = (T, v) over
directions D ⊆ {0, . . . , max{|postΥ R

(p, t)| − 1 | p ∈ PR ∧ t ∈ postN
R

(p)}} with

1. v(ε) = (t0, p0) for the root ε, and
2. if n ∈ T with v(n) = (t, p) then for the only transition t′ ∈ postN

R

(p) (if
existent) we have for all 0 ≤ i < |postΥ R

(p, t′)| that n · i ∈ T with v(n · i) =
(t′, q) for q = 〈postΥ R

(p, t′)〉i where 〈postΥ R

(p, t′)〉i is the i-th value of the
ordered list 〈postΥ R

(p, t′)〉.
Figure 3 shows a finite run of the example from Fig. 2 with two flow trees. The
first tree starts with transition enterHall0, i.e., v(ε) = (enterHall0, hall1) and is
indicated by the gray shaded area. This tree represents an extract of the pos-
sibilities of a person entering the hall during the day ending with the control
change to the evening policy. The second tree (v(ε) = (enterHall1, hall3), v(0) =
(lab→hall , hall4), v(00) = (kitchen→hall , hall5), v(000) = (evening , hall6))
shows the possibilities of a person in this run who later enters the hall and
can, because of the run, only stay there. Note that the trees only end due to
the finiteness of the run. For maximal runs, trees can only end when transition
leaveHall is fired.
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hall0

enterHall0

hall1

hall2
enterHall1 hall3

lab→hall

hall4
kitchen→hall

hall5

evening

hall6

oh→l o′
h→l lab0 lab1

oh→k o′
h→k

kitchen0 kitchen1

lab2

kitchen2

lab3

kitchen3

ch→k

Fig. 3. A finite run of the Petri net with transits from Fig. 2 with two data flow trees
is depicted. The first one is indicated by the gray shaded area.

4 Flow-CTL∗ for Petri Nets with Transits

We define the new logic Flow -CTL∗ to reason about the Petri net behavior and
the data flow individually. Properties on the selection of runs and the general
behavior of the net can be stated in LTL, requirements on the data flow in CTL∗.

4.1 LTL on Petri Net Unfoldings

We recall LTL with atomic propositions AP = P ∪ T on a Petri net N =
(P,T,F, In) and define the semantics on runs and their firing sequences. We
use the ingoing semantics, i.e., we consider the marking and the transition used
to enter the marking, and stutter in the last marking for finite firing sequences.

Syntactically, the set of linear temporal logic (LTL) formulas LTL over AP
is defined by ψ:: = true | a | ¬ψ | ψ1 ∧ ψ2 | ψ | ψ1 Uψ2, with a ∈ AP and

being the next and U the until operator. As usual, we use the propositional
operators ∨, →, and ↔, the temporal operators ψ = true Uψ (the eventually
operator) and ψ = ¬ ¬ψ (the always operator) as abbreviations.

For a Petri net N, we define a trace as a mapping σ : N → 2AP . The i-th
suffix σi : N → 2AP is a trace defined by σi(j) = σ(j + i) for all j ∈ N. To
a (finite or infinite) covering firing sequence ζ = M0[t0〉M1[t1〉M2 · · · of a run
βR = (NR, ρ) of N, we associate a trace σ(ζ) : N → 2AP with σ(ζ)(0) = ρ(M0),
σ(ζ)(i) = {ρ(ti−1)} ∪ ρ(Mi) for all i ∈ N \ {0} if ζ is infinite and σ(ζ)(i) =
{ρ(ti−1)} ∪ ρ(Mi) for all 0 < i ≤ n, and σ(ζ)(j) = ρ(Mn) for all j > n if
ζ = M0[t0〉 · · · [tn−1〉Mn is finite. Hence, a trace of a firing sequence covering a
run is an infinite sequence of states collecting the corresponding marking and
ingoing transition of N, which stutters on the last marking for finite sequences.

The semantics of an LTL formula ψ ∈ LTL on a Petri net N is defined
over the traces of the covering firing sequences of its runs: N |=LTL ψ iff for all
runs βR of N : βR |=LTL ψ, βR |=LTL ψ iff for all firing sequences ζ covering
βR : σ(ζ) |=LTL ψ, σ |=LTL true, σ |=LTL a iff a ∈ σ(0), σ |=LTL ¬ψ iff not
σ |=LTL ψ,σ |=LTL ψ1 ∧ψ2 iff σ |=LTL ψ1 and σ |=LTL ψ2, σ |=LTL ψ iff σ1 |=LTL ψ,
and σ |=LTL ψ1 Uψ2 iff there exists a j ≥ 0 with σj |=LTL ψ2 and σi |=LTL ψ1

holds for all 0 ≤ i < j.
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4.2 CTL∗ on Flow Chains

To specify the data flow of a Petri net with transits N = (P,T,F, In, Υ ), we
use the complete computation tree logic (CTL∗). The set of CTL∗ formulas CTL∗

over AP = P ∪ T is given by the following syntax of state formulas: Φ ::= a |
¬Φ | Φ1 ∧ Φ2 | Eφ where a ∈ AP , Φ, Φ1, Φ2 are state formulas, and φ is a path
formula with the following syntax : φ ::=Φ | ¬φ | φ1 ∧ φ2 | Xφ | φ1Uφ2 where
Φ is a state formula and φ, φ1, φ2 are path formulas. We use the propositional
operators ∨, →, ↔, the path quantifier Aφ = ¬E¬φ, and the temporal operators
Fφ = true Uφ, Gφ = ¬F¬φ, φ1Rφ2 = ¬(¬φ1U¬φ2) as abbreviations.

To a (finite or infinite) flow chain suffix ξ = t0, p0, t1, p1, t2, . . . of a run βR =
(NR, ρ) of N, we associate a trace σ(ξ) : N → S = {{t, p}, {p} | p ∈ PR ∧ t ∈
TR} with σ(ξ)(i) = {ti, pi} for all i ∈ N if ξ is infinite and σ(ξ)(i) = {ti, pi} for
all i ≤ n, and σ(ξ)(j) = {pn} for all j > n if ξ = t0, p0, t1, p1, . . . , tn, pn is finite.
Hence, a trace of a flow chain suffix is an infinite sequence of states collecting
the current place and ingoing transition of the flow chain, which stutters on the
last place p of a finite flow chain suffix. We define σs({p})(i) = {p} for all i ∈ N

to stutter on the last place of a finite flow chain suffix.
The semantics of a computation tree logic formula ϕ ∈ CTL∗ is evaluated on

a given run βR = (NR, ρ) of the Petri net with transits N and a state s ∈ S of
a trace σ(ξ) of a flow chain suffix ξ or the trace itself:

βR, s |=CTL∗ a iff a ∈ ρ(s)
βR, s |=CTL∗ ¬Φ iff not βR, s |=CTL∗ Φ

βR, s |=CTL∗ Φ1 ∧ Φ2 iff βR, s |=CTL∗ Φ1 and βR, s |=CTL∗ Φ2

βR, s |=CTL∗ Eφ iff there exists some flow chain suffix ξ = t0, p0, . . . of βR

with p0 ∈ s such that βR, σ(ξ) |=CTL∗ φ holds for s �⊆ P

and βR, σs(s) |=CTL∗ φ holds for s ⊆ P

βR, σ |=CTL∗ Φ iff βR, σ(0) |=CTL∗ Φ

βR, σ |=CTL∗ ¬φ iff not βR, σ |=CTL∗ φ

βR, σ |=CTL∗ φ1 ∧ φ2 iff βR, σ |=CTL∗ φ1 and βR, σ |=CTL∗ φ2

βR, σ |=CTL∗ Xφ iff βR, σ1 |=CTL∗ φ

βR, σ |=CTL∗ φ1Uφ2 iff there exists some j ≥ 0 with βR, σj |=CTL∗ φ2 and
for all 0 ≤ i < j the following holds: βR, σi |=CTL∗ φ1

with atomic propositions a ∈ AP , state formulas Φ,Φ1, and Φ2, and path for-
mulas φ, φ1, and φ2. Note that since the formulas are evaluated on the runs of
N, the branching is in the transitions and not in the places of N.

4.3 Flow-CTL∗

Like in [8], we use Petri nets with transits to enable reasoning about two sep-
arate timelines. Properties defined on the run of the system concern the global
timeline and allow to reason about the global behavior of the system like its
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general control or fairness. Additionally, we can express requirements about the
individual data flow like the access possibilities of people in buildings. These
requirements concern the local timeline of the specific data flow. In Flow-CTL∗,
we can reason about these two parts with LTL in the run and with CTL∗ in the
flow part of the formula. This is reflected in the following syntax :

Ψ ::= ψ | Ψ1 ∧ Ψ2 | Ψ1 ∨ Ψ2 | ψ → Ψ | Aϕ

where Ψ , Ψ1, Ψ2 are Flow-CTL∗ formulas, ψ is an LTL formula, and ϕ is a CTL∗

formula. We call ϕA = Aϕ flow formulas and all other subformulas run formulas.
The semantics of a Petri net with transits N = (P,T,F, In, Υ ) satisfying

a Flow-CTL∗ formula Ψ is defined over the covering firing sequences of its runs:

N |= Ψ iff for all runs βR of N : βR |= Ψ

βR |= Ψ iff for all firing sequences ζ covering βR : βR, σ(ζ) |= Ψ

βR, σ |= ψ iff σ |=LTL ψ

βR, σ |= Ψ1 ∧ Ψ2 iff βR, σ |= Ψ1 and βR, σ |= Ψ2

βR, σ |= Ψ1 ∨ Ψ2 iff βR, σ |= Ψ1 or βR, σ |= Ψ2

βR, σ |= ψ → Ψ iff βR, σ |= ψ implies βR, σ |= Ψ

βR, σ |= Aϕ iff for all flow chains ξ of βR : βR, σ(ξ) |=CTL∗ ϕ

Due to the covering of the firing sequences and the maximality constraint of
the flow chain suffixes, every behavior of the run is incorporated. The operator
A chooses flow chains rather than flow trees as our definition is based on the
common semantics of CTL∗ over paths. Though it suffices to find one of the
possibly infinitely many flow trees for each flow formula to invalidate the subfor-
mula, checking the data flow while the control changes the system complicates
the direct expression of the model checking problem within a finite model. In
Sect. 6, we introduce a general reduction method for a model with a finite state
space.

5 Example Specifications

We illustrate Flow-CTL∗ with examples from the literature on physical access
control [13,18]. Branching properties like permission and way-pointing are given
as flow formulas, linear properties like fairness and maximality as run formulas.

5.1 Flow Formulas

Figure 4 illustrates six typical specifications for physical access control
[13,18].

Permission. Permission (cf. Fig. 4a) requires that a subformula ϕ can be
reached on one path (AEFϕ). In our running example, permission can be
required for the hall and the lab. Permission can be extended as it requires
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Fig. 4. Illustrations for standard properties of physical access control are depicted.
Gray boxes represent rooms and arrows represent directions of doors that can be opened
(✓), closed (✗), or are not affected by the property (✓/✗).

reaching the subformula once. Persistent permission then requires that, on all
paths, the subformula ϕ can be repeatedly reached on a path (AAGEFϕ).

Prohibition. Prohibition (cf. Fig. 4b) requires that a subformula ϕ, for example
representing a room, can never be reached on any path (AAG¬ϕ). In our running
example, closing the door to the kitchen would satisfy prohibition for the kitchen.

Blocking. Blocking (cf. Fig. 4c) requires for all paths globally that, after reach-
ing subformula ϕ, the subformula ψ cannot be reached (AAG(ϕ ⇒ AG¬ψ)).
This can be used to allow a new employee to only enter one of many labs.

Way-Pointing. Way-pointing (cf. Fig. 4d) ensures for all paths that subformula
ψ can only be reached if ϕ was reached before (AA(ϕR¬ψ)). This can be used
to enforce a mandatory security check when entering a building.

Policy Update. A policy update (cf. Fig. 4e) allows access to subformula ϕ
according to a time schedule (AAG(time ⇒ EFϕ)) with time being a transition.
This can be used to restrict access during the night.

Emergency. An emergency situation (cf. Fig. 4f) can revoke the prohibition of
subformula ϕ at an arbitrary time (AA(AG¬ϕUXemergency)) with emergency
being a transition. An otherwise closed door could be opened to evacuate people.
The next operator X is necessary because of the ingoing semantics of Flow-CTL∗.

5.2 Run Formulas

Flow formulas require behavior on the maximal flow of people in the building.
Doors are assumed to allow passthrough in a fair manner. Both types of assump-
tions are expressed in Flow-CTL∗ as run formulas.

Maximality. A run βR is interleaving-maximal if, whenever some transition is
enabled, some transition will be taken: βR |= (

∨
t∈T pre (t) → ∨

t∈T t). A run
βR is concurrency-maximal if, when a transition t is from a moment on always
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enabled, infinitely often a transition t′ (including t itself) sharing a precondition
with t is taken: βR |= ∧

t∈T( pre (t) → ∨
p ∈ pre (t), t′ ∈ post (p) t′).

Fairness. A run βR is weakly fair w.r.t. a transition t if, whenever t is always
enabled after some point, t is taken infinitely often: βR |= pre (t) → t.
A run βR is strongly fair w.r.t. t if, whenever t is enabled infinitely often, t is
taken infinitely often: βR |= pre (t) → t.

6 Model Checking Flow-CTL∗ on Petri Nets
with Transits

We solve the model checking problem for a given Flow-CTL∗ formula Ψ and a
safe Petri net with transits N in four steps:

1. For each flow subformula Aϕi of Ψ , a subnet N>
i is created via a sequence of

automata constructions which allows to guess a counterexample, i.e., a flow
tree not satisfying ϕi, and to check for its correctness.

2. The Petri net N> is created by composing the subnets N>
i to a copy of N

such that every firing of a transition subsequently triggers each subnet.

Fig. 5. Overview of the model checking procedure: For a given safe Petri net with
transits N and a Flow-CTL∗ formula Ψ , a standard Petri net N> and an LTL formula
ψ> are created: For each flow subformula Aϕi, create (i) a labeled Kripke structure
K(N,APi) and (ii) the alternating tree automaton T¬ϕi , construct (iii) the alternating
word automaton A¬ϕi = T¬ϕi × K(N,APi), and from that (iv) the Büchi automaton
A¬ϕi with edges Ei, which then (v) is transformed into a Petri net N>

i . These subnets
are composed to a Petri net N> such that they get subsequently triggered for every
transition fired by the original net. The constructed formula ψ> skips for the run part
of Ψ these subsequent steps and checks the acceptance of the guessed tree for each
automaton. The problem is then solved by checking N> |=LTL ψ>.
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3. The formula Ψ> is created such that the subnets N>
i are adequately skipped

for the run part of Ψ , and the flow parts are replaced by LTL formulas checking
the acceptance of a run of the corresponding automaton.

4. N> |=LTL Ψ> is checked to answer N |= Ψ .

The construction from a given safe Petri net with transits N = (P,T,F, In, Υ )
and a Flow-CTL∗ formula Ψ with n ∈ N flow subformulas ϕAi = Aϕi with
atomic propositions AP i to a Petri net N> = (P>,T>,F>,F>

I , In>) with
inhibitor arcs (denoted by F>

I ) and an LTL formula Ψ> is defined in the fol-
lowing sections. More details and proofs can be found in the full paper [10].
An inhibitor arc connects a place p and a transition t of a Petri net such that
t is only enabled when p is empty. Figure 5 gives a schematic overview of the
procedure.

6.1 Automaton Construction for Flow Formulas

In Step 1, we create for each flow subformula Aϕi of Ψ with atomic proposi-
tions AP i a nondeterministic Büchi automaton A¬ϕi

which accepts a sequence
of transitions of a given run if the corresponding flow tree satisfies ¬ϕi. This
construction has four steps:

(i) Create the labeled Kripke structure K(N,APi) which, triggered by transitions
t ∈ T, tracks every flow chain of N. Each path corresponds to a flow chain.

(ii) Create the alternating tree automaton T¬ϕi
for the negation of the CTL∗

formula ϕi and the set of directions D ⊆ {0, . . . , max{|postΥ (p, t)| − 1 |
p ∈ P ∧ t ∈ postN(p)}} which accepts all 2APi-labeled trees with nodes of
degree in D satisfying ¬ϕi [15].

(iii) Create the alternating word automaton A¬ϕi
= T¬ϕi

×K(N,APi) like in [15].
(iv) Alternation elimination for A¬ϕi

yields the nondeterministic Büchi automa-
ton A¬ϕi

[4,16].

Step (ii) and Step (iv) are well-established constructions. For Step (iii), we mod-
ify the construction of [15] by applying the algorithm for the groups of equally
labeled edges. By this, we obtain an alternating word automaton with the alpha-
bet A = T∪{s} of the labeled Kripke structure rather than an alternating word
automaton over a 1-letter alphabet. This allows us to check whether the, by the
input transition dynamically created, system satisfies the CTL∗ subformula ϕi.

Step (i) of the construction creates the labeled Kripke structure K(N,APi) =
(AP , S, S0, L,A,R) with a set of atomic propositions AP = AP i, a finite set of
states S = ((T ∩ AP) ×P) ∪P, the initial states S0 ⊆ S, the labeling function
L : S → 2AP , the alphabet A = T ∪ {s}, and the labeled transition relation R ⊆
S×A×S. The Kripke structure serves (in combination with the tree automaton)
for checking the satisfaction of a flow tree of a given run. Hence, the states track
the current place of the considered chain of the tree and additionally, when
the transition extending the chain into the place occurs in the formula, also this
ingoing transition. The initial states S0 are either the tuples of transitions tj and
places pj which start a flow chain, i.e., all (tj , pj) ∈ T ×P with (�, pj) ∈ Υ (tj)
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when tj ∈ AP or only the place pj otherwise. The labeling function L labels the
states with its components. The transition relation R connects the states with
respect to the transits, connects each state (t, p) ∈ S with s-labeled edges to
the state p ∈ S, and loops with s-labeled edges in states s ∈ P to allow for the
stuttering of finite chains.

Lemma 1 (Size of the Kripke Structure). The constructed Kripke struc-
ture K(N,APi) has O(|AP i ∩ T| · |N| + |N|) states and O(|N3|) edges.

Note that the number of edges stems from the number of transits (p, t, q) ∈
P × T × P used in the Petri net with transits N.

The size of the Büchi automaton is dominated by the tree automaton con-
struction and the removal of the alternation. Each construction adds one expo-
nent for CTL∗.

Lemma 2 (Size of the Büchi Automaton). The size of the Büchi automa-
ton A¬ϕi

is in O(22
|ϕ|·|N|3) for specifications ϕi in CTL∗ and in O(2|ϕ|·|N|3) for

specifications in CTL.

6.2 From Petri Nets with Transits to Petri Nets

In Step 2, we construct for the Petri net with transits N and the Büchi automata
A¬ϕi

for each flow subformula ϕAi = Aϕi of Ψ , a Petri net N> by composing
a copy of N (without transits), denoted by N>

O , to subnets N>
i corresponding

to A¬ϕi
such that each copy is sequentially triggered when a transition of N>

O

fires. The subnet N>
i , when triggered by transitions t ∈ T, guesses nondeter-

ministically the violating flow tree of the operator A and simulates A¬ϕi
. Thus,

a token from the initially marked place [ι]i is moved via a transition for each
transition t ∈ T starting a flow chain to the place corresponding to the initial
state of A¬ϕi

. For each state s of A¬ϕi
, we have a place [s]i, and, for each edge

(s, l, s′), a transition labeled by l which moves the token from [s]i to [s′]i.
There are two kinds of stutterings: global stuttering for finite runs and local

stuttering for finite flow chains. To guess the starting time of both stutterings,
there is an initially marked place , a place , and a transition which can switch
from normal to stuttering mode for the global stuttering in N>

O and for the local
stutterings in each subnet N>

i (denoted by ). The original transitions of
N>

O and the transitions of a subnet N>
i corresponding to a transition t ∈ T

depend on the normal mode. The s-labeled transitions (used for global stutter-
ing) of the subnet depend on the stuttering mode. To enable local stuttering,
we add, for each edge e = (s, s, s′) of A¬ϕi

, a transition t> for each transition
t ∈ T for which no edge (s, t, s′′) exists in A¬ϕi

. These transitions depend on the
stuttering mode and move the token according to their corresponding edge e.

The original part N>
O and the subnets N>

i are connected in a sequential
manner. The net N>

O has an initially marked activation place →o in the preset of
each transition, the subnets have one activation place [→t] in the preset of every
transition t> corresponding to a transition t ∈ T (normal as well as stuttering).
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The transitions move the activation token to the corresponding places of the next
subnet (or back to N>

O ). To ensure the continuation even though the triggering
transition does not extend the current flow tree (e.g., because it is a concurrent
transition of the run), there is a skipping transition for each transition t ∈ T

which moves the activation token when none of the states having a successor edge
labeled with t are active. For the global stuttering, each subnet has an activation
place [→s]i, in which an additional transition ts in N>

O puts the active token
if the stuttering mode of N>

O is active. Each s-labeled transition of the subnets
moves this token to the next subnet (or back to N>

O ).
By that, we can check the acceptance of each A¬ϕi

by checking if the subnet
infinitely often reaches any places corresponding to a Büchi state of A¬ϕi

. This
and only allowing to correctly guess the time point of the stutterings is achieved
with the formula described in Sect. 6.3. A formal definition is given in in the full
paper [10]. The size of the constructed Petri net is dominated by the respective
single- or double-exponential size of the nondeterministic Büchi automata.

Lemma 3 (Size of the Constructed Net). The constructed Petri net with
inhibitor arcs N> for a Petri net with transits N and n nondeterministic Büchi
automata A¬ϕi

= (T∪{s}, Qi, Ii, Ei, Fi) has O(|N| ·n+ |N|+∑n
i=1 |Qi|) places

and O(|N|2 · n + |N| +
∑n

i=1 |Ei| + |N| · ∑n
i=1 |Qi|) transitions.

6.3 From Flow-CTL∗ Formulas to LTL Formulas

The formula transformation from a given Flow-CTL∗ formula Ψ and a Petri net
with transits N into an LTL formula (Step 3) consists of three parts:

First, we substitute the flow formulas ϕAi = Aϕi with the acceptance check of
the corresponding automaton A¬ϕi

, i.e., we substitute ϕAi with ¬ ∨
b∈Fi

[b]i
for the Büchi states Fi of A¬ϕi

.
Second, the sequential manner of the constructed net N> requires an adap-

tation of the run part of Ψ . For a subformula ψ1 Uψ2 with transitions t ∈ T as
atomic propositions or a subformula ψ in the run part of Ψ , the sequential steps
of the subnets have to be skipped. Let T>

O be the transition of the original copy
N>

O , T>
i the transitions of the subnet N>

i , T�i
the transitions of the subnet

N>
i which skip the triggering of the automaton in the normal mode, and tN →S

the transition switching N>
O from normal to stuttering mode. Then, because of

the ingoing semantics, we can select all states corresponding to the run part with
M =

∨
t∈T>

O \{tN →S } t together with the initial state i = ¬∨
t∈T> t. Hence, we

replace each subformula ψ1 Uψ2 containing transitions t ∈ T as atomic proposi-
tions with ((M∨i) → ψ1)U((M∨i) → ψ2) from the inner- to the outermost occur-
rence. For the next operator, the second state is already the correct next state of
the initial state also in the sense of the global timeline of ψ>. For all other states
belonging to the run part (selected by the until construction above), we have to
get the next state and then skip all transitions of the subnet. Thus, we replace
each subformula ψ with i → ψ∧¬i → (

∨
t∈T>\T>

O
tU

∨
t′∈T>

O
t′∧ψ) from

the inner- to the outermost occurrence.
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Third, we have to ensure the correct switching into the stuttering mode. By
skipi = ¬ ((

∨
t∈T>

i
t) → (

∨
t′∈T�i

t′)) a subnet is enforced to switch into its
stuttering mode if necessary. If it wrongly selects the time point of the global
stuttering, the run stops. Hence, we obtain the formula ψ> = (( →o) ∧∧

i∈{1,...,n} skipi) → ψ by only selecting the runs where the original part is
infinitely often activated and each subnet chooses its stuttering mode correctly.

Since the size of the formula depends on the size of the constructed Petri net
N>, it is also dominated by the Büchi automaton construction.

Lemma 4 (Size of the Constructed Formula). The size of the constructed
formula ψ> is double-exponential for specifications given in CTL∗ and single-
exponential for specifications in CTL.

We can show that the construction of the net and the formula adequately fit
together such that the additional sequential steps of the subnets are skipped in
the formula and the triggering of the subnets simulating the Büchi automata as
well as the stuttering is handled properly.

Lemma 5 (Correctness of the Transformation). For a Petri net with
transits N and a Flow-CTL∗ formula Ψ , there exists a safe Petri net N> with
inhibitor arcs and an LTL formula Ψ> such that N |= Ψ iff N> |=LTL Ψ>.

The complexity of the model checking problem of Flow-CTL∗ is dominated
by the automata constructions for the CTL∗ subformulas. The need of the alter-
nation removal (Step (iv) of the construction) is due to the checking of branch-
ing properties on structures chosen by linear properties. In contrast to standard
CTL∗ model checking on a static Kripke structure, we check on Kripke structures
dynamically created for specific runs.

Theorem 1. A safe Petri net with transits N can be checked against a Flow-
CTL∗ formula Ψ in triple-exponential time in the size of N and Ψ . For a Flow-
CTL formula Ψ ′, the model checking algorithm runs in double-exponential time
in the size of N and Ψ ′.

Note that a single-exponential time algorithm for Flow-LTL is presented in [8].

7 Related Work

There is a large body of work on physical access control: Closest to our work are
access nets [12] which extend Petri nets with mandatory transitions to make peo-
ple leave a room at a policy update. Branching properties can be model checked
for a fixed number of people in the building. Fixing the number of people enables
explicit interaction between people. In logic-based access-control frameworks,
credentials are collected from distributed components to open policy enforce-
ment points according to the current policy [2,3]. Techniques from networking
can be applied to physical access control to detect redundancy, shadowing, and
spuriousness in policies [11]. Our model prevents such situations by definition as
a door can be either open or closed for people with the same access rights.



Model Checking Branching Properties on Petri Nets with Transits 409

A user study has been carried out to identify the limitations of physical access
control for real-life professionals [1]. Here, it was identified that policies are made
by multiple people which is a problem our approach of global control solves.
Types of access patterns are also studied [7,13,18]: Access policies according to
time schedules and emergencies, access policies for people without RFID cards,
and dependent access are of great importance. The first and the third problem
are solvable by our approach and the second one seems like an intrinsic problem
to physical access control. Policies for physical access control can be synthesized
if no policy updates are necessary [18]. It is an interesting open question whether
policy updates can be included in the synthesis of access policies.

8 Conclusion

We present the first model checking approach for the verification of physical
access control with policy updates under fairness assumptions and with an
unbounded number of people. Our approach builds on Petri nets with tran-
sits which superimpose a transit relation onto the flow relation of Petri nets to
differentiate between data flow and control. We introduce Flow-CTL∗ to spec-
ify branching properties on the data flow and linear properties on the control
in Petri nets with transits. We outline how Petri nets with transits can model
physical access control with policy updates and how Flow-CTL∗ can specify
properties on the behavior before, during, and after updates including fairness
and maximality. To solve the model checking problem, we reduce the model
checking problem of Petri nets with transits against Flow-CTL∗ via automata
constructions to the model checking problem of Petri nets against LTL. In the
future, we plan to evaluate our approach in a tool implementation and a corre-
sponding case study. We can build on our tool AdamMC [9] for Petri nets with
transits and Flow-LTL.
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Abstract. Reactive synthesis transforms a specification of a reactive
system, given in a temporal logic, into an implementation. The main
advantage of synthesis is that it is automatic. The main disadvantage
is that the implementation is usually very difficult to understand. In
this paper, we present a new synthesis process that explains the syn-
thesized implementation to the user. The process starts with a simple
version of the specification and a corresponding simple implementation.
Then, desired properties are added one by one, and the corresponding
transformations, repairing the implementation, are explained in terms of
counterexample traces. We present SAT-based algorithms for the syn-
thesis of repairs and explanations. The algorithms are evaluated on a
range of examples including benchmarks taken from the SYNTCOMP
competition.

Keywords: Reactive synthesis · Temporal logic · SAT-based synthesis

1 Introduction

In reactive synthesis, an implementation of a reactive system is automatically
constructed from its formal specification. Synthesis allows developers to define
the behavior of a system in terms of a list of its desired high-level properties,
delegating the detailed implementation decisions to an automatic procedure.
However, the great advantage of synthesis, that it is automatic, can also be an
obstacle, because it makes it difficult for the user to understand why the system
reacts in a particular way. This is particularly troublesome in case the user has
written an incorrect specification or forgotten to include an important property.
The declarative nature of formal specifications gives the synthesis process the
liberty to resolve unspecified behavior in an arbitrary way. This may result in
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implementations that satisfy the specification, yet still behave very differently
from the developer’s expectations.

In this paper, we propose a new synthesis process that, while still fully auto-
matic, provides the user with an explanation for the decisions made by the syn-
thesis algorithm. The explainable synthesis process builds the implementation
incrementally, starting with a small subset of the desired properties and then
adding more properties, one at a time. In each step, the algorithm presents an
implementation that satisfies the currently considered specification and explains
the changes that were required from the previous implementation in order to
accomodate the additional property. Such an explanation consists of a counterex-
ample trace, which demonstrates that the previous implementation violated the
property, and a transformation that minimally repairs the problem.

As an example, consider the specification of a two-client arbiter in linear-time
temporal logic (LTL) shown in Fig. 1a. The specification consists of three prop-
erties: ϕmutex, ϕfairness and ϕnon-spurious, requiring mutual exclusion, i.e., there
is at most one grant at a time, fairness, i.e., every request is eventually granted,
and non-spuriousness, i.e., a grant is only given upon receiving a request1. Let us
suppose that our synthesis algorithm has already produced the transition system
shown in Fig. 1b for the partial specification ϕmutex∧ϕfairness. This solution does
not satisfy ϕnon-spurious. To repair the transition system, the synthesis algorithm
carries out the transformations depicted in Figs. 1c to 1g. The transformations
include a label change in the initial state and the redirection of five transitions.
The last four redirections require the expansion of the transition system to two
new states t2 and t3. The synthesis algorithm justifies the transformations with
counterexamples, depicted in red in Figs. 1c to 1f.

The algorithm justifies the first two transformations, (1) changing the label
in the initial state to ∅ as depicted in Fig. 1c and (2) redirecting the transition
(t0, ∅, t1) to (t0, ∅, t0), as shown in Fig. 1d, by a path in the transition system
that violates ϕnon-spurious, namely the path that starts with transition (t0, ∅, t1).
Changing the label of the initial state causes, however, a violation of ϕfairness,
because no grant is given to client 0. This justifies giving access to a new state
t2, as shown in Fig. 1e and redirecting the transition with {r0} from t0 to t2.
The third transformation, leading to Fig. 1f, is justified by the counterexample
that, when both clients send a request at the same time, then only client 1 would
be given access. Finally, the last two transformations, redirecting (t1, {r0}, t0)
to (t1, {r0}, t3) and (t1, {r0, r1}, t0) to (t1, {r0, r1}, t3), are justified by the coun-
terexample that if both clients alternate between sending a request then client
0 will not get a grant. This final transformation results in the transition system
shown in Fig. 1g, which satisfies all three properties from Fig. 1a.

We implement the explainable synthesis approach in the setting of bounded
synthesis [4,9]. Bounded synthesis finds a solution that is minimal in the number

1 The sub-formula ri R ¬gi states that initially no grant is given to client i as long as no
request is received from this client. After that, the formula (gi → ri∨(©(riR¬gi)))
ensures that a grant is active only if the current request is still active, otherwise,
and from this point on, no grants are given as long as no new request is received.
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ϕmutex := (¬g0 ∨ ¬g1)

ϕfairness :=
∧

i∈{0,1}
(ri → gi)

ϕnon-spurious :=
∧

i∈{0,1}
((riR¬gi) ∧ (gi → ri ∨ (©(riR¬gi))))

(a) Specification of a two-client arbiter

t0{g0} t1

{g1}∅, {r0}, {r1}, {r0, r1}

∅, {r0}, {r1}, {r0, r1}

(b) An implementation
for specification ϕmutex ∧
ϕfairness

t0∅ t1

{g1}∅, {r0}, {r1}, {r0, r1}

∅, {r0}, {r1}, {r0, r1}

(c) Δ1: Changing the la-
bel of the initial state

t0∅ t1

{g1}
∅

{r0}, {r1}, {r0, r1}

∅,{r0}, {r1}, {r0, r1}

(d) Δ2: Redirecting the
transition (t0, ∅, t1) to
(t0, ∅, t0)

t0∅ t1

{g1}

t2

{g0}

∅

{r1},{r0, r1}

{r0}

∅, {r0}, {r1}, {r0, r1}

∅, {r0}

{r1
}, {

r0
, r1

}

(e) Δ3: Redirecting the
transition (t0, {r0}, t1) to
(t0, {r0}, t2)

t0∅ t1

{g1}

t2

{g0}

t3

{g0}

∅

{r1}

{r0}
{r

0 , r
1}

∅,{r0}, {r1}, {r0, r1}

∅, {r0}

{r1},
{r0, r1

} ∅,
{r

0
},

{r
1
},

{r
0
,r

1
}

(f) Δ4: Redirecting the
transition (t0, {r0, r1}, t1)
to (t0, {r0, r1}, t3)

t0∅ t1

{g1}

t2

{g0}

t3

{g0}

∅

{r1}

{r0}

{r
0 , r

1}
∅, {r1}

{r0
}, {

r0
, r1

}

∅, {r0}

{r1},
{r0, r1

} ∅ ,
{r

0
},

{r
1
},

{r
0
,r

1
}

(g) Δ5: Redirect-
ing the transitions
(t1, v, t0) to (t1, v, t3) for
v ∈ {{r0, r1}, {r0}}

Fig. 1. Using explainable reactive synthesis to synthesize an implementation for a two-
client arbiter. Clients request access to the shared resource via the signals r0 and r1.
Requests are granted by the arbiter via the signals g0 and g1. (Color figure online)

of states; this generalizes here to a solution that is obtained from the previous
solution with a minimal number of transformations. Like bounded synthesis, we
use a SAT encoding to find the transition system, with additional constraints
on the type and number of transformations. As explained above, the transfor-
mations involve a change of a state label or a redirection of a transition. Within
the given budget of states, new states are accessed by redirecting transitions to
these states. In the example in Fig. 1, a budget of four states is fixed and initially
unreachable states, such as t2 and t3, are accessed by redirecting transitions to
them as done in Fig. 1e and Fig. 1f. For the construction of explanations, we use
bounded model checking [9]. In this way, both the repair and the explanation
can be ensured to be minimal. We evaluate our approach on a series of examples,
including benchmarks from the SYNTCOMP competition [12].
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Related Work
The importance of incremental algorithms for solving the reactive synthesis prob-
lem has quickly manifested itself in the research community after the introduc-
tion of the problem. By decomposing a synthesis problem into smaller instances
and combining the results of these instances to a solution for the full problem,
the hope is to provide scalable algorithms for solving the in general difficult
problem [6,15–17,20,21]. For example, for a set of system specifications, one
can construct implementations for the individual specifications and construct an
implementation for the full specification by composing the results for the smaller
specifications [15]. To check the realizability of a specification, one can check the
realizability of gradually larger parts of the specification [21]. Refinement-based
synthesis algorithms incrementally construct implementations starting with an
abstraction that is gradually refined with respect to a given partial order that
guarantees correctness [6,16,17,20]. The key difference between our approach
and the incremental approaches mentioned above is the underlying repair pro-
cess. The advantage of program repair is that it constructs an implementation
that is close to the original erroneous implementation. In our approach, this
makes it possible to derive explanations that justify the repairs applied to the
previous implementation. Other repair problems for temporal logics have previ-
ously been considered in [3,13]. In [13], an expression or a left-hand side of an
assignment is assumed to be erroneous and replaced by one that satisfies the
specification. In [3], the repair removes edges from the transition system. By
contrast, our repair algorithm changes labels of states and redirects transitions.

A completely different approach to make synthesized implementation more
understandable is by posing conditions on the structure of synthesized imple-
mentations [8,14]. Bounded synthesis [9] allows us to bound the size of the
constructed implementation. Bounded cycle synthesis [7] additionally bounds
the number of cycles in the implementation. Skeleton synthesis [10] establishes
the relations between the specification and the synthesized implementation to
clarify which parts of the implementation are determined by the specification
and which ones where chosen by the synthesis process.

2 Preliminaries

Linear-Time Temporal Logic: As specification language, we use Linear-Time
Temporal Logic (LTL) [19], with the usual temporal operators Next , Until U
and the derived operators Release R, which is the dual operator of U , Eventually

and Globally . Informally, the Release operator ϕ1 Rϕ2 says that ϕ2 holds in
every step until ϕ1 releases this condition. LTL formulas defining specifications
for reactive systems are defined over a set of atomic propositions AP = I ∪ O,
which is partitioned into a set I of input propositions and a set O of output
propositions. We denote the satisfaction of an LTL formula ϕ by an infinite
sequence σ : N → 2AP of valuations of the atomic propositions by σ � ϕ. For an
LTL formula ϕ we define the language L(ϕ) by the set {σ ∈ (N → 2AP ) | σ � ϕ}.
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Implementations: We represent implementations as labeled transition systems.
For a given finite set Υ of directions and a finite set Σ of labels, a Σ-labeled
Υ -transition system is a tuple T = (T, t0, τ, o), consisting of a finite set of states
T , an initial state t0 ∈ T , a transition function τ : T × Υ → T , and a labeling
function o : T → Σ. For a set I of input propositions and a set O of output
propositions, we represent reactive systems as 2O-labeled 2I -transition systems.
For reactive systems, a path in T is a sequence π ∈ N → T × 2I of states and
directions that follows the transition function, i.e., for all i ∈ N, if π(i) = (ti, ei)
and π(i+1) = (ti+1, ei+1), then ti+1 = τ(ti, ei). We call a path initial if it starts
with the initial state: π(0) = (t0, e) for some e ∈ 2I . We denote the set of initial
paths of T by Paths(T ). For a path π ∈ Paths(T ), we denote the sequence
σπ : i �→ o(π(i)), where o(t, e) = (o(t) ∪ e) by the trace of π. We call the set of
traces of the paths of a transition system T the language of T , denoted by L(T ).

For a given finite sequence v∗ ∈ (2I)∗, we denote the transitions sequence
where we reach a state t′ from state t after applying the transition function τ for
every letter in v∗ starting in t by τ∗(t, v∗) = t′. The size of a transition system
is the size of its set of states, which we denote by |T |.

For a set of atomic propositions AP = I ∪ O, we say that a 2O-labeled 2I -
transition system T satisfies an LTL formula ϕ, if and only if L(T ) ⊆ L(ϕ), i.e.,
every trace of T satisfies ϕ. In this case, we call T a model of ϕ.

3 Minimal Repairs and Explanations

In this section, we lay the foundation for explainable reactive synthesis. We
formally define the transformations that are performed by our repair algorithm
and determine the complexity of finding a minimal repair, i.e., a repair with the
fewest number of transformations, with respect to a given transition system and
an LTL specification and show how repairs can be explained by counterexamples
that justify the repair.

3.1 Generating Minimal Repairs

For a 2O-labeled 2I -transition system T = (T, t0, τ, o), an operation Δ is either
a change of a state labeling or a redirection of a transition in T . We denote the
transition system T ′ that results from applying an operation Δ to the transition
system T by T ′ = apply(T ,Δ).

A state labeling change is denoted by a tuple Δlabel = (t, v), where t ∈ T
and v ∈ 2O defines the new output v of state t. The transition system T ′ =
apply(T ,Δlabel) is defined by T ′ = (T, t0, τ, o

′), where o′(t) = v and o′(t′) = o(t′)
for all t′ ∈ T with t′ 	= t.

A transition redirection is denoted by a tuple Δtransition = (t, t′, V ), where
t, t′ ∈ T and V ⊆ 2I . For a transition redirection operation Δtransition = (t, t′, V ),
the transition system T ′ = apply(T ,Δtransition) is defined by T ′ = (T, t0, τ

′, o),
with τ ′(t, v) = t′ for v ∈ V and τ ′(t, v) = τ(t, v) for v /∈ V . For t′′ 	= t and
v ∈ 2I , τ ′(t′′, v) = τ(t′′, v).
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A finite set of operations ξ is called a transformation. A transformation
ξ is consistent if there is no transition system T and Δ1,Δ2 ∈ ξ such that
apply(apply(T ,Δ1),Δ2) 	= apply(apply(T ,Δ2),Δ1), i.e. the resulting transition
system does not differ depending on the order in which operations are applied.
For a consistent transformation ξ, we denote the 2O-labeled 2I -transition system
T ′ that we reach after applying every operation in ξ starting with a 2O-labeled
2I -transition system T by T ′ = apply∗(T , ξ).

Note that there is no operation which explicitly adds a new state. In the
example in Fig. 1, we assume a fixed number of available states (some that might
be unreachable in the initial transition system). We reach new states by using a
transition redirection operation to these states.

Definition 1 (Minimal Repair). For an LTL-formula ϕ over AP = I∪O and
a 2O-labeled 2I-transition system T , a consistent transformation ξ is a repair
for T and ϕ if apply∗(T , ξ) � ϕ. A repair ξ is minimal if there is no repair ξ′

with |ξ′| < |ξ|.
Example 1. The arbiter Arb1 in Fig. 1c can be obtained from the round-robin
arbiter Arb0, shown in Fig. 1b, by applying Δlabel = (t0, ∅), i.e. Arb1 =
apply(Arb0,Δlabel). Arbiter Arb3, depicted in Fig. 1e is obtained from Arb1
with the transformation ξ1 = {Δtransition1,Δtransition2} where Δtransition1 =
(t0, t0, {∅}) and Δtransition2 = (t0, t2, {{r0}}) such that apply∗(Arb1, ξ1) = Arb3.
A minimal repair for Arb0 and ϕmutex ∧ ϕfairness ∧ ϕnon-spurious, defined in
Sect. 1, is ξ2 = {Δlabel,Δtransition1,Δtransition2,Δtransition3,Δtransition4} with
Δtransition3 = (t0, t3, {{r0, r1}}) and Δtransition = (t1, t2, {{r0}, {r0, r1}}). The
resulting full arbiter Arb5 is depicted in Fig. 1g, i.e. apply∗(Arb0, ξ2) = Arb5.

We are interested in finding minimal repairs. The minimal repair synthesis
problem is defined as follows.

Problem 1 (Minimal Repair Synthesis). Let ϕ be an LTL-formula over
a set of atomic propositions AP = I ∪ O and T be a 2O-labeled 2I-transition
system. Find a minimal repair for ϕ and T ?

In the next lemma, we show that for a fixed number of operations, the prob-
lem of checking if there is a repair is polynomial in the size of the transition
system and exponential in the number of operations. For a small number of
operations, finding a repair is cheaper than synthesizing a new system, which is
2EXPTIME-complete in the size of the specification [18].

Lemma 1. For an LTL-formula ϕ, a 2O-labeled 2I-transition system T , and a
bound k, deciding whether there exists a repair ξ for T and ϕ with |ξ| = k can be
done in time polynomial in the size of T , exponential in k, and space polynomial
in the length of ϕ.

Proof. Checking for a transformation ξ if apply∗(T , ξ) � ϕ is PSPACE-complete
[22]. There are |T |·2|O| different state labeling operations and |T |2 ·2|I| transition
redirections. Thus, the number of transformations ξ with |ξ| = k is bounded by
O((|T |2)k). Hence, deciding the existence of such a repair is polynomial in |T |
and exponential in k. 
�
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The size of a minimal repair is bounded by a polynomial in the size of the
transition system under scrutiny. Thus, the minimal repair synthesis problem can
be solved in time at most exponential in |T |. In most cases, we are interested in
small repairs resulting in complexities that are polynomial in |T |.

Theorem 1. For an LTL-formula ϕ, a 2O-labeled 2I-transition system T , find-
ing a minimal repair for T and ϕ can be done in time exponential in the size of
T , and space polynomial in the length of ϕ.

3.2 Generating Explanations

For an LTL-formula ϕ over AP = I ∪ O, a transformation ξ for a 2O-labeled
2I -system T is justified by a counterexample σ if σ � ϕ, σ ∈ L(T ) and σ /∈
L(apply∗(T , ξ)). We call σ a justification for ξ. A transformation ξ is called
justifiable if there exists a justification σ for ξ.

A transformation ξ for T and ϕ is minimally justified by σ if ξ is justified by
σ and there is no ξ′ ⊂ ξ where σ is a justification for ξ′. If a transformation ξ is
minimally justified by a counterexample σ, we call σ a minimal justification.

Definition 2 (Explanation). For an LTL-formula ϕ over AP = I ∪ O, an
initial 2O-labeled 2I-transition system T , and a minimal repair ξ, an explanation
ex is defined as a sequence of pairs of transformations and counterexamples.
For an explanation ex = (ξ1, σ1), . . . , (ξn, σn), it holds that all transformations
ξ1, . . . , ξn are disjoint, ξ =

⋃
1≤i≤n ξi, and each transformation ξi with 1 ≤ i ≤ n

is minimally justified by σi for apply∗(T ,
⋃

1≤j<i ξj) and ϕ.

Example 2. Let ϕ1 = g ∧ ¬g over I = {r} and O = {g} and consider the
2O-labeled 2I -transition system T with states {t0, t1}, depicted in Fig. 2.

t0 t1{g} {g}∅, {r} ∅, {r}

Fig. 2. A transition system over I =
{r} and O = {g} that is not a model of
ϕ1.

For T and ϕ1, the transformation ξ with
ξ = {Δtransition} where Δtransition =
(t0, t1, {{g}, ∅}), is not justifiable because
L(T ) = L(apply∗(T , ξ)). For our running
example, introduced in Sect. 1, the trans-
formation ξ1 = {Δlabel} that is defined
in Example 1, is justifiable for the round-
robin arbiter Arb0 and ϕmutex ∧ϕfairness ∧
ϕnon-spurious. It is justified by the counterexample σ1 = ({g0} ∪ ∅, {g1} ∪ ∅)ω,
indicated by the red arrows in Fig. 1b. Further, σ1 is a minimal justifica-
tion. The transformation ξ2 = {Δlabel,Δtransition1} for Arb0 is not minimally
justified by σ1 as σ1 is a justification for ξ1 and ξ1 ⊂ ξ2. An explanation
ex for Arb0, the LTL-formula ϕmutex ∧ ϕfairness ∧ ϕnon-spurious and the mini-
mal repair ξ3 = {Δlabel,Δtransition1,Δtransition2,Δtransition3,Δtransition4} is ex =
(Δlabel, σ1), (Δtransition1, σ2), (Δtransition2, σ3), (Δtransition3, σ4), (Δtransition4, σ5)
with σ2 = (∅∪∅, {g1}∪∅)ω, σ3 = (∅∪{r0}, {g1}∪{r0})ω, σ4 = (∅∪{r0, r1}, {g1}∪
∅)ω and σ5 = (∅ ∪ {r1}, {g1} ∪ {r0})ω. The different justifications are indicated
in the subfigures of Fig. 1.
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In the next theorem, we show that there exists an explanation for every
minimal repair.

Theorem 2. For every minimal repair ξ for an LTL-formula ϕ over AP = I∪O
and a 2O-labeled 2I-transition system T , there exists an explanation.

Proof. Let ξ = {Δ1, . . . ,Δn} be a minimal repair for the LTL-formula ϕ and the
transition system T . An explanation ex can be constructed as follows. Let σ ∈
L(T ) with σ � ϕ. Since ξ is a minimal repair, σ /∈ L(apply∗(T , ξ)). The smallest
subset ξ′ ⊆ ξ with σ /∈ L(apply∗(T , ξ′)) is minimally justified by σ. Thus (ξ′, σ) is
the first element of the explanation ex . For the remaining operations in ξ\ξ′, we
proceed analogously. The counterexample σ is now determined for apply∗(T , ξ′).
The construction is finished if either every transformation is minimally justified
by a counterexample and there is no operation left or there is no justification for
a transformation which clearly contradicts that ξ is a minimal repair. Hence, ex
is an explanation for ξ. 
�

From the last theorem we know that we can find an explanation for every
minimal repair. It is however important to notice that it is not necessarily the
case that we can find justifications for each singleton transformation in the repair
as shown by the following example. Let ϕ2 = ¬g ∧ ¬g ∧ (( ¬r) → g) over
I = {r}, O = {g} and consider the 2O-labeled 2I -transition system T with the
set of states {t0, t1, t2}, depicted in Fig. 3.

t0 t1 t2

∅ ∅ {g}

∅

{r}

∅

{r}

∅, {r}

Fig. 3. A transition system over I = {r}
and O = {g} that is not a model of ϕ2.

For ϕ2 and T , the transformation
ξ with ξ = {Δtransition1,Δtransition2}
where Δtransition1 = (t0, t1, {∅}), and
Δtransition2 = (t1, t2, {∅}), is a minimal
repair. The counterexample σ = ∅ω

is the only one with σ ∈ L(T ). For
an explanation ex = (ξ1, σ1), (ξ2, σ2)
where ξi is a singleton, for all 1 ≤
i ≤ 2, either ξ1 = {Δtransition1} or
ξ1 = {Δtransition2}. However, in both
cases, σ ∈ L(apply∗(T , ξ1)). Thus, there are minimal repairs where not every
operation can be justified on its own. Furthermore, it should be noted that
explanations are not unique as there can exist different justifications for the
same transformation, i.e. there can exist multiple different explanations for the
same minimal repair. For the round-robin arbiter in Fig. 1b and the specifica-
tion ϕmutex ∧ ϕfairness ∧ ϕnon-spurious, the transformation ξ1 = {Δlabel} can be
minimally justified by ({g0} ∪ ∅, {g1} ∪ ∅)ω and by ({g0} ∪ {r1}, {g1} ∪ ∅)ω.

We refer to the problem of finding an explanation for a minimal repair as the
explanation synthesis problem.

Problem 2 (Explanation Synthesis). Let ϕ be an LTL-formula over AP =
I ∪ O, T be a 2O-labeled 2I-transition system and ξ be a minimal repair. Find
an explanation ex for ϕ, T and ξ.
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Algorithm 1. MinimalRepair(T , ϕ)

1: left ← 0
2: right ← |T | + |T | · |T |
3: exist ← false
4: while left < right do
5: k ← � left+right

2
�

6: (found , ξ) ← Repair(T , ϕ, k)
7: if found then
8: right ← k − 1
9: ξmin ← ξ

10: exists ← true
11: else
12: left ← k + 1

13: (found ′, ξ′) ← Repair(T , ϕ, left)
14: if !exists then
15: return no minimal repair exists

16: if found ′ then
17: return ξ′

18: else
19: return ξmin

4 SAT-Based Algorithms for Minimal Repair
and Explanation Synthesis

In this section, we present SAT-based algorithms to solve the minimal repair
synthesis problem and the explanation synthesis problem.

4.1 Generating Minimal Repairs

The procedure MinimalRepair(T , ϕ), shown in Algorithm 1, solves the mini-
mal repair synthesis problem. For a given LTL-formula ϕ over AP = I ∪ O and
2O-labeled 2I -transition system T , Algorithm 1 constructs a minimal repair ξ
if one exists. We use binary search to find the minimal number k of required
operations. The possible number of operations can be bounded by |T |+ |T | · |T |
as there are only |T | state labelings and |T | · |T | transition redirects. Checking
whether there is a transformation ξ with |ξ| ≤ k such that apply∗(T , ξ) � ϕ is
done by using the procedure Repair(T , ϕ, k) which is explained next.

Repair(T , ϕ, k) : To check whether there is a repair ξ for a 2O-labeled 2I -
transition system T with k operations, we need to ensure that the resulting
transition system is a model for ϕ, i.e. apply∗(T , ξ) � ϕ. To check the existence
of a transition system T ′ with bound n = |T ′| that implements ϕ, we use the
SAT-based encoding of bounded synthesis [4]. Bounded synthesis is a synthesis
procedure for LTL-formulas that produces size-optimal transition systems [9].
For a given LTL formula ϕ, a universal co-Büchi automaton A that accepts
L(ϕ) is constructed. A transition system T satisfies ϕ if every path of the run
graph, i.e. the product of T and A, visits a rejecting state only finitely often.
An annotation function λ confirms that this is the case. The bounded synthesis
approach constructs a transition system with bound n by solving a constraint
system that checks the existence of a transition system T and a valid annotation
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φcost =
∧

0≤t,n<|T |,c≤k

rdTranst,n,c ∧ notRdTranst,n,c ∧ ¬costt,n,k+1

∧
0≤t<|T |,c≤k

changeLabel t,c ∧ notChangeLabel t,c ∧ ¬costt,|T |,k+1

rdTranst,n,c =

⎧⎪⎨
⎪⎩
trans0,0 → cost0,0,1 if t = 0 ∧ n = 0
costt−1,|T |,c ∧ transt,n → costt,n,c+1 if t > 0 ∧ n = 0
costt,n−1,c ∧ transt,n → costt,n,c+1 if n > 0

notRdTranst,n,c =

⎧⎪⎨
⎪⎩

¬trans0,0 → cost0,0,0 if t = 0 ∧ n = 0
costt−1,|T |,c ∧ ¬transt,n → costt,n,c if t > 0 ∧ n = 0
costt,n−1,c ∧ ¬transt,n → costt,n,c if n > 0

changeLabel t,c = costt,|T |−1,c ∧ label t → costt,|T |,c+1

notChangeLabel t,c = costt,|T |−1,c ∧ ¬label t → costt,|T |,c

label t =
∨
o∈O

{
o′
t if o /∈ o(t)

¬o′
t if o ∈ o(t)

transt,t′ =
∨
i∈2I

{
τ ′
t,i,t′ if τ(t, i) �= t′

⊥ if τ(t, i) = t′

Fig. 4. The constraint φcost ensures that at most k operations are applied.

function λ. In the bounded synthesis constraint system for the 2O-labeled 2I -
transition system T ′ = (T, t0, τ

′, o′), the transition function τ ′ is represented by
a variable τ ′

t,i,t′ for every t, t′ ∈ T and i ∈ 2I . The variable τ ′
t,i,t′ is true if and

only if τ ′(t, i) = t′. The labeling function o′ is represented by a variable o′
t for

every o ∈ O and t ∈ T and it holds that o′
t is true if and only if o ∈ o′(t). For

simplicity, states are represented by natural numbers.
To ensure that the transition system T ′ can be obtained with at most k

operations from a given transition system T = (T, t0, τ, o), the bounded synthe-
sis encoding is extended with the additional constraint φcost shown in Fig. 4. For
states t, t′, the constraint transt,t′ holds iff there is a redirected transition from
t to t′, i.e. there exists an i ∈ 2I with τ ′(t, i) = t′ and τ(t, i) 	= t′. The constraint
labelt holds iff the state labeling of state t is changed, i.e. o(t) 	= o′(t). To count
the number of applied operations, we use an implicit ordering over all the pos-
sible operations: starting from state 0, we first consider all potential transition
redirects to states 0, 1, . . . , |T |− 1, then the potential state label change of state
0, then the transition redirects from state 1, and so on. For state t and operation
n, where n ranges from 0 to |T | (where n < |T | refers to the transition redirect
operation to state n and n = |T | refers to the state label change operation), the
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Algorithm 2. Explanation(T , ϕ, ξ)
1: Told ← T
2: ex ← ()
3: while ξ �= ∅ do
4: σ ← BMC(Told, ϕ)
5: minimal ← false
6: ξ′ ← ξ
7: while !minimal do
8: minimal ← true
9: for Δ ∈ ξ′ do

10: Tnew ← apply∗(Told, ξ
′\{Δ})

11: if σ /∈ L(Tnew) then
12: minimal ← false
13: ξ′ ← ξ′\{Δ}
14: Told ← apply∗(Told, ξ

′)
15: ex ← ex .Append(ξ′, σ)
16: ξ ← ξ\ξ′

17: return ex

variable cost t,n,c is true if the number of applied operations so far is c. This book-
keeping is done by constraints rdTranst,n,c, notRdTranst,n,c, changeLabel t,c and
notChangeLabel t,c. Constraints rdTrans and notRdTrans account for the pres-
ence and absence, respectively, of transition redirects, constraints changeLabel t,c
and notChangeLabel t,c for the presence and absence of state label changes. In
order to bound the total number of operations by k, φcost requires that costt,n,k+1

is false for all states t and operations n.
In the next theorem, we state the size of the resulting constraint system,

based on the size of the bounded synthesis constraint system given in [4].

Theorem 3. The size of the constraint system is in O(nm2 · 2|I| · (|δq,q′ | +
n log(nm))+kn2) and the number of variables is in O(n(m log(nm)+2|I| ·(|O|+
n)) + kn2), where n = |T ′|,m = |Q| and k the number of allowed operations.

4.2 Generating Explanations

We describe now how we can solve the explanation synthesis problem for a given
LTL-formula ϕ over AP = I ∪ O, a 2O-labeled 2I -transition system T and a
minimal repair ξ. The minimal repair ξ can be obtained from Algorithm1. The
construction of the explanation follows the idea from the proof of Theorem 2
and is shown in Algorithm 2. An explanation ex is a sequence of transformations
ξi and counterexamples σi such that every transformation ξi can be minimally
justified by σi. A counterexample σ for the current transition system Told is
obtained by Bounded Model Checking (BMC) [2] and is a justification for ξ as ξ
is a minimal repair. BMC checks if there is a counterexample of a given bound n
that satisfies the negated formula ¬ϕ and is contained in L(T ). The constraint
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system φT ∧φloop ∧�¬ϕ� is composed of three components. φT encodes the tran-
sition system T , where each state t ∈ T is represented as a boolean vector. φloop

ensures the existence of exactly one loop of the counterexample, and the fix-
point formula �¬ϕ� ensures that the counterexample satisfies the LTL formula.
To obtain a minimal justification, we need to ensure that there is no transforma-
tion ξ′ ⊂ ξ such that σ justifies ξ′. As long as there is an operation Δ such that
σ /∈ L(apply∗(Told, ξ

′\{Δ})), σ is not a minimal justification for ξ′. Otherwise σ
minimally justifies ξ′ and (ξ′, σ) can be appended to the explanation. The algo-
rithm terminates and returns an explanation if ξ is empty, i.e. every operation
is justified. The presented algorithm solves the BMC-problem at most |ξ|-times
and the number of checks if a counterexample is contained in the language of a
transition system is bounded by |ξ|2. The correctness of Algorithm 2 is shown in
Theorem 2.

5 Experimental Results

We compare our explainable synthesis approach with BoSy [5], a traditional
synthesis tool, on several benchmarks. After describing the different benchmark
families and technical details, we explain the observable results.

5.1 Benchmark Families

The benchmarks families for arbiter, AMBA and load balancer specifications are
standard specifications of SYNTCOMP [11]. For the scaling benchmarks only a
constant number of operations is needed. The remaining benchmarks synthesize
support for different layers of the OSI communication network.

– Arbiter: An arbiter is a control unit that manages a shared resource. Arbn

specifies a system to eventually grant every request for each of the n clients
and includes mutual exclusion, i.e. at most one grant is given at any time.
ArbFulln additionally does not allow spurious grants, i.e. there is only given
a grant for client i if there is an open request of client i.

– AMBA: The ARM Advanced Microcontroller Bus Architecture (AMBA) is
an arbiter allowing additional features like locking the bus for several steps.
The specification AMBAEncn is used to synthesize the encode component
of the decomposed AMBA arbiter with n clients that need to be controlled.
AMBAArbn specifies the arbiter component of a decomposed AMBA arbiter
with an n-ary bus, and AMBALockn specifies the lock component.

– Load Balancer: A load balancer distributes a number of jobs to a fixed
number of server. LoadFulln specifies a load balancer with n clients.

– Bit Stuffer: Bit stuffing is a part of the physical layer of the OSI communi-
cation network which is responsible for the transmission of bits. Bit stuffing
inserts non-information bits into a bit data stream whenever a defined pat-
tern is recognized. BitStuffern specifies a system to signal every recurrence
of a pattern with length n.
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Table 1. Benchmarking results of BoSy and our explainable synthesis tool

Initial Extended Size Aut. Operations
chL/rdT

Number
Just.

Time in
sec. BoSy

Time in sec.
Explainable

Ben. Size Ben. Size

Arb2 2 Arb4 4 5 0/3 3 0.348 1.356

Arb4 4 Arb5 5 6 0/2 2 2.748 12.208

Arb4 4 Arb6 6 7 0/3 3 33.64 139.088

Arb4 4 Arb8 – 9 – – Timeout Timeout

Arb2 2 ArbFull2 4 6 3/7 10 0.108 0.352

ArbFull2 4 ArbFull3 8 8 1/18 19 26.14 288.168

AMBAEnc2 2 AMBAEnc4 4 6 1/11 12 0.26 7.16

AMBAEnc4 4 AMBAEnc6 6 10 1/21 22 5.76 973.17

AMBAArb2 – AMBAArb4 – 17 – – Timeout Timeout

AMBAArb4 – AMBAArb6 – 23 – – Timeout Timeout

AMBALock2 – AMBALock4 – 5 – – Timeout Timeout

AMBALock4 – AMBALock6 – 5 – – Timeout Timeout

LoadFull2 3 LoadFull3 6 21 1/10 10 6.50 49.67

Loadfull3 6 LoadFull4 – 25 – – Timeout Timeout

BitStuffer2 5 BitStuffer3 7 7 2/7 9 0.08 1.02

BitStuffer3 7 BitStuffer4 9 9 1/6 7 0.21 3.97

ABPRec1 2 ABPRec2 4 9 2/5 7 0.11 1.52

ABPRec2 4 ABPRec3 8 17 4/9 13 2.87 326.98

ABPTran1 2 ABPTran2 4 31 1/5 5 0.76 76.93

ABPTran2 4 ABPTran3 – 91 – – Timeout Timeout

TCP1 2 TCP2 4 6 1/4 5 0.05 0.19

TCP2 4 TCP3 8 8 3/14 17 0.58 14.47

Scaling4 4 Scaling′
4 4 4 4/0 4 0.02 0.10

Scaling5 5 Scaling′
5 5 5 4/0 4 0.03 0.22

Scaling6 6 Scaling′
6 6 6 4/0 4 0.04 0.51

Scaling8 8 Scaling′
8 8 8 4/0 4 0.12 2.54

Scaling12 12 Scaling′
12 12 12 4/0 4 34.02 167.03

– ABP: The alternating bit protocol (ABP) is a standard protocol of the data
link layer of the OSI communication network which transmits packets. Basi-
cally, in the ABP, the current bits signals which packet has to be transmitted
or received. ABPRecn specifies the ABP with n bits for the receiver and
ABPTrann for the transmitter.

– TCP-Handshake: A transmission control protcol (TCP) supports the trans-
port layer of the OSI communication network which is responsible for the
end-to-end delivery of messages. A TCP-handshake starts a secure connec-
tion between a client and a server. TCPn implements a TCP-handshake where
n clients can continuously connect with the server.

– Scaling: The Scalingn benchmarks specify a system of size n. To satisfy the
specification Scaling ′

n a constant number of operations is sufficient.

5.2 Technical Details

We instantiate BoSy with an explicit encoding, a linear search strategy, an input-
symbolic backend and moore semantics to match our implementation. Both tools
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only synthesize winning strategies for system players. We use ltl3ba [1] as the
converter from an LTL-specification to an automaton for both tools. As both
constraint systems only contain existential quantifiers, CryptoMiniSat [23] is
used as the SAT-solver. The solution bound is the minimal bound that is given
as input and the initial transition system is synthesized using BoSy, at first. The
benchmarks results were obtained on a single quad-core Intel Xeon processor (E3-
1271 v3, 3.6 GHz) with 32 GB RAM, running a GNU/Linux system. A timeout
of 2 h is used.

5.3 Observations

The benchmark results are shown in Table 1. For each benchmark, the table
contains two specifications, an initial and an extended one. For example, the
initial specification for the first benchmark Arb2 specifies a two-client arbiter
and the extended one Arb4 specifies a four-client arbiter. Additionally, the table
records the minimal solution bound for each of the specifications. Our explainable
synthesis protoype starts by synthesizing a system for the initial specification
and then synthesizes a minimal repair and an explanation for the extended one. If
the minimal repair has to access additional states, that are initially unreachable,
our prototype initializes them with a self loop for all input assignments where
no output holds. The traditional synthesis tool BoSy only synthesizes a solution
for the extended specification. The size of the universal co-Büchi automaton,
representing the extended specification is reported. For the explainable synthesis,
the applied operations of the minimal repair and the number of justifications is
given. For both tools, the runtime is reported in seconds.

The benchmark results reveal that our explainable synthesis approach is able
to solve the same benchmarks like BoSy. In all cases, except two, we are able
to synthesize explanations where every operation can be single justified. The
applied operations show that there are only a small number of changed state
labelings, primarily for reaching additional states. Since only minimal initial
systems are synthesized, the outputs in the given structure are already fixed.
Redirecting transitions repairs the system more efficient. In general, the eval-
uation reveals that the runtime for the explainable synthesis process takes a
multiple of BoSy with respect to the number of applied operations. Thus, the
constraint-based synthesis for minimal repairs is not optimal if a small number
of operations is sufficient since the repair synthesis problem is polynomial in
the size of the system as proven in Lemma 1. To improve the runtime and to
solve more instances, many optimizations, used in existing synthesis tools, can
be implemented. These extensions include different encodings such as QBF or
DQBF or synthesizing strategies for the environment or a mealy semantics.

6 Conclusion

In this paper, we have developed an explainable synthesis process for reactive
systems. For a set of specification, expressed in LTL, the algorithm incrementally
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builds an implementation by repairing intermediate implementations to satisfy
the currently considered specification. In each step, an explanation is derived
to justify the taken changes to repair an implementation. We have shown that
the decision problem of finding a repair for a fixed number of transformations is
polynomial in the size of the system and exponential in the number of operations.
By extending the constraint system of bounded synthesis, we can synthesize
minimal repairs where the resulting system is size-optimal. We have presented
an algorithm that constructs explanations by using Bounded Model Checking
to obtain counterexample traces. The evaluation of our prototype showed that
explainable synthesis, while more expensive, can still solve the same benchmarks
as a standard synthesis tool. In future work, we plan to develop this approach into
a comprehensive tool that provides rich visual feedback to the user. Additionally,
we plan to investigate further types of explanations, including quantitative and
symbolic explanations.
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Abstract. In automatic control synthesis, we may need to handle spec-
ifications with timing constraints and control such that the system meets
the specification as much as possible, which is called robust control. In
this paper, we present a method for open loop robust controller synthe-
sis from duration calculus (DC) specifications. For robust synthesis, we
propose an approach to evaluate the robustness of DC specifications on
a given run of a system. We leverage a CEGIS like method for synthe-
sizing robust control signals. In our method, the DC specifications and
the system under control are encoded into mixed integer linear problems,
and the optimization problem is solved to yield a control signal. We have
implemented a tool (ControlDC) based on the method and applied it on
a set of benchmarks.

Keywords: Controller synthesis · Robustness · Duration calculus

1 Introduction

Temporal logics have played a significant role in compactly specifying desired
behaviours of a system, and in synthesizing controllers. There has been a rich
body of work on the verification and synthesis of systems that abide by some
specification given by temporal logics. The synthesis of controllers for a hybrid
system satisfying a temporal logic specification in the presence of an uncontrol-
lable environment is practically relevant in many domains like robotics, mod-
ern medical devices, space vehicles, and so on. The automated development of
controllers, called controller synthesis, is an active area of research. Controller
synthesis addresses the question of how to control the behavior of a given system
to meet its specification, regardless of the behavior enforced by the environment.
To respond to environmental factors, a cyber-physical system (CPS) may include
controllers, i.e., a component that takes environmental signals as input and steers
the system, to meet the goals. A simple example is that of a traffic controller
which decides on the fly, the duration of red, green and orange depending on
the traffic at any point of time. Synthesizing an optimal controller is non-trivial
[1], especially when software based systems are considered, since environmental
factors can cause disturbances. In CPS, we express the goals of the system in
terms of logical formulae, that are formally called specifications. For reactive
c© Springer Nature Switzerland AG 2020
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systems, the behaviour changes over time, and temporal logic is a widely used
formalism to express such specifications.

Linear temporal logic (LTL), Computation tree logic (CTL) [2], Metric tem-
poral logic (MTL) [3], Signal temporal logic (STL) [4] are some of the well-known
temporal logics. There have been attempts to synthesize controllers from these
temporal logics, as we explain below. [5] investigates the synthesis of controllers
enforcing linear temporal logic specifications on discrete-time linear systems. [6]
studies an optimization variant of synthesis from LTL formulas, and designs con-
trollers which satisfy a set of hard specifications and minimally violates a set of
soft specifications. In [7], controller synthesis has been studied for systems allow-
ing probability and non-determinism with respect to probabilistic CTL. In the
case of timed logics like MTL, a robust interpretation of formulas over signals has
been adopted in [8] thereby proposing multi-valued semantics for MTL formu-
las, capturing not the usual Boolean satisfiability, but information regarding the
distance from unsatisfiability. Using this, they propose an algorithm for under-
approximate analysis of robustness satisfaction of the MTL specification with
respect to a given finite timed state sequence. This notion of robust satisfaction
has been investigated in [9] for STL formulas and used in controller synthesis
for discrete-time continuous systems in the presence of an adverse environment.

In this paper, we work on the robust controller synthesis problem with respect
to systems specified as hybrid automata, in the presence of an adversarial envi-
ronment, with a specification given in Duration Calculus(DC, [10]). DC is one
of the oldest interval temporal logics known. The syntax of DC allows modal-
ities like the duration (

∫
I
ϕ) operator, and chop (†) operator1 which makes it

very expressive. The duration modality
∫

I
ϕ measures the real time over which

a formula ϕ is true in an interval I, while the chop operator allows us to write
specifications modularly. The duration modality makes DC more expressive than
LTL, CTL, STL and MTL in capturing specifications where the time durations
are critical. The chop operator, as the name suggests, allows us to specify prop-
erties ϕ1, ϕ2 over smaller time intervals I1, I2 and “stitch them” together, to
obtain a property ϕ1 † ϕ2 over the larger time interval I obtained by concate-
nating intervals I1, I2. The chop modality helps in making DC very succinct, as
opposed to logics like LTL for expressing many specifications.

There has been a renewed interest in synthesizing controllers for DC very
recently [11,12]. [12] considers specifications in quantified discrete duration cal-
culus (QDDC), the discrete counterpart of DC, known to be equivalent to reg-
ular languages [13]. [12] considers controller specifications, given as a pair of
QDDC formulae (DA,DC) called assumption and commitment, and looks at
the notions of hard and soft robustness. In hard robustness, the requirement is
that, in all behaviours of the controller, the commitment formula DC must hold
if the assumption formula DA holds, while in soft robustness, DC should be met
as much as possible irrespective of DA. This approach has been implemented in
a tool DCSynth [11].

1 Traditionally denoted as �.
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Contributions. In this paper, we synthesize controllers that robustly satisfy the
given DC specification. As a first contribution, we propose a notion of robust
satisfaction for DC formulae. The robust satisfaction associates real values or
weights with each formula, as opposed to a Boolean value. As our second con-
tribution, we consider systems given as hybrid automata, and synthesize control
behaviours under which, the system robustly satisfies the specification, in the
presence of adversarial environmental inputs. To the best of our knowledge,
robust synthesis with respect to hybrid automata has not been considered in the
literature. The inputs to our synthesis algorithm consist of the hybrid automa-
ton as the system, the initial state of the system, a disturbance vector, and the
DC constraints that need to be satisfied. Our approach for controller synthesis
is based on encoding DC constraints, which are either environmental or system
constraints into optimization of mixed integer linear programs (MILP) [9,14].
We follow a counter example guided approach (CEGIS) to find the optimal con-
trol sequence, and synthesize controllers using the open-loop synthesis technique
[15]. At each step, we minimize the robustness and find the worst adversarial
input that leads to the violation of the specification. If an adversary is found, we
add it to the list of adversaries to consider it for future iterations, and if no such
adversary is found, then we return the satisfying control sequence. This way,
we create an optimisation problem that can be solved using MILP solvers like
Gurobi [16] to yield a satisfying control sequence. As the third contribution, we
have implemented our algorithm in a tool ControlDC. ControlDC automatically
synthesizes robust controllers from DC specifications. We have tested ControlDC
on some benchmark examples, and find the results encouraging.

The rest of the paper is organized as follows. Section 2 gives the necessary
definitions related to hybrid automata and DC needed for later sections. The
robust satisfaction of DC is described in Sect. 3. The open-loop synthesis algo-
rithm is presented in Sect. 4. Our experimental results, along with some ideas
for future work, can be found in Sect. 5.

2 Preliminaries

Let R≥0 be the set of non-negative real-numbers with the usual order. A hybrid
system is a dynamical system with both discrete and continuous components.
Hybrid automata [17] is a well accepted formal model for hybrid systems. Given
a finite set of variables Var , let |Var | denote the cardinality of the set Var
and ˙Var = {ẋ | x ∈ Var}, Var ′ = {x′ | x ∈ Var} respectively denote the
first derivatives of variables in Var during continuous change, and the values of
variables after a discrete change. For a set of variables Var , Pred(Var) denotes a
predicate over Var , and Exp(Var) denotes an expression over Var . For example,
2x − 3y = 5 is a predicate over variables x, y, while 2x + 3y is an expression
over x, y. Given a predicate π over a set of variables Var , �π� denotes the set of
valuations over R

|Var | which satisfy π. For example, (52 , 0) ∈ �2x − 3y = 5�.

Hybrid Automata. A hybrid automaton [17] H = (Q, I,Var , δ, Inv, flow) is a
finite state automaton equipped with a finite set of locations Q called control
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modes, a subset I ⊆ Q of initial locations, a finite set Var = {x1, . . . , xn} of
variables. Var consists of variables of 4 kinds: (1) Input variables (U) (2) Output
variables (Y ) (3) State variables (X) and (4) Environment variables (W ). Let
X1 = U ∪ X be the disjoint union of input and state variables, s.t. Var is a
disjoint union of X1,W, Y . Input variables represent the control inputs, state
variables represent the logical system states, environment variables represent
the adversarial external disturbances, and output variables are a function of all
the variables.

Discrete transitions or control switches have the form δ ⊆ Q × Pred(X1 ∪ W )
× Q × μ(Z ′) where Z ⊆ Var . A discrete transition from a location q to a location
q′ is labeled by predicates over X1 ∪ W , and μ : Z ′ �→ Exp(Var) is a function
which assigns to variables Z ⊆ Var values obtained by evaluating some expressions
over Var . Inv, flow called invariants and flows respectively, are functions labeling
locations with predicates over X1 and X1 ∪ Ẋ1. A state of the hybrid automaton
is a member of Q ×R

|Var | consisting of a location, along with the values of all the
variables. An initial state of the automaton is (q0, 0) where q0 ∈ I, and 0 = 0|Var |.

Transitions in H are either discrete transitions or continuous transitions.
For states (q, v) and (q′, v′), a continuous transition denoted (q, v) t→ (q′, v′) is
enabled for t ∈ R≥0 iff (1) q = q′, (2) there is a differentiable function f : [0, t] �→
R

|Var | with the first derivative ḟ : (0, t) �→ R
|Var | s.t. f(0) = v, f(t) = v′, and

for all ε ∈ (0, t), both Inv(q)[Var := f(ε)] and flow(q)[Var , ˙Var := f(ε), ḟ(ε)] are
true.

For example, if we have Inv(q) = (x = 2) and Inv(q′) = (x = 4, y ≤ 2),
flow(q) = (ẋ = 2, ẏ = 0), then we have (q, (2, 2)) 1→ (q′, (4, 2)), since in one unit
of time, y remains the same and x doubles.

A discrete transition from (q, v) to (q′, v′) on predicate π(Var) and assign-

ment μ(Z ′) denoted (q, v)
π(Var)−−−−→
μ(Z′)

(q′, v′) is enabled iff (1) (q, π, q′, μ) ∈ δ, (2)

v ∈ �Inv(q)�, �π�, and (3) v′ ∈ �Inv(q′)�, where v′ = v[Z ′ := μ(Z ′)] is obtained
by assigning to all variables in Z ⊆ Var the values given by the function μ.

For example, if we have the control switch cs = (q, x ≥ 2y, q′, (x′ = 3))
in δ with Inv(q) = (x = 5) and Inv(q′) = (y > 1), flow(q) = (ẋ = 2) then
we have the discrete transition from state (q, (5, 2)) to state (q′, (3, 2)) denoted
(q, (5, 2)) cs→ (q′, (3, 2)).

A run in the hybrid automaton H is a finite or infinite sequence of alternating
continuous and discrete transitions starting from an initial state s0 = (q0, 0).
The sequence of states s0s1s2 . . . in a run is called a signal. For an initial state
s0 = (q0, α0), N ∈ N, a N -horizon run of the system has the form

(q0, α0)
t0→ (q0, α

′
0)

pred1−−−→
μ1

(q1, α1) . . . (qN−1, αN−1)
tN−1→ (qN−1, α

′
N−1)

predN−−−−→
μN

(q1, αN )

If T =
∑N−1

i=0 ti ∈ R≥0 is the sum of all time elapses along the run, then the
run defines a signal in the time interval [0, T ] and uniquely gives the sequence
of values u0u1 . . . uN of input variables, w0w1 . . . wN of environment variables,
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x0x1 . . . xN of state variables and y0y1 . . . yN of output variables seen along the
run in the time interval [0, T ]. The ith value ui (respectively xi, yi, wi) can be
written as u(ti−1) (respectively x(ti−1), y(ti−1), w(ti−1)) to denote the value at
time point ti−1.

In the following, let I = [b, e] where b ≤ e are non-negative reals be an
interval. A signal (or behaviour) over a set of variables Var with respect to
interval I is a sequence, which specifies for each p ∈ Var , a real value p(t), t ∈ I.
The terms signal and behaviour may be used interchangeably in the following.

Duration Calculus. Duration calculus (DC) [10,18] is a highly expressive real
time logic, with duration and length modalities.

The syntax of a DC formula over variables Var is defined as follows. Let
x ∈ Var , c ∈ R, and op ∈ {≤, <,=, >,≥, >}. First we define propositions P as
P ::= ⊥ | 
 | x op c | P ∧ P | ¬P, where 
,⊥ respectively represent true and
false. Using the propositions P , we define a set of formulae D for DC as follows.

D ::= P | D ∧ D | ¬D | �P 
I | �
 | †I(D, ...,D) | c op

∫

I

P | c op �

where I = [b, e] is an interval. Note that the DC modalities � 
I , †I ,
∫

I
are

parameterized with an interval I. We will explain the interval I used in these
DC modalities in the semantics below.

For a given behaviour θ, an interval [x, y], and a DC formula ψ, the satisfac-
tion relation denoted θ, [x, y] |= ψ is defined inductively as follows.

1. θ, [x, y] |= P for a proposition P if θ(P (x)) is true. Recall that P in its simplest
form (other than 
,⊥) looks like α op c, where α ∈ Var . For propositions,
the value at the beginning of the interval is compared with c, obtaining a
Boolean value.

2. θ, [x, y] |= ¬P for a proposition P if θ(P (x)) is False.
3. θ, [x, y] |= �P 
[b,e]. The behaviour θ is over the interval [x, y] while the for-

mula �P 
 to be evaluated has the interval [b, e] tagged to it. The evaluation of
�P 
 happens at relative distance [b, e] wrt the interval [x, y], and it must be
that [b + x, e + x] ⊆ [x, y] since the behaviour is defined till the time point y.
θ, [x, y] |= �P 
[b,e] iff for all b + x ≤ t ≤ e + x ≤ y, θ, [t, t] |= P .

4. θ, [x, y] |= D1 ∧ D2 if θ, [x, y] |= D1 and θ, [x, y] |= D2

5. θ, [x, y] |= � op c if Eval(�)([x, y]) op c is true. Eval(�)([x, y]) is defined as
y − x, the length of the interval.

6. θ, [x, y] |= ∫
I
P op c if Eval(

∫
I+x

P )(θ, [x, y]) op c evaluates to true, and e +

x ≤ y. Eval(
∫

I+x
P )(θ, [x, y]) is defined as

e+x∫

b+x

θ(P (t))dt for I = [b, e]. That

is, for each t ∈ [b + x, e + x], check if θ(P (t)) evaluates to true or false. The
accumulated duration where θ(P (t)) is true in [b + x, e + x] ⊆ [x, y] is what
(
∫

I+x
P )(θ, [x, y]) evaluates to. This is compared against c using op obtaining

a Boolean answer.
7. θ, [x, y] |= †[b,e](D1, ...,Dn) if there exist points z1, z2, . . . , zn−1 s.t. b + x

≤ z1 ≤ z2 ≤ · · · ≤ zn−1 ≤ e + x ≤ y, and θ, [b + x, z1] |= D1, θ, [z1, z2] |=
D2, . . . , θ, [zn−1, e + x] |= Dn.
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The measurement operators length and duration are collectively represented as
mt op c, where mt ∈ {�,

∫
r
P}.

Derived Operators. Using †, we define the following derived operators. ♦ID =
†I(
,D,
) holds provided D holds for some sub interval in I. �ID = ¬♦I¬D
holds provided D holds for all admissible sub intervals in I.

• The formula �[(� = 50) → (30 ≤ ∫

[0,50]

(hb = 1) ≤ 45)] says that within any

sub interval of length 50, the accumulated duration for which the variable hb

is 1 should lie between 30 and 45.
• The formula �[0,n]((p > 100) ⇒ [(� < 40) † (p < 50)]) says that in any

subinterval of length n, whenever the value of variable p exceeds 100, it must
come below 50 within an interval of length < 40.

3 Robust Satisfaction of DC

Robust or quantitative satisfaction associates a real number instead of a Boolean
value to formulae. As we will see below, this number indicates “how far” the for-
mula is, from being satisfiable in the usual Boolean sense. A robustness value of
∞ indicates perfect satisfaction of the formula, while −∞ is the worst possible
robustness indicating maximal distance from satisfaction. Thus, robust satisfac-
tion defines a real-valued function ρ(θ, [x, y],D) of DC formula D, behaviour θ
and interval [x, y] s.t. θ, [x, y] |= D ≡ ρ(θ, [x, y],D) > 0.

The robust semantics for other operators is computed recursively from the
DC semantics in a straightforward manner, by propagating the values of the
functions associated with each operand using min and max corresponding to the
various DC modalities. The complete robust satisfaction is defined inductively
below.

1. ρ(θ, [x, y],
) = +∞, ρ(θ, [x, y],⊥) = −∞

2. ρ(θ, [x, y], P op c) =

⎧
⎪⎨

⎪⎩

θ(P (x)) − c if op is >

c − θ(P (x)) if op is <

−|c − θ(P (x))| if op is =

3. ρ(θ, [x, y], P ∧ Q) = min{ρ(θ, [x, y], P ), ρ(θ, [x, y], Q)}. is one of the oldest
interval temporal logics known. The syntax of DC allows modalities like
the duration (

∫
I
ϕ) operator, and chop (†) operator2 which makes it very

expressive. The duration modality
∫

I
ϕ measures the real time over which a

formula ϕ has been true in an interval I, while
4. ρ(θ, [x, y],¬P ) = −ρ(θ, [x, y], P ).
5. ρ(θ, [x, y], �P 
[b,e]) = infz∈([b+x,e+x]) ρ(θ, [z, z], P ), and e+x ≤ y. The robust-

ness of P is evaluated at all points in the interval [b + x, e + x] ⊆ [x, y]. The
infimum of all possible values is taken as the robustness of �P 
. Indeed, if

2 Traditionally denoted as �.



Robust Controller Synthesis for Duration Calculus 435

we obtain a negative value, we know that there is at least one point in the
interval [b + x, e + x] where the Boolean satisfaction is violated.
If the interval is not a point interval, the robustness is −K, where K > 0
is the size of the interval. This measures how much bigger the interval is,
from what it should be. When we have a point interval, the robustness is 0,
indicating that we are exactly where we should have been.

6. ρ(θ, [x, y],
∫

I
P op c) =

⎧
⎨

⎩

α − c if op is >
c − α, if op is <
−|α − c| if op is =

where α = Eval(
∫

I+x
P )(θ, [x, y]) is obtained as explained in the DC seman-

tics (it should be that e + x ≤ y). The difference between α and c is the
robustness and the sign depends on the operator used. The explanation here
is analogous to mt op c.

7. ρ(θ, [x, y], � op c) =

⎧
⎨

⎩

β − c if op is >
c − β if op is <
−|β − c| if op is =

where β = Eval(�)([x, y]) and e + x ≤ y. Here again, we compute the
difference between y − x and c, and depending op, obtain the result.

8. ρ(θ, [x, y],¬D[b,e]) = −{ρ(θ, [x, y],D)}, and e+x ≤ y. The robustness of ¬D
is obtained by flipping the sign of the robustness of D.

9. ρ(θ, [x, y],D1 ∧ D2) = min{ρ(θ, [x, y],D1, ρ(θ, [x, y],D2)},e + x ≤ y. The
minimum of the robustness values of D1,D2 is the robustness of D1 ∧ D2.

10. ρ(θ, [x, y], †[b,e](D1 . . . Dn) is defined as

sup
z1,...,zn−1∈[b+x,e+x]

{min{ρ(θ, [b + x, z1],D1) . . . ρ(θ, [zn−1, e + x],Dn)}}

and e + x ≤ y.

For a choice of b + x ≤ z1 ≤ z2 ≤ · · · ≤ zn−1 ≤ e + x, find the minimum
robustness value from ρ(θ, [zi−1, zi],Di). However, the robustness of chop
is the supremum across all possible ways of chopping (all possible ways of
finding z1, . . . , zn−1).

• As an example to illustrate robustness, consider the formula [(� = 50) →
(30 ≤ ∫

[0,50]

(hb = 1) ≤ 45)]. If we have a signal such that the duration for

which hb = 1 is 25 or 50 in the interval [0,50], then the robustness value will
be −5, since the accumulated duration is 5 away from the required range.

• As yet another example, consider the formula †(�p > 2
, � = 2). The formula
can be evaluated on any interval of length at least 2. If we have a signal over
an interval [x, y] where the values of p range in the interval [−100, 10] in the
sub interval [x, y−2], then the robustness is −102, the distance from the ideal
value 2 at some point in the signal.
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4 Synthesis Algorithm

In this Section, we present our algorithm for synthesizing controllers satisfying
a DC specification for a system. The inputs to our synthesis algorithm are a
system given as a hybrid automaton H, adversarial external environmental dis-
turbances, a time horizon N , time granularity dt, and a DC specification. The
goal is to synthesize a sequence of control variables (or an input signal) resulting
in behaviours of the system H which have maximum robustness in satisfying
the DC specification. The output of the algorithm is hence this sequence of
input variables such that the robustness value of the behaviour of the system is
maximized.

We assume that the signals (input, state, output and environment) we deal
with in the algorithm are finitely piecewise linear and continuous. A signal y over
an interval [t0, tn] is said to be finitely piecewise linear, continuous (f.p.l.c.) if
there exists a finite sequence of time points (ti)0≤i≤n such that for all 0 ≤ i < n,
y is continuous at ti and is affine on the interval [ti, ti+1).

4.1 The Algorithm

In Algorithm 1, we present an algorithm for synthesizing control for finite trajec-
tories maximizing robustness of bounded specifications. The algorithm generates
a sequence of control inputs for a bounded DC specification φe =⇒ φs, which
must be bounded by horizon length N. The specification φe =⇒ φs has two
parts, the DC specification on the system φs and the DC specification on the
environment φe. The algorithm also takes a hybrid system H as input. The qual-
ity of learned controls is judged based on its effect on the robust satisfaction of
the specification. Higher the positive robustness value, the more desirable the
control input. The approach is iterative and collects the adversarial environment
inputs. In each iteration, we synthesize a control signal that satisfies the spec-
ification for the environment inputs (φe) seen so far and check if there is an
environmental input such that the learned control signal may cause violation
of the specifications. If such an environment input is found, we go for the next
iteration. Otherwise, our method terminates with the learned control signal.

Let us present our algorithm in detail. We expect the input system H has
variable vectors X, Y , U , and W representing internal state, outputs, inputs,
and environment inputs respectively. At first, we translate the system H into
a formula FH using the EncodeBMC method that implements the bounded
model-checking encoding of H using the method presented in [19,20]. The encod-
ing produces formula FH(x, y, u, w) over symbolic vector of signals for internal
states x, outputs y, inputs u, and environment w. To keep the exposition clear,
we have differentiated between the program variables and the symbolic signals
by changing fonts. Afterwards, we encode the DC property φs over signals of H
using function EncodeProp (see Sect. 4.2 for details of the encoding from DC to
mixed integer linear programming). The function returns two values. The first
is a symbolic expression rs

[0,N ](x, y, u) that encodes the robustness of φs over
signals x, y, and u. The second is the condition Fs under which the robustness
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1 Function Synthesis(H(X, Y, U, W ), N, dt, φe =⇒ φs):
Result: u∗

2 FH(x, y, u, w) = EncodeBMC(H(X, Y, U, W ), dt);
3 rs

[0,N ](x, y, u), Fs(x, y, u) = EncodeProp(φs(X, Y, W ), dt, [x, y, u], N);

4 F (x, y, u, w) = FH(x, y, u, w) ∧ Fs(x, y, u);
5 u∗ = random control input;
6 maxr := −∞;
7 maxu := u∗;
8 Wworst = ∅;
9 while runtime < TIMEOUT do

10 w∗, r∗ ← arg min
w

rs
[0,N ](x, y, u

∗) s.t. w |= φe ∧ F (x, y, u∗, w) ;

11 if r∗ > 0 then
12 Return u∗,r∗ ;

13 end
14 Wworst ← Wworst ∪ {w∗} ;
15 if r∗ > maxr then
16 maxr = r∗;
17 maxu = u∗;
18 end
19 u∗, r′ ← arg min

u

maxw0∈Wworst
− rs

[0,N ](x, y, u) s.t. F (x, y, u, w0) ;

20 if r′ == ∞ then
21 Return INFEASIBLE;
22 end

23 end
24 Return maxu,maxr

25 end

Algorithm 1: Synthesis algorithm

expression is correct. We conjunct the formulas Fs and FH to obtain the overall
condition to be true in our analysis. At line 5, we initialize the control sequence
input u∗ at random. We also initialize maxu and maxr that records the best
input seen so far and the value of robustness at the input. We will present the
encoding for DC formulas to constraint system in the next subsection.

The iterative loop at line 9 finds inputs that perform better on already seen
adverse environments. In each iteration, we start by finding an environment
w∗ that forces worst behavior under input u∗. In line 10 we solve an optimiza-
tion problem that minimizes the robustness of φs by varying the environmental
input. In the problem, we minimize expression rs

[0,N ](x, y, u
∗) for all values of

w such that w satisfies φe and the side conditions F (x, y, u∗, w) is satisfied. The
minimization returns a pair of the worst environment w∗ for input u∗ and the
minimum robustness value r∗. If the robustness is positive, then no environment
can falsify φs given the control input u∗. Therefore, we return the control input
u∗. Otherwise, we update the Wworst set adding one more adversarial input to
the list in line 14 in the algorithm.
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In line 19 of the algorithm, we try to find a control input such that it max-
imizes the robustness, given the adversarial environment signals of the system.
The condition at line 19 ensures that we only search for the control signals that
satisfy φs and all the variables respect the behavior of the system and the prop-
erty. We again use the encoding to translate this into an optimization query.
Note that we are minimizing the negation of the robustness. Therefore, we com-
pute a new u∗ which performs best against all environments in Wworst. If no
such satisfying control input exists, then we return infeasible.

During every cycle, we either find a satisfying control input or some adver-
sarial input that leads to the violation of the specification. We expand Wworst

every time we find such an adversarial input. The algorithm may run indefinitely.
Therefore, we stop the loop after some timeout.

The proof of the following theorem is straightforward from the algorithm.

Theorem 1. If our algorithm returns a control input u∗ and robustness r then
under any execution [x, y, u∗, w] of H under environment w |= ψe the following
holds.

ρ([x, y, u], [0, N ], ψs) ≥ r

To avoid any impact of discrete time, we compute a range of possible out-
comes in our encoding [20] to approximate the non-linear behaviors of the dif-
ferential equations. Therefore, we ignore the impact of dt in the above theorem.
The algorithm may not terminate; however, we stop the algorithm after a finite
number of steps to report the best control input found.

The satisfaction conditions in line 10 and 19 are converted to constraints
encoding satisfaction of a mixed integer linear problem (MILP). In the above
discussion, we have not illustrated how we translate the DC specification to
MILP encoding. Therefore, in the next subsection, we describe the encoding of
the DC operators to MILP.

4.2 Encoding DC Formulas in MILP

We encode the DC specification as a Mixed-Integer Linear Programming(MILP)
problem. We are using the robustness semantics of DC to encode into MILP such
that the robustness value ≥ 0 indicates the satisfaction of the specification. In
the call to EncodeProp(ψ(X), X, N), we expect formula ψ over variables X,
corresponding symbolic signals X, and a time horizon N as parameters. For each
sub-formula φ of ψ and a time interval [t, t′] ⊆ [0, N ], we introduce a real valued
variable rφ

[t,t′] to represent robustness of φ in the interval [t, t′]. The variable rψ
[0,N ]

represents the robustness of the full formula in the interval [0, N ], and this is
returned. We also return constraints F that encodes correctness conditions which
check that the variable indeed represents the robustness. Our encoding also uses
some Boolean variables pφ

[t,t′] as well as a predefined large positive number M

to represent choices to be made in the case of some formulae. In Table 1, we
present the encoding for DC formulas. Using the robustness variables r[t,t′] and
Boolean variables p[t,t′] (omitting here, the superscript denoting which formulae),
we obtain the MILP encoding for each DC formulae.
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Table 1. Encoding for DC formulas. x is the symbolic signal in the encoding for x ∈ X.

ψ Contribution to F for encoding ψ[t,t′]

x ≥ c rψ
[t,t′] = xt − c

x ≤ c rψ
[t,t′] = c − xt

x = c rψ
[t,t′] = −|xt − c|

¬φ rψ
t = −rφ

t

φ1 ∧ φ2 pφ1
[t,t′] + pφ2

[t,t′] = 1 ∧ rψ
[t,t′] ≤ rφ1

[t,t′], i = 1, 2

rφi
[t,t′] − (1 − pφi

[t,t′])M ≤ rψ
[t,t′] ≤ rφi

[t,t′] + M(1 − pφi
[t,t′])

φ1 ∨ φ2 rψ
[t,t′] = max(rφ1

[t,t′], r
φ2
[t,t′])

�[a,b] φ rψ
[t,t′] = min({rφ

[s,t′]|s ∈ [t + a, t + b]}) if t + b ≤ t′

♦[a,b] φ rψ
[t,t′] = max({rφ

[s,t′]|s ∈ [t + a, t + b]}) if t + b ≤ t′

φ1†[a,b] φ2 Use ψ ⇔ ∧b
i=a(�[a,i]φ1 ∧ �[i,b]φ2) to define rψ

[t,t′]
∧b

i=a[pφ
[t+i,t′]M ≥ rφ

[t+i,t′] ≥ M(pφ
[t+i,t′] − 1)]∧

∫
[a,b]

φ > c rψ
[t,t′] = dt

b∑

i=a

pφ
[t+i,t′] − c

∧b
i=a[pφ

[t+i,t′]M ≥ rφ
[t+i,t′] ≥ M(pφ

[t+i,t′] − 1)]∧
∫
[a,b]

φ < c rψ
[t,t′] = c − dt

b∑

i=a

pφ
[t+i,t′]

∧b
i=a[pφ

[t+i,t′]M ≥ rφ
[t+i,t′] ≥ M(pφ

[t+i,t′] − 1)]∧
∫
[a,b]

φ = c rψ
[t,t′] = −|c − dt

b∑

i=a

pφ
[t+i,t′]|

� > c rψ
[t,t′] = (t′ − t) − c

� < c rψ
[t,t′] = c − (t′ − t)

� = c rψ
[t,t′] = −|c − (t′ − t)|

Let xt denote the variable corresponding to x ∈ X in the MILP encoding,
at time t in the signal x. Following the semantics of DC formulas, we encode
x ≥ c at [t, t′] by checking the difference of the value of x at time t from c.
To encode a conjunction ψ = φ1 ∧ φ2, we need to compute the minimum of
the two robustness values with respect to φ1 and φ2. We use Boolean variables
pφ1 , pφ2 to encode which of the subformulas φ1, φ2 has the minimum robustness.
The formula pφ1

[t,t′] + pφ2
[t,t′] = 1 says that we choose one of the two, the formula

rψ
[t,t′] ≤ rφi

[t,t′], i = 1, 2 says that the robustness of ψ is the minimum robustness
value between those of φ1, φ2. Further, using a large positive number M , we
encode the relation between the robustness values of ψ and φ1, φ2 as follows:
rφi

[t,t′] − (1 − pφi

[t,t′])M ≤ rψ
[t,t′] ≤ rφi

[t,t′] + M(1 − pφi

[t,t′]). Thus, we encode min
using the Boolean variables and M . Similarly, we encode max for disjunction,
which we have not explicitly illustrated in the Table. We use similar ideas to
encode minimum or maximum in the semantics of �, ♦, and † (for brevity, in
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the Table, we have used min, max notations for ∨,�,♦ and provide an equivalent
characterization using � for †. In the actual MILP encoding, the min, max are
handled as explained above).

We need to be careful about the time ranges. If [t, t′] does not provide enough
space, i.e. t′ − t < b, to interpret temporal formulas ψ[a,b] then our encoding is
not applicable. In our implementation, we throw exceptions. In measurement
operators, we compare the evaluated output of the measurement operators with
a constant. So, for each of the comparison operators >,< and = we have a
different encoding. The value of the state duration operator, is the time for which
the specification φ is true. We again use Boolean variables p to count the number
of times for which the robustness of φ is greater than 0. We multiply the count
by time steps dt to compute the real time value of the duration operator. Then,
depending on the comparison operator we take the difference of the evaluation
with the constant. The encoding of the length operator is simple. We take the
difference from the available time interval depending on the comparison operator
used.

5 Experimental Evaluation

We have implemented the above algorithm in a tool called ControlDC. In this
Section, we will present the results of our tool on case studies on four examples.
ControlDC is implemented in about 2000 lines of Python code and takes hybrid
automata and DC formulas as input, which are declared using a Python like
syntax. We allow non-linear dynamics in the hybrid automata we take as input.
Our implementation uses an SMT solver Z3 [21] as an optimization tool. We
choose the solver, since it can optimize with non-linearity and disjunctions. All
our queries to Z3 remain quantifier-free. ControlDC returns an input signal that
satisfies the property as best as possible given the timing constraints. We run
our experiments on a standard PC with 100 min timeout and limit on five rounds
of the algorithm.

Pacemaker System
We consider the problem of controlling the behaviour of the heart. We use the
random heart model from [22] as the system to control. We present the model in
Fig. 1. Our objective is to maintain the heart beat in a given range. The function
of the pacemaker or the controller is to balance the atrial and ventricular events.
The heart and the pacemaker communicate with each other using events. The
heart generates the intrinsic heart events Aget and Vget, representing atrial and
ventricular events that the pacemaker takes as inputs. The pacemaker generates
events AP and VP to the corresponding components in the heart. The model
non deterministically generates an intrinsic heart event Xget within the time
interval [Xminwait, Xmaxwait ], after each intrinsic heart event Xget or pacing
XP where, X is either atrial (A) or ventricular (V).

Our goal is to satisfy a given specification which is expressed in DC to simulate
proper working of the heart. The property states that there are between 60 and
100 heart beats (ventricular events V event ∈ {V get, V P}) in an interval of one
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minute. We write the specification using the duration and always operator as fol-
lows: �[0,n][(�=60)→(60 ≤ ∫

[0,60]

(V event=1) ≤ 100)]. We can choose a behaviour

σ with horizon n to check this property. Therefore in 5 s, the number of heartbeats
should ∈ [5,9] (rounding 8 upward to 9). So, we test the following property on our
system on n horizon runs �[0,n][(� = 5) → (4 <

∫

[0,5]

(V event = 1) < 10)]

Fig. 1. The heart model. The flow dynamics has been omitted for brevity.

In the Table below, we present the robustness values for different choices
of the timing variables. ControlDC synthesizes the control input for which the
robustness is found to be positive. If it does not find a control with positive
robustness in given time and rounds, then we report the best robustness so far.
If the minwait values are greater than 2, and we are unable to find a satisfying
control, then we report a control with known maximum possible robustness.

Xminwait Xmaxwait Yminwait Ymaxwait Robustness Time (mins)

0.2 0.6 0.2 1 0.6 0.28

0.4 0.6 0.4 1 0.8 4.14

1 2 1 2 0.2 3.06

2.4 4 2.2 4 −0.2 2.39

Metro System
Let us consider the problem of a metro train transporting passengers across two
stations in an optimal way. We present the hybrid model of the metro system in
the Fig. 2. The location sn1o in the model is the starting location of the system
indicating that the metro is in Station 1, the door of the metro is open, and
passengers can enter the train. Passengers enter the train at a rate depending
on the number of people inside the train and on the platform. The passenger
dynamics is illustrated in the Figure. The system transitions to the location
sn1c where the door of the metro is closed. When the metro starts running, it
enters the location run. In the end, when the metro reaches the Station 2 and
the door opens, it enters the sn2o location. In case of unwanted events such
as overcrowding, negative speed etc. occurring in the system, it transitions to
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the error state. The state variables in the system are pin, pout, poutst2, which
represent the number of passengers inside the metro, the number of passengers
standing outside the metro at a station, and the number of passengers who have
got out of the metro at Station 2. Additionally, the variable sp is the speed of
the train and dct is the distance covered by the train depending on sp. The
parameter cap represents the number of passengers that can be accommodated
by the train. The controller controls the acceleration of the train. This controls
the dynamics of the train in the location run in the usual way. The number of
passengers who have arrived at the station outside the metro is the adversarial
environment input to our system.

The goal of the system is to transport as many passengers as possible in the
least amount of time. We will write a specification which allows us to fulfill this
condition. In an interval [a, b], the train should pick up more than x number
of passengers from Station 1 and within c time units it should reach Station 2,
where at least d passengers must be transported. We write the property using
the chop operator as follows: †a,b(pin > x, len < c, poutst2 > d).

Fig. 2. The metro model. The flow dynamics is shown in the figure.

In the following Table, we consider the specification with different values of
the state variables, the interval length under consideration, and compare the
robustness of the synthesized control. We fix the acceleration range between
[−1,1].

Sr. no. Initial pin Initial poutst2 distance interval Robustness Time (mins)

1 5 4 1 2 −4 23.47

2 5 4 1 2.6 2.6 3.21

3 10 10 1 3 3 6.28

4 9 7 2 1 −7 0.68

5 20 20 2 3.2 −10.8 61.75
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In the first row of the Table, the robustness of the control is negative, the
executions under the control are stuck in the run state and do not reach the
Station 2. The reason is that the distance 1 unit in the specification was not
covered in the interval of length 2 units successfully. In the second and third row,
the robustness is positive, the train always reaches the Station 2, and enough
number of people are transported to Station 2. As we change the distance in
our specification, the train may take more time to reach Station 2, and the
robustness for smaller length interval properties is negative since the distance
between the two stations could not be covered in that interval. Another reason
for negative robustness is, that the number of people transported to Station 2
was below the required number. The last two rows have negative robustness due
to these reasons.

Gas Burner System
In Fig. 3, we present the model of a gas burner. The flow of gas is determined
by the degree of opening of the valve. The variable flame indicates the presence
of flame and variable leak is a function of gas and flame as follows: leak =
gas∧¬(flame). The system has three locations. Initially, the system is in location
gsoff where the gas is off, and the timer is set to 0. As soon as the presence of gas
and flame is detected, or the timer rises above 0.1, the transition to the location
gfon (indicating flame is on) is triggered. In the case of the absence of flame
when the gas is on, it goes to location glon (indicating leak). The environment
variable e governs the transitions between the glon and gfon locations.

Fig. 3. Gas burner. The flow dynamics is shown in the figure.

Our goal is to try to minimize the leak as much as possible. We want
to control the functioning of the valve in the system. Our specification is
�[0,n](

∫
[0,int]

(leak > 0) < b), i.e., in any interval of int seconds, the duration
of leak should not exceed b seconds. In the table below, we change int (inter-
val length) and b (duration) used in the specification and run ControlDC to
synthesize input control.
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Interval (int) Duration (b) Robustness Time (mins)

1 0.2 −0.2 1.17

1 0.6 0 0.81

2 0.4 −0.4 3.20

2 1.2 0.6 0.66

3 1 −0.2 4.51

3 1.4 0.4 0.81

Car System
We consider an example from [9] of an autonomous car driving in the presence
of another adversary vehicles. The system involves two kinds of vehicles. The
vehicle which we control, is the self vehicle whereas, the other is the adv vehicle.
Both the vehicles need to cross an intersection at some time. The model has a
single location without transitions. The position of vehicles, their speed, and
their accelerations are the state variables. The environment variables control the
speed of adv and input variables control the speed of self .

The goal is to avoid collision of the self and adv. The prospect of making
our vehicle to come to an abrupt stop when the other vehicle is approaching
is not practical. We want to avoid over speeding when both the vehicles are
close enough, so as to avoid a crash. The solution is to ensure that our vehicle
will not cross some threshold speed more than a fixed amount of time when
the two vehicles come in a zone of some distance apart. Formally, we require
that whenever the self and adv are less than 2 m apart, the time for which
the speed of the self vehicle is greater than 2 should be less than 4 units. φs =
�[0,∞][|xself

t − xadv
t | < 2] =⇒ [

∫
(|vself

t | > 2) < 4]. ControlDC finds the robust
control of the system in 30.41 s.
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Abstract. Despite many recent advances, reactive synthesis is still not
really a practical technique. The grand challenge is to scale from small
transition systems, where synthesis performs well, to complex multi-
component designs. Compositional methods, such as the construction
of dominant strategies for individual components, reduce the complexity
significantly, but are usually not applicable without extensively rewrit-
ing the specification. In this paper, we present a refinement of composi-
tional synthesis that does not require such an intervention. Our algorithm
decomposes the system into a sequence of components, such that every
component has a strategy that is dominant, i.e., performs at least as good
as any possible alternative, provided that the preceding components fol-
low their (already synthesized) strategies. The decomposition of the sys-
tem is based on a dependency analysis, for which we provide semantic
and syntactic techniques. We establish the soundness and completeness
of the approach and report on encouraging experimental results.

1 Introduction

Compositionality breaks the analysis of a complex system into several smaller
tasks over individual components. It has long been recognized as the key tech-
nique that makes a “significant difference” [16] for the scalability of verification
algorithms. In synthesis, it has proven much harder to develop successful com-
positional techniques. In a nutshell, synthesis corresponds to finding a winning
strategy for the system in a game against its environment. In compositional
synthesis, the system player controls an individual component, the environment
player all remaining components [9]. In practice, however, a winning strategy
rarely exists for an individual component, because the specification can usually
only be satisfied if several components collaborate.

Remorsefree dominance [3], a weaker notion than winning, accounts for such
situations. Intuitively, a dominant strategy is allowed to violate the specifica-
tion as long as no other strategy would have satisfied it in the same situation.
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In other words, if the violation is the fault of the environment, we do not blame
the component. Looking for strategies that are dominant, rather than winning,
allows us to find strategies that do not necessarily satisfy the specification for
all input sequences, but satisfy the specification for sequences that are realis-
tic in the sense that they might actually occur in a system that is built from
components that all do their best to satisfy the specification.

For safety specifications, it was shown that dominance is a compositional
notion: the composition of two dominant strategies is again dominant. Further-
more, if a winning strategy exists, then all dominant strategies are winning. This
directly leads to a compositional synthesis approach that synthesizes individual
dominant strategies [4]. In general, however, there is no guarantee that a dom-
inant strategy exists. Often, a component A depends on the well-behavior of
another component B in the sense that A needs to anticipate some future action
of B. In such situations, there is no dominant strategy for A alone since the
decision which strategy is best for A depends on the specific strategy for B.

In this paper, we address this problem with an incremental synthesis app-
roach. Like in standard compositional synthesis, we split the system into com-
ponents. However, we do not try to find dominant strategies for each component
individually. Rather, we proceed in an incremental fashion such that each com-
ponent can already assume a particular strategy for the previously synthesized
components. We call the order, in which the components are constructed, the
synthesis order. Instead of requiring the existence of dominant strategies for all
components, we only require the existence of a dominant strategy under the
assumption of the previous strategies. Similar to standard compositional syn-
thesis, this approach reduces the complexity of synthesis by decomposing the
system; additionally, it overcomes the problem that dominant strategies gener-
ally do not exist for all components without relying on other strategies.

The key question now is how to find the synthesis order. We propose two
methods that offer different trade-offs between precision and computational cost.
The first method is based on a semantic dependency analysis of the output vari-
ables of the system. We build equivalence classes of variables based on cyclic
dependencies, which then form the components of the system. The synthesis
order is defined on the dependencies between the components, resolving depen-
dencies that prevent the existence of dominant strategies. The second method is
based on a syntactic analysis of the specification, which conservatively overap-
proximates the semantic dependencies.

We have implemented a prototype of the incremental synthesis algorithm and
compare it to the state-of-the-art synthesis tool BoSy [6] on scalable benchmarks.
The results are very encouraging: our algorithm clearly outperforms classical
synthesis for larger systems.

Proofs and the benchmark specifications are provided in the full version [8].

Related Work. Kupferman et al. introduce a safraless compositional synthesis
algorithm transforming the synthesis problem into an emptiness check on Büchi
tree automata [13]. Kugler and Sittal introduce two compositional algorithms for
synthesis from Live Sequence Charts specifications [12]. Yet, neither of them is
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sound and complete. While they briefly describe a sound and complete extension
of their algorithms, they did not implement it. Filiot et al. introduce a compo-
sitional synthesis algorithm for LTL specifications [7] based on the composition
of safety games. Moreover, they introduce a non-complete heuristic for dropping
conjuncts of the specification. All of the above approaches search for winning
strategies and thus fail if cooperation between the components is needed.

The notion of remorsefree dominance was first introduced in the setting of
reactive synthesis by Damm and Finkbeiner [3]. They introduce a compositional
synthesis algorithm for safety properties based on dominant strategies [4].

In the setting of controller synthesis, Baier et al. present an algorithm that
incrementally synthesizes so-called most general controllers and builds their par-
allel composition in order to synthesize the next one [1]. In contrast to our app-
roach, they do not decompose the system in separate components. Incremental
synthesis is only used to handle cascades of objectives in an online fashion.

2 Motivating Example

In safety-critical systems such as self-driving cars, correctness of the implemen-
tation with respect to a given specification is crucial. Hence, they are an obvious
target for synthesis. However, a self-driving car consists of several components
that interact with each other, leading to enormous state spaces when synthe-
sized together. While a compositional approach may reduce the complexity, in
most scenarios there are neither winning nor dominant strategies for the sepa-
rate components. Consider a specification for a gearing unit and an acceleration
unit of a self-driving car. The latter one is required to decelerate before curves
and to not accelerate in curves. To prevent traffic jams, the car is required to
accelerate eventually if no curve is ahead. In order to safe fuel, it should not
always accelerate or decelerate. This can be specified in LTL as follows:

ϕacc = (curve ahead → dec) ∧ (in curve → ¬acc) ∧ keep

∧ ((¬in curve ∧ ¬curve ahead) → acc) ∧ ¬(acc ∧ dec)
∧ ¬(acc ∧ keep) ∧ ¬(dec ∧ keep) ∧ (acc ∨ dec ∨ keep),

where curve ahead and in curve are input variables denoting whether a curve
is ahead or whether the car is in a curve, respectively. The output variables are
acc and dec, denoting acceleration and deceleration, and keep, denoting that the
current speed is kept. Note that ϕacc is only realizable if we assume that a curve
is not followed by another one with only one step in between infinitely often.

The gearing unit can choose between two gears. It is required to use the
smaller gear when the car is accelerating and the higher gear if the car reaches
a steady speed after accelerating. This can be specified in LTL as follows, where
geari are output variables denoting whether the first or the second gear is used:

ϕgear = ((acc ∧ acc) → gear1 ) ∧ ((acc ∧ keep) → gear2 )
∧ ¬(gear1 ∧ gear2 ) ∧ (gear1 ∨ gear2 ).
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When synthesizing a strategy s for the acceleration unit, it does not suffice
to consider only ϕacc since s affects the gearing unit. Yet, there is clearly no
winning strategy for ϕcar := ϕacc ∧ϕgear when considering the acceleration unit
separately. There is no dominant strategy either: As long as the car accelerates
after a curve, the conjunct ((¬in curve ∧ ¬curve ahead) → acc) is satisfied.
If the gearing unit does not react correctly, ϕcar is violated. Yet, an alternative
strategy for the acceleration unit that accelerates at a different point in time at
which the gearing unit reacts correctly, satisfies ϕcar. Thus, neither a composi-
tional approach using winning strategies, nor one using dominant strategies, is
able to synthesize strategies for the components of the self-driving car.

However, the lack of a dominant strategy for the acceleration unit is only due
to the uncertainty whether the gearing unit will comply with the acceleration
strategy. The only dominant strategy for the gearing unit is to react correctly to
the change of speed. Hence, providing this knowledge to the acceleration unit by
synthesizing the strategy for the gearing unit beforehand and making it available,
yields a dominant and even winning strategy for the acceleration unit. Thus,
synthesizing the components incrementally instead of compositionally allows for
separate strategies even if there is a dependency between the components.

3 Preliminaries

LTL. Linear-time temporal logic (LTL) is a specification language for linear-
time properties. Let Σ be a finite set of atomic propositions and let a ∈ Σ. The
syntax of LTL is given by ϕ,ψ :: = a | ¬ϕ | ϕ ∨ ψ | ϕ ∧ ψ | ϕ | ϕU ψ | ϕWψ.
We define the abbreviations true := a∨¬a, false := ¬true, ϕ = true U ϕ, and

ϕ = ¬ ¬ϕ as usual and use the standard semantics. The language L(ϕ) of
a formula ϕ is the set of infinite words that satisfy ϕ.

Automata. Given a finite alphabet Σ, a universal co-Büchi automaton is a tuple
A = (Q, q0, δ, F ), where Q is a finite set of states, q0 ∈ Q is the initial state,
δ : Q × 2Σ × Q is a transition relation, and F ⊆ Q is a set of rejecting states.
Given an infinite word σ = σ0σ1 · · · ∈ (2Σ)ω, a run of σ on A is an infinite
sequence q0q1 · · · ∈ Qω of states where (qi, σi, qi+1) ∈ δ holds for all i ≥ 0. A run
is called accepting if it contains only finitely many rejecting states. A accepts a
word σ if all runs of σ on A are accepting. The language L(A) of A is the set of
all accepted words. An LTL specification ϕ can be translated into an equivalent
universal co-Büchi automaton Aϕ with a single exponential blow up [14].

Decomposition. A decomposition is a partitioning of the system into components.
A component p is defined by its input variables inp(p) ⊆ (inp ∪ out) and output
variables out(p) ⊆ out with inp(p) ∩ out(p) = ∅, where inp and out are the
input and output variables of the system and V = inp ∪ out . The output
variables of components are pairwise disjoint and their union is equivalent to
out . The implementation order defines the communication interface between the
components. It assigns a rank rankimpl(p) to every component p. If rankimpl(p) <
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rankimpl(p′), then p′ sees the valuations of the variables in inp(p′) ∩ out(p) one
step in advance, i.e., it is able to directly react to them, modeling knowledge
about these variables in the whole system. The implementation order is not
necessarily total.

Strategies. A strategy is a function s : (2inp(p))∗ → 2out(p) that maps a history
of inputs of a component p to outputs. We model strategies as Moore machines
T = (T, t0, τ, o) with a finite set of states T , an initial state t0, a transition
function τ : T × 2inp(p) → T , and an output function o : T → 2out(p) that is is
independent of the input. Given an input sequence γ = γ0γ1 . . . ∈ (2V \out(p))ω,
T produces a path π = (t0, γ0 ∪ o(t0, γ0))(t1, γ1 ∪ o(t1, γ1)) . . . ∈ (T × 2V )ω,
where τ(tj , ij) = tj+1. The projection of a path to the variables is called trace.
The trace produced by T on γ is called the computation of strategy s represented
by T on γ, denoted comp(s, γ). A strategy s is winning for ϕ if comp(s, γ) |= ϕ
for all γ ∈ (2inp)ω. A strategy s is dominated by a strategy t for ϕ if for all
γ ∈ (2V \out(p))ω with comp(s, γ) |= ϕ, comp(t, γ) |= ϕ holds as well. A strategy
is dominant if it dominates every other strategy. A specification ϕ is called
admissible if there exists a dominant strategy for ϕ.

Bounded Synthesis. Given a specification, synthesis derives an implementation
that is correct by construction. Bounded synthesis [10] additionally requires a
bound b ∈ N on the size of the implementation as input. It produces size-optimal
strategies. The search for a strategy satisfying the specification is encoded into a
constraint system. If it is unsatisfiable, then the specification is unrealizable for
the given size bound. Otherwise, the solution defines a winning strategy. There
exist SMT [10] as well as SAT, QBF, and DQBF [5] encodings.

4 Synthesis of Dominant Strategies

In our incremental synthesis approach, we seek for dominant strategies, rather
than for winning ones. To synthesize dominant strategies, we construct a univer-
sal co-Büchi automaton Adom

ϕ for a specification ϕ that accepts exactly the com-
putations of dominant strategies following the ideas in [3,4]. As for the universal
co-Büchi automaton Aϕ with L(Aϕ) = L(ϕ), the size of Adom

ϕ is exponential
in the length of ϕ [4]. In bounded synthesis, the automaton Adom

ϕ is then used
instead of Aϕ to derive dominant strategies.

Since we synthesize independent components compositionally, dominance of
the parallel composition of dominant strategies is crucial for both soundness and
completeness. Yet, in contrast to winning strategies, the parallel composition of
dominant strategies is not guaranteed to be dominant in general. Consider a
system with components p1 and p2 that send each other messages m1 and m2,
and the specification ϕ = m1 ∧ m2. For p1, it is dominant to wait for m2

before sending m1 since this strategy only violates m1 if m2is violated
as well. Analogously, it is dominant for p2 to wait for m1 before sending m2.
The parallel composition of these strategies, however, never sends any message.
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It violates ϕ in every situation while there are strategies that are winning for ϕ.
Nevertheless, dominant s strategies are compositional for safety specifications:

Theorem 1 ([4]). Let ϕ be a safety property and let s1 and s2 be strategies for
components p1 and p2. If s1 is dominant for ϕ and p1 and s2 is dominant for ϕ
and p2, then the parallel composition s1 || s2 is dominant for ϕ and p1 || p2.

We extend this result to specifications where only a single component affects
the liveness part. Intuitively, then a violation of the liveness part can always
be lead back to the single component affecting it, contradicting the assumption
that its strategy is dominant.

Theorem 2. Let ϕ be a property where only output variables of component p1
affect the liveness part of ϕ, and let s1 and s2 be two strategies for components
p1 and p2, respectively. If s1 is dominant for ϕ and p1 and s2 is dominant for
ϕ and p2, then the parallel composition s1 || s2 is dominant for ϕ and p1 || p2.

To lift compositional synthesis to real-world settings where strategies have
to rely on the fact that other components will not maliciously violate the speci-
fication, we circumvent the need for the existence dominant strategies for every
component in the following sections: We model the assumption that other com-
ponents behave in a dominant fashion by synthesizing strategies incrementally.

5 Incremental Synthesis

In this section, we introduce a synthesis algorithm based on dominant strategies,
where, in contrast to compositional synthesis, the components are not necessarily
synthesized independently but one after another. The strategies that are already
synthesized provide further information to the one under consideration.

For the self-driving car from Sect. 2, for instance, there is no dominant strat-
egy for the acceleration unit. However, when provided with a dominant gearing
strategy, there is even a winning strategy for the acceleration unit. Therefore,
synthesizing strategies for the components incrementally, rather than composi-
tionally, allows us to synthesize a strategy for the self-driving car.

The incremental synthesis algorithm is described in Algorithm1. Besides a
specification ϕ, it expects an array of arrays of components that are ordered by
the synthesis order <syn as input. The synthesis order assigns a rank ranksyn(pi)
to every component pi. Strategies for components with lower ranks are synthe-
sized before strategies for components with higher ranks. Strategies for compo-
nents with the same rank are synthesized compositionally. Thus, to guarantee
soundness, the synthesis order has to ensure that either ϕ is a safety property,
or that at most one of these components affects the liveness part of ϕ.

First, we synthesize dominant strategies s1, . . . , si for the components with
the lowest rank in the synthesis order. Then, we synthesize dominant strategies
si+1, . . . , sj for the components with the next rank under the assumption of the
parallel composition of s1, . . . , si, denoted s1 || . . . || si. Particularly, we seek for
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Algorithm 1: Incremental Synthesis
Input: specification ϕ, array C of arrays of k components ordered by <syn

Output: strategies s1, . . . , sk such that s1 || . . . || sk is dominant for ϕ
array[k] strategies
strategy assumedStrategies
for i = 1 to C.length() by 1 do

strategy addForLayer
for j = 1 to C[i].length() by 1 do

synthesize strategy s for C[i][j] such that (assumedStrategies || s) is
dominant for ϕ
int component = C[i][j].getLabel()
strategies[component] = s
addForLayer= addForLayer || s

assumedStrategies = assumedStrategies || addForLayer

strategies such that s1 || . . . || si || si+� is dominant for ϕ and p1 || . . . || pi || pi+�,
where 1 ≤ 
 ≤ j − i. We continue until strategies for all components have
been synthesized. The soundness follows directly from the construction of the
algorithm as well as Theorems 1 to 2.

Theorem 3 (Soundness). Let ϕ be a specification and let s1, . . . , sk be the
strategies produced by the incremental synthesis algorithm. Then s1 || . . . || sk is
dominant for ϕ. If ϕ is realizable, then s1 || . . . || sk is winning.

The success of incremental synthesis relies heavily on the choice of compo-
nents. Clearly, it succeeds if compositional synthesis does. Otherwise, the syn-
thesis order has to guarantee admissibility of every component when provided
with the strategies of components with a lower rank. In this regard, it is crucial
that the parallel composition of the components with the same rank is dominant.
Thus, we introduce techniques for component selection inducing a synthesis order
that ensure completeness of incremental synthesis in the following sections.

6 Semantic Component Selection

The component selection algorithm introduced in this section is based on depen-
dencies between the output variables of the system. It directly induces a synthesis
order ensuring completeness of incremental synthesis.

We require specifications to be of the form (ϕA
1 ∧· · ·∧ϕA

n ) → (ϕG
1 ∧· · ·∧ϕG

m),
where the conjuncts are conjunction-free in negation normal form. When seeking
for dominant strategies, assumptions can be treated as conjuncts as long as the
system is not able to satisfy the specification by violating the assumptions. Since
it is a modeling flaw if the assumptions can be violated by the system, we assume
specifications to be of the form (ϕA

1 ∧· · ·∧ϕA
n )∧ (ϕG

1 ∧· · ·∧ϕG
m) in the following.

First, we introduce an algorithm for component selection that ensures com-
pleteness of incremental synthesis in the absence of input variables. Afterwards,
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we extend it to achieve completeness in general. The algorithm identifies equiva-
lence classes of variables based on dependencies between them. These equivalence
classes then build the components. Intuitively, a variable u depends on the cur-
rent or future valuation of a variable v if changing the valuation of u yields a
violation of the specification ϕ that can be fixed by changing the valuation of v
at the same point in time or at a strictly later point in time, respectively. The
change of the valuation of v needs to be necessary for the satisfaction of ϕ in
the sense that not changing it would not yield a satisfaction of ϕ.

Definition 1 (Minimal Satisfying Changeset). Let ϕ be a specification, let
γ ∈ (2inp)ω, π ∈ (2out)ω be sequences such that γ ∪ π �|= ϕ, let u ∈ out and let
i be a position. For sets P ⊆ out \ {u}, F ⊆ out, let ΠP,F be the set of output
sequences πP,F ∈ (2out)ω such that πP,F

j = πj for all j < i and

– ∀v ∈ P. v ∈ πP,F
i ↔ v �∈ πi and ∀v ∈ V \ P. v ∈ πP,F

i ↔ v ∈ πi, and
– ∀v ∈ F. ∃j > i. v ∈ πP,F

j ↔ v �∈ πj and ∀v ∈ V \F. ∀j > i. v ∈ πP,F
j ↔ v ∈ πj.

If there is a sequence πP,F ∈ ΠP,F, such that γ ∪ πP,F |= ϕ and for all P ′ ⊂ P ,
F ′ ⊂ F , we have γ ∪ πP ′,F ′ �|= ϕ for all πP ′,F ′ ∈ ΠP ′,F ′

, then (P, F ) is called
minimal satisfying changeset with respect to ϕ, γ, π, i.

Definition 2 (Semantic Dependencies). Let ϕ be a specification and u ∈ out.
Let η, η′ ∈ (2V )∗ be sequences of length i + 1 such that u ∈ η′

i ↔ u �∈ ηi, ∀v ∈
V \{u}. v ∈ η′

i ↔ v ∈ ηi, and ∀j < i. η′
j = ηj. If there are γ ∈ (2inp)ω, γπ ∈ (2out)ω

with γ0 . . . γi = η ∩ inp, γπ0 . . . γπi = η ∩ out, and γ ∪ γπ |= ϕ, then

– u depends on (P, F ) for P ⊆ out \ {u}, F ⊆ out if there is γπ′ ∈ (2out)ω with
γπ′

0 . . . γπ′
i = η′ ∩ out and γπj = γπ′

j for all j > i such that γ ∪ γπ′ �|= ϕ
and (P, F ) is a minimal satisfying changeset w.r.t. ϕ, γ, γπ′, i. We say that u
depends semantically on the current or future valuation of v, if there are P , F
such that u depends on (P, F ) and v ∈ P or v ∈ F , respectively.

– u depends on the input, if for all γπ′′ ∈ (2out)ω with γπ′′
0 . . . γπ′′

i = η′ ∩ out, we
have γ ∪ γπ′′ �|= ϕ, while there are γ′ ∈ (2inp)ω,

γ′π′′ ∈ (2out)ω with γ′
0 . . . γ′

i =
η ∩ inp and

γ′π′′
0 . . .

γ′π′′
i = η′ ∩ out such that γ′ ∪

γ′π′′ |= ϕ.

The specification of the self-driving car induces, for instance, a present depen-
dency from acc to dec: Let γ = ∅ω, η = {gear1, dec}, η′ = {gear1, dec, acc}.
For γπ = {gear1, dec}{gear2}ω, γ ∪ γπ clearly satisfies ϕcar. In contrast, for
γπ′ = {gear1, dec, acc}{gear2}ω, γ ∪ γπ′ �|= ϕcar since mutual exclusion of acc
and dec is violated. For P = {dec}, F = ∅, (P, F ) is a minimal satisfying
changeset w.r.t. ϕ, γ, γπ′, i. Thus, acc depends on the current valuation of dec.

If a variable u depends on the future valuation of some variable v, a strategy
for u most likely has to predict the future, preventing the existence of a dominant
strategy for u. In our setting, strategies cannot react directly to an input. Thus,
present dependencies may prevent admissibility as well. Yet, the implementation
order resolves a present dependency from u to v if rankimpl(v) < rankimpl(u):
Then, the valuation of v is known to u one step in advance and thus a strategy
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for u does not have to predict the future. Hence, if u neither depends on the
input, nor on the future valuation of some v ∈ out , nor on its current valuation
if rankimpl(u) ≤ rankimpl(v), then the specification is admissible for u.

To show this formally, we construct a dominant strategy for u. It maximizes
the set of input sequences for which there is an output sequence that satisfies
the specification. In general, this strategy is not dominant since these output
sequences may not be computable by a strategy. Yet, this can only be the case if
a strategy needs to predict the valuations of variables outside its control and this
need is exactly what is captured by semantic present and future dependencies.

Theorem 4. Let ϕ be a specification and let O ⊆ out. If for all u ∈ O, u neither
depends semantically on the future valuation of v, nor on the current valuation
of v if rankimpl(u) ≤ rankimpl(v) for all v ∈ V \ O, nor on the input, then ϕ is
admissible for the component p with out(p) = O.

We build a dependency graph in order to identify the components of the sys-
tem. The vertices represent the variables and edges denote semantic dependencies
between them. Formally, the Semantic Dependency Graph Dsem

ϕ = (Vϕ, Esem
ϕ )

of ϕ is given by Vϕ = V and Esem
ϕ = Esem

ϕ,p ∪Esem
ϕ,f ∪Esem

ϕ,i , where (u, v) ∈ Esem
ϕ,p

if u depends on the current valuation of v ∈ out , (u, v) ∈ Esem
ϕ,f if u depends on

the future valuation of v ∈ out , and (u, v) ∈ Esem
ϕ,i if u depends on v ∈ inp.

To identify the components, we proceed in three steps. First, we eliminate
vertices representing input variables since they are not part of the components.
Second, we resolve present dependencies. Since future dependencies subsume
present ones, we remove (u, v) from Esem

ϕ,p if (u, v) ∈ Esem
ϕ,f . Then, we resolve

present dependencies by refining the implementation order: If (u, v) ∈ Esem
ϕ,p , we

add rankimpl(v) < rankimpl(u) and remove (u, v) from Esem
ϕ,p . This is only possible

if the implementation order does not become contradictory. In particular, at most
one present dependency between u and v can be resolved in this way. Third, we
identify the strongly connected components C := {C1, . . . , Ck} of Dsem

ϕ . They
define the decomposition of the system: We obtain k components p1, . . . , pk with
out(pi) = Ci for 1 ≤ i ≤ k. Thus, the number of strongly connected components
should be maximized when resolving present dependencies in step two.

The dependency graph induces the synthesis order : Let Ci ⊆ C be the set
of strongly connected components that do not have any direct predecessor when
removing C0∪· · ·∪Ci−1 from Dsem

ϕ . For all Cn ∈ C0, ranksyn(pn) = 1. For Cn ∈ Ci,
Cm ∈ Cj, ranksyn(pn) < ranksyn(pm) if i > j and ranksyn(pn) > ranksyn(pm)
if i < j. If i = j, ranksyn(pn) = ranksyn(pm) if ϕ is a safety property or only one of
the components affects the liveness part of ϕ. Otherwise, choose an ordering, i.e.,
either ranksyn(pn) < ranksyn(pm) or ranksyn(pm) < ranksyn(pn).

For the specification of the self-driving car, we obtain the semantic depen-
dency graph shown in Fig. 1a. It induces three components p1, p2, p3 with
out(p1) = {gear1}, out(p2) = {gear2}, and out(p3) = {acc, dec, keep}. When
adding rankimpl(gear2 ) < rankimpl(gear1 ) to the implementation order, we
obtain ranksyn(p1 ) < ranksyn(p2 ) < ranksyn(p3 ) and thus p1 <syn p2 <syn p3.

Incremental synthesis with the semantic component selection algorithm is
complete for specifications that do not contain dependencies to input variables:
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(b) Syntactic Dependency Graph

Fig. 1. Semantic and Syntactic Dependency Graphs for the self-driving car. Dashed
edges denote present dependencies, solid ones future dependencies. Gray boxes denote
induced components. In (b), blue edges are obtained by transitivity, orange ones by
derivation, and green ones by transitivity after derivation. For the sake of readability,
not all transitive and derived edges are displayed. (Color figure online)

By construction, a component p ∈ C0 has no unresolved semantic dependen-
cies to variables outside of p. Thus, by Theorem 4, ϕ is admissible. Moreover,
by the incremental synthesis algorithm as well as Theorems 1 to 2, for every
component p ∈ Ci, the parallel composition of the strategies of components p′

with ranksyn(p′) < ranksyn(p) is dominant. Thus, by construction, there is a
dominant strategy for C0 ∪ · · · ∪ Ci as well.

Lemma 1. Let ϕ be a specification. If for all u ∈ out, u does not depend seman-
tically on the input, then incremental synthesis yields strategies for all compo-
nents and the synthesis order induced by the component selection algorithm.

Since semantic dependencies to input variables cannot be resolved, admissi-
bility is not guaranteed in general. Yet, if the specification is realizable, admis-
sibility of completely independent components follows: If p does not depend on
the input, admissibility of ϕ follows directly with Lemma 1. Otherwise, ϕ can
only be non-admissible for p if a strategy has to predict the valuation of an input
variable. Since p is completely independent of other components, a different val-
uation of an output variable outside of p cannot affect the need to predict input
variables. But then a strategy for the whole system has to predict inputs as well,
yielding a contradiction.

Theorem 5. Let ϕ be a specification, let p be a component such that for all p′,
ranksyn(p′) ≤ ranksyn(p), and for all u ∈ out(p), u neither depends semantically
on the future valuation of v ∈ out \ out(p), nor on its current valuation if
rankimpl(u) ≤ rankimpl(v). If ϕ is realizable, then ϕ is admissible for p.

Thus, when encountering a component for which ϕ is not admissible in incre-
mental synthesis, we can directly deduce non-realizability of ϕ if there is no
component with a higher rank in the synthesis order. Yet, this does not hold in
general. Consider ϕ = a ∨ (( b) ↔ ( i)), where i is an input variable and
both a and b are output variables. Since a depends on b while b does not depend
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on a, a strategy for b has to be synthesized first. Yet, there is no dominant
strategy for b since it has to predict the future valuation of i, while there is a
dominant strategy for the whole system, namely the one that sets a in the first
step.

Thus, we combine a component for which ϕ is not admissible with a direct
successor in the synthesis order until either ϕ is admissible or only a single
component is left. With this extension, the completeness of incremental synthesis
follows directly from Lemma 1 and Theorem 5.

Theorem 6 (Completeness). Let ϕ be a specification. If ϕ is realizable, incre-
mental synthesis yields strategies for all components and the synthesis order
induced by the extended semantic component selection algorithm.

7 Syntactic Analysis

While analyzing semantic dependencies for component selection ensures com-
pleteness of incremental synthesis, computing the dependencies is hard. In par-
ticular, the semantic definition of dependencies is a hyperproperty [2], i.e., a
property relating multiple execution traces, with quantifier alternation. To deter-
mine the present and future dependencies between variables more efficiently, we
introduce a dependency definition based on the syntax of the LTL formula.

Definition 3 (Syntactic Dependencies). Let ϕ be an LTL formula in nega-
tion normal form. Let T (ϕ) be the syntax tree of ϕ, where is considered to
be a separate operator. Let q be a node of T (ϕ) with child q′, if q is a unary
operator, and left child q′ and right child q′′, if q is a binary operator. We assign
a set Dq ∈ 22

V ×N × B

to each node q of T (ϕ) as follows:

– if q is a leaf, then q = u ∈ V and Dq = {{(u, 0, false)}},
– if q = ¬, then Dq = Dq′ ,
– if q = ∧, then Dq = Dq′ ∪ Dq′′ ,
– if q = ∨, then Dq =

⋃
M∈Dq′

⋃
M ′∈Dq′′{M ∪ M ′},

– if q = , then Dq =
⋃

M∈Dq′{{(u, x + 1, y) | (u, x, y) ∈ M}},
– if q = , then Dq = Dq′ ∪

⋃
M∈Dq′{{(u, x, true)} | (u, x, y) ∈ M},

– if q = , then Dq = Dq′ ∪
{⋃

M∈Dq′{(u, x, true),(u, x, false) | (u, x, y) ∈ M}
}

– if q = , then Dq =
⋃

M∈Dq′{{(u, x, true)} | (u, x, y) ∈ M},
– if q = U or q = W, then

Dq =
⋃

M∈Dq′

⋃

M ′∈Dq′′

{M ∪ M ′}

∪
⋃

M∈Dq′

⋃

M ′∈Dq′′

⋃

(u,x,y)∈M

{{(u, x, true)} ∪ M ′}

∪

⎧
⎨

⎩

⋃

M ′∈Dq′′

{(u, x, true),(u, x, false) | (u, x, y) ∈ M ′}

⎫
⎬

⎭
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Let q be the root node of T (ϕ) and let (u, x, y), (v, x′, y′) ∈ M for some M ∈ Dq,
u, v ∈ V , x, x′ ∈ N, and y, y′ ∈ B with (u, x, y) �= (v, x′, y′). Then u depends
syntactically on the current valuation of v, if u �= v and either y = y′ = false
and x = x′, or y = true and y′ = false and x ≤ x′, or y = false and y′ = true
and x ≥ x′, or y = y′ = true. Furthermore, u depends syntactically on the
future valuation of v, if either y′ = true, or y′ = false and x < x′. The offset
of the future dependency is ∞ in the former case and x′ − x in the latter case.

For (u, x, y), x denotes the number of -operators under which u occurs
and y denotes whether u occurs under an unbounded temporal operator. Since
the specification is in negation normal form, negation only occurs in front of
variables and thus does not influence the dependencies. Disjunction introduces
dependencies between the disjuncts ψ and ψ′ since the satisfaction of ψ affects
the need of satisfaction of ψ′ and vice versa. A conjunct, however, has to be
satisfied irrespective of other conjuncts and thus conjunction does not intro-
duce dependencies. Analogously, ψ introduces future dependencies between
the variables in ψ, while ψ does not. Adding triples with both true and false
is necessary for the -operator in order to obtain future dependencies from a
variable to itself also if ψ contains only a single variable, e.g., for u. For ψ U ψ′

and ψWψ′, there are dependencies between ψ and ψ′ as well as future dependen-
cies between the variables in ψ′ analogously to disjunction and the -operator.
Furthermore, there are future dependencies from ψ′ to ψ since whether or not ψ
is satisfied in the future affects the need of satisfaction of ψ′ in the current step.
The -operator takes a special position. Although including , changing the
valuation of a variable at a single position does not yield a violation of ψ and
thus there is no semantic dependency. Hence, ψ does not introduce syntactic
dependencies between the variables in ψ either.

For the specification of the self-driving car from Sect. 2, we annotate, for
instance, node q representing the -operator of the conjunct ¬(acc∧dec) with
Dq = {{(acc, 0, false), (dec, 0, false)}, {(acc, 0, true)}, {(dec, 0, true)}}, yielding
a syntactic present dependency from acc to dec and vice versa. For the node q rep-
resenting the -operator of ((acc∧ acc) → gear1), we obtain amongst oth-
ers {(acc, 0, false), (acc, 1, false), (gear1, 2, false)} ∈ Dq, yielding future depen-
dencies from acc to acc with offset 1 and to gear1 with offsets 1 and 2.

As long as semantic dependencies do not range over several conjuncts, every
semantic dependency is captured by a syntactic one as well: If there is a semantic
dependency from u to v and if ϕ does not contain any conjunction, u and v occur
in the same set M ∈ Dq, where q is the root node of T (ϕ), by construction. With
structural induction on ϕ, it thus follows that every semantic dependency has a
syntactic counterpart.

Lemma 2. Let ϕ be an LTL formula in negation normal form that does not
contain any conjunction. Let u, v ∈ V be variables. If u depends semantically on
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the current or future valuation of v, then u depends syntactically on the current
or future valuation of v, respectively, as well.

Yet, the above definition of syntactic dependencies does not capture all
semantic dependencies in general. Particularly, semantic dependencies ranging
over several conjuncts cannot be detected. To capture all dependencies, we build
the syntactic dependency graph analogously to the semantic one, additionally
annotating future dependency edges with their offsets. We build the transitive
closure over output variables: Let u, v ∈ out and let there be u1, . . . , uj ∈ out
for some j ≥ 1 with (u, u1) ∈ Esyn

ϕ , (uj , v) ∈ Esyn
ϕ , and (ui, ui+1) ∈ Esyn

ϕ for all
1 ≤ i < j. If all these edges are present dependency edges, then (u, v) ∈ Esyn

ϕ,p .
Otherwise, (u, v) ∈ Esyn

ϕ,f . If there are connecting edges for u and v containing
a future dependency cycle, the offset of the transitive edge is ∞. Otherwise,
it is the sum of the offsets of the connecting edges. To capture the synergy of
dependencies, let u, v, w ∈ V be variables with u,w ∈ out and u �= v or u �= w.
Let (u,w) ∈ Esyn

ϕ,f with offset x and (v, w) ∈ Esyn
ϕ,f with offset y. If x �= ∞ and

y �= ∞, then, if x = y, add (u, v) and (v, u) to Esyn
ϕ,p , and if x < y or x > y,

add (v, u) or (u, v) to Esyn
ϕ,f with offset y −x or x−y, respectively. If x = ∞, add

both (u, v), (v, u) to Esyn
ϕ,p and Esyn

ϕ,f with offset ∞. Build the transitive closure
again.

The resulting syntactic dependency graph for the self-driving car is shown in
Fig. 1b. Unlike the semantic one, it contains outgoing dependencies from input
variables. While such dependencies are not relevant for component selection
and thus are not defined in the semantic algorithm, they are needed to derive
dependencies to input variables with the syntactic technique.

After the derivation of further dependencies in the dependency graph, every
semantic dependency has a syntactic counterpart, even if it ranges over several
conjuncts. Intuitively, the derivation of a minimal satisfying changeset for a seman-
tic dependency induces several separate semantic present and future dependencies
that only affect single conjuncts of the specification. With Lemma 2, the claim fol-
lows by induction on the number of these separate dependencies.

Theorem 7. Let ϕ be an LTL formula and let u, v ∈ out. If (u, v) ∈ Esem
ϕ,p , then

(u, v) ∈ Esyn
ϕ,p . If (u, v) ∈ Esem

ϕ,f , then (u, v) ∈ Esyn
ϕ,f . If u depends semantically on

the input, then there are variables w ∈ out, w′ ∈ inp such that (w,w′) ∈ Esyn
ϕ .

Thus, since semantic dependencies have a syntactic counterpart, completeness
of incremental synthesis using syntactic dependency analysis for selecting compo-
nents follows directly with Theorem 6. However, the syntactic analysis is a con-
servative overapproximation of the semantic dependencies. This can be easily seen
when comparing the semantic and syntactic dependency graphs for the self-driving
car shown in Fig. 1. For instance, there is a syntactic future dependency from acc to
in curve while there is no such semantic dependency. In particular, the derivation
rules are blamable for the overapproximation.
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8 Specification Simplification

In this section, we identify conjuncts that are not relevant for the component p
under consideration to reduce the size of the specification. In general, leaving out
conjuncts is not sound since the missing conjuncts may invalidate admissibility of
the specification [4]. However, non-admissible components cannot become admis-
sible by leaving out conjuncts that do not refer to output variables of p:

Theorem 8 ([4]). Let ϕ be an LTL formula over V \ out(p) and let ψ be an LTL
formula over V . If ψ is admissible, then ϕ ∧ ψ is admissible as well.

Yet, an admissible component may become non-admissible. For instance, con-
sider the specification ϕ = (a ↔ i)∧ i, where i is an input variable and a is an
output variable. While always outputting a is a dominant strategy for ϕ, leaving
out i yields non-admissibility of ϕ since a dominant strategy for a needs to pre-
dict i. A conjunct that does not contain variables on which the component under
consideration depends, however, can be eliminated since its satisfaction does not
influence the admissibility of the specification for p:

Theorem 9. Let ϕ be an LTL formula such that ϕ = ψ ∧ ψ′, where ψ is an LTL
formula overV ′ ⊆ V \out(p)not containing assumption conjuncts andψ′ is anLTL
formula over V . If for all u ∈ out(p) and v ∈ out \out(p), u neither depends on the
future valuation of v, nor on the present valuation of v if rankimpl(u) ≤ rankimpl(v),
and if ϕ is realizable for the whole system, then ψ′ is admissible for p if, and only if,
ϕ is admissible for p.

If ψ′ is admissible, admissibility of ϕ follows since the truth value of ψ is solely
determined by the input of p. Otherwise, a strategy for p has to predict the input.
Since p is independent of all other components,ϕ can only be realizable ifψ restricts
the input behavior, contradicting the assumption that it does not contain assump-
tion conjuncts. This directly leads to the following observation:

Corollary 1. Let ϕ = ψ ∧ ψ′ be an LTL formula inducing two components p, p′

with ranksyn(p) = ranksyn(p′) for either the semantic or the syntactic technique,
where ψ and ψ′ range over V \out(p′) and V \out(p), respectively. If ϕ is realizable,
then there are winning strategies for p and p′ for ψ and ψ′, respectively.

Moreover, in incremental synthesis the strategies of components with a lower
rank in the synthesis order are provided to the component p under consideration.
Hence, if these strategies are winning for a conjunct, it may be eliminated from the
specification for p since its satisfaction is already guaranteed.

Theorem 10. Letϕ,ψ beLTL formulas overV . Let s′ be the parallel composition of
the strategies for the components pi with ranksyn(pi) < ranksyn(p). If s′ is winning
for ϕ, then there is a strategy s such that s′ || s is dominant for ψ if, and only if, there
is a strategy s such that s′ || s is dominant for ϕ ∧ ψ.
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Table 1. Experimental results on scalable benchmarks. Reported is the parameter and
the time in seconds. We used a machine with a 3.1 GHz Dual-Core Intel Core i5 processor
and 16 GB of RAM, and a timeout of 60min.

Benchmark Parameter BoSy Incremental Synthesis

n-ary Latch 2 2.61 4.76

3 3.66 6.58

4 11.55 8.74

5 TO 10.98

. . . . . . . . .

1104 TO 3599.04

Generalized Buffer 1 37.04 5.08

2 TO 6.21

3 TO 66.03

Sensors 2 1.99 6.08

3 2.31 8.79

4 6.99 11.73

5 92.79 16.99

6 TO 43.50

7 TO 2293.85

Robot Fleet 2 2.49 6.25

3 TO 10.51

4 TO 269.09

9 Experimental Results

We implemented a prototype of the incremental synthesis algorithm. It expects an
LTL specification as well as a decomposition of the system and a synthesis order
as input. Our prototype extends the state-of-the-art synthesis tool BoSy [6] to the
synthesis of dominant strategies. Furthermore, it converts the synthesized strategy
from the Aiger-circuit produced by our extension of BoSy to an equivalent LTL
formula that is added to the specification of the next component.

We compare our prototype to BoSy on four scalable benchmarks. The results
are presented in Table 1. The first two benchmarks stem from the reactive synthesis
competition (SYNTCOMP 2018) [11]. The latch is parameterized in the number
of bits and the Generalized Buffer in the number of receivers. For the n-ary latch,
both the semantic and the syntactic component selection algorithms identifyn sep-
arate components, one for each bit of the latch. For the Generalized Buffer, both
techniques identify two components, one for the communication with the senders
and one for the communication with the receivers. After simplifying the specifica-
tion using Theorem 9, we are able to synthesize separate winning strategies for the
components for both benchmarks, making use of Corollary 1. The incremental syn-
thesis approach clearly outperforms BoSy’s classical bounded synthesis approach
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for the Generalized Buffer in all cases. For the n-ary latch, the advantage becomes
clear from n = 4 on.

Furthermore, we consider a benchmark describing n sensors and a managing
unit that requests and collects sensor data.The semantic component selection tech-
nique identifies n separate components for the sensors as well as a component for
the managing unit that depends on the other components. For this decomposition,
the incremental synthesis approach outperforms BoSy for n ≥ 5. The syntactic
technique, however, does not identify the separability of the sensors from the man-
aging unit due to the overapproximation in the derivation rules.

Lastly, we consider a benchmark describing a fleet of n robots that must not
collide with a further robot crossing their way. Both the semantic and the syntac-
tic technique identify n separate components for the robots in the fleet as well as a
component for the further robot depending on the former components. Our proto-
type outperforms BoSy from n ≥ 3 on. It still terminates in less than 5 min when
BoSy is not able to synthesize a strategy within 60 min.

10 Conclusions

We have presented an incremental synthesis algorithm that reduces the complexity
of synthesis bydecomposing large systems. Furthermore, it is, unlike compositional
approaches, applicable if the components depend on the strategies of other com-
ponents. We have introduced two techniques to select the components, one based
on a semantic dependency analysis of the output variables and one based on a syn-
tactic analysis of the specification. Both induce a synthesis order that guarantees
soundness and completeness of incremental synthesis.Moreover,wehavepresented
rules for reducing the size of the specification for the components. We have imple-
mented a prototype of the algorithmand compared it to a state-of-the-art synthesis
tool. Our experiments clearly demonstrates the advantage of incremental synthesis
over classical synthesis for large systems. The prototype uses a bounded synthesis
approach. However, the incremental synthesis algorithm applies to other synthe-
sis approaches, e.g., explicit approaches as implemented in the state-of-the-art tool
Strix [15], as well if they are extended with the possibility of synthesizing dominant
strategies.

References
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Abstract. The search for a proof of correctness and the search for coun-
terexamples (bugs) are complementary aspects of verification. In order
to maximize the practical use of verification tools it is better to pursue
them at the same time. While this is well-understood in the termina-
tion analysis of programs, this is not the case for the language inclusion
analysis of Büchi automata, where research mainly focused on improving
algorithms for proving language inclusion, with the search for counterex-
amples left to the expensive complementation operation.

In this paper, we present IMC2, a specific algorithm for proving Büchi
automata non-inclusion L(A) �⊆ L(B), based on Grosu and Smolka’s
algorithm MC2 developed for Monte Carlo model checking against LTL
formulas. The algorithm we propose takes M = �ln δ/ ln(1 − ε)� random
lasso-shaped samples from A to decide whether to reject the hypoth-
esis L(A) �⊆ L(B), for given error probability ε and confidence level
1− δ. With such a number of samples, IMC2 ensures that the probability
of witnessing L(A) �⊆ L(B) via further sampling is less than δ, under
the assumption that the probability of finding a lasso counterexample is
larger than ε. Extensive experimental evaluation shows that IMC2 is a
fast and reliable way to find counterexamples to Büchi automata inclu-
sion.

1 Introduction

The language inclusion checking of Büchi automata is a fundamental prob-
lem in the field of automated verification. Specially, in the automata-based
model checking [25] framework, when both system and specification are given
as Büchi automata, the model checking problem of verifying whether some sys-
tem’s behavior violates the specification reduces to a language inclusion problem
between the corresponding Büchi automata.
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In this paper, we target at the language inclusion checking problem of Büchi
automata. Since this problem has already been proved to be PSPACE-complete
[18], researchers have been focusing on devising algorithms to reduce its practical
cost. A näıve approach to checking the inclusion between Büchi automata A and
B is to first construct a complement automaton Bc such that L(Bc) = Σω \L(B)
and then to check the language emptiness of L(A) ∩ L(Bc), which is the algorithm
implemented in SPOT [11], a highly optimized symbolic tool for manipulating
LTL formulas and ω-automata.

The bottleneck of this approach is computing the automaton Bc, which can
be exponentially larger than B [26]. As a result, various optimizations—such as
subsumption and simulation—have been proposed to avoid exploring the whole
state-space of Bc, see, e.g., [1,2,9,10,13,14]. For instance, RABIT is currently the
state-of-the-art tool for checking language inclusion between Büchi automata,
which has integrated the simulation and subsumption techniques proposed in
[1,2,9]. All these techniques improving the language inclusion checking, however,
focus on proving inclusion. In particular, the simulation techniques in [9,13] are
specialized algorithms mainly proposed to obtain such proof, which ensures that
for every initial state qa of A, there is an initial state qb of B that simulates every
possible behavior from qa.

From a practical point of view, it is widely believed that the witness of a
counterexample (or bug) found by a verification tool is equally valuable as a
proof for the correctness of a program; we would argue that showing why a
program violates the specification is also intuitive for a programmer, since it
gives a clear way to identify and correct the error. Thus, the search for a proof
and the search for counterexamples (bugs) are complementary activities that
need to be pursued at the same time in order to maximize the practical use
of verification tools. This is well-understood in the termination analysis of pro-
grams, as the techniques for searching the proof of the termination [6,7,20] and
the counterexamples [12,16,21] are evolving concurrently. Counterexamples to
Büchi automata language inclusion, instead, are the byproducts of a failure while
proving language inclusion. Such a failure may be recognized after a considerable
amount of efforts has been spent on proving inclusion, in particular when the
proposed improvements are not effective. In this work, instead, we focus directly
on the problem of finding a counterexample to language inclusion.

The main contribution is a novel algorithm called IMC2 for showing language
non-inclusion based on sampling and statistical hypothesis testing. Our algo-
rithm is inspired by the Monte Carlo approach proposed in [15] for model check-
ing systems against LTL specifications. The algorithm proposed in [15] takes as
input a Büchi automaton A as system and an LTL formula ϕ as specification
and then checks whether A �|= ϕ by equivalently checking L(A) �⊆ L(Bϕ), where
Bϕ is the Büchi automaton constructed for ϕ. The main idea of the algorithm
for showing L(A) �⊆ L(Bϕ) is to sample lasso words from the product automaton
A × Bc

ϕ for L(A) ∩ L(Bc
ϕ); lasso words are of the form uvω and are obtained as

soon as a state is visited twice. If one of such lasso words is accepted by A×Bc
ϕ,

then it is surely a witness to L(A) �⊆ L(Bϕ), i.e., a counterexample to A |= ϕ.
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Since in [15] the algorithm gets an LTL formula ϕ as input, the construction of
Bc

ϕ reduces to the construction of B¬ϕ and it is widely assumed that the trans-
lation into a Büchi automaton is equally efficient for a formula and its negation.
In this paper, we consider the general case, namely the specification is given as
a generic Büchi automaton B, where the construction of Bc from B can be very
expensive [26].

To avoid the heavy generation of Bc, the algorithm IMC2 we propose directly
sampling lasso words in A, without making the product A × Bc. We show that
usual lasso words, like the ones used in [15], do not suffice in our case, and
propose a rather intriguing sampling procedure. We allow the lasso word uvω

to visit each state of A multiple times, i.e., the run σ of A on the finite word
uv can present small cycles on both the u and the v part of the lasso word.
We achieve this by setting a bound K on the number of times a state can be
visited: each state in σ is visited at most K − 1 times, except for the last state
of σ that is visited at most K times. We show that IMC2 gives a probabilistic
guarantee in terms of finding a counterexample to inclusion when K is sufficiently
large, as described in Theorem 4. This notion of generalized lasso allows our
approach to find counterexamples that are not valid lassos in the usual sense.
The extensive experimental evaluation shows that our approach is generally very
fast and reliable in finding counterexamples to language inclusion. In particular,
the prototype tool we developed is able to manage easily Büchi automata with
very large state space and alphabet on which the state-of-the-art tools such
as RABIT and SPOT fail. This makes our approach fit very well among tools
that make use of Büchi automata language inclusion tests, since it can quickly
provide counterexamples before having to rely on the possibly time and resource
consuming structural methods, in case an absolute guarantee about the result
of the inclusion test is desired.

Organization of the Paper. In the remainder of this paper, we briefly recall some
known results about Büchi automata in Sect. 2. We then present the algorithm
IMC2 in Sect. 3 and give the experimental results in Sect. 4 before concluding the
paper with some remark in Sect. 5.

All missing proofs can be found in the report [23].

2 Preliminaries

Büchi Automata. Let Σ be a finite set of letters called alphabet. A finite
sequence of letters is called a word. An infinite sequence of letters is called an
ω-word. We use |α| to denote the length of the finite word α and we use λ to
represent the empty word, i.e., the word of length 0. The set of all finite words
on Σ is denoted by Σ∗, and the set of all ω-words is denoted by Σω. Moreover,
we also denote by Σ+ the set Σ∗ \ {λ}.

A nondeterministic Büchi automaton (NBA) is a tuple B = (Σ,Q,QI ,T,
QF ), consisting of a finite alphabet Σ of input letters, a finite set Q of states
with a non-empty set QI ⊆ Q of initial states, a set T ⊆ Q×Σ×Q of transitions,
and a set QF ⊆ Q of accepting states.
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A run of an NBA B over an ω-word α = a0a1a2 · · · ∈ Σω is an infinite
alternation of states and letters ρ = q0a0q1a1q2 · · · ∈ (Q×Σ)ω such that q0 ∈ QI

and, for each i ≥ 0,
(
ρ(i), ai, ρ(i+1)

)
∈ T where ρ(i) = qi. A run ρ is accepting if

it contains infinitely many accepting states, i.e., Inf(ρ)∩QF �= ∅, where Inf(ρ) =
{ q ∈ Q | ∀i ∈ N.∃j > i : ρ(j) = q }. An ω-word α is accepted by B if B has an
accepting run on α, and the set of words L(B) = {α ∈ Σω | α is accepted by B }
accepted by B is called its language.

We call a subset of Σω an ω-language and the language of an NBA an ω-
regular language. Words of the form uvω are called ultimately periodic words. We
use a pair of finite words (u, v) to denote the ultimately periodic word w = uvω.
We also call (u, v) a decomposition of w. For an ω-language L, let UP(L) =
{uvω ∈ L | u ∈ Σ∗, v ∈ Σ+ } be the set of all ultimately periodic words in L.
The set of ultimately periodic words can be seen as the fingerprint of L:

Theorem 1 (Ultimately Periodic Words [8]). Let L, L′ be two ω-regular
languages. Then L = L′ if, and only if, UP(L) = UP(L′).

An immediate consequence of Theorem 1 is that, for any two ω-regular languages
L1 and L2, if L1 �= L2 then there is an ultimately periodic word xyω ∈

(
UP(L1)\

UP(L2)
)
∪

(
UP(L2)\UP(L1)

)
. It follows that xyω ∈ L1\L2 or xyω ∈ L2\L1. Let

A, B be two NBAs and assume that L(A)\L(B) �= ∅. One can find an ultimately
periodic word xyω ∈ L(A) \ L(B) as a counterexample to L(A) ⊆ L(B).

Language inclusion between NBAs can be reduced to complementation, inter-
section, and emptiness problems on NBAs. The complementation operation of
an NBA B is to construct an NBA Bc accepting the complement language of
L(B), i.e., L(Bc) = Σω \ L(B).

Lemma 1 (cf. [17,19]). Let A, B be NBAs with na and nb states, respectively.

1. It is possible to construct an NBA Bc such that L(Bc) = Σω \ L(B) whose
number of states is at most (2nb + 2)nb × 2nb , by means of the complement
construction.

2. It is possible to construct an NBA C such that L(C) = L(A) ∩ L(Bc) whose
number of states is at most 2×na ×(2nb +2)nb ×2nb , by means of the product
construction. Note that L(A) ⊆ L(B) holds if and only if L(C) = ∅ holds.

3. L(C) = ∅ is decidable in time linear in the number of states of C.

Further, testing whether an ω-word w is accepted by a Büchi automaton B can
be done in time polynomial in the size of the decomposition (u, v) of w = uvω.

Lemma 2 (cf. [17]). Let B be an NBA with n states and an ultimately periodic
word (u, v) with |u| + |v| = m. Then checking whether uvω is accepted by B is
decidable in time and space linear in n × m.

Random Sampling and Hypothesis Testing. Statistical hypothesis testing
is a statistical method to assign a confidence level to the correctness of the
interpretation given to a small set of data sampled from a population, when this
interpretation is extended to the whole population.
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Let Z be a Bernoulli random variable and X the random variable with param-
eter pZ whose value is the number of independent trials required until we see
that Z = 1. Let δ be the significance level that Z = 1 will not appear within N
trials. Then N = �ln δ/ ln(1 − pZ)� is the number of attempts needed to get a
counterexample with probability at most 1 − δ.

If the exact value of pZ is unknown, given an error probability ε such that
pZ ≥ ε, we have that M = �ln δ/ ln(1−ε)� ≥ N = �ln δ/ ln(1−pZ)� ensures that
pZ ≥ ε =⇒ Pr[X ≤ M ] ≥ 1 − δ. In other words, M is the minimal number
of attempts required to find a counterexample with probability 1 − δ, under
the assumption that pZ ≥ ε. See, e.g., [15,27] for more details about statistical
hypothesis testing in the context of formal verification.

3 Monte Carlo Sampling for Non-inclusion Testing

In this section we present our Monte Carlo sampling algorithm IMC2 for testing
non-inclusion between Büchi automata.

3.1 MC2: Monte Carlo Sampling for LTL Model Checking

In [15], the authors proposed a Monte Carlo sampling algorithm MC2 for veri-
fying whether a given system A satisfies a Linear Temporal Logic (LTL) speci-
fication ϕ. MC2 works directly on the product Büchi automaton P that accepts
the language L(A) ∩ L(B¬ϕ). It essentially checks whether L(P) is empty.

First, MC2 takes two statistical parameters ε and σ as input and computes
the number of samples M for this experiment. Since every ultimately periodic
word xyω ∈ L(P) corresponds to some cycle run (or “lasso”) in P, MC2 can just
find an accepting lasso whose corresponding ultimately periodic word xyω is
such that xyω ∈ L(P). In each sampling procedure, MC2 starts from a randomly
chosen initial state and performs a random walk on P’s transition graph until
a state has been visited twice, which consequently gives a lasso in P. MC2 then
checks whether there exists an accepting state in the repeated part of the sampled
lasso. If so, MC2 reports it as a counterexample to the verification, otherwise it
continues with another sampling process if necessary. The correctness of MC2 is
straightforward, as the product automaton P is non-empty if and only if there
is an accepting lasso.

3.2 The Lasso Construction Fails for Language Inclusion

The Monte Carlo Sampling algorithm in [15] operates directly on the product.
For language inclusion, as discussed in the introduction, this is the bottleneck
of the construction. Thus, we aim at a sampling algorithm operating on the
automata A and B, separately. With this in mind, we show first that, directly
applying MC2 can be incomplete for language inclusion checking.
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s1 s2

A

a

b

b

q1 q2

B

b

b

Fig. 1. Two NBAs A and B.

Example 1. Consider checking the language inclusion of the Büchi automata
A and B in Fig. 1. As we want to exploit MC2 to find a counterexample to
the inclusion, we need to sample a word from A that is accepted by A but
not accepted by B. In [15], the sampling procedure is terminated as soon as a
state is visited twice. Thus, the set of lassos that can be sampled by MC2 is
{s1as1, s1bs2bs2}, which yields the set of words {aω, bω}. It is easy to see that
neither of these two words is a counterexample to the inclusion. The inclusion,
however, does not hold: the word abω ∈ L(A) \ L(B) is a counterexample. ♦

According to Theorem 1, if L(A)\L(B) �= ∅, then there must be an ultimately
periodic word xyω ∈ L(A)\L(B) as a counterexample to the inclusion. It follows
that there exists some lasso in A whose corresponding ultimately periodic word
is a counterexample to the inclusion. The limit of MC2 in checking the inclusion
is that MC2 only samples simple lasso runs, which may miss non-trivial lassos
in A that correspond to counterexamples to the inclusion. The reason that it
is sufficient for checking non-emptiness in the product automaton is due to the
fact that the product automaton already synchronizes behaviors of A and B¬ϕ.

In the remainder of this section, we shall propose a new definition of lassos by
allowing multiple occurrences of states, which is the key point of our extension.

3.3 IMC2: Monte Carlo Sampling for Inclusion Checking

We now present our Monte Carlo sampling algorithm called IMC2 specialized for
testing the language inclusion between two given NBAs A and B.

We first define the lassos of A in Definition 1 and show how to compute the
probability of a sample lasso in Definition 2. Then we prove that with our defini-
tion of the lasso probability space in A, the probability of a sample lasso whose
corresponding ultimately periodic word xyω is a counterexample to the inclusion
is greater than 0 under the hypothesis L(A) �⊆ L(B). Thus we eventually get
for sure a sample from A that is a counterexample to the inclusion, if inclusion
does not hold. In other words, we are able to obtain a counterexample to the
inclusion with high probability from a large amount of samples.

In practice, a lasso of A is sampled via a random walk on A’s transition
graph, starting from a randomly chosen initial state and picking uniformly one
outgoing transition. In the following, we fix a natural number K ≥ 2 unless
explicitly stated otherwise and two NBAs A = (Σ,Q,QI ,T, QF ) and B. We
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assume that each state in A can reach an accepting state and has at least one
outgoing transition. Note that each NBA A with L(A) �= ∅ can be pruned
to satisfy such assumption; only NBAs A′ with L(A′) = ∅ do not satisfy the
assumption, but for these automata the problem L(A′) ⊆ L(B) is trivial.

Definition 1 (Lasso). Given two NBAs A, B and a natural K ≥ 2, a finite
run σ = q0a0q1 · · · an−1qnanqn+1 of A is called a K-lasso if (1) each state in
{q0, . . . , qn} occurs at most K − 1 times in q0a0q1 · · · an−1qn and (2) qn+1 = qi

for some 0 ≤ i ≤ n (thus, qn+1 occurs at most K times in σ). We write σ⊥ for
the terminating K-lasso σ, where ⊥ is a fresh symbol denoting termination. We
denote by SK

A the set of all terminating K-lassos for A.
We call σ⊥ ∈ SK

A a witness for L(A) \ L(B) �= ∅ if the associated ω-word
(a0 · · · ai−1, ai · · · an) is accepted by A but not accepted by B.

It is worth noting that not every finite cyclic run of A is a valid K-lasso. Consider
the NBA A shown in Fig. 1 for instance: the run s1as1bs2bs2 is not a lasso when
K = 2 since by Definition 1 every state except the last one is allowed to occur at
most K − 1 = 1 times; s1 clearly violates this requirement since it occurs twice
and it is not the last state of the run. The run s1bs2bs2 instead is obviously a
valid lasso when K = 2.

Remark 1. A K-lasso σ is also a K ′-lasso for any K ′ > K. Moreover, a ter-
minating K-lasso can be a witness without being an accepting run: according
to Definition 1, a terminating K-lasso σ⊥ is a witness if its corresponding word
uvω is accepted by A but not accepted by B. This does not imply that σ is an
accepting run, since there may be another run σ′ on the same word uvω that is
accepting.

In order to define a probability space over SK
A , we first define the probability

of a terminating K-lasso of A. We denote by #(σ, q) the number of occurrences
of the state q in the K-lasso σ.

Definition 2 (Lasso Probability). Given an NBA A, a natural number
K ≥ 2, and a stopping probability p⊥ ∈ (0, 1), the probability Prp⊥ [σ⊥] of a
terminating K-lasso σ⊥ = q0a0 · · · qnanqn+1⊥ ∈ SK

A is defined as follows:

Prp⊥ [σ⊥] =

{
Pr′

p⊥ [σ] if #(σ, qn+1) = K,

p⊥ · Pr′
p⊥ [σ] if #(σ, qn+1) < K;

Pr′
p⊥ [σ] =

⎧
⎪⎨

⎪⎩

1
|QI | if σ = q0;

Pr′
p⊥ [σ′] · π[qlalql+1] if σ = σ′alql+1 and #(σ′, ql) = 1;

(1−p⊥) · Pr′
p⊥ [σ′] · π[qlalql+1] if σ = σ′alql+1 and #(σ′, ql) > 1,

where π[qaq′] = 1
m if (q, a, q′) ∈ T and |T(q)| = m, 0 otherwise.

We extend Prp⊥ to sets of terminating K-lassos in the natural way, i.e., for
S ⊆ SK

A , Prp⊥ [S] =
∑

σ⊥∈S Prp⊥ [σ⊥].
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Assume that the current state of run σ is q. Intuitively, if the last state s of the
run σ has been already visited at least twice but less than K times, the run σ
can either terminate at s with probability p⊥ or continue with probability 1−p⊥
by taking uniformly one of the outgoing transitions from the state q. However,
as soon as the state q has been visited K times, the run σ has to terminate.

〈λ, 1〉

〈s1, 1〉

〈s1bs2, 1
2
〉

〈s1bs2bs2, 1
2
〉 〈s1bs2bs2⊥, 1

4
〉

〈s1bs2bs2bs2, 1
4
〉 〈s1bs2bs2bs2⊥, 1

4
〉

〈s1as1,
1
2
〉〈s1as1⊥, 1

4
〉

〈s1as1as1,
1
8
〉〈s1as1as1⊥, 1

8
〉 〈s1as1bs2,

1
8
〉

〈s1as1bs2bs2,
1
8
〉〈s1as1bs2bs2⊥, 1

16
〉

〈s1as1bs2bs2bs2,
1
16

〉〈s1as1bs2bs2bs2⊥, 1
16

〉

Fig. 2. An instance T of the trees used in the proof of Theorem 2. Each leaf node is
labeled with a terminating 3-lasso σ⊥ ∈ S3

A,B for the NBAs A and B shown in Fig. 1,
and its corresponding probability value Pr 1

2
[σ⊥].

Theorem 2 (Lasso Probability Space). Let A be an NBA, K ≥ 2, and
a stopping probability p⊥ ∈ (0, 1). The σ-field (SK

A , 2SK
A ) together with Prp⊥

defines a discrete probability space.

Proof (sketch). The facts that Prp⊥ [σ] is a non-negative real value for each σ ∈ S
and that Prp⊥ [S1 ∪ S2] = Prp⊥ [S1] + Prp⊥ [S2] for each S1, S2 ⊆ SK

A such that
S1 ∩ S2 = ∅ are both immediate consequences of the definition of Prp⊥ .

The interesting part of the proof is about showing that Prp⊥ [SK
A ] = 1. To

prove this, we make use of a tree T = (N, 〈λ, 1〉, E), like the one shown in Fig. 2,
whose nodes are labelled with finite runs and probability values. In particular, we
label the leaf nodes of T with the terminating K-lassos in SK

A while we use their
finite run prefixes to label the internal nodes. Formally, the tree T is constructed
as follows. Let P = {σ′ ∈ Q × (Σ × Q)∗ | σ′ is a prefix of some σ⊥ ∈ SK

A } be
the set of prefixes of the K-lassos in SK

A . T ’s components are defined as follows.

– N =
(
P × (0, 1]

)
∪

(
SK

A × (0, 1]
)

∪ {〈λ, 1〉} is the set of nodes,
– 〈λ, 1〉 is the root of the tree, and
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– E ⊆
(
{〈λ, 1〉} ×

(
P × (0, 1]

))
∪

(
P × (0, 1]

)2

∪
((

P × (0, 1]
)
×

(
SK

A × (0, 1]
))

is the set of edges defined as

E = { (〈λ, 1〉, 〈q, 1
|QI |

〉) | q ∈ QI }

∪ {
(
〈σ, p〉, 〈σaq,

p

|T(σl)|
〉
)

| σaq ∈ P ∧ #(σ, σl) = 1 }

∪ {
(
〈σ, p〉, 〈σaq,

p · (1 − p⊥)
|T(σl)|

〉
)

| σaq ∈ P ∧ #(σ, σl) > 1 }

∪ {
(
〈σ, p〉, 〈σ⊥, p〉

)
| σ⊥ ∈ SK

A ∧ #(σ, σl) = K }
∪ {

(
〈σ, p〉, 〈σ⊥, p · p⊥〉

)
| σ⊥ ∈ SK

A ∧ #(σ, σl) < K }

where σl denotes the last state sn of the finite run σ = s0a0s1 . . . an−1sn.

Then we show a correspondence between the reachable leaf nodes and the
terminating K-lassos with their Prp⊥ probability values, and that the probability
value in each internal node equals the sum of the probabilities of its children.
By the finiteness of the reachable part of the tree we then derive Prp⊥ [SK

A ] = 1.
��

Example 2 (Probability of lassos). Consider the Büchi automaton A of Fig. 1
and p⊥ = 1

2 . For K = 2, there are only two terminating 2-lassos, namely s1as1⊥
and s1bs2bs2⊥. According to Definition 2, we know that each lasso occurs with
probability 1

2 and they are not witnesses since the corresponding ultimately
periodic words aω and bbω do not belong to the language L(A) \ L(B). If we set
K = 2 to check whether L(A) ⊆ L(B), we end up concluding that the inclusion
holds with probability 1 since the probability to find some lasso of A related to
the ω-word abω ∈ L(A) \ L(B) is 0. If we want to find a witness K-lasso, we
need to set K = 3 at least, since now the terminating 3-lasso s1as1bs2bs2⊥ with
corresponding ω-word abbω ∈ L(A)\L(B) can be found with probability 1

16 > 0.
We remark that the Monte Carlo method proposed in [15] uses lassos that

are a special instance of Definition 2 when we let K = 2 and p⊥ = 1, thus their
method is not complete for NBA language inclusion checking. ♦

According to Theorem2, the probability space of the sample terminating K-
lassos in A can be organized in the tree, like the one shown in Fig. 2. Therefore,
it is easy to see that the probability to find the witness 3-lasso s1as1bs2bs2⊥ of
A is 1

16 , as indicated by the leaf node 〈s1as1bs2bs2⊥, 1
16 〉.

Definition 3 (Lasso Bernoulli Variable). Let K ≥ 2 be a natural num-
ber and p⊥ a stopping probability. The random variable associated with the
probability space (SK

A , 2SK
A ,Prp⊥) of the NBAs A and B is defined as fol-

lows: pZ = Prp⊥ [Z = 1] =
∑

σ⊥∈Sw
Prp⊥ [σ⊥] and qZ = Prp⊥ [Z = 0] =∑

σ⊥∈Sn
Prp⊥ [σ⊥], where Sw, Sn ⊆ SK

A are the set of witness and non-witness
lassos, respectively.
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Under the assumption L(A) \ L(B) �= ∅, there exists some witness K-lasso
σ⊥ ∈ Sw that can be sampled with positive probability if Prp⊥ [Z = 1] > 0, as
explained by Example 3.

Example 3. For the NBAs A and B shown in Fig. 1, K = 3, and p⊥ = 1
2 , the

lasso probability space is organized as in Fig. 2. The lasso Bernoulli variable has
associated probabilities pZ = 1

8 and qZ = 7
8 since the only witness lassos are

s1as1bs2bs2⊥ and s1as1bs2bs2bs2⊥, both occurring with probability 1
16 . ♦

Therefore, if we set K = 3 and p⊥ = 1
2 to check the inclusion between A

and B from Fig. 1, we are able to find with probability 1
8 the ω-word abω as a

counterexample to the inclusion L(A) ⊆ L(B). It follows that the probability we
do not find any witness 3-lasso after 50 trials would be less than 0.002, which
can be made even smaller with a larger number of trials.

q1 q2 q3 . . . qK

qb

b

a

b

a

b

a a

b

b

Fig. 3. NBA KK making pZ = 0 when checking L(A) ⊆ L(KK) by means of sampling
terminating K-lassos from A shown in Fig. 1.

As we have seen in Example 2, the counterexample may not be sampled with
positive probability if K is not sufficiently large, that is the main problem with
MC2 algorithm from [15] for checking language inclusion. The natural question
is then: how large should K be for checking the inclusion? First, let us discuss
about K without taking the automaton B into account. Consider the NBA A
of Fig. 1: it seems that no matter how large K is, one can always construct an
NBA K with K+1 states to make the probability pZ = 0, as the counterexample
albω ∈ L(A) \ L(B) can not be sampled for any l ≥ K. Figure 3 depicts such
NBA K, for which we have L(K) = {bω, abω, aabω, . . . , aK−1bω}. One can easily
verify that the counterexample albω can not be sampled from A when l ≥ K, as
sampling this word requires the state s1 to occur l + 1 times in the run, that is
not a valid K-lasso. This means that K is a value that depends on the size of B.
To get a K sufficiently large for every A and B, one can just take the product
of A with the complement of B and check how many times in the worst case a
state of A occurs in the shortest accepting run of the product.

Lemma 3 (Sufficiently Large K). Let A, B be NBAs with na and nb states,
respectively, and Z be the random variable defined in Definition 3. Assume that
L(A) \ L(B) �= ∅. If K ≥ 2 × (2nb + 2)nb × 2nb + 1, then Prp⊥ [Z = 1] > 0.
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Algorithm 1. IMC2 Algorithm
1: procedure IMC2(A, B, K, p⊥, ε, δ)
2: M := �ln δ/ ln(1 − ε)�;
3: for (i := 1; i ≤ M ; i++) do
4: (u, v) := sample(A, K, p⊥);
5: if membership(A, (u, v)) then
6: if not membership(B, (u, v)) then
7: return (false, (u, v));

8: return true;

Remark 2. We want to stress that choosing K as given in Lemma 3 is a sufficient
condition for sampling a counterexample with positive probability; choosing this
value, however, is not a necessary condition. In practice, we can find counterex-
amples with positive probability with K being set to a value much smaller than
2 × (2nb + 2)nb × 2nb + 1, as experiments reported in Sect. 4 indicate.

Now we are ready to present our IMC2 algorithm, given in Algorithm1. On
input the two NBAs A and B, the bound K, the stopping probability p⊥, and
the statistical parameters ε and δ, the algorithm at line 2 first computes the
number M of samples according to ε and δ. Then, for each ω-word (u, v) = uvω

associated with a terminating lasso sampled at line 4 according to Definitions 1
and 2, it checks whether the lasso is a witness by first (line 5) verifying whether
uvω ∈ L(A), and then (line 6) whether uvω /∈ L(B). If the sampled lasso is indeed
a witness, a counterexample to L(A) ⊆ L(B) has been found, so the algorithm
can terminate at line 7 with the correct answer false and the counterexample
(u, v). If none of the M sampled lassos is a witness, then the algorithm returns
true at line 8, which indicates that hypothesis L(A) �⊆ L(B) has been rejected
and L(A) ⊆ L(B) is assumed to hold. It follows that IMC2 gives a probabilistic
guarantee in terms of finding a counterexample to inclusion when K is sufficient
large, as formalized by the following proposition.

Proposition 1. Let A, B be two NBAs and K be a sufficiently large number. If
L(A)\L(B) �= ∅, then IMC2 finds a counterexample to the inclusion L(A) ⊆ L(B)
with positive probability.

In general, the exact value of pZ , the probability of finding a word accepted
by A but not accepted by B, is unknown or at least very hard to compute. Thus,
we summarize our results about IMC2 in Theorems 3 and 4 with respect to the
choice of the statistical parameters ε and δ.

Theorem 3 (Correctness). Let A, B be two NBAs, K be a sufficiently large
number, and ε and δ be statistical parameters. If IMC2 returns false, then L(A) �⊆
L(B) is certain. Otherwise, if IMC2 returns true, then the probability that we
would continue and with probability pZ ≥ ε find a counterexample is less than δ.

Theorem 4 (Complexity). Given two NBAs A, B with na and nb states,
respectively, and statistical parameters ε and δ, let M = �ln δ/ ln(1 − ε)� and
n = max(na, nb). Then IMC2 runs in time O(M · K · n2) and space O(K · n2).
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4 Experimental Evaluation

We have implemented the Monte Carlo sampling algorithm proposed in Sect. 3
in ROLL [22] to evaluate it. We performed our experiments on a desktop PC
equipped with a 3.6 GHz Intel i7-4790 processor with 16 GB of RAM, of which
4 GB were assigned to the tool. We imposed a timeout of 300 s (5 min) for each
inclusion test. In the experiments, we compare our sampling inclusion test algo-
rithm with RABIT 2.4.5 [1,2,9] and SPOT 2.8.4 [11]. ROLL and RABIT are
written in Java while SPOT is written in C/C++. This gives SPOT some advan-
tage in the running time, since it avoids the overhead caused by the Java Virtual
Machine. For RABIT we used the option -fastc while for ROLL we set param-
eters ε = 0.1% and δ = 2%, resulting in sampling roughly 4 000 words for testing
inclusion, p⊥ = 1

2 , and K to the maximum of the number of states of the two
automata. The automata we used in the experiment are represented in two for-
mats: the BA format used by GOAL1 [24] and the HOA format [4]. RABIT
supports only the former, SPOT only the latter, while ROLL supports both.
We used ROLL to translate between the two formats and then we compared
ROLL (denoted ROLLH) with SPOT on the HOA format and ROLL (denoted
ROLLB) with RABIT on the BA format. When we present the outcome of the
experiments, we distinguish them depending on the used automata format. This
allows us to take into account the possible effects of the automata representation,
on both the language they represent and the running time of the tools.

Table 1. Experiment results on random automata with fixed state space and alphabet.

Tool Included Not included Timeout Memory out Other failures

SPOT 1 803 10 177 + 53 1 780 670 1 517

ROLLH 2 497(5) 10 177 + 3194 119 0 13

ROLLB 2 501(45) 12 436 + 1054 0 0 9

RABIT 2 205 12 436 + 45 306 1 008 0

4.1 Experiments on Randomly Generated Büchi Automata

To run the different tools on randomly generated automata, we used SPOT to
generate 50 random HOA automata for each combination of state space size |Q| ∈
{10, 20, . . . , 90, 100, 125, . . . , 225, 250} and alphabet size |Σ| ∈ {2, 4, . . . , 18, 20},
for a total of 8 000 automata, that we have then translated to the BA format.
We then considered 100 different pairs of automata for each combination of state
space size and alphabet size (say, for instance, 100 pairs of automata with 50

1 GOAL is omitted in our experiments as it is shown in [9] that RABIT performs
much better than GOAL.
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states and 10 letters or 100 pairs with 175 states and 4 letters). The resulting
16 000 experiments are summarized in Table 1.

For each tool, we report the number of inclusion test instances that resulted
in an answer for language inclusion and not inclusion, as well as the number
of cases where a tool went timeout, ran out of memory, or failed for any other
reason. For the “included” case, we indicate in parenthesis how many times
ROLL has failed to reject the hypothesis L(A) ⊆ L(B), that is, ROLL returned
“included” instead of the expected “not included”. For the “non included” case,
instead, we split the number of experiments on which multiple tools returned
“not included” and the number of times only this tool returned “not included”;
for instance, we have that both SPOT and ROLLH returned “not included” on
10 177 cases, that only SPOT returned so in 53 more experiments (for a total of
10 230 “not included” results), and that only ROLLH identified non inclusion in
3 194 additional experiments (for a total of 13 371 “not included” results).

We can see in Table 1 that both ROLLH and ROLLB were able to solve
many more cases than their counterparts SPOT and RABIT, respectively, on
both “included” and “not included” outcomes. In particular, we can see that both
ROLLH and ROLLB have been able to find a counterexample to the inclusion
for many cases (3 194 and 1 052, respectively) where SPOT on the HOA format
and RABIT on the BA format failed, respectively.

On the other hand, there are only few cases where SPOT or RABIT proved
non inclusion while ROLL failed to do so. In particular, since ROLL implements
a statistical hypothesis testing algorithm for deciding language inclusion, we can
expect few experiments where ROLL fails to reject the alternative hypothesis
L(A) ⊆ L(B). In the experiments this happened 5 (ROLLH) and 45 (ROLLB)
times; this corresponds to a failure rate of less than 0.6%, well below the choice
of the statistical parameter δ = 2%.

Regarding the 13 failures of ROLLH and the 9 ones of ROLLB, they are all
caused by a stack overflow in the strongly connected components (SCC) decom-
position procedure for checking membership uvω ∈ L(A) or uvω ∈ L(B) (i.e.,
L(A) ∩ {uvω} = ∅ or L(B) ∩ {uvω} = ∅, cf. [17]) at lines 5 and 6 of Algo-
rithm 1, since checking whether the sampled lasso is an accepting run of A does
not suffice (cf. Remark 1). The 119 timeouts of ROLLH occurred for 3 pairs of
automata with 200 states and 20 letters, 12/21 pairs of automata with 225 states
and 18/20 letters, respectively, and 40/43 pairs of automata with 250 states and
18/20 letters, respectively. We plan to investigate why ROLLH suffered of these
timeouts while ROLLB avoided them, to improve ROLL’s performance.

About the execution running time of the tools, they are usually rather fast
in giving an answer, as we can see from the plot in Fig. 4. In this plot, we
show on the y axis the total number of experiments, each one completed within
the time marked on the x axis; the vertical gray line marks the timeout limit.
The plot is relative to the number of “included” and “not included” outcomes
combined together; the shape of the plots for the two outcomes kept separated is
similar to the combined one we present in Fig. 4; the only difference is that in the
“not included” case, the plots for ROLLB and ROLLH would terminate earlier,



480 Y. Li et al.

0.1 1 10 100

1,000

10,000

Time (s)

N
um

be
r
of

ex
pe

ri
m
en
ts

SPOT IMC2
H IMC2

B
RABIT

Fig. 4. Experiment running time on the random automata with fixed state space and
alphabet.

since all experiments returning “not included” are completed within a smaller
time than for the “included” case. As we can see, we have that ROLL rather
quickly overcame the other tools in giving an answer. This is likely motivated by
the fact that by using randomly generated automata, the structure-based tools
such as RABIT and SPOT are not able to take advantage of the symmetries or
other structural properties one can find in automata obtained from, e.g., logical
formulas. From the result of the experiments presented in Table 1 and Fig. 4,
we have that the use of a sampling-based algorithm is a very fast, effective, and
reliable way to rule out that L(A) ⊆ L(B) holds. Moreover, we also conclude that
IMC2 complements existing approaches rather well, as it finds counterexamples
to the language inclusion for a lot of instances that other approaches fail to
manage.

4.2 Effect of the Statistical Parameters ε and δ

To analyze the effect of the choice of ε and δ on the execution of the sampling
algorithm we proposed, we have randomly taken 100 pairs of automata where,
for each pair (A,B), the automata A and B have the same alphabet but possibly
different state space. On these 100 pairs of automata, we repeatedly ran ROLLH

10 times with different values of ε in the set {0.00001, 0.00051, . . . , 0.00501} and
of δ in the set {0.0001, 0.0051, . . . , 0.0501}, for a total of 121 000 inclusion tests.
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The choice of ε and δ plays essentially no role in the running time for the cases
where a counterexample to the language inclusion is found: the average running
time is between 1.67 and 1.77 s. This can be expected, since ROLL stops its
sampling procedure as soon as a counterexample is found (cf. Algorithm 1). If
we consider the number of experiments, again there is almost no difference, since
for all combinations of the parameters it ranges between 868 and 870.

On the other hand, ε and δ indeed affect the running time for the “included”
cases, since they determine the number M of sampled words and all such words
have to be sampled and tested before rejecting the “non included” hypothesis.
The average running time is 1 s or less for all choices of ε �= 0.00001 and δ, while
for ε = 0.00001, the average running time ranges between 12 and 36 s when δ
moves from 0.0501 to 0.0001, which corresponds to testing roughly 300 000 to
1 000 000 sample words, respectively.

4.3 Effect of the Lasso Parameters K and p⊥

At last, we also experimented with different values of K and p⊥ while keeping the
statistical parameters unchanged: we have generated other 100 pairs of automata
as in Sect. 4.2 and then checked inclusion 10 times for each pair and each com-
bination of K ∈ {2, 3, 4, 5, 6, 8, 11, 51, 101, 301} and p⊥ ∈ {0.05, 0.1, . . . , 0.95}.

As one can expect, low values for p⊥ and large values of K allow IMC2 to find
more counterexamples, at the cost of a higher running time. It is worth noting
that K = 2 is still rather effective in finding counterexamples: out of the 1 000
executions on the pairs, IMC2 returned “non included” between 906 and 910
times; for K = 3 it ranged between 914 and 919 for p⊥ ≤ 0.5 and between 909
and 912 for p⊥ > 0.5. Larger values of K showed similar behavior. Regarding the
running time, except for K = 2 the running time of IMC2 is loosely dependent
on the choice of K, for a given p⊥; this is likely motivated by the fact that
imposing e.g. K = 51 still allows IMC2 to sample lassos that are for instance
4-lassos. Instead, the running time is affected by the choice of p⊥ for a given
K ≥ 3: as one can expect, the smaller p⊥ is, the longer IMC2 takes to give an
answer; a small p⊥ makes the sampled words uvω ∈ L(B1) to be longer, which
in turn makes the check uvω ∈ L(B2) more expensive.

Experiments suggest that taking 0.25 ≤ p⊥ ≤ 0.5 and 3 ≤ K ≤ 11 gives a
good tradeoff between running time and number of “non included” outcomes.
Very large values of K, such as K > 50, are usually not needed, also given the
fact that usually lassos with several repetitions occur with rather low probability.

5 Conclusion and Discussion

We presented IMC2, a sample-based algorithm for proving language non-inclusion
between Büchi automata. Experimental evaluation showed that IMC2 is very
fast and reliable in finding such witnesses, by sampling them in many cases
where traditional structure-based algorithms fail or take too long to complete
the analysis. We believe that IMC2 is a very good technique to disprove L(A) ⊆
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L(B) and complements well the existing techniques for checking Büchi automata
language inclusion. As future work, our algorithm can be applied to scenarios like
black-box testing and PAC learning [3], in which inclusion provers are either not
applicable in practice or not strictly needed. A uniform word sampling algorithm
was proposed in [5] for concurrent systems with multiple components. We believe
that extending our sampling algorithms to concurrent systems with multiple
components is worthy of study.
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Proving Non-inclusion of Büchi Automata Based on Monte Carlo Sampling 483
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Abstract. Hyperproperties are properties that describe the correctness
of a system as a relation between multiple executions. Hyperproperties
generalize trace properties and include information-flow security require-
ments, like noninterference, as well as requirements like symmetry, par-
tial observation, robustness, and fault tolerance. We initiate the study of
the specification and verification of hyperproperties of Markov decision
processes (MDPs). We introduce the temporal logic PHL (Probabilis-
tic Hyper Logic), which extends classic probabilistic logics with quan-
tification over schedulers and traces. PHL can express a wide range of
hyperproperties for probabilistic systems, including both classical appli-
cations, such as probabilistic noninterference, and novel applications in
areas such as robotics and planning. While the model checking problem
for PHL is in general undecidable, we provide methods both for proving
and for refuting formulas from a fragment of the logic. The fragment
includes many probabilistic hyperproperties of interest.

1 Introduction

Ten years ago, Clarkson and Schneider coined the term hyperproperties [10] for
the class of properties that describe the correctness of a system as a relation
between multiple executions. Hyperproperties include information-flow security
requirements, like noninterference [17], as well as many other types of system
requirements that cannot be expressed as trace properties, including symmetry,
partial observation, robustness, and fault tolerance. Over the past decade, a
rich set of tools for the specification and verification of hyperproperties have
been developed. HyperLTL and HyperCTL∗ [9] are extensions to LTL and
CTL∗ that can express a wide range of hyperproperties. There are a number of
algorithms and tools for hardware model checking [11,16], satisfiability checking
[15], and reactive synthesis [14] for hyperproperties.
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The natural next step is to consider probabilistic systems. Randomization
plays a key role in the design of security-critical and distributed systems. In fact,
randomization is often added specifically to implement a certain hyperproperty.
For example, randomized mutual exclusion protocols use a coin flip to decide
which process gets access to the critical resource in order to avoid breaking the
symmetry based on the process id [4]. Databases employ privacy mechanisms
based on randomizaton in order to guarantee (differential) privacy [13].

Previous work on probabilistic hyperproperties [2] has focussed on the speci-
fication and verification of probabilistic hyperproperties for Markov chains. The
logic HyperPCTL [2] extends the standard probabilistic logic PCTL with quan-
tification over states. For example, the HyperPCTL formula

∀s.∀s′. (inits ∧ inits′) → P( terminates) = P( terminates′)

specifies that the probability that the system terminates is the same from all ini-
tial states. If the initial state encodes some secret, then the property guarantees
that this secret is not revealed through the probability of termination.

Because Markov chains lack nondeterministic choice, they are a limited mod-
eling tool. In an open system, the secret would likely be provided by an external
environment, whose decisions would need to be represented by nondetermin-
ism. In every step of the computation, such an environment would typically set
the values of some low-security and some high-security input variables. In such a
case, we would like to specify that the publicly observable behavior of our system
does not depend on the infinite sequence of the values of the high-security input
variables. Similarly, nondeterminism is needed to model the possible strategic
decisions in autonomous systems, such as robots, or the content of the database
in a privacy-critical system.

In this paper, we initiate the study of hyperproperties for Markov decision
processes (MDPs). To formalize hyperproperties in this setting, we introduce
PHL, a general temporal logic for probabilistic hyperproperties. The nondeter-
ministic choices of an MDP are resolved by a scheduler1; correspondingly, our
logic quantifies over schedulers. For example, in the PHL formula

∀σ.∀σ′.P( terminateσ) = P( terminateσ′)

the variables σ and σ′ refer to schedulers. The formula specifies that the probabil-
ity of termination is the same for all of the possible (infinite) combinations of the
nondeterministic choices. If we wish to distinguish different types of inputs, for
example those that are provided through a high-security variable h vs. those pro-
vided through a low-security variable l, then the quantification can be restricted
to those schedulers that make the same low-security choices:

∀σ.∀σ′. (∀π : σ.∀π′ : σ′. (lπ ↔ lπ′)) → P( terminateσ) = P( terminateσ′)

The path quantifier ∀π : σ works analogously to the quantifiers in HyperCTL∗,
here restricted to the paths of the Markov chain induced by the scheduler
1 In the literature, schedulers are also known as strategies or policies.
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assigned to variable σ. The formula thus states that all schedulers that agree
on the low-security inputs induce the same probability of termination.

As we show in the paper, PHL is a very expressive logic, thanks to the com-
bination of scheduler quantifiers, path quantifiers and a probabilistic operator.
PHL has both classical applications, such as differential privacy, as well as novel
applications in areas such as robotics and planning. For example, we can quan-
tify the interference of the plans of different agents in a multi-agent system, such
as the robots in a warehouse, or we can specify the existence of an approximately
optimal policy that meets given constraints. A consequence of the generality of
the logic is that it is impossible to simply reduce the model checking problem to
that of a simpler temporal logic in the style of the reduction of HyperPCTL to
PCTL [2]. In fact, we show that the emptiness problem for probabilistic Büchi
automata (PBA) can be encoded in PHL, which implies that the model checking
problem for PHL is, in general, undecidable.

We present two verification procedures that approximate the model checking
problem from two sides. The first algorithm overapproximates the model checking
problem by quantifying over a combined monolithic scheduler rather than a tuple
of independent schedulers. Combined schedulers have access to more information
than individual ones, meaning that the set of allowed schedulers is overapproxi-
mated. This means that if a universal formula is true for all combined schedulers
it is also true for all tuples of independent schedulers. The second procedure is a
bounded model checking algorithm that underapproximates the model checking
problem by bounding the number of states of the schedulers. This algorithm is
obtained as a combination of a bounded synthesis algorithm for hyperproper-
ties, which generates the schedulers, and a model checking algorithm for Markov
chains, which computes the probabilities on the Markov chains induced by the
schedulers. Together, the two algorithms thus provide methods both for proving
and for refuting a class of probabilistic hyperproperties for MDPs.

Related Work. Probabilistic noninterference originated in information-flow secu-
rity [18,21] and is a security policy that requires that the probability of every
low trace should be the same for every low equivalent initial state. Volpano and
Smith [24] presented a type system for checking probabilistic noninterference
of concurrent programs with probabilistic schedulers. Sabelfeld and Sands [23]
defined a secure type system for multi-threaded programs with dynamic thread
creation which improves on that of Volpano and Smith. None of these works is
concerned with models combining probabilistic choice with nondeterminism, nor
with general temporal logics for probabilistic hyperproperties.

The specification and verification of probabilistic hyperproperties have
recently attracted significant attention. Abraham and Bonakdarpour [2] are the
first to study a temporal logic for probabilistic hyperproperties, called Hyper-
PCTL. The logic allows for explicit quantification over the states of a Markov
chain, and is capable of expressing information-flow properties like probabilis-
tic noninterference. The authors present a model checking algorithm for verify-
ing HyperPCTL on finite-state Markov chains. HyperPCTL was extended to a
logic called HyperPCTL* [25] that allows nesting of temporal and probabilistic
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operators, and a statistical model checking method for HyperPCTL* was pro-
posed. Our present work, on the other hand is concerned with the specification
and model checking of probabilistic hyperproperties for system models featuring
both probabilistic choice and nondeterminism, which are beyond the scope of all
previous temporal logics for probabilistic hyperproperties. Probabilistic logics
with quantification over schedulers have been studied in [6] and [3]. However,
these logics do not include quantifiers over paths.

Independently and concurrently to our work, probabilistic hyperproperties
for MDPs were also studied in [1] (also presented at ATVA’20). The authors
extend HyperPCTL with quantifiers over schedulers, while our new logic PHL
extends HyperCTL∗ with the probabilistic operator and quantifiers over sched-
ulers. Thus, HyperPCTL quantifies over states (i.e., the computation trees that
start from the states), while PHL quantifies over paths. Both papers show that
the model checking problem is undecidable for the respective logics. The differ-
ence is in how the approaches deal with the undecidability result. For both log-
ics, the problem is decidable when quantifiers are restricted to non-probabilistic
memoryless schedulers. [1] provides an SMT-based verification procedure for
HyperPCTL for this class of schedulers. We consider general memoryful sched-
ulers and present two methods for proving and for refuting formulas from a
fragment of PHL.

Due to lack of space we have omitted the proofs of our results and details of
the presented model checking procedures, which can be found in [12].

2 Preliminaries

Definition 1 (Markov Decision Process (MDP)). A Markov Decision Pro-
cess (MDP) is a tuple M = (S,Act ,P, ι,AP, L) where S is a finite set of states,
Act is a finite set of actions, P : S × Act × S → [0, 1] is the transition proba-
bility function such that

∑
s′∈S P(s, a, s′) ∈ {0, 1} for every s ∈ S and a ∈ Act,

ι : S → [0, 1] is the initial distribution such that
∑

s∈S ι(s) = 1, AP is a finite
set of atomic propositions and L : S → 2AP is a labelling function.

A finite path in an MDP M = (S,Act ,P, ι,AP, L) is a sequence s0s1 . . . sn

where for every 0 ≤ i < n there exists ai ∈ Act such that P(si, ai, si+1) > 0.
Infinite paths in M are defined analogously. We denote with Pathsfin(M) and
Paths inf (M) the sets of finite and infinite paths in M . For an infinite path
ρ = s0s1 . . . and i ∈ N we denote with ρ[i,∞) the infinite suffix sisi+1 . . ..
Given s ∈ S, define Pathsfin(M, s) = {s0s1 . . . sn ∈ Pathsfin(M) | s0 = s}, and
similarly Paths inf (M, s). We denote with Ms = (S,Act ,P, ιs,AP, L) the MDP
obtained from M by making s the single initial state, i.e., ιs(s) = 1 and ιs(t) = 0
for t 	= s.

For a set A we denote with D(A) the set of probability distributions on A.

Definition 2 (Scheduler). A scheduler for an MDP M = (S,Act ,P, ι,AP, L)
is a function S : (S · Act)∗S → D(Act) such that for all sequences
s0a0 . . . an−1sn ∈ (S · Act)∗S it holds that if S(s0a0 . . . an−1sn)(a) > 0 then
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∑
t∈S P(sn, a, t) > 0, that is, each action in the support of S(s0a0 . . . an−1sn) is

enabled in sn. We define Sched(M) to be the set consisting of all schedulers for
an MDP M .

Given an MDP M = (S,Act ,P, ι,AP, L) and a scheduler S for M , we
denote with MS the Markov chain of M induced by S, which is defined
as the tuple MS = ((S · Act)∗S,PS, ι, AP,LS) where for every sequence
h = s0a0 . . . an−1sn ∈ (S·Act)∗S it holds that PS(h, h·sn+1) =

∑
a∈Act S(h)(a)·

P(sn, a, sn+1) and LS(h) = L(sn). Note that MS is infinite even when M is
finite. The different types of paths in a Markov chain are defined as for MDPs.

Of specific interest are finite-memory schedulers, which are schedulers that
can be represented as finite-state machines. Formally, a finite-memory scheduler
for M is represented as a tuple TS = (Q, δ, q0, act), where Q is a finite set
of states, representing the memory of the scheduler, δ : Q × S × Act → Q
is a memory update function, q0 is the initial state of the memory, and act :
Q × S → D(Act) is a function that based on the current memory state and
the state of the MDP returns a distribution over actions. Such a representation
defines a function S : (S · Act)∗S → D(Act) as follows. First, let us define the
function δ∗ : Q × (S · Act)∗ → Q as follows: δ∗(q, ε) = q for all q ∈ Q, and
δ∗(q, s0a0 . . . snansn+1an+1) = δ(δ∗(q, s0a0 . . . snan), sn+1, an+1) for all q ∈ Q
and all s0a0 . . . snansn+1an+1 ∈ (S ·Act)∗. Now, we define the scheduler function
represented by TS by S(s0a0 . . . snansn+1) = act(δ∗(s0a0 . . . snan), sn+1).

Finite-memory schedulers induce finite Markov chains with simpler represen-
tation. A finite memory scheduler S represented by TS = (Q, δ, q0, act) induces
the Markov chain MS = (S × Q,PS, ιS, AP,LS) where PS((s, q), (s′, q′)) =∑

a∈Act act(q, s)(a) · P(s, a, s′) if q′ = δ(q, s), otherwise PS((s, q), (s′, q′)) = 0,
and ιS(s, q) = ι(s) if q = q0 and ιS(s, q) = 0 otherwise.

A scheduler S is deterministic if for every h ∈ (S · Act)∗S it holds that
S(h)(a) = 1 for exactly one a ∈ Act . By abuse of notation, a deterministic
scheduler can be represented as a function S : S+ → Act , that maps a finite
sequence of states to the single action in the support of the corresponding dis-
tribution. Note that for deterministic schedulers we omit the actions from the
history as they are uniquely determined by the sequence of states. We write
DetSched(M) for the set of deterministic schedulers for the MDP M .

A probability space is a triple (Ω,F ,Prob), where Ω is a sample space, F ⊆ 2Ω

is a σ-algebra and Prob : F → [0, 1] is a probability measure.
Given a Markov chain C = (S,P, ι, AP,L), it is well known how to associate a

probability space (ΩC , FC ,ProbC) with C. The sample space ΩC = Paths inf (C)
is the set of infinite paths in C, where the sets of finite and infinite paths for
a Markov chain are defined in the same way as for MDP. The σ-algebra FC is
the smallest σ-algebra that for each π ∈ Pathsfin(C) contains the set CylC(π) =
{ρ ∈ Paths inf (C) | ∃ρ′ ∈ Paths inf (C) : ρ = π · ρ′} called the cylinder set of the
finite path π. ProbC is the unique probability measure such that for each π =
s0 . . . sn ∈ Pathsfin(C) it holds that ProbC(Cyl(π)) = ι(s0) ·

∏n−1
i=0 P(si, si+1).
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Analogously, given any state s ∈ S we denote with (ΩC ,FC ,ProbC
s ) the

probability space for paths in C originating in the state s, i.e., the probability
space associated with the Markov chain Cs (where Cs is defined as for MDPs).

When considering a Markov chain MS induced by an MDP M and a sched-
uler S, we write ProbM,S and ProbM,S,s for the sake of readability.

3 The Logic PHL

In this section we define the syntax and semantics of PHL, the logic which we
introduce and study in this work. PHL allows for quantification over schedulers
and integrates features of temporal logics for hyper properties, such as Hyper-
LTL and HyperCTL∗ [9], and probabilistic temporal logics such as PCTL*.

3.1 Examples of PHL Specifications

We illustrate the expressiveness of PHL with two applications beyond
information-flow security, from the domains of robotics and planning.

Example 1 (Action Cause). Consider the question whether a car on a highway
that enters the opposite lane (action b) when there is a car approaching from the
opposite direction (condition p) increases the probability of an accident (effect e).
This can be formalized as the property stating that there exist two deterministic
schedulers σ1 and σ2 such that (i) in σ1 the action b is never taken when p is
satisfied, (ii) the only differences between σ1 and σ2 can happen when σ2 takes
action b when p is satisfied, and (iii) the probability of e being true eventually
is higher in the Markov chain induced by σ2 than in the one for σ1. To express
this property in our logic, we will use scheduler quantifiers quantifying over the
schedulers for the MDP. To capture the condition on the way the schedulers
differ, we will use path quantifiers quantifying over the paths in the Markov
chain induced by each scheduler. The atomic propositions in a PHL formula are
indexed with path variables when they are interpreted on a given path, and with
scheduler variables when they are interpreted in the Markov chain induced by
that scheduler. Formally, we can express the property with the PHL formula

∃σ1∃σ2. (∀π1 : σ1∀π2 : σ2. ( ¬(pπ1 ∧ bπ1)) ∧ ψ) ∧ P( eσ1) < P( eσ2),

where ψ =
(
(
∧

a∈Act( aπ1 ↔ aπ2)) ∨ (pπ2 ∧ bπ2)
)
W(

∨
q∈AP\Act(qπ1 	↔

qπ2)).
The two conjuncts of ∀π1 : σ1∀π2 : σ2. ( ¬(pπ1 ∧ bπ1)) ∧ ψ capture con-

ditions (i) and (ii) above respectively, and P( eσ1) < P( eσ2) formalizes (iii).
Here we assume that actions are represented in AP, i.e., Act ⊆ AP 
�

Example 2 (Plan Non-interference). Consider two robots in a warehouse, possi-
bly attempting to reach the same location. Our goal is to determine whether all
plans for the first robot to move towards the goal are robust against interferences
from arbitrary plans of the other robot. That is, we want to check whether for
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every plan of robot 1 the probability that it reaches the goal under an arbitrary
plan of robot 2 is close to that of the same plan for robot 1 executed under any
other plan for robot 2. We can express this property in PHL by using quantifiers
over schedulers to quantify over the joint deterministic plans of the robots, and
using path quantifiers to express the condition that in both joint plans robot 1
behaves the same. Formally, we can express the property with the PHL formula

∀σ1∀σ2. (∀π1 : σ1∀π2 : σ2. (move1π1 ↔ move1π2)) →
P( (goal1σ1

∧ ¬goal2σ1
)) − P( (goal1σ2

∧ ¬goal2σ2
)) ≤ ε,

where σ1 and σ2 are scheduler variables, π1 is a path variable associated with
the scheduler for σ1, and π2 is a path variable associated with the scheduler
for σ2. The condition ∀π1 : σ1∀π2 : σ2. (move1π1 ↔ move1π2) states that
in both joint plans robot 1 executes the same moves, where the proposition
move1 corresponds to robot 1 making a move towards the goal. The formula
P( (goal1σ1

∧ ¬goal2σ1
)) − P( (goal1σ2

∧ ¬goal2σ2
)) ≤ ε states that the

difference in the probability of robot 1 reaching the goal under scheduler σ1 and
the probability of it reaching the goal under scheduler σ2 does not exceed ε. 
�

3.2 Syntax

As we are concerned with hyperproperties interpreted over MDPs, our logic
allows for quantification over schedulers and quantification over paths.

To this end, let Vsched be a countably infinite set of scheduler variables and
let Vpath be a countably infinite set of path variables. According to the semantics
of our logic, quantification over path variables ranges over the paths in a Markov
chain associated with the scheduler represented by a given scheduler variable. To
express this dependency we will associate path variables with the corresponding
scheduler variable, writing π : σ for a path variable π associated with a scheduler
variable σ. The precise use and meaning of this notation will become clear below,
once we define the syntax and semantics of the logic.

Given a set AP of atomic propositions, PHL formulas over AP will use atomic
propositions indexed with scheduler variables or with path variables. We define
the sets of propositions indexed with scheduler variables as APVsched

= {aσ | a ∈
AP, σ ∈ Vsched} and with path variables as APVpath

= {aπ | a ∈ AP, π ∈ Vpath}.
PHL (Probabilistic Hyper Logic) formulas are defined by the grammar

Φ ::= ∀σ. Φ | Φ ∧ Φ | ¬Φ | χ | P 
� c

where σ ∈ Vsched is a scheduler variable, χ is a HyperCTL∗ formula, P is a
probabilistic expression defined below, 
�∈ {≤,≤,≥,≥}, and c ∈ Q.

Formulas in HyperCTL∗, introduced in [9], are constructed by the grammar

χ ::= aπ | χ ∧ χ | ¬χ | χ | χU χ | ∀π : σ. χ

where π is a path variable associated with a scheduler variable σ, and a ∈ AP.
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Probability expressions are defined by the grammar

P ::= P(ϕ) | P + P | c · P

where P is the probabilistic operator, c ∈ Q, and ϕ is an LTL formula [22] defined
by the grammar below, where a ∈ AP and σ is a scheduler variable.

ϕ ::= aσ | ϕ ∧ ϕ | ¬ϕ | ϕ | ϕU ϕ.

We call formulas of the form P 
� c probabilistic predicates.
A PHL formula Φ is well-formed if each path quantifier for π : σ that appears

in Φ is in the scope of a scheduler quantifier with the scheduler variable σ.
A PHL formula is closed if all occurrences of scheduler and path variables

are bound by scheduler and path quantifiers respectively.
In the following we consider only closed and well-formed PHL formulas.

Discussion. Intuitively, a PHL formula is a Boolean combination of formulas
consisting of a scheduler quantifier prefix followed by a formula without scheduler
quantifiers constructed from probabilistic predicates and HyperCTL∗ formulas
via propositional operators. Thus, interleaving path quantifiers and probabilistic
predicates is not allowed in PHL. This design decision is in line with the fact
that probabilistic temporal logics like PCTL∗ replace the path quantifiers with
the probabilistic operator that can be seen as their quantitative counterpart.
We further chose to not allow nesting of probabilistic predicates and temporal
operators, as in all the examples that we considered we never encountered the
need for nested P operators. Moreover, allowing arbitrary nesting of probabilistic
and temporal operators would immediately make the model checking problem
for the resulting logic undecidable, following from the results in [8].

3.3 Self-composition for MDPs

In order to define the semantics of PHL we first introduce the self-composition
operation for MDPs, which lifts to MDPs the well-known self-composition of
transition systems that is often used in the model checking of hyperproperties.

Let us fix, for the reminder of the section, an MDP M = (S,Act ,P, ι,AP, L).

Definition 3 (n-Self-composition of MDP). Let M = (S,Act ,P, ι,AP, L)
be an MDP and n ∈ N>0 be a constant. The n-self-composition of M is the MDP
Mn = (Sn,Actn, P̂, ι̂,AP, L̂) with the following components. Sn = {(s1, . . . , sn) |
si ∈ S for all 1 ≤ i ≤ n} is the set of states. Actn = {(a1, . . . , an) | ai ∈
Act for all 1 ≤ i ≤ n} is the set of actions. The transition probability function
P̂ is such that for every (s1, . . . , sn), (s′

1, . . . , s
′
n) ∈ Sn and (a1, . . . , an) ∈ Actn

we have P̂((s1, . . . , sn), (a1, . . . , an), (s′
1, . . . , s

′
n)) =

∏n
i=1 P(si, ai, s

′
i). The ini-

tial distribution such that ι̂((s1, . . . , sn)) = ι(s1) if s1 = . . . = sn = s and
ι̂((s1, . . . , sn)) = 0 otherwise. The labelling function L̂ : Sn → (2AP)n maps
states to n-tuples of subsets of AP (in contrast to Definition 1 where states are
mapped to subsets of AP) and is given by L̂((s1, . . . , sn)) = (L(s1), . . . , L(sn)).
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Naturally, a scheduler Ŝ ∈ Sched(Mn) induces a Markov chain Mn
̂S
.

Given schedulers S1, . . . ,Sn ∈ Sched(M), their composition, a scheduler
S : (Sn · Actn)∗Sn → D(Actn) for Mn, is denoted S = S1 ‖ . . . ‖ Sn

and such that for every h = (s1,1, . . . , s1,n)(a1,1, . . . , a1,n) . . . (sk,1, . . . , sk,n) ∈
(Sn · Actn)∗Sn and a = (ak+1,1, . . . , ak+1,n) ∈ Actn, S(h)(a) =∏n

i=1 Si(s1,ia1,i . . . sk,i)(ak+1,i).

3.4 Scheduler and Path Assignments

Let Vsched and Vpath be the sets of scheduler and path variables respectively.
A scheduler assignment is a vector of pairs Σ ∈

⋃
n∈N

(Vsched × Sched(M))n

that assigns schedulers to some of the scheduler variables. Given a scheduler
assignment Σ = ((σ1,S1), . . . , (σn,Sn)), we denote by |Σ| the length (number
of pairs) of the vector. For a scheduler variable σ ∈ Vsched we define Σ(σ) = Si

where i is the maximal index such that σi = σ. If such an index i does not exits,
Σ(σ) is undefined. For a scheduler assignment Σ = ((σ1,S1), . . . , (σn,Sn)), a
scheduler variable σ ∈ Vsched, and a scheduler S ∈ Sched(M) we define the
scheduler assignment Σ[σ �→ S] = ((σ1,S1), . . . , (σn,Sn), (σ,S)) obtained by
adding the pair (σ,S) to the end of the vector Σ.

Given the MDP M , let Σ = ((σ1,S1), . . . , (σn,Sn)) be a scheduler assign-
ment, and consider M |Σ|, the |Σ|-self composition of M . Σ defines a scheduler
for M |Σ|, which is the product of the schedulers in Σ, i.e., S = S1 ‖ . . . ‖ Sn.
Let MΣ be the Markov chain induced by S. If ŝ is a state in MΣ , we denote by
MΣ,ŝ the Markov chain obtained from MΣ by making ŝ the single initial state.

Note that the labeling function L̂ in M |Σ| maps the states in S|Σ| to |Σ|-
tuples of sets of atomic predicates, that is L̂(ŝ) = (L1, . . . , L|Σ|). Given a sched-
uler variable σ for which Σ(σ) is defined, we write L̂(ŝ)(σ) for the set of atomic
predicates Li, where i is the maximal position in Σ in which σ appears.

We define path assignments similarly to scheduler assignments. A path assign-
ment is a vector of pairs of path variables and paths in Paths inf (M). More
precisely, a path assignment Π is an element of

⋃
m∈N

(Vpath × Paths inf (M))m.
Analogously to scheduler assignments, for a path variable π and a path ρ ∈
Paths inf (M), we define Π(π) and Π[π �→ ρ]. For Π = ((π1, ρ1), . . . , (πn, ρn))
and j ∈ N, we define Π[j,∞] = ((π1, ρ1[j,∞]), . . . , (πn, ρn[j,∞])) to be the path
assignment that assigns to each πi the suffix ρi[j,∞] of the path ρi.

3.5 Semantics of PHL

We are now ready to define the semantics of PHL formulas. Recall that we con-
sider only closed and well-formed PHL formulas. PHL formulas are interpreted
over an MDP and a scheduler assignment. The interpretation of HyperCTL∗

formulas requires additionally a path assignment. Probabilistic expressions and
LTL formulas are evaluated in the Markov chain for an MDP induced by a
scheduler assignment. As usual, the satisfaction relations are denoted by |=.

For an MDP M and a scheduler assignment Σ we define
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M, Σ |= ∀σ.Φ iff for all S ∈ Sched(M) : M, Σ[σ �→ S] |= Φ;
M, Σ |= Φ1 ∧ Φ2 iff M, Σ |= Φ1 and M, Σ |= Φ2;
M, Σ |= ¬Φ iff M, Σ �|= Φ;
M, Σ |= χ iff M, Σ, Π∅ |= χ, where Π∅ is the empty path assignment;
M, Σ |= P �� c iff [[P ]]MΣ �� c.

For an MDP M , scheduler assignment Σ, and path assignment Π we define

M, Σ, Π |= aπ iff a ∈ L(Π(π)[0]);
M, Σ, Π |= χ1 ∧ χ2 iff M, Σ, Π |= χ1 and M, Σ, Π |= χ2;
M, Σ, Π |= ¬χ iff M, Σ, Π �|= χ;
M, Σ, Π |= χ iff M, Σ, Π[1, ∞] |= χ;
M, Σ, Π |= χ1 U χ2 iff there exists i ≥ 0 : M, Σ, Π[i, ∞] |= χ2 and

for all j < i : M, Σ, Π[j, ∞] |= χ1;
M, Σ, Π |= ∀π : σ. χ iff for all ρ ∈ Paths inf (C) : M, Σ, Π[π �→ ρ] |= χ,

where in the last item C is the Markov chain MΣ(σ) when Π is the empty path
assignment, and otherwise the Markov chain MΣ(σ),Π(π′)[0] where π′ is the path
variable associated with scheduler variable σ that was most recently added to
Π.

For Markov chain C of the form MΣ or MΣ,ŝ, where Σ is a scheduler assign-
ment and ŝ is a state in MΣ the semantics [[·]]C of probabilistic expressions is:

[[P(ϕ)]]C = ProbC({ρ ∈ Paths inf (C) | C, ρ |= ϕ});
[[P1 + P2]]C = [[P1]]C + [[P2]]C ; [[c · P ]]C = c · [[P ]]C ,

where the semantics of path formulas (i.e., LTL formulas) is defined by

C, ρ |= aσ iff a ∈ L̂(ρ[0])(σ);
C, ρ |= ϕ1 ∧ ϕ2 iff C, ρ |= ϕ1 and C, ρ |= ϕ2;
C, ρ |= ¬ϕ iff C, ρ 	|= ϕ;
C, ρ |= ϕ iff C, ρ[1,∞] |= ϕ;
C, ρ |= ϕ1 U ϕ2 iff there exists i ≥ 0 : C, ρ[i,∞] |= ϕ2 and

for all j < i : C, ρ[j,∞] |= ϕ1.

Note that ProbC({ρ ∈ Paths inf (C) | C, ρ |= ϕ}) is well-defined as it is a
known fact [7] that the set {ρ ∈ Paths inf (C) | C, ρ |= ϕ} is measurable.

We say that an MDP M satisfies a closed well-formed PHL formula Φ,
denoted M |= Φ iff M,Σ∅ |= Φ, where Σ∅ is the empty scheduler assignment.

Since PHL includes both scheduler and path quantification, the sets of deter-
ministic and randomized schedulers are not interchangeable with respect to the
PHL semantics. That is, there exists an MDP M and formula Φ such that if
quantifiers are interpreted over Sched(M), then M |= Φ, and if quantifiers are
interpreted over DetSched(M) then M 	|= Φ. See [12] for an example.
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3.6 Undecidability of PHL Model Checking

Due to the fact that PHL allows quantification over both schedulers and paths,
the model checking problem for PHL is undecidable. The proof is based on a
reduction from the emptiness problem for probabilistic Büchi automata (PBA),
which is known to be undecidable [5].

Theorem 1. The model checking problem for PHL is undecidable.

We saw in the previous section an example of a probabilistic hyperprop-
erty expressed as a PHL formulas of the form ∀σ1 . . . ∀σn.

(
(∀π1 : σ1 . . . ∀πn :

σn. ψ) → P 
� c
)
. Analogously to Theorem 1, we can show that the model

checking problem for PHL formulas of the form ∃σ1 . . . ∃σn. (∀π1 : σ1 . . . ∀πn :
σn. ψ ∧ P 
� c) is undecidable. The undecidability for formulas of the form
∀σ1 . . . ∀σn.

(
(∀π1 : σ1 . . . ∀πn : σn. ψ) → P 
� c

)
then follows by duality. In the

next two sections, we present an approximate model checking procedure and a
bounded model checking procedure for PHL formulas in these two classes.

However, since there are finitely many deterministic schedulers with a given
fixed number of states, the result stated in the next theorem is easily established.

Theorem 2. For any constant b ∈ N, the model checking problem for PHL
restricted to deterministic finite-memory schedulers with b states is decidable.

Φ = ∀σ1 . . . ∀σn. (∀π1 : σ1 . . . ∀πn : σn. ψ) → c1 · P(ϕ1) + . . . + ck · P(ϕk) �� c
)

M

construct
safety automaton

ψ

compute
self-composition

n

compute Mn ⊗ Dψ

Mn Dψ

construct Rabin automata

ϕ1 ϕk

...

M̂χ ⊗ A1 ⊗ · · · ⊗ Ak

M̂χ

A1 Ak

...

...

M

Fig. 1. Approximate model checking of PHL formulas of the form (1).

4 Approximate Model Checking

In this section we provide a sound but incomplete procedure for model checking
a fragment of PHL. The fragment we consider consists of those PHL formulas
that are positive Boolean combinations of formulas of the form

Φ = ∀σ1 . . . ∀σn.
(
χ → c1 · P(ϕ1) + . . . + ck · P(ϕk) 
� c

)
(1)
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where χ = ∀π1 : σ1 . . . ∀πn : σn. ψ and the formula ψ does not contain path
quantifiers and describes an n-safety property (i.e., a safety property on Mn

[10]). The PHL formula in Example 2 falls into this class.
The formula ψ contains at most one path variable associated with each sched-

uler variable in {σ1, . . . σn}. This allows us to use the classical self-composition
approach to obtain an automaton for χ. Requiring that ψ describes an n-safety
property enables us to consider a deterministic safety automaton for χ which,
intuitively, represents the most general scheduler in Mn, such that every sched-
uler that refines it results in a Markov chain in which all paths satisfy ψ.

Since for every Markov chain C we have ProbC({π ∈ Paths inf (C) | π |=
ϕ}) = 1 − ProbC({π ∈ Paths inf (C) | π |= ¬ϕ}), it suffices to consider the case
when 
� is ≤ (or <) and ci ≥ 0 for each i = 1, . . . , k.

We now describe a procedure for checking whether a given MDP M =
(S,Act ,P, ι,AP, L) satisfies a PHL formula Φ of the form (1). If the answer
is positive, then we are guaranteed that M |= Φ, but otherwise the result is
inconclusive. The method, outlined in Fig. 1, proceeds as follows.

We first compute a deterministic safety automaton Dψ for the n-hypersafety
property ψ. The language of Dψ is defined over words in (Sn)ω. It holds that
w ∈ L(Dψ) if and only if for an arbitrary scheduler assignment Σ it holds that
M,Σ,Πw |= ψ, where Πw is the path assignment corresponding to the word w.
As a second step we construct the n-self-composition MDP Mn, and then build
the product of Mn with the deterministic safety automaton Dψ. The language
of the resulting automaton M̂χ consists of the n-tuples of infinite paths in M
such that each such tuple satisfies the n-hypersafety property ψ.

After constructing the MDP M̂χ, our goal is to check that for every sched-
uler assignment Σ = ((σ1,S1), . . . , (σn,Sn)) for M such that S = S1 ‖ . . . ‖
Sn ∈ Sched(M̂χ) the inequality

∑k
i=1(ci · Prob

̂Mχ,S
(ϕi)) ≤ c is satisfied. That

would mean, intuitively, that every scheduler assignment that satisfies χ also
satisfies the above inequality, which is the property stated by Φ. Note that, if we
establish that maxS=S1‖...‖Sn

∑k
i=1(ci ·Prob̂Mχ,S

(ϕi)) ≤ c, then we have estab-

lished the above property. Computing exactly the value maxS=S1‖...‖Sn

∑k
i=1(ci·

Prob
̂Mχ,S

(ϕi)), however, is not algorithmically possible in light of the undecid-
ability results in the previous section. Therefore, we will overapproximate this
value by computing a value c∗ ≥ maxS=S1‖...‖Sn

∑k
i=1(ci · Prob

̂Mχ,S
(ϕi)) and

if c∗ ≤ c, then we can conclude that the property holds. The value c∗ is com-
puted as c∗ = max

̂S∈Sched(̂Mχ)

∑k
i=1(ci · Prob

̂Mχ,̂S
(ϕi)). For the schedulers Ŝ

considered in this maximization, it is not in general possible to decompose Ŝ
into schedulers S1, . . . ,Sn ∈ Sched(M). Therefore we have that

max
̂S∈Sched(̂Mχ)

k∑

i=1

(ci · Prob
̂Mχ,̂S

(ϕi)) ≥ max
S=S1‖...‖Sn

k∑

i=1

(ci · Prob
̂Mχ,S

(ϕi)),

which implies that c∗ has the desired property. We compute c∗ as follows.
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We construct deterministic Rabin automata A1, . . . ,Ak for the formulas
ϕ1, . . . , ϕk. We compute the product M̃ of the MDP M̂χ constructed earlier
and A1, . . . ,Ak. Let S̃ be the set of states of M̃ . We consider each combination
of formulas in {ϕ1, . . . , ϕk}, i.e., each subset I ⊆ {1, . . . , k} such that I 	= ∅. For
each I, we take the conjunction of the accepting conditions of the deterministic
Rabin automata Ai for i ∈ I and apply the methods in [7] to compute the so
called success set UI ⊆ S̃ for this conjunction. Intuitively, in the states in UI

there exists a scheduler that can enforce the conjunction of the properties in I.
Finally, we solve the linear program that asks to minimize

∑
s̃∈˜S xs̃ subject

to (i) xs̃ ≥ 0 for all s̃ ∈ S̃, (ii) xs̃ ≥
∑

i∈I ci for all I ⊆ {1, . . . , k} and s̃ ∈ UI

and (iii) xs̃ ≥
∑

˜t∈˜S P(s̃, a, t̃) · x
˜t for all s̃ ∈ S̃ and a ∈ Actn. If (x∗

s̃)s∈˜S is the
optimal solution of the linear program, let c∗ =

∑
s̃∈˜S ι̃(s̃) · x∗

s̃.
If c∗ ≤ c, then for all tuples of schedulers S1, . . . ,Sn we have that if

MS1‖...‖Sn
|= χ, then for their product S = S1 ‖ . . . ‖ Sn it holds that

∑k
i=1(ci · ProbMn,S(ϕi)) ≤ c, and we conclude that M |= Φ. If, on the other

hand, we have c∗ > c, then the result is inconclusive. When this is the case, we
can use bounded model checking to search for counterexamples to formulas of
the form (1). For the procedure above, we establish the following result.

Theorem 3 (Complexity). Given an MDP M = (S,Act ,P, ι,AP, L) and a
PHL formula Φ of the form (1) the model checking procedure above runs in time
polynomial in the size of M and doubly exponential in the size of Φ.

create
consistency constraint

χ M

HyperLTL
synthesis

ϕχ
M

b unrealizable

construct
self-composition

n M

apply scheduler

Mn

S̃

probabilistic
model checking

C̃
P �� c

�

ϕ = ∃σ1 . . . ∃σn. χ ∧ P �� c

ϕS

Fig. 2. Bounded model checking of MDPs against PHL formulas for the form (2).

5 Bounded Model Checking

We present a bounded model-checking procedure for PHL formulas of the form

Φ = ∃σ1 . . . ∃σn.
(
χ ∧ c1 · P(ϕ1) + . . . + ck · P(ϕk) 
� c

)
(2)
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where χ = ∀π1 : σ1 . . . ∀πn : σn. ψ is in the ∀∗ fragment of HyperLTL [14]. An
example of a formula in this fragment is the formula in Example 1. By finding
a scheduler assignment that is a witness for a PHL formula of the form (2) we
can find counterexamples to PHL formulas of the form (1).

Given an MDP M = (S,Act ,P, ι,AP, L), a bound b ∈ N, and a PHL formula
Φ = ∃σ1 . . . ∃σn.

(
χ ∧ c1·P(ϕ1) +. . .+ ck·P(ϕk) 
� c

)
, the bounded model checking

problem for M, b and Φ is to determine whether there exists a deterministic
finite-memory scheduler S̃ = S1|| . . . ||Sn for Mn composed of deterministic
finite-memory schedulers Si = (Qi, δi, qi

0, act i) for M for i ∈ {1, . . . , n}, with
|S| = b such that Mn

˜S
|= χ ∧

∑k
i=1(ci · P(ϕi)) 
� c.

Our bounded model checking procedure employs bounded synthesis for the
logic HyperLTL [14] and model checking of Markov chains [19]. The flow of our
procedure is depicted in Fig. 2. The procedure starts by checking whether there
is a scheduler S̃ for Mn composed of schedulers S1, . . . ,Sn for M that satisfies
the constraint given by the hyperproperty χ. This is done by synthesizing a
scheduler of size b for the HyperLTL formula ϕχ

M composed of the formula
χ, an encoding of M , which ensures that the schedulers S1, . . . ,Sn defining S̃
follow the structure of M , and an additional consistency constraint that requires
S̃ to be a composition of n schedulers S1, . . . ,Sn for M .

If ϕχ
M is realizable, then the procedure proceeds by applying the synthesized

scheduler S̃ to the n-self-composition of the MDP M , which results in a Markov
chain C̃ = Mn

˜S
. To check whether the synthesized scheduler also satisfies the

probabilistic constraint P 
� c, we apply a probabilistic model checker to the
Markov chain C̃ to compute for each ϕi the probability Prob

˜C(ϕi), and then we
evaluate the probabilistic predicate P 
� c. If C̃ satisfies P 
� c, then Mn

˜S
|=

χ ∧
∑k

i=1(ci · P(ϕi)) 
� c, implying that M |= Φ. If not, we return back to the
synthesizer to construct a new scheduler. In order to exclude the scheduler S̃
from the subsequent search, a new constraint ϕ

˜S is added to ϕχ
M . The formula

ϕ
˜S imposes the requirement that the synthesized scheduler should be different

from S̃. This process is iterated until a scheduler that is a witness for Φ is found,
or all schedulers within the given bound b have been checked. The complexity
of the procedure is given in the next theorem and follows from complexity of
probabilistic model checking [19] and that of synthesis for HyperLTL [14].

Theorem 4 (Complexity). Given an MDP M = (S,Act ,P, ι,AP, L), a bound
b ∈ N, and a PHL formula Φ = ∃σ1 . . . ∃σn.χ ∧ c1·P(ϕ1) +. . .+ ck·P(ϕk) 
� c, the
bounded model checking problem for M, b and Φ can be solved in time polynomial
in the size of M , exponential in b, and exponential in the size of Φ.

5.1 Evaluation

We developed a proof-of-concept implementation of the approach in Fig. 2. We
used the tool BoSyHyper [14] for the scheduler synthesis and the tool PRISM
[20] to model check the Markov chains resulting from applying the synthesized
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Table 1. Experimental results from model checking plan non-interference.

Benchmark MDP size # Iterations Synthesis time (s) Model checking time (s)

Arena 3 16 6 12.04 2.68

Arena 4 36 5 17.23 2.19

Arena 5 81 5 18.49 2.76

Arena 7 256 5 19.46 3.01

Arena 9 625 7 168.27 4.72

3-Robots Arena 4 36 9 556.02 4.5

scheduler to the self-composition of the input MDP. For our experiments, we
used a machine with 3.3 GHz dual-core Intel Core i5 and 16 GB of memory.

Table 1 shows the results of model checking the “plan non-interference” spec-
ification introduced in Sect. 3.1 against MDP’s representing two robots that try
to reach a designated cell on grid arenas of different sizes ranging from 3-grid to
a 9-grid arena. In the last instance, we increased the number of robots to three
to raise the number of possible schedulers. The specification thus checks whether
the probability for a robot to reach the designated area changes with the move-
ments the other robots in the arena. In the initial state, every robot is positioned
on a different end of the grid, i.e., the farthest point from the designated cell.

Table 2. Detailed experimental results
for the 3-Robots Arena 4 benchmark.

Iteration Synthesis (s) Model checking (s)
1 3.723 0.504
2 3.621 0.478
3 3.589 0.469
4 3.690 0.495
5 3.934 0.514
6 4.898 0.528
7 11.429 0.535
8 60.830 0.466
9 460.310 0.611

In all instances in Table 1, the specifi-
cation with ε = 0.25 is violated. We give
the number of iterations, i.e., the number
of schedulers synthesized, until a coun-
terexample was found. The synthesis and
model checking time represent the total
time for synthesizing and model checking
all schedulers. Table 1 shows the feasibil-
ity of approach, however, it also demon-
strates the inherent difficulty of the syn-
thesis problem for hyperproperties.

Table 2 shows that the time needed for the overall model checking approach
is dominated by the time needed for synthesis: The time for synthesizing a sched-
uler quickly increases in the last iterations, while the time for model checking
the resulting Markov chains remains stable for each scheduler. Despite recent
advances on the synthesis from hyperproperties [14], synthesis tools for hyper-
properties are still in their infancy. PHL model checking will directly profit from
future progress on this problem.

6 Conclusion

We presented a new logic, called PHL, for the specification of probabilistic tem-
poral hyperproperties. The novel and distinguishing feature of our logic is the
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combination of quantification over both schedulers and paths, and a probabilis-
tic operator. This makes PHL uniquely capable of specifying hyperproperties of
MDPs. PHL is capable of expressing interesting properties both from the realm
of security and from the planning and synthesis domains. While, unfortunately,
the expressiveness of PHL comes at a price as the model checking problem for
PHL is undecidable, we show how to approximate the model checking problem
from two sides by providing sound but incomplete procedures for proving and for
refuting universally quantified PHL formulas. We developed a proof-of-concept
implementation of the refutation procedure and demonstrated its principle fea-
sibility on an example from planning.

We believe that this work opens up a line of research on the verification
of MDPs against probabilistic hyperproperties. One direction of future work
is identifying fragments of the logic or classes of models that are practically
amenable to verification. Furthermore, investigating the connections between
PHL and simulation notions for MDPs, as well studying the different synthesis
questions expressible in PHL are both interesting avenues for future work.
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Abstract. Witnessing subsystems have proven to be a useful concept in
the analysis of probabilistic systems, for example as diagnostic informa-
tion on why a given property holds or as input to refinement algorithms.
This paper introduces witnessing subsystems for reachability problems
in probabilistic timed automata (PTA). Using a new operation on differ-
ence bounds matrices, it is shown how Farkas certificates of finite-state
bisimulation quotients of a PTA can be translated into witnessing subsys-
tems. We present algorithms for the computation of minimal witnessing
subsystems under three notions of minimality, which capture the timed
behavior from different perspectives, and discuss their complexity.

1 Introduction

A witnessing subsystem is a part of a probabilistic system that by itself carries
enough probability to satisfy a given constraint. Hence, it provides insight into
which components of the system are sufficient for the desired behavior, and on
the other hand, which can be disabled without interfering with it. The concept of
witnessing subsystems (sometimes, dually, referred to as critical subsystems) for
discrete-time Markov chains (DTMC) and Markov decision processes (MDP) has
received considerable attention [14,17,18,34]. Apart from providing diagnostic
information on why a property holds, witnessing subsystems have been used for
automated refinement and synthesis algorithms [10,16].

In this paper we introduce witnessing subsystems for reachability constraints
in probabilistic timed automata (PTA) [6,23]. PTAs combine real-time, non-
deterministic, and probabilistic behavior and are a widely used formalism for
the modeling and verification of reactive systems such as communication pro-
tocols and scheduler optimization tasks [24,28]. However, as the state space of
PTAs is inherently uncountable, the theory of witnessing subsystems in finite-
state probabilistic systems is not applicable. Our generalization applies to both
maximal and minimal reachability probabilities, where particularly the latter
needs to be treated with special care in the timed setting.
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Excellence EXC 2050/1 (CeTI, project ID 390696704, as part of Germany’s Excellence
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A continuous algebraic counterpart to witnessing subsystems in MDPs are
Farkas certificates, which are vectors certifying threshold properties of the form
Prmin

M (♦goal) ≥ λ or Prmax
M (♦goal) ≥ λ [14]. We pave a two-way street between

witnessing subsystems in a PTA and Farkas certificates of finite-state bisimula-
tion quotients by giving explicit procedures how one can be obtained from the
other. It is noteworthy that this translation makes finite-state methods available
for the certification of threshold properties in infinite-state models.

Relevant information from a subsystem can only be expected after optimiza-
tion along suitable minimality criteria, the most prevalent of which for MDPs is
state-minimality. In the timed setting, however, the usefulness of a minimality
criterion is more volatile under changing the specific practical problem. For this
reason, we introduce three notions of minimality aimed at finding witnessing
subsystems with few locations, strong invariants, or small invariant volume.

In all three cases, we present single-exponential algorithms for the compu-
tation of minimal witnessing subsystems. They heavily rely on the connection
between PTA subsystems and Farkas certificates of bisimulation quotients and
can also be adapted to faster heuristic approaches. Furthermore, we observe that
while comparing two subsystems according to their location number or invari-
ance strength is not difficult, it is inherently harder (PP-hard) to compare their
invariance volume. All omitted proofs can be found in the technical report [19].

Contributions. The notion of (strong) subsystem for PTAs is introduced (Defi-
nition 3.1) and justified by proving that reachability probabilities do not increase
under passage to a subsystem (Corollary 3.4). It is shown that subsystems
of a PTA induce Farkas certificates in time-abstracting bisimulation quotients
(Theorem 3.3). Vice versa, a conceptual construction of PTA subsystems
from Farkas certificates of such quotients is given (Definition 3.9 and Propo-
sition 3.11), which relies on a new operation on difference bounds matrices
(DBMs), see Definition 3.5. Three notions of minimality for PTA subsystems are
introduced and compared. We present mixed integer linear programs for comput-
ing location- and invariance-minimal subsystems. Volume-minimal subsystems
can be computed with the aid of a multi-objective mixed integer linear program
(Sect. 4). Regarding volume-minimality, we establish PP-hardness of comparing
two witnessing subsystems according to their volume (Theorem 4.11).

Related Work. Exact and heuristic approaches for computing minimal and
small witnessing subsystems in DTMCs have been proposed in [17,18], and gen-
eralizations to MDPs have been considered in [3,14,34]. The approach in [33]
is most closely related to our work as it finds counterexamples for a high-
level description (a guarded command language for MDPs). Model checking
PTAs against PTCTL specifications has first been described in [23]. Subsequent
approaches use digital clocks [25], symbolic model checking techniques [26], or
the boundary region graph [20]. The work [9] presents an algorithm for price-
bounded reachability in PTAs. The complexity of model checking PTAs was
studied in [21,27]. The notion of bisimulation that we use was introduced in [11]
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and used for verification techniques in [31]. The computation and analysis of
counterexamples in (non-probabilistic) timed automata was studied in [12,22].
Certification of unreachability was recently examined for timed automata [35].
DBMs are a widely used data structure for timed systems (see [26,32]) that were
first analyzed in [13] and most notably used in the model checker UPPAAL[7].

2 Preliminaries

For any set S we denote by Dist(S) the set of probability distributions on S
(seen as a discrete measurable space). Given s ∈ S, we let δs ∈ Dist(S) denote
the Dirac distribution on s, i.e. δs(t) = 0 for all t �= s and δs(s) = 1.

Markov Decision Processes. A Markov decision process (MDP) is a tuple
M = (S,Act, T, s0), where S is a set of states, Act is a finite set of actions,
T : S → 2Act×Dist(S) is a transition function, and s0 ∈ S is the initial state.
We assume that T (s) is non-empty and finite for all s ∈ S. A finite path is
a sequence π = s0(α0, μ0)s1(α1, μ1)...sn such that for all 0 ≤ i ≤ n − 1 we
have (αi, μi) ∈ T (si) and μi(si+1) > 0. A scheduler S selects for each such
finite path π in M an element of T (sn). Infinite paths are defined accordingly.
For s ∈ S and G ⊆ S the supremum Prmax

M,s(♦G) := supS PrSM,s(♦G) and
infimum Prmin

M,s(♦G) := infS PrSM,s(♦G), ranging for all schedulers S over the
probability of those S-paths starting in s and eventually reaching G, are attained
(see, for example, [5, Lemmata 10.102 and 10.113]). We define Pr∗

M(♦G) =
Pr∗

M,s0
(♦G) for ∗ ∈ {min,max}. Let M = (Sall,Act, T, s0) be an MDP with

two distinguished absorbing states goal and fail. A (weak) subsystem M′ of M,
denoted M′ ⊆ M, is an MDP M′ = (S′

all,Act, T ′, s0) with goal, fail ∈ S′
all ⊆

Sall, and for each (α, μ′) ∈ T ′(s) there exists (α, μ) ∈ T (s) such that for v �= fail
we have μ′(v) ∈ {0, μ(v)}. Intuitively, in a subsystem some states and actions of
M are deleted and some edges are redirected to fail. A subsystem is strong if, vice
versa, for each (α, μ) ∈ T (s) there exists (α, μ′) ∈ T ′(s) with μ′(v) ∈ {0, μ(v)}.1

Farkas Certificates. Let us assume that for all s ∈ S := Sall\{goal, fail}
we have Prmin

s (♦(goal ∨ fail)) > 0. In the following we write R
M for the real

vector space indexed by
⋃

s∈S{s} × T (s). To each of the threshold properties
Pr∗

s0
(♦goal) ∼ λ for ∗ ∈ {min,max} and ∼ ∈ {≤, <,≥, >}, one can associate

a polytope (possibly with non-closed faces) sitting either in R
S or R

M that is
non-empty if and only if the threshold is satisfied. Elements in this polytope are
called Farkas certificates for the respective threshold property. The polytope of
Farkas certificates for lower-bound thresholds Pr∗

s0
(♦goal) ≥ λ are of the form

1 This is a slight deviation from [14], where only strong subsystems were considered.
Here we distinguish between weak and strong subsystems since it will reflect the
corresponding notions for PTAs established in Sect. 3.



504 S. Jantsch et al.

Pmin
M (λ) = {z ∈ R

S
≥0 | Az ≤ b ∧ z(s0) ≥ λ}, for ∗ = min

Pmax
M (λ) = {y ∈ R

M
≥0 | yA ≤ δs0 ∧ yb ≥ λ}, for ∗ = max,

where A ∈ R
M×S and b ∈ R

S can be taken as a black box in this paper.
The main result of [14] states that to any Farkas certificate z ∈ Pmin

M (λ) one
can associate a strong subsystem M′ ⊆ M whose states are contained in
supp(z) = {s ∈ S | z(s) > 0} and which satisfies Prmin

M′,s0
(♦goal) ≥ λ. The

corresponding statement holds for y ∈ Pmax
M (λ) and subsystems with states

contained in suppS(y) = {s ∈ S | ∃α ∈ T (s). y(s, α) > 0}.

Clock Constraints and Difference Bounds Matrices. We fix a finite num-
ber of clocks C = {c0, c1, ..., cn}, where by convention c0 is a designated clock
always representing 0 so that absolute and relative time bounds can be written
in a uniform manner. A valuation on C is a map v : C → R≥0 such that v(c0) = 0.
The set of all valuations on C is denoted by Val(C). For a valuation v and t ∈ R≥0

we denote by v+t the valuation with (v+t)(c) = v(c)+t for all c ∈ C\{c0}. Given
C ⊆ C we let v[C := 0] be the reset valuation with v[C := 0](c) = 0 for c ∈ C
and v[C := 0](c) = v(c) for c /∈ C. The set of clock constraints CC(C) is formed
according to the following grammar: g :: = true | false | c − c′ ∼ x | g ∧ g, where
c, c′ ∈ C, x ∈ Z ∪ {∞,−∞}, and ∼ ∈ {≤, <,≥, >}. A valuation v satisfies a
clock constraint g, written as v |= g, if replacing every clock variable c in g with
the value v(c) leads to a true formula. We set Val(g) = {v ∈ Val(C) | v |= g}
and define g1 � g2 if Val(g1) ⊆ Val(g2). A subset Z ⊆ Val(C) is a zone if
Z = Val(g) for some clock constraint g. We commonly represent a clock con-
straint by a difference bounds matrix (DBM), which is a C × C-matrix M over
(Z ∪ {∞,−∞}) × {<,≤}. The intended meaning of an entry Mij = (a, �) is the
constraint ci − cj � a. To each DBM M one can associate a DBM M∗ containing
constraints that are as tight as possible while still satisfying Val(M∗) = Val(M)
(see [13, Theorem 2]). We make use of the operations � from [13] (corresponding
to logical conjunction of the associated clock constraints) and the time closure
operation ↑ of [8] (there called up), which removes all absolute time bounds from
the DBM, see also the technical report [19, Lemma A.2].

Probabilistic Timed Automata. A probabilistic timed automaton (PTA) is a
tuple T = (Loc, C,Act, inv, T, l0), where Loc is a finite set of locations, C is a finite
set of clocks, Act is a finite set of actions, inv : Loc → CC(C) is the invariance
condition, T : Loc → 2CC(C)×Act×Dist(2C×Loc) is the transition function with T (l)
non-empty and finite for every l ∈ Loc, and l0 ∈ Loc is the initial location, for
which we assume that 0 |= inv(l0). A transition (g, α, μ) ∈ T (l) is written as
l

g:α−→ μ and the element g is called the guard. The intended meaning of T (l) is
that from location l one first chooses non-deterministically a transition l

g:α−→ μ,
provided that the guard g is satisfied by the current clock valuation. Then an
element (C, l′) ∈ 2C × Loc is picked according to the distribution μ, the clocks
in C are reset and the next location is set to l′.
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A timed probabilistic system (TPS) is a tuple S = (S,Act′, T, s0), where S
is a set of states, Act′ = Act � R+ is a set of actions (Act is assumed to be
finite), T : S → 2Act′×Dist(S) is the transition function, and s0 the initial state.
For a pair (α, μ) ∈ T (s) (or s

α−→ μ) we assume that μ has finite support.
Transitions indexed by R+ are called time delays and transitions indexed by
Act are discrete actions. Schedulers are defined as for MDPs, and a scheduler S
is time-divergent if for almost every path compatible with S the series of time
delays is divergent. Reachability probabilities Pr∗

S,s(♦T ) for ∗ ∈ {min,max} are
defined as for MDPs, but only taking time-divergent schedulers into account.

A pointed PTA (T , goal, fail) consists of a PTA T = (Loc, C,Act, inv, T, l0)
and two distinguished absorbing locations goal, fail ∈ Loc. The semantics of a
pointed PTA is the TPS S(T ) = (S,Act′, Tsem, s0) with S = {(l, v) ∈ Loc ×
Val(C) | v |= inv(l)}, Act′ = Act � R+, s0 = (l0, 0), and Tsem is the smallest
function satisfying the inference rules

t ∈ R+,∀t′ ≤ t. v + t′ |= inv(l)

(l, v) t−→ δ(l,v+t) ∈ Tsem

and
l

g:α−→ μ ∈ T, v |= g

(l, v) α−→ μsem ∈ Tsem

, where

μsem(l′, v′) =
∑

(C,l′)
v′=v[C:=0]

μ(C, l′) for l′ �= fail and v′ |= inv(l′) (2.1)

μsem(fail, v′) =
∑

(C,fail)
v′=v[C:=0]

μ(C, fail) +
∑

(C,l′), l′ �=fail
v′=v[C:=0] �|= inv(l′)

μ(C, l′) (2.2)

We define the goal set of S(T ) to be goalS(T ) = {(l, v) ∈ S | l = goal}. For
∗ ∈ {min,max} the probability to reach goal in T is defined as

Pr∗
T ,l0(♦goal) := Pr∗

S(T ),s0
(♦goalS(T ))

Remark 2.1. Typically, the semantics is only defined if the PTA is well-formed.
This means that no transition leads to a violation of the invariance condition of
the target. We relax this condition and, in the case that v′ = v[C := 0] �|= inv(l′),
add the probability of (C, l′) to the edge (l, v) α−→ (fail, v′) (this is the second
sum in Eq. (2.2)). This generalization will facilitate our translation from Farkas
certificates of quotients of S(T ) to PTA subsystems.

Probabilistic Time-Abstracting Bisimulation. As in [11], we define a
probabilistic time-abstracting bisimulation (PTAB) on a TPS S = (S,Act �
R+, T, s0) to be an equivalence relation ∼ on S such that if s ∼ s′ we have:

(1) for any time delay s
t→ u there exists a time delay s′ t′

→ u′ such that u ∼ u′;
(2) for any discrete action s

α→ μ, there exists a discrete action s′ α→ μ′ such
that for all E ∈ S/∼ we have

∑
s∈E μ(s) =

∑
s∈E μ′(s).
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If S has distinguished sets goal, fail ⊆ S, we say that a PTAB ∼ respects goal
and fail if whenever (l, v) ∼ (goal, v′), then l = goal, and likewise for fail. The
quotient of S by ∼ is the MDP M(S/∼) = (S/∼,Act ∪ {τ}, T ′, [s0]) with

T ′([s]) = {(τ, δ[s′]) | ∃(t, δs′) ∈ T (s)} ∪ {(α, μ/∼) | ∃(α, μ) ∈ T (s)}

with μ/∼(E′) =
∑

s′∈E′ μ(s′). As we could not find a formal proof for the fol-
lowing lemma in the literature, we included one in the technical report [19].

Lemma 2.2. Let S be a TPS and ∼ a PTAB on S that respects goal and fail.
Then for all s ∈ S and ∗ ∈ {min,max} we have

Pr∗
S,s(♦goal) = Pr∗

M(S/∼),[s](♦goal).

3 Witnessing Subsystems for Reachability in PTAs

In this chapter we generalize the notion of subsystems formalized first for Markov
chains in [17] and MDPs in [34] to PTAs. From now on we assume for all pointed
PTAs (T , goal, fail) that the probability to eventually reach goal or fail is 1 for
each time-divergent scheduler over the semantics S(T ). This is necessary to
apply the results of [14]. An important application that justifies this assumption
is time-bounded reachability, where goal needs to be reached before an absolute
time-bound K. This can be encoded in our setting by adding a clock c∗ that is
never reset, and adding c∗ ≤ K to the invariance of every location.

3.1 Subsystems for PTAs

Definition 3.1 (Subsystem). Let (T , goal, fail) be a pointed PTA with T =
(Loc, C,Act, inv, T, l0). A PTA T ′ = (Loc′, C,Act, inv′, T ′, l0) is a (weak) sub-
system of T if the following three conditions hold:

(1) goal, fail ∈ Loc′ ⊆ Loc;
(2) for all locations l ∈ Loc′ we have inv′(l) � inv(l);
(3) for all l ∈ Loc′ there is an injective map Φ : T ′(l) → T (l) such that for

Φ(l
g′:α′
−→ μ′) = l

g:α−→ μ we have (3a) g′ � g, (3b) α′ = α, and (3c) for all
(C, l′) ∈ 2C × Loc′ with l′ �= fail we have μ′(C, l′) ∈ {0, μ(C, l′)}.

We call T ′ a strong subsystem if, additionally, the following two conditions hold
for all l ∈ Loc′:

(3 ∗) there is a left-inverse Ψ : T (l) → T ′(l) of Φ such that for Ψ(l
g:α−→ μ) = l

g′:α′
−→

μ′ we have (3a ∗) g′ ≡ g ∧ inv′(l), and (3b) and (3c) as above;
(4) if v ∈ Val(C) and t ∈ R+ satisfy v |= inv′(l) and v + t |= inv(l), then also

v + t |= inv′(l).



Minimal Witnesses for Probabilistic Timed Automata 507

l0, x = 0

l1, x ≤ 2 l2, y ≤ 2

l3, x ≤ 1

goal fail

x := 0

α

β x ≤ 1

2
5

3
5

x ≥ 1

1
2

1
2

y ≥ 1

2
5

3
5

x ≥ 1

3
4

1
4

(a)

l0, x = 0

l1, x ≤ 2 l2, y ≤ 2

l3, x ≤ 1, y ≤ 1

goal fail

x := 0

α

β x ≤ 1

x ≥ 1

2
5

3
5

x ≥ 2

1
2

1
2

y = 2

2
5 3

5

(b)

Fig. 1. A pointed PTA (left) and a weak subsystem therein (right).

In other words, in the passage from T to a subsystem, it is allowed to discard
locations and elements in T (l), redirect individual transitions to fail, and shrink
invariants and guards. This will be sufficient for witnessing lower bounds on
Prmax (see Corollary 3.4 below). For witnessing lower bounds on Prmin we need
the extra assumptions that elements in T (l) must not be deleted, guards can only
shrink as much as the invariance and that inv′(l) is closed under time successors.
On the level of quotients of the semantics of T , this reflects the difference between
weak and strong subsystems for MDPs (see Sect. 2). We demand Ψ to be a left-
inverse of Φ instead of requiring that both are bijections since two different
elements of T (l) might coincidentally be shrunk to the same element of T ′(l).

Example 3.2. Consider the PTA T displayed in Fig. 1a. A scheduler S in T
principally has to choose between α and β whenever in l1 (and letting time pass
accordingly). Action α in state (l1, (x, y)) ∈ S(T ) leads to a higher probability
to reach goal exactly when y ≤ 2, the reason being that then the right-hand
branch of T contributes towards PrS(♦goal) upon leaving l0 the next time.
Thus choosing β upon leaving l1 for the first time leads to a scheduler attaining
Prmin

T (♦goal) (cf. Example B.1 in the technical report [19]). An example of a
weak subsystem T ′ ⊆ T is portrayed in Fig. 1b, with differences to T indicated in
red. Even though T ′ fails to be a strong subsystem (e.g. the guard of α is shrunk
more than allowed), we have Prmin

T (♦goal) ≥ Prmin
T ′ (♦goal). However, this is not

true for all weak subsystems: Take T ′′ obtained from T by changing only the
guard of the action β at l1 from x ≤ 1 to x ≤ 1 ∧ y ≥ 2. Then any scheduler
is forced to take α at least once, resulting in Prmin

T (♦goal) < Prmin
T ′′ (♦goal).

Removing action β and location l3 altogether has the same effect. This example
illustrates that strong subsystems are indeed needed in order to deal with Prmin

(cf. Corollary 3.4). More details can be found in the technical report [19].
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We show that subsystems of a PTA T induce Farkas certificates in finite-state
quotients of S(T ), which are supported on the states induced by the subsystem.
In other words, subsystems are reflected purely algebraically on the level of Farkas
certificates. This is a generalization of the forward direction of [14, Theorem 5.4].

Theorem 3.3 (PTA Subsystems Induce Farkas Certificates). Let
(T , goal, fail) be a pointed PTA, and let ∼ be a PTAB on S(T ) that respects
goal and fail and has finite index. Let M = M(S(T )/∼) be the associated
quotient MDP with states S ∪ {goal, fail}. Given a subsystem T ′ ⊆ T , let
S′ = {[s] ∈ S | s is a state of S(T ′)}.

Then there is a Farkas certificate y ∈ R
M for Prmax

M (♦goal) ≥ Prmax
T ′ (♦goal)

with suppS(y) ⊆ S′. If T ′ is a strong subsystem, then there also exists a Farkas
certificate z ∈ R

S for Prmin
M (♦goal) ≥ Prmin

T ′ (♦goal) such that supp(z) ⊆ S′.

Corollary 3.4. Let (T , goal, fail) be a pointed PTA.

(1) If T ′ ⊆ T is a subsystem, then Prmax
T (♦goal) ≥ Prmax

T ′ (♦goal).
(2) If T ′ ⊆ T is a strong subsystem, then Prmin

T (♦goal) ≥ Prmin
T ′ (♦goal).

3.2 Zone Closure for DBMs

Our next aim is to show how Farkas certificates of the quotient M(S/∼) can be
translated back into PTA subsystems. As location invariants are described by
zones, this requires to pass from states of the quotient (which represent equiva-
lence classes of clock valuations) to zones that include these valuations and are
as small as possible. We do this using the following operation, which relies on the
lexicographic order on DBMs (see also the technical report [19, Section A.1]).

Definition 3.5 (Zone Closure). Let M and N be DBMs over C. The zone
closure M � N is the DBM defined by

(M � N)ij = max{Mij , Nij} for all i, j ∈ C.

The zone closure satisfies the following properties:

Lemma 3.6. Let M,N be DBMs such that M = M∗ and N = N∗. Then

(1) Val(M � N) is the smallest zone in Val(C) containing Val(M) ∪ Val(N).
(2) We have (M � N)∗ = (M � N).

Given an arbitrary subset R ⊆ Val(C) the canonical DBM MR associated
to R is defined as (MR)ij = (sup{v(i) − v(j) | v ∈ R}, �) for i, j ∈ C, where
� = ≤ exactly if the supremum is attained, and otherwise <. Then MR = M∗

R

and Val(MR) is the smallest zone of Val(C) that contains R (see the technical
report [19, Lemma A.1]). Applying Lemma 3.6 to the canonical DBM associated
to sets of clock valuations gives:

Proposition 3.7. Let R1, ..., Rn ⊆ Val(C) be sets of clock valuations. For every
i let MRi

be the canonical DBM of Ri and set M =
⊔n

i=1 MRi
. Then, Val(M)

is the smallest zone in Val(C) that contains all sets Ri.
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3.3 From Farkas Certificates to Witnessing Subsystems

We are now in a position to outline a construction which reverses Theorem 3.3,
i.e., which passes from Farkas certificates for threshold properties in finite-state
quotients of the PTA semantics to PTA subsystems. Of course, the constructed
subsystems should witness the same threshold on the level of the PTA, as follows:

Definition 3.8 (Witness). Let (T , goal, fail) be a pointed PTA and let λ ∈
[0, 1]. A witnessing subsystem or simply a witness for Prmax

T (♦goal) ≥ λ is
a subsystem T ′ ⊆ T such that Prmax

T ′ (♦goal) ≥ λ. A witnessing subsystem
or witness for Prmin

T (♦goal) ≥ λ is a strong subsystem T ′ ⊆ T such that
Prmin

T ′ (♦goal) ≥ λ.

By Corollary 3.4 a witnessing subsystem is indeed a witness for the given
threshold property. The next definition shows how to construct a witness from
Farkas certificates of finite-state quotients of the PTA semantics. Here and for
the rest of this section we use the notation S = Sall\{goal, fail}, where Sall are
the states of a PTAB quotient of S(T ).

Definition 3.9 (Induced Subsystems). Let (T , goal, fail) be a pointed PTA,
and let M = (Sall,Act, T, s0) the quotient of S(T ) by a PTAB ∼ that respects
goal and fail and has finite index. Given s ∈ S and l ∈ Loc we put

s|l = {v ∈ Val(C) | (l, v) ∈ s}.

For a fixed R ⊆ S we define subsystems T w
R = (Loc′, C,Act, invw, Tw, l0) and

T s
R = (Loc′, C,Act, invs, T s, l0) induced by R as follows:

– Both have locations: Loc′ = {l ∈ Loc | ∃s ∈ R. s|l �= ∅} ∪ {goal, fail}
– For each location l ∈ Loc′ we consider the DBMs

Mw
l =

⊔

s∈R

Ms|l and Ms
l = (↑Mw

l ) � Minv(l)

and let invw(l) = Mw
l and invs(l) = Ms

l .
– For every l

g:α−→ μ in T (l) with l ∈ Loc′ let

gw = g �
⊔

s∈R
∃(l,v)∈s. v |= g

Ms|l and gs = g � invs(l)

For C ⊆ C and l′ ∈ Loc′\{fail} let

μ′(C, l′) =

{
μ(C, l′) if ∃s, s′ ∈ R, (l, v) ∈ s. (l′, v[C := 0]) ∈ s′

0 otherwise

and assign the remaining probability to μ′(fail, ∅). Now add a transition l
gw:α−→

μ′ to Tw(l) and l
gs:α−→ μ′ to T s(l).
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The intuition behind this construction is that one completes all states of T
whose equivalence class is in R to a smallest (weak or strong) subsystem of T
whose state space contains this set. In each location, the set of clock valuations
which induce states in R is turned into a viable invariance condition using the
operation �. Guards of transitions in T are shrunk accordingly, and their support
is restricted to those pairs (C, l′) which – on the level of the quotient M – induce
at least one transition between two elements of R.

Lemma 3.10. Let (T , goal, fail) be a pointed PTA and M = (Sall,Act, T, s0)
the quotient of S(T ) by a PTAB that respects goal and fail. Then for any R ⊆ S,
T w

R is a subsystem and T s
R is a strong subsystem of T .

The following proposition states that Farkas certificates for any PTAB quo-
tient of the PTA can be used to find witnesses for probabilistic reachability
constraints. It is a generalization of the backward direction of [14, Theorem 5.4]
and provides a converse of Theorem 3.3.

Proposition 3.11 (Farkas Certificates to Witnesses). Let (T , goal, fail)
be a pointed PTA and M = (Sall,Act, T, s0) the quotient of S(T ) by a PTAB ∼
that respects goal and fail. Fix λ ∈ [0, 1] and R ⊆ S.

If there exists a Farkas certificate z ∈ Pmin
M (λ) with supp(z) ⊆ R, then T s

R

is a witness for Prmin
T (♦goal) ≥ λ. Likewise, if there exists a Farkas certificate

y ∈ Pmax
M (λ) with suppS(y) ⊆ R, then T w

R is a witness for Prmax
T (♦goal) ≥ λ.

4 Computing Minimal Witnessing Subsystems

We now introduce three notions of minimality for subsystems of PTAs and show
how minimal (or small) subsystems can be computed. Henceforth let M be the
quotient (with states Sall) of the semantics of a pointed PTA (T , goal, fail) by a
PTAB ∼ that has finite index and let S = Sall\{goal, fail}.

As the threshold problem for min and max-reachability constraints of PTAs is
directly reducible to the existence of a witness for the same property, computing
(minimal) witnessing subsystems is at least as hard as this problem. Deciding
Prmax

T (♦goal) ≥ 1 is EXPTIME-hard [27, Theorem 3.1] for PTAs, which holds
already for time-bounded reachability. PSPACE-hardness of Prmin

T (♦goal) ≥ 1
(which is equivalent to Prmax

T (♦goal) > 0 in the time-bounded setting) follows
from PSPACE-hardness of non-probabilistic reachability [2, Theorem 4.17].

4.1 Notions of Minimality for PTA Subsystems

For a set of valuations R ⊆ Val(C) we denote by vol(R) the Lebesgue volume of
R considered as a subset of RC\{c0}. The volume of a PTA T is defined as

vol(T ) =
∑

l∈Loc(T )

vol
(
Val(inv(l))

)
∈ R≥0 ∪ {∞}.
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Definition 4.1 (Notions of Minimality). We define three partial orders on
subsystems T1, T2 of a PTA T as follows:

(1) T1 ≤loc T2 if |Loc(T1)| ≤ |Loc(T2)|;
(2) T1 ≤inv T2 if Loc(T1) ⊆ Loc(T2) and for all l ∈ Loc(T1) : invT1(l) � invT2(l);
(3) T1 ≤vol T2 if vol(T1) ≤ vol(T2).

We say that a witness T ′ ⊆ T for some threshold property as defined in Def-
inition 3.8 is loc-minimal (respectively, inv-minimal or vol-minimal) if T ′ is
a ≤loc-minimal element (respectively, ≤inv-minimal or ≤vol-minimal element)
among all witnesses of T for the same threshold property.

When considering inv- and vol-minimality, we will assume that Val(inv(l)) is
bounded for every location l ∈ Loc, or, equivalently, that a finite upper bound
on all clocks exists. This will guarantee that the set of witnesses that we have
to consider is finite, and, for vol-minimality, that their volume is finite.

The rationale for considering vol-minimal witnesses is that they have – in
a precise measure-theoretic sense – a minimal number of states. Note that in
contrast to ≤loc and ≤vol, the partial order ≤inv is not a total order and thus
results in general in many incomparable inv-minimal witnesses.

Example 4.2. Consider the PTA of Example 3.2. Table 1 lists minimal witnesses
for λ = 6/25 for all three notions of minimality. The inv-minimal witnesses for
Prmax also encode corresponding schedulers with probability of at least 6/25
(e.g. the first one encodes waiting in l1 for one time unit, choosing α, and on
the branch going through l0 repeating this once more). For Prmin, the inv-
minimal witnesses ensure that whatever choice the scheduler makes the induced
probability will be at least 6/25. See Example C.1 in the technical report [19]
for more details.

Lemma 4.3. We have ≤inv ⊆ ≤loc ∩ ≤vol. Moreover, ≤vol and ≤loc are incom-
parable in general.

Note that Lemma 4.3 does not imply that inv-minimal witness are loc-
minimal or vol-minimal. This is because an inv-minimal witness might be ≤inv-
incomparable to witnesses with smaller volume (see also Example 4.2).

4.2 Computing Loc-Minimal Witnesses

In this section we will assume that whenever (l1, v1) ∼ (l2, v2), then l1 = l2.
To compute a loc-minimal strong subsystem of T we use a mixed integer linear
program (MILP) over the inequalities defining Pmin

M (λ) (see Sect. 2). We first
define the linear inequalities:

z ∈ Pmin
M (λ) and z[(l,v)] ≤ ζl for all [(l, v)] ∈ S (LOC-CONSTR)

This adds exactly |S| inequalities to the ones defining Pmin
M (λ). The idea is that

as the variable z[(l,v)] measures whether [(l, v)] should be contained in the MDP
subsystem associated with a Farkas certificate, the new variable ζl measures
whether location l is needed at all in the corresponding PTA subsystem.
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Table 1. Every indent describes a minimal witness for the PTA T in Fig. 1a. For
inv-minimal ones, invariants are highlighted in blue after colons of the corresponding
location, where the clock x is drawn on the horizontal axis, y on the vertical axis, and
gridlines have unit 1.

Prmax
T (♦ goal) ≥ 6/25 Prmin

T (♦ goal) ≥ 6/25

loc – keeping l0 and l1;
– keeping l0 and l2;

– keeping l0 and l2;

inv

– l0: , l1:

– l0: , l2:

– l0: , l1: , l3:

– l0: , l1: , l3:

– l0: , l2:

– l0: , l1: , l3:

vol – the bottom three inv-minimal
witnesses from above (vol = 0)

– the top inv-minimal witness
from above (vol = 0)

Proposition 4.4. There exists a witnessing subsystem for Prmin
T (♦goal) ≥ λ

with at most k locations (excluding goal and fail) if and only if there exists a
pair (z, ζ) that satisfies (LOC-CONSTR), where ζ has at most k non-zero entries.

Restricting ζl to the domain {0, 1} leads to the following MILP:

min
∑

l∈Loc

ζl s.t. (z, ζ) satisfies (LOC-CONSTR) (LOC-MILP)

By Proposition 4.4, solutions of (LOC-MILP) correspond to loc-minimal witnesses
for Prmin

T (♦goal) ≥ λ. Although the size of (LOC-MILP) is exponential in the size
of T , it has only |Loc| many binary variables. Hence, if the size of M is single-
exponential (as is already the case for the region graph, see [1,23]), a loc-minimal
witness can be computed in single-exponential time:

Proposition 4.5. A loc-minimal witness for Prmin
T (♦goal) ≥ λ can be computed

in time O(2|Loc| · poly(|M|)), if one exists.

One can deal with Prmax
T (♦goal) ≥ λ similarly. In [14] the quotient sum

heuristic was introduced as an approach for finding vectors with many zeros in a
given polytope by iteratively solving LPs whose objective function is the inverse
of the last optimal solution. This approach can be adapted to maximize zeros in
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only part of the dimensions by assigning the objective value 0 to the rest. In the
case of loc-minimal witnesses one discards all variables z[(l,v)] and optimizes only
over the new variables ζl (which are non-binary in the LP-based QS heuristic).

4.3 Computing Inv-Minimal Witnesses

We now assume that Val(inv(l)) is bounded in every location l, and take K to
be an upper bound on all clocks that must then exist. While for loc-minimality
we assumed that ∼ distinguishes locations, now we additionally assume that
if (l1, v1) ∼ (l2, v2), then there is no clock constraint γ such that v1 |= γ and
v2 �|= γ. So, equivalent valuations must be indistinguishable by clock constraints.
The coarsest PTAB that achieves this is the region equivalence (see [1,23]).

To encode invariance strength, we will use n = 4K + 1 binary variables ξl
ij(k)

with k ∈ {−2K, . . . , 2K} for every location l and ordered pair of clocks ci, cj . The
intended meaning of ξl

ij(k) = 1 is that �k/2� is an upper bound for v(i) − v(j) for
all v ∈ Val(inv(l)). We have introduced the granularity 1/2 in order to distinguish
between strict and non-strict inequalities. For even k, which will represent ≤, the
upper bound will always be met. Formally, we consider the following constraints,
ranging over l ∈ Loc and ci, cj ∈ C with j �= 0:

z ∈ Pmin
M (λ)

z[(l,v)] ≤
{

ξl
ij(2a− 1) if (M[(l,v)])ij = (a,<)

ξl
ij(2a) if (M[(l,v)])ij = (a,≤)

ξl
ij(k) ≤ ξl

ij(k − 1) for all k ∈ {−2K + 1, . . . , 2K}

(INV-CONSTR)

In the above, M[(l,v)] is the canonical DBM for the set of valuations {v′ ∈ Val(C) |
(l, v′) ∈ [(l, v)]} as defined in Sect. 3.2. The reason for excluding the constraints
where cj is the zero clock is that for strong subsystems a stronger invariant can-
not be achieved by strengthening the upper bound of a clock, cf. Definition 3.1,
(4). On top of these constraints we now define the MILP:

min
∑

l,i,j,k

ξl
ij(k) s.t (z, ξ) satisfies (INV-CONSTR). (INV-MILP)

Proposition 4.6. If (z, ξ) is a solution of (INV-MILP), then T s
supp(z) is an inv-

minimal witness for Prmin
T (♦goal) ≥ λ.

The number of binary variables in (INV-MILP) is n·|Loc|·(|C|2 − |C|). However,
due to the constraints ξl

ij(k) ≤ ξl
ij(k − 1), there are only n possible configurations

of the binary variables ξl
ij(k) for every location l and pair of clocks ci, cj . Hence,

the number of satisfying configurations of ξ is bounded by n|Loc|·(|C|2−|C|). In a
similar way as for Proposition 4.5 we get:

Proposition 4.7. An inv-minimal witness for Prmin
T (♦goal) ≥ λ can be com-

puted in time O(2log(n)·|Loc|·|C|2 · poly(|M|)), if one exists.
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Again, Prmax
T can be treated similarly and the same idea of deriving heuristics

that was outlined to loc-minimal witnesses can be used here.

4.4 Computing Vol-Minimal Witnesses

As for inv-minimality, we will assume that ∼ distinguishes states that are dis-
tinguishable by clock constraints and that K is an upper bound on all clocks.
To get a candidate set of possible vol-minimal witnesses, we use the following
lemma:

Lemma 4.8. For ∗ ∈ {min,max}, there is at least one witness for Pr∗
T (♦goal)

≥ λ that is both inv- and vol-minimal.

Hence, to find a vol-minimal witness it suffices to compute (1) all inv-minimal
witnesses and (2) compare their volumes. Using the results of the previous
section, for (1) it is enough to solve the multi-objective mixed integer linear
program

for all
l∈Loc

ci,cj∈C
j �=0

: min
∑

k

ξl
ij(k) s.t. (z, ξ) satisfies (INV-CONSTR) (INV-MO)

A solution of this program is a vector that satisfies (INV-CONSTR) and such
that all other vectors satisfying (INV-CONSTR) evaluate worse on at least one
objective function. This implies that the set of solutions of (INV-MO) encodes
precisely the set of inv-minimal witnesses for Prmin

T (♦goal) ≥ λ. Techniques for
solving such programs efficiently are presented in [29,30].

Let vol(|C|2, log(K)) be the time complexity of computing the volume of
a DBM over clocks C with entries bounded from above by K. This factor is
exponential in general, but polynomial if the number of clocks is fixed [15]. Then
we get the following time complexity for computing vol-minimal witnesses:

Proposition 4.9. A vol-minimal witness for Prmin
T (♦goal) ≥ λ can be com-

puted in time O(2log(n)·|Loc|·|C|2 · vol(|C|2, log(K)) · poly(|M|)), if one exists.

4.5 Hardness of Deciding ≤vol

Computing the volume of a polytope generally requires exponential time in the
number of dimensions. However, as the invariants of PTA have a restricted form
involving only linear inequalities with at most two clocks, one might hope that
computing their volume is easier. We now show that this is not the case (under
the standard complexity theoretic assumptions).

We recall that #P is the counting complexity class that includes the func-
tions that can be expressed as the number of accepting runs of a polynomial
time, non-deterministic Turing machine (NTM) for a given input. Hardness for
#P is typically defined using polynomial-time Turing reductions. The analogous
decision class is PP, where L ∈ PP if there is a polynomial time NTM such that
x ∈ L if and only if the majority of runs of the NTM on x is accepting (see [4,
Chapter 9] for an introduction). Via a reduction from #P-hardness results on
polytope volume computation, we obtain:
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Proposition 4.10. Computing vol(Val(M)) for a DBM M is #P-hard.

Using this proposition we can show that deciding the ≤vol relation for two
PTA subsystems is substantially harder than for ≤loc and ≤inv.

Theorem 4.11. Given two subsystems T1, T2 in a PTA T , deciding whether
T1 ≤vol T2 holds is PP-hard under polynomial-time Turing reductions.

Hence, in particular, there is no polynomial time algorithm to decide T1 ≤vol

T2, unless P = NP. This should be contrasted with the relations ≤loc and ≤inv. To
decide T1 ≤loc T2 one just counts the locations, and for T1 ≤inv T2 one checks the
inclusion of locations and inspects the entries of the canonical DBMs associated
to the invariants. In fact, these observations for ≤loc and ≤inv are the main
ingredients for the MILP formulations (LOC-MILP) and (INV-MILP).

5 Conclusion

This paper introduces witnessing subsystems for PTAs. These subsystems give
insight into which (hopefully small) part of the system is sufficient for a certain
property to hold. We have studied three notions of minimality for witnessing
subsystems: location number, invariant strength, and invariant volume. For all
three we derive single-exponential algorithms to compute a minimal witness.
Our approaches are based on Farkas certificates for quotient MDPs under prob-
abilistic time-abstracting bisimulations. The time complexities are relative to
the sizes of these quotients, so coarse bisimulations can substantially benefit the
approach. While comparing two subsystems with respect to their location num-
ber or invariance strength is relatively easy, comparing the volume is shown to be
PP-hard. This result notably extends also to non-probabilistic timed automata.

An open question is how to extend the scope of witnessing subsystems
to probabilistic hybrid automata (PHA). It is conceivable that our approach
extends naturally to rectangular PHAs, as they admit finite bisimulation quo-
tients [31]. Exploring how PTA subsystems can be used in timed versions of
refinement and synthesis algorithms [10,16] is another interesting line of future
work.
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21. Jurdziński, M., Laroussinie, F., Sproston, J.: Model checking probabilistic timed
automata with one or two clocks. In: Grumberg, O., Huth, M. (eds.) TACAS 2007.
LNCS, vol. 4424, pp. 170–184. Springer, Heidelberg (2007). https://doi.org/10.
1007/978-3-540-71209-1 15

22. Kölbl, M., Leue, S., Wies, T.: Clock bound repair for timed systems. In: Dillig, I.,
Tasiran, S. (eds.) CAV 2019. LNCS, vol. 11561, pp. 79–96. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-25540-4 5

23. Kwiatkowska, M., Norman, G., Segala, R., Sproston, J.: Automatic verification
of real-time systems with discrete probability distributions. Theor. Comput. Sci.
282(1), 101–150 (2002). https://doi.org/10.1016/S0304-3975(01)00046-9

24. Kwiatkowska, M., Norman, G., Sproston, J.: Probabilistic model checking of dead-
line properties in the IEEE 1394 FireWire root contention protocol. Form. Asp.
Comput. 14(3), 295–318 (2003). https://doi.org/10.1007/s001650300007

25. Kwiatkowska, M.Z., Norman, G., Parker, D., Sproston, J.: Performance analysis
of probabilistic timed automata using digital clocks. Form. Method Syst. Des. 29,
33–78 (2006). https://doi.org/10.1007/s10703-006-0005-2

26. Kwiatkowska, M.Z., Norman, G., Sproston, J., Wang, F.: Symbolic model checking
for probabilistic timed automata. Inf. Comput. 205(7), 1027–1077 (2007). https://
doi.org/10.1016/j.ic.2007.01.004

27. Laroussinie, F., Sproston, J.: State explosion in almost-sure probabilistic reach-
ability. Inf. Process. Lett. 102(6), 236–241 (2007). https://doi.org/10.1016/j.ipl.
2007.01.003

28. Norman, G., Parker, D., Sproston, J.: Model checking for probabilistic timed
automata. Form. Methods Syst. Des. 43, 164–190 (2013). https://doi.org/10.1007/
s10703-012-0177-x
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Abstract. We study the problem of formalizing and checking proba-
bilistic hyperproperties for models that allow nondeterminism in actions.
We extend the temporal logic HyperPCTL, which has been previously
introduced for discrete-time Markov chains, to enable the specification of
hyperproperties also for Markov decision processes. We generalize Hyper-
PCTL by allowing explicit and simultaneous quantification over sched-
ulers and probabilistic computation trees and show that it can express
important quantitative requirements in security and privacy. We show
that HyperPCTL model checking over MDPs is in general undecidable for
quantification over probabilistic schedulers with memory, but restricting
the domain to memoryless non-probabilistic schedulers turns the model
checking problem decidable. Subsequently, we propose an SMT-based
encoding for model checking this language and evaluate its performance.

1 Introduction

Hyperproperties [1] extend the conventional notion of trace properties [2] from a
set of traces to a set of sets of traces. In other words, a hyperproperty stipulates a
system property and not the property of just individual traces. It has been shown
that many interesting requirements in computing systems are hyperproperties
and cannot be expressed by trace properties. Examples include (1) a wide range
of information-flow security policies such as noninterference [3] and observational
determinism [4], (2) sensitivity and robustness requirements in cyber-physical
systems [5], and consistency conditions such as linearizability in concurrent data
structures [6].

Hyperproperties can describe the requirements of probabilistic systems as
well. They generally express probabilistic relations between multiple executions
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of a system. For example, in information-flow security, adding probabilities is
motivated by establishing a connection between information theory and infor-
mation flow across multiple traces. A prominent example is probabilistic sched-
ulers that open up an opportunity for an attacker to set up a probabilistic covert
channel. Or, probabilistic causation compares the probability of occurrence of an
effect between scenarios where the cause is or is not present.

s0 s1

s2 s3 s4

s5 s6

{init} {init}

{a}

{a}

0.4 0.2

0.4

0.7 0.3

1 0.8 0.2 1

1 1

Fig. 1. Example DTMC.

The state of the art on probabilistic hyperprop-
erties has exclusively been studied in the context
of discrete-time Markov chains (DTMCs). In [7],
we proposed the temporal logic HyperPCTL, which
extends PCTL by allowing explicit and simulta-
neous quantification over computation trees. For
example, the DTMC in Fig. 1 satisfies the follow-
ing HyperPCTL formula:

ψ = ∀ŝ.∀ŝ′.
(
initŝ ∧ initŝ′

)
⇒

(
P( aŝ) = P( aŝ′)

)
(1)

which means that the probability of reaching proposition a from any pair of
states ŝ and ŝ′ labeled by init should be equal. Other works on probabilistic
hyperproperties for DTMCs include parameter synthesis [8] and statistical model
checking [5,9].

s0{h>0} s1 {h≤0}

s2{l=1} s3 {l=2}

α

3
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Fig. 2. Example MDP.

An important gap in the spectrum is veri-
fication of probabilistic hyperproperties with
regard to models that allow nondetermin-
ism, in particular, Markov decision processes
(MDP). Nondeterminism plays a crucial role
in many probabilistic systems. For instance,
nondeterministic queries can be exploited in
order to make targeted attacks to databases
with private information [10]. To motivate
the idea, consider the MDP in Fig. 2, where h
is a high secret and l is a low publicly observable variable. To protect the secret,
there should be no probabilistic dependencies between observations on the low
variable l and the value of h. However, an attacker that chooses a scheduler that
always takes action α from states s0 and s1 can learn whether or not h ≤ 0 by
observing the probability of obtaining l = 1 (or l = 2). On the other hand, a
scheduler that always chooses action β, does not leak any information about the
value of h. Thus, a natural question to ask is whether a certain property holds
for all or some schedulers.

s0 s1
α 1

β 1 α 1

Fig. 3. Example MDP.

With the above motivation, in this paper, we
focus on probabilistic hyperproperties in the context
of MDPs. Such hyperproperties inherently need to con-
sider different nondeterministic choices in different exe-
cutions, and naturally call for quantification over sched-
ulers. There are several challenges to achieve this. In
general, there are schedulers whose reachability probabilities cannot be achieved
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by any memoryless non-probabilistic scheduler, and, hence finding a scheduler is
not reducible to checking non-probabilistic memoryless schedulers, as it is done
in PCTL mode checking for MDPs. Consider for example the MDP in Fig. 3, for
which we want to know whether there is a scheduler such that the probability to
reach s1 from s0 equals 0.5. There are two non-probabilistic memoryless sched-
ulers, one choosing action α and the other, action β in s0. The first one is the
maximal scheduler for which s1 is reached with probability 1, and the second
one is the minimal scheduler leading to probability 0. However, the probability
0.5 cannot be achieved by any non-probabilistic scheduler. Memoryless proba-
bilistic schedulers can neither achieve probability 0.5: if a memoryless scheduler
would take action α with any positive probability, then the probability to reach
s1 is always 1. The only way to achieve the reachability probability 0.5 (or any
value strictly between 0 and 1) is by a probabilistic scheduler with memory, e.g.,
taking α and β in s0 with probabilities 0.5 each when this is the first step on a
path, and β with probability 1 otherwise.

Our contributions in this paper are as follows. We first extend the tempo-
ral logic HyperPCTL [7] to the context of MDPs. To this end, we augment the
syntax and semantics of HyperPCTL to quantify over schedulers and relate prob-
abilistic computation trees for different schedulers. For example, the following
formula generalizes (1) by requiring that the respective property should hold for
all computation trees starting in any states ŝ and ŝ′ of the DMTC induced by
any scheduler σ̂:

∀σ̂.∀ŝ(σ̂).∀ŝ′(σ̂).
(
init ŝ ∧ init ŝ′

)
⇒

(
P( aŝ) = P( aŝ′)

)

On the negative side, we show that the problem to check HyperPCTL proper-
ties for MDPs is in general undecidable. On the positive side, we show that the
problem becomes decidable when we restrict the scheduler quantification domain
to memoryless non-probabilistic schedulers. We also show that this restricted
problem is already NP-complete (respectively, coNP-complete) in the size of the
given MDP for HyperPCTL formulas with a single existential (respectively, uni-
versal) scheduler quantifier. Subsequently, we propose an SMT-based encoding to
solve the restricted model checking problem. We have implemented our method
and analyze it experimentally on three case studies: probabilistic scheduling
attacks, side-channel timing attacks, and probabilistic conformance (available at
https://github.com/oreohere/HyperOnMDP).

It is important to note that the work in [11] (also published in ATVA’20) inde-
pendently addresses the problem under investigation in this paper. The authors
propose the temporal logic PHL. Similar to HyperPCTL, PHL also allows quantifi-
cation over schedulers, but path quantification of the induced DTMC is achieved
by using HyperCTL∗. Both papers show that the model checking problem is unde-
cidable for the respective logics. The difference, however, is in our approaches to
deal with the undecidability result, which leads two complementary and orthog-
onal techniques. For both logics the problem is decidable for non-probabilistic
memoryless schedulers. We provide an SMT-based verification procedure for
HyperPCTL for this class of schedulers. The work in [11] presents two methods

https://github.com/oreohere/HyperOnMDP
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for proving and for refuting formulas from a fragment of PHL for general mem-
oryful schedulers. The two papers offer disjoint case studies for evaluation.

Organization. Preliminary concepts are discussed in Sect. 2. We present the syn-
tax and semantics of HyperPCTL for MDPs and discuss its expressive power in
Sect. 3. Section 4 is dedicated to the applications of HyperPCTL. Sections 5 and 6
present our results on memoryless non-probabilistic schedulers and their evalu-
ation before concluding in Sect. 7. More technical details and all proofs appear
in [12].

2 Preliminaries

2.1 Discrete-Time Markov Models

Definition 1. A discrete-time Markov chain (DTMC) is a tuple D = (S,P,AP,
L) with the following components:

– S is a nonempty finite set of states;
– P : S×S → [0, 1] is a transition probability function with

∑
s′∈S P(s, s′) = 1,

for all s ∈ S;
– AP is a finite set of atomic propositions, and
– L : S → 2AP is a labeling function. �

Figure 1 shows a simple DTMC. An (infinite) path of D is an infinite
sequence π = s0s1s2 . . . ∈ Sω of states with P(si, si+1) > 0, for all i ≥ 0;
we write π[i] for si. Let PathsD

s denote the set of all (infinite) paths of D start-
ing in s, and fPathsD

s denote the set of all non-empty finite prefixes of paths from
PathsD

s , which we call finite paths. For a finite path π = s0 . . . sk ∈ fPathsD
s0

,
k ≥ 0, we define |π| = k. We will also use the notations PathsD = ∪s∈SPathsD

s

and fPathsD = ∪s∈SfPathsD
s . A state t ∈ S is reachable from a state s ∈ S in

D if there exists a finite path in fPathsD
s with last state t; we use fPathsD

s,T to
denote the set of all finite paths from fPathsD

s with last state in T ⊆ S. A state
s ∈ S is absorbing if P(s, s) = 1.

The cylinder set CylD(π) of a finite path π ∈ fPathsD
s is the set of all infi-

nite paths of D with prefix π. The probability space for D and state s ∈ S
is (PathsD

s , {∪π∈RCylD(π) |R ⊆ fPathsD
s },PrD

s ), where the probability of the
cylinderset of π ∈ fPathsD

s is PrD
s (CylD(π)) = Π

|π|
i=1P(π[i−1], π[i]).

Note that the cylinder sets of two finite paths starting in the same state are
either disjoint or one is contained in the other. According to the definition of
the probability spaces, the total probability for a set of cylinder sets defined
by the finite paths R ⊆ fPathsD

s is PrD(R) =
∑

π∈R′ PrD
s (π) with R′ = {π ∈

R |no π′ ∈ R \ {π} is a prefix of π}. To improve readability, we sometimes omit
the DTMC index D in the notations when it is clear from the context.

Definition 2. The parallel composition of two DTMCs Di = (Si,Pi,APi, Li),
i = 1, 2, is the DTMC D1 × D2 = (S,P,AP, L) with the following components:
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– S = S1 × S2;
– P : S × S → [0, 1] with P((s1, s2), (s′

1, s
′
2)) = P1(s1, s′

1) · P2(s2, s′
2), for all

states (s1, s2), (s′
1, s

′
2) ∈ S;

– AP = AP1 ∪ AP2, and
– L : S → 2AP with L((s1, s2)) = L1(s1) ∪ L2(s2). �

Definition 3. A Markov decision process (MDP) is a tuple M =
(S,Act ,P,AP, L) with the following components:

– S is a nonempty finite set of states;
– Act is a nonempty finite set of actions;
– P : S × Act × S → [0, 1] is a transition probability function such that for all

s ∈ S the set of enabled actions in s Act(s) = {α ∈ Act | ∑
s′∈S P(s, α, s′) =

1} is not empty and
∑

s′∈S P(s, α, s′) = 0 for all α ∈ Act \ Act(s);
– AP is a finite set of atomic propositions, and
– L : S → 2AP is a labeling function. �

Figure 2 shows a simple MDP. Schedulers can be used to eliminate the non-
determinism in MDPs, inducing DTMCs with well-defined probability spaces.

Definition 4. A scheduler for an MDP M = (S,Act ,P,AP, L) is a tuple σ =
(Q, act ,mode, init), where

– Q is a countable set of modes;
– act : Q × S × Act → [0, 1] is a function for which

∑
α∈Act(s) act(q, s, α) = 1

and
∑

α∈Act\Act(s) act(q, s, α) = 0 for all s ∈ S and q ∈ Q;
– mode : Q × S → Q is a mode transition function, and
– init : S → Q is a function selecting a starting mode for each state of M. �

Let ΣM denote the set of all schedulers for the MDP M. A scheduler is
finite-memory if Q is finite, memoryless if |Q| = 1, and non-probabilistic if
act(q, s, α) ∈ {0, 1} for all q ∈ Q, s ∈ S and α ∈ Act .

Definition 5. Assume an MDP M = (S,Act ,P,AP, L) and a scheduler σ =
(Q, act ,mode, init) ∈ ΣM for M. The DTMC induced by M and σ is defined
as Mσ = (Sσ,Pσ,AP, Lσ) with Sσ = Q × S,

Pσ((q, s), (q′, s′)) =
{∑

α∈Act(s) act(q, s, α) · P(s, α, s′) if q′ = mode(q, s)
0 otherwise

and Lσ(q, s) = L(s) for all s, s′ ∈ S and all q, q′ ∈ Q. �

A state s′ is reachable from s ∈ S in MDP M is there exists a scheduler σ for
M such that s′ is reachable from s in Mσ. A state s ∈ S is absorbing in M if
s is absorbing in Mσ for all schedulers σ for M. We sometimes omit the MDP
index M in the notations when it is clear from the context.
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3 HyperPCTL for MDPs

3.1 HyperPCTL Syntax

HyperPCTL (quantified) state formulas ϕq are inductively defined as follows:

quantified formula ϕq :: = ∀σ̂.ϕq | ∃σ̂.ϕq | ∀ŝ(σ̂).ϕq | ∃ŝ(σ̂).ϕq | ϕnq

non-quantified formula ϕnq :: = true | aŝ | ϕnq ∧ ϕnq | ¬ϕnq | ϕpr < ϕpr

probability expression ϕpr :: = P(ϕpath) | f(ϕpr
1 , . . . , ϕpr

k )
path formula ϕpath :: = ϕnq | ϕnq U ϕnq | ϕnq U [k1,k2] ϕnq

where σ̂ is a scheduler variable1 from an infinite set Σ̂ , ŝ is a state variable
from an infinite set Ŝ, ϕnq is a quantifier-free state formula, a ∈ AP is an
atomic proposition, ϕpr is a probability expression, f : [0, 1]k → R are k-ary
arithmetic operators (binary addition, unary/binary subtraction, binary multi-
plication) over probabilities, where constants are viewed as 0-ary functions, and
ϕpath is a path formula, such that k1 ≤ k2 ∈ N≥0. The probability operator P

allows the usage of probabilities in arithmetic constraints and relations.
A HyperPCTL construct ϕ (probability expression ϕpr, state formula ϕq, ϕnq

or path formula ϕpath) is well-formed if each occurrence of any aŝ with a ∈ AP
and ŝ ∈ Ŝ is in the scope of a state quantifier for ŝ(σ̂) for some σ̂ ∈ Σ̂ , and
any quantifier for ŝ(σ̂) is in the scope of a scheduler quantifier for σ̂. We restrict
ourselves to quantifying first the schedulers then the states, i.e., different state
variables can share the same scheduler. One can consider also local schedulers
when different players cannot explicitly share the same scheduler, or in other
words, each scheduler quantifier belongs to exactly one of the quantified states.

HyperPCTL formulas are well-formed HyperPCTL state formulas, where we
additionally allow standard syntactic sugar like false = ¬true, ϕ1 ∨ ϕ2 =
¬(¬ϕ1 ∧ ¬ϕ2), ϕ = true U ϕ, and P( ϕ) = 1 − P( ¬ϕ). For example, the
HyperPCTL state formula ∀σ̂.∃ŝ(σ̂).P( aŝ) < 0.5 is a HyperPCTL formula. The
HyperPCTL state formula P( aŝ)< 0.5 is not a HyperPCTL formula, but can be
extended to such. The HyperPCTL state formula ∀ŝ(σ̂).∃σ̂.P( aŝ)< 0.5 is not a
HyperPCTL formula, and it even cannot can be extended to such.

3.2 HyperPCTL Semantics

Definition 6. The n-ary self-composition of an MDP M = (S,Act ,P,AP, L)
for a sequence σ = (σ1, . . . , σn) ∈ (ΣM)n of schedulers for M is the DTMC
parallel composition Mσ = Mσ1

1 × . . .×Mσn
n , where Mσi

i is the DTMC induced
by Mi and σi, and where Mi = (S,Act ,P,APi, Li) with APi = {ai | a ∈ AP}
and Li(s) = {ai | a ∈ L(s)}, for all s ∈ S. �

HyperPCTL state formulas are evaluated in the context of an MDP M =
(S,Act ,P,AP, L), a sequence σ = (σ1, . . . , σn) ∈ (ΣM)n of schedulers, and a
1 We use the notation σ̂ for scheduler variables and σ for schedulers, and analogously

ŝ for state variables and s for states.
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sequence r = ((q1, s1), . . . , (qn, sn)) of Mσ states; we use () to denote the empty
sequence (of any type) and ◦ for concatenation. Intuitively, these sequences store
instantiations for scheduler and state variables. The satisfaction of a HyperPCTL

quantified formula by M is defined by

M |= ϕ iff M, (), () |= ϕ .

The semantics evaluates HyperPCTL formulas by structural recursion. Let in the
following Q,Q′, . . . denote quantifiers from {∀,∃}. When instantiating Qσ̂.ϕ by
a scheduler σ ∈ ΣM, we replace in ϕ each subformula Q

′ŝ(σ̂).ϕ′, that is not in
the scope of a quantifier for σ̂ by Q

′ŝ(σ).ϕ′, and denote the result by ϕ[σ̂ �
σ]. For instantiating a state quantifier Qŝ(σ).ϕ by a state s, we append σ =
(Q, act ,mode, init) and (init(s), s) at the end of the respective sequences, and
replace each aŝ in the scope of the given quantifier by as, resulting in a formula
that we denote by ϕ[ŝ � s]. To evaluate probability expressions, we use the
n-ary self-composition of the MDP.

Formally, the semantics judgment rules are as follows:

M, σ, r |= true

M, σ, r |= ai iff ai ∈ Lσ (r)
M, σ, r |= ϕ1 ∧ ϕ2 iff M, σ, r |= ϕ1 and M, σ, r |= ϕ2

M, σ, r |= ¬ϕ iff M, σ, r �|= ϕ
M, σ, r |= ∀σ̂.ϕ iff ∀σ ∈ ΣM. M, σ, r |= ϕ[σ̂ � σ]
M, σ, r |= ∃σ̂.ϕ iff ∃σ ∈ ΣM. M, σ, r |= ϕ[σ̂ � σ]
M, σ, r |= ∀ŝ(σ).ϕ iff ∀sn+1 ∈ S. M, σ ◦ σ, r ◦ (init(sn+1), sn+1) |= ϕ[ŝ � sn+1]
M, σ, r |= ∃ŝ(σ).ϕ iff ∃sn+1 ∈ S. M, σ ◦ σ, r ◦ (init(sn+1), sn+1) |= ϕ[ŝ � sn+1]
M, σ, r |= ϕpr

1 < ϕpr
2 iff [[ϕpr

1 ]]M,σ ,r < [[ϕpr
2 ]]M,σ ,r

[[P(ϕpath)]]M,σ ,r = PrMσ ({π ∈ PathsMσ

r | M, σ, π |= ϕpath}
)

[[f(ϕpr
1 , . . . ϕpr

k )]]M,σ ,r = f
(
[[ϕpr

1 ]]M,σ ,r . . . , [[ϕpr
k ]]M,σ ,r

)

where M is an MDP; n ∈ N≥0 is non-negative integer; σ ∈ (ΣM)n; r is a
state of Mσ ; a ∈ AP is an atomic proposition and i ∈ {1, . . . , n}; ϕ,ϕ1, ϕ2 are
HyperPCTL state formulas; σ = (Q, act ,mode, init) ∈ ΣM is a scheduler for M;
ϕpr
1 · · · ϕpr

k are probability expressions, and ϕpath is a HyperPCTL path formula
whose satisfaction relation is as follows:

M, σ, π |= ϕ iff M, σ, r1 |= ϕ

M, σ, π |= ϕ1 U ϕ2 iff ∃j ≥ 0.
(
M, σ, rj |= ϕ2 ∧ ∀i ∈ [0, j). M, σ, ri |= ϕ1

)

M, σ, π |= ϕ1 U [k1,k2] ϕ2 iff ∃j ∈ [k1, k2].
(
M, σ, rj |= ϕ2 ∧ ∀i ∈ [0, j).M, σ, ri |= ϕ1

)

where π = r0r1 · · · with r i = ((qi,1, si,1), . . . , (qi,n, si,n)) is a path of Mσ ;
formulas ϕ, ϕ1, and ϕ2 are HyperPCTL state formulas, and k1 ≤ k2 ∈ N≥0.

For MDPs with |Act(s)| = 1 for each of its states s, the HyperPCTL semantics
reduces to the one proposed in [7] for DTMCs.

For MDPs with non-determinism, the standard PCTL semantics defines that
in order to satisfy a PCTL formula P∼c(ψ) in a given MDP state s, all schedulers
should induce a DTMC that satisfies P∼c(ψ) in s. Though it should hold for
all schedulers, it is known that there exist minimal and maximal schedulers
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that are non-probabilistic and memoryless, therefore it is sufficient to restrict
the reasoning to such schedulers. Since for MDPs with finite state and action
spaces, the number of such schedulers is finite, PCTL model checking for MDPs is
decidable. Given this analogy, one would expect that HyperPCTL model checking
should be decidable, but it is not.

Theorem 1. HyperPCTL model checking for MDPs is in general undecidable.

4 Applications of HyperPCTL on MDPs

1 void mexp ( ) {
2 c = 0 ; d = 1 ; i = k ;
3 whi le ( i >= 0){
4 i = i −1; c = c ∗2 ;
5 d = (d∗d) % n ;
6 i f (b ( i ) = 1)
7 c = c+1;
8 d = (d∗a ) % n ;
9 }

10 }
11 /∗∗∗∗∗∗∗∗∗∗∗∗/
12 t = new Thread (mexp ( ) ) ;
13 j = 0 ; m = 2 ∗ k ;
14 whi le ( j < m & ! t . stop ) j++;
15 /∗∗∗∗∗∗∗∗∗∗∗∗/

Fig. 4. Modular exponentiation.

Side-channel timing leaks open a channel to
an attacker to infer the value of a secret
by observing the execution time of a func-
tion. For example, the heart of the RSA
public-key encryption algorithm is the mod-
ular exponentiation algorithm that computes
(ab mod n), where a is an integer represent-
ing the plaintext and b is the integer encryp-
tion key. A careless implementation can leak
b through a probabilistic scheduling channel
(see Fig. 4). This program is not secure since
the two branches of the if have different tim-
ing behaviors. Under a fair execution sched-
uler for parallel threads, an attacker thread can infer the value of b by run-
ning in parallel to a modular exponentiation thread and iteratively increment-
ing a counter variable until the other thread terminates (lines 12–14). To model
this program by an MDP, we can use two nondeterministic actions for the two
branches of the if statement, such that the choice of different schedulers cor-
responds to the choice of different bit configurations b(i) for the key b. This
algorithm should satisfy the following property: the probability of observing a
concrete value in the counter j should be independent of the bit configuration
of the secret key b:

∀σ̂1.∀σ̂2.∀ŝ(σ̂1).∀ŝ′(σ̂2).
(
initŝ ∧ initŝ′

)
⇒

m∧
l=0

(
P( (j = l)ŝ) = P( (j = l)ŝ′)

)

1 i n t str cmp ( char ∗ r ){
2 char ∗ s = ’Bg\$4 \0 ’ ;
3 i = 0 ;
4 whi le ( s [ i ] != ’\0 ’ ) {
5 i++;
6 i f ( s [ i ] != r [ i ] ) r e turn 0 ;
7 }
8 re turn 1 ;
9 }

Fig. 5. String comparison.

Another example of timing attacks that
can be implemented through a probabilis-
tic scheduling side channel is password ver-
ification which is typically implemented by
comparing an input string with another con-
fidential string (see Fig. 5). Also here, an
attacker thread can measure the time nec-
essary to break the loop, and use this infor-
mation to infer the prefix of the input string
matching the secret string.
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Scheduler-specific observational determinism policy (SSODP) [13] is a confiden-
tiality policy in multi-threaded programs that defends against an attacker that
chooses an appropriate scheduler to control the set of possible traces. In partic-
ular, given any scheduler and two initial states that are indistinguishable with
respect to a secret input (i.e., low-equivalent), any two executions from these two
states should terminate in low-equivalent states with equal probability. Formally,
given a proposition h representing a secret:

∀σ̂.∀ŝ(σ̂).∀ŝ′(σ̂).
(
hŝ ⊕ hŝ′

) ⇒
∧
l∈L

(
P( lŝ) = P( lŝ′)

)

where l ∈ L are atomic propositions that classify low-equivalent states and
⊕ is the exclusive-or operator. A stronger variation of this policy is that the
executions are stepwise low-equivalent:

∀σ̂.∀ŝ(σ̂).∀ŝ′(σ̂).
(
hŝ ⊕ hŝ′

) ⇒ P
( ∧

l∈L

(
(P lŝ) = (P lŝ′)

))
= 1.

Probabilistic conformance describes how well a model and an implementation
conform with each other with respect to a specification. As an example, consider
a 6-sided die. The probability to obtain one possible side of the die is 1/6. We
would like to synthesize a protocol that simulates the 6-sided die behavior only by
repeatedly tossing a fair coin. We know that such an implementation exists [14],
but our aim is to find such a solution automatically by modeling the die as a
DTMC and by using an MDP to model all the possible coin-implementations
with a given maximum number of states, including 6 absorbing final states to
model the outcomes. In the MDP, we associate to each state a set of possible
nondeterministic actions, each of them choosing two states as successors with
equal probability 1/2. Then, each scheduler corresponds to a particular imple-
mentation. Our goal is to check whether there exists a scheduler that induces a
DTMC over the MDP, such that repeatedly tossing a coin simulates die-rolling
with equal probabilities for the different outcomes:

∃σ̂.∀ŝ(σ̂).∃ŝ′(σ̂).
(
initŝ ∧ initŝ′

)
⇒

6∧
l=1

(
P( (die = l)ŝ) = P( (die = l)ŝ′)

)

5 HyperPCTL Model Checking for Non-probabilistic
Memoryless Schedulers

Due to the undecidability of model checking HyperPCTL formulas for MDPs, we
noe restrict ourselves the semantics, where scheduler quantification ranges over
non-probabilistic memoryless schedulers only. It is easy to see that this restriction
makes the model checking problem decidable, as there are only finitely many such
schedulers that can be enumerated. Regarding complexity, we have the following
property.
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Theorem 2. The problem to decide for MDPs the truth of HyperPCTL formulas
with a single existential (respectively, universal) scheduler quantifier over non-
probabilistic memoryless schedulers is NP-complete (respectively, coNP-complete)
in the state set size of the given MDP.

Next we propose an SMT-based technique for solving the model checking
problem for non-probabilistic memoryless scheduler domains, and for the sim-
plified case of having a single scheduler quantifier; the general case for an arbi-
trary number of scheduler quantifiers is similar, but a bit more involved, so the
simplified setting might be more suitable for understanding the basic ideas.

Algorithm 1: Main SMT encoding algorithm
Input : M = (S, Act, P, AP, L): MDP;

Qσ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).ϕnq: HyperPCTL for-

mula.

Output : Whether M satisfies the input formula.

1Function Main(M, Qσ̂. Q1ŝ1(σ̂). . . . Qnŝn(σ̂). ϕnq)

2 E :=
∧

s∈S(
∨

α∈Act(s) σs = α) // scheduler choice

3 if Q is existential then

4 E := E∧ Semantics(M, ϕnq, n);

5 E := E∧ Truth(M, ∃σ̂. Q1ŝ1(σ̂). . . . Qnŝn(σ̂). ϕnq);

6 if check(E) = SAT then return TRUE ;

7 else return FALSE ;

8 else if Q is universal then

// Qi is ∀ if Qi = ∃ and ∃ else

9 E := E∧ Semantics(M, ¬ϕnq, n);

10 E := E∧ Truth(M, ∃σ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).¬ϕnq);

11 if check(E) = SAT then return FALSE ;

12 else return TRUE ;

The main method listed
in Algorithm 1 constructs
a formula E that is sat-
isfiable if and only if the
input MDP M satisfies
the input HyperPCTL for-
mula with a single sched-
uler quantifier over the
non-probabilistic memo-
ryless scheduler domain.
Let us first deal with the
case that the scheduler
quantifier is existential.
In line 2 we encode pos-
sible instantiations σ for
the scheduler variable σ̂,
for which we use a vari-
able σs for each MDP
state s ∈ S to encode which action is chosen in that state. In line 4 we encode
the meaning of the quantifier-free inner part ϕnq of the input formula, whereas
line 5 encodes the meaning of the state quantifiers, i.e. for which sets of com-
posed states ϕnq needs to hold in order to satisfy the input formula. In lines 6–7
we check the satisfiability of the encoding and return the corresponding answer.
Formulas with a universal scheduler quantifier ∀σ̂.ϕ are semantically equivalent
to ¬∃σ̂.¬ϕ. We make use of this fact in lines 8–12 to check first the satisfaction
of an encoding for ∃σ̂.¬ϕ and return the inverted answer.
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Algorithm 2: SMT encoding for the meaning of the input formula
Input : M = (S,Act,P,AP, L): MDP;

ϕ: quantifier-free HyperPCTL formula or expression;
n: number of state variables in ϕ.

Output : SMT encoding of the meaning of ϕ in the n-ary self-composition of M.
1Function Semantics(M, ϕ, n)
2 if ϕ is true then E :=

∧
s ∈Sn holdss ,ϕ;

3 else if ϕ is aŝi
then

4 E := (
∧

s ∈Sn, a∈L(si)
(holdss ,ϕ)) ∧ (

∧
s ∈Sn, a/∈L(si)

(¬holdss ,ϕ));

5 else if ϕ is ϕ1 ∧ ϕ2 then
6 E := Semantics(M, ϕ1, n)∧ Semantics(M, ϕ2, n)∧
7

∧
s ∈Sn ((holdss ,ϕ∧holdss ,ϕ1∧holdss ,ϕ2 ) ∨ (¬holdss ,ϕ∧(¬holdss ,ϕ1∨¬holdss ,ϕ2 )));

8 else if ϕ is ¬ϕ′ then
9 E := Semantics(M, ϕ′, n) ∧ ∧

s ∈Sn (holdss ,ϕ ⊕ holdss ,ϕ′ );

10 else if ϕ is ϕ1 < ϕ2 then
11 E := Semantics(M, ϕ1, n)∧ Semantics(M, ϕ2, n)∧
12

∧
s ∈Sn ((holdss ,ϕ ∧ probs ,ϕ1

< probs ,ϕ2
) ∨ (¬holdss ,ϕ ∧ probs ,ϕ1

≥ probs ,ϕ2
));

13 else if ϕ is P( ϕ′) then
14 E := Semantics(M, ϕ′, n)∧
15

∧
s ∈Sn

(
(holdsToInts ,ϕ′ = 1 ∧ holdss ,ϕ′ ) ∨ (holdsToInts ,ϕ′ = 0 ∧ ¬holdss ,ϕ′ )

)
;

16 foreach s = (s1, . . . , sn) ∈ Sn do
17 foreach α = (α1, . . . , αn) ∈ Act(s1) × . . . × Act(sn) do
18 E := E ∧ ([ ∧n

i=1 σsi
= αi

] → [
probs ,ϕ =

19
∑

s ′∈supp(α1)×...×supp(αn)((Π
n
i=1P(si, αi, s′

i)) · holdsToInts ′,ϕ′ )
])

;

20 else if ϕ is P(ϕ1 U ϕ2) then E := SemanticsUnboundedUntil(M, ϕ, n);

21 else if ϕ is P(ϕ1 U [k1,k2]ϕ2) then E := SemanticsBoundedUntil(M, ϕ, n);
22 else if ϕ is c then E :=

∧
s ∈Sn (probs ,ϕ = c);

23 else if ϕ is ϕ1 op ϕ2 /* op ∈ {+, −, ∗} */ then
24 E := Semantics(M, ϕ1, n)∧ Semantics(M, ϕ2, n)∧∧

s ∈Sn (probs ,ϕ = (probs ,ϕ1
op probs ,ϕ2

));

25 return E;

The Semantics method, shown in Algorithm 2, applies structural recursion
to encode the meaning of its quantifier-free input formula. As variables, the
encoding uses (1) propositions holdss,ϕnq ∈ {true, false} to encode the truth
of each Boolean sub-formula ϕnq of the input formula in each state s ∈ Sn of
the n-ary self-composition of M, (2) numeric variables probs,ϕpr ∈ [0, 1] ⊆ R to
encode the value of each probability expression ϕpr in the input formula in the
context of each composed state s ∈ Sn, (3) variables holdsToInts,ϕpr ∈ {0, 1}
to encode truth values in a pseudo-Boolean form, i.e. we set holdsToInts,ϕpr = 1
for holdss,ϕnq = true and probs,ϕpr = 0 else and (4) variables ds,ϕ to encode the
existence of a loop-free path from state s to a state satisfying ϕ.

There are two base cases: the Boolean constant true holds in all states (line
2), whereas atomic propositions hold in exactly those states that are labelled by
them (line 3). For conjunction (line 5) we recursively encode the truth values of
the operands and state that the conjunction is true iff both operands are true.
For negation (line 8) we again encode the meaning of the operand recursively
and flip its truth value. For the comparison of two probability expressions (line
10), we recursively encode the probability values of the operands and state the
respective relation between them for the satisfaction of the comparison.
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Algorithm 3: SMT encoding for the meaning of unbounded until formulas
Input : M = (S,Act ,P,AP, L): MDP; ϕ: HyperPCTL unbounded until

formula of the form P(ϕ1 U ϕ2); n: number of state variables in ϕ.
Output : SMT encoding of ϕ’s meaning in the n-ary self-composition of M.

1Function SemanticsUnboundedUntil(M, ϕ = P(ϕ1 U ϕ2), n)
2 E := Semantics(M, ϕ1, n)∧ Semantics(M, ϕ2, n);
3 foreach s = (s1, . . . , sn) ∈ Sn do
4 E :=

E ∧ (holdss,ϕ2 → probs,ϕ=1) ∧ ((¬holdss,ϕ1 ∧ ¬holdss,ϕ2) → probs,ϕ=0);

5 foreach α = (α1, . . . , αn) ∈ Act(s1) × . . . × Act(sn) do

6 E := E ∧
([

holdss,ϕ1 ∧ ¬holdss,ϕ2 ∧ ∧n
i=1 σsi = αi

] →
7

[
probs,ϕ =

∑
s′∈supp(α1)×...×supp(αn)((Π

n
i=1P(si, αi, s

′
i)) · probs′,ϕ)∧

8 (probs,ϕ>0 → (
∨

s′∈supp(α1)×...×supp(αn)(holdss′,ϕ2∨ds,ϕ2>ds′,ϕ2)))
])

;

9 return E;

The remaining cases encode the semantics of probability expressions. The
cases for constants (line 22) and arithmetic operations (line 23) are straight-
forward. For the probability P( ϕ′) (line 13), we encode the Boolean value of
ϕ′ in the variables holdss,ϕ′ (line 14), turn them into pseudo-Boolean values
holdsToInts,ϕ′ (1 for true and 0 for false, line 15), and state that for each com-
posed state, the probability value of P( ϕ′) is the sum of the probabilities to
get to a successor state where the operand ϕ′ holds; since the successors and
their probabilities are scheduler-dependent, we need to iterate over all scheduler
choices and use supp(αi) to denote the support {s ∈ S αi(s) > 0} of the dis-
tribution αi (line 17). The encodings for the probabilities of unbounded until
formulas (line 20) and bounded until formulas (line 21) are listed in Algorithm3
and 4, respectively.

For the probabilities P(ϕ1 U ϕ2) to satisfy an unbounded until formula, the
method SemanticsUnboundedUntil shown in Algorithm3 first encodes the mean-
ing of the until operands (line 2). For each composed state s ∈ Sn, the probability
of satisfying the until formula in s is encoded in the variable probs,P(ϕ1 U ϕ2). If
the second until-operand ϕ2 holds in s then this probability is 1 and if none
of the operands are true in s then it is 0 (line 4). Otherwise, depending on
the scheduler σ of M (line 5), the value of probs,P(ϕ1 U ϕ2) is a sum, adding up
for each successor state s′ of s the probability to get from s to s′ in one step
times the probability to satisfy the until-formula on paths starting in s′ (line
7). However, these encodings work only when at least one state satisfying ϕ2 is
reachable from s with a positive probability: for any bottom SCC whose states
all violate ϕ2, the probability P(ϕ1 U ϕ2) is obviously 0, however, assigning any
fixed value from [0, 1] to all states of this bottom SCC would yield a fixed-point
for the underlying equation system. To assure correctness, in line 8 we enforce
smallest fixed-points by requiring that if probs,P(ϕ1 U ϕ2) is positive then there
exists a loop-free path from s to any state satisfying ϕ2. In the encoding of this
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Algorithm 4: SMT encoding for the meaning of bounded until formulas
Input : M = (S,Act ,P,AP, L): MDP; ϕ: HyperPCTL bounded until formula

of the form P(ϕ1 U [k1,k2]ϕ2); n: number of state variables in ϕ.
Output : SMT encoding of ϕ’s meaning in the n-ary self-composition of M.

1Function SemanticsBoundedUntil(M, ϕ = P(ϕ1 U [k1,k2]ϕ2), n)
2 if k2 = 0 then
3 E := Semantics(M, ϕ1, n)∧ Semantics(M, ϕ2, n);
4 foreach s = (s1, . . . , sn) ∈ Sn do
5 E := E ∧ (holdss,ϕ2→probs,ϕ=1) ∧ (¬holdss,ϕ2→probs,ϕ=0);

6 else if k1 = 0 then

7 E := SemanticsBoundedUntil(M, P(ϕ1 U [0,k2−1]ϕ2), n);
8 foreach s = (s1, . . . , sn) ∈ Sn do
9 E :=

E ∧ (holdss,ϕ2→probs,ϕ=1) ∧ ((¬holdss,ϕ1 ∧ ¬holdss,ϕ2)→probs,ϕ=0);

10 foreach α = (α1, . . . , αn) ∈ Act(s1) × . . . × Act(sn) do
11 E :=

E ∧
([

holdss,ϕ1 ∧ ¬holdss,ϕ2 ∧ ∧n
i=1 σsi = αi

] → [
probs,ϕ =

12
∑

s′∈supp(α1)×...×supp(αn)((Π
n
i=1P(si, αi, s

′
i)) ·

probs′,P(ϕ1 U [0,k2−1]ϕ2)
)

])
;

13 else if k1 > 0 then

14 E := SemanticsBoundedUntil(M, P(ϕ1 U [k1−1,k2−1]ϕ2), n);
15 foreach s = (s1, . . . , sn) ∈ Sn do
16 E := E ∧ (¬holdss,ϕ1 → probs,ϕ = 0);

17 foreach α = (α1, . . . , αn) ∈ Act(s1) × . . . × Act(sn) do

18 E := E ∧
([

holdss,ϕ1 ∧ ∧n
i=1 σsi = αi

] → [
probs,ϕ =

19
∑

s′∈supp(α1)×...×supp(αn)((Π
n
i=1P(si, αi, s

′
i)) ·

probs′,P(ϕ1 U [k1−1,k2−1]ϕ2)
)

])
;

20 return E;

property we use fresh variables ds,ϕ2 and require a path over states with strong
monotonically decreasing ds,ϕ2 -values to a ϕ2-state (where the decreasing prop-
erty serves to exclude loops). The domain of the distance-variables ds,ϕ2 can be
e.g. integers, rationals or reals; the only restriction is that is should contain at
least |S|n ordered values. Especially, it does not need to be lower bounded (note
that each solution assigns to each ds,ϕ2 a fixed value, leading a finite number of
distance values).



Probabilistic Hyperproperties with Nondeterminism 531

Algorithm 5: SMT encoding of the truth of the
input formula
Input : M = (S,Act,P,AP, L): MDP;

∃σ̂.Q1ŝ1(σ̂). . . . Qnŝn(σ̂).ϕnq: HyperPCTL
formula.
Output : Encoding of the truth of the input formula in

M.
1Function Truth(M, ∃σ̂. Q1ŝ1(σ̂). . . . Qnŝn(σ̂). ϕnq)
2 foreach i = 1, . . ., n do
3 if Qi = ∀ then Bi :=”

∧
si∈S”;

4 else Bi :=”
∨

si∈S”;

5 return B1 . . . Bn holds(s1,...,sn),ϕnq ;

The SemanticsBounde-
dUntil method, listed in
Algorithm 4, encodes the
probability P(ϕ1 U [k1,k2]ϕ2)
of a bounded until formula
in the numeric variables
probs,P(ϕ1 U [k1,k2]ϕ2)

for all
(composed) states s ∈ Sn

and recursively reduced
time bounds. There are
three main cases: (i) the
satisfaction of ϕ1 U [0,k2−1]ϕ2

requires to satisfy ϕ2 immediately (lines 2–5); (ii) ϕ1 U [0,k2−1]ϕ2 can be satisfied
by either satisfying ϕ2 immediately or satisfying it later, but in the latter case
ϕ1 needs to hold currently (lines 6–12); (iii) ϕ1 has to hold and ϕ2 needs to be
satisfied some time later (lines 13–19). To avoid the repeated encoding of the
semantics of the operands, we do it only when we reach case (i) where recursion
stops (line 3). For the other cases, we recursively encode the probability to reach
a ϕ2-state over ϕ1 states where the deadlines are reduced with one step (lines 7
resp. 14) and use these to fix the values of the variables probs,P(ϕ1 U [k1,k2]ϕ2)

, sim-
ilarly to the unbounded case but under additional consideration of time bounds.

Finally, the Truth method listed in Algorithm5 encodes the meaning of the
state quantification: it states for each universal quantifier that instantiating it
with any MDP state should satisfy the formula (conjunction over all states in
line 9), and for each existential state quantification that at least one state should
lead to satisfaction (disjunction in line 4).

Theorem 3. Algorithm 1 returns a formula that is true iff its input HyperPCTL
formula is satisfied by the input MDP.

We note that the satisfiability of the generated SMT encoding for a formula
with an existential scheduler quantifier does not only prove the truth of the
formula but provides also a scheduler as witness, encoded in the solution of the
SMT encoding. Conversely, unsatisfiability of the SMT encoding for a formula
with a universal scheduler quantifier provides a counterexample scheduler.

6 Evaluation

We developed a prototypical implementation of our algorithm in python, with
the help of several libraries. There is an extensive use of STORMPY [15,16], which
provides efficient solution to parsing, building, and storage of MDPs. We used
the SMT-solver Z3 [17] to solve the logical encoding generated by Algorithm 1.
All of our experiments were run on a MacBook Pro laptop with a 2.3 GHz i7
processor with 32 GB of RAM. The results are presented in Table 1.

As the first case study, we model and analyze information leakage in the
modular exponentiation algorithm (function modexp in Fig. 4); the corresponding
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results in Table 1 are marked by TA. We experimented with 1, 2, and 3 bits
for the encryption key (hence, m ∈ {2, 4, 6}). The specification checks whether
there is a timing channel for all possible schedulers, which is the case for the
implementation in modexp.

Our second case study is verification of password leakage thorough the string
comparison algorithm (function str cmp in Fig. 5). Here, we also experimented
with m ∈ {2, 4, 6}; results in Table 1 are denoted by PW.

In our third case study, we assume two concurrent processes. The first process
decrements the value of a secret h by 1 as long as the value is still positive, and
after this it sets a low variable l to 1. A second process just sets the value of
the same low variable l to 2. The two threads run in parallel; as long as none of
them terminated, a fair scheduler chooses for each CPU cycle the next executing
thread. As discussed in Sect. 1, this MDP opens a probabilistic thread scheduling
channel and leaks the value of h. We denote this case study by TS in Table 1,
and compare observations for executions with different secret values h1 and h2

(denoted as h = (h1, h2) in the table). There is an interesting relation between
the execution times for TA and TS. For example, although the MDP for TA
with m = 4 has 60 reachable states and the MDP for TS comparing executions
for h = (0, 15) has 35 reachable states, verification of TS takes 20 times more
than TA. We believe this is because the MDP of TS is twice deeper than the
MDP of TA, making the SMT constraints more complex.

Our last case study is on probabilistic conformance, denoted PC. The input
is a DTMC that encodes the behavior of a 6-sided die as well as a structure
of actions having probability distributions with two successor states each; these
transitions can be pruned using a scheduler to obtain a DTMC which simulates
the die outcomes using a fair coin. Given a fixed state space, we experiment with
different numbers of transitions. In particular, we started from the implementa-
tion in [14] and then we added all the possible nondeterministic transitions from
the first state to all the other states (s = 0), from the first and second states to all
the others (s = 0,1), and from the first, second, and third states to all the others
(s = 0,1,2). Each time we were able not only to satisfy the formula, but also to
obtain the witness corresponding to the scheduler satisfying the property.

Regarding the running times listed in Table 1, we note that our implementa-
tion is only prototypical and there are possibilities for numerous optimizations.
Most importantly, for purely existentially or purely universally quantified formu-
las, we could define a more efficient encoding with much less variables. However,
it is clear that the running times for even relatively small MPDs are large. This
is simply because of the high complexity of the verification of hyperproperties.
In addition, the HyperPCTL formulas in our case studies have multiple scheduler
and/or state quantifiers, making the problem significantly more difficult.
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Table 1. Experimental results. TA: Timing attack. PW: Password leakage. TS:
Thread scheduling. PC: Probabilistic conformance.

Case study Running time (s) #SMT

variables

#subformulas #states #transitions

SMT

encoding

SMT

solving

Total

TA m = 2 5.43 0.31 5.74 8088 50654 24 46

m = 4 114 20 134 50460 368062 60 136

m = 6 1721 865 2586 175728 1381118 112 274

PW m = 2 5.14 0.3 8.14 8088 43432 24 46

m = 4 207 40 247 68670 397852 70 146

m = 6 3980 1099 5079 274540 1641200 140 302

TS h = (0, 1) 0.83 0.07 0.9 1379 7913 7 13

h = (0, 15) 60 1607 1667 34335 251737 35 83

h = (4, 8) 11.86 17.02 28.88 12369 87097 21 48

h = (8, 15) 60 1606 1666 34335 251737 35 83

PC s=(0) 277 1996 2273 21220 1859004 20 158

s=(0,1) 822 5808 6630 21220 5349205 20 280

s=(0,1,2) 1690 58095 59785 21220 11006581 20 404

7 Conclusion and Future Work

We investigated the problem of specifying and model checking probabilistic
hyperproperties of Markov decision processes (MDPs). Our study is motivated
by the fact that many systems have probabilistic nature and are influenced by
nondeterministic actions of their environment. We extended the temporal logic
HyperPCTL for DTMCs [7] to the context of MDPs by allowing formulas to quan-
tify over schedulers. This additional expressive power leads to undecidability of
the HyperPCTL model checking problem on MDPs, but we also showed that the
undecidable fragment becomes decidable for non-probabilistic memoryless sched-
ulers. Indeed, all applications discussed in this paper only require this type of
schedulers.

Due to the high complexity of the problem, more efficient model checking
algorithms are greatly needed. An orthogonal solution is to design less accurate
and/or approximate algorithms such as statistical model checking that scale bet-
ter and provide certain probabilistic guarantees about the correctness of verifi-
cation. Another interesting direction is using counterexample-guided techniques
to manage the size of the state space.
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vol. 10427, pp. 592–600. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-63390-9 31

17. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-030-03421-4_2
https://doi.org/10.1007/978-3-319-99154-2_2
https://doi.org/10.1007/978-3-642-36563-8_8
https://moves-rwth.github.io/stormpy/
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-319-63390-9_31
https://doi.org/10.1007/978-3-540-78800-3_24


Tool Papers



ReachNN*: A Tool for Reachability
Analysis of Neural-Network Controlled

Systems

Jiameng Fan1(B), Chao Huang2, Xin Chen3, Wenchao Li1, and Qi Zhu2

1 Boston University, Massachusetts, USA
{jmfan,wenchao}@bu.edu

2 Northwestern University, Illinois, USA
{chao.huang,qzhu}@northwestern.edu

3 University of Dayton, Ohio, USA
xchen4@udayton.edu

Abstract. We introduce ReachNN*, a tool for reachability analysis
of neural-network controlled systems (NNCSs). The theoretical founda-
tion of ReachNN* is the use of Bernstein polynomials to approximate
any Lipschitz-continuous neural-network controller with different types
of activation functions, with provable approximation error bounds. In
addition, the sampling-based error bound estimation in ReachNN* is
amenable to GPU-based parallel computing. For further improvement in
runtime and error bound estimation, ReachNN* also features optional
controller re-synthesis via a technique called verification-aware knowledge
distillation (KD) to reduce the Lipschitz constant of the neural-network
controller. Experiment results across a set of benchmarks show 7× to
422× efficiency improvement over the previous prototype. Moreover, KD
enables proof of reachability of NNCSs whose verification results were
previously unknown due to large overapproximation errors. An open-
source implementation of ReachNN* is available at https://github.com/
JmfanBU/ReachNNStar.git.

Keywords: Neural-network controlled systems · Reachability ·
Bernstein polynomials · GPU acceleration · Knowledge distillation.

1 Introduction

There has been a growing interest in using neural networks as controllers in areas
of control and robotics, e.g., deep reinforcement learning [13], imitation learn-
ing [7,14], and model predictive control (MPC) approximating [3,9]. We consider
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neural-network controlled systems (NNCSs) that are closed-loop sampled-data
systems where a neural-network controller controls a continuous physical plant
in a periodic manner. Given a sampling period δ > 0, the neural-network (NN)
controller reads the state x of the plant at the time t = iδ for i = 0, 1, 2, . . . , feeds
it to a neural network to obtain the output u, and updates the control input
in the plant’s dynamics to u. Our tool ReachNN* aims to solve the following
reachability problem of NNCSs.

Problem 1. The reach-avoid problem of a NNCS is to decide whether from any
state in an initial set X0, the system can reach a target set Xf , while avoiding
an unsafe set Xu within the time interval [0, T ].

A major challenge facing reachability analysis for NNCSs is the presence of non-
linearity in the NN controllers. Existing reachability analysis tools for NNCSs
typically target specific classes of NN controllers [2,5,12,15]. Sherlock [5] and
NNV [15] for instance only consider neural networks with RELU activation
functions, while Verisig [12] requires the neural networks to have differentiable
activation functions such as tanh/Sigmoid.

In this paper, we present our tool ReachNN*, which is a significantly extended
implementation of our previous prototype ReachNN [11]. ReachNN* provides
two main features. First, it can verify an NNCS with any activation functions by
Bernstein polynomial approximation [11]. Second, based on the proportionality
relationship between approximation error estimation Lipschitz constant of the
NN controller, ReachNN* can use knowledge distillation (KD) [10] to retrain a
verification-friendly NN controller that preserves the performance of the original
network but has a smaller Lipschitz constant, as proposed in [6].

Another significant improvement in ReachNN* is the acceleration of the
sampling-based error analysis in ReachNN by using GPU-based parallel com-
puting. The sampling-based approach uniformly samples the input space for a
given sample density and evaluates the neural network controller and the poly-
nomial approximation at those sample points. We use the Lipschitz constant
of the neural network and the samples to establish an upper bound on the true
error (details in [11]). For networks with many inputs, this approach may require
many sample points to avoid a blowup in the overapproximation. Here, we make
the observation that the sampling-evaluation step is a single instruction, mul-
tiple data (SIMD) computation which is amenable to GPU-based acceleration.
Experimental results across a set of benchmarks show 7× to 422× efficiency
improvement over the previous prototype.

2 Tool Design

The architecture of ReachNN* is shown in Fig. 1. The input consists of three
parts: (1) a file containing the plant dynamics and the (bounded) reach-avoid
specification, (2) a file describing the NN controller, and (3) an optional target
Lipschitz constant for controller retraining. The tool then works as follows. For
every sampling step [iδ, (i + 1)δ] for i = 0, 1, 2 . . . , a polynomial approximation
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Fig. 1. Structure of ReachNN*.

along with a guaranteed error bound for the NN controller output is computed
and then used to update the plant’s continuous dynamics. The evolution of the
plant is approximated by flowpipes using Flow*. During the flowpipe construc-
tion, it checks every computed flowpipe whether it lies entirely inside the target
set Xf and outside the avoid set Xu. The tool terminates when (1) the reachable
set at some time t ≤ T lies inside the target set and all computed flowpipes do
not intersect with the avoid set, i.e. the reach-avoid specification is satisfied; or
(2) an unsafe flowpipe is detected, i.e. it enters the avoid set Xu; or (3) the reach-
able set at some time t intersects with but is not entirely contained in Xf , in
which case the verification result is unknown. The tool also terminates if Flow*
fails due to a blowup in the size of the flowpipes. Along with the verification
result (Yes, No or Unknown), the tool generates a Gnuplot script for producing
the visualization of the computed flowpipes relative to X0, Xf and Xu.

When the tool returns Unknown, it is often caused by a large overapprox-
imation of the reachable set. As noted before, the overapproximation error is
directly tied to the Lipschitz constant of the network in our tool. In such cases,
the user can enable the knowledge distillation option to retrain a new neural net-
work. The retrained network has similar performance compared to the original
network but a smaller Lipschitz constant. The tool will then perform reachabil-
ity analysis on the retrained network. We describe the function of each model in
ReachNN* in more detail below.

[Polynomial Approximation Generator]. We implement this module in
Python. It generates the approximation function of a given neural network over
a general hyper-rectangle, with respect to a given order bound for the Bernstein
polynomials. The generated polynomial is represented as a list of monomials’
orders and the associated coefficients.
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[Approximation Error Analyzer]. This module is implemented in Python. It
first invokes a sub-module – Lipschitz constant analyzer, to compute a Lipschitz
constant of the neural network using a layer-by-layer analysis (see Sect. 3.2 of
[11] for details). Then, given the Lipschitz constant, this module estimates the
approximation error between a given polynomial and a given neural network
by uniformly sampling over the input space. To achieve a given precision, this
sampling-based error estimation may result in a large number of samples. In
ReachNN*, we leverage Tensorflow [1] to parallelize this step using GPUs.
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Fig. 2. Reachability analysis results: Red lines represent boundaries of the obstacles
and form the avoid set. Green rectangle represents the target region. Blue rectangle
represents the computed flowpipes. (Color figure online)

[Flow*]. We use the C++ APIs in Flow* [4] to carry out the following tasks: (a)
flowpipe construction under continuous dynamics using symbolic remainders, (b)
checking whether a flowpipe intersects the given avoid set, (c) checking whether
a flowpipe lies entirely in the given target set, and (d) generating a visualization
file for the flowpipes.

[Knowledge Distillator]. This module is implemented in Python with GPU
support for retraining. The inputs for this module are the original NN, a target
Lipschitz constant number, and a user-specified tolerance of the training error
between the new network and the original network. The output is a retrained
network. Details of the distillation procedure can be found in [6]. We note that
this module also supports distilling the original network into a new network with
a different architecture, which can be specified as an additional input.

Example 1. Consider the following nonlinear control system [8]: ẋ0 = x1, ẋ1 =
ux2

1 − x0, where u is computed from a NN controller κ that has two hidden
layers, twenty neurons in each layer, and ReLU and tanh as activation func-
tions. Given a control stepsize δc = 0.2, we want to check if the system will
reach [0, 0.2] × [0.05, 0.3] from the initial set [0.8, 0.9] × [0.5, 0.6] while avoiding
[0.3, 0.8] × [−0.1, 0.4] over the time interval [0, 7].
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Table 1. Comparison with ReachNN. We use l to represent the number of layers in the
neural network controller, n to represent the number of neurons in the hidden layers,
and ε̄ for the error bound in sampling-based analysis. We use the same benchmarks
from [11]. The dimensions of states are from 2 to 4 for these benchmarks. Time shows
the runtime of the reachability analysis module. The After KD results do not include
the runtime for knowledge distillation. The average runtime for knowledge distilla-
tion is 245 s (The runtime of the knowledge distillation module does not vary much
across different benchmarks.). Acc (short for acceleration) denotes the ratio between
the runtime of ReachNN and that of ReachNN* on the same NNCS without applying
knowledge distillation.

# NN Controller Setting Verification Result Time (Seconds) Acc

Act l n ε̄ Before KD After KD ReachNN [11] ReachNN* After KD

1 ReLU 3 20 0.001 Yes(35) – 3184 26 – 112×
sigmoid 3 20 0.005 Yes(35) – 779 76 – 10×
tanh 3 20 0.005 Unknown(35) Yes(35) 543 76 70 7×
ReLU + tanh 3 20 0.005 Yes(35) – 589 76 – 7×

2 ReLU 3 20 0.01 Yes(9) – 128 5 – 25×
sigmoid 3 20 0.001 Yes(9) – 280 13 – 21×
tanh 3 20 0.01 Unknown(7) Yes(7) 642 71 69 9×
ReLU + tanh 3 20 0.01 Yes(7) – 543 25 – 21×

6 ReLU 4 20 0.01 Yes(10) Yes(10) 7842 1126 12 7×
sigmoid 4 20 0.01 No(7) – 32499 77 – 422×
tanh 4 20 0.01 No(7) – 3683 11 – 334×
ReLU + tanh 4 20 0.01 Yes(10) Yes(10) 10032 1410 674 7×

The verification finished in 12718 s and the result is Unknown, which indi-
cates the computed flowpipes intersect with (and are not contained entirely in)
the avoid set or the target set. The flowpipes are shown in Fig. 2a. With KD
enabled, we retrain a new NN controller with the same architecture, a target
Lipschitz constant as 0 (0 means the knowledge distillator will try to minimize
the Lipschitz constant) and a regression error tolerance of 0.4. The resulting
flowpipes are shown in Fig. 2b. We can see that the new NN controller can be
verified to satisfy the reach-avoid specification. In addition, the verification for
the new NN controller is 123× faster compared to verifying the original NNCS.

3 Experiments

We provide a full comparison between ReachNN* and the prototype ReachNN
on all the examples in [11]. If the verification result is Unknown, we apply our
verification-aware knowledge distillation framework to synthesize a new NN con-
troller and check the resulting system with ReachNN*. All experiments are per-
formed on a desktop with 12-core 3.60 GHz Intel Core i7 and NVIDIA GeForce
RTX 2060 (ReachNN does not make use of GPU).

We highlight part of the results for Benchmark #1, #2 and #6 in
Table 1 due to space constraint (results on all benchmarks can be found in
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https://github.com/JmfanBU/ReachNNStar.git). ReachNN* achieves from 7×
to 422× efficiency improvement on the same NNCSs (across all benchmarks
also). In Benchmark #1 and #2 with Unknown results, we applied our knowl-
edge distillation procedure to obtain new NN controllers and performed reacha-
bility analysis again on the resulting systems. Observe that ReachNN* produces
a Yes answer for these systems. In addition, it took a shorter amount of time
to compute the verification results compared to ReachNN. In Benchmark #6,
ReachNN* took more than 1000 s to obtain a Yes result in two cases. We run
knowledge distillation for these two cases to evaluate whether KD can be ben-
eficial solely from an efficiency perspective. In both cases, ReachNN* with KD
significantly improves runtime compared to ReachNN* without KD.
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Abstract. We present RVX, a tool for concolic testing of embedded
binaries targeting RISC-V platforms with peripherals. RVX integrates
the Concolic Testing Engine (CTE) with an Instruction Set Simula-
tor (ISS) supporting the RISC-V RV32IMC Instruction Set Architecture
(ISA). Further, RVX provides a designated CTE-interface for additional
extensions. It is an extensible command layer that provides support for
verification functions and enables integration of peripherals into the con-
colic simulation. The experiments demonstrate the applicability and effi-
ciency of RVX in analyzing real-world embedded applications. In addi-
tion, we found a new serious bug in the RISC-V port of the newlib C
library.

Keywords: RISC-V · Concolic testing · Verification · Embedded
binaries

1 Introduction

Performing application Software (SW) verification on the binary level is very
important to achieve accurate verification results. However, at the same time
it is very challenging due to the detailed low level semantics. Concolic testing
has been shown to be very effective for binary analysis [2,3,5,9]. Recently, we
proposed a methodology for concolic testing of embedded binaries targeting plat-
forms with peripherals, using the RISC-V Instruction Set Architecture (ISA)1
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1 Find the RISC-V ISA specification documents at https://riscv.org/specifications/.
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Fig. 1. RVX architecture overview. The Core VP is based on our RISC-V VP from [6].

as a case-study [7]. This initial prototype implementation has been extended,
resulting in the tool RVX. To the best of our knowledge, RVX is the first avail-
able concolic testing tool targeting the RISC-V ISA2. In particular, RVX sup-
ports the RISC-V RV32IMC ISA, i.e. a 32 bit architecture with the mandatory
base Integer instruction set together with the Multiplication extension and sup-
port for Compressed instructions, in combination with the RISC-V machine
mode Control and Status Registers (CSRs) and interrupt handling instruction.
In addition RVX provides a designated Concolic Testing Engine (CTE) interface
to access verification functions from the SW and integrate additional peripher-
als into the concolic simulation by means of SW models. The CTE-interface
peripheral integration is tailored for SystemC-based peripherals with TLM 2.0
communication [8]. Our experiments demonstrate the efficiency of RVX in ana-
lyzing real-world embedded binaries.

Compared to our initial paper [7], this tool paper focuses on additional imple-
mentation details and adds the following extensions and contributions: 1)
several architectural improvements, including a search heuristic to speed-up bug
hunting and an optimized memory system for more efficiency (lazy initialization
and instruction fetch optimization); 2) extended support for the RISC-V privi-
leged ISA which enables to use the Zephyr Operating System (OS); and 3) new
set of experiments based on the Zephyr OS and we found a new serious bug in
the RISC-V port of the newlib C library.

2 RVX Overview and Implementation

2.1 Architecture Overview

RVX is implemented in C++. Figure 1 shows an overview of the architecture.
RVX operates on the binary level. Starting point of the analysis is a RISC-V
binary (ELF). The RISC-V binary is obtained by compiling and linking the SW
application together with our CTE-interface and an optional set of peripheral
SW models. We expect that calls to the verification functions (functions provided

2 Visit http://systemc-verification.org/risc-v for the most recent updates on our
RISC-V related approaches.

http://systemc-verification.org/risc-v
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through our CTE-interface SW stub), to mark symbolic input variables and
encode (safety) properties (i.e. make symbolic, assume and assert with their
usual semantic), have been embedded in the ELF already.

RVX performs concolic testing of the RISC-V ELF. Essentially, RVX consists
of two parts: The concolic core Virtual Prototype (VP) and the CTE, as shown
on the right side of Fig. 1. The CTE successively generates new inputs to explore
new paths through the ELF. Based on the inputs the VP, and in particular the
Instruction Set Simulator (ISS) component, performs the actual execution one
after another and tracks symbolic constraints in order to generate new inputs.
Therefore, the VP is operating with concolic data types in place of concrete
values. Essentially, a concolic data type is a pair of a concrete value and a
(optional) symbolic expression.

We implemented symbolic expressions as lightweight wrapper classes that
provide a thin layer around KLEE [1] symbolic expressions. Beside, enabling
to change the symbolic backend more easily, the wrapper provides expression
simplification rules, based on term rewriting. We leverage KLEE constraint sets
and use the solver API of KLEE (combining the counterexample and caching
solvers) for constraint solving.

2.2 Exploration Engine and Memory Model

The exploration engine collects inputs in a priority queue to enable easy inte-
gration of different search algorithms. We prioritize inputs that lead to new
program counter values (i.e. essentially increase branch coverage by selecting a
branch direction that has not yet been executed). In case of multiple/none avail-
able candidates, we randomize the decision. By using the search depth as crite-
ria a Depth First Search (DFS) or Breadth First Search (BFS) can be selected
instead.

Memory is modeled as mapping from address to concolic byte. The map-
ping is constructed on-demand in a lazy fashion. A lazy implementation enables
a significantly faster startup of the VP and reduces memory consumption, since
the VP can have a large amount of memory and construction of symbolic data is
resource intensive. The memory is initialized by loading the ELF file3. All other
memory locations are uninitialized and will return a symbolic value on access.
A memory access (read or write) with symbolic address will be concretized to a
concrete address. Symbolic constraints are collected to enable generation of dif-
ferent concrete addresses. To speed-up instruction fetching we provide an option
to load the text section of the ELF file into a native array and perform instruction
fetching from that array.

3 Essentially, this will copy code and data from the text and data sections, respectively,
as well as zero initialize memory according to the bss section, as specified in the ELF
program headers.
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2.3 CTE-Interface and Peripheral Integration

Verification Interface. We provide the make symbolic, assume and assert
verification functions with their usual semantic, i.e. to make variables (memory
locations in general) symbolic as well as constrain and check their values. Besides
that, we provide two functions to set/unset memory regions to be access pro-
tected. These functions enable to e.g. implement heap buffer overflow protection
by allocating a larger buffer and marking the beginning and end of the allocated
buffer to be access protected. RVX reports an error in case an access to such a
memory region is detected at runtime.

Peripheral Integration. Both the actual application SW as well as the SW
peripheral models are executed on the core VP. In case a memory access is routed
to a SW peripheral the ISS performs a context switch to the peripheral handler.
Therefore, the ISS sets the program counter to the handler address. Arguments
between the ISS and the SW peripherals are passed through registers. Arguments
are the access address, length, type (read or write) and a pointer to the data
that is written or to be read (therefore a designated array is reserved). At the
end of the handler, the CTE return function is called. It restores the previous
execution context in the ISS.

Besides the return function that transfers control back to the caller of a
peripheral function, RVX provides four additional CTE-interface functions for
peripheral integration: notify, cancel, delay and trigger irq. Notify registers a
callback function to be called after a specified delay by the core VP (based
on the core VP timing model, i.e. execution cycles per instructions). Cancel
removes a pending notification callback. Notify and cancel enable to implement
a simple event-based synchronization targeting simple SystemC-based process
(i.e. SC THREAD and SC METHOD) functionality. The delay function allows
to annotate a processing delay that is added to the VPs internal timing model.
The trigger irq function triggers the given interrupt number. Please note, we
provide an SW model of the RISC-V PLIC (Platform Level Interrupt Controller)
that receives interrupts from other peripherals and prioritizes them. Finally, the
PLIC is using the trigger irq interface function to signal to the core VP that
some interrupt is pending and requires processing.

Virtual Instructions. Load instructions are split in the ISS into smaller vir-
tual instructions. The reason is that they need to store the result of the memory
access into a destination register (encoded in the instruction format). However,
the result of a peripheral memory access is only available after context switching
between the peripheral, which involves execution of several additional instruc-
tions (code from the peripheral) in-between. Splitting load instructions into two
virtual instructions, where the first performs the memory access and the second
stores the result in the destination register, enables the ISS to resume execution
of the load instruction correctly.
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2.4 ISS Main Loop

The ISS is the main component of the core VP. Algorithm 1 shows the instruc-
tion processing loop of the ISS. It executes instructions until the simulation
terminates (19, by issuing a special system call from the SW).

The ISS either executes application code (the default mode) or peripheral
code (in-peripheral is True). In both cases the ISS might be executing virtual
instructions (in-virtual-mode is True) to process load instruction correctly. Please
note, in-virtual-mode is set to False when entering peripheral code and restored
to its previous state on leaving (i.e. by storing in-virtual-mode on the context
stack).

Pending notifications from peripherals (2–7) as well as external system calls
(not CTE-interface, e.g. Zephyr OS context switches) and interrupts (8–10) are
only processed if the ISS is currently executing normal application code. The
switch-to-trap-handler function jumps to the trap/interrupt handler in SW, fol-
lowing the RISC-V trap/interrupt handling convention.

In each step either a virtual (12) or normal (13–18) instruction is exe-
cuted. In case of a normal instruction the ISS timing model is updated and the
delay of the registered pending peripheral notifications is updated accordingly.

Algorithm 1: Main instruction processing loop inside the ISS
1 do
2 if ¬ in-virtual-mode ∧ ¬ in-peripheral then
3 foreach e ← pending-notifications do
4 if delay(e) ≤ 0 then /* notification time elapsed */

/* context switch to peripheral code */

5 context-switch-to-event-handler(function(e))

6 pending-notifications.remove(e)

7 break

8 if ¬ in-peripheral then
9 if has-pending-system-call ∨ has-pending-enabled-interrupts then

10 switch-to-trap-handler() /* follow RISC-V convention */

11 if in-virtual-mode then
12 exec-virtual-step() /* continue with instruction part */

13 else
/* exec-normal-step() might enter virtual mode and context

switch to peripheral or set status to Terminated */

14 if in-peripheral then
15 exec-normal-step() /* peripherals have separate timing */

16 else
/* execute SW instruction and update core timing */

17 Instruction op ← exec-normal-step()

18 timing-and-pending-notifications-update(op)

19 while status != Terminated
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The updates only happen for application code (18), since the peripheral mod-
els emulate hardware devices and hence require a different timing model (we
provide the delay system call to annotate the execution delay). The ISS uses a
simple timing model that assigns each instruction a fixed (though configurable)
execution time.

3 Experiments and Conclusion

All experiments have been performed on an Ubuntu 16.04 Linux system with
an Intel Core i5-7200U processor. As symbolic backend we use KLEE [1] v1.4.0
with STP [4] solver v2.3.1. Table 1 shows the results. The columns show: the
application SW name, the number of executed instruction (#instr), lines of code
in C and assembly, overall execution time (time), solver time (stime), number
of concolic execution paths (#paths), and number of solver queries (#queries).

First, we consider two applications (each with and without a bug as indicated
by the name) based on the Zephyr OS. Both applications use a consumer and
producer thread and a sensor peripheral attached to an Interrupt Service Routine
(ISR). The sensor generates symbolic data that is passed through the ISR to
the producer (which applies post-processing) and finally the consumer (contains
assertions) thread using message queues. The first application (zephyr-filter-* )
generates ten values, applies a filter and asserts that the sum and maximum value
stays within a valid range. The second application (zephyr-sort-* ) generates six
values, sorts the data (using the BSD qsort implementation) and then asserts
that it is sorted. These applications demonstrate RVX’s ability in analyzing
complex embedded binaries.

Table 1. Experiment results (all times reported in seconds) - using RVX to analyze
embedded SW targeting the RISC-V ISA and use the i) Zephyr OS, and ii) the RISC-V
port of the newlib C library. In case of a bug (*-bug) RVX stops the analysis and reports
a counterexample. Otherwise (*-ok), RVX performs an exhaustive concolic execution
based on the symbolic inputs.

Application SW #instr C ASM time (S) stime (S) #paths #queries

zephyr-filter-ok 421,206,516 265 4293 196.17 141.73 1024 2048

zephyr-filter-bug 24,628,768 265 4293 7.66 4.79 72 127

zephyr-sort-ok 180,274,083 408 4650 249.25 223.05 724 5043

zephyr-sort-bug 996,518 408 4648 1.43 1.27 4 34

memcpy-opt-bug 182,943 207 566 12.80 11.87 18 473

In addition, we found a new bug in the RISC-V port of the newlib C library.
In particular, the bug is in the (speed) optimized memcpy function4 and causes

4 https://github.com/riscv/riscv-newlib/blob/master/newlib/libc/machine/riscv/
memcpy.c.

https://github.com/riscv/riscv-newlib/blob/master/newlib/libc/machine/riscv/memcpy.c
https://github.com/riscv/riscv-newlib/blob/master/newlib/libc/machine/riscv/memcpy.c
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overwriting of nearly the entire address space due to an integer overflow in a
length calculation. It is triggered by copying a small block to a destination (dst)
address that is close to zero. We found the bug (last row in Table 1) by making
the source (src) and dst address as well as the copy size symbolic. We added
constraints that src and dst are not overlapping, and placed before the code
segment. To catch buffer overflows we added a protected memory region (access
is monitored by the ISS) around the buffer memory. Finally, we placed assertions
after the memcpy to ensure it copies the data correctly from src to dst.

In summary, the experiments demonstrate the applicability and efficiency of
RVX in analyzing real-world embedded binaries and finding bugs.
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Abstract. We present a new version of Peregrine, the tool for the anal-
ysis and parameterized verification of population protocols introduced
in [Blondin et al., CAV’2018]. Population protocols are a model of com-
putation, intensely studied by the distributed computing community, in
which mobile anonymous agents interact stochastically to perform a task.
Peregrine 2.0 features a novel verification engine based on the construc-
tion of stage graphs. Stage graphs are proof certificates, introduced in
[Blondin et al., CAV’2020], that are typically succinct and can be inde-
pendently checked. Moreover, unlike the techniques of Peregrine 1.0, the
stage graph methodology can verify protocols whose executions never
terminate, a class including recent fast majority protocols. Peregrine 2.0
also features a novel proof visualization component that allows the user
to interactively explore the stage graph generated for a given protocol.

Keywords: Population protocols · Distributed computing ·
Parameterized verification · Stage graphs.

1 Introduction

We present Peregrine 2.01, a tool for analysis and parameterized verification of
population protocols. Population protocols are a model of computation, intensely
studied by the distributed computing community, in which an arbitrary number
of indistinguishable agents interact stochastically in order to decide a given prop-
erty of their initial configuration. For example, agents could initially be in one
of two possible states, “yes” and “no”, and their task could consist of deciding
whether the initial configuration has a majority of “yes” agents or not.

Verifying correctness and/or efficiency of a protocol is a very hard problem,
because the semantics of a protocol is an infinite collection of finite-state Markov
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chains, one for each possible initial configuration. Peregrine 1.0 [5] was the first
tool for the automatic verification of population protocols. It relies on theory
developed in [6], and is implemented on top of the Z3 SMT-solver.

Peregrine 1.0 could only verify protocols whose agents eventually never
change their state (and not only their answer). This constraint has become
increasingly restrictive, because it is not satisfied by many efficient and suc-
cinct protocols recently developed for different tasks [1,2,4]. Further, Peregrine
1.0 was unable to provide correctness certificates and the user had to trust the
tool. Finally, Peregrine 1.0 did not provide any support for computing parame-
terized bounds on the expected number of interactions needed to reach a stable
consensus, i.e., bounds like “O(n2 log n) interactions, where n is the number of
agents”.

Peregrine 2.0 addresses these three issues. It features a novel verification
engine based on theory developed in [3,7], which, given a protocol and a task
description, attempts to construct a stage graph. Stage graphs are proof certifi-
cates that can be checked by independent means, and not only prove the protocol
correct, but also provide a bound on its expected time-to-consensus. Stages rep-
resent milestones reached by the protocol on the way to consensus. Stage graphs
are usually small, and help designers to understand why a protocol works. The
second main novel feature of Peregrine 2.0 is a visualization component that
offers a graphical and explorable representation of the stage graph.

The paper is organized as follows. Section 2 introduces population protocols
and sketches the correctness proof of a running example. Section 3 describes the
stage graph generated for the example by Peregrine 2.0, and shows that it closely
matches the human proof. Section 4 describes the visualization component.

2 Population Protocols

A population protocol consists of a set Q of states with a subset I ⊆ Q of initial
states, a set T ⊆ Q2 × Q2 of transitions, and an output function O : Q → {0, 1}
assigning to each state a boolean output. Intuitively, a transition q1, q2 �→ q3, q4
means that two agents in states q1, q2 can interact and simultaneously move to
states q3, q4. A configuration is a mapping C : Q → N, where C(q) represents the
number of agents in a state q. An initial configuration is a mapping C : I → N. A
configuration has consensusb ∈ {0, 1} if all agents are in states with output b. We
write configurations using a set-like notation, e.g. C = �y, n, n� or C = �y, 2 · n�
is the configuration where C(y) = 1, C(n) = 2 and C(q) = 0 for q �∈ {y, n}.

Running Example: Majority Voting. The goal of this protocol is to conduct a
vote by majority in a distributed way. The states are {Y, N, y, n}. Initially, all
agents are in state Y or N, according to how they vote. The goal of the protocol
is that the agents determine whether at least 50% of them vote “yes”.

The output function is O(Y) = O(y) = 1 and O(N) = O(n) = 0. When two
agents interact, they change their state according to the following transitions:

a : Y N �→ y n b : Y n �→ Y y c : N y �→ N n d : y n �→ y y
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Intuitively, agents are either active (Y, N) or passive (y, n). By transition a, when
active agents with opposite opinions meet, they become passive. Transitions b
and c let active agents change the opinion of passive agents. Transition d handles
the case of a tie.

Computations in Population Protocols. Computations use a stochastic model:
starting from an initial configuration C0, two agents are repeatedly picked, uni-
formly at random, and the corresponding transition is applied. This gives rise
to an infinite sequence C0

t1−→ C1
t2−→ . . . of configurations, called a run. A run

stabilizes to consensus b ∈ {0, 1} if from some point on all configurations have
consensus b. Intuitively, in a run that stabilizes to b the agents eventually agree
on the answer b. Given a population protocol P and a predicate ϕ that maps
every configuration C to a value in {0, 1}, we say that P computes ϕ if for
every initial configuration C, a run starting at C stabilizes to consensus ϕ(C)
with probability 1. The correctness problem consists of deciding, given P and ϕ,
whether P computes ϕ. Intuitively, a correct protocol almost surely converges
to the consensus specified by the predicate. Majority Voting is correct and com-
putes the predicate that assigns 1 to the configurations where initially at least
50% of the agents are in state Y, i.e. we have ϕ(C) = (C(Y) ≥ C(N)).

Majority Voting is Correct. To intuitively understand why the protocol is cor-
rect, it is useful to split a run into phases. The first phase starts in the initial
configuration, and ends when two agents interact using transition a for the last
time. Observe that this moment arrives with probability 1 because passive agents
can never become active again. Further, at the end of the first phase either all
active agents are in state Y, or they are all in state N. The second phase ends
when the agents reach a consensus for the first time, that is, the first time that
either all agents are in states Y, y, or all are in states N, n. To see that the second
phase ends with probability 1, consider three cases. If initially there is a majority
of “yes”, then at the end of the first phase no agent is in state N, and at least
one is in state Y. This agent eventually moves all passive agents in state n to
state y using transition b, reaching a “yes” consensus. The case with an initial
majority of “no” is symmetric. If initially there is a tie, then at the end of the
first phase all agents are passive, and transition d eventually moves all agents
in state n to y, again resulting in a “yes” consensus. The third phase is the rest
of the run. We observe that once the agents reach a consensus no transition is
enabled, and so the agents remain in this consensus, proving that the protocol
is correct.

3 Protocol Verification with Peregrine 2.0

Peregrine 2.0 allows the user to specify and edit population protocols. (Our
running example is listed in the distribution as Majority Voting.) After choosing
a protocol, the user can simulate it and gather statistics, as in Peregrine 1.0 [5].
The main feature of Peregrine 2.0 is its new verification engine based on stage
graphs, which closely matches the “phase-reasoning” of the previous section.
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Stage Constraint Certificate Speed

S0 R C(Y) O(n2 logn)
S4 R ∧ C(Y) = 0 C(y) 2O(n logn)

S5 R ∧ C(Y)+C(y) = 0 ⊥ ⊥
S1 R′ C(N) O(n2 logn)
S2 R′ ∧ C(N) = 0 C(n) O(n2 logn)
S3 R′ ∧ C(N)+C(n) = 0 ⊥ ⊥

Fig. 1. Stage graphs for Majority Voting protocol with constraints, certificates and
speeds. The expression R and R′ denote abstractions of the reachability relation, which
are a bit long and therefore omitted for clarity.

Stage Graphs. A stage graph is a directed acyclic graph whose nodes, called
stages, are possibly infinite sets of configurations, finitely described by a Pres-
burger formula. Stages are inductive, i.e. closed under reachability. There is an
edge S → S′ to a child stage S′ if S′ ⊂ S, and no other stage S′′ satisfies
S′ ⊂ S′′ ⊂ S. Peregrine 2.0 represents stage graphs as Venn diagrams like the
ones on the left of Fig. 1. Stages containing no other stages are called terminal,
and otherwise non-terminal. Intuitively, a phase starts when a run enters a stage,
and ends when it reaches one of its children.

Each non-terminal stage S comes equipped with a certificate. Intuitively, a
certificate proves that runs starting at any configuration of S will almost surely
reach one of its children and, since S is inductive, get trapped there forever.
Loosely speaking, certificates take the form of ranking functions bounding the
distance of a configuration to the children of S, and are also finitely represented
by Presburger formulas. Given a configuration C and a certificate f , runs starting
at C reach a configuration C ′ satisfying f(C ′) < f(C) with probability 1.

To verify that a protocol computes a predicate ϕ we need two stage graphs,
one for each output. The roots of the first stage graph contain all initial config-
urations C with ϕ(C) = 0 and the terminal stages contain only configurations
with consensus 0. The second handles the case when ϕ(C) = 1.

Stage Graphs for Majority Voting. For the Majority Voting protocol Peregrine
2.0 generates the two stage graphs of Fig. 1 in a completely automatic way.
By clicking on a stage, say S4, the information shown in Fig. 2 is displayed.
The constraint describes the set of configurations of the stage (Fig. 1 shows
the constraints for all stages). In particular, all the configurations of S4 satisfy
C(Y) = 0, that is, all agents initially in state Y have already become passive. The
certificate indicates that a run starting at a configuration C ∈ S4 \S5 eventually
reaches S5 or a configuration C ′ ∈ S4 \ S5 such that C ′(y) < C(y). Peregrine
2.0 also displays a list of dead transitions that can never occur again from any
configuration of S4, and a list of eventually dead transitions, which will become
dead whenever a child stage, in this case S5, is reached.
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Fig. 2. Details of stage S4 in Fig. 1
at configuration �N, 4 · n, 2 · y�.
The terms C[q] are the number of
agents C(q) in state q.

Fig. 3. Partially constructed
Markov chain after a simulation
of the Majority Voting protocol
inside the protocol’s stage graphs,
with = �N, 4 · n, 2 · y� selected.
(Color figure online)

While they are automatically generated, these stage graphs closely map the
intuition above. The three stages of each graph naturally correspond to the three
phases of the protocol: S0 and S1 correspond to the first phase (we reduce C(Y)
or C(N)), S2 and S4 to the second phase (C(Y) or C(N) is zero, and we reduce
C(y) or C(n)), and S3 and S5 to the third phase (all agents are in consensus).

Speed. Because agents interact randomly, the length of the phase associated to a
stage is a random variable (more precisely, a variable for each number of agents).
The expected value of this variable is called the speed of the stage. A stage has
speed O(f(n)) if for every n the expected length of the phase for configurations
with n agents is at most c · f(n) for some constant c. Peregrine 2.0 computes
an upper bound for the speed of a stage using the techniques of [7]. The last
column of Fig. 1 gives the upper bounds on the speed of all stages. Currently,
Peregrine 2.0 can prove one of the bounds O(n2 log n), O(n3), O(nk) for some
k and 2O(n logn). Observe that for stage S4 of Majority Voting the tool returns
2O(n log n). Majority Voting is indeed very inefficient, much faster protocols exist.

4 Visualizing Runs in the Stage Graph

To further understand the protocol, Peregrine 2.0 allows the user to simulate a
run and monitor its progress through the stage graph. The simulation is started
at a chosen initial configuration or a precomputed example configuration of a
stage. The current configuration is explicitly shown and also highlighted as a
yellow circle in the stage graph. To choose the next pair of interacting agents,
the user can click on them. The resulting interaction is visualized, and the suc-
cessor configuration is automatically placed in the correct stage, connected to
the previous configuration. After multiple steps, this partially constructs the
underlying Markov chain of the system as shown in Fig. 3. One can also navi-
gate the current run by clicking on displayed configurations or using the PREV

and NEXT buttons.
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Fig. 4. Counterexample automatically found by Peregrine when verifying Majority
Voting (broken), shown in the stage graphs as a run from = �Y, N� to = �y, n�.
The graph with root S1 is only a partial stage graph, because stage S4 contains con-
figurations that do not have the correct consensus.

Beyond choosing pairs of agents one by one, the user can simulate a full run
of the protocol by clicking on PLAY . The acceleration slider allows to speed
up this simulation. However, if the overall speed of the protocol is very slow, a
random run might not make progress in a reasonable time frame. An example
for this is the Majority Voting protocol for populations with a small majority for
N, where the expected number of interactions to go from S4 to S5 is 2O(n logn).
Thus, even for relatively small configurations like �4 · Y, 5 · N� a random run
is infeasible. To make progress in these cases, one can click on PROGRESS .
This automatically chooses a transition that reduces the value of the certificate.
Intuitively, reducing the certificate’s value guides the run towards a child stage
and thus, the run from S4 to S5 needs at most n steps. To visualize the progress,
the value of the stage’s certificate for the current configuration is displayed in
the stage details as in Fig. 2 and next to the PROGRESS button.

Finding Counterexamples. The speed of stage S4 with certificate C(y) is so low
because of transition d : y n �→ y y that increases the value of the certificate
and may be chosen with high probability. Removing the transition d makes the
protocol faster (this variant is listed in the distribution as “Majority Voting
(broken)”). However, then Peregrine cannot verify the protocol anymore, and
it even finds a counterexample: a run that does not stabilize to the correct
consensus. Figure 4 shows the counterexample ending in the configuration �y, n�
from the initial configuration �Y, N�, i.e. a configuration with a tie. In this case,
the configuration should stabilize to 1, but no transition is applicable at �y, n�,
which does not have consensus 1. This clearly shows why we need the transition
d. Note however that the left part with root stage S0 in Fig. 4 is a valid stage
graph, so the modified protocol works correctly in the ,negative case. This helps
locate the cause of the problem.
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Abstract. DG is a library written in C++ that provides several types
of program analysis for LLVM bitcode. The main parts of DG are a
parametric points-to analysis, a call graph construction, a data depen-
dence analysis, and a control dependence analysis. The project includes
several tools built around the analyses, the main one being a static slicer
for LLVM bitcode. This paper describes what analyses are implemented
in DG and its use cases with the focus on program slicing.

1 Introduction

DG is a library providing data structures and algorithms for program analysis.
The library was created during the re-implementation of the static slicer in the
tool Symbiotic [8] and its original purpose was the construction of dependence
graphs [12] for LLVM bitcode [14]. During the development, we re-designed DG
from a single-purpose library for the construction of dependence graphs to a
library providing data structures and basic algorithms for program analysis.

The main parts of DG are a parametric points-to analysis and a call graph
construction, a data dependence analysis based on the transformation of writes to
memory into static single assignment (SSA) form [18], and a control dependence
analysis providing two different algorithms with different characteristics. The
results of these analyses can be used to construct a dependence graph [12] of the
program that supports forward and backward slicing, among others.

Most of the implemented algorithms are designed to be independent of the
programming language. Currently, DG has an LLVM backend that allows using
the algorithms with LLVM infrastructure.

Analyses in DG have a public API that is used also in communication
between analyses inside DG. As a result, a particular implementation of anal-
ysis can be easily replaced by an external analysis. The benefit of being able
to integrate an external analysis is that one can use features of DG (e.g., pro-
gram slicing) along with features of the external analysis (e.g., better speed or
precision). At this moment, DG integrates a points-to analysis from the SVF
library [19].
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entry:
%y = alloca i32
%x = alloca i32
%p = alloca i32*
store 0 to %y
store %y to %p
%c = call @nondet ()
store %c to %x
br label %while.cond

while.cond:
%0 = load %x
%cmp = icmp sgt %0, 0
br %cmp , label %while.body ,

label %while.end

while.body:
%dec = add %0, -1
store %dec to %x
br label %while.cond

while.end:
%1 = load %p
%2 = load %1
%cmp1 = icmp eq %2 , 0
call @assert(i1 %cmp1)

entry:

%p %y %x %c

store
%y to %p

store
0 to %y

store
%c to %x

while.cond:

br %cmp %cmp %0

while.body:

store
%dec to %x

%dec

while.end:

%1 %2

%cmp1

assert(%cmp1)

Fig. 1. A simplified LLVM bitcode and its dependence graph. For clarity, we left
out nodes with no dependencies. Black dashed edges are use dependencies, red edges
are data dependencies, and blue edges are control dependencies. The dashed control
dependence is present in the graph only when NTSCD algorithm is used. Highlighted
are the nodes that are in the slice with respect to the call of assert (using SCD).
(Color figure online)

LLVM. DG works with LLVM [14], which is a strongly typed assembly-like
intermediate language for compilers. Instructions in LLVM are arranged into
labeled basic blocks to which we can jump using the br instruction. Variables
on the stack are created by the alloca instruction and can be later accessed
via the load and store instructions. The meaning of the rest of the instructions
used in this paper should be clear from the text. An example of LLVM bitcode
can be found in Fig. 1.

In the rest of the paper, we describe the main analyses in DG and its use cases.

2 Points-To Analysis

Points-to analysis is a cornerstone of many other program analyses. It answers
the queries: “What is the memory referenced by the pointer?”. For each points-
to analysis, we can identify the following basic traits. Points-to analysis is flow-
sensitive (FS) if it takes into account the flow of control in the program and
thus computes information specifically for each program location. Otherwise, it
is flow-insensitive (FI). It is field-sensitive if it differentiates between individual
elements of aggregate objects, e.g., arrays or structures.
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In DG, we have implemented a parametric points-to analysis framework [6]
that supports FS and FI analysis and has dynamically configurable field-
sensitivity. Moreover, the analysis can construct a call graph of the program.
The FS analysis has also an option to track what memory has been freed [9].

3 Data Dependence Analysis

Data dependence analysis is a crucial part of program slicing. Informally, we
say that instruction r is data dependent on instruction w if r reads values from
memory that may have been written by w. In Fig. 1, for example, instruction
%0 = load %x is data dependent on instructions store %c to %x and store %dec to %x as
it may read values written by both of these instructions.

In DG, the data dependence analysis constructs SSA representation of writes
to memory, the so-called memory SSA form [16]. The input to the data depen-
dence analysis in DG is a program whose instructions are annotated with infor-
mation about what memory may/must be written, and what memory may be
read by the instructions. These annotations are derived from the results of the
points-to analysis.

Our analysis algorithm is based on the algorithm of Braun [5]. We extended
the Braun’s algorithm, which works only with scalar variables, to handle aggre-
gated data structures, heap-allocated objects and accesses to memory via point-
ers, and also accesses to unknown memory objects (occurring due to a lack of
information about the accessed memory). Also, the algorithm has been modified
to handle procedure calls, therefore it yields interprocedural results.

4 Control Dependence Analysis

Informally, control dependence arises between two program instructions if
whether one is executed depends on a jump performed at the other. There are
several formal notions of control dependence. In DG, we implement analyses
that compute two of them. The first one is standard control dependence (SCD)
as defined by Ferrante et al. [12] and the other is non-termination sensitive con-
trol dependence (NTSCD) introduced by Ranganath et al. [17]. The difference
between these two is that NTSCD takes into account also the possibility that
an instruction is not executed because of a non-terminating loop.

For example, in Fig. 1, instructions in while.body basic block are (standard
and non-termination sensitive) control dependent on the br %cmp instruction from
while.cond block as the jump performed by the br %cmp instruction may avoid their
execution. If the loop in the program does not terminate, we will never get to
while.end basic block, and therefore NTSCD marks also instructions from this
block to be dependent on the br %cmp instruction.

The classical algorithms compute control dependencies per instruction. For
efficiency, our implementation allows also control dependencies between basic
blocks, where if basic block A depends on basic block B than it represents that
all instructions from the basic block A depend on the jump instruction at the
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end of the basic block B. See, for example, the control dependence edge between
while.cond and while.body basic blocks in Fig. 1.

We have also an implementation of the computation of interprocedural con-
trol dependencies that arise e.g., when calling abort() inside procedures. This
analysis runs independently of SCD and NTSCD analysis.

5 Dependence Graphs and Program Slicing

The results of hitherto mentioned analyses can be used to construct a depen-
dence graph of the program. A dependence graph is a directed graph that has
instructions of the program as nodes and there is an edge from node n1 to node
n2 if n2 depends on n1.

In DG, we distinguish three types of dependencies. The first two types are
control and data dependencies as computed by control and data dependence
analysis. The last dependence is use dependence that is the syntactic relation
between instruction and its operands. For instance, in Fig. 1, there is use depen-
dence from instruction %y = alloca i32 to %0 = load %y as the later uses %y.

Program Slicing. Static backward program slicing [21] is a method that
removes parts of a program that cannot affect a given set of instructions (called
slicing criteria). Dependence graphs are a suitable representation for program
slicing [12] as they capture dependencies between instructions. The set of instruc-
tions that comprise a slice is obtained by traversing the graph in the backward
direction from nodes corresponding to slicing criteria. In our example in Fig. 1,
the slice with respect to the call to function assert contains all instructions that
are backward reachable from the call node in the dependence graph. Depending
on whether we use SCD or NTSCD, the slice contains either the highlighted
instructions (SCD) or all instructions (NTSCD).

One of the prominent features of our slicer is that we produce executable
slices. That is, unlike tools that just output the set of instructions in the slice,
we produce a valid sliced bitcode that can be run or further analyzed.

6 Evaluation and Use Cases

We evaluated the effectiveness of our analyses by running our slicer on a set of
8107 reachability benchmarks from Software Verification Competition1. These
benchmarks range from small artificial programs (tens of instructions) to com-
plex code generated from Linux kernel modules (up to 130000 of instructions).
The average size of a benchmark is approximately 5320 instructions. Each bench-
mark contains calls to an error function which we used as slicing criteria (all
together if there were multiple calls). The experiments ran on a machine with
Intel i7-8700 CPU @ 3.2 GHz. Each benchmark run was constrained to 6 GB of
memory and 120 s of CPU time.

1 https://github.com/sosy-lab/sv-benchmarks, rev. 6c4d8bc.

https://github.com/sosy-lab/sv-benchmarks
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Fig. 2. The plot on the left shows CPU time of slicing using FS or FI points-to analysis
(PTA) and NTSCD or SCD control dependence analysis. On the right is depicted the
ratio of the number of instructions after and before slicing for FI PTA + SCD setup.

Figure 2 on the left shows a quantile plot of the CPU time of slicing with
different setups of pointer and control dependence analyses. Slicing is mostly
very fast – more than 75 % of benchmarks is sliced in 1 s (more than 80 % for FI
setups). However, in each setup are benchmarks on which slicing either timeouts
(around 380 benchmarks for FI setups and 280 for FS setups) or crashed e.g., due
to hitting the memory limit (around 860 for FI setups and 1400 for FS setups).

In Fig. 2 on the right is depicted the distribution of the ratio of the number
of instructions after and before slicing for FI PTA + SCD setup (the slicer’s
default). On average, for this setup, the size of the sliced bitcode was reduced
to 67 % of the size before slicing, but there are also numerous cases of reduction
to less than 30 %. FS points-to analysis has no big influence on these numbers.

Use Cases. Since its creation, DG has proved to be useful in many cases, e.g.,
software verification and bug finding [7–9,15,20] cyber-security [3,13] cyber-
physical systems analysis [10], and network software analysis [11].

Availability. DG library and documentation is available under the MIT license
at https://github.com/mchalupa/dg.

7 Related Work

Many analyses, including memory SSA construction and various alias analyses,
are contained directly in the LLVM project. However, these analyses are usually
only intraprocedural and thus too imprecise for sensible program slicing.

Now we survey the projects providing backward program slicing for LLVM.
ParaSlicer [2] and llvm-slicing [22] are projects written in Haskell that make
use of procedure summaries to generate more precise slices than the classical
slicing algorithms. These slicers only output a list of instructions that should be
in the slice. SemSlice [4] is a slicer for semantic slicing of LLVM bitcode. The
bottle-neck of semantic slicing is the use of SMT solving, which can be inefficient.

https://github.com/mchalupa/dg
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Finally, there is the obsolete slicer from Symbiotic called LLVMSlicer [1] which
is no longer maintained.

Acknowledgements. The author would like to thank Jan Strejček for his valuable
comments on the paper. Further, many thanks go to other contributors to the DG
library, mainly Tomáš Jašek, Lukáš Tomovič, and Martina Vitovská.
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Abstract. We present rtamt, an online monitoring library for Signal
Temporal Logic (STL) and its interface-aware variant (IA-STL), provid-
ing both discrete- and dense-time interpretation of the logic. We also
introduce rtamt4ros, a tool that integrates rtamt with Robotic Operating
System (ROS), a common environment for developing robotic applica-
tions. We evaluate rtamt and rtamt4ros on two robotic case studies.

1 Introduction

Robotic applications are complex autonomous cyber-physical systems (CPS).
Robotic Operating System (ROS) [1] provides a meta-operating system that
helps development of robotic applications. Verification remains a bottleneck, as
existing techniques do not scale to this level of complexity, thus making static
safety assurance a very costly, if not impossible, activity. Run-time assurance
(RTA) is an alternative approach for ensuring the safe operation of robotic CPS
that cannot be statically verified. RTA allows the use of untrusted components
in a system that implements a safe fallback mechanism for (1) detecting anoma-
lies during real-time system operations and (2) invoking a recovery mechanism
that brings the system back to its safe operation. Runtime verification (RV) pro-
vides a reliable and rigorous way for finding violations in system executions and
consequently represents a viable solution for the monitoring RTA component.

Formal specifications play an important role in RV and enable formulating
system properties. Signal Temporal Logic (STL) [2] is a formal specification
language used to describe CPS properties. It admits robustness semantics that
measure how far is an observed behavior from satisfying/violating a specification.

We introduce rtamt1, an online STL monitoring library. rtamt supports stan-
dard STL and its interface-aware extension (IA-STL) [3] as specification lan-
guages. It provides automated generation of online robustness monitors from
specifications under both discrete and continuous interpretation of time. We also
present rtamt4ros2, an extension that integrates rtamt to ROS, thus enabling the
use of specification-based RV methods in robotic applications. We assess the
library on two robotic applications.
1 https://github.com/nickovic/rtamt.
2 https://github.com/nickovic/rtamt4ros.
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Related Work. Several tools support offline monitoring of STL with quali-
tative (AMT2.0 [4]) and quantitative semantics (S-TaLiRo [5] and Breach [6]).
Reelay [7] implements past Metric Temporal Logic (MTL) monitors over discrete
and continuous time and with qualitative and quantitative semantics. PyMTL [8]
is a library for quantitative offline evaluation of MTL specifications. R2U2
tool [9] combines runtime observers for the discrete mission-time linear tem-
poral logic (mtLTL), with Bayesian networks, sensor filters and Boolean testers.
MONTRE [10] implements monitoring algorithms for timed regular expressions
(TRE). MONAA [11] implements an automata-based matching algorithms for
TREs. StreamLAB [12] and TeSSLa [13] are tools for evaluating real-time CPS
streams. The problem of online robustness monitoring was studied in [14], where
the authors propose an interval-based approach of online evaluation that allows
estimating the minimum and the maximum robustness with respect to both
the observed prefix and unobserved trace suffix. RVROS [15] is a specification-
agnostic monitoring framework for improving safety and security of robots using
ROS. To the best of our knowledge, rtamt/rtamt4ros is the only tool that imple-
ments online robustness STL monitors with both future and past operators and
ROS support.

2 RTAMT Design and Functionality

Specification
IA−STL

Parser

dense time

LibraryMonitor

Python front−end Python/C++ back−end

Evaluation
IA−STL Operator

discrete time

ϕ

ρ = ρ1 · ρ2 · · ·robustness

IA-STL ϕ

IA-STL ϕ

w = w1 · w2 · · ·
input signal

rtamt

Fig. 1. RTAMT architecture.

The main functionality of rtamt is the
automatic generation of online robust-
ness monitors from declarative specifi-
cations. Given an input signal in the
form of a sequence of (time, value)
pairs and a specification, rtamt com-
putes at different points in time how
robust is the observed signal to the
specification, i.e. how far is it from sat-
isfying or violating it. The library con-

sists of 3 major parts: (1) specifications expressed in a declarative specification
language, (2) a front-end with an Application Programming Interface (API) to
parse specifications and generate the monitor, and (3) a back-end that imple-
ments the actual evaluation algorithm used by the monitor. The rtamt library
uses a modular architecture depicted in Fig. 1. It uses ANTLR4 parser generator
to translate textual (IA-)STL specifications into an abstract parse tree (APT)
data structure used to build the actual monitor. The front-end implements the
Application Programming Interface (API) and the pre-processing steps such as
the translation of bounded-future (IA-)STL to past (IA-)STL in Python. The
back-end implements the monitoring algorithms in Python (for discrete-time
and dense-time interpretation) and C++ (for discrete-time interpretation). The
library is compatible with both Python 2.7 and 3.7.
Specification language in rtamt is STL with infinity-norm quantitative seman-
tics [16]. The library supports four variants of the specification language – stan-
dard STL and interface-aware STL [3] interpreted over discrete and dense time.
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IA-STL extends STL with an input/output signature of the variables and pro-
vides two additional semantic interpretations: (1) output robustness and (2)
input vacuity. Output robustness measures robustness of output signals with
respect to some fixed input. Input vacuity measures how vacuously is a speci-
fication satisfied with input signals only. rtamt accepts as input bounded-future
STL (bfSTL) that restricts the use of the future temporal operators (eventually,
always and until) to bounded intervals.

Parsing and preprocessing follows a two-step procedure. The first step
consists in translating the specification given in a textual form to an abstract
parse tree (APT). The translation uses ANTLR4 to generate a Python parser
for the (IA-)STL grammar. This translation is still not suitable for online mon-
itors – the specification may have future temporal operator that would require
clair-voyant monitoring capability. Hence, we implement the pastification proce-
dure [17] that translates the bfSTL formula φ into an equi-satisfiable past STL
formula ψ, which uses only past temporal operators and postpones the formula
evaluation from time index t, to the end of the (bounded) horizon t + h where
all the inputs necessary for computing the robustness degree are available.

Monitoring consists of evaluating in online fashion the past STL specifi-
cation according to its quantitative semantics, interpreted in discrete or dense
time 3.
Discrete-time monitors follow a time-triggered approach in which sensing of
inputs and output generation are done at a periodic rate. This choice is moti-
vated by [18], which shows that by weakening/strengthening real-time specifi-
cations, discrete-time evaluation of properties preserves important properties of
dense-time interpretation. This approach admits an upper bound on the use of
computation resources. rtamt implements two back-ends for STL monitors – one
in Python (for rapid prototyping) and one in C++ (for efficiency). rtamt uses
Boost.Python library to integrate the Python front-end with the C++ backend.
Dense-time monitors follow an event-driven approach. Their implementation
combines the incremental evaluation approach from [19] with the optimal stream-
ing algorithm to compute the min and max of a numeric sequence over a sliding
window from [20]. Unlike their discrete-time counterparts, continuous-time mon-
itors do not have bounds on memory requirements.

pub sub

Agent 1

sub pub

Agent 2

ROS System

su
b

pu
b

Specification
Monitor

rtamt4rosgnt
req

rtamt

out

Specification

Fig. 2. Integration of RTAMT to ROS.

Integration of RTAMT to ROS
ROS supports several messaging app-
roaches, including the subscriber and
publisher pattern. A publisher catego-
rizes a message into a class (called
topic in ROS) and sends it without-
knowing who will read the message.
A subscriber subscribes to a topic and

receives its associated messages, without knowing who sent the message4. The

3 Due to pastification, rtamt only needs to evaluate past temporal operators.
4 Unless the publisher encodes its identity into the message itself.
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messages are received and processed in callback() functions. Common ROS appli-
cations associate a callback() function per subscribed variable.

rtamt4ros, illustrated in Fig. 2, integrates rtamt into ROS using rospy. The
integration is non-intrusive and provides the user with a generic and transparent
monitoring solution for (IA-)STL specifications. The ROS system under observa-
tion is implemented with ROS nodes, which interact by publishing and receiving
ROS messages on dedicated topics. To publish values of a variable x of type T
on a topic t, ROS node associates x and T to t. Similarly, we declare in the STL
specification variables that we want to monitor, declare their types and asso-
ciate them to ROS subscription/publication topics using annotations. Variable
names, their types and associated topics are specification-dependent. rtamt4ros
implements a dynamic subscription/publication mechanism that uses the con-
cepts of introspection and reflection (the ability to passively infer the type of an
object and actively change its properties at runtime). Given a (IA-)STL speci-
fication, rtamt4ros infers all the specification variables and dynamically creates
their associated subscribers and publishers. The use of reflection allows us to
associate a single callback() function to all specification variables, by passing the
variable object as an argument to the function. We use the callback() function
only to collect input data and the main ROS loop to make robustness monitor
updates.

3 Experiments and Use Scenario

We now present experiments performed using rtamt and rtamt4ros. We apply
rtamt and rtamt4ros on two ROS case studies: Simple Two Dimensional Simulator
(STDR) and Toyota’s Human Support Robot (HSR) platform [21]. We use the
STDR example to show step-by-step usage of the rtamt and rtamt4ros for online
monitoring of robotic applications. We note that rtamt is versatile and could be
used for instance for offline monitoring and non-robotic applications. We then
evaluate the computation time requirements of the library. The experiments
were performed on a Dell Latitude 7490 with an i7-8650U processor and 16 GB
of RAM, running Ubuntu 16.04 on a virtual machine.

Online Monitoring of Robotic Applications: STDR is a ROS-compliant
environment for easy multi-robot 2D simulation (see Fig. 3). We use a simple
robot controller with commands encoded as ROS Twist messages that expresses
velocity in free space consisting of its linear and angular parts. The robot state is
encoded as a ROS Odometry message that represents an estimate of the position
(pose) and velocity (twist) in free space. We then use the rtamt4ros and rtamt to
monitor its low-level requirement stating that every step in the command must
be followed by the observed response. The specification spec.stl requires that
at all times the distance between the linear velocity on the x dimension of the
command and the robot is smaller than 0.5. The user first needs to import data
types used in the specification (lines 1–3). Then, it declares variables used in
specification, with their data type and (optionally) their input/output signature
(lines 4, 6 and 8). Special comments in lines 5 and 7 are annotations that provide
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additional information about variables - in this case they associate variables to
ROS topics. Finally, line 9 defines the IA-STL property.

1 from geometry_msgs.msg import Twist

2 from nav_msgs.msg import Odometry

3 from rtamt_msgs.msg import FloatMessage

4 input Twist cmd

5 @ topic(cmd , robot0/cmd_vel)

6 output Odometry robot

7 @ topic(res , robot0/odom)

8 output FloatMessage out

9 out.value = always(abs(cmd.linear.x - robot.twist.twist.

linear.x) <= 0.5)

To monitor the IA-STL specification spec.stl with rtamt/rtamt4ros , it suf-
fices to run the following command in the ROS environment.

1 roscore rtamt4ros ros_stl_monitor.py --stl spec.stl --

period 100 --unit ms

Fig. 3. STDR simulator. Fig. 4. HSR service robotics applica-
tion.

HSR is a robot with 8 degrees of freedom (DoF), combining 3 DoF of its
mobile base, 4 DoF of the arm and 1 DoF of the torso lift (see Fig. 4). The
robot is equipped with ROS modules for localization, path planning and obstacle
avoidance. We used this example to experiment with system-level properties in
a multi-agent environment. We were interested in particular in monitoring the
following requirements: (1) no-collision requirement stating that two robots are
never closer than some dmin distance from each other, and (2) when robot 2 is
closer than d distance from robot 1, then robot 2 two goes in at most T seconds
within d′ distance of some location L. For this industrial application, we present
an abstracted formalization of the above requirements.
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1 out1 = always (abs(rob1.pos - rob2.pos) < d)

2 out2 = abs(rob1.pos - rob2.pos) < d implies

3 eventually [0:T](rob1.pos - L) < d’

This experiment demonstrates the use of the library in a sophisticated
ROS/Gazebo environment in an industrial case study. The addition of moni-
tors is orthogonal to the development of the application and the monitors are
non-intrusive.
Table 1. Timing requirement per
single monitor update.

k bound C++ (s) Python (s)

100 0.00014 0.00023

1k 0.0002 0.00085

10k 0.0008 0.029

100k 0.0047 0.31

1M 0.046 72

Timing Figures: For online monitors, the
most important quantitative measure is the
computation time of a single monitoring
update step. We compared the difference in
timing requirements between the C++ and
the Python implementation of the discrete-
time monitoring algorithm. We used for
the experiment the STL specification out =
always[0:k] (a + b > -2) where k is the
upper bound on the timing modality of the

always operator that we varied between 100 and 1 million. Table 1 summarized
the results of the experiment. The outcomes clearly demonstrate the efficiency
of the C++ back-end, especially for large upper bounds in temporal modalities.

4 Conclusions

In this paper, we presented rtamt a library for generating online monitors from
declarative specifications and rtamt4ros, its ROS extension, demonstrating their
usability and versatility two robotic case studies.
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