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Preface

This volume contains the papers presented at the 18th International Symposium on
Automated Technology for Verification and Analysis (ATVA 2020) held in Hanoi,
Vietnam, during October 19-23, 2020.

The ATVA series of symposia is dedicated to promoting research in theoretical and
practical aspects of automated analysis, verification, and synthesis by providing an
international venue for the researchers to present new results. At the same time, they
provide a forum for interaction between the regional and international research com-
munities and industry in the field.

ATVA 2020 received 75 full paper submissions coauthored by researchers from 29
countries. Each submission was reviewed by at least three Program Committee (PC)
members with the help from reviewers outside the PC. After 10 days of online dis-
cussions, the committee decided to accept 32 papers for presentation at the conference.

We would like to express our gratitude to all the researchers who submitted their
work to the symposium. We are particularly thankful to all colleagues who served on
the PC, as well as the external reviewers, whose hard work in the review process helped
us prepare the conference program. The international diversity of the PC as well as
external reviewers is noteworthy as well: PC members and external reviewers have
affiliations with institutes in 20 countries.

Special thanks go to the three invited speakers — Tobias Nipkow, from TU Munich,
Germany; Klaus Havelund, from CalTech and NASA JPL, USA; and David Dill, from
Stanford University, USA. The papers of the two first invited talks are included in this
volume.

A number of colleagues have worked very hard to make this conference a success.
We wish to express our thanks to the Local Organizing Committee: Hung Pham Ngoc,
Hieu Vo Dinh, and many student volunteers. We would also like to thank the
University of Engineering and Technology of the Vietnam National University, Hanoi,
Vietnam, the host of the conference, who provided various support and facilities for
organizing the conference and its tutorials. Finally, we are thankful for the institutional
and financial support from Vingroup Innovation Foundation (VINIF) and Toshiba
Software Development in Vietnam (TSDV).

The conference program was prepared with the help of EasyChair. We thank
Springer for continuing to publish the conference proceedings.

October 2020 Dang Van Hung
Oleg Sokolsky
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First-Order Timed Runtime Verification
Using BDDs

Klaus Havelund'®™ and Doron Peled*®®

! Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA
klaus.havelund@jpl.nasa.gov
2 Department of Computer Science, Bar Ilan University, Ramat Gan, Israel
doron.peled@gmail.com

Abstract. Runtime Verification (RV) expedites the analyses of execution traces
for detecting system errors and for statistical and quality analysis. Having started
modestly, with checking temporal properties that are based on propositional
(yes/no) values, the current practice of RV often involves properties that are
parameterized by the data observed in the input trace. The specifications are
based on various formalisms, such as automata, temporal logics, rule systems
and stream processing. Checking execution traces that are data intensive against
a specification that requires strong dependencies between the data poses a non-
trivial challenge; in particular if runtime verification has to be performed online,
where many events that carry data appear within small time proximities. Towards
achieving this goal, we recently suggested to represent relations over the observed
data values as BDDs, where data elements are enumerated and then converted into
bit vectors. We extend here the capabilities of BDD-based RV with the ability to
express timing constraints, where the monitored events include clock values. We
show how to efficiently operate on BDDs that represent both relations on (enu-
merations of) values and time dependencies. We demonstrate our algorithm with
an efficient implementation and provide experimental results.

1 Introduction

Runtime verification provides techniques for monitoring system executions, online and
offline, against a formal specification. The monitored system is instrumented to report
to the monitor on the occurrence of relevant events that may also include related data
values. The monitor observes the input events and keeps some internal summary of
the prefix of the execution observed so far, which allows computing whether an evi-
dence for a violation of the specification is already available. RV can complement the
use of testing and verification techniques during the system development, e.g. by per-
forming offline log file analysis. It can also be used online as part of protecting a sys-
tem against an unwanted situation and averting it [26]. This is particularly important in

The research performed by the first author was carried out at Jet Propulsion Laboratory, Califor-
nia Institute of Technology, under a contract with the National Aeronautics and Space Admin-
istration. The research performed by the second author was partially funded by Israeli Science
Foundation grant 1464/18: “Efficient Runtime Verification for Systems with Lots of Data and its
Applications”.

(© Springer Nature Switzerland AG 2020

D. V. Hung and O. Sokolsky (Eds.): ATVA 2020, LNCS 12302, pp. 3-24, 2020.
https://doi.org/10.1007/978-3-030-59152-6_1
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safety-critical systems such as aerospace systems, transportation systems, power plants,
and medicine.

One main challenge in applying RV is to increase the scope of the properties that can
be monitored. The goal is to provide algorithms for monitoring richer, and yet succinct
specification formalisms while ensuring that the algorithms are efficient enough to catch
up with the speed of information arrival; especially if we want to apply them online. We
recently suggested to use BDDs [11,12] to represent relations between data elements
that appear during the execution. We extend this approach and present here a BDD-
based algorithm for full first-order linear temporal logic with time constraints. Consider
the following property (the syntax and semantics will be described later).

(close — Popen) ()

It expresses that when close happens, open must have already happened (P stands for
previously). To monitor this property, it is enough to remember if open was reported
to the monitor so that it can be checked when close is reported. The classical algo-
rithm [23] keeps two sets of Boolean variables, pre and now, in the summary, for
the previous and the current value of each subformula, respectively. These variables
are updated every time a new event is reported. For example, for the property Popen
(open has happened in the past), we keep pre(Popen) and now(Popen) and update
now(Popen) := now(open) V pre(Popen), where now(open) is true if open holds in the
most recent event. An example of a first-order temporal specification is the following.

Vf (close(f) — Popen(f)) @)

It asserts that every file that is closed was opened before. Here, we need to keep in the
summary a set of all the opened files so that we can compare them to the closing of files.
In general, the summary in this case extends the one used for the propositional case by
keeping for each subformula the set of assignments, essentially a relation between the
values assigned to the free variables that satisfy it: pre for the prefix without the last
event, and now for the current prefix. These sets can be updated using database oper-
ations between relations, corresponding to the Boolean operations in the propositional
case.

An extension of the logic, in another dimension, allows the properties to refer to the
progress of time. The reported events appear with some integer timing value. We do not
assume that the system reports to the monitoring program in each time unit or that only
a single event occurs within a time unit. We also leave open the unit of measurement
for time values (seconds, minutes, etc.). An example of such a specification is

Vf (closed(f) — P<agopen(f)) 3)

which asserts that every file f that is closed was opened not longer than 20 time units
before.

An RV algorithm for first-order LTL was presented in [7], and implemented in the
MonPoly tool, based on two alternative approaches: one allows unrestricted negation and
the relations are represented as regular sets and, subsequently, automata [25]; another
one with restricted negation in which relations are represented explicitly and are sub-
jected to database operators (e.g., join). In [7], an RV algorithm for first-order temporal
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logic with time constraints was presented. In [19], an algorithm that performs RV on
first-order logic using BDDs was suggested and a related tool was constructed. BDDs
are directed acyclic graphs that can often achieve a very compact representation of
Boolean functions. In this context, a BDD represents the relationship between values of
free variables that satisfy a given subformula in the summary. In that work, instead of
representing the data values themselves, enumerations of these values were used. This
allows a relatively short representation of big data values and using BDDs over a rel-
atively small number of bits. It helps obtaining a good compactness for the BDDs due
to common patterns in adjacent enumerations. The algorithm for the first-order logic is
simple and quite similar to the propositional algorithm. Using a special reserved value
to represent all the values that were not seen before allows the algorithm to easily deal
with unconstrained negation.

In this work, we build upon this latter BDD-based construction and extend it to
include in the temporal logic also timing constraints. This includes adapting the RV
algorithm to reflect the timing constraints and extending the BDD representation to rep-
resent timing information as well as data values. We do this while keeping the summary
compact and easy to update using BDD operations. We show how to perform updates on
relations over both (enumerations of) data values and timing values, including Boolean
and simple arithmetical operations. This is quite a nontrivial use of BDDs, applied to
the context of runtime verification. Albeit the mixed use of the BDD representation and
the addition of timing constraints, we manage to keep the basic algorithm similar to
the propositional one. We follow the theory with an implementation that extends that
of [19] and present experimental results.

Related Work. RV over propositional logic with timing constraints appears in [10,33].
In [16], an RV algorithm for propositional LTL that returns optimal (minimal or max-
imal) values that make the specification correct with respect to the observed trace
was presented. Other work on data-centric runtime verification include the systems
based on trace slicing, where data values are mapped to copies of propositional
automata [1,29,31], formula rewriting [5, 17], and rule-based monitoring [4,6, 18], tree-
automata [3] and SMT solving [13]. Applying arithmetic operations to sets of values,
represented using BDD appeared in [14].

2 Propositional Past LTL with Timing

RV is often restricted to monitoring executions against specification properties that con-
tain only the past modalities [27], where it is implicitly assumed that the specification
needs to hold for all the prefixes of the execution!. These properties correspond to tem-
poral safety properties [2], where a failure can always be detected on a finite prefix as
soon as it occurs [10]. Expressing safety properties in this form allows an efficient run-
time verification algorithm that is only polynomial in the size of the specification [23].
The syntax of propositional past timed linear temporal logic is as follows:

¢ u=true|p| (@A Q) [0 | (0S0) | (9S<50) | (02<50) | (0S-50)| © @

! This is equivalent to saying that the specification is of the form (I, where ¢ contains only
past modalities; we omit here the implied [, which is a future modality.
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where p is a proposition from a finite set of propositions P, with S standing for since,
and © standing for previous-time. The formula (¢Sy) has the standard interpretation
that W must be true in the past and ¢ must be true since then. The formula &¢ is true
in the current state if ¢ is true in the previous state. The formula (9S<sy) has the same
meaning as (QSV), except that Yy must have occurred within 8 time units. The formula
@25V is similar to S<s\, except that it requires  to be satisfied in the past; it is not
sufficient if \ is satisfied in the current state. Finally, (¢.5-5y) has the same meaning as
(9Sv), except that y must have occurred more than & time units ago. One can also write
(¢ V) instead of = (=@ A —y), (¢ — ) instead of (—@ V), P @ (previous @) instead
of (true S @) and H¢ (history @) instead of =P —¢. We also define P3¢ = (trueS<59),
P50 = (trueS-50), Hes@ = "P<s~¢, H.50 = P50, (9R5Y) = ~(—0S<5V)
and (@R.5¥) = ~(—0S=57Y).

LTL formulas are interpreted over executions & = (P,L,T), where

— P is afinite set of propositions,

— L:N— 2P where N are the positive integers,

— 7:N+— Nis a monotonic function (representing clock values). We may, but do not
have to, assume that t(1) = 0.

We will refer to §(i) = (i, L(i),t(i)) as the i’ event in &, which satisfies the propositions
L(i) and occurs at time (7). The semantics is defined as follows:

- &,i = true.

- i pif peLli.

- &iE—o@ifnot& i = o.

- i (oNy)ifEiF@and & i y.

- &iE(eSvy) if for some 1 < j <i, & jE W, and for all j < k < it holds that
Ek=o.

- &,i = (@S<sV) if there exists some 1 < j <1, such that ©(i) —t(j) <dand &, j =,
and for all j < k <iitholds that & k = ¢.

— &,i = (¢ 2<5y) if there exists some 1 < j < i, such that ©(i) —t(j) < dand &, j =,
and for all j < k <i it holds that &,k = @.

- &,i = (9S-5V) if there exists some 1 < j < i, such that (i) —t(j) > dand &, j =,
and for all j < k <iitholds that &,k = @.

- &iFEoeifi>land&,i—1E=0.

We say that an execution § satisfies a property @ iff for every i, it holds that &,i = @.
Note that this is discrete time semantics. We also do not require that every time instance
must have a corresponding event. Thus, (¢.5 ) means that @ has been holding for every
reported event since  held.

3 Runtime Verification for Propositional Past LTL

3.1 Algorithm for Propositional Past LTL Without Time Constraints

The dynamic programming algorithm for propositional past LTL without timing con-
straints described in [23] is based on the observation that the semantics of the past time
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formulas ©@ and (¢ .5 ) in the current step i is defined in terms of the semantics in the
previous step i — 1 of a subformula. The algorithm operates on a summary that includes
two vectors (arrays) of Boolean values indexed by subformulas: pre for the previous
observed prefix, which excludes the last seen event, and now for the current prefix,
which includes the last seen event. The algorithm is as follows.

1. Initially, for each subformula @ of the specification 1, now () := false.
2. Observe the next event” (i,L(i),t(i)) as input.
3. Let pre := now.
4. Make the following updates for each subformula. If ¢ is a subformula of y then
now () is updated before now(y).
= now(p) := (p € L(i)).
— now(true) := true.
— now((@A ) = now(@) A now(y).
— now(—Q) := —now(®).
- now((@SV)) := now(y) V (now () A pre((9Sy))).
~ now(© ¢) i pre(¢).
)
p

9]

if now(n) = false then report “error”.
6. Goto step 2.

3.2 RY for Propositional Past LTL with Timing Constraints

We describe the additions to the algorithm in Sect. 3.1 for the subformulas that contain
timing constraints, i.e., (S<s¥), (¢Z<5V) and (9S~sy). For each of these subformu-
las, we add to the summary two integer variables tpre and Tnow, which represent timers
that measure the time since a point that is relevant for calculating their truth value in
the current state. These variables are initialized to —1 and their values will be updated
based on the time difference A = t(i) — t(i — 1) between the current event (i) and the
previous one (i —1).

The Propositional Algorithm for (¢ S<5V)

This subformula asserts that at position i in the trace, there is some earlier (or current)
position j, where t(e;) —t(e;) < &and where (QSV) started to hold, until and including
the current event. The summary needs to remember not only that y has happened and
¢ kept holding since, but also to update the time duration that has passed. There can
be multiple such positions j where y held, but we only need to refer to the last (most
recent) such position j, since it has the smallest value, hence also the time constraint
will be the latest to expire.

The summary has the integer fime variables Tnow(9S<sy) and Tpre(¢S<sVy), which
can have the values [—1...9]. This value is the distance from the most recent point
where (@SV) started to hold within an interval of  time units. The values from [0.. . §]
correspond to the case where pre/now(@S<sy) = true and —1 corresponds to the case
where pre/now(@S<sy) = false. The update rule for Tnow(@S<sy) and now(QS<sy)
is as follows:

2 We ignore at this point the clock value component ().
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if now(y) then Thow(QS-sy) :=0 [restart timer]
else if Tpre(pS—5y) # —1 and now(¢) then [(pS<sW) continues to hold?]
if Tpre(@S<5y) +A > 8 then [distance too big?]
Tnow (PS<gy) := —1 [(9S<sw) does not hold]
else ‘Cnow((p_Sgg\y) = 1pre(@S<sy) +A [update distance]
else Thnow(QS<sV) := —1; [(@S<sw) does not hold]

now (@S<sy) := (Tnow(eS<sVy) 7# —1)

The Propositional Algorithm for (¢Z_5y)

This subformula is similar to (¢S<sy), but requires that y has happened in the past,
excluding the current time, and not more than d time units in the past; if y holds now,
this is not sufficient for (¢ Zsy) to hold. This modality is required to express properties
such as

Vfopen(f) — —(true Z<ao open(f))

which asserts that we have not witnessed two openings of the same file in proximity of
20 ticks or less. Note that the previous-time © operator does not help in expressing the
above property, since © refers to the previous event, which is not guaranteed to have
occurred exactly one clock tick earlier. The algorithm sets the timer to the distance from
the last event, if ¢ holds now, and y held in the previous event. Then it updates the timer
by adding A as long as @ continues to hold and we are within the time distance 6.

if now(¢) then

if pre(y) and A < & then Thow(@Z.5y) := A [initiate timer]
else
if tpre(9Zsy) # —1 and Tpre(QZ<s5y) + A < & then [distance still OK?]
TNowW(QPZ<5Vy) := Tpre(QZ<sy) + A [update distance]

else Tnow(9Z5y) 1= —1
else Tnow(9Zsy) == —1;
now (@ Z<5y) := (tnow(9Z<5y) # —1)

The Propositional Algorithm for (¢S.5v)

We update tnow(@S-sW¥), which is the current time distance to where (@Sy) (the
untimed version of the subformula) started to hold. We update it according to the
earliest (i.e., furthest in the past) occurrence where this held, since this is the larger
distance, hence the first to satisfy the timing constraint. If this occurrence becomes
irrelevant (since ¢ does not hold in the current prefix) then later observed occurrences
become irrelevant too. When this happens, we either zero the counter, in case that y
currently holds, or otherwide set it to —1 to signal that (¢Sy) does not currently hold.
We restrict the counter to 8+ 1; any value that is bigger than that will result in the same
conclusion, and we want to keep that value small®. Now @S- 5y currently holds when
the value of this counter is bigger than 8.

3 In fact, when A > 8, we use 8+ 1 instead.
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if now (@) A tpre(9S-5w) > 0 then
Tnow (9S-5V) := min(Tpre(@S.sy) +A,8+1)
else if now(y) then tnow(@S-5w) :=0 [ restart counter ]
else Tnow(QS-5v) := —1; [(@S~5¥) does not hold]

now (QSsy) = (Tpre(QS-sy) > d)

4 First-Order Past LTL

First-order past LTL allows quantification over the values of variables that appear as
parameters in the specification. In the context of RV, these values can appear within the
monitored events. For example, close(f) indicating that f is being closed. We saw in
the introduction Property (2), which asserts that a file cannot be closed unless it was
opened before. A more refined specification requires that a file can be closed only if it
was opened before, but also has not been closed since:

Vf (close(f) — O(~close(f)S open(f))) )

An assignment over a set of variables W maps each variable x € W to a value from its
associated domain. For example [x — 5,y — “abc”] is an assignment that maps x to 5
and y to “abc”. A predicate consists of a predicate name and a variable or a constant of
the same type*. E.g., if the predicate name p and the variable x are associated with the
domain of strings, then p(“gaga”), p(“lady”) and p(x) are predicates. The predicates G
with constant parameters are called ground predicates. A model, i.e., an execution (or a
trace), & is a pair (L, T), where

1. L: N~ 2% and
2. 1: N+ N is a monotonic function representing integer clock values.

An event in & is a triple (i) = (i, L(i),t(i)) fori > 1.

4.1 Syntax

As in the propositional case, we restrict ourselves to safety properties, hence introduce
only the past modalities.

¢ u=true|p(a) | p(x) | (@AQ) [~ | (050) | (05<50) | (#Z<50) | (95-50) | ©¢|Ix @

We can also define Vx¢ as -3—¢, and all the additional operators defined for the propo-
sitional case in Sect. 2.

4 For simplicity of the presentation, but without restricting the algorithms or the implementa-
tion, we present here only unary predicates.
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4.2 Semantics

Let free(@) be the set of free, i.e., unquantified, variables of subformula ¢. Let Y[x — a]
be an assignment that agrees with the assignment 7, except for the binding x — a. Then
v,&,i = @, where v is an assignment that contains free(@), and i > 1, is defined as
follows:

- v,&,i | true.

- 1.8,i = pla) if p(a) € L(i).

—ylv e d & i b= pla) if pla) € LI

- v8iE(eAy)ifv.8iE@and v,8,i .

- ’Yvéai ): =@ if not 'Y,&l. ': 0.

- v,&,i E (oS W) if there exists some 1 < j <4, such that ,&, j =y and and for all
J < k <iitholds that y,& k = .

- 7.8,i = (¢ S<5 W) if there exists some 1 < j < i, such that 7(i) —1(j) < J and
v,&,J E W, and for all j < k < it holds that v,&,k = .

- 7,&,i = (¢ Z<5V) if there exists some 1 < j < i, such that t(i) —t(j) <dandy.§, j =
v, and for all j < k <iitholds that ¥, k = o.

- 1,8, i = (@S> 5V) if there exists some 1 < j < i, such that t(i) —1(j) > dand ,§, j =
v, and for all j < k <iitholds that ¥, k = o.

-vé&iEoceifi>1andy,Ei—1Fo.

- v,&,i = 3x @ if there exists a € domain(x) such that y[x — a],&,i = ¢.

We write & |= ¢ for a formula @ without free variables when €,&,i |= ¢ for each i, where
€ is the empty assignment.

5 RV for First-Order Past LTL Using BDDs

We describe an algorithm for monitoring first-order past LTL properties with time con-
straints. The untimed version and an implementation of it was presented in [19].

5.1 RV for First-Order Past LTL Without Time Constraints Using BDDs

For the purpose of self containment, we first present the RV algorithm for the first-order
past LTL without timing constraints, as presented in [19]. Then, in the next section we
will show how to expand this into the logic with time constraints.

Using BDDs to Represent Relations

Our algorithm is based on representing relations between data elements (and, as we
discuss later, timers, which are small integers) using Ordered Binary Decision Diagrams
(OBDD, although we write simply BDD) [11]. A BDD is a compact representation for
a Boolean valued function as a directed acyclic graph (DAG), see, e.g., Figs. 1 and 2.
A BDD is obtained from a tree that represents a Boolean formula with some Boolean
variables x; .. .x; by gluing together isomorphic subtrees. Each non-leaf node is labeled
with one of the Boolean variables. A non-leaf node x; is the source of two arrows leading
to other nodes. A dotted-line arrow represents that x; has the Boolean value false (i.e.,
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0), while a thick-line arrow represents that it has the value true (i.e., 1). The nodes in the
DAG have the same order along all paths from the root (hence the letter ‘O’ in OBDD).
However, some of the nodes may be absent along some paths, when the result of the
Boolean function does not depend on the value of the corresponding Boolean variable.
Each path leads to a leaf node that is marked by either true or false, corresponding to
the Boolean value returned by the function for the Boolean values on the path.

A Boolean function, and consequently a BDD, can represent a set of integer values
as follows. Each integer value is, in turn, represented using a bit vector: a vector of bits
X1 ...xy represents the integer value x; X 14+x2 X 24...x3 X 2k where the bit value of
x; i 1 for true and O for false and where x; is the least significant bit, and x, is the most
significant. For example, the integer 6 can be represented as the bit vector 110 (the most
significant bit appears to the left) using the bits x; = 0, x, = 1 and x3 = 1. To represent
a set of integers, the BDD returns frue for any combination of bits that represent an
integer in the set. For example, to represent the set {4,6}, we first convert 4 and 6
into the bit vectors 100 and 110, respectively. The Boolean function over xj,x3,x3 is
(—x1 Ax3), which returns true exactly for these two bit vector combinations.

This can be extended to represent relations, or, equivalently, a set of tuples over

integers. The Boolean variables are partitioned into » bitstrings x; = x}, e ,x,ll , Xp =
X{,...,X; ,each representing an integer number, forming the bit string”:
1 1 n
xl7...,xkl,...,xiil7...,xkn.

Using BDDs over Enumerations of Values

The summary for the first-order RV algorithm without timing constraints consists of
BDD:s pre(¢) and now(@) for all subformulas of the monitored property. In the propo-
sitional case, these summary elements have Boolean values. For the first-order case,
each summary element for a subformula ¢ is conceptually a relation between values of
the free variables in ¢. However, instead of representing these values directly, accord-
ing to their different domains (e.g., integers, strings), these relations are represented as
BDDs over the enumerations of values, and not directly over the values themselves.

During RV, when a value (associated with a variable in the specification) appears
for the first time in an observed event, we assign to it a new enumeration. Values can
be assigned consecutive enumeration values; however, a refined algorithm can reuse
enumerations that were used for values that can no longer affect the verdict of the RV
process, see [21]. We use a hash table to point from the value to its enumeration so
that in subsequent appearances of this value the same enumeration will be used. For
example, if the runtime verifier sees the input events open(a), open(b), open(c), it may
encode them as the bit vectors 000, 001 and 010, respectively.

The described results in several advantages:

1. It allows a shorter representation of very big values in the BDDs; the values are
compacted into a smaller number of bits. Furthermore, if a big data value occurs
multiple times, we avoid representing that big value multiple times in the BDDs.

5 In the implementation the same number of bits are used for all variables: ky = kp = ... = k.
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2. It contributes to the compactness of the BDDs because enumerations of values that
are not far apart often share large bit patterns.

3. The first-order RV algorithm is simple and very similar to the propositional algo-
rithm; the Boolean operators over summary elements: conjunction, disjunction and
negation, are replaced by the same operators over BDDs. This also simplifies the
implementation.

4. Given an efficient BDD package, the implementation can be very efficient. On can
also migrate between BDD packages.

5. Full use of negation also follows easily.

Example 1 - BDDs without Time

As an example consider the following formula concerning the correctness of command
execution. It states that for all commands m, if the command succeeds execution, then
there must have been a dispatch of that command in the past with some priority p, and
no failure since the dispatch:

Vm(suc(m) — Ip(—fail(m) S dis(m, p))) ®)

Let us apply this property to the first two events of the following trace, where each
event includes a single ground predicate. It consists of the dispatch of two commands,
sending of telemetry data and success of the two commands:

(dis(stop, 1),dis(off ,2), tel(speed, 2), suc(stop), suc(off ) (6)

We shall now focus on the current assignments to the free variables m and p satisfying
the subformula ¢ = —fail(m) S dis(m, p), represented as a BDD. After the first event
dis(stop, 1) this BDD corresponds to the assignment [m — stop, p — 1]. The algorithm
(to be shown below) will for each variable enumerate the data observed in events, in this
case®, assume that stop gets enumerated as 6 (binary 110) and 1 also gets enumerated as
6 (binary 110) (note that values for different variables get enumerated individually, and
therefore can be mapped to the same enumerations). This mapping is recorded in the
hash map for each variable from values to enumerations. Say we represent the enumera-
tion for the value of each of the variables m and p using three bits: mymym3 and py pap3,
with m; and p; being the least significant bits. The assignment [m — stop, p — 1] will
then be represented by a BDD which accepts the bit vector mjmam3p1pap3 = 011011.
This BDD is shown in Fig. la. The BDD has 6 nodes, named 0,...,5. The nodes 0,
1 and 2 represent mmpms3, and the nodes 3, 4 and 5 represent p;p,p3. Following the
arrows from node 0 on the top to the leaf node 1 (true) at the bottom, we indeed see the
binary pattern 011011 (dotted-line arrows =0 and thick-line arrows = 1).

Consider now the second event dis(off,2). Here off gets enumerated as 5 (binary
101), just as 2 gets enumerated as 5 (binary 101) - again, variables get enumerated
individually. The BDD in Fig. 1b represents the set of assignments: {[m +— stop,p —
1],[m — off,p — 2]}. The BDD is the union of the BDD in Fig. 1a and a BDD repre-
senting the path 101101.

6 The example BDDs are generated by our tool.
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(a) BDD after first event. (b) BDD after second event.

Fig. 1. The BDDs for the formula (—fail(m) S dis(m, p)) after the first event and after the second
event.

The BDD-based Algorithm for First-order Past LTL

We use a hash table to map values to their enumerations. When a ground predicate p(a)
occurs in the execution matching with p(x) in the monitored property, the procedure
lookup(x,a) is used to return the enumeration of a: it checks if a is already hashed. If
not, i.e., this is a’s first occurrence, then it will be hashed and assigned a new enumera-
tion that will be returned by lookup. Otherwise, lookup returns the value hashed under
a, which is the enumeration that a received before. A better compactness is achieved
where each value is hashed separately for each variable x that matches it in the specifi-
cation formula, hence lookup(x, a) is not necessarily the same as lookup(y,a).

We can use a counter for each variable x, counting the number of different values
appearing so far for x. When a new value appears, this counter is incremented and the
value is converted to a Boolean representation (a bit vector). Note, however, that any
enumeration scheme is possible, as shown in Example 1 above.

The function build(x,A) returns a BDD that represents the set of assignments where
x is mapped to (the enumeration of) v for v € A. This BDD is independent of the val-
ues assigned to any variable other than x, i.e., they can have any value. For example,
assume that we use three Boolean variables (bits) xi, x, and x3 for representing enu-
merations over x (with x; being the least significant bit), and assume that A = {a,b},
lookup(x,a) = 001, and lookup(x,») = 011. Then build(x,A) is a BDD representation
of the Boolean function x; A —x3.

Intersection and union of sets of assignments are translated simply to conjunc-
tion and disjunction of their BDD representation, respectively, and complementation
becomes BDD negation. We will denote the Boolean BDD operators for conjunction,
disjunction and negation as A, \/ and — (confusion should be avoided with the corre-



14 K. Havelund and D. Peled

sponding operations applying on propositions). To implement the existential (universal,
respectively) operators, we use the BDD existential (universal, respectively) operators
over the Boolean variables that represent (the enumerations of) the values of x. Thus,
if By, is the BDD representing the assignments satisfying ¢ in the current state of the
monitor, then Jxi,...,x;(By) is the BDD that is obtained by applying the BDD exis-
tential quantification repeatedly on the BDD variables x ...,x;. Finally, BDD(L) and
BDD(T) are the BDDs that return uniformally false or true, respectively.

The dynamic programming algorithm, shown below, works similarly to the algo-
rithm for the propositional case shown in Sect. 3. That is, it operates on two vectors
(arrays) of values indexed by subformulas: pre for the state before the last event, and
now for the current state after the last event. However, while in the propositional case
the vectors contain Boolean values, in the first-order case they contain BDDs.

Initially, for each subformula ¢ of the specification 1, now(¢) := BDD(L).
Observe a new event (as a set of ground predicates) s as input.
Let pre := now.
Make the following updates for each subformula. If ¢ is a subformula of y then
now(o) is updated before now ().

— now(true) := BDD(T).

— now(p(a)) := if p(a) € s then BDD(T) else BDD(_L).

— now(p(x)) := build(x,A) where A = {a | p(a) € s}.

— now((@Ay)) := now(®) Anow ().
=) := —now(e).
(¢ S y)) :=now(y) V(now(p) Apre((¢Sy))).
& ¢) = pre(0).

— now(Ix @) :=3xy,...,x, now(Q).

5. if now(n) = BDD(.L) then report “error”.
6. Goto step 2.
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An important component of the algorithm is that, at any point during monitoring, enu-
merations that are not used in the pre and now BDDs represent all values that have not
been seen so far in the input events. We specifically reserve one enumeration, with bit
vector value of 11...11 (i.e., all ones), to represent all values not seen yet. This trick
allows us to use a finite representation and quantify existentially and universally over all
values in infinite domains while allowing unrestricted use of negation in the temporal
specification.

5.2 The BDD-based Algorithm for First-Order Past LTL with Time Constraints
We describe now changes to the algorithm in Sect.5.1 for handling the subformulas
with the timing constraints (9S<sV), (9 Z<sy) and (QS=sy).

BDDs Representing Relations Over Data and Time

Analogously to the propositional case, in the first-order case we need to add to the
summary, for subformulas with timing constraints, in addition to the BDDs for pre()
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and now(@), also BDDs of the time Tpre(¢) and tnow(@). These BDDs contain the
relevant time that has passed that is needed in order to check the timing constraint.

Each assignment or tuple in such a BDD is over some number of data data variables
x'...x" and, in adddition, a timing variable ¢, forming the BDD bits:

1 1 n
xl7...,xk,...7x)il7...,xk,tl7...7tm

These integer values are, either,

1. enumerations of data values, for each x, as explained above, or
2. the time ¢ that has passed since the event that causes the tuple of data values to be
included.

In order to keep the representation finite and small, 26+ 1 is used as the limit on 7. That
is, after we update 7, we compare it against 8. When ¢ goes beyond 8 we can store just
&+ 1 since we just need to know that it passed 8. During computation, when we observe
a A that is bigger than 8, we cut it down to d+ 1 for the same reason, before we add to
t. Finally, since adding A = 8+ 1 to a7 < 8 gives max 28+ 1, then this is the biggest
number we need to store in a BDD. Consequently, the number of bits needed to store
time is logy (28 +1).

Example 2 - BDDs with Time

We add a timing constraint to the formula (5) in Example 1, stating that when a com-
mand succeeds it must have been dispatched in the past within 3 time units:

Vm(suc(m) — Ip(—~fail(m) S<3 dis(m,p))) @)

Let us apply this property to the first two events of the following trace, which is the
trace (6) from Example 1, augmented with clock values following @-signs. We keep
the time constraint and clock values small and consecutive, to keep the BDD small for
presentation purposes:

(dis(stop,1)@1,dis(off ,2) @2, tel(speed,2) @3, suc(stop) @4, suc(off ) @5)  (8)

The BDD for the subformula @ = —fail(m) S<3 dis(m, p) at the third event fel(speed,2),
shown in Fig. 2, reflects that two (010 in binary) time units have passed since dis(stop, 1)
occurred, and one time unit (001 in binary) has passed since dis(off,2) has occurred.
The BDD is effectively an augmentation of the BDD in Fig. 1b, with the additional three
nodes 6, 7, and 8, representing respectively the bits 71, f,, and #3 for the timer value, with
t; (node 6) being the least significant bit.

BDD Update Operators on Relations Over Data and Time Constraints

When a new event occurs, depending on the type of the subformula with timing con-
straint, we need to update the timers in Tnow that count the time that has passed since
a tuple of values has entered. Subsequently, tpre will be updated when the next event
will occur. The difference between the clock value of the current event and the clock
value of the previous one is A, and the timer is incremented, as explained above, by
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Fig. 2. The BDD for the formula (—fail(m) S<3 dis(m, p)) at the third event.

min(A,d+ 1). We also need to be able to check whether after adding A, the value of the
time difference exceeds the time constraint d.

Abstractly, given a relation R over data elements and time values, we need to con-
struct two relations’:

— R+A={(x',... ¥t +A)|(x',...,x",t) € R}. This can be done by
1. Constructing a relation T = {(¢,¢') |t > OAt =t +A}.
2. Taking the join of R and 7T. The join is basically the tuples that agree on the
values of their common variables.
3. Projecting out the (old) # values, and then renaming the (new) ¢’ values as ¢.
- R>38={(x',....x",t) €R|t > &}. This can by done by
1. Constructing Ts = {z|r > d}.
2. Taking the join between R and T.

‘We show now how to translate these set operators into BDDs. For R+ A, we construct
a Boolean formula addconst(t,t',A) that expresses relation 7 between the Boolean
variables of # and ¢’. For R > 8, we construct a Boolean formula grconst(t,8) that cor-
responds to T5. These formulas are translated to BDDs. Then, taking the join of two
BDD:s is done by first completing the two BDDs to be over the same bits; since the
BDDs are independent of the missing bits, this is trivial, keeping the same BDD struc-
ture. Then the intersection between these BDDs is obtained via the BDD conjunction
(/\) operator.

7 Recall that all values are restricted to 28+ 1 and if A > 8, then 8+ 1 is used instead of A.
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The Boolean formula addconst. The Boolean formula addconst(z,1',A) is satisfied by
a pair of integer values 7 and ¢’, represented as the bit vectors 7] ...1,, and #{,...,1,,,
respectively, when 1’ = 1+ A. The integer constant A is represented using the bit vector
Aj...Ay. The formula uses the additional bits ry,...,r,, where r; is the carry-over
from the i" bits, according to Binary addition. This allows presenting the formula in
an intuitive way, following standard binary addition and in obtaining a formula that
is linear in the number of bits. When translating the formula to a BDD, existential

quantification is applied to remove the Boolean variables ry, ..., 1.

addconst(t,t',A) = Ni<i<m (1] < (i A D 1;))
where r| = false,
for1 <i<m:ri = ((ri A (t,'\/Ai)) vV (ﬂr,-/\t,- /\A,‘))

The formula gzconst. The formula gtconst(t,d) is true when ¢ is bigger than d. Both
t and O are integers represented as bit vectors ¢, ...t, and 0, ...J,,, respectively. This
holds when there is an index 1 < i < m such that ; = 1 (true) and o; = 0 (false),
and where form > j > i,t; = o ;. When translating the formula to a BDD, existential
quantification is applied to the Boolean variables ry, . .., r,, which are used to propagate
the check from the least to the most significant bit.

gteonst(t,8) =ry
where ro = false,
for 1 <i<m:ry=((t; A\=8;)V ((t & &) Ari-1))

We describe now the additions required in Step 4 of the algorithm presented in Sect. 5.1.

The First-order Algorithm for (¢ S<5 V)

The BDDs pre/now(@S<sy) generalize the Boolean summaries for the propositional
past LTL, by representing enumerations of the values of the free variables that satisfy
this subformula, e.g., with the bits x],...,x?. The BDDs tpre/tnow(@S<5Vy) relate the
values of the free variables that satisfy this subformula with the timer values that keep
the time elapsed since the point where the values of the free variables were observed.

Generalizing from the propositional case, we need to compare and update timing
values per each assignment to the free variables of a subformula (@S<sy). An example
is the assignments (tuples) {[x — me,y — 72, t — 6], [x — you,y — 62,t — 9]} for
the subformula (9S<sy), where 7 is assigned to the time units that has elapsed. We
represent that using BDDs, where the values for x and y follow the previous conventions,
with the bits x; ...x; and y; ...y encoding the enumerations for the values for x and y,
respectively, and the bits #1, . . . , ¢, that represent the time passed since their introduction.

We will also use the following BDD constructions: rename(B, x, y) renames the
bits x; ...x; in the BDD B as y; ...y, and BDDO(x) is a BDD where all the x; bits are a
constant 0, representing the Boolean expression —xj A ... A —g.

The update of the BDD tnow (@S<sy) is similar to the updates of the if statements in
the propositional case, applied to all the values of the free variables of this subformula
and uses the BDD constructed from the formula gtconst. While in the propositional case
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we kept the values [—1,0, ..., 8], with —1 representing false, here we need only keep the
assignments for the free variables of the subformula that correspond to [0...3]. Tuples
of variable values that do not satisfy the time constraint are simply not represented by
the BDD. This simplifies the formalization.

tnow(@S-5) := (now(y) ABDDO(1)) V/(~now(y) A now(9) A
rename (3t .. .t, (addconst(t,t',A) \—gtconst(t',d) \tpre(0S<s¥)), ', 1)) ;

Now (PS<sW) := 3t .. .1, TNOW(PS<5V)

That is, either y holds now and we reset the timer ¢ to 0, or ¥ does not hold now but
¢ does, and the previous 7 value is determined by Tpre(QS<sy), to which we add A,
giving ¢/, which must not be greater than 3. Then ¢ is removed by quantifying over it,
and ¢’ renamed to ¢ (¢' becomes the new 7). The BDD for now(@S<sVy) is obtained from
Tnow (QS<sy) by projecting out the timer value.

Note that the Boolean operators /\ and \/ on BDDs represent join and cojoin, respec-
tively. This means that before the operator is applied, its two parameters are extended
to have the same BDD variable bits (where the missing bits are assigned to all possible
combinations).

The First-Order Algorithm for (¢ Z5 )

The update of the BDD now(@Z<5V) is, conceptually, similar case-wise to the updates
of the if statements of the propositional case, applied to all the values of the free vari-
ables of this formula.

thow(9Z<5w) =
now() A
((pre(w) NA < SANEQUAL(t,A))
\%
(=pre(w) A
rename(3t; ... .ty (addconst(t,t',A) \ —gtconst(t',8) \tpre(QZ<5Vy)), ', 1)));
now (@ Z<sy) 1= 31 ... 1, Tnow(QZ5Vy)

Where EQUAL(t,c) = 3z ...z, (BDDO(z) A addconst(z, t,c)), expressing that 7 is
equal to ¢ by adding z = 0 to c to obtain 7. The formula says that ¢ must hold now
and one of two cases must hold. In the first case, y holds in the previous state, A < 9,
and ¢ is initialized to A. In the second case, y does not hold in the previous state, and
(using the same procedure as for the previous subformula) the previous ¢ value is deter-
mined by Tpre(QZ5Vy), to which we add A, giving 7/, which must not be greater than
8. Then ¢ is removed by quantifying over it, and ¢’ renamed to ¢ (' becomes the new ).
Note that A < 8 is a Boolean condition, and, depending on its value, can be translated
into the BDD representing the constants true or false.

The First-Order Algorithm for (¢S.5V)

Monitoring the subformula (@S- 5V) is, conceptually, similar case-wise to the proposi-
tional case.
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oW (QS=.5Y) :=
(now(y) A(—pre(9S-5y) V ~now(¢)) ABDDO(1)) V
(now(@) A rename(previous,t't))

where previous = 3t ... 1, (tpre(@S=sW) A((—grconst(t,8) Aaddconst(t, 1, A))\/
(gtconst(t,8) NEQUAL( ,8+1)));
now (0S~sW) := 3t .. .1, (Tnow (SssW) A giconst(t,8))

When v currently holds and either @S- 5y did not hold in the previous state or ¢ does
not hold now, we reset the timer 7 to 0. When ¢ holds we compute ¢’ using the where-
clause as follows and then rename it to #; 7 takes its value from tpre(@Sssy), which
is calculated based on the previous step. This means that (¢S 5y) held in the previous
step. If ¢ was then not greater than d, we add A to 7 to obtain #’. Otherwise (¢ was already
greater than 8), we set #' to 8+ 1 to reduce the size of the time values we have to store.

6 Implementation and Evaluation

6.1 Implementation

The DEJAVU tool, previously presented in [19] for the untimed case, was extended to
capture the extension of the first-order LTL logic with time. The DEJAV U tool assumes
that each state contains one® ground predicate, called an event. The tool, programmed
in Scala, reads a specification containing one or more properties, and generates a Scala
program, which can be applied to a log file containing events’ in CSV (Comma Sepa-
rated Value) format. The generated monitor program produces a verdict (true or false)
for each event in the log, although only failures are reported to the user. It uses the
JavaBDD package [24] for generating and operating BDDs. As an example, consider
the property (7) from Example 2. The generated monitor uses an enumeration of the
subformulas of the original formula in order to evaluate the subformulas bottom up for
each new event. Figure 3 (right) shows the decomposition of the formula into subfor-
mulas (an Abstract Syntax Tree - AST), indexed by numbers from O to 8, satisfying the
invariant that if a formula @ is a subformula of a formula @, then @;’s index is bigger
than ¢,’s index. The evaluation function of the generated monitor (~900 LOC in total),
which is applied for each event, is shown in Fig. 3 (left). In each step the evaluate func-
tion re-computes the now array from highest to lowest index, and returns true (ok) iff
now(0) is not BDD(_L).

6.2 Evaluation

We have performed an evaluation of DEJAVU by verifying variants of the properties
shown in Fig. 4 on a set of traces of varying length and structure. Each property is ver-
ified with, and without, time constraints. The command property is the previously dis-
cussed property (7) in Example 2. The access property is similar to a property evaluated

8 This restriction from the theory and algorithm presented above is made because our experience
shows that this is by far the most common case.
9 The tool can also be applied for online monitoring with some small adjustments.
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def evaluate (): Boolean = {
now(8) = build("dis")(V("m"),V("p"))

now(7) = build("fail")(V("m"))
now(6) = now(7).not() ‘ 0 : Forall m . suc(m) -> Exists p . ExistsTime . !fail(m) S[<=3] dis(m,p) ‘
now(5) = (now(8).and(zeroTime)).or(
now(6).and(pre(5)) l
.an (D ItaBDD)and(de“aBDD) ’ 1 : suc(m) -> Exists p . ExistsTime . !fail(m) S[<=3] dis(m,p) ‘
.and(addConst(t,tp,D,c))
.and(gtConst(tp,d).not ()) / \
) exist (varid).exist (VariD) ’ 2 : suc(m) ‘ ’ 3 : Exists p . ExistsTime . !fail(m) S[<=3] dis(m,p) ‘
.exist (var_c).exist (var_t) i
.replace(tp_to_t ma
) rep e( p_to t_ p) ’ 4 : ExistsTime . !fail(m) S[<=3] dis(m.p) ‘
now(4) = now(5).exist(var_t)
e it
now(2) :bwld("suc")( ("m"))
now(1) = now(2).not().or(now(3))

now(0) = now( ).forAll (var_m)
val error = now(0).isZero

tmp = now; now = pre; pre = tmp
lerror

}

I

Ifail(m) 8 : dis(m,p)

7 : fail(m)

Fig. 3. Monitor (left) and AST (right) for the property.

in [19]. It states that if a file f is accessed by a user u, then the user should have logged
in within 50 time units and not yet logged out, and the file should have been opened
within 50 time units and not yet closed. The next properties concern operations of the
Mars rover Curiosity [28]. The boots property concerns booting of instruments (passed
as event parameters). A boot is initiated by a boot-start and terminated by a boot-end.
The property states that for any instrument, we do not want to see a double boot (a
boot followed by a boot), where the boots last longer than 20 s, and where the distance
between the boots is less than 5 s. Finally, the mobraces and armraces properties fol-
low the same pattern but for two different constants. The mobraces property states that
during the execution of the command MOB_PRM (a dispatch of the command followed
by the success of the command), which reports mobility parameters to ground; there
should be no error in radio transmission of telemetry to ground. In addition the com-
mand must succeed in no more than 5 s. The armraces property states the same for the
ARM_PRM command that transmits robotic arm parameters to ground. These two last
properties in fact reflect a known (benign) race condition in the software of the Curios-
ity rover, caused when a thread servicing the radio is starved and generates the warning
tr_err which indicates missing telemetry. This happens because the thread is preempted
by higher priority threads that are processing one of two commands MOB _PRM and
ARM_PRM.

Table 1 shows the results of the evaluation, performed on a Mac Pro laptop, running
the Mac OS X 10.14.6 operating system, with a 2.9 GHz Intel Core 19 processor and
32 GB of memory. Each property is evaluated on one or more traces, numbered 1—
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prop commands : Forall m . suc(m) — Exists p . ! fail (m) S[<=50] dis(m,p)

prop access : Forall u . Forall f .
access (u,f) — ((!logout(u) S[<=50] login(u)) & (!close (f) S[<=50] open(f)))

prop boots: ! Exists i . (boot_e(i) & !'P[<=20]boot_s(i) &
@ (!'boot_e(i) S (boot s(i) & (!boot_e(i) S[<=5] (boot e(i) &
IP[<=20] boot_s(i) & @ (!boot_e(i) S boot s(i)))))))

prop mobraces : suc("MOB_PRM") — (P[<=5] dis("MOB_PRM") &
@ (!(suc("MOB_PRM") | Exists msg . tr_err (msg)) S dis("MOB_PRM")))

prop armraces : suc("ARM_PRM") — (P[<=5] dis("ARM_PRM") &
@ (!(suc("ARM_PRM") | Exists msg . tr_err (msg)) S dis("ARM_PRM")))

Fig. 4. Evaluation properties.

15. Six of these traces are taken from [19] (traces nr. 1, 2, 3 and 7, 8, 9), and which
are very data heavy, requiring lots of data to be stored by the monitor. The remaining
traces require storing less information (and perhaps are more realistic). Traces 1-13
were generated for the experiment and are artificial, stress testing DEJAVU. Traces 14
and 15 are real logs of events reported by the Mars Curiosity rover, transmitted to JPL’s
ground operations (trace 14 is a prefix of the longer trace 15). For each trace is shown
length in number of events, depth in terms of how many data values must be stored by
the monitor, and whether it was verified without time constraints (no constr.) or with
time constraints. A depth for the ACCESS property of e.g. 5,000 can mean that there
at some point has been 5,000 users that have logged in and not yet logged out. Events
in the logs 1-12 have consecutive clock values 1, 2, 3, .... Resulting trace analysis
times are provided in minutes and seconds. In addition the factor of slowdown is shown
for verifying with time constraints compared to verification without time constraints
(execution time with constraints divided by execution time without constraints).

The interpretation of the results is as follows. By observing the factor numbers in the
rightmost column, it is clear that there is a cost to monitoring timed properties compared
to monitoring properties without time constraints. This holds for all traces. Furthermore,
the larger the time constraints, the more calculations the monitor has to perform on bit
strings representing time values. The performance of DEJAVU is acceptable for time
constraints that require no more than 7 bits of storage. We observed, however, that
going beyond 7 bits causes the monitor execution to become considerably slower. This
corresponds to time constraints beyond 63.5 (note that for a time constraint of & one
needs /og, (284 1) bits, see page page 13). The reason for this is not understood at the
time of writing, and remains to be explored.



22 K. Havelund and D. Peled

Table 1. Evaluation data. The factors (rightmost column) show how much slower verification of
formulas with time constraints are compared to the untimed version of those formulas.

Property Trace nr. | Trace length | Depth | Time constraint | Time Factor
COMMANDS 1 11,004 8,000 no constr. 1.0s
50 1.8s 1.8
2 110,004 80,000 | no constr. 1.7s
50 1325 7.8
3 1,100,004 800,000 | no constr. 93s
50 2min5.8s | 13.5
4 10,050 25 no constr. 0.7s
50 1.0s 14
5 100.050 25 no constr. 1.1s
50 1.8 1.6
6 1,000,050 25 Nno constr. 2.6s
50 59s 2.3
ACCESS 7 11,006 5000 Nno constr. 0.9s
50 3.7s 4.1
8 110,006 50,000 | no constr. 2.2s
50 16.7s 7.6
9 1,100,006 500,000 | no constr. 1525
50 3min 53.9s | 154
10 10.100 25 no constr. 0.8s
50 1.7s 2.1
11 100,100 25 no constr. 1.1s
50 8.4s 7.6
12 1,000,100 25 no constr. 2.6s
50 I min 15.95 | 29.2
Boots 13 10,012 low no constr. 0.2s
2 04s 2.0
20 0.8s 4.0
50 5.1s 255
60 7.2s 36.0
MOB + ARM RACES | 14 50,000 low no constr. 0.3s
10 0.7s 2.3
60 1.0s 33
15 96,795 low no constr. 0.5s
10 1.0s 2.0
60 1.6s 3.2

7 Conclusions

We extended the theory and implementation of runtime verification for first-order past
(i.e., safety) temporal logic from [19] to include timing constraints. The untimed algo-
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rithm was based on representing relations over data values using BDDs. The use of
BDDs over enumerations of the data values as integers, and subsequently, bit vec-
tors, allowed an efficient representation that was shown, through an implementation
and experiments, to allow the monitoring of large execution traces.

This was extended here to allow timing constraints, as in (9S<5®), (§Z<5¢) and
(9S-59), with each event in the input trace including an integer clock value. The addi-
tion of timing constraints was done by extending the BDDs to represent relations over
both enumeration of data and timer values. This required the use of nontrivial operations
over BDDs that allow updating relations while performing arithmetic operations on the
timer values. We extended the tool DEJAV U, and reported on some of the experimental
results performed with time constraints.
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Abstract. This article surveys the state of the art of verifying standard
textbook algorithms. We focus largely on the classic text by Cormen
et al. Both correctness and running time complexity are considered.

1 Introduction

Correctness proofs of algorithms are one of the main motivations for computer-
based theorem proving. This survey focuses on the verification (which for
us always means machine-checked) of textbook algorithms. Their often tricky
nature means that for the most part they are verified with interactive theorem
provers (ITPs).

We explicitly cover running time analyses of algorithms, but for reasons of
space only those analyses employing I'TPs. The rich area of automatic resource
analysis (e.g. the work by Jan Hoffmann et al. [103,104]) is out of scope.

The following theorem provers appear in our survey and are listed here in
alphabetic order: ACL2 [111], Agda [31], Coq [25], HOL4 [181], Isabelle/HOL
[150,151], KeY [7], KIV [63], Minlog [21], Mizar [17], Nqthm [34], PVS [157],
Why3 [75] (which is primarily automatic). We always indicate which ITP was
used in a particular verification, unless it was Isabelle/HOL (which we abbreviate
to Isabelle from now on), which remains implicit. Some references to Isabelle
formalizations lead into the Archive of Formal Proofs (AFP) [1], an online library
of Isabelle proofs.

There are a number of algorithm verification frameworks built on top of
individual theorem provers. We describe some of them in the next section. The
rest of the article follows the structure and contents of the classic text by Cormen
et al. [49] (hereafter abbreviated by CLRS) fairly closely while covering some
related material, too. Material present in CLRS but absent from this survey
usually means that we are not aware of a formalization in a theorem prover.

Because most theorem provers are built on a logic with some kind of func-
tional programming language as a sublanguage, many verifications we cite per-
tain to a functional version of the algorithm in question. Therefore we only
mention explicitly if a proof deals with an imperative algorithm.

It must be emphasized that this survey is biased by our perspective and covers
recent work by the authors in more depth. Moreover it is inevitably incomplete.
We encourage our readers to notify us of missing related work.

© Springer Nature Switzerland AG 2020
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2 Programming and Verification Frameworks

In this section we will describe how the various systems that appear in our survey
support program verification. The theorem provers ACL2, Agda, Coq, HOL,
Isabelle, Minlog, Nqthm and PVS are based on logics that subsume a functional
programming language. By default that is the language algorithms must be
formulated in. ACL2 and Nqthm are special in two regards: their logic contains
the programming language Lisp whereas the other theorem provers typically rely
on some sort of compiler into functional languages like SML, OCaml, Haskell,
Scala and even JavaScript; ACL2 also supports imperative features [35] directly.

KeY and KIV are primarily program verification systems but with inbuilt
provers. They support modular verification and stepwise refinement. KeY focuses
on the verification of Java programs, KIV on refinement and the automatic
generation of executable programs in multiple target languages.

Why3 also falls into the program verification category. It has its own pro-
gramming and specification language WhyML, which is mostly functional but
with mutable record fields and arrays. Verification conditions are discharged
by Why3 with the help of various automated and interactive theorem provers.
WhyML can be translated into OCaml but can also be used as an intermediate
language for the verification of C, Java, or Ada programs.

Mizar is the odd one out: it does not have any built-in notion of algorithm
and its proofs about algorithms are at an abstract mathematical level.

There are various approaches for algorithm verification. Two important cat-
egories are the following:

Explicit Programming Language (Deep Embedding). One can define
a programming language — functional or imperative — with a convenient set
of constructs, give it a formal semantics, and then express an algorithm as a
program in this language. Additionally, a cost model can be integrated into the
semantics to enable formal reasoning about running time or other resource use.
The actual analysis is then typically done with some sort of program logic (e.g.
a Hoare-style calculus). When embedded in a theorem prover, this approach is
often referred to as a deep embedding.

Directly in the Logic (No Embedding). As was mentioned before, many
ITPs offer functionality to define algorithms directly in the logic of the system
— usually functionally. This approach is more flexible since algorithms can use
the full expressiveness of the system’s logic and not only some fixed restricted
set of language constructs. One possible drawback of this approach is that it
can be difficult or even impossible to reason about notions such as running time
explicitly. A possible workaround is to define an explicit cost function for the
algorithm, but since there is no formal connection between that function and
the algorithm, one must check by inspection that the cost function really does
correspond to the incurred cost. Another disadvantage is that, as was said earlier,
most logics do not have builtin support for imperative algorithms.
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Hybrids between these two approaches also exist (such as shallow embed-
dings). And, of course, the different approaches can be combined to reap the
advantages of all of them; e.g. one can show a correspondence between the run-
ning time of a deeply-embedded algorithm and a cost function specified as a
recurrence directly in the logic, so that results obtained about the latter have a
formal connection to the former.

Imperative Verification Frameworks. As examples of such combined
approaches, both Coq and Isabelle provide frameworks for the verification of
imperative algorithms that are used to verify textbook algorithms.

The CFML tool [41] allows extracting a characteristic formula — capturing
the program behaviour, including effects and running time — from a Caml pro-
gram and importing it into Coq as an axiom. The CFML library provides tactics
and infrastructure for Separation Logic with time credits [42] that allow to verify
both functional correctness and running time complexity.

Sakaguchi [176] presented a library in Coq that features a state-monad and
extraction to OCaml with mutable arrays.

Imperative-HOL is a monadic framework with references and arrays by Bul-
wahn et al. [38] which allows code generation to ML and Haskell with references
and mutable arrays. Lammich [118] presents a simplified fragment of LLVM,
shallowly embedded into Isabelle, with a code generator to LLVM text. Both
Imperative-HOL and Isabelle-LLVM come with a Separation Logic framework
and powerful proof tools that allow reasoning about imperative programs. Zhan
and Haslbeck [201] extend Imperative-HOL with time and employ Separation
Logic with time credits.

Isabelle Refinement Framework. There are several techniques for verifying
algorithms and data structures. Many verification frameworks start in a “bottom-
up” manner from a concrete implementation and directly generate verification
conditions which are then discharged automatically or interactively. Another
technique is to model an algorithm purely functionally, prove its correctness
abstractly and then prove that it is refined by an imperative implementation. For
example, Lammich [122] and Zhan [200] employ this technique for the verification
of algorithms in Imperative-HOL.

A third approach is best described as “top-down”: an abstract program cap-
turing the algorithmic idea is proved correct, refined stepwise to a more concrete
algorithm and finally an executable algorithm is synthesized. The Isabelle Refine-
ment Framework [127] constitutes the top layer of a tool chain in Isabelle that
follows that approach. It allows specifying the result of programs in a nondeter-
minism monad and provides a calculus for stepwise refinement. A special case
is data refinement, where abstract datatypes (e.g. sets) are replaced by concrete
datatypes (e.g. lists). Many algorithms have been formalized in this framework
and we will mention some of them in the main part of this paper. Lammich pro-
vides two backends to synthesize an executable program and produce a refine-
ment proof from an abstract algorithm: The Autoref tool [114] yields a purely
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functional implementation by refining abstract datatypes with data structures
from the Isabelle Collections Framework [121]. The Sepref tool [118,119] syn-
thesizes efficient imperative implementations in Imperative-HOL and LLVM.
Haslbeck and Lammich [95] extended the Isabelle Refinement Framework and
Sepref to reason abstractly about the running time of programs and synthe-
size programs that preserve upper bounds through stepwise refinement down to
Imperative-HOL with time [201].

2.1 Approaches for Randomized Algorithms

There are various approaches for reasoning about randomized algorithms in a
formal way. Analogously to the non-randomized setting described in Sect. 2,
there again exists an entire spectrum of different approaches:

— fully explicit/deeply-embedded approaches

— “no embedding” approaches that model randomized algorithms directly in the
logic as functions returning a probability distribution

— shallow embeddings, e.g. with shallow deterministic operations but explicit
random choice and explicit “while” loops. Examples are the approaches by
Petcher and Morrisett [165] in Coq and by Kaminski et al. [110] on paper
(which was formalized by Holzl [105]).

— combined approaches that start with a program in a deeply-embedded prob-
abilistic programming language and then relate it to a distribution specified
directly in the logic, cf. e.g. Tassarotti and Harper [188].

Next, we will explore the different approaches that exist in an ITP setting to
represent probability distributions. This is crucial in the “no embedding” app-
roach, but even in the other cases it is useful to be able to give a formal semantics
to the embedded programming language, prove soundness of a program logic,
etc. The first work known to us on formalizing randomized algorithms is by
Hurd [109] and represented randomized algorithms as deterministic algorithms
taking an infinite sequence of random bits as an additional input. However, it
seems that later work preferred another approach, which we will sketch in the
following.

Generally, the idea is to have a type constructor M of probability distribu-
tions, i.e. M(«) is the type of probability distributions over elements of type «.
This type constructor, together with two monadic operations return : o« — M («)
and bind : M(a) — (o — M(B)) — M(0), forms the Giry monad [84], which
in our opinion has emerged as the most powerful and natural representation for
randomized programs in an ITP setting.

The exact definition and scope of M () varies. The following approaches are
found in popular ITPs:

— For their formalization of quicksort in Coq, Van der Weegen and McKinna
[193] represented distributions as trees whose leaves are deterministic results
and whose nodes are uniformly random choices. While well-suited for their
use case, this encoding is not ideal for more general distributions.
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— Isabelle mostly uses probability mass functions (PMFs), i.e. functions o —
[0,1] that assign a probability to each possible result (which only works for
distributions with countable support). The same approach is also used by
Tassarotti and Harper [187] in Coq.

— As an earlier variation of this, Audebaud and Paulin-Mohring [14] used the
CPS-inspired encoding (o — [0,1]) — [0, 1] of PMFs in Coq.

— Isabelle contains a very general measure theory library [106] in which distri-
butions are functions Set(a) — [0, 1] that assign a probability to every mea-
surable set of results. This is the most expressive representation and allows
for continuous distributions (such as Gaussians) as well. It can, however, be
tedious to use due to the measurability side conditions that arise. PMFs are
therefore preferred in applications in Isabelle whenever possible.

The main advantage of having probability distributions in the logic as first-class
citizens is again expressiveness and flexibility. It is then even possible to prove
that two algorithms with completely different structure have not just the same
expected running time, but exactly the same distribution. For imperative ran-
domized algorithms or fully formal cost analysis, one must however still combine
this with an embedding, as done by Tassarotti and Harper [188].

One notable system that falls somewhat outside this classification is Ellora by
Barthe et al. [19]. This is a program logic that is embedded into the EasyCrypt
theorem prover 18], which is not a general-purpose ITP but still general enough
to allow analysis of complex randomized algorithms.

This concludes the summary of the verification frameworks we consider. The
rest of the paper is dedicated to our survey of verified textbook foundations and
algorithms. We roughly follow the structure and contents of CLRS.

3 Mathematical Foundations

3.1 Basic Asymptotic Concepts

Landau symbols (“Big-O”, “Big-Theta”, etc.) are common in both mathematics
and in the analysis of algorithms. The basic idea behind e.g. a statement such as
f(n) € O(g(n)) is that f(n) is bounded by some multiple of g(n), but different
texts sometimes differ as to whether “bounded” means f(n) < g(n) or f(n) <
lg(n)| or even |f(n)| < |g(n)|. Usually (but not always), the inequality need also
only hold “for sufficiently large n”. In algorithms contexts, f and ¢ are usually
functions from the naturals into the non-negative reals so that these differences
rarely matter. In mathematics, on the other hand, the domain of f and g might
be real or complex numbers, and the neighbourhood in which the inequality
must hold is often not n — oo, but e.g. n — 0 or a more complicated region.
Finding a uniform formal definition that is sufficiently general for all contexts is
therefore challenging.

To make matters worse, informal arguments involving Landau symbols often
involve a considerable amount of hand-waving or omission of obvious steps: con-
sider, for instance, the fact that
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exp (ﬁ)x“(logaz)b €0(e") . (1)

This is intuitively obvious, since the first factor on the left-hand side is “roughly”
equal to e”/2. This is exponentially smaller than the e® on the right-hand side and
therefore eclipses the other, polynomial-logarithmic factors. Doing such argu-
ments directly in a formally rigorous way is very tedious, and simplifying this
process is a challenging engineering problem.

Another complication is the fact that pen-and-paper arguments, in a slight
abuse of notation, often use O(g(n)) as if it were one single function. The
intended meaning of this is “there exists some function in O(g(n)) for which this
is true”. For example, one writes eVntl — vntO(1/ V) meaning “there exists
some function g(n) € O(1/y/n) such that eV*+1 = ¢v7+9(n) » This notation is
very difficult to integrate into proof assistants directly.

Few ITPs have support for Landau-style asymptotics at all. In the following,
we list the formalizations that we are aware of:

— Avigad et al. [15] defined “Big-O” for their formalization of the Prime Number
Theorem, including the notation f =o g +o0 O(h) for f(x) = g(x) + O(h(x))
that emulates the abovementioned abuse of notation at least for some simple
cases. However, their definition of O is somewhat restrictive and no longer
used for new developments.

— Eberl defined the five Landau symbols from CLRS and the notion of asymp-
totic equivalence (“~”). These are intended for general-purpose use. The
neighbourhood in which the inequality must hold is n — oo by default, but
can be modified using filters [107], which allow for a great degree of flexibility.
This development is now part of the Isabelle distribution. A brief discussion
of it can be found in his article on the Akra—Bazzi theorem [59].

— Guéneau et al. [87] (Coq) define a “Big-O-like domination relation for running
time analysis, also using filters for extra flexibility.

— Affeldt et al. [6] (Coq) define general-purpose Landau symbols. Through sev-
eral tricks, they fully support the abovementioned “abuse of notation”.

It seems that the filter-based definition of Landau symbols has emerged as the
canonical one in an ITP context. For algorithm analysis, the filter in question is
usually simply n — oo so that this extra flexibility is not needed, but there are
two notable exceptions:

— Multivariate “Big-O” notation is useful e.g. if an algorithm’s running time
depends on several parameters (e.g. the naive multiplication of two numbers
m and n, which takes O(mn) time). This can be achieved with product filters.

— Suppose we have some algorithm that takes O(logn) time on sorted lists zs for
large enough n, where n = |zs| is the length of the list. This can be expressed
naturally as time(zs) € Op(log|zs|) w.r.t. a suitable filter F'. For instance, in
Isabelle, this filter can be written as

length going-to at top within {xs. sorted zs} .
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In addition to that, Coq and Isabelle provide mechanisms to facilitate asymptotic
reasoning:

— Affeldt et al. [6] provide a proof method called “near” in Coq that imitates
the informal pen-and-paper reasoning style where in asymptotic arguments,
one can assume properties as long as one can later justify that they hold
eventually. This can lead to a more natural flow of the argument.

— Motivated by the proof obligations arising from applications of the Master
theorem, Eberl [59] implemented various simplification procedures in Isabelle
that rewrite Landau-symbol statements into a simpler form. Concretely, there
are procedures to

e cancel common factors such as f(z)g(z) € O(f(z)h(x)),

e cancel dominated terms, e.g. rewriting f(z)+g(z) € O(h(z)) to f(z) €
O(h(x)) when g(x) € o(f(x)) and

e simplify asymptotic statements involving iterated logarithms, e.g.
rewriting z%(logz)® € O(x¢(loglogz)?) to equations/inequalities of a,
b, ¢, d.

— Lastly, Eberl [60] provides an Isabelle proof method to prove limits and
Landau-symbol statements for a large class of real-valued functions. For
instance, it can solve the asymptotic problem (1) mentioned earlier fully auto-
matically.

3.2 The Master Theorem

CLRS present the Master theorem for divide-and-conquer recurrences and use
it in the running time analysis of several divide-and-conquer algorithms. They
also briefly mention another result known as the Akra—Bazzi theorem and cite
the streamlined version due to Leighton [130]. This result generalizes the Master
theorem in several ways:

— The different sub-problems being solved by recursive calls are not required to
have the same size.

— The recursive terms are not required to be exactly f(|n/b]) or f([n/b]) but
can deviate from n/b by an arbitrary sub-linear amount.

— While the “balanced” case of the original Master theorem requires f(n) €
O(n'°#: 2(log n)*), the Akra-Bazzi theorem also works for a much larger class
of functions.

The only formalized result related to this that we are aware of is Eberl’s
formalization of Leighton’s version of the Akra—Bazzi theorem [59]. CLRS state
that the Akra—Bazzi Theorem “can be somewhat difficult to use” — probably
due to its rather technical side conditions and the presence of an integral in the
result. However, Eberl’s formalization provides several corollaries that combine
the first and second advantage listed above while retaining the ease of application
of the original Master theorem.

Eberl gives some applications to textbook recurrences (mergesort, Karatsuba
multiplication, Strassen multiplication, median-of-medians selection). Zhan and
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Haslbeck [201] also integrated Eberl’s work into their work on verifying the
asymptotic time complexity of imperative algorithms (namely imperative ver-
sions of mergesort, Karatsuba and median-of-medians). Rau and Nipkow [173]
used Eberl’s Master theorem to prove the O(nlogn) running time of a closest-
pair-of-points algorithm.

4 Sorting and Order Statistics

4.1 Sorting

Verification of textbook sorting algorithms was a popular pastime in the early
theorem proving days (e.g. [32]) but is now more of historic interest. To show
that the field has progressed, we highlight three verifications of industrial code.

The sorting algorithm TimSort (combining mergesort and insertion sort) is
the default implementation for generic arrays and collections in the Java stan-
dard library. De Gouw et al. [86] first discovered a bug that can lead to an
ArrayIndexOutOfBoundsException and suggested corrections. Then De Gouw
et al. [85] verified termination and exception freedom (but not full functional
correctness) of the actual corrected code using KeY.

Beckert et al. [20], again with KeY, verified functional correctness of the other
implementation of sorting in the Java standard library, a dual pivot quicksort
algorithm.

Lammich [120] verified a high-level assembly-language (LLVM) implementa-
tion of two sorting algorithms: introsort [140] (a combination of quicksort, heap-
sort and insertion sort) from the GNU C-++ library (libstde++) and pdgsort,
an extension of introsort from the Boost C++ libraries. The verified implemen-
tations perform on par with the originals.

Additionally, we mention a classic meta result that is also presented in CLRS:
Eberl [56] formally proved the 2(nlogn) lower bound for the running time of
comparison-based sorting algorithms in Isabelle.

4.2 Selection in Worst-Case Linear Time

Eberl [57] formalized a functional version of the deterministic linear-time selec-
tion algorithm from CLRS including a worst-case analysis for the sizes of the
lists in the recursive calls. Zhan and Haslbeck [201] refined this to an imperative
algorithm, including a proof that it indeed runs in linear time using Eberl’s for-
malization of the Akra—Bazzi theorem (unlike the elementary proof in CLRS).
However, the imperative algorithm they formalized differs from that in CLRS
by some details. Most notably, the one in CLRS is in-place, whereas the one
by Zhan and Haslbeck is not. Formalizing the in-place algorithm would require
either a stronger separation logic framework or manual reasoning to prove that
the recursive calls indeed work on distinct sub-arrays.
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5 Data Structures

5.1 Elementary Data Structures

We focus again on two noteworthy verifications of actual code. Polikarpova et al.
[167,168] verify EiffelBase2, a container library (with emphasis on linked lists,
arrays and hashing) that was initially designed to replace EiffelBase, the stan-
dard container library of the Eiffel programming language [136]. A distinguishing
feature is the high degree of automation of their Eiffel verifier called AutoProof
[78]. The verification uncovered three bugs. Hiep et al. [100] (KeY) verified the
implementation of a linked list in the Java Collection framework and found an
integer overflow bug on 64-bit architectures.

5.2 Hash Tables

The abstract datatypes sets and maps can be efficiently implemented by hash
tables. The Isabelle Collections Framework [121] provides a pure implementa-
tion of hash tables that can be realized by Haskell arrays during code genera-
tion. Lammich [116,122] also verified an imperative version with rehashing in
Imperative-HOL. Filliatre and Clochard [72] (Why3) verified hash tables with
linear probing. Pottier [170] verified hash tables in CFML with a focus on iter-
ators. Polikarpova et al. (see above) also verified hash tables. These references
only verify functional correctness, not running times.

5.3 Binary Search Trees

Unbalanced binary search trees have been verified many times. Surprisingly,
the functional correctness, including preservation of the BST invariant, almost
always require a surprising amount of human input (in the form of proof steps
or annotations). Of course this is even more the case for balanced search trees,
even ignoring the balance proofs. Most verifications are based on some variant
of the following definition of BSTs: the element in each node must lie in between
the elements of the left subtree and the elements of the right subtree. Nipkow
[146] specifies BSTs as trees whose inorder list of elements is sorted. With this
specification, functional correctness proofs (but not preservation of balancedness)
are fully automatic for AVL, red-black, splay and many other search trees.

5.4 AVL and Red-Black Trees

Just like sorting algorithms, search trees are popular case studies in verification
because they can often be implemented concisely in a purely functional way. We
merely cite some typical verifications of AVL [47,74,152,172] and red-black trees
[12,41,52,74] in various theorem provers.

We will now consider a number of search trees not in CLRS.
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5.5 Weight-Balanced Trees

Weight-balanced trees were invented by Nievergelt and Reingold [143,144] (who
called them “trees of bounded balance”). They are balanced by size rather than
height, where the size |t| of a tree ¢ is defined as the number of nodes in t. A

tree is said to be a-balanced, 0 < « < 1/2, if for every non-empty subtree ¢ with
[l +1
S
Insertion and deletion may need to rebalance the tree by single and double

rotations depending on certain numeric conditions. Blum and Mehlhorn [28§]
discovered a mistake in the numeric conditions for deletion, corrected it and
gave a very detailed proof. Adams [5] used weight-balanced trees in an actual
implementation (in ML) but defined balancedness somewhat differently from
the original definition. Haskell’s standard implementation of sets, Data.Set, is
based on Adams’s implementation. In 2010 it was noticed that deletion can
break a-balancedness. Hirai and Yamamoto [102], unaware of the work by Blum
and Mehlhorn, verified their own version of weight-balanced trees in Coq, which
includes determining the valid ranges of certain numeric parameters. Nipkow
and Dirix [149] provided a verified framework for checking validity of specific
values for these numeric parameters.

children / and r, o < < 1—a. Equivalently we can require % <a.

5.6 Scapegoat Trees

These trees are due to Anderson [11], who called them general balanced trees,
and Galperin and Rivest [81], who called them scapegoat trees. The central idea:
don’t rebalance every time, rebuild a subtree when the whole tree gets “too
unbalanced”, i.e. when the height is no longer logarithmic in the size, with a
fixed multiplicative constant. Because rebuilding is expensive (in the worst case
it can involve the whole tree) the worst case complexity of insertion and deletion
is linear. But because earlier calls did not need to rebalance, the amortized com-
plexity is logarithmic. The analysis by Anderson was verified by Nipkow [147].

5.7 Finger Trees

Finger trees were originally defined by reversing certain pointers in a search
tree to accelerate operations in the vicinity of specific positions in the tree
[88]. A functional version is due to Hinze and Paterson [101]. It can be used
to implement a wide range of efficient data structures, e.g. sequences with access
to both ends in amortized constant time and concatenation and splitting in
logarithmic time, random access-sequences, search trees, priority queues and
more. Functional correctness was verified by Sozeau [182] (Coq) and by Nordhoff
et al. [155]. The amortized complexity of the deque operations was analysed by
Danielsson [50] (Agda).

5.8 Splay Trees

Splay trees [179] are self-adjusting binary search trees where items that have
been searched for are rotated to the root of the tree to adjust to dynamically
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changing access frequencies. Nipkow [145,146] verified functional correctness and
amortized logarithmic complexity.

5.9 Braun Trees

Braun trees are binary trees where for each node the size of the left child is
the same or one larger than the size of the right child [108,174]. They lend
themselves to the implementation of extensible arrays and priority queues in a
purely functional manner [162]. They were verified by Nipkow and Sewell [153]
in great depth. McCarthy et al. [133] demonstrate their Coq library for running
time analysis by proving the logarithmic running time of insertion into Braun
trees.

6 Advanced Design and Analysis Techniques

6.1 Dynamic Programming

It is usually easy to write down and prove correct the recursive form of a dynamic
programming problem, but it takes work to convert it into an efficient implemen-
tation by memoizing intermediate results. Wimmer et al. [196] automated this
process: a recursive function is transformed into a monadic one that memoizes
results, and a theorem stating the equivalence of the two functions is proved
automatically. The results are stored in a so-called state monad. Two state mon-
ads were verified: a purely functional state monad based on search trees and
the state monad of Imperative-HOL using arrays. The imperative monad yields
implementations that have the same asymptotic complexity as the standard
array-based algorithms. Wimmer et al. verify two further optimizations: bottom-
up order of computation and an LRU cache for reduced memory consumption.
As applications of their framework, they proved the following algorithms cor-
rect (in their recursive form) and translated them into their efficient array-based
variants: Bellman-Ford, CYK (context-free parsing), minimum edit distance and
optimal binary search trees. Wimmer [195] also treated Viterbi’s algorithm in
this manner.

Nipkow and Somogyi [154] verified the straightforward recursive cubic algo-
rithm for optimal binary search trees and Knuth’s quadratic improvement [113]
(but using Yao’s simpler proof [199]) and applied memoization.

6.2 Greedy Algorithms

One example of a greedy algorithm given in CLRS is Huffman’s algorithm. It
was verified by Théry [189] (Coq) and Blanchette [27]. For problems that exhibit
a matroid structure, greedy algorithms yield optimal solutions. Keinholz [112]
formalizes matroid theory. Haslbeck et al. [95,96] verify the soundness and run-
ning time of an algorithm for finding a minimum-weight basis on a weighted
matroid and use it to verify Kruskal’s algorithm for minimum spanning trees.
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7 Advanced Data Structures

7.1 B-Trees

We are aware of two verifications of imperative formulations of B-trees. Malecha
et al. [131] used Ynot [141], an axiomatic extension to Coq that provides facilities
for writing and reasoning about imperative, pointer-based code. The verification
by Ernst et al. [64] is unusual in that it combines interactive proof in KIV with
the automatic shape analysis tool TVLA [175].

7.2 Priority Queues

We start with some priority queue implementations not in CLRS. Priority queues
based on Braun trees (see Sect. 5.9) were verified by Filliatre [70] (Why3) and
Nipkow and Sewell [153]. Two self-adjusting priority queues are the skew heap
[180] and the pairing heap [77]. Nipkow and Brinkop [145,148] verified their
functional correctness (also verified in Why3 [69,164]) and amortized logarith-
mic running times. Binomial heaps (covered in depth in the first edition of CLRS)
were verified by Meis et al. [135] (together with skew binomial heaps [36]), Fil-
lidtre [71] (Why3) and Appel [13] (Coq).

The above heaps are purely functional and do not provide a decrease-key
operation. Lammich and Nipkow [124] designed and verified a simple, efficient
and purely functional combination of a search tree and a priority queue, a “pri-
ority search tree”. The salient feature of priority search trees is that they offer an
operation for updating (not just decreasing) the priority associated with some
key; its efficiency is the same as that of the update operation.

Lammich [117] verified an imperative array-based implementation of priority
queues with decrease-key.

7.3 Union-Find

The union-find data structure for disjoint sets is a frequent case-study: it was
formalized in Coq [48,176,192] and Isabelle [122]. Charguéraud, Pottier and
Guéneau [42,43,87] were the first to verify the amortized time complexity
O(a(n)) in Coq using CFML. Their proof follows Alstrup et al. [10].

8 Graph Algorithms

8.1 Elementary Graph Algorithms

Graph-searching algorithms are so basic that we only mention a few notable ones.
BF'S for finding shortest paths in unweighted graphs was verified by participants
of a verification competition [76] (in particular in KIV). Lammich and Sefidgar
[125] verified BFS for the Edmonds—Karp algorithm. Lammich and Neumann
[123] as well as Pottier [169] (Coq) verified DFS and used it for algorithms of dif-
ferent complexity, ranging from a simple cyclicity checker to strongly connected



Verified Textbook Algorithms 37

components algorithms. Wimmer and Lammich [198] verified an enhanced ver-
sion of DFS with subsumption. Bobot [29] verified an algorithm for topological
sorting by DFS in Why3.

Strongly Connected Components. There are several algorithms for finding
strongly connected components (SCCs) in a directed graph. Tarjan’s algorithm
[186] was verified by Lammich and Neumann [123,142]. Chen et al. verified Tar-
jan’s algorithm in Why3, Coq and Isabelle and compared the three formaliza-
tions [45,46]. Lammich [115] verified Gabow’s algorithm [79] (which was used in
a verified model checker [65]), and Pottier [169] (Coq) verified the SCC algorithm
featured in CLRS, which is attributed to Kosaraju.

8.2 Minimum Spanning Trees

Prim’s algorithm was first verified by Abrial et al. [4] in B [3] and on a more
abstract level by Lee and Rudnicki [129] (Mizar). Guttmann [89,90] verified
a formulation in relation algebra, while Nipkow and Lammich [124] verified a
purely functional version.

Kruskal’s algorithm was verified by Guttmann [91] using relation algebras.
Functional correctness [97] and time complexity [95] of an imperative implemen-
tation of Kruskal’s algorithm were verified by Haslbeck, Lammich and Biendarra.

8.3 Shortest Paths

The Bellman-Ford algorithm was verified as an instance of dynamic program-
ming (see Sect. 6.1).

Dijkstra’s Algorithm. Dijkstra’s algorithm has been verified several times.
The first verifications were conducted by Chen, Lee and Rudnicki [44,129)
(Mizar) and by Moore and Zhang [138] (ACL2). While these formalizations
prove the idea of the algorithm, they do not provide efficient implementations.
Charguéraud [41] verifies an OCaml version of Dijkstra’s algorithm parameter-
ized over a priority queue data structure (without a verified implementation). A
notable point is that his algorithm does not require a decrease-key operation.

Nordhoff and Lammich [156] use their verified finger trees (see Sect. 5.7)
that support decrease-key to obtain a verified functional algorithm. Lammich
later refined the functional algorithm down to an imperative implementation
using arrays to implement the heap [117]. Zhan [200] also verified the imperative
version using his auto2 tool. Finally, Lammich and Nipkow [124] used their red-
black tree based priority queues that also support decrease-key to obtain a
simple functional implementation.

The Floyd—Warshall Algorithm. Early verifications by Paulin-Mohring [161]
(Coq), Berger et al. [22] (Minlog), and Berghofer [23] relied on program extrac-
tion from a constructive proof and only targeted the Warshall algorithm for com-
puting the transitive closure of a relation. Fillidtre and Clochard [73] (Why3)
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verified an imperative implementation of the Warshall algorithm. Wimmer [194]
verified the functional correctness of the Floyd—Warshall algorithm for the APSP
problem including detection of negative cycles. The main complication is to prove
that destructive updates can be used soundly. This and the detection of negative
cycles are left as an exercise to the reader in CLRS. The resulting functional
implementation (with destructive updates) was later refined to an imperative
implementation by Wimmer and Lammich [197].

8.4 Maximum Network Flow

The first verification of the Ford-Fulkerson method, at an abstract level, was
by Lee [128] (Mizar). Lammich and Sefidgar [125] verified the Ford—Fulkerson
method and refined it down to an imperative implementation of the Edmonds—
Karp algorithm. They proved that the latter requires O(|V|-|E|) iterations. On
randomly generated networks, their code is competitive with a Java implemen-
tation by Sedgewick and Wayne [177]. In further work [126] they verified the
generic push-relabel method of Goldberg and Tarjan and refined it to both the
relabel-to-front and the FIFO push-relabel algorithm. They also performed a
running time analysis and benchmarked their algorithms against C and C++
implementations.

Haslbeck and Lammich [95] provided a proper running time analysis of the
Edmonds-Karp algorithm and proved the complexity O(|V| - |E| - (|[V] + |E])).

8.5 Matching

Edmonds’ famous blossom algorithm [62] for finding maximum matchings in
general graphs was verified by Abdulaziz [2].

Hamid and Castelberry [92] (Coq) verified the Gale—Shapley algorithm [80]
for finding stable marriages.

9 Selected Topics

9.1 Matrix Operations

Palomo-Lozano et al. formalized Strassen’s algorithm for matrix multiplication
in ACL2 [158], but only for square matrices whose size is a power of two. Dénés
et al. formalized a slightly more efficient variant of it known as Winograd’s
algorithm in Coq [51] for arbitrary matrices. Garillot et al. formalized the LUP
decomposition algorithm from CLRS in Coq [83].

9.2 Linear Programming

The simplex algorithm was formalized by Allamigeon and Katz [9] (Coq) and
by Spasié¢ and Marié¢ [132,183]. The latter was repurposed into an incremental
algorithm that can emit unsatisfiable cores by Bottesch et al. [30]. Parsert and
Kaliszyk [159] extended this to a full solver for linear programming.
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9.3 Polynomials and FFT

The recursive Fast Fourier Transform was formalized in various systems. We are
aware of the formalizations in ACL2 by Gamboa [82], in Coq by Capretta [39],
in HOL4 by Akbarpour and Tahar [8] and in Isabelle by Ballarin [16].

9.4 Number-Theoretic Algorithms

Most of the basic number theory shown in CLRS (GCDs, modular arithmetic,
Chinese remainder theorem) is available in the standard libraries of various
systems and we will therefore not give individual references for this and focus
entirely on the algorithms.

Hurd formalized the Miller—Rabin test [109] in HOL4. Stiiwe and Eber] [185]
formalized Miller—Rabin and some other related tests (Fermat' and Solovay—
Strassen) in Isabelle. In all cases, what was shown is that a prime is always
correctly classified as prime and that a composite is correctly classified with
probability at least % The running time analysis is not particularly interesting
for these algorithms, and although they are randomized algorithms, the random-
ness is of a very simple nature and thus not very interesting either.

Beyond the primality-testing algorithms in CLRS, Chan [40] gave a HOL4
formalization of the correctness and polynomial running time of the AKS, which
was the first deterministic primality test to be proved to run in polynomial time.

9.5 String Matching

The Knuth—Morris—Pratt algorithm was verified by Fillidtre in Coq and Why3
[67,68]. Hellauer and Lammich [99] verified a functional version of this algorithm
and refined it to Imperative-HOL. Lammich [118] synthesized verified LLVM
code. The Boyer-Moore string searching algorithm [33] was covered in the first
edition of CLRS. Boyer and Moore [34] (Nqthm) and Moore and Martinez [137]
(ACL2) verified different variants of this algorithm; Toibazarov [190] verified the
preprocessing phase of the variant considered by Moore and Martinez. Besta and
Stomp [26] (PVS) verified the preprocessing phase of the original algorithm.

9.6 Computational Geometry

Convex hull algorithms have been popular verification targets: Pichardie and
Bertot [166] (Coq) verified an incremental and a package wrapping algorithm,
Meikle and Fleuriot [134] verified Graham’s scan and Brun et al. [37] (Coq)
verified an incremental algorithm based on hypermaps. Dufourd and Bertot
[24,53] (Coq) verified triangulation algorithms based on hypermaps.

Rau and Nipkow [173] verified the divide-and-conquer closest pair of points
algorithm and obtained a competitive implementation.

! The Fermat test is called PSEUDOPRIME in CLRS.
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9.7 Approximation and Online Algorithms

Stucke [184] (Coq and Isabelle) verified an approximation algorithm for vertex
colouring in relation algebra. Efmann et al. [66] verified three classic algorithms
and one lesser-known one for vertex cover, independent set, load balancing and
bin packing. Haslbeck and Nipkow [98] formalized online algorithms and verified
several deterministic and randomized algorithms for the list update problem.

9.8 Randomized Algorithms

In addition to the randomized algorithms from CLRS, we will also list some from
the classic textbook Randomized Algorithms by Motwani and Raghavan [139).
All work was done using PMFs unless stated otherwise (refer to Sect. 2.1 for a
discussion of the various approaches).

The first work on a non-trivial randomized algorithm in an I'TP was probably
Hurd’s [109] previously-mentioned formalization of the Miller—Rabin primality
test in HOL (using an infinite stream of random bits to encode the randomness).
The primality tests formalized by Stiiwe and Eberl [185] are technically also
randomized algorithms, but the probabilistic content is very small.

The expected running time of the coupon collector problem was treated by
Kaminski et al. [110] using their Hoare-style calculus for the pGCL language (on
paper). Holzl [105] formalized their approach in Isabelle.

Barthe et al. analyzed several probabilistic textbook problems using a pro-
gram logic called Ellora [19], which is embedded into the EasyCrypt system [18]:

— expected running time of the coupon collector problem

— tail bounds on the running time of Boolean hypercube routing

— probability of incorrectly classifying two different polynomials as equal in
probabilistic polynomial equality checking

The correctness of CLRS’s RANDOMIZE-IN-PLACE, also known as the Fisher—
Yates shuffle, was verified by Eberl [54].

The correctness and expected running time of randomized quicksort was
formalized by Van der Weegen and McKinna [193] (Coq) using their “decision
tree” approach mentioned earlier and by Eberl [58,61]. Both additionally treated
the case of average-case deterministic quicksort: Van der Weegen and McKinna
proved that its expected running time is O(nlogn), whereas Eberl additionally
proved that it has exactly the same distribution as randomized quicksort.

Eberl [55,61] proved that random binary search trees (BSTs into which ele-
ments are inserted in random order) have logarithmic expected height and inter-
nal path length. He also proved that the distribution of the internal path length
is precisely the same as that of the running time of randomized quicksort.

Haslbeck et al. [61,94] formalized randomized treaps [178] and proved that
their distribution is precisely equal to that of random BSTs, regardless of which
order the elements are inserted. The analysis is particularly noteworthy because
it involves continuous distributions of trees, which require a non-trivial amount
of measure theory.
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Haslbeck and Eberl [93] also defined skip lists [171] and formally analyzed
two of the most algorithmically interesting questions about them, namely the
expected height and the expected path length to an element.

Tassarotti and Harper [187] developed a general cookbook-style method for
proving tail bounds on probabilistic divide-and-conquer algorithms in Coq. They
applied this method to the running time of randomized quicksort and the height
of random BSTs. Later [188] they used a hybrid approach that combines a pro-
gram logic for a deeply embedded imperative language with high-level reasoning
in Coq to analyze skip lists (restricted to two levels for simplicity).
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Abstract. Deep neural networks are revolutionizing the way complex
systems are developed. However, these automatically-generated networks
are opaque to humans, making it difficult to reason about them and guar-
antee their correctness. Here, we propose a novel approach for verifying
properties of a widespread variant of neural networks, called recurrent
neural networks. Recurrent neural networks play a key role in, e.g., speech
recognition, and their verification is crucial for guaranteeing the reliabil-
ity of many critical systems. Our approach is based on the inference of
invariants, which allow us to reduce the complex problem of verifying
recurrent networks into simpler, non-recurrent problems. Experiments
with a proof-of-concept implementation of our approach demonstrate
that it performs orders-of-magnitude better than the state of the art.

1 Introduction

The use of recurrent neural networks (RNNs) [13] is on the rise. RNNs are
a particular kind of deep neural networks (DNNs), with the useful ability to
store information from previous evaluations in constructs called memory units.
This differentiates them from feed-forward neural networks (FFNNs), where each
evaluation of the network is performed independently of past evaluations. The
presence of memory units renders RNNs particularly suited for tasks that involve
context, such as machine translation [7], health applications [25], speaker recog-
nition [34], and many other tasks where the network’s output might be affected
by previously processed inputs.

Part of the success of RNNs (and of DNNs in general) is attributed to their
very attractive generalization properties: after being trained on a finite set of
examples, they generalize well to inputs they have not encountered before [13].
Unfortunately, it is known that RNNs may react in highly undesirable ways to
certain inputs. For instance, it has been observed that many RNNs are vulner-
able to adversarial inputs [6,32], where small, carefully-crafted perturbations
are added to an input in order to fool the network into a classification error.
This example, and others, highlight the need to formally verify the correctness
of RNNs, so that they can reliably be deployed in safety-critical settings. How-
ever, while DNN verification has received significant attention in recent years
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(e.g., [2,4,5,8,10,12,15,19,20,26,27,33,35,36]), almost all of these efforts have
been focused on FFNNs, with very little work done on RNN verification.

To the best of our knowledge, the only existing general approach for RNN
verification is via unrolling [1]: the RNN is duplicated and concatenated onto
itself, creating an equivalent feed-forward network that operates on a sequence
of k inputs simultaneously, as opposed to one at a time. The FFNN can then
be verified using existing verification technology. The main limitation of this
approach is that unrolling increases the network size by a factor of k (which,
in real-world applications, can be in the hundreds [34]). Because the complexity
of FFENN verification is known to be worst-case exponential in the size of the
network [18], this reduction gives rise to FFNNs that are difficult to verify—and
is hence applicable primarily to small RNNs with short input sequences.

Here, we propose a novel approach for RNN verification, which affords far
greater scalability than unrolling. Our approach also reduces the RNN verifica-
tion problem into FFNN verification, but does so in a way that is independent
of the number of inputs that the RNN is to be evaluated on. Specifically, our
approach consists of two main steps: (i) create an FFNN that over-approzimates
the RNN, but which is the same size as the RNN; and (ii) verify properties over
this over-approximation using existing techniques for FFNN verification. Thus,
our approach circumvents any duplication of the network or its inputs.

In order to perform step (i), we leverage the well-studied notion of inductive
invariants: our FFNN encodes time-invariant properties of the RNN, which hold
initially and continue to hold after the RNN is evaluated on each additional
input. Automatic inference of meaningful inductive invariants has been studied
extensively (e.g., [28,30,31]), and is known to be highly difficult [29]. We propose
here an approach for generating invariants according to predefined templates. By
instantiating these templates, we automatically generate a candidate invariant
I, and then: (i) use our underlying FFNN verification engine to prove that I
is indeed an invariant; and (ii) use I in creating the FFNN over-approximation
of the RNN, in order to prove the desired property. If either of these steps fail,
we refine I (either strengthening or weakening it, depending on the point of
failure), and repeat the process. The process terminates when the property is
proven correct, when a counter-example is found, or when a certain timeout
value is exceeded.

We evaluate our approach using a proof-of-concept implementation, which
uses the Marabou tool [20] as its FFNN verification back-end. When compared
to the state of the art on a set of benchmarks from the domain of speaker recog-
nition [34], our approach is orders-of-magnitude faster. Our implementation,
together with our benchmarks and experiments, is available online [16].

The rest of this paper is organized as follows. In Sect. 2, we provide a brief
background on DNNs and their verification. In Sect. 3, we describe our approach
for verifying RNNs via reduction to FFNN verification, using invariants. We
describe automated methods for RNN invariant inference in Sect. 4, followed by
an evaluation of our approach in Sect. 5. We then discuss related work in Sect. 6,
and conclude with Sect. 7.
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2 Background

2.1 Feed-Forward Neural Networks and Their Verification

An FFNN N with n layers consists of an input layer, n — 2 hidden layers, and an
output layer. We use s; to denote the dimension of layer i, which is the number
of neurons in that layer. We use v; ; to refer to the j-th neuron in the i-th layer.
Each hidden layer is associated with a weight matrix W, and a bias vector b;.
The FFNN input vector is denoted as vy, and the output vector of each hidden
layer 1 < i <niswv; = f(W;v;—1 +b;), where f is some element-wise activation
function (such as ReLU(x) = max (0, z)). The output layer is evaluated similarly,
but without an activation function: v,, = W,,_1v,_1 + b,. Given an input vector
v1, the network is evaluated by sequentially calculating v; for i =2,3,...,n, and
returning v,, as the network’s output.

A simple example appears in Fig. 1. This
FEFNN has a single input neuron vy, a single
output neuron vs 1, and two hidden neurons vy ; 1 . 1
and vy . All bias values are assumed to be 0, and i — — i,
we use the common ReLU(z) = max(0,z) func- \1, ./27 :
tion as our activation function. When the input
neuron is assigned vi; = 4, the weighted sum
and activation functions yield vy ; = ReLU(4) = Fig.1. A simple feed-forward
4 and vy = ReLU(—4) = 0. Finally, we obtain neural network.
the output v3; = 4.

FFNN Verification. In FFNN verification we seek inputs that satisfy cer-
tain constraints, such that their corresponding outputs also satisfy certain con-
straints. Looking again at the network from Fig. 1, we might wish to know
whether v1; < 5 always entails v3; < 20. Negating the output property, we
can use a verification engine to check whether it is possible that v;; < 5 and
vz, > 20. If this query is unsatisfiable (UNSAT), then the original property holds;
otherwise, if the query is satisfiable (SAT), then the verification engine will pro-
vide us with a counter-example (e.g., v1,1 = —10,v3 1 = 20 in our case).

Formally, we define an FFNN verification query as a triple (P, N, Q), where
N is an FFNN, P is a predicate over the input variables x, and @ is a predicate
over the output variables y. Solving this query entails deciding whether there
exists a specific input assignment xo such that P(xo) A Q(N(x0)) holds (where
N(zg) is the output of N for the input x¢). It has been shown that even for simple
FFNNs and for predicates P and @ that are conjunctions of linear constraints,
the verification problem is NP-complete [18]: in the worst-case, solving it requires
a number of operations t