
A Verified, Executable Formalism for
Resilient and Pervasive Guideline-Based

Decision Support for Patients

Nick L. S. Fung1(B), Marten J. van Sinderen1, Valerie M. Jones1,
and Hermie J. Hermens1,2

1 University of Twente, 7500 AE Enschede, The Netherlands
{l.s.n.fung,m.j.vansinderen,v.m.jones}@utwente.nl

2 Roessingh Research and Development, 7500 AH Enschede, The Netherlands
h.hermens@rrd.nl

Abstract. We present an executable formalism for clinical practice
guidelines, with the aim of providing pervasive and evidence-based deci-
sion support to patients. Unlike traditional formalisms that capture the
control flow between tasks, we focus on data flow, with tasks modeled
as processes that execute in parallel. By parallelizing and distributing
guideline knowledge, each device that constitutes the patient’s pervasive
healthcare system can provide decision support independently, avoiding
single points of failure. This distribution also enables dynamic system
re-configurations, increasing its resilience against evolving requirements
and changing communications environments.

Our model recognizes four types of processes: Monitoring, Analy-
sis, Decision and Effectuation. These processes were specified using
(axiomatic) set theory and implemented as a set of libraries on top of
Rosette, which supports execution of the formalism and verification of
it using constraint solvers. The formalism was also tested by formalizing
a complete clinical guideline for diabetes management, which yielded a
Rosette program that was then tested on simulated patient data. The
major point of clinical relevance is enhancing the quality and safety of
decision support delivered to patients.

Keywords: Computerized clinical practice guidelines · Pervasive
healthcare · Knowledge representation · Data flow modeling · Formal
specification · Verification and validation · Diabetes management

1 Introduction

Pervasive healthcare systems, which aim to support patients anytime, any-
where, have potential to address the healthcare challenges arising from increased
prevalence of chronic diseases, an aging population and shortage of healthcare
resources [1]. For example, instead of relying on infrequent checkups, diabetic
patients may use such systems to help constantly monitor and control their blood
c© Springer Nature Switzerland AG 2020
M. Michalowski and R. Moskovitch (Eds.): AIME 2020, LNAI 12299, pp. 427–439, 2020.
https://doi.org/10.1007/978-3-030-59137-3_38

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59137-3_38&domain=pdf
https://doi.org/10.1007/978-3-030-59137-3_38

428 N. L. S. Fung et al.

glucose levels. Such systems should, however, ensure high quality care, which in
hospital settings is increasingly supported by the use of clinical practice guide-
lines (CPGs), especially computerized CPGs that can be executed automatically
by knowledge-based systems (KBSs).

We aim to bring computerized CPGs to free-living settings to provide per-
vasive guideline-based decision support to patients. Clinical KBSs are typically
deployed on fixed infrastructures, e.g. hospital servers, but for pervasive health-
care systems, components may be distributed across multiple personal devices
and may require dynamic reconfiguration in response to changing requirements
and unreliable communications environments. Here we present a new verified
formalism for representing clinical guidelines which models clinical tasks as pro-
cesses executing in parallel. In this way, guideline knowledge and reasoning can
be flexibly distributed across system components, allowing them to operate inde-
pendently and thereby avoid a single point of failure.

Section 2 presents background and related work while Sect. 3 presents our
formalism. We present a reference implementation of the formalism in Sect. 4
and demonstrate an application of the formalism to a complete clinical guideline
in Sect. 5. Section 6 discusses the findings and clinical relevance. Conclusions
are found in Sect. 7.

2 Background and Related Work

CPGs are typically formalized as task-network models [5], i.e. hierarchical plans
that comprise constructs for decisions and actions as well as embedded sub-plans.
To enable automated execution, decisions are generally modeled as decision trees
or tables [9], with data processing specified using expression languages (e.g.
GELLO) [5].

Regardless of the specific formalism, task-network models encapsulate the
control flow (i.e. the logical ordering) between different tasks over time [5]. As
a result, they assume a centralized system architecture in which a supervisory
component controls the execution of guidelines (i.e. the application of guidelines
to patient data). To reduce reliance on such components, Shalom et al. in 2015
proposed a projection mechanism whereby self-contained portions of a clinical
guideline are identified for execution in parallel with the overall plan [10]. This
mechanism was implemented in the MobiGuide patient guidance system and was
demonstrated in the atrial fibrillation and gestational diabetes domains [6]. The
MobiGuide system contains two decision support systems: a front-end system
running on the patient’s smartphone to execute guideline fragments locally; and
a back-end system running on hospital servers to execute the overall guideline
and “project” the appropriate portions to recipient devices [10].

While this projection mechanism can be extended to an arbitrary number
of “local” devices, it still requires a supervisory component to project guideline
fragments. To remove the reliance on a centralized controller, formalisms based
on production rules may be adopted instead, the main exemplars of which include
the Arden Syntax [8] and the OpenEHR Guideline Definition Language [11]. In

A Clinical Guideline Formalism for Pervasive Healthcare 429

general, these rules encapsulate the data flow of clinical guidelines, thus they do
not exhibit control flow dependencies and can therefore be executed in parallel.
However, they also do not intrinsically support the distinction between differ-
ent types of tasks featured in clinical guidelines, such as diagnosing a patient’s
condition and making a therapeutic decision.

Therefore, while our formalism also focuses on data flow rather than control
flow, we base our formalism on previous work [3] which introduced an informal
conceptual data flow model of disease management. Our model comprises four
types of data flow processes interacting with the environment (e.g. the patient):

– Monitoring (M), the process of making observations about the patient.
– Analysis (A), the process of making assessments about the state of the patient.
– Decision (D), the process of deciding on the appropriate therapeutic plan.
– Effectuation (E), the process of executing the decided plan, which may involve

performing an action or controlling the execution of a process (possibly itself).

Our MADE model (Fig. 1) was demonstrated to be a useful conceptual tool for
analyzing clinical guidelines and designing decision support systems in the con-
text of pervasive healthcare [3]. To support interoperability in pervasive health-
care systems, we also derived from it a reference information model (the MADE
RIM) for representing clinical data [2]. Building on this work, we present in
this paper a formalism for representing guideline knowledge as interconnected
MADE processes.

DA
Observation Abstraction Action Plan

Measurement Action
Instruction

Control Instruction

M E

External Environment

Fig. 1. The MADE model for disease management.

3 The MADE Guideline Formalism

3.1 Overarching Model of Clinical Guidelines

Our MADE formalism is specified using (axiomatic) set theory and comprises
26 set definitions, 13 function signatures and 34 logical invariants. This paper
focuses on the set definitions, which specify the data types that constitute our
formalism. In particular, we abstract away the technical aspects of pervasive
healthcare systems and model a clinical guideline as a set of processes that are
fully connected with each other, with data flowing instantaneously between them.

430 N. L. S. Fung et al.

In turn, each process is modeled to comprise four components: a unique ID, a
data state to store previously input data, a control state which determines when
the process is activated and a specification of the instructions for the process
when it runs. This leads to the following two set definitions:

Guideline = P(Process) (1)
Process = Id × DataState × ControlState × InstSpec (2)

Processes are modeled to execute at each time instant, and during execution
each process updates its states and outputs a set containing 0 or 1 data item
depending on its states, its input data, the current date-time as well as its
specified instructions. In accordance to Fig. 1, six types of data are distinguished,
which together constitute the MADE RIM as specified in [2]. Here we present
the specification of InstSpec, of which four types are distinguished, one for each
type of MADE process:

Data = Measurement ∪ Observation ∪ Abstraction ∪ ActionPlan
∪ ActionInstruction ∪ ControlInstruction (3)

InstSpec = MSpec ∪ ASpec ∪ DSpec ∪ ESpec (4)

For ease of understanding, the behavior of each type of MADE process is pre-
sented in this paper using natural language English, although it is in fact speci-
fied using function signatures and logical invariants. For example, the execution
of a process as described above can be formally specified as the following func-
tion:

execute : Process × P(Data) × DateTime → Process × P(Data), such that (5)
∀p ∈ Process, din ∈ P(Data), t ∈ DateTime.

(¬isProcessActivated(π3(p), t) ⇒ dout = {}) ∧ |dout | ≤ 1 ∧
π1(p) = π1(pout) ∧ π4(p) = π4(pout) (6)

Here πi(x) refers to the ith element of x, (pout , dout) is the result of
execute(p, din , t) and isProcessActivated is a function that determines whether
the process is activated or not given its control state and current date-time.
Thus, Eq. 6, which is a logical invariant, specifies that a process may only out-
put data when dictated by its control state and that at most 1 data item can be
generated. If the process is not activated, it can still update its data state and
control state, but under no circumstances can it be transformed into another
process by changing its identifier or its instructions.

3.2 Model of Monitoring Processes

Two types of Monitoring processes are distinguished to reflect the two types
of observations specified in [2], viz. observed properties and observed events.
In our formalism, observed properties are generated by performing digital sig-
nal processing, e.g. noise filtering, on input measurements. Thus for Monitoring
processes which output observed properties, the specification comprises:

A Clinical Guideline Formalism for Pervasive Healthcare 431

– A time window indicating the duration beyond which data is considered irrel-
evant.

– A mathematical function that operates on the measurements that have been
filtered using the time window, returning the value of the output property.

– An output type identifying the specific type of observed property to generate.

MSpec = PropertySpec ∪ EventSpec, where (7)
PropertySpec = TimeWindow × ValueFunction × OutputType (8)

TimeWindow = Duration (9)
ValueFunction = P(Measurement) → PropertyValue (10)

OutputType = Id (11)

Whenever a Monitoring process for observed properties is activated, all input
data (including those stored in its data state) are filtered using the time window
to remove data that are either not measurements or not relevant at the current
date-time. The process then feeds the remaining measurements into its value
function and outputs an observed property with the specified output type and
computed value.

Unlike observed properties, observed events can exhibit a start and an end,
and they can only be assigned a boolean value to indicate whether they occurred
or not [2]. Thus Monitoring processes for observed events are specified to com-
prise:

– A time window and predicate specifying the conditions indicating the event’s
start.

– A time window and predicate specifying the conditions indicating the event’s
end.

– An output type identifying the specific type of observed event to output.

EventSpec = EventTrigger × EventTrigger × OutputType, where (12)
EventTrigger = TimeWindow × TriggerPredicate (13)
TriggerPredicate = P(Measurement) → Boolean (14)

As with the time window in PropertySpec, the time windows in EventSpec are
used to filter out irrelevant measurements; the remaining measurements are input
into the corresponding predicates to determine if the start or end of the event is
detected. If the start is detected, the Monitoring process will then search through
the historical data to determine when the event ended; during this time period,
the event did not happen and therefore its value would be false. Similarly, if the
end is detected, the process will search for the date-time starting from which the
event occurred.

432 N. L. S. Fung et al.

3.3 Model of Analysis Processes

To generate abstractions from observations, Analysis processes comprise:

– An output type identifying the specific type of abstraction to output.
– A set of abstraction triplets, each containing:

• A time window for filtering out expired measurements.
• A predicate on the filtered observations that specifies the condition under

which an abstraction should be generated.
• An abstraction function that accepts a set of observations as input and

returns the appropriate value for the output abstraction (if one is gener-
ated).

ASpec = OutputType × P(TimeWindow × AbstractionPredicate
×AbstractionFunction), where (15)

AbstractionPredicate = P(Observation) → Boolean (16)
AbstractionFunction = P(Observation) → AbstractionValue (17)

Like observed events, abstractions are valid over a date-time range [2]. However,
unlike observed events, abstractions are not generated by detecting start and
end conditions. Whenever an Analysis process is activated, it iterates through
its abstraction triplets, and for each triplet it applies the abstraction predicate
and abstraction function to the data that has been filtered through the cor-
responding window. If a predicate is satisfied, the iteration terminates and the
process outputs an abstraction with the specified type and corresponding value—
otherwise, the process does not generate any abstraction. The valid date-time
range of the output abstraction is computed by finding the longest period (start-
ing from the current date-time) during which the predicate remains satisfied and
the computed value remains unchanged.

3.4 Model of Decision Processes

Decision processes comprise a plan template from which a new action plan can be
instantiated as well as a set of decision criteria governing the conditions under
which that action plan should be enacted. In our formalism, decision tables
are adopted for decision-making, such that the decision criteria are specified as
predicates over the input abstractions. Furthermore, reflecting the specification
of action plans, plan templates are modeled to comprise a set of instruction
templates, of which three types are distinguished, one for each type of scheduled
instruction in an action plan [2]:

– Homogeneous action instructions for actions that exhibit a rate and duration.
– Culminating action instructions for actions that exhibit an end goal.
– Control instructions for controlling the execution of MADE processes by

setting their schedules and/or status (whether they should be running or
paused).

A Clinical Guideline Formalism for Pervasive Healthcare 433

DSpec = PlanTemplate × P(DecisionCriterion), where (18)
PlanTemplate = PlanType × P(ControlTemplate

∪ HomogeneousActionTemplate ∪ CulminatingActionTemplate) (19)
DecisionCriterion = P(Abstraction) → Boolean (20)

In contrast to Monitoring and Analysis processes, Decision processes do not
require a time window; the only relevant abstractions are those that are valid
at the current date-time. These abstractions are checked against the decision
criteria; if any criterion is triggered, an action plan will be instantiated from the
plan template. The schedule of each instruction in the plan is computed from
the current date-time and the relative schedule of the corresponding instruction
template.

3.5 Model of Effectuation Processes

Since action plans already contain the complete details of all instructions to
be executed and when, Effectuation processes simply specify which instructions
they are responsible for effectuating. More specifically, Effectuation processes
comprise:

– A specification of the target scheduled instructions to be effectuated by the
process. Targets are identified by type of action plan, type of target instruction
as well as a predicate on the scheduled instruction.

– An output type indicating the specific type of instruction to output.

ESpec = P(TargetScheduledInstruction) × OutputType, where (21)
TargetScheduledInstruction = PlanType × InstructionType

×InstructionPredicate (22)
InstructionPredicate = ScheduledInstruction → Boolean (23)

When activated, an Effectuation process filters out any action plans that are not
valid at the current date-time and extracts, from the remaining action plans, all
relevant scheduled instructions based on the specified targets. From these rele-
vant scheduled instructions, the process then determines if any should be effec-
tuated at the current date-time (given their schedule). If yes, then an instruction
will be generated with the specified output type, which may possibly be more
specific than the scheduled instruction. For example, an action plan may require
an hour’s (unspecified) exercise daily while an Effectuation process may instan-
tiate this as an instruction to walk on a treadmill.

4 Reference Implementation

To ensure that the formalism is executable and to clarify any ambiguities, a
reference implementation of the formalism was developed as a set of libraries

434 N. L. S. Fung et al.

on top of the language Rosette. Clinical guidelines can be formalized using this
reference implementation into Rosette programs (Fig. 2), which would comprise
interconnected MADE processes. Subsequently, by executing those programs,
clinical guidelines can be applied onto (simulated) patient data to demonstrate
the semantics of the formalism.

1. Formalise
Guideline

MADE
Ref. Impl.

Clinical Guideline

Rose�e
Program

(Simulated) Pa�ent Data

2. Execute
Guideline

Decision
Support

Fig. 2. The overall procedure for using the reference implementation.

The source code is available at https://github.com/nlsfung/MADE-
Language. To summarize, each data type in the formalism is implemented as
a structure (which is analogous to classes in objected-oriented programs), while
behaviors are implemented as procedures. Furthermore, elements of data types
are generally implemented as fields in the corresponding structures, with the
exception of InstSpec which is implemented using interfaces (to ensure that
it remains constant over time). Clinical guidelines can then be formalized by
extending the structures and implementing the interfaces; during execution,
these structures would be instantiated into concrete data items.

For example, a process to analyze ketonuria may be formalized as the
following structure. It inherits the data state and control state fields from
analysis-process and implements the gen:analysis interface to return the
appropriate output type (ketonuria) and abstraction triplets (denoted by x).

(struct analyze-ketonuria analysis-process ()
#:methods gen:analysis [
(define (analysis-process-output-type self) ketonuria)
(define (analysis-process-output-specification self) x)])

Apart from an interpreter for executing programs, Rosette also provides access
to off-the-shelf constraint solvers to analyze them [12]. This allowed the reference
implementation to be verified against 34 logical invariants derived for the for-
malism (e.g. Eq. 6). Each invariant was translated into an assertion in Rosette,
which was then checked (using a constraint solver) whether a concrete counter-
example can be found that violates it. If yes, then the assertion is not valid.
Otherwise, as is the case with the 34 invariants, it provides evidence (but not a
definitive proof) that the assertion is valid.

5 Case Study: Gestational Diabetes Guideline

The MADE formalism was tested by formalizing a complete clinical guideline
for gestational diabetes (GD) [7] that has previously been adopted to evaluate

https://github.com/nlsfung/MADE-Language
https://github.com/nlsfung/MADE-Language

A Clinical Guideline Formalism for Pervasive Healthcare 435

the MobiGuide system [4]. The result was a Rosette program (also available
on GitHub) that comprises 0 Monitoring, 4 Analysis, 22 Decision and 29 Effec-
tuation processes. As an example, we focus on the guideline fragment shown in
Fig. 3, which relates to the decision to increase the carbohydrates intake of a GD
patient. To highlight the identified MADE processes, we annotated the extract
by underlining followed by an inserted [M] for Monitoring, [A] for Analysis and
[D] for Decision processes.

‘‘... The patient measures ... ketones in the urine every day
at fasting conditions [M]. ... The results of ketonuria could
be: a) positive (++); b) positive (+); c) negative (+/-);
d) negative (-); e) negative (--). ... In case of ketonuria
detection (the number of ketonuria measurements with result
‘‘positive’’ is equal or higher than 3 in a period of time of
one week) [A]:- If the patient was COMPLIANT with the prescribed
diet [A], the nurse decides to increase the carbohydrates intake
either at dinner or at bedtime ... by 1 unit [D] ... ’’

Fig. 3. Extract from the GD guideline [7] annotated by [3].

Since urinary ketone levels must be monitored manually by the GD patient,
only two processes were formalized for this example. The first is the analysis of
ketonuria, which requires a window of 7 days and outputs a ketonuria abstraction
with value positive if more than two urinary ketone values are + or ++. The
second is the decision to increase carbohydrates intake, which was confirmed by
clinicians to be automatable. It accepts as input ketonuria and diet compliance
abstractions and outputs an action plan to increase carbohydrates intake at
dinner if ketonuria is positive and diet is compliant.

These two processes are specified as follows. In practice, both processes were
formalized into Rosette code as with the rest of the GD guideline, all of which
was then tested using simulated data (see the Appendix for examples). However,
for conciseness, their specifications are presented here using mathematical nota-
tion, with constants (denoted using small caps) replacing instances of low-level
structures (such as durations).

AnalyseKetonuria ⊂ Analysis, such that (24)
∀p ∈ AnalyseKetonuria. π1(p) = Analyse Ketonuria ∧

π1(π4(p)) = Ketonuria ∧ π2(π4(p)) = {(One Week,

din
→ |{d | d ∈ din ∧ d ∈ UrinaryKetoneLevel ∧ π4(d) ∈ {+,++}}| ≥ 3,

din
→ Positive)}

436 N. L. S. Fung et al.

DecideIncreaseCarbohydrates ⊂ Decision, such that (25)
∀p ∈ DecideIncreaseCarbohydrates.

π1(p) = Decide Increase Carbohydrates ∧
π1(π4(p)) = (Dietary Plan, {Increase Dinner Carb. Intake}) ∧
π2(π4(p)) = {din
→ (∃d ∈ din . d ∈ Ketonuria ∧ π4(d) = Positive) ∧

(∃d ∈ din . d ∈ DietCompliance ∧ π4(d) = Compliant)}

6 Discussion

6.1 Expressiveness of the Formalism

Experience gained from the case study showed that the MADE formalism has
sufficient expressiveness to represent automatable portions of clinical guidelines.
In the future, we plan to evaluate this further by, for example, comparing against
existing guideline formalisms. However, it can already be observed that our for-
malism does not support partial specifications for tasks that must be manually
performed. For example, since urinary ketone levels are measured manually, the
guideline does not explicate how these measurements should be processed (see
Fig. 3). For this reason, this and all other measurement tasks could not be for-
malized into Monitoring processes, which we believe would also apply to other
clinical guidelines.

Furthermore, our formalism does not support the personalization of clini-
cal guidelines according to individual patient preferences, which is an impor-
tant usability feature for providing decision support to patients [6]. In our case
study for example, dinnertime must be made explicit (e.g. 7 pm) to formalize
the decision process to increase carbohydrates intake; individual adjustments to
dinnertime can only be made by directly accessing and changing the formalized
guideline. However, we believe the MADE formalism provides a solid foundation
on which such extensions can be added, and we will continue to evaluate and
improve the formalism using different clinical guidelines.

6.2 Clinical Relevance

The GD guideline was developed by a team of expert clinicians, knowledge engi-
neers and researchers [4], and its clinical relevance has been established in patient
trials of the MobiGuide system [6]. However, the MobiGuide system comprises
a fixed number (viz. 2) of KBSs, while our aim is to support an arbitrary dis-
tribution of knowledge. Therefore, in collaboration with clinicians, patients and
other stakeholders, we plan to fully evaluate our formalism and its clinical value
by implementing and testing “n-ary” guideline-based pervasive healthcare sys-
tems for GD and other clinical applications. Such a system would adopt the
MADE reference information model [2] to share data between devices (including
EHR repositories) and would implement an optimization algorithm to distribute
guideline knowledge so as to maximize system resilience.

A Clinical Guideline Formalism for Pervasive Healthcare 437

While our formalism allows parallelization of clinical guidelines at the knowl-
edge level, an equally valid alternative may be to parallelize them at the source
code level, such as by adopting research results from the well-established area of
high-performance computing. However, we believe our formalism can offer the
advantages of increased transparency and amenability to analysis. In particular,
we are currently investigating how to apply formal verification not only on the
guideline formalism itself, but also on computerized CPGs expressed in the for-
malism, such as to ensure that mutually exclusive MADE processes would never
be activated at the same time.

7 Conclusions

Guideline-based pervasive healthcare systems can extend evidence-based health-
care beyond the traditional healthcare setting. It is all the more crucial then to
have demonstrable system resilience, quality of clinical information and correct
operational logic in a highly distributed environment. To this end, the MADE
formalism was developed to represent clinical guidelines in the context of per-
vasive healthcare and is specified using axiomatic set theory to avoid ambiguity
and to allow formal analysis. In particular, the reference implementation was
formally verified against its specification using Rosette.

Due to its mathematical foundation, the MADE formalism also opens up
possibilities for formally verifying clinical guidelines, which we currently investi-
gate. Furthermore, while the formalism has been tested by formalizing a clinical
guideline, its clinical relevance must be further evaluated, such as by conduct-
ing field studies using a fully implemented system. The overall objective is to
improve clinical correctness of guidelines and safety of their implementations as
computerized CPGs.

Appendix

The complete formalized guideline for GD was tested by applying it onto simu-
lated patient data. For example, Fig. 4 shows some urinary ketone levels that may
be used to test the analysis of ketonuria for GD patients (AnalyseKetonuria),
which is specified in Eq. 24. Here, the urinary ketone levels are positive from
time points 3 to 6, and the Analysis process is activated at time point 7. Each
time point is separated by one day, thus at time point 7, there are three or more
urinary ketone levels in the past 7 days. Therefore, as expected, a ketonuria
abstraction is generated with value positive. This abstraction is valid until time
point 11; beyond this point, there are less than 3 positive urinary ketone levels
in a 7-day window given the available data.

As another example, Fig. 5 shows a schematic of the data that
may be used to test the decision to increase carbohydrates intake
(DecideIncreaseCarbohydrates), which is specified in Eq. 25. Here, ketonuria is
positive from time points 1 to 5 while diet is compliant at time point 2 and from
time points 5 to 7. Furthermore, the decision process is activated at even time

438 N. L. S. Fung et al.

Time

1 2 3 4 5 6 7 8

X X

X

X

X

X

U
rin

ar
y

Ke
to

ne
 Le

ve
l

--

-

+/-

+

++

9 10 11 12

X Process Activated

Positive Ketonuria
Interval

Fig. 4. Example data for testing the analysis of positive ketonuria.

points only, thus on execution, the process outputs an action plan at time point
2 only and not at time point 5, which is as expected (Inv. 6).

Time

0 1 2 3 4 5 6 7 8

X

X X X XX

X

Positive Ketonuria

Compliant Diet

Process Activated

Action Plan Generated

Fig. 5. Example data for testing the decision to increase carbohydrates intake.

References

1. Bardram, J.E.: Pervasive healthcare as a scientific discipline. Method Inform. Med.
47, 178–185 (2008)

2. Fung, N.L.S., Jones, V.M., Hermens, H.J.: The MADE reference information model
for interoperable pervasive telemedicine systems. Method Inform. Med. 56(2), 180–
186 (2017)

3. Fung, N.L.S., Jones, V.M., Widya, I., Broens, T.H.F., Larburu, N., et al.: The
conceptual MADE framework for pervasive and knowledge-based decision support
in telemedicine. Int. J. Knowl. Syst. Sci. 7(1), 25–39 (2016)

4. Garćıa-Sáez, G., Rigla, M., Mart́ınez-Sarriegui, I., Shalom, E., Peleg, M., et al.:
Patient-oriented computerized clinical guidelines for mobile decision support in
gestational diabetes. J. Diabetes Sci. Technol. 8, 238–246 (2014)

5. Peleg, M., Tu, S., Bury, J., Ciccarese, P., Fox, J., et al.: Comparing computer-
interpretable guideline models: a case-study approach. J. Am. Med. Inform. Assoc.
10, 52–68 (2003)

6. Peleg, M., Shahar, Y., Quaglini, S., Fux, A., Garćıa-Sáez, G., et al.: MobiGuide:
a personalized and patient-centric decision-support system and its evaluation in
the atrial fibrillation and gestational diabetes domains. User Model User-adapt
Interact. 27(2), 159–213 (2017)

A Clinical Guideline Formalism for Pervasive Healthcare 439

7. Rigla, M., Tirado, R., Caixàs, A., Pons, B., Costa, J.: Gestational diabetes guide-
line CSPT. Technical report, MobiGuide Project (FP7-287811) (2013). Version 1.0,
12/02/2013. Internal document

8. Samwald, M., Fehre, K., de Bruin, J., Adlassnig, K.P.: The Arden Syntax standard
for clinical decision support: experiences and directions. J. Biomed. Inform. 45(4),
711–718 (2012)

9. Seyfang, A., Miksch, S., Marcos, M.: Combining diagnosis and treatment using
ASBRU. Int. J. Med. Inform. 68, 49–57 (2002)

10. Shalom, E., et al.: Implementation of a distributed guideline-based decision support
model within a patient-guidance framework. In: Riaño, D., Lenz, R., Miksch, S.,
Peleg, M., Reichert, M., ten Teije, A. (eds.) KR4HC 2015. LNCS (LNAI), vol. 9485,
pp. 111–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26585-8 8

11. The openEHR Foundation: Guideline Definition Language v2 (GDL2), CDS
Release 2.0.0 edn. (2019). https://specifications.openehr.org/releases/CDS/latest/
GDL2.html. Accessed 13 July 2020

12. Torlak, E., Bodik, R.: Growing solver-aided languages with Rosette. In: Proceed-
ings Onward! 2013, pp. 135–152. Association for Computing Machinery, New York
(2013)

https://doi.org/10.1007/978-3-319-26585-8_8
https://specifications.openehr.org/releases/CDS/latest/GDL2.html
https://specifications.openehr.org/releases/CDS/latest/GDL2.html

	A Verified, Executable Formalism for Resilient and Pervasive Guideline-Based Decision Support for Patients
	1 Introduction
	2 Background and Related Work
	3 The MADE Guideline Formalism
	3.1 Overarching Model of Clinical Guidelines
	3.2 Model of Monitoring Processes
	3.3 Model of Analysis Processes
	3.4 Model of Decision Processes
	3.5 Model of Effectuation Processes

	4 Reference Implementation
	5 Case Study: Gestational Diabetes Guideline
	6 Discussion
	6.1 Expressiveness of the Formalism
	6.2 Clinical Relevance

	7 Conclusions
	References

