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Abstract. Mortality in elderly population having type II diabetes
(T2D) can be prevented sometimes through intervention. For that risk
assessment can be performed through predictive modeling. This study
is part of a collaboration with Maccabi Healthcare Services’ Electronic
Health Records (EHR) data, that consists on up to 10years of 18,000
elderly T2D patients. EHR data is typically heterogeneous and sparse,
and for that the use of temporal abstraction and time intervals mining to
discover frequent time-interval related patterns (TIRPs) are employed,
which then are used as features for a predictive model. However, while
the temporal relations between symbolic time intervals in a TIRP are
discovered, the temporal relations between TIRPs are not represented.
In this paper we introduce a novel TIRPs based patient data representa-
tion called Integer-TIRP (iTirp), in which the TIRPs become channels
represented by values representing the number of TIRP’s instances that
were detected. Then, the iTirps representation is fed into a Deep Learn-
ing Architecture, which can learn this kind of sequential relations, using
a Recurrent Neural Network (RNN) or a Convolutional Neural Network
(CNN). Finally, we introduce a predictive model that consists of a com-
mittee, in which two inputs were concatenated, a raw data and iTirps
data. Our results indicate that iTirps based models, showed superior
performance compared to raw data representation and the committee
showed even better results, this by taking advantage of each representa-
tions.

Keywords: Pattern mining - Deep Learning - Temporal data
prediction

1 Introduction

Diabetes is a major chronic disease in the western society and its prevalence is
on the rise worldwide. Type 2 diabetes (T2D) patients often suffer from heart
disease and the prevalence of coronary artery disease and heart failure is also
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much higher among diabetic patients [4]. Moreover, cardiac related in-hospital
mortality is also much higher among patients with diabetes [12].

Israel’s HMOs had implemented disease management programs to improve
quality of care for diabetes and prevent those complications through risk reduc-
tion [10]. These programs aim at achieving centrally controlled documented mul-
tifactorial risk reduction that are implemented mainly by primary care givers.
To date the effect of these programs on cardiac morbidity and mortality were
not assessed. A potential deficiency in these plans may be the lack of targeted
case management for high-risk patients. Such identification may lead to on time
intensive intervention that may reduce morbidity and mortality. Namely, prevent
hospitalization for cardiac disease and lower cardiac mortality. To this end it is
desirable to develop a predictive model that will help to identify the patients
that are more prone to cardiac deterioration. This will form the basis for inter-
vention aimed at prevention of costly and lethal consequences. For that purpose,
in this paper the focus is on prediction of All-Cause Mortality in T2D patients.

In this paper we introduce for the first time iTirps, which are temporal pat-
terns based representation that can be later fed into temporal architectures of
Artificial Neural Networks (ANNs), which we use to learn predictive models for
outcomes, which in our study is all cause mortality in T2D patients. To have the
iTirps representation, first temporal abstraction is used [19] and time-intervals
mining to discover TIRPs [19]. Then these are transformed into a new represen-
tation, called integer-TIRPs, which are described in greater details later. The
contributions of the paper are the following: 1. iTirps, a novel representation
for temporal data consisting on frequent TIRPs instances, which enable to rep-
resent a time period according to the relations among the temporal variables
along time, and their appearances, which are hard to represent by TIRPs, nor
by temporal ANNs. 2. A rigorous evaluation on a large real-life data of T2D
patients, using iTirps for the prediction of all-cause mortality.

2 Related Work

We start with a review of the use of data science in diabetic patients’ data. Then
we proceed with discussing time intervals related patterns mining in heteroge-
neous multivariate temporal data and their use for classification, and then we
go over approaches in the field of ANN for time series classification.

2.1 Outcomes Prediction in Diabetes

The use of data mining and machine learning methods in diabetes related
research is constantly increasing [11]. There is a relatively small number of stud-
ies that intend to predict mortality in T2D patient. For example, prediction of
ICU mortality of diabetic patient by applying several classifiers on aggregated
data and showed good results on predict risk of mortality [1]. Most of current
research that assesses mortality risk in diabetic patients, are using Cox propor-
tional hazards model, in [16] used Cox model to create risk equations for all
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cause, cardiovascular, and non-cardiovascular mortality diagnosed of type 2 dia-
betes patients. In [5] a Cox model was used specifically for prediction of mortality
in adults population. The use of ANN in diabetes related research was not very
extensive, and most of the work use feed forward (FF) network on a temporal
data [9].

2.2 Temporal Abstraction, TIRPs Discovery and TIRPs Based
Classification

A major challenge in analyzing EHR data is the heterogeneity of the sampling
forms of the data. Additionally, challenges may include sparsity, and exploit-
ing the temporal information. Therefore, increase usage of temporal abstraction
(TA) and time intervals mining is being reported [19]. In order to transform
the heterogeneous temporal variables into a uniform representation, state TA is
used, in which the time point series are transformed into symbolic time intervals
(STIs), given a set of cutoffs. The cutoffs can be knowledge based [20], or data
driven, based on discretization methods, such as Symbolic Aggregate approX-
imation [14] or the Temporal Discretization for Classification (TD4C) [19,21].
Another type of temporal abstraction is gradient abstraction, which segments
the data based on the first derivative into periods of time, in which the variable
is increasing or decreasing [20]. Once symbolic time intervals series are created,
frequent Time Intervals Related Patterns (TIRPs) can be discovered. Several
methods for TIRPs discovery were proposed in the past [19,21], mostly con-
sisting on Allen’s temporal relations [17] which include seven relations such as
before, meet, overlap, and more, and their inverse. Beyond temporal knowledge
discovery, frequent TIRPs were shown to be effective for classification and pre-
diction in electronic health records [3,17,18,22]. However, incorporating the use
of TIRPs to represent the temporal relations between heterogeneous temporal
variables in ANNs based architectures is still a challenge, which we explore in
this paper.

2.3 Artificial Neural Networks for Temporal Data

ANNSs designed for temporal data were successfully used in several domains and
tasks. For example, RNN can store information about previous inputs in internal
memory (hidden states), that abstract and carry information from earlier time
stamps and CNN are achieving state-of-the-art results in a high variety of tasks
including computer vision tasks and more [13]. These methods are increasingly
employed also in clinical data. RNN based methods showed superior results than
the use of classical algorithm like logistic regression (LR) and multilayer percep-
tron with hand-engineered features in predicting diagnosis codes [8,15]. RNN
based method for missing values imputation in temporal data, called GRU-D [6],
showed better performance than traditional methods, such as mean-imputation,
imputation with k-nearest neighbor and other. Modified CNN, for capturing tem-
poral relations, was trained CNN on temporal matrix representation of medical
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codes for outcome prediction and showed better results than LR using aggre-
gated clinical features on real world EHR data [7].

3 Methods

We present here the framework for the development of the iTirps and the
iTirpsMap representation which is used later with temporal ANNs for clas-
sification and specifically prediction in this study. With iTirps representation
we preserve more temporal information then the regular TIRP representation.
iTirps hold the information about the starting and ending time of each TIRP,
and through that the duration of each TIRP instance is captured, including its
relative location in the time series. This information can be learned by ANN and
improve the classification performance.

3.1 iTirps and iTirpsMap

Figure1l presents the steps in the creation of iTirps and a corresponding
iTirpsMap. First the multivariate temporal data abstracted and transformed
into a uniform representation of symbolic time intervals [19]. Then, frequent
TIRPs are discovered by mining the symbolic time intervals. For the mining
process, we use the Karmalego algorithm [21]. The result is a bag of frequent
TIRPs. Next, the TIRPs are detected and transformed to iTirp, that are passed
in the form of iTirpsMap as input to a CNN/RNN.

EHR

RNN
Temporal | STIs [ Time Intervals | TIRPs iTIRPs TirpsMap
Abstraction Mining Creation

CNN

Fig. 1. iTirps and iTirpsMap based classification

Temporal Abstraction. In this study we perform state abstraction using Sym-
bolic Aggregate approXimation (SAX) [14], in which the states are derived from
the Gaussian distribution of the values, and Temporal Discretization for Clas-
sification (TD4C) [19] that determines the cutoffs in a supervised manner, so
that the states distribution are most different among the classes. The result of
the Temporal Abstraction process is a uniform representation of the temporal
variables as symbolic time intervals. A symbolic time interval, I = <s, e, sym>,
is an ordered pair of time points, start-time (s) and end-time (e), and a sym-
bol (sym) that represents one of the domain’s symbolic concepts, which in our
study can be laboratory results that went through abstraction, conditions or
procedures. As mentioned in the background, once the data is transformed into
a uniform representation of symbolic time intervals, TIRPs can be discovered.
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TIRPs Discovery. To discover TIRPs, the KarmalLego algorithm [19] is used,
which uses Allen’s temporal relations, such as starts, meets, overlap, contains,
and more, and their inverse [20] to represent the temporal relation among a pair
of symbolic time intervals. In this study a set of generalized temporal relations,
which are the disjunction of part of Allen’s seven relations were used.

These include: BEFORE based on before||meets; OVERLAP based on
overlaps; and CONTAIN based on {starts || contains || finish — by || equal}.
In addition, a maximum allowed gap duration is set for the before relation [20].
A non-ambiguous TIRP P is defined as P = I, R, where I = I1,12,..,1k is a
set of k ordered symbolic time intervals and the conjunction of all their pairwise
temporal relations among each of the (k2 — k)/2 pairs of the symbolic time inter-
valsin I, R = UZZ“:_llUJ’-“:Z-+1r(Ii, DYy o(IH1%), cry (I T%), o vy (TF7LTF).
Thus, given a database of entities (i.e., patients), the vertical support of a TIRP
P (frequency in the database) is denoted by the cardinality of the distinct enti-
ties having P, relative to the size of the database. However, in this study we
propose a novel use of the TIRPs, which become channels, and called iTirps.

iTirp and iTirpsMap Creation. We introduce here iTirps, a new tempo-
ral representation of multivariate temporal data through TIRPs’ instances that
results in a numeric matrix representation of the appearance of the TIRPs along
time, which can be later fed to various methods, such as RNN/CNN as hap-
pens in this study. In previous studies TIRPs were used as features for classifiers
[3,19], however, in order to represent them explicitly along time, we present
iTirpsMap. Figure?2 illustrates the process of the iTirps and iTirpsMap cre-
ation. The description starts at the bottom and goes up. The x-axis is the time
by months along 12 months. Starting with the symbolic time intervals at the bot-
tom, which can be raw concepts, such as drug exposers, conditions, or a state
abstraction of time point series, such as lab tests.

i time
TIRP HH_b_D_c_Do ) H A
T T Duraton : &
TIRP HH_b_Do ;
: ; — »
Symbol Doctor Visit ' —_— —— =
Symbol DPP4 Inhibitors @
Symbol HbA1C_High : i
1 2 3 4 5 5 7 8 9 10 1 12 time

Fig. 2. iTirps and iTirpsMap creation. Starting at the bottom with the STIs series data.
Above two TIRPs are shown, and their corresponding instances’ durations, which later
will be counted and become vectors of the number of TIRPs occurrences in each time
stamp.

In Fig. 2 there are three STIs at the bottom, HbAlc_High, which represents
their measurements abstracted along three months (which a HbAlc test is valid
for), Dipeptidyl peptidase-4 (DPP4) Inhibitors, which are a class of medications
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that decrease high blood glucose, and Doctor Visit events. Two TIRPs examples
are presented above: TIRP HH b Do (HH before Do) appears three times in
the periods of 16, 1-8, and 10-12; and the TIRP HH b D ¢ Do (HbAlc before
DPP4 Inhibitors, HbAlc High before Doctor Visit, and DPP4 Inhibitors contains
Doctor Visit) which appears twice (since there two Doctor Visits) during 1-9.
In fact, the HH_b_Do TIRP is shown in the bottom illustration of the STIs
surrounding the relevant STIs which include each HH_b_Do instance — there are
two. To create iTirps that construct the iTirpsMap, we have two steps, in the
first step each TIRP instance becomes a time series of one and zero values (one
values are placed from TIRP starting point to ending point). In the second step,
we aggregate the TIRPs to create iTIRPs. Thus, for example, iTirp HH b Do
value is 2 in time stamps 1-6, since there are two instances of the TIRP during
this time stamp. Thus, an iTirp represents the number of the TIRP appearances
in each time stamp. Eventually, the entire set of iTirps are combined into an
iTirpsMap 3-dimensional matrix (of the Entities, the time axis, and the TIRPs’
channels) representation.

Artificial Neural Network. In this paper the purpose of iTirps and iTirpsMap
is to enable to combine the advantages of TIRPs in capturing temporal relations
between heterogeneous temporal variables and the advantages of neural learning,
specifically when using temporal versions of ANNs, such as the RNN, CNN and
their ensemble. RNN-ALSTM. Our RNN architecture is an Attention block
followed by a LSTM (ALSTM). The attention mechanism enables the network
to better learn long-term dependencies for the prediction task proposed by [2].
Long Short-Term Memory (LSTM) [13] is variation of RNN, that can overcome
RNN’s limitations like vanishing and exploding gradient by a gating mechanism
that regulates the information flow. Encoder-CNN. For the CNN architecture
the Encoder is used. In Encoder the first three layers are CNN that followed
by attention mechanism, that summarize the temporal dimension, proposed in
[23]. To map the network output to a probability distribution the last layer is
SoftMax, for both networks. Committee. We experiment also with a committee
of two classifiers, in which the first classifier is based on the raw data, and the
second classifier is based on the iTirpsMap input. First, we train each model
separately, with the different inputs, one with raw data and the second with the
iTirpsMap, based on some type of TA. Then the SoftMax layer is removed from
both models, while the last layers of the network are concatenated, and a new
SoftMax added as the last layer.

4 Evaluation and Results

We first state our research questions, and then we describe the data, and the
experiments that were designed to answer the questions, and the results.
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4.1 Research Questions

1. What type of temporal abstraction is best for classification? 2. What are
the best prediction time periods? 3. Which ANN with iTirps performs best, in
comparison to the use of raw data? 4. What ‘Committee’ of ANNs is the best
for outcome prediction?

4.2 Dataset

The diabetes dataset of Maccabi Healthcare Services contains data of up to
10 years on 18,000 elderly patients with T2D. The dataset includes 9,000 cases,
which are T2D patients who experienced an outcome, defined as all-cause mor-
tality. The data collected from the years 2008—2018. Cohort Inclusion criteria:
(1) Patients with diabetes according to the diabetes registry (and not defined
as type 1). (2) Experiences an outcome from 2011-2018. 9,000 controls, which
are patients without the outcome that were matched according 2 parameters
Age and Gender to control patients. Control (Matched patients) will be defined
as followed: (1) Patients with diabetes according to the diabetes registry (and
not defined as type 1). (2) Being Maccabi Health Services members and without
recorded outcomes during the outcome period. Patients included in cancer reg-
istry prior to outcome are excluded from the dataset. Control patients, outcome
date will be defined as January 1st. The variables include Demographic data,
Therapies (medication), Co-morbidities indicators, Lab results, hospitalizations
and inpatients and outpatient visits.

4.3 Experimental Setup

To answer the research questions, while reflecting a real application conditions
for continuous prediction using a sliding window, the most suitable study design
is case-crossover-control. Thus, observation time windows are extracted from the
cases, and the matched controls. In the cases, the latest observation time win-
dow, which is located a prediction time period prior to the outcome is labeled
as positive, while the earlier observation time windows in the cases are labeled
as negative, as well as the observation time windows from the controls’ data
(taken randomly, since there are no outcomes), which enables to evaluate the
method both on cases’, or controls’ time windows. We report quantitative results
using the Receiver Operating Characteristic AUC (ROC-AUC), based on 10-fold
grouped cross-validation (CV). Thus, time windows of a specific patient were
either at the training or in the testing set. To answer the research questions, two
experiments were designed. We used an observation time period of 12 months,
and to discover TIRPs, Karmalego was applied with 55% minimal vertical sup-
port, and unlimited maximal gap.
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Experiment 1. The goal was to evaluate the iTirps based prediction, using an
observation time window of 12 months. For this experiment we have two possible
inputs for the ANN architectures: raw data, or the iTirpsMap based on the two
types of abstraction (research question 1) using the SAX and TD4C-Cos with
2 states. All inputs with Encoder-CNN and RNN-ALSTM were evaluated on
two prediction time periods of 90 and 180 days (research question 2, 3). Figure 3
presents the mean results of the iTirps based on the SAX or TD4C-Cos, in
comparison to the use of raw data, with two prediction time periods of 90 and
180 days. Generally predicting 90 days performed better than within 180 days,
which makes sense. Using the Encoder-CNN the use of iTirps with SAX per-
formed significantly better than the other. Using the RNN-ALSTM the results
were quite similar, and the iTirp with SAX performed best.

Encoder-CNN ALSTM-RNN
Discretization
0.82 ® Raw Data
® iTirp(SAX)
58 ® Tirp(TD4C-Cos)
@)
=
<
O 0.80
(@)
&
0.79
0.78
90 180 90 180
Prediction Period Prediction Period

Fig. 3. iTirp(SAX) outperforms significantly, especially with the Encoder-CNN and
90 days prediction period.

Experiment 2. To evaluate what is the best committee (research question 4)
the performance of the ‘Committee’ merged network was evaluated. The com-
mittees included a combination of the raw data as input to one classifier, and the
second with the iTirpsMap based on SAX or TD4C-Cos TA. Figure4 presents
the performance of the two committees, including for comparison the use of only
raw data (as performed in the first experiment, as a baseline). The committee
using iTirp with SAX and raw data, was significantly better with Encoder-CNN
when predicting 90 days ahead, and also with the other options. Overall, the best
performance was 84.5% AUC.
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Committee Encoder-CNN Committee ALSTM-RNN
— = Input Data
0.84 = _— ® Raw Data
® iTirp(SAX) & Raw

o
[o°]
w
a

iTirp(TD4C-Cos) & Raw

ROC-AUC
o
®
N

o
@
=

i———1[

90 180 90 180
Prediction Period Prediction Period

o
(o)
o

Fig. 4. The iTirp(SAX) committee outperforms significantly, especially with Encoder-
CNN and 90 days prediction period.

5 Discussion and Conclusions

Clinically, we focused on the prediction of all-cause mortality in T2D patients,
to enable ideally prevention through intervention. In this paper, we introduced a
new method for multivariate temporal data representation, called iTirps, which
is consists on the discovery of frequent TIRPs, which enables to be fed to RNN or
CNN. The use of temporal abstraction and TIRPs as features for classification, is
very effective for the analysis of heterogeneous multivariate temporal data, such
as often happens in Electronic Health Records. However, in order to employ the
advantages of the temporal versions of ANNs, such as CNN or RNN, we propose
the iTirps representation. Additionally, we proposed and experimented with the
Committee network that combines both raw data and the iTirpsMap. The results
of Experiment 1 show that using the iTirp with SAX with the Encoder-CNN
had the best performance, and generally the use of the Encoder-CNN and RNN-
ALSTM were comparable. In experiment 2, the performance of the committee
network was evaluated, in which the committee of the Encoder-CNN with iTirp
SAX and the raw data as input, performed best and was significantly higher
compared to the raw data. The directions for future research include evaluation
of additional discretization methods and number of bins, on a bigger number of
SOTA ANN architectures.
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