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Preface

The European Society for Artificial Intelligence in Medicine (AIME) was established in
1986 following a very successful workshop held in Pavia, Italy, the year before. The
principal aims of AIME are to foster fundamental and applied research in the appli-
cation of artificial intelligence (AI) techniques to medical care and medical research,
and to provide a forum at biennial conferences for discussing any progress made.
Hence, the main activity of the society thus far is the organization of a series of biennial
conferences, held in Marseilles, France (1987), London, UK (1989), Maastricht, The
Netherlands (1991), Munich, Germany (1993), Pavia, Italy (1995), Grenoble, France
(1997), Aalborg, Denmark (1999), Cascais, Portugal (2001), Protaras, Cyprus (2003),
Aberdeen, UK (2005), Amsterdam, The Netherlands (2007), Verona, Italy (2009),
Bled, Slovenia (2011), Murcia, Spain (2013), Pavia, Italy (2015), Vienna, Austria
(2017), and Poznan, Poland (2019).

In the last decade, there were discussions within the AIME society to make the
AIME conference truly international (initially it was a European conference) and host it
in North America, but those plans could not be realized. For the first time in the
conference’s history, it was supposed to be hosted in North America in 2020. This
event came with real excitement and was a huge step for the conference and the
community. However, due to the global COVID-19 pandemic, the decision was made
to forgo an in-person meeting for a virtual one. This volume contains the proceedings
of AIME 2020, the International Conference on Artificial Intelligence in Medicine,
hosted virtually by the University of Minnesota in Minneapolis, USA, August 25–28,
2020.

The AIME 2020 goals were to present and consolidate the international state of the
art of AI in biomedical research from the perspectives of theory, methodology, systems,
and applications. The conference included two invited keynotes, full and short papers,
tutorials, a COVID-19 themed workshop, a plenary session panel, and a doctoral
consortium.

In the conference announcement, authors were invited to submit original contri-
butions regarding the development of theory, methods, systems, and applications for
solving problems in the biomedical field, including AI approaches in biomedical
informatics, molecular medicine, and health-care organizational aspects. Authors of
papers addressing theory were requested to describe the properties of novel AI models
potentially useful for solving biomedical problems. Authors of papers addressing
theory and methods were asked to describe the development or the extension of AI
methods, to address the assumptions and limitations of the proposed techniques, and to
discuss their novelty with respect to the state of the art. Authors of papers addressing
systems and applications were asked to describe the development, implementation, or
evaluation of new AI-inspired tools and systems in the biomedical field. They were
asked to link their work to underlying theory, and either analyze the potential benefits
to solve biomedical problems or present empirical evidence of benefits in clinical



practice. All authors were asked to highlight the value their work created for the
patient, provider, and institution through its clinical relevance.

AIME 2020 received 103 submissions across all types of paper categories. Sub-
missions came from 28 countries, including submissions from Europe, North and South
America, Asia, Australia, and Africa. All papers were carefully peer reviewed by
experts from the Program Committee, with the support of additional reviewers, and by
members of the Senior Program Committee Committee – a new review layer intro-
duced in AIME 2020. Each submission was reviewed in most cases by three reviewers,
and all papers by at least two reviewers. The reviewers judged the overall quality of the
submitted papers, together with their relevance to the AIME conference, originality,
impact, technical correctness, methodology, scholarship, and quality of presentation. In
addition, the reviewers provided detailed written comments on each paper, and stated
their confidence in the subject area. One Senior Program Committee member was
assigned to each paper and they wrote a meta-review and provided a recommendation
to the scientific chair.

A small committee consisting of the AIME 2020 scientific chair, Dr. Nitesh Chwala,
and the conference co-chairs, Dr. Martin Michalowski and Dr. Robert Moskovitch,
made the final decisions regarding the AIME 2020 scientific program. This process
began with virtual meetings starting in June 2020. As a result, 34 long papers (an
acceptance rate of 33%) and 9 short papers were accepted. Each long paper was
presented in a 20-minute oral presentation during the conference. Each regular short
paper was presented in a 5-minute presentation and by a poster. The papers were
organized according to their topics in the following main themes: (1) Deep Learning;
(2) Natural Language Processing; (3) Predictive Modeling; (4) Image Processing;
(5) Unsupervised Learning; (6) Temporal Data Analysis; (7) Clinical Practice Guide-
lines; (8) Information Retrieval; and (9) Bioinformatics.

AIME 2020 had the privilege of hosting two invited keynote speakers:
Dr. Edward H. Shortliffe, Chair Emeritus and Adjunct Professor in the Department of
Biomedical Informatics at Columbia University, USA, giving the keynote entitled “AI
Today: Are We Forgetting Our Roots?,” and Dr. Vimla L. Patel, Senior Research
Scientist and Director for the Center for Cognitive Studies in Medicine and Public
Health at The New York Academy of Science, USA, describing “Human Cognition: A
Guide to the Evolution of AI in Medicine.” AIME 2020 also hosted an invited panel
during the main conference that focused on the effects of the global pandemic on AI in
medicine research and implementation. Panelists were academic and industry experts
from the USA, Canada, China, the UK, and Israel.

The doctoral consortium received six PhD proposals that were peer reviewed. AIME
2020 provided an opportunity for these PhD students to present their research goals,
proposed methods, and preliminary results. A scientific panel consisting of experienced
researchers in the field provided constructive feedback to the students in an informal
atmosphere. The doctoral consortium was chaired by Dr. Mary Regina Boland.

One workshop was organized before the AIME 2020 main conference. This
workshop focused on the challenges and problems data science and AI can address
related to the global pandemic, and relevant deployments and experiences in gearing AI
to cope with COVID-19. The workshop was chaired by Dr. Martin Michalowski and
Dr. Robert Moskovitch, with invited extended abstracts presented by experts in the
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public and private sectors from around the globe. The work from this workshop will be
extended and presented in a special journal issue devoted to the topic.

In addition to the workshops, three interactive half-day tutorials were presented prior
to the AIME 2020 main conference: (1) Methods and Applications of Natural Lan-
guage Processing in Medicine (Rui Zhang, University of Minnesota, USA); (2) Large
Scale Ensembled NLP Systems with Docker and Kubernetes (Raymond Finzel,
University of Minnesota, USA), (3) The Overview Effect: Clinical Medicine and
Healthcare Concepts for the Data Scientist (Anthony Chang, Children’s Hospital of
Orange County, USA).

We would like to thank everyone who contributed to AIME 2020. First of all, we
would like to thank the authors of the papers submitted and the members of the
Program Committee together with the additional reviewers. Thank you to the Senior
Program Committee for writing meta-reviews and to members of the Senior Advisory
Committee for providing guidance during conference organization. Thanks are also due
to the invited speakers and panelists, as well as to the organizers of the tutorials and
doctoral consortium panel. Many thanks go to the Local Organizing Committee, who
helped plan this conference and transition it to a virtual one. The free EasyChair
conference system (http://www.easychair.org/) was an important tool supporting us in
the management of submissions, reviews, selection of accepted papers, and preparation
of the overall material for the final proceedings. We would like to thank Springer and
the Artificial Intelligence Journal (AIJ) for sponsoring the conference and the Asso-
ciation for the Advancement of Artificial Intelligence (AAAI) for establishing a
cooperative agreement with AIME 2020. Finally, we thank the Springer team for
helping us in the final preparation of this LNAI book.

July 2020 Martin Michalowski
Robert Moskovitch
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Abstract. Mortality in elderly population having type II diabetes
(T2D) can be prevented sometimes through intervention. For that risk
assessment can be performed through predictive modeling. This study
is part of a collaboration with Maccabi Healthcare Services’ Electronic
Health Records (EHR) data, that consists on up to 10 years of 18,000
elderly T2D patients. EHR data is typically heterogeneous and sparse,
and for that the use of temporal abstraction and time intervals mining to
discover frequent time-interval related patterns (TIRPs) are employed,
which then are used as features for a predictive model. However, while
the temporal relations between symbolic time intervals in a TIRP are
discovered, the temporal relations between TIRPs are not represented.
In this paper we introduce a novel TIRPs based patient data representa-
tion called Integer-TIRP (iTirp), in which the TIRPs become channels
represented by values representing the number of TIRP’s instances that
were detected. Then, the iTirps representation is fed into a Deep Learn-
ing Architecture, which can learn this kind of sequential relations, using
a Recurrent Neural Network (RNN) or a Convolutional Neural Network
(CNN). Finally, we introduce a predictive model that consists of a com-
mittee, in which two inputs were concatenated, a raw data and iTirps
data. Our results indicate that iTirps based models, showed superior
performance compared to raw data representation and the committee
showed even better results, this by taking advantage of each representa-
tions.

Keywords: Pattern mining · Deep Learning · Temporal data
prediction

1 Introduction

Diabetes is a major chronic disease in the western society and its prevalence is
on the rise worldwide. Type 2 diabetes (T2D) patients often suffer from heart
disease and the prevalence of coronary artery disease and heart failure is also
c© Springer Nature Switzerland AG 2020
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much higher among diabetic patients [4]. Moreover, cardiac related in-hospital
mortality is also much higher among patients with diabetes [12].

Israel’s HMOs had implemented disease management programs to improve
quality of care for diabetes and prevent those complications through risk reduc-
tion [10]. These programs aim at achieving centrally controlled documented mul-
tifactorial risk reduction that are implemented mainly by primary care givers.
To date the effect of these programs on cardiac morbidity and mortality were
not assessed. A potential deficiency in these plans may be the lack of targeted
case management for high-risk patients. Such identification may lead to on time
intensive intervention that may reduce morbidity and mortality. Namely, prevent
hospitalization for cardiac disease and lower cardiac mortality. To this end it is
desirable to develop a predictive model that will help to identify the patients
that are more prone to cardiac deterioration. This will form the basis for inter-
vention aimed at prevention of costly and lethal consequences. For that purpose,
in this paper the focus is on prediction of All-Cause Mortality in T2D patients.

In this paper we introduce for the first time iTirps, which are temporal pat-
terns based representation that can be later fed into temporal architectures of
Artificial Neural Networks (ANNs), which we use to learn predictive models for
outcomes, which in our study is all cause mortality in T2D patients. To have the
iTirps representation, first temporal abstraction is used [19] and time-intervals
mining to discover TIRPs [19]. Then these are transformed into a new represen-
tation, called integer-TIRPs, which are described in greater details later. The
contributions of the paper are the following: 1. iTirps, a novel representation
for temporal data consisting on frequent TIRPs instances, which enable to rep-
resent a time period according to the relations among the temporal variables
along time, and their appearances, which are hard to represent by TIRPs, nor
by temporal ANNs. 2. A rigorous evaluation on a large real-life data of T2D
patients, using iTirps for the prediction of all-cause mortality.

2 Related Work

We start with a review of the use of data science in diabetic patients’ data. Then
we proceed with discussing time intervals related patterns mining in heteroge-
neous multivariate temporal data and their use for classification, and then we
go over approaches in the field of ANN for time series classification.

2.1 Outcomes Prediction in Diabetes

The use of data mining and machine learning methods in diabetes related
research is constantly increasing [11]. There is a relatively small number of stud-
ies that intend to predict mortality in T2D patient. For example, prediction of
ICU mortality of diabetic patient by applying several classifiers on aggregated
data and showed good results on predict risk of mortality [1]. Most of current
research that assesses mortality risk in diabetic patients, are using Cox propor-
tional hazards model, in [16] used Cox model to create risk equations for all
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cause, cardiovascular, and non-cardiovascular mortality diagnosed of type 2 dia-
betes patients. In [5] a Cox model was used specifically for prediction of mortality
in adults population. The use of ANN in diabetes related research was not very
extensive, and most of the work use feed forward (FF) network on a temporal
data [9].

2.2 Temporal Abstraction, TIRPs Discovery and TIRPs Based
Classification

A major challenge in analyzing EHR data is the heterogeneity of the sampling
forms of the data. Additionally, challenges may include sparsity, and exploit-
ing the temporal information. Therefore, increase usage of temporal abstraction
(TA) and time intervals mining is being reported [19]. In order to transform
the heterogeneous temporal variables into a uniform representation, state TA is
used, in which the time point series are transformed into symbolic time intervals
(STIs), given a set of cutoffs. The cutoffs can be knowledge based [20], or data
driven, based on discretization methods, such as Symbolic Aggregate approX-
imation [14] or the Temporal Discretization for Classification (TD4C) [19,21].
Another type of temporal abstraction is gradient abstraction, which segments
the data based on the first derivative into periods of time, in which the variable
is increasing or decreasing [20]. Once symbolic time intervals series are created,
frequent Time Intervals Related Patterns (TIRPs) can be discovered. Several
methods for TIRPs discovery were proposed in the past [19,21], mostly con-
sisting on Allen’s temporal relations [17] which include seven relations such as
before, meet, overlap, and more, and their inverse. Beyond temporal knowledge
discovery, frequent TIRPs were shown to be effective for classification and pre-
diction in electronic health records [3,17,18,22]. However, incorporating the use
of TIRPs to represent the temporal relations between heterogeneous temporal
variables in ANNs based architectures is still a challenge, which we explore in
this paper.

2.3 Artificial Neural Networks for Temporal Data

ANNs designed for temporal data were successfully used in several domains and
tasks. For example, RNN can store information about previous inputs in internal
memory (hidden states), that abstract and carry information from earlier time
stamps and CNN are achieving state-of-the-art results in a high variety of tasks
including computer vision tasks and more [13]. These methods are increasingly
employed also in clinical data. RNN based methods showed superior results than
the use of classical algorithm like logistic regression (LR) and multilayer percep-
tron with hand-engineered features in predicting diagnosis codes [8,15]. RNN
based method for missing values imputation in temporal data, called GRU-D [6],
showed better performance than traditional methods, such as mean-imputation,
imputation with k-nearest neighbor and other. Modified CNN, for capturing tem-
poral relations, was trained CNN on temporal matrix representation of medical
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codes for outcome prediction and showed better results than LR using aggre-
gated clinical features on real world EHR data [7].

3 Methods

We present here the framework for the development of the iTirps and the
iTirpsMap representation which is used later with temporal ANNs for clas-
sification and specifically prediction in this study. With iTirps representation
we preserve more temporal information then the regular TIRP representation.
iTirps hold the information about the starting and ending time of each TIRP,
and through that the duration of each TIRP instance is captured, including its
relative location in the time series. This information can be learned by ANN and
improve the classification performance.

3.1 iTirps and iTirpsMap

Figure 1 presents the steps in the creation of iTirps and a corresponding
iTirpsMap. First the multivariate temporal data abstracted and transformed
into a uniform representation of symbolic time intervals [19]. Then, frequent
TIRPs are discovered by mining the symbolic time intervals. For the mining
process, we use the KarmaLego algorithm [21]. The result is a bag of frequent
TIRPs. Next, the TIRPs are detected and transformed to iTirp, that are passed
in the form of iTirpsMap as input to a CNN/RNN.

Fig. 1. iTirps and iTirpsMap based classification

Temporal Abstraction. In this study we perform state abstraction using Sym-
bolic Aggregate approXimation (SAX) [14], in which the states are derived from
the Gaussian distribution of the values, and Temporal Discretization for Clas-
sification (TD4C) [19] that determines the cutoffs in a supervised manner, so
that the states distribution are most different among the classes. The result of
the Temporal Abstraction process is a uniform representation of the temporal
variables as symbolic time intervals. A symbolic time interval, I = <s, e, sym>,
is an ordered pair of time points, start-time (s) and end-time (e), and a sym-
bol (sym) that represents one of the domain’s symbolic concepts, which in our
study can be laboratory results that went through abstraction, conditions or
procedures. As mentioned in the background, once the data is transformed into
a uniform representation of symbolic time intervals, TIRPs can be discovered.
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TIRPs Discovery. To discover TIRPs, the KarmaLego algorithm [19] is used,
which uses Allen’s temporal relations, such as starts, meets, overlap, contains,
and more, and their inverse [20] to represent the temporal relation among a pair
of symbolic time intervals. In this study a set of generalized temporal relations,
which are the disjunction of part of Allen’s seven relations were used.

These include: BEFORE based on before||meets; OVERLAP based on
overlaps; and CONTAIN based on {starts || contains || finish − by || equal}.
In addition, a maximum allowed gap duration is set for the before relation [20].
A non-ambiguous TIRP P is defined as P = I,R, where I = I1, I2, .., Ik is a
set of k ordered symbolic time intervals and the conjunction of all their pairwise
temporal relations among each of the (k2 − k)/2 pairs of the symbolic time inter-
vals in I, R = Uk−1

i=1 Uk
j=i+1r(I

i, Ij)r1,2(I1, I2), .., r1,k(I1, Ik), ..., rk−1,k(Ik−1Ik).
Thus, given a database of entities (i.e., patients), the vertical support of a TIRP
P (frequency in the database) is denoted by the cardinality of the distinct enti-
ties having P, relative to the size of the database. However, in this study we
propose a novel use of the TIRPs, which become channels, and called iTirps.

iTirp and iTirpsMap Creation. We introduce here iTirps, a new tempo-
ral representation of multivariate temporal data through TIRPs’ instances that
results in a numeric matrix representation of the appearance of the TIRPs along
time, which can be later fed to various methods, such as RNN/CNN as hap-
pens in this study. In previous studies TIRPs were used as features for classifiers
[3,19], however, in order to represent them explicitly along time, we present
iTirpsMap. Figure 2 illustrates the process of the iTirps and iTirpsMap cre-
ation. The description starts at the bottom and goes up. The x-axis is the time
by months along 12 months. Starting with the symbolic time intervals at the bot-
tom, which can be raw concepts, such as drug exposers, conditions, or a state
abstraction of time point series, such as lab tests.

Fig. 2. iTirps and iTirpsMap creation. Starting at the bottom with the STIs series data.
Above two TIRPs are shown, and their corresponding instances’ durations, which later
will be counted and become vectors of the number of TIRPs occurrences in each time
stamp.

In Fig. 2 there are three STIs at the bottom, HbA1c High, which represents
their measurements abstracted along three months (which a HbA1c test is valid
for), Dipeptidyl peptidase-4 (DPP4) Inhibitors, which are a class of medications
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that decrease high blood glucose, and Doctor Visit events. Two TIRPs examples
are presented above: TIRP HH b Do (HH before Do) appears three times in
the periods of 16, 1–8, and 10–12; and the TIRP HH b D c Do (HbA1c before
DPP4 Inhibitors, HbA1c High before Doctor Visit, and DPP4 Inhibitors contains
Doctor Visit) which appears twice (since there two Doctor Visits) during 1–9.
In fact, the HH b Do TIRP is shown in the bottom illustration of the STIs
surrounding the relevant STIs which include each HH b Do instance – there are
two. To create iTirps that construct the iTirpsMap, we have two steps, in the
first step each TIRP instance becomes a time series of one and zero values (one
values are placed from TIRP starting point to ending point). In the second step,
we aggregate the TIRPs to create iTIRPs. Thus, for example, iTirp HH b Do
value is 2 in time stamps 1–6, since there are two instances of the TIRP during
this time stamp. Thus, an iTirp represents the number of the TIRP appearances
in each time stamp. Eventually, the entire set of iTirps are combined into an
iTirpsMap 3-dimensional matrix (of the Entities, the time axis, and the TIRPs’
channels) representation.

Artificial Neural Network. In this paper the purpose of iTirps and iTirpsMap
is to enable to combine the advantages of TIRPs in capturing temporal relations
between heterogeneous temporal variables and the advantages of neural learning,
specifically when using temporal versions of ANNs, such as the RNN, CNN and
their ensemble. RNN-ALSTM. Our RNN architecture is an Attention block
followed by a LSTM (ALSTM). The attention mechanism enables the network
to better learn long-term dependencies for the prediction task proposed by [2].
Long Short-Term Memory (LSTM) [13] is variation of RNN, that can overcome
RNN’s limitations like vanishing and exploding gradient by a gating mechanism
that regulates the information flow. Encoder-CNN. For the CNN architecture
the Encoder is used. In Encoder the first three layers are CNN that followed
by attention mechanism, that summarize the temporal dimension, proposed in
[23]. To map the network output to a probability distribution the last layer is
SoftMax, for both networks. Committee. We experiment also with a committee
of two classifiers, in which the first classifier is based on the raw data, and the
second classifier is based on the iTirpsMap input. First, we train each model
separately, with the different inputs, one with raw data and the second with the
iTirpsMap, based on some type of TA. Then the SoftMax layer is removed from
both models, while the last layers of the network are concatenated, and a new
SoftMax added as the last layer.

4 Evaluation and Results

We first state our research questions, and then we describe the data, and the
experiments that were designed to answer the questions, and the results.
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4.1 Research Questions

1. What type of temporal abstraction is best for classification? 2. What are
the best prediction time periods? 3. Which ANN with iTirps performs best, in
comparison to the use of raw data? 4. What ‘Committee’ of ANNs is the best
for outcome prediction?

4.2 Dataset

The diabetes dataset of Maccabi Healthcare Services contains data of up to
10 years on 18,000 elderly patients with T2D. The dataset includes 9,000 cases,
which are T2D patients who experienced an outcome, defined as all-cause mor-
tality. The data collected from the years 2008–2018. Cohort Inclusion criteria:
(1) Patients with diabetes according to the diabetes registry (and not defined
as type 1). (2) Experiences an outcome from 2011–2018. 9,000 controls, which
are patients without the outcome that were matched according 2 parameters
Age and Gender to control patients. Control (Matched patients) will be defined
as followed: (1) Patients with diabetes according to the diabetes registry (and
not defined as type 1). (2) Being Maccabi Health Services members and without
recorded outcomes during the outcome period. Patients included in cancer reg-
istry prior to outcome are excluded from the dataset. Control patients, outcome
date will be defined as January 1st. The variables include Demographic data,
Therapies (medication), Co-morbidities indicators, Lab results, hospitalizations
and inpatients and outpatient visits.

4.3 Experimental Setup

To answer the research questions, while reflecting a real application conditions
for continuous prediction using a sliding window, the most suitable study design
is case-crossover-control. Thus, observation time windows are extracted from the
cases, and the matched controls. In the cases, the latest observation time win-
dow, which is located a prediction time period prior to the outcome is labeled
as positive, while the earlier observation time windows in the cases are labeled
as negative, as well as the observation time windows from the controls’ data
(taken randomly, since there are no outcomes), which enables to evaluate the
method both on cases’, or controls’ time windows. We report quantitative results
using the Receiver Operating Characteristic AUC (ROC-AUC), based on 10-fold
grouped cross-validation (CV). Thus, time windows of a specific patient were
either at the training or in the testing set. To answer the research questions, two
experiments were designed. We used an observation time period of 12 months,
and to discover TIRPs, KarmaLego was applied with 55% minimal vertical sup-
port, and unlimited maximal gap.
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Experiment 1. The goal was to evaluate the iTirps based prediction, using an
observation time window of 12 months. For this experiment we have two possible
inputs for the ANN architectures: raw data, or the iTirpsMap based on the two
types of abstraction (research question 1) using the SAX and TD4C-Cos with
2 states. All inputs with Encoder-CNN and RNN-ALSTM were evaluated on
two prediction time periods of 90 and 180 days (research question 2, 3). Figure 3
presents the mean results of the iTirps based on the SAX or TD4C-Cos, in
comparison to the use of raw data, with two prediction time periods of 90 and
180 days. Generally predicting 90 days performed better than within 180 days,
which makes sense. Using the Encoder-CNN the use of iTirps with SAX per-
formed significantly better than the other. Using the RNN-ALSTM the results
were quite similar, and the iTirp with SAX performed best.

Fig. 3. iTirp(SAX) outperforms significantly, especially with the Encoder-CNN and
90 days prediction period.

Experiment 2. To evaluate what is the best committee (research question 4)
the performance of the ‘Committee’ merged network was evaluated. The com-
mittees included a combination of the raw data as input to one classifier, and the
second with the iTirpsMap based on SAX or TD4C-Cos TA. Figure 4 presents
the performance of the two committees, including for comparison the use of only
raw data (as performed in the first experiment, as a baseline). The committee
using iTirp with SAX and raw data, was significantly better with Encoder-CNN
when predicting 90 days ahead, and also with the other options. Overall, the best
performance was 84.5% AUC.
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Fig. 4. The iTirp(SAX) committee outperforms significantly, especially with Encoder-
CNN and 90 days prediction period.

5 Discussion and Conclusions

Clinically, we focused on the prediction of all-cause mortality in T2D patients,
to enable ideally prevention through intervention. In this paper, we introduced a
new method for multivariate temporal data representation, called iTirps, which
is consists on the discovery of frequent TIRPs, which enables to be fed to RNN or
CNN. The use of temporal abstraction and TIRPs as features for classification, is
very effective for the analysis of heterogeneous multivariate temporal data, such
as often happens in Electronic Health Records. However, in order to employ the
advantages of the temporal versions of ANNs, such as CNN or RNN, we propose
the iTirps representation. Additionally, we proposed and experimented with the
Committee network that combines both raw data and the iTirpsMap. The results
of Experiment 1 show that using the iTirp with SAX with the Encoder-CNN
had the best performance, and generally the use of the Encoder-CNN and RNN-
ALSTM were comparable. In experiment 2, the performance of the committee
network was evaluated, in which the committee of the Encoder-CNN with iTirp
SAX and the raw data as input, performed best and was significantly higher
compared to the raw data. The directions for future research include evaluation
of additional discretization methods and number of bins, on a bigger number of
SOTA ANN architectures.
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Abstract. Electronic Health Record (EHR) data is a rich source for
powerful biomedical discovery but it consists of a wide variety of
data types that are traditionally difficult to model. Furthermore, many
machine learning frameworks that utilize these data for predictive tasks
do not fully leverage the inter-connectivity structure and therefore may
not be fully optimized. In this work, we propose a relational, deep het-
erogeneous network learning method that operates on EHR data and
addresses these limitations. In this model, we used three different node
types: patient, lab, and diagnosis. We show that relational graph learning
naturally encodes structured relationships in the EHR and outperforms
traditional multilayer perceptron models in the prediction of thousands
of diseases. We evaluated our model on EHR data derived from MIMIC-
III, a public critical care data set, and show that our model has improved
prediction of numerous disease diagnoses.
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1 Introduction

Electrical Health Records (EHRs) have rapidly emerged over the past 10 years as
a powerful source for biomedical research [6,7,13]. EHRs consist of clinical data
from patient encounters with healthcare systems, which include demographic
information, diagnoses, laboratory tests, medications, and clinical notes. EHR
data have been used to develop machine learning (ML), and deep learning (DL),
models for predicting diagnoses, mortality, length of hospital stay, and future
illnesses. However, many of these ML-related solutions to clinical tasks consist
of simple rule based models that, while possibly are easier to implement, often
do not capture the complex patterns of the data. Some of these solutions are
sufficient for certain clinical tasks, but for others they are lacking. For example,
one factor for determining priority for transplantation is a model for end-stage
liver disease which includes only four variables and was trained on only 231
patients [10]. While there are a number of barriers that need to be overcome for
DL to pervade healthcare operations, one particular hurdle is developing more
suitable EHR representations for modeling.

Current EHR systems are constructed with numerous medical codes of dif-
ferent types to represent diverse data elements captured in clinical encounters.
The performance of DL models on EHR could benefit from accurately capturing
and jointly modeling these heterogeneous data [2,12]. The most common app-
roach to handle disparate data types is to treat each patient encounter as an
unordered set of features, and concatenate these features together as the input
to a DL system [12]. Such an approach is straightforward, intuitive, and easy
to manipulate. However, this feature integration approach disregards the graph-
ical structure and inter-connectivity between medical concepts (i.e., how a lab
is indicative of disease status) [4]. Furthermore, utilizing graph model encod-
ings can better leverage underlying patient similarity structure that can provide
valuable information to enhance cohort analyses, disease subtyping, comparing
diagnosis outcomes and treatment effectiveness [14]. Some recent graphical mod-
eling techniques have demonstrated the value of the taking into consideration
the inter-connectivity of clinical data, such as being able to agnostically derive a
physician’s treatment decision procedure [3,4], and a temporal graph model [9]
which captures the medical concepts inter-connectivity patterns over time. These
techniques, however, undergoes per-patient training which lacks the ability to
learn from the information provided within similar patients.

Furthermore, DL modeling is difficult because of issues of data quality [8] due
to insufficient patient information, messy data, and missing values among others.
Besides that, data diversity and non-uniform length of time series within each
patient also create issues for modeling. For example, patient encounter frequency
varies in length, ranging from only one encounter to multiple readmissions. Also,
length of stay could vary from a few hours to several months. The data sparsity
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along with data diversity create difficulties for deep learning models such as
LSTM system [2,8], which requires abundant training data in order to reach
good performance.

In this paper, we propose a Heterogeneous Graph Learning Model (HGM)
and apply it to EHR data. It contains various techniques and properties that
attempts to overcome the aforementioned problems. Since it has a graph struc-
ture, this model could more naturally capture the inter-connectivity between
medical concepts. It also connects similar patients by their disease profiles, so
that information from a similar patient could be leveraged for encoding in the
target patient representation. The graph model learns representations by prop-
agating information through the whole network, so when the data set is sparse,
the embedding representation for each patient could be learned from the infor-
mation traversing the whole network. This model, which utilizes the Skip Gram
With Negative Sampling strategy [11], is an efficient way of incorporating all
complex data available. We show that with the relational heterogeneous graph
learning, we can reach marginal improvement on diagnoses classification accu-
racy given patients’ lab tests against traditional per-patient training strategy
using shallow feed forward neural network.

2 Methodology

In this section, we introduce the theoretical construction of our heterogeneous
EHR graph model. Please refer to the Supplementary Materials AppendixA for
a description of the preliminaries for these models.

2.1 Data Set

For this work, we utilized EHR data from the critical care MIMIC-III de-
identified data set. This data set is comprised of various elements relating to
patients during their hospital care in an intensive care unit, such as demograph-
ics, lab test results, disease diagnoses, among others. We sampled the first 3801
patients in the data set and collected all of their associated lab tests and diag-
noses. These patients had received 447 unique lab tests and 2922 unique diag-
noses. The limitation on the cohort sample size was due to the RAM required
to load all of these data as a graph into memory.

2.2 Data Representation for Graphical Model

We created a graphical model of the EHR data by representing patients, labs,
and diagnoses as nodes in a directed graph. Nodes are connected by edges, which
come in two flavors and can be represented with the following triples:

Lab
testing−−−−→ Patient : {Lab, testing, Patient}

Patient
diagnosed−−−−−−→ Diagnosis : {Patient, diagnosed,Diagnosis}
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Fig. 1. Model schematics for representing EHR data in a heterogeneous graphical
model (A) and dense vectors (B). All graph nodes in (A) have a corresponding vector
like those shown in (B). The vector representations can be projected into a shared
space with the TransE method, and this projection optimized for retaining relations in
the original data in the embedding via skip-gram optimization.

The initial Patient node representation is a vector Xp ∈ R
477 containing the

measured values from lab tests. We initially represented labs and diagnoses as
one-hot encodings: Xl ∈ {0, 1}477 and Xd ∈ {0, 1}2992.

With these two types of relationships TE , we can construct the heterogeneous
graph integrating the specified elements of the entire EHR data (Fig. 1A). One
Patient node could have connection with multiple Diagnoses node, and these
Diagnoses nodes could link to other patients who have the same ICD code.

2.3 Embedding the HGM into a Latent Space

Nodes from a HGM can be embedded into a shared latent space using the TransE
method (Fig. 1B) [1]. This method uses a set of 1) projection matrices and 2)
relation vectors. After initialization, projections and translations can be opti-
mized end-to-end (see Sect. 2.4).

HGM nodes Xp,Xl,Xd are projected into a shared latent space with trainable
projection matrices Wp,Wi,Wd using these nonlinear mappings:

cp = σ(Wp · Xp)
ci = σ(Wi · Xi)
cd = σ(Wd · Xd)

Where σ is a non-linear activation function and cp, ci, cd are the latent represen-
tations of each type of node. Despite the EHR-space using different dimensions
for different node types Xp,Xi,Xd, all nodes types are projected into the same
latent space.

Then we apply translation operations to link these different types of nodes:

cp = ci + rip

cd = cp + rpd
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Where rip and rpd are the relation vectors connecting patients to labs and
diseases, respectively.

2.4 Optimizing the HGM Embedding

With the projection and translation operations we can convert different types of
nodes into the same latent space. We then tune these parameterized transforms
to increase the proximity between those embedding points whose corresponding
graph nodes are often connected. Specifically, we apply Heterogeneous Skip-gram
optimization using the optimization model [5]:

max
∑

u∈V

∑

t∈TV

logPr(Nt(u)|f(u)) (1)

Where Nt(u) is the heterogeneous neighborhood vertices of center node u, and
t ∈ TV is the node type. Here, we learn effective node embeddings by maximizing
the probability of correctly predicting the a patient node’s associated labs and
diagnoses. The prediction probability is modeled as a softmax function:

Pr(ct|f(u)) =
ect·u

Zu
(2)

Where u is the latent representation of patient u, ct is the latent representa-
tion of lab and diagnosis neighbors of node of u, and ct ·u is the inner product of
the two embedding vectors representing their similarity. Zu is the normalization
term Zu =

∑
v∈V ev t·u . Where Zu integrate over all vertices. Therefore, Eq. 1

could be simplified to:

Ls = −
∑

t∈T

∑

u∈V

[ ∑

ct∈Nt(u)

ct · u − logZu

]
(3)

Numerical computation of Zu is intractable for very huge graph with mil-
lions of nodes. So we adopt negative sampling strategy [11] to approximate the
normalization factor, making the optimization function:

Ls = −
∑

t∈T

∑

u∈V

[ ∑

ct∈Nt(u)

logσ(ct · u) +
K∑

j=1

Ecj∼Pv(cj)logσ(−cj · u)
]

(4)

where σ(x) = 1
1+exp(−x) , K is the number of negative samples. Pv(cj) is the

negative sampling distribution. Equation 4 is the final objective function we are
using for heterogeneous graph learning.

For training our Heterogeneous Graph Model (HGM), we perform hetero-
geneous neighborhood sampling by its one-hop connectivity, and pick Patient
node as the center node, since it has one-hop connections to both Diagnoses and
Item test nodes. Specifically, for one training center Patient node, we uniformly
sample 10 Diagnoses one-hop direct connected nodes, and 10 Item test one-hop
direct connected nodes. From these sampled 10 Diagnoses nodes, we sample
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another 10 Patient nodes, each has connection with each of the 10 Diagnoses
nodes. In this way, we connect the center patient node with its similar other
Patient nodes by their common diagnoses. For negative sampling [11], we per-
form uniform sampling through all Diagnoses node and Item test nodes that
don’t have one-hop connections with the center training patient node. Then we
project these different nodes into same latent space through TransE model, after
unifying the embeddings for different node types, each concept is represented as
a point in a Euclidean space. In this space we can measure the similarity between
any two points by the angle between vectors between them and the origin.

2.5 Disease Prediction

For diagnosis prediction, we used the HGM embedding vectors to identify simi-
lar patients and diagnoses, and evaluate how this approach compares to a clas-
sical feed forward neural network approach, specifically a multilayer perceptron
(MLP). We record F1 score and AUC score as the evaluation metric for com-
parison.

We performed 10-fold cross-validation by randomly splitting patients into a
group of 2,660 used to fit the MLP and HGM embedding and 1,141 used to
evaluate disease prediction. For each patient, we computed the distance between
a patient plus the diagnosis translation vector rpd to all diseases.

The baseline MLP model is a shallow feed-forward encoding-decoding neural
network structure with a single hidden embedding layer whose dimensionality
matches the embeddings produced by the HGM. The decoding part is a softmax
layer for classifying correct diagnoses.

3 Results

3.1 Embedded Representation

By learning a heterogeneous graph embedding for each node type and then using
transE to translate between type-specific embeddings, we generated dense vector
representation in a space shared between all node types (Fig. 3). There was a
mixed cluster of all node types and several type-selective clusters.

Upon inspection, salient clusters of labs tests can be identified when the
embeddings are projected into 2D t-SNE space for visualization. The members
of one cluster corresponded to routine comprehensive metabolic panels, while
members of another cluster largely consisted of ventilator measurements.

3.2 Diagnosis Prediction Performance Comparison

The HGM outperformed the MLP on many diagnoses. When evaluating both
models’ diagnosis predictions across all common diagnoses, the HGM had a
higher performance than an MLP across all tested latent embedding dimensions
(Table 1, Fig. 2). Notably, the performance of HGM remained consistent with
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Table 1. Diagnosis classification performance

Model F1 score AUC score

100 hidden latent embedding dimension

MLP-Sigmoid 0.671 0.788

MLP-Tanh 0.517 0.778

MLP-Relu 0.483 0.765

HGM-Sigmoid 0.739 0.834

HGM-Tanh 0.727 0.829

HGM-Relu 0.713 0.839

200 hidden latent embedding dimension

MLP-Sigmoid 0.625 0.766

MLP-Tanh 0.447 0.755

MLP-Relu 0.446 0.746

HGM-Sigmoid 0.741 0.835

HGM-Tanh 0.733 0.828

HGM-Relu 0.739 0.840

500 hidden latent embedding dimension

MLP-Sigmoid 0.537 0.753

MLP-Tanh 0.377 0.724

MLP-Relu 0.419 0.734

HGM-Sigmoid 0.751 0.834

HGM-Tanh 0.735 0.829

HGM-Relu 0.743 0.842

larger embeddings, while the performance of MLP degraded with larger embed-
dings.

The predictive performance of these models varied widely by disease, as
shown in (Fig. 3B). The performance of HGM was particularly strong with dis-
eases that were more prevalent in the test set (see Table 2). We observed only
one diagnosis, end stage renal diseases (ESRD), where MLP outperformed HGM
(MLP F1: 0.606, HGM F1: 0.245) (Fig. 3A).

For the diagnoses with at least one percent prevalence, the median, 25th
percentile, and 75th percentile of MLP predictive F1 scores are 0. The range of
MLP F1 distribution is 0 to 0.606. For the same set of diagnoses, the median,
25th percentile, and 75th percentile of HGM F1 scores are 0.041, 0.024, 0.081,
respectively, and the range of HGM F1 distribution is 0 to 0.562.

4 Discussion

In this work, we present HGM embeddings as a way to naturally represent EHR
data relations with dense vectors and an embedding space containing all node
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Table 2. Prediction performance on most observed diagnoses

Diagnoses HGM-sigmoid
F1 score

MLP-sigmoid
F1 score

Congestive heart failure 0.562 0.406

Unspecified essential hypertension 0.512 0.435

Atrial fibrillation 0.447 0.423

Acute kidney failure 0.455 0.415

Coronary atherosclerosis 0.365 0.163

Other and unspecified hyperlipidemia 0.367 0.297

Acute respiratory failure 0.316 0.067

Esophageal reflux 0.311 0.041

Diabetes mellitus 0.297 0.192

Urinary tract infection 0.276 0.060

Random
MLP - relu
MLP - sigmoid
MLP - tanh
HGM - relu
HGM - sigmoid
HGM - tanh

Fig. 2. Binary classification performance of HGM and MLP across common diseases.
Each line represents the trade-off of sensitivity and specificity for a classifier. HGM
frameworks with larger embedding spaces perform better than the MLP models.

types in the original graph. By measuring distances between patient and disease
concepts in this embedding space, we were able to predict which diagnoses a
group of hold-out patients had with better performance than a supervised model
trained specifically to predict patients’ diagnoses from their labs.

Averaged across all diseases, the HGM consistently outperformed the MLP
across a range of activation functions and embedding dimension sizes. HGM and
MLP had different trends as the dimensionality of the embedding increased. A
larger embedding provides more complex representations, but is more likely to be
overfit to training data. As the dimensionality of the embedding was increased,
the MLP AUC decreased with a dosage effect observed across all activation func-
tions. However, the HGM maintained a stable performance across all embedding
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Fig. 3. A) R2 view of the R500 embedding space shared by all data types. Each point
represents a graph node colored by its type. The dimensionality of the space is reduced
for visual interpretation with t-SNE. B) Distribution of F1 scores for common diagnoses
using a HGM or MLP model. Diagnoses with at least 1% prevalence in the test set.

capacities. This suggests that the embeddings learned by HGM are less suscep-
tible to overfitting training data.

MLP outperformed HGM on only one diagnosis, End Stage Renal Diseases
(ESRD). This may be because the diagnosis of ESRD can be determined solely
by a single lab test, estimated Glomerular Filtration Rate (eGFR). Thus, it is
less likely that the prediction of ESRD will benefit from the graphical property
of HGM.

One key feature of HGM is that the graphical structure of HGM explicitly
declares and takes the sum of information from all patient nodes connecting a
given pair of diagnosis and lab test. On the contrary, MLP flattens all features at
the patient-level, and performs training on the per-patient basis, allowing only
indirect connections between pairs of diagnoses and lab tests and relying only
on network parameters to learn the underlying biomedical relationships.

The data set we used to fit HGMs allowed us to develop an EHR-knowledge
graph across the compendium of care provided in an intensive care unit. We
found that our model was robust to overfitting but there may be bias in lab-
disease relationships between patient populations or intensive care practices.
Only the sickest patients are admitted to the ICU, so this model should be fine-
tuned for other inpatient applications. Another consequence of only having ICU
visits is that most people have only one or fewer ICU admissions, which is not
suitable for time series models. Other studies applying graph theory to EHRs
have been able to perform robust sequential diseases prediction that consistently
outperforms non-graph models [3].
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5 Conclusion

In this study, we apply a deep heterogeneous graph model (HGM) to learn the
representation of EHR data. In the task of diagnosis prediction, HGM embed-
dings consistently outperformed non-graphical baseline models across diagnoses
and appears less susceptible to overfitting of training data. Our findings sug-
gest that HGM is a promising strategy to develop generalizable EHR-knowledge
graph. In the future, we expect to apply HGM to other clinically relevant tasks
and assess performance across multi-institutional data sets.

A Appendix

Definition 1 (Heterogeneous Network). A heterogeneous network is defined
as a graph G = (V,E, T ), where each node v and each link e are represented by
their mapping functions to a specific node and relation type φ(v) : V → TV and
φ(e) : E → TE. Where TV and TE denote the sets of node and relation types,
and |TV | + |TE | > 2.

Definition 2 (Heterogeneous Graph Learning). Given a heterogeneous
network G, the task of heterogeneous graph learning is to learn a function map-
ping f : V → Rd, that connects disparate type of nodes into a d − dimensional
uniform latent representation X ∈ R|V |×d, and d � |V |, that are able to capture
the structural and semantic relations between them.

Definition 3 (One-hop Connectivity). One-hop connectivity in a heteroge-
neous network is the local pairwise connection between two consecutive vertices,
which directly linked by an edge belongs to a relational type.

A.1 Skip-Gram Model

The skip-gram model [11] seeks to maximize the probability of observing the
context neighborhood nodes given the center node:

maxf

∑

u∈V

logPr(Nc(u)|f(u)) (5)

Where Nc(u) is the neighborhood context nodes of the center node u, and f(u)
is the latent representation of u.

A.2 Heterogeneous Skip-Gram Model

EHR data is heterogeneous, including varies type of vertices, such as lab
tests, diagnoses, prescriptions, and patient demographics. Each of these ver-
tices encodes different information. Heterogeneous Skip-gram model [5] learns
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the latent expression of these different type of nodes by maximizing the proba-
bility of observing heterogeneous neighborhood given a center node:

max
∑

u∈V

∑

t∈TV

logPr(Nt(u)|f(u)) (6)

Where Nt(u) is the heterogeneous neighborhood vertices of center node u, and
t ∈ TV is the node type.

A.3 TransE

TransE model [1] aims to relate different type of nodes by their relationship type.
Specifically, two different types of nodes are connected by a relation type would
be represented as a triple (head, relation, tail), denoted as (h, l, t). For example,
one triple from EHR data could be (patient, diagnosed, ICD), where patient is
the head node, ICD is the specific diagnosis code attributed to the patient, and
the relation between these two vertices is diagnosed.

This TransE model leverages the procedure by first projecting different type
of node with different initial representation dimension into a same latent dimen-
sion space (where the dimension of this latent space can be customized), and
these two different type projected nodes are linked by a relation type which
is represented as a translation vector in that latent space. Both the projection
matrix and the relational translation vector are learnable parameters in the deep
learning system.
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Abstract. Reinforcement Learning (RL) can be used to fit a mapping
from patient state to a medication regimen. Prior studies have used deter-
ministic and value-based tabular learning to learn a propofol dose from
an observed anesthetic state. Deep RL replaces the table with a deep
neural network and has been used to learn medication regimens from
registry databases. Here we perform the first application of deep RL to
closed-loop control of anesthetic dosing in a simulated environment. We
use the cross-entropy method to train a deep neural network to map an
observed anesthetic state to a probability of infusing a fixed propofol
dosage. During testing, we implement a deterministic policy that trans-
forms the probability of infusion to a continuous infusion rate. The model
is trained and tested on simulated pharmacokinetic/pharmacodynamic
models with randomized parameters to ensure robustness to patient vari-
ability. The deep RL agent significantly outperformed a proportional-
integral-derivative controller (median absolute performance error 1.7%
± 0.6 and 3.4% ± 1.2). Modeling continuous input variables instead of
a table affords more robust pattern recognition and utilizes our prior
domain knowledge. Deep RL learned a smooth policy with a natural
interpretation to data scientists and anesthesia care providers alike.

Keywords: Anesthesia · Reinforcement learning · Deep learning

1 Introduction

The proliferation of anesthesia in the 1800s is America’s greatest contribution to
modern medicine and enabled far more complex, invasive, and humane surgical
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procedures. Now nearly 60,000 patients receive general anesthesia for surgery
daily in the United States [2]. Anesthesia is a reversible drug-induced state char-
acterized by a combination of amnesia, immobility, antinociception, and loss of
consciousness [2]. Anesthesia providers are not only responsible for a patient’s
depth of anesthesia, but also their physiologic stability and oxygen delivery.

Anesthesiologists need to determine the medication regimen a patient receives
throughout a surgical procedure. The anesthetic state is managed by providing
inhaled vapors or infusing intravenous medication. The medication most studied
for controlling the patient’s level of unconsciousness is propofol. Propofol affects
the brain’s cortex and arousal centers to induce loss of consciousness in a dose-
dependent manner. Propofol dosage needs to be balanced: patients should be
deep enough to avoid intraoperative awareness, but too much anesthesia can
cause physiologic instability or cognitive deficits. Currently anesthesiologists can
manually calculate and inject each dose, or select the desired concentration of
propofol in the brain, and an infusion pump will adjust infusion rates based on
how an average patient processes the medication.

Investigational devices and studies have shown that measuring brain activity
can provide personalized computer-calculated dosing regimens. Studies of auto-
matic anesthetic administration have three primary components. First, sens-
ing involves automatically obtaining a numerical representation of the patient’s
anesthetic state. Prior studies have primarily focused on controlling the level of
unconsciousness (LoU) using a variety of indices, including the bispectral index
(BIS) [1,5], WAVCNS [4], and burst suppression probability [15,17]. Second,
modeling involves the development of pharmacokinetic (PK) and pharmacody-
namic (PD) models of how a patient’s LoU responds to specified drug dosages.
These models are used to derive optimal control laws [15], tune controller param-
eters [17], and/or develop robust controller parameterizations [4]. Finally, the
controller determines the mapping from sensed variables to drug infusion rates.
Numerous control algorithms have been studied for LoU regulation, including
(but not limited to) proportional integral derivative (PID) controllers, model pre-
dictive (MP) controllers, and linear quadratic regulator (LQR) controllers. The
performance of these algorithms is restricted by linearity assumptions and/or
reliance on a nominal patient model for obtaining the control action.

Reinforcement learning (RL) is a form of optimal control which learns by
optimizing a flexible reward system. RL can be used to fit a mapping from
anesthetic state to a propofol dose. Contrary to MP and LQR controllers, the
RL-based controllers can be model-free in that the control law is established
without any knowledge of the underlying model. Prior studies using tabular
RL created a table where each entry represents a discrete propofol dosage that
corresponds to a discrete observation [9–11]. Tabular mappings are flexible but
do not scale well with larger state spaces and can have non-smooth policies
that result from independently determining actions for each of the discretized
states. Continuous states have been used by actor-critic methods that use linear
function maps [8] and adaptive linear control [12]. Existing studies that train RL
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agents to administer anesthesia tend to either underconstrain by disregarding
continuity or overconstrain by imposing strict linearity assumptions.

The use of deep neural networks as functional maps in RL (called “deep RL”)
has been used to learn medication regimens from registry databases outside of the
anesthesia context [7,13]. Existing deep RL studies use large observation spaces
and disregard known PK/PD properties. By using retrospectively collected data,
these studies do not permit the RL agent to learn from its own actions and
restrict the agent’s “teachable moments” to those that are observed in the data.

We perform the first application of deep RL to anesthetic dosing supported
with fundamental models from pharmacology. Using data from a simulated
PK/PD model, we implement an RL framework for training a neural network to
provide a mapping from a continuous valued observation vector to a distribution
over actions. The use of a deep neural network allows the number of parame-
ters of the model to scale linearly with the number of inputs to the policy map,
avoiding the exponential growth that occurs when expanding the input dimen-
sion of tabular policies. The resultant policy can represent nonlinear functions
while still yielding a smooth function of the input variables. By training the
RL agent on simulated data, we can control the range of patient models that
are included in the learning process. As such, the proposed framework allows
us to experiment with a variety of policy inputs in order to directly incorporate
robustness to patient variability into the training procedure.

2 Methods

In this section we develop a mathematical formalization for learning how to
administer propofol to control LoU. We formalize this propofol dosing task as a
partially observable Markov decision process (POMDP) and solve it using the RL
method cross-entropy. This RL “agent” learns from data generated by simulated
interactions with the environment PK/PD state-space model (see Fig. 1).

2.1 Environment Model

The primary component of the environment is the patient model, which dic-
tates the observed LoU given a drug infusion profile and is composed of three
sub-models. First, a discrete time 3-compartment pharmacokinetic (PK) model
is used to model the mass transfer of infused drug between the central, slow
peripheral, and rapid peripheral compartments:

xk+1 = Axk + Bak (1)

where xk = [x(1)
k , x

(2)
k , x

(3)
k ] ∈ R

3
+ represents the 3-compartment model concen-

trations (where R+ represents the set of non-negative reals), ak ∈ A = {0, 1}
represents whether or not drug is infused at time k, A ∈ R

3×3 gives the mass
transfer rates between compartments, and B = [Δu, 0, 0] represents the mass
transfer rate resulting from drug infusion. The parameters of A are determined
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Fig. 1. Block diagram of the proposed RL framework.

by the patient age, height, and weight according to the Schnider model [14]. In
the current study we have Δ = 5 s (as in [10]) and u = 1.67 mg/s, such that over
each five second window is either 0 mg or 8.35 mg of propofol is delivered.

The link function determines the effect site (i.e. brain) concentration from
the central compartment concentration:

x
(e)
k+1 = αx

(e)
k + βx

(1)
k (2)

where α = exp(−ke0Δ/60) gives the persistence of drug in the effect site and
β = (ke0/60) exp(−ke0Δ/60) gives the mass transfer rate from the plasma com-
partment to the effect site for a given plasma-brain equilibration constant ke0.

Finally, we compute how a given effect site concentration of propofol affects
LoU using a hill function:

yk = h(x(e)
k ) =

x
(e)
k

γ

Cγ + x
(e)
k

γ (3)

where yk ∈ [0, 1] gives the true LoU at time k, C ∈ R+ give the effect site
concentration corresponding to a LoU of 0.5, and γ ∈ R+ determines the shape
of the non-linear PD response (higher values give rise to more rapid transitions
in LoU). Given that this PD model has been used in studies targeting control of
BIS [5], WAVCNS [4], and BSP [17], we choose to treat yk as a general index of
LoU in the present simulation study. As such, yk can be viewed as representing
a non-linear continuum from consciousness (0) to brain death (1). The clinical
interpretations of intermediate LoUs depend on the specific choice of index.

The observed LoU ỹk is obtained by adding Gaussian measurement noise
vk ∼ N (0, σ2

v) to the true LoU yk. The resulting observed LoU is clipped to be
between zero and one. We set measurement noise at σ2

v = 0.0003 [10].
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2.2 Agent Model

At each timestep, the agent receives a measured LoU ỹk from the environ-
ment along with a target LoU y∗

k and decides how much propofol to infuse.
The agent uses these inputs and the infusion history to derive an observation
vector: ok = [o(1)k , . . . , o

(d)
k ] ∈ O = R

d. We use d = 4 with the following observed
variables: measured LoU error o

(1)
k = ỹk − y∗

k, 30-s ahead predicted change in
effect site concentration o

(2)
k = x̂

(e)
k+6 − x̂

(e)
k , 30-s historical change in measured

LoU o
(3)
k = ỹk − ỹk−6, and the target LoU o

(4)
k = y∗

k. The estimated effect site
concentration is computed by maintaining a PK model with generic parame-
terization (according to Table 1) throughout a trial to estimate concentration
levels x̂k and x̂

(e)
k . At each time, this model is propagated 30 s forward under

the assumption that there will be no further infusion to yield x̂
(e)
k+6, which is

used to compute the predicted change. All elements of the observation vector
can be computed solely from previous actions and measured LoUs, and they do
not assume any knowledge of the specific patient variables in the environment.
Each of the observation variables is presumed to provide the agent with a unique
advantage in selecting an action. For example, the predicted change in effect site
concentration is included to account for the lag between drug administration
and arrival at the effect site and including the target LoU enables the agent to
have different steady-state infusion rates for different target LoUs.

Table 1. Model parameters for the generic patient and range of parameters selected
randomly for training and testing.

Sub-model Parameter Units Generic Minimum Maximum

PK Height cm 170 160 190

PK Weight kg 70 50 100

PK Age yr 30 18 90

Link ke0 min−1 0.17 0.128 0.213

PD γ - 5 5 9

PD C - 2.5 2 6

The agent uses a neural network to map observations to distributions over the
action space. This mapping, known as the policy, is represented by the function
π(ak | ok), which assigns a probability to an action ak given an observation ok.
The network contains a single hidden layer with 128 nodes and ReLU activation
functions, with two output nodes passed through a softmax to obtain action
probabilities. The network is fully parameterized by the weights wπ ∈ R

898

((4+1)×128+(128+1)×2 = 898, where the +1 accounts for a constant offset).
To promote exploration during training, the agent randomly selects an action

according to its policy. During testing, we employ three action selection modes.
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In stochastic mode, the agent randomly selects an action according to its policy
as it does in training: a

(s)
k ∼ π(· | ok). In deterministic mode, the agent selects

the action with the highest probability: a
(d)
k = argmax

a
π(a | ok). In continuous

mode, the agent selects a continuous action corresponding to the policy’s prob-
ability of infusing: a

(c)
k = π(1 | ok). In all cases, the action yields a normalized

infusion rate that is multiplied by the maximum dose u in (1).

2.3 Cross-Entropy Training Algorithm

The agent’s policy network is trained using the cross-entropy method [3], an
importance sampling based algorithm that is popular in training deep rein-
forcement learning agents [16]. The algorithm performs batches of simulations
(referred to as episodes) and at the end of each batch updates the policy based
on the episodes where the agent performed best. The agent’s performance in a
given episode is assessed using a reward function.

For a given episode n in a collection of N episodes, we define the episode
reward to be the cumulative negative absolute error: rn =

∑K
k=1 −|y∗

n,k −yn,k| ∈
(−∞, 0], where K gives the fixed duration of an episode and y∗

n,k and yn,k give
the target and true LoU at time k for episode n, respectively. After simulating
N episodes, the set Np of episodes in the pth percentile of rewards is identified,
and these are used to update the policy net parameters wπ. Letting an,k be the
action taken at time k in episode n and on,k be the corresponding observation
vector, define the cross-entropy loss for episode n as:

Ln = −
K∑

k=1

an,k log π(an,k | on,k) + (1 − an,k) log(1 − π(an,k | on,k)) (4)

Given that an,k is either zero or one, reducing the cross-entropy loss results in
nudging the policy π to assign a higher probability to the action an,k when on,k is
observed. This nudge is accomplished by performing stochastic gradient descent
(SGD) on the policy net weights with the computed losses.

In our training, we used a cutoff of p = 70% (i.e. Np includes the best 30%)
and a batch size of N = 16. Between batches, we selected the patient parameters
randomly from a uniform distribution over the parameters specified in Table 1.
Four LoU targets y∗ were sampled uniformly from [0.25, 0.75], with each target
being used for 2,500 s before switching to the next, resulting in a total episode
duration of 10,000 s, or K = 2, 000. The patient parameters and targets were
kept fixed within a batch to avoid updating the policy based on the “easiest”
environments rather than on the best performance of the agent. Further details
on the training and reward system are provided in the Appendix.

2.4 PID Controller

Previous studies on RL-based control of propofol infusion tested control perfor-
mance against a PID controller [10]. The PID control action is determined by a
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linear combination of the instantaneous error, the error integral, and the error
derivative. We use a discrete implementation of the PID controller:

a
(pid)
k = KP ek + KI

k∑

i=0

ek + KD
ek − ek−6

6
(5)

where KP , KI , and KD are the controller parameters and ek = y∗
k − ỹk is

the error. The error derivative is approximated using a 30-s lag to avoid being
dominated by noise. To be consistent with the RL agent implementation, the
PID control action is normalized (a(pid)

k ∈ [0, 1]) and multiplied by the maxi-
mum infusion rate u in (1). To avoid reset windup during induction and tar-
get changes, we implemented clamping on the integral term. The PID parame-
ters were tuned using the Ziegler and Nichols method [18] on simulations using
the generic patient model (see Table 1), resulting in KP = 9, KI = 0.9, and
KD = 22.5.

3 Results

Performance was evaluated on cases that had different patient demographics
and LoU targets. Figure 2A shows sample trajectories of the true and target
LoU for the cases with the worst, median, and best performance. The worst case
for each controller exhibits similar increases of oscillatory behavior, especially
pronounced at set-point escalations. Continuous RL used less propofol than PID
during induction (186 mg ± 57 and 210 mg ± 55) and throughout a whole case
(2430 mg ± 763 and 2457 mg ± 760), but more during maintenance (15 mg/min ±
5.6 and 14 mg/min ± 5.3). In the state-space view of these trajectories (Fig. 2B),
it is apparent that all trajectories involve a nearly linear decision threshold with
an intercept near the origin (o(1), o(2)) = (0, 0).

The controller performances were evaluated using the per-episode median
absolute performance error (MAPE) and median performance error (MPE),
where performance error is defined as PEk = 100yk−y∗

k

y∗
k

. All RL test modes
outperformed the PID controller (Fig. 3A). Among the RL test modes, the con-
tinuous action mode had the best performance. Notably, the continuous mode
had a median (across episodes) MPE near zero, suggesting that the ability to
select continuous infusion rates helped reduce the controller’s bias. On the con-
trary, the PID controller had nearly equivalent MAPE and MPE, suggesting
that its MAPE was limited by maintaining LoU at values slightly above the tar-
get. Adjusted 2-sided paired t-tests showed that all controllers had significantly
different mean MPE and MAPE (p < 0.05). The continuous RL controller was
robust to variation in patient age and height, but sensitive to differences in mass
and PD parameters, in particular to C (Fig. 3B). While this initially seems to
suggest that our model performs better on patients with a higher drug require-
ments, it is important to note that both γ and C affect the shape of the Hill
function. As such, for the range of γ indicated in Table 1, low C values corre-
spond to steeper PD responses than high C values. Sampling γ and C from a
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Fig. 2. A: True and target LoU for typical/extreme cases for each controller. B: State-
subspace trajectory for typical/extreme cases for each controller. Each point indicates
a single step in a case’s trajectory. The normalized propofol dosage administered at
that step is indicated by color. (Color figure online)

joint distribution may reduce the apparent effect of C on performance. Finally,
the continuous RL controller had a duration out-of-bounds error (percentage of
time at 5% or more off target) of 6.0% as compared with 12.4% for the PID
controller.

Figure 4 shows two-dimensional cross sections of the learned policy. We see
that the agent learns to transition sharply between the non-infusing and infusing
actions. While the decision boundary is essentially linear in the measured error
and predicted effect site concentration change, this boundary shifts to promote
more infusion when the LoU has been increasing to approach the target.

4 Discussion

Our experiments show that the proposed RL controllers significantly outper-
form a PID controller. We attribute RL’s superior performance to the fact that
its observation provides a much richer representation of the latent state of the
system under control than PID (which only observes the error). It is worth
emphasizing that we used a heuristic tuning method to optimize PID parame-
ters on a generic patient model, and it is possible that alternative tuning methods
could improve PID performance in our experiment. Nevertheless, other tuning
methods would also involve heuristics, and the ability to incorporate robust-
ness considerations directly into the RL training paradigm yields a considerable
benefit.

The behavior of the model can be interpreted by inspecting the policy. In
Fig. 4 we see expected increases in propofol administration when the patient is
further below a target concentration and when the projected effect site concen-
tration is more rapidly falling. The tendency to administer more propofol when
the LoU has been rising may be related to behavior learned during set-point
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Fig. 3. A: Median absolute performance error (MAPE) and median performance error
(MPE) across 1,000 test parameterizations for each of the four controllers. B: Asso-
ciation between MAPE and PK/PD parameters for continuous action mode. Each
point represents a test-episode, positioned by that episode’s performance and a PK/PD
parameter. Overlaid blue lines represent linear trend. (Color figure online)

Fig. 4. Policy maps show the policy net outputs (π(1 | ok)) for three different 30 s
LoU changes (o(3)) and a fixed target LoU (o(4)) of 0.5.

transitions or an encoding of the patient sensitivity to a given dosage history of
propofol. Given that the agent’s internal generic patient model encodes the pre-
viously administered drugs, these policy maps suggest that the agent has learned
the interaction between change in LoU and predicted effect site concentration
change to determine at which error level drug should be administered.

The ideal way to test this algorithm would be conducting a closely monitored
prospective clinical trial. Reinforcement learning algorithms are notoriously dif-
ficult to evaluate. Usually there is not an opportunity to collect prospective data
according to the agent’s policy, and policies are instead evaluated on retrospec-
tive data collected according to a different policy [6]. In this study we changed
the propofol dosage exactly every 5 s, whereas in standard practice dosages are
changed sporadically with individual infusion rates lasting minutes to hours.
Reasonable approaches to evaluating this algorithm prospectively include non-
human studies with standard dose-safety limits or clinically with a human-in-
the-loop study where the agent acts as a recommender system.
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Appendix

The algorithm described in Sect. 2.3 is provided in detail in Algorithm 1. Training
will terminate once either a maximum number of batches imax is executed or
the desired batch reward r̄min is obtained.

Algorithm 1: Cross-entropy Training
Input: p, N ,imax,r̄min

Output: π : O → A
1 randomly initialize policy net weights wπ ;
2 set i = 0, r̄ = −∞;
3 while i < imax and r̄ < r̄min do
4 sample model parameters and targets;
5 simulate N episodes and compute rewards {rn}n=1,...,N ;
6 select episodes with top p percentile of rewards;
7 compute cross-entropy loss between actions performed in the top episodes

and associated policy net outputs L;
8 perform stochastic gradient descent step to reduce the cross-entropy loss

with respect to the policy net parameters wπ;
9 set i = i + 1, r̄ = 1

N

∑
n rn;

10 end

The per-batch mean reward r̄ and policy network loss L associated with the
training of our model are shown in Fig. 5, where the policy network loss is found
by summing the loss over the best performing cases in the batch: L =

∑
n∈Np

Ln.
We set the maximum number of iterations to 4,000 and visually confirmed that
both the reward and loss converged. Given that the reward is represented as
the negative of an absolute value, the maximum possible reward is zero, which is
obtained only when the true LoU exactly matches the target LoU for the entirety
of a case. Due to the inherent limitations of the environment model (for example
the delay between infusion and change in effect site concentration), we expect
some non-negligible error to occur at induction and target change points.

Fig. 5. Round mean reward and policy network loss for each batch (corresponding to
the iteration index i in Algorithm 1).
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Abstract. Generative adversarial networks (GANs) have been highly
successful for generating realistic synthetic data. In healthcare, synthetic
data generation can be helpful for producing annotated data and improv-
ing data-driven research without worries on data privacy. However, elec-
tronic health records (EHRs) are noisy, incomplete and complex, and
existing work on EHR data is mainly devoted to generating discrete ele-
ments such as diagnosis codes and medications or frequent laboratory
values. In this work, we propose SMOOTH-GAN, a novel approach for
generating reliable EHR data such as laboratory values and medications
given diagnosis codes. SMOOTH-GAN takes advantage of a conditional
GAN architecture with WGAN-GP loss, and is able to learn transitions
between disease stages with high flexibility over data customization. Our
experiments demonstrate the model’s effectiveness in terms of both sta-
tistical similarity and accuracy on machine learning based prediction.
To further demonstrate the usage of our model, we apply counterfactual
reasoning and generate data with occurrence of multiple diseases, which
can provide unique datasets for artificial intelligence driven healthcare
research.

Keywords: Generative adversarial networks · Electronic health
records · Synthetic data generation · Counterfactual machine learning

1 Introduction

Electronic health records (EHRs) include rich information to support artificial
intelligence (AI) driven healthcare. Analyzing EHR data has many practical
applications such as predicting mortality [3], phenotyping diseases [6], detecting
missing/missed diagnosis codes [17] and predicting unplanned readmissions [2].
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In the meantime, EHR data is difficult to access due to privacy protection. It is
also noisy, incomplete and complex, thus difficult for researchers to work with.
Generating synthetic EHR datasets can help both AI and medical communities
to share datasets for developing new algorithms and comparing results.

Synthetic data generation can provide the opportunity for researchers to
share large datasets without privacy concerns and improve the quality of studies
with competitive and reproducible experiments. Having a reliable data generator
can also be useful for augmentation tasks and building more robust machine
learning models that can potentially provide new insights into how models can
interpret and capture patterns from EHR data. However, for a various number of
reasons including, but not limited to, large dimensions, longitudinal irregularity,
missing values, and heterogeneity it is more challenging to provide synthetic data
generation for EHR data, compared with other applications such as imaging.

Generative adversarial networks (GANs) are generative models for creating
realistic synthetic data based on an adversarial process which are proven to
be more effective than their statistical counterparts [10]. GANs have been very
successful with image generation, and there are many interesting applications of
GANs such as real images augmenting with Invertible Conditional GANs [16].
This success inspired studies to adapt strategies to tabular data [19].

In recent years, the concept of counterfactual reasoning has gained attention
within the machine learning community as one of the potential methods for
explainable AI and generating never-before-seen patterns [13]. This concept has a
lot of potential in AI driven healthcare, where physicians encounter new patterns
among diseases and are skeptical about black box models. Such patterns can be
potentially uncovered through GAN based methods.

In this paper, we take advantage of GANs for high quality synthetic data gen-
eration and data augmentation, and explore how the models can track patients
over the course of their disease using EHR data. Instead of a human-based
perception of disease progression by a clinical expert, we are interested in under-
standing how the models can observe and capture these patterns. We believe
these observations can help building more robust models and provide essential
knowledge for understanding decisions made by neural networks. We will first
introduce SMOOTH-GAN (Sharp sMOOTh eHr), a new approach for gener-
ating synthetic EHR data, and then, we will provide in-depth analysis of the
models generated by defining new metrics and concepts. At the end, we explore
an application of counterfactual data generation.

2 Related Work

Recently, generating synthetic EHR data using GANs has become an active
research area. However, there is limited work due to several challenges associated
with EHR data. One notable project is MedGAN which focuses on generating
discrete data elements -medications and diagnosis codes- by adding an addi-
tional encoder decoder inside the GAN architecture [7]. Another inspiring work
is RCGAN which provides a framework for generating frequent sequences using
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conditional recurrent GANs designed for medical time series data [8]. Moreover,
the SSL-GAN augments medications and diagnosis codes for improving classifi-
cation tasks with a semi-supervised learning approach [5].

In this study, we design a conditional GAN which generates both medications
and laboratory values for given diseases. Our work has the following salient fea-
tures. First, the generator generates both continuous and binary values and there
is no need to have separate generators. Secondly, we created new methodology
to have more control over conditions, which can help with generating patients
with different stages of disease. Furthermore, conditions in SMOOTH-GAN can
be combined together, creating more realistic and diverse encounters.

3 Data

We extracted inpatient encounter data for adults (≥18) from the Cerner Health-
Facts database, a large multi-institutional de-identified database derived from
EHRs and administrative systems. From the 10 highest volume inpatient facil-
ities, we randomly chose one acute-care facility (143) and extracted encounters
with at least one diagnosis code, laboratory value, and medication from 1/1/2016
to 12/31/2017. We used 47,412 encounters that were broken into 80% for the
training set and the rest for the test set.

As multiple values for each laboratory test exist for an encounter, we take
the median of each test for each encounter. For medications, we consider them
binary whether they were ordered or not. After filtering out features with less
than 5% occurrence rate to reduce sparsity and noise, 166 features remained.
Diagnosis codes for 5 major chronic conditions, hypertension, congestive heart
failure (CHF), diabetes mellitus, cardiac arrhythmias, and chronic kidney disease
(CKD) were defined according to [18] and used in this study.

4 Methods

We first briefly review the GAN concept and the architecture we are adapting,
and then discuss the details of our algorithm and methods.

4.1 Generative Adversarial Networks Concept

A GAN is normally comprised of two neural networks, which compete with
each other in a minimax game: a discriminator and generator. The generator’s
G(z; θg) goal is to generate samples intended to come from the same distribution
as the training set, where z is random noise usually from the normal distribution.
The discriminator D(x, θd) tries to detect whether the samples generated by the
generator are real or fake. Ideally, the data distribution by G (pg) should be
the same as the real data distribution (pdata) [9,10]. Conditional GANs are
extensions where generators generate data based on some extra information as
conditions or labels [14]. The formal optimization formula is:

min
G

max
D

V (θg, θd) = Ex∼pdata
[log(D(x|y)] + Ez∼pz

[log(1 − D(G(z|y))]
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where θg, θd are parameters for the generator and discriminator, and pz is the
normal distribution. The ideal generator would create authentic samples similar
to the training set that force the discriminator to guess randomly. y is the vector
condition, which is given to both the generator and the discriminator in cgan
architecture. We adapted Wasserstein-GAN with gradient penalty (WGAN-GP)
as the loss function in this work. It has several advantages including not suffer-
ing from the gradient diminishing problem during training and producing more
robust results [1,12]. The discriminator becomes critic in this method which
assigns a real value score instead of a binary value.

4.2 SMOOTH-GAN

The SMOOTH-GAN is a conditional GAN adapting WGAN-GP for healthcare
data. Its main objective is to generate high quality EHRs, including laboratory
values and medications, given diagnosis codes as conditions. We refer to diagno-
sis codes as set C, where c ∈ {0, 1}|C| is a random set of conditions, and the ith

dimension ci shows presence or absence of ith disease in a patient’s encounter
record. In EHR data, diagnosis codes are recorded as binary values indicating
which diseases patients have. Although having a disease is a binary status, reach-
ing the certain threshold to have the disease is in a probabilistic continuous space
for most chronic diseases. For instance, patients with a “hemoglobin A1C” of 6.0
and 4.5 are both below the threshold of diabetes, but the first patient is closer
to being a positive case and has a higher risk of getting diabetes. However, in
EHR data both of these patients are labeled as 0.

A generative model needs to be reliable and adjustable to have practical
usage. We observed by generating a GAN model directly with those binary
values as conditions, the generated data in many cases was borderline and did
not pass the cutoff for that disease. The GAN was learning broad patterns and
the control of the output was limited. The outcome was not deterministic by
input conditions and was highly dependent on random variables.

Median
lab values

Binary 
medications

Binary chronic 
conditions Random 

noise

Generator

Discriminator

EHR

General cGAN

WGAN-GP as loss

Heuristic 
component

binary → real

Smooth
conditions

Random 
noise
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lab values

Binary 
medications

Binary chronic 
conditions

Generator
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EHR

Removing 
outliers,
Scaling

SMOOTH-GAN

Fig. 1. Illustrating how the heuristic function is added to the model.
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Based on the issued discussed above, we added a unit which would change the
GAN input conditions to smooth labels. Note that assigning an exact probability
is a very difficult task, especially when the definition of what is the probability
is debatable. Therefore, we are looking for a heuristic function that given binary
conditions and input data, can estimate the condition in a continuous space,
H(c, x) = c̃ where c̃ ∈ [0, 1]. Although finding the perfect function for assigning
probabilities/risk scores to encounters is an active field of research in healthcare,
finding a heuristic function simplifies the task and provides a fast solution. The
architecture is shown in Fig. 1.

There are different ideas and models to use as the heuristic function. We use
random forest (RF) models as the core part of this heuristic function in this
work. These models can be trained on the training set and assigns probabilities
for each disease accordingly. When the estimated probability is in contrary with
the original label, we adjust it to the center (0.5). It is necessary that the model
can label the majority of each class correctly. We demonstrate how the model is
capable of generating more diverse synthetic data with traceable disease progress
by using c̃ instead of c in training the GAN in Sect. 5.3.

Training Details. The generator has two leakyRelu hidden layers with α = 0.2
each one is followed by a batch normalization layer and tanh output layer. The
critic has two leakyRelu hidden layers with α = 0.2 and linear output layer.
The critic is trained 5 times more than the generator in each epoch. Moreover,
the heuristic function is pre-trained in advance (RF models). The model was
trained for 600 epochs. Data is scaled to [−1, 1] and outliers with Z-score more
than 4 are removed for non-binary features before the median imputation.

5 Results

In this section, we provide in-depth analysis of our GAN method and innovative
applications. We used random forest as the prediction model since we needed to
know the important features and output probability of inputs for most experi-
ments. To have a reasonable comparison, the synthetic dataset is generated given
a set of conditions similar to the training set.

5.1 Statistical Analysis

The first step is to measure how the synthetic data distribution fits to the real
training set. We measured the mean absolute error (MAE) for means and stan-
dard deviations of columns and element-wise Pearson correlations as shown
in Table 1. For medications which are binary values, we calculated MAE for
dimension-wise probability. The Loss functions based on Wasserstein distance
have robust progress even when data is partially binary. Figure 2 shows heatmaps
of Pearson correlations for real and synthetic data.
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Training data Synthetic data

Fig. 2. Heatmap for 15 features with highest correlation. MC: Manual Count, AC:
Automated Count, S/P: Serum or Plasma, L: lab value, M: medication

Table 1. Mean absolute error for statistics between real and synthetic data

Method name Laboratory
mean

Laboratory
std

Medications
prob

Correlation

cGAN 248.10 22.92 0.382 NaN

AC-GAN 79.49 14.53 0.068 0.196

WGAN 1.33 5.39 0.007 0.058

WGAN-GP 0.80 1.77 0.003 0.039

SMOOTH-GAN 0.68 2.29 0.003 0.039

5.2 Synthetic Data Prediction Models

One major goal of generating synthetic data is to use it in place of real data
when training machine learning models. We are comparing RF models trained
on real training data and generated data with the same real test set which was
untouched in Table 2. This experiment has become the main metric to measure
a GAN’s success in related publications [7,8,19]. Moreover, it is critical that
the synthetic model is making predictions based on similar factors to the real
training set. Otherwise, GANs might have altered other features correlated with
the input conditions and generated new patterns which is undesired. The last
rows of Table 2 show the number of overlapping features in the top 15 most
important features of both the synthetic and real trained models. Note that
AC-GAN is designed for mutually exclusive input conditions [15].
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Table 2. Performance of trained RF models on synthetic and real data measured
on real test set. “#/15” represents number of common features with top 15 most
important features identified by real RF model.

Disease name Metric Real cGAN WGAN AC-GAN WGAN-GP SMOOTH-GAN

Hypertension AUROC .8822 .5896 .8434 .5165 .8515 .8625

AUPRC .7965 .3929 .7474 .3324 .7562 .7688

#/15 - 2 8 2 8 9

Diabetes AUROC .9357 .5849 .8412 .5759 .8641 .8708

AUPRC .8905 .3821 .7702 .3872 .8061 .8089

#/15 - 2 9 2 11 11

Congestive heart failure AUROC .9000 .5663 .8239 .5795 .8619 .8633

AUPRC .7471 .2483 .5885 .2708 .6551 .6577

#/15 - 3 8 2 9 12

Chronic kidney disease AUROC .9544 .6331 .9386 .4240 .9404 .9380

AUPRC .8705 .3654 .8380 .1740 .8384 .8321

#/15 - 3 9 1 10 12

Cardiac arrhythmias AUROC .8110 .5191 .7065 .4791 .7564 .7512

AUPRC .7037 .3609 .5825 .3353 .6352 .6144

#/15 - 3 5 4 7 8

5.3 Smooth Conditions, Sharp Synthetic Data

The ideal conditional generator should be capable of generating high quality
data according to given conditions. Here we define two terms, sharpness and
smoothness. The generator must be sharp as generated data reflects attributes
of given conditions clearly when expected. For instance, a patient with 100%
chance of diabetes must have obvious observations/or medications. Second, it
must be smooth, which means that it has control over what is generated with a
realistic continuous distribution of the data. In other words, it should learn to
transit between disease stages, which is natural for chronic diseases. Sharpness
is more obvious at the boundaries, aka disease chances are closer to 0 or 1, while
smoothness is a characteristic for transitions between stages.
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Cardiac arrhythmias Congestive heart failure Chronic kidney disease

Diabetes Hypertension

Fig. 3. Gradually increasing input conditions to measure average probability of gener-
ated data according to the random forest model trained on real data.

Having a set of conditions C̃, for the ith disease, we changed c̃i increasing
from 0 to 1 by 0.1 steps gradually while all other c̃j (where j �= i) remained the
same as conditions passed for training the GAN. This process lead to creation of
11 data groups. For each group, we measured the average probability assigned by
the random forest model trained on real data. Results are shown in Fig. 3. The
ideal result in this model would be the solid diagonal line, where for given input
condition generated data would get similar probability by the model trained on
real data. Considering gi as the average for the ith group and n as the number of
steps (here n = 10), we define sharpness = (g0−0)+(1−gn) and smoothness =
(
∑n

i=0 | in −gi|))/(n+1). In both metrics lower magnitude is better. As a baseline,
when probabilities of all groups are 0.50 (horizontal line in middle), the sharpness
and the smoothness are 1 and 0.27 respectively.

Training with smooth labels decreased the sharpness and the smoothness
from 0.86 and 0.23 to 0.69 and 0.18 average among all diseases. Of note, the
other conditions in the input also affect the output of the generator. For this
reason, reaching absolute 0 or 1 probability over a reasonable set of conditions
is unrealistic. For instance, a passed vector condition with high diabetes and
hypertension with exactly 0 % chance of CKD is not possible. This can explain
why the curves are bent when they get closer to 0 or 1.
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Table 3. Sample synthetic CKD cases generated.

# Lab name Initial CKD GAN input probability

State 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1 BUN 54.03 37.82 38.12 40.31 43.99 48.98 53.58 58.59 63.60 67.62 70.79 73.21

Creatinine 1.53 0.70 0.76 0.88 1.05 1.27 1.50 1.81 2.31 2.92 3.63 4.35

GFR 27.32 85.49 76.52 64.23 50.61 38.45 28.22 19.47 13.14 8.67 5.82 4.18

2 BUN 33.90 29.60 30.09 31.09 32.90 35.29 38.60 42.07 45.19 47.49 48.97 50.73

Creatinine 0.58 0.41 0.42 0.46 0.53 0.64 0.78 0.98 1.23 1.52 1.87 2.29

GFR 84.76 100.85 97.51 93.70 87.63 79.58 69.58 56.57 43.04 31.38 22.59 15.78

In Table 3, we show how samples made by the SMOOTH-GAN change over
given CKD conditions for three important features: blood urea nitrogen (BUN),
glomerular filtration rate (GFR) and creatinine in serum/plasma. The initial
state is what is generated by passing a set of random conditions and random
noise to the generator. We set the CKD condition from 0 to 1 to get a spectrum
of potential states for this encounter.

5.4 Counterfactual Disease Generation

Generally, counterfactuals are hypothetical “what would happen/have happened
if” questions. We designed a very specific experiment to show GANs can also be
used for generating special combinations of diseases in healthcare. We removed
all cases with both hypertension and diabetes from the training set, and we call
this new set the “pruned training set”. Then we trained our GAN on this new
training set to measure whether the model can produce acceptable encounters
having both conditions. We chose these two diseases to have a reasonable amount
of data for validating the results as this combination happens often in EHR data.
Similarly, we measure machine learning efficacy as the ultimate test. In Table 4,
we measure RF performance when trained on 1) real data 2) synthetic data
from a GAN model trained on the original training set 3) synthetic data from
a GAN model trained on the pruned training set. We observe that while the
pruned model does not outperform other models in detecting positive cases, it
has captured a significant amount of the existing patterns.

Table 4. Performance for counterfactual disease generation

Disease name Metric Real Original
training set

Pruned
training set

Hypertension & Diabetes AUROC .9106 .8720 .8317

AUPRC .7122 .6223 .5252

# /15 – 10 8
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There are several challenges for this type of experiment. First, for disease
pairs that usually occur together, there might be very few examples of either
disease alone. Thus, the pruned dataset would be inefficient. For instance, 88%
of patients with CKD also had hypertension. Secondly, the combination of two
diseases might be rare when diseases are less relevant to each other, leaving the
validation set very small. Last, it is time consuming to train a GAN model for all
permutations. We believe that this approach has high potential and can lead to
the discovery of novel patterns, which we will further study with larger datasets
in our future work.

6 Conclusion

In this paper, we propose SMOOTH-GAN, a new approach for generating syn-
thetic EHR data based on recent advances in generative adversarial networks.
We show it is possible to produce high quality synthetic data that maintains
important relations and factors in the original data and can be useful for train-
ing competitive machine learning models. We define sharpness and smoothness
as vital concepts which are applicable in other domains as well. Furthermore, we
demonstrate how to create synthetic EHR data with meaningful clinical impli-
cations. By combining this approach and Invertible cGANs it is possible to aug-
ment existing patient data, as well as helping to produce more accurate machine
learning models. Our approach opens doors to new research opportunities and
has high potential for generating unseen combinations to support novel research
projects such as counterfactual use cases.

Acknowledgments. Authors wish to thank Aryan Arbabi for his constructive
comments.

A Appendix

A.1 Binary Data Distribution

As GANs were known to struggle with generating binary values, we added Fig. 4
to illustrate dimension-wise probability for medications comparing real versus
synthetic data.
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cGAN AC-GAN WGAN

WGAN-GP SMOOTH-GAN

Fig. 4. Dimension-wise probability performance for binary values.

A.2 Is Training Data Memorized by the GAN?

For ensuring privacy and discovering whether the GAN is generating new cases
or memorizing the training set, we followed the footsteps of [8] by measuring
maximum mean discrepancy (MMD) and applying the three-sample test [4,11].
MMD can answer whether two sets of samples were generated from the same
distribution. If the synthetic data is memorized then MMD(synthetic, train-
ing) would be significantly lower than MMD(synthetic, test). For this reason,
we state the null hypothesis as GAN has not memorized the training set, and
consequently MMD(synthetic, test) ≤ MMD(synthetic, training). We sampled
from these three datasets 35 times and calculated MMDs and p-values for the
hypothesis. The mean p-value with its standard deviation is 0.26 ± 0.15 which
means we cannot reject the null hypothesis and we can establish that GAN did
not memorize from the training set.
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Abstract. Early detection for sepsis, a high-mortality clinical condi-
tion, is important for improving patient outcomes. The performance of
conventional deep learning methods degrades quickly as predictions are
made several hours prior to the clinical definition. We adopt recurrent
neural networks (RNNs) to improve early prediction of the onset of sepsis
using times series of physiological measurements. Furthermore, physio-
logical data is often missing and imputation is necessary. Absence of data
might arise due to decisions made by clinical professionals which carries
information. Using the missing data patterns into the learning process
can further guide how much trust to place on imputed values. A new
multi-task LSTM model is proposed that takes informative missingness
into account during training that effectively attributes trust to temporal
measurements. Experimental results demonstrate our method outper-
forms conventional CNN and LSTM models on the PhysioNet-2019 CiC
early sepsis prediction challenge in terms of area under receiver-operating
curve and precision-recall curve, and further improves upon calibration
of prediction scores.

Keywords: Sepsis prediction · LSTM · Recurrent neural network ·
Calibration

1 Introduction

Sepsis is a serious medical condition that occurs when a body’s dysregulated
response to infection causes life-threatening organ dysfunction [18]. Sepsis is a
major public health concern: it is estimated to be present in over 30% of U.S.
hospitalizations culminating in death and accounted for more than 20 billion
(5.2%) of total U.S. hospital costs in 2011. Tentative global estimates – limited
by a lack of reporting in middle- and low-income countries – suggest that there
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are over 30 million sepsis cases, resulting in 5 million deaths, annually [4]. As
it is a condition with multiple causative organisms and an evolving nature over
time, people with sepsis can present various signs and symptoms at different
times. This makes diagnosis difficult, even for experienced clinicians [18].

Early detection of sepsis and timely clinical management is important for
improving patient outcomes. It is known that each hour of delayed treatment
after hypotension onset incurs an approximate 7.6% increase in mortality rates
[12], and early treatment with a 3 h boundle of sepsis care and fast antibiotic
administration leads to lower in-hospital mortality [17]. While attention around
the issue of sepsis diagnosis and treatment has risen in recent years, including
a revision of clinical criteria for recognizing and treating sepsis in 2016, there is
an outstanding need for early and reliable sepsis identification [18].

Data-driven early warning scores such as the National Early Warning Score
(NEWS) has the potential to identify acutely deteriorating patients, such as
those with sepsis [19]. This score compares a few physiological variables to their
normal ranges to get a single score. While the NEWS and similar early warning
scores have been adopted broadly by the National Health Service in England
and selectively by individual providers world-wide, they are too simplistic to
capture patient-specific data variations and not tailored to a specific condition
like sepsis. Due to their broad nature, false alarms occur often. They lack the
ability to model complex correlations between physiological variables across time
series.

Several machine learning approaches have been proposed for sepsis detection.
The work [14] uses a Weibull-Cox proportional hazards model but its semi-
parametric form is too restrictive. Other works use simplistic machine-learning
models, such as logistic regression [2] and decision-trees [3,13] to predict onset of
sepsis, but fail to capture temporal patterns. Further works use recurrent neural
networks (RNN) to improve on learning temporal trends [5,11].

In this paper, we make use of a class of recurrent neural networks (RNN)
known as Long Short-Term Memory (LSTM) networks [10] to learn power-
ful sequence representations that can be used to predict whether patients will
develop sepsis or not. These networks alleviate the learning difficulties of van-
ishing gradients that standard RNNs suffer from by using a gating mechanism
for information flow. In practice, physiological data may be missing and their
absence can be partially attributed to decisions made by clinical profession-
als. To model this, we incorporate the missing data patterns in our learning
framework which can be furthermore used to guide how much to trust imputed
measurements. Our training objective is based on a new multi-task LSTM model
that takes informative missingness into account during training that effectively
attributes trust to temporal measurements. We remark that in contrast to [5]
that jointly imputes data and trains a conventional LSTM classifier, we propose
a multi-task training loss for LSTMs to improve early prediction while tak-
ing into account informative missingness without increasing the computational
complexity of the model too much. Our experimental results show our proposed
method achieves both improved predictive performance measured by area under
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receiver-operating curve and precision-recall curve, and better calibrated predic-
tion scores.

2 Multi-task Learning Framework

We formulate the early prediction of sepsis problem as a time series classification
problem. Given a patient encounter, the model updates the likelihood of sepsis
given all the available measurements up to that time.

Our dataset D consists of N independent labeled patient encounters. Each
encounter Di consists of a set of vital measurements vo(i), lab results lo(i)
and demographics do(i) (age, gender, weight). Assuming each time series has
T measurements1, the data may be grouped in the observables matrix Xo(i) =
[vo(i)T , lo(i)T ,do(i)T ]T ∈ R

d×T .
In practice, data is missing and a subset of the matrix Xo(i) is observed.

Multivariate imputation is performed to fill in the missing variables using itera-
tive regression (experimental details in Sect. 3.2). The missingness pattern m(i)
is appended to the data as well and used in the training process. The aug-
mented data matrix is then formed as X(i) = [v(i)T , l(i)T ,d(i)T ,m(i)T ]T =
[x1,x2, . . . ,xT ] ∈ R

2d×T .
Each labeled encounter has a sepsis label sequence y(i) = [y1, y2, . . . , yT ]

where yt ∈ Y = {0, 1}. For non-sepsis patients, yt = 0, and for sepsis patients
yt = 1 for t ≥ tsepsis − 6 and yt = 0 otherwise. The time tsepsis is based on the
Sepsis-3 definition; i.e., the earliest time of (1) a two-point change in Sequential
Organ Failure Assessment (SOFA) score and (2) clinical suspicion of infection
guided by ordering of blood cultures or IV antibiotics [16]. For convenience, we
align tsepsis = T .

2.1 Long-Short Term Memory Networks

In RNNs, hidden states are used to carry information from the past towards
the current step serving the role of memory in neural networks. At each time
step, hidden state ht is updated by taking into account the previous time step’s
hidden state ht−1 and new input vector xt. Long-short term networks (LSTMs)
overcome the vanishing gradient limitation prevalent in standard RNNs.

LSTM units contain a carry track in parallel to the information sequence that
can be used to store and transport information at a later time step which has
the effect of retaining older signals. This is known as the internal cell state, ct, of
an LSTM unit. A gating mechanism controls the information flow of the cell. It
consists of an input gate, that controls what information enters the cell, a forget
gate, that controls what information to keep in the cell, and an output gate that
controls what information in the cell will affect the LSTM unit activation or

1 For time series with less than T times steps, zero-padding is performed prior to the
measurements.
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hidden state. The updates for LSTM units with inputs xt,ht−1 and output ht

are as follows

gt = Tanh(Ugxt + Vght−1 + bg)
it = σ(Uixt + Viht−1 + Jict−1 + bi) (input gate)
ft = σ(Ufxt + Vfht−1 + Jfct−1 + bf ) (forget gate)
ct = it ◦ gt + ct−1 ◦ ft (cell state)
ot = σ(Uoxt + Voht−1 + Joct + bo) (output gate)
ht = Tanh(ct) ◦ ot (hidden state)

where U ,V ,J are weight matrices and b are bias vectors. Here ◦ denotes
element-wise multiplication and σ(x) = 1/(1 + e−x) denotes the sigmoid acti-
vation function. We remark that peephole connections [7] are used as the gate
layers incorporate the internal cell state.

Given the structure of the augmented data, the LSTM gates take into account
the missingness pattern of the data in a sequential fashion as, e.g. for the input
gate without loss of generality, we obtain:

it = σ(Uv
i vt + U l

i lt + Ud
i dt + Um

i mt + Viht−1 + Jict−1 + bi)

A similar expansion holds for the rest of the gates. As a result, the missingness
pattern of the data influences what to input and store in the carry track. This
further controls the hidden state evolution and this additional level of control
allows the LSTM cell to learn how much trust to place on the imputed data
values. A dense layer with sigmoid activation function is used to map the hidden
vector to a likelihood score given by

p̂t = σ(Wcht + bc)

which represents the likelihood of sepsis. The loss function is given by the binary
cross-entropy applied to the last hidden vector

L(yT , p̂T ;w) = −yT log p̂T − (1 − yT ) log(1 − p̂T ) (1)

where yT corresponds to the sepsis label at the last time step T . These losses
are summed across all patient encounters in the training set to form the total
training loss.

2.2 Multi-task LSTM Model

We propose to modify the loss to jointly predict sepsis labels for several time
steps prior to the clinical sepsis definition as:

L̃(w) =
T∑

t=T−M

αtL(yt, p̂t;w) (2)
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where L(·, ·;w) is defined in (1) and M is a lag parameter. The weight parameters
obey the decay relation αj ≥ αk for j > k to ensure that losses associated with
older time steps do not dominate newer loss contributions. These losses (where i
is suppressed in (2)) are summed across all patient encounters, i, in the training
set to form the total training loss for the multi-task model.

The decision at time t ≤ T is made by thresholding the prediction score, i.e.,
ŷt = 1 if p̂t ≥ c and 0 otherwise, where c controls the tradeoff between true posi-
tive and false positive rates (operating point on receiver-operating characteristic
(ROC) curve).

2.3 Performance Metrics

To measure the predictive performance of the algorithm and compare with oth-
ers, the main metrics of interest include the area under Receiver Operating
Characteristic (AUROC) and the area under Precision-Recall curve (AUPRC).
The AUROC metric measures the model’s discriminative ability between septic
and non-septic patients using a statistic that may be interpreted as the proba-
bility that the method correctly assigns a random patient encounter with sepsis
a higher score than a random patient encounter without sepsis. Furthermore, we
measure the balanced false-positive rate (FPR) at 85% balanced true-positive
rate (TPR). We monitor these metrics as a function of number of hours prior to
the sepsis clinical definition to observe how early one can predict the onset of
sepsis with a given performance guarantee.

Of additional interest is the calibration performance of the prediction scores,
i.e., how well prediction scores match the actual likelihood of correct predictions,
which is measured as follows. Consider a partition of the [0, 1] interval into Q
sub-intervals of equal width and define Sq to be the patient patterns whose
prediction scores coincide with bin q. The accuracy and confidence of bin Sq is

acc(Sq) =
1

|Sq|
∑

i∈Sq

I(ŷ(i) = y(i)), conf(Sq) =
1

|Sq|
∑

i∈Sq

p̄(i)

where p̄(i) = max{p̂(i), 1 − p̂(i)} is the winning score of the i-th pattern. The
expected calibration error (ECE) measure [9] is given by

ECE =
Q∑

q=1

|Sq|
n

|acc(Sq) − conf(Sq)|

and the overconfidence error (OE) measure [8] is

OE =
Q∑

q=1

|Sq|
n

conf(Sq)max {conf(Sq) − acc(Sq), 0}

The ECE measures miscalibration by computing a weighted average of the
accuracy/confidence difference across the sub-intervals, while OE computes a
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weighted average of the confidence only when the confidence exceeds accuracy.
OE is an appropriate measure for safety-critical applications since confident but
incorrect predictions have disastrous consequences. We remark that these cali-
bration metrics where computed on a balanced dataset.

3 Experimental Results

3.1 Data Description

The PhysioNet 19 challenge data [16] was used to evaluate the performance of our
algorithm and compare with other baselines. It consists of 40, 336 patient encoun-
ters spanning 36 variables that include vitals, labs and demographic information,
with data coming from two hospitals, hospital A (20, 336 patients) and hospi-
tal B (20, 000 patients). The median age is 63 years old, and the male/female
proportion is 44/56%. The average length of the time series for septic-patients
was 59 h and for non-septic patients 37 h. Approximately 7.3% of the patients
developed sepsis.

The physiological variables include 8 vital signs (e.g., heart rate, respiration
rate, temperature, systolic blood pressure), 26 laboratory measurements (e.g.,
bicarbonate, fraction of inspired oxygen, platelets), and 2 demographic variables
(age, gender). The sepsis label signal indicates the onset of sepsis according to the
Sepsis-3 guidelines [18], where 1 indicates sepsis (labeled 6 h prior to tsepsis = T )
and 0 no sepsis.

3.2 Experimental Setup

Patients’ time series with duration between 8 and 150 h were included in the
dataset. The time series with less than 150 h were appropriately zero-padded.
This pre-processing step only removed 0.16% of the non-septic population and
8.6% of the septic population, leaving a total of 40, 023 patients for our cohort.

Labs variables were typically recorded on a daily basis thus are sparsely
populated and have an average per-patient density of samples (i.e., fraction of
non-missing hourly samples per patient) of 5.2%. Vitals variables were typically
recorded on an hourly basis thus are densely populated and have an average per-
patient density of 82.7%, excluding temperature and end-tidal carbon dioxide
(EtCO2), which have average per-patient densities of 33.6% and 2.9%, respec-
tively. Patient records from hospital A tended to have a higher fraction of missing
samples as well as a higher variance in non-missing sample density per patient
than hospital B. In particular, patients from hospital A have a significantly
larger spread in per-patient density of Diastolic Blood Pressure samples. The
entry density for the pooled set of patients from hospital A and B is shown in
Fig. 1.

Multivariate imputation, using scikit-learn’s IterativeImputer class, was used
to fill missing values for each patient [15]. A population-based imputation model
was learned – using the pooled data from all patients, a regressor is fit for each
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Fig. 1. Density of non-missing entries, excluding outliers, in PhysioNet 19 dataset. It is
observed that the lab values have higher missingness rates than the vital sign variables.

variable as a function of the others for known samples of the designated output,
in an iterative fashion, and the process is repeated for 50 imputation rounds –
and subsequently applied to each patient. We remark that the implementation
of IterativeImputer was inspired by the R MICE package [1].

We compare our multi-task LSTM method with single-task CNN-1d classi-
fication model without the missingness mask as input, and single-task LSTM
classification models without and with the missingness mask as inputs. This
setup allows us to measure the additional value of using informative missingness
in training, and a multi-task training loss. As a remark, we do not compare with
early-warning scores such as NEWS [19] and MEWS [6] since it has been already
shown that their prediction performance lags quite a bit behind RNN methods
[5]. The CNN-1d architecture was composed of four one-dimensional convolu-
tional and max-pooling layers composed of 16, 32, 64, 128 filters with kernel sizes
7, 5, 3, 3 respectively, followed by a dense layer of size 10. A single-layer LSTM
architecture was trained with 100 hidden nodes. All models were trained with
a small L2 regularization on the final classification weights, a batch size of 512
and a learning rate of 10−4. All experiments were implemented in Tensorflow
with the RMSprop optimizer.

We train our method using 90% of the full dataset and test on the remain-
ing 10%. Sample minority oversampling was used to obtain balance train/test
splits, which is critical when training models with random minibatches. Perfor-
mance metrics were averaged over a total of five train/test splits to account for
train/test split variation.
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Fig. 2. Area under Receiver-Operating Characteristic (left), Area under Precision-
Recall Curve (middle) and False Positive Rate at 85% True Positive Rate (right).

Fig. 3. Expected calibration error (left) and overconfidence error (right) as a function
of hours prior to Sepsis-3 clinical definition.

3.3 Results

Overall, the experimental results show that our proposed method offers a con-
sistent performance improvement over the baseline methods for various metrics.
Figure 2 shows the AUROC, AUPRC and FPR at 85% TPR results as a function
of time prior to the Sepsis-3 clinical definition. On a high level, the performance of
all methods degrades as a function of how early the prediction is made. Through-
out this time horizon, our method achieves improved prediction performance.
We note that LSTMs significantly improve upon the CNN-1d model. Figure 3
displays the calibration performance. We observe that our method aligns the
confidence of predictions (measured by maximum probability score) better with
the empirical likelihood of correct predictions. We remark that the LSTM models
provide better-calibrated scores in comparison to the CNN-1d model.

4 Discussion

In regards to the dataset under study, while the methodology was demonstrated
on the PhysioNet-2019 CiC challenge that contains vital measurements, lab
results and demographics, predictive performance can benefit from addition-
ally incorporating medication, procedures and underlying health conditions data
which may be explored in future work.
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Our experimental results show that LSTM networks outperform CNNs with
an additional benefit gained from sequentially incorporating the missingness pat-
terns into the learning process and performing multi-task learning over several
time points leading up to time tsepsis. This may be attributed to the long-memory
aspect of LSTM while CNN-1d performs a multi-scale convolution of with fixed-
size kernels. Other ways of training may be compared with the current training
method, e.g., train at 6 h prior to tsepsis or use different time lags M , to see
if early prediction performance can be further improved without deteriorating
performance at later times.

Our proposed model improved calibration, which allows for a more direct
interpretation of probability scores as confidence levels. This is particularly
important for the high-risk application of sepsis detection; for patients on which
the model has low confidence, a physician should intervene and make decisions
based on clinical judgments. When our model is deployed, a streaming sequence
of temporal measurements is used as inputs to sequentially update the likelihood
of a patient becoming septic. When the likelihood crosses a threshold (defined to
achieve an acceptable sensitivity-specificity tradeoff), an automated monitoring
system may trigger an alarm and physicians can take appropriate action.

Future modeling directions on data imputation include studying the effects of
different imputation methods (e.g. multivariate Gaussian processes) and incor-
porating expected variations in imputed values into the training process.

5 Conclusion

In this paper, we proposed a novel multi-task LSTM model for early sepsis detec-
tion based on physiological times series that learns how to make use of infor-
mative missingness. We demonstrate the superior performance obtained with
our algorithm on the PhysioNet-2019 CiC challenge data by showing absolute
improvements 6 h before sepsis in AUROC scores up to ∼13%/1.4% and reduc-
tions in false-alarm rates by up to ∼34%/5.6% for a fixed true-positive rate of
85%, over conventional CNN and LSTM models respectively. As an additional
benefit, our method provides better-calibrated prediction scores that allow for
improved interpretation of scores as confidence levels. Although our work is on
sepsis detection, the proposed framework can be applied to predict other clinical
events as well, e.g., cardiac conditions, onset of hemorrhagic shock, and other
critical events in ICUs.
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Abstract. Blood glucose (BG) monitoring devices play an important role in
diabetes management, offering real time BG measurements, which can be
analyzed to discover new knowledge. In this paper we present a multi-patient
and multivariate deep learning approach, based on Long-Short Term Memory
(LSTM) artificial neural networks, for building a generalized model to forecast
BG levels on a short-time prediction horizon. The proposed framework is
evaluated on a clinical dataset of 17 patients, receiving care at the IRCCS
Policlinico San Matteo hospital in Pavia, Italy. BG profiles collected by a flash
glucose monitoring system were analyzed together with information collected
by an activity tracker, including heart rate, sleep, and physical activity. Results
suggest that a model with good prediction performance can be obtained and that
a combination of HR and lifestyle monitoring signals can help to predict BG
levels.

Keywords: Flash glucose monitoring � Diabetes � Time series analysis � Deep
learning � Data integration

1 Introduction

Recent developments in blood glucose (BG) monitoring technology [1] have given a
great support in the management of diabetes. Devices for continuous glucose moni-
toring (CGM) and flash glucose monitoring (FGM) allow patients to measure their BG
almost in real-time. This is crucial, since a good glycemic control represents a key point
to reduce risks of serious and life-threatening complications, including stroke and heart
disease [2]. However, the accurate prediction of BG is still a challenge due to the
complexity of glycemic dynamics.

Given the considerable amount of data made available by CGM and FGM devices,
deep learning algorithms have recently been applied to BG forecasting [3]. Most of
these approaches entail the development of personalized models that are based on a
specific patient BG profile and clinical data, but not suited to be extended to a different
subject. Thus, a general model built on a population of patients could be useful in real
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clinical scenarios, where the information for a new patient can be scarce at the
beginning of the monitoring period.

In [4], a multi-layer convolutional Neural Network (NN) is implemented to learn a
generalized model including also information on meals and insulin dosages recorded by
the patients. In [5], a Long-Short Term Memory (LSTM) model is trained using multi-
patient BG profiles.

In this paper, we introduce a multi-patient and multivariate deep learning approach
to build a generalized BG prediction model, testing whether the combined use of
monitoring signals and BG profile could improve predictions compared to the uni-
variate scenario. The results herein presented represent an update of a preliminary work
[6]. The clinical dataset used to train the models was obtained from the AID-GM
(Advanced Intelligent Distant-Glucose Monitoring) project [7]. In this project, a new
platform to jointly collect and analyze BG monitoring and Fitbit [8] data was proposed
and tested in a pilot study on a group of young patients treated at the Pediatric
Diabetology outpatient service of the IRCCS Policlinico San Matteo hospital in Pavia,
Italy. The study was approved by the Institutional Review Board (IRB) of the hospital.

2 Methods

2.1 Dataset Description and Preprocessing

In the AID-GM project [7], BG data are collected using the Abbott FreeStyle
Libre FGM system [9, 10], while heart rate (HR) profiles are collected using a Fitbit
tracker. BG and HR measurements are contextualized within the day thanks to the
Fitbit tag, which characterizes each measure with one of the following values: sleep,
workout, routine, or NA. The routine value is assigned when the patient is not sleeping
and is not training, while the NA value is assigned if the Fitbit tracker is not being worn
during the measurement.

According to the sampling frequency of the two sensors, BG measurements are
recorded every 15 min, whereas HR measurements are taken every minute. We dealt
with the different sampling frequency by computing a weighted mean of the HR values
in the interval between two consecutive BG measurements. HR measurements closer to
the next BG value are assigned a higher weight when computing the mean. Then, the
available time-series were split in subseries using frames of 96 timestamps (24 h). The
resulting subseries were discarded either if the percentage of missing data was greater
than 20%, or if there were more than 8 consecutive missing values (2 h). Quadratic
bidirectional interpolation was then applied to deal with the remaining missing data for
short gaps.

Fitbit tag information was processed using a one-hot encoding, adding a new binary
variable for each unique tag value. The preprocessed dataset resulted into 57888
observations, related to 17 patients.
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2.2 Model Architecture

The core of the proposed deep learning framework is represented by a LSTM layer,
surrounded by a set of hidden layers. LSTM networks are a specific subclass of
Recurrent Neural Networks, and they were herein selected because of their suitability
for time-series forecasting and support of multivariate inputs [11].

The input layer of our framework is designed to work in three different scenarios:
(i) univariate, with only the BG time-series as input, (ii) multivariate, using BG and HR
time-series, (iii) multivariate, using a combination of BG, HR, and Fitbit information.
Sliding windows of various sizes (15, 30, and 45 min) were used to control the volume
of historical data used for BG predictions on a forecasting horizon of 15 min. Besides
the input layer, the overall architecture of the proposed NN includes the following
layers: hidden layer (16 neurons), hidden layer (32 neurons), LSTM layer with 64
LSTM cell, hidden layer (32 neurons), hidden layer (16 neurons), and output layer
(single neuron).

The architecture was implemented using the high-level neural network API Keras
version 2.1.6 in Python 3.6.7 environment with TensorFlow backend. A rectified linear
unit (ReLU) activation function was used in all but the output layer, which exploits a
linear activation function. Weight matrices and bias vectors were randomly initialized at
the beginning of the NN training procedure, and then updated using the Truncated
Backward Propagation Trough Time method [12]. A RMSprop optimizer with a learning
rate of 0.001 was adopted to minimize Mean Absolute Error (MAE) as the cost function.
We considered 250 training epochs and a batch size equal to the subseries length.

2.3 Evaluation

The preprocessed dataset was divided into a training set including 13 randomly selected
patients, and a test set of 4 patients to evaluate prediction performances. This procedure
was repeated 10 times varying the composition of training and test sets. At the end, an
average of the prediction performances is computed for every scenario.

The forecasting accuracy was evaluated both in analytical and clinical terms. For
the analytical assessment, we used the Root-Mean Square Error (RMSE), which returns
a quantitative measure of the forecast error on the same unit scale as the data, i.e.
mg/dL.

To provide an indication of the consequences of prediction errors on treatments
decisions, we used the Clarke Error Grid analysis [13], a non-parametric graphical
method to interpret the mapping between the BG measurements and the corresponding
predictions in terms of severity of the potential harm caused by the prediction error. As
shown in Fig. 1, the grid is divided into five zones. Zone A includes the area where the
difference between reference and predicted BG values is less than 20%, leading to
correct clinical decisions based on the prediction. In zone B, the resulting clinical
decision is not correct, but still uncritical. In zone C, BG prediction errors can lead to
inappropriate treatment but without dangerous consequences for the patient, whereas in
zone D the necessary corrections are not triggered, both in case of hypoglycemia and
hyperglycemia. Prediction errors in zone E are the most dangerous because they lead to
treat hypoglycemia instead of hyperglycemia and vice versa.
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3 Results

Table 1 shows a comparison between the average prediction errors over 10 repetitions
in the three scenarios, considering sliding windows of different sizes. With a short
sliding window (15 min), the model that relies only on the BG time-series performs
slightly better than the others. Increasing the volume of historical data allows obtaining
more accurate predictions. Moreover, for a longer sliding window (45 min), feeding the
model with a combination of BG, HR and Fitbit time-series provides on average a
lower prediction error. Interestingly, such values are comparable to those obtained by
other generalized models trained in similar conditions [4, 5].

Figure 1 displays the Clarke Error Grid for a test patient using the BR-HR-Fitbit
model with a sliding window of 45 min. The majority of the points (97.65% on average
over 10 repetitions) are in the A zone, with just a few points in zone B and no points in
the dangerous areas. A positive clinical assessment is confirmed also for the univariate
and BG-HR scenarios, with less than 0.2% points on average outside zones A and B.

Fig. 1. Clarke Error Grid for a test patient (BG-HR-Fitbit model, window = 45 min)

Table 1. RMSE mean ± standard deviation [mg/dL] over 10 repetitions by window size

Model Window = 15 min Window = 30 min Window = 45 min

BG 15.82 ± 1.79 11.62 ± 0.85 11.05 ± 1.01
BG-HR 15.88 ± 1.64 11.45 ± 1.16 10.92 ± 1.27
BG-HR-Fitbit 15.88 ± 1.75 11.50 ± 1.36 10.82 ± 1.02
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4 Conclusion

In this paper we presented a multi-patient and multivariate deep learning approach to
develop a generalized model for BG prediction. The model is trained on a set of
diabetes patients’ data, collected using Freestyle Libre FGM system and Fitbit activity
tracker. Although a limited number of patients was considered, the resulting prediction
performances are encouraging, and comparable with the literature. Interestingly, it was
shown that, when using longer sliding windows for prediction, a combination of BG,
HR and Fitbit time-series can help in BG forecasting, providing a higher accuracy
compared to the univariate scenario. Future developments include an extension of the
proposed model to perform a multinomial classification discriminating between
hypoglycemia, normoglycemia and hyperglycemia episodes. Moreover, a deeper
architecture will be investigated.
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Abstract. Natural Language Processing (NLP) techniques have been used
extensively to extract concepts from unstructured clinical trial eligibility criteria.
Recruiting patients whose information in Electronic Health Records matches
clinical trial eligibility criteria can potentially facilitate and accelerate the clinical
trial recruitment process. However, a significant obstacle is identifying an effi-
cient Named Entity Recognition (NER) system to parse the clinical trial eligi-
bility criteria. In this study, we used NLP-ADAPT (Artifact Discovery and
Preparation Toolkit) to compare existing biomedical NLP systems (BiomedI-
CUS, CLAMP, cTAKES and MetaMap) and their Boolean ensemble to identify
entities of the eligibility criteria of 150 randomly selected Dietary Supplement
(DS) clinical trials. We created a custom mapping of the gold standard annotated
entities to UMLS semantic types to align with annotations from each system. All
systems in NLP-ADAPT used their default pipelines to extract entities based on
our custom mappings. The systems performed reasonably well in extracting
UMLS concepts belonging to the semantic types Disorders and Chemicals and
Drugs. Among all systems, cTAKES was the highest performing system for
Chemicals and Drugs and Disorders semantic groups and BioMedICUS was the
highest performing system for Procedures, Living Beings, Concepts and Ideas,
and Devices. Whereas, the Boolean ensemble outperformed individual systems.
This study sets a baseline that can be potentially improved with modifications to
the NLP-ADAPT pipeline.
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1 Introduction

Extraction of information from unstructured clinical trial eligibility criteria using
Natural Language Processing (NLP) techniques is essential to support clinical trial
recruitment process [1, 2]. Many NLP tools including MedLEE [3], the Clinical
Language Annotation, Modeling, and Processing Toolkit (CLAMP) [4]; the Clinical
Text Analysis and Knowledge Extraction System (cTAKES) [5]; etc. have been
developed to extract information related to anatomical location, signs and symptoms,
diseases, procedures, laboratory tests and medications [6, 7]. In the clinical domain,
extraction of clinical information or concepts is not adequate since the concepts are
significantly affected by attributes such as negation modifier, temporal information and
qualifiers which describe condition status or severity [8, 9]. NLP tools are generally
trained using a specific dataset and are suitable to extract certain concepts. For
example, CLAMP’s pipeline was trained on the 2010 VA challenge i2b2 corpus to
recognize problems, drugs, treatments and lab tests [10]. Thus, it is challenging to find
an NLP tool capable of extracting diverse concepts, modifiers and attributes.

The objective of this study was to address this issue by examining the performance
of standard open-source clinical NLP systems for the task of Named Entity Recognition
(NER) for a corpus outside of the domain for which these systems were developed. We
examined a particular strategy for combining annotations generated from out-of-the-
box clinical NLP systems into ensembles using NLP systems provided by the NLP
Artifact Discovery and Preparation Toolkit (NLP-ADAPT) [11]. NLP-Ensemble-
Explorer [12] integrates output from NLP-ADAPT, and through use of a custom
mapping to UMLS concepts, allowed us to investigate performance of individual
systems and their ensembles for the task of NER for several semantic groupings of
UMLS concepts on a novel corpus. NLP-ADAPT and NLP-Ensemble-Explorer were
both developed as a complete pipeline for clinical researchers to help improve the
experience of the exploration phase of NLP and Information Extraction (IE) projects
using individual NLP systems and their ensembles.

2 Background

2.1 Unified Medical Language Systems (UMLS) System

The Unified Medical Language Systems (UMLS) developed and maintained by the
National Library of Medicine (NLM) provides a unified global biomedical terminology
[13]. The UMLS semantic network organizes many concepts and groups them
according to the semantic types [14]. There are 15 semantic groups, 133 semantic types
and 54 semantic relationships [15]. The semantic network has been widely used in
information extraction, clinical annotation, and knowledge representation [16].

2.2 NLP Systems

Parsing clinical notes is a critical task for information extraction (IE) as it leverages
information from narrative text to support clinical and translational research [6].
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Clinical NLP systems such as the BioMedical Information Collection and Under-
standing System (BioMedICUS) [17]; the Clinical Language Annotation, Modeling,
and Processing Toolkit (CLAMP) [18]; the Clinical Text Analysis and Knowledge
Extraction System (cTAKES) [19]; and MetaMap [20] have been developed to perform
Named Entity Recognition (NER) and IE tasks on free text clinical notes or biomedical
literature. Because many of these systems were developed to extract specific types of
information, adopting these systems for use beyond their original purpose without
customization of each system’s statistical models and dictionaries can potentially result
in reduced performance [4].

3 Methods

3.1 Overview of the Study

This study compares performances of different NLP systems and their ensembles for
the task of concept extraction from unstructured dietary supplements (DSs) clinical trial
eligibility criteria. The study was performed following these steps: (1) obtain the
clinical trial eligibility criteria of DS clinical trials from ClinicalTrials.gov; (2) develop
gold standard annotations; (3) map entities to UMLS semantic types; (4) Apply NLP-
ADAPT to extract entities mapped to semantic types; and (5) use NLP-Ensemble-
Explorer to create ensembles and compare the performance of individual and ensem-
bled annotator systems against the gold standard annotations (see Appendix, Fig. 2).

3.2 Corpus and Annotation

We obtained the dietary supplements clinical trial data corpus from ClinicalTrials.gov,
which is an online repository developed by the National Library of Medicine
(NLM) and the National Institutes of Health (NIH). We randomly selected 150 clinical
trials from the Behaviors & Mental Disorders and Nervous System Diseases categories
and parsed the clinical trial XML files to obtain the eligibility criteria. We annotated the
eligibility criteria by following the annotation guidelines1 developed in our previous
unpublished study. Three annotators independently annotated 5 randomly selected
clinical trials by understanding the first iteration of the guidelines. The team compared
the annotation results, discussed the difference of opinions and revised the annotation
guidelines. The team then annotated another set until a reasonable interrater agreement
is reached and until no discrepancy among annotators. Later, Inter-annotator agreement
among three annotators was computed over 10 trials, revealing a kappa of 0.94. The
annotated entities and attributes include: Demographics, Observation, Condition,
Procedure, Device, Drug, Dietary Supplement, Negation Modifier, Qualifier, Mea-
surement, and Temporal Measurement. While annotating we observed that certain
criteria can be easily computable to extract from EHR data while the rest are either
difficult or impossible to compute. Examples of such criteria are given below: criteria
referring to willingness or unwillingness to use or decline certain medications or

1 https://z.umn.edu/annotation_guidelines.
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methods (contraception); requiring consent; ability/inability and compliance of the
individual, and caregivers or study partners; criteria about participant’s enrollment in
any other clinical trial. The eligibility criteria whose corresponding data cannot be
found in the EHR were not annotated even if certain terms in the criteria qualify for one
of the entities or attributes as this information is not computable.

3.3 Mapping to UMLS Semantic Groups Across NLP Systems

To compare the performance of individual NLP systems against our gold standard
annotations, the entities and attributes present in the gold standard annotation were
mapped to UMLS semantic types/groups and annotation types available in individual
NLP systems. We observed that some entities can be mapped to one or more semantic
groups. For example, Condition and Observation were mapped to Disorders (see
Appendix, Fig. 3). Figure 3 also illustrates that CLAMP and cTAKES don’t annotate
four and two semantic groups respectively.

3.4 NLP-ADAPT

Text notes representing eligibility criteria were processed using the version of NLP-
ADAPT for Kubernetes (NLP-ADAPT-kube), which includes the following NLP
systems that are compatible with the Unstructured Information Management Archi-
tecture (UIMA) [21]: BioMedICUS, CLAMP, cTAKES, and MetaMap (with UIMA
adapter). All NLP systems in NLP-ADAPT utilized their default pipelines to extract
entities mapped to UMLS semantic types. To minimize false positives, as determined
by our prior experience with these systems, we used 800 as the threshold for Meta-
Map’s evaluation score. MetaMap outputs all entity mapping candidates with corre-
sponding mapping scores in a range of 0-1000 (where 1000 indicates a complete
mapping) [22]. Annotations produced by NLP-ADAPT-kube were extracted using
dkpro-cassis, a software library developed by the Technische Universität Darmstadt
[23]. The following versions of the UMLS, by system, were used: 2019AB by
MetaMap; 2016AB by cTAKES; 2016AA by BioMedICUS; 2014AB by CLAMP.

NLP-Ensemble-Explorer [12] was used to create ensembles and evaluate individual
systems and their ensembles on the task of Named Entity Recognition (NER) of text
spans representing UMLS concepts across the DS clinical trial corpus. Individual
systems and their ensembles were evaluated using standard performance measures of
precision, recall and F1-score. NLP-Ensemble-Explorer takes comprehensive lists of all
permutations for NLP systems as input and transforms these into an exhaustive set of
Boolean combinations using the logical _ operator - to represent a UNION set oper-
ation (or [ ); and the logical ^ operator - to represent an INTERSECTION set oper-
ation (or \ ). NLP-Ensemble-Explorer then evaluates Boolean combinations by
creating a merged set of system annotations to assess performance against gold stan-
dard annotations. Once a Boolean expression is generated it is stored and evaluated as a
binary tree using the parse tree algorithms provided by Miller and Ranum [24]. NLP-
Ensemble-Explorer uses character-level binary i-o classification on the positive label
(labeled as 1 and 0, respectively) to determine whether there is overlap between an
annotated span in the system, merged span set and gold standard span set for each
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document [25]. We used a character-level partial matching scheme to adjust the weight
based on the length of the match, in order to appropriately weight matches to the
number of characters in overlap.

4 Results

4.1 Entities and Attributes in DS Clinical Trials

The distribution of entities and attributes in the DS clinical trials is shown in Fig. 1.
Out of the annotated 150 trials, Condition entity (mapped to Disorders in Fig. 1.) was
the largest (1,832 terms) followed by Qualifier (1,137 terms), Drug (890 terms) and
Observation (868 terms) while Device was the smallest (37 terms).

4.2 Performances of Individual NLP Systems and Boolean Ensemble

As individual NLP systems were trained on different datasets and had distinct strengths
and weaknesses, the top performers for one semantic group often struggled in other
areas. Among the individual NLP systems, cTAKES was the highest performing
system for Chemicals and Drugs and Disorders semantic groups and BioMedICUS
was the highest performing system for Procedures, Living Beings, Concepts and Ideas,
and Devices. We evaluated Boolean combinations of all 4 systems on the DS corpus for
all semantic groups in our mapping with the exceptions. For Concepts and Ideas, and
Phenomena, only 3 systems were evaluated, because CLAMP does not annotate for
these semantic groups, whereas for Living Beings, and Devices, only 2 systems were
evaluated, because CLAMP and cTAKES does not annotate for these groups. The total
number of potential Boolean combinations when combining 4 systems was 238; while
for 3 systems it was 28; and for 2 systems it was 4 [26]. The highest performing
Boolean combination in each semantic group were shown in Table 1. For example,
Boolean combinations like ((BioMedICUS ^ cTAKES) _ CLAMP) and (((BioMedI-
CUS _ CLAMP) ^ MetaMap) _ cTAKES) have higher F1-scores for the Chemicals
and Drugs and Disorders semantic groups, respectively than any single system.

Fig. 1. Distribution of entities and attributes in DS clinical trials
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5 Discussion

The four NLP annotator systems used in this study were developed with different
datasets. Both BioMedICUS and cTAKES utilize pipelines that were developed on the
MiPACQ corpus, which consists of fully anonymized outpatient clinical narratives [27,
28]. CLAMP’s pipeline has elements that were trained on the 2010 VA challenge i2b2
corpus, which consists of hospital discharge summaries and progress notes taken from
multiple independent institutions [10]. MetaMap was designed for extracting text from
biomedical literature [29].

Because of this, each individual system has its own internal strengths and weak-
nesses but may improve performance for particular tasks when ensembled with systems
that have complementary strengths and weaknesses, as discussed by Derczynski [30].
Thus, ensemble performance of systems would provide increased performance over
any one individual system. The DS clinical trial eligibility criteria corpus used in this
study is significantly different from any corpora used to develop these annotator

Table 1. NLP-ADAPT individual system and Boolean combinations performance for NER;
measures are p = precision, r = recall, F1 = F1-score; systems are A: BioMedICUS, B:
CLAMP, C: cTAKES and D: MetaMap. The first part of the table contains individual NLP
system performance and the second part of the table contains only the highest performing
Boolean combination in each semantic group
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systems. The corpus covers criteria related to patient characteristics, disease charac-
teristics, laboratory tests, lifestyle and concurrent therapies which can further be
classified according to several dimensions that characterize the content of corre-
sponding eligibility criteria, including but not limited to temporal status, time inde-
pendent status, constraint types and subject.

BioMedICUS uses a tiered scoring technique for matching UMLS concepts to
phrases by first performing direct dictionary phrase matches, second by lower-cased
dictionary phrase matches, and lastly using a discontinuous bag of SPECIALIST
normalized terms matches. cTAKES matches UMLS concepts to phrases, by each
phrase’s lexical and non-lexical permutations and variations against concepts in a
dictionary and a list of maintained terms [5]. CLAMP matches UMLS concepts to
phrases using the BM25 algorithm for UMLS lookup to find candidate concepts from
the UMLS and then applies RankSVM to rank those candidates, from which the top
ranked concept is selected. MetaMap uses a shallow parser to generate candidate
phrases then, for each candidate phrase, many lexical variations are generated; finally,
each phrase is then assigned a score based on its distance to concepts in the UMLS
[31]. For this study, we did not use word sense disambiguation functionality from these
systems.

We tested the above-mentioned NLP systems and ensemble methods on clinical
trial corpus to examine the differences between systems. We saw improved perfor-
mance when systems were combined. The performance improvement from particular
Boolean ensembles confirms the complementary nature of the individual NLP systems,
which we suspect exists due to the previously mentioned differences in development.

In order to evaluate the system annotations, we compared the FPs and FNs for each
system against the gold standard annotations. Out of 556 FNs, 28 belong to Chemicals
and Drugs, Disorders and Procedures semantic groups whereas 515 belong to Living
Beings, Concepts and Ideas, Devices, and Phenomena. Among the 8622 FPs, 3984,
941, 485 and 3222 belong to BioMedICUS, CLAMP, cTAKES and MetaMap,
respectively. We investigated the reasons and found that the systems annotated the text
from the sentences which were not manually annotated resulting in high FPs and
affecting NER performance. According to our annotation guidelines, we omitted
annotating the sentences which in our view cannot be converted into computable
queries. For example, any sentence which is focused on the willingness of the patient,
informed consent or in the investigator’s opinion.

This study has some limitations. As this was our first attempt at defining the
mapping to UMLS semantic types across NLP systems, our choice of mappings might
not be optimal. Additionally, since the NLP systems used in this study are by default
each configured with different versions of UMLS, it is possible different versions can
supplement or hinder the system performance. However, in our study, we observed that
the older version of UMLS outperformed the systems which used newer versions in
some tasks (e.g., BioMedICUS). We believe inclusion of different versions of the
UMLS may be beneficial, since, for example, developers of SemRep continue to use
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2006AA, as opposed to newer versions of the UMLS, because there are fewer
concepts/synonyms which decreases ambiguity [32]. Furthermore, since systems
within NLP-ADAPT are configured with different versions of the UMLS, we believe
this exploits complementarity between systems (as discussed by Derczynski), with
potential for increased ensemble performance. Thus, complementarity due to UMLS
version differences warrants further research. Lastly, we only examined Boolean
combination ensembles in this study. NLP-Ensemble = Explorer has an option for
generating all combinations of majority-vote ensembles, and will be explored in future
work.

All systems used in NLP-ADAPT were based on the UIMA architecture, and as
such this could be a potential source of bias in our results. Thus, use of non-UIMA
based NLP/IE systems, such as QuickUMLS and SpaCy for use in extraction of UMLS
concepts based on our mapping would be worth exploring. Also, customization of the
systems in NLP-ADAPT to use customized dictionaries such as iDISK [33] would be
worth exploring, which demonstrated better performance to identify supplement enti-
ties compared to UMLS [34].

Our results indicate that currently publicly available traditional biomedical NLP
systems do not seem to generalize well beyond the tasks for which they were originally
designed. These findings are consistent with other previously published results of
applying standard NLP tools and their combinations in the domain of pre-hospital
trauma notes which also showed limited generalizability [35, 36]. It is possible that the
new generation of biomedical NLP tools based on neural network models may help
overcome some of these issues; however, given the results obtained so far we believe
that heavy domain adaptation is necessary in order to realize the full potential of
general-purpose biomedical NLP tools.

6 Conclusion

We used NLP-ADAPT which is configured with NLP systems and ensemble methods
to extract data elements from the unstructured DS clinical trial eligibility criteria.
Results indicated that the ensemble of NLP systems can improve NER performance of
each individual system, thus setting a baseline that can be potentially improved with
modifications to the NLP-ADAPT pipeline.
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Appendix

Fig. 2. Overview of the study

Fig. 3. Mapping to UMLS semantic groups across NLP systems
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Abstract. Extracting meaningful features from unstructured text is one
of the most challenging tasks in medical document classification. The var-
ious domain specific expressions and synonyms in the clinical discharge
notes make it more challenging to analyse them. The case becomes worse
for short texts such as abstract documents. These challenges can lead
to poor classification accuracy. As the medical input data is often not
enough in the real world, in this work a novel ontology-guided method is
proposed for data augmentation to enrich input data. Then, three differ-
ent deep learning methods are employed to analyse the performance of
the suggested approach for classification. The experimental results show
that the suggested approach achieved substantial improvement in the
targeted medical documents classification.

Keywords: Ontology · Data augmentation · Medical document
classification

1 Introduction

Medical document classification is different from the commonly considered doc-
ument classification in terms of text terminology and their repetitiveness. In
medical document classification, the content explains a set of medical events
in a discharge note, with the objective of providing a clarification as accu-
rately and comprehensively as conceivable when explaining the health condi-
tion of a patient. Mainly, such text massively uses domain-specific vocabulary
and acronyms, making medical note analysis significantly different from com-
monly considered document classification. In addition, different combinations of
domain-specific clinical events in a medical discharge note can explain a patient’s
health status completely differently. Hence, extracting important information to
analyze clinical documents is exceptionally imperative.

One of the important factors which has effect on the classification accuracy
is the size of the data set for training the model. Generally, there is a lack of
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adequate data in medical area [1]. When the training data set is not big enough,
the trained classification model has not sufficient instances to learn. Hence, the
prediction of the classifier will not be satisfactory. This issue can be worse when
the data set has not enough text inside of the documents such as document
abstracts. One possible solution to address the issue is to augment data for
training the model.

Data augmentation is a methodology that empowers experts to fundamen-
tally build the assorted variety of data accessible for training models, without
really gathering new data. Data augmentation has many applications in image
classification, sound and speech classification [2]. But there is not much work for
text. In terms of text, it is not appropriate to augment the text by utilizing sig-
nal transformations as commonly used in image or speech classification. Because
the order of words in text is important and may has semantic meaning. Hence,
the best approach for doing data augmentation is to paraphrase the sentences
in the documents by human. But this is very expensive due to the large size of
instances in the data set. Replacing words and expressions with their synonyms
can be a reasonable choice in data augmentation [3]. However, these methods
are using normal dictionaries for augmentation and some domain specific terms
or acronyms do not have synonyms in normal dictionaries.

As there are domain-specific vocabulary and acronyms in medical discharge
notes, finding synonyms is not trival and this requires domain knowledge. In
this paper, an ontology-based method is introduced for data augmentation by
targeting concepts of words and expressions in the documents. This method will
replace all of the words and phrases with their scientific names if they belong
to a concept in medical field. This paper plans to study the following research
questions:

1. Whether the ontology-guided approach can produce new discriminative
instances from the original document set; and

2. Whether the proposed method can improve the classification accuracy in the
targeted medical documents classification task.

2 Related Work

2.1 Data Augmentation in Classification

Data augmentation is a technique to deal with data scarcity in training mod-
els for different tasks such as classification. There are some common methods
such as adding spelling errors, paraphrasing by utilizing syntax trees or regular
expressions, adding textual noise and replacing with synonyms. Among these
methods, synonyms replacement is one of the common approaches in textual
data augmentation.

Zhang et al. [3] applied data augmentation in Convolutional Neural Network
(CNN) for text classification by utilizing English thesaurus obtained from Word-
Net. They replaced the words and expressions with their synonyms in the text to
make new text based on the main data set. Rosario [2] introduced a method to
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data augmentation for short texts classification by producing similar words for
each short texts to make a longer text by considering a semantic space. Quijas
has investigated the effect of data augmentation in training CNNs and RNNs
for text classification [4]. Kobayashi has suggested “contextual augmentation”
method which produces counterparts of words by using a bidirectional language
model and replaces words with their counterparts in sentences. They examined
the method on different data set and showed improvements [5]. Coulombe in [6]
has introduced another textual data augmentation by applying different methods
including paraphrase generation, spelling errors, textual noise, back-translation
and synonyms replacement. The methods were tested on different neural network
architectures. Jungiewicz has proposed an approach to textual data augmenta-
tion for training CNNs by applying on sentence classification task. The researcher
transformed sentences by keeping their lengths the same as their original lengths.
The author has employed a thesaurus which belongs to Princeton University’s
WordNet [7]. However, these methods are using normal dictionaries for augmen-
tation and some domain specific terms or acronyms do not have synonyms in
normal dictionaries.

2.2 Feature Extraction in Medical Document Classification

Shah and Patel have used statistical approaches from features distribution in
document classification to rank features [8]. The introduced methods used infor-
mation gain (IG), mutual information, word frequency and term frequency-
inverse document frequency (tf-idf) metrics for textual feature extraction. Nev-
ertheless, these methods weight each feature separately without considering the
relationship between features. Ontology-based classification methods is intro-
duced in [9]. Dollah and Aono have introduced ontology-based classification
approaches for biomedical abstract text classification [9]. Authors in [10–13]
utilize different ontologies such as Unified Medical Language System (UMLS),
Systematized Nomenclature of Medicine (SNOMED) and Medical Subject Head-
ings (MeSH) to increase text classification accuracy.

Medical documents have been utilized in different tasks such as analyzing
Framingham risk score (FRF), assessing risk factors in diabetic patients, dis-
criminating heart disease risk factors, and finding risk factors for heart disease
patients [14]. In this paper, we employ ontology as a feature extraction approach
to detect meaningful words and expressions for augmenting documents.

3 Our Ontology-Based Method

In this section, we illustrate a novel data augmentation method and the uti-
lized tools for extracting concepts of words and expressions for producing new
documents. The suggested approach targets concepts of words and expressions
to replace them with their scientific names. Figure 1 shows the flowchart of the
suggested ontology-based approach for data augmentation.
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Fig. 1. The proposed data augmentation for medical document classification

The input of the suggested system is a set of clinical documents. Firstly,
the method parses each document and tokenize the context based on sentences.
Then, MetaMap tool [15] is employed to detect the meaningful phrases and their
concepts in each sentence from the Unified Medical Language System (UMLS).
After finding the phrases with a concept, the scientific name of the detected
words or expressions are used to replace their corresponding phrases in the sen-
tence. All of the new documents are created by applying the method. Next, all of
the features are extracted from the original data set and the new created data set.
Then, three different neural network approaches including Convolutional Neural
Network (CNN), Recurrent Neural Network (RNN) and Hierarchical Attention
Network (HAN) are employed for classification. The output predicts the label of
a document.

It is expected that the suggested approach which produces meaningful docu-
ments and keeps their class name based on the original documents, can enhance
the classification accuracy.

3.1 Data Augmentation Method

There are many domain-specific words and expressions in medical document
and data augmentation requires domain knowledge. In this section, an ontology-
guided approach is introduced for short text augmentation as a preprocessing
stage.

UMLS is a domain-specific dictionary in the biomedical field. It provides an
ontology structure of medical terminology concepts. In the suggested approach
(“SciName”), each document in the data set (D) is analyzed independently.
Firstly, the xth document (Dx) is tokenized based on the sentences (S). Then,
the ith sentence (Si) is sent to the UMLS by using the MetaMap tool. MetaMap
extracts all of the concepts of the detected meaningful expressions in Si from
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the UMLS. Next, all of the detected phrases are replaced with their extracted
scientific names from the UMLS. Finally, Si is updated in Dx. This process is
repeated on all of the sentences of documents to make new documents.

A document segment is given below to illustrate how MetaMap works on the
input medical documents and what output it returns in the data augmentation
process. The following is a sample of a clinical note.

“Early resistance to pathogens requires a swift response from nk cells. In
largeint giorgio trinchieri identified an nk growth factor and activator later
called interleukin 12 il 12. This discovery helped reveal the regulatory link
between innate and adaptive immunity.”

Fig. 2. A segment of returned results of extracted concepts using MetaMap

Figure 2 shows the output of the MetaMap for the sample document. Table 1
presents the detected expressions with their concepts and scientific names for
each phrase of the sample document. The concepts and scientific names of each
detected phrase in the table is extracted by analyzing the lines 7, 15, 16, 17 for
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the first sentence, lines 25, 33, 34 for the second sentence and lines 42, 50 and 51
for the third sentence (in Fig. 2). Firstly, the phrase appeared in square brackets
is extracted as a concept of the detected expression in the sentence. Then, the
phrase appeared within the round parentheses at the same line is extracted as a
scientific name of the detected expression. Finally, the extracted scientific name
is used to replace the original expression in the sentence. This process is applied
on all of the three sentences of the sample note. Below is the final output of the
proposed method for the example clinical note.

Table 1. The detected phrases of the example notes using MetaMap.

Sentences Detected phrases Extracted concepts Replaced phrases

First sentence pathogens [Organism] Pathogenic organism

swift [Bird] Family Apodidae

response [Organism Attribute] Response process

nk cells [Cell] Natural Killer Cells

Second sentence nk [Cell] Natural Killer Cells

call [Mental Process] Decision

il [Geographic Area] Illinois (geographic location)

Third sentence help [Qualitative Concept] Assisted (qualifier value)

regulatory [Regulation or Law] regulatory

link [Intellectual Product] Links List

“Early resistance to pathogenic organisms requires a family apodidae
response process from natural killer cells. In largeint giorgio trinchieri iden-
tified an natural killer cells growth factor and activator later decisioned
interleukin 12 illinois (geographic location) 12. This discovery assisted
(qualifier value) reveal the regulator links list between innate and adap-
tive immunity.”

The length of the output is longer than the input due to the more specific
knowledge provided by the UMLS. For example, the acronym “nk” is changed to
“natural killer” and the acronym “il” is replaced with “illinois (geographic loca-
tion)”. The proposed method can easily provide more informative knowledge by
using the UMLS. Finally, the new produced documents are used for the train-
ing stage together with the original documents to improve the performance of
medical document classification.

4 Experiment Design

4.1 Classification Methods

In the ontology-based data augmentation, the new documents are made and
mixed with the original documents to use for classification. We use three deep
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learning (DL) models, including a convolutional neural network (CNN), a recur-
rent neural network (RNN), and a hierarchical attention network (HAN) [16].
The performance is calculated by evaluating macro F1-measure metric for all of
the used ML methods:

F1 measure =
1
N

N∑

i=1

2 ∗ (precision ∗ recall)
(precision + recall)

(1)

where N indicates the number of classes. Word2Vec word embedding is used to
represent word tokens into numerical vectors. Word embedding represents the
semantic meaning of each word in a numerical vector form. Word2Vec makes
word embedding by utilizing a feed-forward neural network to anticipate the
vicinage words for an input word. The word embedding is trained on all doc-
uments and transformed each word to its corresponding embedding. Then, the
learned word embedding is used to generate the input for CNN, RNN and HAN.
The size of word embedding is 350.

4.2 Dataset and Preprocessing

The performance of the suggested ontology-guided data augmentation is evalu-
ated on the 2010 Informatics for Integrating Biology and the Bedside (i2b2),
CAD (Coronary Artery Disease) task of the 2008 Informatics for Integrat-
ing Biology and the Bedside (i2b2) and the PubMed data set. The labels of
i2b2(2008) and i2b2(2010) data set are CAD and non-CAD that form an imbal-
anced binary classification task. The numbers of CAD instances for i2b2(2008)
training and testing sets are 391 and 272 documents, respectively. The num-
bers of CAD instances for i2b2(2010) training and testing sets are 25 and 48
documents, respectively. The labels of the PubMed data set are metabolism,
physiology, genetics, chemistry, pathology, surgery, psychology, and diagnosis.
The data set includes 8000 documents, each class has 1000 documents with 70%
of documents for training and 30% for testing. The size of the training sets of
all data sets will double by adding the new produced documents to the original
ones.

The i2b2(2008) data set has 20701 different terms. It contains 1113 docu-
ments which 656 documents for training and 457 documents for testing. The
i2b2(2010) data set has 7481 different terms. It contains 426 documents which
170 documents for training and 256 documents for testing. The PubMed data
set has 30178 various terms. The number of the train documents is increased
to 16000 in PubMed, 2226 in i2b2(2008) and 852 in i2b2(2010) by adding the
new augmented documents. The 2223 input documents contain 27248 various
terms. The 852 input documents contain 14920 various terms. The 16000 input
documents include 59151 different terms.

4.3 Parameter Settings

Three different ML methods are used to evaluate the proposed idea. The sug-
gested parameters in [16] are used for the employed neural network approaches.
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The early stopping approach by considering the validation accuracy (three
epochs without any change) is used to terminate the training step.

The used CNN architecture has 3 parallel convolutional layers with 100 chan-
nels for each one. The window of layers are 3, 4, and 5 words, respectively. The
output of this architecture for each input document is 300 channels × number
of words. The applied dropout rate is 50% [16].

HAN [16] is a deep learning model developed for document classification. It
contains two hierarchies. The lower hierarchy analyzes a line in word level and
it feeds with a word embedding. Then, it uses a bidirectional GRU to apply
an attention mechanism to find more important words. The output is a line
embedding which is feed to the upper hierarchy to analyze a document in line
level. A dropout is applied on the produced document embedding and finally, a
softmax function is employed to predict a label of each document.

The RNN architecture uses an attention mechanism (which is similar to a
single hierarchy of HAN method). A bidirectional GRU with attention and 200
number of neurons is utilized with dropout and softmax. The used optimizer is
Adam with learning rate of 0.0002. The applied dropout rate is 50%.

5 Results and Discussion

The performance of the methods are evaluated based on macro F1-measure and
accuracy metrics for the PubMed data set and macro F1-measure metric for the
i2b2(2010) data set.

Three different approaches are applied on the original documents in each
data set. In first approach (SynName), we used WordNet dictionary to extract
all of the synonyms of the main word appeared inside of a document. Then, the
most similar synonym is found by using the GloVe pre-trained model (from the
GloVe website http://nlp.stanford.edu/data/glove.6B.zip) and used to replace
the main word to augment new documents. The used GloVe model provides 100-
dimensional vector which is trained on Wikipedia data with 6 billion tokens and
a 400,000 word vocabulary. In second approach (our proposed method), UMLS
is employed to find scientific names of the appeared phrases in the documents
based on their concepts to replace with the original phrase in the document
to augment a new document. In third approach, we combined the augmented
document from the two introduced approaches with the original data set. The
proposed augmentation method (SciName) is applied on the training set only.
Then, experimental results are calculated using 30 independent runs on the
original test set.

Tables 2, 3, 4 and 5 compare the statistical results for three methods. The
average and standard deviation of accuracies and F1-measure are provided for
each ML method and the significance test is done utilizing the experiment results
of the 30 runs to compute the three approaches. The Wilcoxon signed ranks test
with significance level of 0.05 is used to assess whether the suggested approach
has made significant difference in classification performance. In Tables 2, 3, 4
and 5, “T” column indicates the significance test of the best approach (the

http://nlp.stanford.edu/data/glove.6B.zip
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third combined approach) against the other methods, where “+” indicates the
suggested method is significantly better, “=” mentions no significant difference,
and “−” points significantly less accurate. The best results are highlighted in
the tables.

By analyzing Tables 2 and 3, it is clear that neural network methods are
improved in accuracy and F1-measure by using combination of the original data
set with the obtained augmented data sets from the two introduced augmenta-
tion methods. The highest accuracy and F1-measure in Tables 2 and 3 belong to
RNN. Tables 4 and 5 provide the statistical results for i2b2(2010) and i2b2(2008)
data sets, respectively. In Table 4, CNN, RNN and HAN show high F1-measure
in the combination approach (SynName+SciName). The highest F1-measure
in both data sets belongs to RNN with 96.43% and 995.61%, respectively. In
Tables 2, 3, 4 and 5, the suggested ontology-based approach (SciName) shows
better performance in comparison with the SynName method [3].

Interestingly, although some of the resulting documents look gibberish, the
generated documents improve the classifier performance. This might be because
our approach works at word level which can tolerate non-sense sentences as long
as they contain meaningful words. Our method not only works well on clinical
notes (such as i2b2(2008) and i2b2(2010)), but also it shows promising results
on related biomedical notes (PubMed set).

5.1 The Value of the Work

As indicated in this paper, in numerous practical works on modeling, data aug-
mentation is extremely important. This is a situation that we encounter when
in practical settings, real life patient cases are unavailable to feed data-hungry
models (a rare disease is an example where available cases are few). In fact, syn-
thetic data synthesis and augmentation has strong advantages with respect to
advancing healthcare models research by protecting patient confidentiality, and
is a promising tool for situations where real world data is difficult to obtain or
unnecessary. At that time, in combination with data augmentation we can also
perform simulations to generate digital patient cases.

Table 2. Comparison of classification accuracy and standard deviation averages using
30 independent runs for PubMed data set. The significant test is for the combined
approach against others (Wilcoxon Test, α = 0.05)

Methods Original SynName SciName SynName+SciName

Classifiers Accuracy Accuracy Accuracy Accuracy

Ave±Std (Best) T Ave± Std (Best) T Ave±Std (Best) T Ave± Std (Best)

CNN 71.64± 0.55 (72.67) + 80.64± 0.63 (81.84) + 80.80± 0.51 (82.08) + 84.16± 0.66 (85.42)

RNN 71.53± 1.03 (73.50) + 84.42± 0.90 (86.38) + 85.57± 0.62 (86.75) + 90.80± 0.45 (91.63)

HAN 71.29± 0.69 (72.88) + 84.29± 0.85 (85.38) + 85.00± 0.94 (86.92) + 90.75± 0.49 (91.79)
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Table 3. Comparison of classification F1-measure and standard deviation averages
using 30 independent runs for PubMed data set. The significant test is for the combined
approach against others (Wilcoxon Test, α = 0.05)

Methods Original SynName SciName SynName+SciName

Classifiers F1-measure F1-measure F1-measure F1-measure

Ave± Std (Best) T Ave± Std (Best) T Ave± Std (Best) T Ave± Std (Best)

CNN 71.54± 0.76 (72.64) + 80.42± 0.69 (81.42) + 80.48± 0.71 (81.81) + 84.34±0.54 (85.36)

RNN 71.62± 0.73 (72.97) + 84.07± 0.88 (85.64) + 85.37± 0.90 (87.00) + 90.91±0.58 (91.98)

HAN 70.96± 0.82 (72.21) + 84.21± 1.23 (86.16) + 84.95± 0.73 (86.36) + 90.85±0.79 (91.99)

Table 4. Comparison of classification F1-measure and standard deviation averages
using 30 independent runs for i2b2 2010 data set. The significant test is for the combined
approach against others (Wilcoxon Test, α = 0.05)

Methods Original SynName SciName SynName+SciName

Classifiers F1-measure F1-measure F1-measure F1-measure

Ave± Std (Best) T Ave±Std (Best) T Ave± Std (Best) T Ave±Std (Best)

CNN 77.66± 13.16 (90.22) + 92.40± 1.95 (95.62) + 92.72± 0.90 (95.10) + 94.15±1.12 (97.44)

RNN 85.51± 8.00 (91.37) + 91.30± 2.74 (97.51) + 94.66± 1.32 (96.92) + 96.43±0.68 (98.12)

HAN 56.11± 18.78 (90.35) + 86.90± 7.23 (97.48) + 93.75± 2.55 (96.87) + 96.27±0.73 (97.51)

Table 5. Comparison of classification F1-measure and standard deviation averages
using 30 independent runs for i2b2 2008 data set (CAD Task). The significant test is
for the combined approach against others (Wilcoxon Test, α = 0.05)

Methods Original SynName SciName SynName+SciName

Classifiers F1-measure F1-measure F1-measure F1-measure

Ave± Std (Best) T Ave± Std (Best) T Ave± Std (Best) T Ave± Std (Best)

CNN 90.44± 1.40 (92.93) + 90.53± 2.79 (93.13) + 90.80± 0.84 (92.19) + 92.09±0.69 (93.64)

RNN 95.52± 1.13 (97.28) = 95.27± 0.64 (96.40) = 95.61±0.44 (96.62) = 95.25± 0.53 (96.37)

HAN 95.16± 1.53 (97.29) = 94.16± 1.74 (96.61) + 95.47± 0.34 (96.14) = 95.60±0.51 (96.61)

6 Conclusions and Future Work

This paper proposes a new ontology-based data augmentation method by replac-
ing meaningful expressions with their scientific names to deal with the data short-
age issue in medical document classification. The introduced approach is able
to improve the precision of classification in the neural network models. Experi-
mental results for accuracy and f1-measure show that the suggested method can
increase the performance of the CNN, RNN and HAN models by using the sug-
gested ontology-based approach to provide more samples in the training phase.
This paper shows promise in utilizing an ontology-guided data augmentation
approach in clinical document classification, however, it is still necessary to do
more research to improve the classification performance. We will explore other
ways to do data augmentation for medical discharge notes. Meanwhile, we will
investigate to employ available domain-specific dictionaries instead of UMLS to
enhance the classification precision.
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10. Buchan, K., Filannino, M., Uzuner, Ö.: Automatic prediction of coronary artery
disease from clinical narratives. J. Biomed. Inform. 72, 23–32 (2017)

11. Abdollahi, M., Gao, X., Mei, Y., Ghosh, S., Li, J.: Uncovering discriminative
knowledge-guided medical concepts for classifying coronary artery disease notes.
In: Mitrovic, T., Xue, B., Li, X. (eds.) AI 2018. LNCS (LNAI), vol. 11320, pp.
104–110. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03991-2 11

12. Abdollahi, M., Gao, X., Mei, Y., Ghosh, S., Li, J.: An ontology-based two-stage
approach to medical text classification with feature selection by particle swarm
optimisation. In: 2019 IEEE Congress on Evolutionary Computation (CEC), pp.
1–8 (2019)

13. Abdollahi, M., Gao, X., Mei, Y., Ghosh, S., Li, J.: Stratifying risk of coronary artery
disease using discriminative knowledge-guided medical concept pairings from clin-
ical notes. In: Nayak, A.C., Sharma, A. (eds.) PRICAI 2019. LNCS (LNAI), vol.
11672, pp. 457–473. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
29894-4 37

14. Shivade, C., Malewadkar, P., Fosler-Lussier, E., Lai, A.M.: Comparison of UMLS
terminologies to identify risk of heart disease using clinical notes. J. Biomed.
Inform. 58, S103–S110 (2015)

15. Aronson, A.R., Lang, F.-M.: An overview of MetaMap: historical perspective and
recent advances. J. Am. Med. Inform. Assoc. 17, 229–236 (2010)

16. Gao, S., et al.: Hierarchical attention networks for information extraction from
cancer pathology reports. J. Am. Med. Inform. Assoc. 25, 321–330 (2017)

http://arxiv.org/abs/1805.06201
http://arxiv.org/abs/1812.04718
https://doi.org/10.1007/978-3-030-03991-2_11
https://doi.org/10.1007/978-3-030-29894-4_37
https://doi.org/10.1007/978-3-030-29894-4_37


Divide to Better Classify
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Abstract. Medical information is present in various text-based
resources such as electronic medical records, biomedical literature, social
media, etc. Using all these sources to extract useful information is a real
challenge. In this context, the single-label classification of texts is an
important task. Recently, in-depth classifiers have shown their ability
to achieve very good results. However, their results generally depend on
the amount of data used during the training phase. In this article, we
propose a new approach to increase text data. We have compared this
approach for 5 real data sets with the main approaches in the literature
and our proposal outperforms in all configurations.

Keywords: Natural language processing · Document classification ·
Textual data augmentation

1 Introduction

Medical information is present in various text-based resources such as electronic
medical records, biomedical literature, social media, etc. Using all these sources
to extract useful information is a real challenge. In this context, the single-label
classification of texts is an important task. Recently, in-depth classifiers have
shown their ability to achieve very good results. However, their results generally
depend on the amount of data used during the training phase.

In this article, we focus on data augmentation methods that can be effective
on small data sets. Data augmentation uses limited amounts of data and trans-
forms existing samples to create new ones. Then, an important challenge is to
generate new data that retain the same label. More precisely, it is a matter of
injecting knowledge by taking into account the invariant properties of the data
after particular transformations. The augmented data can thus cover unexplored
input space and improve the generalization of the model.

This technique has proven to be very effective for image classification tasks,
especially when the training database is limited. For example, for image recog-
nition, it is well known that minor changes due to scaling, cropping, distortion,
rotation, etc. do not change the data labels because these changes can occur in
real-world observations. However, transformations that preserve text data labels
are not as obvious and intuitive.
c© Springer Nature Switzerland AG 2020
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In this article, we present a new technique for augmenting textual data,
called DAIA (Data Augmentation and Inference Augmentation). This method
is simple to implement because it does not require any semantic resources or
a long training phase. We will evaluate DAIA for various medical data sets of
different nature and show an improvement over the state of the art, especially on
small data sets. To realize our proposition we use the python module Manté̈ıa.
The code is public and accessible at1.

2 State of the Art

Data augmentation has been used successfully in the field of image analysis [15].
For example, Perez et al. [11] compared several simple techniques such as crop-
ping, rotating and flipping images. They also used more advanced techniques
such as GAN (Generative Adversarial Network) to generate images of differ-
ent styles. The neural network learns which type of augmentation improves the
classifier the most. While many solutions exist for image analysis, augmentation
methods have been much less studied in the field of text analysis. There are four
main approaches that we will describe below:

Approaches using semantic resources were first proposed. For example, Zhang
et al. [19] used a thesaurus to replace words with their synonyms in order to
create an augmented dataset used for text classification. This increase proved to
be inefficient and in some cases even reduced performance. The authors explain
that when large amounts of real data are available, models are easily generalized
and are not improved by increasing data.

Approaches inspired by the distortions that can be added to images have
also been applied to texts. For the classification of texts, [16], in the EDA (Easy
Data Augmentation) method, the number of samples is increased by deleting,
swapping a word or replacing it with a synonym. Some approaches focused on the
choice of words to be changed. [7] analysed the context of the word to find the one
to be swapped. The context is defined by the training of an LSTM-type neural
network. This approach improved accuracy by 0.5% over five datasets. In the
UDA (Unsupervised Data Augmentation) method, [17] replaced words with low
information content, identified with a low TF-IDF, with their synonyms while
retaining those with high TF-IDF values representing keywords. This heuristic
has been tested on six datasets, and the authors have shown that it is possible
to reduce the classification error.

Generative approaches have also been explored. [6] has formed GAN models
on small datasets and used them to augment the data to improve the general-
ization of a sentiment classifier. The results improve the accuracy by 1% on two
of the datasets.

A final approach is based on increasing the textual data using back-
translation [4]. This involves translating an example into a language and then
translating the resulting translation into the original language. Shleifer et al [14]
1 https://github.com/ym001/Manteia/blob/master/notebook/notebook Manteia

classification augmentation run in colab.ipynb.

https://github.com/ym001/Manteia/blob/master/notebook/notebook_Manteia_classification_augmentation_run_in_colab.ipynb
https://github.com/ym001/Manteia/blob/master/notebook/notebook_Manteia_classification_augmentation_run_in_colab.ipynb
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has shown that the back-translation technique has hardly improved with modern
classifiers such as UMLfit.

In this article, we will focus on a new approach, simple to implement, which
does not require resources such as semantic approaches, or large amounts of com-
putation such as generative approaches, or even access to external resources such
as reverse translation approaches. A limitation of distortion approaches found
in the literature is that they do not preserve the order of words in sentences.
The examples generated are different from those we might find in the real world
and do not allow for effective embedding. In the proposed DAIA approach, we
will describe three approaches to divide sentences during the learning phase into
several sequences, which will be used to augment the textual data. The same
approach will be used during the testing phase on the examples to be classified
by applying a soft voting technique.

We will show in the experiments that DAIA approach improves the results
of text classification over deep classifiers [3], RoBERTa [9], Albert [8], DistilBert
[13] or ScienceBert [1]. We will also compare the DAIA proposal to the UDA
[17] and EDA [16] distortion approaches, the TextGen generative approach [6]
and the back translation [14].

3 DAIA

The DAIA method is structured in two parts: the first is related to training (DA:
Data Augmentation) and the second is related to the test phase (IA: Inference
Augmentation).

Data Augmentation: In the training phase, we increase the amount of data by
dividing the initial text of each sample. We seek to produce new samples without
modifying the order between words to the initial sequence. The objective is to
not decrease the learning quality of the description of word embeddings. We
have conducted preliminary experiments based on different types of divisions,
which for lack of space, are not described in this article. We present below only
the three methods that we have combined to form the pyramidal division. These
three approaches split the initial sentence into n sequences of words which will
be associated with the same label as the initial sentence.

– Symmetrical Division 1: We divide the text symmetrically by removing x%
from the text at both ends to generate a new text sequence. For each initial
text, we thus obtain an additional text.

– Division 2 by sliding window: We cut the sentence by applying a sliding
window of size l which moves m words to the end of the initial text. The
number of generated sequences depends on the length of the initial sentence.

– Division 3 into equal parts: The division is done in i equal parts. The results
is i new documents plus the original document.

After data augmentation, from each text in the initial training data set,
we generated a set of new texts, associated with the same label as the initial
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text, and are used as input into the learning model. We tested the advantages
and disadvantages of these different types of division and finally proposed a
pyramidal division that combines divisions 1 and 3 and is described in Fig. 1.
This new division is based on n levels. The increase for level 1 is done by the
symmetrical division 1. The increase for level 2 is done by dividing the text into
two equal parts and adding the increase obtained in level 1. The increase for
level i is done by dividing the text into i equal parts and adding the increase at
level i− 1. For each text, this results in n×(n+1)

2 new labeled segments.

Original text
my doctor gave cream use precancerous spot face she told i could try spot well i

large number keratosi plural top thigh i decided try them it day almost
completely gone

Level 1
of the pyramid

my doctor gave cream use precancerous spot face she told i could try spot well i
large number keratosi plural top thigh i decided try them it day almost

completely gone

Level 2
of the pyramid

my doctor gave cream use
precancerous spot face she told i could

try spot well i lar

ge number keratosi plural top thigh i
decided try them it day almost

completely gone

Level 3
of the pyramid

my doctor gave cream
use precancerous spot

face she told

i could try spot well i
large number keratosi

plural to

p thigh i decided try
them it day almost
completely gone

Fig. 1. Description of the pyramidal division. The figure shows the division of the
original text into 6 new documents according to the tree levels.

Inference Augmentation: The test phase consists in predicting the labels
for new texts from the model learned during the learning phase. We divide the
text to be classified according to the same protocol as described for the training
phase. Then we give the classifier all the generated sequences. For each sequence,
the classifier returns a prediction which is aggregated for the initial text by soft-
voting (sum of the values for each predicted class of each element of the set).
Thus, for each initial text, one prediction per class is obtained.

4 Presentation of the Experiments

4.1 Data Sets

In order to show the generalisation of our approach, we selected five data sets
in the medical field, described in Table 1. The first two data sets correspond to
medical publications. The other three data sets correspond to texts written by
patients. It is important to note that these data sets are unbalanced.
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Table 1. Description of the textual data sets according to the number of classes and
documents, the length of the documents in term of words and classification tasks.

Data sets Classes Documents Length Task

PubMed 200k RCT 5 2 211 861 26.22 Text analysis

WHO COVID-19 4 26 909 166 Provenance analysis

Drugs.com 10 53 766 85.58 Sentiment analysis

eR anorexie 2 84 834 38.24 Sentiment analysis

eR depression 2 531 394 36.76 Sentiment analysis

PubMed 200k RCT2 Dernoncourt et al. [2] is a database containing more than
200,000 abstracts of articles dealing with randomized controlled trials, with more
than 2 million sentences. Each sentence is labeled according to its meaning in
the abstract (context, objective, method, result and conclusion).

WHO COVID-193, was proposed by the Allen for AI Institute. This data set
is composed of more than 29,000 articles about COVID-19 and the corona virus
family. In this study we only used articles with an abstract. Each text is labeled
according to its source: CZI, PMC, biorxiv, medrxiv.

Drugs.com4 Gräßer et al. [5] corresponds to patients opinions about drugs.
Data were obtained by analyzing online pharmaceutical sites. Each text is labeled
with a score from 1 to 10 corresponding to patients’ satisfaction.

The eR Depression and eR Anorexia data sets were produced for the CLEF
eRisk 2018 challenge5. The texts correspond to messages from users in the social
network Reddit6. [12]. Each text is labeled according to the depression/non-
depression and anorexia/non-anorexia classes.

4.2 Data Pre-processing

For each dataset, we applied the following pre-processing: removal of punctua-
tion, special characters, stop words, shift from upper to lower case and lemmati-
zation. For lemmatization, we use the NLTK python module associated with the
Wordnet dictionary. Each text can be associated with zero, one or more classes
depending on the dataset, used as prediction output.

4.3 Comparison to Other State of the Art Approaches

We compare our proposal to three state-of-the-art methods, which are described
in detail below.
2 https://github.com/Franck-Dernoncourt/pubmed-rct.
3 https://pages.semanticscholar.org/coronavirus-research.
4 https://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Drugs.com

%29.
5 https://early.irlab.org/2018/index.html.
6 https://www.reddit.com/.

https://github.com/Franck-Dernoncourt/pubmed-rct
https://pages.semanticscholar.org/coronavirus-research
https://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Drugs.com%29
https://archive.ics.uci.edu/ml/datasets/Drug+Review+Dataset+%28Drugs.com%29
https://early.irlab.org/2018/index.html
https://www.reddit.com/
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For semantic word distortion approaches, we considered the EDA and UDA
approaches. For EDA, we implement the four simple data augmentation tech-
niques described by Wei et al. [16]: replacement by synonyms, random insertion,
random exchange, random deletion. For this, we used Wordnet thesaurus of
NLTK7. For UDA, in order to identify the words with the most informational
content, we proceed as Xie et al. [17] who identify these words as being those
negatively correlated with their TF-IDF score. For this, they define the proba-
bility min(p(C − TFIDF (xi))/Z, 1), where p is a hyper-parameter controlling
the variation of augmentation, C is the maximum TF-IDF score for words xi

of a text x and Z =
∑

i(C − TFIDF (xi))/|x|. For our experiments, we have
chosen p = 0.9. Xie et al. [18] do not change the keywords, identified by their
frequency. Spotted words which are not key words are replaced by one of the
non essential words of the corpus.

As the state-of-the-art text generators used for data augmentation have been
exceeded in semantic quality by the generator GPT2 [6], we used the latter
according to the following protocol. For each text, an augmented text is con-
structed by concatenating two parts. An initial part, the seed, corresponding to
half of the original text and a second part obtained using the GPT2 generator
having taken the seed as input.

Data augmentation by back translation [14] consists of producing paraphrases
which globally preserve the semantics of the initial sentence. We use the transla-
tion web service Yandex8 in order to produce these paraphrases. We first trans-
late the texts into Japanese and then translate them back into English and then
label them with the original label of the text.

4.4 Assessment Protocol

We proceed as follows for each data set described in Sect. 4.1. We extract 5,000
texts while respecting the weighting of the classes. We then separate the data
into two sets: a first set of 1,250 texts (i.e. 25%) is used for the test phase and a
second set of 3,750 texts (i.e. 75%) is used for the learning phase while respecting
the class stratification. To estimate the quality of learning, we use the accuracy
metric, which is calculated as the ratio of the number of labels correctly assigned
by the classifier to the total number of labels. All the values produced in this
study were calculated on the average of a four-fold cross-validation.

4.5 Hyper-parameters and Training

All hyper-parameters in the networks are set for all data sets. The learning rate is
set to 0.00001. All our neural networks are trained by a back-propagation process
using a cross-entropy error (loss) function. The gradient calculation optimizers
are of the Adam weight type. In addition, we use a linear learning rate update
with warm-up. The experiments are performed on two GeForce RTX-type GPUs.

7 https://www.nltk.org/howto/wordnet.html.
8 https://yandex.com/.

https://www.nltk.org/howto/wordnet.html
https://yandex.com/
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5 Results of the Experiments

We have made available some preliminary experiments at this URL9 in order to
compare the tree divisions that allow us to define the pyramidal division that is
evaluated in the rest of this section.

5.1 Impact of the Classifier and Comparison to the State of the Art

We’re working on the drugs.com dataset. The baseline corresponds to the use
of a single classifier without increasing the data. The classifiers compared are
the most efficient in the literature: Bert [3], RoBERTa [9], Albert [8], DistilBert
[13] or ScienceBert [1]. The DAIA method is applied here for data augmentation
during the learning phase and the test phase as detailed in Sect. 3.

The results are presented in the Table 2. The pyramidal division during the
learning phase outperforms the other divisions, regardless of the classifier. It is
also superior to other approaches in the literature such as EDA and UDA or even
reverse translation, for Roberta and Xlnet. Combined with increasing inference
during the test phase, DAIA outperforms for all classifiers. The Roberta network
over-performs in terms of accuracy.

Table 2. DAIA impact on the accuracy for 6 classifiers and comparison with other
data augmentation approaches.

Classifier Roberta Bert Xlnet Albert Distilbert Scibert

Baseline without DA 0.3661 0.3637 0.3760 0.3200 0.3601 0.3392

Distorsion EDA 0.38 0.3669 0.3712 0.3226 0.3689 0.3510

Distorsion UDA 0.3811 0.3632 0.3525 0.3084 0.3660 0.3327

Text generation
GPT2

0.3384 0.3252 0.3425 0.3122 0.3204 0.3078

Back translation 0.3798 0.3462 0.3728 0.3426 0.3584 0.3361

DA - symmetrical
division

0.3769 0.3491 0.3568 0.3154 0.3359 0.3498

DA - sliding division 0.3494 0.3399 0.3657 0.3266 0.3527 0.3156

DA - pyramid
division

0.3877 0.3660 0.3762 0.334 0.3688 0.3590

DAIA 0.3931 0.3755 0.3786 0.3444 0.3693 0.3625

5.2 Impact of Number of Classes

In Table 3, we study the performance of the DAIA according to the number
of categories for the five corpora in the study. We selected Roberta as a clas-
sifier with a sample of 500 texts. We notice a greater improvement in DAIA
performance for datasets with a high number of classes such as Drugs.com (10).
9 https://github.com/ym001/DAIA/blob/master/Preliminary%20experiment.pdf.

https://github.com/ym001/DAIA/blob/master/Preliminary%20experiment.pdf
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Table 3. Impact of the number of classes on the accuracy for text classification. We
used the best classifier Roberta alone and combined with DAIA.

Classifier Drugs.com PubMed 200k RCT WHO COVID-19 eR Depression eR anoxeria

Roberta 0.2846 0.6413 0.9319 0.8926 0.9079

DAIA 0.316 0.6513 0.938 0.9066 0.9153

5.3 Impact of the Amount of Data on the Learning Phase

In this experiment, we used the Roberta classifier as a baseline without increasing
the data. We show in Fig. 2 that DAIA provides an improvement for all sizes of
the eR anorexia (left) and Drugs.com (right) datasets. In particular, from the
500 text datasets, we observe an improvement of 2.7%. The impact is reduced
when the dataset reaches the size of 5,000 texts.

Fig. 2. Impact of DAIA on the accuracy of the text classification according to the size
of the corpus on eR Anorexia (left) and Drugs.com (right)

5.4 Impact of the Selected Sequence Size

In Fig. 3, we study the variation in DAIA according to the size of the divisions
obtained with approach 3 and the length of the texts in input for the data set
drugs.com. Too small a division doesn’t make a difference. We got our best
result for a level of three combined with a sequence length of 128 words. The
size of the input text has little impact in the range studied with a very slight
maximum for the 128 word value. We will therefore advise those who wish to
test the implementation of the DAIA a level three of the pyramid division with
a maximum sequence size of 128. Similar results have been obtained with other
data sets.
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Fig. 3. Accuracy according to the level of pyramidal division and the maximum length
of the sequences used as the input of the network.

6 Conclusion

In this study, we proposed a new method to increase textual data, which consists
of dividing texts into several segments to increase the variety of training exam-
ples while preserving the quality of the learning words embedding. This method,
called Data Augmentation and Inference Augmentation, is a distortion approach
that does not require any semantic resources, nor any very important training
phase, and no external resources. Our DAIA approach has proven to be effective
on 5 medical datasets, for 5 classifiers and has been successfully compared to
the main approaches in the literature. Comparison with approaches not based on
Bert must be conducted to confirm other results. As differences in performance
are small, statistical significance tests must also be performed. The impact of
the choice of language on the retro-translation must be assessed. Furthermore,
it is possible to keep the meaning without keeping the order of words. We could
then imagine new experiments consisting in preserving certain levels of syntactic
articulation rather than the order of words in order to generate more variabil-
ity while preserving the semantics of the sentence. In the future, we plan to
use multimodal data sets composed of text, sound and images for classification
purposes and we will also focus on more complex tasks such as multi-label clas-
sification. Finally, DAIA will also be applied to deep active learning heuristics
in the medical field [10].
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Abstract. Breast cancer patients often discontinue their long-term
treatments, such as hormone therapy, increasing the risk of cancer recur-
rence. These discontinuations may be caused by adverse patient-centered
outcomes (PCOs) due to hormonal drug side effects or other factors.
PCOs are not detectable through laboratory tests, and are sparsely doc-
umented in electronic health records. Thus, there is a need to explore
complementary sources of information for PCOs associated with breast
cancer treatments. Social media is a promising resource, but extracting
true PCOs from it first requires the accurate detection of real breast can-
cer patients. We describe a natural language processing (NLP) pipeline
for automatically detecting breast cancer patients from Twitter based
on their self-reports. The pipeline uses breast cancer-related keywords
to collect streaming data from Twitter, applies NLP patterns to filter
out noisy posts, and then employs a machine learning classifier trained
using manually-annotated data (n = 5,019) for distinguishing firsthand
self-reports of breast cancer from other tweets. A classifier based on
bidirectional encoder representations from transformers (BERT) showed
human-like performance and achieved F1-score of 0.857 (inter-annotator
agreement: 0.845; Cohen’s kappa) for the positive class, considerably out-
performing the next best classifier—a recurrent neural network with bidi-
rectional long short-term memory (F1-score: 0.670). Qualitative analy-
ses of posts from automatically-detected users revealed discussions about
side effects, non-adherence and mental health conditions, illustrating the
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feasibility of our social media-based approach for studying breast cancer
related PCOs from a large population.

Keywords: Breast cancer · Social media · Natural language processing

1 Introduction

1.1 Background

Women with breast cancer comprise one of the largest groups of surviving
cancer patients in high-income countries such as the United States, particu-
larly due to the availability of advanced treatments (e.g., hormone therapy)
that have significantly reduced mortality rates. Due to the treatment-driven
increased life expectancies of breast cancer patients, their physical and psycho-
logical well-being are regarded as important patient-centered outcomes (PCOs),
specifically among younger patients. Breast cancer patients often suffer from
various treatment-related side effects and other negative outcomes, which range
from short-term pain, nausea and fatigue, to lingering psychological dysfunc-
tions such as depression, anxiety, and suicidal tendency. Consequently, up to
one-third to half of young breast cancer patients discontinue their treatments,
such as endocrine therapy, thus increasing the risk of cancer recurrence and
even death [6,7]. In addition, non-adherence to prescribed therapy is associated
with poor quality of life, more physician visits and hospitalizations, and longer
hospital stays [8].

PCOs, including treatment-related side-effects, are not captured in labo-
ratory or diagnostic tests, but are gathered through patient communications.
Sometimes these outcomes are captured as free text in clinical narratives writ-
ten by caregivers. PCOs documented in this manner, however, are often sub-
ject to biases and incompleteness of data in the Electronic Health Records
(EHRs). In many cases, PCOs are not documented at all. We demonstrated
the under-documentation of PCOs of oncology patients in EHRs in a recent
study [2]. Specifically, with the approval of Stanford Institutional Review Board
(IRB), we deployed a simple rule-based NLP pipeline for breast cancer, which
searched for documentation of physical and mental PCOs affecting patient well-
being in EHRs. Physical PCOs (type 1 PCOs) consisted of pain, nausea, hot
flush, fatigue, while mental PCOs (type 2) included anxiety, depression and
suicidal tendency. On 100 randomly selected clinical notes of breast cancer
patients, the model achieved 0.90 F1-score when validated against manually-
labeled ground truth. We applied the validated model on the Stanford breast
cancer dataset (Oncoshare), which contains an assortment of clinical notes (e.g.,
progress notes, oncology notes, discharge summaries, nursing notes) associated
with 8,956 women diagnosed with breast cancer from 2008 to 2018. As depicted
in Table 1, only 8% of clinical notes and 12% of progress notes contained any
documentation (affirm/negation) of PCOs. Importantly, for as many as 30% of
breast cancer patients, there were no documented PCOs at any time point at
all.
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Table 1. Results of patient-centered outcome extraction from clinic notes of Stanford
Breast Cancer Cohort (2008–2018).

Data Total counts Documentation of type 1

PCO (lymphedema, nausea,

fatigue)

Documentation of type 2

PCO (anxiety, depression,

suicidal)

SHC (2008–2018) breast cancer patients

Number of patients 9755 6970 6726

Number of clinical notes 1003210 85039 (8.47%) 82466 (8.22%)

Outpatient progress notes 240486 30219 (12.56%) 29701 (12.35%)

Inpatient progress notes 153915 18714 (12.16%) 15754 (10.23%)

History and physical 21475 3216 (14.97%) 2531 (11.78%)

Consultation note 25557 3824 (14.96%) 3979 (15.57%)

Nursing note 58859 3690 (6.26%) 2404 (4.08%)

Discharge summary 10334 1126 (10.89%) 2404 (23.26%)

Other notes (ED, letters etc.) 492584 24250 (4.92%) 25693 (5.21%)

The under-documentation of PCOs acts as a limiting factor to study the
long-term treatment outcomes of young breast cancer patients. Most of the past
studies focusing on PCOs have either relied on only small populations of clinical
trial patients or analyzed short-term side effects collected during frequent clinic
visit periods. Another important limiting factor to understanding the outcomes
that matter to patients is that studies focusing on EHRs only capture clinical
information, not other relevant factors and patient characteristics that influ-
ence their long- and short-term outcomes. Some studies have investigated the
feasibility of monitoring patient-reported outcomes (PROs)1 among oncology
patients using sources other than EHRs, such as web portals, mobile applica-
tions and automated telephone calls, and their findings suggest that monitoring
PROs outside of clinic visits may be more effective and reduce adverse outcomes.
However, engaging oncology patients in such routine monitoring activities is
extremely resource intensive (expensive) and they only enable the collection of
limited information from homogeneous cohorts. Given the under-documentation
in EHRs and the expenses associated with conducting patient surveys, there is
a need to identify complementary sources of information for PCOs associated
with breast cancer patients, and to develop new strategies for capturing diverse
patient-level and population-level health-related outcomes.

One promising, albeit challenging, source of information for population-level
breast cancer PCOs/PROs is social media. Several studies, including our own,
have utilized social media to identify large cohorts of users with common health-
related conditions, and then mine relevant longitudinal information about the
cohorts using NLP methods. For example, in our past research, we proposed
carefully-designed NLP pipelines to discover targeted cohorts, such as pregnant
women [10] or nonmedical users of prescription drugs [11] from social media. We
have also showed that once many cohort members are detected, it is possible to
mine important cohort-specific information from their social media posts (e.g.,

1 A major different between PCOs and PROs is that the former may depend on the
interpretation of the caregiver, while the latter is not.
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medication usage and recovery strategies). For cancer, studies have investigated
the role of social media platforms for tasks such as spreading breast cancer
awareness, health promotion, and cancer prevention [1,3]. However, to the best
of our knowledge, no past research has attempted to accurately detect cancer
patients from social media—to build a large cohort and then study long-term
cohort-specific information at scale by mining their public posts.

1.2 Objectives

We had the following 3 specific objectives for this study, each dependent on the
previous one:

(a) Assess if breast cancer patients discuss personal health-related information
on Twitter, including the self-reporting of their positive breast cancer diag-
nosis/status;

(b) Develop a social media mining pipeline for detecting self-reports of breast
cancer using NLP and machine learning methods from Twitter (the primary
aim of the paper); and

(c) Gather longitudinal information from the profiles of the automatically-
detected users, and qualitatively analyze the information to ascertain if
long-term research can be conducted on this cohort.

We refer to the group of breast cancer positive users as a cohort although
we do not focus on conducting a typical clinical study, with specific start and
end dates, in this paper. The purpose of automatically building this cohort is
to enable targeted future studies based on the entire set of users or specialized
subsets of them.

2 Materials and Methods

2.1 Data and Annotation

We collected data from Twitter using keywords and hashtags via the public
streaming application programming interface (API). We used four keywords:
(i) cancer, (ii) breastcancer (one word), (iii) tamoxifen, (iv) survivor, and their
hashtag equivalents. An inspection of Twitter data retrieved by these keywords
showed that while there are many health-related posts from real breast cancer
patients, they were hidden within large amounts of noise. Table 2 shows exam-
ples of tweets mentioning these keywords, including breast cancer self-reports
(category: S), and tweets that were not relevant (category: NR). We filtered
out most of the irrelevant tweets by employing several simple rule- and pattern-
matching methods, only keeping tweets that matched the patterns, which were
as follows:

– Tweet contains [#]breast & [#]cancer & [#]survivor; OR
– Tweet contains [#]breastcancer & #survivor; OR
– Tweet contains [#]tamoxifen AND ([#]cancer OR [#]survivor)



104 M. A. Al-Garadi et al.

– Tweet contains a personal pronoun (e.g., ‘my’, ‘I’, ‘me’, ‘us’) AND [#]breast
& [#]cancer

These patterns were developed via a brief manual analysis of Twitter chatter
using the website (i.e., the search option). From Table 2, we see that the pattern-
based filter does not remove all irrelevant tweets. To fully automate the detection
and collection of a Twitter breast cancer cohort, it is necessary to detect self-
reports with higher accuracy. Therefore, we employed supervised classification,
similar to our past research focusing on Twitter and a pregnancy cohort [10].
We chose a random sample of the pre-filtered tweets for manual annotations.
We excluded duplicate tweets, retweets and tweets shorter than 50 characters.
Four annotators performed the annotation of tweets, with a random number
of overlapping tweets between each pair of annotators. Each tweet was labeled
as one of three classes–(i) self-report of breast cancer (S), (ii) report of breast
cancer of a family member or friend (F), or (iii) not relevant (NR). We computed
pair-wise inter-annotator agreements using Cohen’s κ [4]. Since we were only
interested in first person self-reports of breast cancer for this study, we combined
the classes F and NR for the supervised machine learning experiments.2

Table 2. Sample tweets from keyword-based retrieval of data from Twitter. Tweets
have been modified to preserve anonymity. ‘*’ - tweet filtered by pattern-matching; ‘**’
- tweet not filtered by pattern-matching (requiring supervised classification).

Tweet Pattern/keyword match Category

I am blessed. I know this. As one of the lucky
ones, my breast cancer was caught early on.
Almost five years ago. @USERNAME URL
#survivor #amwriting #writingcommunity
#writerlift screenwriters

Breast & cancer & survivor S

It’s damn hard to fight cancer when you cold,
hungry & live with constant financial stress

Cancer* NR

Check out Shelby J’s latest single regarding her
recent struggle with breast cancer and what
sustained her throughout. #Survivor
#EarlyDetectionSavesLives #MusicMonday

Breast & cancer & survivor** NR

Im officially a 16 year breast cancer survivor,
mammogram came back all clear no evidence of
recurring disease. So grateful

Breast & cancer & survivor S

2.2 Supervised Classification

We experimented with multiple supervised classification approaches and com-
pared their performances on the same dataset. These approaches were näıve

2 We intend to use information from tweets labeled as F in our future studies.
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Bayes (NB), random forest (RF), support vector machine (SVM), neural network
(NN with solver = lbfgs, hidden layer sizes = (32, 16, 8)), recurrent neural net-
work with bidirectional long short-term memory (BLSTM), and a classifier based
on bidirectional encoder representations from transformers (BERT). For the NB,
RF, and SVM classifiers, we pre-processed by lowercasing, stemming, remov-
ing URLs, usernames, and non-English characters. Following the pre-processing,
we converted the text into features: n-grams (contiguous sequences of n words
ranging from 1 to 3), and word clusters (a generalized representations of words
learned from medication-related chatter collected from Twitter) [12]. For these
classifiers, we used count vector representations—each tweet is represented as a
sparse vector whose length is the size of the entire feature-set/vocabulary and
each vector position represents the number of times a specific feature (e.g., a word
or bi-gram) appears in the tweet. In addition to being sparse (i.e., most of the
vector positions are 0), these count-based representations do not capture word
meanings or their similarities. For instance, the terms ‘bad’ and ‘worst’ are rep-
resented by orthogonal vectors despite being very semantically similar. For the
NN and BLSTM (parameters: unit = 100, dropout = 0.2, recurrent dropout = 0.2,
optimizer = Adam, epoch = 40) classifiers, we used word embedding based rep-
resentations (GloVe [9]), which overcome the limitations of n-gram vectors and
are able to capture the meanings of words.

Transformer-based approaches, such as BERT, encode contextual semantics
at the sentence or word-sequence level, and have vastly improved the state-of-the-
art in many NLP tasks [5]. BERT-based classifiers had not been previously used
for health cohort detection from Twitter, and in this study, we used the BERT
large model [5], which consists of 24 layers (transformer blocks), 1024 output
dimensions, and 16 attention heads with total of 340M parameters. The tweets
are converted into the BERT representations, which capture contextual meanings
of character sequences. Following vectorization, a neural network (dense layer)
with a softmax activation is used to predict the class of the tweet (S or NR).

2.3 Post-classification Analyses

Following the classification experiments, we conducted manual analyses to (i)
study the causes of classification errors, (ii) analyze the associations between
training set sizes and classification performances for all classifiers, and (iii) ver-
ify if the users detected by the classification approach actually discussed factors
that influenced their cancer-related PCOs/PROs on Twitter. For (i) we manu-
ally reviewed a sample of the misclassified tweets to identify potential patterns.
For (ii), our objective was to assess if the number of tweets required to obtain
acceptable classification performance was practical and feasible. We drew strati-
fied samples of the training set consisting of 20%, 40%, 60% and 80% of the set,
and computed the F1-scores over the same test set. For (iii), we collected, via the
API, the past posts of a subset of automatically-detected breast cancer positive
users, and then qualitatively analyzed them. We used simple string-matching to
identify potentially relevant tweets. We discuss the results of these analyses and
all the methods described above in the next section.
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3 Results

3.1 Annotation and Supervised Classification Results

We annotated a total of 5,019 unique tweets (training: 3,513; validation: 302;
evaluation: 1,204). 3,736 (74%) tweets belonged to the NR class (training: 2,615;
validation: 225; test: 896) and 1,283 (26%) belonged to the S class (training:
898; validation: 77; test: 308). Micro-average of the pair-wise agreements among
all annotators was 0.845 (Cohen’s κ) [4], which represents almost perfect agree-
ment [13]. The agreements ranged between 0.806 and 0.907, with a low standard
deviation (0.038), which suggests that the annotation/labeling task is relatively
straightforward and is not typically subjective to the annotators’ interpretations.
Table 3 presents the performances of learning models in terms of class-specific
recall, precision, F1-scores, and overall accuracy.

Fig. 1. Classifier performances (F1-score) at different training set sizes for the different
classifiers.

Table 3. Performances of learning models in terms of class-specific recall, precision,
F1-score, and overall accuracy. Best F1-score on the S class is shown in bold. tables.

Classifiers Precision (NR) Precision (S) Recall (NR) Recall(S) F1-score (NR) F1-score (S) Accuracy

SVM 0.861 0.767 0.941 0.55 0.899 0.646 0.843

RF 0.826 0.849 0.975 0.402 0894 0.546 0.828

NN 0.877 0.701 0.907 0.633 0.892 0.665 0.837

NB 0.953 0.361 0.430 0.938 0.593 0.522 0.560

BLSTM 0.870 0.751 0.930 0.610 0.901 0.670 0.882

BERT large 0.945 0.877 0.959 0.837 0.952 0.857 0.928
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3.2 Post Classification Analyses Results

Classification Error Analyses: As per our analysis, the possible reasons for
misclassifications could be attributed to factors that are common with social
media data, primarily the lack of context, ambiguous references, and the use of
colloquial language. The following tweets were labeled by the annotator as S,
but were misclassified by our best-performing classifier:

Tweet-1:“we are sisters in this breast cancer club we never wanted to join.
bless you my friend. you are an inspiration to all of us.”
Tweet-2:“when the breast cancer center calls and asks you to donate for
the patients’ medication and you’re just like “i can barely afford my own”

Classification Performance at Different Training Data Sizes: Figure 1
shows the classifier performances with increments of 20% of the full training set
size. From the figure, we see that the BERT-based classifier shows remarkable
performance even at small training set sizes. However, the performance of this
classifier does not improve further as more training data is added, suggesting that
further improving performance will require the incorporation of other strategies.

Content Exploration: We found many informative tweets that covered a wide
variety of health-related, and potentially cancer-related, information. Table 4
presents some examples of tweets that were posted by the detected users, and
were potentially relevant to the users’ PCOs. A number of users reported that
they suffered from anxiety/depression, although it was not immediately clear if
or how their mental health conditions were related their cancer diagnoses and
treatments. Similarly, users reported experiencing or worrying about the side
effects of prescribed medications, including Tamoxifen, and their intentions to
not adhere to the treatment. These tweets could provide important information
about how these patients cope with their treatment and medications, and may
complement the information in their EHRs.

4 Discussion

The capability to detect self-reports of breast cancer very accurately is a neces-
sary condition for utilizing Twitter to study PCOs associated with treatments,
and our approach has produced promising results. The transformer-based classi-
fier (BERT) is capable of producing performances that far outperform traditional
approaches. Thus, our study demonstrates that it is indeed possible to build a
large breast cancer cohort from Twitter via an automatic NLP pipeline.

Manual annotation of data is a very time-consuming task and the need to
annotate large numbers of samples for supervised classification often act as a
barrier to practical deployment. Our experiments show that the BERT-based
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Table 4. Sample posts that are relevant to the users’ health conditions, collected from
the timelines of automatically-detected users. The posts were manually curated and
categorized. URLs and emoji’s have been removed; usernames have been anonymized.

# Tweet Comment

# 1 Sooooo..... the doc put me on an anxiety/anti-depression med

the other day (cuz cancer is still a b*tch). She told me to

take in the morning. Uh no. I’ve been asleep for 2 days

almost. Taking that joint at night

Mental health issues

# 2 my #mentalhealth suffered unnecessarily and drastically due

to #thyroid medications that didn’t work for me, for my

body. Even when #hypothyroid (on paper) is treated it can

make you feel even more unwell. Keep asking for help from

new medical professionals until one listens

Mental health issues

# 3 Here we are at my Oncology follow up appointment. I didnt

really get on with the tablets prescribed for hot flushes. They

made me so sleepy I felt like a zombie and a lower mood than

usual so I stopped them. Hopefully get echocardiogram

results today too

Side effects, nonadherence intention

# 4 I’m learning something new every day about my

#breastcancer. While seeing the oncologist yesterday, I said I

know if I stay on my 5 year hormone therapy plan, there is a

9% chance of recurrence. So I asked what if I stop taking the

medicine so I no longer have joint pain

Side effects

# 5 New drug today Docetaxel. Not got my usual anti sickness

prescribed so I’m feeling quite nervous about how it’s going

to take me I was vomiting on the EC treatment. But on the

positive this is number 5 of 8. #breastcancer #chemotherapy

Side effects

# 6 And Im having a mentally poor day. For all its benefits in

preventing #breastcancer recurrence, I think I am going to

have to stop taking #Tamoxifen I have a review at the

hospital shortly to discuss. Yes, I am grateful that this drug

is available but the quality of life is poor

Side effects, nonadherence intention

# 7 Another night, another with lack of sleep. How Im supposed

to continue getting by on 3–4 sleep every night is beyond me

and definitely contributing to my emotional state of mind. I

havent had one night since pre #breastcancer where Ive slept

all night #mentalhealth #tamoxifen

Mental health issues, side effects

# 8 The prize for finishing chemo is taking a drug that can cause

uterine cancer. #oneroundleft #breastcancer #tamoxifen

Side effects

model overcomes this obstacle, making full automation feasible. We also dis-
covered that it is difficult to raise the performance of this classifier simply by
annotating more data. However, including more keywords and patterns for the
data collection component of the full pipeline is likely to require additional
annotations. Despite the context-incorporating sentence vectors that are used
for BERT, the model still lacks the ability to infer meanings that are typically
evident to humans. Also, our annotators benefited from implicit knowledge of
the topic and additional contextual cues (e.g., from the users’ profiles), which
the transformer-based model is not able to capture. In the future, it will be
important to study how such implicit information may be encoded in numeric
vectors.
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5 Conclusion

We investigated the potential of using Twitter as a resource for studying PCOs
associated with breast cancer treatment by studying information posted directly
by patients. We particularly focused on (i) assessing if breast cancer patients dis-
cuss health-related information on Twitter, including the self-reporting of their
positive breast cancer status; (ii) developing a NLP-based social media mining
pipeline for detecting self-reports via supervised classification; and (iii) analyz-
ing health-related longitudinal information of automatically-detected users. The
best-performing classifier achieves human-like performance with an F1-score of
0.857 on the positive class. Qualitative analyses of the tweets retrieved from the
users’ profiles revealed that they contain information relevant to PCOs, such
as mental health issues, side effects of medications, and medication adherence.
These findings verify the potential value of social media for studying PCOs that
are rarely captured in EHRs. Our future work will focus on collecting large
samples of breast cancer patients from Twitter using the methods described,
and then implementing further NLP-based methods for studying breast cancer
related PCOs from a large cohort.
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Abstract. In this paper we study the problem of predicting clinical
diagnoses from textual Electronic Health Records (EHR) data. We show
the importance of this problem in medical community and present com-
prehensive historical review of the problem and proposed methods. As
the main scientific contributions we present a modification of Bidirec-
tional Encoder Representations from Transformers (BERT) model for
sequence classification that implements a novel way of Fully-Connected
(FC) layer composition and a BERT model pretrained only on domain
data. To empirically validate our model, we use a large-scale Russian
EHR dataset consisting of about 4 million unique patient visits. This is
the largest such study for the Russian language and one of the largest
globally. We performed a number of comparative experiments with other
text representation models on the task of multiclass classification for 265
disease subset of ICD-10. The experiments demonstrate improved perfor-
mance of our models compared to other baselines, including a fine-tuned
Russian BERT (RuBERT) variant. We also show comparable perfor-
mance of our model with a panel of experienced medical experts. This
allows us to hope that implementation of this system will reduce misdi-
agnosis.

Keywords: Electronic Health Records · EHR · ICD-10 · Multiclass
classification · Natural language processing · Text embedding · BERT

1 Introduction

The process of digital transformation in medicine has been going for a while,
providing faster and better treatment results in many cases through the use of
modern computer science and Artificial Intelligence (AI) methods [1]. Digiti-
zation and subsequent analysis of medical records constitutes one such area of
digital transformation that aims to collect broad types of medical information
about a patient in the form of EHR, including digital measurements (laboratory
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results), verbal descriptions (symptoms and notes, life and disease anamnesis),
images (X-Ray, CT and MRI scans, etc.) and document the treatment process
of a patient.

In this paper, we focus on the analysis of EHR with the purpose of pro-
viding clinical decision support by predicting most probable diagnoses during a
patient’s visit to a doctor. This problem is complicated by abundance of large
volumes of structured and unstructured medical information stored across mul-
tiple systems in different data formats that are often incompatible across these
systems. Although there exists an emerging FHIR standard (Fast Healthcare
Interoperability Resources) for the EHR data [2] the goal of which is to unify
the process of storing and exchanging medical information, unfortunately, very
few existing Hospital Information Systems (HISes) support it. All this compli-
cates the task of diagnosis prediction based on the EHRs since many of them
contain extensive amounts of unstructured, poorly organized and “dirty” data
that is less amenable to the analysis using the AI-based methods, unless this
data is cleaned and preprocessed appropriately.

Providing clinical decision support in diagnosis prediction during a patient’s
visit to a doctor is important because many patient’s visits, in fact up to 30%
in the US, are misdiagnosed [3]. This is also true in some other countries [4]. We
formulate the aforementioned clinical decision support problem as a multi-label
text classification of clinical notes (anamnesis and stated symptoms) during a
patient visit, where the classification is performed for a wide range of diagnosis
codes represented by the International Statistical Classification of Diseases (ICD-
10) [5].

In this paper, we make the following contributions. First, we propose a novel
BERT-based model for classification of textual clinical notes, called RuPool-
BERT, that differs from the previously proposed models by the way of the FC-
layer composition that is described in Sect. 4. Second, we compare the perfor-
mance of our method with various baselines across different text representation
techniques and classification models. Third, we compare the performance of the
BERT model pretrained on a large corpus of out-of-domain data [6] with the
BERT model pretrained exclusively on in-domain data and using an in-domain
tokenizer. Finally, we demonstrate the advantage of the proposed models and
their comparable results with a human baseline in Sect. 5.

It is important to note that the clinical decision support system described
in the paper will not serve as a doctor’s replacement but, rather, constitutes an
unbiased intelligent diagnosis generator and, therefore, should only assist the
doctors in their diagnostic decisions.

2 Related Work

There have been many approaches to the analysis of the EHR-data and pre-
dicting the diagnosis codes (ICDs) proposed in the literature that are related to
our work. In particular, papers [7,8] address the task of diagnoses prediction by
using the entire patient history. In our study we explicitly do not take history
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into account because at the current stage of our project we focus on isolated
visits; however, the history is partially accessible for the model due to the avail-
ability of the anamnesis field. The level of granularity for ICD-code in paper [7]
is quite similar with ours. We also mainly operate on the second level of ICD-
10 classification code hierarchy, but intentionally restrict the number of classes
up to 265 (see details in the Data Sect. 3).

The authors of [9] developed a Deep Neural Network-based (DNN) diagnosis
prediction algorithm, but only for the pediatric EHRs. In contrast to this, we
do not restrict ourselves to any age specifications. Instead, our training set fully
covers all the age groups, including having about 20% of the training data visits
being children under the age of 14 years. The papers [8–10] proposed methods
based on the DNN (mostly its recurrent variants), while in this paper we focus
on more recent state-of-the-art transformer-based neural architectures.

In the recent couple of years a new class of neural architectures called trans-
formers were developed, which allow to significantly improve performance on the
whole range of NLP tasks (e. q. question answering, named entity recognition,
sentiment classification etc.). The most known member of this family is the lan-
guage representation model called Bidirectional Encoder Representations from
Transformers (BERT) [11]. Note that the BERT-like models have been applied
to the EHR-data before [12,13]. In particular, [12] presents a system of assign-
ing ICD-10 codes to non-technical textual summaries of medical experiments.
The original experiment dataset (about 8,000 samples) was in German; but the
authors achieved significant performance improvement (more than 6% for the
F1-measure) by translating it into English and then applying the BERT model
to the translated EHRs. This shows, among other things, that each language
has its own linguistic and cultural idiosyncrasies and that there are ‘easier’ vs.
‘harder’ languages for machine learning models. In this paper we do not use such
a “translation trick” and work directly with the original language.

Fei Li et al. [13] investigated the problem of BERT model fine-tuning for
biomedical and clinical entity normalization. The training EHR notes used in
that paper have millions of entries and in that way are similar to our study
in its ability to handle large EHR datasets. Another significant advantage of
this paper is the comparative analysis between pretrained general and biological
domain BERT models. In our work, we also use a general Russian pretrained
BERT model [6]. Since the lexical and the syntactic structure of a special domain
languages can be very different from the general one, we experimented with an
in-domain tokenizer and the model trained from scratch on the Russian EHR
data.

Most of the EHR research focuses on the English language based elec-
tronic health records. Even [12] translated their health records from German
into English to leverage the power of the previously conducted English-based
research. In contrast to this, we think that it is crucial to successfully apply
artificial intelligence and NLP-based methods to other languages, which is done
only occasionally. For example, the amount of the EHR-related studies is very
limited for the Russian language. In fact we could find only one such recent
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paper [14], where the authors studied a related classification problem, but only
for four ICD codes (D50, E11, E74, E78) and on a small dataset having about
8,000 cases where they used a gradient boosting algorithm on a laboratory tests
data as input.

In this paper, we follow this principle and analyze electronic health records of
medical patients written in Russian. Unlike several other studies conducted on
medium-size EHR datasets, such as the Medical Information Mart for Intensive
Care (MIMIC) dataset [15] containing about 60,000 intensive care unit admis-
sions [8,10,16], we work with a large dataset of about 4,000,000 patients’ visits
to various clinics in Russia.

Finally, the authors in [13] and [6] use the conventional BERT method (and
use the output of the classification token (CLS) for the upstream tasks). In
this paper we show that this is not an optimal solution since the performance
of the BERT model can be further improved by the extension of this layer.
Therefore, we venture beyond the conventional BERT architecture and propose
a modification to it that we call RuPool-BERT. Furthermore, we show that this
extension outperforms the conventional BERT approaches for our classification
problem.

3 Data

In this project, we worked with three real-world anonymized datasets containing
information about patients’ visits to the networks of clinics in Russia. The first
two datasets (we call them DataN and DataM in the paper) pertain to two
large private networks of clinics and the third one (we call it DataT) pertains
to the network of public clinics. We used only the symptom and anamnesis
fields for each patient visit since all other fields where substantially different
across the datasets. All the relevant data was concatenated into a single textual
content field (since it was initially stored in different formats across different
datasets). We did not apply any special preprocessing to this field, and therefore
it was presented to the model as a raw text including typos, abbreviations and
misspellings. The main statistics for each dataset are summarized in Table 1.

Table 1. Statistics of the datasets.

Dataset name Split # of patients # of visits Avg # of visits
per patient

From To

DataN Train/Validation 251,763 1,685,253 6.69 2005-01 2018-12

DataM Train/Validation 177,715 563,106 3.17 2013-01 2019-06

DataT Test 694,063 1,728,529 2.5 2014-01 2019-10

As Table 1 demonstrates, the three datasets collectively have 3,976,888 visits
of 1,123,541 patients over the period of almost 15-years. To the best of our
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knowledge, this is the largest such study (in terms of the number of cases and
time duration) for the Russian language and one of the largest globally1.

Patient visits were split into train, validation and test sets. The whole DataT
part was assigned to the test set, and the union of DataN and DataM sets was
randomly split in the 80/20 proportion to make the train and the validation
sets. The final cardinalities of the train, validation and test sets were 1,798,687
(45.23%), 449,672 (11.3%) and 1,728,529 (43.47%) respectively. The validation
set was used exclusively to fine-tune hyperparameters for the baseline BERT
model. The test set was used to compare different baselines with the proposed
models. The reason we decided to keep the entire DataT only as the test set
lies in the more reliable nature of this data. More specifically, for each visit in
DataT, we have an confirmed diagnosis.

The full spectrum of ICD-10 consists of 71,932 codes arranged in a hierarchi-
cal manner. A single code can be represented by 3 to 7 characters depending on
the level of disease specification. Internally, an ICD code has 3 part structure.
The first part, up to the dot, represents a distinct disease. For example, D30 is
the code for the neoplasm of urinary organs. After the dot follows potential spec-
ifying elements (e. g. D30.0 represents neoplasm of a kidney, D30.01 – neoplasm
of the right kidney, D30.02 – neoplasm of the left kidney, etc.).

We selected K = 265 categories of codes for this study because such number
of codes (diseases) is enough to cover up to 95% of all the cases in the training
set. As with many other natural distributions, distribution of diagnoses is very
skewed, i.e., the first 19 codes accounting for 50% of all the cases in the training
set (with J06 – 11.5%, I11 – 7.4%, E11 – 4.3%, M42 – 3.9% and so on up to D72 –
0.03% and L40 – 0.03%). We have also experimented with K = 1, 000 codes. This
selection of codes were obtained from the same 265 codes by extending them
with available second ICD parts (e.g. J06.0, J06.8, J06.9, etc.) and selecting the
most frequent 1,000 of them. This second case of K = 1000 codes significantly
complicates the classification task since it requires to predict more fine-grained
diagnoses.

4 Proposed Models

In this section we present our classification model that predicts the 265 ICD
codes based only on textual information of the patient visits to the clinics. We
solve the classification problem by using a transformer-based BERT model [11]
architecture presented in Fig. 1 (referred as RuPool-BERT hereafter). The inputs
to the model constitute text from the symptoms and the anamnesis fields of the
patients visit to a doctor that are concatenated into a single text sequence.
Most of the transformer-based models use the approach proposed in [17] to
represent raw input sequences in terms of sub-words (tokens) and keep balance
between character and word information. That allows to naturally process out
of vocabulary words (typos, misspellings, etc.). The distribution of sequence
1 Although the data does not contain any personal information, we cannot publicly

release it due to certain legal restrictions.
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Fig. 1. Architecture of RuPool-BERT model.

lengths (for the train set) showed that the mean number of tokens is around 79
and median value is about 57. Therefore, we decided to allow some margin by
limiting each sequence to N = 128 tokens.

Each input token is represented by learnable H-dimensional vector called
embedding (which in turn is the sum of three embeddings: token, segment
and positional). Therefore, the text tokenizer and the trained model are linked
together. As a base tokenizer (with the vocabulary of approximately 120k tokens)
and a model, we used RuBERT (architecturally the same as base BERT model
for the English: 12 transformer block layers, hidden size H = 768 and 12 self-
attention heads) [6] because it significantly outperformed the multilingual vari-
ant of BERT, as was shown in [6].

The gray part of the model presented in Fig. 1 is the same as in [11], which
methodically explains this part of the network architecture and the process of
pretraining. The authors of [11] specifically designed the CLS token as classifi-
cation one, and the linear fully-connected layer is added to the last hidden state
C: T[CLS] ∈ RH. We propose to concatenate this state with two additional parts,
namely max and mean pooling over the whole last encoder states Ti along the
sequence dimension. Both operations also return embeddings from RH. With a
new hidden state vector C ∈ R3H and fully-connected classification layer with
weights W ∈ RK3H, where K = 265 – number of ICD codes, the diseases proba-
bilities after applying sofmax function is then P = softmax(CWT). To prevent
overfitting, the dropout operation was applied to the C layer.

To fully leverage the difference in vocabulary between general texts and med-
ical records, we trained a tokenizer with a vocabulary of 40k tokens on all the
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texts from DataN dataset. The tokenizer is identical to the one used in the orig-
inal BERT model with the difference coming from the training data word dis-
tribution. Our expectation was that such a medical-domain tokenizer will allow
the model to capture a wider range of medical linguistics phenomena. Using this
tokenizer, we pretrained the BERT model with masked language modelling task
on data from DataN dataset containing about 1.7 million records of patients
visits, which took us about 2 weeks on a Tesla K40 GPU. This pretrained model
with a standard pooling scheme (referred RuEHR-BERT hereafter) was fine-
tuned for disease classification. RuEHR-BERT can be directly compared with
the RuBERT model which has the same architecture but a tokenizer trained on
general Russian language texts.

5 Experiments

To evaluate the performance of the proposed model, we compared it with the
following baselines: an RNN model (with GRU units), the FastText model [18]
and the multilingual Universal Sentence Encoder (USE) [19]. We focused on
these baselines because it was feasible to do the direct comparisons with them,
while comparing our method with several others was either impossible or very
hard to achieve due to accessibility, language incompatibility and other practical
reasons.

To remove the effect of hyperparameter tuning and compare all the BERT
models under the same conditions, hyperparameters were kept the same across
all these models. First, we find the best set of parameters (with respect to the
validation data) for the baseline RuBERT model and used them thereafter. We
report our results after 5 training epochs with batch size = 128, optimizer
being AdamW and the starting learning rate of 3 × 10−5 with the Binary Cross
Entropy loss. By fine-tuning the hyperparameters for our proposed models on
the validation set the results could be improved further.

We considered the following performance metrics in our study: the macro
and weighted variants of the F1-measure [20] and such ranking measures as
Mean Reciprocal Rank (MRR) and Hit@k [20] (i.e., Hit@1, Hit@3, Hit@5 and
Hit@10). In cooperation with medical experts we empirically selected Hit@3 as
our primary metric.

Table 2 summarizes the performance results of all the considered models
on the test set. Note that a large performance gap between the F1macro and
F1weighted measures across all the baselines reflects great disbalance in the class
distribution (that was discussed in Sect. 3). The significant increase in F1macro

for the proposed models (4%) combined with increase in F1weighted (1%) com-
pared to baseline RuBERT model show that our proposed models performance
gains are due to better classification of less frequent disease classes.

Also, we tried to train the 1,000 class ICD code classifier for our RuPool-
BERT model (denoted as “RuPool-BERT 1k” in Table 2). Note that, although
the number of classes increased almost by the factor of four for the RuPool-
BERT 1k model, the performance measured by the Hit@3 metric degrades sig-
nificantly slower (42.97 vs. 70.14). As Table 2 demonstrates, RuPool-BERT 265
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and RuEHR-BERT 265 show better performance than other tested models in
terms of Hit@k and other measures.

Table 2. Models performance (%) on the test set.

Model name F1macro F1weighted MRR Hit@1 Hit@3 Hit@5 Hit@10

USE 19.54 39.59 54.69 41.25 62.62 70.66 79.89

RNN 24.33 43.34 58.02 44.17 66.97 74.79 83.37

fastText 24.49 44.19 59.00 45.27 67.81 75.84 84.54

RNN+FastText 25.44 44.00 59.11 45.05 68.43 76.22 84.71

RuBERT 265 25.78 46.34 60.60 47.29 69.50 76.96 84.79

RuPool-BERT 265 29.83 47.13 61.04 47.54 70.14 77.53 85.49

RuEHR-BERT 265 28.61 46.84 61.01 47.51 70.00 77.61 87.76

RuPool-BERT 1k 8.95 24.03 37.13 25.94 42.97 50.51 59.46

Furthermore, we studied the dependence between the input text (symptoms
and anamnesis) lengths and the Hit@3 metric by computing the metric for clin-
ical notes with different input lengths. The results are presented in Fig. 2, where
the text length is plotted on the x-axis and the number of test samples on the
y-axis (for the black solid curve). Moreover, the red dashed and the blue dotted
curves in Fig. 2 show how the Hit@3 metric depends on the text length for the
265- and 1k-classification models respectively.

We can conclude from Fig. 2 that the most reliable results of the model can
be obtained for the cases where the input text sequence has at least 20 tokens,
which constitutes 72.25% of all the test visits. This is an important observation
because it indicates when the results of our model can be shared with the doctors
in practical clinical settings in the form of the “second opinion”, i.e. it can be
done only for the more extensively documented cases having at least 20 tokens.

Additionally, we compared the performance of our proposed models with
experienced physicians in the diagnosis task described in Sect. 1. In particular,
we filtered out test set according to above observation and randomly selected
530 visits (K ∗ 2 = 265 ∗ 2) for the further markup process. We invited a panel
of 7 medical experts (each with more than 10 years of practical experience) to
participate in this study. Each of them was presented with these 530 visits and
asked to point out up to 3 appropriate ICD codes (from K = 265) for each case
or reject it if the information to make a decision is insufficient. For the sake of
a fair performance comparison, we asked the clinicians to make the decisions
exclusively based on the EHR data (text from anamnesis and symptom fields)
without any personal communications with the patients or any other parties.
To assess reliability of agreement between the raters we computed Fleiss’ kappa
coefficient (among 1st place answers) k = 0.37 which corresponds to fair strength
of agreement [21]. There are only 6 cases with maximum disagreement (7 experts
put a different answer on the first place). We invited an independent physician to
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Fig. 2. Distribution of number of samples in the test set (solid black) and RuPool-
BERT model Hit@3 metric (%) (dashed red for 265 and dotted blue for 1k classes).
(Color figure online)

analyze these cases for the cause of such inconsistency. The physician concluded
that all the answers can be treated as relevant given the provided information.
The only difference come from diagnosis ordering: each expert select reasonable
diagnosis set, but order them based on their primary specialization, experience
and other subjective factors that influence the decision making. We assessed
Hit@3 metric for each of the 7 experts by inferring the ground truth diagnoses
from the panel of 6 experts’ answers and comparing them with the remaining
expert answers (thus deploying one-against-all labelling strategy [22]). It turned
out that the Hit@3 metric varied quite a bit across the clinicians. The worst
performing expert reached the value of 57.89% and the best one reached the
value of 72.52%, with the mean Hit@3 value for the experts being 68.16% and
standard deviation of 4.82%. Our best performing DL-based model (RuPool-
BERT 265) against the same 7 panels achieved mean Hit@3 value of 69.15%
with standard deviation of 8.52%. To test whether the difference between Hit@3
performance metrics of the models and the experts are significant, we applied
the Mann–Whitney U test. Our null hypothesis is that the expert and the model
metrics are the same, and the alternative is that there is a significant difference
in the metrics. The computed empirical value is Uemp = 22 and the critical
value for the sample size n = 7 at the 0.05 significance level is Ucrit = 11. Thus,
we fail to reject the null hypothesis and cannot claim that our model is better
than humans. Further, based on the model and expert mean metrics, we can
conclude that our proposed model shows the performance results comparable to
the performance of the medical experts.
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6 Conclusions

In this paper we described the challenging and important problem of diagnoses
prediction from unstructured real-world clinical text data based on a very large
Russian EHR dataset containing about 4 million doctor’s visits of over 1 million
patients. To provide the diagnosis, we proposed a novel BERT-based model for
classification of textual clinical notes, called RuPool-BERT, that differs from
the others BERT-based approaches by introducing a novel way of the FC-layer
composition. Our experiments of applying the developed prediction model to the
practical task of classifying 265 diseases showed the advantage of this model com-
pared to the fine-tuned RuBERT base analog and other text representation mod-
els. We also showed that using a BERT model with a vocabulary and pretraining
dataset tailored to the medical texts representation (RuEHR-BERT) improves
performance on the classification task, specially on less frequent diseases. This
improvement is achieved at a small fraction of pretraining time compared to the
general Russian language model (2 weeks of Tesla K40 for RuEHR-BERT vs 8
weeks of Tesla P100 for RuBERT).

Comparison of our model with a panel of medical experts showed that the
results of our model were similar to the results of experts in terms of the Hit@3
performance measure. Furthermore, we showed that the most reliable perfor-
mance of our system is achieved on those samples having longer textual inputs,
i.e. text sequences having at least 20 input tokens. All this allows us to conclude
that our model and system has a strong potential to help doctors with disease
diagnosis by providing the “second opinions” to them.

Our partners in the medical community identified one issue with the proposed
method: they maintain that the proposed approach would benefit greatly from
clear explanations of how our method arrived at each particular diagnoses. This
is the topic of future research on which we plan to focus in the immediate future.
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Abstract. Knowledge Graphs provide insights from data extracted in
various domains. In this paper, we present an approach discovering prob-
able drug-to-drug interactions, through the generation of a Knowledge
Graph from disease-specific literature. The Graph is generated using nat-
ural language processing and semantic indexing of biomedical publica-
tions and open resources. The semantic paths connecting different drugs
in the Graph are extracted and aggregated into feature vectors represent-
ing drug pairs. A classifier is trained on known interactions, extracted
from a manually curated drug database used as a golden standard, and
discovers new possible interacting pairs. We evaluate this approach on
two use cases, Alzheimer’s Disease and Lung Cancer. Our system is
shown to outperform competing graph embedding approaches, while also
identifying new drug-drug interactions that are validated retrospectively.

Keywords: Literature mining · Knowledge graph · Path analysis ·
Knowledge discovery · Drug-drug interactions

1 Introduction

Drug-Drug Interactions (DDIs) often occur in cases of simultaneous adminis-
tration of multiple drugs. This results in high risks for patient safety, seriously
affecting the biological action of implicated drugs and may cause various adverse
effects. The extent of the problem becomes more evident given that in the United
States alone, DDIs are responsible for up to 195,000 hospital admissions [11].

However, the prognosis of such effects can pose a serious challenge due to the
absence of sufficient clinical data and knowledge. Thus, automated software solu-
tions that discover potential drug interactions can be valuable tools to improve
health care and help pharmacovigilance. Many approaches try to address this
c© Springer Nature Switzerland AG 2020
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by assessing structural or other kinds of drug similarities, based mainly on tar-
gets, pathways and transporters [14]. However, most of these approaches fail to
capture and combine information from heterogeneous sources of data which are
important to address the complexity of the task.

The current paper proposes a holistic framework towards DDI prediction,
based on a Biomedical Literature Knowledge Graph (DDI-BLKG)1. In the pro-
posed framework, we extract knowledge items from biomedical publications
and manually curated databases, using automated Natural Language Processing
(NLP) tools. The results are integrated in a disease-specific Knowledge Graph
(KG). Then, a human-curated drug database is used to train a classifier that
identifies patterns of interactions between drug pairs. As features for the pat-
terns, the classifier uses the semantic relations in the paths connecting interacting
drugs. We showcase the usefulness of our approach by testing it on drug inter-
actions for two prevalent diseases: Alzheimer’s Disease (AD) and Lung Cancer
(LC). Our experiments show that the proposed approach achieves better results
than other graph embedding techniques on the same task. Moreover, through
a small-scale qualitative evaluation we showcase the predictive potential of the
method and its usefulness in providing novel DDIs.

Overall, the main contributions of this work correspond to the following:

• We present an automated DDI prediction approach, utilizing a disease-specific
biomedical literature Knowledge Graph.

• We propose the use of the semantic relations connecting different drugs in
the literature, as features for the DDIs.

• We make available for further experimentation two real-world disease-specific
KGs, related to Alzheimer’s Disease (AD) and Lung Cancer (LC) respectively,
alongside the probable DDIs predicted by our model.

2 Related Work

Various existing approaches aim to extract associations and identify relations
between biomedical entities directly from text [1,12]. However, in order to extend
over the narrow scope of a sentence that rarely contains all the information
needed, one needs to combine multiple sources of information. Such an example is
the method proposed in [5], which builds a heterogeneous network and performs
link prediction to construct an integrative model of drug efficacy.

Most relevant to our approach is the work in [2,17], presenting drug discovery
methods, based on biomedical knowledge graphs. The former method focuses on
treatment and causative relations exploiting connections of biomedical entities
as found in literature. The latter publication presents SemaTyP, a method for
discovering drug-disease relations based on a literature Knowledge Graph. Its
successor, GrEDeL [16] extends the previous model by employing graph embed-
ding techniques and deep learning approaches.

1 https://github.com/kbogas/DDI BLKG.

https://github.com/kbogas/DDI_BLKG
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During the last years, there have been many other approaches to utilize graph
embeddings for DDIs. Authors in [18] present KMR, a procedure for similarity
computation based on chemical structure and side effects. Shtar et al. [19] employ
adjacency matrix factorization to embed the drugs based on their interactivity
as derived by DrugBank. Finally, authors in [6] also construct a biomedical
Knowledge Graph from structured data (i.e. DrugBank, PharmGKB and KEGG
databases), but with a limited set of drug-related nodes and relations.

Our work is mainly compared against competing methods employing knowl-
edge graph embeddings, rather than existing biochemical or traditional DDI
approaches, as it combines multiple sources of information with the latest sci-
entific knowledge entailed in a literature knowledge graph, to provide a fast
and automated DDI prediction solution. We aim at illustrating that a disease-
specific approach, analysing all available meta-information related to drugs in a
multi-type knowledge graph, could provide significant benefits.

3 Approach

3.1 General Workflow

Our approach to the creation of the biomedical literature Knowledge Graph and
the development of a link prediction model consists of a sequence of distinct
steps as shown in Fig. 1. In the following sections, we will discuss each one in
detail, leading to the predictive model to be validated.

Fig. 1. Overview of the steps for the knowledge graph creation and link prediction.

3.2 Knowledge Graph Creation

First, a disease-specific KG is created based on disease-related biomedical liter-
ature and structured resources. To this end, we utilize the project iASiS Open
Data Graph [8] generation pipeline. According to this, biomedical articles related
to the disease of interest are fetched from PubMed. This is done by filtering
the available publications through disease-related topic tags (MeSH terms). The
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articles are analyzed using SemRep [13], a UMLS-based [3] tool that extracts
biomedical predications i.e. semantic triples in the form of subject-predicate-
object. Edges denoting co-occurrence of terms and topic annotations of the arti-
cles are also added to the KG. Finally, structured ontologies (e.g. Gene Ontology,
Disease Ontology) are also indexed under the UMLS schema, allowing for con-
nections with the pre-existing entities from literature. The KG is built using the
capabilities of the graph database Neo4j2.

3.3 Knowledge Graph Analysis

The result of the previous step is a multi-relational directed KG, as seen in Fig. 2
(a). The next step is to identify probable interactions between biomedical enti-
ties. Given a pair of drugs, the drug-drug interaction problem can be formulated
as a link prediction problem on the KG. In our setting, we model this task as a
supervised learning task where data samples are generated from different drug
pairs found in the KG and the goal is to find which drug pairs interact.

In order to generate the data samples, we use DrugBank as a source of known
interactions (ground truth) and map the drugs to the corresponding UMLS
entities. For example, Bivalirudin (DB00006), an antithrombin drug, is mapped
to two entities under the UMLS schema, Hirulog (C0210057) and Bivalirudin
(C0168273). We assume that when two drugs interact according to DrugBank
(e.g. Bivalirudin and Lacosamide), then their corresponding UMLS entities also
interact with each other. This process is depicted in Fig. 2(b).

Then, we aggregate all possible paths in the KG between the examined pair
of drug nodes. Let E = {e1, e2, ..., eM} denote all the relations (i.e. the edges)
found in the graph. Also, let d1, d2 be two drug nodes and let πl be a path
of length l connecting d1 and d2. This path π consists of a series of relations
starting from node d1 and ending in node d2 in the form of: d1e0e1e2...el−1d2. In
this work, we limit l ≤ 3 after observing that longer paths were of lower quality
due to the high interconnectedness of the graph (i.e. with l ≥ 4 almost all nodes
were within reach from any other node). Thus, the representation of each path
between a pair of drugs becomes: π = e0e1e2.

Given two drugs d1 and d2 let Π = {πl
1, π

l
2, ..., π

l
Nd1,d2

} be the set of all
possible paths between them. An illustrated example of two such paths, as found
between two drugs in the KG, can be seen in Fig. 2(c). Once the paths are
retrieved, each one is processed in order to extract a feature representation of it.

We use 35 unique relation types from the UMLS Semantic Network, after
merging the semantically similar ones and downsizing them from 55. We use one-
hot encoding of these 35 relations as features on every possible hop. Therefore
with l = 3 hops, the feature vector will have: 3×35 = 105 features. Each feature
value in this vector will be either zero or one, denoting whether the specific
relation was found in the specific hop.

Then, for a specific path πl
d1,d2 between the drugs d1,d2 the correspond-

ing feature vector will be: xi = [cr1 , cr2 , ..., cr105 ] where crj is either 0 or 1 as

2 https://neo4j.com/.

https://neo4j.com/
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Fig. 2. Overview of the process forming the final feature representations of drug pairs.

mentioned before. For paths πm
d1,d2 with length m < l = 3 the last (l − m) × 35

elements of the vector are set to zero. The result of this one-hot encoding process
is illustrated in the middle-right part of Fig. 2.

Eventually, we want to aggregate the information of all the paths into a single
feature vector for each drug pair. Thus, we combine the feature vectors of the
individual paths leading from d1 to d2 by summing their corresponding feature
vectors. Hence, the feature vector for a drug pair with Nd1,d2 paths will be :

xd1,d2 =
Nd1,d2∑

i=1

xi =
Nd1,d2∑

i=1

[cr1 , cr2 , ..., cr105 ]i = [
∑

i

cir1 ,
∑

i

cir2 , ...,
∑

i

cir105 ] (1)

where cirj denotes the feature crj of path xi. The final outcome is shown in the
bottom-right part of Fig. 2. These features will be used downstream to train a
classifier and predict new probable DDIs.

4 Evaluation and Results

In this section, we first introduce the details of the generated Knowledge Graph
and the corresponding dataset for the experiments. Then, the competing meth-
ods are outlined and the evaluation task and procedure are described. Finally,
the results are presented and discussed.

4.1 Knowledge Graph Creation

The pipeline described above was configured with the MeSH descriptors “Demen-
tia” (D003704) and “Lung Neoplasms” (D008175) to create two disease-specific



Drug-Drug Interaction Prediction with BLKG 127

KGs related to two prevalent diseases with high societal impact. As a result, more
than 250,000 documents were analysed yielding more than 27 million semantic
triples for both diseases. Moreover, hierarchical relations were integrated from
the Disease Ontology, the Gene Ontology and the MeSH hierarchy adding more
than 250,000 semantic triples in each KG. More details about the composition
of the data and the type of nodes and edges as ingested by different data sources
can be found in the repository of the proposed method.

4.2 Drug-Drug Interaction

Focusing on the task of predicting interactions between drugs, we used Drug-
Bank 5.0.33 taking into account only AD and LC related drugs. There were 94
and 68 drugs respectively, according to their textual description. Using these
drugs and their corresponding interactions with all other drugs in DrugBank we
found 1326 and 4494 interacting drug pairs existing in the two KGs.

Additionally, we generated the (implicitly) negative pairs. We opted for a
corrupted sampling procedure adapted to our setting. Specifically, let D+ be the
set of positive pairs. Then, for each positive pair (d1, d2 ∈ D+) a negative pair
(d1, d′ /∈ D+) was formed. This way of creating the dataset allows for the most
“interacting” drugs to be represented equally in the two classes, marginalizing
the factor of the different “interactivity” levels among the drugs. Moreover, to
mimic the real world where actual DDIs are rare, in comparison to all possible
drug pairs, we retrieved as many negative pairs could be found in the KGs,
essentially oversampling the negative class. Details on the final datasets can be
seen on Table 1.

Table 1. Drug pairs for each use case to be used for training and validation.

Positive Negative

AD 1,326 6,554

LC 4,494 28,752

4.3 Competing Methods

In order to evaluate the semantic path approach, as a way for creating expres-
sive features for the drug pairs, we compared our method against several graph
embedding approaches that are popular for link prediction tasks over KGs. To
this end, we generated entity and relation embeddings, by training the respective
methods on the triples that make up each KG. We experimented with meth-
ods from different families of embeddings (i.e. translational, semantic matching,

3 https://www.drugbank.ca/releases/5-0-3.

https://www.drugbank.ca/releases/5-0-3


128 K. Bougiatiotis et al.

etc.), focusing heavily on tensor decomposition methods, due to their robustness
in link prediction tasks [15].

The details and references on the competing methods can be seen in Table 2.
The symbol ; symbolizes the concatenation of the embeddings, D1 and D2 the
embedding of the first and second drug of the pair respectively and RINTERACTS

the embedding of the relation INTERACTS.

Table 2. Feature representations of the drug pairs for each competing method.

Method Feature vector from embeddings Size

TransE [4] [D1; RINTERACTS ; D2] 300

RESCAL [10] [(D1 × RINTERACTS); D2] 200

HolE [9] [D1; RINTERACTS ; D2] 300

DistMult [20] [D1; RINTERACTS ; D2] 300

It is worth noting that we also tried using directly the score for each drug
pair as generated by the corresponding graph embedding model. However, the
results were much worse compared to using the embeddings generated from each
model as feature vectors for a classifer.

4.4 Experimental Setup

Having generated the various feature presentations, the effectiveness of each one
is measured using an extensive cross-validation (cv) procedure. Specifically, a
nested cv scheme with an outer 10-fold cv to estimate the performance of the
model and an inner 5-fold cv to tune the hyperparameters of the classifier was
used. For all the different feature representations a Random Forest was used as
the final predictor. The hyperparameters of each forest (e.g. number of trees,
maximum depth, etc.) were optimized independently for each model. Perfor-
mance is calculated using the area under the receiver-operating characteristic
(AUROC), while also the F1-score and the area under the precision-recall curve
(AUPRC) for the positive class are calculated. Higher values always indicate
better performance for all measures.

Finally, regarding the graph embedding procedures, the TorchKGE4 library
was used to train the models and generate the embeddings. All methods were
allowed to train for a maximum of 100 epochs while early stopping was used,
utilizing 10% of the data for validation purposes. For each model, 100-sized
embeddings were used, as they seemed to converge faster and increasing the
embedding size did not provide better results.

4 https://torchkge.readthedocs.io.

https://torchkge.readthedocs.io
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4.5 Results

The results of the evaluation can be seen in Fig. 3. We can clearly see that the
DDI-BLKG method outperforms the competing approaches on both disease-
specific KGs. Although all of the models seem to be doing well when focusing
on their ROC-AUC scores, our model surpasses the competition by far when
focusing on the positive class. This indicates that the proposed methodology,
captures important information regarding the DDIs and the predicted interac-
tions are precise despite the class imbalance.

Fig. 3. Results of the 10-fold validation for the both use-cases.

To evaluate the predictive capabilities of our method, we also performed a
small-scale qualitative analysis of its top predictions. Taking the top-10 scoring
false positives (i.e. DDIs not present in DrugBank 5.0.3), we evaluated them
using a newer version (5.3.1). The results were promising as 5/10 drug pairs for
the AD, and 7/10 for the LC graph, were actual DDIs in the more recent version.
The predicted drug-pairs that were validated on the new database can be seen
in Table 3. As an example of the AD drugs, Estradiol is a form of estrogen used
to treat menopause symptoms and its relation with Memantine (medication
for mild-to-severe AD) has been thoroughly studied [7]. Taking into account
the interaction with Rivastigmine (another medication for moderate AD), our
model captured the possible DDIs that emerge with hormone therapy trials after
menopause and the adverse effects they can cause in Alzheimer’s patients.

Regarding the LC drugs, Cisplatin (a chemotherapy drug) is commonly pro-
vided in conjunction with the predicted interacting drugs to combat the heavy
side-effects of chemotherapy (e.g. Flunitrazepam as an anti-emetic treatment
and Mangesium hydroxide to combat cisplatin-induced hypomagnesemia). How-
ever, adverse effects may arise, as in these DDIs, with unwanted changes in the
metabolism and the serum concentration of the drugs. It is also worth noting
that the predicted DDIs are related to a small set of drugs, namely Estradiol and
Trientine for the AD use case and Cisplatin and Gemcitabine for the LC use
case. It is interesting to look further into the predicted DDIs, taking into account
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Table 3. Most probable DDIs that have been retrospectively validated in DrugBank
5.3.1.

Disease Drug Interacting drugs

AD Estradiol Memantine, Rivastigmine, Trientine

AD Trientine Leuprolide, Rivastigmine

LC Cisplatin Flunitrazepam, Magnesium hydroxide Sparfloxacin

LC Gemcitabine Abacavir, Anagrelide, Isosorbide Mononitrate

LC Docetaxel Pranlukast

the interactivity of the drugs, their popularity (e.g. in how many publications
they were mentioned) and their type. Overall, 60% of the predicted DDIs are
present in the new version of DrugBank. This is an indication of the usefulness of
our method and its capability to propose probable DDIs for further validation.

5 Conclusion

In this work, we proposed a new approach for predicting DDIs as a downstream
task in a semantically-rich Knowledge Graph. We utilized a KG creation work-
flow to integrate knowledge extracted from biomedical literature and structured
databases into a common semantic graph representation. Then, we extracted
expressive features for the drug pairs based on the semantic paths that con-
nect those. The experimental results validated the basic premise of our research
regarding the latent knowledge of the extracted paths and that our method can
be used to effectively discover interacting drugs. Source code for the methods
and pre-processed datasets to replicate the results have also been made available.

As next steps, further experiments on the graph motifs indicating a DDI
should be conducted, employing reasoning techniques as well. Also, a qualitative
analysis of the resulting KG should be conducted, to gain insights on errors gen-
erated by the automatic extraction tools. As a final note, it is important to stress
that the presented methodology can be used in other tasks involving different
node pairs, such as drug-side effect, gene-disease, etc. This stems from the fact
that the feature extraction methodology was use case agnostic, depending only
on the topological and relational aspects of paths between different node pairs.
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Abstract. In this paper we present our experience in the design, mod-
elling, implementation and evaluation of a conversational medical school
tutor (MST), employing AI on the cloud. MST combines case-based
tutoring with competency based curriculum review, using a natural lan-
guage interface to enable an adaptive and rich learning experience. It is
designed both to engage and tutor medical students through Digital Vir-
tual Patient (DVP) interactions built around clinical reasoning activities
and their application of foundational knowledge. DVPs in MST are real-
istic clinical cases authored by subject matter experts in natural language
text. The context of each clinical case is modelled as a set of complex
concepts with their associated attributes and synonyms using the UMLS
ontology. The MST conversational engine understands the intent of the
user’s natural language inputs by training Watson Assistant service and
drives a meaningful dialogue relevant to the clinical case under investi-
gation. The curriculum content is analysed using NLP techniques and
represented as a related and cohesive graph with concepts as its nodes.
The runtime application is modelled as a dynamic and adaptive flow
between the case and student characteristics. We describe in detail the
various challenges encountered in the design and implementation of this
intelligent tutor and also present evaluation of the tutor through two
field trials with third and fourth year students comprising of 90 medical
students.

Keywords: Case-based tutoring · Digital virtual patient · Natural
language interface
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1 Introduction

Virtual case based learning (CBL) exposes students to a variety of clinical sce-
narios, allowing practice and explicit training in the stages and skills associated
with expert clinical reasoning like collecting relevant data, formulating a better
abstraction of the patient problem using semantic qualifiers, and the ability to
store and recall ‘illness scripts’ that aid in rapid hypothesis generation and ver-
ification leading to a focused comparison of differentials [3]. This implies that
the meaningful organization and structuring of knowledge is more important for
its contextual retrieval and building of a knowledge-base rather than just the
acquisition of foundational science. In fact, the majority of diagnostic errors are
known to be caused by cognitive errors that are not related to knowledge defi-
ciency (3%) but to flaws in data collection (14%), data integration (50%) and
data verification (33%) [17]. This explains the considerable importance given to
clinical exposure early on in medical education. However, traditional modes of
imparting such clinical experience through clinical rotations fall short in provid-
ing in-depth personalised learning encounters because of coursework schedules
and limited availability of expert clinicians. An internal survey conducted by
LKC School of Medicine, NTU Singapore found that students often wish to get
more time and dedicated one-on-one learning support for clinical cases. Antic-
ipating this gap and thanks to an e-learning grant, LKC School of Medicine,
NTU Singapore, partnered with IBM Research to envision an AI driven medical
school tutor (MST) based on Digital Virtual Patient (DVP). The aim was to
prepare students in the transition from academic study to clinical application
in an engaging manner. Real life clinical cases that were culturally and contex-
tually relevant for the target students were selected by subject matter experts
(SMEs). Pedagogical strategies for promoting diagnostic skills as recommended
in medical literature were chosen to deliver these cases. A conversational inter-
face was deemed appropriate to support interaction in natural language. The
clinical cases were authored and annotated in a manner that permitted dialog-
based interaction marked with key references to coursework. The medical school
curriculum that was organised in the form of learning outcomes (LOs) was linked
and mapped to serve as the back-end for driving recommendations in the tutor.
Assessment data of the students was retrieved from the school’s data warehouse
to build mastery profiles of students and seed the learner model. Finally, MST
was optimised for mobile device usage in order to maximise value to students
who had expressed the need of being able to access it anytime, often on the go.
The following sections describe the challenges faced during modelling of different
components that eventually led to the implementation and cloud based delivery
of MST.

2 Related Work

One of the earliest attempts in the medical tutoring space was the knowledge
based system GUIDON [4] for training in infectious diseases. Its rule base was



AI Medical School Tutor: Modelling and Implementation 135

subsequently reconfigured to create GUIDON 2 that reasoned more like human
experts and provided better explanations [5]. Later, other intelligent tutoring
systems like MR Tutor [19], SlideTutor [6], CIRCSIM [8], COMET [20], and
SIAS [16] were introduced. These catered to very specific topics, but as a proof-of-
concept they did report better motivation and engagement in addition to showing
significant learning gains. More popular commercial medical education apps like
MedScape [9], Prognosis1 and Human Dx2 - amongst others, are also worth
mentioning because of their wide user base and ease of use. Finally, even though
MST has a conceptual resemblance with the clinical reasoning tool described
in [10] it differs significantly with respect to being tutor-driven interaction design,
use of natural language, resource recommendation, continuous evaluation based
just-in-time feedback and other features as described in the following sections.
These features we believe can overcome the lower adoption rates and student
engagement found in [10].

MST differs from existing tutoring systems on several key aspects. Firstly,
it provides a holistic learning experience where medical cases are used to train
students in diagnostic reasoning skills in relation to their foundational curricu-
lum. So the focus is not entirely on diagnostic accuracy but rather the diag-
nostic ability of students to integrate and apply the relevant knowledge from
their curriculum in the context of each medical case. Secondly, MST employs
a set of diagnostic activities for each case and the assessment of students on
each of these is represented in an open learner model (OLM). This assessment
is done automatically and dynamically, and can eventually support the tracking
of student’s diagnostic ability in an evidence-based manner. Thirdly, the under-
lying knowledge-base built as the foundation of MST has resulted in an entire
medical school curriculum being automatically linked and mapped across the
entirety of learning outcomes and their associated resources. Finally, each med-
ical case is structured and authored by SMEs to drive an engaging interaction
with anchors to suggested reading at strategic points. The outcome is a rich
DVP schema that can drive an intelligent conversation with students by repli-
cating a real clinical encounter in terms of case presentation, information flow
and knowledge interrogation. The authoring effort is expected to reduce dras-
tically by using semi-automated methods using advanced NLP/AI technology.
To sum, MST offers a comprehensive learning experience by leveraging founda-
tional curriculum knowledge with established educational strategies to provide
medical students with anytime, anywhere access to relevant medical cases for
the ongoing development and refinement of their clinical reasoning skills and
competency. The novelty in MST is to build a complete tutoring system that
understands the natural language conversations interspersed with clinical terms
and connects the background knowledge with curriculum while responding with
meaningful interactions to provide a rich learning experience.

1 https://www.medicaljoyworks.com/prognosis-your-diagnosis.
2 https://www.humandx.org/.

https://www.medicaljoyworks.com/prognosis-your-diagnosis
https://www.humandx.org/
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Fig. 1. (a) Sample MST interaction for key features activity on a clinical case. (b)
Interaction flow indicating sequence of activities for a typical interaction around a
DVP.

3 Case Representation and Modelling

CBL is an educational paradigm closely related to Problem based Learning
(PBL) in which real-life cases form an authentic context for learning activities
meant to promote active problem solving and foster deeper knowledge [13,22].
A DVP is an instantiation of a clinical case that is often used for CBL. DVPs
can have varying levels of realism ranging from text based descriptions to high
fidelity simulations [12]. While the granularity and design of DVPs depends on
their proposed usage, their development and authoring costs remain high mak-
ing it challenging to scale these for new or unseen cases. MST also has its unique
requirement for a DVP: clinical cases need to be authored and annotated in a way
that enables a conversational interaction scenario while fulfilling the pedagogical
goals of knowledge acquisition, application and reinforcement. The challenge is
to not just annotate each case in an elaborate manner but to also ensure that
it conforms to the unfolding of a real clinical encounter. The annotation needed
to be objectively done so that students performance could be evaluated on each
activity. SMEs from LKC School of Medicine carefully selected relevant clinical
cases based on real-life patient cases. Together with computer scientists, an anno-
tation protocol was devised and a DVP schema was generated that captured the
essential knowledge elements as well as the information flow and related curricu-
lum linkages. This knowledge modelling evolved from custom spreadsheets into
DVP JSON (JavaScript Object Notation) objects - a lightweight machine read-
able data format. This was a non-trivial and time consuming task that involved
several rounds of iterations and consultations until a final structure was agreed
upon. The resulting DVP schema was a collaborative effort between expert clin-
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Table 1. Activities driving interaction with a clinical case.

Activity name Description

Key features It trains students in recognizing key clinical findings (e.g. high
body temperature) potentially relevant to their differential
diagnoses. It aligns with the first stage of data acquisition,
mental abstraction and promotes systematic case-reading for
distilling pertinent information to formulate possible hypotheses

Clinical
impression (CI)

CI is a concise description of patients’ key clinical issue(s) with
relevant history and examination including functional
impairment in clinical terminology (e.g. fever). CI is similar to
Problem Representation [21] The purpose is to check students’
conceptual understanding of the problem and encourage use of
clinical vocabulary that can facilitate retrieval of relevant
content from students clinical knowledge/experience

Student
questioning

An important part of history taking is the ability to follow a
clear line of enquiry and interrogate the patient. To be able to
ask the right questions ensures focused data collection which
increases the likelihood of potential diagnoses. This activity
guides students to ask targeted questions of the patient given
the case information presented so far

Knowledge/skills
recall

Relating the case data and the path to a possible diagnosis tests
medical knowledge and its application. Therefore, probes in the
form of multiple answer questions are interspersed in the MST
interaction to help students recall and apply the knowledge
acquired in the foundational academic years. MST also has
provision for open text probes for flexible testing should the
SME require

Differential This involves listing of the three most likely diagnosis in an
attempt to identify diseases that may cause patients
presentation. The differential diagnosis is the first attempt to
distinctly pronounce the potential hypotheses

Compare &
contrast

Rather than listing out the features of possible diagnoses,
expert clinicians compare and contrast the evidence against
possible diagnoses which makes the focus on the discriminating
features for each differential. MST uses this method to teach
students to differentiate between diagnostic possibilities by
reflecting on the relationship among the key clinical features.
Contrasting key clinical features against multiple diagnoses
leads to prioritizing a final diagnosis and can help in building of
appropriate knowledge networks for future application

Final diagnosis The final diagnosis is the identification of the disease that is
most likely the cause of the patients illness. The process of
concluding the final diagnosis is as important as arriving at the
decision itself so all other activities enable and support this
decision making and help students make a conclusion
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icians and computer scientists that laid the foundation of the MST. We realised
that to make the project scalable and viable in the long run the authoring had
to be complemented with proper tooling to make it easy for SMEs to create
and review cases. Eventually a complete case authoring tool was developed to
semi-automate the process using advanced AI/NLP techniques.

4 Interaction Modeling

MST takes Bowens’ [3] elements of the diagnostic reasoning process as the core
framework to design and steer learning activities that target student training and
practice in: data acquisition skills; problem summarizing using clinical vocabu-
lary; analysing competing hypotheses; prioritizing of diagnostic possibilities; cre-
ation of illness scripts by integrating contextual case knowledge; understanding
prototypical presentations of diseases; retrieval and recall of acquired curricu-
lum knowledge; encouraging targeted and timely reading; and finally reinforcing
the foundational clinical knowledge with clinical practice. The following sections
describe the activities that enable development of these skills and how they are
interleaved with the DVP to create an interactive seamless flow.

4.1 Learning Activities and Case Flow

Figure 1b illustrates the stages within MST and how the various clinical rea-
soning activities are surfaced. The stages correspond to blocks or gates that end
with learning points and takeaways. This sequence template tries to replicate the
stages of a real clinical encounter and was created in consultation with SMEs.
Any variations on this case flow are defined by SMEs as part of the authoring
process. Table 1 provides a brief description of the specific activities. In order to
make the interaction crisp and engaging, students are given only two attempts
to specify their answers. Exception to this are the probing questions that are
delivered in a multiple choice question answer style of interrogation. The expert
answers with explanations are provided at the end of each activity. These help
students introspect and validate their understanding.

4.2 Response Generation

MST models conversation with students using the above-mentioned case flow to
achieve the tutor goals of case presentation, activity sequencing, activity evalua-
tion, resource recommendation and simultaneously building of a student model.
A major challenge is to meet the pedagogical goals while maintaining conver-
sational efficiency and providing constructive remediation to the student. MST
uses a state space model design to generate tutor responses depending on the
state and location in the dialog. A library of responses collectively compiled
by experts are used to seed the tutor responses in order to ensure culturally
and professionally appropriate language. A dialog is enabled by alternate turn-
taking where student responses are evaluated in the context of ongoing task and
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recognised intent. Expectation setting occurs at the beginning of each activity
when students are given activity specific instructions. An appropriate response
is accordingly generated which consists of an acknowledgment, an evaluation
statement and a dialog advancer to keep the conversation going. At the end of
each activity the tutor response also includes an evaluation component to show
the score attained. Refer to Fig. 1a for an example of how MST responds to
student input by acknowledging the response, asserting correct information and
also taking the dialog forward. The response generation has scope to include a
students performance as well as engagement parameters so that tutor responses
are specifically aligned to the actual state of a student.

5 Context and Domain Modeling

Understanding the students’ natural language input in the context of a clinical
case and its medical vocabulary is one of the main challenges for MST. The
conversational agent within MST has to understand the intention of the student
and has to respond appropriately to retain engagement. Responses that do not
meet student’s expectations or are incorrect will result in disengagement. The
tutor’s response has to be relevant and valuable with respect to the immedi-
ate learning activity. Thus, understanding the student’s intent is essential for
ensuring smooth interaction and superior experience.

In MST, students’ input are modelled as a bag of intents. Intents are small
group of one-to-four words uttered during interaction with the tutor. There may
be any number of intents within a student response. MST relies on the Watson
Assistant service [1] to identify an intent given a group of words. MST identi-
fies all the different intents (bag of intents) within a student response and their
appropriateness in the ongoing conversation. The bag of intents are returned to
tutoring engine for further processing by Input Curator module within MST.
This machine learning module relies on Unified Medical Language System [2]
knowledge-base for training and understanding medical terms. For example,
when a student writes high temperature or fever or pyrexia, it should all be
understood as the same intent. Figure 1a shows the correctly expressed intents
are also part of system response in addition to unexpressed intents (shown in
bold face). This is to further inquire the student to provide missing parts of the
answer.

6 Content Modeling and Curriculum Linkage

Appropriate content recommendation customized to each learner is a crucial
feature in MST. This is achieved by linking each clinical case with the under-
lying curriculum content in the form of Learning Resources (LRs) via Learning
Objectives (LOs). MST uses advanced NLP techniques to extract all related LOs
(LO-LO Relatedness prediction) and identifies pages of relevant LRs (LO-LR
Relevance prediction) to relate concepts from the case with those in the cur-
riculum. The detailed modeling, experiments and results of LO-LO relatedness
prediction and LO-LR relevance prediction can be found in [15,18] respectively.
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6.1 LO-LO Relatedness

Predicting LO-LO relationship requires looking into the semantic content of dis-
parate LOs, in addition to their relatedness in the curriculum hierarchy [15].
This is formulated as a three-class classification task where given a pair of LOs,
a classifier is trained to categorize them as being either strongly related, weakly
related, or unrelated based on annotations obtained from Subject Matter Experts
(SMEs). The representation for a pair of LOs is the concatenation of their cur-
riculum and semantic features, that encode their relative position in the curricu-
lum hierarchy and similarity in meaning, respectively. This feature-set is used
with a random forest classifier, that learns to classify the relationship between
pairs of LOs. This LO relationship extraction system is then applied to uncover
LOs relevant to clinical cases (DVP) in MST so that useful LRs can be recom-
mended.

6.2 LO-LR Relevance Prediction

Identifying relevance of an LR page with an LO has three key aspects–(1) Lex-
ical, (2) Semantic, and (3) Spatial [18]. The overlap between the terms in the
LO and those in the page can be used to identify some of the relevant pages.
Similarly, semantic overlap between the LO and the page can identify relevant
pages that are not identified by lexical matches. Additional pages that are adja-
cent to highly relevant pages (either lexical or semantic) are also likely to be
relevant. Exploiting this spatial aspect identifies additional relevant pages to the
existing set of pages. This problem is formulated as a binary classification task,
where given an LO and a page of an LR, a machine learning model predicts
its relevance. It would be ideal to train a joint model that is able to utilize all
three aspects (lexical, semantic, spatial) to make relevance predictions. However,
obtaining annotated training data for this task is expensive as the SME has to
go through the entire LR for annotating each LO. Thus, a pipelined approach
consisting of separate models capturing each of the aspects is used to convert
the alignment problem into a page relevance classification problem.

7 Learner Modeling

The student model for MST tracks knowledge and behaviour including estima-
tion of mastery level from prior assessment data, performance on the various
reasoning activities, and behaviour based implicit metrics of engagement. The
idea was to build a student profile that could enable open learner model visu-
alisation, provide adaptive learning pathways, allow personalised feedback gen-
eration, and tailored sequencing and recommendation of content - eventually
leading to customising interactions and optimising the tutor strategy overtime.
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Fig. 2. (a) Learner model visualisation (b) Different components of MST and their
interaction.

7.1 Representation

The knowledge and behaviour models in MST have two components to separate
the prior student profile from the MST based profile. A combination of overlay
and stereotype modelling is used for prior mastery estimation by conducting
IRT [11] analysis on the historical performance data from the medical schools’
formative assessments called IRA (Individual Readiness Assessment). Students
are categorised into five levels of mastery ranging from beginner to expert using
overall, cohort-level, year-level, block-level, and LO level IRT estimates. The
prior behaviour model is captured in the form of various metrics like login fre-
quency, dwell time, media preferences and resource access to get an idea of the
interaction style of students.

MST tracks detailed activity level performance at case level and an overall
global estimation across all cases for each student. The activity level assessments
form the basis of an evaluation model that bins students into five mastery lev-
els. Activity level scores are computed by comparing student answers against
the corresponding expert answers. Additionally, an overall reasoning ability is
approximated using dimensions of Pattern Recognition, Knowledge and Skills,
and Decision-Making using scores across cases. Key features and Compare &
Contrast scores give an estimation of the Pattern Recognition skills of the stu-
dent. Differential and Final Diagnosis give an indication of the Decision-Making
skills while the Probes showcase Knowledge & Skills. Taken together, these three
higher order measures highlight the various components of diagnostic reasoning
ability and help in identifying areas of strengths and weaknesses. The MST
learner model can be instrumental in getting first evidence on automatic assess-
ment of diagnostic reasoning.

7.2 Visualisation

In the spirit of OLMs [7], MST provides students with a powerful visualisation
of their student model in order to motivate and track their learning and help
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them reflect on their performance Two data visualisation techniques are used in
the learner dashboard. The first one is based on the Mastery Grid [14] concept
wherein the student mastery levels are depicted using colour gradients in a grid
format. The second visualisation is a spider diagram that provides a summary
view of higher order skills of pattern recognition, knowledge and skills, and
decision-making. The arcs represent the different activities and their gradations
correspond to the mastery levels. The scores for this visualization are aggregated
across all the cases completed by the student so that it gives an overview of
reasoning ability in an intuitive manner. Figure 2a shows how the dashboard
looks for a dummy user who has gone through four cases and completed one out
of them.

Fig. 3. Feedback survey results

8 Implementation Details

MST is implemented in a cloud-native microservice-based architecture on IBM
Cloud. Figure 2b shows its key components and how they interact. The Input
Curator service analyses each student input to identify the intent and answer.
This service uses advanced NLP techniques and relies on IBM’s Watson Assis-
tant service [1]. The identified intents and current state of student in the inter-
action flow 1b is passed back to the Orchestration which in turn delegates con-
trol to the appropriate activity specific microservices. The Learner Model ser-
vice updates the performance and engagement parameters after completion of
individual activities in the interaction flow - refer to Fig. 1b. Additional offline
components that complement the tutor system to support case authoring, LO-
LO relation extraction, LO-LR mapping, LR chunking and training of Watson
Assistant are shown separately in the figure.

9 Experimental Validation

We conducted two field trials with medical students to validate the goals of
MST and evaluate its efficacy. The purpose of these trials was not to compare
these two user groups but to assess the functioning of the system and get direct
feedback on its perceived value from end-users. The trials were conducted a few
weeks apart so that feedback taken from students in the first field trial was
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incorporated into MST before conducting the second trial. The first field trial
was conducted with 55 third year medical students while the second trial was
done with 35 fourth year medical students. All students voluntarily participated
and were given a brief introduction about the purpose of the experiment. More
than 75% of students used laptops while less than 10 % of students used their
smartphones during the trials. All students worked on the same dengue case in
all sessions. Student’s participation was monitored through a muted video con-
ference session to avoid distraction. All students appeared to be considerably
engaged while working through the cases in MST. A feedback survey question-
naire was completed by all participants in both trials. It had 14 Likert questions
aligned to the dimensions of usability, learning gains and content engagement.
Additionally, there were two open style questions asking students about what
they liked in MST and what they wished to see in future improvements. The
results of the survey comparing feedback between the two groups are depicted in
Fig. 3 with scores normalized on 0–1 scale. All scores for usability, learning and
content engagement are well above 0.6 with the exception of one score of 0.52
given in the first field trial on ease of finding information on the app. The change
of this score to over 0.7 in the second field trial shows that the feedback was taken
constructively and utilised to improve the app. Overall, all students rated MST
over 0.65 on usability and experience. On the dimension of learning, students
gave a score of more than 0.7 vindicating the value of MST as a supplement to
learning. Students found themselves in control of their learning, and expressed
their interest to explore more cases. Students also found the cases both chal-
lenging and engaging. They found the pacing of activities appropriate and were
generally happy with the time it took to complete a case. Students comments
from the open style questions gave interesting insights into their experience and
views on MST. Figure 4a presents the word cloud of the notable features liked
by students. For improvements, students mainly expected clarity in instructions,
better response classification and an ability to ask counter questions about the
systems evaluation or explanation of answers. We aim to follow up on these find-
ings and suggestions prior to conducting a longitudinal study with students. We
would especially focus on using the learner model to compare learning gains and
changes in diagnostic skills overtime.

Both field trials collectively gave us about 50 h of interaction data. Students
spent an average of 33 min on the dengue case with the least time spent being
10 min and the maximum 50 min. Considering time spent as a proxy measure of
student engagement, we can perhaps conclude that students were motivated and
all of them completed the case till the end. Figure 4b shows the distribution of
overall time spent on the case as well as in individual learning activities. Students
appear to have spent more time in key features, clinical impression and student
questioning activities.

To sum, the survey results and data from these initial evaluations are pos-
itive and encouraging. Usability, learning gains and engagement seems to be
high among the students from the field trials. Students also proposed areas of
improvement in MST specifically regarding instructions not being clear and not
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Fig. 4. (a) Word-cloud of what students liked (b) Distribution of time-spent in MST
(in mins)

knowing the response expected by the tutor. Students also cited instances where
the tutor was not able to understand their responses. Understanding nuances
in natural language and medical vocabulary is a huge NLP challenge and this
is being currently worked at to improve the experience. However, the reported
limitations do not come in the way of achieving a superior learning experience.

10 Summary

We described the Medical School Tutor (MST) as a holistic learning tool driven
by AI techniques to prepare medical students in their transition from academic
study to clinical application. The interaction design modeled on CBL pedagogy
engaged students with realistic clinical cases. The content and context under-
standing enabled using NLP techniques allows seamless introduction of curricu-
lum resources and generation of appropriate feedback. The survey results show
high scores on usability, learning gains and engagement; and validate the pur-
pose and efficacy of conversational tutoring in complex medical domain. The
combination of clinical cases with medication foundation curriculum through
conversational interface seems to be a novel and an enriching experience for stu-
dents. In future, MST aims to provide a truly personalized tutoring experience
featuring responses adapted to student’s learner model.
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Abstract. Lung cancer is the most common cause of cancer-related
death in men worldwide and the second most common cause in women.
Accurate prediction of lung cancer outcomes can help guide patient care
and decision making. The amount and variety of available data on lung
cancer cases continues to increase, which provides an opportunity to
apply machine learning methods to predict lung cancer outcomes. Tradi-
tional population-wide machine learning methods for predicting clinical
outcomes involve constructing a single model from training data and
applying it to predict the outcomes for each future patient case. In con-
trast, instance-specific methods construct a model that is optimized to
predict well for a given patient case. In this paper, we first describe an
instance-specific method for learning Bayesian networks that we devel-
oped. We then use the Markov blanket of the outcome variable to predict
1-year survival in a cohort of 261 lung cancer patient cases contain-
ing clinical and omics variables. We report the results using AUROC
as the evaluation measure. In leave-one-out testing, the instance-specific
Bayesian network method achieved higher AUROC on average, compared
to the population-wide Bayesian network method.

Keywords: Lung cancer survival prediction · Instance-specific
modeling · Population-wide modeling · Bayesian network classifiers

1 Introduction

Lung cancer is the most frequent cause of cancer-related death in men worldwide
and the second most common cause in women [4], despite significant improve-
ments in diagnosis and treatment during the past decade. Lung cancer is typically
divided into two major subtypes: small cell lung cancer (SCLC) and non-small
cell lung cancer (NSCLC), where the latter is more prevalent. The overall 5-year
survival rate for lung cancer is 19% but it can be increased to 57% if diagnosis
occurs at a localized stage of the disease [2], which is not often the case. Accurate
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prediction of lung cancer outcomes is important, because it can facilitate patient
care and clinical decision making. With rapid advancements in technology, large
amounts of lung cancer data with clinical and molecular information are being
collected and made available. This trend provides an opportunity for researchers
to apply machine learning techniques to predict outcomes of lung cancer.

Most machine learning methods for predicting clinical outcomes construct a
single model M from training data. M is then applied to predict outcomes in
future instances. We refer to such a model as a population-wide model because
it predicts outcomes for a future population of instances. It may be difficult
for population-wide models to perform well in domains in which instances are
highly heterogeneous. Studies have revealed that heterogeneity exists both within
individual lung cancer tumors and between patients [20]. In such domains, a
reasonable approach is to learn a model that is tailored to a particular instance
(e.g., a patient), which we refer to as an instance-specific model. An instance-
specific approach builds a model MT for a given instance T from the features
that we know about T (e.g., clinical and molecular features) and from a training
set of data on many other instances. It then uses MT to predict the outcome for
T . This procedure repeats for each instance that is to be predicted.

In this paper, we use Bayesian network (BN) classifiers to predict patient
survival in a cohort of 261 lung cancer patients with clinical and omics infor-
mation. More specifically, we apply a score-based instance-specific BN learning
method, called IGES, which we introduced in [14]. The IGES algorithm searches
the space of BNs to learn a model that is specific to an instance T by guiding the
search based on T ’s features (i.e., variable-value pairs). We also apply a state-
of-the-art score-based population-wide BN learning method, called GES [14], as
a control method. These methods are summarized in Sect. 4. The main goal
of this paper is to investigate the effectiveness of instance-specific modeling in
predicting survival outcomes for lung cancer patients.

2 Related Work

Various population-wide methods such as neural networks, support vector
machines, random forests, and Bayesian models have been applied in cancer
research to predict cancer survival and reported AUROCs of ∼0.80 [1,8,19]. A
review of such methods is provided in [16]. None of these methods learn instance-
specific models. Additionally, they use different sets of predictors and different
patient cohorts, so a direct comparison to the results in the current paper is not
possible.

Several machine learning methods have been developed to learn instance-
specific models. Zheng and Webb [22] introduced a lazy Bayesian rule learning
(LBR) method to construct a model that is specific to a test instance. In an LBR
rule, the antecedent is a conjunction of the variable-value pairs that are present in
the test instance and the consequent is a local näıve Bayes classifier in which the
target variable is the parent of the variables that do not appear in the antecedent.
Visweswaran and Cooper [21] developed an instance-specific Markov Blanket
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(ISMB) algorithm that searches over the space of Markov blankets (MBs) of the
target variable by utilizing the features of a given test instance. ISMB first uses
a greedy hill-climbing search to find a set of MBs that best fit the training data.
Then, it greedily adds single edges to the MB structures from the previous step,
if doing so improves the prediction of a given test instance. Ferreira et al. [10]
implemented two patient-specific decision path (PSDP) algorithms using two
variable selection criteria: balanced accuracy and information gain. A decision
path is a conjunction of features that are present in a given test instance and a
leaf node that contains the probability distribution of the target variable.

Recently, Lengerich et al. [17] introduced a personalized linear regression
model that learns a specific set of parameters for each test case based on the idea
that the similarity between personalized parameters is related to the similarity
between the features. Accordingly, a regularizer is learned to match the pairwise
distance between the features (i.e., variable-value pairs) and the personalized
regression parameters. In other related work, Cai et al. [5] developed a method
to learn tumor-specific BN models from data; this method uses bipartite BNs
and makes other assumptions that restrict its generality.

The IGES method [14] that we use in this paper is different from the methods
mentioned above. IGES differs from a population-wide method in a principled
way; it learns a model for each instance T that is optimized for T , while a
population-wide model is designed to learn a single model that is optimized for
a population of instances. Also, the IGES method learns a more general model
than does LBR [22], ISMB [21], PSDP [10], and tumor-specific BN models [5],
because it learns Bayesian network models, which can be used for both prediction
and causal discovery [13–15].

3 Preliminaries

A Bayesian network (BN) encodes probabilistic relationships among a set of
variables. A BN consists of a pair (G,Θ), where G is a directed acyclic graph
(DAG) and Θ is a set of parameters for G. A DAG G is given as a pair (X,E),
where X = {X1,X2, ...,Xn} denotes a set of nodes that correspond to domain
variables and E is a set of directed edges between variables. The presence of an
edge Xi → Xj (Xi is called the parent and Xj is called the child) denotes that
these variables are probabilistically dependent. The absence of an edge denotes
that Xi and Xj are conditionally probabilistically independent. A set of DAGs
that encode the same independence and dependence relationships are statisti-
cally indistinguishable from observational data; such DAGs are called Markov
equivalent. The second component, Θ, is a set of parameters that encodes the
joint probability distribution over X, which can be efficiently factored based on
the parent-child relationships in G.

As mentioned above, the edges present and absent in a DAG represent con-
ditional dependence and independence relationships between variables, respec-
tively. Any such relationship should hold for all combinations of values of the
variables in the BN. There is a more refined form of conditional independence
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that holds only in a specific context, which is known as context-specific inde-
pendence (CSI) [3]. Figure 1 shows a BN that includes two CSI relationships:
X4 ⊥⊥ {X2,X3}|X1 = 0 and X4 ⊥⊥ X3|{X1 = 1,X2 = 1}. The IGES method
models such local independence structures for each instance T , which results in
a more expressive BN structure and a more efficient BN parameterization.

Fig. 1. An example Bayesian network with two context-specific independencies (CSIs):
X4 ⊥⊥ {X2, X3}|X1 = 0 and X4 ⊥⊥ X3|{X1 = 1, X2 = 1}.

4 Methodology

4.1 Population-Wide Greedy Equivalence Search (GES)

Score-based methods are one of the main approaches to learn BN structure from
data that involve (1) a scoring function to measure how well the data (and
optional background knowledge) support a given DAG and (2) a search strategy
to explore the space of possible DAGs. Since recovering the data-generating BN
is an NP-hard problem [6], these methods often utilize a greedy search strategy.
GES [7] is a state-of-the-art score-based BN learning algorithm that searches
over the Markov equivalence classes of DAGs using two local graph operations:
single edge addition and single edge removal. First, it greedily adds single edges
to the current graph as long as doing so leads to score improvement. It then
greedily removes single edges as long as doing so results in a higher score. Under
reasonable assumptions, the GES algorithm converges to the data-generating
BN or one Markov equivalent to it [7].

The Bayesian Dirichlet (BD) scoring function [12] is used to score a BN with
discrete variables and is calculated as follows:

BD(G,D) = P (G) ·
n∏

i=1

qi∏

j=1

Γ(αij)
Γ(αij + Nij)

·
ri∏

k=1

Γ(αijk + Nijk)
Γ(αijk)

, (1)

where P (G) is the prior structure probability of G. The first product term is
over all n variables, the second product is over the qi parent instantiations of
variable Xi, and the third product is over all ri values of variable Xi. The term
Nijk is the number of cases in the data in which variable Xi = k and its parents
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Pa(Xi) = j; also, Nij =
∑ri

k=1 Nijk. The term αijk is a Dirichlet prior parameter
that may be interpreted as representing “pseudo-counts” and αij =

∑ri
k=1 αijk.

The pseudo-counts can be defined to be evenly distributed, in which case Eq. (1)
represents the so-called BDeu score [11]:

αijk =
α

ri · qi
, (2)

where α is a positive constant called the prior equivalent sample size (PESS).

4.2 Instance-Specific Greedy Equivalence Search (IGES)

We introduced an instance-specific version of GES called IGES in [14]. Similar to
GES, IGES is a two-stage greedy BN learning algorithm that uses an instance-
specific score (IS-Score). First, it runs GES using the training data D and the
BDeu score to learn a population-wide BN model GPW; this is the population-
wide BN for all test instances. In the second stage, IGES uses the data D, the
population-wide model GPW, and a single test instance T to learn an instance-
specific model for T , which is denoted as GIS. To do so, IGES starts with GPW

and runs an adapted version of GES with a specialized IS-Score to maximize the
marginal likelihood of the data given both BN models GPW and GIS.

For each variable Xi, the IS-Score is calculated at the parent-child level and
is composed of two components: (1) the instance-specific structure that includes
Xi’s parents in GIS, which we denote by PaIS(Xi) and (2) the population-wide
structure that includes Xi’s parents in GPW, which we denote by PaPW(Xi).
In order to score the instance-specific structure PaIS(Xi) → Xi, we use the
instances in data that are similar to the current test instance T in terms of the
values of the variables in PaIS(Xi). These instances are selected based on the
values of PaIS(Xi) in T ; let DPaIS(Xi)=j be the instances that are similar to T
assuming PaIS(Xi) = j. Then the instance-specific score for PaIS(Xi) → Xi

given data DPaIS(Xi)=j is as follows:

P (DPaIS(Xi)=j |PaIS(Xi) → Xi) =
Γ(αij)

Γ(αij + Nij)
·

ri∏

k=1

Γ(αijk + Nijk)
Γ(αijk)

, (3)

where ri denotes all values of Xi, Nijk is the number of instances in DPaIS(Xi)=j

in which Xi = k, and Nij =
∑ri

k=1 Nijk. The terms αijk and αij =
∑ri

k=1 αijk

are the corresponding Dirichlet priors.
Since the instances in DPaIS(Xi)=j are being used to score the instance-specific

structure, they should no longer be used to also score the population-wide struc-
ture; therefore, the score for PaPW(Xi) → Xi must be adjusted accordingly.
We re-score PaPW(Xi) → Xi using the remaining instances in DPaIS(Xi) �=j as
follows:

P (DPaIS(Xi) �=j |PaPW(Xi) → Xi) =
qi∏

j′=1

Γ(αij′)
Γ(αij′ + Nij′)

·
ri∏

k=1

Γ(αij′k + Nij′k)
Γ(αij′k)

,

(4)
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where ri and qi are the number of possible values of Xi and PaPW(Xi), respec-
tively. Nij′k is the number of instances in DPaIS(Xi) �=j for which Xi = k and
PaPW(Xi) = j′, and Nij′ =

∑ri
k=1 Nij′k. The terms αij′k and αij′ =

∑ri
k=1 αij′k

are the corresponding Dirichlet priors.
Finally, to obtain the overall score for variable Xi using all instances in D,

we multiply these two scores. In essence, this method searches for the most
probable context-specific BN in light of how well (1) the instance-specific model
predicts data for instances like the current test instance, and (2) the population-
wide model predicts data for the remaining instances. See [14] for a detailed
description of the IS-Score and the IGES method.

5 Experimental Results

This section describes a comparison of the performance of an instance-specific
machine learning method to its population-wide counterpart when predicting 1-
year survival in lung cancer patients, using clinical and molecular data, which are
described in Sect. 5.1. We used Bayesian network classifiers as machine learning
models to predict the target variable. More specifically, we applied IGES and
GES methods to learn instance-specific and population-wide BN classifiers.

To predict the target variable, we first ran the IGES and GES methods to
construct a BN structure over all variables (i.e., the predictors and target). Then,
we obtained the Markov blanket (MB) of the target variable that includes the
variable’s parents, children, and its children’s parents. Finally, we calculated the
probability distribution of the target variable given its MB and output the most
probable outcome as the prediction. We report evaluation criteria to measure the
effectiveness of the instance-specific BN model versus the population-wide BN
model. In particular, as a measure of discrimination, we report the area under
the ROC curve (AUROC) when predicting 1-year survival. We also report the
differences between the variables in the MB of the target variable found by the
instance-specific models compared to the population-wide model.

5.1 Data Description

This was a retrospective analysis of banked tumor specimens that were collected
from patients with lung cancer at the University of Pittsburgh Medical Center
(UPMC) in 2016. Baseline demographics, smoking history, staging, treatment,
and survival data were collected through the UPMC Network Cancer Registry.
We replaced the missing values of the predictor variables with a new category
called “missing” and removed the cases for which the value of the outcome
variable was not known. Demographic and clinical characteristics of the 261
patients are summarized in Table 1. DNA sequencing was performed using the
Ion AmpliSeqTM Cancer Panel (Ion Torrent, Life Technologies, Fisher Scien-
tific). Gene rearrangements of ALK, ROS1, and RET, and MET amplification
were detected using FISH. PD-L1 SP263 and PD-L1 22C2 assays were per-
formed on lung cancer samples to determine the PD-L1 tumor proportion score
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Table 1. One-year survival given demographic and clinical characteristics. A 95%
confidence interval is included for each sub-group of patients.

Variable
name

Variable value Greater than 1 year

# Patients
(Total)

% Patients (Confidence
Interval)

Age 22–62 54 (84) 64.29 (54.04, 74.54)

63–72 41 (88) 46.59 (36.17, 57.01)

73–88 45 (89) 50.56 (40.17, 60.95)

Sex Female 80 (135) 59.26 (50.97, 67.55)

Male 60 (126) 47.62 (38.9, 56.34)

Race White 119 (224) 53.13 (46.58, 59.66)

Black 16 (31) 51.61 ((34.02, 69.2)

Other 5 (6) 83.33 (53.33, 113.33)

Tobacco
history

Cigar/pipe smoker 0 (1) 0

Cigarette smoker 42 (85) 49.41 (38.78, 60.04)

Never used 22 (32) 68.75 (52.69, 84.81)

Previous tobacco use 76 (142) 53.52 (45.32, 61.72)

Snuff/chew/smokeless 0 (1) 0

Diagnosis Adenocarcinoma 53 (89) 59.55 (49.35, 69.75)

Squamous 3 (7) 42.86 (45.3, 62.06)

Other 11 (29) 37.93 (6.20, 79.52)

NA 73 (136) 53.68 (20.27, 55.59)

(TPS). Table 2 provides information about the type, name, and description of the
variables that are included in the lung cancer dataset. The outcome-prediction
research reported here was performed under the auspices of study protocol num-
ber PRO15070164 from the University of Pittsburgh Institutional Review Board
(IRB).

5.2 Results

We performed leave-one-out cross-validation on the lung cancer dataset. For
each instance T , we used T as a test instance and all the remaining instances
as the training set D. We applied IGES search using T , D, and the IS-Score
to learn an instance-specific BN model for T , which is called GT and is used to
predict the outcome for T . We also applied GES search using D and the BDeu
score to learn a population-wide BN model for T ; this BN model is denoted
by GPW and is used to predict the outcome for T . We repeated this procedure
for every instance in the dataset. Note that this leave-one-out cross-validation
does not involve any hyperparameter tuning; therefore, we do not expect it to
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Table 2. Type, name, and description of the variables of the lung cancer dataset.

Variable type Variable name Variable description

Demographics Sex, Race, Age, Tobacco
History

Clinical Site Location of tumor

Surgical Procedure Type of surgical resection or
biopsy

Diagnosis Lung cancer type
(Adenocarcinoma, Squamous,
Other, NA)

Mets at Dx-Brain, Mets at
Dx-Bone, Mets at Dx-Distant
Lymph Nodes, Mets at
Dx-Lung, Mets at Dx-Liver,
Mets at Dx-Other

Location of metastasis at
diagnosis (Dx), if any

Histo Behavior ICD-O-3 Histological classification

cT, cN, cM, cStage Group Clinical staging

pT, pN, pM, pStage Group,
Pathologic Stage Descriptor

Pathologic staging

Molecular PD-L1 IHC, PD-L1 Comment PD-L1 immunohistochemistry
measures the amount of PD-L1
staining on tumor cells

MET, KRAS, EGFR-summary,
EGFR-Exon-18,
EGFR-Exon-19,
EGFR-Exon-20,
EGFR-Exon-21, BRAF,
PIK3CA, ALK Mutation

Status of gene mutations

ALK IHC ALK gene
immunohistochemistry

ALK Trans ALK gene translocation

ROS Trans ROS gene translocation

RET Trans RET gene translocation

cMET Ratio Measurement of cMET gene
amplification

cause overfitting. We used an efficient implementation of GES, called FGES [18],
which is available in the Tetrad system1. We used prior equivalence sample sizes
of PESS = {0.1, 1.0, 10.0} for both IGES and GES methods. IGES also has a
parameter that penalizes the structural difference between the population-wide
and instance-specific BN models, called κ (0.0 < κ ≤ 1.0), where a lower value

1 https://github.com/cmu-phil/tetrad.

https://github.com/cmu-phil/tetrad
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indicates more penalty for differences (see [14] for details). We report the results
of using multiple values of κ.

Table 3 shows the AUROC results on the lung cancer dataset, using both GES
and IGES searches; boldface indicates that the results are statistically signifi-
cantly better, based on DeLong’s non-parametric test [9] at a 0.001 significance
level. The results indicate that with PESS = 1.0 and κ = 1.0, the instance-
specific search resulted in the highest AUROC; also, for almost all values of κ,
IGES performs better. Table 3 also suggests that it is important to define PESS
properly when applying a Bayesian method on a dataset with small to moderate
sample size, which is the case in this paper.

Table 3. AUROC of the GES and IGES methods on the lung cancer dataset. Boldface
indicates statistically significantly better results.

Method GES IGES

PESS – κ = 0.1 κ = 0.2 κ = 0.3 κ = 0.4 κ = 0.5 κ = 0.6 κ = 0.7 κ = 0.8 κ = 0.9 κ = 1.0

0.1 0.68 0.67 0.70 0.70 0.70 0.70 0.71 0.71 0.70 0.71 0.72

1.0 0.68 0.68 0.75 0.75 0.75 0.75 0.75 0.74 0.75 0.75 0.81

10.0 0.65 0.75 0.75 0.77 0.76 0.75 0.72 0.73 0.73 0.69 0.70

Table 4. Comparison of the target variable’s Markov blanket (MB) in the instance-
specific BNs vs. the population-wide BN for PESS = 1.0 and κ = 1.0.

(a) Structural differences of the variables in

the MBs in instance-specific BNs vs. the

population-wide BN.

# Added # Deleted # Reoriented % Patients

0 0 0 16.9

5 0 0 10.7

4 0 0 7.7

1 0 0 6.9

3 0 2 4.2

0 0 2 4.2

6 0 0 3.8

other other other 45.6

(b)Percentage of top-7 variables of the MBs

of instance-specific BNs. The MB of the

population-wide BN includes the first two

variables denoted by ∗.

Variable name % Occurrence in patients

EGFR-Exon-19∗ 98.1

Mets at Dx-Other∗ 92.8

Race 37.9

EGFR-Exon-18 35.6

EGFR-Exon-20 31.8

cM 26.8

cStage Group 24.5

Table 4a shows the results of comparing the target variable’s MB in the
instance-specific models versus the population-wide models with PESS = 1.0
and κ = 1.0. It indicates that in 16.9% of the patient cases, the MB of the
target variable was exactly the same in instance-specific and population-wide
BNs. Also, in 10.7% of the cases, the MB of the target variable had 5 additional
variables in instance-specific models compared to the population-wide model.
Table 4b also shows the percentage of the 7 variables that occurred the most
in the instance-specific MBs. Table 4 supports that instance-specific structures
exist for the lung cancer cases in the dataset we used.
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6 Discussion and Conclusions

In this paper, we evaluated the performance of an instance-specific BN classifier,
which uses the IGES algorithm, to predict 1-year survival for 261 lung cancer
patient cases. We compared IGES results to its population-wide counterpart,
GES. We compared IGES to GES method for two reasons. First, the goal of this
study was to evaluate the effectiveness of instance-specific modeling in predicting
lung-cancer survival; therefore, we wanted the only difference between the two
methods to be instance-specific versus population-wide modeling, while keep-
ing the type of machine learning classifier the same (i.e., Bayesian networks).
Since to date we have only implemented instance-specific and population-wide
algorithms for learning BNs, we compared these two methods. Additionally,
BNs continue to be an important machine learning method for clinical outcome
prediction because they generally perform well and provide interpretable mod-
els that clinicians can understand relatively well. We compared the predictive
performance using AUROC and the structural differences between the instance-
specific and population-wide BNs. The results provide support that the instance-
specific models are often different and have better predictive performance than
the population-wide ones. Future extensions include (1) tuning hyperparameters
of the methods such as PESS and κ, and (2) implementing instance-specific ver-
sions of other machine learning classification methods and comparing them to
their population-wide counterparts.
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Abstract. With an ageing population, the healthcare sector struggles to cope
worldwide. Home monitoring using technology is increasingly used to release
the pressure on healthcare professionals and keep elderly at home for longer.
However, current solutions present technical (i.e. low resolution and conve-
nience) and ethical issues. In this paper, we used 2D LiDAR, as a sensor that can
provide significant information on patient’s activities, whilst still ensuring their
privacy (i.e. 2D LiDAR only produces anonymous point clouds). Particularly,
we developed an algorithm that uses clustering on the raw 2D LiDAR data,
object tracking on cluster centroids to identify a user in a room, and semantic
enrichment using metadata about the room (i.e. areas of interest and furniture
position) to associate stationary and non-stationary points with every day
activities (e.g. relaxing on the couch, working at the desk, standing by the
window, and walking). We tested our method across different users (N = 3) and
two rooms for a total 60 randomly ordered activity sequences, with five activ-
ities per sequence and each activity performed for 30 s. We obtained an overall
accuracy in identifying the activities of 0.88 (standard deviation [SD], 0.06).
Walking was the activity with the highest F1 score, with values of 0.97 (SD,
0.04) and 1.00 (SD, 0.00). As expected, activities where occlusion from pieces
of furniture might be in the way had worse performance with an F1 score of 0.81
(SD, 0.24). Although performed on a limited sample, our paper shows potential
for 2D LiDAR to be used for remote monitoring of mobility and daily activities
of elderly in their home.

Keywords: Ambient assisted living � Home monitoring � LiDAR � Clustering �
Daily activities

1 Introduction

With an ageing population and stretched resources, the public and private healthcare
sector is failing to cope worldwide, and this can only get worse, with the number of
people older than 60 raising dramatically by 2050 [1]. Therefore, keeping elderly in
their homes safely for as long as possible must be a priority [2]. However, home care
still requires a vast amount of resources and costs (i.e. carers and nurses to visit elderly
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at home), with potential safety risks when elderlies are by themselves (i.e. missing falls
or behaviors indicators of cognitive decline or impairment).

Home care monitoring using technology is becoming an increasingly popular
solution to overcome the above-mentioned issues faced by the healthcare sector [2].
However, despite the steady release of new technology on the market, current solutions
still present challenges [2, 3]. Particularly, wearable solutions are often not ideal when
caring for elderly patients, as they often do not like them and have to remember to wear
and charge them. Looking at totally passive sensors, the spectrum of possible solutions
available on the market ranges between two possible approaches. On the one side, there
are simpler systems that use more established type of sensors (e.g. infrared motion
sensors, smart plugs, and ambient sensors) [3]. Nevertheless, these solutions are less
intrusive (i.e. only sensor’s event name and timestamp is recorded) and do not require
data to be trained, they often do not provide enough details on the actual behaviors of a
user, unless many sensors are spread around the home. On the other side, there are
more intrusive solutions that use cameras or microphones with advanced Artificial
Intelligence methods to derive patient’s behaviors and status. These solutions provide a
great level of detail and allow for real-time monitoring of patients (i.e. watch/listen to
live stream). However, they require vast amounts of training data and, more impor-
tantly, present significant privacy and ethical concerns [4]. “Middle-ground” solutions
that provide enough information to analyze and track patient’s behavior, with much
smaller privacy implications, are also under development (e.g. WiFi to track people
behaviors indoor [3, 5]). However, for the most part these technologies are not mature
enough or too expensive.

Another of such “middle-ground” technology that has been used for years in
geospatial surveying and robotics, and lately has received substantial attention in the
context of self-driving cars, is Light Detection And Ranging (LiDAR) technology [6].
By generating laser pulses while spinning and measuring the reflected signal, LiDAR is
able to accurately detect obstacles and surroundings as completely anonymous point
clouds. Particularly, 2D LiDAR, which are becoming more and more affordable and
smaller in size, have recently been used to detect and track people [7, 8], as well as
derive their activities [9]. However, these studies relay on approaches that are based on
trained machine learning models (i.e. specific to the room the sensor was deployed in)
or require the sensor to be placed at a specific height to work. These make them difficult
to be used elsewhere.

In this paper, we present an approach that overcomes these drawbacks. Particularly,
our method identifies and tracks a patient by clustering point clouds 2D LiDAR data,
and then derives daily activities by using metadata about the room the sensor has been
deployed in. We tested our approach across different rooms, users, and heterogeneous
set of activities.
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2 Methods

2.1 2D LiDAR Sensor

For this project, we used a 2D LiDAR (RPLiDAR A2 from SlamTech [10]) with a 12
m range and a sampling frequency of 2 Hz (i.e. two full scans in a second). Each full
scan, which we will call time frame in the remainder of this paper, produces 2D point
clouds in polar coordinates, representing the reflected signal from the surroundings.
The sensor was powered and controlled via a Docker container on a Raspberry Pi 3B
+ (https://www.raspberrypi.org/), which saved the data in batches every 60 s and
securely transferred it to IBM Cloud Object Storage [11].

2.2 2D LiDAR Data Processing

Figure 1 shows our method to derive daily activities from 2D LiDAR data in its three
main steps. Below, details on each step are reported.

2.2.1 Clustering
The aim of the first step is to identify and separate the different 2D point clouds present
in each time frame, which represent not only the person moving in the room but also

Fig. 1. Data processing algorithm to derive daily activities from raw 2D LiDAR data. Smaller
light blue rectangles represent data that flows through the algorithm, while bigger dark blue
rectangles represent the methodological steps applied. (Color figure online)
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the room’s furniture and room walls. First, we convert the sensor readings from polar to
cartesian XY coordinates. Then, we apply DBSCAN [12], a density-based clustering
method that is particularly suited for point cloud data, to the points in each time frame,
recording the centroid for each cluster. The centroid is calculated by finding the point
within the cluster with the minimum cumulative distance from all the other points in the
same cluster.

We then divide the data in different batches (i.e. group of consecutive time frames)
where we stack the centroids in time. Heuristically, we identified that 60-s long time
windows were appropriate for our data. To this 3D data (i.e. centroids x and y coor-
dinates as well as time) we apply t-SNE [13] that allows the further separation of
clusters across time and space. By applying DBSCAN to the t-SNE transformed data,
we are able to track clusters across consecutive scans.

2.2.2 Person Identification
Currently, our algorithm makes the assumption that there is always only one moving
cluster in the room (i.e. it does not track multiple people). Therefore, the first stage in
identifying a moving person, is to find moving clusters among the ones tracked in the
previous step. To identify moving clusters within a batch, we use linear regression on
each tracked cluster with x and y against time. This is done separately for each axis.
The idea is that clusters that do not move (e.g. walls or furniture) will be represented by
a horizontal line over consecutive time frames in x and y, while the moving ones will
have a slope or curve. Heuristically, we found that a slope coefficient of >0.6 cm/s
either on x or y was indicative of a moving cluster.

Out of all identified moving clusters we disregard the ones on the boundaries (e.g.
walls and peripheral furniture), as we make the assumption that it would be really
unlikely for a person to be performing an activity in that area. To identify the room
boundaries, we use the occupancy grid mapping approach [14]. Particularly, we cal-
culate a spatial histogram with a bin size of 20 cm for each time frame of the first
10 min of our data, and label as boundaries those bins that have a count greater than 0
at least 50% of the times. From these bins the boundaries of the room are derived by
using Orthogonal Convex Hull [15], using an internal buffer of 20 cm.

Occasionally, more than one moving cluster can be found at the same time. This
might happen because the person moving in the room changes the way the laser hits
objects and therefore some static surfaces can be seen as “moving” by the algorithm.
To deal with this, we use a distance-based approach to identify which one among the
moving clusters is our target (i.e. the person in the room). Particularly, we calculate the
distance between the moving clusters and last known target position, with the closest
moving cluster within 50 cm being considered as our new target location. If no moving
clusters are found, we attempt to match a stationary cluster to the last known target
position based on their distance, with a threshold of 50 cm. If no cluster is found, the
target location is padded from the last known location of the target over the previous
time frames.

At the end of this stage, we obtain for each time frame, an estimated location for the
person in the room (i.e. target).
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2.2.3 Semantic Enrichment
The final stage identifies consecutive static periods and assigns an activity to them. The
former, is done by looking at consecutive target locations within 5 s and calculating the
distance of each point to the others. If all distances are within a certain threshold (i.e.
50 cm), those points represent a static period. If not, the first time point in the 5 s
sequence is labelled as ‘walking’ and the algorithm moves on focusing on the next 5 s.

Finally, an activity is assigned to each static period by applying semantic enrich-
ment [16]. This uses the metadata about the room, such as position of furniture or
specific areas of interest. To each of those an activity is associated, and if the target
coordinates fall within that area, that activity is inferred. For example, relaxing on the
sofa is associated to the area where the sofa is, or watering the plants is associated to
the area where the plants are. At the end of this stage, we obtain a list of time-stamped
(start and finish) activities that we can use to assess overall behaviors.

2.3 Evaluation

2.3.1 Experimental Procedure
We deployed our 2D LiDAR sensor on a table at a height of 1.1 m in two rooms at the
Hartree Centre (Warrington, UK). These rooms contained furniture typical of an office
environment (e.g. desks, office chairs, or boards) and living room environment (e.g.
sofa and armchairs). This included furniture to which we associated sitting activities
and different areas where “standing activities” could be performed. Figure 2 shows the
rooms overall layout, while the related areas of interest dimensions and associated
activity are shown in Table 1.

Fig. 2. Layout of room 1 (a) and 2 (b). The red dot represents where the LiDAR was placed.
Blue rectangles represent the different areas on interest with their associated number in Table 1.
(Color figure online)
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To test our approach, we collected data among healthy volunteers part of the
research team (N = 3) whilst performing the activities listed in Table 1. For each room,
we also included “walking” among the tested activities. In order to evaluate how our
approach would perform in real life, users were encouraged to interact as naturally as
possible with objects and space around them while performing activities. For example,
when “working at the desk” they were told to use the available laptop and phone.
Furthermore, for “relaxing on the sofa” participants were also instructed to perform the
activity using a range of different postures, including laying and sitting.

A Python programming language script randomized the activities under study in
different sequences, where for each sequence an activity would be done once, and
instructed the user on which activity to perform, while labelling the data for perfor-
mance evaluation. Following the approached used by [9], each activity lasted for 30 s
and then the user was asked to move to the next activity. Overall, each user performed
10 activity sequences in each room, for a total of 60 sequences.

2.3.2 Outcome Measures
We evaluated the overall performance in terms of the accuracy with which our algo-
rithm identified the activities that the user was performing (i.e. the presence of the user
in a specific area of interest or walking). We calculated this as the proportion of correct
activity identification over all the activities performed based on the labelled data. To
identify which activity was identified by our algorithm, we calculated the most frequent
identified activity (i.e. modal activity) over each 30 s time slot. To have an idea of how
stable the activity identification was over that period of time, we also calculated mean
and standard deviation (SD) of the proportion of time the modal activity was identified
over all 30 s time slots.

We also evaluated activity specific performance in terms of precision, recall, and F1
score. Precision was the proportion of time an identified activity was correct over all the
times that activity was identified. Recall was the proportion of times an activity was
correctly identified over all the times an activity was actually performed. F1 score was
the harmonic mean among the two.

For each room, overall and activity specific performance was calculated for each
user, and then averaged.

Table 1. Activities and areas of interest across room 1 and 2. Width and height are in meters.

Room (W � H) Area (W � H) Furniture/Location Activity

1 (3.7 � 5.0) 1 (1.6 � 0.8) Window Standing by window
2 (1.5 � 1.0) Left desk & chair Working at desk 1
3 (1.5 � 1.0) Right Desk & chair Working at desk 2
4 (0.9 � 2.1) Sofa Relaxing on the sofa

2 (3.5 � 5.5) 1 (1.1 � 1.0) Chair and bookcase Sitting corner chair
2 (1.0 � 1.4) Board Writing on the board
3 (0.7 � 1.5) Plants Watering plants
4 (2.5 � 1.0) Armchairs Relaxing on armchair
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3 Results

3.1 Qualitative Analysis

Figure 3a shows the spatial distribution of the 2D LiDAR data over the tests in Room
1. Brighter colour represents areas with higher concentration of 2D LiDAR data points,
and the LiDAR is located in the origin of the axis. From Fig. 3a it is possible to
visually identify the boundaries of the room, which we identified algorithmically with
the occupancy mapping grid approach, as well as the areas of interest where users
performed the different activities. Another feature that can be spotted, are the areas
where no data was collected (i.e. no user visit) because of the presence of furniture.
A clear example is the coffee table in front of the sofa in Room 1 (see Fig. 2), which is
represented by a hole in the middle of the spatial histogram in Fig. 3a.

Figure 3b shows an example of results from applying our algorithm for a time
frame in Room 1. Again, the LiDAR is located at the axis origin. In the figure, the
black points were the ones that were not considered as room boundaries by the
occupancy mapping grid algorithm. In addition to pieces of the sofa (bottom left), these
points represent the office chairs (left and right between 1000 and 2000 y coordinates),
the drawer in the top left corner, and the person in the room (bottom right). From the
point cloud representing the person, it is also possible to spot the person’s legs as two
separate blobs part of the same point cloud. Finally, the red shaded markers are
indicative of the current and previous coordinate of the person in the room over time.
This allows us to calculate distance covered, as well as walking speed statistics.

Fig. 3. (a): Spatial histogram of 2D LiDAR data over tests in room 1. Bins have dimensions
2 � 2 cm, and counts are shown in log scale. (b): Example of algorithm results. Grey points and
red markers represent boundaries (e.g. walls) and current/previous user location, respectively.
Yellow rectangles represent the areas on interest. (Color figure online)
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3.2 Algorithm Performance

Overall accuracy in correctly identifying user’s activities (i.e. presence in a specific
area or walking) was 0.88 (SD, 0.06). This broke down as 0.84 (SD, 0.07) for Room 1
and 0.92 (SD, 0.03) for Room 2, and ranged from 0.80 to 0.92 in Room 1 and from
0.90 to 0.96 in Room 2. The mean proportion of time for each modal activity during
each 30 s time slot was 0.93 (SD, 0.12) for Room 1 and 0.93 (SD, 0.03) for Room 2.

Table 2 shows activity specific performance. In both rooms, walking was consis-
tently identified by our algorithm, with F1 scores of 0.97 (SD, 0.04) and 1.00 (SD,
0.00), respectively. In terms of the static activities, the best performance was for those
where the user was standing, with the exception of standing by the window in room 1.
As a matter of fact, this activity got the worst F1-score across all activities and rooms.
This was primarily due to low recall, driven by a recall score of 0.38 for one of the
users.

4 Discussion

We developed an approach that uses clustering, object tracking and semantic enrich-
ment to infer daily activities from 2D LiDAR data. Preliminary evaluation of our
approach across different rooms and users, obtained an overall accuracy of 0.88 (SD,
0.06). The activity specific performance showed good results in tracking non-static
activities such walking, as well as difficulties to track activities where occlusions were
present. This was clear in Room 1, where the window was occluded by the office
chairs.

To the best of our knowledge, this study is the first one to use a “model-free”
approach and in principle could be deployed elsewhere with no or minor changes,
provided the room metadata are available (e.g. areas of interest position and related
activities). In fact, although a previous study [9] followed a similar approach to ours
with 2D LiDAR data (i.e. associating activities based on the location of the user in the
room), they trained a recursive neural network to recognize the different activities in the

Table 2. Precision, recall and F1 score across different rooms and activities.

Room Area of interest Activity Precision
(SD)

Recall
(SD)

F1 score
(SD)

1 Window Standing by window 1.00 (0.00) 0.72 (0.32) 0.81 (0.24)
Left desk & chair Working at the desk 1 0.85 (0.07) 0.92 (0.07) 0.88 (0.02)
Right Desk & chair Working at the desk 2 0.75 (0.05) 0.89 (0.10) 0.82 (0.08)
Sofa Relaxing on the sofa 1.00 (0.04) 0.78 (0.17) 0.87 (0.01)
/ Walking 1.00 (0.00) 0.95 (0.08) 0.97 (0.04)

2 Chair and bookcase Sitting corner chair 0.93 (0.07) 0.83 (0.15) 0.87 (0.09)
Board Writing on the board 0.89 (0.12) 0.97 (0.06) 0.92 (0.07)
Plants Watering plants 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Armchairs Relaxing on armchair 0.93 (0.13) 0.80 (0.10) 0.87 (0.09)
/ Walking 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
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room. This makes it specific to the room the model was developed in, and new training
would be needed to deploy the sensor somewhere else. This is also another advantage
of our method, which would require only metadata about the room, rather than data to
train the model. Another study used 2D LiDAR data to identify people in the room [7,
8], however they did not contextualize the person position on any activity the person
might be performing, making it difficult to monitor behaviours. Nevertheless, this
approach could be used in combination with our approach, to reduce uncertainty on the
cluster identified as the target actually being the person in the room.

Our results show potential for 2D LiDAR data to be used for remotely monitor
elderly activities at home. Particularly, the high performance obtained in tracking
walking seems to indicate that this approach could be particularly suited to track
mobility. Good performance in tracking other more “static” activities could create new
streams of data that will allow anomaly detection in longitudinal behavioral patterns as
well as signs of early decline. Although our evaluation does not explicitly consider it,
our method could also, in principle, be used to identify falls, which are one of main
issues affecting the elderly [17]. In fact, if a person is lost while being tracked in a
location where no known areas of interest are present for a certain amount of time and
with no subsequent movement detected around the house, it is reasonable to assume
that the person has fallen below the 2D LiDAR plane and is laying on the floor.

Despite the clear innovation on the current landscape of passively deriving daily
activities for home remote monitoring, our paper has some limitations. First, we tested
our approach in a small study population. However, we believe we provided enough
variability in our experiments to show the potential of our method. Second, some
activities we tested (e.g. working at the desk) were not directly relatable to elderly
behaviours. However, these activities are very similar to others that elderly would
perform (e.g. eating at the dining table). Furthermore, our main objective was to
demonstrate the potential of our approach in tracking a person across different areas of
interest in a room, which is directly translatable to elderlies remote monitoring. Finally,
by processing 60 s batches, our approach cannot be used for totally synchronous real-
time monitoring. However, we believe that 60 s lag is an acceptable delay, which
would not impact on usefulness of the information provided.

For the future, we plan to tackle multiple occupancy households by integrating
multitarget hypothesis tracking [18] in our person detection step. We will also explore
ways to improve detection in presence of occlusions by potentially integrating the 2D
LiDAR data with simpler sensors’ data (e.g. infrared motion sensor) placed in occluded
areas. Furthermore, we plan to improve our method by exploring opportunities to auto-
matically detect landmarks in a room, through the identification of areas of high static
occupancy (similarly to Fig. 3a), for easier deployment and further privacy preservation.
Finally, we plan to expand our method for real-time use by using less computationally
intensive clustering techniques such as Point-Distance-Based Segmentation [19]. All
these improvements will further enhance usefulness in the real-world, where we plan to
validate our method with elderly patients in a pilot study in the near future.
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Abstract. Postsurgical hospital acquired infections (HAIs) are viewed as a
quality benchmark in healthcare due to their association with morbidity, mor-
tality and high cost. The prediction of HAIs allows for implementing prevention
strategies at early stages to reduce postsurgical complications. In the United
States, the National Surgical Quality Improvement Program (NSQIP) maintains
a registry considered a “gold-standard” for HAIs outcome reporting, but it relies
heavily on costly manual chart review and therefore only includes a small
percent of surgery cases from each participating site. Most HAI prediction
models rely on a wide range of weak risk factors, which are combined into
models with many parameters and require larger sample sizes than available
from NSQIP at a single health system. In this study, we propose an alternative
approach to develop a robust prediction model, using the few NSQIP cases
efficiently. Rather than training the HAIs prediction models directly on the small
number of NSQIP patients, we leverage a simple detection model which detects
HAIs after the fact on postoperative data and use this detection model to label a
large non-NSQIP perioperative dataset on which prediction models are con-
structed. Detection models rely on strong signals requiring fewer samples to
learn. We evaluate this approach in a single academic health system with
115,202 surgeries (10,354 in NSQIP). The prediction models were evaluated on
the NSQIP “gold-standard” labels. While organ-space surgical site infection
showed comparable performance, the proposed model demonstrated better
performance for prediction of superficial surgical site infection, sepsis or septic
shock, pneumonia, and urinary tract infection.
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1 Introduction

Infections acquired in a hospital or other healthcare facility, or hospital-acquired
infections (HAIs), are associated with significant morbidity, mortality, and prolonged
hospital length of stay and are expensive to treat [1–4]. Among surgical adverse events,
HAI rates are a quality benchmark and are increasingly emphasized by payers and the
public due to their clinical severity and associated costs. Thus, prevention and
reduction of HAIs are top priorities for hospitals nationwide. For surgical patients, it is
imperative to develop ongoing interventions and tailor treatment plans aimed to reduce
the chance of postsurgical infections including identifying modifiable risk factors
associated with HAIs at early stage of patient care.

A growing body of literature has explored risk factors predictive of postoperative
complications [5–8]. One common resource used for postoperative complications
research is the ACS National Surgical Quality Improvement Program (NSQIP) registry
database, which provides high-fidelity data and serves as a “gold-standard” for HAIs
outcome reporting. NSQIP data is manually extracted and reviewed by trained nurse
reviewers and includes outcomes occurring within 30 days of the index surgical case.
Due to the cost associated with this manual review process, most centers abstract only a
subset of the surgical cases from each participating institution. Effective machine
learned predictive models, however, typically require larger labeled datasets; data with
“gold-standard” NSQIP labels may prove to be of insufficient size.

In this study, we propose a semi-supervised approach leveraging larger quantities
of unlabeled data (data not in the NSQIP sample) to build robust predictive models.
Instead of building the predictive models directly on the NSQIP cases, we first apply a
detection model on postoperative data using a protocol we previously developed [9]
and then use the detection model to assign a “silver-standard” label to the non-NSQIP
perioperative dataset. We then train our predictive model on the large non-NSQIP
perioperative data with the “silver standard” labels.

Intuitively, this approach works for two reasons. First, we incorporate information
external to the prediction problem. The postoperative data used to learn the “silver
standard” labels is not part of the original prediction problem (which primarily uses
perioperative data); hence, it contains information that the perioperative data does not
have. The postoperative data is closer to the outcome, so it likely contains more
information about it. Our approach stands in contrast to traditional semi-supervised
learning approaches that typically rely solely on the same perioperative data and try to
exploit its structure to extract additional information about the outcome for unlabeled
instances. Second, because the postoperative data is closer to the outcome, building the
detection models is a far simpler task than learning the prediction models. Detection
models contain fewer (but stronger) predictors, requiring fewer samples to learn, thus
the NSQIP sample size suffices. These stronger postoperative features include diag-
nosis codes, imaging and lab test orders and procedures, and microbiological results.
On the other hand, none of these strong features are available to the prediction model,
which must instead rely on a larger number of weaker features, requiring a larger
sample size to train than what is available in the NSQIP sample.
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We evaluated the proposed approach on data from 115,202 surgeries (of which
10,354 are included in NSQIP) performed at Fairview Health Services (FHS) between
2011 and 2019 for five HAIs: superficial and organ-space surgical site infection,
sepsis/septic shock, pneumonia and urinary tract infection.

2 Materials and Methods

Figure 1 presents the overview of the modeling and evaluation approach used in this
study.

2.1 Study Design

This study was performed at M Health Fairview, a health system comprised of a
flagship academic hospital, the University of Minnesota Medical Center (UMMC), and
11 community hospitals located in Minneapolis, Minnesota. Institutional review board
approval (IRB) was obtained and informed consent waived for this minimal risk study.

The study population includes 115,202 adult surgical cases recorded in the clinical
data repository (CDR) of the University of Minnesota between years 2011 and 2019.
Data used for this study were collected from two major sources: the CDR and NSQIP
outcomes. We collected structured EHR data from the CDR as model variables and the
reported postsurgical complications from the NSQIP registry as “gold-standard” labels.
The patients’ medical record number and date of surgery are used to link the CDR data
with the NSQIP outcome. Since only a small set of surgical cases is selected in the
NSQIP registry, the study population can be further divided into two groups: NSQIP
group (10,354 cases) with “gold-standard” HAIs labels and non-NSQIP group
(104,848 cases) without such labels.

Fig. 1. Overview of model development and evaluation process
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Variables. The independent variables include demographic, pre-, intra-, and postop-
erative data. We limit the demographics variables to those generally available (e.g., age
at surgery and gender). Preoperative variables include information related to medical
history, such as problem list, procedures, medications and preoperative indication for
surgery up to 30 days prior to surgery. Preoperative laboratory results and vital sign
measurements are used to establish a baseline. Intraoperative variables include orders,
medications, and high-resolution vital signs and lab values recorded during the oper-
ation. Continuous variables are aggregated to mean values as described in Tourani et al.
[5]. Postoperative variables are associated with events occurring during the postoper-
ative window (from day 3 to 30 after surgery), including relevant diagnosis codes,
orders, procedures, microbiology and lab test results and vital sign values. Due to the
difference in temporal occurrence of the variables, preoperative and intraoperative
features are mainly used for prediction model training and testing purposes, while the
postoperative features are used for detection model development and application
purposes.

Outcomes. We consider five types of HAIs outcomes: pneumonia (PNA), urinary tract
infection (UTI), occurrence of sepsis or septic shock (SE|SS), superficial surgical site
infections (Superficial SSI), and organ-space SSI. Outcome information collected from
the NSQIP registry source is considered a “gold-standard” since NSQIP data is
abstracted through a manual review process established by the NSQIP program. We do
not have outcome information for non-NSQIP cases; therefore, we generated labels by
applying the detection model onto the postoperative variables as our “silver-standard”.
Details regarding detection model development and application are discussed in the
section below.

2.2 Analysis

Construct Detection Model. The detection models for each outcome were built inde-
pendently on the NSQIP dataset with postoperative features using “gold-standard”
outcomes using the algorithms we previously developed [9]. The 95% confidence
interval of area under the ROC curve (AUC) score for internal validation are calculated
through 1,000 bootstrap iterations.

Label Non-NSQIP Cases. The probability of each HAI for non-NSQIP cases was
calculated by applying the detection models to the postoperative features of the non-
NSQIP cases. We adapt a three-way labeling system to assign the cases into three
categories: positive (complication is present), negative (complication is unlikely) and
unknown. In this system, two thresholds are determined by weighing the specificity,
sensitivity, positive and negative predictive values (PPV and NPV). The cases with
probabilities larger than or equal to the higher threshold are assigned a positive out-
come; and the cases with probabilities smaller than the lower threshold are assigned a
negative outcome. For each outcome, the cases with unknown labels were excluded
from predictive model training. We refer to this labeling as the “silver standard” label.
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Train Predictive Model. For each outcome, the predictive model was trained on non-
NSQIP dataset with pre- and intraoperative features using the “silver-standard” labels.
Logistic regression model was used. Missing values were imputed using median
imputation. Causal variables screening process [10] through the PC-Simple algorithm
[11] followed by backward elimination was used as feature selection. For additional
details, such as aggregating the intraoperative features, the reader is referred to Tourani
et al. [5]. Prediction models were evaluated on the NSQIP dataset with “gold-standard”
labels using the AUC score.

Comparison Model. To assess the performance of the proposed approach, we built a
comparison model using the pre- and intraoperative features directly on the NSQIP
outcome data using the “gold-standard” NSQIP labels. This model is also a logistic
regression model, using the same imputation and features selection methodology as the
proposed predictive models. Model performance was measured as the AUC score
through 10-fold cross validation.

Comparison of the Comparison and Proposed Models. Bootstrap estimation with 20
replications was conducted to compare the model performances. For each bootstrap
iteration, the NSQIP and non-NSQIP cases were sampled accordingly and used for
models. We measured the difference in model performance as the mean difference in
AUC between the two modeling approaches. The statistical significance in model
performance was calculated through a paired t-test.

3 Results

3.1 Cohort Description

Table 1 presents a summary of the two cohorts (10,354 NSQIP and 104,848 non-
NSQIP surgeries) included in this study with demographics, HAIs outcome, and
selected perioperative features. Binary variables are reported as counts with percent-
ages in parenthesis; the continuous variables are reported as median with interquartile
range in parenthesis. For the NSQIP surgeries, we report the “gold-standard” outcomes
as reported by the registry; and for the non-NSQIP surgeries, we report the “silver-
standard” outcomes determined by the detection model applied to the postoperative
data. The non-NSQIP cohort has overall higher percentage of outcomes than the
NSQIP cohort. Due to the large number of predictors, only features among the top five
standardized coefficients of each predictive model are reported.
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3.2 Model Performance and Variable Selection

First, for each outcome, we constructed detection models built on NSQIP data. In
Table 2, we report the performance of these detection models as the mean and
empirical 95% confidence interval of the AUC measure estimated from 1,000 bootstrap
iterations.

Table 1. Cohort description

NSQIP Non-NSQIP

Total surgical cases 10,354 104,848
Demographics

Age 54 (42, 65) 55 (44, 67)
Gender (male) 4,382 (42.3%) 50,005 (47.7%)

Outcomes
PNA 226 (2.2%) 2,926 (2.8%)
SE|SS 230 (2.2%) 4,491 (4.3%)
UTI 245 (2.4%) 3,248 (3.1%)
Superficial SSI 231 (2.2%) 4,262 (4.1%)
Organ-space SSI 231 (2.2%) 5,215 (5.0%)

Predictive Features
Asthma (HX) 38 (0.4%) 577 (0.6%)
Bacteremia (HX) 50 (0.5%) 1,332 (1.3%)
Metastatic disease (HX) 162 (1.6%) 2,066 (2.0%)
Leukopenia (HX) 13 (0.1%) 596 (0.6%)
Malnutrition (HX) 115 (1.1%) 2,928 (2.8%)
SSI related diagnosis (HX) 93 (0.9%) 1,118 (1.1%)
Opport. Inf. (HX) 73 (0.7%) 1,514 (1.4%)
PNA (HX) 133 (1.3%) 3,844 (3.7%)
SSI (HX) 38 (0.4%) 1,076 (1.0%)
UTI (HX) 207 (2.0%) 2,698 (2.6%)
Lymphoma (HX) 78 (0.8%) 1,592 (1.5%)
Ascites (HX) 177 (1.7%) 4,136 (3.9%)
Gangrene (HX) 42 (0.4%) 430(0.4%)
Paraplegia & Paraparesis (HX) 23 (0.2%) 334 (0.3%)
Severe sepsis (HX) 33 (0.3%) 758 (0.7%)
Stroke (HX) 61 (0.6%) 1,195 (1.1%)
Immunosup. Med (Preop) 328 (3.2%) 5,568 (5.3%)
PNA Vac. (Preop) 46 (0.4%) 474 (0.5%)
Steroid (Intraop) 3,134 (30.3%) 23,576 (22.5%)

* Abbreviation: PNA: Pneumonia; SE|SS: Sepsis or septic shock;
UTI: Urinary tract infection; SSI: Surgical site infection; HX:
History of complications; Opport. Inf.: Opportunistic infections;
Immunosup. Med: Immunosuppressants medicine; PNA Vac.:
Pneumococcal vaccine
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Figure 2 and Table 3 compare the performance of the proposed predictive model
with the comparison model (that uses only the NSQIP data) estimated through 20
bootstrap replications. Figure 2 depicts the 20 AUC values as a boxplot for each
outcome. Table 3 shows the mean of AUC and standard deviation in parenthesis; the
last column shows the difference in mean AUC between the proposed and comparison
modeling approaches and p-value from the paired t-test in parenthesis. The differences
are statistically significant at 0.05 confidence level for the prediction of all outcomes
except for the Organ-Space SSI.

Table 2. Detection model performance through internal validation

Outcome AUC (95% CI)

PNA 0.945 (0.917, 0.966)
SESS 0.953 (0.933, 0.973)
UTI 0.936 (0.912, 0.958)
Superficial SSI 0.879 (0.844, 0.911)
Organ-space SSI 0.935 (0.902, 0.960)

* 95% confidence interval (CI) of AUC
values are calculated based on internal
validations using 1,000 times bootstrap
iterations.

Fig. 2. Boxplot of AUC values for proposed predictive model vs comparison model through 20
times bootstrap iterations
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To illustrate the difference between a detection and a prediction model, Table 4
presents the coefficients of both the detection and prediction for the SE|SS (sepsis or
septic shock) outcome. The detection model built on NSQIP dataset contains only three
postoperative factors with strong signals. Compared to the comparison model, the
proposed predictive model captures more risk factors associated with the SE|SS
prediction.

Table 3. Comparison of AUC from proposed and comparison models

Outcome Proposed Comparison Difference

PNA 0.799 (±.016) 0.773 (±.022) 0.026 (6.53e−6)
SE|SS 0.748 (±.018) 0.732 (±.021) 0.016 (2.27e−3)
UTI 0.719 (±.021) 0.700 (±.027) 0.019 (1.84e−3)
Superficial SSI 0.643 (±.022) 0.608 (±.049) 0.035 (1.80e−3)
Organ-space SSI 0.725 (±.016) 0.727 (±.021) −0.002 (6.42e−1)

Table 4. Selected variables and modeling coefficients of SE|SS detection and predictive models

DDetection Predictive

Proposed Comparison
(Intercept) -9.586 (Intercept) −18.664 −2.466
Sepsis Dx (Postop) 0.503 Gender (Female) −0.405 −0.687
Blood Cult. (Postop) 0.879 Bacterial infection (HX) 0.211
Max. Temp. (Postop) 0.055 Bacteremia (HX) 0.999

Metastatic disease (HX) 0.405
Other infections (HX) 0.273
Leukopenia (HX) 1.143
Malnutrition (HX) 0.416
SSI related Dx (HX) – 1.302
Opport. Inf. (HX) 0.555
PNA (HX) 0.369
Sepsis (HX) 0.653 1.134
UTI (HX) 0.376
Drug abuse (HX) 0.411
Lymphoma (HX) 0.582
Neuro. Disorders (HX) 0.262
CVA w/o Neuro. (HX) 0.336
Insulin (Prior 1 year) 0.245 1.054
Antibiotics (Prior 30 days) 0.553 0.561
Antibiotics (Preop) 0.367
Immunosup. Med (Preop) 0.390

(continued)
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4 Discussion

In this study, we propose an innovative approach to build robust prediction models
when the “gold-standard” outcomes from NSQIP are scarce. This method uses the few
NSQIP cases efficiently by first building a simple detection model on postoperative
data (after the fact) and using these detection models to assign “silver-standard” labels
to a much larger non-NSQIP perioperative dataset, on which the predictive models are
then built.

The proposed method shows significantly better performance to predict four out of
five HAIs investigated (superficial surgical site infection, sepsis or septic shock,
pneumonia, and urinary tract infection) than the comparison model which is built
directly on the NSQIP cases. As the first step, the detection models show high per-
formances, which provides reliable “silver-standard” labels for the larger non-NSQIP
cohort (Table 2). Compared to pre- and intraoperative features, the postoperative
features used for detection models have strong signals indicative of the HAIs occur-
rence. For example, the detection model for sepsis or septic shock (Table 4) contains
three features: the postoperative discharge diagnosis relevant to sepsis, blood culture,
and maximum temperature during day 3 to day 30 after the surgery. With only three
features, the 95% confidence interval of the AUC for the constructed detection model is

Table 4. (continued)

DDetection Predictive

PTT (Prior 30 days) 0.006
Respiratory Rate (Preop) 0.022
Temperature (Preop) 0.441
Pulse (Preop) 0.016
GCS (Preop) −0.078
DBP (Preop) −0.018
Bilirubin (Intraop) 0.056
Calcium (Intraop) −0.184
Glucose (Intraop) 0.003
Hemoglobin (Intraop) −0.147 −0.166
Lactate (Intraop) 0.052 0.190
pO2 Arterial (Intraop) 0.003
Pulse (Intraop) 0.012
PIP (Intraop) 0.045
FiO2 (Intraop) −0.008
CVP (Intraop) 0.032

* Abbreviation: Sepsis Dx: Sepsis diagnosis; Blood Cult.: Blood culture; Max. Temp.:
Maximum temperature; SSI Related Dx: SSI related diagnosis; Neuro. Disorders: Neuro-
logical disorders; CVA w/o Neuro.: CVA/Stroke with no neurological deficit; GCS: Glas-
gow coma score; DBP: Diastolic blood Pressure; pO2: Partial pressure of oxygen; PIP:
Peak inspiratory pressure; FiO2: Fraction of inspired oxygen; CVP: Central venous
pressure
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0.933 to 0.973 (Table 2). Even though the number of positive cases in the NSQIP data
set is low, this is sufficient to estimate so few variables. Additionally, by labeling the
non-NSQIP dataset, we are able to build the predictive models with a much larger
dataset, allowing the model to capture more details and therefore show better predictive
performance.

For predicting the Organ-space SSI, the proposed model does not show better
performance than the comparison model but has comparable performance measures
(Table 3). The proposed model appears to select more (noise) features than the com-
parison model and has slightly overfit the training data. A possible explanation is that
the “silver-standard” outcome generated by the detection model introduces systematic
false positives. A model that is generalizable within the non-NSQIP cohort will appear
as overfit in the NSQIP cohort, which does not have these false positives. Another
possible explanation is that the NSQIP sample is not a random sample: NSQIP over-
samples difficult and rare cases thus the NSQIP population is different from (contains
more serious cases) the non-NSQIP surgical population.

The proposed multi-step modeling approach can be generalized for predicting other
postsurgical complication as long as the NSQIP and non-NSQIP samples are not too
different in terms of this outcome or more broadly to consider other datasets with
smaller numbers of outcomes. The main limitation of this study is that the NSQIP
population is potentially different than the overall surgical populations which may
produce false positive outcomes on the (less severe) non-NSQIP dataset.

5 Conclusion

This study investigated the feasibility of applying an alternative modeling approach to
build predictive model when the “gold-standard” labels are not enough. The multi-step
modeling approach was proposed and validated. The proposed model shows better
performance for predicting four out of five HAIs outcomes than the comparison model.
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Abstract. The adoption of predictive modeling for clinical decision sup-
port is accelerating in healthcare, however, the need for large sample
sizes puts smaller health systems at a disadvantage. Small health sys-
tems have insufficient positive cases to build models are left with three
choices. First, they can obtain already trained models, which are often
too generic. Second, they can participate in research networks, building
a model through a network-wide data set. Since small hospitals can only
contribute small amounts of data influencing the resulting shared model
minimally, this approach yields only minimal specialization. The third
option is transfer learning, where a model previously trained on a large
population is refined to the specific population, which carries the danger
of over-specializing to the idiosyncrasies of the small data set. In this
paper, we present a novel paradigm, consensus modeling, that allows a
small health system to collaborate with a larger system to build a model
specific to the smaller system without sharing any data instances. The
method is similar to transfer learning in that it refines models from the
larger system to be specific to the small system, but through iterative
refinement, the larger system alleviates the risk of over-specializing to
the small system. We evaluated the approach on predicting postopera-
tive complications at two health systems with 9,044 and 38,545 patients.
The model obtained from the proposed consensus modeling paradigm
achieved a predictive performance on the small system that is as good
as the transfer learning approach (AUC 0.71 vs 0.71) but significantly
outperformed the transfer learning approach on the large dataset (AUC
0.80 vs 0.65) suggesting significantly reduced over-specializing.

Keywords: Machine learning · Hospital acquired infection · Transfer
learning · Predictive modeling

1 Introduction

The adoption of predictive modeling-based artificial intelligence (AI) for clinical
decision support is accelerating in healthcare. The promise of these modern AI
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technologies is that health systems can use their own data to promote customize
care for their specific patient populations. Small health systems, or any health
system with small amounts of training data, cannot follow suit. Building models
using small amounts of data carries the twin dangers of overfitting and being
over-specific. Overfitting is a lack of generalizability within the health system: the
model is too specific to the training set and does not generalize to a test set from
the same health system. There are well-established methods to detect overfitting.
In contrast, an over-specific model lacks the ability to generalize to a different
health system: it captures artifacts of the health system, factors such as care
policies or procedures that are not directly related to disease pathophysiology.
Being specific to a health system by better capturing disease modalities is desir-
able; however, being over-specific is dangerous, because the underlying artifacts
can change over time, without warning, and can render the models inaccurate.
The inability to build specialized (but not over-specialized) models due to small
patient populations puts smaller health systems at a distinct disadvantage.

If a health system with smaller amount of training data wishes to adapt
modern machine learned clinical decision support tools, they have only a few
choices. They could obtain a model from (say) a commercial vendor and use it
as is. This approach does not require any training samples, but also does not
offer a model specialized to the population. Implementation of models in this
context often result in suboptimal predictions. An alternative approach is to
join a practice network, share data with other health systems and collectively
build a model. As health systems are often unwilling to share data, federated
learning [4,6,17] methods have been developed, which approximate learning a
model on shared data without actually sharing data; participants only share
aggregates from their data. Although such a model could offer better special-
ization to the population at hand, the degree of specificity depends on the size
of the participant health systems’ data. Larger systems with more data exert
greater influence in the common model and hence the model produced is more
specific to their area. Conversely, small health systems that contribute fewer
data points influence the shared model less and, in return, receive a less specific
model. Ironically, the small health systems with the greatest need for clinical
decision support derived from federated shared data stand to benefit the least.
A third approach is transfer learning. In case of transfer learning, the health sys-
tem would receive a generic model and refine the model to their population at
hand. Since refining a model requires fewer samples than building a model from
scratch, this approach appears more promising, but the small training set size
can still render the model over-specific to the population. We can detect that a
model is over-specific by taking the model back to the large data set (where it
was originally trained) and see whether its performance dropped significantly on
the exact same task as a result of having refined it to the smaller health system.

In this paper, we propose a novel modeling paradigm that we term consensus
modeling. Consensus modeling allows a small health system to collaborate with
a larger health system to build a model specific to the smaller system without
sharing any data instances. The outcome is a model that performs almost as well



ConsensusModeling: A Transfer LearningApproach for Small Health Systems 183

as a transfer learning model in the smaller health system, yet the involvement of
the large health system alleviates the risk of learning idiosyncrasies of the small
system and thus becoming over-specific.

We demonstrate our methodology by predicting hospital-acquired postoper-
ative infectious complications. We use data from a health system, Mayo Clinic
(MC), with extensive participation in the National Surgical Quality Improve-
ment Project (NSQIP) registry (38,545 surgeries) and a single hospital, Univer-
sity of Minnesota Medical Center (UMMC) with typical participation in NSQIP
(9,044 surgeries) from another health system, Fairview Health Services (FHS).
Outcomes are ascertained from the NSQIP registry. UMMC is “small” in the
sense that it did not participate in full case sampling and has fewer than 100
NSQIP positive cases for some of the outcomes of interest.

2 Materials and Methods

2.1 Setting, Study Design, and Data

Data from two independent Midwestern health systems, Mayo Clinic (MC) and
University of Minnesota-affiliated Fairview Health Services are used. Both health
systems provide a wide range of surgical services and are members NSQIP reg-
istry, with only one site at FHS participating in NSQIP, the University of Min-
nesota Medical Center (UMMC). NSQIP provides high-quality gold-standard
information on surgical outcomes [3]. We include all patients from MC and
UMMC between 2010 and 2017 who are part of the NSQIP sample. In our
cohort, we have 38,545 patients from MC and 9,044 from UMMC. For these
patients, we collected all available information about their NSQIP index surgery
and a 30-day history before the index surgery from the respective institutions’
EHR repositories.

Outcomes. We are considering seven infectious outcomes: sepsis, septic shock,
urinary tract infections (UTI), pneumonia (PNA), and three kinds of surgical
site infections (SSI) (superficial, wound or deep tissue, and organ space), as
defined by NSQIP. The NSQIP registry collects complications within a 30-day
postoperative window.

Independent Variables. We primarily rely on demographics, history of compli-
cations, and preoperative observations (vital signs and laboratory results) that
are known risk factors of postoperative infections [5,10,11]. Pre-operative diag-
nosis codes were rolled up into higher-level disease groups partly using the Clin-
ical Classification Software [14] along with domain experts. Pre-operative lab
results are preferentially taken from the pre-operative evaluation, or from his-
toric records no more than 30 days before surgery. This resulted in a total of 54
independent variables, defined identically between MC and FHS.

The reader is referred to [13] for a more detailed description of the analytic
cohort at the two health systems.
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2.2 Baseline or Comparison Methods

To predict outcomes at both sites, we have three baseline approaches. The first
approach, in-situ model, constructs a model for each outcome on the larger (MC)
cohort and applies it to both the MC and the smaller FHS cohorts. The second
approach, transfer learning, constructs a model for each outcome on the larger
MC cohort and refines the model to the FHS cohort. The third approach is
federated learning, where a model is jointly constructed on the MC and FHS
cohorts (without sharing data) and then applied to both.

(a) Source in-situ model. For each outcome, a logistic regression model is con-
structed using the above independent variables. Missing laboratory results
and vital signs are imputed by the median of the patient set with no compli-
cations on the MC cohort (larger data set). We used causal feature screen-
ing [8] (with a maximal condition set size of three [1]), followed by backward
elimination for feature selection. The significance level α is adjusted for mul-
tiple comparisons incurred during the causal feature screening.

(b) Transfer Learning: In-situ model as offset. We start with the model built on
MC as described in (a), and transfer it to the target (FHS) site. A logistic
regression model is fit at the FHS site, using the score from the source in-situ
model as an offset. Imputation and feature selection were identical to (a).
Intuitively, using the prediction from the source model as an offset allows
the fitting procedure to only estimate the difference between the institutions
(rather than the entire mechanism of the disease). We hypothesize that this
results in better performance from a smaller sample size than fitting a model
from scratch. To check whether the model is over-specific to the target, we
transfer the model back to the original site. Even for homogeneous transfer
learning [16] problems, this is uncommon practice; the sole purpose of re-
transferring the model back to source and re-testing it is to check whether it
is over-specific to the target. Note, that the purpose of transfer learning in
this application significantly differs from that of the typical modern transfer
learning setting [16]. Typically, a deep learning model is trained to learn
low-level representation of the data (e.g. extract lines, shapes from images)
and then is transferred to a specific problem (pathology). In our application,
both models are specific to the problem.

(c) Federated Learning: FedAvg. Federated learning is the problem of training
a shared model between a large number of clients under the constraint that
they only share summary information of their data and share no instances.
The interested reader is referred to a survey by Xu and Wang [17]. The
basic algorithm FedAvg [9] approximates the gradient descent algorithm, by
averaging the shared client gradients on a central server. Though simple, this
method is shown to perform surprisingly well [9,12]. (Other more developed
federated learning methods often have requirements that are not met in this
study or focus on improving issues [4] which are not relevant to our study.
For example, a federated transfer learning approach is introduced in [7],
but it assumes there is shared data between sites and thus not applicable
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to our problem.) Given the risk of overfitting on the small FHS dataset,
we modified the FedAvg slightly. First, instead of starting from random or
zero initial parameters, we start with the source in-situ model as the initial
parameterization; this speeds convergence by starting closer to the optimal
solution, and makes the method more stable by removing the variability in
starting point. Second, we use a validation set to choose an optimal stopping
point, reducing the risk of overfitting on the training set. Finally, we use
FedSGD setting [9] which seems to give better convergence [15].

2.3 Proposed Method: Consensus Modeling

Overview. In the proposed Consensus Modeling, model construction is carried
out as an iterative refinement process as described in Fig. 1. An initial model is
constructed at the source, which is transferred to the target. The target then
sends information about the residual back to the source, which, in turn, con-
structs a new model, taking the information about the residuals into account.
Taking information about the target’s residual into account allows the source
to build a model that fits the target better; however, the source’s own data
and residuals alleviate the risk of the resulting model overfitting or becoming
over-specific to the target. The resulting new model is transferred back to the
target, which sends information about the residuals back to the source, so that
the model can be refined again. The process continues until the model cannot
be significantly improved or until the residuals at the target are insignificant.

Fig. 1. Algorithm for consensus modeling, where β and γ are the information passed
between the source and the target sites. The ∗ on top of fitting ∼ notation is used to
include the feature selection methods.

Algorithm Details. Let XS denote the predictor matrix of the (large) source
data and XT the (smaller) target data. Let yS be the outcomes on the source
site and yT on the target site. Let β denote the coefficients of the model we
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wish to construct. Consensus Modeling initializes β with the source model, fol-
lowing Sect. 2.2(a), yS

∗∼ logistic(XSβ) (we use star in ∗∼ to denote the feature
selection). The current model (parameterized by β) is then transferred to the
target and the residuals at the target are computed rT = yT − logistic(XTβ).
To send information about the residuals on the target to the source without
sharing data, a residual model (a linear regression model with coefficients γ) is
constructed on the target rT

∗∼ XTγ. Feature selection follows Sect. 2.2(a) with
significance level corrected for multiple comparisons, α < 0.05/(#features × i),
i being the iteration number. The residual model (parameterized with γ) is
then transferred back to the source. The source then constructs a “joint” data
set containing (residual) information from both sites. The predictors of this
joint data set are the source data and an approximation of the target data ̂XT

appended row-wise [XS; ̂XT]. In this application, we approximate the target with
the source data ̂XT = XS, pretending that they are samples from the same pop-
ulation. A joint residual vector is also constructed as [rS; r̂T], by concatenating
the source residuals rS = yS−XSβ and the approximation of the target residuals
r̂T = ̂XTγ = XSγ. A differential model (a weak learner in boosting terminol-
ogy) with coefficients Δ is fitted to the joint residuals using the joint predictors
and the previously described feature selection method. The model is updated
β = β + ηΔ (η is learning rate) and transferred to the target. The process
continues until either the differential model Δ or the residual model γ has no
significant predictors.

2.4 Evaluation

Models are trained and evaluated through repeated leave-out validation. In each
of 10 replications, a randomly selected 20% of the data set on both sites is left
out for testing and another 20% for validation (FedAvg uses this to evaluate the
stopping criterion). The remaining 60% of the data (80% when validation set is
not needed) is used to train the models.

Three baseline models (in-situ, transfer learning, and FedAvg) are compared
to the proposed Consensus Model on the same test sets in terms of AUC. Signif-
icance of the comparisons are assessed via paired t-tests. The comparisons are
carried out on both data sets. Note that the performance of the transfer learned
model would typically not be evaluated on the source data after refinement. The
purpose of the comparison on the source data set is to examine whether the
refined model is over-specific to the target.

3 Results

Figure 2 shows the performance of the four competing approaches on both the
MC and FHS cohorts. The seven panels correspond to the seven outcomes. The
performance is measured by AUC and is estimated from 10 iterations, yielding
10 AUC estimates from each approach. These 10 AUC estimates are plotted as
boxplots.
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Fig. 2. The test AUC result of different models tested at MC and FHS sites.

To determine the statistical significance of the differences observed in Fig. 2,
Table 1 shows specific comparisons described in Sect. 2.4. The top half of the
table presents the comparisons on the FHS site; the bottom half on the MC site.
Columns correspond to outcomes. On each site, the mean AUC is reported for all
four methods and the mean difference in AUC is reported for three comparisons.
The significance of the difference is denoted using stars (*** signals < 0.001, **
is < 0.01, and * denotes < 0.05).

Proposed vs in-situ. The proposed method outperformed the in-situ model on all
outcomes on the FHS data set except for wound SSI: the p-values in ‘proposed
- in-situ (FHS)’ row are all <.05 except wound SSI. Conversely, there is no
detectable degradation in performance on the MC site; the only outcome with a
significant difference in performance is wound SSI, where the proposed method
outperformed the in-situ model on the source data.

Proposed vs transfer. On the FHS data set, the performance of the transfer
learning method and the proposed methods were statistically equivalent with
PNA being the only outcome with statistically significant difference favoring the
proposed method (surprisingly). However, on the MC data set, as expected, the
proposed method outperforms the transfer learned model on all outcomes.

Proposed vs FedAvg. The results show that the proposed method outperforms
FedAvg either on the MC or the FHS cohort for each outcome except septic
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shock (where their performance is statistically equivalent) and that FedAvg never
achieves statistically significantly better performance than the proposed method.
The other exception is PNA, where the proposed method outperforms FedAvg
on both cohorts.

4 Discussion

Health systems strive to optimize patient outcomes at the lowest possible cost,
ideally delivering financial benefit through improved patient care. The recent
emergence and adoption of artificial intelligence and machine learning tech-
nologies offers a vehicle to achieve both of these goals by increasingly tailor-
ing care delivery to the health system’s patient population. However, making
care delivery increasingly tailored to a particular patient population carries the
risk becoming overly specific, leading to a reproducibility crisis [2]. Commonly,
machine learned models that perform “optimally” at one health system fail to
achieve similar performance at a different health system. Results from our first
comparison (in-situ vs proposed) clearly demonstrate this phenomenon. Specif-
ically, comparing the ‘in-situ (MC)’ and ‘in-situ (FHS)’ rows in Table 1, shows
that postoperative risk models built at a large health system (MC) failed to
achieve similar performance at a smaller health system (FHS) for all outcomes.

Surprisingly, the same comparison also suggests that models built on the
larger cohort and thought to be “optimal” are in fact occasionally suboptimal.
For two (PNA and wound SSI) out of seven outcomes, the in-situ model sig-
nificantly underperformed the proposed method. This suggests that information
transferred from the smaller health system may have captured attributes asso-
ciated with postoperative complications that exist at the larger health system
but were ignored, perhaps as statistical noise. Collaborating with a larger health
system clearly benefits the smaller health system (the proposed method out-
performed the in-situ model on all outcomes except wound SSI) but may also
benefit the larger health system.

As is seen in Table 1, it is clear that for a smaller institution to use a model
from a larger one is a suboptimal solution: the received model is not sufficiently
specific to the new patient population. Seemingly transfer learning, where a
model received from a larger system is refined to the population of the smaller
system, offers a solution. Our second comparison (proposed vs transfer), how-
ever, demonstrates that this approach makes the model overly specific to the
small health system: the fact that the proposed method outperformed the trans-
fer learned model on the large health system on all outcomes but the transfer
learned model never outperformed the proposed model on the small health sys-
tem supports this point. This means that the proposed model managed to learn a
model that offers as high performance on the smaller FHS cohort as the transfer
learnt model, without being so specific to the FHS cohort that its performance
on the MC cohort would deteriorate; its performance on the MC cohort was as
high as that of the in-situ model (which is over-specific to the MC cohort).

A third option that available to a small health system is to join a consortium
and participate with its data in the construction of a consortium-wide model.
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Table 1. Results of mean AUCs on holdout sets of FHS and MC. Difference between
proposed model vs in-situ, transfer, and FedAvg are reported. The paired t-test p-
values are translated to symbols: 0< *** < .001 < ** < .01 < * < .05 < .< 0.1.

sepsis septicshock uti pna organssi superssi woundssi

proposed (FHS) 0.696 0.78 0.74 0.813 0.707 0.617 0.585

in-situ (FHS) 0.625 0.696 0.722 0.749 0.551 0.571 0.559

transer (FHS) 0.716 0.773 0.741 0.788 0.711 0.666 0.572

FedAvg (FHS) 0.653 0.745 0.737 0.718 0.667 0.583 0.599

proposed - in-situ (FHS) 0.070*** 0.084*** 0.018** 0.064*** 0.156*** 0.046*** 0.026

proposed - transfer (FHS) −0.021 0.007 −0.001 0.026** −0.004 −0.048. 0.013

proposed - FedAvg (FHS) 0.042 0.035 0.003 0.095*** 0.040** 0.034** −0.014

proposed (MC) 0.818 0.901 0.733 0.934 0.794 0.73 0.716

in-situ (MC) 0.809 0.9 0.741 0.925 0.792 0.729 0.707

transer (MC) 0.675 0.808 0.65 0.921 0.52 0.401 0.603

FedAvg (MC) 0.786 0.894 0.72 0.909 0.795 0.714 0.649

proposed - in-situ (MC) 0.008. 0.001 −0.008* 0.009** 0.001 0.001 0.010**

proposed - transfer (MC) 0.143*** 0.093*** 0.083*** 0.013* 0.274*** 0.329*** 0.114**

proposed - FedAvg (MC) 0.032** 0.007 0.013. 0.024** −0.002 0.016 0.067***

This choice is represented by the FedAvg approach in our analysis. Our third
comparison shows that FedAvg builds a model that captures characteristics of
both populations to a varying (across outcomes) degree. It captured character-
istics of the MC population at least as well as the proposed method for septic
shock, organ-space and superficial SSI; and captures the characteristics of the
smaller FHS cohort as well as the proposed method for sepsis, septic shock, UTI
and wound SSI. However, it never achieved a better performance than the pro-
posed method on any outcome on either cohort. The proposed method achieved
significantly better performance on at least one of the two cohorts for all out-
comes (except septic shock) and achieved a significantly better performance on
both cohorts for PNA.

The central issue addressed in this paper is not the reproducibility crisis,
but an issue of inequity, the inability of smaller health systems to tailor care
to their specific populations. This puts these health systems and their patients
at a pronounced disadvantage with a risk of significant disparity in our artifi-
cial intelligence-enabled healthcare future. Modeling approaches of today do not
offer a satisfactory solution; using a model developing elsewhere is clearly an
inferior solution. Transfer learning makes the model overly specific to the popu-
lation at hand, while federated learning results in a model that over- or underfits
both populations to a varying degree. We propose Consensus Modeling which
can capture characteristics of a smaller patient population without sacrificing
performance on a larger cohort as a way to address these disparities.

We demonstrated the proposed method in the context of a smaller and a
larger health system collaborating without sharing data. The significance of the
proposed methods transcends this setup. Even a large system is relatively small
when compared to patient populations pooled by a multi-system consortium or
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by a nation-wide effort; or may become “small” (having only have a few positive
cases) when modeling a rare disease. The problems arising from transferring
a model (with much higher complexity than those considered in this paper)
from a nation-wide data set to a large health system are the same: the health
system aims to refine the nation-wide model to be more specific to their patient
population, without becoming so specific that the model captures peculiarities
rather than disease modalities.

5 Conclusion

The model obtained from the proposed consensus modeling paradigm achieved
a predictive performance on the small system that is as good as the transfer
learning approach (AUC 0.71 vs 0.71) but significantly outperformed the transfer
learning approach on the large set (AUC 0.80 vs 0.65) suggesting significantly
reduced over-specialization to the small data set. For each outcome except septic
shock, it significantly outperformed federated learning on either the source, the
target, or both data sets.
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Abstract. Maintaining an equilibrium between shortage and wastage in blood
inventories is challenging due to the perishable nature of blood products.
Research in blood product inventory management has predominantly focused on
reducing wastage due to outdates (i.e. expiry of the blood product), whereas
wastage due to discards, related to the lifecycle of a blood product, is not well
investigated. In this study, we investigate machine learning methods to analyze
blood product transition sequences in a large real-life transactional dataset of
Red Blood Cells (RBC) to predict potential blood product discard. Our pre-
diction models are able to predict with 79% accuracy potential discards based on
the blood product’s current transaction data. We applied advanced data visu-
alizations methods to develop an interactive blood inventory dashboard to help
laboratory managers to probe blood units’ lifecycles to identify discard causes.

Keywords: Blood Inventory Management � Machine learning � Blood product
wastage � Sequence prediction � Data visualization � Visual analytics � Big data

1 Introduction and Background

Blood transfusion is essential, and often, lifesaving treatment that is commonly used to
support many therapeutic interventions (surgeries, chemotherapy, etc.). These products
include RBCs, platelets, plasma, and other plasma derived products. All major tertiary
care hospitals maintain an inventory of blood products within their blood transfusion
services (BTS) to ensure timely availability of these products to meet clinical demand.
Blood products are perishable—i.e. have an expiry date and require strict storage
requirements to ensure vitality—therefore on the one hand a hospital BTS needs to
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provide safe and timely blood products, and on the other hand it has to optimally
manage limited inventory to ensure adequate supply while minimizing wastage [1].

One of the major factors that affects the efficiency of blood inventory is wastage
either due to expiry (i.e. outdates) [2] or discard (e.g. due to unsafe temperature,
damaged bags, recalls, transfer inefficiencies, etc.) of a blood product. Both these
wastage issues affect inventory management; a blood product will expire if it remains
unutilized for too long, and it will be discarded if it is handled in an unsafe manner.
Minimizing blood product wastage is therefore crucial for optimal inventory man-
agement with regard to economical, operational and ethical considerations [2, 3].

Blood Inventory Management has been extensively studied in terms of ordering
and issuing policies, distribution scheduling algorithms and inventory modelling using
operations research and stochastic dynamic programming methods [3, 4]. Additionally,
blood inventory management techniques range from rules of thumb, first-in-first-out,
daily standing orders, and reduction in cross-match periods [5]. Recently, simple
machine learning methods [6] using k-NN [7] and random forests [8] have also been
used. The majority of the research in blood inventory management has focused on
reducing wastage by avoiding outdates which is often simply done by prioritizing the
transfusion of a blood product that is nearing its expiry. These efforts have resulted in
efficient product utilization, where many blood banks have reported outdate rates for
Red Blood Cells (RBC) at less than 1%. Anticipating blood product demand to
determine optimal inventory levels is an approach implemented by the Nova Scotia
Health Authority, Central Zone Blood Transfusion Services (CZBTS), whereby an
RBC ordering algorithm determines the probability of RBC demand based on lab
characteristics of admitted patients. This strategy reduced overstocking and brought the
RBC inventory down from ca. 401 to 309 units and monthly outdates from 19 to 8 [2].

Reducing blood product wastage due to discards, however, is still quite challenging
as a discard is not related to the blood product’s shelf life. It is related to its transac-
tional lifecycle—i.e. how and when it was collected, handled, stored, transferred and
received [9]. The lifecycle of a blood product unit embodies a non-deterministic
sequence of transactions until it is either transfused or discarded [9], governed by
stipulated processes, actors and measurable outcomes; a unit is deemed to be discarded
if there is a safety error at any point in its lifecycle. Given the multifaceted and
stochastic nature of a blood units’ lifecycle, avoiding discards is far more challenging
than reducing outdates. Currently, the most common way to investigate discards is
periodic retrospective review of product transactions (e.g. at monthly meetings) by
BTS staff; this manual analysis is due to the lack of suitable analytical tools to analyze
the blood products’ lifecycle to identify underlying discard patterns that can help to
detect potential discards. The current discard determination process is sub-optimal—
our internal data from 2015–2018 for RBCs shows that for every expired unit, 3.2X
more are being discarded. Therefore, there is an urgent need for innovative strategies to
predict whether a blood unit is likely to be discarded so that administrators can
proactively act to avoid its discard, and in turn improve blood inventory management.

In this paper, we present our investigations to detect potential blood unit discards to
help reduce wastage and optimize blood inventory management. We take a data-driven
approach, using machine learning and visual analytics methods, to (a) identify the
transactional patterns, within a blood unit’s evolving lifecycle, that leads to a discard;
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(b) predict a potential blood unit’s discard based on analyzing its transaction patterns;
and (c) visualize the evolving blood unit’s lifecycle to help discern the underlying
operational causes leading to discards. We have analyzed the RBC transactional data,
for 15 months (June 2017 – August 2018) from CZBTS in Halifax (Nova Scotia,
Canada), to develop two separate discard prediction models to predict a potential blood
unit discard based on the sequence of transactions within its evolving lifecycle. We
used lifecycle-dependent attributes to learn sequence prediction models from time-
series RBC transactional data (i.e. RBC lifecycle). Our models have shown an accuracy
of 79% to predict discard of active RBC units managed by CZBTS. We have also
developed a dynamic interactive visualization of the RBC units’ lifecycle to provide a
high-level overview of the RBC lifecycle within CZBTS. The research outcome—i.e.
the visualization dashboard and the predictive model—is intended to empower CZBTS
to probe and respond to discard patterns in order to optimize blood product inventory.

2 Blood Product Lifecycle Concept

In the BTS, the lifecycle of a blood unit comprises multiple operational status, denoting
its initial testing, transportation, storage, transfer to the transfusion site and finally
transfusion or discard. The blood units’ lifecycle has a temporal element; the status of
the blood unit constantly changes over time (each status change is timestamped and
recorded in an event log) until the unit is either transfused or discarded. A blood unit
may be discarded due to several reasons, e.g. not passing the screening tests after
collection, blood supplier recall after unit is sent to hospital, failure in visual inspection,
exceeding the time threshold allowed to be out of refrigerator and so on. Table 1 shows
the possible status values a RBC unit can go through in its lifecycle, and Fig. 1 depicts
two possible lifecycles for RBC units.

Table 1. All the possible status values that can happen during RBC units’ lifecycle

Status name Description
Received Product is received in inventory. This is the first status in a unit’s lifecycle.
Unconfirmed ABO confirmation test has not been completed yet.
Confirmed ABO confirmation test has been completed successfully.
Available Indicates that the RBC unit is available.
Transferred RBC unit is transferred to a different inventory area.
Assigned RBC unit has been allocated to a specific patient.
Issued RBC unit has left the lab and been dispensed to a patient.

Crossmatched Necessary tests have been performed on patient serum against the RBC unit to 
make sure they are fully compatible.

Quarantined  RBC unit is removed from inventory.
Destroyed RBC unit has been destroyed. This status always comes before being discarded.

Discarded  The RBC unit has been thrown away. If this status happens, it would be the final 
status in the unit’s lifecycle.

Transfused The RBC unit has been given to the patient. If this status happens, it would be the 
final status in the unit’s lifecycle.
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3 Data Description

In this project, we analyzed the RBC transactional dataset, for 15 months (June 2017 –

August 2018) from CZBTS in Halifax (Nova Scotia, Canada). This dataset consisted of
174,349 status transitions for 17,108 RBC units with complete lifecycles.

The original dataset is a raw event log dataset with a series of sequential temporal
transactions for all active RBC units. We pre-processed the data to develop a temporal
lifecycle for individual RBC units in terms of n-grams to represent transiting between
two statuses as a transition step and the entire lifecycle as a transition sequence.

This dataset consisted of 18 transactional attributes divided into two categories;
(i) lifecycle-independent attributes: The properties of a blood unit regardless of its
lifecycle, e.g. blood type, supplier of the blood unit, etc. (ii) lifecycle-dependent
attributes, e.g. status of the unit, location of the units, the actors handling the unit, etc.

4 AI-Driven Predictive Modelling Approach

Our approach is to analyze and model the non-deterministic temporal lifecycle of a
blood product—i.e. from being collected to its transfusion or discard—to predict
potential discards for new blood units. Our research approach involves three steps:

– Identifying the attributes in the dataset which are related to underlying discard
patterns. We will perform attribute correlation analysis to determine meaningful
relationships between transactional attributes and the outcome of the blood product.

– Predicting the future status of an RBC unit based on the trend of its evolving
lifecycle. We will learn sequence prediction models, using the temporal lifecycles to
develop discard prediction models that use n previous statuses to predict a discard.

– Visualizing the unit’s transition patterns to provide a high-level overview of the
prevalent transition sequences of blood units, highlighting the sequences that lead to
a discard. We will use advanced data visualizations to develop a web-based
dynamic interactive visualization of the RBC units’ lifecycle to probe the discard
patterns.

5 Investigating Correlations Among Lifecycle Attributes

We first performed attribute correlation analysis that helped in the selection of the most
informative attributes. Since our dataset comprises both categorical and quantitative
attributes, we used three correlation analysis methods for all possible attribute pairs:
Pearson’s correlation for quantitative-quantitative pairs, Correlation Ratio (η) for

UnconfirmedReceived Confirmed Available Crossmatched Issued TransfusedTransferredTransferred

UnconfirmedReceived Confirmed Available Crossmatched Available Destroyed Discarded

Fig. 1. Examples illustrating potential lifecycles of RBC units
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quantitative-categorical pairs, and Theil’s U for categorical-categorical pairs. Figure 2
shows a heatmap illustrating correlations for all the attribute pairs. Attribute names
have a suffix of ‘(nom for nominal)’ or ‘(con for continuous)’ to denote their type. Our
results indicate poor correlations between each attribute and a blood unit’s outcome
(The red rectangle on the heatmap), thus suggesting no relationships, especially for the
total handling time of the blood unit, supplier of the blood unit, and the blood type—
this is against the general belief held by the blood transfusion staff. To confirm the
information in the lifecycle-independent attributes for predicting the target variable, we
used Normalized Mutual Information (NMI) [10]. Figure 3 confirms weak correlations
between each attribute and a blood unit’s outcome as the maximum NMI value is 0.2.

6 Predictive Modeling for Blood Unit Status Prediction

We approach the predictive modeling of the targeted discarded status of a blood unit as
a sequence prediction problem based on RBC units’ lifecycle (i.e. transition sequen-
ces). For our purpose, the term sequence prediction refers to predicting the next item(s)
of a sequence. The training of a machine learning based prediction model using
temporal sequences uses a dataset that takes into account the order of the observations.
There are various ways of performing sequence prediction such as LSTMs/RNNs from
neural networks area [11, 12] and Markov models from Machine Learning area [13–
15]. We investigated two machine learning models to predict a blood unit’s next status
—i.e. (a) All-K-Order Markov (AKOM) and (b) Compact Prediction Tree (CPT).

The AKOM model consists of all the ith-order Markov models (i ¼ 1; 2; . . .; k) to
address two issues: (i) poor prediction accuracy of 1st-order Markov model since it does
not look far into the sequences, and (ii) low coverage and sometimes even worse

Fig. 2. Heatmap illustrating correlations for
all the attribute pairs. (Color figure online)

Fig. 3. NMI criterion between each attribute
and the target variable.
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accuracy of higher order Markov models [15]. Figure 4 shows the transition graph for
the 1st-order Markov model on the RBC dataset, which is the basis for building higher
order Markov models (the graph is too large to present here). The resultant transition
graph highlights the underlying inefficiencies in the transfusion system (e.g. the circled
numbers show the conditional probabilities associated with transition steps that are not
ideal in the blood supply chain). On the other hand, higher order Markov models may
not cover transition sequences shorter than the order of the model.

We also investigated a new CPT method which claims to have higher accuracy than
the AKOM model, Prediction by Partial Matching, and Dependency Graph [16, 17].

6.1 Training the Prediction Models

For both the prediction modeling approaches, a sequence of k previous statuses (i.e.
transition history) is used to predict the k + 1 status. As suggested in [14], working
with longer transition history can lead to better prediction accuracy, however the
optimal value of k that gives the highest prediction accuracy had to be determined
through experimentation. To determine the best performing prediction model, we
created multiple AKOM and CPT models, with varying k values, and applied a 10-fold
cross validation (90%–10% ratio for training set and test set) for each k value on 90%
of the RBC dataset (i.e. validation set). We left the remaining 10% of the dataset
untouched for comparing the predictive accuracy of the models (i.e. evaluation set).

In order to maximize our usage from the test set/evaluation set for calculating the
accuracy score, each transition sequence in the test set/evaluation set is split into sub-
sequences in a way that each transition step in the sequence is predicted using its
previous statuses—i.e. if L is the length of a sequence in the test set/evaluation set, then
the sequence contributes L� 1 times in the accuracy score. Accordingly, the accuracy
score for validation/evaluation of the models is measured as the number of true pre-
dictions against the total number of sub-sequences.

starting status
mid-lifecycle status
outcome (absorbing status) 

Fig. 4. The transition graph for the 1st-order Markov model. All the edges with conditional
probabilities less than 1% are removed from the graph for visualization purposes.

An AI-Driven Predictive Modelling Framework 197



6.2 k Parameter Tuning

Through experimentation we determined the optimum value of the k parameter for
achieving the highest prediction accuracy—this basically informs us the extent of the
transition history that is needed to make a meaningful prediction about a future status of
a blood unit. Figure 5 shows the prediction accuracy of the AKOM model over the
course of k values ranging from 1–20 (the maximum value of the k parameter is 20
since 97% of the RBC units have less than 20 transition steps). We decided to use
k ¼ 4 as the optimum k parameter among the k values which are associated with the
highest accuracy results (k ¼ 4; 5; 6; 7; 8); the result set for k ¼ 4 is not significantly
different from the others according to pairwise Student’s t-test at a 95% confidence
level, and it makes the AKOM model relatively smaller as compared to the other
models with higher k values yet with no discernable predictive accuracy gains.

Figure 6 illustrates the prediction accuracy trend for different k values as used in the
CPT model. By applying a One-way ANOVA test at a 95% confidence level, we note
that there is no significant difference among the means of predictive accuracies of all
the k values—i.e. increasing the value of k has no influence on the accuracy of the
prediction model for this dataset. Therefore, we selected k ¼ 9 for the CPT model as it
provides the best accuracy results yet not significantly better than other k values. It is
worth mentioning that unlike the AKOM model, the size of the k parameter has no
influence on the size of the CPT model since it utilizes all the information in the
training transition sequences to build the training model regardless of the value of k.

6.3 Prediction Model Evaluation

Figure 7 shows a comparison between the AKOM model and the CPT model while
their k parameters are tuned. To compare these models not only on frequent sequence
patterns but also on less frequent patterns, we define a 5% pattern frequency threshold
to report their accuracy results.

Fig. 5. Influence of the size of k parameter
on accuracy of the AKOM model

Fig. 6. Influence of the size of k parameter
on accuracy of the CPT algorithm
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7 Blood Product Lifecycle Visualization

To provide a high-level understanding of the type and frequency of RBC unit transi-
tions, we developed a web-based interactive visualization that allows the researchers to
dig into the RBC units’ lifecycle whilst they have a big picture of the entire dataset. We
have employed a User-Centered Design (UCD) approach and have used React1. and
D32. as advanced data visualization software to implement the dynamic visualization.

Figure 8 illustrates the dashboard while the user interacting with the visualization.
The core of the visualization is the sunburst diagram which aggregates all the transition
sequences. The first transition step is the innermost ring, and as we move outward from
the center, we approach to the ultimate statuses which can be either Transfused or
Discarded. The angle of each segment shows how much frequent the occurrence of the
corresponding status is in that specific level. As the user hovers the mouse on the
sunburst diagram, the chosen sequence is highlighted, and the corresponding infor-
mation is shown in each of the other three components; (i) The interactive breadcrumb
trail shows the sequence of statuses on which the user is focused by hovering the
mouse on the sunburst diagram. (ii) The line chart reflects the average amount of time it
takes to transit from a status to another one in the specific sequence pattern. It also
compares the trend to the average expiry time. (iii) Numeric values including the length
and frequency ratio of the chosen sequence pattern are in the top-left of the
visualization.

The data included in the visualization can be filtered based on the outcome of RBC
units and the sequence pattern frequencies. Figure 9 shows a screenshot of the dash-
board as the user has excluded all the sequence patterns with frequencies greater than
5% and having the last status as Transfused. Hovering on the patterns reveals the
inefficiencies in the transfusion process for that particular pattern. For example, one

0.73

0.57

0.77
0.93

0.63
0.79

≤ 5% sequence pattern 
frequency
(uncommon patterns)

> 5% sequence pattern 
frequency
(common patterns)

Overall

Fig. 7. Comparison between accuracies of the two investigated models

1 A JavaScript library for building user interfaces (https://reactjs.org).
2 Data-Driven Documents, a JavaScript library for manipulating documents based on data (https://d3js.
org).
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blood unit followed the selected pattern in the screenshot and was expired after several
transitions prior to the Transferred status.

8 Concluding Remarks

We investigated the lifecycle of RBCs and targeted wastage due to discard, which has
barely been studied hitherto, to identify the underlying inefficiencies in the transfusion
system to achieve appropriate management of RBC inventories. In this regard, we

Fig. 8. The inventory dashboard showing a selected transition sequence

Fig. 9. Visualization showing the less frequent sequence patterns of discarded RBC units
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probed the lifecycle-independent attributes of RBC units to see if predicting the out-
come of an RBC unit is possible from the very first step of its lifecycle when it is
provided from a blood supplier. Our mathematical analysis showed that there is no
correlation between those attributes and the target variable. Hence, we aimed to learn
transition sequence patterns by building sequence learning models so that we could
predict future transition steps in RBC units’ lifecycle to identify discard patterns
prospectively. Finally, we developed a web-based interactive dashboard that provides a
high-level understanding of the type and frequency of RBC unit transitions.

The major limitations of this framework that should be the subject of further
research are: (a) The investigated prediction models are not sufficiently competent to
predict farther transition steps than the next immediate status since the accuracy drops
to some extent each time we intend to predict one transition step farther. (b) In this
study, RBC units’ lifecycle is translated and simplified into sequences of statuses while
there are other lifecycle-dependent attributes especially the time duration between two
consecutive transition steps. Considering these attributes can lead us to achieving better
sequence prediction accuracy. (c) Although the prediction models are generalizable to
any BTS dataset, the value of the k parameter should be fine-tuned as a preliminary
setting to ensure the highest accuracy.
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Abstract. Prior studies have manually assessed diagnosis codes and
found them to be erroneous/incomplete between 4–30% of the time. Pre-
vious methods to validate and suggest missing codes from medical notes
are limited in the absence of these, or when the notes are not written
in English. In this work, we propose using patients’ medication data to
suggest and validate diagnosis codes. Previous attempts to assign codes
using medication data have focused on a single condition. We present
a proof-of-concept study using MIMIC-III prescription data to train a
machine-learning-based model to predict a large collection of diagnosis
codes assigned on four levels of aggregation of the ICD-9 hierarchy. The
model is able to correctly recall 58.2% of the ICD-9 categories and is
precise in 78.3% of the cases. We evaluate the model’s performance on
more detailed ICD-9 levels and examine which codes and code groups can
be accurately assigned using medication data. We suggest a specialized
loss function designed to utilize ICD-9’s natural hierarchical nature. It
performs consistently better than the non-hierarchical state-of-the-art.

1 Introduction

The practice of coding diagnoses of medical conditions using standardized coding
systems such as ICD-10 [25] has grown prevalent. However, while coding systems
are in wide-spread use, coding quality is uneven. Coding a medical diagnosis is
notoriously complex. There exist multiple hierarchies and choosing the appropri-
ate code requires a deep understanding of their structure and the relationships.
For example, in a review of 1800 injury discharges from a New Zealand hospital,

c© Springer Nature Switzerland AG 2020
M. Michalowski and R. Moskovitch (Eds.): AIME 2020, LNAI 12299, pp. 203–213, 2020.
https://doi.org/10.1007/978-3-030-59137-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59137-3_19&domain=pdf
http://orcid.org/0000-0002-8916-0128
http://orcid.org/0000-0003-4103-1244
http://orcid.org/0000-0001-7025-8099
http://orcid.org/0000-0002-7566-1626
http://orcid.org/0000-0002-8485-8674
http://orcid.org/0000-0003-2975-647X
https://doi.org/10.1007/978-3-030-59137-3_19


204 T. Sagi et al.

Davie et al. [6] found 2% to be uncoded, and 14% of PDx codes and 26% of
external cause codes to be inaccurately coded. Wockenfuss et al. [26] determined
that ICD-10 three and four level codes are too detailed to be reliable for general
practitioners by measuring the Kappa inter-rater agreement scores. and found a
sensitivity (recall) of 93.4 and positive predictive value (precision) of 88.9.

Some work exists on predicting diagnoses from laboratory results (e.g., [19]),
but is limited to cases where such results are available and relevant. A large body
of work exists on extracting diagnoses from clinical notes and reports (see review
[23]). However, these systems’ performance is reliant on techniques that tend to
work much better in English, and must be retrained for every new language [17].

A patient’s current medication can shed valuable light on their existing med-
ical conditions. For example, observing that a patient has a chronic prescrip-
tion for Metoprolol usually indicates that he/she is suffering from hypertension
or ischaemic heart disease. Generalizing upon this observation, in this work
we develop a machine-learning-based model able to predict the list of diag-
noses assigned to a patient based upon his/her medications. Furthermore, in
some countries (e.g., Denmark [20] and South Korea [15]) centralized medica-
tion repositories are comprehensive, while diagnosis codes are sporadic. Thus,
such a model could provide emergency responders and critical care facilities with
a rapid assessment of a patient’s existing conditions in addition to the model’s
utility in diagnoses quality control. For example, an unconscious patient with
a history of diabetes, will be first assessed for hyper/hypoglycemia, while one
without a history of diabetes, but with a history of heart-disease, will be first
assessed for acute heart conditions such as a heart-attack. We assess the viability
of our approach using the publicly available MIMIC-III dataset [14]. The dataset
contains rigorously anonymized and detailed medical records for over 50 K ICU
patients.

2 Related Work

The need to perform quality control of diagnosis code assignment is justified by
several studies. Cooke et al. [4] have shown that an ICD-9 code as a predictor of
true COPD had a sensitivity of 76% and specificity of 67% using spirometry as
their golden standard. A validity study of Danish national registry diagnoses [5]
showed that only 75% of diabetic patients labeled with MI or stroke actually had
such an event. Recent work attempted to predict ICD-9 assignment in MIMIC-III
from discharge notes [12]. Their solution to the problem of multi-label, multi-
level was to either limit the number of labels or aggregate predicted codes into
categories, thereby solving two separate problems, namely to predict the top-
10/50 codes or the top 10/50 categories. In this work, we aim to predict all
codes, at different aggregation levels, in order to examine which codes and code
groups can be predicted from medication data.

There have been a few attempts to use prescription data to predict a single
or at most two conditions. Schmidt et. al. developed and validated an algorithm
with 87% accuracy able to identify herpes zoster [22]. In another study, prescrip-
tion data was used to classify whether or not patients had preexisting conditions
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of diabetes or hypertension [21]. In a recent review [8] of algorithms designed
to extract cases for medical research from EMR data, some of the studies use
medication data. However all studies extract cases for a single condition, often
aggregating several diagnosis codes. In our scenario, we identify the probable
diagnosis codes of multiple conditions at once and thus identify cases where
improbable diagnosis codes have been used.

3 Methods and Data

3.1 Data

We use MIMIC-III [14] from PhysioNet [9], EHR data for 50 K patients from an
American hospital’s ICU departments over four years. MIMIC-III contains an
extensive variety of data, including lab results, vital signs, medical notes, and
most importantly for our needs, drugs administered and diagnoses ascertained.
The prescriptions table (model input) contains 4 M rows of drugs prescribed
during 50,216 admissions. There are 4,525 different drug names in the DRUG
field, which are often the same drug, with different spelling or with an added
comment, e.g., Basiliximab and *NF* Basiliximab. To disambiguate and stan-
dardize the codes we use a mapping of MIMIC terms to the OMOP concepts [11]
and group them by Clinical Drug Form to receive 1,602 RxNorm drug codes.

The diagnosis table (expected output) contains 651,048 diagnoses for 58,925
admissions using 6,841 different ICD-9 codes. ICD-9 is a hierarchical grouping
of disease codes that consists of 5 levels starting from 0 (most general), to 4
(most specific). ICD-9 is built on the basis of grouping for similar disease. Upon
review, we omit 5,994 codes for which less than 100 cases exist as it is typically
not possible to generalize from such a low number. We further omit a number
of codes focusing on diagnoses for chronic or persistent conditions. A complete
and more detailed description of omissions can be found in the appendix. We use
the patient data to add the age in years upon admission. MIMIC hides elderly
(over 89) patient ages due to anonymization concerns and reports an average of
92.4 for the patients over 89. We use this age as the replacement age for these
patients and further normalize the age by dividing it by 92.4, a practice that has
been shown to be beneficial in machine learning techniques. After joining with
the prescriptions table, the final table contains 52K admissions of 40K different
patients using 567 unique codes, denoted labels in the following.

3.2 Task - Hierarchical Multi-label Classification (HMC)

Binary classification problems (e.g., will this person develop Sepsis ) aim to cor-
rectly classify each task as either positive or negative. Single-label multi-class
problems (e.g., is the following brain MRI normal, or does it contain a glioblas-
toma, a sarcoma, or a metastatic bronchogenic carcinoma?), extend the classifi-
cation to allow more than one class for each task. These two types of ML tasks
are, by far, the most commonly studied in the medical domain. Less common
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are multi-label classification problems which attempt to assign a set of labels to
each example (e.g., which of the ICD-9 codes should be assigned following this
medical report [1]), each of the labels is drawn from a possible set of classes.
Since each person may have multiple co-morbidity, the task of assigning the cor-
rect set of diagnosis codes can be characterized as a multi-label classification
problem [27]. The hierarchical nature of diagnoses both complicates the task
and offers an opportunity to improve its applicability. If an algorithm predicts a
patient suffering from non-specified chirosis (ICD-9 code 571.5) to be suffering
from alcoholic chirosis (ICD-9 code 571.2) it should be more appreciated than
if no chirosis related diagnosis are returned since both codes share a common
ancestor. Further hierarchical constraints may dictate that a person cannot have
more than one label from the same sub-tree of codes. Since ICD-9 is indeed hier-
archical and imposes such constraints on some of its sub-trees, we can classify
our task as an hierarchical multi-label classification (HMC) problem.

3.3 Machine Learning and Loss Functions

Many approaches to HMC include splitting the problem into multiple simple
(single label) classification tasks, each of which is trained separately. Within
these approaches, local and global approaches [7] differ by the amount of classi-
fiers trained. In the local case, multiple classifiers are trained over a binary label
pertaining to a single node in the hierarchy and the predictions of each level
are subsequently propagated. In the global case, the labels are selected from a
set of all possible labels. In this work we follow the observation of Cerri et al.
[2] that by training a single global classifier based on a multi-level neural net-
work representation, one can effectively reuse the high-level features learned to
discriminate between high levels in the hierarchy and then refine these to more
accurate code assignments using the subsequent levels of the neural network.
Furthermore, deep neural networks (DNN) have repeatedly shown superiority
over other techniques in the medical domain (e.g., [3,13]). We therefore employ
a multi-layer perceptron, or fully connected neural network. The input layer for
this network is comprised of one node for each RxNorm code in the data (and
one for normalized age) and the output layer of one node for each ICD-9 code at
the chosen roll-up level. The number of internal layers and the number of nodes
in each layer are hyper-parameters over which we perform a classic grid-search.

Machine learning, in particular deep learning, uses a loss function during
the training phase to quantify the error of the current iteration of the model
with respect to the expected output. Choosing an appropriate loss function is
crucial and in general must reflect the structure of the expected output. Thus,
specific loss functions have been suggested for the multi-label case [16] as well
as hierarchical multi-label functions [24]. However, these are tied directly to the
structure of the global classifier, and none have been applied in the medical data
setting using the inherent hierarchy of a medical ontology.

We therefore experiment with two types of loss functions. One suitable for
the multi-label case, where each missed label is treated the same regardless of
the extent of the mistake, and one designed for the HMC case. Our multi-label
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function is the multi-label soft margin loss function [28], defined as follows with
C being the number of classes y being the class indicator and x the current value
of the corresponding output node (i iterates over all classes).

loss(x, y) = − 1

C

∑

i

y[i] · log((1 + exp(−x[i]))−1) + (1 − y[i]) · log

(
exp(−x[i])

(1 + exp(−x[i]))

)

(1)

We model our HMC loss function (hml, Eq. 2) after the one developed for
HMCN-F [24], while adjusting it to account for the differences between a text-
classification problem and our own task and minimize a function comprised of
two components.

Lhml = LL + LG (2)

LL is the local loss – calculation of Eq. 1 at the leaf level. LG is calculated by
rolling up the results one layer at a time until the ICD-9 chapter level (0). At each
phase of the roll-up, the predictions for each inner node are set to the average of
the predictions over its children. The loss of each level is calculated and summed
to the other levels. Since our neural network does not directly predict the global
scores, we do not suffer from hierarchical violations and do not require the third
component that penalizes them in HMCN-F. We employ the Roll Up method to
aggregate diagnoses given the ICD-9 hierarchy (see example in Fig. 1). A disease
is only billable if it is a leaf-node of the ICD-9 hierarchy. However, not all leaves
are on the same level. As an example, the code 322.2 is a billable level 4 code,
which represents Chronic meningitis, whereas code 003.22 is a billable level 5
code for Salmonella pneumonia. Each patient initially starts with one or more
billable disease from the ICD-9 hierarchy.

Fig. 1. Example of the roll up algorithm. An example level 4 code assignment is shown
as tree A-L4. Disease codes {b, c, d, g, f, j, k} are level 4 billable codes, whereas codes
{a, e, f, i} are billable codes on level 3. Red circles are the registered comorbidities of
the patient. Green circles are diseases not recorded in the patient. (Color figure online)
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3.4 Evaluation

A few previous ICD coding tasks have been evaluated by measures that consider
its hierarchical nature as well [18]. To allow comparison of ICD code assign-
ment using medication data to algorithms using medical notes, we use the more
common micro-averaged precision and recall, and their harmonic mean F1. We
perform the experiments on different prediction resolutions. With level 0 corre-
sponding to the chapter level of ICD-9 (e.g., 520–579: diseases of the digestive
system) and level 1 to the code group level (e.g., 401–405 Hypertensive Disease).
Our last level corresponds to the most detailed available in the ICD-9 hierarchy
(level 4) with 576 possible codes.

4 Results
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Fig. 2. F-1 by number of cases over level 2 codes.

Table 1 presents the best results
(by F1) obtained by the ML-
model following a standard
hyper-parameter grid search. In
each task, the code assignments
were rolled up prior to both
the training and the test phase
and not only for the purpose of
evaluation, such that the neural
network encountered a different
task for each level. For each ICD
level we provide the number of
codes in that level, the average
branching factor, and the aver-

age number of eventual leaves a node in this level’s sub-tree. In addition to
precision, recall, and F1, we show the number of diagnosis codes for which F1
was equal to zero.

Since this is a relatively small dataset, the number of cases for many diagnoses
is too low to expect reasonable performance. When examining the effect of the
number of cases on the model’s performance (Fig. 2) we find that at least some
of the variance can be explained by the small number of cases (R2 of 0.29 for a
linear model). Top-5/top-10 results by code are available as an online appendix
containing the full results [10].

4.1 Choice of Loss Function

To assess the effect of using hml versus a standard multi-label loss function
(ml) we examine all experimental results where the F1 was at least 5.0 (Fig. 3).
Models trained using hml consistently out-performed those trained using ml with
an average F1 result between 3–8% better. This result holds when comparing the
max values obtained in each levels as well with a 2–7% improvement for levels
2–4, although no significant improvement was seen for level 1. This last result is
expected since the roll-up process for this level only rolls-up to level 0.
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Table 1. MIMIC-III Diagnosis prediction results

Prediction task Codes Branching Avg. leaves Precision Recall F1 F1 = 0

ICD9 Top-10-groups (level 0) 10 NA NA 82.6 52.4 64.1 0

ICD9 Top-10-codes (level 4) 10 NA NA 61.3 50.5 55.4 0

ICD9-Rolled Up (Level 0) 15 5.7 565.1 78.3 58.2 66.8 2

ICD9-Rolled Up (Level 1) 65 8.4 108.3 60.9 43.0 50.4 15

ICD9-Rolled Up (Level 2) 236 6.6 14.0 56.6 31.5 40.5 122

ICD9-Rolled Up (Level 3) 461 1.6 1.6 52.3 19.9 28.8 297

ICD9-Raw (Level 4) 567 0 0 49.9 18.8 27.3 315

4.2 Discussion
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Fig. 3. F1 difference between models trained using hier-
archical multi-label loss (hml) and multi-label loss (ml).

The model’s performance
was able to recall 52.4%
of the correct ICD-9 cat-
egories in a top-10 setting
and assign the precise code
in 82.6% of the cases. For
this setting at the categor-
ical level 0, and for the
top-10 ICD codes (level 4),
results are comparable to
those published by Huang
et al. [12] which pre-
dicted top-10 ICD-9 cat-
egories/codes by training
deep neural networks over
medical notes. In these
days of automated electronic health records, this approach offers a potential
application to automatically assign a disease code on the basis of drugs pre-
scribed. This may also provide opportunities to create quality control mecha-
nisms for diagnosis code assignment.

F1 scores improve as the task is simplified with the worse performance
obtained when the model is trying to assign the correct code from a set of
567 possible codes at level 4. The best performance is on level 0, when the
model only has 15 possible labels. Consistently, in all experimental conditions,
precision is higher than recall. This is partially explained by codes and groups
that cannot be differentiated by their medication, and for which the model was
unable to find any of the cases (F1 = 0). For example, at level 0, the model was
unable to predict any assignment of chapters 780–799 (Symptoms, Signs, And
Ill-Defined Conditions) and 710–739 (Diseases Of The Musculoskeletal System
And Connective Tissue). These chapters may not be differentiable by medica-
tion, as the former is comprised of symptoms for many underlying conditions
and the latter may be treated by orthopedic treatments and generic pain-relief
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medication. Further analysis shows that prediction of neoplasms mostly fails as
well, as the treatment of cancer can be surgical or radiation-based. Further-
more, since MIMIC contains only ICU records, the patient may not be currently
undergoing any medication-based cancer treatment. Further limitations include
some drugs being prescribed for more than one diagnosis. For example, ACE
inhibitors may be used for management of hypertension, heart failure, vascular
disease and post-stroke. Also, doses of some drugs may vary depending on the
disease indication, for example, rivaroxaban 2.5 mg BID is licensed for high risk
patients with acute coronary syndrome, while rivaroxaban 20 mg OD is for stroke
prevention in atrial fibrillation. Our analysis also does not consider changes in
drugs over time, nor dose changes of the same drug. Also, some patients may
swap their drug into another agent from the same class of drugs, causing a fur-
ther dilution of the number of cases a model can learn from. Some drugs are also
in combination therapies, for example, combining ACE inhibitors and a diuretic
in a single combo pill for the treatment of hypertension.

5 Conclusion and Future Work

We presented a proof-of-concept study of the feasibility of using an ML-model to
assign multiple diagnosis codes on multiple aggregation levels using a person’s
current medication. The model was able to correctly assign diagnosis codes on
multiple levels and the detailed results allow to identify which codes and code-
groups are predictable by medication data. The use of a hierarchical loss function
has improved the model’s performance by an average of 3–8%. The promising
results support continued research into the ability to utilize larger medication
datasets to create quality control mechanisms for diagnosis code assignment and
to provide diagnostic information to caregivers in emergency situations that is
language agnostic. We wish to pursue this expansion in future work, as well as
experiment with additional hierarchical loss functions and methods to incorpo-
rate dosage and treatment regimen information in the model’s input.

A Appendix - Omitted codes and detailed results

Table 2 details the ommitted ocdes from the diagnosis table and the reasons for
omission. We omit all codes with a low number of cases. We further omit 61
codes used to describe symptoms, as these are shared by multiple causes and
will, most-probably, supplant a diagnosis code following medical investigation.
Injuries and foreign bodies (30 codes) are omitted as well as their treatment is
usually orthopedic or surgical, rather than medicinal. We omit the codes used in
ICD-9 to classify birth-age and pre-term phase for infants (14 codes) as these are
more descriptive than diagnostic. Finally, we omit the E and V series of codes
that are used to provide additional details for statistical reasons and which do
not cause differences in medicinal treatment. We remain with 567 codes and
54,423 cases (92.4%) that contain at least one of the remaining codes. Filtering
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out only admissions contained in both the diagnosis and prescription tables we
remain with 50,211 admissions.

Table 2. List of Omitted ICD-9 Codes and Code Groups

Code(s) Description Reason

5994 different codes A large collection of various
codes

Low base rate (less than 100
cases)

765.X Descriptive of gestation week
or preterm weight

Will be accompanied by the
specific results of pre-term
birth if such exist

8XX and 9XX Injury Medical result would be
Surgical or Orthopedic and
impossible to accurately
specify from medication

93.31,93.41 Foreign body Undiscernable medicinally

99.X Complications of medical care Undiscernable medicinally

61 different codes Collection of different
symptoms such as pain,
nausea, and nuances of
mental state/ faculties

Should be accompanied by
the symptom’s cause which is
the main diagnosis

Detailed results are available online [10].
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Abstract. Worldwide epidemic events have confirmed the need for med-
ical data processing tools while bringing issues of data privacy, trans-
parency and usage consent to the front. Federated Learning and the
blockchain are two technologies that tackle these challenges and have
been shown to be beneficial in medical contexts where data are often
distributed and coming from different sources. In this paper we propose
to integrate these two technologies for the first time in a medical setting.
In particular, we propose a implementation of a coordinating server for
a federated learning algorithm to share information for improved predic-
tions while ensuring data transparency and usage consent. We illustrate
the approach with a prediction decision support tool applied to a diabetes
data-set. The particular challenges of the medical contexts are detailed
and a prototype implementation is presented to validate the solution.

1 Introduction

Researchers face ethical challenges when handling medical records. Indeed, med-
ical records hold sensitive information about patients that can be prejudicial if
leaked. A recent controversy involving unconsenting access to tens of millions of
identifiable health records re-sparked an interest in the data ethics debate [27]. As
a consequence, medical institutions are reticent in sharing medical records [21].
Researchers go through time consuming procedures to request and use medical
data-sets, often at the expense of efficiently advancing research. This situation
is exacerbated for data scientists who use large, and heterogeneous data-sets
scattered across different sites.

At the forefront of the ethical challenges we find, data privacy, transparency,
and usage consent [15,23,27]. Data privacy is often thought in terms of iden-
tity privacy or confidentiality [23,27]. Traditionally, anonymization techniques
have been used for medical data processing [23]. Data transparency is about
patients knowing and understanding how and by whom their data are used [27].
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And usage consent means that data subjects have the right to decide how and
when their data are used. [23,27]. Unfortunately, these points are often glossed
over when processing patients’ data, and consent is sometimes implicitly assumed
if data-sets are anonymized [15]. This situation is further complicated in the era
of big-data where data-sets are scattered and processed by multiple often non-
communicating parties [17].

Recently, two technologies emerged independently which address some of the
issues highlighted above. Federated Learning (FL) emerged as a paradigm for
training Machine Learning (ML) models across decentralized devices and mini-
mizing the risk of exposing sensitive information [13,14,20]. While the blockchain
emerged as a technology which offers unprecedented guarantees of reliability and
usage transparency in decentralized settings [24].

This paper proposes a blockchain-based FL framework whereby the advan-
tages of both technologies are put to use in the medical context. In particular, we
propose a Smart Contract (SC) implementation of a coordinating server for a FL
algorithm to ensure transparency and usage consent when sharing knowledge.

In Sect. 2, we discuss relevant related work for both FL and the blockchain
in health care contexts. Then, in Sect. 3 we describe the problem in detail and
explain how our solution can be applied for the medical setting. In Sect. 4, we
show and discuss experiment results on a medical data-set for diabetes predic-
tion. Finally, in Sect. 5, we present remaining challenges and open questions.

2 Health Care Analytics in Distributed Settings

Medical data offers a wealth of potential for improving the quality of care and
reducing costs [21]. Nonetheless, medical data, as in other fields, is often “disor-
ganized and distributed, coming from various sources and having different struc-
tures and forms” [21]. FL emerged as a response to these settings by providing
a way to train ML models in heterogeneous and distributed settings while mini-
mizing data transfers [13,14,20]. It has been used in health care settings because
of the sensitive information of the data handled [32].

Likewise the blockchain has been studied in health care as it offers usage guar-
antees (transparency and immutability) not possible in traditional distributed
data architectures [7,22]. In this section, we look at how these two technologies
have been used in health care, and henceforth motivate the introduction of our
blockchain-based FL medical decision support model.

2.1 Federated Learning Approaches

Although works on distributed computing have been around for decades [18,19],
new contexts have brought up previously unaddressed challenges: instead of
evenly, and moderately distributed data-sets, FL approaches deal with uneven,
and massively distributed data-sets [13,14,20]. These contexts have been shown
to be applicable in health care settings to “connect all the medical institutions
and makes them share their experiences with privacy guarantee” [32]. The term
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FL was coined by Konevcny et al. [14] and McMahan et al. [20] which pro-
posed a variant to the Stochastic Variance Reduced Gradient Descent (SVRGD)
algorithm to solve ML problems in a distributed setting.

Characteristically, participants’ raw data never leaves the hosts’ devices in
FL settings. The only data that is shared with a coordinating server are model
parameters of local ML models. These parameters are then aggregated efficiently
by a central server and the result sent back to the participants for updating their
own models.

A comparison between the FL framework and more traditional computing
architectures [13] is shown in Fig. 1. Figure (1a) shows an architecture where all
computations are performed on a centralized server. In such an architecture, end
devices query the server to use the computation model. The centralized server
needs to hold the entire data-sets at the moment of the learning phase for this
architecture to work and is typical of a siloed health facility. Figure (1b) shows
a distributed computing architecture where multiple servers (sometimes defined
as a cloud) share data-sets and the workload. This architecture is common for
data-sets that have been anonymized and need to be shared across institutions.
Finally, in Figure (1c), the end devices become active participants in the com-
putation and only upload partial information to the server. The new role of the
server is then to aggregate the information of the different devices and broadcast
back the aggregated information to the end devices.

(a) A centralized comput-
ing architecture

(b) A distributed comput-
ing architecture

(c) A federated comput-
ing architecture

Fig. 1. An illustration of the different computing architectures. A gearwheel indicates
where the main computation tasks is executed and dashed lines indicate that minimal
information is transferred.

Studies that have used FL in the health care settings have been recently
reported in [32]. For instance in [3], the authors develop a binary classification
problem to predict cardiac-related hospitalizations based on data from electronic
health records. They find that their algorithm converges faster than a centralized
one at the expense of increased communication costs. In [11], the authors use a
FL-based approach to predict mortality and hospital stay time. They improve
on the baseline FL models by first clustering the patients into communities and
outperform the baseline FL approaches.

However, in the words of the authors in [20]: “Clearly, some trust of the server
coordinating the training is still required [when using FL]”. That is, server-side
computations often suffer from a lack of transparency and it is difficult for users
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to verify the computations performed [26]. Specifically, cloud computing has
been argued to decrease the sovereignty of users over their data and models [5].

2.2 Blockchain with Health Care Applications

The blockchain was invented to solve the consensus problem in a decentral-
ized, trust-less network [24]. That is, given a distrusting network of peers, the
blockchain provides a mathematically robust way of verifying that data stored
on our device are identical with data held by other peers. Initially designed
with a financial application in mind, the blockchain quickly evolved to different
domains [12].

In particular, the blockchain has been heavily applied in the medical domain
whereby the properties it possesses (decentralization, immutability, and trans-
parency) are core issues [1,7,22]. One such application which has been stud-
ied extensively is Electronic Health Records (EHR) management [2,4,16].
EHR management is inherently decentralized as stakeholders are distributed
between patients, medical institutions and government institutions in some cases.
Blockchain-based solutions, allow the different stakeholders to manager EHR
transparently while guaranteeing fairness and usage (records access) consent [16].

2.3 Discussion

Both the blockchain and FL algorithms address important ethical challenges
and have been successfully used in many health care settings [9,32]. Indeed, by
reducing the data that is shared when training models, FL algorithms reduce
the risks of exposing sensitive patients data and hence address the privacy issue.
Similarly, the blockchain addresses transparency and usage consent when dealing
with medical records (c.f Appendix A.2).

Few papers have integrated ML models directly with the blockchain. Among
those, Wang et al [29] for instance, have used the blockchain as a platform for
hosting ML models, guaranteeing algorithmic correctness and usage traceabil-
ity. Harris et al. [10] use the blockchain as a collaborative training platform for
ML models. That is, the platform hosts ML models written in SCs and encour-
ages data uploads from different users. Finally, the authors in [30] propose a
domain agnostic setting where FL and blockchain technologies are successfully
integrated. Indeed, a FL platform is used to train a deep learning network and
instead of a centralized server, a SC is setup for federating the computations.
The setup is said to provide “data confidentiality, computation auditability, and
incentives for parties to participate in collaborative training” [30]. We bring
these ideas for the first time to the medical context where privacy, transparency
and usage consent are primordial. Indeed, medical records often fall under strict
regulations such as the European General Data Protection Regulation (GDPR)
and the suitability of such solutions needs to be investigated. Accordingly, we
present in the next section, a medical decision support tool in a blockchain-based
FL framework.
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3 Problem Description

As discussed in previous sections, FL algorithms reduce the data communicated
between participants and reduces the risks of exposing sensitive patients infor-
mation compared to a cloud-based approach. Additionally, using SCs instead
of a federating server, we can add transparency and usage guarantees to the
setup. Specifically, at each federation round, the SC collects the values from the
different participants and returns the aggregated parameters for participants to
update their ML model in a completely automated way. Participants can also
at any time verify the correct execution of this step in a completely transpar-
ent manner given the open and distributed execution of SCs. For this work, we
choose to train an Artificial Neural Network (ANN) as previous results are avail-
able for comparison1. That said, other ML algorithms can easily be used in FL
settings [14].

Let i be an index for the n different facilities that choose to participate in a
collaborative ANN prediction model. The input to the model includes relevant
patients’ characteristics for the prediction model and the output is a binary
variable. Each participant locally trains their ANN with weight parameters w
and biases b [25] before sending the parameters to the federation SC. The loss
function of such a ANN is of the following form.

f(w, b)
def
=

1
2n

∑

x

‖y(x) − a‖2 (1)

Where x are the different data-set samples and y(x) corresponds to the output
of our model for the particular input x. In order to train the model, the cost
function [25] needs to be minimized so that the difference between y(x) and
the actual output a (indicating if the patient of sample x is diabetic or not) is
minimized. Of course, more complex objective function are possible but this is
not the focus of this work.

The overall architecture of our system is illustrated in Fig. 2. At each round
τ , medical facilities send their trained parameters to a “Federating” SC uploaded
on a blockchain network. The SC then aggregates the different parameters and
sends back the result to the facilities for them to train the individual models
again. As the aggregated parameters incorporate information from the different
facilities, they have been shown to achieve near-optimal accuracy [20].

Let ω represent both the weights and the biases, we use the formulation of
Mc Mahan et al [20] in a federated setting and define the following loss:

min
ω∈Rd

f(ω) where f(ω)
def
=

1
n

n∑

i=1

fi(ω) (2)

The objective in Eq. 2 is to minimize the overall loss function defined as the
average of the participants’ individual loss functions. The algorithm for mini-
mizing the loss functions can be separated into “client” steps and “server” steps

1 https://www.kaggle.com/ravichaubey1506/predictive-modelling-knn-ann-xgboost.

https://www.kaggle.com/ravichaubey1506/predictive-modelling-knn-ann-xgboost
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Fig. 2. An illustration of the proposed system. The blockchain is used instead of the
coordinating server in the original FL architecture.

as defined in [14,20]. In our setting, the clients are the different facilities i and
the “server” is the SC with access to all the local updates. The clients perform
a normal gradient descent process and then send their parameters ω to the SC
which proceeds with a weighted average of the different client parameters as in
Eq. 3.

ωτ+1 =
∑

i

ni

n
ωτ (3)

Next, we investigate in Sect. 4 some experiments to validate the solution
explained in this section to a real-world medical problem.

4 Experiments

In this section we evaluate our solution using a diabetes data-set from the Amer-
ican National Institute of Diabetes and Digestive and Kidney Diseases available
online2. First, we validate our ANN model’s capacity to predict diabetes by
using it in a centralized setting. Then, we test the FL setting by distributing the
medical records between 15 participants and having the participants collaborate.
Finally, we implement a small blockchain prototype based on Ethereum to vali-
date feasibility. For all the tests, we use ANN consisting of 2 hidden layers with
32 and 16 neurons respectively and a binary output layer to indicate whether the
patients is predicted diabetic or not. Also, we use 80% of the data for training
the ANN and the remaining 20% for testing.

In the first experiment the centralized model is trained for 50 epochs and
the accuracy of the trained model on the testing data-set is evaluated after each
epoch. Figure 3 illustrates the results obtained after running the experiment 10
times with different data distribution scenarios between the test and valida-
tion set. For each scenario, we randomly select 80% of the entries for training
and leave the remaining for testing. We note that the initial data distribution

2 https://www.kaggle.com/uciml/pima-indians-diabetes-database.

https://www.kaggle.com/uciml/pima-indians-diabetes-database
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markedly impacts the accuracy of the final model. This clearly indicates an
influence of the training data-set and corroborate the idea of benefiting from a
collaborative setting.

Fig. 3. The prediction accuracy of our ANN in a centralized setting for different train-
ing and testing scenarios.

Next, to test the FL model, we distribute the data-set among 15 partici-
pants to simulate a mid-sized collaboration scenario. After each 10 local epochs,
the participants all share their model’s parameters (weights and biases) with
a centralized federation server. The data is distributed among the participants
in a randomized way. Some example results are shown in Fig. 4. The blue line
represents the accuracy with the federated parameters while the grey line is
a baseline model without federation. The results show that individual models’
accuracy are lower than in the centralized setting with an average accuracy of
73% (against 76% in the centralized setting) but all local models benefit from
the data aggregates of the FL system with their accuracy improving between
1% to 5%. We choose to illustrate the results for 3 participants only as they
had the most characteristic behavior, but other participants have similar trends.
By having the ANN implemented in a FL setting, patients’ raw medical records
are protected from attackers as they never leave the medical facilities. However,
some studies have shown that inference attacks are possible on aggregated data.
That is, some unintended information can be leaked from model parameters only.
Possible mitigation strategies are discussed in Sect. 5.

Finally, with the above setup, participants have no visibility on the compu-
tations performed on the federating server. To add transparency and facilitate
usage consent, we implement the federating algorithm in a SC using the Ethereum
blockchain [31] and several open source tools (c.f Appendix A.4). Our implemen-
tation is openly accessible on this link https://github.com/n-vcs/solidity-fl. By
having the SC deployed instead of a federating server, participants can verify how
the parameters submitted are used and track all the transactions that are hap-
pening. Of course, a full-fledged implementation is needed to solve setting-specific
issues that are not addressed in this paper due to space limitation.

https://github.com/n-vcs/solidity-fl
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(a) Low improvement with
federation

(b) Late improvement with
federation

(c) Significant improvement
with the federation

Fig. 4. Resulting accuracy for three participants in a FL setting. (Color figure online)

Clinical Relevance: Promptly testing for diabetes can help patients receive
timely and accurate treatment and help prevent misdiagnosis. Furthermore,
training the model in the setting explained here allows medical centers to trans-
parently and securely share knowledge with other facilities. This knowledge shar-
ing creates more robust models which are resilient to environment-specific biases.

5 Conclusion and Future Work

In this work, we presented a blockchain-based FL solution to a diabetic predic-
tion model. Our solution capitalizes on the benefits of both the blockchain and
FL algorithms and caters to the particularities of a medical context. We provided
a prototype implementation and presented tests to validate the relevance of the
solution in the medical context. However, although no raw training data ever
leaves the participants’ devices in FL settings, the updates sent to the coordi-
nating server may still contain private information. Indeed, FL algorithms have
been shown to be vulnerable to inference attacks [30]. These types of attacks
can deduce information about the training population which was not intended
by the model.

To deal with this problem, privacy preserving protocols have been developed
to prevent leakage of sensitive data. For instance, differential privacy solutions,
Differential Privacy [6]and Homomorphic Encryption [8] have been shown to be
relatively useful against inferential attacks [33]. However, even without revealing
any details of the model, it is quite hard to achieve perfect privacy [28]. Against
this grim outlook, it is however essential to be aware of the risks of each particular
settings and measure them against the potential benefits.

Acknowledgements. This work was supported by a grant from the Roche Institute
2018.
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Appendix A The Blockchain Technology: Key Concepts
and Implementation

This appendix explains some key concepts related to the blockchain as well as
technical implementation details relevant to the present work.

A.1 Main Characteristics

The blockchain is a distributed ledger technology managed by a network of
peers. Data on the blockchain are visible and duplicated across participants.
New data are added to the blockchain through a consensus protocol. As such,
the blockchain is decentralized, immutable and transparent by design.

A.2 Smart Contracts (SCs)

SCs are set of instructions, specified in digital form and executed when predefined
conditions are met. Contrary to regular software, SCs benefit from the main
characteristics of the blockchain and can help attain transparency and usage
consent.

As opposed to centralized algorithms, SCs allow data owners to verify, at
any time, the implementation of the FedAvg algorithm and replicate the results
locally. Additionally, usage consent can be facilitated through SCs by logging
data ownership certification directly on the blockchain as described in [16].

A.3 Consensus and Incentive Mechanism

A consensus protocol is at the heart of the blockchain’ mechanism. The Ethereum
blockchain uses Proof-of-Work (PoW) by default. PoW relies on computational
power to validate transactions or execute SCs. In our context, Medical institution
are natural candidates for running the network as they will benefit from the
resulting model. But to keep the network alive, nodes needs to be incentivized.
As such, a possible set-up proposed in [30] is to have a reward mechanism for
participants based on their data contribution.

A.4 Current Set-up

For the prototype3 an Ethereum blockchain is set-up on the back-end using the
Truffle suite (Ganache and the Truffle Development Environment). Also, the
FedAvg [20] algorithm and a basic ANN are developed using Python’s scientific
computing library (Numpy). The front-end is developed in React. Data for each
participant are stored locally in a MongoDB database.

3 https://github.com/n-vcs/solidity-fl.

https://github.com/n-vcs/solidity-fl
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Abstract. In this paper, we propose a novel image descriptor called
“Forming Local Intersections of Projections” (FLIP) and its multi-
resolutional version (mFLIP) for representing histopathology images.
The descriptor is based on the Radon transform wherein we apply par-
allel projections in small local neighborhoods of gray-level images. Using
equidistant projection directions in each window, we extract unique and
invariant characteristics of the neighborhood by taking the intersection
of adjacent projections. Thereafter, we construct a histogram for each
image, which we call the FLIP histogram. Various resolutions provide dif-
ferent FLIP histograms which are then concatenated to form the mFLIP
descriptor. Our experiments included training common networks from
scratch and fine-tuning pre-trained networks to benchmark our proposed
descriptor. Experiments are conducted on the publicly available dataset
KIMIA Path24 and KIMIA Path960. For both of these datasets, FLIP
and mFLIP descriptors show promising results in all experiments. Using
KIMIA Path24 data, FLIP outperformed non-fine-tuned Inception-v3
and fine-tuned VGG16 and mFLIP outperformed fine-tuned Inception-
v3 in feature extracting.

Keywords: Radon projections histopathology · Image search ·
Feature extraction · Image descriptors

1 Introduction

Histopathology, is primarily concerned with the manifestations of a diseased
human tissue [1]. A traditional diagnosis is based on examination of the tissue of
concern mounted on a glass slide under various magnifications of a microscope
[2]. More recently, digital pathology has connected the computer vision field to
the diagnostic pathology by scanning the glass slide and creating a whole slide
image (WSI). This allows easy storage, more flexibility in sharing information
c© Springer Nature Switzerland AG 2020
M. Michalowski and R. Moskovitch (Eds.): AIME 2020, LNAI 12299, pp. 227–237, 2020.
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and eliminates the risk of losing specimens [3]. In digital pathology the images
are extremely large and it takes an extremely long time to compute images.
Hence, there is a need to develop a powerful image descriptor that can extract
unique and invariant features from these large images to enable algorithms to
retrieve and classify salient patterns and morphologies. In essence, the descriptor
should suffice as an image representative such that one should be able to index
the large scans with a limited number of descriptors.

In this work, we propose a novel descriptor called “Forming Local Intersec-
tions of Projections” (FLIP) which applies the Radon transform to small spatial
windows (to extract the features of histopathology images). The FLIP descrip-
tor enables fast image search while minimizing any extra storage requirement by
storing the representation of an image as a compact histogram.

2 Related Works

Image descriptors quantify image characteristics such as shape, color, texture,
edges, and corners. Local Binary Patterns (LBPs) [4] are a good example for
image descriptor to classify texture with rotation invariance [5]. Designed as a
particular case of texture spectrum model [6], LBPs are powerful image descrip-
tors that have certainly set relatively high accuracy standards in the medical
domain, including digital pathology scans [7].

Deep neural networks have been widely utilized to generate global image
descriptors. These networks consist of functions in each layer to generate local
features at different resolutions describing a particular image region. These local
features may then be aggregated, to provide a global descriptor that is the entire
image. Similar to LBP, deep descriptors have reported many promising results,
specifically in the histopathology domain [7,8].

More recently, several approaches have been put forward to develop
projection-based descriptors [9,10]. The Radon transform is a well-established
approach [11]. A novel Radon barcode for medical image retrieval system was
proposed in 2015 [12]. The Radon barcode is a binary vector generated from
global projections with selected projection angles and projection binarization
operation that can tag a medical image or its regions of interest. Using Radon
barcodes, large image archives can be efficiently searched to find matches via
Hamming distance, however, the performance of global projections is rather
limited. More recently, local Radon projections and support vector machines
(SVM) have been combined for medical image retrieval [9].

Tizhoosh et al. [13] have introduced Autoencoded Radon Barcode (ARBC)
that used mini-batch stochastic gradient descent and binarizing the outputs from
each hidden layer during training to produce a barcode per-layer. The ARBC
was observed to achieve an Image Retrieval in Medical Application (IRMA)
error of 392.09. More recently, Tizhoosh et al. [14] proposed MinMax Radon
barcodes which were observed to retrieve images 15% faster compared to the
“local thresholding” method.

A similar type of approach was proposed by Xiaoshuang et al. [15] which
presented a cell-based framework for pathology images wherein they encode each
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cell into a set of binary codes using a hashing model [16]. The binary codes
are then converted into a 1-dimensional histogram vector (which is the feature
vector) used for learning using an SVM for image classification. In this paper,
we attempt to design and test a “local” projection-based descriptor that should
deliver good results for histopathology images.

3 Methods

The Radon transform provides scene/object projections (profiles) in differ-
ent directions. The set of all projections can yield a reconstruction of the
scene/objects when performing an inverse Radon transform (i.e., filtered back-
projection).

Using the Dirac delta function δ(·), the Radon transform of a two-dimensional
image f(x, y) can be defined as its line integral along a straight line inclined at
an angle θ and at a distance ρ from the origin:

R(ρ, θ) =
∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(xcosθ + ysinθ − ρ)dxdy (1)

Here, −∞ < ρ < ∞, 0 ≤ θ < π, the Radon transform accentuate straight-
line features from an image by integrating the image intensity over the straight
lines to a single point [17]. Given the scan S, we are interested in describing the
(grayscale) image I(⊂ S) via a short descriptor, or histogram, h using Radon
projections R(ρ, θ) to transform the intensities f(x, y) of I. We can process all
local neighbourhoods Wij ⊂ I. For each neighbourhood Wij , we capture nP

projections with 0 < nP � 180: p1
ij ,p

2
ij , . . . ,p

nP
ij . One may find individual

projections from different (and dissimilar) images to be quite similar. Hence, we
take the “intersection of adjacent projections” to quantify the spatial correlations
of a given neighbourhood pattern. The intersection of projections can be thought
of as an approximation of the logical “AND” providing a unique characteristic
of local patterns. Therefore, we receive nP intersection vectors Vk,m as

Vk,m = min
(
pk

ij ,p
(k+1)%nP

ij

)
, (2)

with k = 1, 2, . . . , nP and m = 1, 2, . . . , nW where nW is the total number of
local windows of the image I. Hence, we will have nP × nW intersections of
local projections. The projections have different values which are also subject to
intensity fluctuations. Hence we re-scale all projection values to be:

V̄k,m =
⌈
L × Vk,m − pmin

pmax − pmin

⌉
. (3)

Now, we can count the values V̄ ∈ 1, 2, . . . , L,∀m = 1, 2, . . . , nP × nW to
obtain h, wherein L is the default histogram length of 128. Algorithm 1 pro-
vides the pseudo-code for calculating the FLIP descriptor. Figure 1 provides a
simplified overview of extracting a FLIP histogram for sample images.
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Algorithm 1. The FLIP algorithm
Input : An image I as part of a whole scan S: I ⊂ S
Output: The FLIP histogram h
Set neighbourhood size and overlap;
L ← 128 (histogram default length);
h ← ∅;
F ← ∅;
Ig ← Convert image I to gray-scale;

foreach window Wi in image Ig do
R(0,45,90,135) ← RadonTransform(Wi);
Rmin1 ← min(R0, R45);
Rmin2 ← min(R45, R90);
Rmin3 ← min(R90, R135);
Rmin4 ← min(R135, R0);
Rmin ← concatenate (Rmin1 , Rmin2 , Rmin3 , Rmin4);
F ← AppendRow(Rmin);

end
fmin, fmax ← FindMinMax(F);
F ← reScale(F, fmin, fmax, L);
F ← F[1 : 128] (127 length histogram);
for i = 1 to Frows do

for j = 1 to Fcols do
h(F(i, j)) ← h(F(i, j)) + 1;

end

end
Return h;

The intuition behind multi-resolutional representation is to capture struc-
tural changes that one observes in real-world objects [18]. Specifically, multiple
scales for the same image capture the variation in visual appearances - providing
a different representation of the same image for every scale. Furthermore, pathol-
ogists examine tissue samples at different magnifications to have a comprehensive
perception of the specimen [19]. A multi-resolution FLIP is built using different
image resolutions (inclusive of original and resized resolutions). These resolu-
tions include: (i) original resolution, (ii) 0.75× the original resolution, (iii) 0.5×
the original resolution, and (iv) 0.25× the original resolution. After obtaining a
FLIP histogram for each of the resolutions, we concatenate them in descending
order of resolution to form a final histogram, namely the mFLIP descriptor.

Indexing and Testing – For all training samples, the scan is first divided by
a regular grid of proper size whereas each grid cell can be cropped into a new
training image/patch. The mFLIP histogram of each image is calculated and
saved in a database. Subsequently, all of the images are classified using an SVM
algorithm. In the testing phase (which emulates the proposed system in action),
every query scan can be processed in two possible ways: (i) a small number of
locations within the query scan is selected to extract some patches, or (ii) one
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Fig. 1. A simplified overview of the FLIP histogram extraction. A small number of
pairwise orthogonal projections, here n = 4, is computed for each neighbourhood,
from which the intersection of all adjacent projections is computed. After re-scaling
all intersections in the image based on global min/max projection values, the FLIP
histogram can be assembled by counting the rescaled intersections.

patch within the query scan is selected either manually or automatically. In both
cases the main task of the image search is to find the best match for a patch. The
matching algorithm can be implemented in two ways: (i) using a proper distance
measure, we quantify the (dis)similarity between the mFLIP descriptor of the
query patch and the mFLIP descriptor of every image in the database, or (ii) we
use the trained SVM to assign a class to the query patch. For the distance-based
image search, several strategies were used including: χ2, histogram intersection,
Pearson coefficient, cosine similarity, and L1 and L2 metrics. As for classification,
a generalized histogram intersection kernel SVM is adopted. In practice, pathol-
ogists prefer to inspect more than one retrieved case. Hence, we retrieve the top
3 images (patches) for a query scan (for visual inspection) and examine which
one of the three images is the actual match for the query image to calculate the
accuracy (only the first match is considered for accuracy calculation).

4 Experiments

We used two publicly available pathology datasets to validate the FLIP and
mFLIP algorithms, namely: (i) KIMIA Path960, and (ii) KIMIA Path24. All
images in these experiments are converted to grayscale.

KIMIA Path960 - Introduced by Kumar et al. [20]. KIMIA Path960 is a
publicly available pathology dataset, comprised of 960 images of size 308 × 168
from 20 different classes (i.e. tissue types). Since this dataset is relatively small,
we used leave-one-out approach to validate our proposed algorithms.

KIMIA Path24 - Introduced by Babaie et al. [7], is a digital pathology public
dataset, published in 2017, that comprises of 24 scans depicting different tissue
patterns and body parts. The scans have been converted to gray-scale using
the Python library Scikit Learn. The dataset consists of 1,325 test patches of
size 1000 × 1000 (0.5 mm × 0.5 mm) for which the labels correspond to the scan
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number. The number of training patches can range from 27,000 to 50,000 patches,
depending on the percentage of overlap selected by the algorithm designer. In
our experiments, we have received 27,055 patches with %0 overlap.

For the proposed algorithms (FLIP and mFLIP), both image search and
classification strategies are implemented to support the algorithms performance.
For the image search, we compare the FLIP or mFLIP histogram using either
chi-square or histogram intersection algorithm to retrieve a patch that is best-
matched with the query image. We then use the label for the best-matched
patch to determine the accuracy. The retrieved patch does not necessarily reside
within the same WSI. Hence, in the KIMIA Path24 dataset, there are two accu-
racy measures – patch-to-scan accuracy (ηp) and whole-scan accuracy (ηW ).
The total accuracy (ηtotal) is a multiplication of both these accuracies. As for
the classification, we train an SVM classifier for all the training patches. We
down-sampled each image to 250 × 250 which resulted in 2–3% loss in accuracy,
regardless of the histogram length, when compared to the accuracy results for the
1000×1000 images. Hence, we only report results for the gray-scaled 1000 × 1000
images as they yield better results.

Accuracy Measurement – For the KIMIA Path24, a total of ntot = 1, 325 test
patches P j

s are obtained which belong to either one of the 24 classes available
Γs = {P i

s |s ∈ S, i = 1, 2, . . . , nΓs
} with s = 0, 1, 2, . . . , 23 [7]. In order to com-

pare our method against other works, the accuracy calculation outlined in [7] is
adopted. Hence, for a retrieved image R for any experiment, the patch-to-scan
accuracy ηp and the whole-scan accuracy ηW can be given as:

ηp =
∑

s∈S |R ∩ Γs|
ntot

, ηW =
1
24

∑
s∈S

|R ∩ Γs|
nΓs

(4)

The total accuracy ηtotal is obtained which is comprised of both patch-to-scan
and whole-scan accuracies: ηtotal = ηp × ηW .

As for the KIMIA Path960 the accuracy metrics were compliant with leave-
one-out approach. Since this is a multi-class dataset, for each test image, we
run it through the entire training set to obtain the image and its class with the
highest probability. The test and the best-matched image classes are compared to
determine if there is a match (i.e. 1) or a mismatch (i.e. 0). The overall accuracy
is the percentage of all matched images with respect to the total number of test
images (i.e. 960 in this case).

Experimentation on Deep Learning – For KIMIA Path24, we specifically
computed four different deep learning structures to compare against the proposed
mFLIP descriptor. These deep learning approaches are as follows: (i) VGG16:
a pre-trained deep net as feature extractor, (ii) a fine-tuned VGG16 (transfer
learning), (iii) Inception V3: a pre-trained deep net as feature extractor, and
(iv) a fine-tuned Inception V3.

Pre-Trained CNN as a Feature Extractor. Specifically for the KIMIA
Path24 dataset, the first set of experiments were developed using the Keras
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library in Python wherein we used pre-trained VGG16 and InceptionV3 for
feature extraction without fine-tuning the parameters. In essence, the fully-
connected layer (feature vector) for each of these pre-trained models were
extracted and provided to an SVM for classification. For linear SVM classifi-
cation, Python packages scikitlearn and LIBSVM were adopted [21,22]. Finally,
Python libraries NumPy and SciPy were leveraged to manipulate and store the
data [23,24].

Table 1. mFLIP and FLIP results for different retrieval strategies (χ2, histogram
intersection, and svm) for a histogram length of L = 127, generated using neighborhood
size of with no-overlap (Δ = 3). Best results are highlighted in bold.

ηp ηW ηtotal

mFLIP(508,3,3), χ2 77.28 77.55 59.93

mFLIP(508,3,3), histInt 74.87 75.38 56.44

mFLIP(508,3,3), svm 84.68 85.52 72.42

FLIP(127,3,3), χ2 67.62 68.27 46.16

FLIP(127,3,3), histInt 68.07 69.03 46.98

FLIP(127,3,3), svm 74.11 74.54 55.24

Fine-Tuned CNN as a Classifier. For completion, we used the Keras library
in Python to fine-tune the pre-trained networks VGG16 and Inception V3 as a
classifier against the KIMIA Path24 dataset. For the VGG16 network, we first
removed the fully-connected layers from the convolutional layers, after which, we
fed the network with training images to extract bottleneck features through the
convolutional layers. Thereafter, the new fully connected model is attached back
onto the VGG16 convolutional layers and trained on each convolutional block,
except the last block, in order to receive the adjusted classification weights.

Likewise for the InceptionV3 network, the originally fully connected layer is
replaced with a single 1024 dense ReLU layer followed by a softmax classification
layer. The new fully connected layers were trained on bottleneck features and
then attached back onto the original convolutional layers for training the final
two inception blocks.

Evaluation of mFLIP Descriptor – We performed multiple experiments with
different mFLIP configurations in the form of “mFLIP(L,w,Δ),D” where L = |h|
is the histogram length, w is the window size, Δ is the pixel stride (overlap), and
D is the distance measure or classification scheme. Specifically, we experimented
with L = 127 and 511 (after removing the first bin), w = 3 (3 × 3), and Δ = 3
(no overlap).

Table 1 provides an overview of the performance of FLIP and mFLIP. When
the FLIP is configured with utilizing the original dimensions, with a neighbor-
hood size of 3 × 3 and Δ = 3 pixel stride and a histogram length of L = 127, the
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best accuracy (ηtotal) of 55.24% is achieved using an SVM classifier (with gener-
alized histogram intersection kernel) in the KIMIA Path24 dataset. On the other
hand, we obtain a 46.98% accuracy when using histogram intersection distance
metric for searching the best-matched image in the KIMIA Path24 dataset –
determined by obtaining the lowest distance when comparing histograms. Cur-
rently, the benchmark score for the KIMIA Path24 is achieved by mFLIP - uti-
lizing four image dimensions of 1000 × 1000, 750 × 750, 500 × 500, 250 × 250,
with a neighborhood size of 3× 3 and Δ = 3 pixel stride and a histogram length
of L = 508 (each dimension of which gets a FLIP descriptor of 127 concatenated
together). The best total accuracy in the KIMIA Path24 dataset is an (ηtotal)
of 72.42% which is achieved using an SVM classifier on mFLIP features and a
59.93% accuracy when using χ2 distance metric (image search).

After numerous experiments, the best configuration for FLIP is to utilize
the highest resolution of the dataset (namely 20x) which results in input images
of 1000× 1000 equivalent to 0.5× 0.5 mm2 that are processed in 3× 3 neigh-
bourhood windows with no overlap. Moreover, a 127 bin-size histogram was
empirically selected as the size of the FLIP feature vector for each image. A
window size of 3 × 3 is used, as it is the smallest window size that we can utilize
for computing the histogram and appears to capture local changes of nuclei and
other structures. Additionally, the window of 3× 3 was observed to yield the best
results when compared against 5× 5, 8 × 8, 32 × 32, and 64× 64 window sizes.
Although one has the flexibility to change the window size for any application
within the FLIP algorithm, for the purpose of our experimentation with KIMIA
Path24, we chose a neighborhood of 3× 3 as it yielded the best result.

Table 2 provides a comparison of FLIP and mFLIP against deep learning
methods on the KIMIA Path24 based on gray-scale images. We also show the
results of the ELP descriptor that also uses local projections. We explored the
performance of a pre-trained deep features versus training from scratch. All the
experiments were done on the same KIMIA Path24 dataset. We deduced that
pre-trained networks are comparable to training a CNN from scratch. Also, fine-
tuning VGG16 does not yield better results despite requiring more training time
[25]. We also observed considerable improvement in image search and classifi-
cation accuracy for the fine-tuned Inception structure. The fine-tuned Incep-
tionV3 delivers ηtotal = 56.98 which is slightly higher than the FLIP accuracy,
namely ηtotal = 55.24. However, all deep learning approaches are considerably
lower when compared to the current benchmark, mFLIP(508,3,3) which achieves
a ηp = 85.53, ηp = 84.68, and ηtotal = 72.42. The fact that a handcrafted algo-
rithm can surpass deep learning methods, which are the result of substantial
design and training efforts, is quite encouraging. However, the reason behind the
relatively low performance of deep features might be due to the feeding of grey
scale images to networks while deep networks tend to depend heavily on color.
Also the reason for success of mFLIP may be due to the usage of projections in
local windows across multiple magnifications.

For completion, Table 3 provides an overview of the top performing algo-
rithms in the KIMIA Path960 dataset in comparison to the proposed mFLIP
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algorithm. Although mFLIP does not set the benchmark for the dataset, it cer-
tainly competes with the top methods with minimum computation time and
resource.

Table 2. Results for a SVM classifier on FLIP and mFLIP against the literature.

Method ηW ηp ηtotal

mFLIP(508,3,3),svm 85.52 84.68 72.42

ELPsvm [9] 82.70 79.90 66.01

Inception-v3 (Fine-Tuned) [25] 76.10 74.87 56.98

FLIP(127,3,3),svm 74.54 74.11 55.24

Inception-v3 (Feature Extractor) [25] 71.24 70.94 50.54

VGG+RF [26] 67.12 64.66 43.40

VGG16 (Feature Extractor) [25] 64.96 65.21 42.36

VGG16 (Fine-Tuned) [25] 66.23 63.85 42.29

CNN (Trained from Scratch) [7] 64.75 64.98 41.80

Table 3. mFLIP accuracy against other methods for KimiaPath960.

Method Accuracy

BoVW(1200 codebooks), IKSVM [20] 94.87

VGG16 L2 [20] 94.72

AlexNet L1 [20] 91.35

LBP L2 [20] 90.62

mFLIP χ2 88

mFLIP svm 87

5 Conclusions

Here we introduced a new feature descriptor called Forming Local Intersections
of Projections (FLIP) wherein we have shown that using element-wise intersec-
tions of local Radon projections, followed by re-scaling to create a histogram,
can be used to construct a new image descriptor. In addition, a multi-resolution
FLIP descriptor (mFLIP) is also introduced and validated against the publicly
available, KIMIA Path24 and KIMIA Path960 datasets. Specifically, the mFLIP
is observed to outperform deep solutions when tested on the KIMIA Path24
dataset. Furthermore, both FLIP and mFLIP provide a more compact image
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representation with 128 and 508 bins, respectively, compared to generally high-
dimensionality of deep features (i.e., 4096 for CNN and VGG16) in the KIMIA
Path24 dataset. It appears that mFLIP is particularly suitable for histopathol-
ogy images as the proposed algorithm is observed to capture the texture of each
image through the means of Radon projections and to quantify these projections
onto a condensed histogram. In addition, the process of localizing and captur-
ing the Radon transform for small neighborhood does not require learning or
expensive training. The novel image descriptor (FLIP), and its multi resolu-
tional version, the mFLIP descriptor have surpassed the current benchmark for
the KIMIA Path24 dataset by achieving a total accuracy of ≈72% using an SVM
classification with generalized histogram intersection kernel. We must mention
that we have processed gray-scale images. Therefore, crucial information, such
as staining that has chemical meaning in histopathology, may have been lost.
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Abstract. The unique nature of histopathology images opens the door
to domain-specific formulations of image translation models. We pro-
pose a difficulty translation model that modifies colorectal histopathol-
ogy images to be more challenging to classify. Our model comprises a
scorer, which provides an output confidence to measure the difficulty of
images, and an image translator, which learns to translate images from
easy-to-classify to hard-to-classify using a training set defined by the
scorer. We present three findings. First, generated images were indeed
harder to classify for both human pathologists and machine learning
classifiers than their corresponding source images. Second, image classi-
fiers trained with generated images as augmented data performed better
on both easy and hard images from an independent test set. Finally,
human annotator agreement and our model’s measure of difficulty corre-
lated strongly, implying that for future work requiring human annotator
agreement, the confidence score of a machine learning classifier could be
used as a proxy.

Keywords: Deep learning · Histopathology images · Generative
adversarial networks

1 Introduction

Automated histopathology image analysis has advanced quickly in recent years
[1–4] due to substantial developments in the broader fields of deep learning and
computer vision [5–7]. While histopathology imaging research typically applies
these general computer vision models directly and without modification, there
may be domain-specific models that might not generalize to broader computer
vision tasks but can be useful for specifically analyzing histopathology images.

In this study, we formulate a difficulty translation model for histopathol-
ogy images, i.e., given a histopathology image, we aim to modify it into a new
image that is harder to classify. Our model is motivated by the observation that
histopathology images exhibit a range of histological features that determines
c© Springer Nature Switzerland AG 2020
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their histopathological label. For instance, both an image with small amounts of
sessile serrated architectures and an image covered by sessile serrated architec-
tures would be classified by a pathologist as a sessile serrated adenoma. We know
that this range of features exists because normal tissue progressively develops
precancerous or cancerous features over time, which differs from general domain
datasets such as ImageNet [8], in which classes are distinct by definition (there
is no range of cats and dogs, for instance). This continuous spectrum of features
allows us to use the confidence of a machine learning classifier to determine
the amount and intensity of cancerous features in an image. In other words,
the confidence of the classifier can act as a proxy for the extent of histologi-
cal features in an image). In this paper, we propose and evaluate a difficulty
translation model that generates hard-to-classify images that are useful as aug-
mented data, thereby demonstrating a new way to exploit the unique nature
of histopathology images. We post our code publicly at https://github.com/
BMIRDS/DifficultyTranslation.

Fig. 1. Our proposed model for modifying colorectal histopathology images to be more
challenging to classify.

2 Methods and Materials

Problem Set-Up and Model. Given some training image xi of class X, we
aim to generate x̃i, which maintains the same histopathological class and gen-
eral structure of xi, but is more challenging to classify. We propose a model that
comprises two networks: a scorer, which predicts the difficulty c(xi) of some
image xi [9,10], and an image translator, which translates images that are easy
to classify into images that are harder to classify. In this study, we use ResNet-18
[5] as the scorer for colorectal histopathology images and train it to convergence
on the downstream task of hyperplastic polyp/sessile serrated adenoma classifi-
cation, and we assign c(xi) as the softmax output (confidence) of class X. For
the image translator, we use a cycle-consistent generative adversarial network
(CycleGAN), which learns the mapping G : X̂ → X̃, where we assign X̂ as the

https://github.com/BMIRDS/DifficultyTranslation
https://github.com/BMIRDS/DifficultyTranslation


240 J. Wei et al.

class for the set of images {x̂} such that c(x̂i) is high for all x̂i ∈ {x̂} (easy-
to-classify images) and X̃ as the class for the set of images {x̃} where c(x̃j) is
low for all x̃j ∈ {x̃} (hard-to-classify images). With this configuration, given
some image x̂i ∈ {x̂}, we can generate a similar example x̃i that maintains the
same histopathological class but is harder to classify. An overview schematic of
our model is shown in Fig. 1. Hereafter, we use the terms easy images and hard
images to refer to images that are easy to classify and hard to classify based on
a pre-trained classifier’s confidence output.1 When referring to easy and hard
as perceived by annotators, we use the terms high-agreement images and low-
agreement images, which represent 3/3 annotator agreement and 2/3 annotator
agreement, respectively.

Table 1. Distribution of data in our training and test sets based on the level of
annotation agreement among three pathologist annotators. HP: hyperplastic polyp,
SSA: sessile serrated adenoma.

Level of agreement Training set images Test set images

HP SSA Total HP SSA Total

2/3 annotators 670 173 843 316 89 405

3/3 annotators 860 348 1,208 492 204 696

Total 1,530 521 2,051 808 293 1,101

Dataset. For our experiments, we first collected and scanned 328 Formalin-
Fixed Paraffin-Embedded (FFPE) whole-slide images of colorectal polyps, origi-
nally diagnosed as either hyperplastic polyps (HPs) or sessile serrated adenomas
(SSAs), from patients at the Dartmouth-Hitchcock Medical Center, our tertiary
medical institution. From these 328 whole-slide images, we then extracted 3,152
patches (portions of size 224 × 224 pixels from whole-slide images) represent-
ing diagnostically relevant regions of interest for HPs or SSAs. Three board-
certified practicing gastrointestinal pathologists at the Dartmouth-Hitchcock
Medical Center independently labeled each image as HP or SSA. The use of the
dataset in this study was approved by our Institutional Review Board (IRB).

The gold standard label for each image was determined by the majority vote
of the labels from three pathologists. Table 1 shows the distribution of high-
agreement and low-agreement images for each class in the training and test set.
Note that our dataset is imbalanced because SSAs naturally occur less frequently
than HPs. Figure 2 shows examples of high-agreement and low-agreement images
from each class. Images were split randomly by whole slide into the training set
and test set, so images from the same whole slide either all went into the training
1 In this metric for measuring the difficulty of images, the pre-trained classifier does

not classify an image as easy or hard, but rather classifies an image as HP or SSA—
the classifier’s confidence on its HP or SSA prediction determines whether the image
is considered to be easy or hard to classify.
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Fig. 2. Examples of high-agreement and low-agreement images for the hyperplastic
(HP) and sessile serrated adenoma (SSA) classes.

Fig. 3. Generated hyperplastic polyp (HP) images that are intended to be more difficult
to classify than their real source images. φ is the selectivity parameter for target domain
images used to train our image translator—images generated using a lower φ parameter
are intended to be more difficult to classify.

set or all went into the test set. We chose the task of sessile serrated adenoma
detection, which is challenging and clinically important for colonoscopy, one of
the most common screening tests for colorectal cancer [11]. We used a training
set of 2,051 images and a test set of 1,101 images, of which each image was
labeled as either hyperplastic polyp (HP) or sessile serrated adenoma (SSA).

3 Experiments

3.1 Generating More Challenging Training Examples

In our image translation model, we define a selectivity parameter, φ, as the per-
cent of training set images used as hard data in the target domain for training
our image translator. For instance, at φ = 50, the lower 50% of training set
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Table 2. Pathologists agreed less on ground-truth labels for generated HP images
compared with their real image counterparts. Most generated images maintained their
HP label in that both source images and their corresponding generated images were
classified as HP by the majority of annotators.

Image type Pathologist annotator agreement (%) Maintained Label (%)

2/3 Agreement 3/3 Agreement

Real–easy 13.3 86.7 100.0

Real–hard 26.7 64.0 90.7

Generated–hard 22.7 73.3 96.0

images by confidence, as determined by our pre-trained classifier, was used as
target domain training data for the image translator. We train our image trans-
lation model for various φ to generate difficult HP images. We find that for a
given image classifier, generated images—particularly those with lower φ—were
indeed harder than their corresponding source images to classify (Fig. 6 in the
Appendix). Figure 3 shows examples of images that were generated with vary-
ing φ. While images generated with lower φ are typically harder to classify, at
very low φ, generated images are no longer representative of their target class
(e.g., generated HP images begin to look like SSA images). We therefore recom-
mend using the smallest φ possible such that the original class label is generally
maintained and a sufficient number of images is provided to train the image
translation model. For our dataset, we find that the model needs to be trained
with at least 100 images (φ > 6.25).

We also evaluated the difficulty of generated images by presenting them to
three board-certified gastrointestinal pathologists for manual evaluation in a
blinded test. Using labels where the top 50% and bottom 50% of images marked
as HP by confidence of our pre-trained classifier were considered to be easy HP
images and hard HP images, respectively, we randomly sampled 75 easy HP
images, 75 hard HP images, 75 generated HP images that were translated from
the selected easy HP images, and 75 SSA images from our training set. Each
pathologist then independently classified each image as HP or SSA. As shown
in Table 2, pathologists disagreed more (2/3 annotator agreement) on generated
images (22.7%) than their real counterparts (13.3%), although not as much as
they did for real hard images (26.7%). At the same time, generated images
retained their original class label of HP 96% of the time based on annotator
agreement.

To make Table 2 more readable, we omit the classification results for SSA
images. The proportion of the 75 images in our blinded test with an original
ground truth of SSA that were again marked as SSA by a majority of pathologists
during the blinded test was 89.3%, indicating that our pathologist annotators
were relatively consistent in their classifications. In Fig. 4, we show examples
of translations that were successful and unsuccessful in making images more
difficult to classify.
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Fig. 4. Generated images, which were intended to be more difficult to classify, had
lower inter-annotator agreement between pathologists. The left set of images shows
translations that successfully lowered inter-annotator agreement, while the right set
of images shows translations that did not lower the inter-annotator agreement. In all
examples, generated images retained their original ground-truth labels.

3.2 Improving the Performance of Classifiers

We conduct further experiments to explore using the generated images as addi-
tional data to better train a classifier. Given a training set, we use the easy
HP images as source images to generate harder HP images. Of these generated
harder images, we use the images that maintain the HP class label, according to
our pre-trained classifier, as additional data for training a new classifier.

For all image classifiers, we train ResNet-18 [5] for 50 epochs (far past con-
vergence) using the Adam optimizer [12] with a L2 regularization factor of 10−4.
We use an initial learning rate of 10−3, decaying by 0.91 every epoch. Every
trained model used automatic data augmentation of online color jittering uni-
formly sampled from the range of ±0.5 for brightness, ±0.5 for contrast, ±0.2
for hue, and ±0.5 for saturation, as implemented in PyTorch.

Table 3 shows the performance of classifiers trained with our generated images
as additional data compared with the baseline of standard training on the origi-
nal dataset as well as a näıve data augmentation technique of directly combining
parts from easy and hard images [13]. In order to account for variance in ran-
dom weight initializations and performance fluctuations throughout training,
we run each configuration for twenty random seeds, and for each seed we record
the mean of the five highest AUC scores, which are calculated for every epoch.
Notably, adding images generated at φ = 25 consistently outperformed näıve
data augmentation and no data augmentation for both low-agreement and high-
agreement images. We posit that näıve data augmentation was unsuccessful in
this case because the features in the augmented data were not reflected in the
test set.
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Table 3. Performance (% AUC ± standard error) of image classifiers trained with
generated images as augmented data on test set images with high annotator agreement,
low annotator agreement, and all test set images.

Training dataset Test set performance

High-agreement Low-agreement All Images

Unmodified original dataset 91.3± 0.2 66.0± 0.6 83.1± 0.2

+ näıve data augmentation 90.9± 0.2 64.3± 0.5 82.1± 0.3

+ generated images, φ = 50 91.9± 0.2 66.6± 0.4 83.8± 0.3

+ generated images, φ = 25 92.6±0.2 68.1±0.7 84.8±0.4

+ generated images, φ = 12.5 91.7± 0.2 65.5± 0.4 83.4± 0.2

3.3 Comparing Machine and Human Difficulty Measures

While it was previously unconfirmed whether the confidence output of a machine
learning model correlates with the human concept of difficulty, for our dataset,
we find that the confidence of our pre-trained classifier indeed correlates strongly
with human annotator agreement. As shown in Fig. 5, the predicted confidence
distribution of images with high annotator agreement vastly differs from that of
images with low annotator agreement. We compared these distributions using a
Kolmogorov-Smirnov test for equality of two distributions [14] and computed a
Kolmogorov-Smirnov statistic of 0.302 over all 1530 HP images in the training
set with a statistically significant p-value of p = 1.5 × 10−30, indicating that
the two distributions are not equal. The correlation between these two measures
of difficulty implies that for tasks requiring human annotator agreement data,
the confidence of a machine learning classifier, which is computed automatically,
could be used as a reliable proxy.

Fig. 5. Distributions of predicted confidences of a pre-trained classifier vastly differed
for hyperplastic polyp (HP) images with low (2/3) and high (3/3) annotator agreement.
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4 Related Work and Discussion

Generative adversarial networks (GANs) have been used in deep learning for
medical imaging to generate synthetic data ranging from MRIs to CT scans [15–
17]. For histopathology, several studies used GANs for both image generation and
translation [18–23]. Along the same lines as our work, GAN-generated images
have been used as augmented data for liver lesion [24], bone lesion [25], and rare
skin condition classification [26]. While prior work generates augmented data as
a means to improve general performance, the augmented data that we generate
aims to help classifiers specifically on examples that are challenging. Moreover,
our methodology, to our knowledge, substantially differs from previous work due
to its focus on example difficulty.

This paper advances related work from our group, which is focused on col-
orectal polyp classification [27,28] and used image translation between different
colorectal polyp types to address data imbalances [29]. In this study, we trans-
late images within the same class to become more difficult to differentiate from
other classes, arguing that the range of features in histopathology images can
and should be utilized to train better-performing machine learning models.

Of possible limitations, measuring whether generated images maintained the
same quality and realistic features as real images is challenging. Although gen-
erated images occasionally contained minor mosaic-like patterns, they remained
readable and improved classifier training over baseline augmentation methods,
suggesting that useful histologic features were retained. Also, another approach
for difficulty translation could be to directly use human annotator agreement to
translate images from high to low agreement. In our paper, however, we define
difficulty according to the confidence of a pre-trained classifier, since this frame-
work generalizes to cases where annotator agreement data is unavailable.

To conclude, this work shows how to generate difficult yet meaningful training
data by exploiting the range of features in histopathology images. Future research
could explore difficulty translation in the context of curriculum learning [30] or
defending against adversarial attacks [31]. This study and its results encourage
further research to make use of the range of features in histopathology images
in more creative ways.

Acknowledgments. This research was supported in part by the National Institute
of Health grants (R01LM012837, R01CA098286, and P20GM104416).
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6 Appendix

Fig. 6. Image classifiers had less confident predictions on images generated by our
image translation model than on real source hyperplastic (HP) images in the training
set. φ is the selectivity parameter for target domain images used to train our image
translator—images generated using a lower φ parameter are intended to be more diffi-
cult to classify. We show the predicted distribution of machine learning classifiers with
varying amounts of training, since classifiers with more training tend to have more
confident predictions. The initial classifier is the original classifier used to define the
training set for our image translation model, which was trained for 25 epochs. Earlier
classifiers is the average of classifiers trained for 17, 19, 21, and 23 epochs, and later
classifiers is the average of classifiers trained for 27, 29, 31, and 33 epochs.
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Abstract. Deep Convolutional Neural Networks have proven effective
in solving the task of semantic segmentation. However, their efficiency
heavily relies on the pixel-level annotations that are expensive to get and
often require domain expertise, especially in medical imaging. Weakly
supervised semantic segmentation helps to overcome these issues and
also provides explainable deep learning models.

In this paper, we propose a novel approach to the semantic segmen-
tation of medical chest X-ray images with only image-level class labels
as supervision. We improve the disease localization accuracy by com-
bining three approaches as consecutive steps. First, we generate pseudo
segmentation labels of abnormal regions in the training images through
a supervised classification model enhanced with a regularization proce-
dure. The obtained activation maps are then post-processed and propa-
gated into a second classification model—Inter-pixel Relation Network,
which improves the boundaries between different object classes. Finally,
the resulting pseudo-labels are used to train a proposed fully supervised
segmentation model.

We analyze the robustness of the presented method and test its per-
formance on two distinct datasets: PASCAL VOC 2012 and SIIM-ACR
Pneumothorax. We achieve significant results in the segmentation on
both datasets using only image-level annotations. We show that this
approach is applicable to chest X-rays for detecting an anomalous vol-
ume of air in the pleural space between the lung and the chest wall. Our
code has been made publicly available (Implementation is available at
https://github.com/ucuapps/WSMIS).

Keywords: Weakly-supervised learning · Segmentation · Deep
learning · Chest X-rays · Disease localization · Explainable models

1 Introduction

Applications of Convolutional Neural Networks to medical images have recently
produced efficient solutions for a vast variety of medical problems, such as
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segmentation of lung nodules in computed tomography (CT) scans [13], lesions
detection in mammography images [1], segmentation of brain gliomas from MRI
images [4] and others. One of the greatest challenges for using deep learning
methods in medicine is the lack of large annotated datasets, especially with
pixel-level labeled data. Creating such datasets is often very expensive and time
consuming. For instance, Lin et al. [19] calculated that collecting bounding boxes
for each class is about 15 times faster than producing a ground-truth pixel-wise
segmentation mask; getting image-level labels is even easier. Moreover, domain
expertise is required to label medical data, which poses another challenge as the
doctor’s time is costly and could more effectively be used for a patient’s diagnosis
and disease treatment. Working with image-level annotations also decreases the
probability of disagreement between experts, since pixel-wise annotations tend
to have more noise and vary among labelers.

To decrease the resources spent on labeling while preserving its quality, we
propose a novel weakly-supervised approach to image segmentation that uses
only image-level labels. Our method is domain-independent; we have tested it on
several distant datasets, including popular PASCAL VOC 2012 [11], and a med-
ical dataset, SIIM-ACR Pneumothorax [26]. We achieve 64.6 mean intersection-
over union (mIoU) score on PASCAL VOC 2012 [11] validation set. Our method
is capable of segmenting medical images with limited supervision achieving 76.77
mIoU score on the test set of SIIM-ACR Pneumothorax dataset [26]. The auto-
matic approach to finding Pneumothorax can be used to triage chest radiographs
requiring priority interpretation, to rapidly identify critical cases, and also pro-
vide a second-opinion for radiologists to make a more confident diagnosis.

2 Related Work

The objective of weakly-supervised segmentation is to create models capable of
pixel-wise segmentation based on image-level labels. The existing approaches
can be categorized by their methodologies into four groups: Expectation-
Maximization, Multiple Instance Learning, Self-Supervised Learning, and Object
Proposal Class Inference [6]. In this paper, we follow the self-supervised
paradigm, which suggests training a fully supervised segmentation model on the
created pseudo-pixel-level annotations, also known as Class Activation Maps
(CAM) [30], which are extracted from the classification network. Judging from
the quantitative performance on PASCAL VOC 2012 [11] validation set, the top
five methods of weakly-supervised segmentation use the self-supervised learning
approach [6].

Many methods of self-supervised learning for semantic segmentation have
been recently suggested. Huang et al. [16] introduce Deep Seeded Region Grow-
ing (DSRG), which propagates class activations from high-confidence regions to
adjacent regions with a similar visual appearance by applying a region-growing
algorithm on the generated CAM. Lee et al. [18] present FickleNet, which trains
a CNN at the image level with a regularization step represented as a center-fixed
spatial dropout in the later convolutional layers, and then runs Grad-CAM [25]
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multiple times to generate a thresholded pseudo-labels for a segmentation step.
Another approach, proposed by Ahn et al. [3], suggests using Inter-pixel Rela-
tions network (IRNet) [3], which takes the random walk from low-displacement
field centroids in the CAM up until the class boundaries as the pseudo-ground-
truths for training an FCN.

The weakly-supervised semantic segmentation on medical datasets has been
explored in [2,5,10,21,23]. On the other hand, Ouyang et al. [22] combine the
weakly-annotated data with well-annotated cases to segment Pneumothorax in
chest X-rays. In our approach, we do not use any form of supervision besides
image-level labels. We focus on developing a standardized method, which is
efficient for various data types, especially for medical images.

3 Methodology

Our method can be split into three consecutive steps: Class Activation Maps
generation, map enhancement with Inter-pixel Relation Network, and segmen-
tation. After each step, we also apply one or more post-processing techniques
such as Conditional Random Fields (CRF), thresholding, noise filtering (small
regions with low confidence).

Step 1. CAM Generation. First, we train fully-supervised classification mod-
els on image-level labels. The two tested architectures for this step were ResNet50
[14] and VGG16 [27] with additional three convolutional layers followed by ReLU
activation. We also replace stride with dilation [29] in the last convolutional lay-
ers to increase the size of the final feature map while decreasing the output
stride from 32 to 8. We improve the classification performance by including
a regularization term, inspired by FickleNet [18]. For this, we use DropBlock
[12]—a dropout technique, which to our best knowledge has not been tried in
previous works on weakly-supervised segmentation. The trained models are then
used to retrieve activation maps by applying the Grad-CAM++ [7] method. The
resulting maps serve as pseudo labels for segmentation task.

Step 2. IRNet. On the second step, IRNet [3] takes the generated CAM and
trains two output branches that predict a displacement vector field and a class
boundary map, correspondingly. They take feature maps from all five levels of
the same shared ResNet50 [14] backbone. The main advantage of IRNet [3] is
its ability to improve boundaries between different object classes. We train it on
the generated maps, thus no extra supervision is required. This step allows us
to obtain better pseudo-labels before segmentation. To our best knowledge, this
approach has not been used in the medical imaging domain before.

Step 3. Segmentation. For the segmentation step, we train DeepLabv3+ [9]
and U-Net [24] models with different backbones, which have proven to produce
reliable results in fully supervised semantic segmentation on medical images [24].
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The used backbones include ResNet50 [14] and SEResNeXt50 [15]. We modify
the binary cross-entropy (BCE) loss during segmentation by adding weights to
a positive class to prevent overfitting towards normal cases.

4 Experiments and Results

4.1 Datasets and Evaluation Metric

We conduct experiments on two datasets: PASCAL VOC 2012 [11] and SIIM-
ACR Pneumothorax [26]. We evaluate the quality of our pseudo-ground-truth
and the performance of the segmentation model trained on them using mIoU.

PASCAL VOC 2012 [11] is an image segmentation benchmark dataset con-
taining 20 object classes, and a background class. As in other works on weakly-
supervised segmentation, we train our models using augmented 10,582 training
images with image-level labels. We report mIoU for 1,449 validation images.

SIIM-ACR Pneumothorax [26] is a competition that provides an open dataset
of chest X-ray images with pixel-wise annotation for regions affected by Pneu-
mothorax: a collapsed lung, where an abnormal volume of air is formed in the
pleural space between the lung and the chest wall. This dataset was formed from
a subset of ChestX-ray14 dataset [28], but relabeled by professional radiologists,
and additionally annotated on a pixel level. The specified competition has two
stages; ground truth labels are provided only for the first, the second is evaluated
on the competition website. Thus, we divided images from the first stage into
three sets: train, validation and test. Totally, 12,047 frontal-view chest X-ray
cases are in the dataset. We use 2,379 positive and 8,296 negative images for
training, 145 and 541 for validation, 145 and 541 for the test.

4.2 Data Challenges

SIIM-ACR Pneumothorax [26] dataset has a severe class imbalance problem. The
number of normal cases exceeds approximately 4 times the number of positive
ones. In order to prevent overfitting towards healthy patients we use various
augmentation techniques such as scaling, rotation, blur, brightness adjustment,
and horizontal flipping. We also add sampling in our data loader during training,
which selects the constant ratio between negative and positive class. Another
challenge in this dataset is the size of regions of interest. Pneumothorax usually
affects a very small area of lungs resulting in a high disbalance among the image
pixels. We solve this problem by adding weights for positive class to binary cross-
entropy loss. In view of these data challenges we evaluate the performance of our
method on SIIM-ACR Pneumothorax not only for all images in validation and
test sets, but also separately for positive cases, see Table 2.

4.3 Experiments

Step 1. CAM Generation. For classification we implement ResNet50, and
VGG16. As suggested in previous work [17], we added three convolutional layers
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Table 1. Comparison of CAM generation techniques on PASCAL VOC 2012.

Classification model CAM extraction method mIoU train mIoU val

VGG16 Cam-Grad 0.4137 0.3511

VGG16 Cam-Grad++ 0.4176 0.3941

on the top of the fully-convolutional backbone, each of which is followed by a
ReLU. The conducted experiments show that adding DropBlock regularization
to our classification models improves their performance by 1.2% reaching 88.2%
F1-score for multilabel classification. For both datasets, the best classification
results were achieved using VGG16, which was, thus, selected as the final model
for this task. We test two methods for generating pseudo-annotations: Grad-
CAM [25], and Grad-CAM++ [7]. Our experiments show that Grad-CAM++,
which utilizes a regularization that Grad-CAM is lacking, provides better object
localization through visual explanations of model predictions; cf. Table 1.

Step 2. IRNet. For both datasets as post-processing of maps produced at Step
1, we use thresholding and then refine the pseudo-maps by dense CRF to better
capture object shapes. The resulting annotations are used to train IRNet.

Step 3. Segmentation. The obtained maps after IRNet step are used as the
pseudo-labels for segmentation. We implement three networks to complete this
task: U-Net [24], DeepLabv3 [8], and DeepLabv3+ [9]. We report results on PAS-
CAL VOC 2012 produced by DeepLabv3+, as it shows better performance than
DeepLabv3 with the same ResNet50 backbone. For SIIM-ACR Pneumothorax,
however, U-Net with SEResNeXt50 [15] backbone shows the best results.

4.4 Training and Optimization

For all the models, three optimization methods are examined: SGD, Adam and
RAdam [20]. For Pneumothorax segmentation, SGD optimizer is applied with
the learning rate initiated as 6e-5 and gradually decreasing each epoch, whereas
momentum is set to 0.9, and weight decay to 1e-6. The size of network inputs
is 512× 512, the batch is 48, and it is balanced according to class distribution
using augmentations to increase the sample of positive cases.

4.5 Results

The comparison of segmentation methods using the same chest X-ray datasets
is not simple due to the challenge of finding public medical data. Moreover,
this work is the first to present the results of weakly-supervised segmentation
methods on SIIM-ACR Pneumothorax [26] data. However, the performance of
our models is comparable to Ouyang et al. [22], who reported their scores on
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a collected closed dataset of Pneumothorax. These authors train their method
with different combinations of well- and weakly-annotated data, whereas our
method uses only image-level labels. In Table 2 we show how the results improve
with each step of our approach; the result of Ouyang et al. [22] model trained
on 400 weakly-annotated and 400 well-annotated cases is specified too.

We present method’s explainability via disease localization regions; cf. Fig. 1.
We provide qualitative results of segmentation on validation images from both
datasets in Fig. 2 and Fig. 3. We demonstrate how the performance improves
after each step. We achieve comparable results to state-of-the-art method on
PASCAL VOC 2012; cf. Table 3.

We evaluate our method on the second stage test set on the competition
server [26] to compare it against a fully-supervised upper-performance limit. We
achieve 0.769 Dice score while the first place solution got 0.868 using pixel-level
labels for training. Our method proves the capability of using only image-level

Table 2. Results on SIIM-ACR Pneumothorax validation and test sets after each step
of our method. Calculated for only positive cases (pos.), and for the whole set, including
the healthy patients (all). The [22], whose result is demonstrated, was trained on 400
weakly-annotated and 400 well-annotated cases.

Dataset Method mIoU val mIoU test

pos all pos all

SIIM-ACR Pneum. [26] Step 1. CAM 0.117 0.7633 0.142 0.7590

SIIM-ACR Pneum. [26] Step 2. IRNet 0.122 0.7645 0.154 0.7607

SIIM-ACR Pneum. [26] Step 3. Segm 0.148 0.7649 0.162 0.7677

Custom [22] Ouyang et al. [22] - - - 0.669

(a) Image (b) Step1.CAM (c) Step2.IRNet (d) Step3.Segm (e) Mask

Fig. 1. Pneumothorax localization maps for (a) a random image from the test set at
each consecutive step of our method: (b) map after CAM extraction, (c) improved map
by IRNet trained on the outcomed of step 1, (d) prediction of U-Net trained on step 2
results, all compared to (e) ground truth mask.
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(a) Image (b) Step1.CAM (c) Step2.IRNet (d) Step3.Segm (e) Mask

Fig. 2. Segmentation predictions for (a) a random image from test set of SIIM-ACR
Pneumothorax produced at each step of our approach: (b) CAM extraction, (c) IRNet,
(d) U-Net segmentation, compared to (e) ground truth mask.

(a) Image (b) Step1.CAM (c) Step2.IRNet (d) Step3.Segm (e) Mask

Fig. 3. Visualization of segmentation predictions on PASCAL VOC 2012 for (a) an
image produced at each step of our approach: (b) CAM extraction, (c) IRNet, (d)
DeepLabv3+ segmentation, compared to (e) ground truth mask.
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annotations for semantic segmentation on chest X-rays, nevertheless, attaining
as good or even better results than those produced by fully supervised networks
is still a challenge for weakly-supervised approaches.

Table 3. Comparison of weakly-supervised semantic segmentation methods on PAS-
CAL VOC 2012 validation set. Our approach is evaluated after each of the proposed
steps, where each step is trained on the outcomes of the previous one.

Method Year mIoU

Our method. Step 1. CAM 2020 0.479

Our method. Step 2. IRNet 2020 0.631

Our method. Step 3. Segmentation 2020 0.646

IRNet [3] 2019 0.635

FickleNet [18] 2019 0.649

DSRG (ResNet101) [16] 2018 0.614

5 Clinical Relevance

During diagnosing procedure the final decision maker is a doctor, while AI-
powered decision support systems can assist by detecting regions of interest
and presenting the data in a convenient format that doctors can use. With an
automatic image segmentation solution, the healthcare provider can reach higher
efficiency by saving doctors’ time spent on the primary analysis of images. At the
same time, it will increase diagnosis accuracy by providing the second opinion.
The major problem in building such a solution is the lack of large amounts of
pixel-wise labeled data that are extremely costly in terms of the expert time
required for their annotation. With our approach, which requires only image-
level annotations, the costs can be reduced dramatically. In the long run, it
also facilitates the research in the area by overcoming the problem of collecting
datasets with pixel-wise annotations.

Our method can automate parts of the radiology workflow cutting opera-
tional costs for the hospitals. The proposed approach was designed to be general
and applicable to other medical purposes; for example detection of various tho-
racic diseases.

6 Conclusions

We present a novel method of weakly-supervised semantic segmentation that
demonstrated its efficiency for detecting anomalous regions on chest X-ray
images. In particular, we propose a three-step approach to weakly-supervised
semantic segmentation, which uses only image-level labels as supervision. Next,
we customize and expand the previous works by including supplementary steps
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such as regularization, IRNet, and various post-processing techniques. Also, the
method is general, domain independent and explainable via localization maps at
each step. We evaluated it on two datasets of different nature; however, it can
also be implemented in other medical problems.
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Appendix

For the evaluation we use mIoU (mean intersection over union), Dice score and
F1-score.

The mIoU metric was used to compare our result to already existing
approaches. For all images and k classes is defined as follows:

mIoU =
1
k

k∑

i=1

TPii

k∑
j=1

FNij +
k∑

j=1

FPij − TPii

,

where TP , FP , FN are numbers of true positive, false positive and false negative
pixels respectively.

The Dice score was used to compare our results of weakly-supervised model
to the first place solution with fully-supervised approach on SIIM-ACR Pneu-
mothorax [26]. The metric is defined as follows:

Dice =
2 × TP

(TP + FP ) + (TP + FN)

where TP , FP , FN are numbers of true positive, false positive and false negative
pixels respectively. If all pixels are true negative, prediction is considered correct
and metric equals 1.

The F1-score was used to compare approaches on a first step of our pipeline—
classification. The metric is defined as follows:

F1 =
2 × precision× recall

precision + recall

where precision = TP
TP+FP , recall = TP

TP+FN , and TP , FP , FN are true posi-
tive, false positive and false negative rates respectively.
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Abstract. Colorectal cancer is one of the major causes of morbidity and
mortality worldwide, however, when discovered at an early stage, it is
highly treatable. As the number of specimens increases every year, there
has been a boost in the diagnostic workload on pathologists in recent
years. In parallel to the development of digital pathology, deep learning
has demonstrated its strong capability in feature extraction and inter-
pretation in a variety of medical applications. In this paper, we propose
a high-throughput whole-slide image (WSI) analysis system to localize
tumor regions accurately with a patch-based convolutional neural network
(CNN). We employ Monte Carlo adaptive sampling for a fast detection of
tumors at slide level and a conditional random field (CRF) model to inte-
grate spatial correlation for better classification accuracy. We use three
datasets of colorectal cancer from The Cancer Genome Atlas (TCGA)
for performance evaluation. Compared with the regular WSI analysis, the
experimental benchmark shows an obvious decrease in processing time
while a noticeable improvement in classification accuracy.
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1 Introduction

Colorectal cancer ranked third among the most common cancer and also the third
among the leading cause of cancer death in both men and women worldwide [16],
yet the early detection and treatment have led to a drastic reduction of mortal-
ity rate. However, the number of pathologists can not follow the increase rate
of histopathology specimens to be checked every year. Computational pathology
utilizes mathematical models to generate diagnostic inferences and presents clin-
ical knowledge to patients. It is not until the very recent years digital pathology
[12,20] emerged when glass slides could be scanned into multi-gigapixel digi-
tal whole slide images (WSIs) with high resolution. Like microarray samples,
computational pathology also has to inevitably face additional challenges due to
its characteristic of huge size. Currently, a WSI has to be split into numerous
patches in the most competent high performance computing (HPC) environ-
ments [3,6,9,11,21]. Tissue classifiers aggregate local information independently
to make predictions at the WSI level, which is time-consuming and low efficient.

As a result, researches have noticed the challenges come with the processing
of WSI, namely computational cost and spatial correlation [8,9,19]. Only a few
researches have been conducted to address the former issue, such as a model is
proposed to identify some of the diagnostically relevant regions of interest by
following a parameterized policy [15] and a recurrent visual attention model is
designed attending to the most discriminative regions in WSI [2]. For the latter,
an end-to-end network is proposed to incorporate spatial correlations [11], yet
with limited patterns of neighboring patches and higher computational cost. It
is short of fast processing methodologies to locate tumor patches accurately by
CNN, and in particular, when the slides contain few proportions of tumor tissues.

To address the two issues mentioned above, in this paper, we propose a novel
system to quickly and accurately localize tumor tissues. The main contribution is
summarized as follows: We design a Monte Carlo (MC) distribution approxima-
tion algorithm to efficiently locate the high-possibility tumor regions, by which
only a small proportion of patches are required to be classified with deep learn-
ing approaches. The computational workload can be significantly reduced with-
out a reduction in image resolution. The performance acceleration is even more
obvious for WSIs which contain only a small proportion of tumor tissues. We
integrate contextual information to further improve tumor tissue classification
performance. To further improve the accuracy of patch-wise tumor identification,
we employ a conditional random field (CRF) [11] model to incorporate the spa-
tial correlation among the neighboring patches. Empirically tested on the three
cohorts of colorectal cancer datasets from The Cancer Genome Atlas (TCGA),
we obtain better tumor classification results with less computational time.

2 Methodology

We propose a high-throughput tumor region location system (HTRL) for WSI
diagnosis. We use Monte Carlo (MC) adaptive sampling to select patches with
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the lowest fidelity in the approximated distribution and a CRF model to aggre-
gate spatial correlation among neighboring patches. The overall architecture is
mainly constructed with three functional modules, namely an MC distribution
approximation, a tissue classifier, and a CRF model, depicted in Fig. 1.

Fig. 1. An overall workflow of the proposed high-throughput tumor region location
system HTRL.

2.1 A CRF Based Tissue Classifier

A patch-wise CNN based tissue classifier uses local information independently
to make predictions for WSIs, where spatial correlation is absent. We attempt
to use the prediction results of each sampled patch to represent a grid of patches
around it by extracting the spatial correlation between the neighboring patches,
i.e., to provide consistent patch-level predictions. To address these issues, we
integrate a CRF [11] model in the tissue classification neural network. A CRF
model takes the feature maps extracted by a CNN feature extractor as the input
and then outputs the tumor possibility with respect to the central patch in a grid.
We use DenseNet [7] in our system as the backbone because of its outstanding
performance on histopathology among other prototypical CNN architectures, as
well as its compact architecture and non-costly training time. The performance
comparison will be elaborated in Sect. 3.1.

2.2 Monte Carlo Distribution Approximation

We denote the ground-truth tumor probability distribution in WSI as P (L =
l|x), where l ∈ L is a label from the set L and x is a patch in a slide. In the
tumor detection task, we have L = {tumor, nontumor}, and we only focus on
the tumor distribution i.e., the case of L = tumor. With a tissue classier, we
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get tumor possibility distribution p(x), and a Monte Carlo sampling method
to efficiently sort out tumor areas of P (L = tumor|x) by estimating patch-wise
tumor possibility. With the prediction outcome from a neural network {p(xi)}N

i=1

of N patches {xi}N
i=1, which are randomly selected as initialization, we can

estimate the target distribution p(x) as follows [1]:

p̂k(x) =
1

Z(x)

∫

Ω

r(x, t) · I{(xi,p(xi))}(t)dt, (1)

for all x that have not been sampled in the k-th iteration or previously. In (1), Ω
denotes the entire region in a WSI, and I{(xi,p(xi))}(t) is the indicator function,
defined by:

I{(xi,p(xi))}(t) =

{

p(xi), t ∈ {xi|i = 1, 2...N},

0, t /∈ {xi|i = 1, 2...N}.
(2)

We use r(x, t) to denote the spatial distance kernel. We set r(x, t) = 1
‖x−t‖ par-

ticular in this work. Z(x) =
∫

Ω
r(x, t) · I{(xi,1)}(t)dt is a normalization constant

with respect to x, which is used to make the approximation into a valid possi-
bility map. To coincide with results predicted by CNN, we set p̂k(xi) = p(xi)
for all the patches that have already been sampled in the previous iterations.

2.3 High-Throughput Tumor Region Location System

In the diagnostic task of a WSI by deep learning, we aim to sample a mini-
mum proportion of patches that are later required to be processed by a CNN.
First, a number of n0 patches from a slide are randomly sampled as initial-
ization, denoted as {x(0)

i }n0
i=1. Those patches, together with their neighboring

patches are predicted by a fine-tuned CRF based neural network where the out-
come {p(x(0)

i )} is tumor possibility of the sampled patches. Afterward, applying
the Monte Carlo distribution approximation with Eq. (1), we reach an initial-
ized approximated tumor distribution, denoted as p̂0(x). Denote the number of
patches sample in the k-th iteration is nk, and Sk = ∪k

j=0{x(j)
i }nj

i=1 represents
all the sampled patches up to the k-th iteration.

When k iterations have been completed, with tumor distribution approxima-
tion p̂k(x) in the k + 1 iteration, a total number of nk+1 patches {x(k+1)

i }nk+1
i=1

will be sampled progressively with the highest necessity to be sampled from the
WSI based on following formulated query map:

qk+1(x) = (1 − ISk
(x)) ·

[∫

Ω

H(t) · r(x, t) · ISk
(t)dt − ε · p̂k(x)

]

. (3)

where ε is the penalty term, and H(t) is the entropy to measure the fidelity of
the approximation at t ∈ Sk, defined by

H(t) =
∑

l∈L
̂P (L = l|t) ln[ ̂P (L = l|t)]. (4)
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Equation (3) is well-defined since we know the value of ̂P (L = l|t) at t ∈ Sk. We
also have qk+1(x) = 0 for every x ∈ Sk. A higher value of qk(x) is associated
with a higher level of uncertainty of the approximation p̂k(x).

Iteratively, the approximation distribution p̂k+1(x) will be updated via
Eq. (1), based on the newest samples to coincide with the restriction that
p̂k+1(x

(j)
i ) = p(x(j)

i ) for all the validate i and j, where the superscript denotes
that a sampled patch is in the j-th iteration. As a result, the approximation will
be more accurate with obvious reduction of samples than the routine method
upon the convergence.

Algorithm 1 depicts the overall framework of the proposed HTRL, where the
convergence criterion for the sampling procedure will be elaborated in the next
section.

Algorithm 1. High-throughput Tumor Region Location System (HTRL)
Input: Ω whole slide image.
Output: p̂(x) approximated tumor distribution

{x(0)
i }n0

i=1 ←random sample n0 patches from WSI

{p(x
(0)
i )}n0

i=1 ← attain predictions on sampled patches
construct the initialized MC approximation p̂0(x)

set S0 = {x(0)
i }n0

i=1% S denotes all the sampled patches
set k = 1
while not converge do

qk(x) ← updates the query map based on p̂k−1(x)

{x(k)
i }nk

i=1 ← sample nk patches from {arg maxx qk−1(x)}nk
i=1

{p(x
(k)
i )}nk

i=1 ← attains predictions on sampled patches

set Sk = Sk−1 ∪ {x(k)
i }nk

i=1

p̂k(x) ← updates the MC approximation map based on samples
k ← k + 1 % counter for the iteration times

end while

2.4 Convergence Criterion for Sampling

As tumor proportion and distribution may vary a lot on different histopathology
images, we propose a convergence criterion to effectively terminate the sampling
processing. In the k-th iteration, we describe the high possibility tumor region
Dk from WSI as follows:

Dk = supp{I{1}
{p̂k(x)≥μk}[p̂k(x)]}. (5)

where supp(f) denotes the support of f . μk functions as a threshold of “high
possibility” tumor region. The arrival of the convergence in the estimation of
tumor region will stop the iterative adaptive sampling. Then, the convergence
criterion is given by:

max{|#(Dk−1) − #(Dk−2)|, |#(Dk) − #(Dk−1)|} < ε(Dk), (6)
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where #(·) denotes the number of clusters of aggregated tumor tissues i.e., the
number of patches.

We employ ε(D) to determine the iterations to the convergence of the pro-
posed sampling algorithm, which is tunable on the area of set D up to the
performance requirement. For instance, we value ε(D) with C1 ·#(D)a for a fast
convergence or conversely, C2 ·exp(−b ·#(D)) for a gradual convergence. C1 and
C2 are normalization constants, and a, b are the threshold ratios in the growth
of sample areas to the area of the tumor region.

3 Results

We evaluate the performance of the proposed system by the classification accu-
racy and the processing time. Empirically, this method outperforms previous
work in two aspects, namely the high-throughput location of tumor region in
WSI with a significant reduction in auto-diagnostic time, and an improvement
in the whole-slide tumor classification performance with an obvious reduction
in the false predictions of patches. The experiment tests are performed on the
state-of-the-art deep learning computing platform NVIDIA Tesla V100 GPU
device

3.1 Dataset Pre-processing and Classifier Training

We evaluate the system on the large patient cohorts from The Cancer Genome
Atlas (TCGA)1, including three subsets: i) TCGA-STAD (n = 432 samples), ii)
TCGA-COAD (n = 460 samples), iii) TCGA-READ (n = 171 samples). They are
three-category classification of i) loose non-tumor tissue, ii) dense non-tumor
tissue, iii) gastrointestinal cancer tissues, and their tumor proportions of ground
truth are shown in Fig. 2.

The processing procedure of splitting WSIs into patches and color normaliza-
tion is conducted with Matlab, while other computation tasks are written with
Python. The hyper-parameters are set as follows: learning rate = 1 × 10−5 for
the Adam optimizer, scheduler which reduces the learning rate by 10% each 10
epochs if the validation does not improve. The neural networks are pre-trained
with a large number of images from the ImageNet dataset. We fine-tune the
classifier on the last a couple of layers and train with 20 epochs at a learning
rate of 1 × 10−5, with the transfer learning. A proportion of 80% of the patches
is used for training and the rest 10% for test and other 10%. In a previous tumor
classification work [10], typical architectures e.g. ResNet-18 [5], and VGG-19
[17] have already achieved a high accuracy. To further improve the accuracy,
we pre-process the images to 224 × 224 reserving the magnification rate of 20×.
As shown in Table 1, DenseNet [7] outperforms the above mentioned neural net-
works. According to the performance of our fine-tuned network demonstrated in
Table 1, we select DenseNet out of other neural networks for its comparatively
short training time and comparable classification performance.
1 The dataset is freely available at https://portal.gdc.cancer.gov.

https://portal.gdc.cancer.gov
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Fig. 2. The proportion of tumor tissue in WSI as ground truth in three datasets i.e.,
TCGA-COAD, TCGA-READ and TCGA-STAD.

Table 1. Accuracy comparison between the baseline tumor classifier [10] (patch size
512 × 512 resized to 224 × 224) and our fine-tuned network (pre-processing of patch
size 224 × 224).

Network Classifier in [10] Fine-tuned classifier

ResNet-18 [5] 96.53% 97.04%

VGG-19 [17] 96.74% 97.02%

InceptionV3 [18] 87.02% 88.22%

DenseNet [7] 97.04% 97.34%

Fig. 3. A) An example of iterative adaptive sampling in WSI, from left to right are
original WSI, random initialization, and distribution approximation maps. B) A couple
of examples of the output predication and possibility maps of tumor tissue.
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3.2 Performance Evaluation

The proposed HTRL model is implemented on Pytorch [14]. We employ
DenseNet as the CNN feature extractor. The number of patches in the initial
sampling and the iterative sampling is set to be 1% of valid patches in WSI
(background excluded). Figure 3 shows the tumor likelihood map in the itera-
tive sampling and the final predication results of a couple of WSI samples. Given
the variance of tumor proportion and distribution, we profile the performance
in Fig. 4, where our model also outperforms other approaches at their conver-
gence. We demonstrate the performance improvement with the proposed system
in Table 2.

Fig. 4. Performance comparison between our HTRL and other methods, where MC
stands for the Monte Carlo sampling [13] and quasi MC for the quasi Monte Carlo
sampling [4]. Our model outperforms other baseline approaches with a smaller sample
proportion while less error rate than the MC or quasi MC sampling based model.

Table 2. Average of accuracy improvement and performance speedup in the benchmark
test.

Methods Sampled patches
proporation

Cost time Performance
speed-up

Sampled tumor
proportion

WSI-level
AUC

Regular[5] 100% 4m 39 s 1.00× 100% 0.855

MC [13] 93.2% 3m 52 s 1.20× 97.3%

Quasi MC [4] 63.2% 2m51 s 1.63× 88.1%

Our HTRL 30.5% 1m50 2.53× 98.3% 0.873
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4 Conclusion

In this paper, we propose a high-throughput WSI analysis system to localize
tumor regions accurately with a patch-based convolutional neural network and
CRF model. The performance speedup is achieved by effectively sort out the
tissues with the lowest fidelity. We also obtain a further accuracy improvement by
incorporating spatial context with the predictions from the neighboring patches
with a proposed CRF model. The performance acceleration will be even more
obvious when only a small proportion of tumor tissues are contained in a WSI,
hence the model is particularly efficient at identifying negative cases to save the
waiting time.
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Abstract. Complex medical devices are controlled by instructions sent
from a host PC. Anomalous instructions introduce many potentially
harmful threats to patients (e.g., radiation overexposure), to physical
components (e.g., manipulation of device motors) devices, or to func-
tionality (e.g., manipulation of medical images). Threats can occur due
to cyber-attacks, human errors (e.g., a technician’s configuration mis-
take), or host PC software bugs. To protect medical devices, we propose
to analyze the instructions sent from the host PC to the physical com-
ponents using a new architecture for the detection of anomalous instruc-
tions. Our architecture includes two detection layers: (1) an unsuper-
vised context-free (CF) layer that detects anomalies based solely on the
instructions’ content and inter-correlations; and (2) a supervised context-
sensitive (CS) layer that detects anomalies with respect to the classifier’s
output, relative to the clinical objectives.

We evaluated the new architecture in the computed tomography (CT)
domain, using 8,277 CT instructions that we recorded. We evaluated the
CF layer using 14 different unsupervised anomaly detection algorithms.
We evaluated the CS layer for four different types of clinical objective
contexts, using five supervised classification algorithms for each context.
Adding the second CS layer to the architecture improved the overall
anomaly detection performance from an F1 score of 71.6% (using only
the CF layer) to 82.3%–98.8% (depending on the clinical objective used).
Furthermore, the CS layer enables the detection of CS anomalies, using
the semantics of the device’s procedure, which cannot be detected using
only the purely syntactic CF layer.

Keywords: Anomaly detection · Medical devices · Medical imaging
devices · CT scanner · Cyber-security

1 Introduction

Complex medical devices (e.g., medical imaging devices (MIDs)) often consist
of an entire ecosystem of connected components (e.g., data processing servers,
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physical components, etc.), controlled by instruction sets1 sent by a central host
(controlling) PC. Anomalous instructions that the host PC might send, intro-
duce many potentially harmful threats to the patients (e.g., radiation overex-
posure), to the physical components (e.g., manipulation of device motors), or
to the device functionality (e.g., manipulation of medical images). Anomalous
instructions might be sent due to either multiple types of cyber-attacks, or due
to human errors (e.g., a technician’s configuration mistake); or even due to host
PC software or hardware bugs.

In a recent study, we have found the host PC of MIDs to be vulnerable to at
least 21 different cyber-attacks [13]. Yaqoob et al. [22] surveyed numerous high-
risk medical device vulnerabilities and published Common Vulnerabilities and
Exposures (CVEs) or Industrial Control Systems Medical Advisories (ICSMAs)
of complex medical devices (e.g., computed tomography (CT), magnetic reso-
nance imaging (MRI), ultrasound), with Common Vulnerability Scoring System
(CVSS) score of up to 10. For example, cyber-security vulnerabilities in Philips
Brilliance CT scanners and General Electric Company (GE) medical imaging
software were reported [5], allowing an attacker to execute privileged commands
and to use hard-coded credentials that could impact the system integrity and
availability. Recently, we have demonstrated how an adversarial attacker could
tamper with medical images to insert or remove tumors [14]. Human errors
(e.g., a technician’s configuration mistake) and software bugs may also result
in anomalous instructions. For example, incorrect settings on the CT host PC
resulted in radiation overexposure of more than 200 patients for 18 months [21].
In another example, a critical software bug in the Therac-25 radiation therapy
device for the treatment of cancer resulted in patients receiving massive amounts
of direct radiation (sometimes a hundred times more than the usual dose) that
even led to death [10].

Existing methods for mitigating the risk of anomalous instructions from
cyber-attacks mainly focus on protecting the host PC from the hospital net-
works, and not on protecting the inner physical components from a potentially
compromised host PC. Such methods are limited and are often breached (e.g.,
the WannaCry attack, exploitation of zero-day vulnerabilities, etc.), as they rely
on constantly installing regular security updates, a challenging task in a clinical
setting with numerous out-of-date devices. For example, Philips recommended
users to “implement [a] multi-layer strategy” to protect systems from internal
and external threats [5]. Furthermore, whether instructions are anomalous may
also depend on the context of the patient or of the clinical objective (e.g., high
radiation might be considered harmless in specific types of medical procedures
that require it). Such a context is rarely used as part of protection methods.

We propose a dual-layer architecture for the protection of medical devices
from anomalous instructions. The architecture focuses on detecting two types
of anomalous instructions: (1) Context-free (CF) anomalous instructions (e.g.,
unlikely values or combinations of values, of instruction parameters [e.g., giv-
ing 100 times more radiation than usual]); and (2) Context-sensitive (CS)

1 For simplicity, we will simply call them instructions throughout this paper.
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anomalous instructions (e.g., normal values or combinations of values, of instruc-
tion parameters that are considered anomalous within a particular context [e.g.,
a wrong scan type, or mismatching patient age]).

To address the tasks of detecting the two anomaly types, our dual-layer
architecture includes two algorithmic layers that are applied in serial fashion
to analyze internal instructions sent from the host PC to the medical device,
and that detect each type of anomaly using two very different layers: (1) An
unsupervised anomaly detection layer (i.e., the CF layer); and (2) A supervised
anomaly detection layer (i.e., the CS layer).

The second layer is applied only to instructions that were not already detected
as anomalous by the first layer (i.e., CF anomalous instructions); thus, we do
not need to evaluate, in the second layer, any instructions that were detected as
anomalous by the CF layer.

As we show in the Methods section (Sect. 3), adding the second CS layer
considerably enhances the sensitivity of the architecture to the detection of
anomalous instructions, even when the original instruction was not detected
as anomalous by the first CF layer, since the instruction might have made sense
in some potentially plausible context.

2 Background

In this section, we start by providing the bare essentials necessary to understand
anomaly detection and hybrid anomaly detection methods. Then, since in the
current study, we are using CT host PC instructions for the evaluation, we
explain several important details about these instructions that will facilitate the
understanding of the computational methods.

2.1 Anomaly Detection Methods

Anomaly detection is used for various applications, such as fraud, intrusion
detection, sensor networks, the Internet of Things (IoT), and in the medical
domain, as in our case, for detecting anomalies in MIDs. Anomaly detection can
use supervised methods or unsupervised methods. Using supervised anomaly
detection methods requires data labeling (often by domain experts), an expen-
sive and time-consuming task. Unsupervised anomaly detection methods can be
used instead; however, the lack of labels makes CS anomaly detection harder for
unsupervised methods. Hybrid anomaly detection combines unsupervised and
supervised methods that can potentially be used for CS anomaly detection. For
example, Denoising AutoEncoders are used for feature selection followed by a
k-Nearest Neighbors (k-NN) ensemble (for anomaly detection in activity recog-
nition) or a Convolutional Neural Network (CNN) (for malware detection in
Android apps) [4]. Rawte et al. [17] used unsupervised clustering for disease
detection followed by a supervised classification for medical fraud detection.
Such methods are mostly used to improve CF anomaly detection and not for CS
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anomaly detection; as far as we know, we are the first to use hybrid anomaly
detection for CS anomalous instruction detection for the protection of medical
devices.

2.2 CT Host PC Instructions

In response to an instruction from the host PC, a CT scanner produces an
imaging scan (also known as a Series) that consists of a sequence of 2D images
(i.e., slices). There are three general Scan Options for each instruction: Axial
(the slices are along the z-axes), Helix (the slices are moving like a screw), and
Surview (an initial brief scan, with very low radiation, that allows the operator
to configure the subsequent scans better, as well as apply various optimization
techniques). The clinical procedure of a CT scan is called a Study. Usually, the
CT operator does not configure the Study one scan at a time. Instead, specific
sequences of CT scans are predefined as a set of Protocols from which the oper-
ator can choose from. A single Study can combine more than one Protocol (e.g.,
a Chest/Abdomen Study combines Chest Protocol and Abdomen Protocol). The
Study usually depends on the Body Part being scanned. In this study, we con-
sider the Scan Options, Body Part, Study, and Protocol as different abstractions
of clinical objective contexts.

Our analysis of the collected instructions (see Sect. 3.1 next) also revealed
that the clinical objective context abstractions uses a predefined finite set of
classes (for each abstraction), and have the following, top-to-bottom, hierarchical
relationship between them: Scan Option (3 classes), Body Part (11 classes), Study
(34 classes), and Protocol (72 classes). A deeper hierarchy level provides more
information about the clinical objective; however, limits the amount of available
training data for each class.

3 Methods

In this section, we present the dual-layer architecture (Fig. 1), designed to detect
anomalous instructions using two algorithmic layers (a CF one and a CS one),
its implementation, and its evaluation. In this study, the implementation of each
layer uses a set of specific classifiers, and the evaluation was done on CT host PC
instructions (see Background Sect. 2.2), focusing on detection of clinical objective
CS anomalous instructions (using the patient context is beyond the scope of the
current study). Of course, it is possible to implement the architecture using other
classifiers and evaluate it on different medical devices.

3.1 Data Collection

To collect CT instructions, we have partnered with a major CT manufacturer
and developed a data collection tool that records instructions sent from the host
PC to the gantry (i.e., the physical component of the CT). To collect real data,
we partnered with a hospital and installed in its CT scanners the data collection
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tool. The collected data include the instruction parameters (233 features) and
instruction metadata (77 features). The metadata is logged by the host PC but
is not part of the instruction parameters and is not sent to the gantry. The meta-
data includes clinical objective context (e.g., Scan Options, Body Part, Study,
and Protocol), and patient context (e.g., gender, age). In total, we collected 8,277
instructions that belong to 2,643 different Studies (which is roughly the number
of patients) that we separated into a train set of 6,286 (75%) instructions and a
test set of 1,991 (25%) instructions.

The test set includes 1,312 normal instructions and 679 anomalous instruc-
tions. Collecting labeled anomalous instructions (e.g., malicious instructions due
to a cyber-attack) is very difficult since anomalous instructions are rare and
unlabeled (i.e., the metadata does not include an anomaly label or whether the
instruction [or even the entire Study ] satisfied the clinical objective). Following,
we explain how we collected the 679 CF and CS anomalous instructions.

CF Anomalous Instructions Collection. While analyzing the collected
instructions, we noticed that 216 instructions looked suspicious (labeled as a
Physics Procedure for the Study metadata). A technical discussion with the
manufacturer verified that these instructions were part of a technical mainte-
nance calibration procedure and should not be used on patients; thus, we con-
sidered them as CF anomalous instructions. In addition, we manually recorded
59 malicious anomalous instructions by asking an expert operator to, intention-
ally, execute malicious instructions (e.g., high radiation, high motor speed, long
scan time, etc.) on a CT scanner (without a patient). These anomalous instruc-
tions are CF, as they should not be sent regardless of the patient being scanned
or the clinical objective. In total, we collected 275 CF anomalous instructions.

CS Anomalous Instructions Collection. While analyzing the collected
instructions, we discovered that 140 Studies (containing a total of 404 instruc-
tions), which make up 5% of all non-anomalous instructions, were repeated twice,
one after the other, for the same patient, for no apparent reason; while there
could be many reasons for repeating a Study, we assume that it was repeated
since the first Study did not satisfy the clinical objective. Unlike the CF anoma-
lous instructions, the repeated instructions are, in fact, normal instructions that
are only considered anomalous given the clinical objective context; thus, we con-
sidered these 5% (i.e., 404) repeated instructions as CS anomalous instructions.
In total, we collected 404 CS anomalous instructions.

Data Preprocessing. For each algorithm training, we cleaned the data (e.g.,
removed instructions that include parameters with NaN2 value), encoded cat-
egorical features (one-hot encoding was used for neural networks), and applied
standardization (i.e., Z-score normalization). Also, we used basic feature selec-
tion algorithms to drop features with a single value and features with a 100%
correlation with other features. For the supervised CS layer, we dropped instruc-
tions of labels with less than 100 examples.

2 Not a Number.
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3.2 The Dual-Layer Architecture

The complete dual-layer architecture is presented in Fig. 1. The instructions are
received from the host PC, and the clinical objective and patient-specific contexts
from the operator and the Electronic Medical Record (EMR), respectively (for
security reasons, the context must be sent from an isolated secure private channel
and not directly from the host PC; else, a compromised host PC may send a
malicious context matching the malicious instruction).

Implementation. We selected, for each layer, the algorithm with the highest
F1 score on the test set without the CS anomalous instructions.

Evaluation. We compared the performance, with respect to overall anomalous
instructions detection (both CF and CS), of (1) just the CF layer (representing
the capabilities of current state-of-the-art unsupervised anomaly detection) to
(2) the performance of the overall anomalous instructions detection when using,
in addition to the first layer, also the CS layer.

EMR

Patient Details

Host PC

Device
Operator

Unsupervised Context-Free Layer:
Does this instruction make sense?

Supervised Context-Sensitive Layer:
Does this instruction match the patient
or the intended clinical objective?

AcceptReject

Medical
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Forward Instruction

No

No

A
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T
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O
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r
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Forward Instruction

Forward Instruction

Execute Instruction

Fig. 1. The dual-layer architecture for the protection of medical devices from anoma-
lous instructions, using both the context-free (CF) and the context-sensitive (CS)
layers.
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The Context-free (CF) Layer. The first layer receives the instructions (with-
out context) as input and uses a pre-trained (using non-anomalous instructions)
unsupervised anomaly detection algorithm to detect CF anomalous instructions
and alert the operator. However, instructions that were not detected as anoma-
lous might still be CS anomalous within a particular context; to detect these,
we use the second layer.

Implementation. We have decided to use 11 state-of-the-art unsupervised
anomaly detection algorithms (listed in Table 1), some of them implemented by
the PyOD python toolbox [24]. Each algorithm calculates the anomaly score of an
instruction, and if it is above the anomaly threshold, the instruction is detected
as anomalous. The anomaly threshold is the 100 · (1−contamination) percentile
of the training set anomaly scores, where contamination represents the expected
proportion of anomalies in the data and is given during the initialization of the
algorithms. We have also added three ensembles composed of the top (in terms
of highest F1 score in our initial evaluation) four algorithms from the 11 algo-
rithms that we evaluated (i.e., Angle-based Outlier Detector (ABOD), k-NN,
One-Class Support Vector Machine (OCSVM), and Isolation Forest (IForest)):
the Locally Selective Combination of Parallel Outlier Ensembles (LSCP) [23],
and two that chooses either the maximal or the average anomaly score [2] of
these four algorithms as the final anomaly score of the ensemble (which is com-
pared to the ensemble’s anomaly threshold, to determine its output, as is the
case in the other algorithms).

Evaluation. Since we collected 275 CF anomalous instructions out of a total of
8,277 collected instructions, a contamination parameter of 0.01 (slightly lower
than the actual portion of anomalies in the data) seemed to work well for most
algorithms; thus, we decided to use it throughout the evaluation. We trained
the algorithms using non-anomalous instructions and evaluated the performance
using the CF and CS anomalous instructions. We included the evaluation of
just the CF anomalous instructions to show the performance just on this type
of anomalous instructions. We evaluated the performance using the confusion
matrix, accuracy, recall, precision, and F1 score.

The Context-Sensitive (CS) Layer. The second layer receives the instruc-
tions (from the CF layer), and the intended instruction contexts (e.g., the clinical
objective, provided by the technician operating the device, or the patient char-
acteristics provided by the EMR) and uses pre-trained (using the context as its
target labels) set of supervised classification algorithms to predict the contexts
of the instructions. The predicted contexts are then compared to the intended
contexts; if they do not match, the instruction is detected as anomalous within
one or more contexts.

Implementation. We decided to use five state-of-the-art multi-class classifica-
tion algorithms (listed in Table 1), implemented by the scikit-learn classification
library [15], for the detection of CS anomalous instructions.

Evaluation. We evaluated, separately, each of the four scan type hierarchical
abstraction levels of the clinical objective contexts (see Background Sect. 2.2)
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using the five supervised classification algorithms. We trained the algorithms
using non-anomalous labeled instructions and evaluated the performance using
the test set without the anomalous instructions (see Sect. 3.1). The comparison
between the predictions of a CS instruction and the intended contexts (given
as its input) should be True for non-anomalous instructions, and False for CS
instructions (note that that the first layer already discarded CF instructions).
Therefore, we evaluated the performance using the diagonal of the multi-class
confusion matrix (representing the correctly classified instructions), accuracy,
and weighted F1 score (due to class imbalance). We also included the evaluation
of just the CS anomalous instructions (which are not part of the train or test
sets) to show the performance of CS anomalous instructions detection. The com-
parison between the predictions of the correctly classified CS instructions will
result in a set of contexts that will [correctly] not match the intended contexts.

4 Results

We applied the dual-layer protection algorithm on a CT scanner device to test
it. We focused on the clinical objective context (the patient context is beyond
the scope of the current study).

The CF Layer. In Table 1, we can see that the performance on the CF anoma-
lous instructions is high for several algorithms, as expected, and highest for
the Ensemble Average algorithm. However, the performance on the CF and CS
anomalous instructions are much lower, since the algorithms fail to detect the
CS anomalous instructions. Note that the number of instructions that were used
is lower than the number of collected instructions due to the preprocessing (see
Sect. 3.1); for example, Surview type instructions were removed, as these types
of instructions are quick initial scans that have a lower potential of damage.

The CS Layer. For this layer, we can safely assume that the given instructions
are not CF anomalous since the CF layer already detected them. In this study,
we evaluated clinical objective CS anomalous instructions (patient context is
beyond the scope of the current study). We represent the clinical objective using
the four hierarchical abstractions of the scan type (see Sect. 2.2) and use it as
the target labels of the supervised classification algorithms that we train. For
each clinical context, we evaluated the performance on the test set (i.e., not
including anomalous instructions) and on the test set with the CS anomalous
instructions. Note that the preprocessing is slightly different since we have only
used instructions of labels with at least 100 examples.

Scan Options Objective. In Table 3a, we can see that supervised classification
seems to work extremely well for this level of abstraction, with most algorithms
reaching an F1 score of 1. This implies that the topmost level of the scan type
hierarchical separates instructions very well. Note that for this classification, we
did not remove the Surview instructions during the preprocessing.
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Table 1. The results of the unsupervised anomaly detection for the CF layer. The
training set included 3,595 non-anomalous instructions, and the test set included 481
anomalous instructions (275 of which are CF) and 764 non-anomalous instructions.

Algorithm TPR FNR FPR TNR Accuracy F1

CF CF+CS CF CF+CS CF CF+CS CF CF+CS

ABOD [9] 1 0.586 0 0.414 0.024 0.976 0.983 0.826 0.968 0.722

k-nn [16] 1 0.574 0 0.426 0.016 0.984 0.988 0.826 0.979 0.718

Ens. Avg. [2] 1 0.572 0 0.428 0.016 0.984 0.988 0.825 0.979 0.716

Ens. Max [2] 1 0.572 0 0.428 0.017 0.983 0.987 0.824 0.977 0.715

OCSVM [19] 1 0.572 0 0.428 0.017 0.983 0.987 0.824 0.977 0.715

IForest [11] 0.993 0.628 0.007 0.372 0.115 0.885 0.913 0.78 0.859 0.688

LOF [3] 1 0.64 0 0.36 0.132 0.868 0.903 0.78 0.845 0.692

LSCP [23] 0.898 0.486 0.102 0.514 0.016 0.984 0.961 0.792 0.923 0.644

SO-GAAl [12] 0.36 0.254 0.64 0.746 0.143 0.857 0.746 0.624 0.429 0.343

HBOS [6] 0.356 0.208 0.644 0.792 0.013 0.987 0.82 0.686 0.512 0.338

AE∗ [1] 0.313 0.179 0.687 0.821 0.012 0.988 0.809 0.676 0.465 0.299

PCA [20] 0.295 0.168 0.705 0.832 0.01 0.99 0.806 0.672 0.445 0.284

CBLOF [8] 0.291 0.166 0.709 0.834 0.008 0.992 0.807 0.673 0.443 0.282

MCD [7,18] 0.171 0.135 0.829 0.865 0.007 0.993 0.781 0.662 0.292 0.236

TPR=true positive rate, FNR= false negative rate, FPR= false positive rate,
TNR=true negative rate, CF=context-free, CS= context-sensitive, RF=Random Forest,
ABOD=Angle-based Outlier Detector, AE=AutoEncoder, CBLOF=Clustering-Based
Local Outlier Factor, Ens=Ensemble, Avg=Average, HBOS=Histogram-based Outlier
Score, IForest= Isolation Forest, k-nn= k-Nearest Neighbors, LOF=Local Outlier Factor,
LSCP=Locally Selective Combination of Parallel Outlier Ensembles, MCD=Minimum
Covariance Determinant, OCSVM=One-Class Support Vector Machine, PCA=Principal
Component Analysis, SO-GAAl=Single-Objective Generative Adversarial Active Learning.
*One Hot Encoded.

Body Part Objective. In Table 3b, we can see that supervised classification
seems to work well for this level of abstraction, too, with some algorithms reach-
ing an F1 score of 1. Note that the number of instructions is lower since not all
instructions include the Body Part label, and we have removed instructions with
Surview Scan Option.

Study Objective. In Table 3c, we can see that the performance of the super-
vised classification algorithms decreased compared with higher-level abstrac-
tions, with a maximal F1 score of 0.895 for Random Forest (RF). Note that
classes with a relative high number of instructions available during training have
a higher F1 score, implying that more data might improve the performance.
Furthermore, we point out that by evaluating the confusion matrix we noticed
that wrong classification was mostly between relatively similar Study types; for
example, the Random Forest classifier was confused between Abdomen, Chest,
and Chest/Abdomen, however, was not confused between Abdomen and Head or
Abdomen and CTA Cardiac.
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Protocol Objective. In Table 3d, we can see that the performance of the
supervised classification algorithms also decreased compared with higher-level
abstractions, with a maximal F1 score of 0.819 for RF. Similar to the Study
class, classes with a relative high number of instructions available during train-
ing have a higher F1 score, and the wrong classifications were mostly between
relatively similar Protocols.

4.1 Dual-Layer Architecture

In Table 2, we can see how adding the second CS layer improved the overall
performance (F1 score and accuracy) for each clinical objective, relative to the
performance of the CS layer. Note that while the detection of CS anomalous
instructions was improved, miss-classification of the non-anomalous instructions
(which are also analyzed by this layer) resulted in increased false positives. Note,
for example, that using only the CF layer led to detecting only 57.2% of the
anomalous instructions, while adding the CS layer and knowledge of the Study
clinical objective led to a sensitivity of 94.7%.

Table 2. The results of the dual-layer architecture, showing the performance of the CF
layer alone, and with the additional second CS layers. For the first CF layer, we used
the Ensemble Average algorithms. For each second CS layer, we used the RF classifier
(respectively).

CS Layer TPR FNR FPR TNR Accuracy F1

None 0.572 0.428 0.016 0.984 0.825 0.716

Scan Options 1 0 0.016 0.984 0.991 0.988

Body Part 1 0 0.022 0.978 0.986 0.978

Study 0.947 0.053 0.118 0.882 0.905 0.879

Protocol 0.939 0.061 0.19 0.81 0.856 0.823

TPR= true positive rate, FNR= false negative rate, FPR = false
positive rate, TNR= true negative rate, CF = context-free,
CS= context-sensitive, RF = Random Forest.

5 Discussion

In this study, we proposed a dual-layer architecture for the protection of medical
devices from CF and CS anomalous instructions, and evaluated its performance
using CT host PC instructions (that we collected from an operational CT at a
hospital), for four, hierarchical, scan type abstractions of the clinical objective
context. The CF layer detected all 275/275 CF anomalous instructions using
unsupervised anomaly detection methods (e.g., ensemble average algorithm);
however, it failed to detect the 206 CS anomalous instructions, resulting in
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an F1 score of 0.716. The CS layer detected 82%–100% of the CS anomalous
instructions (depending on the clinical context used) by comparing supervised
classification methods’ predictions (e.g., RF) to the real context (received from
a separated secure private channel); However, the low performance of some clas-
sifiers increased the false positive rate (FPR) due to wrong classifications of
non-anomalous instructions. Overall, we can conclude that adding the second
CS layer increased the overall F1 score from 71.6% to 82.3%–98.8%.

Our current study has three main limitations, mostly due to the difficulty
in collecting sufficient data for evaluation. We intend to address these three
limitations in our future work, as follows: (1) We shall validate our approach on
additional medical devices (e.g., MRI, ultrasound); (2) We intend to strengthen
the evaluation using a k-fold cross-validation; (3) We shall extend the CS layer
and its evaluation so to also include the patient’s context from the patient’s
full-fledged EMR.

From our results, we can conclude that for higher-level abstractions (i.e.,
Scan Options and Body Part) the CS layer performed very well with an F1
score of 99.4%–100%, while for lower-level abstractions (i.e., Study and Proto-
col) the performance was lower with an F1 score of 81.9%–89.5%. One reason for
this is that lower-levels in the hierarchy limited the amount of available training
data for each class; for example, for Study context RF classifier, the F1 score
for CTA Cardiac class (trained using 854 instructions) was 0.96, compared with
0.842 for CTA Head class (trained using 269 instructions). Thus, we are con-
fident that with more training data available, the performance of the CS layer
for lower-level abstractions would increase. Furthermore, from the evaluation
of the confusion matrices of classifiers of lower-levels in the hierarchy, we dis-
covered that wrong classification was given mostly to relatively similar classes
(e.g., between Abdomen Routine (C+) /Abdomen and Abdomen Routine (C-)
/Abdomen classes of Protocol). While such classifications are considered wrong,
there might not be a real significant difference between such classes. Therefore,
by merging such classes, we could both increase the amount of available train-
ing data for the merged class and reduce the number of wrong classifications
between similar classes.
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Appendix A

Table 3. The results of the supervised classification of clinical objective contexts for
the CS layer on the test set and the CS anomalous instructions, including the per-class
F1 score, the total accuracy, and the total weighted F1 average. At the bottom of
each table, we present, per-class, the number of instructions used during training and
testing.
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CS=context-sensitive, DT=Decision Tree, GB=Gradient Boosting, k-NN=k-Nearest Neighbors, MLP=Multilayer
Perceptron, RF=Random Forest.
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1 Faculty of Computer and Information Science,
University of Ljubljana, Ljubljana, Slovenia

{anita.valmarska,marko.robnik}@fri.uni-lj.si
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Abstract. Parkinson’s disease is a chronic neurodegenerative disease
affecting people worldwide. Parkinson’s disease patients experience
motor symptoms and many other symptoms that affect the quality of
their lives. Discovering groups of patients with similar symptoms from
different symptom groups can improve the understanding of this incur-
able disease and advance the development of personalized treatment of
Parkinson’s disease patients. This paper proposes a multi-view clustering
approach to discover groups of patients experiencing similar symptoms
from different symptom groups (views). For that we modified ReliefF
feature ranking algorithm to characterize subsets of most informative
symptoms that maximize the similarity between the detected patient
groups, described by symptoms from different views (i.e. different symp-
tom groups). The adapted mvReliefF algorithm calculates the weight
of features based on the values of their neighbors over multiple views.
The current approach works for two views simultaneously, but can be
extended to multiple views. The results of the experiments show that
the proposed methodology, applied on a pair of data sets from the PPMI
data collection, successfully identified lists of most important symptoms
that divide patients into groups, ordered by the severity of patients’
symptoms.

Keywords: Parkinson’s disease · Multi-view clustering · Feature
evaluation

1 Introduction

Parkinson’s disease is a chronic neurodegenerative disease affecting people world-
wide. The disease develops as a consequence of the death of nigral neurons and
the decreased production of dopamine in the patient’s brain. As a result, the most
c© Springer Nature Switzerland AG 2020
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recognizable symptoms associated with Parkinson’s disease are motor symptoms
that include tremor, rigidity, slowness of movement, and in the later and more
severe stages of the disease, postural instability.

The Parkinson’s Progression Markers Initiative (PPMI) [7] is a landmark
observational clinical study to comprehensively understand cohorts of significant
interest including de nuovo Parkinson’s disease patients. The data collected for
over 400 Parkinson’s disease patients for the period of up to 5 years. During their
involvement, the patients pay regular visits to their assigned clinicians every 3–
6 months where their symptoms are assessed, thus allowing the clinicians to
monitor the disease progression over time. The clinical part of the data used
in our work was gathered by PPMI using several standardized questionnaires,
providing an opportunity to follow the status of the Parkinson’s disease patients
from several different points of view, which allows for multi-view data analysis
that is the topic of this paper.

Parkinson’s disease is still an incurable disease. The disease treatment con-
sists of management of patients’ symptoms, most significantly with the prescrip-
tion of antiparkinson medications. Clinicians need to be aware of the overall
patient’s status, the severity of their symptoms, as well as the context of each
patient’s life, in order to prescribe a treatment offering the best trade-off between
symptoms severity management and the corresponding side effects. The division
of Parkinson’s patients in groups is an important step towards more personalized
treatment of Parkinson’s disease patients. Patients associated with a particu-
lar group share a set of similar symptoms. The division of Parkinson’s disease
patients into groups is utilized mostly for the purpose of determining subtypes of
Parkinson’s disease. Further research into subtypes might provide insights about
the mechanisms of neurodegeneration and assist clinical trial designs [12]. The
current subtypes of Parkinson’s disease patients, including the most popular divi-
sion of patients into tremor-dominant, postural instability and gait dominant [4],
are conducted on patients’ data from a single time point, and do not investigate
the possible commonalities between patients as the disease progresses.

In our previous work [14], we use the longitudinal clinical data from the
PPMI study to divide Parkinson’s disease patients into groups of patients with
a similar overall status. The results of this study indicate that PPMI patients
can be divided into clusters, ordered according to the severity of the patients’
overall motor status (as represented by the sum of severity of symptoms from the
standardized questionnaire MDS-UPDRS1). This approach proved to be success-
ful for following the patients’ disease progression by studying the changes of the
patients’ overall status between two consecutive visits to the clinician. However,
the clustering of patients based on their overall status obscures the influence of
the particular symptoms affecting the changes of the patient’s overall status.

To study the effects of particular symptoms for finding groups of patients
with similar symptoms across different views, this paper proposes a multi-
view clustering approach applied to clinical data from the PPMI study, where

1 MDS-UPDRS denotes Movement Disorder Society-sponsored revision of Unified
Parkinson’s Disease Rating Scale.
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different views refer to different groups of symptoms, reflecting different aspects
of patients’ lives. In this paper, we focus on the following two views: motor
symptoms (tremor, rigidity, slowness of movement, etc.), and motor experiences
of daily living (speech, swallowing, dressing, eating, etc.).

In the proposed multi-view clustering approach, we aim to find clusters of
patients that are best aligned, i.e. that are grouped into same patient groups
based on the symptoms of the two views (motor symptoms and motor experi-
ences of daily living). This is achieved by using an adapted multi-view ReliefF
algorithm, named mvReliefF, to determine the quality of symptoms from the
examined data views. The advantage of this novel method allows for detecting
the most influential symptoms across symptom groups. While our research is
still in its preliminary stage, we contribute to both the machine learning and the
health-care community—we present a multi-view method for evaluation of fea-
ture importance over multiple views and we take a step forward towards defining
groups of patients with similar symptoms over longer time periods.

The rest of this paper is structured as follows. In Sect. 2 we present the clinical
data from the PPMI study used in this work. Section 3 presents the proposed
methodology. Our results and findings are outlined in Sect. 4. We finish with
concluding remarks and ideas for future work in Sect. 5. AppendixA includes
the description of rules, representing the subgroups of data instances.

2 Data

In this paper, we use clinical data from the Parkinson’s Progression Markers
Initiative (PPMI) data collection [7]. The PPMI data collection records data
for over 400 Parkinson’s disease patients, who were involved in the study for
up to 5 years. During their involvement, the patients pay regular visits to their
assigned clinicians very 3–6 months, where their symptoms are assessed, thus
allowing the clinicians to monitor the disease progression over time. The clinical
data used in our work was gathered using several standardized questionnaires,
briefly described below.

MDS-UPDRS (Movement Disorder Society-sponsored revision of Unified
Parkinson’s Disease Rating Scale) [2] is the most widely used, four-part ques-
tionnaire addressing ‘non-motor experiences of daily living’ (Part I, subpart 1
and subpart 2), ‘motor experiences of daily living’ (Part II), ‘motor examination’
(Part III), and ‘motor complications’ (Part IV). It consists of 65 questions, each
addressing a particular symptom. Each question is anchored with five responses
that are linked to commonly accepted clinical terms, ranging from 0 = normal
(patient’s condition is normal, the symptom is not present) to 4 = severe (symp-
tom is present and severely affects the normal and independent functioning of
the patient), where 1, 2, 3 denote intermediate symptom severity). Answers to
the questions from each questionnaire form vectors of attribute values. All of the
considered answers have ordered values, where increased values suggest higher
symptom severity and decreased quality of life.
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In this paper, we are interested whether there are similarities between
patients with similar motor symptoms and their motor experiences of daily liv-
ing, therefore we focus on two parts of MDS-UPDRS:

– MDS-UPDRS Part II questionnaire contains 13 questions, covering evalua-
tion of patients’ problems concerning swallowing, facial expression, dressing,
freezing of gait, etc.

– MDS-UPDRS Part III questionnaire consists of 35 questions, covering the
most characteristic symptoms of Parkinson’s disease patients, i.e. the motor
symptoms, including tremor, rigidity, slowness of movement, and in the later
and more severe stages of the disease, postural instability.

3 Methodology

Our goal is to discover and describe groups of Parkinson’s disease patients with
similar symptoms pertained in different symptom views. In this section we pro-
pose a methodology that identifies subsets of symptoms, maximizing the simi-
larity between groups of patients from different symptom views. Currently, the
methodology works with two views, while the extension to multiple views is
planned for further work. This section first presents the input data in Sect. 3.1,
followed by the presentation of the five-step methodology in Sect. 3.2 and the
proposed adaptation of the ReliefF feature ranking algorithm in Sect. 3.3.

3.1 Input Data

The input to the proposed methodology is the data described by a pair of views,
each describing different aspects of life of a Parkinson’s disease patient. The data
set consists of patient data, where an individual instance (a row in a data table),
marked as pij , corresponds to patient’s pi symptoms gathered at time j, denoting
the patient’s j-th consecutive visit to the clinician. The columns in table MDS-
UPDRS Part II correspond to the symptoms gathered in the MDS-UPDRS Part
II questionnaire, while the columns in table MDS-UPDRS Part III correspond to
the symptoms gathered in the MDS-UPDRS Part III questionnaire. Note that for
each patient pi, each table contains several instances/rows, each corresponding
to a separate consecutive visit to the clinician.

In this work we consider individual instances pij as being independent,
regardless of the fact that instances pij refer to the same patient pi, whose
data has been gathered at visits to the clinician at consecutive time stamps
j = 1, 2, . . . n. In the two data tables, the instances are aligned across the two
views, i.e. the rows with the same ID in the input data sets present the status
of the same patient pi from two different viewpoints in terms of their respective
symptoms described in Part II and Part III symptoms data, respectively.
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3.2 Methodology Description

The proposed methodology, illustrated in Fig. 1, consists of six steps, described
below.

Fig. 1. Outline of the methodology for determining medications change scenarios in
PPMI data using mvReliefF algorithm for multi-view feature selection, and rule learn-
ing based on the obtained aligned clusters from two views.

In the first step, performed separately for each of the two views, we per-
form clustering of data instances. In the experiments we used the sklearn
implementation of the Birch hierarchical clustering algorithm [15] and set
the number of clusters to 3 (this number of clusters was selected based on
the results from our previous work [14]).2

In the second step, for the three clusters in each of the two separate views, we
evaluate the quality of cluster alignment, calculated using Adjusted Rand
Index (ARI) [3]. The original Rand Index [8] computes a similarity measure
between two clusterings (vectors of cluster labels) by considering all pairs of
samples and counting pairs that are assigned in the same or different clusters
in the two cluster vectors. The Rand Index (RI) score is then “adjusted for
chance” into the ARI score using the generalized hypergeometric distribu-
tion as a model of randomness. The ARI has expected value of 0 for random
distribution of clusters, and value 1 for perfectly matching clusterings. ARI
can also be negative.

In the third step, performed separately for each of the two views, we apply the
developed mvReliefF algorithm for multi-view feature evaluation to deter-
mine the quality of features. In feature evaluation, class labels correspond
to the three clusters, defined in the first step of the algorithm. Details of the
proposed mvReliefF algorithm are provided in Sect. 3.3.

2 Alternatively, the clustering algorithm and the number of clusters could be deter-
mined based on the value of the silhouette score [11]—a normalized measure for
cluster quality; these experiments are left for further work.
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In the fourth step, we remove the lowest weighted feature from the respective
data set and repeat the steps 1–3 on the updated data sets. Note that in
steps 1–3 we keep the record of all versions of data sets and of the quality of
cluster alignments as calculated with the adjusted rand index (ARI). The
loop is concluded when the number of features in each of the two views is
reduced to two.

In the fifth step, we select the data sets, described with subsets of features
that led to the best ARI cluster alignment, and concatenate the views—i.e.
subsets of the input features with the best cluster alignment.

In the sixth step, we perform clustering on the new concatenated data set
to get new clustering of patients, and perform classification rule learning to
characterize these subgroups of patients. Here, the cluster labels are treated
as class labels, and we use only the most important features. The choice
of a classification learning algorithm is left to the user—in our experiments
we used the Weka implementation of the Ripper rule learning algorithm [1],
and the number of clusters was set to 3. These choices serve us to present
the methodology and results. In future work we will present a systematic
parameter tuning and comparison to relevant related methods.

3.3 The Proposed MvRefielfF Algorithm

The well-known Relief family of algorithms [10], Relief [5], ReliefF [6], and RRe-
liefF [9], are highly competitive feature evaluation and ranking algorithms based
on idea that good features distinguish between similar instances with different
class labels.

The approaches from the Relief family are suitable for problems that involve
feature interactions, as they do not make assumption about feature indepen-
dence. The Relief algorithms randomly select an instance and find the nearest
instances from the same class (nearest hits) and the nearest instances from differ-
ent classes (nearest misses). When comparing attribute values of near instances,
the algorithms rewards features that separate instances with different class labels
and punishes features that separate instances with the same class label. The pro-
cedure is repeated for large enough sample of randomly chosen instances (or for
all instances in case of small data sets). The algorithm returns weights between
−1 and 1 for all attributes, where weights close to 0 or negative weights indicate
uninformative attributes.

In the proposed mvReliefF algorithm, we adapted the ReliefF [10] algorithm
to a multi-view scenario by defining the constraints for determining the closest
neighbors of a chosen instance. For each view, the nearest hit of a given randomly
chosen instance is defined as an instance that is close to the given instance and
has the same class label as the given instance in both views. The instances that
are close to the chosen instance, and are in both views labeled with different
class labels than the chosen instance are designated as nearest misses.

In our implementation of mvReliefF, the selected similarity measure is the
Euclidean distance, and the default number of nearest hits and nearest misses is
set to 5.
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Table 1. Statistics of the MDS-UPDRS Part II and MDS-UPDRS Part III data sets.

MDS-UPDRS Part II MDS-UPDRS Part III

Original number of features 13 35

Cluster quality using original features 0.2367 0.0522

Number of best features 12 15

Cluster quality using best features 0.2244 0.1429

4 Data Analysis Results

We tested the proposed methodology on the data presented in Sect. 2. We inves-
tigate the quality of clusters and the quality of cluster alignment for the selected
pair of views (MDS-UPDRS Part II, MDS-UPDRS Part III)3, each view describ-
ing different sets of symptoms affecting the Parkinson’s disease patients.

The data sets consist of 1,345 instances, which our methodology divided
into three clusters with sizes (c0, c1, c2) = (680, 386, 279). Table 1 presents the
statistics of the original number of features, the quality of clusters obtained on
the original data sets, the number of best features (according to mvReliefF,
leading to clusters with best cluster alignments according to ARI—see Step 5 of
the proposed methodology) describing the data set used for clustering in Step 6
of the proposed methodology, and the quality of clusters obtained on the data
set described with the best features.

The quality of clusters on the newly obtained concatenated data set is
improved over quality of clusters on the original concatenated data. We per-
formed feature evaluation using the ReliefF algorithm on the original concate-
nated data set to select its 28 best features. The quality of clusters on this data
set is lower than the quality of clusters of both the original and our new con-
catenated data set. The quality of clustering is calculated with the silhouette
score.

Table 2 presents an ordered list of the most important features from MDS-
UPDRS Part II (upper half of the table) and MDS-UPDRS Part III (bottom half
of the table) according to the mvReliefF approach. In parenthesis, we present
the weight of each feature normalized by the weight of the most important
feature from each data set4. In their study, Hauser and McDermott showed that
bradykinesia, rigidity, and bulbar symptoms (symptoms affecting the muscles
of the throat, tongue, jaw and face) are associated with cluster membership5.

3 We chose the pair (MDS-UPDRS Part II, MDS-UPDRS Part III) for this analysis as
it has the highest similarity with the cluster labels of groups of patients with similar
overall status presented in [14].

4 For reference, prior to normalization, feature NP2FREZ from MDS-UPDRS Part
II has weight 42485.06, while feature NP3HMOVR from MDS-UPDRS Part III has
weight of 32853.21.

5 https://www.michaeljfox.org/grant/defining-pd-subtypes-based-patterns-long-term-
outcome.

https://www.michaeljfox.org/grant/defining-pd-subtypes-based-patterns-long-term-outcome
https://www.michaeljfox.org/grant/defining-pd-subtypes-based-patterns-long-term-outcome
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Table 2. Ordered list of the most important features and their descriptions from MDS-
UPDRS Part II (upper half of the table) and MDS-UPDRS Part III (bottom half of
the table) according to the mvReliefF. The most important features are on top of the
table halves (NP2FREZ and NP3MOVR). The importance of each feature represents
its weight normalized by the weight of the most important feature from each data set.

Feature name Importance Feature description

NP2FREZ 1.0000 Freezing

NP2HOBB 0.6641 Doing hobbies and other activities

NP2HWRT 0.4861 Handwriting

NP2WALK 0.4623 Walking and balance

NP2EAT 0.4420 Eating tasks

NP2SALV 0.3972 Saliva + drooling

NP2DRES 0.3928 Dressing

NP2TURN 0.3910 Turning in bed

NP2HYGN 0.3774 Hygiene

NP2SPCH 0.3417 Speech

NP2RISE 0.3265 Getting out of bed/car/or deep chair

NP2TRMR 0.2669 Tremor

NP3HMOVR 1.0000 Hand movements - right hand

NP3BRADY 0.7240 Global spontaneity of movement

NP3FACXP 0.7186 Facial expression

NP3SPCH 0.7164 Speech

NP3RIGN 0.6889 Rigidity - neck

NP3PRSPR 0.6766 Pronation-supination - right hand

NP3HMOVL 0.6062 Hand movements - left hand

NP3RTCON 0.6027 Constancy of rest

NP3POSTR 0.5935 Posture

NP3RIGLU 0.5852 Rigidity - lue

NP3FTAPL 0.5537 Finger tapping left hand

NP3TTAPR 0.5047 Toe tapping - right foot

NP3PRSPL 0.4344 Pronation-supination - left hand

NP3LGAGL 0.4343 Leg agility - left leg

NP3TTAPL 0.4303 Toe tapping - left foot



Multi-view Clustering with mvReliefF for PD Subgroup Detection 295

Nine of the reported most important symptoms6 were also reported as the most
influential symptoms in [13]. Classification rules describing clusters obtained on
the data set concatenated from the MDS-UPDRS Part II and MDS-UPDRS
Part III are presented in Table 4 in the Appendix.

Results from Table 4 show that patients assigned to cluster c2 have prob-
lems with their motor symptoms, but do not experience problems with their
motor activities—motor experiences of daily living. The rules for cluster c1 sug-
gest that these are patients who experience worsening of their motor symptoms
and also problems with performing some of their daily motor activities. This
is also evident from the average value of the sums of symptoms severity from
MDS-UPDRS Part II and MDS-UPDRS Part III, presented in Table 3. Results
suggest that the patients can be divided into groups that can be ordered accord-
ing to the severity of the experienced motor symptoms and their affect on the
patients’ motor aspects of daily living. The worsening of symptoms NP2HOBB
and NP2HWRT from MDS-UPDRS Part II can be seen as non-medical indicator
of worsening of the patient’s quality of live. Note that the study and results pre-
sented in this paper are in their preliminary state. More investigation is needed
into the significance of the discovered groups and the quality of results produced
by the presented method. Temporal analysis and analysis by medical specialists
will be included in a later stage.

Table 3. Average sum of symptoms severity on cluster level and the corresponding
standard deviation. The sum of symptoms severity from MDS-UPDRS Part II has a
range of values from 0 to 52. The sum of symptoms severity from MDS-UPDRS Part
III has range of values 0–138. Higher values indicate higher severity of symptoms.

MDS-UPDRS Part II Sum MDS-UPDRS Part III Sum

Cluster c2 5.3763 ± 3.4096 26.2158 ± 8.3822

Cluster c1 14.4663 ± 5.6495 36.2409 ± 10.6907

Cluster c0 6.4963 ± 3.6220 19.8265 ± 9.9557

5 Conclusions

This paper presents a multi-view clustering methodology that utilizes an adapted
multi-view version of the ReliefF feature selection algorithm. We propose an
adaptation of ReliefF, mvReliefF, which calculates the weight of features based
on the values of their neighbors over multiple views. This enables the selection of
high quality features favoring the alignment of clusters between the two views.
The current approach works for two views simultaneously, but can be extended
to multiple views.

6 NP3BRADY, NP3TTAPL, NP3RTCON, NP3FACXP, NP3FTAPL, NP3PRSPL,
NP3TTAPR, NP3PRSPR, and NP2HWRT.
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We applied the proposed methodology to pairs of PPMI questionnaires
(views), each describing different groups of symptoms of Parkinson’s disease
patients. For the given pair of views, we were able to identify lists of most influ-
ential symptoms—symptoms that produce the most similar divisions of patients
from each view. The final clustering on both views is performed on the data set
obtained by concatenation of the subsets of the most influential features.

Pair (MDS-UPDRS Part II, MDS-UPDRS Part III) of data sets resulted
in the discovery of groups of patients that were the closest to the groups of
patients detected in [14]. The proposed methodology detected 9 out of the 10
most influential symptoms from MDS-UPDRS Part II and MDS-UPDRS Part
III reported in [13]. The description of the detected subgroups with classification
rules revealed that the detected groups can be ordered based on the severity of
symptoms as experienced by the involved patients, similar to the conclusions
from [14]. In future work we will focus on adapting the proposed methodology
to more than two views and altering the final clustering step to obtain better
quality clusters.
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A Rules Describing Clusters of Patients on the
Concatenated Data Set

Classification rules describing clusters obtained on the data set concatenated
from the MDS-UPDRS Part II and MDS-UPDRS Part III are presented in
Table 4. The rules are constructed using the Weka implementation of the Ripper
[1] algorithm, with its default parameters.

www.ppmi-info.org/data
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Table 4. Rules describing clusters obtained by Birch clustering on the concatenated
data set of most important attributes from MDS-UPDRS Part II and MDS-UPDRS
Part II. Variables p and n denote the number of covered true positive and false positive
examples respectively.

Rule Cluster label p n

(NP2HWRT ≤ 0) & (NP3RIGLU ≥ 2) & (NP2RISE ≤ 0) &
(NP3LGAGL ≥ 1)

⇒ cluster= c2 62 3

(NP3HMOVL ≥ 1) & (NP3PRSPR ≤ 0) & (NP2WALK ≤ 0) &⇒ cluster= c2 32 3

(NP3PRSPL ≥ 1) & (NP2HWRT ≤ 1) & (NP3RIGN ≥ 1) &
(NP3FTAPL ≤ 2

(NP3FTAPL ≥ 1) & (NP2EAT ≤ 0) & (NP3PRSPL ≥ 2) &
(NP3POSTR ≤ 0)

⇒ cluster= c2 39 6

(NP3PRSPL ≥ 1) & (NP2HWRT ≤ 0) & (NP3HMOVR ≤ 0)
& (NP3RIGLU ≥ 2) & (NP3POSTR ≤ 1) & (NP3TTAPR ≤ 0)

⇒ cluster= c2 23 3

(NP3PRSPL ≥ 1) & (NP2HYGN ≤ 0) & (NP2TURN ≤ 0) & ⇒ cluster= c2 26 4

(NP3FTAPL ≥ 2) & (NP3HMOVR ≤ 1) & (NP2RISE ≤ 0) &
(NP2HWRT ≤ 1)

(NP3FTAPL ≥ 1) & (NP2EAT ≤ 0) & (NP3RIGLU ≥ 1) &
(NP3SPCH ≤ 0) & (NP3HMOVL ≥ 2) & (NP2TURN ≤ 0)

⇒ cluster= c2 11 1

(NP3HMOVR ≤ 0) & (NP3LGAGL ≥ 1) & (NP2SALV ≤ 0) &⇒ cluster= c2 13 2

(NP3RIGLU ≥ 1) & (NP3HMOVL ≤ 1) & (NP2SPCH ≤ 0) &
(NP3RTCON ≥ 2)

(NP3FTAPL ≥ 1) & (NP2EAT ≤ 0) & (NP3RIGLU ≥ 2) &
(NP3TTAPL ≤ 1) & (NP2HWRT ≤ 1)

⇒ cluster= c2 11 3

(NP3TTAPL ≥ 2) & (NP3FACXP ≤ 1) & (NP2TURN ≤ 0) &
(NP3HMOVR ≤ 0) & (NP3RIGN ≥ 1)

⇒ cluster= c2 14 2

(NP3PRSPL ≥ 1) & (NP3HMOVR ≤ 0) & (NP2HWRT ≤ 1) &⇒ cluster= c2 13 3

(NP2SPCH ≥ 1) & (NP2SPCH ≤ 1) & (NP3PRSPL ≤ 2) &
(NP3TTAPL ≥ 2)

(NP3FTAPL ≥ 1) & (NP2EAT ≤ 0) & (NP3BRADY ≥ 2) &
(NP2TURN ≤ 0) & (NP3HMOVR ≤ 1) & (NP2SPCH ≥ 2)

⇒ cluster= c2 8 1

(NP3PRSPL ≥ 2) & (NP2WALK ≥ 1) & (NP3LGAGL ≥ 2) ⇒ cluster= c1111 2

(NP3HMOVL ≥ 1) & (NP2HYGN ≥ 1) & (NP2SPCH ≥ 2) &
(NP3RIGLU ≥ 2)

⇒ cluster= c1420

(NP3HMOVL ≥ 1) & (NP2HYGN ≥ 1) & (NP2SALV ≥ 2) &
(NP2EAT ≥ 1) & (NP2RISE ≥ 1)

⇒ cluster= c1 39 1

(NP3PRSPL ≥ 2) & (NP2SPCH ≥ 1) ⇒ cluster=c1 56 11

(NP3BRADY ≥ 2) & (NP2FREZ ≥ 1) ⇒ cluster=c1 37 5

(NP3LGAGL ≥ 1) & (NP2HOBB ≥ 1) & (NP2DRES ≥ 2) ⇒ cluster= c1 24 6

(NP3SPCH ≥ 1) & (NP2DRES ≥ 1) & (NP3LGAGL ≥ 1) &
(NP3FTAPL ≥ 2)

⇒ cluster= c1 39 11

(NP2SPCH ≥ 2) & (NP2RISE ≥ 2) ⇒ cluster= c1 14 2

(NP2HOBB ≥ 1) & (NP2SPCH ≥ 2) & (NP2SALV ≥ 3) &
(NP2HWRT ≥ 2)

⇒ cluster= c1 9 1

(NP3PRSPL ≥ 2) & (NP2TURN ≤ 0) & (NP3TTAPL ≥ 1) ⇒ cluster= c1 13 4

(NP2FREZ ≥ 1) & (NP2SALV ≥ 3) ⇒ cluster= c1 6 2

(NP3RIGN ≥ 2) & (NP3HMOVL ≥ 2) & (NP2EAT ≥ 2) ⇒ cluster= c1 4 0

(NP2TURN ≥ 2) & (NP2SPCH ≥ 1) ⇒ cluster= c1 6 1

(NP3FACXP ≥ 3) & (NP2SPCH ≥ 2) ⇒ cluster= c1 2 0

(NP3BRADY ≥ 2) & (NP3RTCON ≥ 4) & (NP2HYGN ≥ 1) ⇒ cluster= c1 3 0

⇒ cluster= c0688 50
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Abstract. Protein sequence motifs are conserved amino acid patterns of
biological significance. They are vital for annotating structural and func-
tional features of proteins. Yet, the computational methods commonly
used for defining sequence motifs are typically simplified linear represen-
tations neglecting the higher-order structure of the motif. The purpose
of the work is to create models of sequence motifs taking into account the
internal structure of the modeled fragments. The ultimate goal is to pro-
vide the community with accurate and concise models of diverse collec-
tions of remotely related amino acid sequences that share structural fea-
tures. The internal structure of amino acid sequences is modeled using a
novel algorithm for unsupervised learning of weighted context-free gram-
mar (WCFG). The proposed method learns WCFG both form positive
and negative samples, whereas weights of rules are estimated using a
novel Inside-Outside Contrastive Estimation algorithm. In comparison
to existing approaches to learning CFG, the new method generates more
concise descriptors and provides good control of the trade-off between
grammar size and specificity. The method is applied to the nicotinamide
adenine dinucleotide phosphate binding site motif.

Keywords: Grammar inference · Weighted context-free grammar ·
Unsupervised learning · Statistical methods · Protein sequence motifs ·
Amino acid patterns

1 Introduction

Protein sequence motifs are amino acid patterns conserved due to their bio-
logical significance [2]. Variability within a family of motifs is constrained by
the requirement to maintain their functional or structural role. Even a single
point mutation may disrupt the spatial fold of the motif or its propensity to a
ligand, potentially causing a severe disorder [16]. Typical sequence motifs are
linear stretches of ten to several dozens amino acids. Exemplary protein motifs
of clinical importance are sequence patterns forming ligand binding sites [17].
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They may form a virtually whole structural feature, as in a case of some small
ligand binding sites (e.g. EF hand or zinc finger), or just a part of it. In fact,
searching for conserved motifs is one of the major steps in automated functional
annotation of proteins [28]. Thus, the coverage and accuracy of annotations
depend on highly sensitive and specific modelling methods of protein motifs.

Protein motifs are typically modelled as gapless or gapped linear stretches
of residues (amino acids) without considering dependencies between particular
positions [2]. The PROSITE patterns are the classic and still widely used exam-
ple [23]. This representation is most efficient for highly conserved and longer pat-
terns but cannot maintain high sensitivity and specificity for shorter and more
diverse motifs. This also applies to probabilistic models, such as PROSITE pro-
files and profile Hidden Markov Models (HMM) [10]. The latter, while excelling
in modeling longer domains, lack statistical power when dealing with short
sequences due to insufficient information encoded the order of amino acids.
A natural extension to profile HMMs are Random Markov Fields (RMF) and
related models, which can capture information conveyed in the inter-position
correlations [14]. However, RMFs cannot be used for searching gapped motifs
due to combinatory explosion [21]. While there is ongoing research on heuristic
approach to the problem, the solution is not available so far [27]. Moreover, both
profile HMMs and RMFs require multiple sequence alignment for inferring their
parameters. This effectively rules out modeling meta-families of motifs whose
members do not share relevant homology yet still share the related principle.

An alternative line of research consists on using grammatical models which
offer more flexibility needed for modeling nonalignable collections of motifs. A
rare example of such an approach is Protomata, which can represent diverse
families of motifs but as equivalent to the probabilistic regular grammar cannot
directly take into account inter-position correlations [4]. This feature requires at
least Context-Free Grammars (CFG), which are best known in bioinformatics for
predicting RNA secondary structures [18]. In the realm of proteins, it has been
shown recently that probabilistic CFGs are capable of representing a meta-family
of evolutionarily unrelated Calcium binding sites [9]. However, CFGs, whether
probabilistic or not, are notoriously difficult to learn from unstructured sequence
data, which hampers their applications to bioinformatics. This works proposes
a new unsupervised grammar induction approach for (weighted) CFG learn-
ing, with the goal of generating concise and accurate representation of proteins
sequence motifs from positive and negative samples. As constructing the nega-
tive set is difficult, we show how the method benefits even from a very limited
and crude sample.

The task of learning WCFGs and probabilistic context-free grammars
(PCFGs) is divided into two subproblems: determining a discrete structure of
the target grammar and estimating weights or probabilities of rules in the gram-
mar. Unsupervised structure learning CFG is known to be a hard task [12], but
is more practical than supervised learning due to the lack of annotated data (like
a treebank or structured corpus). Unsupervised grammatical inference methods
employ often the idea of substitutability, in which it applies replacing strings in
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the same contexts. From several methods available we mention here ABL [32],
EMILE [1], ADIOS [25], or LS [33]. To establish stochastic parameters in the
grammar, the Bayesian approach [15] or maximum likelihood estimation [20] are
typically applied.

The novel algorithm for unsupervised learning of WCFG has been recently
introduced [31]. Weighted Grammar-based Classifier system (WGCS) is one of
the few grammatical inference approaches learning both structure and stochas-
tic grammar parameters. Initially, the method was dedicated to learning crisp
context-free grammar [29], and next was extended to a fuzzy version [30].

The main contribution of this paper is in defining and testing a new version of
the WGCS approach, in which the substitutability concept has been employed.
Moreover, the scope of direct negative evidence has been extended over the all
available sets of negative samples. The paper also describes results from applying
the proposed method on a set of protein sequence motif. The rest of the paper is
organised as follows. Sections 2 gives some details about our approach. In Sect. 3,
we present test environment, while the results are reported in Sect. 4. Section 5
concludes the paper.

2 WGCS

The Weighted Grammar-based Classifier System receives as the input labeled
sentences, as the output the WCFG is returned. The core of the system is CKY
(Cocke-Kasami-Younger) parsing algorithm that classifies whether a sentence
belongs to grammar or not. CKY operates under the idea of dynamic program-
ming, and its computational complexity is O(n3|G|), where n is the sentence
length and |G| is the grammar size. To discover new non-terminal rules in a
grammar, a split algorithm is engaged.

The initial grammar is generated from two non-terminal symbols, start sym-
bol S and one non-terminal symbol marked as A. Non-terminal rules are created
by all possible combinations of the two initial non-terminal symbols A, S. Ter-
minal rules are created by assigning each separate word (terminal symbol) from
a dataset to a non-terminal symbol A in the form A → t where t ∈ T .

The WGCS, contrary to other approaches, makes use of direct negative evi-
dence in learning WCFGs. Direct negative evidence is derived from language
acquisition theory and depicts all ungrammatical sentences exposed to a lan-
guage learner. In the case of WGCS, direct negative evidence covers negative
sentences from the training dataset. Inspired by the research of Smith and Eisner
[24], we extended the Inside-Outside algorithm by introducing negative sentences
into the estimation mechanism, calling this method Inside-Outside Contrastive
Estimation (IOCE) The main idea of IOCE is to move the weight mass from the
direct negative evidence to positive one.

To prevent the grammar from growing too much and to improve its quality,
grammar rules with weighs less than 0.001 are removed from the population
(this value was determined experimentally). Note that the learned weights are
not used in a further classification but only to prune the induced grammar.
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2.1 Preliminaries

In this section, we introduce the concept of weighted context-free grammar. For
this, we recall the notion of context-free grammar. A context-free grammar is a
quadruple (N,T, S,R), where N - a finite set of non-terminals symbols disjoint
from T , T - a finite set of terminals symbols, S ∈ N is called the start symbol,
R - a finite set of rules of the form X → α, where X ∈ N and α ∈ (N ∪ T )∗.
CFG is in Chomsky Normal Form (CNF) when each rule takes one of the two
following forms: X → Y Z where X,Y,Z ∈ N or X → t where X ∈ N and
t ∈ T .

A Weighted Context Free Grammar (WCFG) associates a positive number
called the weight with each rule in R (assigning a weight of zero to a rule equates
to excluding it from R). More formally the WCFG is a 5-tuple (N,T, S,R,W )
where (N,T, S,R) is a CFG and W is a finite set of weights of each rule as the
result of a function φ(X → α) → w where X → α ∈ R and w > 0 is a positive
weight.

2.2 Split Algorithm

Here, we propose a new version of WGCS approach, in which the substitutability
concept has been added. Instead of a genetic algorithm, model splitting has
been proposed. Model splitting starts from a general language, and the learning
algorithm searches for a more specific language, given the input sequences. As
stated, splitting is the inverse of merging, in which we start with the most specific
hypothesis, and by repeated merging two concepts into one, a more general
hypothesis is obtained.

This method is strongly inspired by the works of [13,19]. In this approach,
grammar is induced in an incremental way. We start with a small initial grammar
with a small number of non-terminal symbols, adding a new non-terminal symbol
(and relevant new grammar rules) in each iteration until the stop criterion is
reached.

During each iteration of the algorithm, a new non-terminal symbol Xj from
another non-terminal symbol Xi is created by splitting operation. The non-
terminal symbol Xi selected for splitting operation is the symbol that is most
often used (i.e., has the largest count) in parsing a dataset. This symbol is often
called the split symbol. Then, for all terminal rules Xi → t, the operation creates
new terminal rules by replacing Xi with Xj . Next, new non-terminal rules are
created in two ways:

1. Create all possible rules only two non-terminal symbols Xi and Xj in the form
Xa → Xb,Xc where Xa,Xb or Xc is Xi or Xj . The number of such rules is
always eight, because that is the number of all possible combinations of two
non-terminal symbols for rule in CNF. For example for the split symbol A
and the new non-terminal O, there are following rules are created: A → AA,
A → AO, A → OA, A → OO, O → OO, A → AO, O → OA, O → AA.
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2. For all non-terminal rules with Xi in the form Xa → Xb,Xc, where Xa,Xb

or Xc is Xi, create new non-terminal rules of the same form by replacing
Xi with Xj . For multiple occurrences of Xi in rule, create all combinations.
Consider two cases with the split symbol A and the new non-terminal symbol
O. The first one is for a single occurrence of the split symbol in the rule, the
second one for many.
a) For a rule A → BC create new rule O → BC.
b) For rule A → AB create three new rules: O → OB, A → OB, and

O → AB.

2.3 Inside-Outside

Having established the topology of grammar, one can find the set of rules weights.
The inside outside algorithm originally estimates the probabilities of rules, in our
case we use it to estimate weights. The IO algorithm starts from some initial
parameters setting, and iteratively updates them to increase the likelihood of the
data (the training corpus). To estimate the rule probability, the algorithm counts
the inside and outside probability. 4 The inside probability is the probability of
deriving a particular substring from the given sentence wi . . . wj from a given left-
side symbol αij(A) = P (A −→ wi . . . wj), where A is any non-terminal symbol.
The outside probability is the probability of deriving from the start symbol of the
substring wi . . . wi−1Awj+1 . . . wn βij(A) = P (S −→ w1 . . . wi−1Awj+1 . . . wn).

Having the inside α and outside β probabilities for every sentence
wi in the training corpus, the occurrences of a given rule for a sin-
gle sentence is calculated for non-terminal symbols: cϕ(A −→ BC,W ) =
ϕ(A−→BC)

P (W )

∑
1≤i≤j≤k≤n βik(A)αij(B)αj+1,k(C), and for terminal symbols:

cϕ(A −→ w,W ) = ϕ(A−→w)
P (W )

∑
i≤1 βii(A), where P (W ) = P (S −→ w1w2 . . . wn)

is the probability of deriving a sentence.
For each rule A −→ α the number cϕ(A −→ α,Wi) is added to the total

count count(A −→ α) =
∑n

i=1 cϕ(A −→ α,Wi) and then proceed to the next
sentence.

After processing each sentence in this way the parameters are re-estimated
to obtain new probability of the rule (maximization) ϕ

′
(A −→ α) =

count(A−→α)∑
λ count(A−→λ) , where count(A −→ λ) is as rule with the same left-hand sym-

bol. One of the disadvantages of the algorithm is its computational complexity
which is O(n3) both in terms of sentence length and the number of non-terminal
symbols [20].

2.4 Inside-Outside Contrastive Estimation

We extended the Inside-Outside algorithm by introducing negative samples into
the estimation mechanism, calling this method Inside-Outside Contrastive Esti-
mation (IOCE). The main idea of IOCE is to move the weight mass from the
direct negative evidence to positive one.
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In IOCE method we introduce negative estimation factor:
ψ(A −→ α) = count(A−→α)

count(A−→α)+countnegative(A−→α) , where: countnegative(A −→ α)–
the estimated counts that a particular rule is used in negative samples in the
training dataset. The new weight of the rule is calculated as: ϕ

′
(A −→ α) =

count(A−→α)∑
β count(A−→β) · ψ(A −→ α).

2.5 WCFG Learning Algorithm

The first step in grammar induction with WGCS (see Algorithm1) is to initialize
the grammar. During each induction step, new rules are added to grammar
through the operation of a split algorithm. Then the stochastic algorithm tunes
the weight values of all rules in grammar. The rule weight estimation algorithm
was stopped when the largest rule weight difference among all rules compared
to the previous iteration was less than 0.001. We end the main loop by cleansing
the grammar of the rules with low weights. The stop criterion in our experiment
is perform 30 iterations. Algorithm 1 will provide a description of the above
method in the form of a pseudo-code.

3 Test Environment

We evaluated the method through modeling a protein sequence motif based on
the PROSITE PS00063 pattern of the Nicotinamide Adenine dinucleotide Phos-
phate (NAP) binding site fragment from an aldo/keto reductase family [3]. The
positive sample (termed NAP pos) was collected according to PS00063 true pos-
itive and false negative hits (four least consistent sequences were excluded) [9].
The set was complemented with a negative sample of 29 false positives matches
to PS00063 (NAP fp), which can be seen as close neighborhood of the sample.
Within the sample, all sequences shared the same length of 16 amino acids, which
avoided sequence length effects on grammar scores (this could be resolved with
a null model). In addition, we used a large negative sample designed to roughly
approximate the entire space of protein sequences based on the negative set from
[7] cut into overlapping subsequences of the length of positive sequences [9]. The
resulting set NAP neg consisted of 47,736 sequences. All samples were made
non-redundant at the level of sequence similarity around 70% to reduce sample
distribution bias in training and to avoid information leakage in cross-validation.

The performance of the two methods used to learn weights of WCFG: the
standard Inside–Outside method (IO), and the method that makes use of direct
negative evidence through the Contrastive Estimation (IOCE) was compared in
the 5-fold cross-validation procedure. Of note is that only a small part of the
NAP neg training fold—equal to the number of positive samples—was used for
learning in the IOCE scheme.
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Fig. 1. Performance of unsupervised weighted CFG in the 5-fold cross-validation on
protein sequence motif NAP. Average TPR and FPR values versus number of training
steps are shown. IO stands for WGCS using standard Inside-Outside algorithm and
only positive sample, whereas IOCE stands for WGCS using novel Inside-Outside Con-
trastive Estimation and direct negative evidence. The y-axis indicates the true positive
rate (TPR) or false positive rate (FPR) value. (Color figure online)

Algorithm 1. Induction algorithm
Input: Training and validation set
Output: Weighted context-free grammar

1: Initialize the grammar
2: for i ← 1 to iterations do � 30
3: Run split algorithm
4: while stop condition is not satisfied do
5: Run the estimation algorithm on the training set � IO/IOCE

6: Remove rules with low weights
7: Evaluate grammar on the validation set

8: return WCFG

4 Results

In all experiments, we used Intel Xeon CPU E5-2650 v2, 2.6 GHz, under Windows
Server 2016 operating system with 62.5 GB RAM. The average execution time
of induction Algorithm1 for a single fold was 1 h and 50 min.
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Fig. 2. Best performing grammar diagram, simplified. The grammar is pruned from
rules with weight below 0.1 or rewriting rarely used non-terminals (sum of weights of
rules generating the symbols below 0.1) to increase readability.

Figure 1 summarizes the performance of IO and IOCE methods during the
learning process. The y-axis indicates the true positive rate (TPR, sensitivity)
or false positive rate (FPR) value, depending on a curve. TPR is calculated
according to the formula TPR = tp/(tp+fn), whereas FPR = fp/(fp+tn), and
fp, tn, tp and fn are respectively the numbers of false positives, true negatives,
true positives, and false negatives.

The learning process started with overly simplified grammar made with just
2 non-terminal symbols leading to FPR of around 0.80 for NAP neg and 0.90 for
harder NAP fp set. With around ten non-terminal symbols, the IOCE scheme
learned with NAP pos and NAP neg training sets (IOCE in Fig. 1, shades of
green) achieved FPR below 0.10 and 0.50 for NAP neg and NAP fp test sets.
Eventually, with around 30 non-terminals, the scheme approached FPR of 0.01
and 0.20, respectively. This is roughly 1.5 (NAP fp) and 2 (NAP neg) times lower
FPR than achieved with grammars learned from the positive samples only (IO
in Fig. 1, shades of red). Worth emphasizing is improvement of FPR against
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NAP fp test set achieved by simply using the unrelated NAP neg set in the
IOCE scheme. While using NAP fp training set for learning grammars (IOCE fp
in Fig. 1, shades of blue) allowed for much lower FPR against NAP fp test set
in the beginning of learning, the advantage over IOCE diminished after 20th
iteration. Sensitivity (TPR) of grammars obtained with IO, IOCE and IOCE fp
was in similar ranges and generally decreasing from around 0.90 for FPR against
NAP neg of 0.2 to below 0.70 towards the end of learning. The obtained results
show that even small and crude negative dataset can improve the discrimina-
tory power of the method (i.e., lower the FPR value for NAP neg and NAP fp
datasets).

We analyzed the best-performing grammar obtained in the 30th iteration
in one of the five cross-validation runs of the IOCE fp scheme trained with
NAP pos, NAP fp and NAP neg (Fig. 2). This particular grammar consisted of
121 rules and achieved perfect TPR over the positive test set and perfect FPR
over the NAP fp negative test set, while FPR over NAP neg test set was just
below 0.01. The lexical rules of the grammar grouped the amino acids to six non-
terminal symbols. Interestingly, there are two groups linking amino acids of high
propensity to the NAP ligand binding: lysine and serine, and asparagine and
arginine [5][7]. Another two non-terminal symbols group hydrophobic residues:
alanine and valine, and phenyloalanine, isoleucine and leucine. Next, a non-
terminal is dedicated to negatively charged aspartic and glutamic acids, and
also hydrophilic glutamine. Finally, the last group consists of glycine, proline
and threonine. The former two amino acids are often found in turns of the
backbone chain, and indeed the PS00063 binding site involves a turn [5].

5 Conclusions

We have presented a novel approach for unsupervised learning of WCFG. The
developed WGCS method with the split algorithm is based on the principles
of incremental induction, starting from a small grammar with a small number
of rules and non-terminal symbols, looking for a larger, more general grammar
describing the training set in each subsequent step of induction. The introduced
method was evaluated on a sample of protein sequence motif. We show how the
method can benefit even from a very limited and crude negative sample.

Future work should examine the possibility of combining the split method
with its opposite approach, i.e., the merge method [26], e.g., by alternately using
them in the induction process. Another important issue would be to conduct
experiments on more sophisticated amino acid patterns such as more complex
binding sites and motifs forming amyloid-related oligomers and fibrils. The lat-
ter genre of motifs can be found in proteins controlling interaction with other
organisms in archaea, bacteria and fungi, including species found in the human
microbiome [6][8]. In the human proteome, several amyloid-forming proteins are
associated with pathological conditions, such as neurodegenerative diseases and
the type 2 diabetes [22]. Interestingly, the process of forming disease-related
amyloids may be enhanced through cross-seeding with proteins secreted by the
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microbiome [11]. Searching pairs of structurally similar motifs that facilitate such
interactions [22] is one of the aimed applications of the grammatical models.
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Abstract. The objective of this work is to develop and study dynamic
patient-state models and patient-state representations that are predic-
tive of a wide range of future events in the electronic health records
(EHRs). One challenge to overcome when building predictive EHRs rep-
resentations is the complexity of multivariate clinical event time-series
and their short and long-term dependencies. We address this challenge
by proposing a new neural memory module called Multi-scale Temporal
Memory (MTM) linking events in a distant past with the current predic-
tion time. Through a novel mechanism implemented in MTM, informa-
tion about previous events on different time-scales is compiled and read
on-the-fly for prediction through memory contents. We demonstrate the
efficacy of MTM by combining it with different patient state summariza-
tion methods that cover different temporal aspects of patient states. We
show that the combined approach is 4.6% more accurate than the best
result among the baseline approaches and it is 16% more accurate than
prediction solely through hidden states of LSTM.

Keywords: Electronic health records (EHRs) · Clinical event
time-series prediction · Neural network · Sequence prediction

1 Introduction

Electronic health records (EHRs) are longitudinal collections of clinical informa-
tion that cover many aspects of patient care in hospitals. It consists of patient
demographics, records of the administration of medication, past procedures, lab
test results, various physiological signals, and other significant events related to
patient care. The EHRs and events recorded therein can be used for a variety of
purposes, such as prediction of adverse events [25] and mortality risk scores [29],
detection of deviations in care [8,9], automatic diagnosis [21,24], lab value esti-
mation [18–20], or intelligent retrieval of similar patient cases from the database
of past patients [28].

The objective of this work is to develop and study dynamic patient-state mod-
els and patient-state representations that are predictive of a wide range of future
events in the electronic health records. Such representations can characterize well
the patient state for many different problems mentioned above. Defining good
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Fig. 1. A part of a patient’s record in real-world EHRs (MIMIC-3 database) repre-
sented as a sequence of multi-hot vectors. Each vector indicates occurrence or non-
occurrence of an event during a segmented time-window (e.g., 6 h).

predictive representation of EHRs is a challenging problem due to the inherent
complexities of the EHR-based multivariate event time-series. In general, EHRs
can consist of several thousands of clinical events corresponding to different types
of medication, lab tests, medical procedures, physiological signals, etc. For exam-
ple, MIMIC-3 [12], a widely used publicly available ICU Database, records more
than 30,000 different types of clinical events. However, many clinical events are
sparse and infrequent. Briefly, the average number of medication administration
events per patient per admission is 10.1, lab test events 7.3, and procedures 1.5.
To deal with the challenges of high-dimensionality and sparsity, deep learning
based approaches have shown promising results in modeling EHRs-derived data
and sequences. Two major deep learning approaches have been studied: latent-
space embedding models [2,4,23] and neural temporal models based on RNNs
and LSTMs [3,5,7,15,29].

One challenging issue related to predictive EHRs representations that have
not been adequately addressed is how to properly model temporal dependen-
cies among many different clinical events. More specifically, individual event-
time-series in EHRs may have a different temporal dependency with respect
to precursor events. Briefly, some events may strongly dependent on recently
occurred events. For example, an administration of phenylephrine depends on the
occurrence of hypotension (low blood pressure state) in connection with recent
intubation. Lee and Hauskrecht [15] show that modeling such short-term depen-
dency can improve the predictability of multivariate future events. However,
other events may depend on more distant events. For example, valve replace-
ment surgery in the distant past may impact the necessity of warfarin treat-
ment. While neural temporal models (RNN or LSTM) can in principle model
these long-range dependencies, the recurrent computations can easily dilute and
attenuate such information in the hidden state [26]. In this work, we address the
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problem of modeling long-term dependencies in multivariate clinical event time-
series by proposing a new type of information channel linking events in a distant
past with the current prediction time. Through a novel mechanism called Multi-
scale Temporal Memory (MTM), information about previous events on different
time-scales is compiled and read on-the-fly for prediction through memory con-
tents. The main benefit of this approach is that it is a modular and predictive
signal from this module that can be combined with predictive signals from other
patient state summarization modules.

We demonstrate the efficacy of MTM by combining it with different patient
state summarization methods that cover different temporal aspects of patient
states, including recent context module [15], recurrent temporal mechanism [16],
and hidden states of LSTM [10]. We test the proposed approach on real-world
clinical event time-series. We compare predictive performance (i.e., AUPRC) of
the proposed combined approach with baseline models. We demonstrate that the
combined approach is 4.6% more accurate than the best among the baselines and
it is 16% more accurate than prediction solely through hidden states of LSTM.

2 Background

In this section, we introduce the EHR-based multivariate time-series and the
prediction problem. Then, we review clinical event time-series based on neural
temporal models.

2.1 Multivariate Clinical Event Time-Series

A patient’s EHR is defined by a sequence of time-stamped clinical events U =
{uj}j , where each event uj = (ej , tj) consists of a pair of type of the event ej ∈ E
and timing of the event tj ∈ R≥0. E is a set of all types of clinical events. As
events in EHRs occur in continuous time, tj is non-negative real value. One way
to model the event time-series on real-valued continuous-time is by using point
processes [27] such as a Poisson process or a Hawkes process [14]. However, point
processes-based approaches are hard to optimize directly, and existing works for
clinical event time-series [17,22] explore multivariate event time-series with a
relatively small number of events. Due to this limitation, multivariate event
time-series are often converted to discrete-time event time-series. By sweeping
the original time-series with a fixed-sized time window (e.g., 6 h), the time-series
is segmented to a sequence of non-overlapping bins, where each bin represents
events occur during the time-window. Then, events occurred or non-occurred
during a time window are represented as a binary multi-hot vector y ∈ {0, 1}|E|.
With this discretization method, a patient’s records in EHRs are represented
as a sequence of the multi-hot vectors y1, · · · ,yt. Figure 1 shows an exemplar
multi-hot vector representation of a patient’s record.

The prediction problem we want to tackle can be then defined to predict
the occurrence and non-occurrence of a wide range of EHR-related events in the
future time step yt+1 given a sequence of patient history y1, · · · ,yt.
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Fig. 2. MTM summarizes past history with multiple temporal scales

2.2 Neural Temporal Models for Clinical Event Time-Series

With the benefits of the flexible end-to-end training and combined feature repre-
sentation learning capabilities, models based on neural architectures have been
successfully adopted to various time-series modeling tasks. In the following, we
summarize the approaches to clinical event time-series modeling and prediction.

Word-to-Vector Models (Word2Vec). The Word2Vec (e.g., CBOW, Skip-
gram) [23] learns low-dimensional embeddings of words and documents in NLP.
Continuous Bag-of-Word (CBOW) [23] predicts the probability distributions of a
center (target) word given the word’s neighborhood (context) words. Skip-gram
[23] is similar to Word2Vec, but the context and the target are switched around.
For clinical tasks, Word2Vec models have been adopted to process a sequence
of clinical events instead of words. More specifically, for the CBOW-based app-
roach, recent events in a fixed-size recent history window (e.g., 48 h) are set as
the context and an event that occurs shortly after the history window is set as
the target. Word2Vec models have been successfully applied to predict e.g. hos-
pital visits [4]. One drawback of the Word2Vec models is that they cannot fully
model the sequential information, as they treat the events in the past equally
when pooling (summing or averaging) past event embeddings. Besides, the size
of the neighborhood (context) window is limited to a certain number of events
(e.g., 20 or 40). Hence, those events that occur outside of the window cannot be
used for modeling.

RNN and LSTM Based Approaches. The sequential models based on
RNN and LSTM [10] resolve the problems by summarizing the information from
each past step via hidden states. The hidden states correspond to a real-valued
(latent) representation of patient states. RNN and LSTM have been successfully
applied to many clinical event predictions such as medication prescriptions [1,3],
heart failure onset [6], and ICU mortality risk [29].

One advantage of RNNs is that it can model all events in the entire sequence
without a length-span limit, unlike Word2Vec. However, RNN and LSTM models
may encounter problems when modeling long sequences. Briefly, the loss (train-
ing objective function) is computed at the end of each sequence and the signal
is passed to parameters at each time step via Back Propagation Through Time
(BPTT). For RNN and LSTM, the length of the sequence is n. A long sequence
(large n) can hinder the propagation of the loss signal to parameters, negatively
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Fig. 3. Overview MTM’s architecture: Given a sequence of multivariate patient state
history y1, . . . ,yt, we (1) aggregate and binarize past history by each time-scale p∗, ∗ ∈
{D, I,R}, (2) compose memory contents z∗, (3) compute reading gate g∗, (4) read
memory contents referring reading gate and merge contents of multi-scale temporal
memory, and (5) make a predictive signal ct for neural prediction module.

affecting their training [11]. Our proposed work tackles this challenge by creat-
ing a direct path of length 1 connecting the current time step with a predictive
event that occurred in the distant past.

3 Methodology

In this work, we propose Multi-scale Temporal Memory (MTM), a new neural
temporal based model that summarizes a clinical event history and generates a
predictive signal for occurrence and non-occurrence of future multivariate clinical
events (Fig. 3).

3.1 Multi-scale Temporal Memory

MTM summarizes patient history using multiple information channels where
each channel covers the history in different temporal scales. We hypothesize that
information on past event occurrences on different time range may have different
importance for predicting future event occurrence. To process patient history on
multiple time scales, MTM segments the patient history into three folds as shown
in Fig. 2: distant past (e.g., from the beginning of admission to 72 h before cur-
rent time), recent past (e.g., within 24 h from current time), and “intermediate
past” (time range between boundaries of distant past and recent past). Contents
of the memory are composed based on the types of events that occurred in each
segmented window. Then, considering factors about current patient states, the
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model reads contents of the multi-scale memory and generates a predictive sig-
nal that will be combined with other neural temporal mechanisms that cover
different aspects of clinical event time-series to generate a final prediction for
next multivariate events. In the following, we describe MTM in detail and the
neural framework for the next multivariate events prediction.

Composing Memory Contents. Given a segmented patient history (depicted
in Fig. 2) on multiple time-scales, we compose memory contents for each time-
scale with the following steps: (1) We aggregate patient states vectors {yi}i

of each temporal segment ∗ ∈ {D, I,R} into a single multivariate vector p∗
through binarization. {D, I,R} denote distant, intermediate, and recent pasts
respectively. (2) We compose contents of the memory z∗ ∈ R

|E| through linear
projection followed by non-linear activation:

z∗ = tanh (W∗p∗ + b∗) (1)

where W∗ ∈ R
|E|×|E| and b∗ ∈ R

|E| are trainable parameters for each time-
scale. Through linear projection with W∗, we extract information about the
events that occurred in a specific temporal segment.

Reading Memory Contents. To comprehensively determine the amount of
memory contents to be read for each prediction task (multivariate target events),
MTM computes reading gates g∗ ∈ R

|E| considering three factors: (1) current
patient state reflected on input yt, (2) recent dynamics of patient state reflected
on hidden states ht from LSTM, and the contents of the memory itself z∗.

g∗ = σ(Whht + Wyyt + W̃∗z∗) (2)

where σ denotes logistic sigmoid activation function and Wh ∈ R
|E|×r,Wy ∈

R
|E|×|E|,W̃∗ ∈ R

|E|×r are parameters to learn and r is dimension of hidden
state. The predictive signal ct ∈ R

|E| is computed as a linear combination of
reading gates and memory contents for each temporal scale:

ct = gD � zD + gI � zI + gR � zR (3)

where � is element-wise multiplication.

3.2 Neural-Based Prediction Framework

We combine the predictive signal from MTM with additional patient history
summarization methods that cover different temporal aspects of patient states.
We use recent-context module [15], recurrent temporal mechanism [16] and hid-
den states of LSTM. Briefly the recent-context module projects current time-step
input yt to a target event space with a learnable parameters Wr ∈ R

|E|×|E| and
br to get the “recent bias” term bκ:

bκ = Wryt + br (4)
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The recurrent temporal mechanism captures information about periodic
(repeated) events using a special recurrent mechanism based on probability dis-
tributions of inter-event gaps. It outputs two target event-specific periodicity-
based predictive signals that use different sources of periodic information: αe ∈ R

signal is based on an interval of current patient’s event time-series and βe ∈ R

signal is compiled from a pool of past patient data in training set. Details
of the signal generation processes can be found in [16]. We also use LSTM
to derive dynamics of patient state through hidden state. To compute hidden
state, we first project input yt to low-dimensional space with embedding matrix:
Wemb ∈ R

d×|E|: xt = Wembyt. Based on previous time step’s hidden state ht−1

and xt, we compute new hidden state ht ∈ R
r:

ht = LSTM(ht−1,xt) (5)

Given predictive signals {αe,βe,ht, ct,bκ}, we first combine periodicity-based
signals for each target event type with hidden state through concatenation:

γe = [ht;αe;βe] (6)

Then, we project γe to a scalar λe ∈ R through we ∈ R
1×r+2 and be ∈ R. We

apply the same procedure to all events e ∈ E and concatenate all λe:

λe = weγ
e + be λ = [λ1; . . . ;λ|E|] (7)

Final prediction for next multivariate event is computed as follows:

ŷt+1 = σ(λ + bκ + ct) (8)

We use the binary cross-entropy to compute loss L and parameters of the
model are learned through a stochastic gradient descent optimization algorithm
(Adam) [13].

L =
∑

t

−[yt · log ŷt + (1 − yt) · log(1 − ŷt)] (9)

4 Experiments

In this section, we evaluate our approach on MIMIC-3, an ICU EHRs dataset.

4.1 Experiment Setup

Clinical Data. We extract 5137 EHRs of patients from MIMIC-3 database
using the following criteria: (1) adult patient, (2) length of stay is between 48
and 480 h, (3) data are recorded in Meta Vision system, one of the two systems
used to create MIMIC-3 database. We randomly split 5137 patients into train and
test sets using 8:2 ratio. Then, multivariate event time-series are generated by
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Table 1. Prediction results (AUPRC) for all events and each event category

Models All-events Medication Lab test Physio signal Procedure

RC 18.26 35.52 4.11 45.23 34.67

HS 26.30 41.16 12.03 81.49 35.90

HS-RC 26.50 41.66 12.07 81.61 36.25

HS-RC-PP 26.76 42.82 12.04 81.70 36.29

HS-RC-PP-MTM 28.00 43.84 13.80 81.84 36.35

segmenting all sequences with a time-window (W = 1). As mentioned in Sect. 2.1,
at each i-th window we obtain multi-hot vector yi ∈ {0, 1}|E| by aggregating
and making binary all events occur within the time range of the window. For
the types of clinical events (E), we use events in the categories of medication
administration, lab results, procedure, and physiological results. Among all types
of events in the first three categories, we filter out those events observed in less
than 500 different patients. For physiological events, we select 16 important
event types with the help of a critical care physician. To this end, we get 63
medication events, 41 procedure events, 155 lab test events, and 16 physiological
signal events (|E| = 275).

Baseline Methods. We compare our method (HS-RC-PP-MTM) with the
following set of baseline models predicting a wide range of future events yt+1:

– Logistic Regression with Recent Context (RC) uses the current events.
It amounts to use the recent bias term in Eq. (4): ŷt+1 = σ(Wpyt + bp)

– Hidden States from LSTM (HS) uses hidden states of LSTM in Eq. (5)
with linear projection and sigmoid activation: ŷt+1 = σ(Wqht + bq)

– HS + Recent Context (HS-RC) [15] uses hidden states of LSTM with
the recent bias term bκ in Eq. (4): ŷt+1 = σ(Wryt + br + bκ)

– HS + RC + Periodicity Predictor (HS-RC-PP) [16] uses combination
of hidden states of LSTM, the recent bias term bκ and periodicity signal α, β
from [16]. It computes prediction with λ in Eq. (7): ŷt+1 = σ(λ + bκ)

Evaluation Metrics. We evaluate the quality of predictions by calculating the
area under the precision-recall curve (AUPRC). The reported AUPRC values
(for the different methods) are averaged over all target events.

Implementation Details. For the experiments, we use embedding size d = 64,
a fixed learning rate = 0.005 and minibatch size = 128. The size of the hidden
state r is determined by the internal cross-validation from (128, 256, 512). To
prevent over-fitting, L2 weight decay regularization is applied to all models and
the weight is determined by the internal cross-validation.
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4.2 Results

The second column of Table 1 shows the overall experiment results for predicting
all types of events. The proposed model (HS-RC-PP-MTM) outperforms all
baselines. Particularly, it outperforms HS-RC-PP by 4+%. With this, we can
observe the benefit of multi-scale memory capturing dependencies that are not
covered by other patient history summarization methods, including LSTM.

We further analyze the experiment results by dividing them into 4 event
categories. As shown in Table 1 (column 3–6), we observe the performance gain
of MTM is higher for medication and lab test events. Notably, lab tests are the
hardest events to predict compared to other categories, 14+% performance gain
from MTM for lab test prediction clearly shows its effectiveness.

We also experiment with two additional window sizes (W = 6,12). As
Table 2 shows, larger segmentation window increases overall predictability. This
is expected as larger window size results in the multivariate vector yi with more
event occurrences and it increases prior probability which directly affects the
AUPRC score. Especially, we observe a pattern that the gap between HS-RC-
PP-MTM and HS-RC-PP is decreasing as the window size is increased. An
implication of this observation is that, for longer sequences (event time-series
generated from W = 1 based window-segmentation), MTM brings more value
than it does for shorter sequences (e.g., W = 6,12).

To validate learned weight matrices for multi-scale memory contents (W∗, ∗ ∈
{D, I,R} in Eq. (1)), we extract the top 3 events for an exemplar target event
extubation in Table 3. We can see that MTM properly learns and gives higher
weights to the intubation event, PEEP (setting of the mechanical ventilation),
and fentanyl, analgesics used during mechanical ventilation. Additional examples
are compiled in Table 4.

Table 2. Prediction results by varying time-series segmentation window settings

Models W = 1 W = 6 W = 12

HS-RC-PP 26.76 36.68 40.07

HS-RC-PP-MTM 28.00 (4.6 +%) 37.28 (1.6 +%) 40.34 (0.6 +%)

Table 3. Top 3 past events predictive of extubation, based on the value from learned
memory content parameter W∗ for each temporal range in Eq. (1).

Distant past (∗ = D) Intermediate past (∗ = I) Recent past (∗ = R)

(Med) Potassium Chloride (Proc) PEEP (Proc) PEEP

(Med) KCL (Med) Fentanyl (Physio) Inspired
O2 Fraction

(Proc) Intubation (Proc) Intubation (Med) Fentanyl
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5 Conclusion

We proposed a novel mechanism called Multi-scale Temporal Memory (MTM) to
model long-term dependencies in EHR-derived clinical event time-series. With
MTM, information about past events on different time-scales is compiled and
read on-the-fly for prediction through memory contents. We demonstrate the
efficacy of MTM by combining it with different patient state summarization
methods that cover different temporal aspects of patient states. We show that
the combined approach is 4.6% more accurate than the baseline approaches
and it is 16% more accurate than the prediction based on the popular LSTM
summarization approach.

In the future we plan to study ways of relaxing hard segmentations of past
history. That is, we plan to automatically identify the memory content and the
timing information for past events that are important for predicting the next
events. One possible direction is to design an attention mechanism capable of
aggregating event history via a specialized kernel that considers both (a) the
type of target and context events and (b) timing of events.

Acknowledgement. The work in this paper was supported by NIH grant
R01GM088224. The content of the paper is solely the responsibility of the authors
and does not necessarily represent the official views of NIH.

A Examples of Top Past Events Predictive of Target
Events

Table 4 shows top past events predictive of target events for the different tempo-
ral ranges (Distant, Intermediate, and Recent past) as identified by our methods.
For example, the top predictive events for amiodarone (treats irregular heartbeat
such as tachycardia) include metoprolol and diltiazem. Both of these are used to
treat high blood pressure and heart issues. Similarly, past events predictive of
diltiazem and labetalol (medications treating high blood pressure) include clin-
ical events that are related to high blood pressure and heart function: digoxin,
metoprolol, hydralazine, and nicardipine. Finally, the top past events predicting
vasopressin (a medication treating a low blood pressure) include norepinephrine
and phenylephrine that are also used to treat low blood pressure.
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Table 4. Top 3 preceding events for example target events based on the value from
learned memory content parameter W∗ for each temporal range in Eq. (1).

Distant past (∗ = D) Intermediate past(∗ = I) Recent past(∗ = R)

Target: (Med) Amiodarone

(Med) Amiodarone (Med) Amiodarone (Med) Amiodarone

(Med) Diltiazem (Med) Diltiazem (Med) Metoprolol

(Lab) Urea Nitrogen,
Urine

(Lab) Thyroid
Stimulating Hormone

(Med) Diltiazem

Target: (Med) Diltiazem

(Med) Diltiazem (Med) Diltiazem (Med) Diltiazem

(Lab) Digoxin (Med) Metoprolol (Med) Metoprolol

(Physio) Inspired O2
Fraction

(Med) Amiodarone (Proc) EKG

Target: (Med) Labetalol

(Med) Labetalol (Med) Labetalol (Med) Labetalol

(Med) Hydralazine (Med) Hydralazine (Med) Hydralazine

(Med) Nicardipine (Med) Metoprolol (Med) Haloperidol

Target: (Med) Vasopressin

(Med) Vasopressin (Med) Vasopressin (Med) Vasopressin

(Proc) Ultrasound (Med) Norepinephrine (Med) Norepinephrine

(Med) Packed Red
Blood Cells

(Med) Phenylephrine (Med) Phenylephrine
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Abstract. The state of the art for monitoring hypertension relies on
measuring blood pressure (BP) using uncomfortable cuff-based devices.
Hence, for increased adherence in monitoring, a better way of measur-
ing BP is needed. That could be achieved through comfortable wearables
that contain photoplethysmography (PPG) sensors. There have been sev-
eral studies showing the possibility of statistically estimating systolic and
diastolic BP (SBP/DBP) from PPG signals. However, they are either
based on measurements of healthy subjects or on patients on (ICUs).
Thus, there is a lack of studies with patients out of the normal range of
BP and with daily life monitoring out of the ICUs. To address this, we
created a dataset (HYPE) composed of data from hypertensive subjects
that executed a stress test and had 24-h monitoring. We then trained and
compared machine learning (ML) models to predict BP. We evaluated
handcrafted feature extraction approaches vs image representation ones
and compared different ML algorithms for both. Moreover, in order to
evaluate the models in a different scenario, we used an openly available
set from a stress test with healthy subjects (EVAL). The best results for
our HYPE dataset were in the stress test and had a mean absolute error
(MAE) in mmHg of 8.79 (±3.17) for SBP and 6.37 (±2.62) for DBP; for
our EVAL dataset it was 14.74 (±4.06) and 7.12 (±2.32) respectively.
Although having tested a range of signal processing and ML techniques,
we were not able to reproduce the small error ranges claimed in the lit-
erature. The mixed results suggest a need for more comparative studies
with subjects out of the intensive care and across all ranges of blood
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pressure. Until then, the clinical relevance of PPG-based predictions in
daily life should remain an open question.

Keywords: Machine learning · Blood pressure · Photoplethysmogram

1 Introduction

According to the Global Disease Burden (GBD) study, high blood pressure (BP)
(i. e. hypertension) is the risk factor that leads to more deaths worldwide [16].
The standard way of monitoring this condition is through the measurement
of BP using an uncomfortable cuff-based device [25]. Fortunately, comfortable
and common wearables can already detect changes in the flow of blood through
a photoplethysmography (PPG) sensor [1]. The PPG signal (photoplethysmo-
gram) obtained from it is already used with success to estimate heart rate [19]
and, has the potential to go beyond that into accurate BP prediction [2,5].

Most of the work in this area focus on building predictive models for patients
in intensive care units (ICUs) [12,20,24]. However, data collected from regular
life contain motion artefacts that are not observed in intensive care. Additionally,
models that work on healthy populations [17,18] should also be validated on
hypertensive populations for guarantying their applicability in BP monitoring.
Hence, in our work we focused on assembling a dataset containing data from
subjects with hypertension (HYPE) during a stress test and 24-h monitoring.

We then evaluated machine learning (ML) models for predicting BP from
PPG in the HYPE dataset and also in a dataset from healthy subjects during
a stress test (EVAL). From the PPG signals, we extracted features from the
time domain plus their image representations. Errors as low as the ones in the
literature—for patients in the ICU or healthy subjects—could not be reproduced,
even after processing the PPG signals with diverse time windows and filters.

This work is detailed as follows: Sect. 2 shows previous work in the field and
Sect. 3 describes the datasets and methods we used to predict BP from the PPG
signal. In Sect. 4 we convey our findings and results, followed by a discussion in
Sect. 5 and Sect. 6 describing the implications of this work.

2 Related Work

Existing work focuses on predictive models using MIMIC [7], a dataset that
contains physiological signals including PPG and ambulatory BP (ABP) from
patients in ICUs. Kurylayak et al. [12] and Wong et al. [24] have both applied
artificial neural networks (ANN) to predicted BP in this dataset and reported
success. However, they used unknown or small sample sizes as can be seen in
Table 1. Moreover, Kurylayak et al. only extracted time domain features from the
PPG signal while Wong et al. also extracted frequency domain ones. Conversely,
Slapničar et al. [20] tried a spectro-temporal ResNet with all features in a larger
sample size but could not report the same success as his predecessors.

Others have tried to collect data from healthy subjects in daily life such
as Lustrek et al. [17]. They have used the device empatica E41 and evaluated
1 https://e4.empatica.com/e4-wristband.

https://e4.empatica.com/e4-wristband
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Table 1. Blood Pressure Prediction from Photoplethysmograms

Work Dataset Features (PPG) Method MAE (mmHg)

[12] MIMIC
15000
pulsations

Time
Domain

ANN SBP 3.80 (±3.46)
DBP 2.21 (±2.09)

[24] MIMIC
72 subjects

Time and
Frequency
Domain

ANN SBP 4.02 (±2.79)
DBP 2.27 (±1.82)

[20] MIMIC
510 subjects

Time and
Frequency
Domain

Spectro-
Temporal
ResNet

SBP 9.43 (N/A)
DBP 6.88 (N/A)

[17] Healthy Subjects
Daily Life
22 subjects

Time and
Frequency
Domain

Emsemble of
Regression
Trees

SBP 6.70 (N/A)
DBP 4.42 (N/A)

[18] Healthy Subjects
Controlled
50 subjects

Time
Domain

ANN SBP 4.1 (N/A)
DBP 1.7 (N/A)

a range of machine learning (ML) techniques, achieving the best results with
an ensemble of regression trees and the leave-one-subject-out (LOSO) valida-
tion strategy. However, they had to use ground truth BP from each subject to
personalize the algorithm. Lastly, there is the work of Manamperi et al. [18],
in which they evaluated ANN in MIMIC and in a set with data from voluntary
subjects (assumed as healthy). They claim to have done the second evaluation in
a non-clinical scenario, but the subjects were mainly at rest in their experiment.

Therefore, the current state-of-the-art does not give yet conclusions about
the use of PPG to predict BP in diverse populations and in daily life. There is
a clear need for more comparative studies both with healthy and hypertensive
subjects and in different scenarios, especially outside of controlled conditions.

3 Methods

3.1 Datasets

In our work we used two datasets: one created by us with data from a hyperten-
sive population (HYPE) and one that is openly available containing data from
a healthy population (EVAL). It should be noted that both datasets recorded
patients during a stress test and HYPE also during 24-h monitoring. We describe
the two datasets below.

HYPE. This dataset was created by us as part of the CardioVeg study
(NCT03901183) approved by the Ethics Committee from Charité, Berlin (no.
EA4/025/19). Data was collected from 12 subjects (6 female) in the age range
of 31–75 (median 60) that had hypertension. The study collected data from a

https://clinicaltrials.gov/ct2/show/NCT03901183
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(1) stress test and from (2) 24-h monitoring using the empatica E4 wristband
as the PPG source and the Spacelabs (SL 90217) BP monitor.
(1) Stress Test. The subjects followed a protocol in which they watched a
relaxing video for 5 min then had their BP taken by a physician five times
with an interval of 1 min per measurement [25]. Then, the patients biked in
an ergonomic bike from 5 to 10 min and relaxed again. During the second
relaxation phase their BP was measured again 5 times with a 1 min interval.
This dataset contains a total of 95 BP recordings. One subject could not bike
due to extreme high BP and another one had a failure in the wearable device.
Therefore, this experiment had 10 subjects (5 female).
(2) 24H. In this phase, the same subjects from the stress test were monitored
for 24-h during regular day activities. The Spacelabs monitoring device was
configured to measure BP every 30 min during the day and every hour during
the night. This dataset contains a total of 464 BP recordings and all 12
subjects were measured.
EVAL. This dataset was generated by Esmaili et al. [3]. The original paper
tried to estimate BP based on pulse transit time (PTT) and pulse arrival time
(PAT). Both variables are derived from the differences between the PPG and
ECG signals. This data was collected from 26 healthy subjects in the age range
of 21–50 years. The subjects were required to run for 3 min at the speed of
8 km/h to induce perturbations in their BP values. Directly after the exercise
the subjects were made to sit upright and BP values were measured along
with PPG and ECG. A force-sensing resistor (FSR) was used under the BP
monitor cuff to measure the instantaneous cuff pressure. With the FSR it was
possible to pin point the exact time when the SBP and DBP were measured.
A total of 152 BP values were recorded in this dataset.

3.2 Handcrafted Feature Extraction Methods

Our first approach entailed extracting handcrafted features from the PPG signal.
Time windows of 15, 30 and 45 s around the BP measurement were used for
our experiments. To eliminate motion artefacts induced by wrist movements
sections in which the Euclidean norm of x-, y- and z-acceleration lied outside of
an interval of 25% of the standard deviation around the sample mean, for the
current window, were removed from consideration. The motion removal was only
done for the HYPE dataset as the EVAL dataset did not contain any motion
signals corresponding to the PPG recording. We also experimented with signal
normalization and filters such as Chebyshev II and Butterworth, since they were
reported as the best filters for PPG signals [15]. For the processed signal, the
PPG cycles were then identified with a standard peak detection function.

All detected cycles in the same window were combined into a custom PPG
signal template (details in Sect. B), following a procedure described by Li and
Clifford [13]. Individual cycles were then compared with the template using two
signal quality indices (SQI): (1) direct linear correlation and (2) direct linear
correlation between the cycle, re-sampled to match the template length, and the
template itself. Only if both correlations lied above 0.8, the cycle was further
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processed to extract features. This resulted in some BP intervals not having any
features extracted since no cycles matching the template were identified.

After the clean PPG cycles have been identified, time domain features were
extracted and the detailed list can be found in the Appendix (Table 4). The
first step was to identify the first peak in the cycle, which corresponded to the
systolic peak. Then for various percentages of the peak amplitude, we extracted
the time between systolic peak and end of the cycle (DWn), start of the cycle
and end of the cycle (SWn +DWn), and the ratio between the time in the cycle
before and after the systolic peak (DWn/SWn). For every window, the mean
and variance of each feature were computed and used as input for the models.

3.3 Image Representation Methods

An alternative approach to the manual feature extraction has recently gained
much popularity involving convolutional neural networks (CNNs). The approach
is to represent the waves as images and then use a transfer learning method based
on pretrained CNNs to learn embedding from the images and use them to predict
BP. The two different image-form representations of PPG signals that we tested
were spectrograms and scalograms, described below.

Scalograms. A scalogram is usually plotted as a graph of time and frequency
and it represents the absolute value of the Continuous Wavelet Transform
(CWT) coefficients of a signal. The scalogram-CNN based approach was first
discussed in Liang et al. [14]. However, it was only evaluated for hypertension
stratification, not BP prediction. Before passing the signal to the CWT, we
detrended it, i.e. subtracted the mean value from the input signal. CWT is a
convolution of the input data sequence with a set of functions generated by
the base wavelet. We used the complex Morlet wavelet function as the base
wavelet, which is given by:

Ψ(t) =
1√
πB

exp− t2
B exp2πCt (1)

The value of bandwidth frequency (B) and center frequency (C) was chosen
to be 3 and 60 in the above equation, following the work of Liang et al. [14].
Compared to a spectrogram, a scalogram is usually better at identifying the
low-frequency or fast-changing frequency component of the signal.
Spectrograms. A spectrogram displays changes in the frequencies in a sig-
nal over time. A third dimension indicating the amplitude of a particular
frequency at a particular time is represented by the intensity or color of each
point in the plot. The spectrogram-CNN approach to predict BP was first dis-
cussed in Slapničar et al. [20]. Similar to scalograms, we detrended our signal
before generating the spectrogram plots. To generate a spectrogram, digitally
sampled signals in the time domain are broken up into windows, which usu-
ally overlap, and they are Fourier transformed to calculate the magnitude of
the frequency spectrum for each window [21].
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(a) Spectogram (b) Scalogram

Fig. 1. (a) displays a sample spectrogram and (b) a scalogram with the complex Morlet
wavelet function used as the base wavelet for the same PPG signal.

Figure 1 depicts a sample spectrogram and scalogram generated from a PPG
snippet of 15 s. The image representations of the signal were then fed into a
ResNet architecture to learn the image embeddings [9]. The Residual Network
or ResNet design enables us to train very deep neural networks without running
into the vanishing gradient problem. Since our datasize is very small, instead
of training a network from scratch, we decided to take a network which was
already trained on the ImageNet dataset [8]. In particular, we used the ResNet18
architecture and took the embeddings from the penultimate layer of the network.
We also experimented with Alexnet, but Resnet18 always performed marginally
better [11]. This might be due to the fact that the penultimate layer of the
Resnet18 generates a 512 length embedding, whereas the AlexNet generates a
embedding of length 4096. The larger size of the input vector, in spite of using
feature selection and strong regularization techniques, might make it challenging
for the models to learn from, due to the small data size.

3.4 Machine Learning Models

Previous works show that machine learning algorithms perform well in predict-
ing BP from features derived from PPG and/or ECG. We have employed in our
experiments three popular machine learning algorithms: (a) Generalised Lin-
ear Models (GLM) with Elastic Net regularisation [26], (b) Gradient Boosting
Machines (GBM) [4], and (c) a recent more efficient implementation of GBM
called LightGBM (LGBM) [10] to predict the systolic and diastolic BP.

For prediction from the image embeddings, we used a Recursive Feature
Elimination (RFE) technique with a support vector machine (SVM) with linear
kernel as the base estimator, before pushing the vectors into the models.
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3.5 Experimental Settings

In order to train models that are robust and well generalizable, we used a leave-
2-subjects-out cross validation for all models, i.e. at every iteration we use data
from 2 subjects as the test set, trained our models on the remaining data and
repeated this procedure till all subjects have been at some point used as the test
set. All hyper parameters were optimized empirically. We evaluated the models
based on the mean absolute error (MAE). The MAE was calculated at each
iteration and we calculated the mean and standard deviation of these values.

4 Results

In this section we report our experimental results. In Table 2 and Table 3 we
show the comparison of the MAEs for predicting systolic blood pressure (SBP)
and diastolic blood pressure (DBP) respectively, between all models in the dif-
ferent datasets. The cells in these table contain the mean and standard devia-
tion (in parenthesis) of the MAE of all cross validation folds. Noticeably, in the
HYPE dataset feature extraction methods consistently outperformed the image
based methods. In EVAL the spectrogram-representation method outperformed
the other two approaches. In both datasets, the best results for the spectrogram
based approach are usuallymarginally better than the best results of the scalogram
based approach. For the image based methods the more advanced machine learn-
ing models such as LGBM and GBM clearly outperformed the GLM model. This is
most probably due to the comparatively large dimension of the input image embed-
dings. For the feature extraction based methods this difference is not so prominent,
and in some cases the GLM turns out to be the best performing model. In general,
based on the MAE values, predicting SBP appears to be more difficult than DBP
which is consistent with previous literature (see Table 1).

5 Discussion

5.1 Clinical Relevance

Cuff-less and continuous methods of measuring BP are particularly attractive as
BP is one of the most important predictors of long term cardiovascular health [6].
Prediction models for BP based on PPG signals can be a very important stride in
that direction. But for reliable continuous monitoring of BP, these models need
to perform well during regular day-to-day activities and also for different patient
populations. Apart from MIMIC there does exist a few other studies that try
to collect PPG and corresponding BP signals following a strict protocol (similar
to HYPE: stress-test). To the best of our knowledge, our 24-h dataset is the
first attempt to collect this data from an uncontrolled environment where the
subjects were free to do anything. Our evaluations do underline that it is indeed
more challenging to accurately predict BP in such an uncontrolled environment.
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Table 2. MAE of the different models for SBP prediction in different datasets

Dataset Feature selection Spectrograms-Resnet18 Scalograms-Resnet18

GLM GBM LGBM GLM GBM LGBM GLM GBM LGBM

EVAL

Stress Test

16.71

(±4.32)

16.19

(±4.35)

16.00

(±4.63)

17.59

(±3.72)

15.24

(±4.01)

14.74

(±4.06)

16.71

(±4.16)

15.68

(±4.34)

15.46

(±4.49)

HYPE

Stress Test

10.26

(±1.18)

8.79

(±3.17)

9.57

(±1.65)

15.58

(±1.21)

12.44

(±2.72)

12.15

(±2.72)

17.98

(±2.11)

12.91

(±2.57)

12.83

(±2.63)

HYPE

24-h

14.44

(±2.96)

14.83

(±3.81)

14.74

(±4.07)

18.71

(±4.072)

16.92

(±5.22)

17.07

(±5.22)

18.97

(±5.15)

17.03

(±5.26)

17.30

(±5.21)

Table 3. MAE of the different models for DBP prediction in different datasets

Dataset Feature selection Spectrograms-Resnet18 Scalograms-Resnet18

GLM GBM LGBM GLM GBM LGBM GLM GBM LGBM

EVAL

Stress Test

7.87

(±2.07)

7.86

(±2.27)

7.57

(±2.38)

13.18

(±13.01)

7.12

(±2.32)

7.15

(±2.42)

8.67

(±3.08)

7.62

(±2.35)

7.53

(±2.48)

HYPE

Stress Test

7.50

(±0.68)

6.37

(±2.62)

7.22

(±2.69)

11.98

(±1.90)

9.55

(±2.74)

9.52

(±2.02)

12.18

(±1.98)

9.51

(±1.91)

9.35

(±1.93)

HYPE

24-h

11.52

(±3.05)

11.48

(±3.57)

11.56

(±2.03)

13.93

(±3.20)

12.84

(±4.00)

12.79

(±4.10)

15.71

(±3.83)

12.94

(±4.00)

13.14

(±4.03)

5.2 Technical Relevance

In this work we impartially evaluated different models and approaches for BP
prediction from PPG. Most of the methods have only been previously validated
on MIMIC. Also, due to the large volume of existing work, very often the models
were not compared against all available approaches. To the best of our knowl-
edge, this is also the first work to compare the scalogram, spectrogram and
feature extraction approaches. We employ strong cross validation methods to
make sure our results are robust. Our models and code are available openly to
make sure this results can be reproduced and also applied to similar datasets
when needed.

5.3 Limitations and Future Work

The major limitation of our work is related to the small size of the datasets
we used. For that reason, it was not possible to train a deep Long Short Term
Memory (LSTM) network, which in a few recent papers have demonstrated very
promising results [23]. In future work, we would like to extend our dataset with
more diverse patient populations and also with a longer observation period per
patient. We might consider data augmentation techniques as well. This will allow
us to apply more data-demanding learning algorithms and, at the same time, to
investigate how models trained in one population perform in a different one.
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6 Conclusion

In conclusion, we presented a comprehensive comparison of different machine
learning approaches to predict BP from PPG in two different datasets. We
demonstrate that despite the plethora of work in this area, there exists a dearth of
models that perform well in uncontrolled environments when the subjects indulge
in various day-to-day activities. To achieve a MAE (≤5 mmHg), which is consid-
ered good by the Association for the Advancement of Medical Instrumentation R©
(AAMI) [22] we still have a long way to go. Moreover, we showed that for small
to medium sized datasets feature extraction methods can produce better results
than the recent image based approaches. We hope our work will inspire others
to dig deeper into the generalizability and improve the accuracy of these models.

Acknowledgements. We would like to thank Manisha Manaswini, Felix Musmann,
Juan Carlos Niño Rodriguez, and Carolin Müller for their help during data collec-
tion and, also Harry Freitas da Cruz and Attila Wohlbrandt for giving many valuable
insights.

Appendix

A Data and Code Availability

The code for the experiments is available at: https://github.com/arianesasso/
aime-2020. Information on the HYPE dataset is also provided there. The EVAL
dataset can be found at: https://www.kaggle.com/mkachuee/noninvasivebp.

B Feature extraction

The features that were extracted from the PPG cycles are described in Table 4
and in Fig. 2 following the work of Kurylyak et al. [12].

Fig. 2. Extracted features from PPG

https://github.com/arianesasso/aime-2020
https://github.com/arianesasso/aime-2020
https://www.kaggle.com/mkachuee/noninvasivebp
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Table 4. Features extracted from PPG [12]. Here n ∈ {10, 25, 33, 50, 66, 75}

Name Description

SUT Systolic Upstroke Time

DT Diastolic Time

CP Cardiac Period

DWn Diastolic Width at n%
amplitude

SWn + DWn Sum of Systolic Width and
Diastolic Width at n%
amplitude

DWn/SWn Ratio between Systolic
Width and Diastolic
Width at n% amplitude

C Experiments

More information and details on the methods and experiments can be found at:
https://figshare.com/projects/AIME 2020/85166.
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Abstract. Respiratory complications due to coronavirus have claimed
hundreds of thousands of lives in 2020. Extracorporeal membrane oxy-
genation (ECMO) is a life-sustaining oxygenation and ventilation ther-
apy that may be used when mechanical ventilation is insufficient. While
early planning and surgical cannulation for ECMO can increase survival,
clinicians report the lack of a risk score hinders these efforts. We develop
the PEER score to highlight critically ill patients with viral or unspeci-
fied pneumonia at high risk of mortality in a subpopulation eligible for
ECMO. The score is validated across two critical care datasets, and pre-
dicts mortality at least as well as other existing risk scores.

Keywords: Mortality risk score · Pneumonia · COVID-19 · ARDS

1 Introduction

Coronavirus disease COVID-19 has infected millions globally. Many cases
progress from Severe Acute Respiratory Syndrome (SARS-CoV-2) with viral
pneumonia to acute respiratory distress syndrome (ARDS) to death. ECMO
can temporarily sustain patients with severe ARDS when mechanical ventila-
tion fails to facilitate with oxygenation via lungs. However, ECMO is costly
and applicable only for patients healthy enough to recover and return to a high
functional status.

While ECMO is more effective when planned in advance [7], applicable risk
scores remain unavailable [2,17]. This paper introduces the Viral or Unspecified
Pneumonia ECMO-Eligible Risk (PEER) Score, using measurements from the
time of would-be planning—early in the critical care stay. In contrast to existing
pneumonia risk scores [6,8,18,19], the PEER score targets those with viral or
unspecified pneumonia in the critical care setting, for a cohort potentially eligible
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for ECMO. Unspecified pneumonia is included since the infectious etiology of
pneumonia often cannot be determined, and it broadens the study population.

Though limited by geographic availability, ECMO usage has increased 4-fold
in the last decade [22]. COVID-19 guidelines suggest ECMO as a late option in
escalation of care for severe ARDS secondary to SARS-CoV-2 infection [1,17].
However, early epidemiological studies of coronavirus [27,30,31] have yet to
establish ECMO’s utility. A pooled analysis of four studies [13] showed mor-
tality rates of 95% with ECMO vs. 70% without, but the number of ECMO
recipients was small, and no studies described a protocol specifying indications
for ECMO.

To better understand the role of ECMO as a rescue for ventilation non-
responsive, SARS-CoV-2 ARDS, we study its broader use in ARDS. Treatment
guidelines suggest ECMO use in severe ARDS alongside other advanced ventila-
tion strategies [20,28], with the World Health Organization citing effectiveness
for ARDS and reducing mortality of the Middle East Respiratory Syndrome
(MERS). Despite these recommendations and allocated ECMO resources [22],
risk scores tailored to ECMO consideration are lacking. Our study addresses this
by drawing from viral and source unidentified cases of pneumonia that escalate
to critical care admissions, guided by the intuition that ARDS from these pneu-
monia are expected to better resemble COVID-19 ARDS than all-comer ARDS.

Related Work. There are a number of pneumonia [6,8,11,18,26], COVID-19
[9,10,15], hospitalization mortality [32], and ECMO risk scores [23], but none
center on the time of risk evaluation for ECMO candidacy. The pneumonia
and COVID-19 risk scores are assessed on populations with lower acuity, while
APACHE is not focused on respiratory illness. Our risk score is meant for use in
ECMO planning rather than predicting outcomes among patients already receiv-
ing ECMO. Registry-based studies have also compared SARS-CoV-2 outcomes
to that of other viral infections, including MERS, H1N1 flu, and seasonal flu. One
MERS-related ARDS study of critically ill patients demonstrated higher mor-
tality than those in studies on COVID-related ARDS, but may be attributed to
sicker patients at enrollment [4]. A similar H1N1 study reported lower mortality
(12–17%), albeit considering a younger population (average age 40) [3].

Physiologic concerns have also been raised about the use of ECMO for SARS-
CoV-2. One argues that while ECMO is primarily beneficial for respiratory recov-
ery, a spike in all-cause death but not ARDS-related death could indicate a lim-
ited role of ECMO [14]. Others point out that COVID-associated lymphopenia
might be exacerbated by ECMO-induced lymphopenia which could mechanis-
tically affect a healthy immune response to infection. Inflammatory cytokines
and specifically interleukin 6 elevation is associated with COVID-19 mortality
and rises with the use of ECMO [5,13]. These expert voices do not argue for the
avoidance of ECMO, but rather call for additional study.
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2 Data

The eICU Collaborative Research Database [21] contains 200,859 admissions to
intensive care units (ICU) across multiple centers in the United States between
2014 and 2015. The MIMIC-III clinical database [16] consists of data from 46,476
patients who stayed in critical care units of the Beth Israel Deaconess Medical
Center between 2001 and 2012. Model development and in-domain validation
primarily use data from eICU, and out-of-domain validation uses MIMIC-III.

Cohort Selection. Inclusion criteria for the study cohort are delineated in
Fig. 1. The population of interest is among patients with viral or otherwise
unspecified non-bacterial, non-fungal, non-parasitic, and non-genetic pneumo-
nia. While there are no absolute contraindications of ECMO, the therapy is
reserved for patients likely to have functional recovery. Patients over 70 years
old would not be good candidates for ECMO, and SARS-CoV-2 pneumonia pro-
gressing to hypoxic respiratory failure is exceedingly rare in patients under 18.
Other relative contraindications to ECMO are also listed in Fig. 1. We select the
first ICU stay within each patient’s hospital stay, and exclude patients who died
or were discharged within the first 48 h of being admitted. This is done to focus
on the stage of critical care after initial entry when lower-risk oxygen supplemen-
tation strategies (e.g., ventilation) are being performed, and, methodologically,
to provide a richer set of features for prediction. Table 1 and Appendix Table 4
summarize characteristics of the cohorts.

Data Extraction. The study cohorts are extracted using string matching on
diagnosis codes and subsequent clinician review. Features are merged through a
process of visualization, query, and physician review. This includes harmonizing
feature units, removing impossible values, and merging redundant data fields.
Additional details are in AppendixB. All features are combined into a fixed-
length vector, using the most recent value prior to 48 h after ICU admission.
Before imputation, approximately half of the features had missingness below 5%,
and 80% of the features had missingness below 30%, however multiple variables
had high missingness (AppendixB). Missing values are imputed using MissForest
[25], which we find PEER is insensitive to (AppendixB).

Features. Features are extracted from demographics, comorbidities, vitals,
physical exams, and lab findings routinely collected in critical care settings.
Numerical features are normalized, and categorical features are converted with
dummy variables. All variables in Tables 1 and 4 are provided to the model.

Outcomes. Our primary outcome of interest is in-ICU mortality. Secondary
outcomes indicating decompensation are vasopressor use and mechanical venti-
lation use. For each outcome, we define the time to event as the time to first
outcome or censorship, where censorship corresponds to discharge from the ICU.
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3 Methods

Lasso-Cox. To predict patient survival, we use the Cox proportional hazards
model with L1 regularization, referred to as Lasso-Cox [24]. Lasso-Cox is chosen
for its ease of interpretation and calculation, owing to its selection of sparse
models.1 For a patient with covariates x ∈ R

d, the predicted log hazard is β�x,
(higher hazard implies shorter survival time), where β ∈ R

d are coefficients that
can be interpreted as log hazard ratios. L1 regularization λ

∑d
j=1 |βj | is used to

encourage sparsity in β, where λ > 0 is a user-specified hyperparameter.

Table 1. Demographics and outcomes of patients with viral or unspecified pneumonia
in eICU and MIMIC-III cohorts. Data are median (Q1–Q3) or count (% out of n).

Variable eICU (n = 3617) MIMIC (n = 937)

Demographics Age, years 58.0 (48.0–64.0) 54.5 (44.1–62.7)

18–30 225 (6.2%) 83 (8.9%)

30–39 277 (7.7%) 94 (10.0%)

40–49 500 (13.8%) 159 (17.0%)

50–59 1064 (29.4%) 281 (30.0%)

60–70 1546 (42.7%) 320 (34.2%)

Male 1949 (53.9%) 542 (57.8%)

Female 1663 (46.0%) 395 (42.2%)

Out. Deceased 270 (7.5%) 94 (10.0%)

Vasopressors administered 589 (16.3%) 389 (41.5%)

Ventilator used 1835 (50.7%) 758 (80.9%)

Evaluation Metrics. To evaluate model performance, we consider concordance
and calibration. Concordance (c-index) is a common measure of goodness-of-fit
in survival models [12], defined as the fraction of pairs of subjects whose survival
times are correctly ordered by a prediction algorithm, among all pairs that can
be ordered. Confidence intervals are computed using 1000 bootstrapped samples.
We evaluate calibration by plotting the Kaplan-Meier observed survival prob-
ability versus the predicted survival probability. We construct our calibration
plots (Fig. 3) [29] with 1000 bootstrap resamplings for internal calibration. Both
internal and external calibrations use 5 groups for 7 days.2

Experimental Setup. The eICU cohort is divided into a training set (70% of
the data, n = 2537) and test set (30%, n = 1080). The eICU training set is used for
model development, whereas the eICU test set and entirety of the MIMIC cohort
1 We also tried the Cox model with elastic-net regularization (combined L1 and L2

regularization) but found little to no gain in cross-validation concordance.
2 We plot at day 7 instead of 30 because censorship level is too high beyond a week.
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are used for model evaluation. Throughout our evaluation, we compare our risk
score (PEER) to three pneumonia risk scores: CURB-65 [26], PSI/PORT [8],
and SMART-COP [6]; and one COVID-19 risk score: GOQ [10].

Model Selection. We select λ via 10-fold cross validation and grid search on
the eICU training set to maximize concordance subject to sufficient sparsity. We
observe that λ = 0.01 gives the best trade-off between concordance (0.73) and
number of features selected (18), as a 0.01 increase in concordance corresponds
to 10 additional non-zero features. To check the stability of this hyperparameter
choice, we impute our data using ten random seeds and run 10-fold cross vali-
dation on the resulting datasets. Across all runs, λ = 0.01 achieves concordance
of approximately 0.73 and selects similar features and coefficients. Additional
details about grid search, the concordance and sparsity tradeoff, and robust
selection of coefficients can be found in AppendixB. Code for data extraction
and all model results is available at https://github.com/hlzhou/peer-score.

Viral/ unspecified 
pneumonia patients 

(n=17,390)

Included (n=9,500)

Excluded (n=7,890)
patients over 70, 

under 18, or not reported

Excluded (n=2,882)
patients with surgery, stroke,

intracranial hemorrhage,
cancer, liver disease, renal

failure, congestive heart failureIncluded (n=6,618)

ICU stays from 
eICU database 

(n=200,859) Excluded (n=183,469)
non-pneumonia and

bacterial pneumonia visits

Excluded (n=530)
ICU stays after the 
patient's first one

Cohort used in study
(n=3,617)

Excluded (n=2,471)
patients discharged 
in the first 48 hours

Included (n=6,088)

(a) eICU cohort selection

Viral/ unspecified 
pneumonia patients

(n=4,572)

Included (n=2,348)

Excluded (n=2,224)
patients over 70 

or age not reported

Excluded (n=945)
patients with surgery, stroke,

intracranial hemorrhage,
disseminated intravascular

coagulation, liver disease, renal
failure, congestive heart failureIncluded (n=1,403)

ICU stays from 
MIMIC database 

(n=46,476)

Included (n=967)

Excluded (n=41,904)
non-pneumonia and

bacterial pneumonia visits

Excluded (n=436)
ICU stays after the patient's 

first one and patients
discharged in the first 48 hours

Cohort used in study
(n=937)

Excluded (n=30)
patients under 18

(b) MIMIC-III cohort selection

Fig. 1. Inclusion and exclusion criteria for cohorts extracted from eICU and MIMIC.
Disseminated intravascular coagulation was highly missing from eICU.

https://github.com/hlzhou/peer-score
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4 Results

The hazard ratios from Lasso-Cox with λ = 0.01 are displayed in Table 2. For
easy calculation of the PEER score, we also provide a nomogram (Fig. 2)3.

The PEER score achieves concordance greater than or comparable to that
of existing risk scores on all datasets (Table 3). On the eICU test set, PEER
achieves the highest concordance among the risk scores, 0.77. On MIMIC, the
maximum concordance degrades to 0.66, achieved by PEER and SMART-COP.
The PEER calibration curves (Fig. 3) show one high risk group separate from
low risk groups. While predicted survival of the high risk group is overestimated
in the training set, it is within confidence intervals in both test sets.

We define low and high risk subpopulations by thresholding our model’s
predicted risks on the training set at the 90th percentile. Each group’s Kaplan-
Meier survival curves are plotted over a 30-day period (Fig. 4). For the first week,
the low and high risk curves are clearly distinct (Fig. 4), with respective survival

Table 2. Hazard ratios (HR) for the Lasso-Cox model, i.e. the PEER score. HR and
95% confidence intervals (CI) are reported on normalized data. Means and standard
deviations used for scaling are included for reference.

Feature HR (95% CI) Mean Std. dev.

Age (years) 1.22 (1.04–1.43) 54.5 12.5

Heart rate (beats per minute) 1.13 (0.984–1.3) 89.4 17.8

Systolic blood pressure (mmHg) 0.928 (0.755–1.14) 122 22

Diastolic blood pressure (mmHg) 0.996 (0.745–1.33) 67.7 15.1

Mean arterial pressure (mmHg) 0.926 (0.673–1.27) 83.7 17.9

Glasgow Coma Scale 0.93 (0.803–1.08) 11.3 3.26

White blood cells (thousands/µL) 0.984 (0.871–1.11) 12.9 8.91

Platelets (thousands/µL) 0.924 (0.79–1.08) 208 108

Red blood cell dist. width (%) 1.24 (1.08–1.43) 15.8 2.47

Neutrophils (%) 0.972 (0.853–1.11) 79.1 13

Blood urea nitrogen (mg/dL) 1.07 (0.937–1.23) 25.1 19.5

Aspartate aminotransferase (units/L) 1.12 (1.06–1.18) 143 774

Direct bilirubin (mg/L) 1.03 (0.935–1.13) 0.385 0.816

Albumin (g/dL) 0.954 (0.82–1.11) 2.65 0.636

Troponin (ng/mL) 1.06 (0.985–1.14) 1.07 3.85

Prothrombin time (sec) 1.05 (0.909–1.2) 16.6 6.75

pH 0.856 (0.75–0.977) 7.38 0.0713

Arterial oxygen saturation (mmHg) 0.787 (0.723–0.856) 95.8 4.12

3 To compute risk, look up a patient’s values in the nomogram, match it to points
listed across the top, add them up, and look up the total in the scale across the
bottom.
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Fig. 2. Nomogram for manual calculation of the PEER score.

proportions 0.68 and 0.95 on eICU test, and 0.75 and 0.95 on MIMIC. Beyond the
first week, censorship grows quickly and there is less data, resulting in increased
uncertainty. Compared to low and high risk curves derived from related risk
scores, those of the PEER score are the most separated (Appendix B). Secondary
indicators of decompensation (i.e. ventilator and vasopressor use) are also more
common in the high risk group than the low risk group (Fig. 5).

Table 3. Concordances (and 95% confidence intervals) of the PEER score, CURB-65,
PSI/PORT, SMART-COP, and GOQ.

Score Train eICU Test eICU MIMIC

PEER (ours) 0.77 (0.72–0.81) 0.77 (0.69–0.83) 0.66 (0.57–0.74)

CURB-65 [26] 0.66 (0.61–0.70) 0.62 (0.55–0.69) 0.59 (0.52–0.66)

PSI/PORT [8] 0.71 (0.66–0.76) 0.71 (0.63–0.78) 0.62 (0.55–0.69)

SMART-COP [6] 0.69 (0.64–0.73) 0.73 (0.67–0.80) 0.66 (0.59–0.72)

GOQ [10] 0.67 (0.63–0.71) 0.62 (0.54–0.70) 0.58 (0.50–0.66)
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[Train eICU] [Test eICU]

[MIMIC]

Fig. 3. Calibration plots with 95% confidence intervals.

Fig. 4. Kaplan-Meier survival curves of high vs. low risk groups in train eICU, test
eICU, and MIMIC. Shaded regions are the 95% confidence intervals.

(a) vasopressor (b) ventilator

Fig. 5. Proportion of each subgroup that received vasopressors or ventilators.
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Table 4. Summary characteristics per cohort, with median (Q1–Q3) or count (% of n).

Variable eICU (n = 3617) MIMIC (n = 937)

Physical exam

findings

Orientation

Oriented 1121 (31.0%) 411 (43.9%)

Confused 1287 (35.6%) 76 (8.1%)

Temperature (◦C) 36.9 (36.6–37.3) 37.2 (36.6–37.7)

Heart rate (beats per minute) 89.0 (77.0–101.0) 90.0 (78.0–104.0)

Respiratory rate (breaths per minute) 20.0 (17.0–25.0) 20.0 (16.0–25.0)

Systolic blood pressure (mmHg) 120.0 (106.0–136.0)118.0 (104.0–134.0)

Diastolic blood pressure (mmHg) 66.0 (57.0–76.0) 63.0 (54.0–72.0)

Mean arterial pressure (mmHg) 81.0 (72.0–93.0) 79.0 (71.0–90.0)

Glasgow Coma Scale 14.0 (10.0–15.0) 14.0 (9.0–15.0)

Laboratory

findings

(Abbrevations:

Coagulation as

Coag. and

Blood Gas as

B.G.)

HemotologyRed blood cells (millions/µL) 3.5 (3.0–4.0) 3.4 (3.0–3.8)

White blood cells (thousands/µL) 11.0 (7.9–15.6) 11.0 (8.0–15.1)

Platelets (thousands/µL) 193.0 (136.0–261.0)199.0 (128.8–276.0)

Hematocrit (%) 31.1 (27.2–35.6) 30.2 (27.0–33.6)

Red blood cell dist. width (%) 15.2 (14.0–16.8) 14.8 (13.8–16.4)

Mean corpuscular volume (fL) 90.4 (86.0–95.0) 89.0 (85.0–93.0)

Mean corpuscular hemoglobin/ MCH (pg)29.7 (27.9–31.2) 30.2 (28.7–31.6)

MCH concentration (g/dL) 32.7 (31.7–33.6) 33.8 (32.8–34.8)

Neutrophils (%) 82.0 (73.3–89.0) 82.3 (73.8–88.5)

Lymphocytes (%) 8.4 (5.0–14.0) 9.5 (5.8–15.7)

Monocytes (%) 6.0 (3.7–8.6) 4.0 (2.7–5.9)

Eosinophils (%) 0.1 (0.0–1.0) 0.4 (0.0–1.2)

Basophils (%) 0.0 (0.0–0.3) 0.1 (0.0–0.3)

Band cells (%) 8.0 (3.0–17.0) 0.0 (0.0–5.0)

Chemistry Sodium (mmol/L) 139.0 (136.0–142.0)139.0 (136.0–142.0)

Potassium (mmol/L) 3.9 (3.6–4.3) 3.9 (3.6–4.3)

Chloride (mmol/L) 105.0 (101.0–109.0)105.0 (101.0–109.0)

Bicarbonate (mmol/L) 25.0 (22.0–28.0) 26.0 (23.0–29.0)

Blood urea nitrogen (mg/dL) 19.0 (12.0–33.0) 17.0 (11.0–28.0)

Creatinine (mg/dL) 0.8 (0.6–1.4) 0.8 (0.6–1.3)

Glucose (mg/dL) 131.0 (105.0–165.0)124.0 (104.5–151.5)

Aspartate aminotransferase (units/L) 30.0 (19.0–57.0) 37.0 (22.0–70.0)

Alanine aminotransferase (units/L) 27.0 (16.0–47.0) 28.0 (18.0–52.0)

Alkaline phosphatase (units/L) 84.0 (62.0–117.0) 85.0 (62.0–121.0)

Direct bilirubin (mg/L) 0.2 (0.1–0.5) 0.6 (0.2–2.2)

Total bilirubin (mg/L) 0.5 (0.3–0.8) 0.6 (0.4–1.1)

Total protein (g/dL) 6.0 (5.3–6.7) 6.1 (5.3–7.0)

Calcium (mg/dL) 8.2 (7.7–8.6) 8.2 (7.8–8.6)

Albumin (g/dL) 2.6 (2.2–3.1) 3.0 (2.6–3.5)

Troponin (ng/mL) 0.1 (0.0–0.2) 0.0 (0.0–0.3)

Coag. Prothrombin time (sec) 14.5 (12.7–16.7) 13.9 (13.0–15.3)

Partial thromboplastin time (sec) 33.0 (28.5–41.0) 30.2 (26.6–36.9)

B.G. pH 7.39 (7.33–7.43) 7.41 (7.36–7.45)

Partial pressure of oxygen (mmHg) 83.0 (68.0–111.0) 97.0 (73.5–127.5)

Arterial oxygen saturation (mmHg) 96.0 (94.0–99.0) 97.0 (95.0–98.0)

5 Discussion

The PEER score achieves greater or comparable concordance to baselines on the
eICU (in-domain) and MIMIC (out-of-domain) test sets. Lasso-Cox selects 18
features, making for easy computation. Qualitatively, the score is consistent with
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clinical intuition. SaO2, associated with poorer oxygenation status, is predictive
of decompensation. Old age is predictive of death. Red blood cell distribution
width, associated with expanded release of immature red blood cells in response
to insufficient oxygen delivery to tissues, is also a strong risk factor for death with
COVID-19 [9]. However, the hazard ratios themselves should be interpreted with
caution as three variables (pH, prothrombin time, and age) violate the propor-
tional hazards assumption, and L1 regularization shrinks coefficients towards 0.

Stratifying each cohort into high and low risk subpopulations based the
PEER score, we observe a clear separation in their survival curves (Fig. 4) across
all three datasets. Additionally, secondary indicators of decompensation (e.g.
vasopressor and ventilator use) are more prevalent in the high risk group (Fig. 5).
Calibration plots for PEER also show a high risk group separated from the rest
(Fig. 3). While the survival probability of the high risk group is overestimated
on the eICU training set, it is within error bars on all test sets.

For ECMO allocation, practically, accurate ranking of risk, as measured by
concordance, may be more important than the precise probabilities predicted.
The PEER score outperforms other risk scores on the eICU test set, but there
is a decline in performance on the MIMIC test set, and the performance of
PEER becomes comparable to that of SMART-COP. One possible reason for this
decline is that in MIMIC, an important feature for PEER, the arterial oxygen
saturation (SaO2), has 72.6% missingness. In contrast, it has 1.5% missingness
in eICU. This demonstrates the importance of thinking critically about how our
risk score, which was trained on the eICU cohort and depends on 18 specific
features, generalizes to the population to which the score is being applied.

Limitations and Future Work. Importantly our cohort is defined not by
COVID-19 positive pneumonia patients but instead by viral or unspecified pneu-
monia patients who are ECMO-eligible. While our risk score demonstrates good
discriminative ability and is interpretable, there are several additional decision-
making considerations beyond the scope of this paper. Clinicians interested in
applying the risk score to COVID-19 pneumonia should consider how represen-
tative this population is of their own. Because ECMO is a constrained resource,
there are also ethical questions about who should get treatment. This risk score
does not attempt to address these questions, but simply provides relevant infor-
mation to those making such decisions. More broadly, we hope to provide this risk
score as a potential resource for future SARS-like diseases that require ECMO
consideration.

A Summary Characteristics

B Extended Version

Additional details can be found at https://arxiv.org/abs/2006.01898.

https://arxiv.org/abs/2006.01898
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Abstract. Electronic health records (EHRs) contain both ordered and
unordered chronologies of clinical events that occur during a patient
encounter. However, during data preprocessing steps, many predictive
models impose a predefined order on unordered clinical events sets (e.g.,
alphabetical, natural order from the chart, etc.), which is potentially
incompatible with the temporal nature of the sequence and predictive
task. To address this issue, we propose DPSS, which seeks to capture each
patient’s clinical event records as sequences of event sets. For each clin-
ical event set, we assume that the predictive model should be invariant
to the order of concurrent events and thus employ a novel permutation
sampling mechanism. This paper evaluates the use of this permuted sam-
pling method given different data-driven models for predicting a heart
failure (HF) diagnosis in subsequent patient visits. Experimental results
using the MIMIC-III dataset show that the permutation sampling mech-
anism offers improved discriminative power based on the area under the
receiver operating curve (AUROC) and precision-recall curve (pr-AUC)
metrics as HF diagnosis prediction becomes more robust to different data
ordering schemes.

Keywords: Clinical event sequences · Set learning · Diagnostic
prediction

1 Introduction

Using the growing amounts of electronic health record (EHR) data, increasing
attention has been paid to using data-driven machine learning (ML) methods
for a range of classification and predictive tasks, including disease phenotyp-
ing and risk stratification [4,15]. Implicit to these ML-based approaches are a
data representation that embodies the temporal nature of such data. One chal-
lenge of modeling clinical event data is to learn the representation that aligns
with medical knowledge [6,8,19], where events (i.e., laboratory results, medi-
cations, diagnoses, etc.) can be extracted from time-stamped EHRs and other
c© Springer Nature Switzerland AG 2020
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health-related information, such as claims data. However, many studies mod-
eling such data fail to fully capture the nature of clinical events. For instance,
studies modeling claim code sequences only consider temporality between visits,
absent of within-visit dynamics [25] that contain essential contextual informa-
tion. While other approaches utilizing time-stamped EHR events incorporate
sequential order within-visit [12,20], they model a patient’s medical history as
a fully ordered event sequence despite the fact that the sequence may contain
unordered event sets when multiple events happen concurrently (i.e., sharing the
same timestamp). An arbitrary ordering (e.g., random, alphabetical, etc.) is usu-
ally imposed on each event set during data preprocessing to establish a “struc-
tured” input (e.g., matrices, vectors or tensors) used in different ML models,
including contemporary deep learning methods. Consequently, models trained
on the corresponding data can be sensitive to the input sequence order as they
assume elements from each input sequence to be strictly ordered [30].

The partially-unordered nature of event sequences in the EHR calls for
permutation-invariant models: the prediction based on a patient’s medical his-
tory should not be affected when the order of concurrent events is changed. In
this study, we propose DPSS (Diagnostic Prediction with Sequence-of-Sets), an
end-to-end deep learning architecture that incorporates set learning techniques
[32] to model event sequences to support downstream diagnostic prediction. DPSS
first introduces a permutation sampling technique on each set of concurrent clin-
ical events. A self-attentive gated recurrent unit (GRU) model is then deployed
on top of the permutation samples to characterize multiple sets of concurrent
events in a patient visit history and correspondingly estimates the risk of spe-
cific diseases. To characterize the contextual features of a clinical event, DPSS also
pre-trains an embedding model on a collection of unlabeled event sequences. The
key contributions of DPSS are threefold: 1) an end-to-end framework modeling
clinical temporal event sequences as sequences of sets (SoS) for next-visit disease
code prediction, with the ability to capture the temporal patterns within each
clinical visit; 2) a permutation-invariant prediction mechanism made possible
by introducing a permutation sampling technique on SoS; and 3) a demonstra-
tion of the utility of a weighted loss function with additional regularization term
enforcing permutation-invariant representation of SoS, which further improves
the model predictive performance when using permuted sequences. In this way,
DPSS is able to represent clinical event data as sequences of sets that are more
consistent with the nature of clinical documentation processes.

We evaluate our proposed framework on a binary prediction task for next-
visit diagnostic code prediction of heart failure (HF) using laboratory and diag-
nostic code data from the MIMIC-III dataset [16]. Our experimental results
show that approaching clinical event sequence representation from a set learn-
ing perspective with permutation sampling more accurately characterizes the
underlying disease dynamics and achieves better disease predictive performance.
Techniques such as permutation sampling, sequence Laplacian regularization,
and self-attention promote permutation invariance and contribute to robustness
against different ordering schemes for concurrent events.
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2 Related Work

Deep Learning on Clinical Event Sequences. Deep learning models, partic-
ularly variants of recurrent neural networks (RNN), have achieved some success
in modeling sequential data for predictive tasks such as readmission and disease
risk [1,6,7,12,31]. Early efforts in clinical event sequence representation learn-
ing focus on constructing low-dimensional representations of medical concepts
through word embedding algorithms proposed for natural language processing
(NLP) [10,31]. Key works improved concept embedding by incorporating EHR
structures [5,6,8,9] and medical ontologies [29] to capture the inherent relations
of medical concepts. More recent methods seek to utilize temporal informa-
tion, instead of using the indexed ordering, to better characterize chronologies
[2,20,26,28]. Still, these aforementioned models mostly assume a fixed tempo-
ral order among sequence elements as they serve as inputs, which can cause
discrepancies when modeling inputs containing unordered elements.

Deep Set Learning. Characterizing heterogeneous feature sets was investi-
gated for applications in point cloud analysis [21,27,32,33] and graph mining
[13,23]. Essentially, a permutation-invariant function is needed for set learning
to overcome the limitations of sequence models that are permutation-sensitive
[24]. Some of these and other works [24,27,32] propose to compress sets of any
size into a feature vector using a permutation-invariant pooling operation (e.g.,
sum/mean/max pooling), although such operations are prone to losing infor-
mation contained in a feature set [33]. In contrast, permutation sampling-based
methods [21,33] and attention-based methods [18] aim to resolve this issue. For
example, Meng et al. [21] specifically use permutation sampling in a hierarchi-
cal architecture and concatenation to integrate set element embedding when
modeling the structure as a set of sets.

Despite the partially-unordered nature of medical events, only a few studies
[25] have been conducted to model clinical event sequences as sequence of sets
using a permutation-invariant pooling method. There remains a lack of inves-
tigation in the use of permutation sampling strategies on corresponding tasks
with EHR-based data, which is the focus of this paper.

3 Method

In this section, we first present the design of the proposed framework, DPSS,
for next-visit diagnostic code prediction. Figure 1 illustrates the architecture of
DPSS and its three components: 1) a pre-trained lab event embedding layer; 2)
an event sequence handler with a permutation sampling mechanism for event
sets; and 3) a self-attentive GRU predictor for diagnostic code classification.

3.1 Preliminary

We use E to denote the vocabulary of lab events, and P to denote the set of
patient visit histories. A patient’s visit history in the EHR is defined as a concate-
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nation of lab event sets S = [st1 ⊕st2 ⊕ ...⊕stn
] ∈ P , where each set contains lab

events with samples collected at the same time tk, stk
= {e1tk

, e2tk
, ..., em

tk
∈ E}.

The goal of the diagnostic code prediction task is to provide a regression model
to estimate the risk of developing a disease for a patient given the visit history
S before the most recent visit. In this case, our goal is to predict codes related
to HF.

Multilayer perceptron

HF 
prediction

Self-attention

GRU layer

Self-attention

Embedding layer

GRU layer
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Fig. 1. Illustration of DPSS architecture

3.2 The DPSS Framework

Our DPSS framework sequentially incorporates three components to characterize
and perform prediction on a given patient’s visit history. We first pre-train a lab
event embedding model on a large collection of unlabeled historical lab event
sequences, which seeks to capture the contextual similarity of lab events. Next,
with this pre-trained embedding representing the latent features of each lab
event, the permutation sampling process then generates permutations for each
event set in the visit history. Lastly, a downstream predictor is trained on the
permutation-sampled data, learning to predict the risk for a specific disease
while preserving the permutation invariance of concurrent events. Details of each
model component is described as follows.

Pre-trained Lab Event Embeddings. To encode the non-numerical rep-
resentations of lab events into numerical representations, we first conduct a
pre-training process to obtain an embedding of LOINC codes. We trained a
skip-gram language model [22] on a collection of unlabeled lab event sequences
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with the objective of representing the contextual similarity of lab events in a
continuous vector space (obtained by minimizing log likelihood loss):

LSG = − 1
|P |

∑

seq(S)∈P

∑

−C<j<C

log p(ep+j |ep).

such that seq(S) is a temporally-ordered sequence of a visit history S, and where
events in each concurrent set are arbitrarily ordered. Specifically, we extract lab
event sequences (from MIMIC-III) as partially-unordered sequences to train the
embedding model. ep is the embedding vector of the t-th event et ∈ seq(S), ep+j

is that of a neighboring event, and C is the size of half context.1

Permutation Sampling. Rather than training a decision making model on
fixed sequences, the learning objective of DPSS is to make consistent decisions
even if such events may be observed in different orders; in our case, this may be
dependent on any number of factors as to how an EHR records the data. Inspired
by the recent success of deep set learning on point clouds [21,24,27,32], we intro-
duce a permutation sampling strategy for patient visit histories. The principle
of this process is to generate event sequences from a given patient’s visit history
such that events in a concurrent event set will be randomly ordered in each
training epoch, while the sequential order across event sets remain unchanged.
In detail, given a set of events s, we denote π(s) as the set of its permutations. A
permutation sample of a visit history S is a sequence Sπ ∈ π(S) = {⊕n

i=1 π(sti
)}

that is obtained by sequentially concatenating a permutation of each concurrent
event set in S. Specifically, π(S) denotes the universal set of permutation samples
for S. Based on this sampling strategy, the event sequence encoder introduced
next follows an end-to-end learning process for predicting the target diseases,
while remaining invariant to the order of concurrent events in a patient visit
history.

Self-attentive GRU Encoder. We use Sπ = [e1, e2, ..., el] to denote an input
vector sequence corresponding to an embedded lab event sequence after the
permutation sampling process of the visit history, S. The self-attentive gated
recurrent unit (GRU) encoder couples two techniques to represent the embedding
representation of the permutation sampled visit history vSπ

= A(Sπ).
The GRU is an alternative to a long-short-term memory network (LSTM) [3],

which consecutively characterizes sequential information without using separated
memory cells [11]. Each unit consists of two types of gates to track the state of
the sequence, a reset gate rp and an update gate zp. Given the embedding vector
ep of an incoming event, the GRU updates the hidden state h(1)

p of the sequence
as a linear combination of the previous state, h(1)

p−1, and the candidate state, h̃(1)
p

1 The context of a skip-gram refers to a subsequence of an ordered event sequence
seq(S) such that the subsequence is of 2C + 1 length.
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of a new event ep, calculated as follows:

h(1)
p = GRU(vp) = zp � h̃(1)

p + (1 − zp) � h(1)
p−1

zp = σ
(
Mzvp + Nzh

(1)
p−1 + bz

)

h̃(1)
p = tanh

(
Msvp + rp � (Nsh

(1)
p−1) + bs

)

rp = σ
(
Mrvp + Nrh

(1)
p−1 + br

)
.

where � denotes the element-wise multiplication. The update gate zp balances
the information of the previous sequence and the new item, where M∗ and
N∗ denote different weight matrices, b∗ are bias vectors, and σ is the sigmoid
function. The candidate state h̃(1)

p is calculated similarly to those in a traditional
recurrent unit, and the reset gate rp controls how much information of the past
sequence contributes to h̃(1)

p .
Atop the GRU hidden states, the self-attention mechanism seeks to learn

attention weights that highlight the clinical events that are important to the
overall visit history. This mechanism is added to GRU as below:

ui = tanh
(
Mah

(1)
i + ba

)
; ai =

exp
(
u�

i uSπ

)
∑

xi∈Sπ
exp

(
u�

i uSπ

) ; A(Sπ) = vSπ =
l∑

i=1

aiui

where ui is the intermediary representation of GRU output h(1)
i . uX =

tanh(Mah
(1)
X + ba) is the intermediary latent representation of the averaged

GRU output h(1)
X and can be interpreted as a high-level representation of the

entire input sequence. By measuring the similarity of each ui with uX , the nor-
malized attention weight ai for h(1)

i is produced through a softmax function. The
final embedding representation vSπ

of the visit history is then obtained as the
weighted sum of the intermediary representation for each event in the sequence
Sπ.

Learning Objective. A multi-layer perceptron (MLP) with sigmoid activation
is applied to the previous embedding representation of the visit history, whose
output ĉSπ is a scalar that indicates the risk of the target disease. The learning
objective is to optimize the loss function defined below.

L = − 1

|P |
∑
S∈P

1

|π(S)|
∑

Sπ∈π(S)

xS log σ(ĉSπ ) + (1 − xS) log (1 − σ(ĉSπ )) + λ ‖vSπ − vS‖

The main loss function uses binary cross-entropy, where xS ∈ {0, 1} is the
training label indicating if the disease code exists in the disease code list from
the next patient visit stn+1 . Optimizing for the main loss enforces predictions
to be invariant to the input within-set order. The last term of the loss function
corresponds to a graph Laplacian regularization term, where λ is a small posi-
tive coefficient. Notably, this regularization term teaches the self-attentive GRU
encoder to generate similar representations for different permutation samples of
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the same visit history record, and helps differentiate such representations from
those of unrelated records in the embedding space. We show below that this reg-
ularization mechanism is able to improve the prediction accuracy of the target
disease in various experiments.

4 Experiments

We hereby evaluate DPSS on the next-visit HF diagnosis prediction task.

4.1 Dataset

We evaluated DPSS using data from MIMIC-III [16], a publicly available clinical
dataset associated with patients admitted to critical care units of Beth Israel
Deaconess Medical Center between 2001 and 2012. MIMIC-III contains records
from different sources including demographics, lab results, medications, CPT
(Current Procedural Terminology) procedures, and ICD-9 (International Classi-
fication of Diseases) diagnostic codes. The within-visit temporal information for
diagnostic and procedure codes is not available in MIMIC-III as they are only
specific to a patient visit; and while medications are tagged with timestamps,
they are recorded with a duration (i.e., start and end times), which poses fur-
ther challenges on determining the relative ordering between medication and lab
events. To simplify our task, we choose to model only lab event sequences as
they are less vague with respect to temporal ordering when defined as sequence
of sets. Specifically, the timestamp recorded for lab events in MIMIC-III indi-
cates sample acquisition time so a set of lab events with shared timestamps
inform patient status at a given time point.

To perform next-visit HF diagnosis prediction, we extracted 7,235 sequences
of abnormal lab events for adult (age ≥ 18) patients with at least two hospital
admissions from the MIMIC-III dataset by concatenating all abnormal lab events
from each visit history. These sequences, each representing a unique patient, are
divided into training (75%, 5,426 patients), validation (12.5%, 904 patients) and
test (12.5%, 905 patients) datasets. Based on the existence of the level 3 ICD-
9 code representing HF, 428, in the diagnostic codes of the most recent visit,
we identified a total of 2,495 HF cases.We used LOINC codes as the lab event
ontology, with 187 unique codes present in our data. During data preprocessing,
all eligible event codes for a patient are extracted by patient ID and admission
ID matching, sorted by chart time. Concurrent events during the same patient
admission are usually imposed with an arbitrary order (e.g., random or alpha-
betically ordered event codes) when inputted as part of the sequence.

4.2 Experimental Configuration

We set the pre-trained skip-gram embedding model on LOINC codes with a con-
text size of 5 and dimensionality of 256. For all reported models, we use the Adam
optimizer [17] with a learning rate of 0.001. For each model variant or baseline,
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we select hyperparameters that lead to the lowest validation loss during training
for testing, with the maximum number of epochs set to 100. Training may also
be terminated before 100 epochs based on early stopping with a patience of 10
epochs on the validation area under the receiver operator characteristic curve
(AUROC) metric. The best combination of GRU layer dimension (candidate
values from {64, 128, 256, 512}) and sequence length (candidate values: {128,
256, 512}) is selected based on the AUROC score on the validation set.

We compared the proposed method with the following baseline methods: 1)
GRU, a single-layer GRU, as defined in Sect. 3.2; 2) self-attentive GRU, a GRU
model incorporating the self-attention mechanism; and 3) Pooling GRU, follow-
ing previous work [25,32], we apply a sum-pooling based or a max-pooling based
set function on the set element embedding to acquire a permutation invariant
feature aggregation. To show the effects of different model components of DPSS,
we also evaluate different variants of DPSS, where we remove the sequence Lapla-
cian regularization or self-attention.

4.3 Results

Experiments for baseline models and DPSS are each evaluated on the same hold-
out test set. We repeated the evaluations 10 times to calculate 95% confidence
intervals (CIs) for test AUROC and pr-AUC. Table 1 summarizes test perfor-
mance of the baseline models and DPSS.

Table 1. Model comparison on next-visit HF risk prediction using MIMIC-III data

Method AUROC (95% CI) pr-AUC (95% CI)

GRU 0.7421(±0.00331) 0.6133(±0.00564)

Self-attentive GRU 0.7405(±0.0034) 0.6386(±0.0074)

Sum-pooling GRU 0.7070(±0.00101) 0.5839(±0.00173)

Max-pooling GRU 0.6954(±0.00116) 0.5730(±0.00361)

DPSS w/o self-attention& Sequence Laplacian 0.7741(±0.00277) 0.6659(±0.00615)

DPSS w/o Sequence Laplacian 0.7748(±0.00176) 0.6752(±0.00309)

DPSS 0.7766(±0.00185) 0.6801(±0.00453)

DPSS significantly outperforms the other models in terms of AUROC and
pr-AUC metrics. By comparing all of our permutation sampling based model
variants with the baseline, we show that the effectiveness of addressing the
partially-unordered nature through a permutation sampling mechanism. Specif-
ically, being able to model within-set element interactions, DPSS is shown to
be more suitable for modeling lab events as a sequence of sets compared to
other permutation-invariant aggregation methods like sum- and max-pooling,
with improvements of 9.8% and 11.7% in AUROC, 16.5% and 18.7% in pr-
AUC, respectively and relatively. Comparing DPSS variants, we also see that
sequentially adding the self-attention mechanism and the sequence Laplacian for
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permutation-invariant regularization boosted the model’s discriminative power,
with greater improvement observed in pr-AUC, which is a metric that considers
the model’s ability to cope with imbalanced data [8]. As for the impact of the
self-attention mechanism, when added to a basic GRU and DPSS without self-
attention and Laplacian loss, the pr-AUC of both models has increased by 4.1%
and 1.4%, respectively, while the AUROC metric remained comparable.

We observe that in the raw data of MIMIC-III, concurrent events are ordered
randomly in the extracted event sequence. In other data processing scenarios,
the event set elements are ordered by the primary key (when applicable) or
alphabetically ordered by code strings. The imposed order could lead to bias
toward certain data storage methods or a specific coding scheme, which is ulti-
mately irrelevant to the underlying disease. Such inconsistencies may also impair
a model’s generalizability when the ordering scheme adopted in training differs
from that used during inference. We hypothesized that our set learning frame-
work is able to alleviate the aforementioned bias, as the sequence representation
is not restricted to any event set ordering scheme. To test this hypothesis, as
our previous experiments are trained and tested on data with random within-set
order, we further compared DPSS and the best baseline model against a different
event set ordering scheme using test sequences with alphabetically-ordered event
sets. These evaluation results are presented in Table 2.

Table 2. Comparison against the best baseline method on the test data with a different
ordering scheme (alphabetical) for concurrent events.

Method AUROC (95% CI) pr-AUC (95% CI)

Self-attentive GRU 0.7364(±0.00953) 0.6214(±0.00878)

DPSS 0.7755(±0.00305) 0.6721(±0.00379)

The best baseline model, self-attentive GRU, is trained on set sequences with
an imposed arbitrary random order. When tested on alphabetically-ordered set
sequences, it suffers from 0.6% decrease in AUROC and 2.7% decrease in pr-
AUC. In contrast, DPSS’s performance experienced a smaller decline: 0.1% in
AUROC and 1.2% in pr-AUC. The results suggest that DPSS benefited from
its permutation sampling mechanism and is more robust against different set
ordering schemes.

In summary, the experimental results show that DPSS achieved better per-
formance than the non-permutation sampling-based baseline models on the HF
prediction task. The proposed techniques are shown to better capture the clinical
events in the visit history according to their partially-unordered nature, hence
better supports the downstream decision making.

5 Conclusion

We introduce DPSS, a permutation-sampling-based RNN architecture that sup-
ports diagnostic prediction with sequence-of-set learning on clinical events. Our
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proposed method uses a permutation-sampling technique, sequence Laplacian
regularization, and self-attention to learn a permutation invariant representa-
tion that allows for more accurate prediction for a binary disease prediction
task. We also demonstrated the robustness of DPSS against arbitrary set order-
ings by comparing performance on a test set with an altered set order. For future
work, we plan to extend DPSS to jointly model lab event sequences with medica-
tion and demographic information. We also seek to better support multi-disease
prediction by incorporating structured label representations [14] and leveraging
pre-training [34] to improve domain adaptation of DPSS.
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Abstract. Sepsis is a severe medical condition that results in millions
of deaths globally each year. In this paper, we propose a Channelled
Long-Short Term Memory Network model tasked with predicting 48-
hour mortality in sepsis against the Sequential Organ Failure Assess-
ment (SOFA) score. We use the MIMIC-III critical care database. Our
research demonstrates the viability of deep learning in predicting patient
outcomes in sepsis. When compared with published literature for similar
tasks, our channelled LSTM models demonstrated a comparable AUROC
with superior precision score. The results showed that deep learning
models outperformed the SOFA score in predicting 48-hour mortality
in sepsis in AUROC (0.846–0.896 vs 0.696) and average precision score
(0.299–0.485 vs 0.110). Finally, our Fully-Channelled LSTM outperforms
a baseline LSTM by 5.4% in AUROC and 59.9% in average precision
score.

Keywords: Sepsis · Machine learning · Deep learning · Recurrent
neural networks · Long short-term memory networks

1 Introduction

Sepsis is a serious medical condition with an estimated 48.9 million cases world-
wide in 2017, resulting in 11.0 million sepsis-related deaths [27]. Since a validated
diagnostic test for sepsis does not exist, multiple risk assessment scores are used
for diagnosis. These share an underlying shortcoming: all use a single snapshot
of a patient’s clinical state. Scoring can be performed repeatedly, but there is no
direct tracking of the clinical measurements over time. This can be important, as
a patient’s deterioration can often be viewed as a trend of changing vital signs.

The relatively recent adoption of Electronics Health Records (EHR) means
that medical data is more readily available for analysis. These records, com-
bined with advances in artificial intelligence (AI) and machine learning (ML),
lay the foundations of a modern medical practice that is both data-oriented and
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computer-assisted, in which automated tools can be used perform tasks such as
diagnosis, patient monitoring, or outcome prediction [30].

Deep Neural Networks (DNN) are an evolution of Artificial Neural Networks
(ANN) inspired by biological systems [15]. They consists of multiple hidden lay-
ers between the input and the output that learn meaningful representations from
the data and use it for prediction [15]. DNNs have been successfully used in Com-
puter Vision [24] and Natural Language Processing [5,36]. They have also showed
potential in health informatics [23,32]. Recurrent Neural Networks (RNN) are a
type of deep network where each neuron can process variable temporal informa-
tion. The temporal nature of health-informatics, such as the data in EHRs, pose
a great fit for these temporal networks, which have the ability to learn patterns in
sequential data [33]. Scientists have also implemented an improved RNN with the
ability to learn long-term dependencies: Long Short-Term Memory (LSTM) net-
works, which demonstrate state-of-the-art performance with time-series across a
wide variety of machine learning problems [14].

In this paper, we develop a novel LSTM-based network, Channelled LSTM,
to predict mortality from sepsis within 48 h. By predicting these short-term out-
comes, we make sure that patients at risk of deterioration are promptly identified.
At the same time, an accurate model can direct treatment and interventions to
those in need. We use MIMIC-III, a critical care database with data from more
than forty thousand patients who stayed in Intensive Care Units (ICU) [11].
It includes a diverse range of data, such as vital signs, demographics, medica-
tion, laboratory testing results and mortality. Results show that our Channelled
LSTM outperforms the SOFA (Sequential Organ Failure Assessment) score and
two baseline models, a RNN and a LSTM in terms of AUROC (Area Under the
Receiver Operating Characteristics) and average precision score.

2 Related Work

Sepsis: Sepsis is the primary cause of death from infection and requires early
diagnosis and treatment. Until recently, sepsis was defined as a host’s Systemic
Inflammatory Response Syndrome (SIRS) due to an underlying infection, based
on patient temperature, heart rate, respiratory rate and white cell count [1].
However, Singer et al. [31] recognised sepsis to have a much broader impact on
physiological pathways [28], and proposed using the Sequential Organ Failure
Assessment (SOFA). SOFA has been shown to positively correlate with mortality
[34]. The authors also recommended the use of the quick SOFA (qSOFA) score,
which consists of only three components (respiratory rate, mental status, and
systolic blood pressure), as a bedside screening tool [19].

Another sepsis scoring system that has been developed is the PIRO (Pre-
disposition Insult/Infection Response and Organ dysfunction) score [26]. The
PIRO score has proven mortality prediction capabilities [8], it can outperform
SOFA [18], but has not been adopted for widespread use. PIRO includes a mix
of temporal and non-temporal variables (e.g. comorbidities, age) that render it
inefficient for time-series learning.
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Machine Learning and Electronic Health Records: Machine Learning has
been used in healthcare from the early 90s [3]. From medical diagnosis [22], to
epidemiology [35] and health monitoring [10], machine learning has proven to be
a powerful tool, particularly when dealing with complex data, be it images [32]
or text [22]. In recent years, deep learning methods have consistently obtained
state-of-the-art results in many healthcare problems [4]. Deep Learning Networks
are powerful mathematical models able to learn generalisable information from
large quantities of data [15].

Deep learning methods have been used with EHR in wide variety of prob-
lems, including information extraction, representation learning, de-identification
and, such as the subject of this paper, outcome or deterioration prediction
[30]. For outcome prediction, two major approaches can be considered. First,
a static approach, which can be beneficial when predicting particular outcomes
such as breast cancer [30]. For these approaches, Convolutional Neural Net-
works or Multi-layer perceptrons obtain highly accurate results. Second, tempo-
ral approaches can applied to more complex outcomes, such as readmission pre-
diction [22]. In these approaches, temporal networks, such as Recurrent Neural
Networks (RNNs) and Long Short-Term Memory Networks (LSTMs), consis-
tently obtain state-of-the-art results [30]. Examples of successful applications of
temporal networks include [23], where EHRs were transformed to Fast Health-
care Interoperability Resources (FHIR) standards to predict mortality, readmis-
sion and prolonged hospital stays. Unfortunately, the data used for training is
not publicly available and the computational overhead make reproducing such
a study unfeasible. [17] used LSTM to predict over 128 diagnoses using target
replication and auxiliary targets for less-common diagnostic labels.

Another study developed multiple machine learning models using the
MIMIC-III database, tasked with predicting in-hospital mortality, deteriora-
tion, phenotyping, and length of stay [6]. The deterioration task aimed to pre-
dict 24-hour mortality from all causes, not just sepsis. Their best performing
model for deterioration was their channel-wise LSTM with deep supervision,
with an AUROC of 0.911. However, it only achieved an AUC-PR (Area Under
the Precision-Recall Curve) of 0.344, and other metrics such as recall, precision
and F1 score are not included. This limits the study, as in clinical practice the
recall (known as sensitivity) is important in determining how a test or tool is
applied. In this paper, we approach sepsis deterioration prediction as a temporal
prediction task, and build on the channel-wise LSTM method.

Machine Learning and Sepsis: Authors in [9] examine machine learning for
early prediction of sepsis. They look at studies using Support Vector Machines,
Logistic Regression, APeX, and InSight, a system developed using MIMIC-II
which works by mapping vital sign measurements to finite discrete hyperdi-
mensional space [2]. Performance is varied: the worse performing model, Logis-
tic Regression, obtained an AUROC of 0.78, while the best performing model,
Deep Neural Networks, obtained an AUROC of 0.92. One of the InSight studies
achieved an AUROC of 0.92, but the other two InSight studies had lower scores:
0.88 and 0.83. The Deep Learning study demonstrated improved performance
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of both a deep feed-forward network and an LSTM model compared to InSight
[13]. There have also been efforts in developing LSTM models for septic shock
prediction. In [16], authors combined CNNs and LSTMs to predict septic shock
using data from the Christiana Care Health System. However, to address class
imbalance, significant under-sampling of the ‘shock negative visits’ was used for
both training and testing. This means the evaluation was not representative of
performance in the real-world, where significant class imbalance exists. Further-
more, they display results for ‘visit level early diagnosis’ of septic shock, which
used the first 12 h of patient sequence data, but more than 50% of the Septic
Shock population had a Shock Onset time well within this 12 h. As such, for the
majority of cases, these models are only identifying that shock has occurred, and
are not diagnosing it early, as the presentation of the results would suggest. This
explains why the models perform significantly worse on their ‘event level early
prediction’, in which they use varying ‘hold-off’ window sizes, prior to the onset
of septic shock, to align their data sequences.

On the other hand, [29] aimed to predict sepsis incidence as defined by
Angus criteria, an International Classification of Diseases (ICD) coding sys-
tem. They used MIMIC-III and compared traditional machine learning against
LSTM. However, none of these techniques performed particularly well: Random
Forest was the best model with an AUROC of 0.699, outperforming their LSTM
models. This may in part be due to their data pre-processing, which re-sampled
the time-series data into 6-hour bins. This could have lacked the granularity to
predict the changes in clinical condition that indicate sepsis.

3 Methodology

3.1 Data Pre-processing: MIMIC-III

In our study, we focus on a subset of the Medical Information Mart for Intensive
Care III v1.4 (MIMIC-III) database [11]. We use a cohort of sepsis cases defined
by the Sepsis-3 criteria [31], as identified by [12]. This subset dates from 2008 to
2012, and consists of 5,784 critical care admissions, with an in-hospital mortality
rate of 14.5% (836 cases). We extract variables for assessment tools currently
used in clinical practice: SOFA, qSOFA, NEWS2 and SIRS. We also include
Lactate and Base Excess as they have proven valuable in assessing acute illness
and infection [20,25]. We remove clinically impossible outliers and standarised
each variable.

These variables form a complex, irregular pattern of time-series data. The
time interval between data points of a single variable can fluctuate, and for
different variables these intervals can range from less than an hour (e.g. Heart
Rate), to over 24 h (e.g. Bilirubin). Furthermore, each ICU admission is of a
different length and varies from several hours to days or weeks. This complexity
leads to significant challenges in both efficient training of RNNs, and their ability
to learn patterns, which is still an area of active research [21]. Instead, to achieve
efficient training of our models, we resample variables, resulting in regular and
synchronous data [6]. This presents its own challenge, as frequent re-sampling
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results in a significant rate of imputed data, whereas infrequent re-sampling loses
granular detail that may be useful to the model. We took two approaches to this,
resulting in Set A and Set B, described below. For both sets, cases with less than
24 h of data were excluded.

Set A: It includes 10 variables of our subset: Heart Rate, Systolic BP, Mean
Arterial Pressure, Respiratory Rate, FiO2, Oxygen Saturation, the three com-
ponents of the GCS, and Temperature. All samples are re-sampled into constant
one-hour timeslots. Multiple measurements within an hour are averaged. This
loses some granular detail, though so would alternatives (e.g. choosing the most
recent value) and the short timeslots minimises this risk. Missing measurements,
before or after the initial sampling, are imputed with backward and forward
filling respectively. In summary, Set A includes 4,975 cases with an inpatient
mortality rate of 11.4% (565 cases), and 38.7% of the processed data is imputed.

Set B: Set B is split into three groups, re-sampling the data at three different fre-
quencies. This allows it to include all 17 of the variables of our subset whilst also
reducing the imputed data rate. Group one consists of the most frequently mea-
sured vital signs: Heart Rate, Systolic BP, Mean Arterial Pressure, Respiratory
Rate, FiO2, and Oxygen Saturation; re-sampled into one-hour timeslots. The
second group includes the less frequently measured vital signs: the three compo-
nents of the GCS, and Temperature; re-sampled into four-hour timeslots. While
the final group includes the ‘blood tests’ variables: White Blood Cells, Bilirubin,
Platelets, Creatinine, PaO2, Lactate and Base Excess; re-sampled into 24-hour
timeslots. In summary, Set B includes 5,019 cases with and inpatient mortality
rate of 11.3% (566 cases), and 17.3% of the processed data is imputed.

For both sets, each case is split into multiple 24-hour snapshots of the same
variable length. This is done by moving a 24-hour window across each case,
using 12-hour time-steps. Each 24-hour snapshot is treated as input for our
classification. The output is a binary value representing patient mortality within
48 h. Since we expand the dataset by treating multiple daily windows of the
same patient as separate cases, the 48-hour mortality rate falls to 4.84% for
Set A, and 4.83% for Set B. Due to class imbalance and to improve training
efficiency we apply oversampling in both training subsets. When a patient is
within the 48-hour window of mortality, the case is split by moving the window
using 1-hour timesteps. This increased the mortality rate of Set A to 31.23% and
Set B to 31.22%. This oversampling is not performed on the testing subsets, so
that the evaluation of the models will be indicative of real-world performance on
significantly class-imbalanced data. Additionally, we calculate the SOFA scores
for each testing instance in Set B, using the values in the first timeslot. SOFA
score represents the current best clinical practice and is used as baseline. A
process chart summarising our data processing steps is available in Appendix A.

3.2 Deep Learning Models

Recurrent Neural Networks (RNN): RNNs are ANNs in which nodes are
unidirectionaly connected through time. RNN nodes have an internal memory
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module which allows them to process inputs of variable sequence. It updates
weight matrices via backpropagation through time (BPTT). We use a baseline
RNN model with two layers using the default hyperbolic tangent function.

Long Short-Term Memory Networks (LSTM): LSTMs are refined RNNs
able of learning long term dependencies. At their core, LSTMs have a module
with four single layered NNs and a cell state. The cell state receives the input
from a previous LSTM module and is controlled by a set of three gates. These
gates interact directly with the cell state and can: forget past unneeded infor-
mation, store newly learnt information, and save the cell state that is passed to
the next LSTM module. Our LSTM model [7] includes two such stacked LSTM
layers.

Channelled LSTM: We create ‘Channelled LSTM’ [6] models. Rather than
feed the input data into a single RNN or LSTM layer, it is instead split into
multiple channels where each input is fed into its dedicated LSTM layer. The
first model of the modified LSTM models group is a Fully Channelled LSTM
(FC-L) with 10 channels, each of which includes two LSTM stacked layers. The
FC-L accommodates Set A by having a separate channel for each of the 10
clinical variables. The second model is a Reduced Channelled LSTM (RC-L). Its
structure is identical to FC-L, but the number of channels reduced from 10 to 4.
Variables are grouped together according to their physiological system. The RC-
L aims to reduce training time and attempts to maintain a similar performance
to FC-L. Both FC-L and RC-L are capable of handling the multiple data streams
present in Set B, but need some modifications to handle the ‘blood tests’ stream.
We apply two modifications per model that result in four modified LSTM models
for Set B. The first method feeds the ‘blood tests’ input stream at the same layer
as the other inputs, only replacing the RNN layer with a dense layer, named FC-
S and RC-S. While, the second method feeds the ‘blood tests’ input stream at
a deeper level, separating further the input streams, noted as FC-D and RC-D.

4 Experiments

Our task is a binary classification task, aiming to predict 48-hour mortality. All
models are evaluated using 10-fold cross validation. Oversampling is applied in
each of the training sets for each fold. All DNN models use Adam optimization
with Learning Rate = 0.001, β1 = 0.9, Binary Cross-entropy loss function. Each
fold is trained for 30 epochs with a batch size of 32. In addition, class weights are
used to counteract class imbalance in the datasets. The binary 48-hour mortality
(class 1) has a weight of 2, whilst 48-hour survival (class 0) has a weight of 1.
This results in a class weight ratio of 2:1, versus the approximate 30:70 split
class imbalance. Models are developed in Keras1.

Metrics: To obtain a detailed overview of the performance of our models, we
calculate the following combination of metrics: AUROC, average precision score,

1 https://keras.io/.

https://keras.io/
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recall, precision, negative predictive value, F1 score, and accuracy. We present
the results in Receiver Operating Characteristic (ROC) curve for each of the
models, which portray the positive rate (recall) against the false positive rate
(FPR) at various thresholds. A greater weighting is given to the AUROC and
average precision score of the models. AUROC is a useful summary of the ROC
curve, informing us how well the model is able to distinguish between classes.
The average precision score summarises the precision-recall curve by calculating
the average precision of the model at different thresholds weighted against the
recall. This too measures how well the model can distinguish between classes.
Finally, additional weighting is given to recall (sensitivity) due to how such a
tool would be used in clinical practice. A False Negative (a patient who is at
high risk of dying, that the model identifies as low risk) would be more likely
to result in poor outcomes than a False Positive (a patient who is low risk that
the model identifies as high risk). A high recall ensures the model does not miss
patients at risk of deterioration.

4.1 Results

Table 1 shows our results when comparing the performance of all LSTM-based
models, the SOFA score, and two baseline methods (RNN and LSTM).

Within Set A, the Fully Channelled LSTM demonstrated the best perfor-
mance in the three key metrics AUROC, average precision score, and recall, as
well as negative predictive value. It shows a significant improvement when com-
pared to the baseline LSTM model, with an increase of 5.4% in AUROC, 59.9%
in average precision score, and 59.3% in recall.

Set B underwent a modified processing scheme, which results in significant
drop of the imputed data rate from 38.7% to 17.3%. It also includes additional
data in the ‘blood tests’ input stream that is not present in Set A. The FC-S
model demonstrates minor improvements in AUROC (0.896 vs 0.892), aver-
age precision score (0.485 vs 0.478), recall (0.794 vs 0.779) and negative pre-
dictive value (0.988 vs 0.987) compared to its Set A counterpart, while FC-D
achieves the overall highest recall score (0.810). The Reduced Channelled mod-
els improved training times, but with a respective performance cost. This was of
little benefit due to the overall low training times, which did not impede model
development. All the deep learning models outperform the baseline SOFA score
in AUROC (0.846-0.896 vs 0.696) and average precision score (0.299–0.485 vs
0.110). Figure 1 summarises the ROC curves of the SOFA score, baseline LSTM,
and FC-S LSTM models. ROC curves for Set A and B models separately are
shown in Appendix A.

5 Discussion

The prior studies discussed have aimed to predict the early onset of sepsis [9],
but not short term outcomes. Other studies aim to predict all-cause inpatient
mortality [23] or deterioration [6] but have not been focused on sepsis. Our
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Table 1. Model evaluation for Recurrent Neural Network (RNN), Long Short-Term
Memory (LSTM), Fully-Channelled (FC-L) and Reduced-Channelled (RC-L) LSTM.
-S/-D: modifications of the FC-L and RC-L models.

Metric Set A Set B

RNN LSTM FC-L RC-L SOFA FC-S FC-D RC-S RC-D

AUROC 0.869 0.846 0.892 0.862 0.696 0.896 0.892 0.865 0.864

Avg. Precision 0.378 0.299 0.478 0.425 0.110 0.485 0.457 0.435 0.416

Recall 0.758 0.489 0.779 0.714 – 0.794 0.810 0.708 0.755

Precision 0.171 0.256 0.197 0.188 – 0.195 0.182 0.200 0.186

Neg. Pred. Value 0.985 0.973 0.987 0.983 – 0.988 0.988 0.983 0.985

F1 Score 0.277 0.333 0.313 0.296 – 0.311 0.295 0.310 0.296

Accuracy 0.806 0.905 0.834 0.836 – 0.829 0.811 0.847 0.824

Epoch Train 68s 14s 83s 37s – 76s 78s 35s 36s

Fig. 1. ROC curves of SOFA, baseline and Fully-Channelled LSTM (FC-S)

LSTM-based approach outperforms the SOFA score by at least 24.1%, and it
significantly outperforms the baseline models, previously shown to be effective
in deterioration tasks [6]. FC-S, our best performing model, when compared
to [6], achieves a AUROC of 0.896 with a much higher average precision of
0.485. Whilst the precision scores of our models were low, this is explained
by our focus on maximising recall, and the significant class imbalance of the
data. This does not impact the potential use of the models, as we discuss next.
The value of our models can be illustrated by indicating the pre- and post-test
probabilities of deterioration using our FC-S model. The pre-test probability of
48-hour mortality is 4.8%. If the FC-S model identifies a patient as high-risk,
the post-test probability is increased to 19.5% - this is a four-fold increase in
risk. Whereas if the FC-S model identifies a patient as low-risk, the post-test
probability is reduced to 1.2% (the FC-S model achieved a negative predictive
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value of 0.988). We can therefore argue that the FC-S model has achieved its aim,
and is able to identify those patients at a greatest risk of short term deterioration.

Clinical Relevance: The clinical relevance of a retrospective study such as
this is limited. Prospective studies are required if benefit to patients is to be
demonstrated. Our work acts as a proof of concept, to hopefully allow further
studies to be done. Furthermore, the value of predicting deterioration in a critical
care setting, in which patients are already undergoing significant intervention,
has its own limits. The goal of future work is to evaluate such deep learning
models front of house, in the Emergency Department or on a general medical
ward, to better identify patients that require escalation of care.

Limitations: There are two main limitations. First, the SOFA score had to be
approximated using the data available. Despite this, SOFA achieved an AUROC
of 0.696 on Set B, not substantially lower than the SOFA AUROC of 0.74 in
the Sepsis-3 review [31]. Secondly, MIMIC-III is collected from a single site.
External validation of models, at different hospitals, are required, to assess the
generalisation capabilities of our approach.

6 Conclusions

We present Channelled LSTMs, a novel method for sepsis mortality prediction
within 48 h using MIMIC-III. Our models outperform the baseline SOFA score,
as well as baseline RNN and LSTM models. When compared with current litera-
ture on similar deterioration tasks, our channelled LSTM models demonstrate a
comparable AUROC, with an improvement in precision score. Our models either
match or exceed the current state-of-the-art for predicting patient deterioration.
However, our work comes with certain limitations: further work is needed with
prospective clinical trials, multiple sites and wards, to assess the real-world per-
formance of our Deep Learning models in clinical practice.

Appendix A

See Figs. 2 and 3.

Fig. 2. Process chart summarising the data processing steps.
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Fig. 3. ROC curves for each fold during cross-validation for the individual models.
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Abstract. In time-to-event prediction problems, a standard approach
to estimating an interpretable model is to use Cox proportional haz-
ards, where features are selected based on lasso regularization or stepwise
regression. However, these Cox-based models do not learn how different
features relate. As an alternative, we present an interpretable neural net-
work approach to jointly learn a survival model to predict time-to-event
outcomes while simultaneously learning how features relate in terms of
a topic model. In particular, we model each subject as a distribution
over “topics”, which are learned from clinical features as to help predict
a time-to-event outcome. From a technical standpoint, we extend exist-
ing neural topic modeling approaches to also minimize a survival anal-
ysis loss function. We study the effectiveness of this approach on seven
healthcare datasets on predicting time until death as well as hospital ICU
length of stay, where we find that neural survival-supervised topic mod-
els achieves competitive accuracy with existing approaches while yielding
interpretable clinical “topics” that explain feature relationships.

Keywords: Survival analysis · Topic modeling · Interpretability

1 Introduction

Predicting the amount of time until a critical event occurs—such as death, dis-
ease relapse, or hospital discharge—is a central focus in the field of survival
analysis. Especially with the increasing availability of electronic health records,
survival analysis data in healthcare often have both a large number of subjects
and a large number of features measured per subject. In coming up with an inter-
pretable survival analysis model to predict time-to-event outcomes, a standard
approach is to use Cox proportional hazards [6], with features selected using
lasso regularization [25] or stepwise regression [12]. However, these Cox-based
models do not inherently learn how features relate.
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To simultaneously address the two objectives of learning a survival model for
time-to-event prediction and learning how features relate specifically through
a topic model, Dawson and Kendziorski [8] combine latent Dirichlet allocation
(LDA) [3] with Cox proportional hazards to obtain a method they call survLDA.
The idea is to represent each subject as a distribution over topics, and each topic
as a distribution over which feature values appear. The Cox model is given the
subjects’ distributions over topics as input rather than the subjects’ raw feature
vectors. Importantly, the topic and survival models are jointly learned.

In this paper, we propose a general framework for deriving neural survival-
supervised topic models that is substantially more flexible than survLDA.
Specifically, survLDA estimates model parameters via variational inference
update equations derived specifically for LDA combined with Cox proportional
hazards; to use another other sort of combination would require re-deriving the
inference algorithm. In contrast, our approach combines any topic model and
any survival model that can be cast in a neural net framework; combining LDA
with Cox proportional hazards is only one special case. Importantly, our frame-
work yields survival-supervised topic models that are interpretable so long as the
underlying topic and survival models are interpretable. As a byproduct of taking
a neural net approach, we can readily leverage many deep learning advances. For
example, we can avoid deriving a special inference algorithm and instead use any
neural net optimizer such as Adam [17] to learn the joint model in mini-batches,
which scales to large datasets unlike survLDA’s variational inference algorithm.

As numerous combinations of topic/survival models are possible, for ease of
exposition, we demonstrate how to combine LDA with Cox proportional hazards
in a neural net framework, yielding a neural variant of survLDA. We refer to
our neural variant as survScholar since we build on scholar [5], a neural
net approach to learning LDA and various other topic models. We benchmark
survScholar on seven datasets, finding that it can yield performance compet-
itive with various baselines while also yielding interpretable topics that reveal
feature relationships. For example, on a cancer dataset, survScholar learns
two topics that are associated with longer survival time, and one topic associ-
ated with lower survival time. The first two pro-survival topics provide different
explanations for patients attributes correlated with surviving longer: one topic
is associated with normal vital signs and laboratory measurements, while the
other includes vital sign and laboratory derangements of sodium and creatinine.
survScholar can help discover such feature relationships that clinicians could
then verify. Meanwhile, when survScholar’s prediction is inaccurate, examin-
ing the topics learned could help with model debugging.

2 Background

We begin with some background and notation on topic modeling and survival
analysis. For ease of exposition, we phrase notation in terms of predicting time
until death; other critical events are possible aside from death.
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We assume that we have access to a training dataset of n subjects. For each
subject, we know how many times each of d “words” appears, where the dictio-
nary of words is pre-specified (continuous clinical feature values are discretized
into bins). As an example, one word might correspond to “white blood count
reading in the bottom quintile”; for a given subject, we can count how many
such readings the subject has had recorded in the past. We denote Xi,u to be
the number of times word u ∈ {1, . . . , d} appears for subject i ∈ {1, . . . ,n}.
Viewing X as an n-by-d matrix, the i-th row of X (denoted by Xi) can be
thought of as the feature vector for the i-th subject.

As for the training label for the i-th subject, we have two recordings: event
indicator δi ∈ {0, 1} specifies whether death occurred for the i-th subject, and
observed time Yi ∈ R+ is the i-th subject’s “survival time” (time until death) if
δi = 1 or the “censoring time” if δi = 0. The idea is that when we stop collecting
training data, some subjects are still alive. The i-th subject still being alive
corresponds to δi = 0 with a true survival time that is unknown (“censored”);
instead, we know that the subject’s survival time is at least the censoring time.

Topic Modeling. A topic model transforms the i-th subject’s feature vector Xi

into a topic weight vector Wi ∈ R
k, where Wi,g is the fraction that the i-

th subject belongs to topic g = 1, 2, . . . , k. The Wi,g terms are nonnegative
and

∑k
g=1 Wi,g = 1. For example, LDA models topic weight vectors Wi’s to be

generated i.i.d. from a user-specified k-dimensional Dirichlet distribution. Next,
to relate feature vector Xi with its topic weight vector Wi, let Xi,u denote the
fraction of times a word appears for a specific subject, meaning that Xi,u =
Xi,u/

( ∑d
v=1 Xi,v

)
. Then LDA assumes the factorization

Xi,u =
k∑

g=1

Wi,gAg,u (2.1)

for a topic-word matrix A ∈ R
k×d. Each row of A is a distribution over the

d vocabulary words and is assumed to be sampled i.i.d. from a user-specified
d-dimensional Dirichlet distribution. In matrix notation, X = WA. Standard
LDA is unsupervised and, given matrix X, estimates the matrices W and A.

Survival Analysis. Standard topic modeling approaches like LDA do not solve
a prediction task. To predict time-to-event outcomes, we turn toward survival
analysis models. Suppose we take the i-th subject’s feature vector to be Wi ∈ R

k

instead of Xi. As this notation suggests, when we combine topic and survival
models, Wi corresponds to the i-th subject’s topic weight vector; this strategy for
combining topic and survival models was first done by Dawson and Kendziorski
[8], who worked off of the original supervised LDA formulation by McAuliffe and
Blei [23] (which is not stated for survival analysis). We treat the training data
as (W1,Y1, δ1), . . . , (Wn,Yn, δn), disregarding the “raw” feature vectors Xi’s.
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The standard survival analysis prediction task can be stated as using the
training data (W1,Y1, δ1), . . . , (Wn,Yn, δn) to estimate, for any test subject with
feature vector w ∈ R

k, the subject-specific survival function

S(t|w) = P(subject survives beyond timet | subject’s feature vector is w).

Importantly, unlike standard regression where, for any test feature vector w, we
predict a single real number, here we predict a whole function S(·|w).

Our neural survival-supervised topic modeling framework crucially requires
that the we can construct a predictor Ŝ(·|w) for the subject-specific survival
function S(·|w) by minimizing a differentiable loss. Numerous survival models
satisfy this criterion. For example, consider the classical Cox proportional haz-
ards model [6]. We learn a parameter vector β ∈ R

k that weights the features,
i.e., prediction for an arbitrary feature vector w ∈ R

k is based on the inner
product β�w. The differentiable loss function for the Cox model is

LCox(β) =
n∑

i=1

δi

[
− β�Wi + log

n∑

j=1 s.t. Yj≥Yi

exp(β�Wj)
]
. (2.2)

After computing parameter estimate β̂ by minimizing LCox(β), we can estimate
survival functions S(·|w) via the following approach by Breslow [4]. Denote
the unique times of death in the training data by t1, t2, . . . , tm. Let di be the
number of deaths at time ti. We first compute the so-called hazard function
ĥi := di/(

∑n
j=1 s.t. Yj≥Yi

e
̂β�Wj ) at each time index i = 1, 2, . . . ,m. Next, we

form the “baseline” survival function Ŝ0(t) := exp(−∑m
i=1 s.t. ti≤t ĥi). Finally,

subject-specific survival functions are estimated to be powers of the baseline
survival function: Ŝ(t|w) := [Ŝ0(t)]exp(

̂β �w).

3 Neural Survival-Supervised Topic Models

We now present our proposed neural survival-supervised topic modeling frame-
work. Our framework can use any topic model that has a neural net formulation
(e.g., neural versions of LDA [3], SAGE [10], and correlated topic models [20]
are provided by Card et al. [5]; recent topic models like the Embedded Topic
Model [9] can also be used). Moreover, our framework can use any survival model
learnable by minimizing a differentiable loss (e.g., Cox proportional hazards [6]
and its lasso/elastic-net-regularized variants [25], the Weibull accelerated failure
time (AFT) model [15], and all neural survival models we are aware of). For ease
of exposition, we focus on combining LDA with the Cox proportional hazards
model, similar to what is done by Dawson and Kendziorski [8] except we do this
combination in a neural net framework.

We first need a neural net formulation of LDA. We can use the scholar
framework by Card et al. [5]. Card et al. do not explicitly consider survival
analysis in their setup although they mention that predicting different kinds of
real-valued outputs can be incorporated by using different label networks. We
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use their same setup and have the final label network perform survival analysis.
We give an overview of scholar before explaining our choice of label network.

The scholar framework specifies a generative model for the data, including
how each individual word in each subject is generated. In particular, recall that
Xi,u denotes the number of times the word u ∈ {1, 2, . . . , d} appears for the
i-th subject. Let vi denote the number of words for the i-th subject, i.e., vi =∑d

u=1 Xi,u. We now define the random variable ψi,� ∈ {1, 2, . . . , d} to be what
the �-th word for the i-th subject is (for i = 1, 2, . . . ,n and � = 1, 2, . . . , vi).
Then the generative process for scholar with k topics is as follows, stated for
the i-th subject:

1. Generate the i-th subject’s topic distribution:
(a) Sample W̃i from a logistic normal distribution with mean vector μ ∈ R

k

and covariance matrix Σ ∈ R
k×k.

(b) Set the topic weights vector for the i-th subject to be Wi = softmax(W̃i).
2. Generate the i-th subject’s words:

(a) Set word parameter φi = fword(Wi), where fword is a generator network.
(b) For word � = 1, 2, . . . , vi: Sample ψi,� ∼ Multinomial(softmax(φi)).

3. Generate the i-th subject’s output label:
Sample Yi from a distribution parameterized by label network flabel(Wi).

Different choices for the parameters μ,Σ, fword, and flabel lead to different topic
models. The parameters are learned via amortized variational inference [18,24].
To approximate LDA where topic distributions are sampled from a symmetric
Dirichlet distribution with parameter α > 0, we set μ to be the all zeros vector,
Σ = diag((r − 1)/(αr)), and fword(w) = w�H where H ∈ R

k×d has a Dirichlet
prior per row. We describe how to set flabel to obtain survival supervision next.

Survival Supervision. To incorporate the Cox survival loss, we change step 3
of the generative process above to be deterministic and output the variable
Ξi = flabel(Wi) := β�Wi for parameter vector β ∈ R

k. In particular, we do not
model how observed times Yi’s are generated; modeling Ξi’s is sufficient. Then
we can minimize the Cox proportional hazards loss from Eq. (2.2), rewritten to
use the variables Ξi’s that are parameterized by β:

LCox(β) =
n∑

i=1

δi

[
− Ξi + log

n∑

j=1 s.t. Yj≥Yi

exp(Ξi)
]
, where Ξi = β�Wi. (3.1)

For a hyperparameter η > 0 that weights the importance of the survival loss,
the final overall loss that gets minimized is the sum of ηLCox(β) and scholar’s
topic model loss (given by the negation of Eq. (3.1) in the scholar paper [5].
We refer to the resulting model as survScholar.

We remark that rewriting the Cox loss to use Ξi variables (for which we
can replace the inner product Ξi = β�Wi with a neural net Ξi = g(Wi)) is by
Katzman et al. [16] and also works for the Weibull AFT model.
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Model Interpretation. For the g-th topic learned, we can look at its distribution
over words Ag ∈ R

d (given in Eq. (2.1)) and, for instance, rank words by their
probability of appearing for topic g (our experiments later rank words using a
notion of comparing to background word frequencies). The g-th topic is also
associated with Cox regression coefficient βg, where β = (β1,β2, . . . ,βk) ∈ R

k is
the parameter from Eq. (3.1). Under the Cox model, βg being larger means that
the g-th topic is associated with shorter survival times.

Table 1. Basic characteristics of the survival datasets used.

Dataset Description # subjects # features % censored

support-1 Acute resp. failure/multiple organ sys. failure 4194 14 35.6%

support-2 COPD/congestive heart failure/cirrhosis 2804 14 38.8%

support-3 Cancer 1340 13 11.3%

support-4 Coma 591 14 18.6%

unos Heart transplant 62644 49 50.2%

metabric Breast cancer 1981 24 55.2%

mimic(ich) Intracerebral hemorrhage 1010 1157 0%

4 Experimental Results

Data. We conduct experiments on seven datasets: data on severely ill hospi-
talized patients from the Study to Understand Prognoses Preferences Outcomes
and Risks of Treatment (SUPPORT) [19], which—as suggested by Harrell [11]—
we split into four datasets corresponding to different disease groups (acute res-
piratory failure/multiple organ system failure, cancer, coma, COPD/congestive
heart failure/cirrhosis); data from patients who received heart transplants in the
United Network for Organ Sharing (UNOS);1 data from breast cancer patients
(METABRIC) [7]; and lastly patients with intracerebral hemorrhage (ICH) from
the MIMIC-III electronic heath records dataset [14]. For all except the last
dataset, we predict time until death; for the ICH patients, we predict time
until discharge from a hospital ICU. Basic characteristics of these datasets are
reported in Table 1. We randomly divide each dataset into a 80%/20% train/test
split. Our code is available and includes data preprocessing details.2

Experimental Setup. We benchmark survScholar against a total of 7 baselines:
4 classical methods (Cox proportional hazards [6], lasso-regularized Cox [25], k-
nearest neighbor Kaplan-Meier [2,22], and random survival forests (RSF) [13],

1 We use the UNOS Standard Transplant and Analysis Research data from the Organ
Procurement and Transplantation Network as of September 2019, requested at:
https://www.unos.org/data/.

2 https://github.com/lilinhonglexie/NPSurvival2020.

https://www.unos.org/data/
https://github.com/lilinhonglexie/NPSurvival2020
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2 deep learning methods (DeepSurv [16] and DeepHit [21], and a naive two-
stage decoupled LDA/Cox model (fit unsupervised LDA first and then fit a
Cox model). For all methods, 5-fold cross-validation on training data is used
to select hyperparameters (if there are any) prior to training on the complete
training data. Hyperparameter search grids are included in our code. For both
cross-validation and evaluating test set accuracy, we use the time-dependent
concordance Ctd index [1], which roughly speaking is the fraction of pairs of
subjects in a validation or test set who are correctly ordered, accounting for
temporal and censoring aspects of survival data. Similar to area under the ROC
curve for classification, a Ctd index of 0.5 corresponds to random guessing and 1
is a perfect score. For every test set Ctd index reported, we also compute its 95%
confidence interval, which we obtain by taking bootstrap samples of the test set
with replacement, recomputing the Ctd index per bootstrap sample, and taking
the 2.5 and 97.5 percentile values.

For survScholar, we also include a variant survScholar-few that
instead of picking whichever hyperparameters (number of topics k and the sur-
vival loss importance weight η) achieve the highest training cross-validation Ctd

index, we instead favor choosing a hyperparameter setting with the fewest num-
ber of topics that achieves a cross-validation Ctd index within 0.005 of the best
score. We empirically found that often a much fewer number of topics achieves a
training cross-validation score that is nearly as good as the max found. For ease
of model interpretation, using a fewer number of topics is preferable.

Results. Test set Ctd indices are reported in Table 2 with 95% confidence inter-
vals. The main takeaways are that: (a) the two survScholar variants are the
best or nearly the best performers on support-1, support-3, and metabric;
(b) even when the survScholar variants are not among the best performers,
they still do as well as some established baselines; (c) the two survScholar vari-
ants have very similar performance (so for interpretation, we use survScholar-
few), and (d) no single method is the best across all datasets.

Table 2. Test set Ctd indices with 95% bootstrap confidence intervals.

Model Dataset
support-1 support-2 support-3 support-4 unos metabric mimic(ich)

cox 0.630 0.571 0.569 0.592 0.583 0.664 0.610
(0.606, 0.655) (0.538, 0.604) (0.531, 0.607) (0.537, 0.649) (0.575, 0.592) (0.622, 0.706) (0.564, 0.652)

lasso-cox 0.627 0.567 0.556 0.603 0.557 0.664 0.667
(0.604, 0.652) (0.535, 0.600) (0.517, 0.594) (0.538, 0.666) (0.548, 0.565) (0.623, 0.708) (0.621, 0.712)

k-nn 0.601 0.581 0.557 0.501 0.584 0.669 0.563
(0.577, 0.628) (0.545, 0.614) (0.517, 0.592) (0.432, 0.576) (0.576, 0.592) (0.627, 0.708) (0.518, 0.612)

rsf 0.602 0.604 0.568 0.492 0.587 0.697 0.651
(0.575, 0.628) (0.570, 0.636) (0.530, 0.601) (0.414, 0.575) (0.579, 0.595) (0.659, 0.736) (0.602, 0.697)

deepsurv 0.636 0.555 0.555 0.602 0.580 0.686 0.616
(0.611, 0.660) (0.521, 0.589) (0.517, 0.591) (0.548, 0.659) (0.572, 0.589) (0.644, 0.725) (0.571, 0.661)

deephit 0.633 0.579 0.547 0.590 0.598 0.683 0.598
(0.607, 0.660) (0.548, 0.609) (0.511, 0.585) (0.518, 0.657) (0.590, 0.606) (0.644, 0.721) (0.553, 0.649)

naive lda/cox 0.586 0.565 0.525 0.607 0.537 0.661 0.599
(0.559, 0.611) (0.533, 0.595) (0.486, 0.563) (0.541, 0.672) (0.528, 0.545) (0.622, 0.698) (0.549, 0.646)

survScholar 0.630 0.587 0.568 0.567 0.588 0.690 0.619
(0.604, 0.655) (0.553, 0.618) (0.528, 0.605) (0.509, 0.625) (0.580, 0.595) (0.649, 0.731) (0.572, 0.661)

survScholar-few 0.637 0.580 0.568 0.586 0.588 0.695 0.590
(0.612, 0.662) (0.547, 0.610) (0.528, 0.605) (0.532, 0.640) (0.581, 0.596) (0.656, 0.735) (0.547, 0.632)
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Next, we interpret the learned topic models. We plot the topics learned by
survScholar-few for the support-3 dataset on cancer patients in Fig. 1: each
topic is a column in the plot, where above each topic, we denote its Cox β regres-
sion coefficient (higher means shorter survival time); rows correspond to features.
Deeper red colors indicate features that occur more for a topic; color intensity
values are multiplicative ratios compared to background word frequencies and
are explained in more detail in the appendix. The three topics in this support-3
cancer dataset indicate one anti-survival and two pro-survival topics. There is
a primary anti-survival topic described by old age, multicomorbidity, hypona-
tremia, and hyperventilation. The first pro-survival topic describes vital sign and
laboratory derangements including hypernatremia, elevated creatinine, hyper-
tension, and hypotension. The second pro-survival topic with slightly stronger
pro-survival association suggests otherwise-healthy patients with normal vital
signs and laboratory measurements.

Cox Regression Coefficient

Fig. 1. Topics learned for support-3.
Rows index features, columns index
topics.

We summarize our findings for the other
datasets. For support-1, support-2,
support-4, unos, and metabric, only
two topics (corresponding to healthy and
unhealthy) are identified per dataset by
survScholar-few. For the mimic(ich)
dataset, survScholar-few has similar
prediction performance as deep learning
baseline DeepHit (c.f., Table 2) but nei-
ther method performs as well as lasso-
regularized Cox. By inspecting the 5 top-
ics learned by survScholar-few, we find
the topics difficult to interpret as too many
features are surfaced as highly probable.
In this high-dimensional setting where the
number of features is larger than the num-
ber of subjects, we suspect that regular-
izing the model (e.g., by replacing LDA
with SAGE [10] is essential to obtaining
interpretable topics. Our interpretations of
learned topic models for all datasets along
with additional visualizations are available
in our code repository.

5 Discussion

Despite many methodological advances in survival analysis with the help of deep
learning, these advances have mostly not focused on interpretability. Model inter-
pretation can be especially challenging when there are many features and how
they relate is unknown. In this paper, we show that neural survival-supervised
topic models provide a promising avenue for learning structure over features in
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terms of “topics” that help predict time-to-event outcomes. These topics can be
used by practitioners to check if learned topics agree with domain knowledge
and, if not, to help with model debugging. Rigorous evaluations of other neural
survival-supervised topic models aside from fusing LDA with Cox are needed to
better understand which combinations of topic and survival models yield both
highly accurate time-to-event predictions and clinically interpretable topics.

Acknowledgments. This work was supported in part by Health Resources and Ser-
vices Administration contract 234-2005-370011C. The content is the responsibility of
the authors alone and does not necessarily reflect the views or policies of the Depart-
ment of Health and Human Services, nor does mention of trade names, commerical
products, or organizations imply endorsement by the U.S. Government.

A Interpreting Topic Heatmaps

In this appendix, we explain how to interpret our topic heatmaps (Fig. 1 and
additional plots in our code repository). For many topic models including LDA,
a topic is represented as a distribution over d vocabulary words. scholar [5]
(and also our survival-supervised version survScholar) reparameterizes these
topic distributions; borrowing from SAGE [10], scholar represents a topic as
a deviation from a background log-frequency vector. This vector accommodates
common words that have similar frequencies across data points. When we visu-
alize a topic, we take this modeling approach into account and only choose to
highlight features that have positive log-deviations from the background. Given
a topic, having positive log-deviation is analogous to having higher conditional
probabilities in the classic topic modeling case but explicitly is relative to back-
ground word frequencies (rather than being raw topic word probabilities).

To fill in the details, in step 2(a) of survScholar’s generative pro-
cess (stated in Sect. 3), each word is drawn from the conditional distribution
softmax(γ+wT B), where γ ∈ R

d is the background log-frequency vector, w ∈ R
k

contains a sample’s topic membership weights, and B ∈ R
k×d encodes (per

topic) every vocabulary word’s log-deviation from the word’s background. This
is a reparameterization of how LDA is encoded, which has each word drawn
from the conditional distribution softmax(wT H) for H ∈ R

k×d. In particular,
note that Hg = γ + Bg for every topic g ∈ {1, 2, . . . , k}. The background log-
frequency vector γ is learned during neural net training. Note that SAGE [10]
further encourages sparsity in B by adding �1 regularization on B.

We found ranking words within a topic by their raw probabilities (Ag in
Eq. (2.1)) to be less interpretable than ranking words based on their devia-
tions from their background frequencies (Bg) precisely because commonly occur-
ring background words make interpretation difficult. In fact, when Dawson and
Kendziorski [8] introduced survLDA, they used an ad hoc pre-processing step
to identify background words to exclude from analysis altogether. We avoid this
pre-processing and use log-deviations from background frequencies instead.

In heatmaps such as the one in Fig. 1, each column corresponds to a topic. For
the g-th topic, instead of plotting its raw log-deviations (encoded in Bg ∈ R

d),
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which are harder to interpret, we exponentiated each word’s log-deviation to get
the word’s multiplicative ratio from its background frequency (i.e., we compute
exp(Bg)); the color bar intensity values are precisely these multiplicative ratios
of how often a word appears relative to the word’s background frequency.

To highlight features that distinguish topics from one another, we also sort
rows in the heatmap by descending differences between the largest and small-
est values in a row. Thus, features whose deviations vary greatly across topics
tend to show up on the top. A technical detail is that we sorted with respect
to the original features, rather than the one-hot encoded or binned features.
Therefore, as an example, all bins under mean blood pressure stay together. For
features associated with multiple rows in the heatmap, we computed the differ-
ence between the largest and smallest values for each row, and used the largest
difference (across rows) for sorting.
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Abstract. Medical data is rarely made publicly available due to high
de-identification costs and risks. Access to such data is highly regulated
due to it’s sensitive nature. These factors impede the development of
data-driven advancements in the healthcare domain. Synthetic medical
data which can maintain the utility of the real data while simultaneously
preserving privacy can be an ideal substitute for advancing research.
Medical data is longitudinal in nature, with a single patient having mul-
tiple temporal events, influenced by static covariates like age, gender,
comorbidities, etc. Extending existing time-series generative models to
generate medical data can be challenging due to this influence of patient
covariates. We propose a workflow wherein we leverage existing gen-
erative models to generate such data. We demonstrate this approach
by generating synthetic versions of several time-series datasets where
static covariates influence the temporal values. We use a state-of-the-art
benchmark as a comparative baseline. Our methodology for empirically
evaluating synthetic time-series data shows that the synthetic data gen-
erated with our workflow has higher resemblance and utility. We also
demonstrate how stratification by covariates is required to gain a deeper
understanding of synthetic data quality and underscore the importance
of including this analysis in evaluation of synthetic medical data quality.

Keywords: Synthetic data · Generative Adversarial Networks ·
Time-series

1 Introduction

Medical data in the form of Electronic Medical Records (EMR) has been widely
used by hospitals in the United States for aiding hospital processes like quality
improvement, monitoring patient safety etc. [14]. Furthermore, EMR data has
also been used for advancing healthcare research for decades [13]. However, high
de-identification costs and risks severely limit public access to such data. This
imposes huge restrictions on data-driven clinical research and makes studies that
use this data difficult to reproduce.
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A generative model that samples from the distribution of the health data,
while simultaneously preserving it’s privacy is an ideal solution to the problem.
Generative models like Generative Adversarial Networks (GANs) [4,15] (Health-
GAN, medGAN) explicitly generate snapshots of EMR type data. However, real
EMR data is longitudinal in nature and falls in the domain of time-series gen-
erative modelling. A key aspect of medical data is static covariates that heavily
influence temporal variables. For instance, a patient record not only contains
details of hospital visits over a period of time but also static demographic details
like gender, ethnicity, comorbidities etc. We characterize a good medical time-
series generative model as one that jointly models the distribution of the static
as well as the temporal variables.

We address this problem in the paper and provide a simple baseline that can
be used for comparison against future medical time-series generative models.
The primary contributions of this paper1 are:

1. Illustration of an efficient, flexible workflow to facilitate joint modelling and
synthesis of static and temporal variables.

2. Explicit qualitative evaluation of influence of static covariates on time-series
variables.

3. Reproducing clinical time-series benchmarks on synthetic versions of a pub-
licly available and widely used medical dataset.

2 Related Work

An open source synthetic patient generator called Synthea [5] uses hand-crafted
modules aided by health care practitioners and statistics derived from real data
to generate patients from their birth day to the present day. It does not violate
any privacy restrictions because it does not use real patients to generate the
data. It also claims to maintain utility as the generator uses underlying rules
manually derived from the real data. However, the time-series generated for a
record are not necessarily representative of real patient trajectories. Additionally,
the custom designed rules severely limit the type of data that can be generated
and are not easily extendable to other distributions of data.

Recurrent (Conditional) GAN (RCGAN) [8] uses recurrent neural networks
(RNNs) in the GAN framework, to generate real valued time-series medical data
like respiratory rate, heart rate etc. In the conditional setting, both the generator
and discriminator are conditioned on labels sampled from the real data during
training, and generated from independent distributions during the generation
process. The labels guide the generative process but are not modelled jointly
with the time-series variables.

Time-Series GAN [16] explicitly models time-series distributions as a joint
distribution of static and temporal variables. It produces realistic time-series
by jointly optimizing adversarial and supervised losses. We found TimeGAN to
be the only time-series generative model that addresses the problem of jointly

1 This paper is an extension of [6] submitted to the ML4H workshop at NeurIPS 2019.
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modelling static and temporal variables, and use it as a comparative baseline for
our methodology.

3 Method

We illustrate our approach by generating time-series datasets for three time-
series datasets where the covariates have a strong influence on the time-series
variables. The datasets are (1) PJM Hourly Energy Consumption Dataset (Kag-
gle) [12],(2) Sleeping Patterns from American Time Use Survey (ATUS) [1], (3)
Medical Information Mart for Intensive Care (MIMIC-III) [10].

The workflow is as follows:

1. Identify appropriate summary statistic(s) for time-series variables (e.g. mean,
median, skew, count etc.)

2. Compute summary statistic(s) for fixed time-intervals over the whole time
period.

3. Append summary statistic(s) to static variables. This maps the time-series
data frame to a cross-sectional data frame.

4. Use a generative model of your choice to generate this transformed data.

For (1), we choose summary statistics inspired by downstream applications
of the synthetic data. For (4), we use HealthGAN, a Wasserstein GAN [15], to
generate the transformed data. The HealthGAN includes encoding mappings
for categorical, numerical and ordinal variables of which the ordinal mappings
particularly boosted our results for the ATUS dataset. We evaluate resemblance
of the synthetic data to real data by assessing summary statistics conditioned
on covariates and the utility by reproducing published research results.

This workflow is best suited for data where the time-series can be dissected
into meaningful intervals to compute summary statistics relevant to the down-
stream application of synthetic data. An appropriate transformation of com-
puting mean, variance, skew, kurtosis etc. for the whole time-series is always
feasible.

We use TimeGAN2 as a comparison for this workflow for two of the above
datasets. It should be noted that we use the default parameters for TimeGAN
and do not fine-tune the model while generating the data.

4 Results

4.1 PJM Hourly Energy Consumption

Our first dataset is not a medical dataset, but it provide an illustration of the
challenge of synthesizing time series datasets with covariates. PJM Intercon-
nection LLC (PJM) is a transmission organization (RTO) which is part of the

2 We use the source code available at https://bitbucket.org/mvdschaar/mlforhealthlab
pub/src/master/alg/timegan/.

https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/timegan/
https://bitbucket.org/mvdschaar/mlforhealthlabpub/src/master/alg/timegan/
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Eastern Interconnection grid operating an electric transmission system serving
specific regions of the United States. The dataset3 primarily comprises of a
datetime stamp and the average energy consumed in Mega Watts (MW) in that
hour.

A natural summary statistic for the dataset is the average energy consumed
per hour. We set the time period to be one day. We hence get twenty-four
time-series statistics, one for each hour of the day which we append to the static
variables of day of week and month derived from the datetime stamp. The trans-
formed data now has twenty-six variables which are generated by HealthGAN.
We also separately generate the original data using TimeGAN.

We then qualitatively evaluate the synthetic datasets by comparing trends
in the real data. Figure 1 shows close resemblance of the summary statistic of
average hourly energy consumption across twenty-four hours for the real and
synthetic datasets (derived from HealthGAN and TimeGAN). A Welsch t-test
of the samples binned by hour shows that the hourly means from HealthGAN
(p-value = 0.51) as well as the hourly means from TimeGAN (p-value = 0.18) do
not significantly differ from the hourly means of the real data. Both generations
methods are seemingly performing well.

Figure 2 analyses the influence of the static covariates of day of week and
month on the average energy consumption in the real data, which reports high-
est energy consumption during the weekdays in the evening hours and the
summer months. These trends are mimicked in the synthetic data generated
by HealthGAN. In the synthetic data generated by TimeGAN, the hourly and
weekly trends are captured reasonably well but when examining by the covariate
months, the peak at months 7 and 8 is missed.

(a) HealthGAN (b) TimeGAN

Fig. 1. Hourly Energy Consumption - YTrue is the hourly energy consumption in the
real data and YPred is the hourly energy consumption in the generated data. The
values in both the real and synthetic datasets match closely.

3 https://www.kaggle.com/robikscube/hourly-energy-consumption.

https://www.kaggle.com/robikscube/hourly-energy-consumption
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(a) Real Data

(b) Synthetic Data from HealthGAN

(c) Synthetic Data from TimeGAN

Fig. 2. Average Energy Consumed vs Hour, Day of Week and Month for real and
synthetic data sets shows HealthGAN synthetic data highly resembles real data even
when covariates are considered.

4.2 American Time Use Survey (ATUS)

We generate sleeping patterns from American Time Use Survey (ATUS), a feder-
ally administered, annual survey on time use in the United States [1]. The survey
records how Americans divide their time among life’s activities in a nationally
representative sample. There are many different types of events per person. How-
ever, we choose to restrict our data to only the sleep activities of the people over
a period of thirty hours. (Please refer to [6] for more details). We divide the
thirty hours into thirty events of one hour each, and compute average sleep in
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that hour. We then append them to the static variables of age, sex, day of the
week and month of the year. The data is now in matrix form, consisting of 34
(including covariates) features per patient, ready for the HealthGAN to gen-
erate this data. Sleep data is synthesized from TimeGAN as well to use as a
comparative baseline.

Figure 3 shows the average sleep trends in the real data and synthetic
datasets. The average sleep per hour in the HealthGAN synthetic data closely
resembles the real data. Most people are awake by 10:00 am and asleep by 12:00
am. The synthetic data from TimeGAN does not follow this distribution. A
Welsch t-test of the sleep times binned by hour shows that the mean sleep time
per hour in the data from HealthGAN (p-value = 0.58) is not statistically differ-
ent from that in the real data. However, for the data from TimeGAN (p-value
= 0.012), the means appear to be significantly different.

To analyse the relationship between the static covariates and time-series vari-
ables, we reproduce a sleep study [2] which analyses the average sleeping time
stratified by age and day of week. Figure 4 shows the variations in sleep depend-
ing on age group and day of the week. In the real data, the average sleeping time
on weekends is significantly different from that on weekdays. Overall, teenagers
and young adults sleep (age group 15–24) significantly more than other age
groups, whereas adults between 35–54 years in general require less sleep than
other age groups. These trends are captured well in the synthetic data from
HealthGAN. The variations in average sleep times binned by group and day of
the week are so high in the real data that although the synthetic plot appears
to be shifted by an hour, it still falls within the 95% confidence intervals of the
means in the real data. For the synthetic data from TimeGAN, the distributions
for days Tuesday through Saturday are missing completely, suggesting mode col-
lapse, and the trends captured are significantly different from those in the real
data.

(a) HealthGAN (b) TimeGAN

Fig. 3. Average Hourly Sleep Trends of real (blue) and synthetic data (yellow) gener-
ated by HealthGann and TimeGAN (Color figure online)
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(a) Real Data

(b) HealthGAN (c) TimeGAN

Fig. 4. Average hours of sleep grouped by age and day of the week for real and synthetic
HealthGAN and TimeGAN data

4.3 MIMIC - III

The MIMIC - III dataset [10] is a publicly available critical care database which
is widely used in research studies [3,7,11]. Specifically we use three clinical pre-
diction time-series benchmarks derived from MIMIC - III [9]. These tasks consist
of:

1. In-Hospital Mortality Prediction - Predicting In-Hospital mortality
based on 48 hours of ICU data.

2. Decompensation Prediction - Predicting whether a patient’s health will
worsen over the next 24 hours.

3. Phenotype Classification - Predicting which of the 25 acute care conditions
are present in a patient record
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For each of the above tasks, the logistic regression baseline specifies which
summary statistics to extract from the time-series. We attempt to reproduce
these baseline results in the generated data as well. The paper identifies 17
clinical variables as primary temporal variables. For each variable, six different
sample statistic features (mean, std dev, skew etc.) are computed on seven dif-
ferent subsequences of a given time series (full, first 10%, first 25% etc.). Please
refer to [9] for more details. In total there are 714 temporal variables. In (1) the
static covariates are age, gender and the mortality label. This results in a total
of 717 variables for each patient. The task is a binary classification task with the
primary metric being AUC-ROC. In (2) the static variables are age, gender and
decompensation label, resulting in 717 variables. This is also a binary classifica-
tion task with the primary metric being AUC-ROC. The results for (1) and (2)
are summarized in Fig. 5. In (3) the static variables are age, gender and the 25
acute care conditions, resulting in 741 variables. This is a multi-label classifica-
tion problem to predict phenotype with the primary metric being AUC - ROC
for each variable treated independently. The results for the 25 prediction tasks
are illustrated in Fig. 6.

In Figs. 5 and 6, RR refers to train on real test on real, RS to train on
real test on synthetic, etc. RS scores indicate whether the synthetic data can
be substituted for the real data for a downstream application, while SR score
indicates whether the synthetic data has realistic features. Overall, across all
27 MIMIC-III tasks, we report RS and SR scores to be reasonably close to RR
scores. Note, however, that the SS scores tend to usually overshoot the RR scores
indicating that the generated distribution is more regular than the real data.

(a) Mortality AUC ROC (b) Decompensation AUC ROC

Fig. 5. AUC ROC for MIMIC-III Mortality and Decompensation tasks. First letter
indicates training set (Real or Synthetic). Second letter indicates testing set
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Fig. 6. Phenotype Classification Heatmap - In general, RR, RS, SR scores fall in the
same range. SS scores tend to overshoot RR scores significantly, suggesting increased
regularity in synthetic data as compared to the real data.

5 Conclusion and Future Work

Medical time-series data sets are characterized by both static as well as temporal
variables which must be modelled jointly to generate realistic medical time-series
data. We provide a simple, flexible and effective workflow to generate this kind
of data. We test our methodology by synthesizing three different time-series
datasets, two of which are health datasets. We empirically show that the data
generated by HealthGan not only shows close univariate resemblance with the
real data but also captures trends influenced by static covariates. We use a state-
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of-the-art benchmark4 as a comparative baseline. We highlight the importance
of evaluating synthetic medical data with respect to critical covariates and the
importance of including such analysis in time-series generative models for medi-
cal data. We plan to use super-resolution multivariate GANs trained on varying
length interval summaries to capture more complex EMR data in the future.
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Abstract. Predicting outbursts of hazardous medical conditions and
its importance has arisen significantly in recent years, particularly in
patients hospitalized in the Intensive Care Unit (ICU). In hospitals
worldwide, patients are developing life-threatening complications, which
might lead to organ dysfunctions and, if not treated properly, to death.
In this study, we use patients’ longitudinal vital signs data from the
ICUs, focusing on predicting Acute Hypertensive Episodes (AHE). In
this study, two approaches were used for prediction: predicting con-
tinuously whether a patient will experience an AHE in a pre-defined
time period ahead using an observation sliding window, or predicting
whether it will generally occur during the ICU admission, given a fixed
time period from the admission. Temporal abstraction was employed to
transform the heterogeneous multivariate temporal data into a uniform
representation of symbolic time intervals, and frequent Time Intervals
Related Patterns (TIRPs), which are used as features for classification.
For comparison, Convolutional Neural Network (CNN) and Recurrent
Neural Network (RNN) are used. Our results show that using frequent
temporal patterns leads to a better AHE prediction.

Keywords: Acute Hypertensive Episodes · Intensive care units ·
Symbolic Time Intervals · Temporal patterns · Outcome prediction

1 Introduction

Outcomes prediction in Electronic Health Records (EHR) is an essential topic
of interest in recent years with the growing availability and access to patients’
data [3]. Unlike most clinical data domains, in which data are relatively sparse,
in critical care, a meaningful part of the data is regularly sampled, since patients
are closely monitored. One of the known severe medical complications in ICU is
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Acute Hypertensive Episodes (AHE) - a long-term medical condition in which
severe elevations in blood pressure are likely to cause damage to one or more
organ systems. Early prediction of AHE is of high clinical importance in ICU
admissions and may enable taking precautions to prevent interventions that may
be too late potentially. The longitudinal intrinsic nature of critical care data may
benefit from the use of temporal data analytics [4,8,15].

In a supervised learning task, to construct a binary classifier, positive or nega-
tive examples should be specified. We use sliding windows, in which the extracted
windows contain multivariate longitudinal values series that were measured in
patients. Our goal is to evaluate the patient’s risk of experiencing an outcome
by dividing the data streams into overlapping time windows and examining each
window individually. Several studies reported using different study designs for
outcomes prediction using ICU data [11,13], or generally in EHR data [5]. How-
ever, not all the studies used the proper study design, as we elaborate in the
background, in which we explain how to perform a case-crossover-control design
that reflects real-life application conditions in continuous prediction. The sec-
ond option is generally predicting whether an AHE will occur based on a fixed
observation time period relative to the admission time, for which case-control
relative to an earlier event is appropriate. In this study, we experiment with both
approaches and discuss their pros and cons.

In recent years, the use of temporal abstraction was proposed to transform
heterogeneous multivariate temporal data, such as in ICUs [8], into a uniform
representation of Symbolic Time Intervals (STIs), which facilitates reasoning,
pattern discovery and analytics. Once a database of STIs is created, whether raw
or abstracted, time intervals analytics can be performed, such as the discovery of
frequent patterns [8] and match similar sequences [4] or queries. In this paper, we
apply the use of frequent time intervals patterns as features for AHE prediction in
ICU data. We compare this model to the use of a Convolutional Neural Network
(CNN) and a Recurrent Neural Network with Long Short-Term Memory (RNN-
LSTM). These models are neural network architectures that were designed for
the classification of multivariate temporal data.

The main contributions of this paper are the following:

1. A continuous prediction model, based on temporal abstraction and frequent
time intervals patterns for AHE prediction.

2. Comparison of predicting whether or not a patient will experience AHE in a
pre-defined prediction time versus based on a fixed observation time period
relative to the admission.

2 Background

2.1 Acute Hypertensive Episodes

Acute Hypertensive Episode (AHE) is a long-term medical condition in which
severe elevations in blood pressure are likely to cause damage to one or more organ
systems. Its severity levels are divided into three groups: the pre-hypertensive
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stage, stage 1 and stage 2 [10]. In this study, we predict the pre-hypertensive stage.
The reasons for AHE occurring in hospitalized patients are uncertain to this day,
and there is a great deal of demand for medical teams to predict when the onset
will abrupt [2]. Treating the event is usually performed in an invasive approach to
downgrade the blood pressure, and therefore using a prediction model will allow
the medical team to plan ahead and use non-invasive treatments.

2.2 Outcomes Prediction in ICU

Several studies have attempted to predict the onsets of various ICU complica-
tions. Not many studies have been conducted on acute hypertensive episodes.
Notice however, how previous studies have examined acute hypotensive episodes,
which in contrast to hypertensive episodes, are characterized by abnormal low
blood pressure. Many of these studies were based on the PhysioNet challenge, in
which the goal was to predict which patients will experience an acute hypotensive
episode’s beginning within a 60 min window, based on a data of at least 600 min
per patient. Some studies used logistic regression [5] or neural networks [11,15].
Studies that reviewed Sepsis, a life-threatening condition caused by the body’s
response to an infection, used overlapping sliding windows [13]. A part of these
studies applied sequential patterns based models [4] or neural networks [3].

2.3 Temporal Abstraction and Time Intervals Analytics

Temporal Abstraction refers to transforming a series of raw continuous time point
values into a series of symbolic time intervals. Symbolic Time Intervals (STIs)
can be raw, or the result of temporal abstraction, defined by a triplet of a start-
time, end-time and a symbol-id. Temporal abstraction is often performed in two
ways: (1) state abstraction, in which values are classified into states, are given
cutoffs and are later concatenated into STIs; (2) gradient abstraction, determines
the slope of the changing values. More about the process of temporal abstraction
can be found in [8].

Analyzing STIs data has been increasingly investigated over the past decade
[8]. Allen had defined seven temporal relations and their inverse [1], between
a pair of STIs, namely before (<), meets (m), overlaps(o), starts(s), finished-
by(fi), equals(=), and contains(c). Once the data are transformed into a series
of STIs, patterns can be discovered. Time Intervals Related Patterns (TIRPs)
discovery methods were developed in the past two decades [8,9], in which most
of them use Allen’s definition to represent the relation between a pair of STIs,
which are used to define a TIRP. A TIRP is called frequent if its vertical support
exceeds a minimum threshold. Vertical support is denoted by the cardinality of
the distinct entities within which TIRP holds at least once, divided by the total
number of entities in the database. Moskovitch et al. [8,9] introduced the Kar-
maLego algorithm that exploits the transitivity of temporal relations to generate
candidates efficiently and completely. More details about the evolution of time
intervals mining can be found in [9].
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3 Methods

Before explaining the TIRPs based prediction framework, it is important to
explain the problem setup. We had two approaches to address the prediction
of AHE, which influence the way the data is created for the classifier. The first
intention was to predict whether or not the AHE will occur using a sliding
observation time window that predicts the occurrence of the outcome within a
prediction time period ahead, for which the case-crossover-control study design
was used. Alternatively, we wanted to predict whether AHE will generally occur
during the ICU stay based on a fixed observation time period relative to the
admission, for which the case-control relative to an earlier event was used.

Fig. 1. Case-crossover-control design. The positive examples are the observation time
window is the last extracted prior to the prediction time period, which ends with
the outcome, while the negative examples are taken from the earlier observation time
windows in the cases, or from the matched controls.

However, in study such as ours, first the group of patients having the outcome
in their records which are called cases are defined, as well as a group of matched
patients, called controls, who do not have the outcome. Then, observation time
windows are extracted, which have to be labeled as positive or negative, to train
a classifier. In case-crossover-control, as illustrated in Fig. 1, positive examples
are defined as the observation time window that is last prior to the outcome of
interest. Negative examples are defined as observation time windows that appear
earlier in the cases, or any observation time windows in the controls. Prediction
time is defined before the outcome to give enough time to intervene and hopefully
prevent the outcome, but from an experimental perspective, it verifies that no
data is used that can be related directly or implicitly to the outcome, such
as a relevant test. Another option is to predict generally whether the AHE will
happen in the ICU stay, in which a case-control relative to an earlier event study
design can be used, and in this case, one observation time window relative to
the ICU admission is extracted from the cases, which is positive, and from the
controls, which is negative.

Figure 2 describes the entire flow of the AHE prediction framework, starting
with the cases and controls data, and proceeding with the observation time
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periods. The model learns from historical data composed of time windows-based
measurements and is used to predict AHE onset occurrence. We extended the
Maitreya framework [7,9] to use time point series variables in addition to raw
STIs. Thus, as shown in Fig. 2, after the time point series are abstracted into
STIs (Sect. 2.3), frequent TIRPs are discovered from the cases’ observation time
windows in the training set (Fig. 2.1), using the KarmaLego algorithm [8,9]. The
result is a Bag-Of-TIRPs that will be used as features for the classifier. Once
the TIRPs’ instances are also detected [8] in the control patients, a matrix of
TIRP-features is created (Fig. 2.2). The feature-matrix rows stand for patients’
observation time windows, and the columns are the TIRP features along with
the class (whether the observation time is positive or negative). Each matrix
entry has a value representing the TIRP for a given patient observation time
window. For each TIRP, several metrics are extracted and used to represent in
the classification: Binary, which represents whether the TIRP was detected at
the observation time period; Horizontal Support, which represents the number
of the TIRP instances that were detected; and Mean Duration, which refers to
their average duration from the first start time till the last end time, as defined
more formally in [8]. In addition, ten more metrics of the instances’ duration
of a TIRP were used, including the median, standard deviation and maximal
duration. Thus, the number of features will be the number of discovered TIRPs
multiplied by thirteen (the number of metrics), as shown in Fig. 2, for example,
column T1R1, represents the first metric (R1) of the first TIRP T1. Afterward,
the classifier is trained on the training feature matrix (Fig. 2.3). The process
of detecting TIRPs is done on the testing set to build the test feature matrix
(Fig. 2.4, 2.5), based on Bag-Of-TIRPs that were discovered in the training set.

Fig. 2. The overall AHE prediction framework using frequent TIRPs.

4 Evaluation

We had defined three research questions and two corresponding experiments to
answer them. The main research questions for this study were:

(A) Which prediction model, the TIRPs based (Sect. 3), 1D-CNN or RNN-LSTM
will perform best in for the AHE prediction?
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(B) What will be the performance of predicting whether a patient will experience
AHE in a pre-defined prediction time?

(C) What will be the performance of generally predicting whether AHE will
occur during the ICU stay given an observation time period from admission?

To evaluate the performance of the outcome prediction models, we created a
Receiver Operating Characteristics (ROC) curve and computed the Area Under
the Curve (AUC). However, the number of negative windows was bigger than
the positive windows (i.e., imbalance); thus, we also use a Precision-Recall (PR)
curve and compute the Area Under the PR Curve (AUPRC).

4.1 Dataset

The data collected for this study was extracted from the MIMIC-III database [6],
which contains an ICU from a single-center in Boston, United States. However,
the core mechanisms of physiological regulation of blood pressure are similar
across the populations across the globe. Therefore, blood pressure interventions
and protocols are not expected to be divergent across multiple ICUs in the pre-
emptive phase. We used vital signs data, which is a time series-based sampled
each 1-minute and is comprised of: systolic arterial blood pressure (ABP), heart
rate (HR), arterial oxygen saturation (SpO2), and respiratory rate (RESP). The
patient’s files are filtered to at least 12 h of data for each patient, leaving the
data to a total of 2,688 patients; 1,344 case-subjects experienced AHE. A patient
is matched to each case-subject to fit a real-world ratio standard. In our study
designs, we have maintained the originality of the ratio between case and con-
trol groups, 1:1 ratio, as similar to the actual ratio that was found in [12]. We
calculate the similarity score between the patients by their demographic param-
eters (see Appendix A). Patients are matched based on the closest distance of
the similarity score out of the entire dataset and not in a greedy comparison
approach. For this study, we extracted the data until the first occurrence of
AHE. We define the AHE target onset for overlapping epoch intervals of 30 min
that includes more than half of data points with Systolic ABP greater than 130
mmHg.

4.2 Experimental Setup

To answer the research questions, two experiments were designed. We ran the
experiments with ten-fold cross-validation, using group folding, which means
that the same case or control observation time windows appeared in the training
set or in the test set (but not both).

Baselines. We trained a 3D structure, known as a tensor representation, from
the raw data of patients for 1D-CNN and RNN-LSTM. The architecture intro-
duced in [14] was used (see Appendix B). RNN is designed to learn dependencies
of data in a sequence, while LSTM is explicitly designed to avoid the long-term
dependency problem. CNN is particularly suited for learning local patterns in
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raw features from inputs such as images (2D, width and height). CNN can also
be used for applying and sliding a filter over temporal data, which as opposed
to images, the filters will exhibit only one dimension (time), known as 1D-CNN.

TIRPs Based. In both experiments, the time-based data for the TIRPs discov-
ery processes went through a temporal abstraction phase using cut-offs defined
by domain experts (knowledge-based discretization) with three bins (low, nor-
mal and high values). STIs concatenated into a larger STI in cases where the gap
was shorter than ten minutes and there were not any STIs between them from
the same variable. The normal level values were: HR 60–100 bpm, RESP 7–15
breath/min, SpO2 88–92% and ABP 110–140 mmHg. We ignored the patients’
demographic data for the prediction and used only the time-based data. We dis-
covered TIRPs using KarmaLego [8] with minimum vertical support of 70% and
we used Random Forest as the classifier (see Appendix B).

Fig. 3. The TIRPs based prediction outperformed and using an observation time of
360min performed better than using 180min.

5 Experiments and Results

Experiment 1. Continuous AHE Prediction Time Period Ahead. The
goal was to evaluate how we can predict, continuously, whether AHE will occur
within a pre-defined prediction time period ahead. The case-crossover-control
study design was used to extract the observation time windows and label them,
as described earlier (research question B). For this purpose, we applied the TIRPs
based model, 1D-CNN and RNN-LSTM for comparison (research question A).

The models were evaluated with a prediction time of 60 or 180 min, observa-
tion time of 180 or 360 min, and a non-overlapping time of 120 min. One positive
window was extracted from each case-patient, while five negative windows were
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Fig. 4. The TIRPs based prediction performed better, and predicting 60min ahead
was slightly better than predicting 180min ahead.

extracted from each case and control. The control’s first-time window was taken
randomly and its following windows overlapped one another.

Figures 3 and 4 show the results when using the various parameters on the
TIRPs based prediction, 1D-CNN and RNN-LSTM models. The TIRPs based
model led to a slightly better performance than 1D-CNN and RNN-LSTM. In
Fig. 3 an observation window of 360 min performed better than using 180 min,
while as shown in Fig. 4, predicting 60 min ahead performed better than predict-
ing 180 min ahead.

Fig. 5. Observation times versus models using case-control relative to an earlier event.
Predicting based on longer observation time performed better.
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Experiment 2. AHE Prediction Given the First Hours After Admis-
sion. This experiment focused on evaluating the performance of the TIRPs
based model, 1D-CNN and RNN-LSTM (research question A), based on a spe-
cific time within the first hours since the ICU admission, which results in an
observation time window relative to the ICU admission (research question C).
For that, the case-control relative to an earlier event study design, which was
described earlier, was used. The ICU admission time was referred to as the
observed monitoring starting time. Observation time windows of 180, 360 or
600 min duration were used, which started at the beginning of the ICU monitor-
ing. Thus, the end of the observation windows, in the cases, were always earlier
by at least 120 min before the AHE onset. In Fig. 5, the use of the TIRPs based
performed best, especially when the observation time increased.

6 Discussion and Conclusions

In this paper, we experimented with AHE prediction, which was relatively under-
researched in the literature. The use of temporal abstraction, using knowledge-
based state abstraction, and time intervals mining for the prediction of AHE
in ICU data based on frequent TIRPs was introduced. Since we predict the
first onset of AHE, before any clinical interventions were undertaken, we do not
anticipate much differences in protocols across sites as our operating window is
still in the pre-emptive stage rather than post-detection.

The option of AHE prediction was tested in two setups, the first predict-
ing whether or not a patient will experience the complication in a pre-defined
prediction time using a sliding observation time window, and the second in pre-
dicting whether generally it will occur within the ICU stay, based on several
hours since the admission. Each experiment requires a different study design, as
we explained. The TIRPs based prediction was experimented in comparing the
use of 1D-CNN and RNN-LSTM, in which the TIRPs based model performed
better in AHE prediction. These results are encouraging, since unlike artificial
neural networks based models, which are hard to explain, the TIRPs are explicit
and can be easy to explain, which we would like to further investigate in our
future work.

Our results show that longer observation time windows lead to better predic-
tion since the data contains more information. Regarding the prediction time,
there were not much differences, while predicting 60 min ahead performed bet-
ter. These results are very encouraging, and for future work, we would like to
expand our experiments to predict AHE stage 1 and stage 2, and use additional
temporal abstraction methods, a different number of states, more sizes of the
observation time windows and prediction periods.

Acknowledgments. This research was supported by a collaboration grant of the
Israeli Ministry of Science and Technology grant #8760441 and a donation from the
Prof. Avram and Anat Bar-Cohen Project Desert Nova. Nevo Itzhak was funded by
Kreitman School of Advanced Graduate Studies and the Israeli Ministry of Science and
Technology Jabotinsky scholarship grant #3-16643.



Acute Hypertensive Episodes Prediction 401

A Appendix 1 - Demographic and Physiological
Characteristics

The demographic information of the patients (see Table 1).

Table 1. Demographics and physiological characteristics of the entire population, AHE
cases, and the matched controls

Variables All stays (2,688 patients) Cases (1,344 patients) Controls (1,344 patients)

Female, # (%) 1,144 (42.56) 569 (42.34) 575 (42.79)

Age (years), median

(IQR)

66 (56–78) 67 (55–78) 66 (54–77)

ICU length of stay

(days), median (IQR)

3.89 (2.15–7.83) 4.56 (2.43–10.17) 3.24 (2.02–5.79)

Initial HR (bpm),

median (IQR)

88.00 (77.00–102.00) 88.30 (77.50–102.23) 87.00 (76.25–101.00)

Initial RESP

(breath/min), median

(IQR)

17.72 (13.42–22.22) 17.00 (13.00–22.13) 18.00 (14.00–22.45)

Initial SpO2 (%),

median (IQR)

97.00 (93.00–99.50) 97.00 (93.00–99.90) 97.00 (93.00–99.00)

Initial ABP (mmHg),

median (IQR)

115.62 (107.19–125.18) 115.00 (106.06–123.75) 116.18 (108.31–126.87)

B Appendix 2 - Model Parameters

The parameters of each model are selected after testing the performance of each
combination (not in a greedy comparison approach), and here we describe the
parameters that performed best. For the TIRPs based model, we used Random
Forest as the classifier with 100 trees in the forest and a maximum depth of
5 for the tree. Bootstrap is used when building trees and out-of-bag samples
to estimate the generalization accuracy. Random Forest was implemented with
Python 3.6 Scikit-Learn (https://scikit-learn.org/stable/) version 0.22.1. For the
parameters we did not specify, we used the default.

For the CNN, we used one conventional layer with 48 filters and a kernel
size of 7, stride length of one, same padding (i.e., the output size is the same
as the input size), ReLU as the activation function and max-polling size of 3.
Then, we defined two more fully connected hidden layers with 128 and 8 neurons.
Activation function LeakyReLU with a dropout rate of 0.4 and 0.3, respectively,
and a batch normalization in each layer. The batch size was 128, the initial
learning rate was set to 0.0005 and the used optimizer was Nadam. Softmax
activation was used in the output layer.

For all RNN, we used a 1 hidden dense layer LSTM with 64 hidden units per
layer and with a recurrent dropout of 0.2. Activation function LeakyReLU with
a dropout rate of 0.3 and a batch normalization in each layer. Then, we defined

https://scikit-learn.org/stable/
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fully connected hidden layers with 128 neurons. We trained all models using
a maximum epoch of 80, a batch size of 128 and a learning rate of 0.001. We
used early stopping for both RNN and CNN, with a minimum change of 0.001,
lower than this value, it is not considered as an improvement for the loss and
is tolerated for 5 epochs. Both RNN and CNN models were implemented with
Keras (https://keras.io/) version 2.2.5. For the parameters we did not specify,
we used the default.
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Abstract. Falls are one of the leading causes of unintentional injury
related deaths in older adults. Although, falls among elderly is a well doc-
umented phenomena; falls of care homes’ residents was under-researched,
mainly due to the lack of documented data. In this study, we use data
from over 1,769 care homes and 68,200 residents across the UK, which
is based on carers who routinely documented the residents’ activities,
using the Mobile Care Monitoring mobile app over three years. This
study focuses on predicting the first fall of elderly living in care homes a
week ahead. We intend to predict continuously based on a time window
of the last weeks. Due to the intrinsic longitudinal nature of the data
and its heterogeneity, we employ the use of Temporal Abstraction and
Time Intervals Related Patterns discovery, which are used as features
for classification. We had designed an experiment that reflects real-life
conditions to evaluate the framework. Using four weeks of observation
time window performed best.

Keywords: Temporal data mining · Outcomes prediction · Falls
prediction

1 Introduction

The ageing population portion in the society has grown rapidly and becomes a
major challenge in healthcare worldwide. It is estimated that, by 2025, this group
will number approximately 1.2 billion and expand to 2 billion by 20501. More
than a third of the population above 65 years old fall each year. Approximately
1 in 10 falls results in a serious injury, such as hip fracture, major soft-tissue
injury and head injury. The mortality rate following a fall, increases dramati-
cally with the age, exceeding to 70% of accidental deaths in adults above 75 years
old. Therefore, predicting fall risk will allow ideally prevention or interventions,
which potentially reduce fall occurrences and fall-related costs [1]. Most studies,
1 World Health Organization and others:Active ageing, A policy framework. World
Health Organization. Geneva, (2002).
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if not all, till now in falls prediction focused on hospital or nursing environments,
consisting on demographic descriptives and data from electronic health records,
and not based on continuously documented data in care homes – as we do in
this paper. Thus, typically existing studies focused on the characterization of
risk profiles, based on broad demographics and the adults conditions, rather
than their daily data. Numerous parameters associated with the risk of falling
have already been identified [2,3], such as physical characteristics or their med-
ical history. Although, previous studies had reported models that predict falls
in elderly [4] they typically used heterogeneous samples that included prior fall
events. While falls history is the strongest single indicator and the most fre-
quently used factor for fall prediction, it cannot be used in the identification of
individuals at risk of falling for the first time – which we investigate in this study.
Therefore, there is still a need for assessment tools that can predict the risk of
a first fall onset. Nevertheless, most of these studies were limited by their use of
summary metrics, and relying solely on data collected infrequently, rather than
considering longitudinal data, such as risk factors that change over time [5]. This
happened, since there was no data typically available of the adults daily routine,
which makes our database exceptional in the opportunities it provides. In this
study we explore for the first time the ability to predict falls in care homes,
based on careres documentation through a mobile app. We use data from over
1,769 care homes and 68,200 residents across the UK, routinely collected by the
Mobile Care Monitoring (MCM) over three years. The goal is to predict a fall
a week ahead, based on a sliding observation time window continuously. Due to
the nature of the longitudinal data, we extend in this study the use the Maitreya
framework [16] to perform prediction using a case-crossover-control evaluation
design to reflect real life conditions. The contributions of the paper are the fol-
lowing:

– A rigorous evaluation of the falls prediction on a novel real life large database
– Investigating for the first time First Fall Prediction, based on secondary use

of care homes daily documentation based on a mobile app
– A comprehensive framework for falls prediction based on TIRPs extracted

from a sliding window

2 Background

2.1 Falls Risk Assessment

According to the World Health Organization, approximately one third of the
population over the age of 70 will fall and the likelihood rises with the age and
frailty. Falls account for more than half of injury-related hospital admissions and
40% of injury-related deaths in the elderly2. In addition to the human cost of

2 World Health Organization and World Health Organization. Ageing and Life Course
Unit: WHO global report on falls prevention in older age. World Health Organization.
(2008).
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falling (distress, pain, fractures, loss of confidence and loss of independence),
fall pose a substantial financial burden on healthcare systems and estimated to
cost the NHS (National Health Care) more than £2.3 billion per year. Therefore
falling has an impact on quality of life, health and healthcare costs [7]. Identifying
care home residents risk for falls can facilitate targeted prevention [8], potentially
reducing incidence and associated costs.

2.2 Temporal Abstraction and TIRPs Mining

In order to analyze heterogeneous multivariate temporal data, it was proposed
to use Temporal Abstraction in order to transform the various variables into a
uniform representation of symbolic time intervals, which enables later to per-
form time intervals analytics [6]. In this study we used only state temporal
abstraction, in which values are being discretized into states based on given cut-
offs, which are later being concatenated, when adjacent and having the same
symbol, into symbolic time intervals. There are several relevant discretization
methods including, Equal Width Discretization (EWD), in which the cutoffs are
determined by dividing the values range into equal bins; Symbolic Aggregate
approXimation (SAX) [9], which consists on the gaussian distribution of the
data, and the cutoffs are derived from its mean and standard deviation; Tem-
poral Discretization for Classification (TD4C), which is a supervised temporal
discretization method that searches for cutoffs that result in the states having the
most different distribution between the classes (TD4C) [10] and more. Previous
studies had shown the advantages of TD4C in comparison to EWD and SAX.
Once the data is in a uniform format of symbolic time intervals, TIRPs can be
discovered and used as features for classification. To discover TIRPs several time
intervals mining methods were developed in the past two decades often using a
subset of Allen’s temporal relations, which often used to represent the temporal
relations between pairs of time intervals in symbolic time intervals mining. There
are seven temporal relations: before, meet, overlap, contain, starts, finishes, and
equals. Therefore, a TIRP P is defined as P = IS,R, where IS = I1, I2, .., Ik is
a set of k symbolic time intervals ordered lexicographically and R defines all the
temporal relations among each of the (k2−k)/2 pairs of symbolic time intervals
in I. Several TIRPs mining methods were developed along the past two decades,
in which the TIRP representation was improved, as well as the mining structures
[6,12].

2.3 TIRPs Based Classification

Outcomes prediction modelling while employing the analysis of the longitudinal
data is one of the most important and challenging research fields in medical
data. The use of frequent patterns as features for classification and prediction of
data and specifically in multivariate temporal data is increasingly reported in the
past decades [11]. It is based on the idea that richer predictive information is in
the temporal order of the data, rather than independent features. Interestingly,
several studies proposed using TIRPs as features for classifying multivariate
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time series quite simultaneously [12]. A recent study introduced the Maitreya
framework for the classification of multivariate time series via TIRPs [16], which
is used in this paper. The Maitreya framework provides novel TIRP metrics for
classification, representing the TIRPs’ number of instances, and their average
duration, in addition to binary, as well as an efficient TIRPs detection method
called SingleKarmaLego [6].

3 Methods

We introduce here the TIRPs based falls prediction, starting with the data cre-
ation, and proceed with the falls prediction framework.

3.1 Mobile App Data Collection

In many countries, such as the United Kingdom, documenting care home’s resi-
dents is mandatory, but despite technological advances the data collection pro-
cess today, commonly, is still written manually on paperwork. Alternatively, our
study consists on data that was collected from elderly using the Mobile Care
Monitoring (MCM) mobile app. This mobile app enables a care home carers
to continuously record residents’ activities and statuses. Documentation may
include from fluid consumption and medication administration, to exercise activ-
ities and mental stimulation, recorded continuously using a simple and intuitive
interface (Fig. 1). The system is icon driven with limited need in typing to insert
information, designed to be suitable for non-native English speakers. The data
is automatically uploaded to a central database, integrated to provide a compre-
hensive, detailed, up-to-date data available for the careres, residents’ families,
which allows later secondary analytics, which is demonstrated in this paper.
Using the Care App, data about the residents are recorded in real-time rather
than at the end of the shift, or a day. Every day, 1,769 care homes around the
UK use the MCM app to document more than 2.4 million care notes over 68,200
residents.

Fig. 1. Data collection using the icon driven mobile app.
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3.2 Problem Definition and Study Evaluation Design

Given a database of documented data from the mobile app, the goal was to learn
predictive models, based on a recent observation time window (of several weeks)
that continuously provide a risk assessment a prediction time ahead (a week in
this study). For that we create a cohort of cases of residents who had a fall in
their records, and a group of matched controls, who are residents without a fall
in their records. The controls are matched based on their age, gender and Care
Quality Commission (CQC) score set by the independent regulator of health and
social care in England. However, in order to create the prediction model which
is an induced classifier, the observation time windows have to be labeled, which
is illustrated in Fig. 2.

Fig. 2. Labeled observation time windows creation. From the MCM longitudinal
database, the cases (residents who fell) are extracted, and their matched controls. Given
the first fall in the cases’ records, an observation time window is sled, in which the time
window a week before the fall in each case is labeled as positive, and the earlier time
windows are labeled as negative. In addition, random observation time windows from
each matched control are labeled as negative, which enables a case-crossover-control
design, reflecting real application conditions.

Thus, in each case the last observation time window prior to the prediction
time period, which is just before the outcome event (which leaves potentially
enough time for prevention) is labeled as positive. The negative time windows are
taken from both the cases’ earlier observation time windows, and from the con-
trols’ random observation time windows (since they do not have an outcome in
their records). This corresponds to a case-crossover-control study design, which
reflects real life conditions that are evaluated both on residents having a fall in
their data, or not.

3.3 FallPry

We introduce FallPry for falls prediction, based on the MCM longitudinal
database, that includes the time windows creation and their labeling, as was
shown in Fig. 2, and a TIRPs based prediction framework that extends the use



408 O. Dvir et al.

of the Maitreya framework [16]. The Maitreya framework includes four main
components: Temporal Abstraction, Time Intervals Mining, TIRP-based Feature
Representation, and Classifier induction. We explain here each of the framework
components.

Temporal Abstraction. The input raw data includes multiple variables that
are described by time-point values series, or event (i.e., measurement, actions
or risk assessment). Therefore, after dividing the raw data into positive and
negative time windows the raw data being abstracted into a uniform format
of symbolic time intervals, based on the use of state abstraction [10]. In this
study we employed Equal Width Discretization (EWD); Symbolic Aggregate
Approximation (SAX) [9] which creates states based on the gaussian distribution
of the values; and Temporal Discretization for Classification (TD4C) [10], which
is a supervised approach that determines the cutoffs for the states that increase
the divergence of the classes values distribution.

TIRPs Discovery. After the variables went through temporal abstraction and
are represented by symbolic time intervals, TIRPs can be discovered, which
is done by the KarmaLego algorithm [12]. As mentioned in the background,
we use non ambiguous TIRPs that use Allen’s temporal relations to represent
the relations between each pairwise symbolic time intervals. The discovered fre-
quent TIRPs, which are referred as a Bag-of-TIRPs, are used as features for the
classifier.

TIRPs Based Classification. For that a features-matrix is constructed, in
which the rows are the observation time windows, and the columns are the
TIRPs (each time window is represented by a vector of values for each TIRP-
feature, and the class). The TIRP-features’ values are calculated according to the
chosen TIRP representation metric: Boolean (whether the TIRP was detected
in the time window), Horizontal Support (how many instances of the TIRP were
detected), and Mean Duration (what was their average duration) [12]. Eventu-
ally, a classifier is induced from the training feature matrix. After a classifier was
induced, given a new time window, the TIRPs are detected using the SingleKar-
maLego algorithm [6] which results in a corresponding features vector which is
given to the classifier to perform classification.

4 Evaluation and Results

We define here the research questions for the study, and its corresponding exper-
imental plan and results. The experiment focused on examining the ability to
predict first falls in care homes, based on the data from the mobile app entered
by the careres.
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4.1 Research Questions

1. How accurate can first fall be predicted a week ahead, and what is the best
observation time window size?

2. What are the best FallPry settings for falls prediction? (i.e., state abstraction
method, bins number, TIRP metric and classifier)

4.2 Data

The data for this study were routinely collected from over, 1769 care homes
across the UK over three years, from 2017 to 2019 by the icon-driven Mobile
Care Monitoring (MCM) system from Person Centered Software, Guildford, UK
(Subsect. 4.1). The total population includes 68,200 residents, of whom 13,412
are above 75 years old, not bed bound and had at least one full year of documen-
tation. We define two groups of residents: the fallers and the non-fallers, which
will be referred as the cases and controls group respectively. The non-fallers
(control) were residents who have not had a documented fall during the entire
documentation period while the fallers (case) are residents who had documenta-
tion of a fall with an injury of some severity level (in this study no separation was
made between serious and moderate injury). Moreover, since this study focused
on predicting residents’ first fall, the fallers group was defined so throughout the
entire period prior to the fall (at least six months) no falls were documented
(Table 1).

Table 1. Cases and controls statistics

All residents Case Control

N 13,412 4894 8518

Age (std) 87.3 (±6.5) 88 (±6.1) 86.9 (±6.7)

Female (%) 71.2% 73.9% 69.7%

Female age, mean (std) 87.8 (±6.4) 88.4 (±6) 87.8 (±6.4)

Male age, mean (std) 85.9 (±6.5) 86.8 (±5.9) 85.9 (±6.5)

BMI under 18.5 (%) 11.9% 13% 10.8%

4.3 Experimental Setup

We used the Maitreya framework (Subsect. 3.2) for all the experiments, hav-
ing the following settings: a 50% minimal vertical support threshold, maximal
gap of 7 days and the full set of Allen’s seven temporal relations. In the experi-
ments, we tested four discretization methods: EWD, SAX, TD4C with Kullback
Leibler (TD4C-KL), and TD4C with cosine as the distance measure function
(TD4C-Cosine). The number of states determines the level of granularity of the
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abstraction method, which we experimented with two, three, and four states.
Three different TIRP metrics were used: binary (BIN), horizontal support (HS)
and mean duration (MeanD) and four types of classifiers: K-Nearest Neigh-
bor (KNN), XGBoost (XGB), Logistic Regression (LR) and Neural Net (NN)
using the default settings of sklearn. We ran the experiments using 10-fold cross-
validation, and using AUC as the metric to evaluate the prediction performance.
To evaluate our models in conditions that reflect the real application of a poten-
tial time-dependent falls prediction model, we train and test our model by posi-
tive and negative time windows taken from the case and control groups defined
above (Subsect. 3.2). The positive and negative time windows were selected in
ration of 1:6.

4.4 Falls Prediction Framework Baseline - Features Based Approach

As an alternative to the TIRPs based prediction, we implemented a feature
based approach, in which features were extracted from each time window. Data
aggregation has been widely applied as effective techniques to reduce data redun-
dancy and simplify complex data, especially in longitudinal data [13,14]. Due
to the heterogeneity of the various variables, and sparseness we decided to per-
form Piecewise Aggregate Approximation [15], based on ten time periods, for
which the mean is calculated, as done in PAA, which will become the features.
Although in PAA only the mean is calculated, we used count for specific variables
that contain events, such as the exercises frequency, nutritional risk assessment
frequency and more per observation time period. Eventually these ten time peri-
ods representative values become features. Performing the aggregation on each
time window individually, rather than preforming it on the whole time window’s
data which enables to capture the temporal relations to yield meaningful results
(Fig. 3).

Fig. 3. Using FallPry preform bather
then the feature based approach when
using both 4 and 5weeks observation
time window

Fig. 4. The use of TD4C KL with
two bins (states) performed best using
4weeks observation time period.
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4.5 Results

Experiment – Elderly First Injury Fall Prediction. In this experiment the
performance in predicting the first fall with a prediction time of one week ahead
was evaluated (research question A). For the observation time periods, three,
four or five weeks were used. Additionally, we compared the combinations of
the state abstraction methods, bins number, and TIRP representation metrics,
with the four different classifiers (research question B). As a baseline, the feature
based approach (Subsect. 4.5) was used that were extracted from the same time
windows. Figure 4 shows the mean results, including 95% confidence intervals, for
each observation time period of 3, 4, or 5 weeks, while using FallPry with TIRPs
or Features for comparison. The use of the TIRPs based was better with 4 or
5 weeks, while the Features based was better with 3 weeks. However, 4 weeks
was significantly better with the use of TIRPs. In Fig. 5, the use of FallPry
with TIRPs is presented with the various state abstraction methods (EWD,
and the number of states (2, 3, or 4 bins), in which the TD4C-KL seem to
outperform, especially with 2 or 3 bins. Figure 5, shows the mean results for the
TIRPs based, including the various TIRPs’ metrics of Binary (BIN), Horizontal
Support (HS) and Mean Duration (MD), and the Features based, with the four
types of classifiers that were used. There is a chart for each of the observation
time periods. It can be seen that the 4 weeks has the best performance, especially
with the XGB classifier and mean duration (which describes the average duration
of the TIRP’s instances). Thus, using Maitreya with 4 weeks observation time
window, 2 bins, TD4C-KL discretization, MD representation and XGB model
achieves the best performance (88.3% AUC, question B)

Fig. 5. FallPry preform better then the feature based approach when using both 4 and
5weeks observation time windows. The XGB was significantly better than the KNN,
NN and LR in all cases.

5 Discussion and Conclusions

Falls in elderly population is one of the leading causes for rapid deterioration
and death. Being able to predict a fall, or assess the risk for a fall, is desirable
in order to increase caution and ideally decrease the risk. Most of the literature
so far that reported the intention to predict falls was in hospital environments,
consisting on Electronic Health Records data, or in nursing homes, consisting
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on data collected infrequently and manually [5]. In this study, for the first time,
as far as we know, falls prediction in care homes is performed based on such
rich daily data of residents that was documented through a mobile app by the
care homes’ careres. Moreover, our datasets include residents’ daily activities,
nutrition and medical status which routinely documented from over 1,769 care
homes and 68,200 residents. An experiment, reflecting real-life conditions, was
performed that focused on evaluating the falls prediction a week ahead, given
a sliding observation time window of 3, 4 or 5 weeks duration. Using 4 weeks
observation time window performed significantly better than 3 or 5 weeks. Also,
using the TD4CKL abstraction method with two states and the mean duration
TIRP metric, with the XGB classifier achieved the highest performance. For
future work we would like to reduce the number of variables, and understand
better the predictors for the falls, as well as experiment with the frequency of
the risk estimations.
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Abstract. Electronic health records (EHRs) contain important tempo-
ral information about disease progression and patients. However, min-
ing temporal representations from discrete EHR data (e.g., diagnosis,
medication, or procedure codes) for use in standard Machine Learning
is challenging. We propose a transitive Sequential Pattern Mining app-
roach (tSPM) to address the temporal irregularities involved in recording
discrete records in EHRs. We perform experiments to compare the classi-
fication performance metrics for predicting “true” diagnosis between tra-
ditional sequential pattern mining (SPM) and the proposed tSPM algo-
rithms across multiple diseases. We demonstrate that transitive approach
is superior to the traditional SPM in mining temporal representations for
diagnosis prediction.

Keywords: Transitive Sequential Pattern Mining · Electronic Health
Records · Temporal representations

1 Introduction

In today’s biomedical research, modern Machine Learning (ML) algorithms are
being increasingly applied to data from electronic health records (EHRs). EHRs
contain important temporal information about disease progression and patients.
However, in the temporal nature of these data a multitude of convolutions are
embodied that are created through what is known as the recording processes [11].
EHR observations are often acquired asynchronously across time (i.e., recorded
at different time instants and irregularly in time) [2,5]. This property provides
challenges for directly applying standard temporal analysis methods to clinical
data recorded in EHRs. Specifically, traditional time-series analysis methods
can not be directly applied to analyze the temporal dimensions of the discrete
clinical data (e.g., diagnosis records) due to the irregular acquisition of these
data. There are also concerns about the validity of diagnosis records in EHRs
due to the payer-provider dynamics and healthcare processes [11].

Innovative methods that enable us to properly incorporate time and under-
stand the complexities involved in the healthcare process can yield to inter-
pretable findings from large scale clinical databases. Since the late 1990s, a body
c© Springer Nature Switzerland AG 2020
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of work has accumulated on mining temporal representations. Temporal repre-
sentation mining aims to transform temporal data into machine-readable repre-
sentations, which can be used in standard Machine Learning (ML) techniques
for temporal reasoning. Much of this work in medical domains explicitly has
been thought of, formed, and developed around clinical measurements data that
are commonly continuous in nature and have precise time stamps. From the
data mining community, sequential pattern mining (SPM) approaches provide
solutions for constructing temporal representations from discrete clinical data.
However, SPM algorithms were primarily developed on transaction data, and
thus, may require careful modifications for application in medicine.

In this paper, we propose modifications to the traditional SPM approach in
a transitive sequential pattern mining (tSPM) algorithm. The goal in tSPM is to
mine temporal data representations from discrete clinical data (e.g., diagnosis
or medication codes) for application in downstream ML. We apply the tSPM
and SPM to predicting “true” diagnosis records in the next visit for six diseases
and demonstrate that the tSPM algorithm improves the prediction performance
over the traditional SPM by up to 15%.

2 Related Work

2.1 Temporal Representation Mining

Temporal representation mining involves providing a machine-readable repre-
sentation that formalizes the notion of time in the context of a set of events
and temporal relationships [24]. In biomedical research, development and evo-
lution of temporal representation approaches has been largely confined to the
abstraction of temporal data from clinical measurements [23]. While numeri-
cal observations (e.g., laboratory test results) have explicit timestamps, precise
time-stamped information is often unavailable in discrete clinical data such as
records of diagnoses, medications, and procedures.

Sequential Pattern Mining (SPM) [1] is a viable approach for discrete data.
The goal in SPM is to discover “relevant” sub-sequences from a large set of
sequences (of events or items) with time constraints. The “relevance” is often
determined by a user-specified occurrence frequency, known as the minimum
support [14]. The frequent sequential pattern (FSP) problem is to find the
frequent sequences among all sequences [6]. Apriori-based sequential pattern
mining methods, such as sequential pattern discovery using equivalence classes
(SPADE) [27] and sequential pattern mining (SPAM) [3], are popular in the
healthcare domain. For example, Perer, Wang, and Hu (2015) used the SPAM
algorithm for mining long sequences of events [21]. The apriori property is that
if a sequence cannot pass the minimum support test (i.e., is not assumed fre-
quent), all of its sub-sequences will be ignored. The goal in the apriori-based
approach is to cut the number of features by finding the frequent temporal
patterns among all patterns. For example, most frequent temporal patterns
were utilized in Moskovitch & Shahar (2015); Batal et al. (2013, & 2016),
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Moskovitch et al. (2015 & 2017), and Orphanou et al. (2018) [4,5,16–19]. For
various reasons, temporal patterns that are mined based on frequency may not
make clinical sense.

2.2 Discrete Clinical Event Prediction

Recurrent Neural Networks (RNNs) [22] and its variants such as Long Short-
Term Memory (LSTM) and Gated Recurrent Unit (GRU) are being increasingly
applied to model discrete clinical events [13]. Applied a LSTM model to synthetic
EHR data (derived from MIMIC-III dataset [12]) to predict the next medication
administration events, lab results events, procedure events, and physiological
result events. Their study, however, does not model diagnosis records, potentially
due to the limitations of the dataset. [8] proposed Med2Vec, a scalable two layer
neural network for learning lower dimensional representations to predict future
medical codes and Clinical Risk Groups (CRG) levels. Evaluation of this work,
however, is limited to prediction of inpatient visits. [9] developed the REverse
Time AttentIoN model (RETAIN) that mined sequences of primary care visits
to predict if a patient will be diagnosed with heart failure. On the one hand,
RETAIN has been tested only on 1 disease. On the other hand, all these models
assume that the existence of a diagnosis code in the medical records reflects
true diagnosis. These models, therefore, at best can mimic clinical data, which
may not represent the truth about patients’ health. In this study, we predict the
possibility that the patient will be “truly” diagnosed for a disease based on her
past medical records, in six different diseases.

3 Methodology

We aim to leverage the diagnosis and medication histories in patients’ electronic
medical records to predict the “true” diagnosis record at the next visit. This
presents an important difference from the related work in this space that aim
to predict the next diagnosis records. To do so, we mine two types of sequential
patterns (i.e., representations) and train and test prediction models on computer-
and expert-annotated labels.

3.1 Traditional Sequential Pattern Mining

We first constructed a baseline method that applies the traditional sequential
pattern mining (SPM) algorithm, using EHR observations as features for disease
prediction. Given a list O1, O2, . . . , On of diagnosis or medication observations,
for each patient p, we have recorded the times tpi1 ≤ tpi2 ≤ . . . ≤ tp

ikp
i

at which
the observation Oi was recorded.

In the SPM approach, the features are all possible pairs of distinct obser-
vations (Oi, Oj), i �= j. We now explain how their frequencies are counted. For
a given patient p and a given time t, let t′ > t be minimal such that for some
i and some � ≤ kp

i , tpi� = t′. In words, t′ is the first time strictly bigger than t
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at which some observation is made for the patient (it could be several observa-
tions are made at the same time). Now, for a given patient p and a given index
i ∈ {1, 2, . . . , n}, let Spi be the set of all pairs (j, �′), with j ∈ {1, 2, . . . , n} and
�′ ≤ kp

j , such that observation j is made right after observation i at time tpj�′ .
Formally, (j, �′) ∈ Spi if and only if kp

i , kp
j ≥ 1 and there exists � ≤ kp

i such that
(ti�)

′ = tj�′ .
For each i, j ≤ n, i �= j, let rijp = |Sip|. We think of the rijp’s as samples

of a random variable Xij . Our goal is then to predict the class label Y given
(Xij)i�=j .

3.2 Transitive Sequential Pattern Mining

To account for irregularity of clinical records and recording processes, we propose
a transitive sequential pattern mining (tSPM) algorithm. In the tSPM algorithm,
the features are again all possible pairs of distinct observations (Oi, Oj), i �= j.
For a fixed patient p and i �= j ≤ n, we set rijp to be 1 if kp

i ≥ 1, kp
j ≥ 1 and

tpi1 ≤ tpj1, and 0 otherwise. In other words, rijp is 1 if and only if both Oi and Oj

were recorded for the patient and the first record of observation i was before,
or at the same time as, the first record of observation j. Again, for each fixed
i �= j, we think of the rijp’s as samples of a random variable Xij and our goal is
to predict the class label Y given (Xij)i�=j .

The use of first record (rather than all records) is a major difference in the
way sequential patterns are mined in tSPM to handle the repeated problem list
entries.

It is important to emphasize that we call the sequential pairs in the tSPM
approach transitive sequences as they embody distinctive modifications to the
conventional sequential pattern mining (SPM). Imagine a sequential pattern
where observation A happened right before B, and B happened right before C
(A → B → C). SPM mines subsequences A → B and B → C. To account
for the potential biases in EHRs, the transitive sequencing algorithm mines sub-
sequences A∗ → B∗, B∗ → C∗, but also A∗ → C∗ from the sequence A∗ → B∗ →
C∗, where A∗, B∗, and C∗ are the first records of A, B, C in the database.

3.3 Dimensionality Reduction

Since the numbers of pairs (Oi, Oj) with i �= j ≤ n is exactly n(n−1)
2 , the number

of sequential features is quadratic in the number of observations. This leaves us
with a highly dimensional vector of representations. The usual approach when
using SPM is to keep only the first n most frequent features, where n is a
hyperparameter. We call this approach FSPM.

We attempt to improve on this heuristic with a formal dimensionality reduc-
tion procedure that aims to minimize sparsity and maximize relevance (MSMR).
To minimize sparsity, we removed any feature that has a prevalence smaller
than one percent. On the remaining features we compute the empirical mutual
information using the entropy of the empirical probability distribution [10,15].
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Mutual information provides a measurement of the mutual dependence between
two random variables, which unlike most correlation measures can capture non-
linear relationships [10,20]. We ranked the data representations based on their
mutual information with the labeled outcome and kept the first 10’000 (in ties,
we used prevalence to determine the ranking).

We further scrutinized the relevance using joint mutual information
(JMI) [25]. The algorithm starts with a set S containing the top feature accord-
ing to mutual information, then iteratively adds to S the feature X maximizing
the joint mutual information score

Jjmi(X) =
∑

X∗∈S

I(XX∗;Y )

Here, I(Z;Y ) denotes the mutual information between random variables Z
and Y (a measure of the information shared by Z and Y —it can be expressed as
the entropy of Z minus the entropy of Z given Y ). The random variable XX∗

is simply the random variable corresponding to the joint distribution of X and
X∗. In the end, we select the first 40–500 features that were added to the set S.

The idea of using the joint mutual information score (as opposed to just the
mutual information) is that it also takes into account the redundancy between
the features: two features could each be highly relevant on their own, but also
be strongly correlated. On the other hand computing joint mutual information
is quadratic in the number of features, hence the initial dimensionality reduction
using mutual information.

Joint mutual information belongs to a large zoo of feature selection scores J ,
see for example [7] for a theoretical analysis and some experimental results sug-
gesting that JMI is a reasonable default choice. They compare the performance
of 9 different feature selection scores across 22 data sets, and suggest JMI as the
“best trade-off [...] of accuracy and stability”. It is one of few scores that satisfies
three theoretical criteria: reference to a conditional redundancy term, keeping
the relative size of the redundancy term from swamping the relevancy term, and
whether it is a low-dimensional approximation, hence usable with small sample
sizes.

4 Experimental Setting

We ask three questions. The first question involves examining the efficiency of
temporal representation mining algorithms; (1) can a classifier trained on transi-
tive sequences (tSPM) improve true disease prediction over the classifier trained
on traditional sequences (SPM)? As we discussed, a possible shortfall of tra-
ditional sequential pattern mining methods in clinical domains is the use of
frequency-based criterion to mine temporal representations. The second question
aims to examine the proposed MSMR dimensionality reduction algorithm; (2)
does an entropy-based criteria improve the frequency-based criterion for feature
selection? Finally, the third question examines whether together the proposed
temporal representation mining and dimensionality reduction can improve true
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disease prediction; (3) Does tSPM+MSMR provide an overall better prediction
that the Frequent traditional sequential pattern mining (FSPM)?

We used EHR data from the Mass General Brigham Biobank on six dis-
eases: congestive heart failure (CHF), type 1 and 2 diabetes mellitus (T1DM
and T2DM), rheumatoid arthritis (RA), chronic obstructive pulmonary disease
(COPD), and ulcerative colitis (UC). In each disease cohort, the medical records
end with an encounter that includes International Classification of Diseases,
Ninth Revision, Clinical Modification (ICD-9-CM) code for the respective dis-
ease. We excluded data from the last encounter to predict. There is no time con-
straint for the next encounter that we aim to predict. For each of the diseases, we
had a random subset of patients for whom we had curated gold-standard labels
via in-depth expert review of clinical notes. The gold-standard labels identified
if the patient truly had (or did not have) the disease. We used the gold-standard
labels as the test sets. For the rest of the patients in each cohort, we had silver-
standard labels that were curated by ML algorithms for training. The use of
data for this study was approved by the Mass General Brigham Institutional
Review Board (2017P000282). Table 1 shows the basic data statistics for each
disease cohort.

Table 1. Basic statistics from the disease cohorts.

Disease Cohort population Unique records Average depth Average age Test set size

CHF 6,857 25,480 16.24 yrs 68 yrs 49

COPD 5,107 29,880 9.14 yrs 60 yrs 61

RA 4,015 20,315 7.83 yrs 52 yrs 72

T1DM 3,107 23,001 8.59 yrs 57 yrs 58

T2DM 9,500 27,099 7.62 yrs 55 yrs 74

UC 1,560 14,682 6.68 yrs 46 yrs 45

From each representations, a nested set of the top 50, 100, 200, and 400
features obtained from the MSMR algorithm are used for prediction. We applied
Logistic Regression with L1 regularization to the training sets to predict the
true diagnosis of the target disease (Dxi) at the next encounter, using bootstrap
cross-validation. To evaluate the classifiers, we utilized the gold-standard labels
on the test sets. We used the area under the receiver operating characteristic
curve (AUC ROC) to compare the algorithms’ prediction performances. We also
compared the Youden’s J statistic [26], that aims to capture both sensitivity
and specificity in a single statistic. We computed the all possible Youden’s J
statistics on the receiver operating characteristic curve, and used the best J
statistic a classifier had to offer.

5 Results

As expected, the number of tSPM sequences were about 10-fold the number of
SPM sequences. Table 2 shows number of unique sequential patterns mined by
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Table 2. Representations mined by each algorithm.

Disease SPM representations tSPM representations

CHF 3,555,577 30,969,742

COPD 3,520,689 37,137,257

RA 1,863,405 18,310,561

T1DM 2,209,541 22,294,391

T2DM 3,480,550 29,397,627

UC 863,097 9,062,784

the SPM and tSPM algorithms. The prediction performances from each algo-
rithm are presented in Table 3. Results (Table 3) showed that on average, tran-
sitive sequential pattern mining (tSPM) improved equivalent SPM metrics by
between 6% to 15% in AUC ROC and 7% to 10% in Youden’s J statistics, regard-
less of the feature selection approach. Frequent transitive sequential represen-
tations mined in the FtSPM improved AUC ROC by 6 and Youden’s J by 7%
compared with the frequent sequential representations in the FSPM algorithm.
Using the MSMR dimensionality reduction approach, the tSPM representations
offered an average 15% improvement in AUC ROC and 10% in Youden’s index
over the SPM representations. Across the six diseases, there was some vari-
ability in the magnitude of improvements transitive sequencing provided over
traditional sequencing. For instance, in COPD and RA, the difference between
frequency-based tSPM (FtSPM) and SPM (FSPM) in AUC ROC was close to
zero, while this performance difference was 25% in T2DM between the MSMR-
based algorithms. Nevertheless, the overall improvement from using tSPM is
supported by the results.

We also found that in the traditional sequencing (SPM), the improvement
in prediction is almost non-existent. That is, the MSMR algorithm did not offer
any benefit over using the most frequent traditional sequential representations.
For transitive sequences, however, the MSMR algorithm provided an average of
9% improvement in the AUC ROC and 4% improvement in Youden’s J over
the frequency-based criterion. Across the six diseases, there was some level of
variability in both magnitude and direction (positive/negative change) of the
results that impacted the averages. For example, in COPD and RA, the MSMR
algorithm for dimensionality reduction decreased the AUC ROC and Youden’s
J statistic obtained from the SPM algorithms. This resulted in the minimal dif-
ference in the effect of MSMR on representations mined from the traditional
sequential pattern mining. Variability was less of an issue in the overall effec-
tiveness of the MSMR algorithm on transitive sequences. In four of the six dis-
eases, the transitive sequential representations selected by the MSMR algorithm
significantly improved the classifiers’ AUC ROC over using the most frequent
transitive sequential representations.

Regarding the third question, we found that, on average, the proposed
tSPM+MSMR approach improved the AUC ROC by 15% and Youden’s J statis-
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Table 3. AUC ROC and Youden’s J statistics across diseases and by algorithms.

tic by 12% over the FSPM. The only exception was in COPD where Youden’s J
decreased by 3% as compared with the FSPM (AUC ROC improved by 5%), in
which case the frequent transitive sequential patterns provided the best overall
performance. Given the benchmark of frequency-based sequential pattern min-
ing (FSPM), both performance indices improved consistently by utilizing the
MSMR driven transitive sequential patterns for predicting the diagnosis.
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6 Conclusion

In this work, we argue that discrete clinical data in EHRs are fundamentally
different from transaction data (for which the SPM algorithm and its often used
frequency-based feature selection criteria were developed). We proposed a tran-
sitive sequential pattern mining (tSPM) algorithm as well as a dimensionality
reduction algorithm (MSMR) to construct and apply temporal representations
from discrete clinical data into standard Machine Learning. Our results showed
that the tSPM representations improve prediction performance over the tradi-
tional sequential pattern mining (SPM). In other words, we showed that the
assumption of transitivity improves prediction power in sequential pattern min-
ing with EHR data. More research is needed to evaluate other use cases of tran-
sitive sequential pattern mining. We also showed that selecting features using
the MSMR algorithm improved prediction using tSPM representations. Another
novelty of this research is in its prediction task, where we aim to predict a verified
disease diagnosis record. This is different and possibly harder than the prior clin-
ical prediction tasks, such as [9], that aim to predict the next diagnosis record.
We believe that it is naive to assume that the diagnosis records in EHRs are
always correct and reflect clinical practice. The tSPM and MSMR algorithms
together provide methodological pathway to making sense of data in electronic
health records.
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HG009174. The content of the paper is solely the responsibility of the authors and
does not necessarily represent the official views of NIH.
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Abstract. We present an executable formalism for clinical practice
guidelines, with the aim of providing pervasive and evidence-based deci-
sion support to patients. Unlike traditional formalisms that capture the
control flow between tasks, we focus on data flow, with tasks modeled
as processes that execute in parallel. By parallelizing and distributing
guideline knowledge, each device that constitutes the patient’s pervasive
healthcare system can provide decision support independently, avoiding
single points of failure. This distribution also enables dynamic system
re-configurations, increasing its resilience against evolving requirements
and changing communications environments.

Our model recognizes four types of processes: Monitoring, Analy-
sis, Decision and Effectuation. These processes were specified using
(axiomatic) set theory and implemented as a set of libraries on top of
Rosette, which supports execution of the formalism and verification of
it using constraint solvers. The formalism was also tested by formalizing
a complete clinical guideline for diabetes management, which yielded a
Rosette program that was then tested on simulated patient data. The
major point of clinical relevance is enhancing the quality and safety of
decision support delivered to patients.

Keywords: Computerized clinical practice guidelines · Pervasive
healthcare · Knowledge representation · Data flow modeling · Formal
specification · Verification and validation · Diabetes management

1 Introduction

Pervasive healthcare systems, which aim to support patients anytime, any-
where, have potential to address the healthcare challenges arising from increased
prevalence of chronic diseases, an aging population and shortage of healthcare
resources [1]. For example, instead of relying on infrequent checkups, diabetic
patients may use such systems to help constantly monitor and control their blood
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glucose levels. Such systems should, however, ensure high quality care, which in
hospital settings is increasingly supported by the use of clinical practice guide-
lines (CPGs), especially computerized CPGs that can be executed automatically
by knowledge-based systems (KBSs).

We aim to bring computerized CPGs to free-living settings to provide per-
vasive guideline-based decision support to patients. Clinical KBSs are typically
deployed on fixed infrastructures, e.g. hospital servers, but for pervasive health-
care systems, components may be distributed across multiple personal devices
and may require dynamic reconfiguration in response to changing requirements
and unreliable communications environments. Here we present a new verified
formalism for representing clinical guidelines which models clinical tasks as pro-
cesses executing in parallel. In this way, guideline knowledge and reasoning can
be flexibly distributed across system components, allowing them to operate inde-
pendently and thereby avoid a single point of failure.

Section 2 presents background and related work while Sect. 3 presents our
formalism. We present a reference implementation of the formalism in Sect. 4
and demonstrate an application of the formalism to a complete clinical guideline
in Sect. 5. Section 6 discusses the findings and clinical relevance. Conclusions
are found in Sect. 7.

2 Background and Related Work

CPGs are typically formalized as task-network models [5], i.e. hierarchical plans
that comprise constructs for decisions and actions as well as embedded sub-plans.
To enable automated execution, decisions are generally modeled as decision trees
or tables [9], with data processing specified using expression languages (e.g.
GELLO) [5].

Regardless of the specific formalism, task-network models encapsulate the
control flow (i.e. the logical ordering) between different tasks over time [5]. As
a result, they assume a centralized system architecture in which a supervisory
component controls the execution of guidelines (i.e. the application of guidelines
to patient data). To reduce reliance on such components, Shalom et al. in 2015
proposed a projection mechanism whereby self-contained portions of a clinical
guideline are identified for execution in parallel with the overall plan [10]. This
mechanism was implemented in the MobiGuide patient guidance system and was
demonstrated in the atrial fibrillation and gestational diabetes domains [6]. The
MobiGuide system contains two decision support systems: a front-end system
running on the patient’s smartphone to execute guideline fragments locally; and
a back-end system running on hospital servers to execute the overall guideline
and “project” the appropriate portions to recipient devices [10].

While this projection mechanism can be extended to an arbitrary number
of “local” devices, it still requires a supervisory component to project guideline
fragments. To remove the reliance on a centralized controller, formalisms based
on production rules may be adopted instead, the main exemplars of which include
the Arden Syntax [8] and the OpenEHR Guideline Definition Language [11]. In
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general, these rules encapsulate the data flow of clinical guidelines, thus they do
not exhibit control flow dependencies and can therefore be executed in parallel.
However, they also do not intrinsically support the distinction between differ-
ent types of tasks featured in clinical guidelines, such as diagnosing a patient’s
condition and making a therapeutic decision.

Therefore, while our formalism also focuses on data flow rather than control
flow, we base our formalism on previous work [3] which introduced an informal
conceptual data flow model of disease management. Our model comprises four
types of data flow processes interacting with the environment (e.g. the patient):

– Monitoring (M), the process of making observations about the patient.
– Analysis (A), the process of making assessments about the state of the patient.
– Decision (D), the process of deciding on the appropriate therapeutic plan.
– Effectuation (E), the process of executing the decided plan, which may involve

performing an action or controlling the execution of a process (possibly itself).

Our MADE model (Fig. 1) was demonstrated to be a useful conceptual tool for
analyzing clinical guidelines and designing decision support systems in the con-
text of pervasive healthcare [3]. To support interoperability in pervasive health-
care systems, we also derived from it a reference information model (the MADE
RIM) for representing clinical data [2]. Building on this work, we present in
this paper a formalism for representing guideline knowledge as interconnected
MADE processes.

DA
Observation Abstraction Action Plan

Measurement Action
Instruction

Control Instruction

M E

External Environment

Fig. 1. The MADE model for disease management.

3 The MADE Guideline Formalism

3.1 Overarching Model of Clinical Guidelines

Our MADE formalism is specified using (axiomatic) set theory and comprises
26 set definitions, 13 function signatures and 34 logical invariants. This paper
focuses on the set definitions, which specify the data types that constitute our
formalism. In particular, we abstract away the technical aspects of pervasive
healthcare systems and model a clinical guideline as a set of processes that are
fully connected with each other, with data flowing instantaneously between them.
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In turn, each process is modeled to comprise four components: a unique ID, a
data state to store previously input data, a control state which determines when
the process is activated and a specification of the instructions for the process
when it runs. This leads to the following two set definitions:

Guideline = P(Process) (1)
Process = Id × DataState × ControlState × InstSpec (2)

Processes are modeled to execute at each time instant, and during execution
each process updates its states and outputs a set containing 0 or 1 data item
depending on its states, its input data, the current date-time as well as its
specified instructions. In accordance to Fig. 1, six types of data are distinguished,
which together constitute the MADE RIM as specified in [2]. Here we present
the specification of InstSpec, of which four types are distinguished, one for each
type of MADE process:

Data = Measurement ∪ Observation ∪ Abstraction ∪ ActionPlan
∪ ActionInstruction ∪ ControlInstruction (3)

InstSpec = MSpec ∪ ASpec ∪ DSpec ∪ ESpec (4)

For ease of understanding, the behavior of each type of MADE process is pre-
sented in this paper using natural language English, although it is in fact speci-
fied using function signatures and logical invariants. For example, the execution
of a process as described above can be formally specified as the following func-
tion:

execute : Process × P(Data) × DateTime → Process × P(Data), such that (5)
∀p ∈ Process, din ∈ P(Data), t ∈ DateTime.

(¬isProcessActivated(π3(p), t) ⇒ dout = {}) ∧ |dout | ≤ 1 ∧
π1(p) = π1(pout) ∧ π4(p) = π4(pout) (6)

Here πi(x) refers to the ith element of x, (pout , dout) is the result of
execute(p, din , t) and isProcessActivated is a function that determines whether
the process is activated or not given its control state and current date-time.
Thus, Eq. 6, which is a logical invariant, specifies that a process may only out-
put data when dictated by its control state and that at most 1 data item can be
generated. If the process is not activated, it can still update its data state and
control state, but under no circumstances can it be transformed into another
process by changing its identifier or its instructions.

3.2 Model of Monitoring Processes

Two types of Monitoring processes are distinguished to reflect the two types
of observations specified in [2], viz. observed properties and observed events.
In our formalism, observed properties are generated by performing digital sig-
nal processing, e.g. noise filtering, on input measurements. Thus for Monitoring
processes which output observed properties, the specification comprises:
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– A time window indicating the duration beyond which data is considered irrel-
evant.

– A mathematical function that operates on the measurements that have been
filtered using the time window, returning the value of the output property.

– An output type identifying the specific type of observed property to generate.

MSpec = PropertySpec ∪ EventSpec, where (7)
PropertySpec = TimeWindow × ValueFunction × OutputType (8)

TimeWindow = Duration (9)
ValueFunction = P(Measurement) → PropertyValue (10)

OutputType = Id (11)

Whenever a Monitoring process for observed properties is activated, all input
data (including those stored in its data state) are filtered using the time window
to remove data that are either not measurements or not relevant at the current
date-time. The process then feeds the remaining measurements into its value
function and outputs an observed property with the specified output type and
computed value.

Unlike observed properties, observed events can exhibit a start and an end,
and they can only be assigned a boolean value to indicate whether they occurred
or not [2]. Thus Monitoring processes for observed events are specified to com-
prise:

– A time window and predicate specifying the conditions indicating the event’s
start.

– A time window and predicate specifying the conditions indicating the event’s
end.

– An output type identifying the specific type of observed event to output.

EventSpec = EventTrigger × EventTrigger × OutputType, where (12)
EventTrigger = TimeWindow × TriggerPredicate (13)
TriggerPredicate = P(Measurement) → Boolean (14)

As with the time window in PropertySpec, the time windows in EventSpec are
used to filter out irrelevant measurements; the remaining measurements are input
into the corresponding predicates to determine if the start or end of the event is
detected. If the start is detected, the Monitoring process will then search through
the historical data to determine when the event ended; during this time period,
the event did not happen and therefore its value would be false. Similarly, if the
end is detected, the process will search for the date-time starting from which the
event occurred.
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3.3 Model of Analysis Processes

To generate abstractions from observations, Analysis processes comprise:

– An output type identifying the specific type of abstraction to output.
– A set of abstraction triplets, each containing:

• A time window for filtering out expired measurements.
• A predicate on the filtered observations that specifies the condition under

which an abstraction should be generated.
• An abstraction function that accepts a set of observations as input and

returns the appropriate value for the output abstraction (if one is gener-
ated).

ASpec = OutputType × P(TimeWindow × AbstractionPredicate
×AbstractionFunction), where (15)

AbstractionPredicate = P(Observation) → Boolean (16)
AbstractionFunction = P(Observation) → AbstractionValue (17)

Like observed events, abstractions are valid over a date-time range [2]. However,
unlike observed events, abstractions are not generated by detecting start and
end conditions. Whenever an Analysis process is activated, it iterates through
its abstraction triplets, and for each triplet it applies the abstraction predicate
and abstraction function to the data that has been filtered through the cor-
responding window. If a predicate is satisfied, the iteration terminates and the
process outputs an abstraction with the specified type and corresponding value—
otherwise, the process does not generate any abstraction. The valid date-time
range of the output abstraction is computed by finding the longest period (start-
ing from the current date-time) during which the predicate remains satisfied and
the computed value remains unchanged.

3.4 Model of Decision Processes

Decision processes comprise a plan template from which a new action plan can be
instantiated as well as a set of decision criteria governing the conditions under
which that action plan should be enacted. In our formalism, decision tables
are adopted for decision-making, such that the decision criteria are specified as
predicates over the input abstractions. Furthermore, reflecting the specification
of action plans, plan templates are modeled to comprise a set of instruction
templates, of which three types are distinguished, one for each type of scheduled
instruction in an action plan [2]:

– Homogeneous action instructions for actions that exhibit a rate and duration.
– Culminating action instructions for actions that exhibit an end goal.
– Control instructions for controlling the execution of MADE processes by

setting their schedules and/or status (whether they should be running or
paused).
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DSpec = PlanTemplate × P(DecisionCriterion), where (18)
PlanTemplate = PlanType × P(ControlTemplate

∪ HomogeneousActionTemplate ∪ CulminatingActionTemplate) (19)
DecisionCriterion = P(Abstraction) → Boolean (20)

In contrast to Monitoring and Analysis processes, Decision processes do not
require a time window; the only relevant abstractions are those that are valid
at the current date-time. These abstractions are checked against the decision
criteria; if any criterion is triggered, an action plan will be instantiated from the
plan template. The schedule of each instruction in the plan is computed from
the current date-time and the relative schedule of the corresponding instruction
template.

3.5 Model of Effectuation Processes

Since action plans already contain the complete details of all instructions to
be executed and when, Effectuation processes simply specify which instructions
they are responsible for effectuating. More specifically, Effectuation processes
comprise:

– A specification of the target scheduled instructions to be effectuated by the
process. Targets are identified by type of action plan, type of target instruction
as well as a predicate on the scheduled instruction.

– An output type indicating the specific type of instruction to output.

ESpec = P(TargetScheduledInstruction) × OutputType, where (21)
TargetScheduledInstruction = PlanType × InstructionType

×InstructionPredicate (22)
InstructionPredicate = ScheduledInstruction → Boolean (23)

When activated, an Effectuation process filters out any action plans that are not
valid at the current date-time and extracts, from the remaining action plans, all
relevant scheduled instructions based on the specified targets. From these rele-
vant scheduled instructions, the process then determines if any should be effec-
tuated at the current date-time (given their schedule). If yes, then an instruction
will be generated with the specified output type, which may possibly be more
specific than the scheduled instruction. For example, an action plan may require
an hour’s (unspecified) exercise daily while an Effectuation process may instan-
tiate this as an instruction to walk on a treadmill.

4 Reference Implementation

To ensure that the formalism is executable and to clarify any ambiguities, a
reference implementation of the formalism was developed as a set of libraries
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on top of the language Rosette. Clinical guidelines can be formalized using this
reference implementation into Rosette programs (Fig. 2), which would comprise
interconnected MADE processes. Subsequently, by executing those programs,
clinical guidelines can be applied onto (simulated) patient data to demonstrate
the semantics of the formalism.

1. Formalise
Guideline

MADE 
Ref. Impl.

Clinical Guideline

Rose�e 
Program

(Simulated) Pa�ent Data

2. Execute 
Guideline

Decision
Support

Fig. 2. The overall procedure for using the reference implementation.

The source code is available at https://github.com/nlsfung/MADE-
Language. To summarize, each data type in the formalism is implemented as
a structure (which is analogous to classes in objected-oriented programs), while
behaviors are implemented as procedures. Furthermore, elements of data types
are generally implemented as fields in the corresponding structures, with the
exception of InstSpec which is implemented using interfaces (to ensure that
it remains constant over time). Clinical guidelines can then be formalized by
extending the structures and implementing the interfaces; during execution,
these structures would be instantiated into concrete data items.

For example, a process to analyze ketonuria may be formalized as the
following structure. It inherits the data state and control state fields from
analysis-process and implements the gen:analysis interface to return the
appropriate output type (ketonuria) and abstraction triplets (denoted by x).

(struct analyze-ketonuria analysis-process ()
#:methods gen:analysis [
(define (analysis-process-output-type self) ketonuria)
(define (analysis-process-output-specification self) x)])

Apart from an interpreter for executing programs, Rosette also provides access
to off-the-shelf constraint solvers to analyze them [12]. This allowed the reference
implementation to be verified against 34 logical invariants derived for the for-
malism (e.g. Eq. 6). Each invariant was translated into an assertion in Rosette,
which was then checked (using a constraint solver) whether a concrete counter-
example can be found that violates it. If yes, then the assertion is not valid.
Otherwise, as is the case with the 34 invariants, it provides evidence (but not a
definitive proof) that the assertion is valid.

5 Case Study: Gestational Diabetes Guideline

The MADE formalism was tested by formalizing a complete clinical guideline
for gestational diabetes (GD) [7] that has previously been adopted to evaluate

https://github.com/nlsfung/MADE-Language
https://github.com/nlsfung/MADE-Language
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the MobiGuide system [4]. The result was a Rosette program (also available
on GitHub) that comprises 0 Monitoring, 4 Analysis, 22 Decision and 29 Effec-
tuation processes. As an example, we focus on the guideline fragment shown in
Fig. 3, which relates to the decision to increase the carbohydrates intake of a GD
patient. To highlight the identified MADE processes, we annotated the extract
by underlining followed by an inserted [M] for Monitoring, [A] for Analysis and
[D] for Decision processes.

‘‘... The patient measures ... ketones in the urine every day
at fasting conditions [M]. ... The results of ketonuria could
be: a) positive (++); b) positive (+); c) negative (+/-);
d) negative (-); e) negative (--). ... In case of ketonuria
detection (the number of ketonuria measurements with result
‘‘positive’’ is equal or higher than 3 in a period of time of
one week) [A]:- If the patient was COMPLIANT with the prescribed
diet [A], the nurse decides to increase the carbohydrates intake
either at dinner or at bedtime ... by 1 unit [D] ... ’’

Fig. 3. Extract from the GD guideline [7] annotated by [3].

Since urinary ketone levels must be monitored manually by the GD patient,
only two processes were formalized for this example. The first is the analysis of
ketonuria, which requires a window of 7 days and outputs a ketonuria abstraction
with value positive if more than two urinary ketone values are + or ++. The
second is the decision to increase carbohydrates intake, which was confirmed by
clinicians to be automatable. It accepts as input ketonuria and diet compliance
abstractions and outputs an action plan to increase carbohydrates intake at
dinner if ketonuria is positive and diet is compliant.

These two processes are specified as follows. In practice, both processes were
formalized into Rosette code as with the rest of the GD guideline, all of which
was then tested using simulated data (see the Appendix for examples). However,
for conciseness, their specifications are presented here using mathematical nota-
tion, with constants (denoted using small caps) replacing instances of low-level
structures (such as durations).

AnalyseKetonuria ⊂ Analysis, such that (24)
∀p ∈ AnalyseKetonuria. π1(p) = Analyse Ketonuria ∧

π1(π4(p)) = Ketonuria ∧ π2(π4(p)) = {(One Week,

din 
→ |{d | d ∈ din ∧ d ∈ UrinaryKetoneLevel ∧ π4(d) ∈ {+,++}}| ≥ 3,

din 
→ Positive)}
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DecideIncreaseCarbohydrates ⊂ Decision, such that (25)
∀p ∈ DecideIncreaseCarbohydrates.

π1(p) = Decide Increase Carbohydrates ∧
π1(π4(p)) = (Dietary Plan, {Increase Dinner Carb. Intake}) ∧
π2(π4(p)) = {din 
→ (∃d ∈ din . d ∈ Ketonuria ∧ π4(d) = Positive) ∧

(∃d ∈ din . d ∈ DietCompliance ∧ π4(d) = Compliant)}

6 Discussion

6.1 Expressiveness of the Formalism

Experience gained from the case study showed that the MADE formalism has
sufficient expressiveness to represent automatable portions of clinical guidelines.
In the future, we plan to evaluate this further by, for example, comparing against
existing guideline formalisms. However, it can already be observed that our for-
malism does not support partial specifications for tasks that must be manually
performed. For example, since urinary ketone levels are measured manually, the
guideline does not explicate how these measurements should be processed (see
Fig. 3). For this reason, this and all other measurement tasks could not be for-
malized into Monitoring processes, which we believe would also apply to other
clinical guidelines.

Furthermore, our formalism does not support the personalization of clini-
cal guidelines according to individual patient preferences, which is an impor-
tant usability feature for providing decision support to patients [6]. In our case
study for example, dinnertime must be made explicit (e.g. 7 pm) to formalize
the decision process to increase carbohydrates intake; individual adjustments to
dinnertime can only be made by directly accessing and changing the formalized
guideline. However, we believe the MADE formalism provides a solid foundation
on which such extensions can be added, and we will continue to evaluate and
improve the formalism using different clinical guidelines.

6.2 Clinical Relevance

The GD guideline was developed by a team of expert clinicians, knowledge engi-
neers and researchers [4], and its clinical relevance has been established in patient
trials of the MobiGuide system [6]. However, the MobiGuide system comprises
a fixed number (viz. 2) of KBSs, while our aim is to support an arbitrary dis-
tribution of knowledge. Therefore, in collaboration with clinicians, patients and
other stakeholders, we plan to fully evaluate our formalism and its clinical value
by implementing and testing “n-ary” guideline-based pervasive healthcare sys-
tems for GD and other clinical applications. Such a system would adopt the
MADE reference information model [2] to share data between devices (including
EHR repositories) and would implement an optimization algorithm to distribute
guideline knowledge so as to maximize system resilience.
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While our formalism allows parallelization of clinical guidelines at the knowl-
edge level, an equally valid alternative may be to parallelize them at the source
code level, such as by adopting research results from the well-established area of
high-performance computing. However, we believe our formalism can offer the
advantages of increased transparency and amenability to analysis. In particular,
we are currently investigating how to apply formal verification not only on the
guideline formalism itself, but also on computerized CPGs expressed in the for-
malism, such as to ensure that mutually exclusive MADE processes would never
be activated at the same time.

7 Conclusions

Guideline-based pervasive healthcare systems can extend evidence-based health-
care beyond the traditional healthcare setting. It is all the more crucial then to
have demonstrable system resilience, quality of clinical information and correct
operational logic in a highly distributed environment. To this end, the MADE
formalism was developed to represent clinical guidelines in the context of per-
vasive healthcare and is specified using axiomatic set theory to avoid ambiguity
and to allow formal analysis. In particular, the reference implementation was
formally verified against its specification using Rosette.

Due to its mathematical foundation, the MADE formalism also opens up
possibilities for formally verifying clinical guidelines, which we currently investi-
gate. Furthermore, while the formalism has been tested by formalizing a clinical
guideline, its clinical relevance must be further evaluated, such as by conduct-
ing field studies using a fully implemented system. The overall objective is to
improve clinical correctness of guidelines and safety of their implementations as
computerized CPGs.

Appendix

The complete formalized guideline for GD was tested by applying it onto simu-
lated patient data. For example, Fig. 4 shows some urinary ketone levels that may
be used to test the analysis of ketonuria for GD patients (AnalyseKetonuria),
which is specified in Eq. 24. Here, the urinary ketone levels are positive from
time points 3 to 6, and the Analysis process is activated at time point 7. Each
time point is separated by one day, thus at time point 7, there are three or more
urinary ketone levels in the past 7 days. Therefore, as expected, a ketonuria
abstraction is generated with value positive. This abstraction is valid until time
point 11; beyond this point, there are less than 3 positive urinary ketone levels
in a 7-day window given the available data.

As another example, Fig. 5 shows a schematic of the data that
may be used to test the decision to increase carbohydrates intake
(DecideIncreaseCarbohydrates), which is specified in Eq. 25. Here, ketonuria is
positive from time points 1 to 5 while diet is compliant at time point 2 and from
time points 5 to 7. Furthermore, the decision process is activated at even time
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Fig. 4. Example data for testing the analysis of positive ketonuria.

points only, thus on execution, the process outputs an action plan at time point
2 only and not at time point 5, which is as expected (Inv. 6).
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Fig. 5. Example data for testing the decision to increase carbohydrates intake.
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7. Rigla, M., Tirado, R., Caixàs, A., Pons, B., Costa, J.: Gestational diabetes guide-
line CSPT. Technical report, MobiGuide Project (FP7-287811) (2013). Version 1.0,
12/02/2013. Internal document

8. Samwald, M., Fehre, K., de Bruin, J., Adlassnig, K.P.: The Arden Syntax standard
for clinical decision support: experiences and directions. J. Biomed. Inform. 45(4),
711–718 (2012)

9. Seyfang, A., Miksch, S., Marcos, M.: Combining diagnosis and treatment using
ASBRU. Int. J. Med. Inform. 68, 49–57 (2002)

10. Shalom, E., et al.: Implementation of a distributed guideline-based decision support
model within a patient-guidance framework. In: Riaño, D., Lenz, R., Miksch, S.,
Peleg, M., Reichert, M., ten Teije, A. (eds.) KR4HC 2015. LNCS (LNAI), vol. 9485,
pp. 111–125. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-26585-8 8

11. The openEHR Foundation: Guideline Definition Language v2 (GDL2), CDS
Release 2.0.0 edn. (2019). https://specifications.openehr.org/releases/CDS/latest/
GDL2.html. Accessed 13 July 2020

12. Torlak, E., Bodik, R.: Growing solver-aided languages with Rosette. In: Proceed-
ings Onward! 2013, pp. 135–152. Association for Computing Machinery, New York
(2013)

https://doi.org/10.1007/978-3-319-26585-8_8
https://specifications.openehr.org/releases/CDS/latest/GDL2.html
https://specifications.openehr.org/releases/CDS/latest/GDL2.html


A CIG Integration Framework to Provide
Decision Support for Comorbid Conditions

Using Transaction-Based Semantics
and Temporal Planning

William Van Woensel1(&), Samina Abidi1,2, Borna Jafarpour1,
and Syed Sibte Raza Abidi1

1 NICHE Research Group, Faculty of Computer Science, Dalhousie University,
Halifax, Canada

{william.van.woensel,samina.abidi,ssrabidi}@dal.ca
2 Department of Community Health and Epidemiology, Dalhousie University,

Halifax, Canada

Abstract. Managing comorbid conditions, i.e., patients with multiple medical
conditions, is quite challenging for Clinical Decision Support Systems (CDSS)
based on computerized Clinical Practice Guidelines (CPG). In case of comor-
bidity, CDSS will need to recommend treatments from multiple different CPG,
which may adversely interact (e.g., drug-disease interactions), or introduce
inefficiencies. A-priori, static integration of computerized comorbid CPG is
insufficient for clinical practice. In this paper, we present a solution for dynamic
integration of CPG in response to evolving health profiles. Using Description
and Transaction Logics, we define a set of CIG integration semantics for
encoding integration decisions that cope with comorbidity issues at execution-
time. These dynamic, transaction-based semantics are well-suited to roll back
prior decisions when no longer safe or efficient; or, inversely, apply new
decisions when relevant. Moreover, comorbid CIG integration should consider
temporal properties of CIG tasks—at execution-time, these properties will be
influenced by a range of temporal constraints. Given all temporal constraints,
optimal task schedules will be calculated that will determine the feasibility of
CIG integration decisions.

Keywords: Clinical guidelines � Decision support systems � Comorbidity

1 Introduction

Clinical Practice Guidelines (CPG) are evidence-based recommendations for guiding
diagnosis, prognosis, and treatment of a specific illness [1]. By computerizing CPG as
Computer Interpretable Guidelines (CIG), using formalisms such as PROforma [2] or
SDA* [3], they can be utilized by Clinical Decision Support (CDS) systems to deliver
care recommendations based on the latest patient medical data. To manage often-
occurring comorbidities, domain experts manually review disease-specific CPG for
comorbidity situations, such as adverse health interactions, and then reconfigure the
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workflows to yield a single, comorbidity-compliant clinical workflow [4, 5]. Many
works in the literature have introduced formal methods to (semi) automatically inte-
grate CIG for comorbid care (e.g., [5, 6]), some of which focusing on temporal aspects
[7, 8]. These systems focus on generating a single, static, comorbidity-compliant CIG,
which will then be followed at execution-time. But, we observe that continuing clinical
safety and efficiency of CIG integration decisions, which were made at design-time, are
often affected by execution-time clinical events and evolving health profiles:

– HTN guidelines recommend Thiazide Diuretics due to their effectiveness at con-
trolling BP. But, these are known to worsen glycemic control in case of
HTN/Diabetes comorbidity. During treatment, patients need to be closely monitored
for Hypokalemia, possibly reducing treatment dosage. In case of late-stage renal
impairment, Loop Diuretics rather than a Thiazide Diuretics are recommended [9].

– Guidelines for Venous Thromboembolism (VTE) prescribes treatment with War-
farin, whereas antibiotics (e.g., Erythromycin) are recommended for Respiratory
Tract Infection (RTI). But, these antibiotics potentiate the anticoagulant effect of
Warfarin, increasing the risk of bleeding. In case of VTE/RTI comorbidity, treat-
ment may commence if bleeding risk is monitored [10] and Warfarin dose is
reduced when needed.

– COPD guidelines recommend X-rays or CT-scans for differential diagnosis;
whereas CT Pulmonary Angiography (PA) tests are recommended for chronic PE.
In case of COPD/PE comorbidity [11], CT-PA scan results can be re-used for
COPD diagnosis, rendering further X-Rays or CT-scans redundant. But, this may
require delaying the CT-PA chest scan to ensure its results can be safely re-used for
COPD diagnosis.

We make the following observations. Firstly, when health conditions evolve at
execution-time (e.g., hypokalemia; bleeding risk), new CIG integration decisions are
often needed (e.g., Loop diuretics; reducing dosage), whereas prior decisions should be
rolled back (e.g., Thiazide diuretics). Secondly, at execution-time, temporal task tim-
ings are influenced by a range of temporal constraints—originating from CIG work-
flows (e.g., sequential relations) and inherent properties (e.g., duration), but also real-
time delays (e.g., delayed scans) and integration decisions (e.g., re-use of scan results).

We propose a dynamic approach for the execution-time integration of multiple
comorbid CIG. In particular, we define dynamic, transaction-based CIG integration
semantics, which allow (a) rolling back any integration decision when conditions no
longer hold; and, inversely (b) applying new decisions when conditions become valid.
To capture the impact of temporal aspects, we calculate optimal task schedules
whenever new medical data comes in, based on all relevant temporal constraints. In
turn, these schedules will determine the feasibility of CIG integration decisions—
possibly leading to new integration decisions, or prior ones being rolled back. At
design-time, a clinician will instantiate so-called CIG integration policies, implemented
by our transaction-based integration semantics, to cope with specific comorbidity
issues. We introduce a framework based on Description Logic [12] and Transaction
Logic [13], which specifies (1) a DL-based CIG Integration Ontology (CIG-IntO) with
core concepts, and (2) transaction-based semantics for CIG integration policies
(available online [14]).
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2 CIG Integration Approach

Our CIG Integration Framework provides tools for a clinician to, at design-time
(a) identify the set of clinical tasks, called CIG integration points, which impact
clinical safety or efficiency in comorbid situations; (b) instantiate CIG integration
policies for these points for resolving the comorbidity issue. At execution-time, these
policies will be used to ensure clinical safety and efficiency by resolving the comorbid
issue. We supply Medical Linked Open Data (MLOD) [14] to aid the clinician in these
tasks.

Figure 1 shows the core CIG-IntO concepts and properties:

To resolve the comorbid situation, CIG integration policies will be informed by,
and operate on (a) a multi-level state machine, which manages the execution-time
lifecycles of their CIG integration points (WorkflowState and DecisionalState classes);
and (b) the temporal properties of their CIG integration points (temporalProperty
properties). Hence, two execution-time CIG operations are available, namely task state
operations (StateOperation) and temporal constraints (TemporalConstraint). Each
operation has an associated truth value (success property) and importance (weight
property).

Below, we elaborate on the clinical task lifecycles and temporal properties.

2.1 Clinical Task Lifecycles

Figure 2 shows the multi-level state machine that model the lifecycles of clinical tasks.
Below, we elaborate on the constituent state machines.

Workflow State Machine
In the workflow state machine (Fig. 2, top), during regular execution, a CIG task
travels from inactive to active when it is next in line for execution; to the started state
when selected for execution; and finally proceeds to the completed state when com-
pleted. Two sources of events govern the task lifecycle i.e., the clinician and external
services (e.g., Lab Information Systems, Electronic Medical Records). Jafarpour et al.
[15] presented a set of CIG execution semantics for moving tasks to the active state.

Fig. 1. Core classes and properties in CPG-IntO.
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Using the discard operation, a CIG integration policy can discard a clinical task,
which involves moving it to the discarded state1. The replace operation replaces a task
in the CIG workflow, which involves moving the replaced task to the discarded state,
and attaching a reference to its “replacing” task (Fig. 1). A state operation can be
successful or not (success property) depending on a conflict resolution strategy; for
brevity, we do not elaborate on this aspect (see [16] for details).

Decisional State Machine
At execution-time, the decisional state of a workflow will proceed in unforeseeable
ways, depending on medical test results, clinician/patient choices, or other data referred
by decision nodes; this information only becomes available as the workflow progresses.
We capture this uncertainty using a decisional state machine (Fig. 2, bottom).

As illustrated in Fig. 2 (right), a clinical task will have a pendingChoice state when
no choice has yet been made at the nearest preceding decision node—i.e., it is still
unknown whether the task will be executed. Once a choice is made, all subsequent
tasks in the non-chosen branch(es) travel to the notChosen state, i.e., these will not be
executed; while tasks in the chosen branch travel to the chosen state up until the next
decision node, i.e., these tasks are in line for execution.

This decisional lifecycle captures the information needed for effectively coordi-
nating comorbid CIG integration at execution-time. Some integration decisions will
need to be made even when uncertainty exists on their integration points—we give
examples of this in Sect. 3.2. Once it is known that one of the clinical tasks will not be
executed (i.e., notChosen state), such integration decisions will need to be reverted.

2.2 Temporal Task Properties

Each CIG task is associated with a set of temporal properties, including (a) inherent
temporal properties, such as duration, and its max. allowable delay, which are given by
domain experts; and (b) current task activation and completion times estimated during
execution (these are best-effort estimates, based on durations and min. delays of pre-
ceding clinical tasks; and will be updated as CIG workflows progress). In general, this
temporal information indicates when treatments should commence and conclude; when
medical tests should take place, and hence be ordered, from clinical institutions; etc.

Fig. 2. Multi-level state machine.

1 As a discard operation can be reverted, a task can travel both to and from the discarded state.
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For our purposes, CIG integration policies are informed by, and can act on, these
temporal properties to resolve their comorbid situation (Table 1).

(Note that we could not find uses for minAbsDelay, i.e., min. period a task should
be delayed relative to its original activation time). Using declarative temporal con-
straints, a CIG integration policy can restrict the temporal properties of CIG tasks.
Also, a set of temporal constraints will ensure that inherent workflow and task
restrictions are met (e.g., durations, min. or max. delays). A temporal constraint will
have a fuzzy or crisp truth value, which depends on their feasibility given other
temporal constraints. Below, we show 2 out of 9 currently supported temporal
constraints:

(1) time2 ¼ time1 þ d
This constraint dictates that task time (time2) must lie exactly at distance d after time1:

ftime2 ¼ time1 þ d : 1 j else : 0g

E.g., we will use this constraint to encode a task’s completion time:
completeTime Tð Þ ¼ startTime Tð Þþ duration Tð Þ
(2) time2 within d of time1

This constraint dictates that time2 should lie within distance d of time1:

time2\time1 ¼ 0 j time2 � time1 þ d ¼ 1
else ¼ 1� time2 � time1 þ dð Þð Þ=maxtime

�

If time2 lies within d of time1, 1 is returned; if time2 lies before time1, 0 is returned;
else, the value is inversely related to the distance between time2 and (time1+ d) (nor-
malized by maxtime, i.e., max. workflow duration and durations of proceeding tasks).

Table 1. Temporal properties of CIG tasks.

Inherent temporal properties of clinical tasks (periods of time)

duration Time required to complete the clinical task
maxAbsDelay Max. period a task may be delayed relative to its original activation time
maxRelDelay Max. period a task may be delayed after its prior task was completed
minRelDelay Min. period a task should be delayed after its prior task was completed
resultValidPeriod Period during which a clinical task’s results (if any) are considered valid

Calculated temporal properties of clinical tasks (single points in time)

activeTime Estimated activation time based on workflows, integration policies and
delay

startTime Marks the time a clinician flagged an activated task for execution
completeTime Estimated completion time based on workflows, integration policies and

delays
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E.g., we apply this temporal constraint to enforce the maxRelDelay property:
startTime Tnð Þ within maxRelDelay Tð Þ of completeTime Tn�1ð Þ.

3 CIG Integration Policies

In this section, we start by describing several CIG integration policies to integrate
comorbid CIG at execution-time; these are able to resolve the presented comorbid
situations (Sect. 1) by leveraging the set of CIG integration operations (Sect. 2).

Then, we proceed with formalizing their semantics (Sect. 3.1 and 3.2), and describe
the planning of an optimal comorbid care plan (Sect. 3.3).

ReplaceTasksPolicy
This policy replaces a clinical task with safer, or more efficient, alternative. In line with
clinical practice, a replacement may be conditional on up-to-date health profiles. E.g.,
the replacement policy for HTN/Diabetes comorbidity is written as follows (using
Terse RDF Triple Language (Turtle); default namespace is the CIG-IntO ontology):

ð1Þ
The policy specifies the prescription of Thiazide diuretics as integration point, and

lists two replacements: when Hypokalemia is observed, lower-dosage diuretics should
be prescribed; in case of end-stage renal impairment, loop diuretics are instead needed.

The following represents a replacement policy for the VTE/RTI comorbidity:

ð2Þ

This policy specifies the prescription of Warfarin as integration point, and indicates
an eventTask that replacements will be relative to, in this case, the prescription of
Erythromycin: (a) during the event, the Warfarin dose should be adjusted based on the
patient’s INR value, until the value returns to normal; (b) after the Erythromycin
treatment, a similar activity should take place until the INR value becomes normal
again. We note that, in these examples, CIG tasks are given meaningful names for
brevity (e.g., “prescribe X”; “low dose Y”). In the actual system, CIG tasks are

Thiazide_Diuretics_Diabetes a :ReplaceTasksPolicy ; 
 :taskToReplace :prescribe_Thiazide_diuretics . 
 :replacement [ 
  :condition [ :observation :hypokalemia ] ; :task :low_dose_Thiazide_diuretics ] ;
 :replacement [ 
  :condition [:illness :end_stage_renal_impairment]; :task :prescribe_Loop_diuretics] .

:Warfarin_Erythromycin a :EvtCondReplacePolicy ; 
 :taskToReplace :prescribe_Warfarin ; :eventTask :prescribe_Erythromycin ;  
 :replacement [ :time :during ;
  :task :adjust_Warfarin_during_Erythromycin ; :exitCond [ :INR_value :normal ] ] ;
 :replacement [ :time :after ;
  :task :adjust_Warfarin_after_Erythromycin ; :exitCond [ :INR_value :normal ] ] .
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annotated with the action (e.g., treatment), drug (e.g., warfarin), concrete dosage, and
so on.

RedunTasksPolicy
This policy discards tasks in case their results are subsumed for a given purpose (e.g.,
observations), and hence made redundant, by another comorbid task. E.g., the redun-
dant task policy for the COPD/PE comorbidity is written as follows:

:CTPA_CT a :RedunTasksPolicy ; :weight :resourceWeight ; 
:essenTask :CTPA_scan ; :redunTask :CT_scan , :X_rays . ð3Þ

The policy specifies two integration points: CT-PA scan is the “subsuming” task;
X-rays or CT-scans are “redundant” task(s) to be discarded. A weight category is
assigned, with a pre-defined weight that reflects importance (i.e., safety >
resource > preference).

However, in clinical practice, the ability to re-use the test results of essential tasks
will be limited, as they only remain valid for a limited time (resultValidPeriod temporal
property); a CT-PA scan will not remain valid for long in case the illness is evolving. In
Fig. 3, since TA falls outside the result validity period of T1, essential task T1 could be
delayed until task TA lies within the validity period (inversely, redundant task TA could
be sped up, if possible). At that point, task TA can be discarded since the results of T1
can still be safely reused. But, CIG tasks cannot be delayed indefinitely as to not
compromise patient safety (maxDelay temporal property).

3.1 Formalization of CIG Integration Policies

A CIG integration policy should be applied whenever all its conditions are met at
execution-time; and, whenever any condition no longer holds, its applied operations
should be reverted. Further, integration operations will require changes in the
Knowledge Base (KB): i.e., assigning new states to tasks or changing temporal
properties. Hence, to formalize CIG integration policies, we require a logic with
(a) explicit semantics for KB changes; and (b) support for rolling back applied changes.
Transaction Logic ( ) [13], as a logic of change with atomic transactions, is a good
candidate. We created a dynamic extension of [14] that will, at runtime (1) rollback

Fig. 3. Example workflows with RedunTasksPolicy (� symbol indicates redundancy relation).
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a transaction once a condition no longer holds, and (2) (re-)apply a transaction when all
its conditions hold.

Transactions are special types of rules that include KB updates (called transitions).
The logic introduces an operator called serial conjunction (symbol �) that allows
specifying pre- and post-conditions, thus giving an all-or-nothing flavor. For
instance, the following transaction implements conditional replacements (see (1)):

cond E;Vð Þ :¼ replacement E;CRð Þ � condition CR;Cð Þ � Satisified Cð Þ � task CR;Rð Þ
� ins : replacement E;Rð Þ ð4Þ

In case a policy has a replacement with a satisfied condition, it will be inserted into
the KB. The following transaction supports the tmp:withinPeriod temporal constraint:

tmp:withinPeriod t2; d; t1ð Þ :¼ tmp:apWithinPeriod t2; d; t1ð Þ � tmp:isWithinPeriod t2; d; t1ð Þ
ð5Þ

The transaction applies the temporal constraint and then checks whether it was
satisfied (i.e., as a post-condition); since its successfulness depends on a planning
component (see Sect. 3.3), this will only be known after it was applied.

3.2 Representing CIG Integration Semantics Using Transaction Logic

A program consists of a KB state, a transaction base P, i.e., set of rules, and a
transition base , i.e., set of transitions. Together with the two transactions above, the
below transactions are the part of P needed for representing CIG integration policies:

state:transit t; sð Þ :¼ curState t; cð Þ �WorkflowState cð Þ � del:state t; cð Þ � ins:state t; sð Þ ð6Þ

ð7Þ

The transit transaction will delete the workflow state of task t and insert its new
state. In addition, the replace transaction will insert a replacing relation between the
two tasks. For brevity, we do not define the transaction base here; these are prefixed
with their general purpose (e.g., “ins”, “del”, “tmp”) in our transactions.

We are now ready to define the integration semantics of our integration policies.

replaceTask P;Uð Þ :¼ ReplaceTasksPolicy Pð Þ � intPt P; Tð Þ � replacement P;Rð Þ
� state : replace T ;Rð Þ ð8Þ

Given a ReplaceTasksPolicy instance, its integration point (T) will be replaced by
the given replacement R. The “cond” transaction (4) supports dynamic conditional
replacements, e.g., as needed by HTN/Diabetes comorbidity. E.g., in case another
conditional replacement is asserted, the prior replacement assertion will be rolled back
(4); which, in turn, will result in rolling back the prior replace operation (7).
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ð9Þ
For an event-based replacement policy (see (2)), while (a) event task E is in the

started state, and task-to-replace T is in a “chosen” branch; and (b) a “during”
replacement has a satisfied entry-condition C1 and non-satisfied exit-condition C2;
T will be replaced with task U. (An “after” replacement is represented analogously.) E.
g., the replace operation will be rolled back once the entry-condition no longer holds,
or the exit-condition is valid; or, in the inverse case, the replace operation will be re-
applied.

ð10Þ

For a redundant task policy, when essential task E is part of a “chosen” branch, and
redundant task R is part of a pending or chosen branch, the transaction will try to ensure
that R’s activation time lies within the result validity period of E’s completion time,
using the tmp:withinPeriod transaction (see Fig. 3). (In practice, this will likely result
in delaying E, or speeding up R if possible.) In that case, task R will be discarded.

These dynamic transactions will ensure that KB updates and temporal constraints are
properly applied or reverted. E.g., if E is not part of a chosen branch, or the result
validity period can no longer be adhered, R should not be discarded, since R is no longer
redundant in that case. Further, it suffices that R is part of a pending branch; if we wait
until R is in the chosen state, it may be too late to delay E. To cope with conflicts
between CIG integration policies themselves (e.g., when the cause of a discard operation
is itself discarded), we introduced an intra-policy conflict resolution scheme [16].

3.3 Planning Component for Supporting CIG Temporal Constraints

The set of CIG temporal constraints, issued for resolving comorbid situations and
encoding inherent CIG task/workflow properties, will be utilized to find an optimal
CIG task schedule. This schedule will specify timings for CIG tasks that maximize the
collective truth values of the weighted temporal constraints. Whenever new medical
data becomes available, a new CIG task schedule will be calculated at execution-time.

In turn, a generated CIG task schedule will be used to associate truth values with
issued temporal constraints—i.e., reflecting the degree to which it adheres to the tem-
poral constraint—and will hence determine the feasibility of temporal constraints. E.g.,
this schedule will determine the truth value of the tmp:withinPeriod constraint (5); in
case this truth value falls below a configured threshold, its post-condition will be
considered false and the remainder of the transaction will be rolled back. We generate a
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task schedule by applying the Hill Climbing algorithm to find a solution state that best
suits an objective function, which, in our case, is defined by the set of weighted temporal
constraints. The importance, or weight, of temporal constraints will determine how
likely a CIG task schedule will satisfy the constraint. This is where clinical pragmatics
come into play: exceeding the max. delay for some tasks can still be deemed acceptable;
or, some result-validity periods may be found more flexible than others. A clinician can
change associated weights of temporal constraints while using the system.

4 Evaluation of the CIG Integration Framework

To measure the performance of CIG integration, we (a) modeled the comorbid CIG;
(b) instantiated CIG integration policies; (c) executed the CIG integration framework
for a set of comorbidity scenarios; (d) we emulated external execution-time updates
(e.g., changes in decisional state, real-time delays). We executed each experiment 10
times on a PC equipped with 8 GB of RAM and an Intel® Core™ i7-3520 CPU.

In prior work, we evaluated the validity, utility and clarity of our approach [16].
Table 2 shows the detailed performance results.

Loading the comorbid CIG and instantiated CIG-IntO took an avg. ca. 15 ms. We
consider these performance times to be acceptable for a consumer-grade PC.

5 Conclusions and Future Work

The importance of CIG, and, more recently, coping with multiple comorbid CIG, has
been reflected by their popularity in health informatics.

We presented an innovative, execution-time approach to comorbid CIG integration.
To meet the challenges of typical execution-time comorbidity scenarios, we (a) define
dynamic, transaction-based CIG integration semantics, which easily allow rolling back
prior integration policies when some conditions no longer hold, and, inversely (re-)
applying integration policies when all conditions hold; and (b) calculate optimal CIG
task schedules at execution-time, based on all relevant temporal constraints and cur-
rently available data, which determine the feasibility of CIG integration policies.

Table 2. Evaluation of CIG integration framework performance.

Comorbid CIG integration scenario Performance (ms)

RedunTasksPolicy (COPD-PE comorbidity)
operation: discard redundant CP scan; delay essential CT-PE scan
update: validity period exceeded; task is part of non-chosen branch

8 ms
7 ms; 8 ms

ReplacePolicy (HTN-Diabetes comorbidity)
operation: reduce thiazide dosage; or replace with loop diuretics

5 ms; 5 ms

EventCondReplacePolicy (VTE-RTI comorbidity)
operation: during Erythromycin treatment, adjust Warfarin dosage

5 ms

update: during, INR returns to normal; after, INR is not normal 4 ms; 4 ms
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We target more comprehensive methods to identify integration points between
comorbid CIG, in addition to our MLOD resources [14], such as done by Zamborlini
et al. [17]. Although our system currently supports patient preferences as well, this was
not elaborated nor evaluated in this paper. Future work also involves identifying other
comorbidity considerations, i.e., not yet covered by our integration policies.
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Abstract. Pneumothorax, a collapsed or dropped lung, is a fatal con-
dition typically detected on a chest X-ray by an experienced radiologist.
Due to shortage of such experts, automated detection systems based on
deep neural networks have been developed. Nevertheless, applying such
systems in practice remains a challenge. These systems, mostly compute
a single probability as output, may not be enough for diagnosis. On the
contrary, content-based medical image retrieval (CBIR) systems, such as
image search, can assist clinicians for diagnostic purposes by enabling
them to compare the case they are examining with previous (already
diagnosed) cases. However, there is a lack of study on such attempt. In
this study, we explored the use of image search to classify pneumothorax
among chest X-ray images. All chest X-ray images were first tagged with
deep pretrained features, which were obtained from existing deep learn-
ing models. Given a query chest X-ray image, the majority voting of the
top K retrieved images was then used as a classifier, in which similar
cases in the archive of past cases are provided besides the probability
output. In our experiments, 551,383 chest X-ray images were obtained
from three large recently released public datasets. Using 10-fold cross-
validation, it is shown that image search on deep pretrained features
achieved promising results compared to those obtained by traditional
classifiers trained on the same features. To the best of knowledge, it is
the first study to demonstrate that deep pretrained features can be used
for CBIR of pneumothorax in half a million chest X-ray images.

Keywords: Deep learning · Chest X-ray images · Content-Based
Image Retrieval (CBIR) · Image search · Pneumothorax

1 Introduction

Pneumothorax is a life-threatening emergency condition that can lead to death
of the patient [5]. It is an urgent situation [16] where air enters the pleural
space, i.e. the space between the lungs and the chest wall [5]. An illustration of
pneumothorax, and a sample chest X-ray image are provided in Fig. 1.

Supported by Vector Institute Pathfinder Project.

c© Springer Nature Switzerland AG 2020
M. Michalowski and R. Moskovitch (Eds.): AIME 2020, LNAI 12299, pp. 453–462, 2020.
https://doi.org/10.1007/978-3-030-59137-3_40

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59137-3_40&domain=pdf
https://doi.org/10.1007/978-3-030-59137-3_40


454 A. Sze-To and H. Tizhoosh

Pneumothorax is typically detected on chest X-ray images by qualified radiol-
ogists [16]. As it is time-consuming and expensive to train qualified radiologists
[8], the supply of qualified radiologist is rather limited. Since an incorrect or
delayed diagnosis can cause harm to patients [8], it is vital to develop computer-
aided approaches to assist radiologists.

Due to its recent success, an increasing number of studies have adopted
deep learning or deep neural networks (DNNs) to detect pneumothorax or
other thoracic diseases in chest X-ray images [6,11,15]. Since the availability
of ChestXray8 (or its later version ChestXray14) [15], one of the largest publicly
available chest X-ray datasets, it is possible to train DNNs as classifiers to out-
put a probability for certain thoracic diseases. Its performance has been reported
to achieve or exceed the level of qualified radiologists on certain diseases such
as pneumonia [11]. However, a single probability output may not be enough for
convincing diagnosis.

As an alternative, image search not only provides a probabilistic output
but also similar cases from the past cases. Retrieving similar images given a
query image for medical applications is an application of Content-based Image
Retrieval (CBIR) [14] for medical images. It is also known as Content-Based
Medical Image Retrieval (CBMIR) [1]. CBMIR can help doctors in retrieving
similar images and case histories for understanding the specific patient’s disease
or injury status and can also help to exploit the information in corresponding
medical reports [1]. It may also help radiologists in preparing the report for par-
ticular diagnosis [1]. While deep learning methods have been applied to image
retrieval tasks in recent studies [14], there is less attention on exploring deep
learning methods for CBMIR tasks [10].

In this study, we explored the use of image search, based on features obtained
from DNNs i.e. deep features, to detect pneumothorax among more than 550,000
chest X-ray images obtained from three large recently released labelled datasets,
namely ChestX-ray14 [15], CheXpert [6] and MIMIC-CXR [2,7]. In our experi-
ments, all chest X-ray images were first tagged with DenseNet121 deep features
[4]. Given a query chest X-ray image, the majority voting of the top K retrieved
X-ray images was then used as a classifier.

2 Methodology

The proposed method of using image search as a classifier comprises of three
phases (Fig. 2): 1) Tagging images with features (all images in the database are
tagged with deep pretrained features), 2) Receiving a query image (tagging with
features and calculating its distance with all other features in the database to
find the most similar images), and 3) Classification (majority voting among the
labels of retrieved images).

Phase 1: Tagging Images with Deep Pretrained Features – In this phase,
all chest X-ray images in the database are tagged with deep pretrained features.
To represent a chest X-ray image as a feature vector with a fixed dimension,
the output of the fully-connected layer before the classification layer of a deep
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Fig. 1. Left: A graphical illustration of pneumothorax [12]. Right: A X-ray image of
Pneumothorax in left lung visible thorough slight contrast different as a result of the
lung collapse, obtained from CheXpert [6].

convolutional neuron network (DCNN) is used. These values are denoted as deep
features [18], or technically deep pretrained features if the DCNN is pretrained
with other datasets. In other words, the DCNN is considered as a feature extrac-
tor to convert a chest X-ray image into an n-dimensional feature vector. In this
study, following [11], DenseNet121 [4], a DCNN with 121 layers pretrained on
ImageNet [13] dataset, is adopted among existing models for converting a chest
X-ray image into a feature vector with 1024 dimensions.

Phase 2: Image Search – In this phase, the query chest X-ray image is first
tagged with deep pretrained features. Then, the distance between the deep pre-
trained features of the query chest X-ray image and those of the chest X-ray
images in the database are computed. The chest X-ray images having the short-
est distance with those of the query chest X-ray image are subsequently retrieved.
In this study, Euclidean distance, which is the most widely used distance metric
in k-NN [3], is used for computing the distance between the deep features of two
given chest X-ray images.

Phase 3: Classification – In this phase, the majority voting of the labels of
retrieved chest X-ray images is used as a classification decision. For example,
given a query chest X-ray image, the top K most similar chest X-ray images
are retrieved. If �K/2� chest X-ray images are labelled with pneumothorax, the
query image is classified as pneumothorax with a class likelihood of �K/2�/K.

3 Experiments and Results

In this section, we describe the experiments that investigate the use of image
search to classify pneumothorax among half a million chest X-ray images, with
comparison to traditional classifiers such as Random Forest (RF) [9]. We first
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Fig. 2. An overview of using image search as a classifier to detect pneumothorax in
chest X-ray images. The method is composed of three phases. Phase 1: tagging images
with deep pretrained features. All images in the database are tagged with deep pre-
trained features. Following [11], DenseNet121 [4], pretrained on ImageNet [13] dataset,
is adopted among existing models for converting a chest X-ray image into a feature
vector with 1024 dimensions. Phase 2: image search. The query image is first tagged
with deep pretrained features. Then, the distance between the query features and all
other features in the database are computed to find the most similar images. Phase 3:
classification. The majority voting of the retrieved images is used as a classifier.

describe the datasets collected and preprocessing procedure, then the experi-
ments, followed by the analysis.

3.1 Data Collection

Three large public datasets of chest X-ray images were collected. The first is
MIMIC-CXR [2,7], a large public dataset of 371,920 chest X-rays associated
with 227,943 imaging studies. Only 248,236 frontal chest X-ray images in the
training set were used in this study. The second dataset is CheXpert [6], a
public dataset for chest radiograph interpretation consisting of 224,316 chest
radiographs of 65,240 patients. Only 191,027 frontal chest X-ray images in the
training set were used in this study. The third dataset is ChestX-ray14 [15], a
public dataset of 112,120 frontal-view X-ray images of 30,805 unique patients.
All chest X-ray images in this dataset were used in this study. In total, 551,383
frontal chest X-ray images were used in this study. The labels refer to the entire
image; the collapsed lungs are not highlighted in any way.

3.2 Dataset Preparation and Preprocessing

Dataset 1 is a dataset composing of 34,605 pneumothorax chest X-ray images
and 160,003 normal chest X-ray images. The pneumothorax images were
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Table 1. A summary of chest X-ray images in the Dataset 1 through combination of
three public datasets.

MIMIC-CXR [2,7] CheXpert [6] ChestX-ray14 [15] Total

+ve: Pneumothorax 11,610 17,693 5,302 34,605

−ve: Normal 82,668 16,974 60,361 160,003

Total 94,278 34,667 65,663 194,608

Table 2. A summary of chest X-ray images in the Dataset 2 through combination of
three public datasets.

MIMIC-CXR [2,7] CheXpert [6] ChestX-ray14 [15] Total

+ve: Pneumothorax 11,610 17,693 5,302 34,605

−ve: Non-pneumothorax 236,626 173,334 106,818 516,778

Total 248,236 191,027 112,120 551,383

obtained from the collected frontal chest x-ray images with the label “Pneu-
mothorax” = 1. They were considered as positive (+ve) class. The normal images
were obtained from the collected frontal chest x-ray images with label the “No
Finiding” = 1. These chest X-ray images were considered as negative (−ve) class.
A summary is provided in Table 1. Dataset 2 is a dataset composing of 34,605
pneumothorax chest x-ray images and 516,778 non-pneumothorax chest x-ray
images. The pneumothorax image were obtained from the collected frontal chest
X-ray images with the label “Pneumothorax” = 1. They were considered as posi-
tive (+ve) class. The non-pneumothorax images were obtained from the collected
frontal chest X-ray images without the label “Pneumothorax” = 1, meaning that
they contain cases such as normal, pneumonia, edema, cardiomegaly, pneumonia
and more. They were considered as negative (−ve) class. A summary is provided
in Table 2. It should be noted that ChestX-ray14 [15] dataset was raised with
a concern that its chest X-ray images with chest tubes were frequently labelled
with Pneumothorax [17,19]. In our experiments, through combining ChestX-
ray14 with CheXpert [6], and MIMIC-CXR [2,7] datasets, this concern was mit-
igated to address the bias.

3.3 Implementation and Parameter Setting

In this study, DenseNet121 [4] was implemented via the deep learning library
Keras (http://keras.io/) v2.2.4 with Tensorflow backend. Its model weights were
obtained through the default setting of Keras. All images were resize to 224×224
before inputting to the network. Also, Random Forest [9] was implemented using
the latest version (v0.20.3) of the machine learning library scikit-learn with the
parameter ‘class weight’ set to ‘balanced’. All other parameters were set default
unless further specified. All experiments were run on a computer with 64.0 GB

http://keras.io/
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DDR4 RAM, an Intel Core i9-7900X @3.30 GHz CPU (10 Cores) and one GTX
1080 graphics card. These settings were used in all experiments unless further
specified.

3.4 Experiment 1

In this experiment, we studied the performance of image search to classify pneu-
mothorax among pneumothorax and normal chest X-ray images. All chest X-
ray images were first tagged with deep pretrained features. A standard 10-fold
cross-validation was then adopted. All chest X-ray images (with deep pretrained
features tagged) were divided into 10 sections. In each fold, one section of chest
X-ray images was used as validation set, while the remaining chest X-ray images
were used as training set. The process was repeated 10 times, such that in each
fold a different section of chest X-ray images was used as the validation set.

For image search, given a chest X-ray image (from the validation set), it was
conducted to search in the training set and used the majority voting of the top
K retrieved chest X-ray images to classify. One experiment was conducted with
K = 11 and another was with K = 51. For Random forest (RF), with number of
trees (t) setting as 11 and 51 respectively, it was trained on the deep pretraind
features of the training set and evaluated on those of the validation set in each
fold.

For performance evaluation, following [11], the area under Receiver operating
characteristics (ROC) curve was computed for each fold. A comparison of average
area under ROC curve on the results on Dataset 1 under 10-fold cross-validation
is summarized in Table 3. For completeness and transparency, the result obtained
in each fold is demonstrated. For statistical analysis, two-sample t-test (two-
tailed, unequal variance) was conducted on the ROC obtained by RF (t = 11)
and image search (K = 11). The p-value was 1.68E−13 < 0.05, indicating that
image search (K = 11) obtained a higher ROC, with statistically significance,
than that obtained by RF (t = 11). Similarly, the same test was conducted on
the ROC obtained by RF (t = 51) and image search (K = 51). The p-value was
5.88E−3 < 0.05, indicating that image search (K = 51) obtained a higher ROC,
with statistically significance, than that obtained by RF (t = 51). A ROC curve
was provided on fold-1 was provided in Fig. 3.

3.5 Experiment 2

In this experiment, we study the performance of image search to classify if a
chest X-ray image has pneumothorax, without any prior knowledge. Experimen-
tal procedure that was similar to the previous experiment was conducted. A
comparison of area under ROC curve on the results on Dataset 2 is summarized
in Table 4.

For statistical analysis, two-sample t-test (two-tailed, unequal variance) was
conducted on the ROC obtained by RF (t = 11) and image search (K = 11). The
p-value was 3.78E−16 < 0.05, indicating that image search (K = 11) obtained
a higher ROC, with statistically significance, than that obtained by RF (t = 11).
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Fig. 3. A comparison of the prediction performance in terms of the area under the
receiver operating characteristic (ROC) curve on Dataset 1 for Fold-1.

Table 3. A comparison of area under ROC curve on Dataset 1 under 10-fold cross-
validation between Image Search and Random Forest (RF) trained with deep pretrained
features. The p-value of two-sample t-test (two-tailed, unequal variance) between RF
(t = 11) and Image Search (K = 11) is 1.68E−13 < 0.05, between RF (t = 51) and
Image Search (K = 11) is 5.88E−3 < 0.05.

Fold RF (t = 11) Image search (K = 11) RF (t = 51) Image search (K = 51)

1 0.84380 0.87873 0.88457 0.89018

2 0.84906 0.87918 0.88690 0.89245

3 0.84611 0.88000 0.88744 0.89214

4 0.84652 0.88118 0.88788 0.89222

5 0.84658 0.88156 0.88760 0.89399

6 0.84911 0.87950 0.88709 0.89192

7 0.84627 0.87220 0.88464 0.88807

8 0.84210 0.87121 0.87630 0.88449

9 0.85349 0.87956 0.89008 0.89351

10 0.84815 0.87461 0.88572 0.88719

Mean 0.84703 0.87777 0.88582 0.89062
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Fig. 4. A comparison of the prediction performance in terms of the area under the
receiver operating characteristic (ROC) curve on Dataset 2 for Fold-1.

Table 4. A comparison of area under ROC curve on Dataset 2 under 10-fold cross-
validation between image search and random forest (RF) trained with deep pretrained
features. The p-value of two-sample t-test (two-tailed, unequal variance) between RF
(t = 11) and Image Search (K = 11) is 3.78E−16 < 0.05, between RF (t = 51) and
Image Search (K = 51) is 5.85E−12 < 0.05.

Fold RF (t = 11) Image search (K = 11) RF (t = 51) Image search (K = 51)

1 0.63029 0.68689 0.71095 0.73858

2 0.63106 0.69318 0.71645 0.74032

3 0.62390 0.69205 0.70187 0.73909

4 0.63325 0.69434 0.71316 0.74593

5 0.62453 0.68891 0.70969 0.74218

6 0.62249 0.68670 0.70402 0.73942

7 0.63237 0.69885 0.71536 0.75248

8 0.63431 0.68261 0.71104 0.73979

9 0.62619 0.69531 0.70674 0.74389

10 0.63761 0.68842 0.71350 0.74463

Mean 0.62960 0.69073 0.71028 0.74263



Searching for Pneumothorax in Half a Million Chest X-Ray Images 461

Similarly, the same test was conducted on the ROC obtained by RF (t = 51)
and image search (K = 51). The p-value was 5.85E−12 < 0.05, indicating that
image search (K = 51) obtained a higher ROC, with statistically significance,
than that obtained by RF (t = 51). The ROC curve on Fold-1 is provided in
Fig. 4.

4 Conclusions

In this study, we explored the use of image search, based on deep pretrained
features, in classifying pneumothorax among more than half a million chest X-
rays. The experiments showed that content-based medical image retrieval sys-
tem, such as image search, is a potentially viable cost-effective solution. To the
best of knowledge, it is the first study to demonstrate that deep pretrained
features can be used for CBIR of pneumothorax in half a million chest X-ray
images. The setting of image search can be deployed both as a semi-automated
and automated solution in the practice of diagnostic radiology. Compared with
traditional classification, image search results might be clinically more practical
as they are supported by the reports and history of evidently diagnosed cases,
representing a virtual “second opinion” for diagnostic purposes, a factor that
may provide more confidence for a reliable diagnosis.
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Abstract. Content-based image retrieval (CBIR) is an essential part of
computer vision research, especially in medical expert systems. Having a
discriminative image descriptor with the least number of parameters for
tuning is desirable in CBIR systems. In this paper, we introduce a new
simple descriptor based on the histogram of local Radon projections.
We also propose a very fast convolution-based local Radon estimator
to overcome the slow process of Radon projections. We performed our
experiments using pathology images (KimiaPath24) and lung CT patches
and test our proposed solution for medical image processing. We achieved
superior results compared with other histogram-based descriptors such
as LBP and HoG as well as some pre-trained CNNs.

Keywords: Image retrieval · Local radon · Medical imaging

1 Introduction

Over the past decades, there has been a dramatic increase in capturing and
storing data in the form of digital images. In medical imaging, for example, the
volume of stored data is expected to exceed more than 2, 314 Exabytes (109

GB) by 2020 which is an exponential growth from 153 Exabytes in 2013 [16].
Demands to extract information from these massive archives is growing day to
day. Content-based image retrieval (CBIR) system undoubtedly is considered a
necessary way to extract this information. CBIR has long been a subject of great
interest in a wide range of fields, from searching pictures of celebrities on the
Internet to helping radiologists and pathologists to make a more accurate diag-
nosis by providing them access to the images of similar cases. In general, CBIR is
referred to searching a dataset to retrieve similar images to a query image [24]. In
the medical community, content-based medical image retrieval (CBMIR) refers
to the same tasks in the medical image domain. However, in CBMIR the seman-
tic gap between algorithms and the experts in capturing the similarity is more
crucial [2]. In addition, the size and quantity of medical images are quite over-
whelming. A desirable searching method is expected to return similar images for
any query image in a reasonable time. To this end, we used a practical and well-
known technique in the medical domain, called Radon transform, to describe the
c© Springer Nature Switzerland AG 2020
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visual features in medical images. We utilized Local Radon Projections (LRP) in
a very fast and accurate way. Local Radon Descriptor (LRD) has been applied to
medical images with large window size and a relatively high number of param-
eters to tune [4]. However, implementations of Radon transform on the large
patches are computationally slow because it interpolates the pixel values from
multiple pixels. In this work, we estimated the Radon transform in small patches
by convolving a series of designed filters in the whole image and then reading
small patches to achieve a fast method to apply in CBMIR. Also, the presented
version of LRP is quite simple and no parameter to tune.

The rest of this paper is organized as follows: The next section explores
related works in CBMIR and descriptors fields as well as the literature related
to the Radon Transform and filter-based image processing. The methodology
section describes details of the LRP and its fast implementation. And finally,
the results of our experiment are presented at the end of the paper followed by
conclusions.

2 Related Works

Artificial Intelligence (AI) can play an important role in the field of medical
image analysis. In recent years, there has been an increasing interest in applying
AI in the medical domain to help clinicians with the diagnosis and treatment
of the diseases [6]. Detection, classification, segmentation, and retrieval are the
mainstream fields that are currently subject to research in various domains of
medical imaging [10]. All the above-mentioned approaches are mainly designed to
work on a specific organ and modality (e.g., analysis methods on brain images
produced by MRI [8] or lung segmentation in X-ray images). However, these
methods generally need carefully labeled medical image data which is not a
feasible task, due to the expense related to the specialist’s involvement and the
huge size of datasets [13]. CBIR, unlike all other above-mentioned methods, has
the ability to work efficiently by a small amount of labeled data and even raw
data in large datasets [27]. However, labeled data can help to overcome the
semantic gap (perhaps the greatest challenge in CBIR) between algorithms and
expert regarding perceiving the image similarity [12].

Historically, early research in the field of image search focused on text-based
systems that return similar images within the same anatomical region, with the
same orientation and using the same modality, based on textual annotations of
each image. Obviously, annotating all parts of the image and complex visual
contents is not feasible. As a result, the retrieval performance is limited by the
quality and extent of the annotations [20]. Over the past two decades, major
advances in AI, machine vision, and computer hardware have made it possible
to apply CBIR in the medical domain with the possibility of search among a
huge number of images. Nevertheless, CBMIR is different based on the sensitive
semantic gap, the large amount of data, and the lack of labeled datasets [31].

One of the main steps to overcome the challenges can be addressed by appro-
priate feature extraction. Features can be divided into two main categories: low-
level and high-level [1]. In the low-level feature extraction category, patch-based
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methods can be divided into the whole image descriptors (Local Mesh Patterns
and Local Binary Patterns, LBP) [21] and keypoint-based descriptors such as
SIFT, SURF and ORB [15]. However, in the medical domain, feature detection
can easily fail to provide keypoints with acceptable quantity, quality, and dis-
tribution [25]. To overcome this problem, dense sampling may be applied. For
example dense-SIFT and dense-SURF (applying path descriptors in the whole
image) [19] have been implemented in the medical field frequently.

High-level features, on the other hand, can provide more accurate results
due to utilizing the labeled data and reducing the semantic gap. In many works,
learning methods have been applied to the low-level features to map or modify
them in CBMIR [23]. Also using the information in the dense layers of deep
network architectures has recently become quite popular in CBMIR. The idea
is that if a network can achieve good results in classification, then it should be
able to extract all necessary features like corners, edges and any other necessary
element in every single layer to provide useful information for the last layer [11].
Surprisingly, dense layers of pre-trained networks such as VGG and AlexNet
which have been trained using very large datasets like ImageNet, can also pro-
vide discriminating features and perform well in CBMIR. They have the ability
to extract useful information from any input image [17]. As a matter of fact,
the quality of features extracted from a pre-trained network might increase by
retraining the network, using new labeled data in the applied domain [14].

3 Methodology

This section describes Radon transform as well as the fast and effective method
we propose to calculate local Radon projections based on convolution kernels.
We also explain the steps and methods to assemble the histogram based on these
local Radon projections.

3.1 Radon Transform

In general, Radon transform is described by integrating the projection values of
a scene, an image or body parts from various directions [22]. The inverse Radon
transform along with filtered back-projection has been used to reconstruct the
image of internal body parts from projections which were captured at different
directions [9]. Applying the inverse Radon on values received from an X-ray
machine or other modalities is a well-established field in medical imaging. Given
the spatial intensities f(x, y), the Radon transform can be formulated as

R(ρ, θ) =

+∞∫

−∞

+∞∫

−∞
f(x, y)δ(ρ − xcosθ − ysinθ)dxdy, (1)

where δ(·) is the Dirac delta function. In Fig. 1, the Radon transform is illustrated
for a small window.
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Fig. 1. Left: Two estimated Radon projections of a 3 × 3 sample window at 0◦ and
45◦. Right (Up/Down): Filters to produce 0◦/45◦ Radon for each 3× 3 local windows.

3.2 Convolutional Local Radon Projections

Recently, there has been renewed interest in using Radon transform as an image
descriptor [5,7,28]. Most methods apply Radon transform globally on the entire
image or on a relatively large patches [4]. However, calculating the Radon trans-
form in quite small local windows would be of interest. We used the local Radon
in 3 × 3 windows, which resulted in a fast and innovative convolution-based
method that calculated Radon in small neighbors. For each direction, we needed
a summation of pixels along that direction. For instance, if we wanted to calcu-
late the zero-degree Radon for each pixel of a given image in 3 × 3 windows, we
added all 3 rows in 3 × 3 windows (specified by dashed arrows in Fig. 1).

As depicted in Fig. 1, each kernel could easily add one row. Convolving these
3 kernels, resulting is 3 images with same size gives us 3 digits for each pixel
which is equivalent to zero-degree Radon. We designed other kernels for 45◦, 90◦

and 135◦ as well. Because there is just one pixel in the first and last element of
the Radon projections in 45◦ and 135◦, we ignored them to get the same length
vector for all 4 directions (the remaining elements are marked by arrows in Fig. 1
for 45◦).

3.3 LRP – Local Radon Patterns

Figure 2 depicts our proposed method to create the LRP descriptor. Each given
image was convolved by three sets of 3×3 kernels to obtain the local Radon pro-
jections in each direction. Resulting in 12 kernels were applied for 4 equidistant
directions. Each kernel outcome was an image with the same size as the input
image. We concatenated these projections together as explained in Fig. 2.

In the next step, we binarized these 12 numbers to count their equivalent
integers in a histogram. We tried two different methods to create a binary vec-
tor: Median thresholding and the Min-Max method [30]. The median method
is binarizing 12 numbers based on thresholding the vector by its median value.
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Let’s suppose X = [x1, x2, . . . , xn], then the median method can be formulated
as

B(i) =

{
1, if x(i) ≥ median(X)
0, otherwise

On the other hand, the Min-Max method tries to capture the signal’s-
concatenated Radon projections- shape, by assigning one if the next adjunct
element is greater than the current element and zero if otherwise:

B(i) =

{
1, if x(i) ≥ x(i + 1)
0, otherwise

Fig. 2. Visualization of the proposed method: local Radon projections in all directions
are calculated by corresponding kernels.

4 Experiments and Results

In order to evaluate our descriptor performance, we selected two publicly avail-
able medical datasets. These datasets have been used in related publications.

4.1 KimiaPath24 Dataset

The KimiaPath24 dataset consists patches of 24 whole slides images (WSIs) in
pathology domain representing diverse body parts with different texture and
stains. The images were captured by TissueScope LE 1.01 bright field using a
0.75 NA lens. For each image, one can determine the resolution by checking the
description tag in the header of the file. For instance, if the resolution is 0.5µm,
then the magnification is 20x. The dataset offers 27,055 training patches and

1 http://www.hurondigitalpathology.com/tissuescope-le-3/.

http://www.hurondigitalpathology.com/tissuescope-le-3/
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Scan 13 Scan 4 Scan 19

Scan 7 Scan 10 Scan 16

Fig. 3. Sample images from KimiaPath24 dataset.

1,325 (manually selected) test patches of size 1000 × 1000 (0.5µm × 0.5µm) [3].
The test patches have been removed (whitened) in WSIs such that they cannot
be mistakenly used for training. The color (staining) is neglected; all patches are
saved as grayscale images. The dataset has a total of ntot = 1, 325 patches P j

s

that belong to 24 sets Γs = {P i
s |s ∈ S, i = 1, 2 . . . , nΓs

} with s = 0, 1, 2, . . . , 23.
Looking at the set of retrieved images R for any experiment, the patch-to-scan
accuracy ηp can be given as

ηp =
1

ntot

∑
s∈S

|R ∩ Γs|. (2)

As well, we calculate the whole-scan accuracy ηW as

ηW =
1
24

∑
s∈S

|R ∩ Γs|
nΓs

. (3)

Hence, the total accuracy ηtotal (patch-to-scan and whole-scan accuracy)can
be defined as ηtotal = ηp × ηW. The dataset and the code for accuracy calcu-
lations can be downloaded from the web2. Figure 3 shows sample patches from
KimiaPath24 dataset. We resized images to 250 × 250 for all methods (for deep
network slightly smaller).

4.2 CT Emphysema Dataset

Computed tomography emphysema database was introduced by Sorensen et al.
[26] to classify lung CT images. A part of this database includes 168 square
patches that have been manually annotated in a subset of the slices with an

2 http://kimia.uwaterloo.ca/.

http://kimia.uwaterloo.ca/
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NT CLE PSE

NT CLE PSE

Fig. 4. Sample images from CT emphysema data-set.

in-plane resolution of 0.78 × 0.78 mm2, slice thickness of 1.25 mm, tube voltage
equal 140 kV, and a tube current of 200 mAs. The 512 × 512 pixel slices depict
the upper, middle, and lower part of the lung of each patient. The 168 patches, of
size 61 × 61 pixels, are from three different classes, NT (normal tissue, 59 obser-
vations), CLE (centrilobular emphysema, 50 observations), and PSE (paraseptal
emphysema, 59 observations). The NT patches were annotated in never smokers,
and the CLE and PSE ROIs were annotated in healthy smokers and smokers with
COPD (chronic obstructive pulmonary disease) in areas of the leading pattern.
Figure 4 shows examples for NT, CLE and PSE classes from the CT Emphysema
dataset. Given the set of correctly classified images C, the accuracy ACT can be
calculated as

ACT =
|C|
168

. (4)

4.3 Results

Table 1 represents our experimental results. We performed image search and
selected the label of the best match image (top-1 accuracy). For the CT Emphy-
sema dataset the leave-one-out strategy was chosen. While for the KimaPath24
test images are searched on the training set. The LRP method does not have any
parameter to tune except the method of binarization. On the other hand, for
LBP and HoG presented results, we did exhaustive search to tune their param-
eters. As Table 1 suggests, both binarization methods provided superior results
in comparison to other methods. Moreover, LRP benefits from fast kernel-based
calculation time. LRP takes 0.01 s for a 1000 × 1000 while the optimized ELP
(encoded local projections) takes 90 s for the same image size mainly due to the
Radon computation time.
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Table 1. The best results for all datasets and descriptors when city block (L1),
Euclidean (L2), Chi-squared (χ2) and cosine (cos) distances are used for direct similar-
ity measurements. For LBP and HOG, the best results were achieved for each dataset
via exhaustive parameter search.

CT emphysema dataset

Method ACT |h|
LRP (Our method)MinMax 82.14% 2048

LRP (Our method)median 81.32% 4096

ELP [29]median 80.95% 256

LBPuri
(12,3),χ2 80.36% 18

VGG-DeepL2 [18] 69.64% 4096

HOGL2 65.47% 1215

Kimia Path24 dataset

Method {ηp, ηW } |h|
LRP (Our method)median {75.38%, 72.02%} 4096

LRP (Our method)MinMax {74.12%, 73.43%} 2048

ELP [29]median {71.16%, 68.05%} 1024

VGG-Deepcos[18] {70.11%, 68.13%} 4096

LBPu
(24,2),L1

{65.55%, 62.56%} 555

HOGL1 {17.58%, 16.76%} 648

5 Conclusions

In this work, we introduced a fast and simple histogram-based descriptor based
on the local Radon transform and applied it in two medical datasets with differ-
ent modalities. In the im developed local Radon descriptor) in a much shorter
time.
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Abstract. Gleason grade is a critical indicator for determining patient treatment
for prostate cancer. In this paper, we analyze the viability of RNA sequencing
gene expression data for Gleason grade identification. We combine datasets
from the TCGA (sampled from cancer patients) and GTEx (sampled from
healthy patients) databases. Using mutual information techniques, we reduce the
dimensionality from 19046 genes to only the 20 most predictive genes. Then,
we apply an unsupervised approach to analyze the separability of the grades of
cancer. We use the t-SNE algorithm to map features into two dimensions and
apply a Gaussian Mixture Model (GMM) for clustering. The result shows a clear
visual separability between cancer and healthy samples. However, the grades of
cancer themselves are not visually separable. Also, we apply the Mann-Whitney
U test to compare the statistical similarity of the different Gleason grades and
find that most grades are similar to each other. We further apply a random forest
model to estimate the Gleason grade. The results show that the model accurately
predicts whether a sample comes from healthy or cancer tissue. However, the
model is weak in classifying the Gleason grade. The best performing model has
a weighted macro-averaged F1 score of 0.66, improving on a baseline score of
0.22 obtained by random guessing. Our results indicate that the difference in
gene expression among Gleason grades is relatively small compared to the
difference between healthy and cancer samples. Thus, gene expression alone
cannot be used for Gleason grade identification.

Keywords: RNA-sequencing � Gene expression � Gleason grade � Gaussian
mixture model � Grid search � Mutual information � T-SNE � Dimensionality
reduction � Hypothesis testing

1 Introduction and Related Work

Prostate cancer is one of the leading causes of cancer-related death among men, with
over 33,000 deaths projected for 2020 [1]. Early detection of and accurate diagnosis of
the disease are ongoing areas of research that aim to aid doctors in selecting a proper
treatment plan for patients. Patients suspected of having prostate cancer may be rec-
ommended for a biopsy examination. In a standard 12-core biopsy procedure, cells are
removed from the prostate in twelve different places [2]. The cells are then analyzed by a
pathologist to identify the severity of cancer. Primary and secondary Gleason scores are
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assigned based on observed cell abnormalities. The primary Gleason score represents
the most common cell morphology. Cells with a score of 1 have the most well-
differentiated tumor pattern, and thus are relatively similar to healthy cells. Cells with a
score of 5 have very poor or no differentiation, and thus the most mutation. The sec-
ondary Gleason score represents the second most common cell morphology. These two
scores are then added together to determine the overall Gleason grade of the patient [3].

The grade is used to outline treatment plans for patients, and thus proper identifi-
cation is essential. Higher Gleason grade has been found to be correlated with
metastasis rate, mortality rate, and biochemical recurrence rate [4–7]. Thus, a patient
with a Gleason grade of 1 may be put on active surveillance, while a patient with a
Gleason grade of 3 may be recommended for radiation therapy [8].

Current diagnostic techniques are not very accurate at identifying Gleason scores
and grades. Doctors underestimate Gleason score in 47.8% of patients [9] and only
accurately diagnose Gleason grade in 57% of patients [10]. It is critical to improve
grade identification accuracy so that appropriate treatment is recommended and
potential harms (including mental, physical, and financial strain placed on patients) are
minimized [11].

Artificial intelligence-based diagnosis is a potential promising addition to classical
diagnosis by a pathologist. Though there has been prior work using artificial intelli-
gence for Gleason grade identification, it has only employed digital slide images [12].
These studies have been reasonably successful in cancer prediction, and many have
been able to achieve equal or higher accuracy than doctors themselves. However, no
studies have analyzed the gene expressions of cells to identify the Gleason grade of a
patient. RNA sequencing data provides an improved approach to gene expression and
makes this type of study possible.

RNA sequencing gene expression values for certain specific genes have been
shown to be positively correlated with Gleason grade progression, and thus show
promise to be used for artificial intelligence-based identification [13]. Recently, there
have been a few databases created with patient RNA sequencing data for both healthy
patients and patients diagnosed with cancer. Namely, the TCGA (The Cancer Genome
Atlas) database from the National Institute of Health (NIH), which provides RNA
sequencing data for thirty-three different types of cancer [14]. This dataset provides a
wealth of research possibilities but is weakened since it contains limited healthy data.
The GTEx (Genotype-Tissue Expression) dataset addresses this problem by providing
RNA sequencing data from healthy patients in many of the same tissues analyzed by
the TCGA [15]. In our previous work, we used the TCGA dataset in conjunction with
artificial intelligence to create a model to diagnose patients with prostate cancer [16].

In this paper, we explore whether RNA sequencing data can be used for Gleason
grade identification. The application value for clinicians is high, as Gleason grade is
directly related to treatment determinations. To determine the proper treatment path, the
doctor needs to know the severity, and thus the Gleason grade of cancer [8].

The paper is structured as follows. Section 2 discusses the acquisition and pro-
cessing of data. Section 3 discusses unsupervised clustering, statistical analysis, and
results. Section 4 discusses machine learning modeling and its results. Section 5
summarizes the work and discusses possible directions for future work. Section 6 is an
appendix containing the genes selected and parameters used in the grid search.
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2 Data Acquisition and Preprocessing

This section details the preparation of the data for analysis and modeling. We explain
how the gene expression datasets are acquired and organized. All source code can be
found at https://github.com/mattcasey02/Gleason-Grade-Analysis.

2.1 Data Acquisition and Preprocessing

We use the TCGA-Assembler 2 tool to download the clinical dataset containing
information about primary and secondary Gleason score and the type of tissue (cancer
or healthy) [17]. We also download the TCGA and GTEx prostate gene expression
datasets. These datasets are not natively compatible, so we use the compatible versions
published by Wang et al. in 2018 [18].

For the convenience of future analysis, we categorize samples into TCGA Cancer,
TCGA Healthy, and GTEx sets. The TCGA Cancer set contains TCGA samples taken
from cancer tissue. The TCGA Healthy set contains TCGA samples taken from healthy
tissue of cancer patients. The GTEx set contains the GTEx samples, taken from healthy
tissue of healthy patients. In our dataset, there are 426 samples in the TCGA Cancer set,
48 in the TCGA Healthy set, and 106 in the GTEx set. There is an imbalance of about
3:1 of cancer to healthy samples.

We use the Gleason scores found in the clinical data to assign a Gleason grade to
each sample in the TCGA Cancer set. For the convenience of research, we label all
samples in the healthy sets as grade 0. Table 1 details the summary of our dataset. We
further combine the grades to create a second, concerted dataset. Multi-class classifi-
cation can become very difficult when a large number of groups are involved, so we
believe that we can improve the multi-class model accuracy with fewer groups. Grades
1 and 2 are combined to represent “low risk,” grade 3 represents “moderate risk,” and
grades 4 and 5 are combined to represent “high risk.” We now have two processed
datasets, one with labels using grade value 0–5 and another using ID 0–3 as labels.
These are referred to as the 6-group and 4-group datasets, respectively.

Table 1. Gleason score to grade conversion

Gleason score components Grade Number of samples

Healthy 0 154
Sum � 6 1 38
Primary: 3; Secondary: 4 2 122
Primary: 4; Secondary: 3 3 79
Sum = 8 4 60
Sum = 9 or 10 5 127
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2.2 Dimensionality Reduction with Mutual Information

High dimensionality hinders the performance of classifiers as they are not able to utilize
the information contained in the data adequately, and as such, have a difficult time
making accurate classifications [19]. The datasets start with 19046 genes. To reduce
their dimensionality, we use the mutual information metric. The mutual information
metric quantifies the amount of information gained about one variable by observing the
other [20]. A high mutual information value for a particular gene would indicate that
knowing the expression value of that gene greatly helps in determining what grade or
group the sample belongs to.

We determine the mutual information between each gene and the target, and then
select the top genes with the highest mutual information values to be used for classi-
fication. Reducing the number of genes allows the classifiers to more readily access the
critical information contained in the dataset. The information, in turn, improves the
accuracy of classification. Having too few genes, however, limits the classifiers’
accuracy, as they have less information available to them. We try various numbers of
genes (5,20,30,100) and find that machine learning models trained on 20 genes have
the highest average F1 scores. Using the top 20 genes provides the best balance
between having too few genes and too many genes. All further analysis presented in
this paper will thus use the top 20 genes. The 20 genes selected can be found in
Sect. 6.1.

3 Unsupervised Clustering and Statistical Analysis

This section describes the unsupervised clustering and statistical tests used to analyze
the separability between the gene expression values for the grades of prostate cancer.
We analyze the similarity of the various grades of cancer to better understand how gene
expression changes as the grade increases.

3.1 Unsupervised Clustering with Gaussian Mixture Model

The first step in analyzing the separability of the data is the use of a clustering algo-
rithm, the Gaussian Mixture Model (GMM). This algorithm tries to separate a set of
data based on the number of clusters selected by us. It does this by assuming that each
group within the data follows a Gaussian distribution and tries to find the distributions
that best cluster the data [21]. We choose the GMM algorithm instead of other clus-
tering algorithms, such as K-Means, because it provides a ‘soft’ assignment to a cluster.
It allows us to see the probability density estimation, allowing us to better understand
the predicted likelihood that a sample belongs to each group. The result of the clus-
tering gives more meaningful insight into how two grades may be overlapped.

We start with the 20 genes selected by mutual information and reduce them to two
dimensions using the t-Distributed Stochastic Neighbor Embedding (t-SNE) algorithm
[22]. This dimensionality reduction process is done for both the 6-group dataset and the
4-group dataset. The GMM is then applied to each of the two datasets.
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The output of the GMM models is shown in Fig. 1 for the two datasets. In Fig. 1,
we color each sample based on the grade or group IDs. The color-coding helps us to
examine the separability of the samples in terms of their grade and group. The contour
lines drawn from the GMM’s density estimation are shown and are used to see where
the GMM believes the clusters are centered.

The visualizations show that, for the most part, cancer and healthy data are visually
separable into different clusters. However, there is no visual separability between the
various cancer grades. Even after grouping the data, the same results are obtained.

3.2 Statistical Similarity of Samples of Different Grade

We also examine the statistical similarity of the gene expressions for the different
Gleason grades. We reduce our 20 gene-features into one dimension using the t-SNE
technique, as discussed before. This data compression allows us to apply traditional
statistical techniques. Before these techniques can be applied, however, we must
analyze the normality of the data. According to current literature, to most accurately
test for normality, both visual techniques and normality tests should be used [23].

We first use the Quantile-Quantile (Q-Q) plot, which graphs the quantiles of the
given dataset against the quantiles of a theoretical Gaussian normal distribution. We
further use the Shapiro-Wilk test for normality. The Shapiro-Wilk test is the recom-
mended test to use when assessing normality [23]. From the results of the Q-Q plot and
the Shapiro-Wilk test, we find that most of the grades/groups are not normally dis-
tributed. Thus, a non-parametric test is used for further analysis.

3.3 Mann-Whitney U Test

The Mann-Whitney U test is used in place of an unpaired t-test because it does not
require normally distributed data. The null hypothesis of this test is that the two groups
are drawn from the same population.

Table 2 shows p-values for each comparison between grades. All grades are found
to be different from GTEx (p < .001). All the grades are found to be similar to each
other except grades 2 and 3 (p = .026), and grades 3 and 5 (p = .009).

Fig. 1. Gaussian mixture model visualization for 6-Group (left) and 4-Group (right) datasets

Analysis of Viability of TCGA and GTEx Gene Expression 479



Table 3 shows p-values for each comparison between the combined grades. The
combined grade 1 + 2 is similar to grade 3 (p = .059) and is similar to the combined
grade 4 + 5 (p = .617).

The results of the comparisons with TCGA healthy data show TCGA healthy data
is different from all the grades, but is similar to GTEx (p = .130), as would be
expected.

4 Predictive Modeling

In this section, we discuss the creation of predictive models for the 6-group and 4-
group datasets. The purpose of this section is to analyze the relationship between gene
expression and Gleason grade using a supervised machine learning approach. To find a
better predictive model, we leverage the grid-search technique to tune the parameters of
the predictive model [24].

4.1 Model Creation and Selection

We apply a stratified 80%/20% train/validation split for each dataset. We select four
different types of models: Support Vector Machine (SVM) with linear kernel, SVM
with the radial kernel, k-Nearest Neighbors (KNN), and Random Forest (RF).

While using the grid search for model tuning, we use 5-fold stratified cross-
validation. We use the stratified version so that each fold has the same class imbalance.
We test 95 different parameter combinations (the full list can be found in Sect. 6.2).
Since it is equally important for all grades to be correctly identified, a model
would ideally have similar performance across all grades. We thus choose to use the

Table 2. Mann-Whitney U p-values for grade comparisons

Grade 1 Grade 2 Grade 3 Grade 4 Grade 5

GTEx <.001 <.001 <.001 <.001 <.001
Grade 1 .129 .767 .258 .106
Grade 2 .026 .778 .982
Grade 3 .075 .009
Grade 4 .815

Table 3. Mann-Whitney U p-values for combined grade comparisons

Grade 1 + Grade 2 Grade 3 Grade 4 + Grade 5

GTEx <.001 <.001 <.001
Grade 1 + Grade 2 .059 .617
Grade 3 .009

480 M. Casey and N. Zhou



macro-averaged F1 score for comparing the models. Macro-averaged F1 score gives
equal weight, and therefore importance, to all classes. This means that the chosen
model has minimal or no preference for classifying any specific class.

4.2 Model Evaluation

The parameters returned by the grid search are used to train a machine learning model.
The performance of the model on the validation set is evaluated with several metrics:
precision, recall, and F1 score for each individual class as well as overall micro, macro,
and weighted macro-precision, recall, and F1 score. As a baseline of comparison, we
construct a dummy model to represent random guessing in a stratified approach,
meaning its predictions follow the class distribution of the data.

4.3 Results of the Machine Learning Models

The hyperparameters found through the grid search to be the best for each dataset are
found in Table 4. These models are referred to as the 6-group and 4-group datasets’
tuned random forest models, respectively. The performance of these models on the
validation set is shown in Tables 5 and 6. Our model’s performance is to the left of the
slash, and the random-guessing dummy model’s performance is to the right of the
slash.

Our 6-group tuned random forest model performs better than the dummy model in
the micro, macro, and weighted macro metrics and at classifying each individual grade,
except for grade 4. Overall, this model is very accurate at classifying healthy samples,
with an F1 score of 0.93, but is much worse at classifying the various cancer grades.

Our 4-group tuned random forest model performs better than the dummy model in
the micro, macro, and weighted macro metrics and at classifying each individual class.
Our model is nearly as good as the 6-group model in classifying healthy samples, and is
better overall at classifying the cancer samples, as was expected.

Table 4. Best hyperparameters for the 6-Group and 4-Group datasets

Model Number of
estimators

Max
depth

Min. samples to split
an internal node

Min. samples to
be leaf node

6-Group Random
Forest

20 None 10 1

4-Group Random
Forest

10 None 10 2
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5 Conclusion and Future Work

This work explores the relationship between gene expression and Gleason grade. We
employ statistical analysis to compare the samples from different grades of cancer.
Furthermore, we explore the viability of using RNA sequencing gene expression data
in a machine learning model to predict the Gleason grade of a sample. With the advent
of increased availability of genetic data, these types of studies are important to find the
boundaries of its application and identify additional features required to improve model
performance.

The statistical analysis shows that in terms of gene expression, healthy and cancer
samples are visually separable and different from each other (p < .001). The individual
grades/combined grades, however, are not visually separable from each other. In
addition, all the grades are all found to be similar to each other except grades 2 and 3
(p = .026), and grades 3 and 5 (p = .009). Further, the combined grade 1 + 2 is similar
to grade 3 (p = .059) and is similar to the combined grade 4 + 5 (p = .617).

The machine learning models are accurately able to classify healthy vs. cancer, with
an F1 score of 0.93. Although the models do improve on stratified random guessing in

Table 5. Performance of 6-Group dataset’s tuned random forest model and dummy model

Precision Recall F1 Score Number of
samples

Healthy 0.86/0.32 1.00/0.35 0.93/0.34 31
Grade 1 0.50/0.00 0.12/0.00 0.20/0.00 8
Grade 2 0.39/0.15 0.62/0.12 0.48/0.14 24
Grade 3 0.17/0.09 0.06/0.06 0.09/0.07 16
Grade 4 0.33/0.23 0.08/0.25 0.13/0.24 12
Grade 5 0.48/0.26 0.60/0.18 0.54/0.27 25
Micro-Avg 0.55/0.22 0.55/0.22 0.55/0.22 116
Macro-Avg 0.46/0.18 0.42/0.18 0.39/0.18 116
Weighted Macro-Avg 0.51/0.21 0.55/0.22 0.50/0.21 116

Table 6. Performance of 4-Group dataset’s tuned random forest model and dummy model

Precision Recall F1 Score Number of
samples

Healthy 0.91/0.30 1.00/0.26 0.95/0.28 31
Grade 1 + Grade 2 0.56/0.30 0.62/0.34 0.59/0.32 32
Grade 3 0.50/0.22 0.12/0.12 0.20/0.16 16
Grade 4 + Grade 5 0.60/0.40 0.68/0.46 0.63/0.42 37
Micro-Avg 0.67/0.33 0.67/0.33 0.67/0.33 116
Macro-Avg 0.64/0.30 0.61/0.30 0.59/0.29 116
Weighted Macro-Avg 0.66/0.32 0.67/0.33 0.65/0.32 116
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all grades and combined grades except grade 4, they are weak in identifying the
Gleason grade very accurately. These results suggest that the genetic differences
between healthy and cancerous tissues are considerable. However, the genetic differ-
ences between the Gleason grades are minor.

The results of the statistical analysis and classification modeling are consistent.
Both results show that it is easy to use gene features to separate healthy samples from
cancer samples, but it is not easy to use gene features to identify cancer grade. Thus,
gene expression data alone is not viable to improve Gleason grade identification.

Our results also provide valuable insight into the relationship between gene
expression and Gleason grade progression. Previously, the belief was that as grade
progressed, there would be an increased expression in certain specific genes [13]. We
find that the gene expressions of genes selected to differentiate between the different
grades do not change as grade increases, or change too subtly to be identified by the
models. This result suggests that higher grade is not linked to increased gene
expression, but another variable.

Our analysis is limited by the genes we selected. It is possible that one or a few
genes are linked to increased grade, and they were not selected by the mutual infor-
mation approach. Future work should consider genes with established connections to
grade progression, and analyze their viability for use in a machine learning model. Prior
studies have identified genes that increase in expression as grade increases [13]. In
addition, models should use genes known to have a biological role in prostate cancer
progression.

The sample size of our dataset also limits our analysis. The statistical analysis
yielded some strange results such as grade 3 being different from grade 2 (p = .026),
grade 5 (p = .009), and grade 4 + 5 (p = .009). This is curious since grade 3 is the
intermediate grade, and thus if all other grades are similar, then grade 3 should be
similar to them as well. It is possible that the low sample size of grade 3 provided
erroneous results in the statistical analysis. Future work should explore this finding and
see if the same results are received with a larger sample size dataset.

Finally, future work should explore other data that can be used in conjunction with
gene expression data for identification of Gleason grade. One aspect that we do not
consider is patient clinical data, including race, age, and family history. Clinical data
has previously been successfully applied in machine learning for prostate cancer
diagnosis [25]. Many opportunities need to be explored before gene expression data
can be ignored for use in Gleason grade identification.

6 Appendix

6.1 Selected Genes

Table 7 details the twenty genes that are selected for use in this study. These are the
twenty genes with the highest mutual information values.
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6.2 Grid Search Parameters

Table 8 details the various hyperparameters tested and the values chosen for testing.
Values were chosen based on examples found in the Scikit-learn documentation.
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Abstract. In healthcare domains, dealing with missing data is crucial
since absent observations compromise the reliability of decision support
models. K-nearest neighbours imputation has proven beneficial since it
takes advantage of the similarity between patients to replace missing val-
ues. Nevertheless, its performance largely depends on the distance func-
tion used to evaluate such similarity. In the literature, k-nearest neigh-
bours imputation frequently neglects the nature of data or performs fea-
ture transformation, whereas in this work, we study the impact of differ-
ent heterogeneous distance functions on k-nearest neighbour imputation
for biomedical datasets. Our results show that distance functions con-
siderably impact the performance of classifiers learned from the imputed
data, especially when data is complex.

Keywords: Missing data · Heterogeneous data · Data imputation ·
Distance functions · K-nearest neighbours · Biomedical data

1 Introduction

A common data quality problem in healthcare domains is the presence of Miss-
ing Data, which consists of absent observations in patients’ medical records [9].
Dealing with missing data is of outstanding importance, since absent obser-
vations may jeopardise algorithms’ predictions, compromising the reliability of
patient-oriented models for decision making. K-nearest neighbours (KNN) impu-
tation is a popular imputation technique in healthcare domains, since it takes
advantage of the similarity between patients to produce accurate estimates for
imputation. Furthermore, it is a nonparametric method which does not require
any assumptions about the data [16], has proven to preserve the data distri-
bution [15] and allows for a great interpretability and explainability, crucial in
healthcare domains [3].
c© Springer Nature Switzerland AG 2020
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Nevertheless, KNN performance largely depends on the distance function
used to evaluate such similarity. For heterogeneous data, typical solutions include
feature transformation, although leading to loss of information (e.g., discretisa-
tion of continuous features) or increased dimensionality (e.g., one-hot encoding)
and the use of heterogeneous distance functions that handle different scales [18].
However, besides their heterogeneous nature and susceptibility to missing data,
biomedical data is also prone to other difficulty factors, such as data imbalance,
the presence of subconcepts in data (small disjuncts), class overlap, and noisy
data [2,5], which make them especially complex domains where choosing suitable
distance functions becomes a more strenuous and critical task.

In related work, KNN imputation frequently neglects the nature of data or
performs feature transformation [16]. Considering KNN classification, either the
studies consider only complete datasets (or derisory amounts of missing values)
or the nature of data is ignored [7]. This work studies the impact of different
heterogeneous distance functions on KNN imputation, evaluating their effect on
the performance of classifiers constructed from biomedical datasets with differ-
ent characteristics (we focus on tree-based classifiers constructed with Classifica-
tion and Regression Trees - CART). The purpose of this research is two-fold: 1)
Determining if distance functions impact KNN imputation of biomed-
ical datasets and whether the type of features affected by missing data
influences the classification performance and 2) Determining whether
observed classification performance is related to the characteristics
of biomedical datasets. Regarding 1), it is important to state that we eval-
uate the impact of distance functions on imputation indirectly by focusing on
the performance of resulting tree-based classifiers. In other works, we focus on
how accurate are the resulting classifiers, rather than how well the imputation
reconstructs the data. Regarding 2) we explore if there are scenarios (data char-
acteristics) where the choice of distance function considerably influences the
obtained results. To that end, a benchmark of biomedical datasets with different
characteristics was collected and missing data was generated following 4 different
variants and percentages (5 to 30%). Then, data imputation was performed using
7 different distance functions and imputation results were evaluated through the
analysis of a classifier learned from the imputed data.

To the authors knowledge, no study has yet investigated the impact of dif-
ferent distance functions on the imputation of biomedical data with different
characteristics and its effect on classification performance, which constitutes the
main contribution of this work. Furthermore, we explored recent distance mea-
sures never before studied for imputation purposes, such as SIMDIST and MDE
(Sect. 2), extended MDE to handle categorical data, studied redefinitions of pop-
ular distance functions (HEOM and HVDM), often overlooked in related work,
and proposed yet another redefinition of HVDM, which constitute additional
contributions.
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2 Heterogeneous Distance Functions for Missing Data

All distance functions measure the distance between two patterns xA and xB

through a sum of their individual distances for each j-th feature, dj(xAj , xBj),

as D(xA,xB) =
√∑p

j=1 dj(xAj , xBj)2; yet they differ on the computation of
individual dj distances and treatment of missing values. p represents the total
number of features and xAj , xBj are two values of feature j. The mathematical
formulation of all distance functions may be found in the Appendix. In what
follows, we describe each studied distance function referring to the formulas
presented in the Appendix.

HEOM and HVDM: The definition of dj(xAj , xBj) for Heterogeneous
Euclidean-Overlap Metric (HEOM) and Heterogeneous Value Difference Met-
ric (HVDM) depends on the type of feature j (Eqs. 1 and 2) [18]. For categorical
features, HEOM defines dj as an overlap metric, dO (Eq. 3) whereas HVDM uses
dvdm (Eq. 4). For continuous features, HEOM uses the normalised Euclidean dis-
tance dN (Eq. 5), whereas HVDM considers ddiff (Eq. 6). However, dO, ddiff ,
dN and dvdm are only computed if both xAj and xBj are observed; otherwise,
dj(xAj , xBj) = 1.

HEOM-R, HVDM-R and HVDM-S: HEOM-R and HVDM-R [8] con-
sider missing values as “special values”: if both xAj and xBj are missing, then
dj(xAj , xBj) = 0 (Eq. 7). In addition, we propose another redefinition of HVDM:
missing values are considered an “special” category and dvdm is applied when
only xAj or xBj are missing and j is categorical, referred to as HVDM-S (Eq.
9).

SIMDIST: SIMDIST defines a similarity measure S (Eq. 8), where sABj is an
intermediate similarity between patterns according to j, sj represents the mean
similarity among all patterns according to j and z is a normalisation function:
z(a) = a

a+1 [4]. For categorical features, sABj is defined by Eq. 10, whereas
for continuous features, sABj is determined by Eq. 11. SABj = 1

2 when xAj or
xBj are missing which is the equivalent of replacing the missing similarity by the
mean similarities of all patterns according to j (Eq. 8). The individual similarities
SABj are then transformed to distances DABj = 1 − SABj and aggregated to
produce D(xA,xB).

MDE: When both values are observed, Mean Euclidean Distance (MDE) [1] is
defined as the Euclidean distance (Eq. 12). When either xAj or xBj are missing,
MDE is approximated as the mean distance of each value of j to the observed
value (Eq. 14). When both values are missing, MDE is approximated as the
mean distance between all values of j (Eq. 16). To allow a proper weighting
of continuous features with different ranges, a min-max normalisation, zi =

xi−min(xj)
max(xj)−min(xj)

is applied before the Euclidean distance is computed. When first
proposed, MDE considered only continuous features. Therefore, starting from
the overlap distance, dO (Eq. 3) we extended MDE for categorical features,
MDO: when both values are known, MDO is the same as dO; when one value is
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missing, MDO is computed as the mean distance between all elements in xj and
the observed value (Eq. 15); when both values are missing MDO is determined
as the mean distance between all elements in xj (Eq. 17). After the individual
distances are computed, their aggregation is performed as for the remaining
distances.

3 Experimental Setup

We started by collecting 31 complete and binary-classification datasets from
open-source repositories (UCI Machine Learning, KEEL, KAGGLE, OPENML),
comprising different biomedical contexts, sample sizes, number of features, type
of features (continuous and categorical), imbalance ratios (IR) and data charac-
teristics (given by complexity measures, as detailed later in Sect. 4). Each dataset
was divided into 5 folds following a stratified crossvalidation (SCV) approach (as
some datasets have a lower number of minority examples, using 10 folds would
result in test sets with a very small amount of minority examples or the need
to repeat minority examples across folds). Then, missing data was introduced in
the training set, following 4 different variants, herein referred to as Weighted-
Plain (PLAIN), Weighted-All (WA), Weighted-Continuous (WA-CONT) and
Weighted-Categorical (WA-CAT). The same missing rate was inserted in both
classes according to the IR of each dataset (hence the “weighted” designation),
to guarantee that missing data is affecting both classes proportionally to their
distribution. However, the features affected by missing data differ for each type.
PLAIN generation does not control for the number or type of features where
missing values are placed. In this case, missing data is generated over the entire
dataset with no restrictions, simulating a scenario more likely to be found in
real-world domains. Nevertheless, WA approach generates the same percentage
of missing values for each feature (all features are equally affected by missing
data), whereas WA-CONT and WA-CAT approaches generate the same amount
of missing data for all continuous and categorical features, respectively. The goal
of comparing different generations variants of missing data is to determine if the
type of features (continuous or categorical) affected by missing data influenced
the choice of a proper distance function for imputation. Also, missing data was
generated at 4 different rates (5, 10, 20 and 30%) under a Missing Completely At
Random (MCAR) mechanism. MCAR mechanism was considered for a rigorous
control of the missing generation. As missing data is synthetically generated in
a multivariate scheme (several features, if not all, are affected by missing data),
for each variant and rate, and the considered datasets comprise heterogeneous
features, other mechanisms could be compromised due to existing limitations
of generation approaches for categorical data [13]. After the injection of miss-
ing data, the datasets with missing values were either directly classified with
Classification and Regression Trees (CART) model (BASELINE approach) or
first imputed with KNN (k = 1, 3, 5, 7) and then classified with CART. CART
model is also a non-parametric classifier and relatively fast to construct and
to provide classification results. Furthermore, it handles missing data directly
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Fig. 1. Stratified crossvalidation and missing data generation: missing data is injected
after the splitting of the data into training and test sets, for each fold. The same splits
are used for all methods (both for training and testing stages).

through the use of surrogate splits (without discarding any patterns from the
dataset or assuming a particular missing mechanism) thus allowing a comparison
between learning a model with missing data or complete data (via imputation)
[17]. Regarding the chosen distance functions, we started by considering dis-
tance functions that handled the three components of the problem (continuous,
categorical and missing data) or required minimal adjustments, as described in
Sect. 2. On that note, MDE, although lacking the treatment of categorical data,
was extended and included given its similarity with HEOM and SIMDIST, yet
using the data distribution to handle missing data (as is performed for continuous
data). Similarly, we propose HVDM-S as a modification of HVDM, only altering
the treatment of missing data and maintaining the remaining aspects regarding
continuous and categorical data [12]. Finally, classification performance is evalu-
ated using Accuracy, Sensitivity, Specificity, Precision, F-measure, G-mean and
AUC (although for simplicity we present the most relevant metrics for imbal-
anced domains: Sensitivity, F-measure and G-mean) [11,14]. For each dataset,
10 repetitions of the crossvalidation procedure were performed, resulting in a
10 × 5 SCV approach (Fig. 1). Overall, 31 datasets × 10 SCV repetitions ×
4 missing variants × 4 missing rates × 7 distance functions × 4 k values
(imputed datasets) + 31 datasets × 10 SCV Versions × 4 missing variants ×
4 missing rates (for BASELINE approach) sums up to an equivalent of 143,840
datasets evaluated.

4 Results and Discussion

Tables 1 and 2 report on the average sensitivity ranks obtained for CART, con-
sidering training sets with missing values (BASELINE) and training sets imputed
with each of the 7 considered distances (KNN with k = 1 and k = 3, respec-
tively). Furthermore, results are grouped by missing data variant (PLAIN, WA,
WA-CAT and WA-CONT) and missing rate (5% to 30%). Overall, for both k = 1
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Table 1. CART average sensitivity ranks per missing rate (MR), and variant (k = 1).
The best values in each row are marked in bold and underlined. B: BASELINE.

MR B HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

PLAIN Datasets 5% 5.31 4.50 4.58 3.95 5.18 4.24 3.79 4.45

10% 5.52 4.35 5.31 5.03 4.63 3.48 3.73 3.95

20% 4.32 4.66 5.06 4.77 5.37 3.32 4.10 4.39

30% 4.55 4.47 4.94 4.44 5.35 3.10 3.56 5.60

WA Datasets 5% 3.55 4.98 4.89 4.63 4.61 4.65 3.55 5.15

10% 5.24 4.81 4.87 4.42 5.06 3.16 4.18 4.26

20% 5.10 5.05 4.87 4.34 4.21 3.63 3.77 5.03

30% 5.23 4.27 5.08 3.97 5.21 3.60 3.71 4.94

WA-CAT Datasets 5% 5.57 4.93 4.12 3.91 3.86 4.10 5.03 4.47

10% 5.02 4.59 5.00 4.64 5.21 3.12 3.64 4.79

20% 4.91 4.38 5.14 4.00 4.78 3.60 4.83 4.36

30% 4.97 4.71 5.02 4.45 4.81 3.52 4.29 4.24

WA-CONT Datasets 5% 5.31 4.26 4.63 4.08 4.39 4.39 5.03 3.92

10% 4.92 4.79 4.73 4.56 4.37 4.37 4.24 4.02

20% 5.31 4.18 4.71 5.10 4.08 4.08 4.19 4.35

30% 3.92 4.56 4.71 4.97 4.63 4.63 4.19 4.39

and k = 3, HVDM-S is globally the top performing approach, independently of the
generation variant. For k = 1, where KNN imputation has a more local behaviour,
HVDM-S is consistently the best approach for most missing rates (>5%) in all
variants, only surpassed by SIMDIST when missing data is generated exclusively
on continuous features. This suggests that although HVDM-S handles efficiently
both continuous, categorical and missing values, the strategy used by SIMDIST
to handle continuous values might be superior. For k = 3, HVDM-S surpasses the
remaining approaches for higher missing rates (>10%), with MDE showing com-
petitive results for WA datasets in lower rates (5 and 10%). Furthermore, for k = 3,
HVDM-S presents a lower average rank for higher missing rates than for k = 1;
whereas as the value of k increases further, k = {5, 7}, KNN imputation shows a
more global behaviour, and differences among the approaches become less clear,
although HVDM-S remains in the top performing approaches, especially when
missing data is generated across the entire dataset (PLAIN and WA) approaches.
This impact of k (differences between approaches becoming more smoothed) is
expected given that with a larger k-neighborhood, the local properties of KNN
which grant it its greatest advantage (taking advantage of the similarity between
patterns) become negligible. As the analysis of ranks does not provide informa-
tion of the classification results directly, we analyse also several important per-
formance metrics for complex, imbalanced data, such as Sensitivity, F-measure
and G-mean, as shown in Table 3. As follows, HVDM-S is the top performing
approach across all metrics and missing rates, and its superiority becomes more
evident for higher missing rates (20% and 30%).

However, despite HVDM-S presents the highest performance results, it
becomes clear from the analysis of Table 3 that the classification performance is
overall poor, even if data is imputed. As we focus solely on the analysis of the
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Table 2. CART average sensitivity ranks per missing rate (MR), and variant (k = 3).
The best values in each row are marked in bold and underlined. B: BASELINE.

MR B HEOM HEOM-R HVDM HVDM-R HVDM-S MDE SIMDIST

PLAIN Datasets 5% 5.76 4.56 4.52 4.26 4.61 3.76 3.74 4.79

10% 6.40 4.66 3.94 5.18 3.87 3.44 4.31 4.21

20% 5.40 5.26 4.65 4.29 4.52 3.48 3.89 4.52

30% 6.39 5.02 4.02 4.24 5.00 2.95 3.56 4.82

WA Datasets 5% 4.44 4.90 4.47 5.06 5.31 3.82 3.60 4.40

10% 5.60 4.06 4.76 4.50 4.44 4.47 3.94 4.24

20% 5.50 4.61 5.11 4.89 4.56 3.34 3.76 4.23

30% 6.21 5.16 3.84 4.15 4.21 3.53 4.32 4.58

WA-CAT Datasets 5% 5.34 4.28 4.83 3.59 3.52 4.31 5.07 5.07

10% 4.79 4.53 4.93 4.60 4.86 4.00 4.64 3.64

20% 5.72 3.93 4.76 4.29 4.67 3.76 5.00 3.86

30% 4.86 3.98 4.66 5.50 5.12 3.34 4.45 4.09

WA-CONT Datasets 5% 5.29 4.85 3.89 4.48 4.35 4.35 4.23 4.55

10% 5.87 4.35 4.32 4.42 4.37 4.37 3.66 4.63

20% 5.27 5.00 4.35 4.27 3.98 3.98 4.19 4.94

30% 4.98 4.66 4.37 4.82 4.16 4.16 4.29 4.55

Table 3. CART performance results (mean ± standard deviation) on PLAIN Datasets
without imputation (BASELINE) and with KNN (k = 3) imputation using specific
distances for distinct missing rates (MR). The best values for each performance metric
are marked in bold and underlined.

Distance MR Sens F-measure G-mean MR Sens F-measure G-mean

BASELINE 0.468 ± 0.331 0.472 ± 0.326 0.536 ± 0.300 0.460 ± 0.334 0.463 ± 0.331 0.524 ± 0.306
HEOM 0.482 ± 0.324 0.483 ± 0.317 0.553 ± 0.283 0.479 ± 0.332 0.475 ± 0.319 0.541 ± 0.292
HEOM-R 0.482 ± 0.324 0.483 ± 0.317 0.554 ± 0.283 0.483 ± 0.329 0.480 ± 0.316 0.548 ± 0.288
HVDM 0.480 ± 0.328 0.480 ± 0.320 0.549 ± 0.288 0.475 ± 0.331 0.472 ± 0.320 0.539 ± 0.295
HVDM-R 0.480 ± 0.327 0.479 ± 0.320 0.549 ± 0.286 0.482 ± 0.325 0.478 ± 0.314 0.547 ± 0.285
HVDM-S 0.485 ± 0.328 0.485 ± 0.320 0.556 ± 0.286 0.487 ± 0.329 0.481 ± 0.316 0.550 ± 0.288
MDE 0.485 ± 0.329 0.484 ± 0.319 0.552 ± 0.288 0.480 ± 0.332 0.474 ± 0.319 0.544 ± 0.290
SIMDIST

5%

0.481 ± 0.328 0.482 ± 0.320 0.551 ± 0.286

10%

0.483 ± 0.332 0.478 ± 0.320 0.544 ± 0.294

BASELINE 0.461 ± 0.337 0.459 ± 0.332 0.516 ± 0.311 0.436 ± 0.334 0.437 ± 0.334 0.489 ± 0.317
HEOM 0.463 ± 0.326 0.454 ± 0.315 0.519 ± 0.293 0.450 ± 0.320 0.437 ± 0.309 0.505 ± 0.288
HEOM-R 0.469 ± 0.320 0.463 ± 0.311 0.529 ± 0.289 0.461 ± 0.314 0.445 ± 0.302 0.514 ± 0.279
HVDM 0.470 ± 0.327 0.460 ± 0.314 0.526 ± 0.292 0.462 ± 0.321 0.444 ± 0.307 0.512 ± 0.285
HVDM-R 0.466 ± 0.329 0.455 ± 0.315 0.522 ± 0.292 0.456 ± 0.321 0.441 ± 0.309 0.507 ± 0.289
HVDM-S 0.479 ± 0.323 0.468 ± 0.310 0.539 ± 0.284 0.476 ± 0.321 0.456 ± 0.303 0.532 ± 0.276
MDE 0.476 ± 0.328 0.465 ± 0.314 0.534 ± 0.291 0.470 ± 0.324 0.452 ± 0.307 0.523 ± 0.284
SIMDIST

20%

0.468 ± 0.331 0.458 ± 0.319 0.523 ± 0.296

30%

0.456 ± 0.325 0.440 ± 0.311 0.509 ± 0.289

effect of data imputation, the datasets did not suffer any pre-processing, such
as data oversampling, outlier removal or cleaning approaches. As biomedical
datasets are often complex by nature, presenting a considerable imbalance ratio
and associated problems such as small disjuncts, overlap and outliers, among
others, we moved to a more detailed analysis of the characteristics of the col-
lected datasets, with the objective to determine if some datasets were in fact
complex and whether that complexity could be related to differences in per-
formance for selected distance functions. To that end, several data complexity
measures where computed for each dataset. These measures regard key proper-
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Fig. 2. Data complexity measures of the considered datasets: F1, L2 and N1.

ties of datasets such as geometry/topology (L3, N4), class overlap (F1, F2, F3)
and class separability (L1, L2, N1, N2 and N3) and have proved to accurately
provide important meta-information on the learning abilities of classifiers, espe-
cially in imbalanced domains [14]. We found the most informative measures to
be related to class overlap (F1) and class separability (L2 and N1), as presented
in Fig. 2. F1 captures the highest discriminative power of all features in data
and lower values indicate more complex problems. In turn, L2 and N1 focus on
the characteristics of the decision boundary between classes, where L2 measures
the error rate of a support vector machine with linear kernel and N1 measures
the fraction of data points connected to the opposite class by an edge in a min-
imum spanning tree. On contrary to F1, higher values of L2 and N1 indicate
more complex problems. Accordingly, the top most complex datasets are cae-
sarian, dmft-health, pharynx-1year, pharynx-status, plasma-retinol, schizo, and
veteran (Fig. 2), which were further analysed. Figure 3 compares the mean per-
formance (k = 1 and 3, for a more local behaviour of distances) of each dataset
for PLAIN variant and a missing rate of 30%, where differences are more rele-
vant (PLAIN variant is also the most likely to encounter in real-world domains
where missing data is scattered throughout the entire dataset). For simplicity,
and to determine clinical relevance, we focus on a direct comparison of HVDM-S
with the BASELINE and the most common used approaches in the literature
for healthcare data, i.e., HEOM and HVDM [6,10,11]. However, results for the
remaining distances follow a similar trend (for MDE, some datasets obtain simi-
larly performances to HVDM-S, as expected from Table 3). An analysis of Fig. 3
reveals that HVDM-S provides a substantial improvement in sensitivity results
for more complex datasets (especially in comparison to HEOM). This suggests
that choosing a proper distance function for imputation is important to produce
quality training sets and that choice is even more important when data is com-
plex, as determining the most similar patterns becomes crucial to obtain better
classification results.
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BASELINE 

HEOM 

HVDM-S 

HVDM

0.6

0.5

0.4

0.3

0.2

0.1

0.0
pharynx-1yeardmft-healthcaesarian plasma-retinolpharynx-status schizo veteran

Fig. 3. CART sensitivity results for most complex datasets, considering a PLAIN vari-
ant and 30% of missing data (considering k = 1 and 3 for a more local analysis).

5 Conclusions, Limitations and Future Work

From the experimental results, the following conclusions may be derived:

• Distance functions impact KNN imputation, where HVDM-S has proved to be
a feasible and robust approach for the imputation of heterogeneous biomedical
data, independently of the type of features affected by missing data (genera-
tion variant);

• HVDM-S shows a particular good behaviour when compared to more common
distance function (HEOM and HVDM) for more complex datasets, indicat-
ing that choosing a proper distance function becomes crucial when data is
complex;

• Missing Data should be considered as yet another data difficulty factor for
imbalanced domains, as it influences the computation of distances and assign-
ment of nearest neighbours, becoming specially critical when other factors are
present in data;

Findings of the present study should be interpreted considering that the
included datasets are somewhat standard in terms of sample size (number of
examples and features) and that the missing data variants are based on MCAR.
Future work will involve including larger datasets, such as MIMIC-III and fur-
ther missing data mechanisms, as MAR and MNAR. Finally, the evaluation of
imputation performance, i.e., studying the impact of distance functions on the
reconstruction of data, is also a subject for future research.
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0145-FEDER-000027 (Norte Portugal Regional Operational Programme – Norte 2020)
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Appendix

Table 4 presents the mathematical formulation for all distance functions
described in Sect. 2.
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