
275© Springer Nature Switzerland AG 2021
V. Singhroy (ed.), Advances in Remote Sensing for Infrastructure Monitoring, 
Springer Remote Sensing/Photogrammetry, 
https://doi.org/10.1007/978-3-030-59109-0_12

Chapter 12
Flood Mapping from Multi-Sensor EO 
Data for Near Real-Time Infrastructure 
Impact Assessment: Lessons Learned 
from the 2017 Spring Flood in Eastern 
Canada

Ian Olthof, Simon Tolszczuk-Leclerc, Brad Lehrbass, Victor Neufeld, 
and Vincent Decker

12.1  �Introduction

The Emergency Geomatics Services (EGS) is a section within the Canada Centre 
for Mapping and Earth Observation, Natural Resources Canada, responsible for 
providing geospatial intelligence during natural disasters including flooding. EGS 
maps floods to help mitigate impacts on people and infrastructure by providing an 
overview of current flood extents that allow emergency responders including the 
military to prioritize and deploy help where it is needed most. Mitigation measures 
include shutting down power and gas transmission lines, erecting sandbag walls to 
protect buildings and other infrastructure, as well as mass evacuations to safeguard 
people from flooding.

On 23 April 2017 EGS was activated by Public Safety Canada for flooding 
caused by snowmelt and heavy precipitation in communities located on the Ottawa 
River between the Quebec–Ontario provincial border and Lake of Two Mountains, 
Canada. As record amounts of precipitation continued to fall into May 2017, the 
activation area expanded to include the Ottawa River from west of Ottawa to east of 
Montreal as far as Lac St-Pierre further downstream (Fig. 12.1).

At the outset of the 2017 flood, EGS was in the midst of changing its operations; 
from the way, it extracted surface water extents from satellite imagery to the incor-
poration of citizen geographic information to improve its flood map products. This 
chapter describes lessons learned amid this transition during EGSs’ 2017 spring-
time flood activation in Eastern Ontario and Western Quebec. Data received by EGS 
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used to generate accurate and consistent near real-time flood information is listed, 
including satellite imagery, as well as airborne and ground-based reference data 
used to improve and validate flood maps. The transition that was taking place within 
EGS to update surface water mapping methods is described as this coincided with 
the 2017 activation. Due to the challenges faced by processing vast quantities of 
satellite imagery received during the event, EGS decided to adopt the new methods 
due to improved mapping efficiency and consistency. The rationale for this transi-
tion including advantages of the new methods are explained.

�Background

In the year prior to the 2017 activation, EGS had made significant progress on auto-
mated surface water mapping to extract both open water and flooded vegetation 
extents from optical and radar satellite data. This work was ongoing within Public 
Safety’s floodplain characterization programme with the goal of generating useful 
information for EGS, including historical surface water maps to help precisely 
delineate floodplains as well as calibrate satellite flood models for operational map-
ping. This new methodology for automated flood mapping was demonstrated using 
historical optical satellite imagery from the Landsat mission obtained through the 
USGS in Olthof (2017).

Fig. 12.1  2017 flood activation area from west of Ottawa to Lac St-Pierre
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This methodology was subsequently adapted to single and dual-polarization 
radar imagery from RADARSAT-1 and 2 and work began to generate historical 
surface water maps over the Saint John River floodplain to compare with optical 
data with the eventual goal of seamlessly integrating information derived from both 
sensors (Olthof and Tolszczuk-Leclerc 2018). The overarching objective of this 
work was to produce a robust, accurate, automated and efficient methodology to 
map surface water from a range of sensors for both operational and historical flood 
mapping with minimal user intervention. The large data volumes of satellite imag-
ery that exist in historical archives necessitated the transition from manual methods 
to full automation, while efficiency is needed since EGS has set a goal to publish 
maps within 2–4 h of satellite data reception to provide current emergency situa-
tional awareness. The 2–4 h timeframe includes several time-consuming steps from 
data download, processing, quality control including editing when necessary, to 
map production and publishing.

At the request of Public Safety Canada, the International Charter on Space and 
Major Disasters was activated on 6 May 2017 for flooding in Southern Quebec. The 
Charter members consist of 17 space agencies from around the world who provide 
free imagery from 34 satellites to relief organizations working in areas affected by 
natural or manmade disasters. Upon activation, the methodology was applied to 
data from different sensors received through the Charter in addition to Canada’s 
own RADARSAT-2. The majority of data were from radar satellites, providing the 
ability to detect water through cloud during near continuous cloud cover that was 
present in the weeks of flooding. Fortunately, the methodology proved to be suffi-
ciently reliable to be adapted to other sensors that include different radar wave-
lengths, polarizations and spatial resolutions, requiring specification of only three 
sensor-specific parameters to account for these differences.

�Data

Satellite, airborne, ground-based and ancillary data layers were integrated to pro-
vide near-real-time flood maps that were quality checked on a best effort basis prior 
to release to government agencies and the public.

�Satellite Imagery

EGS tasks Canada’s RADARSAT-2 satellite to image flood-prone regions through 
acquisition plans prior to the springtime flood season and gets priority tasking dur-
ing an emergency activation. EGS tasks RADARSAT-2 dual-polarization imagery 
in standard or wide-mode to ensure sufficient coverage over the affected region. 
Through the Charter, EGS received both optical and radar imagery from a number 
of different satellite sensors with detail ranging from sub-metre to 250 m resolution 
and coverage from tens of square kilometres to thousands (Table 12.1).

12  Flood Mapping from Multi-Sensor EO Data for Near Real-Time Infrastructure…
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Priority needed to be given to the best available scenes due to the volume of 
data received through the Charter. From April 23 to May 24, 112 scenes were 
evaluated for map production and publishing, the majority of which were dis-
carded due to excessive cloud cover in optical, high wind in radar or some other 
quality issue. Of the 112 scenes, 41 were processed to some degree and 22 were 
fully processed and published as maps simultaneously on the Federal Geospatial 
Platform (FGP) used to disseminate flood products internally to government and 
Open Maps to the public. 

�NASP

From May 7–16, 2017, Transport Canada’s National Aerial Surveillance Program 
(NASP) aircraft were tasked to acquire oblique pictures of the flooding along 
approximately 600  km of the waterfront from Pembroke, Ontario eastward to 
Quebec City. Four separate flight zones were defined, with flights rotating through 
each flight zone over the 10-day period. Pictures captured every 5 s during flights 
totaled nearly 14,000 images taken during the 11-day period. These pictures were 
used to populate an online interactive web map through ArcGIS Online to distribute 
information and help improve and validate flood maps as they were generated from 
satellite imagery (Fig. 12.2).

Table 12.1  Satellite provided by the International Charter on Space and Major Disasters to the 
Emergency Geomatics Services during the 2017 flood.

I. Olthof et al.
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�CGI

Prior to the activation, a beta version Citizen Geographic Information (CGI) application 
was released to select trusted users to acquire near real-time in-situ flood information. 
The application notifies users of a satellite overhead about to acquire an image, at which 
time the user is requested to take a geotagged picture of flooding and upload it to a 
central geodatabase for analysis. The image metadata also includes azimuth, enabling 
co-registration of features in CGI pictures with features in the satellite image. When 
available, this information is used to verify flood extents in satellite products and better 
tailor products by correcting obvious errors before release on the FGP and Open Maps.

�LIDAR HRDEM

Canada’s new High-Resolution Digital Elevation Data Model (HRDEM) LIDAR-
derived elevation data were made available to EGS prior to their official release to 
the public over portions of the flood-affected area where available. The complete 
dataset includes elevation, slope, aspect and shaded relief for a digital terrain model 
available at 2 m spatial resolution in 20 km × 20 km tiles with floating-point preci-
sion. Tiles covering urban areas where CGI data were acquired were used to improve 
flood mapping in locations where remote sensing has traditionally had difficulties 
mapping water due to obstructions including buildings.

�Water Occurrence

A water occurrence map was obtained from a global product generated from 
32 years of historical Landsat data by the European Commission (Pekel et al. 2016). 
Water occurrence is also referred to as inundation frequency because it maps the 
percentage that water has been observed at each location in satellite imagery. It is 
generated by overlaying a time-series of water maps and for each pixel location, 
counting the number of times water is detected divided by the total number of valid 
observations. These maps have been produced at a global scale to support applica-
tions including water resource management, climate modelling, biodiversity con-
servation, food security and flood response mapping.

12.2  �Emergency Geomatics Services New Operational Flood 
Mapping Methods

�Open Water Mapping

The new EGS flood mapping methodology performs multi-channel supervised 
machine learning classification of available radar polarizations to map open water, 
and then bright threshold region growing from open water to map flooded vegeta-

I. Olthof et al.
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tion (Fig.  12.3). Smooth open water is a specular surface that produces a dark 
appearance in radar imagery caused by single bounce of incident radiation away 
from the sensor. Previously, EGS mapped open water using the traditionally 
accepted method of single polarization interactive dark image thresholding even 
when multiple polarizations were available (Bolanos et  al. 2016; Li and Wang 
2015). While thresholding has been shown to perform well for open water under 
ideal conditions, water surface roughness due to ice that is sometimes present dur-
ing the spring flood season as well as waves can increase backscatter to a level 
where a single threshold value cannot reliably separate water from land (Henry 
et  al. 2006). Automated methods used to determine optimal threshold values are 
compromised by these factors, while manual thresholding can better tune the value 
to minimize errors of omission and commission. Even still, a significant amount of 
post-processing is often required to reduce errors to an acceptable level (White 
et al. 2014).

Information contained in multiple radar polarizations can help to reduce errors in 
open water extraction; however making use of this information requires an approach 
other than single band image thresholding. The supervised multispectral classifica-
tion has long been used in terrestrial remote sensing applications, but has seen lim-
ited use for surface water mapping from radar. One challenge is that supervised 
classification approaches require spectral signatures for each class to train a classi-
fier, for example, signatures representing land and water in the case of water extrac-
tion. The use of standard spectra to classify land and water will not achieve an 
optimal classification result for several reasons. First, the spectral variability of 

Fig. 12.3  New methodology put into operations for the 2017 flood activation
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water in radar due to wind and ice can cause confusion between water and land. 
Second, spectral signatures of land also vary due to the presence of several land 
cover types that change through time because of vegetation phenology, moisture 
and atmosphere. An additional complicating factor is that in order to perform tradi-
tional multispectral classification such as minimum distance or maximum likeli-
hood, separate signatures must be sampled for all land cover types present in 
the scene.

To deal with these limitations, an automated open surface water extraction meth-
odology that is an extension of one already developed in Olthof (2017) was imple-
mented. The approach makes use of recently available inundation frequency 
products from historical Landsat data (Pekel et al. 2016; Olthof 2017) to sample all 
scene-specific signatures representing every land and water class present in the 
image. Land signatures are extracted where inundation has never occurred (0% 
occurrence) based on historical inundation maps, while water signatures are 
extracted where water has always been observed (100% occurrence). Sampled, 
scene-specific signatures are used to train the C50 (See5) decision tree machine 
learning algorithm that classifies the entire image into the water versus land. 
Machine learning is used because it does not assume a statistical distribution and 
can handle vast amounts of training data to precisely tune the classifier.

�Flooded Vegetation Mapping

A significant amount of flooding in Canada occurs in vegetated areas, which has 
lead to considerable research to improve flooded vegetation mapping in recent 
years. Flooded vegetation presents a challenge to remote sensing because the signal 
must penetrate the vegetation layer to sense water below. While optical remote sens-
ing has a limited capability to detect flooding beneath vegetation and can do so 
reliably only during leaf-off in the early spring or late fall, radar is able to detect 
water beneath leaf-on canopies under many conditions. Radar is an active sensor 
that is side-looking, causing double bounce of the incident beam first off horizontal 
water surfaces beneath the canopy, and second off vertical trunks and stems acting 
as corner reflectors before returning to the sensor (Hess et  al. 1990). Leaf size, 
wavelength and incidence angle are all factors that affect water detection beneath 
vegetation from radar, with longer wavelengths relative to leaf size (Townsend and 
Walsh 1998) and shallower incidence angles (White et al. 2015) generally providing 
greater signal penetration through the canopy.

Double bounce off flooded vegetation causes a high-intensity return to the sen-
sor, producing a bright signal in radar imagery particularly in like-polarization 
channels (e.g. HH). Bright target thresholding has been used in the past to map 
flooded vegetation; however, this approach was never operationalized by EGS 
because it leads to significant commission error caused by the presence of other 
corner reflectors such as buildings and rock outcrops in the scene. Post-classification 
editing in a GIS environment can be performed to help reduce commission error, but 
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this relies on ancillary data layers that may be out of date or contain errors. Manual 
editing has also been done to improve flood products but is both time-consuming 
and subjective in the absence of reliable ancillary information. A robust flooded 
vegetation extraction methodology independent of ancillary data requirements is 
preferred for emergency flood mapping for product quality, improved processing 
speed and efficiency.

To minimize processing time and commission error, the new methodology maps 
flooded vegetation by iteratively region growing from open water into adjacent 
bright intensity areas characteristic of double bounce using a bright threshold value 
criterion. Region growing has the advantage over thresholding the entire image by 
assigning only adjacent pixels to the flooded vegetation class, thereby reducing 
commission errors caused by double bounce elsewhere in the scene. Double 
bounce off buildings adjacent to open water was corrected using the urban class 
from a recent Landsat land cover of North America (Latifovic et al. 2017), which 
was generated including information from Canada’s road network layer. Once the 
first region growing using a bright threshold value is complete, a second region 
growing is performed using a dark threshold value from open water and flooded 
vegetation to help infill dark areas contained within bright flooded vegetation and 
better connect nearby areas of open water. Both instances of region growing stop 
when either no additional adjacent pixels meet the threshold criterion or after a set 
number of iterations. Open water and flooded vegetation are subsequently improved 
using morphological operators to infill small land areas entirely surrounded by 
water, followed by filtering and sieving to reduce both errors of omission and 
commission.

Because the methodology relies on signatures extracted from each scene to clas-
sify open water, and only user specification of radar polarization, bright and dark 
threshold values are needed to map flooded vegetation, the approach is sensor-
independent. As new charter data was received during the activation, tools were 
modified to accept the number of polarizations available to work on single polariza-
tion (e.g. TerraSAR-X), dual-polarization (e.g. Sentinel-1) and quad-polarization 
(e.g. RADARSAT-2) (Fig. 12.4). Where multiple polarizations are available, speci-
fication of the polarization to use for flooded vegetation region growing must be 
specified. Generally, the polarization with the best contrast between flooded vegeta-
tion and surrounding water and land is selected. Where available, like-polarization 
provide the best contrast, for example, HH in RADARSAT-2.

�Urban Flood Mapping

A major shortcoming of the approach applied to radar data was its inability to accu-
rately map open water in urban environments. The presence of buildings causing 
shadow made dark water target detection impossible, while confidence that any 
detected dark targets were water was low. Further, urban areas located on the water 
were often mapped as flooded vegetation due to the presence of corner reflectors 
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such as road and buildings producing a high-intensity return. Post-classification 
improvements were made with land cover data to remove flooded vegetation in 
urban settings; however, this also removed any real water that was detected.

As Citizen Geographic Information (CGI) data submitted during the event 
became available during the activation, tests began on using it in combination with 
newly available LIDAR HRDEM data to improve urban flood mapping. A total of 
394 observations were submitted across three flood-affected regions including Lac 
St-Pierre, Montreal and Lake of Two Mountains, and Ottawa-Gatineau between 

Fig. 12.4  Example of multi-sensor flood mapping using the new operational methodology from 
RADARSAT-2 (interior white box), and TerraSar-X (outside), showing the consistency in mapping 
open water and flooded vegetation between sensors

I. Olthof et al.
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March 29 and April 14, 2017. The use of LIDAR data for flood mapping requires a 
local water depth measurement, which can be estimated from CGI data assuming 
the observer is taking pictures at or near the flood perimeter and can be verified by 
looking at the pictures themselves. Once an elevation along the flood perimeter has 
been established from CGI, the full local flood extent can be mapped by filling adja-
cent pixels below the established flood elevation at the flood perimeter, as shown in 
Fig. 12.5 using 80 observations submitted in Gatineau 6 April 2017. The extent to 
which infilling can be done varies with the degree of local variation in the geoide. 
For example, if a single elevation threshold were applied to a LIDAR DEM from 
Ottawa to Montreal, flooding would be under predicted in Ottawa and simultane-
ously over predicted in Montreal due to the slope of the geoide from Ottawa to 
Montreal that causes water to flow in that direction. While the extent of urban 
flooding is considerably less than the distance between Ottawa and Montreal, CGI 
data acquired in Montreal’s West Island should not be used to estimate urban flood-
ing in the East End. Therefore, local CGI data can be used to estimate local residen-
tial/urban flooding from inland to the nearest adjacent permanent water body, but 
not between separate, distant locations.

Fig. 12.5  Use of Crowdsourced Geographic Information (CGI) data acquired on 6 April 2017, 
and a new LIDAR DEM to improve urban flood mapping in Gatineau, Quebec, combined with a 
RadarSat-2 flood product from 7 April 2017

12  Flood Mapping from Multi-Sensor EO Data for Near Real-Time Infrastructure…



286

�Limitations and Lessons Learned

Currently available global historical dynamic surface water maps used to train 
machine learning have known limitations due to input optical Landsat imagery that 
is the only medium resolution data available with its spatial and temporal coverage. 
First, optical data does not penetrate cloud and therefore, maximum water extents 
during cloudy, rainy events including a significant percentage of floods such as the 
2017 event are not fully captured. In addition, optical remote sensing has a limited 
capability to detect water beneath vegetation, while flooded vegetation comprises a 
high percentage of the overall flood area on many floodplains in Canada. Lastly, 
because the product is global in scale, it is not optimized to Canada’s specific geog-
raphy or seasonality. All of these factors generally lead to water omission errors. 
Nevertheless, the new flood mapping methodology is robust enough to overcome 
these limitations and Pekel’s occurrence map proved very useful during the 2017 
activation.

The availability of historical radar imagery from Canada’s RADARSAT mission 
going back to 2008 combined with the advantages cloud penetration and the ability 
to map flooded vegetation suggest that separate dynamic surface water maps should 
be generated from these data over Canada. While current global products contain 
error, machine learning used to classify open water is known to be very robust to 
errors in training data (Ghosh et  al. 2016; Olthof and Tolszczuk-Leclerc 2018). 
Therefore, even if global maps omit the water, errors in training data extracted using 
these maps should be relatively small compared to the overall training sample size. 
The activation season was also considered successful using a global historical map 
product as input, further supporting the use of Pekel’s map. However, the more 
extreme the flood event, the more errors will be introduced when relying on a prod-
uct that omits water in favour of land. Currently, EGS has no sense of the level of 
improvement that can be achieved with better historical information. For this rea-
son, work will continue to generate Canadian products tuned to our geography and 
seasonality from historical optical and radar imagery over select floodplains in 
Canada. With support, the historical RADARSAT archive can be exploited for this 
purpose as is ongoing along the Saint John River, NB. Finally, the complete histori-
cal and operational surface water mapping approach is iterative as current flood 
products are used to update and improve historical inundation products, which will 
then in turn be used to produce flood products next season. As scenes are added to 
the time-series of water maps, both historical and near-real time water maps should 
continue to improve.

In addition to falsely detecting flooded vegetation by region growing in urban 
areas adjacent to open water, a second limitation of the methodology relates to the 
local topography of riverbanks. Where riverbanks are steep and roughly parallel to 
the SAR orbit, flooded vegetation will also be falsely detected due to a high back-
scatter caused by steep local incidence angles. Using ancillary datasets such as 
slope and aspect based on look direction can help reduce these errors by removing 
flooded vegetation on slopes above a certain grade. Work is still needed on the best 
approach to integrate digital elevation data to improve flood maps, particularly in 
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areas of flooded vegetation. Factors such as the quality and resolution of the DEM 
in relation to the resolution of satellite imagery and decisions on whether to incor-
porate the DEM directly into region growing, to use it to create a processing mask 
of flat areas where surface water can pool, or to use it in post-processing still need 
to be considered.

Editing of flood maps is still required to remove either false detections or those 
that are not of interest for public safety. However, false detections appear to be rela-
tively rare, and those detections that are not of interest to public safety could be 
relevant to other potential users. Enhancing flood products with ancillary informa-
tion to target these users may be an avenue worth pursuing to make flood maps of 
value to a wider audience. For example, flooding is consistently detected in agricul-
tural fields, while visual observations confirm that this is a common occurrence 
during the flood season. These detections are ephemeral and are currently being 
removed from flood maps, but they may be relevant to agricultural production as 
tilling and seeding are delayed by standing water in fields. Agriculture Canada and 
crop insurance companies may be interested from a crop inventory perspective to 
know if crops will be planted late, how much and where. The intersection between 
flood maps and land cover may be sufficient to characterize different types of flood-
ing in terms of longevity and impacts on different stakeholders.

EGS is generally most active in the response phase of the emergency manage-
ment cycle that includes mitigation, preparation, response, recovery. However, a 
request was made to generate maximum 2017 flood extent polygons over the activa-
tion region to help evaluate flood risk. Due to the nature of emergency mapping, 
accuracy assessments are performed on a best effort basis within the 4-h period that 
the EGS has to generate and distribute its flood extent polygons. Nonetheless, accu-
rate maximum flood extent maps are considered a valuable product to the emer-
gency management and land planning communities during the recovery phase. EGS 
undertook work to generate a maximum flood extent product that spans all of the 
affected areas that were mapped at least once by our services. To achieve this, the 
highest resolution products generated closest to the timing of peak flood were 
selected, reviewed using all available datasets and merged, including urban flood 
products in Gatineau and along Pierrefonds Boulevard on the Island of Montreal 
generated from CGI and the LIDAR DEM.  Each product was initially assessed 
separately against very high-resolution satellite imagery (Worldview, Pleiades) 
medium resolution optical satellite imagery (Sentinel-2, Landsat), crowdsourced 
field observation (photography and surveys) and oblique aerial photography 
acquired by NASP before publishing. Each flood extent polygon was edited and its 
accuracy improved where errors were noted compared to reference data.

A more formal accuracy assessment of the final maximum flood extent product 
was subsequently conducted using visually interpreted NASP oblique airphotos as 
a reference. Interpretation was performed by putting placemarks in Google Earth at 
locations interpreted as either flood or land at the time of the NASP photo acquisi-
tion. Because assigning points in open water under normal non-flood conditions 
would artificially inflate classification accuracy, reference points were located near 
the flood margin with flooded points interpreted as locations that were inundated in 
NASP photos but were interpreted as land in Google Earth during baseline, non-
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flood conditions. Land points were interpreted just beyond the flood margin as per-
manent land before and during the flood event. A total of 793 points were collected 
in this manner from a subset of 1475 photos acquired from west of Ottawa to east of 
Lac St-Pierre from 7 May 2017 to 16 May 2017. The maximum flood extent is a 
mosaic of different flood products acquired on different dates that may not corre-
spond precisely to the acquisition dates of co-located NASP.  Consecutive dates 
checked in many locations showed consistent flood margins, suggesting differences 
in the timing of a few days between NASP and satellite acquisitions likely had a 
minimal effect on overall accuracy but may have led to error in some cases where 
flood margins changed significantly over a short period of time. Despite these 
potential issues, an overall accuracy of 86.2% was obtained for this product using 
the assessment methodology outlined above. The result is a validated complete and 
uniform maximum flood extent product shown in Fig. 12.6.

12.3  �Conclusions

The 2017 EGS flood activation was considered a success by clients, stakeholders 
and management at CCMEO. EGS operations adopted new methods to extract open 
water and flooded vegetation from multiple sensors that were developed the previ-

Fig. 12.6  Maximum flood extent of the activation area generated by combining flood maps of 
different sub-regions

I. Olthof et al.
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ous year on historical satellite data, which proved to be reliable and robust on a 
range of sensor data received through the International Disasters Charter. Feedback 
received from Public Safety Quebec was extremely positive, stating that new prod-
ucts were significantly improved over ones previously generated by EGS during the 
2011 Richelieu River activation, particularly in areas of flooded vegetation that 
were mapped operationally for the first time. Rather than relying on global inunda-
tion products from optical data, work on historical inundation frequency integrating 
radar data should continue for floodplain characterization to better tailor products to 
the Canadian context and assess the level of optimization that is still possible. 
Finally, EGS envisions enhancing our flood products through ancillary data integra-
tion to further improve them and to make them more relevant to a wider set of users 
and stakeholders.
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