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Aurélie Suzanne1,2(B) , Guillaume Raschia1 , and José Martinez1
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Abstract. The Big Data era requires new processing architectures
among which the stream systems that have become very popular. Those
systems are able to summarize infinite data streams with aggregates on
the most recent data. However, up to now, only point events have been
considered and spanning events, which come with a duration, have been
let aside, restricted to the persistent databases world only. In this paper,
we propose an unified framework to deal with such stream mechanisms on
spanning events. To this end, we formally define a spanning event stream
with new stream semantics and events properties. We then review and
extend usual stream windows to meet the new spanning events require-
ments. Eventually, we validate the soundness of our new framework with
a set of experiments, based on a straightforward implementation, show-
ing that aggregation of spanning event stream is providing as much new
insights on the data as effectiveness in several use cases.

Keywords: Data stream · Spanning events · Temporal aggregates ·
Temporal database · Window query

1 Introduction

Data stream processing has been widely studied in recent years [6,12], and
many industrial systems are now using it [13] with applications such as mon-
itoring systems for networks, marketing, transportation, manufacturing or IoT
systems. Retrieving useful insights from this continuously produced data has
hence become a key issue. A common way to process those streams is to aggre-
gate events with respect to the instant they occurred or arrived in the system.

Time is a first class dimension for stream events as it determines how they will
be aggregated, but up to now a strong assumption was made about point events,
leaving aside spanning events. Let us consider a network monitoring system
where we want to evaluate the load of an antenna, with spanning transactions,
e.g., phone calls, happening continuously. In a classical streaming system, the
load would be based either on the start or on the end time of the event. With a
spanning event stream the full event duration would be interpreted.

Figure 1 models a series of calls: events ai show their reception time, while
bi’s show the full call duration. We want to analyse the load of the antenna every
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Fig. 1. End time vs. full-time events aggregation in a window-based stream system.

5 min showed by Wi’s. With spanning events, stream intervals b3 and b5 span over
resp. windows {w1, w2} and {w2, w3}, while their matching timestamps a3 and
a5 are uniquely assigned to resp. w2 and w3. Natively modeling event duration
also allows to detect events which have no bounds in the window, like event
b7 crossing window w2 and w3. Spanning event stream (SES) hence allows to
get not only information about (dis)connections, but also to the full connection
information, providing more accurate results than point event stream (PES).

To be able to provide such results, interval comparison predicates, inspired
by Allen’s algebra [1], need to be properly set up to allow assignment of spanning
events to windows. Furthermore, as a side-effect of spanning events, past windows
can be affected by fresh new events and this without any delay in the stream:
on Fig. 1, b7 not only impacts w4, but also past windows w1, w2, and w3. Those
simple observations motivate the need for a close review of the many windows
types, and a new window-based aggregation framework to address SES.

The rest of this paper is organized as follows: Sect. 2 focuses on the for-
mal requirements to elaborate the framework. Section 3 discusses adaptation
of common windows to spanning events. We propose, in Sect. 4, a straightfor-
ward implementation of the framework. Finally, we review prior works in Sect. 5,
before the general conclusion in Sect. 6.

2 Problem Analysis and Definitions

2.1 About Time

Following the dominant view point, one defines the time domain as an infinite,
totally ordered, discrete set (T,≺T), with units coined chronons [2]. As in tem-
poral databases [2], two dimensions can be used: valid time and transaction
time, being resp. the lifespan of an event in the real world and in the system. In
streaming systems, transaction time is usually reduced to the start time point.

In this bi-temporal model, intervals are required to represent valid time. As
an adjacent series of time points in T, they are entirely defined by their lower and
upper bounds, as pairs (�, u) ∈ T × T with � ≺T u. We denote by I ⊂ T × T the
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set of time intervals. For any t in I, �(t) ∈ t and u(t) /∈ t are resp. the lower and
upper bounds of interval t, such that a chronon can be represented by [c, c + 1).
Two intervals can be compared with the 13 Allen’s predicates [1] which define
precisely how the bounds compare to each other.

2.2 Spanning Event Stream

In this article, we extend the stream concept to incorporate spanning events with
a lifespan as valid time. As a consequence, it is required to distinguish valid time
(interval) and transaction time (point) of an event. Since data stream applica-
tions require near-real-time computation, valid and transaction time should be
ideally connected, e.g., a phone call is recorded as soon as it ends.

We define a SES in Eq. 1, where Ω is any composite type that brings the
content of each event e ∈ S; t is the valid time interval; and τ is the transaction
timestamp of e. We denote by t(e) and τ(e) those values for an event e.

S = (ei)i∈N with ei = (x, t, τ) ∈ Ω × I × T (1)

We assume that we record events when they finish, in a no-delay stream
setting, such that u(t(e)) = τ(e). In the following, we denote by S(.) any pro-
jection of stream S on one or more of its 3 components. For instance, S(t) refers
to the sequence of valid time intervals of all the events. We also denote τi the
transaction time of the ith event in S, ie., τi = τ(ei).

2.3 Temporal Windowing

In data stream processing, data are transient and queries persistent, meaning
that queries are continuously re-evaluated as data arrive. Blocking operators,
such as aggregates, are a challenge for those continuous queries as they require
to scan all the data set before producing the first answer [6]. A popular way to
bypass this issue is to operate on a bounded sub-stream given by a window [6].
Indeed, closing a window unblocks the operation and an answer can be given with
respect to the events “inside” the window. A common practice is to define infinite
family of windows such like “each hour”. Many window flavors exist [4,6,12], and
in this paper, we propose a new categorisation for those windows.

Measures. Measures are useful to set up the shape and/or frequency of windows
in a window family. Each measure is time related, to provide finite window
bounds. We denote the measure set by M = {T} ∪ {S(t)} ∪ {S(τ)} ∪ {S(x, τ)}
and consider it as extensive. Measures are the following:

– Stream independent with a wall-clock time T: a system clock is used.
Opening and/or closing windows are then independent from the stream.

– Stream dependent with a stream projection:
• Valid-time S(t) uses the valid time of events, e.g., sessions where bounds

depend on the traffic flow.
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• Shape S(τ) uses the transaction time of the events, more common exam-
ple is Count-based which counts events arriving in the stream.

• Data S(x, τ) uses the data of events and orders them with their transac-
tion time. Most common types are: Delta-based which uses a data part [6],
e.g., a transaction counter; Punctuation-based : where window bounds are
sent in the stream as special events [6].

Formal Definition. Formally, a temporal window is a regular time interval. A
family of windows is W = (wk)k∈N, wk ∈ I ordered by increasing �(wk) or u(wk).
W ∈ W is the set of windows families. We propose a couple (Fbounds, Pinsert) to
compute any window family.

Fn
bounds : Mn → W, defines the bounds of the window. It uses one or several

measures, and outputs a set of intervals (as shown in Table 1).

Table 1. Examples of windows created with Fbounds and F 2
bounds

M Example of W M2 Example of W
T 15min each 5min T, S(τ)) 5min each 100 events

S(t) session T, S(x, τ)) 50 transactions each 5min

S(τ) 100 events each 10 events S(t), S(τ) 100 events each session

S(x, τ) 50 transactions each punctuation S(t), S(x, τ) Session each punctuation

Pinsert : I2 → B, determines event belonging to a window with an Allen-like
predicate. It takes as input two intervals: window bounds and event valid time,
and outputs a Boolean. We define two specializations:

– P�: True if �(w) ≤ u(e) < u(w) else False, deals with point events by using a
chronon and a window interval

– P∩: True if u(e) > �(w) ∧ �(e) < u(w) else False, asserts if an event has at
least one chronon in a window or not

Common Windows Review. We will now review window types which are
often used in the literature [6,12]. Within PES, event valid time is a point, and
hence for all those window types, Pinsert = P�.

Sliding window : window is defined by ω the range or size of the window, and β
the step which sets up the delay between two successive windows. Most common
measures are wall-clock time: Fbounds(T) = ((i, i + ω) : i mod β = 0)i∈T

and
count-based: Fbounds(S(τ)) = ((τi, τi+ω) : i mod β = 0)i∈N

Tumbling window : tumbling windows can be seen as a specialization of sliding
windows where ω = β, meaning that only one window is open at a time.

Session window : a session is defined as a period of activity followed by a
period of inactivity. Parameter ε gives the inactivity threshold time range. Ses-
sion window family is Fbounds(S(t)) = ((τi, τj) : i < j ∧ (τi − τi−1 ≥ ε ∨ τi =
τ0) ∧ τj + ε ≤ τj+1 ∧ ∀p ∈ �1, j − i�, τi+p − τi+p−1 < ε)i,j∈N.
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3 Assigning Spanning Events to Temporal Windows

3.1 Adaptation of Point Events Windows to Spanning Events

We now detail modifications that using SES implies to the previously defined
windows. This impact depends on the measures used and we will review of all
common windows in a mono-measure context, Fbounds : M → W.

Within PES, we saw that we can always use P� for Pinsert. With SES we have
to take into account intervals. Pinsert depends on the window bounds definition
Fbounds. If it used only transaction time we can keep P�, otherwise it needs to
be modified to use an Allen’s predicate (see Table 2).

Table 2. Most common spanning event window definition with (Fbounds, Pinsert)

Window type Point Spanning

M Pinsert M Pinsert

Time sliding/tumbling T P� T PAllen

Stream shape sliding/tumbling S(τ) P� S(τ) P�
Stream data sliding/tumbling S(x, τ) P� S(x, τ) P�
Session S(t) = S(τ) P� S(t) PAllen

Hence, we claim that among the most popular windows, stream shape and
data sliding/tumbling windows can be used straightforwardly with SES. Time-
based sliding/tumbling and session windows must conversely be extended.

3.2 Time-to-Postpone

When dealing with a SES where events are released only once ended, lifespan
yields two problems: (1) the system should be able to wait for (expected) event
completion before closing any window; and (2) long-standing events may be
assigned to multiple windows. Figure 1 shows an example of such duration con-
straint with, for instance, the event b7 released in window w4, but assigned to w1,
w2, and w3 as well. Therefore, working on a valid time interval requires to post-
pone the release date of the aggregates in order to accept events that started in,
or before the window. We call this waiting time the Time-To-Postpone (TTP).

Of course, TTP is a patch to overcome limitations of exact aggregate compu-
tation for temporal windows, and can lead to approximate results since events
may be ignored and aggregates already released. Advanced TTP techniques
deserve to be explored in future works to leverage those approximations.

3.3 Time-Based Sliding and Tumbling Windows

Event assignment to a window depends on how their lifespan compare: an event
e is assigned to window w if PAllen(t(e), w), with PAllen any Allen-like predicate
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searching for event in the window. Release time of the window τR depends on
the TTP parameter δ, satisfying τR ≥ u(w) + δ. A full overview of the needed
changes to deal with SES is presented in Table 3.

Fig. 2. 3 strategies for session windows.

Table 3. Comparison between PES and SES for sliding and session windows

Properties Time sliding/tumbling Session

Point Spanning Point Spanning

Parameters (ω, β) (ω, β, PAllen, δ) (ε, ωmax) (ε, ωmax, δ)

New window i mod β = 0, i ∈ T � ∃i ∈ N,P�(τi, ε(w)) � ∃i ∈ N,P∩(Λ(ei), ε(w))

�(w) i, i ∈ T (min{τ(e)})e∈Sw (min{λ(e)})e∈Sw

u(w) i + ω, i ∈ T (max{τ(e)} + 1)e∈Sw (max{u(t(e))})e∈Sw

Pinsert P� PAllen P� P∩
Release time u(w) u(w) + δ u(w) + ε + 1 u(w) + ε + δ

3.4 Session Windows

In session windows, each received event either enters in the current window, or
creates a new one. The upper bound of a session depends only on the end of
the assigned events u(w) = max{u(t(e))}e∈S(w). As for the lower bound, it must
be chosen carefully. With PES, one can definitely decide the start of a session
window as a fresh new event arrives. With SES, we must live-adjust this lower
bound, since it requires to define an instant from a set of spanning events.

We model this problem as �(w) = min{λ(e)}e∈Sw
, where λ : S → T is a choice

function that gives a reference point for an event. For a PES, this function is
written as λ(e) = u(t(e)) − 1, using only the end bound as shown in strategy
(1) in Fig. 2. When considering the lifespan of the event, a first estimate of the
lower bound is λ(e) = �(t(e)), such that the event is starting in (and covers) the
session. However, this strategy can lead to problems, as illustrated with strategy
(2) where the last event leads to either re-opening or creating a session, causing
impossible situations since the aggregate has already been released, and session
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overlaps are not allowed. To overcome this problem, we apply the TTP parameter
δ to restrict back-propagation of the update; with λ(e) = max(�(t(e)), τ(e) − δ)
as with strategy (3) which makes the long-standing event problem disappear.

Release of the session depends on the minimum inactivity period ε and the
TTP δ, satisfying τR ≥ u(w) + ε + δ. Several sessions can be active at the same
time, and long events can yield to merge sessions. Table 3 details the adaptation
between PES and SES sessions. We use ε(w) = (u(w), u(w)+ε) as the inactivity
interval, and Λ(e) = (λ(e), u(t(e))) as the re-considered event with the TTP.

4 Experiments

Experimental Setup. In this series of experiments, data is not received at
specific instant based on machine clock, but better “as fast as possible.”

Data Set. We use 2 kinds of data sets: Generated data set allows fine-grained
synthesis of SES with configurable parameters: event size, session duration, and
inactivity. For each chronon, an event is created, which can be canceled with
session creation. Each event size is generated by a normal distribution (μ = 100,
σ = 10) around the event size parameter. The generated set is 200K events. SS7
data set replays real-world-like data coming from a telephony network, assem-
bling 1 min of communication with 3.2M events.

Aggregates. Aggregation in all experiments is a multi-measure of three aggre-
gate functions: count, sum, and max.

Setup. All experiments were executed with an Intel(R) Core(TM) i7-8650U
CPU @ 1.90 GHz with 16 GB RAM running under Linux Debian 10. Implemen-
tation is done in modern C++, using a single core.

Implementation. Implementation uses an event-at-a-time execution. For PES
windows an unique FIFO queue is used, with new events added and old ones
removed each time the window is released. With SES, such an implementation
is not possible. Instead, events pointers are stored in a bucket per window.

Results. All the scenarios chosen in this series of experiments have been moti-
vated by industrial requirements, especially in the field of telecommunication.

Time-Based Windows. The predicate used for event assignment is P∩. As
expected the error rate between PES and SES increases with the event size,
and decreases with window range (see Fig. 3a). This validates the soundness of
using PES but also the urge to choose wisely the window range. When using an
Oracle, which knows all the stream, we can validate the need for a TTP within
SES, which should be chosen accordingly to the event size (see Fig. 3b). Con-
cerning the throughput, TTP has a restricted impact when the window range
evolves (see Fig. 3c), which is not the case for increasing events size. SES yield to
many duplicates among the windows, which comes with a cost in throughput. For
increasing duplications, the throughput goes down, but it stays roughly the same
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(a) Error rate of PES compared to
SES (tumbling δ = 10000)

(b) Error rate of SES compared to
oracle (tumbling ω = 200)

(c) Impact of TTP (tumbling
avg(|t(e)|) = 500 vs ω = 500)

(d) Duplication (tumbling ω = 500
vs. fixed duplicate factor)

(e) Impact of step and range (slid-
ing avg(|t(e)|) = 500, δ = 1000)

(f) SS7 data set (sliding β = ω/5,
avg(|t(e)|) = 15sec, δ = 2h30)

(g) Impact of inactivity (session
avg(|t(e)|) = 10, δ = 500)

(h) Impact of TTP (session
avg(|t(e)|) = 10, ε = 500)

Fig. 3. Temporal windows metrics
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for increasing window range with the same duplication rate (see Fig. 3d). Dupli-
cation induced by overlapping in sliding windows also has a strong impact on
throughput (see Fig. 3e). Concerning real-world applications, on a näıve imple-
mentation the throughput of SES is only 30% slower than PES, and the error
rate is still around 20% for 1 min windows, as we can see on Fig. 3f.

Session Windows. As shown on Figs. 3g and 3h, reducing window size as a
negative impact on throughput. This is in accordance with time-based windows
and refers to how often aggregates should be computed. Figure 3g highlights the
impact of inactivity duration on throughput which is quite high. When main-
taining inactivity periods at a same level, we can observe that TTP has a small
influence on the throughput (see Fig. 3h).

Summary. This series of experiments shows that our framework is consistent
with the all required assumptions for window-based aggregation on SES, and
in particular the TTP. It then deserves to be pushed further in order to gain
efficiency and completely meet the industrial requirements.

5 Related Work

The work done in this paper elaborates on previous work on data stream pro-
cessing and temporal databases.

Window Aggregation in Data Stream Processing. Windowing is a com-
mon technique and a common categorization of window characteristics is given
in [4,12] with CF, FCF and FCA classes. Depending on those characteristics,
several optimisations techniques have been proposed, such as sub-aggregating
the input stream, and using aggregate tree indexes [4,12]. Studied in the context
of PES, we believe that the extension of such methods would be of great interest
to fasten window-based aggregation of SES. Nevertheless, the window approach
has been criticized for its inability to take into account delayed or out-of-order
streams. Some methods have been proposed to fix the delay issue, among which
an allowed waiting time (TTP in this paper), the use of punctuation in the
stream [7], or even the generation of heartbeats [11].

Temporal Databases. Queries in a temporal database can be of various
forms [2]. Among those, sequenced queries, where the query spans over a
time range, are close to our temporal window-based aggregates. However, pure
sequenced query is resource demanding and barely evaluated with a one-pass
algorithm [8]. Several methods were proposed to evaluate sequenced queries,
mainly with graph or indexes [2,9], but as an open issue, only few market
databases implement them [3,5,10]. Temporal aggregates on spanning events
have not been widely studied. In [14], the authors combine windows and full
history with a fine-to-coarse grain along the timeline, using SB-tree structure to
index events and evaluate the queries. However, the approach is out-dated w.r.t.
recent advances in window-based stream processing and temporal databases.
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6 Conclusion and Future Work

This paper aimed to introduce a brand new consideration in stream data with
the integration of spanning events. To do so, we first introduced notions common
to temporal databases with a valid time range and a transaction time point for
events in a bi-temporal model. Then, a common solution to overcome the infinite
stream problem with blocking operators is to use windowing. To that extent, we
conducted a careful review that yielded to a new categorization of usual measures
and the definition of a pattern (function, predicate) to define every popular
window family as well as the forthcoming ones. We showed that, among the
real-life window families, only time-based sliding/tumbling and session windows
need to be adapted to handle spanning events.

Among those changes, we introduced pairwise interval comparison, as for
Allen’s algebra, for event assignment to windows. We also had to define a
Time-To-Postpone parameter that allows for long-standing events to be properly
assigned to past windows. In the experiments, we showed that spanning events
can be processed by a stream system. We demonstrated that our framework is
effective for fixing PES errors. We also pointed out some behaviors, like assign-
ment duplication of events, which is a great challenge for real-life applications.

As future work, we anticipate that the implementation should use more
advanced techniques to share parts of computations among windows. Delay also
should be studied in more details. Finally, extension of the aggregation, such
as new operations like grouping or filtering, should also be considered with the
ultimate goal of making the system fully operational in real-world conditions.
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2. Böhlen, M.H., Dignös, A., Gamper, J., Jensen, C.S.: Temporal data management
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