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Abstract. Industry 4.0 (I4.0) standards and standardization frame-
works have been proposed with the goal of empowering interoperability
in smart factories. These standards enable the description and interac-
tion of the main components, systems, and processes inside of a smart
factory. Due to the growing number of frameworks and standards, there
is an increasing need for approaches that automatically analyze the land-
scape of I4.0 standards. Standardization frameworks classify standards
according to their functions into layers and dimensions. However, similar
standards can be classified differently across the frameworks, producing,
thus, interoperability conflicts among them. Semantic-based approaches
that rely on ontologies and knowledge graphs, have been proposed to rep-
resent standards, known relations among them, as well as their classifica-
tion according to existing frameworks. Albeit informative, the structured
modeling of the I4.0 landscape only provides the foundations for detect-
ing interoperability issues. Thus, graph-based analytical methods able to
exploit knowledge encoded by these approaches, are required to uncover
alignments among standards. We study the relatedness among standards
and frameworks based on community analysis to discover knowledge that
helps to cope with interoperability conflicts between standards. We use
knowledge graph embeddings to automatically create these communi-
ties exploiting the meaning of the existing relationships. In particular,
we focus on the identification of similar standards, i.e., communities of
standards, and analyze their properties to detect unknown relations. We
empirically evaluate our approach on a knowledge graph of I4.0 stan-
dards using the Trans∗ family of embedding models for knowledge graph
entities. Our results are promising and suggest that relations among stan-
dards can be detected accurately.
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1 Introduction

The international community recognizes Industry 4.0 (I4.0) as the fourth indus-
trial revolution. The main objective of I4.0 is the creation of Smart Factories by
combining the Internet of Things (IoT), Internet of Services (IoS), and Cyber-
Physical Systems (CPS). In smart factories, humans, machines, materials, and
CPS need to communicate intelligently in order to produce individualized prod-
ucts. To tackled the problem of interoperability, different industrial communities
have created standardization frameworks. Relevant examples are the Reference
Architecture for Industry 4.0 (RAMI4.0) [1] or the Industrial Internet Connectiv-
ity Framework (IICF) in the US [17]. Standardization frameworks classify, and
align industrial standards according to their functions. While being expressive to
categorize existing standards, standardization frameworks may present divergent
interpretations of the same standard. Mismatches among standard classifications
generate semantic interoperability conflicts that negatively impact on the effec-
tiveness of communication in smart factories.

Database and Semantic web communities have extensively studied the prob-
lem of data integration [9,15,21], and various approaches have been proposed
to support data-driven pipelines to transform industrial data into actionable
knowledge in smart factories [13,23]. Ontology-based approaches have also con-
tributed to create a shared understanding of the domain [16], and specifically
Kovalenko and Euzenat [15] have equipped data integration with diverse meth-
ods for ontology alignment. Furthermore, Lin et al. [18] identify interoperability
conflicts across domain specific standards (e.g., RAMI4.0 model and the IICF
architecture), while works by Grangel-Gonzalez et al. [10–12] show the relevant
role that Descriptive Logic, Datalog, and Probabilistic Soft Logic play in liaising
I4.0 standards. Certainly, the extensive literature in data integration provides
the foundations for enabling the semantic description and alignment of “similar”
things in a smart factory. Nevertheless, finding alignments across I4.0 requires
the encoding of domain specific knowledge represented in standards of diverse
nature and standardization frameworks defined with different industrial goals.
We rely on state-of-the-art knowledge representation and discovery approaches
to embed meaningful associations and features of the I4.0 landscape, to enable
interoperability.

We propose a knowledge-driven approach first to represent standards, known
relations among them, as well as their classification according to existing frame-
works. Then, we utilize the represented relations to build a latent representation
of standards, i.e., embeddings. Values of similarity metrics between embeddings
are used in conjunction with state-of-the-art community detection algorithms to
identify patterns among standards. Our approach determines relatedness among
standards by computing communities of standards and analyzing their prop-
erties to detect unknown relations. Finally, the homophily prediction principle
is performed in each community to discover new links between standards and
frameworks. We asses the performance of the proposed approach in a data set
of 249 I4.0 standards connected by 736 relations extracted from the literature.
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Fig. 1. Motivating Example. The RAMI4.0 and IICF standardization frameworks
are developed for diverse industrial goals; they classify standards in layers according to
their functions, e.g., OPC UA and MQTT under the communication layer in RAMI4.0,
and OPC UA and MQTT in the framework and transport layers in IICF, respectively.
Further, some standards, e.g., IEC 61400 and IEC 61968, are not classified yet.

The observed results suggest that encoding knowledge enables for the discovery
of meaningful associations. Our contributions are as follows:

1. We formalize the problem of finding relations among I4.0 standards and
present I4.0RD, a knowledge-driven approach to unveil these relations.
I4.0RD exploits the semantic description encoded in a knowledge graph via
the creation of embeddings, to identify then communities of standards that
should be related.

2. We evaluate the performance of I4.0RD in different embeddings learning
models and community detection algorithms. The evaluation material is
available1.

The rest of this paper is organized as follows: Sect. 2 illustrates the inter-
operability problem presented in this paper. Section 3 presents the proposed
approach, while the architecture of the proposed solution is explained in Sect. 4.
Results of the empirical evaluation of our methods are reported in Sect. 5 while
Sect. 6 summarizes the state of the art. Finally, we close with the conclusion and
future work in Sect. 7.

2 Motivating Example

Existing efforts to achieve interoperability in I4.0, mainly focus on the definition
of standardization frameworks. A standardization framework defines different
layers to group related I4.0 standards based on their functions and main charac-
teristics. Typically, classifying existing standards in a certain layer is not a trivial
task and it is influenced by the point of view of the community that developed
the framework. RAMI4.0 and IICF are exemplar frameworks, the former is devel-
oped in Germany while the latter in the US; they meet specific I4.0 requirements
of certain locations around the globe. RAMI4.0 classifies the standards OPC UA
and MQTT into the Communication layer, stating this, that both standards are

1 https://github.com/i40-Tools/I40KG-Embeddings.

https://github.com/i40-Tools/I40KG-Embeddings
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similar. Contrary, IICF presents OPC UA and MQTT at distinct layers, i.e., the
framework and the transport layers, respectively. Furthermore, independently of
the classification of the standards made by standardization frameworks, stan-
dards have relations based on their functions. Therefore, IEC 61400 and IEC
61968 that are usually utilized to describe electrical features, are not classified
at all. Figure 1 depicts these relations across the frameworks RAMI4.0 and IICF,
and the standards; it illustrates interoperability issues in the I4.0 landscape.

Existing data integration approaches rely on the description of the charac-
teristics of entities to solve interoperability by discovering alignments among
them. Specifically, in the context of I4.0, semantic-based approaches have been
proposed to represent standards, known relations among them, as well as their
classification according to existing frameworks [4,6,18,19]. Despite informative,
the structured modeling of the I4.0 landscape only provides the foundations for
detecting interoperability issues.

We propose I4.0RD, an approach capable of discovering relation over I4.0
knowledge graphs to identify unknown relations among standards. Our proposed
methods exploit relations represented in an I4.0 knowledge graph to compute the
similarity of the modeled standards. Then, an unsupervised graph partitioning
method determines the communities of standards that are similar. Moreover,
I4.0RD explores communities to identify possible relations of standards, enhanc-
ing, thus, interoperability.

3 Problem Definition and Proposed Solution

We tackle the problem of unveiling relations between I4.0 standards. We assume
that the relations among standards and standardization frameworks like the ones
shown in Fig. 2(a), are represented in a knowledge graph named I4.0 KG. Nodes
in a I4.0 KG correspond to standards and frameworks; edges represent relations
among standards, as well as the standards grouped in a framework layer. An
I4.0KG is defined as follows:

Given sets Ve and Vt of entities and types, respectively, a set E of labelled
edges representing relations, and a set L of labels. An I.40KG is defined as G
= (Ve ∪ Vt, E, L):

• The types Standard, Frameworks, and Framework Layer belong to Vt.
• I4.0 standards, frameworks, and layers are represented as instances of Ve.
• The types of the entities in Ve are represented as edges in E that belong to
Ve × Vt.

• Edges in E that belong to Ve ×Ve represent relations between standards and
their classifications into layers according to a framework.

• RelatedTo, Type, classifiedAs, IsLayerOf correspond to labels in L that rep-
resent the relations between standards, their type, their classification into
layers, and the layers of a framework, respectively.
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Fig. 2. Example of I4.0KGs. Figure 2a shows known relationships among standards
to Framework Layer and Standardization Framework. While Fig. 2b depicts all the
ideal relationships between the standards expressed with the property relatedTo.
Standards OPC UA and MQTT are related, as well as the standards IEC 61968 and
IEC 61400. Our aim is discovering relations relatedTo in Fig. 2b.

3.1 Problem Statement

Let G′ = (Ve ∪ Vt, E
′, L) and G = (Ve ∪ Vt, E, L) be two I4.0 knowledge graphs.

G′ is an ideal knowledge graph that contains all the existing relations between
standard entities and frameworks in Ve, i.e., an oracle that knows whether two
standard entities are related or not, and to which layer they should belong;
Fig. 2 (b) illustrates a portion of an ideal I4.0KG, where the relations between
standards are explicitly represented. G = (Ve ∪ Vt, E, L) is an actual I4.0KG,
which only contains a portion of the relations represented in G′, i.e., E ⊆ E′;
it represents those relations that are known and is not necessarily complete.
Let Δ(E′, E) = E′ − E be the set of relations existing in the ideal knowledge
graph G′ that are not represented in G. Let Gcomp = (Ve ∪ Vt, Ecomp, L) be a
complete knowledge graph, which includes a relation for each possible combina-
tion of elements in Ve and labels in L, i.e., E ⊆ E′ ⊆ Ecomp. Given a relation
e ∈ Δ(Ecomp, E), the problem of discovering relations consists of determining
whether e ∈ E′, i.e., if a relation represented by an edge r= (ei l ej) corresponds
to an existing relation in the ideal knowledge graph G′. Specifically, we focus on
the problem of discovering relations between standards in G = (Ve ∪ Vt, E, L).
We are interested in finding the maximal set of relationships or edges Ea that
belong to the ideal I4.0KG, i.e., find a set Ea that corresponds to a solution of
the following optimization problem:

argmax
Ea⊆Ecomp

|Ea ∩ E′|

Considering the knowledge graphs depicted in Figs. 2 (a) and (b), the problem
addressed in this work corresponds to the identification of edges in the ideal
knowledge graph that correspond to unknown relations between standards.
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Fig. 3. Architecture. I4.0RD receives an I4.0KG and outputs an extended version of
the I4.0KG including novel relations. Embeddings for each standard are created using
the Trans* family of models, and similarity values between embeddings are computed;
these values are used to partition standards into communities. Finally, the homophily
prediction principle is applied to each community to discover unknown relations.

3.2 Proposed Solution

We propose a relation discovery method over I4.0KGs to identify unknown rela-
tions among standards. Our proposed method exploits relations represented in
an I4.0KG to compute similarity values between the modeled standards. Further,
an unsupervised graph partitioning method determine the parts of the I4.0KG or
communities of standards that are similar. Then, the homophily prediction prin-
ciple is applied in a way that similar standards in a community are considered
to be related.

4 The I4.0RD Architecture

Figure 3 presents I4.0RD, a pipeline that implements the proposed approach.
I4.0RD receives an I4.0KG G, and returns an I4.0KG G′ that corresponds to
a solution of the problem of discovering relations between standards. First, in
order to compute the values of similarity between the entities an I4.0KG, I4.0RD
learns a latent representation of the standards in a high-dimensional space. Our
approach resorts to the Trans∗ family of models to compute the embeddings of
the standards and the cosine similarity measure to compute the values of similar-
ity. Next, community detection algorithms are applied to identify communities
of related standards. METIS [14], KMeans [3], and SemEP [24] are methods
included in the pipeline to produce different communities of standards. Finally,
I4.0RD applies the homophily principle to each community to predict relations
or alignments among standards.

4.1 Learning Latent Representations of Standards

I4.0RD utilizes the Trans∗ family of models to compute latent representations,
e.g., vectors, of entities and relations in an I4.0 knowledge graph. In particular,
I4.0RD utilizes TransE, TransD, TransH, and TransR. These models differ on
the representation of the embeddings for the entities and relations (Wang et
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al. [26]). Suppose ei, ej , and p, denote the vectorial representation of two entities
related by the labeled edge p in an I4.0 knowledge graph. Furthermore, ‖x‖2
represents the Euclidean norm.

TransE, TransH, and TranR represent the entity embeddings as (ei, ej ∈ R
d),

while TransD characterizes the entity embeddings as: (ei, wei ∈ R
d − ei, wej ∈

R
d). As a consequence of different embedding representations, the scoring func-

tion also varies. For example, TransE is defined in terms of the score function
‖ei + p− ej‖22, while ‖Mpei + p−Mpej‖22 defines TransR2. Furthermore, TransH
score function corresponds to ‖ei⊥ + dp − ej⊥‖22, where the variables ei⊥ and
ej⊥ denote a projection to the hyperplane wp of the labeled relation p, and dp
is the vector of a relation-specific translation in the hyperplane wp. To learn the
embeddings, I4.0RD resorts to the PyKeen (Python KnowlEdge EmbeddiNgs)
framework [2]. As hyperparameters for the models of the Trans∗ family, we use
the ones specified in the original papers of the models. The hyperparameters
include embedding dimension (set to 50), number of epochs (set to 500), batch
size (set to 64), seed (set to 0), learning rate (set to 0.01), scoring function (set to
1 for TransE, and 2 for the rest), margin loss (set to 1 for TransE and 0.05 for the
rest). All the configuration classes and hyperparameters are open in GitHub3.

4.2 Computing Similarity Values Between Standards

Once the algorithm–Trans∗ family–that computes the embeddings reaches a ter-
mination condition, e.g., the maximum number of epochs, the I4.0KG embed-
dings are learned. As the next step, I4.0RD calculates a similarity symmetric
matrix between the embeddings that represent the I4.0 standards. Any distance
metric for vector spaces can be utilized to calculate this value. However, as a
proof of concepts, I4.0RD applies the Cosine Distance. Let u be an embedding
of the Standard-A and v an embedding of the Standard-B, the similarity score,
between both standards, is defined as follows:

cosine(u, v) = 1 − u.v

||u||2||v||2
After building the similarity symmetric matrix, I4.0RD applies a threshold to
restrict the similarity values. I4.0RD relies on percentiles to calculate the value
of such a threshold. Further, I4.0RD utilizes the function Kernel Density Esti-
mation (KDE) to compute the probability density of the cosine similarity matrix;
it sets to zero the similarity values lower than the given threshold.

4.3 Detecting Communities of Standards

I4.0RD maps the problem of computing groups of potentially related standards
to the problem of community detection. Once the embeddings are learned, the
2 Mp corresponds to a projection matrix Mp ∈ R

dxk that projects entities from the
entity space to the relation space; further p ∈ R

k.
3 https://github.com/i40-Tools/I4.0KG-Embeddings

https://github.com/i40-Tools/I4.0KG-Embeddings
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Fig. 4. Discovering Relations Between Standards. (a) The homophily prediction
principle is applied on two communities, as a result, 16 relations between standards
are found. (b) Six out of the 16 found relations correspond to meaningfully relations.

standards are represented in a vectorial way according to their functions preserv-
ing their semantic characteristics. Using the embeddings, I4.0RD computes the
similarity between the I4.0 standards as mentioned in the previous section. The
values of similarity between standards are utilized to partition the set of stan-
dards in a way that standards in a community are highly similar but dissimilar
to the standards in other communities. As proof of concept, three state-of-the-
art community detection algorithms have been used in I4.0RD: SemEP, METIS,
and KMeans. They implement diverse strategies for partitioning a set based on
the values of similarity, and our goal is to evaluate which of the three is more
suitable to identify meaningful connections between standards.

4.4 Discovering Relations Between Standards

New relations between standards are discovered in this step; the homophily pre-
diction principle is applied over each of the communities and all the standards in
a community are assumed to be related. Figure 4 depicts an example where new
relations are computed from two communities; unknown relations correspond to
connections between standards in a community that did not existing in the input
I4.0 KG.

5 Empirical Evaluation

We report on the impact that the knowledge encoded in I4.0 knowledge graphs
has in the behavior of I4.0RD. In particular, we asses the following research
questions:

RQ1) Can the semantics encoded in I4.0 KG empower the accuracy of the relat-
edness between entities in a KG?
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RQ2) Does a semantic community based analysis on I4.0KG allow for improving
the quality of predicting new relations on the I4.0 standards landscape?

Experiment Setup: We considered four embedding algorithms to build the
standards embedding. Each of these algorithms was evaluated independently.
Next, a similarity matrix for the standards embedding was computed. The
similarity matrix is required for applying the community detection algorithms.
In our experiments, three algorithms were used to compute the communities.
That means twelve combinations between embedding algorithms and commu-
nity detection algorithms to be evaluated. To assure statistical robustness, we
executed 5-folds cross-validation with one run.

Fig. 5. Probability density of each fold per Trans∗ methods. Figures 5a, 5b,
and 5d show that all folds have values close to zero, i.e., with embeddings created by
TransD, TransE, and TransR the standards are very different from each other. However,
TransH (cf. Fig. 5c), exploits properties of the standards and generates embeddings
with a different distribution of similarity, i.e., values between 0.0 and 0.6, as well as
values close to 1.0. According to known characteristics of the I4 standards, the TransH
distribution of similarity better represents their relatedness.

Thresholds for Computing Values of Similarity: Figure 5 depicts the prob-
ability density function of each fold for each embedding algorithm. Figures 5a
and 5b show the values of the folds of TransD and TransE where all the similar-
ity values are close to 0.0, i.e., all the standards are different. Figure 5d suggests
that all the folds have similar behavior with values between 0.0 and 0.5. Figure 5c
shows a group of standards similar with values close to 1.0 and the rest of the
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standards between 0.0 and 0.6. The percentile of the similarity matrix is com-
puted with a threshold of 0.85. That means all values of the similarity matrix
which are less than the percentile computed, are filled with 0.0 and then, these
two standards are dissimilar. After analyzing the probability density of each fold
(cf. Fig. 5), the thresholds of TransH and TransR are set to 0.50 and 0.75, respec-
tively. The reason is because the two cases with a high threshold find all similar
standards. In the case of TransH, there is a high density of values close to 1.0; it
indicates that for a threshold of 0.85, the percentile computed is almost 1.0. the
values of the similarity matrix less than the threshold are filled with 0.0; values
of 0.0 represent that the compared standards are not similar.

Fig. 6. Quality of the generated communities. Communities evaluated in terms
of prediction metrics with thresholds (th) of 0.85, 0.50, and 0.75 using the SemEP,
METIS, and KMeans algorithms. In this case higher values are better. Our approach
exhibits the best performance with TransH embeddings and a threshold of 0.50 for
computing the similarity matrix, i.e., Figure (c). SemEP achieves the highest values in
four of the five evaluated parameters.

Metrics: the following metrics are used to estimate the quality of the commu-
nities from the I4.0KG embeddings.
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a) Conductance (InvC): measures relatedness of entities in a community, and
how different they are to entities outside the community [7]. The inverse of
Conductance is reported: 1 − Conductance(K), where K = {k1, k2, ...., kn}
the set of standards communities obtained by the cluster algorithm, and ki
are the computed clusters.

b) Performance (P): sums up the number of intra-community relationships,
plus the number of non-existent relationships between communities [7].

c) Total Cut (InvTC): sums up all similarities among entities in different
communities [5]. The Total Cut values are normalized by dividing the sum
of the similarities between the entities. The inverse of Total Cut is reported
as follows: 1 − NormTotalCut(K)

d) Modularity (M): is the value of the intra-community similarities between
the entities divided by the sum of all the similarities between the entities,
minus the sum of the similarities among the entities in different communities,
in case they are randomly distributed in the communities [22]. The value of
the Modularity is in the range of [−0.5, 1], which can be scaled to [0, 1] by
computing: Modularity(K)+0.5

1.5 .
e) Coverage (Co): compares the fraction of intra-community similarities

between entities to the sum of all similarities between entities [7].

Implementation: Our proposed approach is implemented in Python 2.7 and
integrated with the PyKeen (Python KnowlEdge EmbeddiNgs) framework [2],
METIS 5.14, SemEP5, and Kmeans6. The experiments were executed on a GPU
server with ten chips Intel(R) Xeon(R) CPU E5-2660, two chips GeForce GTX
108, and 100 GB RAM.

RQ1 - Corroborating the accuracy of relatedness between standards in I40KG. To
compute accuracy of I4.0RD, we executed a five-folds cross-validation procedure.
To that end, the data set is divided into five consecutive folds shuffling the data
before splitting into folds. Each fold is used once as validation, i.e., test set
while the remaining fourth folds form the training set. Figure 6 depicts the best
results are obtained with the combination of the TransH and SemEP algorithms.
The values obtained for this combination are as follows: Inv. Conductance
(0.75), Performance (0.77), Inv. Total Cut (0.95), Modularity (0.36), and
Coverage (0.91).

RQ2 - Predicting new relations between standards. In order to assess the sec-
ond research question, the data set is divided into five consecutive folds. Each
fold comprises 20% of the relationships between standards. Next, the precision
measurement is applied to evaluate the main objective is to unveil uncovered
associations and at the same time to corroborate knowledge patterns that are
already known.

As shown in Fig. 7, the best results for the property relatedTo are achieved
by TransH embeddings in combination with the SemEP and KMeans algorithm.
4 http://glaros.dtc.umn.edu/gkhome/metis/metis/download.
5 https://github.com/SDM-TIB/semEP.
6 https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html.

http://glaros.dtc.umn.edu/gkhome/metis/metis/download
https://github.com/SDM-TIB/semEP
https://scikit-learn.org/stable/modules/generated/sklearn.cluster.KMeans.html
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The communities of standards discovered using the techniques TransH and
SemEP contribute to the resolution of interoperability in I4.0 standards. To pro-
vide an example of this, we observed a resulting cluster with the standards ISO
15531 and MTConnect. The former provides an information model for describing
manufacturing data. The latter offers a vocabulary for manufacturing equipment.
It is important to note that those standards are not related to the training set
nor in I40KG. The membership of both standards in the cluster means that those
two standards should be classified together in the standardization frameworks.
Besides, it also suggests to the creators of the standards that they might look
after possible existing synergies between them. This example suggests that the
techniques employed in this work are capable of discovering new communities of
standards. These communities can be used to improve the classification that the
standardization frameworks provide for the standards.

Fig. 7. I4.0RD accuracy. Percentage of the test set for the property relatedTo is
achieved in each cluster. Our approach exhibits the best performance using TransH
embedding and with the SemEP algorithm reaching an accuracy by up to 90%.

5.1 Discussion

The techniques proposed in this paper rely on known relations between I4.0
standards to discover novel patterns and new relations. During the experimen-
tal study, we can observe that these techniques could group together not only
standards that were known to be related, but also standards whose relatedness
was implicitly represented in the I40KG. This feature facilitates the detection
of high-quality communities as reported in Fig. 6, as well as for an accurate
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discovery of relations between standards (cf. Fig. 7). As observed, the accuracy
of the approach can be benefited from the application of state-of-the-art algo-
rithms of the Trans∗ family, e.g., TransH. Additionally, the strategy employed
by SemEP that allows for positioning in the same communities highly similar
standards, leads our approach into high-quality discoveries. The combination of
both techniques TransH and SemEP allows discovering communities with high
quality.

To understand why the combination of TransH and SemEP produces the best
results, we analyze in detail both techniques. TransH introduces the mechanism
of projecting the relation to a specific hyperplane [27], enabling, thus, the repre-
sentation of relations with cardinality many to many. Since the materialization of
transitivity and symmetry of the property relatedTo corresponds to many to
many relations, the instances of this materialization are taken into account dur-
ing the generation of the embeddings, specifically, during the translating opera-
tion on a hyperplane. Thus, even thought semantics is not explicitly utilized dur-
ing the computation of the embeddings, considering different types of relations,
empowers the embeddings generated by TransH. Moreover, it allows for a more
precise encoding of the standards represented in I4.0KG. Figure 5c illustrates
groups of standards in the similarity intervals [0.9, 1.0], [0.5, 0.6], and [0.0, 0.4].
The SemEP algorithm can detect these similarities and represent them in high-
precision communities. The other three models embeddings TransD, TransE, and
TransR do not represent the standards in the best way. Figures 5a, 5b, 5d report
that several standards are in the similarity interval [0.0, 0.3]. This means that no
community detection algorithm could be able to discover communities with high
quality. Reported results indicate that the presented approach enables – in aver-
age – for discovering communities of standards by up to 90%. Although these
results required the validation of experts in the domain, an initial evaluation
suggest that the results are accurate.

6 Related Work

In the literature, different approaches are proposed for discovering communi-
ties of standards as well as to corroborate and extend the knowledge of the
standardization frameworks. Zeid et al. [28] study different approach to achieve
interoperability of different standardization frameworks. In this work, the current
landscape for smart manufacturing is described by highlighting the existing stan-
dardization frameworks in different regions of the globe. Lin et al. [18] present
similarities and differences between the RAMI4.0 model and the IIRA architec-
ture. Based on the study of these similarities and differences authors proposed
a functional alignment among layers in RAMI4.0 with the functional domains
and crosscutting functions in IIRA. Monteiro et al. [20] further report on the
comparison of the RAMI4.0 and IIRA frameworks. In this work, a cooperation
model is presented to align both standardization frameworks. Furthermore, map-
pings between RAMI4.0 IT Layers and the IIRA functional domain are estab-
lished. Another related approach is that outlined in [25]. Moreover, the IIRA
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and RAMI4.0 frameworks are compared based on different features, e.g., coun-
try of origin, source organization, basic characteristics, application scope, and
structure. It further details where correspondences exist between the IIRA view-
points and RAMI4.0 layers. Garofalo et al. [8] outline KGEs for I4.0 use cases.
Existing techniques for generating embeddings on top of knowledge graphs are
examined. Further, the analysis of how these techniques can be applied to the
I4.0 domain is described; specifically, it identifies the predictive maintenance,
quality control, and context-aware robots as the most promising areas to apply
the combination of KGs with embeddings. All the approaches mentioned above
are limited to describe and characterize existing knowledge in the domain. How-
ever, in our view, two directions need to be consider to enhance the knowledge in
the domain; 1) the use of a KG based approach to encode the semantics; and 2)
the use of machine learning techniques to discover and predict new communities
of standards based on their relations.

7 Conclusion

In this paper, we presented the I4.0RD approach that combines knowledge
graphs and embeddings to discover associations between I4.0 standards. Our
approach resorts to I4.0KG to discover relations between standards; I4.0KG
represents relations between standards extracted from the literature or defined
according to the classifications stated by the standardization frameworks. Since
the relation between standards is symmetric and transitive, the transitive clo-
sure of the relations is materialized in I4.0KG. Different algorithms for gener-
ating embeddings are applied on the standards according to the relations rep-
resented in I4.0KG. We employed three community detection algorithms, i.e.,
SemEP, METIS, and KMeans to identify similar standards, i.e., communities of
standards, as well as to analyze their properties. Additionally, by applying the
homophily prediction principle, novel relations between standards are discov-
ered. We empirically evaluated the quality of the proposed techniques over 249
standards, initially related through 736 instances of the property relatedTo;
as this relation is symmetric and transitive, its transitive closure is also repre-
sented in I4.0KG with 22,969 instances of relatedTo. The Trans∗ family of
embedding models were used to identify a low-dimensional representation of the
standards according to the materialized instances of relatedTo. Results of a
5-fold cross validation process suggest that our approach is able to effectively
identify novel relations between standards. Thus, our work broadens the reper-
toire of knowledge-driven frameworks for understanding I4.0 standards, and we
hope that our outcomes facilitate the resolution of the existing interoperability
issues in the I4.0 landscape. As for the future work, we envision to have a more
fine-grained description of the I4.0 standards, and evaluate hybrid-embeddings
and other type of community detection methods.
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