
YASSi: Yet Another Symbolic Simulator
Large (Tool Demo)

Sebastian Pointner1(B), Pablo Gonzalez-de-Aledo1, and Robert Wille1,2

1 Johannes Kepler University Linz, Linz, Austria
{sebastian.pointner,robert.wille}@jku.at, pablo.aledo@gmail.com

2 Software Competence Center Hagenberg GmbH (SCCH), Hagenberg, Austria

Abstract. Safety critical systems have finally made their way into our
daily life. While recent industrial and academic research could already
improve the design cycle for such systems, ensuring the functionality
of such systems still remains an open question. Such systems which are
composed of hardware as well as software components have to be checked
since any wrong behavior of the system could end up in harming human
life. To this end, program analysis techniques can be applied in order
to ensure that the program works as intended and that no unwanted
behavior is executed. However, approaches like static or dynamic pro-
gram analysis which are widely applied for this purpose still lead a large
number of fault positive results. To overcome such limitations an alter-
native approach called symbolic execution has been proposed. In this
work, we present a tool called YASSi which implements this approach.
Applying YASSi allows to symbolically execute programs written in the
C/C++ language. By this, YASSi can be applied for several applica-
tions needed for the checking program for safety critical properties like
(1) assertion checking, (2) reachability analysis, or (3) stimuli generation
for digital circuits.

Keywords: Symbolic simulation · Assertion checking · Stimuli
generation

1 Introduction

The technical progress achieved by academia as well as industry within the last
decades led to more and more complex systems. These systems, which are com-
posed of software and hardware components, have made their way into our daily
life and are especially very important in terms of functional safety applications.
To this end, it is of utter most importance to ensure that applications like the
trigger unit of an airbag or a breathing apparatus for medial emergencies work
as intended.

In order to ensure that such systems are getting realized correctly, the hard-
ware as well as the software part of the system has to be checked for correctness.

c© Springer Nature Switzerland AG 2020
G. Kotsis et al. (Eds.): DEXA 2020 Workshops, CCIS 1285, pp. 25–31, 2020.
https://doi.org/10.1007/978-3-030-59028-4_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59028-4_3&domain=pdf
https://doi.org/10.1007/978-3-030-59028-4_3

26 S. Pointner et al.

Since the hardware and the software part of the system are getting designed with
abstract programming languages, program analysis techniques can be applied for
this purpose. To this end, static program analysis like Control-Flow-Analysis [1]
as well as dynamic program analysis like Dynamic-Program-Slicing [2] have
emerged in the past. However, static as well as dynamic program analysis tech-
niques both have major limitations (e.g. a significant number of false positives).
Hence, in contrast to these program analysis techniques, the approach of sym-
bolic execution emerged in the past [3]. Symbolic execution has been investigated
heavily in the past and already led to a significant number of tools. These tools—
including KLEE [4], DIVINE [5], Forest [6], or CBMC [7]—allow to symbolically
execute programming languages like C/C++. However, symbolic execution is
not limited to C/C++ only. Approaches like [8] also show that those methods
can even be utilized for the execution of abstract hardware descriptions such as
provided in SystemC.

In this work, we present the tool YASSi (Y et Another Symbolic Simulator)
as our state-of-the-art approach for the realization of symbolic execution for
academic research. Our approach is capable to symbolically execute program
code written in the C/C++ language. To this end, YASSi is based on the Low
Level Virtual Machine (LLVM) compiler infrastructure [9] and utilizes the power
of modern reasoning engines like Z3 [10] or Boolector [11] for decision finding.
Applying YASSi allows the user to symbolically explore his/her design and,
therefore, to check certain design properties or to perform reachability analy-
sis. Compared to other state-of-the-art symbolic execution tools, we intention-
ally have designed YASSi in a fashion that it is easily extendable for academic
research purposes.

The remainder of this paper is structured as follows. The next section briefly
reviews the principle of symbolic execution for program analysis. Based on this,
we are introducing YASSi as our approach for an academic tool for symbolic
execution in Sect. 3. Afterwards, we discuss the applicability of YASSi for specific
applications in Sect. 4, before we conclude the paper in Sect. 5.

2 Background

This section briefly reviews the approach of symbolic execution as an advanced
program analysis technique [3]. In general, symbolic execution rests on the idea
of rather than using concrete values for so-called free variables (e.g. the inputs
of a function), the value of such variables is treated symbolically.

Example 1. Figure 1a shows a code snippet composed of using two free variables
and three conditional statements. Depending on the value held by the variables
variable a and variable b, the execution of the code snippet returns a different
value back to the host system.

In order to perform a symbolic execution, the system has to keep track of all
possible execution possibilities. To this end, symbolic execution has to evaluate
all possible outcomes of branches within the source code. Moreover, the execution

YASSi: Yet Another Symbolic Simulator (Tool Demo) 27

engine keeps track of the positive branches (i.e. the taken branch) as well as the
negative branches (i.e. the non-taken branch).

Example 2. Consider again Fig. 1b which shows the Control Flow Graph
(CFG) of the code snippet. Every time the execution reaches a branching condi-
tion, it is checked whether there is a possible valid assignment for the branching
variable. In case of the branch as shown on top of Fig. 1b, the symbolic execu-
tion engine has to ensure that there is a valid assignment possible for variable a
which ends up in taking the branch as well as not taking the branch.

1 i n t main ()
{

3 i n t v a r i a b l e a ;
i n t v a r i ab l e b ;

5

i f (v a r i a b l e a) {
7 i f (v a r i ab l e b) {

re turn 0 ;
9 } e l s e {

re turn 1 ;
11 }

} e l s e {
13 i f (v a r i ab l e b) {

re turn 2 ;
15 } e l s e {

re turn 3 ;
17 }

}
19 }

(a)

(b)

Fig. 1. Source code and according CFG showing nested branches.

The symbolic execution engine has to decide whether a branch can be taken
or not. To this end, modern symbolic execution engines are invoking the power
of modern reasoning engines, e.g. for Satisfiability Modulo Theories (SMT), for
this purpose. Moreover, the so-called branching conditions can be formulated
using the so-called SMT2 constraint language [12]. The reasoning engine decides
for every branching condition if there is an assignment possible for every free
variable in order to take or not take the branch. The solutions generated by the
reasoning engine are then directly applied by the symbolic execution engine to
perform the execution of the target code.

28 S. Pointner et al.

3 The YASSi Tool

This section now introduces the YASSi symbolic simulation tool1. To this end,
the section first introduces the modular architecture of YASSi in general before
the major components of YASSi (i.e. the front-end and the back-ends) are getting
discussed.

Fig. 2. Basic architecture of YASSi.

The basic architecture of YASSi is illustrated in Fig. 2. As can be seen in
the figure, YASSi performs several steps before the symbolic execution can be
performed by running a special binary. To this end, the generation of this binary
is controlled YASSi’s front-end. This binary is linked to particular YASSi back-
end which keep track of the symbolic execution and commands over a reasoning
engine for decisions making. In the following, we are now describing the YASSi
front-end as well as the YASSi symbolic execution core back-end.

3.1 YASSi’s Frontend

In the architecture of YASSi, we are using the front-end in order to prepare the
program we want to execute symbolically. As can be seen in Fig. 2, the first step
is the compilation of C/C++ sources into LLVM’s Intermediate Representation
(IR) format [13]. LLVM’s IR format is based on a load and store architecture
and breaks down the complexity of C/C++ codes into a basic instruction set.
In the second step, the generated IR code is getting instrumented using LLVM’s
optimization tool. To this end, we are going to alternate LLVM’s IR code and
add special function calls for each particular instruction which is needed for the
eventual symbolic execution. Once the code instrumentation has been done, we
are linking the instrumented code to our back end which resolves the inserted
function calls. The result of YASSi’s front-end is a binary which is ready for
symbolic execution. After the execution of the binary has terminated, the front-
end can access the database in order to analyze the results generated by the
symbolic execution run.
1 YASSi is available at http://github.com/gledr/YASSi.

http://github.com/gledr/YASSi

YASSi: Yet Another Symbolic Simulator (Tool Demo) 29

3.2 YASSi’s Backends

YASSi commands over multiple back-ends. However, in this work we are only
introducing YASSi’s symbolic execution core back-end. As introduced above,
YASSi’s front-end performs code instrumentation by inserting callback function
calls which are getting resolved by the back-end. Instead of executing the LLVM
instructions, we are calling YASSi’s back-end which processes the information
internally. To this end, YASSi is controlling the program execution based on Z3
which is getting used as reasoning engine in the back. Moreover, every-time the
program branches, YASSi considers both execution paths and tries to find a valid
solution for both paths. Therefore, YASSi creates clauses for each path-condition
and forwards them to the reasoning engine. If the reasoning engine determines
a valid solution, the branch is getting considered successfully and the execution
continues. Same as for branches is getting used for assertions as well as other
exceptions.

4 Application of YASSi

This section finally discusses some of the applications YASSi can be used for.
Since the principle of symbolic execution allows it to target a wide variety of
applications, we focus on those which we successfully applied with YASSi thus
far.

– Assertion Checking:
YASSi is capable to check certain properties during execution. To this end,
YASSi is capable to check assertion and to work with non-deterministic vari-
ables. Therefore, YASSi tries to violate the assertion by invoking the SMT
solver. YASSi is not only capable to check assertions, it is also capable to
check for traps like division by zero or out of boundary index accessing of
data-structures like arrays.

– Reachability Analysis:
Another application case for YASSi which has been applied successfully is
reachability analysis. To this end, we have applied YASSi in order to check,
that certain parts of the code are unreachable which we could use to exclude
certain functional safety issues.

– Stimuli Generation:
Next to exception checking and reachability analysis, we were able to use
YASSi for stimuli generation. To this end, we were able to generate stimuli
with a coverage for abstract descriptions of digital circuits. Our approach
allowed it to extract these stimuli into a database and directly to apply them
for checking the model. As already mentioned above, YASSi commands over
multiple back-ends. Moreover, YASSi commands over a so-called replay back-
end which directly can be applied to check the reached branch and line cov-
erage [14] for a particular set of generated stimuli.

30 S. Pointner et al.

5 Conclusion

In this work, we considered symbolic simulation as program analysis technique
for C/C++ codes. This is motivated by the ever growing complexity of modern
systems build up using hardware as well as software components designed using
programming languages like C/C++. In order to address this, we introduced the
tool YASSi as our approach for a state-of-the-art symbolic simulator for academic
research. We have build YASSi in a modular fashion, which allows it directly to
extend the tool for eventual later applications. YASSi has been build on top of the
LLVM toolkit for compiler construction together with modern reasoning engines
like Z3. YASSi is further under heavy development, and we keep adding more
applications. The next milestone for the tool will be the support of floating-point
variable based on the SMT2 bitvector floating-point type. YASSi is available at
http://github.com/gledr/YASSi.

Acknowledgments. This work has partially been supported by the LIT Secure and
Correct Systems Lab funded by the State of Upper Austria as well as by BMK, BMDW,
and the State of Upper Austria in the frame of the COMET Programme managed by
FFG.

References

1. Midtgaard, J.: Control-flow analysis of functional programs. ACM Comput. Surv.
CSUR 44, 1–33 (2012)

2. Agrawal, H., Horgan, J.R.: Dynamic program slicing. SIGPLAN Not. 25, 246–256
(1990)

3. King, J.C.: Symbolic execution and program testing. Commun. ACM (1976)
4. Cadar, C., Dunbar, D., Engler, D.R.: KLEE: unassisted and automatic genera-

tion of high-coverage tests for complex systems programs. In: Proceedings of the
Conference on Operating Systems Design and Implementation, San Diego, USA
(2008)

5. Baranová, Z., et al.: Model checking of C and C++ with DIVINE 4. In: Automated
Technology for Verification and Analysis, Pune, India (2017)

6. Gonzalez-de-Aledo, P., Sanchez, P.: FramewORk for embedded system verifica-
tion. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 429–431.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0 36

7. Clarke, E., Kroening, D., Lerda, F.: A tool for checking ANSI-C programs. In:
Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp. 168–176.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-2 15

8. Herdt, V., Le, H.M., Große, D., Drechsler, R.: Verifying SystemC using intermedi-
ate verification language and stateful symbolic simulation. IEEE Trans. CAD 38,
1359–1372 (2019)

9. Lattner, C., Adve, V.: LLVM: a compilation framework for lifelong program anal-
ysis & transformation. In: Proceedings of the International Symposium on Code
Generation and Optimization, San Jose, USA (2004)

10. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

http://github.com/gledr/YASSi
https://doi.org/10.1007/978-3-662-46681-0_36
https://doi.org/10.1007/978-3-540-24730-2_15
https://doi.org/10.1007/978-3-540-78800-3_24

YASSi: Yet Another Symbolic Simulator (Tool Demo) 31

11. Niemetz, A., Preiner, M., Biere, A.: Boolector 2.0 system description. J. Satisfia-
bility Boolean Model. Comput. 9, 53–58 (2015)

12. Barrett, C., Stump, A., Tinelli, C.: The SMT-LIB Standard - Version 2.0. Technical
report, New York University (2010)

13. The LLVM Team: clang: a C language family frontend for LLVM. Accessed 23 Mar
2020

14. Martin, G., Bailey, B., Piziali, A.: ESL Design and Verification: A Prescription
for Electronic System Level Methodology. Morgan Kaufmann Publishers Inc., San
Francisco (2007)

	YASSi: Yet Another Symbolic Simulator Large (Tool Demo)
	1 Introduction
	2 Background
	3 The YASSi Tool
	3.1 YASSi's Frontend
	3.2 YASSi's Backends

	4 Application of YASSi
	5 Conclusion
	References

