
On the Effectiveness of Higher-Order
Logic Programming in Language-Oriented

Programming

Matteo Cimini(B)

University of Massachusetts Lowell, Lowell, MA 01854, USA
matteo cimini@uml.edu

Abstract. In previous work we have presented lang-n-play, a func-
tional language-oriented programming language with languages as first-
class-citizens. Language definitions can be bound to variables, passed to
and returned by functions, and can be modified at run-time before being
used. lang-n-play programs are compiled and executed in the higher-
order logic programming language λProlog. In this paper, we describe
our compilation methods, which highlight how the distinctive features
of higher-order logic programming are a great fit in implementing a
language-oriented programming language.

Keywords: Higher-order logic programming · Language-oriented
programming · Functional programming

1 Introduction

Language-oriented programming [8,14,31] is a paradigm that has received a lot
of attention in recent years. Behind this paradigm is the idea that different parts
of a programming solution should be expressed with different problem-specific
languages. For example, programmers can write JavaScript code for their web
application and enjoy using JQuery to access DOM objects in some parts of
their code, and WebPPL to do probabilistic programming in other parts [16]. To
realize this vision, language workbenches have emerged as sophisticated tools to
assist programmers with the creation, reuse and composition of languages.

Languages as first-class citizens [7] is an approach to language-oriented pro-
gramming that advocates that language definitions should have the same sta-
tus as any other expression in the context of a general-purpose programming
language. In this approach language definitions are run-time values, just like
integers, for example, and they can be the result of computations, bound to
variables, passed to and returned by functions, and inserted into lists, to name
a few possibilities.

lang-n-play [6,7] is a functional language-oriented programming language
with languages as first-class citizens. lang-n-play is implemented in a combi-
nation of OCaml and the higher-order logic programming language λProlog [24].
c© Springer Nature Switzerland AG 2020
K. Nakano and K. Sagonas (Eds.): FLOPS 2020, LNCS 12073, pp. 106–123, 2020.
https://doi.org/10.1007/978-3-030-59025-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59025-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-59025-3_7

Effectiveness of HOLP in LOP 107

The core of the language implementation is, however, an interpreter written in
λProlog. Specifically, lang-n-play programs are compiled into λProlog terms
and executed with such interpreter.

To implement language-oriented programming operations, the features of
higher-order logic programming have proved to be exceptionally fitting. In par-
ticular, formulae as first-class citizens make it easy to have a run-time data type
for languages and implement operations that manipulate languages at run-time,
including switching evaluation strategies on demand (call-by-value vs call-by-
name). Furthermore, hypothetical reasoning [15] (i.e. deriving implicative goals)1

makes it easy to execute programs with arbitrary languages defined by program-
mers, as well as switch from a language to another during computation.

Goal of the Paper. Our goal is to demonstrate that higher-order logic program-
ming can be a great fit for implementing language-oriented systems. To this aim,
we describe our compilation methods and highlight how the distinctive features
of higher-order logic programming have been a natural fit in this context.

Ultimately, lang-n-play allows for non-trivial language-oriented program-
ming scenarios, and yet its interpreter is 73 lines of λProlog code. This is remark-
able in the context of language-oriented systems.

Roadmap of the Paper. Section 2 reviews higher-order logic programming as
adopted in λProlog. Section 3 gives a general overview of the implementation of
lang-n-play before diving into specific aspects. Section 4 discusses our imple-
mentation of (programmer-defined) language definitions. Section 5 covers our
implementation of the lang-n-play operations that manipulate languages.
Section 6 provides details on our implementation w.r.t. using languages to exe-
cute programs. Section 7 covers the scenario of switching strategies at run-time.
Section 8 discusses related work, and Sect. 9 concludes the paper.

2 Higher-Order Logic Programming

λProlog is a flagship representative of higher-order logic programming languages
[24]. This section reviews its features. We do not give a complete account of
λProlog. Instead, we discuss the features that play a role in the next sections.
λProlog extends Prolog with the following elements: types, formulae as first-class
citizens, higher-order abstract syntax, and hypothetical reasoning.

Typed Logic Programming. λProlog programs are equipped with a signature that
defines the entities that are involved in the program. Programs must follow the
typing discipline that is declared in this signature or they would be rejected. For
example, if we were to implement a simple language with numbers and additions,
we would have the following declarations.

1 To remain in line with λProlog terminology we use the terms hypothetical reasoning
throughout this paper, see [24].

108 M. Cimini

kind typ type.

kind expression type.

type int typ.

type zero -> expression.

type succ expression -> expression.

type plus expression -> expression -> expression.

The keyword kind declares the entities in the program. The keyword type
is used to specify how to create terms of such entities.

As in Prolog, the computation takes place through the means of logic pro-
gramming rules. Logic programming rules can derive formulae, which are built
with predicates. Predicates, as well, must be declared with a type in λProlog.
For example, a type checking relation and a reduction relation can be declared
as follows.

type typeOf expression -> typ -> prop.

type step expression -> expression -> prop.

typeOf zero int.

typeOf (succ E) int :- typeOf E int.

... reduction rules, here omitted ...

The keyword prop denotes that typeOf and step build a formula when
applied to the correct type of arguments.

Formulae as First-Class Citizens. λProlog extends Prolog also in that formulae
can be used in any well-typed context. For example, below we intentionally split
our type checker in an unusual way.

type getFormula expression -> prop -> prop.

type check expression -> prop.

getFormula zero true.

getFormula (succ E) (typeOf E int).

check E :- getFormula E F, F.

The predicate getFormula takes two arguments. The first is an expression
and is an input, and the second is a proposition and is an output. The predicate
getFormula returns the formula we should check to establish that the term
is well-typed (the output type is ignored for the sake of this example). This
example shows that formulae can be arguments. Furthermore, after check calls
getFormula to retrieve the formula F, this formula can be used as a premise in
the rule, as shown in the last line.

Higher-Order Abstract Syntax (HOAS). HOAS is an approach to syntax in which
the underlying logic can appeal to a native λ-calculus for modeling aspects
related to binding [25]. Suppose that we were to add the operators of the λ-
calculus, we would define the following.

Effectiveness of HOLP in LOP 109

type abs (expression -> expression) -> expression.

type app expression -> expression -> expression.

step (app (abs R) V) (R V) :- value V.

The argument of abs is an abstraction from an expression to an expression. To
model the identity function we write (abs x\ x), where the highlighted part of
this term points out the syntax used by λProlog for writing HOAS abstractions.
In the beta-reduction rule above we have that R is an abstraction and therefore
we can use it with a HOAS application (R V) to produce a term. λProlog takes
care of performing the substitution for us.

Hypothetical Reasoning. λProlog also extends Prolog with hypothetical reason-
ing [24] (i.e. deriving implicative goals [15]). To appreciate this feature consider
the following logic program.

flyTo london nyc.

flyTo chicago portland.

connected X X.

connected X Z :- flyTo X Y, connected Y Z.

The city london and portland are not connected. However, in λProlog we can
write the formula:

connected nyc chicago => connected london portland

This formula asks: “Were nyc connected to chicago, would london be con-
nected to portland?”. At run-time the query connected london portland is inter-
rogated in the logic program in which the fact connected nyc chicago is added.

3 Basic Overview of Lang-n-Play

lang-n-play is a functional language-oriented programming language [7]. Pro-
grammers can define their own languages and use them to execute programs.
lang-n-play is implemented partly in OCaml and partly in λProlog. Precisely,
the following is the architecture of lang-n-play.

Programs are parsed and type checked in OCaml. These two aspects are not
discussed in the paper because they do not play a role in our message about the
effectiveness of higher-order logic programming.

Next, lang-n-play programs are compiled into λProlog. The interpreter
of lang-n-play programs is a λProlog logic program. Our OCaml compila-
tion produces the λProlog term that represents the lang-n-play program, and

110 M. Cimini

gives it to this interpreter. Programmers do not launch the interpreter manually.
Our OCaml code is interfaced to the ELPI interpreter of λProlog through the
ELPI OCaml package [9], and loads an external file that contains the interpreter
written in λProlog.

In this paper we discuss the part that is enclosed in the red rectangle, as it is
the core of the implementation of lang-n-play, and highlights how higher-order
logic programming can accommodate the features of lang-n-play.

Our interpreter defines a kind for lang-n-play expressions called expLO,
and defines two relations for reduction steps and detecting values.

type stepLO expLO -> expLO -> prop.

type valueLO expLO -> prop.

The suffix LO in the names of operators and relations are meant to recall
that we are in a language-oriented language. We introduce the elements of
expLO as we encounter them in the next sections. There are a number of
aspects of lang-n-play that we do not discuss in this paper. For example,
although lang-n-play includes common features of functional programming
such as booleans, if-then-else, lists, letrec, and import, we omit discussing
them because they are not relevant to this paper.

4 Defining Languages

lang-n-play provides syntax for defining languages. Below is the example of a
definition of a language with lists and an operator elementAt which accesses an
element of a list based on its position (position 0 is the first element).

1 {!

2 Type T ::= int | (list T),

3 Expression e ::= zero | (succ e) | nil | (cons e e)

4 | (elementAt e e),

5 Value v ::= zero | (succ v) | nil | (cons v v),

6 Context C ::= (succ E) | (cons C e) | (cons v C)

7 | (elementAt C e) | (elementAt v C),

8 Environment Gamma ::= [x : T],

9 Relation ::= Gamma |- e : T | e -- > e,

10 StartingCall ::= empty |- e : T | e --> e.

11
12 Gamma |- x : T <== x : T in Gamma ,

13 Gamma |- zero : int ,

14 Gamma |- (succ e) : int <== Gamma |- e : int ,

15 Gamma |- nil : (list T),

16 Gamma |- (cons e1 e2) : (list T) <==

17 Gamma |- e1 : T /\ Gamma |- e2 : (list T),

18 Gamma |- (elementAt e1 e2) : T <==

19 Gamma |- e1 : int /\ Gamma |- e2 : (list T),

20 (elementAt zero (cons V1 V2)) --> V1,

21 (elementAt (succ V) (cons V1 V2)) --> (elementAt V V2)

22 !}

Effectiveness of HOLP in LOP 111

Languages are defined within {! ... !}, as in lines 1–22. lang-n-play
makes use of a domain-specific language that closely resembles the way
researchers define and share languages in operational semantics. (The Ott lan-
guage achieved the same effect over ten years ago [28], and we adopt a similar
syntax).

As typical, languages define a grammar (lines 2–10) and an inference system
(lines 12–21). An inference system may define a type system and a reduction
semantics.

The syntax for defining grammars is quite standard. As in many language
workbenches [8,14,31], language definitions can use lists with [...]. For exam-
ple, Environment Gamma :: = [x : T] means Gamma is a list of formulae of that
shape. lang-n-play provides the operation in for testing membership on lists,
as in line 12. Furthermore, there are two special grammar categories, Relation

and Starting Call. The former simply declares relations, and the latter informs
lang-n-play on how to call the type checker and the evaluator.

The syntax for defining inference systems is also rather familiar to operational
semantics practitioners. Perhaps, the biggest departure is that the horizontal line
of an inference rule is replaced with an inverse implication <== that can be read
“provided that”, and we use an explicit syntactic and-operator when we have
multiple premises.

The language definition above serves as our running example throughout the
paper. We refer to the lines 2–21 as listLines in what follows.

4.1 λProlog Implementation of Language Definitions

It is rather natural to compile language definitions such as the one above into
λProlog because operational semantics is based on inference systems. These,
in turn, map naturally to logic programming rules. For example, the language
above compiles to the following (we show only an excerpt).

typeOf nil (list T).
typeOf (cons E1 E2) (list T) :- typeOf E1 T,

typeOf E2 (list T).
typeOf (elementAt E1 E2) T :- typeOf E1 int ,

typeOf E2 (list T).
step (elementAt zero (cons V1 V2)) V1 :- value V1,

value V2.
step (elementAt (succ V) (cons V1 V2)) (elementAt V V2)

:- value V1, value V2.

The fact that language definitions map well to higher-order logic programs
has been previously demonstrated with the work of Twelf [26], and λProlog [24].

Since lang-n-play handles programmer-defined languages that may be
manipulated at run-time, we accommodate languages with an internal represen-
tation. In particular, the language above is represented with a list of formulae
with the following operator:

type language (list prop) -> expLO.

Therefore, the language listLines is compiled as follows.

112 M. Cimini

1 language

2 [

3 typeOf nil (list T) ;

4 typeOf (cons E1 E2) (list T) :- typeOf E1 T,

5 typeOf E2 (list T) ;

6 typeOf (elementAt E1 E2) T :- typeOf E1 int ,

7 typeOf E2 (list T) ;

8 step (elementAt zero (cons V1 V2)) V1 :- value V1 ,

9 value V2 ;

10 step (elementAt (succ V) (cons V1 V2)) (elementAt V V2)

11 :- value V1, value V2 ;

12 value nil ;

13 value (cons V1 V2) :- value V1 , value V2 ;

14 step (elementAt E1 E2) (elementAt E1’ E2) :- step E1 E1 ’;

15 step (elementAt V1 E2) (elementAt V1 E2 ’) :- step E2 E2 ’;

16 ... the rest of contextual reduction rules ...

17]

This is our run-time representation for languages. Notice that since we need
only the reduction rules to execute programs we compile inference rules only
(not grammar), with the exception of values and evaluation contexts, which are
turned into rules.

We shall refer to the list of elements at lines 3–16 as listsInLP.

5 Operations on Languages

lang-n-play provides a handful of operations on language definitions. Below
we discuss the following operations: let-binding, union of languages, functions
on languages, and removal of rules.

Let-Binding. lang-n-play can bind a language definition to a variable in typ-
ical ML-style, as in

let lists = {!

... listLines ...

!} in lists

Therefore, our interpreter includes a let-operation and its reduction
semantics.

type letLO expLO -> (expLO -> expLO) -> expLO.

stepLO (letLO V R) (R V) :- valueLO V.

The code above is then compiled to

letLO (language [listsInLP]) (lists\ lists)

which reduces to (language [listsInLP]) in one step. (This example
also shows that languages can be the result of computations.)

Effectiveness of HOLP in LOP 113

Language Union. Another operation of lang-n-play is language union, per-
formed with the binary operator U. For example, notice that the language for
lists is unsafe: if we called elementAt asking for the 4-th element of a list that
contains only 2 elements we would get stuck, because there is no specified behav-
ior for that case. We can add reduction rules that cover those cases as follows.
(We refer to the language created by the union operation below as safeLists).

lists U {!
Expression e ::= myError ,
Error er ::= myError ,
(elementAt zero nil) --> myError ,
(elementAt (succ V) nil) --> myError ,

!}

This code adds the error to the language and adds appropriate reduction
rules. Our interpreter includes the language union operation and its reduction
semantics.

type unionLO expLO -> expLO -> expLO.

stepLO

(unionLO (language Rules1) (language Rules2))

(language Result)

:- append Rules1 Rules2 Result.

where append is a polymorphic list append defined in the interpreter
(straightforward and here omitted). The union operation above is compiled as

1 unionLO

2 (language [listsInLP])

3 (language [step (elementAt zero nil) myError ;

4 step (elementAt (succ V) nil) myError])

which reduces to (language [listsInLP + rules in lines 3-4]) in
one step.

Removal of Rules. lang-n-play includes an operation for removing rules from
a language. For example, the union above adds two extra rules but the sole rule
step (elementAt V nil) myError :- value V would be sufficient.

To modify safeLists and create the more compact language that has only
one rule we can execute the following lang-n-play program.

1 (remove

2 (elementAt zero nil) --> myError)

3 from (remove (elementAt (succ V) nil) --> myError

4 from safeLists)

5) U {! (elementAt V nil) --> myError !}

The operation remove takes in input a rule and a language, and returns a
language. This code removes one of the rules from safeLists at lines 3 and 4.
The language so produced is then used in the removal of the other rule at lines
1–3. Line 5 adds the safe reduction rule for elementAt with a union operation.

114 M. Cimini

Our interpreter includes the rule removal operation and its reduction
semantics.

type removeLO prop -> expLO -> expLO.

stepLO (removeLO Formula (language Rules))

(language Result)

:- listRemove Formula Rules Result.

where listRemove is a polymorphic predicate that matches elements of a
list with a given element and removes the element if the match succeeds. This
predicate is also defined in the interpreter (straightforward and here omitted).

The remove operations above, excluding the union at line 5, are compiled as

1 removeLO

2 (step (elementAt zero nil) myError)

3 (removeLO

4 step (elementAt (succ V) nil) myError :- value V

5 (language [listsInLP +

6 step (elementAt zero nil) myError ;

7 step (elementAt (succ V) nil) myError :- value V

8]

9)

10)

which reduces to (language [listsInLP]) in two steps.
λProlog grants us a powerful equality on formulae and the removal operation

is far from performing a textual match on the rule to remove. For example, the
following two rules are equal in λProlog.

(∗) step (elementAt (succ MyVar) nil) myError :- value MyVar
=

step (elementAt (succ V) nil) myError :- value V

Therefore, we obtain the same results if we used the formula (*) at line
4. Thanks to λProlog, formulae are up-to renaming of variables and alpha-
equivalence of HOAS abstractions.

Functions on Languages. As typical in programming languages, we often would
like to pack instructions in functions for the sake of abstraction. lang-n-play
provides functions on languages. For example, instead of performing language
union inline we can create a function that adds the desired safety checks, as in

let addSafeAccess mylan =
mylan U {! Expression e ::= myError ,

Error er ::= myError ,
(elementAt V nil) --> myError ,

!}
in (addSafeAccess lists)

Our interpreter includes abstractions and applications, as well as their reduc-
tion semantics.

Effectiveness of HOLP in LOP 115

type absLO (expLO -> expLO) -> expLO.

type appLO expLO -> expLO -> expLO.

stepLO (appLO (absLO R) V) (R V) :- valueLO V.

lang-n-play compiles the let-binding above in the following way.

letLO

(addSafeAccess\

(appLO addSafeAccess (language [... listsInLP ...])))

(absLO mylan\

(unionLO

mylan

(language [

step (elementAt (succ V) nil) myError :- value V

])

)

)

This program reduces the letLO operation in one step and we obtain

(appLO

(absLO mylan\ unionLO mylan

(language [

step (elementAt (succ V) nil) myError :- value V

])

(language [... listsInLP ...])))

In turn, this program reduces in one step to

unionLO

(language [... listsInLP ...])))

(language [

step (elementAt (succ V) nil) myError :- value V

])

which produces the expected language in one step.

6 Executing Programs and Language Switch

Of course, languages can be used to execute programs. The code below shows
the lang-n-play expression to do so. (For readability, we use standard notation
for numbers and lists rather than sequences of succ and cons).

{! ... listsLines ... !}> elementAt 1 [1,2,3]

We call this type of expression program execution and is of the form lan-
guage > program. The program above returns a value together with the language
with which it has been computed:

Value = 2 in {! listsLines !}.
Our interpreter includes the operation for executing programs and its reduc-

tion semantics.

116 M. Cimini

type execLO expLO -> program -> expLO.

stepLO (execLO (language Language) Prg)

(execLO (language Language) Prg ’)

:- (Language => (step Prg Prg ’)).

In the declaration at the top, program is the kind for programs. Intuitively,
elements of program are S-expressions, i.e. a top-level operator followed by a
series of arguments, which, too, can be programs. Notice that the language
argument of execLO (first argument) is an expression. Although above we have
explicitly written the language to be used, that component can be an expression
that evaluates to a language, for example as in

lists > elementAt 1 [1,2,3], or

(addSafeAccess lists)> elementAt 1 [1,2,3]

The reduction rule for execLO deserves some words. The key idea is that we
use hypothetical reasoning. In Sect. 2 we have seen that we can use this feature to
temporarily add facts and run an augmented logic program. Above, instead, we
do not add a fact but a list of formulae Language. Moreover, this list of formu-
lae is not a list of facts but a list of rules (rules such as step (elementAt zero
(cons V1 V2)) V1 :- value V1, value V2.). This has the effect of augment-
ing the logic program that we are currently running (which is our lang-n-play
interpreter!) with new rules. In particular, these rules define the operational
semantics of the language that we need to execute. The interpreter then inter-
rogates (step Prg Prg′) to compute the step from these new rules2.

For example, the code above compiles to

execLO (language [... listsInLP ...]) (elementAt 1 [1,2,3])

The current logic program (that is, our lang-n-play interpreter) is aug-
mented with the rules listsInLP and we execute the query

(step (elementAt 1 [1, 2, 3]) Prg′).
This produces Prg′ = (element 0 [2, 3]). (Notice that the query asks for one

step). lang-n-play keeps executing until a value is produced. Therefore at
the second step we run the query (step (elementAt 0 [2, 3]) Prg′). This query
returns the result Prg′ = 2, which our interpreter detects as a value. The execu-
tion of programmer-defined languages and the execution of lang-n-play oper-
ations are never confused because the former makes use of the predicate step
and the latter makes use of the predicate stepLO.

The way our interpreter recognizes that we have obtained a value is through
the predicate valueLO, which our interpreter defines with

valueLO (execLO (language Language) Prg)

:- (Language => (value Prg)).

2 We are guaranteed that the rules use the predicate step for reductions because the
OCaml part of lang-n-play (see the figure on Sect. 3, page 4) specifically generates
the λProlog term to use step. Similarly for value.

Effectiveness of HOLP in LOP 117

Let us recall that once listsInLP is loaded in the current logic program it
also contains the rules that define the values of the loaded language, defined
with the predicate value. These rules are, for example, value zero. and
value succ V : − value V., and so on. Then we run the query (value Prg) to
detect if Prg is a term that the loaded language defines as a value.

Language Switch. lang-n-play also allows for switching languages at run-time.
Consider the following program.

let pairs = {!
Type T ::= (times T T),
Expression e ::= pair e e | fst e | snd e,
Value v ::= (pair v v),
Context C ::= (pair C e) | (pair v C)

| (fst C) | (snd C),
Gamma |- (pair e1 e2) : (times T1 T2) <==

Gamma |- e1 : T1 /\ Gamma |- e2 : T2,
Gamma |- (fst e) : T1 <==

Gamma |- e : (times T1 T2),
Gamma |- (snd e) : T2 <==

Gamma |- e : (times T1 T2),
(fst (pair V1 V2)) --> V1,
(snd (pair V1 V2)) --> V2
!} in
lists > elementAt (pairs > fst (pair 1 0)) [1,2,3]

This code defines a language with pairs. Afterwards, it makes use of the list
language to perform a list access. However, the first argument of elementAt
(the position) is computed by executing another program in another language.
In particular, the position is computed by executing fst (pair 1 0) in the
language pairs.

This program returns the following value (recall that position 1 asks for the
second element of the list).

Value = 2 in {! listsLines !}.
Implementing this language switch is easy with higher-order logic program-

ming. When we execute

execLO (language [... listsInLP ...])

(elementAt

(execLO (language [rules of pairs])

(fst (pair 1 0)))

[1,2,3])

The interpreter adds the rules listsInLP and evaluates the program that
starts with elementAt. When the interpreter encounters another execLO it
applies the same reduction rule of execLO that we have seen. This has the
effect of adding the language with pairs on top of the language with lists. This
augmented language is then used to evaluate fst (pair 1 0) with the query
(step (fst (pair 1 0)) Prg’). The nested execLO detects when fst (pair
1 0) evaluates to a value in the way described above, that is, the query (value
1) succeeds. At this point, execLO simply leaves the value it has just computed
in the context in which it has been executed. Therefore, elementAt simply con-
tinues with the value 1 as first argument, oblivious as to how this value has been
computed.

118 M. Cimini

Remark on the Semantics of Language Switch. The semantics of language switch
is such that the current language is extended with new rules. Therefore, the
switch does not replace a language with a completely different language. The
semantics we adopt is in 1-1 correspondence with the semantics of hypothetical
reasoning. We believe that this facilitates writing correct programs because the
child language must at least share some values with the parent language, as the
nested computation leaves a value in the context of the parent. Therefore, this
value must be understood by the parent language.

Notice that the overall result is 2 in the language {! listsLines !} that
does not contain pairs. Indeed, pairs has been added and then removed by
λProlog after the nested execLO has finished.

7 Valuehood Abstractions

Strategies play a central role in computing. Examples of notable strategies are
call-by-value and call-by-name in the λ-calculus. In lang-n-play we can define
the λ-calculus in a way that allows the strategy to be chosen at run-time. We
do so with valuehood abstractions:

let lambda vh : strategy =
{! Expression e ::= (abs @x e) | (app e e),

Value v ::= (abs @x e),
Context C ::= (app C e),
Environment Gamma ::= [x : T],

(app (abs @x e) vh) --> e[vh /x],

!}

Here, lambda is not a language definition. It is, instead, a valuehood abstrac-
tion. This is a function that takes in input a kind of expression called strategy.
The variable vh is bound in the body of lambda and can appear as a variable
in inference rules, as highlighted. The meaning is that it will be discovered later
whether the inference rule fires when the variable is a value or an ordinary expres-
sion. The two strategies are represented with the constants EE and VV, respec-
tively. The application (lambda EE) returns the language with the reduction rule
(app (abs @x e) e2) --> e[e2/x], which fires irrespective of whether e2 is a
value or not, in call-by-name style. The application (lambda VV), instead, return
the language with rule (app (abs @x e) v) --> e[v/x], which fires when the
argument is a value, in call-by-value style.

To realize this, we take advantage of formulae as first-class citizens. The
compilation of lambda is:

absLO vh\

language [step (app (abs R) ARG) (R ARG) :- (vh ARG)]

The variable vh is a HOAS abstraction from terms to formulae. Intuitively,
when we pass EE we want to say that the premise (vh ARG) should not add any
additional conditions. We do so by compiling EE to the function (x\ true). The
application (lambda EE) is then compiled into an ordinary application appLO.

Effectiveness of HOLP in LOP 119

For (lambda EE), after the parameter passing we end up with
language [step (app (abs R) ARG) (R ARG) :- ((x\ true) ARG)]

which λProlog converts to
language [step (app (abs R) ARG) (R ARG) :- true]

When we pass VV, instead, we want to say that the premise (vh ARG) should be
satisfied only so long that ARG is a value. To do so, we compile the constant VV
to (x\ value x). When we execute (lambda VV) we end up with
language [step (app (abs R) ARG) (R ARG) :- ((x\ value x) ARG)]

which λProlog converts to
language [step (app (abs R) ARG) (R ARG) :- value ARG].

Therefore, we place a new premise to check that ARG is a value.

8 Related Work

The main related work is the vision paper [7]. We have used a variant of the
example in [7] to demonstrate our compilation methods. We have also addressed
remove with a different example, and the example on language switch is new.

There are two main differences between [7] and this paper.

– [7] proposes the approach of languages as first-class citizens and exemplifies
it with an example in lang-n-play. [7] does not discuss any implementation
details of lang-n-play. On the contrary, this paper’s focus is entirely on the
implementation mechanisms that we have adopted and, most importantly,
this paper demonstrates that the distinctive features of higher-order logic
programming are a great fit for language-oriented systems.

– This paper extends the work in [7] by adding language switches.

The K framework is a rewrite-based executable framework for the specification
of programming languages [27]. Differently from lang-n-play, the K framework
does not offer language-oriented programming features such as language switch
and the updating of languages at run-time. On the other hand, K has been
used to define real-world programming languages such as C [10] and Java [2],
to name a few, while lang-n-play has not. The style of language definitions
in lang-n-play is that of plain operational semantics. Therefore, defining real-
world programming languages can become a cumbersome task, and we have not
ventured into that task yet. An interesting feature of the K framework is that it
automatically derives analyzers and verifiers from language specifications [29].
This work inspires us towards adding similar features to lang-n-play.

A number of systems have been created to support language-oriented pro-
gramming [3,17,18,21,30]. Features such as language switch and the updating
of languages at run-time are rather sophisticated in this research area, and not
many systems offer these features [4,12,19,20]. However, some language work-
benches do provide these functionalities, such as Racket [13], Neverlang [30]
and Spoofax [18]. Racket provides special syntax for defining languages and its
implementation is based on macros. Language definitions are macro-expanded

120 M. Cimini

into Racket’s core functional language. Spoofax and Neverlang have an internal
ad hoc representation of languages. Languages can be accessed and updated at
run-time in Neverlang, for example, making use of the run-time loading features
of the JVM to add parts to languages represented as objects. To our knowl-
edge, lang-n-play is the only language-oriented system that is implemented in
higher-order logic programming.

lang-n-play is not more expressive than other systems. The goal of this
paper is not to provide a system that surpasses the state of the art. lang-n-play
is also a young tool (2018) compared to the mentioned systems, some of which
boast decades of active development. The goal of our paper is, instead, about the
effectiveness of higher-order logic programming in language-oriented program-
ming. It is hard to compare our implementation to others at a quantitative level
(lines of code) because systems such as Racket, Neverlang and Spoofax are very
large and mature systems that offer all sorts of language services. We were not
able to single out an isolated meaningful part of these systems to compare with
our interpreter. Nonetheless, we believe that it is generally remarkable that we
could implement the interpreter of a full language-oriented programming lan-
guage with sophisticated features in 73 lines of code.

9 Conclusion

This paper describes the compilation methods that we have adopted in the
implementation of lang-n-play, and provides evidence that high-order logic
programming can be a great fit for implementing language-oriented systems.

The following aspects of higher-order logic programming have been particu-
larly fitting:
(We add numbers, as some features have been helpful in more than one way).

– Formulae as first-class citizens #1: List of formulae naturally models lan-
guage definitions in operational semantics, providing a readily available run-
time data type. This makes it easy to implement operations that manipulate
languages (such as union and rule removal) during execution.

– Formulae as first-class citizens #2: It models naturally the switch of eval-
uation strategy at run-time. This is thanks to the fact that we can pass
premises to rules. These premises may or may not add new conditions under
which existing rules can fire.

– Hypothetical reasoning #1: It naturally models the execution of a program
with a given operational semantics, possibly created at run-time.

– Hypothetical reasoning #2: It naturally models the switch from executing a
program using a language to executing another program using an extension
of that language.

In the future, we would like to strengthen our message by implementing
further operations on languages using high-order logic programming. We would
like to implement operations such as language unification and restriction [11],
grammar inheritance, language embedding, and aggregation from the Manticore

Effectiveness of HOLP in LOP 121

system [21], and renaming and remapping from Neverlang [30]. There is notable
work in [5,22,23] on inferring the dependencies of languages, which we also plan
to implement.

Some systems compile languages and programs into proof assistants. For
example, Ott compiles into Coq, HOL and Isabelle [28], so that users can carry
out proofs in these systems. Currently, lang-n-play compiles into λProlog
solely to execute programs. However, a subset of λProlog is also the specification
language of the proof assistant Abella [1]. In the future, we would like to explore
the verification of lang-n-play programs after compilation to λProlog/Abella
code.

We point out that language workbenches offer a variety of editor services
among syntax colouring, highlighting, outlining, and reference resolution, to
name a few. Currently, lang-n-play is not equipped with a comfortable IDE.
Inspired by the work on language workbenches, we would like to improve the
usability of our system.

References

1. Baelde, D., et al.: Abella: a system for reasoning about relational specifications.
Journal of Formalized Reasoning 7(2) (2014). https://doi.org/10.6092/issn.1972-
5787/4650. http://jfr.unibo.it/article/download/4650/4137

2. Bogdanas, D., Rosu, G.: K-Java: a complete semantics of Java. In: Proceedings of
the 42nd Symposium on Principles of Programming Languages, pp. 445–456. ACM
(2015). https://doi.org/10.1145/2676726.2676982

3. Bousse, E., Degueule, T., Vojtisek, D., Mayerhofer, T., Deantoni, J., Combemale,
B.: Execution framework of the gemoc studio (tool demo). In: Proceedings of the
2016 ACM SIGPLAN International Conference on Software Language Engineering
SLE 2016, pp. 84–89. ACM, New York (2016)

4. van den Brand, M.G.J., et al.: The Asf+Sdf meta-environment: a component-
based language dvelopment environment. In: Wilhelm, R. (ed.) CC 2001. LNCS,
vol. 2027, pp. 365–370. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-45306-7 26

5. Butting, A., Eikermann, R., Kautz, O., Rumpe, B., Wortmann, A.: Modeling lan-
guage variability with reusable language components. In: Proceedings of the 22nd
International Systems and Software Product Line Conference SPLC 2018. ACM,
New York (2018)

6. Cimini, M.: Lang-n-play: a functional programming language with languages as
first-class citizens (2018). https://github.com/mcimini/lang-n-play

7. Cimini, M.: Languages as first-class citizens (vision paper). In: Proceedings of the
11th ACM SIGPLAN International Conference on Software Language Engineering
SLE 2018, pp. 65–69. ACM, New York (2018). https://doi.org/10.1145/3276604.
3276983

8. Dmitriev, S.: Language oriented programming: the next programming paradigm
(2004). http://www.onboard.jetbrains.com/is1/articles/04/10/lop/mps.pdf

9. Dunchev, C., Guidi, F., Coen, C.S., Tassi, E.: ELPI: fast, embeddable, \lambda
prolog interpreter. In: Proceedings of the Logic for Programming, Artificial Intel-
ligence, and Reasoning - 20th International Conference, LPAR-20 2015, Suva,
Fiji, 24–28 November 2015, pp. 460–468 (2015). https://doi.org/10.1007/978-3-
662-48899-7 32

https://doi.org/10.6092/issn.1972-5787/4650
https://doi.org/10.6092/issn.1972-5787/4650
http://jfr.unibo.it/article/download/4650/4137
https://doi.org/10.1145/2676726.2676982
https://doi.org/10.1007/3-540-45306-7_26
https://doi.org/10.1007/3-540-45306-7_26
https://github.com/mcimini/lang-n-play
https://doi.org/10.1145/3276604.3276983
https://doi.org/10.1145/3276604.3276983
http://www.onboard.jetbrains.com/is1/articles/04/10/lop/mps.pdf
https://doi.org/10.1007/978-3-662-48899-7_32
https://doi.org/10.1007/978-3-662-48899-7_32

122 M. Cimini

10. Ellison, C., Rosu, G.: An executable formal semantics of C with applications.
In: Field, J., Hicks, M. (eds.) Proceedings of the 39th Symposium on Principles
of Programming Languages, pp. 533–544. ACM (2012). https://doi.org/10.1145/
2103656.2103719

11. Erdweg, S., Giarrusso, P.G., Rendel, T.: Language composition untangled. In:
LDTA 2012, pp. 7:1–7:8. ACM, New York (2012)

12. Erdweg, S., Rendel, T., Kästner, C., Ostermann, K.: SugarJ: library-based syn-
tactic language extensibility. SIGPLAN Not. 46(10), 391–406 (2011). https://doi.
org/10.1145/2076021.2048099. http://doi.acm.org/10.1145/2076021.2048099

13. Flatt, M., PLT: reference: racket. Technical report PLT-TR-2010-1. PLT Design
Inc. (2010). https://racket-lang.org/tr1/

14. Fowler, M.: Language workbenches: the killer-app for domain specific languages?
(2005). http://www.martinfowler.com/articles/languageWorkbench.html

15. Gabbay, D., Reyle, U.: N-prolog: an extension of prolog with hypo-
thetical implications I. J. Logic Program. 1(4), 319–355 (1984).
http://www.sciencedirect.com/science/article/pii/0743106684900293

16. Goodman, N.D., Stuhlmüller, A.: The design and implementation of probabilistic
programming languages (2014). http://dippl.org. Accessed 10 Feb 2020

17. JetBrains: JetBrains MPS - Meta Programming System. http://www.jetbrains.
com/mps/

18. Kats, L.C.L., Visser, E.: The spoofax language workbench: rules for declarative
specification of languages and ides. In: OOPSLA, vol. 45, pp. 444–463. ACM, New
York, October 2010. http://doi.acm.org/10.1145/1932682.1869497

19. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+ a fully configurable multi-user and
multi-tool CASE and CAME environment. In: Constantopoulos, P., Mylopoulos,
J., Vassiliou, Y. (eds.) CAiSE 1996. LNCS, vol. 1080, pp. 1–21. Springer, Heidelberg
(1996). https://doi.org/10.1007/3-540-61292-0 1

20. Kienzle, J., et al.: Concern-oriented language development (COLD): fostering reuse
in language engineering. Comput. Lang. Syst. Struct. 54, 139–155 (2018)

21. Krahn, H., Rumpe, B., Völkel, S.: MontiCore: a framework for compositional devel-
opment of domain specific languages. Int. J. Softw. Tools Technol. Transf. 12(5),
353–372 (2010). https://doi.org/10.1007/s10009-010-0142-1

22. Kühn, T., Cazzola, W., Olivares, D.M.: Choosy and picky: configuration of lan-
guage product lines. In: Proceedings of the 19th International Conference on Soft-
ware Product Line SPLC 2015, pp. 71–80. ACM, New York (2015). https://doi.
org/10.1145/2791060.2791092. http://doi.acm.org/10.1145/2791060.2791092

23. Méndez-Acuña, D., Galindo, J.A., Degueule, T., Combemale, B., Baudry, B.:
Leveraging software product lines engineering in the development of external DSLs:
a systematic literature review. Comput. Lang. Syst. Struct. 46, 206–235 (2016).
https://doi.org/10.1016/j.cl.2016.09.004

24. Miller, D., Nadathur, G.: Programming with Higher-Order Logic, 1st edn. Cam-
bridge University Press, New York (2012)

25. Pfenning, F., Elliott, C.: Higher-order abstract syntax. SIGPLAN Not. 23(7), 199–
208 (1988). https://doi.org/10.1145/960116.54010

26. Pfenning, F., Schürmann, C.: System description: twelf—a meta-logical frame-
work for deductive systems. CADE 1999. LNCS (LNAI), vol. 1632, pp. 202–206.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48660-7 14

27. Rosu, G., Şerbănuţă, T.F.: An overview of the K semantic framework. J. Logic
Algebraic Program. 79(6), 397–434 (2010)

https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2103656.2103719
https://doi.org/10.1145/2076021.2048099
https://doi.org/10.1145/2076021.2048099
http://doi.acm.org/10.1145/2076021.2048099
https://racket-lang.org/tr1/
http://www.martinfowler.com/articles/languageWorkbench.html
http://www.sciencedirect.com/science/article/pii/0743106684900293
http://dippl.org
http://www.jetbrains.com/mps/
http://www.jetbrains.com/mps/
http://doi.acm.org/10.1145/1932682.1869497
https://doi.org/10.1007/3-540-61292-0_1
https://doi.org/10.1007/s10009-010-0142-1
https://doi.org/10.1145/2791060.2791092
https://doi.org/10.1145/2791060.2791092
http://doi.acm.org/10.1145/2791060.2791092
https://doi.org/10.1016/j.cl.2016.09.004
https://doi.org/10.1145/960116.54010
https://doi.org/10.1007/3-540-48660-7_14

Effectiveness of HOLP in LOP 123

28. Sewell, P., et al.: Ott: effective tool support for the working semanticist. In: Pro-
ceedings of the 12th ACM SIGPLAN International Conference on Functional Pro-
gramming ICFP 2007, pp. 1–12. ACM, New York (2007)

29. Stefanescu, A., Park, D., Yuwen, S., Li, Y., Rosu, G.: Semantics-based program ver-
ifiers for all languages. In: Proceedings of the 2016 ACM SIGPLAN International
Conference on Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA 2016, part of SPLASH 2016, Amsterdam, The Netherlands, 30
October–4 November 2016, pp. 74–91 (2016). https://doi.org/10.1145/2983990.
2984027

30. Vacchi, E., Cazzola, W.: Neverlang: a framework for feature-oriented language
development. Comput. Lang. Syst. Struct. 43, 1–40 (2015)

31. Ward, M.P.: Language oriented programming. Softw.-Concepts Tools 15, 147–161
(1995)

https://doi.org/10.1145/2983990.2984027
https://doi.org/10.1145/2983990.2984027

	On the Effectiveness of Higher-Order Logic Programming in Language-Oriented Programming
	1 Introduction
	2 Higher-Order Logic Programming
	3 Basic Overview of Lang-n-Play
	4 Defining Languages
	4.1 Prolog Implementation of Language Definitions

	5 Operations on Languages
	6 Executing Programs and Language Switch
	7 Valuehood Abstractions
	8 Related Work
	9 Conclusion
	References

