
Implementing, and Keeping in Check,
a DSL Used in E-Learning

Oliver Westphal(B) and Janis Voigtländer

University of Duisburg-Essen, Duisburg, Germany
{oliver.westphal,janis.voigtlaender}@uni-due.de

Abstract. We discuss a DSL intended for use in an education setting
when teaching the writing of interactive Haskell programs to students.
The DSL was previously presented as a small formal language of speci-
fications capturing the behavior of simple console I/O programs, along
with a trace-based semantics. A prototypical implementation also exists.
When going for productive application in an actual course setting, some
robustness and usability questions arise. For example, if programs writ-
ten by students are mechanically checked and graded by the implemen-
tation, what guarantees are there for the educator that the assessment is
correct? Does the implementation really agree with the on-paper seman-
tics? What else can inform the educator’s writing of a DSL expression
when developing a new exercise task? Which activities beyond testing
of student submissions can be mechanized based on the specification
language? Can we, for example, generate additional material to hand
to students in support of task understanding, before, and feedback or
trusted sample solutions, after their own solution attempts? Also, how
to keep the framework maintainable, preserving its guarantees when the
expressiveness of the underlying DSL is to be extended? Our aim here is
to address these and related questions, by reporting on connections we
have made and concrete steps we have taken, as well as the bigger picture.

1 Introduction

We previously presented a small formal specification language for describing
interactive behavior of console I/O programs [12]. Given such specifications,
we can check whether some candidate program has the specified behavior by
repeatedly running the program and matching its traces against the specification,
thus either finding a counterexample or gaining sufficient confidence that the
program behaves as desired. We plan to use this approach of specification and
testing to automatically grade student submissions on the subject of writing
interactive programs [8] in our Haskell programming course, and therefore we
are developing an implementation. The goal of the implementation is to not only
get a working version of the on-paper definitions but a DSL-based framework
that makes it easy to design and adapt exercise tasks for use in an e-learning
system [9,11].

c© Springer Nature Switzerland AG 2020
K. Nakano and K. Sagonas (Eds.): FLOPS 2020, LNCS 12073, pp. 179–197, 2020.
https://doi.org/10.1007/978-3-030-59025-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59025-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-59025-3_11

180 O. Westphal and J. Voigtländer

Central to this goal is a guarantee that if something different is happening
than an educator is expecting, then that is not the fault of the DSL imple-
mentation itself and instead is therefore fixable by said educator. Moreover,
the educator should not be left alone with their mismatch in expectations. The
framework’s implementation should provide some means for them to investigate
what is actually going on and where they are possibly missing a connection. This
article is about how we can provide such means.

2 Specification Language Overview

Our specification and testing framework consists of four major components:
a way to express specifications that describe read/write behavior of programs,
a notion of traces for capturing program runs, a function to determine whether a
trace represents program behavior that is valid regarding a specification, and a
testing procedure to summarily check programs against specifications.

As an example, take the following program that reads in a natural number
and then that many additional numbers and finally prints their sum:

main :: IO ()
main = do n ← readLn

let loop xs = if length xs == n then print (sum xs)
else do x ← readLn

loop (x : xs)
loop []

A specification for the behavior of this program looks as follows:

[� n]N · ([� x]Z ∠∠∠len(xA) = nC ∠∠∠E)→E · [{sum(xA)} �]

Testing against the specification is done by randomly generating suitable input
sequences (note that for this specification the first input to a program should
always be non-negative) and then comparing each trace resulting from running
the program on such input with the expectation encoded in the specification. The
trace of a program is the sequence of read and written values. For example, given
the inputs 2, 7, 13, the trace of the above program would be ?2 ?7 ?13 !20 stop.
We now give a brief overview of specifications, traces, and what/how we test.

2.1 Specifications

There are three atomic forms of specifications: 0 is the empty specification,
[� x]τ is for reading a value typed by τ ⊆ Z into a variable x, and [Θ �] is for
outputting the result of evaluating any term t ∈ Θ, where Θ represents a set
of possible outputs. Variables are always associated with the lists of all values
previously read into them. Accessing variables, in terms, can then be done in
two different ways: either as xA, giving precisely the list of all read values for x,
or as xC , giving only the last, most current value.

Implementing, and Keeping in Check, a DSL Used in E-Learning 181

Two specifications s1 and s2 can be composed sequentially, denoted by s1 ·s2.
Sequential composition is defined to be associative and to have 0 as the neutral
element. It will often be performed silently by writing just s1s2 instead of s1 ·s2.
By s1 ∠∠∠c ∠∠∠s2 we denote the specification that either requires s1 or requires s2
to be adhered to, depending on which Boolean value the term c evaluates to
under the current variable assignment, where True chooses the branch on the
right. Lastly, s→E

stands for the repetition of specification s until, inside s, the
iteration exit-marker E is encountered, which behaves similarly to the break
command found in many imperative languages (under various names).

2.2 Traces

Traces are sequences m0v0 m1v1 . . . mnvn stop, where n ∈ N, mi ∈ {?, !}, and
vi ∈ Z. Here ?v denotes the reading of the value v and !v denotes the writing
of the value v. Besides these ordinary traces there is also a notion of gener-
alized traces that capture the complete behavior mandated by a specification
for a single concrete input sequence. Basically, generalized traces are traces in
which each output place is a set of all possible outputs a program can make at
that point, potentially including the empty output ε to indicate optionality.1 A
covering relation ≺ relates ordinary traces and generalized ones. If an ordinary
trace t is covered by a generalized trace tg, denoted by t ≺ tg, it means that one
can replace each set of outputs in tg by an element from that set and end up
with t. For example, it holds that ?2 !3 !8 stop ≺ ?2 !{3, 6} !{ε, 7} !{8} stop.

2.3 Acceptance Criterion

The conditions under which a program run, encoded by a trace, is considered
to represent valid behavior regarding a specification are defined by the accept-
function in Fig. 1 (coming straight from [12]): exactly if accept(s, kI)(t,ΔI)
evaluates to True does the ordinary trace t represent behavior valid for speci-
fication s. Here ΔI is the variable assignment mapping each variable occurring
in s to the empty list and a continuation argument k is used to keep track of
the current iteration context. When entering an iteration, we build a new con-
tinuation that either repeats the loop body or restores the previous iteration
context, depending on whether it is called with End or Exit. Calls with Exit or
End, respectively, happen if we encounter an exit-marker E or hit the end of
a specification, i.e., in the case accept(0, k)(t,Δ). The initial continuation kI

takes care of the handling at the top-level of the specification. Hence, kI is only
intended to be called with End at the very end of traversing the specification
overall. It then tests whether the remaining trace equals stop, which indicates
acceptance of the initially given trace; or else the result of accept is False.

1 In the full formulation from [12], consecutive outputs in generalized traces are
additionally normalized into a single output action that chooses from a set of
value sequences. We ignore this detail here in favor of a more straightforward
presentation.

182 O. Westphal and J. Voigtländer

2.4 Testing

For the testing of programs against specifications, the accept-function is not used
directly but is instead modified into a function traceSet that takes a specifica-
tion and describes the set of all generalized traces valid for that specification.
Intuitively, traceSet is obtained from “solving” accept(s, kI)(t,ΔI) for t.

In almost all cases the set of valid generalized traces for a given specification
is infinite. There are two different ways the set of traces can become infinite, one
harmless but the other one not so much. The first way is that we can arbitrarily
choose a value from a potentially infinite set at every input step. This form
of infinity is not really problematic, though, since we can work around it by
sampling traces at random instead of computing all possibilities. The second
way in which a traceSet-result can grow infinitely large is when we consider
a specification that exhibits potentially non-terminating behavior. In this case
sampling does not help us, since we can get stuck in an endless loop. But as
long as we do not choose input values such that the behavior described by a
specification becomes non-terminating, we can compute results of traceSet .2 We
will treat the traceSet-function as a black box here, since its technical details
are not important here. Its correctness in the implementation, of course, is! (See
Sect. 4.)

The actual testing, for some program p and specification s, is done by
repeatedly applying the following steps, resulting in either a counterexample
or increased confidence in the appropriateness of p.

1. Use the traceSet-function to (randomly) sample a generalized trace for s.
2. From this trace, extract the sequence of inputs.
3. Determine whether the ordinary trace resulting from running p on these

inputs is covered by said generalized trace.

3 Comparing Theory and Implementation/Use

Our overall framework is hosted at https://github.com/fmidue/IOTasks. Besides
the source code of the implementation, that repository also contains various
usage examples. Here, let us consider an example task and compare its formu-
lations in the on-paper version and in the implemented DSL. We take the same
example as earlier: reading in a natural number and then as many further integers
as that first number says, and finally printing those integers’ sum. Recall that the
specification [� n]N([� x]Z ∠∠∠len(xA) = nC ∠∠∠E)→E

[{sum(xA)} �] encodes this
behavior. Transliterating it into our DSL (which is an EDSL using deep embed-
ding [3]), we get the following Haskell expression:

2 That is easier said than done. We do at the moment not have a general solution
to reliably generate “suitable” inputs only, beyond simple typing as expressed by
the τ in [� x]τ , and therefore currently rely on using only specifications that do not
involve non-terminating behavior for any well-typed inputs at all.

https://github.com/fmidue/IOTasks

Implementing, and Keeping in Check, a DSL Used in E-Learning 183

accept([� x]τ · s′, k)(t, Δ) =

{
accept(s′, k)(t′, store(x, v, Δ)), if t =?v t′ ∧ v ∈ τ

False , otherwise

accept([Θ �] · s′, k)(t, Δ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

accept([(Θ \ {ε}) �] · s′, k)(t, Δ), if ε ∈ Θ

∨ accept(s′, k)(t, Δ)
accept(s′, k)(t′, Δ) , if ε /∈ Θ ∧ t =!v t′

∧ v ∈ eval(Θ, Δ)
False , otherwise

accept((s1 ∠∠∠c ∠∠∠s2) · s′, k)(t, Δ) =

{
accept(s2 · s′, k)(t, Δ) , if eval(c, Δ) = True
accept(s1 · s′, k)(t, Δ) , otherwise

accept(s→E · s′, k)(t, Δ) = accept(s, k′)(t, Δ)

with k′(cont) =

{
accept(s, k′) , if cont = End
accept(s′, k) , if cont = Exit

accept(E · s′, k)(t, Δ) = k(Exit)(t, Δ)

accept(0, k)(t, Δ) = k(End)(t, Δ)

kI(cont)(t, Δ) =

⎧⎪⎨
⎪⎩
True , if cont = End ∧ t = stop
False , if cont = End ∧ t �= stop
error , if cont = Exit

Fig. 1. Trace acceptance.

readInput "n" nats <>
tillExit (branch (length (getAll "x") == getCurrent "n")

(readInput "x" ints)
exit) <>

writeOutput [sum (getAll "x")]

Here sum :: Num a ⇒ Term [a] → Term a and length :: Term [a] → Term Int are
redefinitions of the respective standard functions in the context of a Term type
constructor. Similarly, getAll and getCurrent have types String → Term [a] and
String → Term a, respectively.3

Values of a Term type can be evaluated under an appropriate variable envi-
ronment via the function evalTerm :: Term a → Environment → a. Our encod-
ing of terms here differs from the original presentation [12], where we used an
applicative-style [7] representation for terms that enabled the usage of normal
Haskell functions in specifications. The new encoding is useful in case we need
access to the syntactic structure of terms (see Sect. 6), as we can preserve this
information in the redefinitions. However, if we do not need such inspection of
terms, redefining standard functions in the new context most likely does not add

3 There are no guarantees that we can actually use a term constructed with getAll or
getCurrent at any particular instantiation for type a. Checks happen at runtime.

184 O. Westphal and J. Voigtländer

any benefit. For this reason, our implementation is suitably polymorphic over
the type constructor for terms used in specifications.

To facilitate checking programs (such as student submissions) against a spec-
ification such as the one seen above, we use an approach presented by Swierstra
and Altenkirch [10] to acquire an inspectable representation of I/O behavior, plus
random testing via QuickCheck [1] to generate test cases and test the candidate
program according to the procedure described in Sect. 2.4.

So far, this is essentially the approach described in our previous work [12]
(apart from the different term representation).4 But how do we guarantee that
the implementation behaves according to the formal on-paper definitions? That
is, if the system tells a student that their submitted solution is correct, is that
really the case? And conversely, does the system only reject wrong submissions
and does it provide valid explanations in each case? In the next section we will
look at exactly these questions. But there are also other important properties
an educator might expect from the framework besides technical correctness.
Generally, when posing tasks using the implemented system, there are various
artifacts in play (some explicit and technical, some more virtual), such as:

– The idea/intention the educator has about what should be done in the task.
In the case of the above example, the idea could be something like “I want
them to realize a simple I/O loop, so they should write a program that reads
a number and then as many further numbers and finally prints a sum.”

– The DSL expression (and possibly additional data) capturing, hopefully, the
desired behavior.

– The verbal task description handed to students (“Write a program which
. . . ”).

– A sample solution; for sanity checking and possibly for later also being handed
to students.

– Any supporting material the students get as part of the task description. For
example, a run of the sample solution on some specific input sequence.

All of these and potentially further artifacts must be kept in sync with each other
in order to arrive at a consistent and usable exercise task. Therefore, we want
to provide support for making sure that they indeed are in sync. One potential
way to achieve this consistency is to generate some artifacts from others, along
with correctness guarantees/arguments for those generators. Another way is to
establish processes the educator follows in creating some artifacts either in iso-
lation or together. For example, we can check different hand-written artifacts
against each other inside the system itself. A simple example would be to check
if a sample solution is accepted by the task specification in DSL form.

We will come back to such issues later. After establishing confidence in the
technical core of the implementation, we will show that there are indeed cer-
tain provisions an educator can employ to support and verify their usage of

4 A live online demonstration of the prototype implementation for that previous article
is available at https://autotool.fmi.iw.uni-due.de/tfpie19, showcasing the approach.
(Note that this demo still uses applicative-style terms.)

https://autotool.fmi.iw.uni-due.de/tfpie19

Implementing, and Keeping in Check, a DSL Used in E-Learning 185

the framework. For now, Fig. 2 shows our current “bigger picture”. The dashed
arrows represent activities (creation of artifacts etc.) by the educator, while most
of the solid arrows represent technical flow, i.e., where the implementation/sys-
tem is active. As can already be seen, there are various connections between
some source and some target that can be realized via different routes, indicating
opportunities for automatic support of educator activities. We will come back
to specific ingredients later on.

Fig. 2. Artifacts and flow.

4 Validating the Implementation

The guarantees we are going to provide to users of our implementation rely
on the correctness of the technical core of the system, i.e., of the components
involved in testing solution candidates against specifications. As described earlier
(Sect. 2.4), testing is done by repeatedly sampling from the set of generalized
traces for a specification and checking if the program under testing produces a
matching trace for the same input sequence. The actual semantics of when a
specification and a trace match is given by the Boolean-valued accept-function
defined on specification-trace-pairs (see Fig. 1). The relationship between that
semantics and the testing approach is stated as follows [12]:

Let s ∈ Spec and t ∈ Tr , then accept(s, kI)(t,ΔI) = True if and only if there
exists a tg ∈ traceSet(s, kT

I)(ΔI) such that t ≺ tg.

The implementation thus does not need to rely on the accept-function to do
the testing. However, implementing accept anyway gives us a way to check, even

186 O. Westphal and J. Voigtländer

programmatically to some extent (i.e., mechanically testing the test framework),
whether the implementation behaves according to the on-paper definitions:

– The accept-function can be translated almost verbatim to a Haskell program.
– It is clear, from code inspection/review of this program, that both the Haskell

and the on-paper version of accept compute the same function.
– Therefore, any implementation of the testing approach, no matter how tech-

nically involved, can be validated using the accept-semantics and turning
the statement displayed above into an automatically checkable property or
properties.

This reasoning does not just establish the connection between the implemented
traceSet-function and the on-paper semantics but “in the other direction” also
validates that the test framework assesses student submissions correctly.

While the reasoning above is, of course, no substitute for a formal correct-
ness proof, it can still provide us with some confidence that an implementation
of traceSet behaves correctly. For example, we test properties derived via this
approach in our continuous integration setup. Due to that, we can refactor and
extend our implementation with confidence and do not need to worry about its
correctness after each change. Since at the moment we are mainly interested
in exploring different features and implementation details for our framework,
validating correctness through automatic tests is sufficient for us so far.

To automatically test that an implementation of traceSet behaves as stated
above, we need to check two properties corresponding to the two directions of
the bi-implication in the statement relating it to accept . The first one is:

1. If we have a specification s and a trace t such that accept(s)(t) holds5, then the
generalized trace tg sampled from traceSet(s) for the specific input sequence
found in t has to cover t.

To check this property, we need access to a source of pairs of specifications and
traces for which accept(s)(t) = True. Systematically building such pairs is not
exactly easy. Therefore, our testing of this property currently relies on checking
it for hand-written examples, i.e., on unit tests. Instead of writing down specific
traces that match a given specification, one can also use full, known to be correct,
programs and check that the testing procedure, usually employed for student
submissions, never finds any counterexample. This way, one can view each of
these unit tests as a very specific property test encoding a weakened version of
the above property; the testing procedure itself will still use random inputs.

Fortunately, the property corresponding to the converse direction is far easier
to check on a wide range of test cases. That property can be stated as follows:

2. For a specification s, sample a generalized trace using traceSet . From this
generalized trace tg, build an ordinary trace t by randomly replacing each
output set in tg by an element of that set (potentially dropping the output
there altogether if ε is chosen). Since, by construction, those are exactly the
t that are covered by tg, now accept(s)(t) has to evaluate to True.

5 For notational simplicity, we leave out the continuation and environment here.

Implementing, and Keeping in Check, a DSL Used in E-Learning 187

Since the only input to this property is a specification s without any further
requirements, we are not limited to carefully hand-crafted test cases here but
can instead use randomly generated specifications.

Randomly generated specifications have further uses as well. For example,
they can be used for certain regression tests, for sanity checking of structural
properties of the DSL that we do expect to hold, but which are not explicit
from, say, the definition of the accept-semantics, such as that specifications form
a monoid via sequential composition and neutral element 0, and even for checking
more involved properties of the operations of the specification language, such as
the not immediately obvious (but semantically important) equivalence between
s→E

and (s · s→E · E)→E

. They also help tie together further components of
the overall framework/system under development; see Sect. 5. We even envision
to use randomly generated specifications for creating random exercise tasks, in
particular in connection with other ideas from Sect. 6 and beyond. So let us
make explicit our current strategy for randomly generating specifications here.

4.1 Randomly Generating Specifications

While the basic structure of specifications is fairly simple and does generally not
need to fulfill any invariants, there are two non-trivial aspects to randomly gener-
ating specifications: terms in general and loops and their termination in particular.
First of all, one needs to decide on a set of available functions that can appear in
terms. Then, terms can be generated according to this grammar:6

〈term〉 ::= 〈function〉 〈terms〉
| 〈var〉
| 〈literal〉

〈terms〉 ::= 〈term〉 〈terms〉
| 〈term〉

〈var〉 ::= getAll 〈id〉
| getCurrent 〈id〉

For loops, we can use the same grammar to generate a condition, but it might
be necessary to restrict the set of available functions even further. Otherwise, the
generated loop might not be guaranteed to make progress toward termination,
therefore leaving us with a specification describing non-terminating behavior.
Given the right constraints on the available functions, we can build a termi-
nating loop from three random specifications s1, s2, s3. Our loop skeleton has
the form (s1 · (s2 ∠∠∠? ∠∠∠s3))→E

, i.e., s1 is a common prefix for every iteration
round. Note that we do not have a suffix sequentially after the branching. Since
we will insert an exit-marker into one of the branches, a suffix would only ever
be used after the branch without that marker. Therefore, it can always be suf-
fixed to that branch. Now we generate a condition c and a specification s∗ that
guarantees progress toward evaluating c to True. Then our terminating loop is
(s1 · (s∗

2 ∠∠∠c ∠∠∠(s3 · E)))→E

, where s∗
2 is the result of inserting s∗ into s2 at a

random position.7 Alternatively, we can also negate the condition and use the

6 Of course, one has to take scoping and types into account as well.
7 More precisely, we choose a random and unconditionally reached position.

188 O. Westphal and J. Voigtländer

loop (s1 · ((s2 ·E)∠∠∠not(c) ∠∠∠s∗
3))

→E

. A simple way to generate the condition and
the progressing specification is to manually define a set of condition and pro-
gression pairs and then choose elements of this set at random. For example, we
could have a pair with condition len(xA) > n, for some n > 0 and variable x,
and specification [� x]Z. Reading into x guarantees that len(xA) is increasing,
eventually exceeding n. Choosing this condition-progression-pair and assuming
s1 = [� y]N, s2 = [{ε, 2 · yC} �][{sum(yA)} �], and s3 = 0, we could insert the
progressing [� x]Z between the two outputs of s2 and get:

([� y]N · (([{ε, 2 · yC} �][� x]Z[{sum(yA)} �])∠∠∠len(xA) > n ∠∠∠0 · E))→E

This method of generating termination conditions relies heavily on the set of
hand-written conditions and their respective progressing specifications. In gen-
eral, the ability to catch implementation errors through testing with randomly
generated specifications depends on the possible terms we generate. Consider, for
instance, these five specifications generated by our implementation as described:

([{len(yA)} �][� z]Z(E∠∠∠not(len(xA) > 1) ∠∠∠[� x]Z))→E

[� n]Z[{nC} �][{nC − nC , nC} �](0∠∠∠null(xA) ∠∠∠[�m]Z)

[�m]Z([� n]Z ∠∠∠len(nA) > 0 ∠∠∠E)→E

[{ε, sum(mA),mC} �]

[{sum(mA)} �](([�m]Z ∠∠∠null(mA) ∠∠∠0)∠∠∠len(xA) = len(nA) ∠∠∠[�m]Z)

[{ε, sum(zA)} �][� n]Z(0∠∠∠len(xA) < nC ∗ nC ∠∠∠([� y]Z ∠∠∠nC = nC ∗ nC ∠∠∠0))

Clearly, most of the generated specifications do not resemble anything a user of
the language would write. But for testing an implementation such specifications
are precisely what we want, as they potentially trigger edge cases outside the
implementer’s imagination. We could, of course, attach additional constraints
to the generation of specifications. However, too much restricting might lead to
some errors never being triggered. On the other hand, restrictions can lead to
more useful specifications that resemble actual use cases. For example, it might
be a good idea to not allow terms like xC = xC in a branching condition when
generating specifications for usage in exercise tasks (see Sect. 6), but during
validation of an implementation one might explicitly want such edge cases.

5 Empowering the Educator: An Interpreter Semantics

A central problem an educator might have when writing specifications in the
DSL so far is the fact that there is no direct way to inspect what behavior a
specification represents. When writing normal programs, we are used to a fun-
damentally different situation: during development we can execute a candidate
(the current program version) and play around with different inputs to confirm
that we are actually on the right track.

Implementing, and Keeping in Check, a DSL Used in E-Learning 189

In order to get the same possibility when developing specifications, we wanted
an interpreter that given a specification behaves exactly like a program matching
that specification would. Essentially, the desire is for a function of the following
type: [[·]] :: Specification → IO (). Since specifications conceptually use a global
variable environment, our interpreter has to be stateful as well, even beyond the
“I/O state”. Also, in order to correctly terminate loops, some way to abort a run-
ning program part and to recover from such an abort would be handy, to emulate
behavior similar to a break command. Thus motivated, and in order to keep the
interpreter’s structure itself simple, we do not target IO () directly but instead
the interpreter produces a value of type Semantics (), which is declared as follows:

newtype Semantics a = Semantics {runSemantics
:: Environment → IO (Either Exit a,Environment)}

data Exit = Exit
type Environment = [(String, [Int])]

The Semantics type constructor is a monad, in fact, an inlined version of the
following monad transformer stack [6]: ExceptT Exit (StateT Environment IO).
Thus, it provides us with at least the operations readLn, print , gets, modify ,
throwError , and catchError . These operations give us everything we need to
manage a global state and to abort loops in a convenient way. Additionally
using the function evalTerm discussed in Sect. 3, as well as

store :: String → Int → Environment → Environment

for the actual updating of environments, the interpreter is then defined thus:

[[·]] :: Specification → Semantics ()
[[0]] = return ()
[[s1 · . . . · sn]] = do [[s1]]

...
[[sn]]

[[[� x]τ]] = modify ◦ store x =<< readLn
[[[{ε, . . . } �]]] = return ()
[[[{t, . . . } �]]] = print =<< gets (evalTerm t)
[[s→E

]] = let loop = do [[s]]
loop

in catchError loop (λExit → return ())
[[s1 ∠∠∠c ∠∠∠s2]] = ifM (gets (evalTerm c)) [[s2]] [[s1]]
[[E]] = throwError Exit

To get a runnable IO computation from a specification, we can start the inter-
preter with an empty environment and ignore both a potential Exit value and
the final environment as follows:

190 O. Westphal and J. Voigtländer

buildComputation :: Specification → IO ()
buildComputation s = void (runSemantics [[s]] (map (, []) (vars s)))

Interestingly, and usefully, the interpreter can also be seen as an alterna-
tive formulation of the semantics of specifications in the first place: to under-
stand what behavior a specification is representing, understanding either the
accept-function or the interpreter semantics suffices. For someone already with
a good grasp of Haskell and monads, the latter option could be substantially
more attractive. That is, the target audience for the interpreter semantics are
certainly not our students taking the course, but neither is that the case for the
accept-function. Consider, though, the situation of handing the job of creating
new exercise tasks to teaching assistants, which in our case could be advanced
students from previous years. They need to be able to very clearly understand
the semantics of the DSL in order to be successful at task creation. The accept-
function is probably not for them, but they can certainly work informed by [[·]] as
given above. The accept-function, on the other hand, as the more mathematical
and less programmatical foundation, is relevant in the background when extend-
ing the overall framework, devising new testing and feedback methods, etc.

These considerations rely on the accept-function and the interpreter seman-
tics being equivalent, and obviously just claiming that they are is not very con-
vincing. But fortunately we can formulate a simple, mechanically checkable,
property that relates the interpreter to the accept-function. This property states
that every interpretation of a specification has to lead to a computation that can
only produce traces acceptable by that specification. We can capture it thus:

prop :: Specification → Property
prop s = buildComputation s ‘satisfiesAccept ‘ s

Of course, it is basically just a play on normal correctness checking of candidate
solutions (the candidate now not being a student submission but an interpreter
call). In order to check this property automatically, randomly generated specifi-
cations (see Sect. 4.1) come in handy again.

Note that the above property covers only the soundness of the interpreter.
It does not test whether every valid trace for the given specification can be
generated by the interpretation result. Looking at the interpreter’s definition
as a deterministic definition, the resulting program clearly cannot, in general,
produce all traces the specification would accept, since we always choose one
particular value to output and discard all other possibilities. In order for the
interpreter to act as a semantics alternative to accept , we need to view it as
containing some form of non-determinism. For example, we can interpret the
selection of an element from the set of possible outputs as a random choice or
change the definition to ultimately produce a list of all possible combinations of
choices. (We have not done any of that yet.)

6 Further Support: Validation and Program Generation

Recall that for each exercise task there are five artifacts that an educator might
need to keep consistent (see Sect. 3): the general idea of what the task is to be

Implementing, and Keeping in Check, a DSL Used in E-Learning 191

about, the specification expression used for testing, a task description for stu-
dents, a sample solution, and additional material like example runs of programs.

In the previous section we have shown how to run a specification as if it
were a program. Thus we already have an automated way to create a correctly
behaving computation from a given specification and use it to drive example
runs. This interpreting of specifications does not yet cover our need for a sample
solution, though, since we do not directly get any actual program code that could
be shown to students. What we have instead is a way for an educator to validate
their own sample solution by comparing it to both the interpreted and the actual
specification (via the testing procedure). By doing so, the educator can validate
that their idea for the task matches the written specification, since a mismatch
between these two might manifest as a mismatch in observed behavior between
“solutions”.

Now the last artifact (as per Sect. 3, Fig. 2) that is not yet connected to
the others in any systematic way is the description of the task as handed to
students. Up front, it might seem quite impossible to automatically generate
any reasonably formulated task description. But if we shift our focus away from
classic verbal descriptions, instead to tasks that require the re-implementation
of some (imperative) program with Haskell, then generating task descriptions
gets way easier. For example, we might want to pose tasks of the form “Write
a Haskell program that has the same behavior as the following Python program
. . . ” (building on the students’ knowledge from their introductory programming
course), and then we just need to be able to automatically generate Python code
from a specification expression. Such tasks are not generally what one always
wants, but they work well when the goal is to highlight the differences between
I/O in Haskell and in languages with mainly ambient effects [2]; concerning type
distinctions between pure and impure expressions, syntactic differences like the
two relevant forms of binding in Haskell’s do-blocks, let vs. ←, etc.

To actually generate the Python code needed, we can define a translation
function similar in structure to our interpreter from the previous section:

[[0]] = pass
[[s1 · ... · sn]] = [[s1]]

...
[[sn]]

[[[� x]τ]] = xA += [int(input())]

True

[[[{ε, . . . } �]]] = pass
[[[{t, . . . } �]]] = print(�t�)
[[s→E

]] = while :
[[s]]

[[s1 c s2]] = if �c� :
[[s2]]

else :
[[s1]]

[[E]] = break

192 O. Westphal and J. Voigtländer

The target domain is now not a type of I/O semantics but actual syntactic
program text. Additionally to the program text emitted by the above translation
function, we also need to prepend an initialization xA = [] for each variable x used
in the specification. Moreover, 	t
 as used above means to replace all variable
occurrences of the form xC in a term t by xA[−1]. Note that in order for the
translation to be carried out automatically, we need access to the structure of
terms used for outputs and for branching. Otherwise we could not generate
textual descriptions, including the replacement of certain variable occurrences
via 	t
. Our implementation of the specification language therefore provides an
appropriate representation of terms, as mentioned in Sect. 3.

Applying the code generation procedure to our earlier example specifica-
tion [� n]N([� x]Z ∠∠∠len(xA) = nC ∠∠∠E)→E

[{sum(xA)} �], we obtain the follow-
ing Python program:

n A = []
x A = []

n A += [int (input ())]
while True :

i f len (x A) == n A[−1] :
break

else :
x A += [int (input ())]

print (sum(x A))
Even though this program has the intended behavior, it is not an ideal pro-

gram to hand to students. Due to the compositional nature of the translation,
the resulting program code does not generally exploit any information regarding
the overall structure of the specification. Thus, we end up with programs that do
not necessarily adhere to good programming practice. It is possible to manip-
ulate such programs further or to optimize the process generating them. For
example, if for some variable x the operation 	·
 never (throughout the whole
processing above) encountered variant xA, then for that variable we can use
a simple version xC only, without initialization and without altering it in 	·
,
and xC = int(input()) instead of xA += [int(input())] in translations of input
operations for it. Doing so for the example used above, we would end up with:

x A = []

n C = int (input ())
while True :

i f len (x A) == n C:
break

else :
x A += [int (input ())]

print (sum(x A))

Implementing, and Keeping in Check, a DSL Used in E-Learning 193

This program is still not ideal and further improvements are needed before we can
use such artifacts for programming education. One of the most obvious improve-
ments would be to detect special cases like “while True: if ... break else: ... ”
and to transform them into other while-loops with an explicit loop condition.
We have not done any deeper investigations into this area, as of yet, but defi-
nitely plan to do so in the future since we see a lot of potential for automatic
task generation based on this approach.

An important difference to the previous section is that the target audience
for the generated Python code are indeed the students taking the course. And
certainly the code generation approach advocated here is not limited to Python
programs. Alternatively to interpreting a specification as a Haskell value in a
semantics type as in the previous section, we could also emit the actual program
text there, given a printable representation of the Terms used by the specification
exists. We have not implemented this Haskell version of the code generation yet,
but by looking at the definition of the interpreter one could imagine translating
the DSL expression

readInput "n" nats <>
tillExit (branch (length (getAll "x") == getCurrent "n")

(readInput "x" ints)
exit) <>

writeOutput [sum (getAll "x")]

to the following program:

prog :: Semantics ()
prog = do

modify ◦ store "n"=<< readLn
let loop = do ifM (gets (evalTerm (

length (getAll "x") == getCurrent "n")))
(throwError Exit)
(modify ◦ store "x"=<< readLn)

loop
catchError loop (λExit → return ())
print =<< gets (evalTerm (sum (getAll "x")))

In principle, this translation could let an educator automatically generate a cor-
rect sample solution. However, in the above form this approach does not lend
itself directly for generating sample solutions presentable to students, even less
so than for the case of targeting Python. Not only is the usage of the state and
exception monads nowhere near an idiomatic solution for such a simple specifi-
cation; they also make it somewhat difficult to identify the actually interesting
part of the computation here. But by inlining the monad transformer operations
and simplifying the resulting program, the educator could systematically derive
a presentable program. It might even be possible to do this derivation fully
automatically with the use of some program analysis and transformations, also
including specialized simplification strategies as mentioned for Python above.

194 O. Westphal and J. Voigtländer

Again, we have not done any deeper exploration on such transformations yet,
but will do so in the future.

7 Putting It All Together

To summarize, let us once again consider our running example and go through
the steps we would take to implement the task inside the presented framework.

The first step is coming up with an idea for what the task should be. For
our summation example, the idea might be formulated as follows: “We want
students to realize a simple I/O loop, so they should write a program that reads
a number and then as many further numbers and finally prints a sum.” Next,
we write a task description, a specification, and a sample solution based on this
idea:

“Write a program which first reads a
positive integer n from the console,
then reads n integers one after the
other, and finally outputs their sum.”

[� n]N([� x]Z len(xA) = nC E)→
E

[{sum(xA)} �]

main = do
n ← readLn
let loop xs =

if length xs == n
then print (sum xs)
else do
x ← readLn
loop (x : xs)

loop []

To verify that these components are consistent with each other and our idea,
we now use the different connections shown in Fig. 2 to relate them to each
other. First off, we can run both our sample solution and the specification, using
the interpreter, on some sample inputs to see if their behavior matches our
idea of the task as well as each other. Next, we use the testing procedure to
make sure that the sample solution fulfills the specification. If all these checks
are successful, we can be confident that the idea, the sample solution, and the
specification are indeed consistent. What is left is validating the written task
description. Without the ability to automatically generate useful descriptions,
or when hand-written descriptions are preferable, this has to be done by the
usual careful inspection of the description.

With confidence in the consistency established, we can then generate sup-
porting material; for example, we can give a run of the sample solution on some
specific input. For instance, we can add the following line to our task description:
“Example: After reading 2, 7, and 13, your program should print 20.”

We cannot yet report on any concrete experience using this workflow, as we
will only start using it in the upcoming iteration of our Haskell course.

One interesting detail to note is the fact that the presented approach is, in
principle, not limited to tasks dealing with I/O. Given a suitable specification
language and testing framework, the basic idea of (semi-)automatically generat-
ing artifacts and cross-validating them against manually created ones, and each
other, is certainly applicable in other settings as well.

Implementing, and Keeping in Check, a DSL Used in E-Learning 195

8 Related Work

As mentioned in Sect. 3, our implementation builds upon an inspectable rep-
resentation of side-effecting programs [10]. The Haskell IOSpec library8 imple-
ments such representations not only for console I/O but supports also forking
processes, mutable references, and software transactional memory. However, it
only features a very minimal API. Also, no higher-level abstractions currently
exist.

Another tool for testing stateful computations is the state machine version of
QuickCheck for Erlang [4,5].9 Instead of testing specific programs, like we do, it
can be used to test stateful APIs. Behavior is specified as a semantic model, given
in Erlang, of the API together with pre- and post-conditions for each stateful
action. Testing is then done by generating random sequences of actions based
on the pre-conditions and checking the result of the actual API calls against the
model and post-conditions. Any found sequence of API calls that differs from
the semantic model is shrunk to provide a small counterexample.

9 What Next?

We have an implementation of the specification language from earlier work [12]
along with supporting components, correctness checkers for both student sub-
missions and the framework itself, and semantics/code generators. Our hope is
to benefit from this investment when we grow the specification language, and
with it the overall framework, to accommodate further needs on the education
side. Being able to safely grow the framework is precisely what the “keeping in
check” part of this article’s title refers to: when the expressiveness of the under-
lying DSL is to be extended, different parts of the implementation have to be
revisited as well, and we expect that the thoughts and work put in now at the
beginning will pay off in the sense of maintainability and certain guarantees. By
way of an outlook, let us discuss a concrete extension we have in mind.

At the moment, the specification language does not yet talk about how a
program (e.g., a student submission) should cope with possible input errors. For
example, in [� n]N(. . .)→E

. . . we expressed that the first number that is read in
should not be negative, but what happens otherwise is left completely unspec-
ified. Of course, the accept-function is formulated in such a way that a trace
starting with a negative input value would be rejected here, but the actual test-
ing of student submissions deliberately only presents inputs that are well-formed
according to the specification. From a different perspective, the interpreter given
in Sect. 5 (which builds computations that also serve as possible sample solu-
tions; see the second half of that section as well as Sect. 6) completely ignores
the τ argument in this line:

8 https://hackage.haskell.org/package/IOSpec.
9 A Haskell version can be found at http://hackage.haskell.org/package/quickcheck-

state-machine.

https://hackage.haskell.org/package/IOSpec
http://hackage.haskell.org/package/quickcheck-state-machine
http://hackage.haskell.org/package/quickcheck-state-machine

196 O. Westphal and J. Voigtländer

[[[� x]τ]] = modify ◦ store x =<< readLn

If we were to instead write

[[[� x]τ]] = do v ← readLn
when (v /∈ τ) (error "blow up")
modify (store x v)

then the potential runtime error added there would never actually be triggered
during any automatic test runs, simply because a decision was made to not
subject student submissions to ill-formed or otherwise undesirable inputs. The
rationale for that decision is that students just beginning to learn I/O program-
ming in Haskell should not have to worry about checking inputs for correctness.
But what about later? At some point we might want to explicitly require them to
do so, that is, to turn the management of expectations about input values from
a job of the testing framework into a job of the students. And we might want
to be able to be selective about at which input actions such checks are required,
and at which not, as well as to retain flexibility concerning how exactly student
submissions should deal with incorrect inputs.

Our suggestion now is to extend the specification language by two additional
atomic forms: [� x]τ⊥ and [� x]τ�. The intuitive semantics of the first variant is
that if an input outside the set τ is read, the program stops (in a controlled
fashion, not via a runtime error), while that of the second variant is that if an
input outside the set τ is read, the user is prompted again (and possibly again
and again) for an input until the value read is indeed in τ . In the accept-function,
these new forms would be defined as follows:

accept([� x]τ⊥ · s′, k)(t,Δ) =⎧
⎪⎨

⎪⎩

True , if t =?v stop ∧ v /∈ τ

accept(s′, k)(t′, store(x, v,Δ)) , if t =?v t′ ∧ v ∈ τ

False , otherwise

accept([� x]τ� · s′, k)(t,Δ) =⎧
⎪⎨

⎪⎩

accept([� x]τ� · s′, k)(t′,Δ) , if t =?v t′ ∧ v /∈ τ

accept(s′, k)(t′, store(x, v,Δ)) , if t =?v t′ ∧ v ∈ τ

False , otherwise

and the remaining components of the framework, the checkers, generators, etc.,
would be extended as well, while relying on existing invariants and established
connections/correspondences.

References

1. Claessen, K., Hughes, J.: QuickCheck: a lightweight tool for random testing of
Haskell programs. In: International Conference on Functional Programming, Pro-
ceedings, pp. 268–279. ACM (2000). https://doi.org/10.1145/351240.351266

https://doi.org/10.1145/351240.351266

Implementing, and Keeping in Check, a DSL Used in E-Learning 197

2. Filinski, A.: Controlling effects. Ph.D. thesis, Carnegie Mellon University (1996)
3. Gibbons, J., Wu, N.: Folding domain-specific languages: deep and shallow embed-

dings (Functional Pearl). In: International Conference on Functional Programming,
Proceedings, pp. 339–347. ACM (2014). https://doi.org/10.1145/2628136.2628138

4. Hughes, J.: QuickCheck testing for fun and profit. In: Hanus, M. (ed.) PADL 2007.
LNCS, vol. 4354, pp. 1–32. Springer, Heidelberg (2006). https://doi.org/10.1007/
978-3-540-69611-7 1

5. Hughes, J.: Experiences with QuickCheck: testing the hard stuff and staying sane.
In: Lindley, S., McBride, C., Trinder, P., Sannella, D. (eds.) A List of Successes
That Can Change the World. LNCS, vol. 9600, pp. 169–186. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-30936-1 9

6. Liang, S., Hudak, P., Jones, M.P.: Monad transformers and modular interpreters.
In: Principles of Programming Languages, Proceedings, pp. 333–343. ACM (1995).
https://doi.org/10.1145/199448.199528

7. McBride, C., Paterson, R.: Applicative programming with effects. J. Funct. Pro-
gram. 18(1), 1–13 (2008). https://doi.org/10.1017/S0956796807006326

8. Peyton Jones, S.L., Wadler, P.: Imperative functional programming. In: Principles
of Programming Languages, Proceedings, pp. 71–84. ACM (1993). https://doi.org/
10.1145/158511.158524

9. Siegburg, M., Voigtländer, J., Westphal, O.: Automatische Bewertung von Haskell-
Programmieraufgaben. In: Proceedings of the Fourth Workshop “Automatische
Bewertung von Programmieraufgaben”, pp. 19–26. GI (2019). https://doi.org/10.
18420/abp2019-3

10. Swierstra, W., Altenkirch, T.: Beauty in the beast – a functional semantics for
the awkward squad. In: Haskell Workshop, Proceedings, pp. 25–36. ACM (2007).
https://doi.org/10.1145/1291201.1291206

11. Waldmann, J.: Automatische Erzeugung und Bewertung von Aufgaben zu Algo-
rithmen und Datenstrukturen. In: Proceedings of the Third Workshop “Automa-
tische Bewertung von Programmieraufgaben”, CEUR Workshop Proceedings, vol.
2015. CEUR-WS.org (2017)

12. Westphal, O., Voigtländer, J.: Describing console I/O behavior for testing student
submissions in Haskell. In: Eighth and Ninth International Workshop on Trends in
Functional Programming in Education, Proceedings, EPTCS, vol. 321, pp. 19–36.
EPTCS (2020). https://doi.org/10.4204/EPTCS.321.2

https://doi.org/10.1145/2628136.2628138
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1007/978-3-540-69611-7_1
https://doi.org/10.1007/978-3-319-30936-1_9
https://doi.org/10.1145/199448.199528
https://doi.org/10.1017/S0956796807006326
https://doi.org/10.1145/158511.158524
https://doi.org/10.1145/158511.158524
https://doi.org/10.18420/abp2019-3
https://doi.org/10.18420/abp2019-3
https://doi.org/10.1145/1291201.1291206
https://doi.org/10.4204/EPTCS.321.2

	Implementing, and Keeping in Check, a DSL Used in E-Learning
	1 Introduction
	2 Specification Language Overview
	2.1 Specifications
	2.2 Traces
	2.3 Acceptance Criterion
	2.4 Testing

	3 Comparing Theory and Implementation/Use
	4 Validating the Implementation
	4.1 Randomly Generating Specifications

	5 Empowering the Educator: An Interpreter Semantics
	6 Further Support: Validation and Program Generation
	7 Putting It All Together
	8 Related Work
	9 What Next?
	References

