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Preface

This volume contains the papers presented at 15th International Symposium on
Functional and Logic Programming (FLOPS 2020) held during September 14–16,
2020, online due to the COVID-19 pandemic, while initially expected to take place in
Akita, Japan, during April 23–25, with beautiful cherry blossoms in the best season.

FLOPS aims to bring together practitioners, researchers, and implementors of
declarative programming, to discuss mutually interesting results and common prob-
lems: theoretical advances, their implementations in language systems and tools, and
applications of these systems in practice. The scope includes all aspects of the design,
semantics, theory, applications, implementations, and teaching of declarative pro-
gramming. FLOPS specifically aims to promote cross-fertilization between theory and
practice and among different styles of declarative programming.

For the first time, FLOPS 2020 employed a double-blind reviewing process. The
call for papers resulted in 31 abstract submissions from which 25 were submitted as full
papers. Each submission was reviewed by at least four reviewers, either members of the
Program Committee (PC) or external referees. After careful and thorough discussions,
the PC accepted 11 papers and a short paper. The program also included three invited
talks by Makoto Hamana and Adam Chlipala.

We would like to thank all invited speakers and authors for their contributions. We
are grateful to all PC members and external reviewers, for their hard work, and to
EasyChair for their conference management system that made our work of organizing
FLOPS 2020 much easier. We thank the local co-chairs, Kazuyuki Asada, Ryoma
Sin’ya, and Katsuhiro Ueno, who made an invaluable effort in setting up the conference
and making sure everything ran smoothly, even online.

Finally, we would like to thank our sponsor, the Japan Society for Software Science
and Technology (JSSST) SIGPPL, for their continued support. We acknowledge the
cooperation of ACM SIGPLAN, the Asian Association for Foundation of Software
(AAFS), and the Association for Logic Programming (ALP).

August 2020 Keisuke Nakano
Konstantinos Sagonas
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Performance-Scaling Challenges in Formal
Verification with Proof Assistants (Abstract)

Adam Chlipala

MIT CSAIL, Cambridge MA 02139, USA
adamc@csail.mit.edu

Abstract. The twenty-first century has seen an exciting uptick in the use of
proof assistants for mechanized correctness proof of realistic computer systems.
That is, developers are not just writing code but also using software tools for
writing and checking proofs, establishing that code behaves as it should,
increasing assurance dramatically compared to alternatives like testing. These
developments, using proof assistants like Isabelle and Coq, exhibit widely
varying levels of proof automation. That is, the individual steps of logical
arguments come at very different levels of detail, from “now apply modus
ponens” to “now establish the correctness of this whole phase of my compiler,
through the following several pages of heuristic scripting.” Increased levels of
automation seem important for more widespread adoption for proof of
real-world systems, to overcome doubts that mechanized proof adds too much
developer effort.
This talk will give my reections on trying to scale up automation in the Coq

proof assistant, and I hope, also provide lessons relevant to other proof assis-
tants. My collaborators and I have found that almost any serious effort of this
kind is likely to hit a performance wall, with Coq as it stands today. The
existence of such a wall may surprise Coq users who are accustomed to writing
more manual proofs, roughly at the level of careful paper proofs; and it may be
all the more surprising to those who think of any kind of “proof” as inherently
theoretical and thus disconnected from concerns of performance optimization.
I will give examples in proof of functional correctness for software and hardware
systems.
What are the key challenges? In the tradition of dependent type theory that

Coq builds on, term reduction is a central operation of proof checking, and
reduction strategies matter a lot for performance. Coq users can learn about the
intricacies of how the proof checker chooses strategies, or they can be more
explicit through methods like proof by reflection, one successful example of
which I will describe. On top of the core mechanics of proof checking, a proof
assistant will typically provide a proof engine that exports higher-level opera-
tions managing subgoals and unification variables. We have been studying the
fundamental determinants of poor performance scaling by Coq’s proof engine,
and I will sketch preliminary results on bottlenecks in key operations.
My overall goal in the talk is to make clear that these performance issues are

underappreciated but crucial to scaling proofs. As a community, we are evolving



proof assistants and their applications in tandem, learning lessons about the
design of both. No doubt today’s performance bottle-necks will be addressed by
a mix of “mere engineering” and new scientific contributions, and I would like
to encourage the audience to consider looking into both!

Keywords: Proof assistants • Dependent types • Proof engines •

Program verification • Coq

x A. Chlipala
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Theory and Practice of Second-Order
Rewriting: Foundation, Evolution,

and SOL

Makoto Hamana(B)

Department of Computer Science, Gunma University, Kiryu, Japan
hamana@gunma-u.ac.jp

Abstract. We give an overview of the theory and practice of second-
order rewriting. Second-order rewriting methods have been demonstrated
as useful that is applicable to important notions of programming lan-
guages such as logic programming, algebraic effects, quantum compu-
tation, and cyclic computation. We explain foundation and evolution of
second-order rewriting by presenting the framework of second-order com-
putation systems. We also demonstrate our system SOL of second-order
laboratory through various programming language examples.

1 Introduction

Computation rules such as the β-reduction of the λ-calculus and arrangement of
let-expressions are fundamental mechanisms of functional programming. Com-
putation rules for modern functional programming are necessarily higher-order
and are presented as a λ-calculus extended with extra rules such as rules of
let-expressions or first-order algebraic rules like “0 + x → x”.

Because of ubiquity of computation rules, a general framework to describe
and reason about them is necessary. Second-order computation systems
are a framework of second-order rewriting the present author has developed
for recent years [Ham17b,Ham18,Ham19,HAK20]. A second-order computation
system consists of rewrite rules that may involve second-order typed terms.

2 Foundation: Second-Order Computation Systems

We give the definition of monomorphic second-order computation systems. We
assume that A is a set of atomic types (e.g.. Bool, Nat, etc.). We assume
that the set of molecular types (or mol types for short) T is generated by
atomic types, and type constructors is the least set satisfying T = A ∪
{T (a1, . . . , an) | a1, . . . , an ∈ T , T is an n-ary type constructor}. By a type con-
structor T of arity n, we mean that it takes n-mol types a1, . . . , an and gives a
mol type T (a1, . . . , an). A signature Σ is a set of function symbols of the form

f : (a1 → b1), . . . , (am → bm) → c

c© Springer Nature Switzerland AG 2020
K. Nakano and K. Sagonas (Eds.): FLOPS 2020, LNCS 12073, pp. 3–9, 2020.
https://doi.org/10.1007/978-3-030-59025-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59025-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-59025-3_1


4 M. Hamana

where all ai, bi, c are mol types (thus any function symbol is of up to second-
order type).

Fig. 1. Typing rules of meta-terms

A metavariable is a variable of (at most) first-order function type, declared
as M : a → b (written as capital letters M,n,K, . . .). A variable of a molecular
type is merely called variable (written usually x, y, . . ., or sometimes written xb

when it is of type b). The raw syntax is given as follows.

− Terms have the form t ::= x | x.t | f(t1, . . . , tn).
− Meta-terms extend terms to t ::= x | x.t | f(t1, . . . , tn) | M [t1, . . . , tn].

The last form M [t1, . . . , tn] is called a meta-application, meaning that when we
instantiate M : a → b with a term s, free variables of s (which are of types a)
are replaced with (meta-)terms t1, . . . , tn.

A metavariable context Θ is a sequence of (metavariable:type)-pairs, and a
context Γ is a sequence of (variable:mol type)-pairs. A judgment is of the form
Θ � Γ � t : b. A meta-term t is well-typed by the typing rules Fig. 1.

For meta-terms Θ � Γ � � : b and Θ � Γ � r : b, a computation rule is
of the form Θ � Γ � � ⇒ r : b satisfying: (i) � is a deterministic second-order
pattern [YHT04]. (ii) all metavariables in r appear in �. We usually omit the
context and type and simply write � ⇒ r.

A computation system is a set C of computation rules. We write s ⇒C t
to be one-step computation using C obtained by the inference system in Fig. 2.

Example 1. The simply typed λ-terms on base types Ty are modelled in our
setting as follows. Suppose that Arr is a type constructor. The set T of all mol
types is the least set satisfying T = Ty ∪ {Arr(a, b) | a, b ∈ T }, i.e., the set of
all simple types in our encoding. The λ-terms are given by a signature

Σlam =
{
lama,b : (a → b) → Arr(a, b)
appa,b : Arr(a, b), a → b

| a, b ∈ T
}

The β-reduction law is presented as for each a, b ∈ T ,

(beta) M : a → b, N : a � � appa,b(lama,b(xa.M [x]), N) ⇒ M [N ] : b

Note that Arr(a, b) is a mol type, but function types a → b are not mol types.
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3 Evolution of Second-Order Computation

Using the second-order computation systems, we have formulated various higher-
order calculi and have checked their decidability [Ham17b,Ham18,Ham19,
HAK20]. The framework of second-order computation systems is founded on
foundational studies on second-order computation. We describe below the foun-
dations and succeeding developments how the theory of second-order computa-
tion systems is evolved.

Fig. 2. Second-order computation (one-step)

Second-Order Abstract Syntax. The syntactic structure of meta-terms and
substitution for abstract syntax with variable binding was introduced by Aczel
[Acz78] for his general framework of rewrite rules. Fiore, Plotkin, and Turi formu-
lated second-order abstract syntax [FPT99,Fio08] as a mathematical structure of
syntax with variable binding using algebras on presheaves. The abstract syntax
and the associated algebraic structure have extended to second-order abstract
syntax with extra feature or type discipline: having metavariables [Ham04],
simple types [Fio02,Ham07], dependent types [Fio08], and polymorphic types
[Ham11].

Second-Order Algebraic Theories. Ordinary equational logic is logic for
equations on first-order algebraic terms. Second-order algebraic theories and
equational logic [FM10,FH10] are second-order extensions, which provide math-
ematical models of second-order equations and deduction based on second-order
abstract syntax and its algebraic models. This algebraic modelling of syntax, the-
ory, type system, or programming laguage has been actively investigated. Staton
demonstrated that second-order algebraic theories are a useful framework that
models various important notions of programming languages such as logic pro-
gramming [Sta13a], algebraic effects [Sta13b,FS14], and quantum computation
[Sta15]. We have also applied it to modelling cyclic structures [Ham10a] and
cyclic datatypes modulo bisimulation [Ham17a]. This line of algebraic modelling
is still active. Recently, Arkor and Fiore [AF20] gave algebraic models of simple
type theories.

Second-Order Computation Systems. Based on the structures of second-
order abstract syntax and algebraic theories, the present author developed the
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framework of second-order computation systems and its algebraic seman-
tics [Ham05]. Notably, the semantics established the first sound and complete
model of second-order rewriting systems. It has been extended to simply-typed
second-order computation systems and its algebraic semantics [Ham07]. This is
the basis of our SOL system described below. We also applied the semantical
structures to develop termination proof techniques: the interpretation method
[Ham05], higher-order semantic labelling [Ham07,Ham10b], and modular termi-
nation [Ham20].

Fig. 3. Web interface of SOL

Second-Order Rewriting. As the rewriting theoretic side, Aczel’s formal
language allowed him to consider a general framework of rewrite rules for
calculi with variable binding, which influenced Klop’s rewriting framework of
combinatory reduction systems [Klo80]. Blanqui introduced a typed version of
Klop’s framework and provided a termination criterion of the General Schema
[Bla00,Bla16]. SOL implemented the General Schema criterion for termination
checking.

Polymorphic Computation Systems with Call-by-Value. We have devel-
oped a general framework of multiversal polymorphic algebraic theories [FH13]
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based on polymorphic abstract syntax [Ham11]. It admits multiple type uni-
verses and higher-kinded polymorphic types. Based on it, we presented a new
framework of polymorphic second-order computation systems [Ham18] that can
accommodate a distinction between values and non-values [HAK20]. It is suit-
able for analysing fundamental calculi of programming languages. We developed
a type inference algorithm and new criteria to check the confluence property.

4 SOL: Second-Order Laboratory

Based on the above foundations and evolution, we have implemented the system
SOL (Fig. 3) [Ham17b,Ham18,Ham19,HAK20]. SOL is a tool to check confluence
and termination of polymorphic second-order computation systems. The system
works on top of the interpreter of Glasgow Haskell Compiler. SOL uses the feature
of quasi-quotation (i.e. [signature|..] and [rule|..] are quasi-quotations)
of Template Haskell, with a custom parser which provides a readable notation
for signature, terms and rules. It makes the language of our formal computation
rules available within a Haskell script. For example, the computation system of
λ-calculus in Example 1 is described as

siglam = [signature| lam : (a -> b) -> Arr(a,b)

app : Arr(a,b),a -> b |]

lambdaCal = [rule| (beta) lam(x.M[x])@N => M[N] |]

The web interface for SOL is available at the author’s homepage: http://
www.cs.gunma-u.ac.jp/hamana/sol/.
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The Bang Calculus Revisited

Antonio Bucciarelli1, Delia Kesner1,2, Alejandro Ŕıos3, and Andrés Viso3,4(B)

1 Université de Paris, CNRS, IRIF, Paris, France
kesner@irif.fr

2 Institut Universitaire de France, Paris, France
3 Universidad de Buenos Aires, Buenos Aires, Argentina

aeviso@dc.uba.ar
4 Universidad Nacional de Quilmes, Bernal, Argentina

Abstract. Call-by-Push-Value (CBPV) is a programming paradigm
subsuming both Call-by-Name (CBN) and Call-by-Value (CBV) seman-
tics. The paradigm was recently modelled by means of the Bang Calculus,
a term language connecting CBPV and Linear Logic.

This paper presents a revisited version of the Bang Calculus, called
λ!, enjoying some important properties missing in the original system.
Indeed, the new calculus integrates commutative conversions to unblock
value redexes while being confluent at the same time. A second contribu-
tion is related to non-idempotent types. We provide a quantitative type
system for our λ!-calculus, and we show that the length of the (weak)
reduction of a typed term to its normal form plus the size of this normal
form is bounded by the size of its type derivation. We also explore the
properties of this type system with respect to CBN/CBV translations.
We keep the original CBN translation from λ-calculus to the Bang Cal-
culus, which preserves normal forms and is sound and complete with
respect to the (quantitative) type system for CBN. However, in the case
of CBV, we reformulate both the translation and the type system to
restore two main properties: preservation of normal forms and complete-
ness. Last but not least, the quantitative system is refined to a tight one,
which transforms the previous upper bound on the length of reduction to
normal form plus its size into two independent exact measures for them.

1 Introduction

Call-by-Push-Value. The Call-by-Push-Value (CBPV) paradigm, introduced
by P.B. Levy [37,38], distinguishes between values and computations under the
slogan “a value is, a computation does”. It subsumes the λ-calculus by adding
some primitives that allow to capture both the Call-by-Name (CBN) and Call-
by-Value (CBV) semantics. CBN is a lazy strategy that consumes arguments
without any preliminary evaluation, potentially duplicating work, while CBV is
greedy, always computing arguments disregarding whether they are used or not,
which may prevent a normalising term from terminating, e.g. (λx.I) Ω, where
I = λx.x and Ω = (λx.x x) (λx.x x).
c© Springer Nature Switzerland AG 2020
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Essentially, CBPV introduces unary primitives thunk and force. The for-
mer freezes the execution of a term (i.e. it is not allowed to compute under
a thunk) while the latter fires again a frozen term. Informally, force (thunk t)
is semantically equivalent to t. Resorting to the paradigm slogan, thunk turns
a computation into a value, while force does the opposite. Thus, CBN and
CBV are captured by conveniently labelling a λ-term using force and thunk to
pause/resume the evaluation of a subterm depending on whether it is an argu-
ment (CBN) or a function (CBV). In doing so, CBPV provides a unique formal-
ism capturing two distinct λ-calculi strategies, thus allowing to study operational
and denotational semantics of CBN and CBV in a unified framework.

Bang Calculus. T. Ehrhard [25] introduces a typed calculus, that can be seen
as a variation of CBPV, to establish a relation between this paradigm and Linear
Logic (LL). A simplified version of this formalism is later dubbed Bang calcu-
lus [26], showing in particular how CBPV captures the CBN and CBV semantics
of λ-calculus via Girard’s translations of intuitionistic logic into LL. A further
step in this direction [15] uses Taylor expansion [27] in the Bang Calculus to
approximate terms in CBPV. The Bang calculus is essentially an extension of
λ-calculus with two new constructors, namely bang (!) and dereliction (der),
together with the reduction rule der (! t) �→ t. There are two notions of reduc-
tion for the Bang calculus, depending on whether it is allowed to reduce under
a bang constructor or not. They are called strong and weak reduction respec-
tively. Indeed, it is weak reduction that makes bang/dereliction play the role
of the primitives thunk/force. Hence, these modalities are essential to capture
the essence behind the CBN–CBV duality. A similar approach appears in [42],
studying (simply typed) CBN and CBV translations into a fragment of IS4,
recast as a very simple λ-calculus equipped with an indeterminate lax monoidal
comonad.

Non-idempotent Types. Intersection types, pioneered by [16,17], can be seen
as a syntactical tool to denote programs. They are invariant under the equal-
ity generated by the evaluation rules, and type all and only all normalising
terms. They are originally defined as idempotent types, so that the equation
σ ∩ σ = σ holds, thus preventing any use of the intersection constructor to
count resources. On the other hand, non-idempotent types, pioneered by [28],
are inspired from LL, they can be seen as a syntactical formulation of its rela-
tional model [11,30]. This connection suggests a quantitative typing tool, being
able to specify properties related to the consumption of resources, a remark-
able investigation pioneered by the seminal de Carvalho’s PhD thesis [18] (see
also [20]). Non-idempotent types have also been used to provide characterisa-
tions of complexity classes [8]. Several papers explore the qualitative and quan-
titative aspects of non-idempotent types for different higher order languages,
as for example Call-by-Name, Call-by-Need and Call-by-Value λ-calculi, as well
as extensions to Classical Logic. Some references are [3,4,13,24,36]. Other rela-
tional models were directly defined in the more general context of LL, rather
than in the λ-calculus [19,21,22,33].

An interesting recent research topic concerns the use of non-idempotent types
to provide bounds of reduction lengths. More precisely, the size of type deriva-



The Bang Calculus Revisited 15

tions has often been used as an upper bound to the length of different evaluation
strategies [13,24,34–36,40]. A key notion behind these works is that when t eval-
uates to t′, then the size of the type derivation of t′ is smaller than the one of t,
thus the size of type derivations provides an upper bound for the length of the
reduction to a normal form as well as for the size of this normal form.

A crucial point to obtain exact bounds, instead of upper bounds, is to consider
only minimal type derivations, as the ones in [9,18,22]. Another approach was
taken in [1], which uses an appropriate notion of tightness to implement mini-
mality, a technical tool adapted to Call-by-Value [3,31] and Call-by-Need [4].

1.1 Contributions and Related Works

This paper presents a reformulation of the untyped Bang calculus, and proposes
a quantitative study of it by means of non-idempotent types.

The Untyped Reduction. The Bang calculus in [25] suffers from the absence
of commutative conversions [14,41], making some redexes to be syntactically
blocked when open terms are considered. A consequence of this approach is that
there are some normal forms that are semantically equivalent to non-terminating
programs, a situation which is clearly unsound. This is repaired in [26] by adding
commutative conversions specified by means of σ-reduction rules, which are cru-
cial to unveil hidden (value) redexes. However, this approach presents a major
drawback since the resulting combined reduction relation is not confluent.

Our revisited Bang calculus, called λ!, fixes these two problems at the
same time. Indeed, the syntax is enriched with explicit substitutions, and σ-
equivalence is integrated in the primary reduction system by using the distance
paradigm [5], without any need to unveil hidden redexes by means of an inde-
pendent relation. This approach restores confluence.

The Untyped CBN and CBV Encodings. CBN and CBV (untyped) trans-
lations are extensively studied in [23,32,39]. The authors establish two encodings
cbn and cbv, from untyped λ-terms into untyped terms of the Bang calculus, such
that when t reduces to u in CBN (resp. CBV), cbn(t) reduces to cbn(u) (resp.
cbv(t) reduces to cbv(u)) in the Bang calculus. However, CBV normal forms in
λ-calculus are not necessarily translated to normal forms in the Bang calculus.

Our revisited notion of reduction naturally encodes (weak) CBN as well as
(open) CBV. More precisely, the λ!-calculus encodes weak CBN and open CBV
specified by means of explicit substitutions, which in turn encode the corre-
sponding well-known notions of weak CBN and open CBV (see for example [6]).
These two notions are dual: weak CBN forbids reduction inside arguments,
which are translated to bang terms, while open CBV forbids reduction under λ-
abstractions, also translated to bang terms. More precisely, we simply extend to
explicit substitutions the original CBN translation from λ-calculus to the Bang
calculus, which preserves normal forms, but we subtly reformulate the CBV one.
In contrast to [32], our CBV translation does preserve normal forms.

The Typed System. Starting from the relational model for the Bang calculus
proposed in [32], we propose a type system for the λ!-calculus, called U , based
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on non-idempotent intersection types. System U is able to fully characterise nor-
malisation, in the sense that a term t is U-typable if and only if t is normalising.
More interestingly, we show that system U has also a quantitative flavour, in the
sense that the length of any reduction sequence from t to normal form plus the
size of this normal form is bounded by the size of the type derivation of t. We
show that system U also captures the standard non-idempotent intersection type
system for CBN, as well as a new type system V that we define in this paper
for CBV. System V characterises termination of open CBV, in the sense that t
is typable in V if and only if t is terminating in open CBV. This can be seen as
another (collateral) contribution of this paper. Moreover, the CBV embedding
in [32] is not complete with respect to their type system for CBV. System V
recovers completeness (left as an open question in [32]). Finally, an alternative
CBV encoding of typed terms is proposed. This encoding is not only sound and
complete, but now enjoys preservation of normal-forms.

A Refinement of the Type System Based on Tightness. A major obser-
vation concerning β-reduction in λ-calculus (and therefore in the Bang calculus)
is that the size of normal forms can be exponentially bigger than the number
of steps to these normal forms. This means that bounding the sum of these two
integers at the same time is too rough, not very relevant from a quantitative
point of view. Following ideas in [1,9,18], we go beyond upper bounds. Indeed,
another major contribution of this paper is the refinement of the non-idempotent
type system U to another type system E , equipped with constants and counters,
together with an appropriate notion of tightness (i.e. minimality). This new
formulation fully exploits the quantitative aspect of the system, in such a way
that upper bounds provided by system U are refined now into independent exact
bounds for time and space. More precisely, given a tight type derivation Φ with
counters (b, e, s) for a term t, we can show that t is normalisable in (b +e)-steps
and its normal form has size s. The opposite direction also holds. Therefore,
exact measures concerning the dynamic behaviour of t, are extracted from a
static (tight) typing property of t.

Road-Map. Section 2 introduces the λ!-calculus. Section 3 presents the sound
and complete type system U . Section 4 discusses (untyped and typed) CBN/CBV
translations. In Sect. 5 we refine system U into system E , and we prove soundness
and completeness. Conclusions and future work are discussed in Sect. 6. Most of
the proofs are omitted and can be found in [12].

2 The Bang Calculus Revisited

This section presents a revisited (conservative) extension of the original Bang
calculi [25,26], called λ!. From a syntactical point of view, we just add explicit
substitutions operators. From an operational point of view, we use reduction at
a distance [5], thus integrating commutative conversions without jeopardising
confluence (see the discussion below).

Given a countably infinite set X of variables x, y, z, . . . we consider the fol-
lowing grammar for terms (denoted by T ) and contexts:
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(Terms) t, u ::= x ∈ X | t u | λx.t | ! t | der t | t[x\u]
(List contexts) L ::= � | L[x\t]

(Contexts) C ::= � | C t | t C | λx.C | ! C | der C | C[x\u] | t[x\C]
(Weak contexts) W ::= � | W t | t W | λx.W | der W | W[x\u] | t[x\W]

Terms of the form t[x\u] are closures, and [x\u] is called an explicit sub-
stitution (ES). Special terms are I = λz.z, K = λx.λy.x, Δ = λx.x ! x, and
Ω = Δ ! Δ. Weak contexts do not allow the symbol � to occur inside the bang
construct. This is similar to weak contexts in λ-calculus, where � cannot occur
inside λ-abstractions. We will see in Sect. 4 that weak reduction in the λ!-calculus
perfectly captures head reduction in CBN, disallowing reduction inside argu-
ments, as well as open CBV, disallowing reduction inside abstractions. We use
C〈t〉 (resp. W〈t〉 and L〈t〉) for the term obtained by replacing the hole � of C
(resp. W and L) by t. The notions of free and bound variables are defined as
expected, in particular, fv(t[x\u]) def= fv(t) \ {x} ∪ fv(u), fv(λx.t) def= fv(t) \ {x},
bv(t[x\u]) def= bv(t)∪{x}∪bv(u) and bv(λx.t) def= bv(t)∪{x}. We extend the stan-
dard notion of α-conversion [7] to ES, as expected. We use t {x\u} to denote
the meta-level substitution operation, i.e. all the free occurrences of the vari-
able x in the term t are replaced by u. This operation is defined, as usual,
modulo α-conversion. We use two special predicates to distinguish abstractions
and bang terms possibly affected by a list of explicit substitutions. Indeed, abs(t)
iff t = L〈λx.t′〉 and bang(t) iff t = L〈! t′〉. Finally, we define the w-size of terms
as follows: |x|w := 0, |t u|w := 1 + |t|w + |u|w, |λx.t|w := 1 + |t|w, |! t|w := 0,
|der t|w := 1 + |t|w, and |t[x\u]|w := |t|w + |u|w.

The λ!-calculus is given by the set of terms T and the (weak) reduction
relation →w, which is defined as the union of →dB (distant Beta), →s! (substitute
bang) and →d! (distant bang), defined respectively as the closure by contexts W
of the following rewriting rules:

L〈λx.t〉 u �→dB L〈t[x\u]〉
t[x\L〈! u〉] �→s! L〈t {x\u}〉
der (L〈! t〉) �→d! L〈t〉

We assume that all these rules avoid capture of free variables.

Example 1. Let t0 = der (! K) (! I) (!Ω). Then,

t0 →d! K (! I) (!Ω) →dB (λy.x)[x\! I] (!Ω) →dB x[y\! Ω][x\! I] →s! x[x\! I] →s! I

Remark that the second dB-step uses action at a distance, where L is �[x\! I].

Given the translation of the Bang Calculus into LL proof-nets [25], we refer
to dB-steps as m-steps (multiplicative) and (s!, d!)-steps as e-steps (exponential).

Remark that reduction is at a distance, in the sense that the list context
L in the rewriting rules allows the main constructors involved in these rules to
be separated by an arbitrary finite list of substitutions. This new formulation
integrates commutative conversions inside the main (logical) reduction rules of
the calculus, in contrast to [26] which treats these conversions by means of a set of
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independent σ-rewriting rules, thus inheriting many drawbacks. More precisely,
in the first formulation of the Bang calculus [25], there are hidden (value) redexes
that block reduction, thus creating a mismatch between normal terms that are
semantically non-terminating. The second formulation in [26] recovers soundness,
by integrating a notion of σ-equivalence which is crucial to unveil hidden redexes
and ill-formed terms (called clashes)1. However, adding σ-reduction to the logical
reduction rules does not preserve confluence. Our notion of reduction addresses
this two issues at the same time2: it integrates commutative conversions and is
confluent (Theorem 1).

We write �w for the reflexive-transitive closure of →w. We write t �(b,e)
w u if

t �w u using b dB steps and e (s!, d!)-steps.
The reduction relation →w enjoys a weak diamond property, i.e. one-step

divergence can be closed in one step if the diverging terms are different, since
→w is not reflexive. Otherwise stated, the reflexive closure of →w enjoys the
strong diamond property.

Lemma 1. If t →p1 t1 and t →p2 t2 where t1 	= t2 and p1, p2 ∈ {dB, s!, d!}, then
there exists t3 such that t1 →p2 t3 and t2 →p1 t3.

The result above does not hold if reductions are allowed inside arbitrary
contexts. Consider for instance the term t = (x ! x)[x\! (I ! I)]. We have t →s!

(I ! I) ! (I ! I) and, if we allow the reduction of the dB-redex I ! I appearing banged
inside the explicit substitution, we get t →dB (x ! x)[x\! z[z\! I]]. Now, the term
(x ! x)[x\! z[z\! I]] s!-reduces to z[z\! I] ! (z[z\! I]), whereas two dB-reductions
are needed in order to close the diamond, i.e. to rewrite (I ! I) ! (I ! I) into
z[z\! I] ! (z[z\! I]).

This gives the following two major results (see [12] for details).

Theorem 1.

– The reduction relation →w is confluent.
– Any two different reduction paths to normal form have the same length.

As explained above, the strong property expressed in the second item of
Theorem 1 relies essentially on the fact that reductions are disallowed under
bangs.

Normal Forms and Neutral Terms. A term is said to be w-normal if there
is no t′ such that t →w t′, in which case we write t 	→w. This notion can be
characterised by means of the following inductive grammars:

(Neutral) new ::= x ∈ X | naw now | der (nbw) | new[x\nbw]
(Neutral-Abs) naw ::= ! t | new | naw[x\nbw]

(Neutral-Bang) nbw ::= new | λx.now | nbw[x\nbw]
(Normal) now ::= naw | nbw

1 Indeed, there exist clash-free terms in normal form that are σ-reducible to normal
terms with clashes, e.g. R = der ((λy.λx.z) (der (y) y)) ≡σ der (λx.(λy.z) (der (y) y)).

2 In particular, the term R is not in normal form in our framework, and it reduces to
a clash term in normal form which is filtered by the type system.
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All these terms are w-normal. Moreover, neutral terms do not produce any kind
of redexes when inserted into a context, while neutral-abs terms (resp. neutral-
bang) may only produce s! or d! redexes (resp. dB redexes) when inserted into
a context.

The intended meaning of the sets of terms defined above may be summarised
as follows:

new = naw ∩ nbw ⊂ naw ∪ nbw = now

Remark 1. Consider t ∈ T . Then t ∈ naw and t ∈ nbw iff t ∈ new, t ∈ naw and
t /∈ nbw implies bang(t), and t ∈ nbw and t /∈ naw implies abs(t).

Proposition 1 (Normal Forms). Let t ∈ T . Then t 	→w iff t ∈ now.

Clashes. Some ill-formed terms are not redexes but they don’t represent a
desired result for a computation either. They are called clashes (meta-variable
c), and defined as follows:

L〈! t〉 u t[y\L〈λx.u〉] der (L〈λx.u〉) t (L〈λx.u〉)

Remark that in the three first kind of clashes, replacing λx. by !, and inversely,
creates a (root) redex, namely (L〈λx.t〉) u, t[x\L〈! t〉] and der (L〈! t〉), respectively.
In the fourth kind of clash, however, this is not the case since t (L〈! u〉) is not a
redex in general.

A term is clash free if it does not reduce to a term containing a clash, it
is weak clash free , written wcf, if it does not reduce to a term containing a
clash outside the scope of any constructor !. In other words, t is not wcf if and
only if there exist a weak context W and a clash c such that t �w W〈c〉.

Weak clash-free normal terms can be characterised as follows:

(Neutral wcf) newcf ::= x ∈ X | newcf nawcf | der (newcf) | newcf[x\newcf]
(Neutral-Abs wcf) nawcf ::= ! t | newcf | nawcf[x\newcf]

(Neutral-Bang wcf) nbwcf ::= newcf | λx.nowcf | nbwcf[x\newcf]
(Normal wcf) nowcf ::= nawcf | nbwcf

Intuitively, nowcf denotes now ∩ wcf (respectively for newcf, nawcf and nbwcf).

Proposition 2 (Clash-free). Let t ∈ T . Then t is a weak clash-free normal
form iff t ∈ nowcf.

3 The Type System U
This section introduces a first type system U for our revisited version of the
Bang calculus, which extends the one in [32] to explicit substitutions. We show
in this paper that U does not only qualitatively characterise normalisation, but
is also quantitative, in the sense that the length of the (weak) reduction of a
typed term to its normal form plus the size of this normal form is bounded by
the size of its type derivation. We also explore in Sect. 4 the properties of this
type system with respect to the CBN and CBV translations.
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Given a countable infinite set T V of base type variables α, β, γ, . . ., we define
the following sets of types:

(Types) σ, τ ::= α ∈ T V | M | M → σ
(Multiset types) M ::= [σi]i∈I where I is a finite set

The empty multiset is denoted by [ ]. Also, |M| denotes the size of the mul-
tiset, thus if M = [σi]i∈I then |M| = #(I).

Typing contexts (or just contexts), written Γ,Δ, are functions from vari-
ables to multiset types, assigning the empty multiset to all but a finite set of
variables. The domain of Γ is given by dom(Γ ) def= {x | Γ (x) 	= []}. The union of
contexts, written Γ + Δ, is defined by (Γ + Δ)(x) def= Γ (x) � Δ(x), where �
denotes multiset union. An example is (x : [σ], y : [τ ]) + (x : [σ], z : [τ ]) = (x :
[σ, σ], y : [τ ], z : [τ ]). This notion is extended to several contexts as expected,
so that +i∈I Γi denotes a finite union of contexts (when I = ∅ the notation
is to be understood as the empty context). We write Γ \\ x for the context
(Γ \\ x)(x) = [ ] and (Γ \\ x)(y) = Γ (y) if y 	= x.

Type judgements have the form Γ  t : σ, where Γ is a typing context, t is
a term and σ is a type. The type system U for the λ!-calculus is given in Fig. 1.

Fig. 1. System U for the λ!-calculus.

The axiom (ax) is relevant (there is no weakening) and the rules (app) and
(es) are multiplicative. Note that the argument of a bang is typed #(I) times
by the premises of rule (bg). A particular case is when I = ∅: the subterm t
occurring in the typed term ! t turns out to be untyped.

A (type) derivation is a tree obtained by applying the (inductive) typing
rules of system U . The notation �U Γ  t : σ means there is a derivation of
the judgement Γ  t : σ in system U . The term t is typable in system U , or U-
typable, iff there are Γ and σ such that �U Γ  t : σ. We use the capital Greek
letters Φ, Ψ, . . . to name type derivations, by writing for example Φ �U Γ  t : σ.
The size of the derivation Φ, denoted by sz(Φ), is defined as the number of
rules in the type derivation Φ except rules (bg) and (es). Note in particular that
given a derivation Φt for a term t we always have sz(Φt) ≥ |t|w.

Example 2. The following tree Φ0 is a type derivation for term t0 of Example 1.
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(ax)
x : [[τ ] → τ ] � x : [τ ] → τ

(abs)
x : [[τ ] → τ ] � λy.x : [ ] → [τ ] → τ

(abs)
� λx.λy.x : [[τ ] → τ ] → [ ] → [τ ] → τ

(bg)
� ! K : [[[τ ] → τ ] → [ ] → [τ ] → τ ]

(dr)
� der (! K) : [[τ ] → τ ] → [ ] → [τ ] → τ

(ax)
x : [τ ] � x : τ

(abs)
� λx.x : [τ ] → τ

(bg)
� ! I : [[τ ] → τ ]

(app)
� der (! K) (! I) : [ ] → [τ ] → τ

(bg)
� !Ω : [ ]

(app)
� der (! K) (! I) (!Ω) : [τ ] → τ

Note that sz(Φ0) = 8 since (bg) nodes are not counted by definition.

Typable terms are necessarily weak clash-free:

Lemma 2. If �U Γ  t : σ, then t is wcf.

Proof. Assume towards a contradiction that t is not wcf, i.e. there exists a
weak context W and a clash c such that t �w W〈c〉. Then, Lemma 3 (WSR) gives
Φ′ �U Γ  W〈c〉 : σ. If we show that a term of the form W〈c〉 cannot be typed in
system U , we are done. This follows by straightforward induction on W. The base
case is when W = �. For every possible c, it is immediate to see that there is
a mismatch between its syntactical form and the typing rules of system U . For
instance, if c = L〈! t〉 u, then L〈! t〉 should have a functional type by rule (app)
but it can only be assigned a multiset type by rules (es) and (bg). As for the
inductive case, an easy inspection of the typing rules shows for all terms t and
weak contexts W, t must be typed in order to type W〈t〉. ��

However, normal terms are not necessarily clash-free, but the type system
captures clash-freeness of normal terms. Said differently, when restricted to now,
typability exactly corresponds to weak clash-freeness.

Theorem 2. Let t ∈ T . Then, t ∈ nowcf iff t ∈ now and t is U-typable.

The quantitative aspect of system U is materialised in the following weighted
subject reduction (WSR) and expansion (WSE) properties.

Lemma 3. Let Φ �U Γ  t : τ .

(WSR) If t →w t′, then there is Φ′ �U Γ  t′ : τ such that sz(Φ) > sz(Φ′).
(WSE) If t′ →w t, then there is Φ′ �U Γ  t′ : τ such that sz(Φ′) > sz(Φ).

Erasing steps like y[x\! z] →s! y may seem problematic for subject reduction
and expansion, but they are not: the variable x, as well as ! z are necessarily
both typed with [ ], so there is no loss of information since the contexts allowing
to type the redex and the reduced term are the same.

Typability can then be shown to (qualitatively and quantitatively) charac-
terise normalisation.
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Theorem 3 (Soundness and Completeness). The term t is U-typable iff t

w-normalises to a term p ∈ nowcf. Moreover, if Φ �U Γ  t : τ , then t �(b,e)
w p

and sz(Φ) ≥ b + e + |p|w.

Proof. The soundness proof is straightforward by Lemma3 (WSR) and Theo-
rem 2. Remark that the argument is simply combinatorial, no reducibility argu-
ment is needed. Moreover, unlike [26,32], there is no need to reason through any
intermediate resource Bang calculus. For the completeness proof, we reason by
induction on the length of the w-normalising sequence. For the base case, we use
Theorem 2 which states that p ∈ nowcf implies p is U-typable. For the induc-
tive case we use Lemma 3 (WSE). The moreover statement holds by Lemma 3
and the fact that the size of the type derivation of p is greater than or equal
to |p|w. ��

The previous theorem can be illustrated by the term t0 = der (! K) (! I) (!Ω)
defined in Example 1, which normalises in 5 steps to a normal form of w-size 1,
the sum of the two being bounded by the size 8 of its type derivation Φ0 given
in Example 2.

4 Capturing Call-by-Name and Call-by-Value

This section explores the CBN/CBV embeddings into the λ!-calculus. For CBN,
we slightly adapt Girard’s translation into LL [29], which preserves normal forms
and is sound and complete with respect to the standard (quantitative) type
system [28]. For CBV, however, we reformulate both the translation and the type
system, so that preservation of normal forms and completeness are restored. In
both cases, we specify the operational semantics of CBN and CBV by means of
a very simple notion of explicit substitution, see for example [6].

Terms (Tλ), values and contexts are defined as follows:

(Terms) t, u ::= v | t u | t[x\u]
(Values) v ::= x ∈ X | λx.t

(List Contexts) L ::= � | L[x\t]
(Call-by-Name Contexts) N ::= � | N t | λx.N | N[x\u]
(Call-by-Value Contexts) V ::= � | V t | t V | V[x\u] | t[x\V]

As in Sect. 2 we use the predicate abs(t) iff t = L〈λx.t′〉. We also use the
predicates app(t) iff t = L〈t′ t′′〉 and var(t) iff t = L〈x〉.

The Call-by-Name reduction relation →n is defined as the closure of con-
texts N of the rules dB and s presented below, while the Call-by-Value reduction
relation →v is defined as the closure of contexts V of the rules dB and sv below.
Equivalently, →n := N(�→dB ∪ �→s) and →v := V(�→dB ∪ �→sv) and

L〈λx.t〉 u �→dB L〈t[x\u]〉
t[x\u] �→s t {x\u}

t[x\L〈v〉] �→sv L〈t {x\v}〉
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We write t 	→n (resp. t 	→v), and call t an n-normal form (resp. n-normal
form), if t cannot be reduced by means of →n (resp. →v).

Remark that we use CBN and CBV formulations based on distinguished
multiplicative (cf. dB) and exponential (cf. s and sv) rules, inheriting the nature
of cut elimination rules in LL. Moreover, CBN is to be understood as head CBN
reduction [7], i.e. reduction does not take place in arguments of applications,
while CBV corresponds to open CBV reduction [2,6], i.e. reduction does not
take place inside abstractions.

Embeddings. The CBN and CBV embeddings into the λ!-calculus, written cbn

and cbv resp., are inductively defined as:

xcbn def= x

(λx.t)cbn def= λx.tcbn

(t u)cbn def= tcbn ! ucbn

(t[x\u])cbn def= tcbn[x\! ucbn]

xcbv def= ! x
(λx.t)cbv def= ! λx.tcbv

(t u)cbv def=
{
L〈s〉 ucbv if tcbv = L〈! s〉
der (tcbv) ucbv otherwise

(t[x\u])cbv def= tcbv[x\ucbv]

Remark that there are no two consecutive ! constructors in the image of the
translations. The CBN embedding extends Girard’s translation to explicit substi-
tutions, while the CBV one is different. Indeed, the translation of an application
t u is usually defined as der (tcbv) ucbv (see for example [26]). This definition does
not preserve normal forms, i.e. x y is a v-normal form but its translated ver-
sion der (! x) ! y is not a w-normal form. We restore this fundamental property by
using the well-known notion of superdevelopment [10], so that d!-reductions are
applied by the translation on the fly.

Lemma 4. Let t ∈ Tλ. If t 	→n, then tcbn 	→w. If t 	→v, then tcbv 	→w.

Simulation of CBN and CBV reductions in the λ!-calculus can be shown by
induction on the reduction relations.

Lemma 5. Let t ∈ Tλ. If t →n s, then tcbn →w scbn. If t →v s, then tcbv �w scbv.

Note that the CBV case may require many reduction steps between tcbv

and scbv and not just one. For instance, if t = I y z →v w[w\y] z = s, then
tcbv = der ((λw.! w) ! y) ! z →w der (! w[w\! y]) ! z →w w[w\! y] ! z = scbv.

Non-idempotent Types for Call-by-Name and Call-by-Value. For CBN
we use the non-idempotent type system defined in [35] for explicit substitutions,
that we present in Fig. 2 (top), and which is an extension of that in [28]. For CBV
we slightly reformulate the non-idempotent system in [32], as presented in Fig. 2
(bottom), in order to recover completeness of the (typed) CBV translation.

We write Φ�N Γ  t : σ (resp. Φ�VΓ  t : σ) for a type derivation Φ in system
N (resp. V). Remark that potential erasable terms are typed with multiple
premises: this is the case for the arguments of applications and the arguments of
substitutions in CBN, as well as the values in CBV. A key point in rule (appv) is
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Fig. 2. Typing schemes for CBN/CBV.

that left hand sides of applications are typed with multisets of the form [M → τ ],
where τ is any type, potentially a base one, while [32] necessarily requires a
multiset of the form [M → M′], a subtle difference which breaks completeness.
System N (resp. V) can be understood as a relational model of the Call-by-Name
(resp. Call-by-Value) calculus, in the sense that typing is stable by reduction and
expansion [12].

The CBV translation is not complete for the system in [32], i.e. there exist a
λ-term t such that Γ  tcbv : σ is derivable in U but Γ  t : σ is not derivable in
their system. This is restored in this paper. More precisely, our two embeddings
are sound and complete w.r.t. system U :

Theorem 4 (Soundness/Completeness of the Embeddings). Let t ∈ Tλ.

1. �N Γ  t : σ iff �U Γ  tcbn : σ.
2. �V Γ  t : σ iff �U Γ  tcbv : σ.

The type system N (resp. V) characterises n-normalisation (resp. v-normal-
isation). More precisely:

Theorem 5 (Characterisation of CBN/CBV Normalisation). Let
t ∈ Tλ.

– t is N -typable iff t is n-normalising.
– t is V-typable iff t is v-normalising.
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5 A Tight Type System Giving Exact Bounds

In order to count exactly the length of w-reduction sequences to normal forms,
we first fix a deterministic strategy for the λ!-calculus, called dw, which computes
the same w-normal forms. We then define the tight type system E , being able to
count exactly the length of dw-reduction sequences. Theorem 1, stating that any
two different reductions paths to normal form have the same length, guarantees
that any w-reduction sequence to normal form can be exactly measured.

A Deterministic Strategy for the λ!-Calculus. The reduction relation →dw

defined below is a deterministic version of →w and is used, as explained, as a
technical tool of our development.

L〈λx.t〉 u →dw L〈t[x\u]〉 t[x\L〈! u〉] →dw L〈t {x\u}〉 der (L〈! t〉) →dw L〈t〉

t →dw u

λx.t →dw λx.u

t →dw u ¬bang(t)
r[x\t] →dw r[x\u]

t →dw u ¬bang(t)
der t →dw der u

t →dw u ¬abs(t)
t r →dw u r

t →dw u r ∈ naw

r t →dw r u

t →dw u r ∈ nbw

t[x\r] →dw u[x\r]

Normal forms of →w and →dw are the same, both characterised by the set
now.

Proposition 3. Let t ∈ T . Then, (1) t 	→w iff (2) t 	→dw iff (3) t ∈ now.

Proof. Notice that (1) =⇒ (2) follows from →dw ⊂ →w. Moreover, (1) iff (3)
holds by Proposition 1. The proof of (2) =⇒ (3) follows from a straightforward
adaptation of this same proposition. ��

The Type System E. We now extend the type system U to a tight one, called
E , being able to provide exact bounds for dw-normalising sequences and size of
normal forms. The technique is based on [1], which defines type systems to count
reduction lengths for different strategies in the λ-calculus. The notion of tight
derivation turns out to be a particular implementation of minimal derivation,
pioneered by de Carvalho in [18], where exact bounds for CBN abstract machines
are inferred from minimal type derivations.

We define the following sets of types:

(Tight types) tt ::= a | b | n
(Types) σ, τ ::= tt | M | M → σ

(Multiset types) M ::= [σi]i∈I where I is a finite set

Inspired by [1], which only uses two constant types a and n for abstractions
and neutral terms respectively, we now use three base types. Indeed, the constant
a (resp. b) types terms whose normal form has the shape L〈λx.t〉 (resp. L〈! t〉),
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and the constant n types terms whose normal form is in newcf. As a matter of
notation, given a tight type tt0 we write tt0 to denote a tight type different
from tt0. Thus for instance, a ∈ {b, n}.

Typing contexts are functions from variables to multiset types, assigning the
empty multiset to all but a finite number of variables. Sequents are of the form
Γ (b,e,s) t : σ, where the natural numbers b, e and s provide information on the
reduction of t to normal form, and on the size of its normal form. More precisely,
b (resp. e) indicates the number of multiplicative (resp. exponential) steps to
normal form, while s indicates the w-size of this normal form. Remark that we
do not count s! and d! steps separately, because both of them are exponential
steps of the same nature. It is also worth noticing that only two counters suffice
in the case of the λ-calculus [1], one to count β-reduction steps, and another to
count the size of normal forms. The difficulty in the case of the λ!-calculus is
to statically discriminate between multiplicative and exponential steps. Typing
rules (Fig. 3) are split in two groups: the persistent and the consuming ones. A
constructor is consuming (resp. persistent) if it is consumed (resp. not consumed)
during w-reduction. For instance, in der (! K) (! I) (! Ω) the two abstractions of K
are consuming, while the abstraction of I is persistent, and all the other con-
structors are also consuming, except those of Ω that turns out to be an untyped
subterm. This dichotomy between consuming/persistent constructors has been
used in [1] for the λ-calculus, and adapted here for the λ!-calculus.

The persistent rules are those typing persistent constructors, so that none
of them increases the first two counters, but only possibly the third one, which
contributes to the size of the normal form. The consuming rules type consuming
constructors, so that they increase the first two counters, contributing to the
length of the normalisation sequence. More precisely, rules (aec1) and (aec2)
increments the first counter because the (consuming) application will be used
to perform a dB-step, while rule (bgc) increments the second counter because
the (consuming) bang will be used to perform either a s! or a d!-step. Rule
(aec2) is particularly useful to type dB-redexes whose reduction does not create
an exponential redex, because the argument of the substitution created by the
dB-step does not reduce to a bang.

A multiset type [σi]i∈I is tight , written tight([σi]i∈I), if σi ∈ tt for all i ∈ I.
A context Γ is said to be tight if it assigns tight multisets to all variables. A
type derivation Φ �E Γ (b,e,s) t : σ is tight if Γ is tight and σ ∈ tt.



The Bang Calculus Revisited 27

Persistent Typing Rules

Γ �(b,e,s) t : n Δ �(b′,e′,s′) u : a
(aep)

Γ + Δ �(b+b′,e+e′,s+s′+1) t u : n

Γ �(b,e,s) t : tt tight(Γ (x))
(aip)

Γ \\ x �(b,e,s+1) λx.t : a

(bgp)�(0,0,0) ! t : b

Γ �(b,e,s) t : n
(drp)

Γ �(b,e,s+1) der t : n

Γ �(b,e,s) t : tt Δ �(b′,e′,s′) u : n tight(Γ (x))
(esp)

(Γ \\ x) + Δ �(b+b′,e+e′,s+s′) t[x\u] : tt

Consuming Typing Rules

(axc)
x : [σ] �(0,0,0) x : σ

Γ �(b,e,s) t : M → τ Δ �(b′,e′,s′) u : M
(aec1)

Γ + Δ �(b+b′+1,e+e′,s+s′) t u : τ

Γ �(b,e,s) t : M → tt Δ �(b′,e′,s′) u : n tight(M)
(aec2)

Γ + Δ �(b+b′+1,e+e′,s+s′) t u : tt

Γ �(b,e,s) t : τ
(aic)

Γ \\ x �(b,e,s) λx.t : Γ (x) → τ

(Γi �(bi,ei,si) t : σi)i∈I

(bgc)
+i∈I Γi �(+i∈Ibi,1+i∈Iei,+i∈I si) ! t : [σi]i∈I

Γ �(b,e,s) t : [σ]
(drc)

Γ �(b,e,s) der t : σ

Γ �(b,e,s) t : σ Δ �(b′,e′,s′) u : Γ (x)
(esc)

(Γ \\ x) + Δ �(b+b′,e+e′,s+s′) t[x\u] : σ

Fig. 3. System E for the λ!-Calculus.

Example 3. The following tight typing can be derived for term t0 of Example 1:

(axc)
x : [a] �(0,0,0) x : a

(aic)
x : [a] �(0,0,0) λy.x : [ ] → a

(aic)�(0,0,0) λx.λy.x : [a] → [ ] → a
(bgc)�(0,1,0) ! K : [[a] → [ ] → a]
(drc)�(0,1,0) der (! K) : [a] → [ ] → a

(axc)
x : [n] �(0,0,0) x : n

(aip)�(0,0,1) λx.x : a
(bgc)�(0,1,1) ! I : [a]
(aec1)�(1,2,1) der (! K) (! I) : [ ] → a

(bgc)�(0,1,0) !Ω : [ ]
(aec1)�(2,3,1) der (! K) (! I) (!Ω) : a

Note that the only persistent rule used is (aip) when typing I, thus contributing
to count the w-size of the w-normal form of t0, which is I.

Soundness. We now study soundness of the type system E , which does not
only guarantee that typable terms are normalising –a qualitative property– but
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also provides quantitative (exact) information for normalising sequences. More
precisely, given a tight type derivation Φ with counters (b, e, s) for a term t, t
is w-normalisable in (b + e)-steps and its w-normal form has size s. Therefore,
information about a dynamic behaviour of t, is extracted from a static typ-
ing property of t. The soundness proof is mainly based on a subject reduction
property (Lemma 9), as well as on some auxiliary lemmas.

As in system U , typable terms are weak clash-free:

Lemma 6. If Φ �E Γ (b,e,s) t : σ, then t is wcf.

The following properties can be shown by induction on the derivations.

Lemma 7. If Φ �E Γ (b,e,s) t : σ is tight, then b = e = 0 iff t ∈ now.

Lemma 8. If Φ �E Γ (0,0,s) t : σ is tight, then s = |t|w.

The type system E also captures clash-freeness of normal terms:

Theorem 6. Let t ∈ T . Then t ∈ now and t is E-typable iff t ∈ nowcf.

To conclude soundness, the key property is subject reduction, stating that
every reduction step decreases the counters of tight derivations by exactly one.

Lemma 9 (Exact Subject Reduction). Let Φ �E Γ (b,e,s) t : σ such that
Γ is tight, and either σ ∈ tt or ¬abs(t). If t →dw t′, then there is Φ′ �E
Γ (b′,e′,s) t′ : σ such that

– b′ = b − 1 and e ′ = e if t →dw t′ is an m-step.
– e ′ = e − 1 and b′ = b if t →dw t′ is an e-step.

Theorem 7 (Soundness). If Φ �E Γ (b,e,s) t : σ is tight, then there exists p

such that p ∈ nowcf and t �(b,e)
w p with b m-steps, e e-steps, and |p|w = s.

Proof. We prove the statement by showing that t �(b,e)
dw p holds for the deter-

ministic strategy, then we conclude since →dw ⊆ →w. Let Φ �E Γ (b,e,s) t : σ.
We reason by induction on b + e.

If b + e = 0, then b = e = 0 and Lemma 7 gives t ∈ now. Moreover, by
Lemma 8 and Theorem 6, we get both |t|w = s and t ∈ nowcf. Thus, we conclude
with p = t.

If b + e > 0, then t /∈ now holds by Lemma 7 and thus there exists t′ such
that t �(1,0)

dw t′ or t �(0,1)
dw t′ by Proposition 3. By Lemma 9 there is Φ′ �E

Γ (b′,e′,s) t′ : σ such that 1 + b′ + e ′ = b + e. By the i.h. there is p such that
p ∈ nowcf and t′ �(b′,e′)

dw p with s = |p|w. Then t �(1,0)
dw t′ �(b′,e′)

dw p (resp.
t �(0,1)

dw t′ . . .) which means t �(b,e)
dw p, as expected. ��

Completeness. We now study completeness of the type system E , which does
not only guarantee that normalising terms are typable –a qualitative property–
but also provides a tight type derivation having appropriate counters. More
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precisely, given a term t which is w-normalisable by means of b dB-steps and e
(s!, d!)-steps, and having a w-normal form of size s, there is a tight derivation Φ
for t with counters (b, e, s). The completeness proof is mainly based on a subject
expansion property (Lemma 11), as well as on an auxiliary lemma providing tight
derivations with appropriate counters for w-normal weak clash-free terms.

Lemma 10. If t ∈ nowcf, then there is a tight derivation Φ �E Γ (0,0,|t|w) t : σ.

Lemma 11 (Exact Subject Expansion). Let Φ′ �E Γ (b′,e′,s) t′ : σ be a
tight derivation. If t →dw t′, then there is Φ �E Γ (b,e,s) t : σ such that

– b′ = b − 1 and e ′ = e if t →dw t′ is an m-step.
– e ′ = e − 1 and b′ = b if t →dw t′ is an e-step.

Theorem 8 (Completeness). If t �(b,e)
w p with p ∈ nowcf, then there exists

a tight type derivation Φ �E Γ (b,e,|p|w) t : σ.

Proof. We prove the statement for �dw and then conclude for the general notion
of reduction →w by Theorem 1. Let t �(b,e)

dw p. We proceed by induction on b+e.
If b + e = 0, then b = e = 0 and thus t = p, which implies t ∈ nowcf.

Lemma 10 allows to conclude.
If b + e > 0, then there is t′ such that t �(1,0)

dw t′ �(b−1,e)
dw p or t �(0,1)

dw

t′ �(b,e−1)
dw p. By the i.h. there is a tight derivation Φ′�E Γ (b′,e′,|p|w) t′ : σ such

b′ + e ′ = b + e − 1. Lemma 11 gives a tight derivation Φ �E Γ (b′′,e′′,|p|w) t : σ
such b′′ + e ′′ = b′ + e ′ + 1. We then have b′′ + e ′′ = b + e. The fact that b′′ = b
and e ′′ = e holds by a simple case analysis. ��

The main results can be illustrated by the term t0 = der (! K) (! I) (!Ω) in
Sect. 2, which normalises in 2 multiplicative steps and 3 exponential steps to
a normal form of w-size 1. A tight derivation for t0 with appropriate counters
(2, 3, 1) is given in Example 3.

6 Conclusion

This paper gives a fresh view of the Bang Calculus, a formalism introduced by
T. Ehrhard to study the relation between CBPV and Linear Logic.

Our reduction relation integrates commutative conversions inside the logical
original formulation of [25], thus recovering soundness, i.e. avoiding mismatches
between terms in normal form that are semantically non-terminating. In contrast
to [26], which models commutative conversions as σ-reduction rules by paying
the cost of loosing confluence, our at a distance formulation yields a confluent
reduction system.

We then define two non-idempotent type systems for our calculus. System
U provides upper bounds for the length of normalising sequences plus the size
of normal forms. Moreover, it captures typed CBN and CBV. In particular, we
reformulate the translation and the type system of CBV to restore two major
properties missing in [32]: preservation of normal forms and completeness. Last
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but not least, the quantitative system U is further refined into system E , being
able to provide exact bounds for normalising sequences and size of normal forms,
independently. Moreover, our tight system E is able to discriminate between
different kind of steps performed to normalise terms.

Different topics deserve future attention. One of them is the study of strong
reduction for the λ!-calculus, which allows to reduce terms under all the con-
structors, including ! . Another challenging problem is to relate tight typing in
CBN/CBV with tight typing in our calculus, thus providing an exact correspon-
dence between (CBN/CBV) reduction steps and λ!-reduction steps.
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Abstract. We introduce a simple extension of the λ-calculus with
pairs—called the distributive λ-calculus—obtained by adding a compu-
tational interpretation of the valid distributivity isomorphism A ⇒ (B ∧
C) ≡ (A ⇒ B) ∧ (A ⇒ C) of simple types. We study the calculus both
as an untyped and as a simply typed setting. Key features of the untyped
calculus are confluence, the absence of clashes of constructs, that is, evalu-
ation never gets stuck, and a leftmost-outermost normalization theorem,
obtained with straightforward proofs. With respect to simple types, we
show that the new rules satisfy subject reduction if types are considered
up to the distributivity isomorphism. The main result is strong normaliza-
tion for simple types up to distributivity. The proof is a smooth variation
over the one for the λ-calculus with pairs and simple types.

Keywords: λ-calculus · Type isomorphisms · Rewriting ·
Normalization

1 Introduction

The topic of this paper is an extension of the λ-calculus with pairs, deemed the
distributive λ-calculus, obtained by adding a natural computational interpreta-
tion of the distributivity isomorphism of simple types:

A ⇒ (B ∧ C) ≡ (A ⇒ B) ∧ (A ⇒ C) (1)

Namely, one extends the calculus with the following commutation rules:

〈t, s〉u → 〈tu, su〉 πi(λx.t) → λx.πit i = 1, 2

The aim of this paper is showing that the distributive λ-calculus is a natural
system, and contributions are in both the typed and untyped settings.

We study the untyped setting to show that our calculus makes perfect sense
also without types. This is to contrast with System I, another calculus providing
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computational interpretations of type isomorphisms recently introduced by Dı́az-
Caro and Dowek [8], that does not admit an untyped version—the relationship
between the two is discussed below.

Typing up to Distributivity and Subject Reduction. At the typed level, the key
point is that simple types are here considered up to distributivity. In this way,
the apparently ad-hoc new rules do satisfy the subject reduction property.

Consider for instance π1(λx.t): working up to the distributivity
isomorphism—so that isomorphic types type the same terms—the subterm λx.t
may now have both the arrow type A ⇒ (B ∧ C) and the conjunctive type
(A ⇒ B) ∧ (A ⇒ C), so that π1(λx.t) can be typed with A ⇒ B. Distributiv-
ity also allows for the type to be preserved—that is, subject reduction holds.
According to the arrow type, indeed, the body t of the abstraction has type
B ∧ C and thus the reduct of the commutation rule π1(λx.t) → λx.π1t can also
be typed with A ⇒ B. The other commutation rule can be typed similarly.

Overview of the Paper. For the untyped setting, we show that the distributive
λ-calculus is confluent, its closed normal forms are values, and it has a leftmost-
outermost normalization theorem, exactly as for the λ-calculus (without pairs).

With respect to types, we show subject reduction and strong normalization
of the distributive λ-calculus with simple types up to distributivity.

The Pearl. The proofs in the paper are remarkably smooth. The properties for
the untyped calculus are immediate. Confluence follows by the fact that the
calculus is an orthogonal higher-order rewriting system [1,9,10]. The leftmost-
outermost normalization theorem, similarly, follows by an abstract result by
van Ramsdonk [12], because the calculus verifies two additional properties of
orthogonal higher-order rewriting system from which leftmost-outermost nor-
malization follows. Finally, the fact that closed normal forms are values—what
we call progress—is obtained via a straightforward induction.

For the typed setting, the given argument for subject reduction goes smoothly
through. The main result of the paper is that the simply typed distributive λ-
calculus is strongly normalizing. The proof follows Tait’s reducibility method.
In particular, the interpretation of types is the same at work for the λ-calculus
with pairs and projections (that is, without distributive rules). The key point
is to prove that the two sides of the distributivity isomorphism have the same
interpretation. This can be proved with two easy lemmas. Everything else is as
in the case without distributive rules.

Type Isomorphisms and System I. As shown by Bruce, Di Cosmo and Longo [4]
the isomorphisms of simple types can be completely characterized by distributiv-
ity (that is, Eq. (1)) plus the following three (for more about type isomorphisms
see Di Cosmo’s short survey [6] or book [5]):

Commutativity A ∧ B ≡ B ∧ A
Associativity (A ∧ B) ∧ C ≡ A ∧ (B ∧ C)

Currying (A ∧ B) ⇒ C ≡ A ⇒ (B ⇒ C)
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At the inception of Dı́az-Caro and Dowek’s System I [8], there is the idea of
turning all these type isomorphisms into computational principles. Precisely,
these isomorphisms give rise to some equations t ∼ s between terms, such as
〈t, s〉 ∼ 〈s, t〉 for the commutativity of conjunctions, for instance. The result of
Dı́az-Caro and Dowek is that the λ-calculus with pairs extended with 5 such
equations (distributivity induces 2 equations) is strongly normalizing modulo.

System I Rests on Types. The equations of System I, while well behaved with
respect to termination, come with two drawbacks. First, the calculus is not
confluent. Second, the definitions of the rewriting rules and of the equations
depend on types, so that it is not possible to consider an untyped version. Both
issues are easily seen considering the commutativity equation. Consider t =
π1〈s, u〉. If pairs are commutative, t can rewrite to both s and u:

s ← π1〈s, u〉 ∼ π1〈u, s〉 → u

which breaks both confluence and subject reduction (if s has type A and u has
type B). To recover subject reduction, one uses a projection πA indexed by a
type rather than a coordinate so that (if s has type A and u has type B):

s ← πA〈s, u〉 ∼ πA〈u, s〉 → s

note that in order to apply the rule we need to know the type of s. Moreover,
confluence is not recovered—if both s and u have type A then the result may
non-deterministically be s or u, according to System I. Dı́az-Caro and Dowek
in [8] indeed adopt a sort of proof-irrelevant point of view, for which subject
reduction is more important than confluence for normalization: types guarantee
the existence of a result (strong normalization), and this guarantee is stable by
evaluation (subject reduction), while uniqueness of the result is abandoned (no
confluence).

System I and the Distributive λ-Calculus. The two issues of System I are not
due only to the commutativity isomorphism, as the currying and associativity
isomorphisms also contribute to them. The distributive λ-calculus essentially
restricts System I by keeping only the distributive isomorphism, which is the
only one not hindering confluence and the possibility of defining the calculus
independently from the type system.

To be precise, we do not simply restrict to distributivity, but we also change
its computational interpretation. First, we do not consider equations, but rewrit-
ing rules, and also we consider the rule πi(λx.t) → λx.πit that was not part of
System I1, while we remove both equations:

λx.〈t, s〉 ∼ 〈λx.t, λx.s〉 πi(ts) ∼ λx.(πit)s i = 1, 2

The main reason is that they would make much harder to establish confluence
of the calculus, because they introduce various critical pairs—the distributive
1 Such a rule was however present in an early version of System I, see [7].
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λ-calculus is instead trivially confluent, because it is an orthogonal higher-order
rewriting system, and all such systems are confluent.

To sum up, System I aims at being a maximal enrichment of the λ-calculus
with computation principles induced by type isomorphisms, while the distribu-
tive λ-calculus rather is a minimal extension aiming at being as conservative
as possible with respect to the λ-calculus, and in particular at being definable
without types.

Clashes. Let us point out a pleasant by-product of the distributive rewriting
rules that we adopt. A nice property of the λ-calculus is that there can never be
clashes of constructors. In logical terms, there is only one introduction rule (cor-
responding to the abstraction constructor) and only one elimination rule (appli-
cation) and they are duals, that is, they interact via β-reduction. Extensions
of the λ-calculus usually lack this property. Typically, extending the λ-calculus
with pairs 〈t, s〉 (and of course projections π1t and π2t) introduces the following
two clashes: 〈t, s〉u and πi(λx.t), for i = 1, 2, where an elimination construc-
tor (application or projection) is applied to the wrong introduction rule (pair
or abstraction). These clashes are stuck, as there are no rules to remove them,
and it is not clear whether it makes any sense to consider such an unrestricted
λ-calculus with pairs.

Our distributive rules deal exactly with these clashes, removing them by
commuting constructors. Concretely, the absence of clashes materializes as a
progress property: all closed normal forms are values, that is, their outermost
constructor corresponds to an introduction rule.

Related Work. Beyond Dı́az-Caro and Dowek’s System I, we are aware of only
three works bearing some analogies to ours. The first one is Arbiser, Miquel,
and Ŕıos’ λ-calculus with constructors [3], where the λ-calculus is extended with
constructors and a pattern matching construct that commutes with applications.
They show it to be confluent and even having a separation theorem akin to
Bohm’s. The calculus has been further studied in a typed setting by Petit [11],
but type isomorphisms play no role in this case.

The second related work is Aı̈t-Kaci and Garrigue’s label-selective λ-calculus
[2], which considers the λ-calculus plus the only type isomorphism for the impli-
cation: A ⇒ B ⇒ C ≡ B ⇒ A ⇒ C2. In order to avoid losing confluence and
subject reduction, they introduce a labeling system to the arguments, so that
the application order becomes irrelevant.

Last, the untyped distributive λ-calculus coincides with the extensionality-
free fragment of Støvring’s λFP [13]. Støvring uses it as a technical tool to study
confluence and conservativity of surjective pairing. He points out—as we do—
that the calculus is confluent because it is an orthogonal higher-order rewriting
system, but then he gives nonetheless a proof using Tait-Martin Löf’s technique.

2 With conjunction, this isomorphism is a consequence of currying and commutativity.
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2 The Untyped Distributive λ-Calculus

The language of the distributive λ-calculus λdist is given by the following gram-
mar:

Terms t, s, u ::= x | λx.t | ts | 〈t, s〉 | π1t | π2t

The rewriting rules are first given at top level:

Rules at top level
Standard rules (λx.t)s 
→β t{x�s}

πi〈t1, t2〉 
→πi
ti i = 1, 2

Distributive rules 〈t, s〉u 
→@× 〈tu, su〉
πi(λx.t) 
→πλ

λx.πit i = 1, 2

Then, we extend them to be applied wherever in a term. We formulate such an
extension using contexts, that are terms where exactly one subterm has been
replaced with a hole 〈·〉:

Contexts C,D,E ::= 〈·〉 | λx.C | Ct | tC | 〈C, t〉 | 〈t, C〉 | π1C | π2C

The operation of replacing the hole 〈·〉 of a context C with a given term t is
called plugging and it is noted C〈t〉. As usual, plugging can capture variables.
Now we can define the contextual closure of the top level rules.

Contextual closure
t 
→a s

C〈t〉 →a C〈s〉 a ∈ {β, π1, π2,@×, πλ}

The contextual closure is given with contexts as a compact way of expressing the
closure of all rules by all constructors, in the proofs sometimes we consider the
closure by a single constructor. We use →dist for the union of all the rewriting
rules defined above.

Values and Neutral Terms. Two subsets of terms play a special role in the follow-
ing, terms whose outermost constructor corresponds to a logical introduction rule
(values) and elimination rule (neutral terms), plus—in both cases—variables.

Definition 2.1 (Values and neutral terms).

– Values: a term is value if it is either a variable x, an abstraction λx.t, or a
pair 〈t, s〉.

– Neutral terms: a term is neutral if it is either a variable x, an application
ts, or a projection πit.

Sometimes, neutral terms are also required to be normal. Here they are not.
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Progress. The first property that we show is that all closed normal forms are
values. Please note that evaluation is not call-by-value, here the aim is simply to
stress that in the distributive λ-calculus there are no clashes, i.e. closed-normal
neutral terms.

Proposition 2.2 (Progress). If t is a closed normal form then it is a value.

Proof. By induction on t. Cases:

– Variable: impossible, since t is closed.
– Abstraction or pair : then the statement holds.
– Application, i.e. t = su. Since t is normal and closed, so is s. Then, by i.h.

s is a value, that is, either an abstraction or a pair. In the first case, rule β
applies and in the second case rule @× applies. Hence, in any case t is not in
normal form, absurd. Therefore, t cannot be an application in normal form.

– Projection, i.e. t = πis. Since t is normal and closed, so is s. Then, by i.h.
s is a value, that is, either an abstraction or a pair. In the first case, rule
πλ applies and in the second case rule πi applies. Therefore, t cannot be a
projection in normal form. �

Substitution. For the proof of strong normalization we shall need a basic property
of substitution with respect to rewriting steps.

Lemma 2.3 (Substitutivity of →dist).

1. Left substitutivity: if t →dist t′ then t{x�s} →dist t′{x�s}.
2. Right substitutivity: if s →dist s′ then t{x�s} →∗

dist t{x�s′}.
Proof. The first point is an easy induction on the relation →dist, the second one
on t. Details in the Appendix. �

Confluence. The distributive λ-calculus is an example of orthogonal higher-order
rewriting system [1,9,10], that is a class of rewriting systems for which confluence
always holds, because of the good shape of its rewriting rules.

Theorem 2.4 (Confluence). The distributive λ-calculus is confluent, that is,
if s1

∗
dist← t →∗

dist s2 then there exists u such that s1 →∗
dist u ∗

dist← s2. �

Leftmost-Outermost Normalization. A classic property of the ordinary λ-calculus
is the (untyped) normalization theorem for leftmost-outermost (shortened to
LO) reduction. The theorem states that LO reduction →LO is normalizing, that
is, →LO reaches a normal form from t whenever t has a β reduction sequence
to a normal form. The definition of LO reduction →LO on ordinary λ-terms is
given by:

LO reduction for the ordinary λ-calculus

(λx.t)s →LO t{x�s} t →LO s t is neutral
tu →LO su

t →LO s

λx.t →LO λx.s
u is neutral and normal t →LO s

ut →LO us
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By exploiting an abstract result by van Ramsdonk, we obtain a LO normalization
theorem for λdist for free. Leftmost-outermost reduction →LO can indeed be
defined uniformly for every orthogonal rewriting system. For the distributive λ-
calculus we simply consider the previous rules with respect to terms in λdist, and
add the following clauses:

LO reduction clauses for pairs and projections

πi〈t1, t2〉 →LO ti 〈t, s〉u →LO 〈tu, su〉 πi(λx.t) →LO λx.πit

t →LO s
πit →LO πis

t →LO s

〈t, u〉 →LO 〈s, u〉
u is normal t →LO s

〈u, t〉 →LO 〈u, s〉
In [12], van Ramsdonk shows that every orthogonal higher-order rewriting sys-
tem that is fully extended and left normal has a LO normalization theorem3.
These requirements, similarly to orthogonality, concern the shape of the rewrit-
ing rules—see [12] for exact definitions. Verifying that the distributive λ-calculus
is fully extended and left normal is a routine check, omitted here to avoid defining
formally higher-order rewriting systems. The theorem then follows.

Theorem 2.5 (Leftmost-outermost normalization). If t →∗
dist s and s is

→dist-normal then t →∗
LO s. �

3 Simple Types up to Distributivity

In this section we define the simply typed distributive λ-calculus and prove
subject reduction.

The Type System. The grammar of types is given by

A ::= τ | A ⇒ A | A ∧ A

where τ is a given atomic type.
The relation ≡ denoting type isomorphism is defined by

A ≡ A
B ≡ A
A ≡ B

A ≡ B B ≡ C
A ≡ C A ⇒ B ∧ C ≡ (A ⇒ B) ∧ (A ⇒ C)

A ≡ C
A ⇒ B ≡ C ⇒ B

B ≡ C
A ⇒ B ≡ A ⇒ C

A ≡ C
A ∧ B ≡ C ∧ B

B ≡ C
A ∧ B ≡ A ∧ C

3 Precisely, on the one hand van Ramsdonk in [12] shows that full extendedness implies
that outermost-fair strategies are normalizing. On the other hand, left-normality
implies that leftmost-fair rewriting is normalizing. Then, the LO strategy is normal-
izing.
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The typing rules are:

Γ, x : A � x : A
(ax) Γ � t : A A ≡ B

Γ � t : B
(≡)

Γ, x : A � t : B

Γ � λx.t : A ⇒ B
(⇒i)

Γ � t : A ⇒ B Γ � s : B
Γ � ts : B

(⇒e)

Γ � t : A Γ � s : B
Γ � 〈t, s〉 : A ∧ B

(∧i) Γ � t : A ∧ B
Γ � π1t : A

(∧e1)
Γ � t : A ∧ B
Γ � π2t : B

(∧e2)

Note rule ≡: it states that if t is typable with A then it is also typable with
B for any type B ≡ A. It is the key rule for having subject reduction for the
distributive λ-calculus.

Subject Reduction. The proof of subject reduction is built in a standard way,
from a generation and a substitution lemma, plus a straightforward lemma on
the shape of isomorphic types.

Lemma 3.1 (Generation). Let Γ � t : A. Then,

1. If t = x, then Γ = Γ ′, x : B and B ≡ A.
2. If t = λx.s, then Γ, x : B � s : C and B ⇒ C ≡ A.
3. If t = 〈s1, s2〉, then Γ � si : Bi, for i = 1, 2, and B1 ∧ B2 ≡ A.
4. If t = su, then Γ � s : B ⇒ A, Γ � u : A.
5. If t = πis, then Γ � s : B1 ∧ B2 and Bi = A.

Proof. Formally, the proof is by induction on Γ � t : A, but we rather give an
informal explanation. If t is a value (x, λx.s, or 〈s1, s2〉) then the last rule may be
either the corresponding introduction rule or ≡, and the statement follows. If t is
not a value there are two similar cases. If t = su what said for values still holds,
but we can say something more. Note indeed that if A ≡ C and Γ � s : B ⇒ C
then since C is a sub-formula of B ⇒ C we can permute the ≡ rule upwards and
obtain Γ � s : B ⇒ A. Similarly if t = πis, which is also an elimination rule. �
Lemma 3.2 (Substitution). If Γ, x : A � t : B and Γ � s : A, then Γ �
t{x�s} : B.

Proof. Easy induction on the derivation of Γ, x : A � t : B. Details in the
Appendix. �
Lemma 3.3 (Equivalence of types).

1. If A ∧ B ≡ C ∧ D then A ≡ C and B ≡ D.
2. If A ⇒ B ≡ C ⇒ D then A ≡ C and B ≡ C.
3. If A ∧ B ≡ C ⇒ D then D ≡ D1 ∧ D2, A ≡ C ⇒ D1 and B ≡ C ⇒ D2.

Proof. By induction on the definition of ≡. �
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Theorem 3.4 (Subject reduction). If Γ � t : A and t →dist s, then Γ � s : A.

Proof. By induction on t →dist s using the generation lemma (Lemma 3.1). We
first deal with the cases of the rules applied at top level:

– β-rule: (λx.t)s 
→β t{x�s}. By generation, Γ � λx.t : B ⇒ A, Γ � s : B.
Again by generation, Γ, x : C � t : D, with C ⇒ D ≡ B ⇒ A, so by
Lemma 3.3, C ≡ B and D ≡ A. Then, by rule (≡) we have Γ � s : C, and so,
by the substitution lemma (Lemma 3.2) we have Γ � t{x�s} : D, therefore,
by rule (≡), Γ � t{x�s} : A.

– Projection: πi〈t1, t2〉 
→πi
ti. By generation, Γ � 〈t1, t2〉 : B1∧B2 with Bi = A.

By generation again, Γ � ti : Ci with C1 ∧ C2 ≡ B1 ∧ B2. Therefore, by rule
(≡), Γ � ti : A.

– Pair-application: 〈t, s〉u 
→@× 〈tu, su〉. By generation, Γ � 〈t, s〉 : B ⇒ A and
Γ � u : B. By generation again, Γ � t : C and Γ � s : D with C∧D ≡ B ⇒ A.
By Lemma 3.3, A ≡ A1 ∧ A2, C ≡ B ⇒ A1 and D ≡ B ⇒ A2. Then,

Γ � t : C
Γ � t : B ⇒ A1

(≡)
Γ � u : B

Γ � tu : A1
(⇒e)

Γ � s : D
Γ � s : B ⇒ A2

(≡)
Γ � u : B

Γ � su : A2
(⇒e)

Γ � 〈tu, su〉 : A1 ∧ A2
(∧i)

Γ � 〈tu, su〉 : A
(≡)

– Projection-abstraction: πi(λx.t) 
→πλ
λx.πit. By generation, Γ � λx.t : B1 ∧

B2 with Bi = A. By generation again, Γ, x : C � t : D, with C ⇒ D ≡ B1∧B2.
Then, by Lemma 3.3, D ≡ D1 ∧ D2, B1 ≡ C ⇒ D1, and B2 ≡ C ⇒ D2.
Then, A = C ⇒ Di, and so,

Γ, x : C � t : D

Γ, x : C � t : D1 ∧ D2
(≡)

Γ, x : C � πit : Di
(∧ei

)

Γ � λx.πit : C ⇒ Di
(⇒i)

The inductive cases are all straightforward. We give one of them, the others
are along the same lines. Let λx.t →dist λx.s because t →dist s. By generation,
Γ, x : B � t : C, with B ⇒ C ≡ A. By i.h., Γ, x : B � s : C, so, by rules (⇒i)
and (≡), Γ � λx.s : A. �

4 Strong Normalisation

Here we prove strong normalization using Tait’s reducibility technique. The key
point shall be proving that the interpretation of types is stable by distributivity.

Definition 4.1 (Basic definitions and notations).

– SN terms: we write SN for the set of strongly normalising terms.
– One-step reducts: the set {s | t →dist s} of all the one-step reducts of a term

t is noted Red(t).
– Evaluation length: eval(t) is the length of the longest path starting from t to

arrive to a normal form
– Size: size(t) is the size of the term t defined in the usual way.
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The Interpretation of Types. The starting point of the reducibility technique is
the definition of the interpretation of types, which is the standard one.

Definition 4.2 (Interpretation of types).

�τ� := SN
�A ⇒ B� := {t | ∀s ∈ �A�, ts ∈ �B�}
�A ∧ B� := {t | π1t ∈ �A� and π2t ∈ �B�}

The Reducibility Properties. The next step is to prove the standard three prop-
erties of reducibility. The proof is standard, that is, the distributive rules do not
play a role here.

Lemma 4.3 (Properties of the interpretation). For any type A the follow-
ing properties of its interpretation are valid.

CR1 �A� ⊆ SN.
CR2 If t ∈ �A� and t →dist s, then s ∈ �A�.
CR3 If t is neutral and Red(t) ⊆ �A�, then t ∈ �A�.

Proof.

CR1 By induction on A. Cases:
– �τ� = SN.
– Let t ∈ �A ⇒ B�. Then, for all s ∈ �A�, we have ts ∈ �B�. By i.h.,

�B� ⊆ SN, so ts ∈ SN, and hence, t ∈ SN.
– Let t ∈ �A ∧ B�. Then, in particular, π1t ∈ �A�. By i.h., �A� ⊆ SN, so

π1t ∈ SN, and hence, t ∈ SN.
CR2 By induction on A. Cases:

– Let t ∈ �τ� = SN. Then if t →dist s, we have s ∈ SN = �τ�.
– Let t ∈ �A ⇒ B�. Then, for all u ∈ �A�, we have tu ∈ �B�. By i.h. on B,

since tu →dist su, we have su ∈ �B� and so s ∈ �A ⇒ B�.
– Let t ∈ �A1 ∧ A2�. Then, πit ∈ �Ai�, for i = 1, 2. By i.h. on Ai, since

πit →dist πis, we have πis ∈ �Ai� and so s ∈ �A1 ∧ A2�.
CR3 By induction on A. Let t be neutral. Cases:

– Let Red(t) ⊆ �τ� = SN. Then t ∈ SN = �τ�.
– Let Red(t) ⊆ �A ⇒ B�. Then for each t′ ∈ Red(t), we have that for all

s ∈ �A�, t′s ∈ �B�. Since ts is neutral, if we show that Red(ts) ⊆ �B�

then the i.h. on B gives ts ∈ �B� and so t ∈ �A ⇒ B�.
Since, by CR1 on �A�, we have s ∈ SN, we show that Red(ts) ⊆ �B� by a
second induction on size(s). The possible reducts of ts are:

• t′s, with t →dist t′, which is in �B� by hypothesis,
• ts′, with s →dist s′, then by the second induction hypothesis
Red(ts′) ⊆ �B� and by i.h. ts′ ∈ �B�.

Note that since t is neutral there are no other reductions from ts.
– Let Red(t) ⊆ �A1 ∧ A2�. Then for each t′ ∈ Red(t), we have that πit

′ ∈
�Ai�, for i = 1, 2. We show that Red(πit) ⊆ �Ai�, which—since πit is
neutral—by i.h. implies πit ∈ �Ai�, and so t ∈ �A1 ∧ A2�.
Since t is neutral, its only possible reducts have the form πit

′, with t →dist

t′, which are in �Ai� by hypothesis. �
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Stability of the Interpretation by Isomorphism. Finally, we come to the point
where distributivity plays a role. Here we prove that the interpretation of types
is stable by ≡, that is, if A ≡ B then �A� = �B�. We need an auxiliary lemma
stating a sort of stability by anti-reduction of �A� with respect to the standard
rewriting rules of β and projection.

Lemma 4.4

1. If t, s ∈ SN and t{x�s} ∈ �A� then (λx.t)s ∈ �A�.
2. If ti ∈ �Ai� then πi〈t1, t2〉 ∈ �Ai�, for i = 1, 2.

Proof.

1. By induction on eval(t) + eval(s). We show that Red((λx.t)s) ⊆ �A�, and
obtain the statement by CR3. Cases:

– (λx.t)s →dist (λx.t′)s with t →dist t′. We can apply the i.h. because
if t →dist t′ then t{x�s} →dist t′{x�s} by left substitutivity of →dist

(Lemma 2.3.1), and t′{x�s} ∈ �A� by CR2. By i.h., (λx.t′)s ∈ �A�.
– (λx.t)s →dist (λx.t)s′ with s →dist s′. We can apply the i.h. because

if s →dist s′ then t{x�s} →∗
dist t{x�s′} by right substitutivity of →dist

(Lemma 2.3.2), and t{x�s′} ∈ �A� by CR2. By i.h., (λx.t)s′ ∈ �A�.
– (λx.t)s →β t{x�s}, which is in �A� by hypothesis.

2. By CR1 we have ti ∈ SN. By induction on eval(t1) + eval(t2). The possible
reducts of πi〈t1, t2〉 are:

– ti, because of a →πi
step. Then ti ∈ �Ai� by hypothesis.

– πi〈t′1, t2〉, with t1 →dist t′1. We can apply the i.h. because �A1� � t1 →dist t′1
which is in �A1� by CR2. Then πi〈t′1, t2〉 ∈ �A1� by i.h.

– πi〈t1, t′2〉, with t2 →dist t′2. As the previous case, just switching coordinate
of the pair. �

Lemma 4.5 (Stability by isomorphism). If A ≡ B, then �A� = �B�.

Proof. By induction on A ≡ B. The only interesting case is the base case A ⇒
B1 ∧ B2 ≡ (A ⇒ B1) ∧ (A ⇒ B2). The inductive cases follow immediately from
the i.h.

We prove �A ⇒ B1 ∧ B2� = �(A ⇒ B1) ∧ (A ⇒ B2)� by proving the double
inclusion.

– Let t ∈ �A ⇒ B1 ∧ B2�. Then for all s ∈ �A� we have ts ∈ �B1 ∧ B2�, so

πi(ts) ∈ �Bi� (2)

We need to prove that (πit)s ∈ �Bi�. Since this term is neutral, we prove that
Red((πit)s) ⊆ �Bi� and conclude by CR3. By CR1 and (2), t and s are in SN,
so we proceed by induction on eval(t)+ eval(s). The possible one-step reducts
fired from (πit)s are:

• (πit
′)s, with t →dist t′, then i.h. applies.

• (πit)s′, with s →dist s′, then i.h. applies.
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• tis, if t = 〈t1, t2〉. Since πi(ts) = πi(〈t1, t2〉s) →dist πi〈t1s, t2s〉 →dist t1s,
by (2) and CR2 we have tis ∈ �Bi�.

• (λx.πiu)s if t = λx.u. Then we can apply Lemma 4.4.1, since we know
that u and s are SN and that πi(ts) = πi((λx.u)s) →β πiu{x�s} which
by (2) and CR2 is in �Bi�. We obtain (λx.πiu)s ∈ �Bi�

– Let t ∈ �(A ⇒ B1) ∧ (A ⇒ B2)�. Then πit ∈ �A ⇒ Bi�, and so for all
s ∈ �A�, we have (πit)s ∈ �Bi�. By CR1 we have t, s ∈ SN, so we proceed by
induction on eval(t) + eval(s) to show that Red(πi(ts)) ⊆ �Bi�, which implies
πi(ts) ∈ �Bi� and so ts ∈ �B1 ∧ B2�, and then t ∈ �A ⇒ B1 ∧ B2�. The
possible reducts of πi(ts) are:

• πi(t′s) with t →dist t′, then the i.h. applies.
• πi(ts′) with s →dist s′, then the i.h. applies.
• πi(u{x�s}) if t = λx.u. Then since (πit)s ∈ �Bi�, we have (πiλx.u)s ∈

�Bi� and (πiλx.u)s →πλ
(λx.πiu)s →β πi(u{x�s}), so, by CR2,

πi(u{x�s}) ∈ �Bi�.
• πi〈t1s, t2s〉 if t = 〈t1, t2〉. We apply Lemma 4.4.2, since we have

(πi〈t1, t2〉)s ∈ �Bi� and (πi〈t1, t2〉)s →πi
tis, so, by CR2, tis ∈ �Bi�.

We then obtain πi〈t1s, t2s〉 ∈ �Bi�. �

Adequacy. The last step is to prove what is usually called adequacy, that is, that
typability of t with A implies that t ∈ �A�, up to a substitution θ playing the
role of the typing context Γ . The proof is standard, the distributive rules do not
play any role.

Definition 4.6 (Valid substitution). We say that a substitution θ is valid
with respect to a context Γ (notation θ � Γ ) if for all x : A ∈ Γ , we have
θx ∈ �A�.

Lemma 4.7 (Adequacy). If Γ � t : A and θ � Γ , then θt ∈ �A�.

Proof. By induction on the derivation of Γ � t : A.

– Γ, x : A � x : A
(ax) Since θ � Γ, x : A, we have θx ∈ �A�.

– Γ, x : A � t : B

Γ � λx.t : A ⇒ B
(⇒i)

By i.h., if θ′ � Γ, x : A, then θ′t ∈ �B�. Let s ∈ �A�, we have to prove that
θ(λx.t)s = (λx.θt)s ∈ �B�. By CR1, s, θt ∈ SN, so we proceed by a second
induction on size(s)+size(θt) to show that Red((λx.θt)s) ⊆ �B�, which implies
(λx.θt)s ∈ �B�. The possible reducts of (λx.θt)s are:

• (λx.t′)s, with θt →dist t′, then the second i.h. applies.
• (λx.θt)s′, with s →dist s′, then the second i.h. applies.
• θt{x�s}, then take θ′ = θ, x 
→ s and notice that θ′ � Γ, x : A, so

θt{x�s} ∈ �B�.
– Γ � t : A ⇒ B Γ � s : B

Γ � ts : B
(⇒e)

By i.h., θt ∈ �A ⇒ B� and θs ∈ �B�, so, by definition, θtθs = θ(ts) ∈ �B�.
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–
Γ � t1 : A1 Γ � t2 : A2

Γ � 〈t1, t2〉 : A1 ∧ A2
(∧i)

By i.h., θti ∈ �Ai�, for i = 1, 2. By CR1 we have θti ∈ SN, hence we proceed
by a second induction on size(θt1)+ size(θt2) to show that Red(πi〈θt1, θt2〉) ⊆
�A1�, which, by CR3 implies πi〈θt1, θt2〉 ∈ �Ai� and so 〈θt1, θt2〉 ∈ �A1 ∧A2�.
The possible one-step reducts of πi〈θt1, θt2〉 are:

• πi〈t′, θt2〉, with θt1 →dist t′, then the second i.h. applies.
• πi〈θt1, t′〉, with θt2 →dist t′, then the second i.h. applies.
• θti ∈ �Ai�.

–
Γ � t : A1 ∧ A2

Γ � πit : Ai
(∧ei

) By i.h., θt ∈ �A1 ∧ A2�, so, by definition, πi(θt) =

θπit ∈ �Ai�.
– Γ � t : A A ≡ B

Γ � t : B
(≡) By i.h., θt ∈ �A�, so, by Lemma 4.5, θt ∈ �B�. �

Theorem 4.8 (Strong normalisation). If Γ � t : A, then t ∈ SN.

Proof. By Lemma 4.7, if θ � Γ , θt ∈ �A�. By CR3, variables—which are neutral
terms—are in all the interpretations, and so the identity substitution is valid in
any context, in particular, in Γ . Hence, t ∈ �A�. By CR1, �A� ⊆ SN. Hence,
t ∈ SN. �

5 Discussion and Conclusions

The Unit Type. The point of the paper is the fact that the distributive rewriting
rules and typing up to distributivity perfectly marry together. The elimination
of clashes, on the other hand, is a nice consequence of our approach that should
not be taken too seriously, because it does not scale up, as we now show.

Let’s consider the extension of the distributive λ-calculus with the unit type
� and a construct � of type �. In this extended setting it is still possible to
interpret distributivity as in the previous sections, and all our results still holds.
There are however two new clashes, namely � u and πi�. If one makes the further
step of eliminating them via new rules and type them up to new isomorphisms,
then unfortunately normalization breaks, as we now show.

Consider their natural commutation rules:

� u → � πi� → � i = 1, 2

To have subject reduction along the same lines of what we did, one needs to
work up to the following two isomorphisms:

A ⇒ � ≡ � � ∧ � ≡ �
Note that A ⇒ � ≡ � has to be valid for any type A, therefore in particular it is
true for �, giving � ⇒ � ≡ �. Now, unfortunately, one can type the diverging
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term Ω := (λx.xx)(λx.xx), as the following derivation shows, and in fact all the
terms of the ordinary λ-calculus—said differently strong normalization breaks.

x : � � x : � (ax)

x : � � x : � ⇒ � (≡)
x : � � x : � (ax)

x : � � xx : � (⇒e)

� λx.x : � ⇒ � (⇒i)

x : � � x : � (ax)

x : � � x : � ⇒ � (≡)
x : � � x : � (ax)

x : � � xx : � (⇒e)

� λx.x : � ⇒ � (⇒i)

� λx.xx : � (≡)

� (λx.xx)(λx.xx) : � (⇒e)

This example also reinforces the fact, already stressed in the introduction, that
interpretations of type isomorphisms tend to break key properties. Distributivity,
instead, is somewhat special, as it admits an interpretation that is conservative
with respect to the properties of the underlying calculus.

Additional Distributivity Rules. It is possible to add the two following distribu-
tive rewriting rules:

λx.〈t, s〉 → 〈λx.t, λx.s〉 πi(ts) → (πit)s i = 1, 2

Subject reduction and strong normalization still hold. The problem is that the
rewriting system is no longer orthogonal, since the following critical pairs are
now possible:

πi(λx.〈t1, t2〉) πi〈λx.t1, λx.t2〉

λx.πi〈t1, t2〉 λx.ti

πi(〈t1, t2〉s) (πi〈t1, t2〉)s

πi〈t1s, t2s〉 tis

(λx.〈t, s〉)u 〈t{x u}, s{x u}〉

〈λx.t, λx.s〉u 〈(λx.t)u, (λx.s)u〉

πi((λx.t)s) πi(t{x s})

(πi(λx.t))s (λx.πit)s

2

While the pairs on the left side are easy to deal with, those on the right side
have an unpleasant closing diagram and make the rewriting system much harder
to study.

Conclusions. We have extended the λ-calculus with pairs with two additional
commutation rules inspired by the distributivity isomorphism of simple types,
and showed that it is a well behaved setting. In the untyped case, confluence,
progress, and leftmost-outermost normalization are obtained essentially for free.
In the typed case, subject reduction up to distributivity holds, as well as strong
normalization. The proof of strong normalization, in particular, is a smooth
adaptation of Tait’s standard reducibility proof for the λ-calculus with pairs.
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A Proofs Appendix

Lemma 2.3 (Substitutivity of →dist).

1. Left substitutivity: if t →dist t′ then t{x�s} →dist t′{x�s}.
2. Right substitutivity: if s →dist s′ then t{x�s} →∗

dist t{x�s′}.

Proof.

1. By induction on the relation →dist. Base cases:
– Let t = (λy.u)r 
→β u{y�r} = t′. Then,

t{x�s} = ((λy.u)r){x�s} = (λy.u{x�s})r{x�s}

→β (u{x�s}){y�r{x�s}} = (u{y�r}){x�s} = t′{x�s}

– Let t = πi〈u1, u2〉 
→πi
ui = t′. Then,

t{x�s} = (πi〈u1, u2〉){x�s} = πi〈u1{x�s}, u2{x�s}〉

→πi

ui{x�s} = t′{x�s}

– Let t = 〈u, r〉p 
→@× 〈up, rp〉 = t′. Then,

t{x�s} = (〈u, r〉p){x�s} = 〈u{x�s}, r{x�s}〉(p{x�s})
	→@× 〈u{x�s}p{x�s}, r{x�s}p{x�s}〉 = 〈up, rp〉{x�s} = t′{x�s}

– Let t = πi(λy.u) 
→πλ
λy.πiu = t′, Then,

t{x�s} = π(λy.u){x�s} = π(λy.u{x�s})

→πλ

λy.πi(u{x�s}) = (λy.πiu){x�s} = t′{x�s}

We treat the inductive cases compactly via contexts. First note that a
straightforward induction on C shows that C〈t〉{x�s} = C{x�s}〈t{x�s}〉,
where the substitution C{x�s} on contexts is defined as expected. Now, con-
sider t = C〈u〉 →a C〈r〉 = t′ with u 
→a r, for some a ∈ {β,@×, π1, π2, πλ}.
By i.h., u{x�s} 
→a r{x�s}. Hence,

t{x�s} = C〈u〉{x�s} = C{x�s}〈u{x�s}〉
→a C{x�s}〈r{x�s}〉 = C〈r〉{x�s} = t′{x�s}

2. By induction on t.
– Let t = x. Then,

t{x�s} = s →dist s′ = t{x�s′}

– Let t = y. Then,

t{x�s} = y →∗
dist y = t{x�s′}
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– Let t = λy.u. By i.h., u{x�s} →∗
dist u{x�s′}. Then,

t{x�s} = λy.u{x�s} →∗
dist λy.u{x�s′} = t{x�s′}

– Let t = ur. By i.h., u{x�s} →∗
dist u{x�s′} and r{x�s} →∗

dist r{x�s′}.
Then,

t{x�s} = (u{x�s})(r{x�s}) →∗
dist (u{x�s′})(r{x�s′}) = t{x�s′}

– Let t = 〈u1, u2〉. By i.h., for i = 1, 2, ui{x�s} →∗
dist ui{x�s′}. Then,

t{x�s} = 〈u1{x�s}, u2{x�s}〉 →∗
dist 〈u1{x�s′}, u2{x�s′}〉 = t{x�s′}

– Let t = πiu. By i.h. u{x�s} →∗
dist u{x�s′}. Then,

t{x�s} = πi(u{x�s}) →∗
dist πi(u{x�s′}) = t{x�s′}

�
Lemma 3.2 (Substitution). If Γ, x : A � t : B and Γ � s : A, then Γ �
t{x�s} : B.

Proof. By induction on the derivation of Γ, x : A � t : B.

– Let Γ, x : A � x : A as a consequence of rule (ax). Then, x{x�s} = s, and
we have Γ � s : A.

– Let Γ, y : B, x : A � y : B as a consequence of rule (ax). Then, y{x�s} = y,
and by rule (ax), Γ, y : B � y : B.

– Let Γ, x : A � t : B as a consequence of Γ, x : A � t : C, C ≡ B and rule (≡).
Then, by i.h., Γ � t{x�s} : C, so, by rule (≡), Γ � t{x�s} : B.

– Let Γ, x : A � λy.t : B ⇒ C as a consequence of Γ, x : A, y : B � t : C
and rule (⇒i). Then, by i.h., Γ, y : B � t{x�s} : C, so, by rule (⇒i),
Γ � λy.t{x�s} : B ⇒ C. Notice that λy.t{x�s} = (λy.t){x�s}.

– Let Γ, x : A � tr : B as a consequence of Γ, x : A � t : C ⇒ B, Γ, x : A � r : C,
and rule (⇒e). Then, by i.h., Γ � t{x�s} : C ⇒ B and Γ � r{x�s} : C, so, by
rule (⇒e), Γ � t{x�s}r{x�s} : B. Notice that t{x�s}r{x�s} = (tr){x�s}.

– Let Γ, x : A � 〈t1, t2〉 : B1 ∧ B2 as a consequence of Γ, x : A � ti : Bi,
i = 1, 2, and rule (∧i). Then, by i.h., Γ � ti{x�s} : Bi, so, by rule
(∧i), Γ � 〈t1{x�s}, t2{x�s}〉 : B1 ∧ B2. Notice that 〈t1{x�s}, t2{x�s}〉 =
〈t1, t2〉{x�s}.

– Let Γ, x : A � π1t : B as a consequence of Γ, x : A � t : B ∧ C and rule (∧e1).
Then, by i.h., Γ � t{x�s} : B ∧ C, so, by rule (∧e1), Γ � π1(t{x�s}) : B.
Notice that π1(t{x�s}) = π1t{x�s}.

– Let Γ, x : A � π2t : B as a consequence of Γ, x : A � t : B ∧ B and rule (∧e1).
Analogous to previous case. �
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Abstract. We provide a characterization of Ko’s class of polynomial
time computable functions over real numbers. This characterization holds
for a stream based language using a parsimonious type discipline, a vari-
ant of propositional linear logic. We obtain a first characterization of
polynomial time computations over the reals on a higher-order functional
language using a linear/affine type system.

1 Introduction

Motivations. The notion of polynomial time computations over the reals has
been deeply studied in the last decades, e.g. [1–4]. Several programming lan-
guages studying mathematical properties of real functions such as computable
functions [5,6], Lipschitz-functions [7], or analytical functions [8] have been intro-
duced and studied but no programming language characterizing polynomial time
over the reals has emerged. A programming language based characterization of
polynomial time over the reals would be highly valuable as it would provide a
programmer the opportunity to write libraries of efficient programs where any
computation can be approximated in feasible time in the output precision.

This contrasts with studies on discrete domains which have led to the devel-
opment by the Implicit Computational Complexity community of several pro-
gramming languages capturing various time and space complexity classes using,
among other techniques, a linear type discipline, for example see [9–12].

Characterizing complexity classes over the reals requires both convergence
within a given time or space bound on inductive data (a finite approximation of
the real number) and divergence on coinductive data (the infinite real number
representation). If this latter requirement is not fulfilled then the calculus cannot
be complete with respect to computability over the reals. Due to the divergence
requirement, a characterization of polynomial time over the reals cannot be
obtained as a straightforward extension of the results on discrete domains that
enforce convergence.

E. Hainry, D. Mazza and R. Péchoux—This work was supported by ANR-14-CE25-
0005 Elica: Expanding Logical Ideas for Complexity Analysis.

c© Springer Nature Switzerland AG 2020
K. Nakano and K. Sagonas (Eds.): FLOPS 2020, LNCS 12073, pp. 50–65, 2020.
https://doi.org/10.1007/978-3-030-59025-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59025-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-59025-3_4


Polynomial Time over the Reals with Parsimony 51

Results. This paper presents a first characterization of polynomial time over the
reals based on a functional higher order language. For that purpose, we consider
the non-uniform parsimonious lambda-calculus that was shown to characterize
the complexity classes P/poly and L/poly in [13]. Parsimony can be viewed
as a logical system, a variant of multiplicative affine logic endowed with an
exponential modality !(−). Contrarily to any known variants of linear and affine
logics, the exponential modality satisfies Milner’s law !A ∼= A⊗!A. Hence it
allows the programmer to encode streams (infinite lists). Non-uniformity means
that we do not restrict to ultimately constant streams but allow any stream on
a finite alphabet, i.e., generated by arbitrary functions with finite codomain,
seen as oracles. The parsimonious calculus also enjoys the necessary property of
normalizing in polynomial time on non-stream data (Theorem 1).

We characterize the class of polynomial time computable functions over the
real interval [−1,1]: the n-th digit of the output can be computed in time poly-
nomial in n (Theorem 2). Real numbers are encoded using non-uniform streams
of signed binary digits (−1, 0, 1) and functions are encoded as uniform contexts
that can be fed with a non-uniform real encoding (the input) under parsimony
requirements.

To our knowledge, this characterization is the first linear logic based char-
acterization of polynomial time computations over the real line. It is obtained
in a very natural way by extending the indexed uniform parsimonious calculus
of [14] to a non-uniform setting with streams of Church numerals as basic con-
struct. Moreover, the semantics of the language has been improved by adopting
a convention similar to [15] that uses explicit substitutions.

Related Work. The parsimonious calculus can be viewed as an finite-
depth/infinite-width alternative to the infinitary λ-calculus [28] where terms
have finite width and infinite depth.

Studies on complexity properties of stream-based first order programming
languages have already been developed using interpretation methods [16]. These
only focus on soundness though. The paper [17] provides a characterization of
polynomial time over the reals on first order programs using type-2 polynomial
interpretations, which are however known to be untractable both at the level
of inference and checking. In [18], it is shown that algebras and coalgebras may
be encoded in the light affine lambda calculus while preserving polynomial time
normalization properties. The paper [19] explores applications of light logics to
infinitary calculi, showing a polynomially-bounded productivity result, with no
connection however to real number computation.

On function algebras, [20] and [21] provide a characterization of elementary
and polynomial time computable real functions, respectively. The function coal-
gebra defined in [22] characterizes the complexity class of stream functions whose
n-th output bit is computable in L.

Another interesting and orthogonal line of work is the one of [23,24] extract-
ing certified programs for exact real number computations from constructive
proofs where time complexity is not considered.
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2 Preliminaries: Complexity over the Reals

We consider the signed binary representation of real numbers that consists in
(infinite) sequences of digits in {1, 0,−1}. This representation allows numbers
to be approximated from below but also from above. It is well known [3] that
from a computability point of view, dyadic (i.e. infinite sequences of numbers
of the shape p

2n ; p ∈ Z, n ∈ N), Cauchy and signed binary representations are
equivalent. Note however that using dyadic numbers instead of a dyadic sequence
gives a different (bad) notion of computability. Indeed some basic functions such
as multiplication by 3 or addition are not computable if reals are restricted to
dyadic numbers.

As we are mostly interested in ensuring complexity properties on the frac-
tional part of a real number, we will restrict our analysis to real numbers in
[−1, 1]. This restriction is standard in the exact real number computation lit-
erature [6,24]. Our analysis can be generalized to the whole real line by just
considering a pair consisting in an integer and a fractional part.

Definition 1. Any real number r ∈ [−1, 1] can be represented by an infinite
sequence of digits in {−1, 0, 1}.

Formally, r is represented by {r} ∈ {−1, 0, 1}N, noted r � {r}, if

r =
∞∑

i=1

{r}i2−i.

Computing a function consists in mapping a representation of a real to a
representation of its image. Based on Definition 1, a Turing machine computing
a function under a signed binary encoding will work with an infinite sequence
of digits, written on a read-only input tape. The result will be written on a
write-only output tape. Since the output too is infinite, the use of machines that
do not halt is needed. Moreover, if we have two different representations of the
same real r, then the computed outputs must represent the same real f(r).

By convention, in this paper “Turing machine” will always mean a machine
as just described. They are sometimes called oracle Turing Machines in the
literature to exhibit the fact that the input is not a finite object but can be
given by an oracle. For such a machine M and a given infinite sequence of
signed digits {r} ∈ {−1, 0, 1}N, let M({r}) ∈ {−1, 0, 1}N be the infinite sequence
of digits written (and obtained as a limit) on the output tape of the machine.

Definition 2. A function f : [−1, 1] → [−1, 1] is computable if and only if
there exists a Turing machine M such that ∀r ∈ [−1, 1], the following diagram
commutes:

r

f

��

� {r}
M

��
f(r) � M({r}).
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The above definition implies that if a real function is computable then it must
be continuous. See [3] which calls this property the fundamental property of
computable functions.

Due to the infinite nature of computations, the complexity of real functions
cannot be defined in a standard way. Ko’s definition of complexity [2] associates
with n the time needed to obtain precision 2−n.

Definition 3. f : N → N is a complexity measure for a Turing machine M if
and only if ∀n ∈ N,∀{r} ∈ {−1, 0, 1}N, the n-th digit of M({r}), noted M({r})n,
is output in time less than or equal to f(n).

Definition 4. A Turing machine M has polynomial time complexity if there
is a polynomial P ∈ N[X] that is a complexity measure for M .

The class of functions in [−1, 1] → [−1, 1] computed by machines that have
polynomial time complexity is denoted P([−1, 1]).

Although the representations we mentioned (dyadic, Cauchy, signed) are
equivalent from a computability point of view, they are not strictly equivalent in
terms of complexity. However, the complexity class P([−1, 1]) introduced above
is equal to Ko’s class of polynomial time computable functions on the dyadic
representation. Indeed, from the proof of computability equivalence in [3], the
translations from one representation to the other may be computed in polyno-
mial time.

Functions computable in polynomial time can be characterized using the
notion of modulus of continuity.

Definition 5 (Modulus of continuity). Given f : [−1, 1] → [−1, 1], we say
that m : N → N is a modulus of continuity for f if and only if

∀n ∈ N,∀r, s ∈ [−1, 1], |r − s| < 2−m(n) =⇒ |f(r) − f(s)| < 2−n.

Proposition 1. f ∈ P([−1, 1]) iff there exist two computable functions m : N →
N and ψ : [−1, 1] × N → [−1, 1] such that

1. m is a polynomial modulus of continuity for f ,
2. ψ is a polynomial time computable approximation function for f (i.e. ∀d ∈

[−1, 1],∀n ∈ N, |ψ(d, n) − f(d)| ≤ 2−n).

The above proposition is known since [2] and has been explicitly stated and
formalized in [21].

Summing up, functions in P([−1, 1]) enjoy the property of being computable
in polynomial time in every (dyadic) point and of having a polynomial mod-
ulus of continuity. We hence seek a stream-based programming language with
a polynomially-bounded access to streams, with the aim of reproducing this
property.
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3 Parsimonious Stream Programming Language

Syntax. The language under consideration will be a non-uniform version of the
infinitary parsimonious lambda-calculus of [14]. Terms are defined by the follow-
ing grammar:

(Patterns) 	 p ::= a ⊗ b | !x
(Terms) 	 t, u ::= a | xi | λa.t | t u | t ⊗ u | t[p := u] | !fu | t :: u | nstrmi

where: f ∈ N → Nk, with Nk = {0, . . . , k − 1}; u denotes a sequence of k
terms u0, . . . , uk−1; a, b, c, . . . range over a countable set of affine variables; and
x, y, z, . . . range over a countable set of exponential variables. Exponential vari-
ables correspond to streams and are indexed by an integer i ∈ N. Intuitively, xi

is the i+1-th element of the stream x. We always consider terms up to renaming
of bound variables.

For a given function f : N → Nk, the term !fu, called box, is a stream
generator: !f (u0, u1, . . . , uk−1) intuitively represents the stream uf(0) :: uf(1) ::
uf(2) :: · · · . The precise semantics of !f will be explained later. We use u,v, . . .
to range over boxes. Since any f is allowed, the syntax is infinitary, except when
k = 1, in which case f can only be the constant zero function and we simply
write !u0. These are called uniform boxes, and a term (or context) containing
only uniform boxes is called uniform.

The explicit substitution notation t[p := u] is inspired by [15] and is syntac-
tically equivalent to the let p := u in t construct of [13,14]. It correspond to
either a pair destructor t[a ⊗ b := u] or to a stream destructor t[!x := u].

The depth d(t) of a term t is the maximum number of nested boxes.
The language also includes a stream constructor :: as well as a pair con-

structor ⊗ and a family of constants nstrmi, with i ∈ N, representing streams of
Church numerals (see Example 1 below) in increasing order, starting from i. Let
the size |t| of a term t be the number of symbols in t.

Let 
1, . . . , 
n be special symbols called holes. A context, written
C〈
1, . . . , 
n〉 is a particular term with at most one occurence of each hole 
i.
We denote by C〈t1, . . . , tn〉 the result of substituting the term ti to the hole 
i in
C, an operation which may capture variables. A one-hole context, written C〈
〉
is a particular case of context with a single hole.

Example 1. Given n ∈ N, the n-th Church numeral can be encoded as

n = λf.λa.x0(x1(. . . xn−1 a . . .))[!x := f ],

i.e. applications of the n first elements x0, . . . , xn−1 of the stream f .

Example 2. The head function is encoded by the term

head = λa.x0[!x := a]

returning the element of index 0 in a stream a.
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The tail function is encoded by the term

tail = λa.!x1[!x := a]

returning the stream of elements of the stream a starting from index 1 (i.e. !x1).

Parsimony. Among terms of the language, we distinguish a family of terms
called parsimonious preventing duplication of stream data and exponentiation
of standard data. As we shall see later, parsimony will be entailed by the typ-
ing discipline (Lemma 1) and will ensure polynomial time normalization on non
stream data (Theorem 1).

For that purpose, we first need to define a notion of slice.

Definition 6. A slice of a term is obtained by removing all components but one
from each box. Let S(t) be the set of slices of term t:

S(α) := {α} if α ∈ {a, xi}
S(!f (u0, . . . , uk−1)) :=

⋃k−1
i=0 {!fνi | νi ∈ S(ui)}

S(t1 ⊗ t2) := {τ1 ⊗ τ2 | τ1 ∈ S(t1), τ2 ∈ S(t2)}
S(t1 t2) := {τ1 τ2 | τ1 ∈ S(t1), τ2 ∈ S(t2)}

S(t1 :: t2) := {τ1 :: τ2 | τ1 ∈ S(t1), τ2 ∈ S(t2)}
S(t1[p := t2]) := {τ1[p := τ2] | τ1 ∈ S(t1), τ2 ∈ S(t2)}

S(λa.t) := {λa.τ1 | τ1 ∈ S(t)}
Example 3. In general, a slice does not belong to the set of (syntactically correct)
terms:

S(tail !f (0, 1)) = {(λa.!x1[!x := a]) !f (0), (λa.!x1[!x := a]) !f (1)}.

Definition 7. A term t is parsimonious if:

1. affine variables appear at most once in t,
2. For all s ∈ S(t), two occurrences of an exponential variable in s have distinct

indices,
3. box subterms do not contain free affine variables,
4. if an exponential variable appears free in t, then

(a) it appears in at most one box,
(b) in each slice of this box, it appears at most once,
(c) if it appears in a box and outside a box, the occurrences outside a box have

an index strictly smaller than those inside.

Example 4. To illustrate Definition 7, let us see some (counter)-examples. The
standard encoding of Church numerals λf.λx.f (. . . (f x) . . .) breaks point 1. This
is the reason why the encoding of Example 1 is used. !f (x1)⊗!g(x2) is forbidden
because of point 4a. !f (x0 ⊗x1, y0 ⊗ x1) is forbidden as point 4b is violated (but
it respects point 2). x0⊗!f (x2, x1) is allowed: it respects points 4b and 4b. These
counter-examples are rejected as they entail either a stream duplication or a
stream data duplication, whose iteration would make it possible to compute a
function with an exponential modulus of continuity.
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Semantics. For k ∈ N, we write t+n for the term obtained by replacing all free
occurrences of exponential variables xi with xi+n. We write t++ for t+1 and
tx++ to denote the same operation applied only to the free occurrences of the
variable x. The ++ operator is extended to sequences by (u0, . . . , uk−1)++ =
(u++

0 , . . . , u++
k−1). Also, in case all free occurrences of x have strictly positive

index, we write tx−− for the operation which decreases indices by 1. Given a
function f : N → Nk, let f+i, i ∈ N, be the function in N → Nk defined by
∀n ∈ N, f+i(n) = f(n + i). We define structural congruence, denoted by ≈, as
the smallest congruence on terms such that

!fu ≈ uf(0) :: !f+1u++,

nstrmi ≈ i :: nstrmi+1

where i denotes the Church numeral encoding i described in Example 1. In par-
ticular, ∀i > 1, !fu ≈ uf(0) :: u++

f(1) :: . . . :: u
+(i−1)
f(i−1) :: !f+iu holds.

A one-hole context is shallow if the hole does not occur inside a box. A
subclass of shallow contexts is that of substitution contexts, defined by:

[−] ::= 
 | [−][p := t].

We write t[−] instead of [−]〈t〉. The base reduction rules of our language are:

(λa.t)[−] u →β t{u/a}[−]
t[a ⊗ b := (u ⊗ w)[−]] →⊗ t{u/a,w/b}[−]

S〈x0〉[!x := (t :: u)[−]] →pop Sx−−〈t〉[!x := u][−]

where S is a shallow context or a term (i.e., the occurrence x0 may actually not
appear) and t{u/a} is the standard capture-free substitution.

The operational semantics, denoted by →, is defined by closing the above
rules under shallow contexts and the rule stating that t → t′ and u ≈ t implies
u → t′.

Example 5. Consider the term tail of Example 2 and let !f (0, 1) be a stream of
Boolean numbers with f : N → {0, 1} such that f(2k) = 0 and f(2k + 1) = 1,
for each k ∈ N, i.e. !f (0, 1) ≈ 0 :: 1 :: 0 :: 1 :: . . . As tail = λs.!x1[!x := s], we
have the following reduction:

tail !f (0, 1)
→β !x1[!x := !f (0, 1)] ≈ (x1 :: !x2)[!x := 0 :: !f+1(0, 1)]
→pop (x0 :: !x1)[!x := !f+1(0, 1)] ≈ (x0 :: !x1)[!x := 1 :: !f+2(0, 1)]
→pop (1 :: !x0)[!x := !f+2(0, 1)] ≈ (1 :: x0 :: !x1)[!x := 0 :: !f+3(0, 1)]
→pop . . .

Type System. Types are defined inductively by:

A,B ::=α | A � B | A ⊗ B | !A | ∀α.A.
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α being a type variable. The type system, nuPL∀, is adapted from the uniform
type system of [14] and non-uniform type system of [13] and is defined in Fig. 1.
The notations Γ and Δ will be used for environments attributing types to vari-
ables. Judgments are of the shape Γ ;Δ � t : A, Γ and Δ being two disjoint
environments; meaning that term t has type A under the affine environment Δ
and the exponential environment Γ . As usual, let Γ, Γ ′ represent the disjoint
union of Γ and Γ ′. Given a sequence of terms t = (t1, . . . , tn) and a sequence
of types A = (A1, . . . , An), let t : A be a shorthand notation for ∀i, ti : Ai.
Given a sequence of exponential variables x, let x0 denote the sequence obtained
by indexing every variable of x by 0. The type Nat is a notation for the type
∀α.!(α � α) � α � α.

As usual a term t is closed if ;� t : A can be derived, for some type A. A
type A is !-free if it does not contain any occurrence of the modality !. A closed
term t is of !-free type if there exists a !-free type A such that ;� t : A can be
derived.

In what follows, if A is a type with free occurrences of the type variable
α and B is a type, we denote by A[B/α] the type obtained by replacing every
occurrence of α in A with B. Let A[] be a notation for A[B/α], for some arbitrary
type B. By abuse of notation, Nat[] will denote the type !(A � A) � A � A,
for some arbitrary type A.

Definition 8 (Rank). The rank r(A) of a type A is defined by:

r(α) = 0 r(A � B) = r(A ⊗ B) = max(r(A), r(B))
r(∀α.A) = r(A) r(!A) = r(A) + 1

The rank r(t) of a closed term t is the maximum rank of types occurring in
the typing derivation for t.

The rank of a term is always well-defined as polymorphism is restricted to !-free
types in rule ∀E, hence r(∀α.A) = r(A[B/α]).

Example 6. The numerals of Example 1 can be given the type Nat. We may
encode unary successor and predecessor by:

succ = λn.λf.λa.z0(n (!z1) a)[!z := f ] : Nat � Nat

pred = λn.λf.λa.n ((λb.b) :: (!z0)) a[!z := f ] : Nat � Nat

Properties of nuPL∀. The type system enjoys some interesting properties. First,
typable terms with no free exponential variables are parsimonious.

Lemma 1 (Parsimony). If ;Δ � t : A then t is parsimonious.

Second, the system enjoys subject reduction on terms with no free exponential
variables:

Lemma 2 (Subject reduction). If ;Δ � t : A and t → t′ then ;Δ � t′ : A.
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Γ ;Δ, a : A � a : A
(Var)

;� nstrmi : !Nat
(Nat)

Γ ;Δ, a : A � t : B

Γ ;Δ � λa.t : A � B
(�I)

Γ ;Δ � t : A � B Γ ′;Δ′ � u : A

Γ, Γ ′;Δ, Δ′ � t u : B
(�E)

Γ ;Δ � t : A Γ ′;Δ′ � u : B

Γ, Γ ′;Δ, Δ′ � t ⊗ u : A ⊗ B
(⊗I)

Γ ;Δ � u : A ⊗ B Γ ′;Δ′, a : A, b : B � t : C

Γ, Γ ′;Δ, Δ′ � t[a ⊗ b := u] : C
(⊗E)

Γ, x : A;Δ, a : A � t : B

Γ, x : A;Δ � tx++{x0/a} : B
(abs)

Γ ;Δ � t : A Γ ′;Δ′ � u : !A
Γ, Γ ′;Δ, Δ′ � t :: u : !A

(coabs)

; a : A � u0 : A . . . ; a : A � uk−1 : A

Γ, x : A;�!fu{x0/a} : !A
(!I)

Γ ;Δ � u : !A Γ ′, x : A;Δ′ � t : B

Γ, Γ ′;Δ, Δ′ � t[!x := u] : B
(!E)

Γ ;Δ � t : A α /∈ FV (Γ ∪ Δ)
Γ ;Δ � t : ∀α.A

(∀I) Γ ;Δ � t : ∀α.A B is !-free
Γ ;Δ � t : A[B/α]

(∀E)

Fig. 1. Non-uniform parsimonious logic type system

The proof of subject reduction is standard after observing that ≈ preserves
typability, i.e. if ;Δ � t : A and t ≈ t′ then ;Δ � t′ : A.

Last, we can show a polynomial time normalization result on closed terms
of !-free type. Let Λd,r be the set of closed terms of !-free type of depth smaller
than d and rank smaller than r.

Theorem 1. For every d, r ∈ N, there is a polynomial Pd,r such that every term
t ∈ Λd,r normalizes in Pd,r(|t|) steps.

Proof. The proof is a rather straightforward adaptation of the proof of [13] to
the considered calculus.

4 A Characterization of Polynomial Time over the Reals

Before proving the main result (Theorem 2), we introduce some prelimi-
nary notions and encodings. A function f is closed under the relation R if
∀x,∀y, xRy ⇒ f(x) = f(y).

Signed Bits. Consider the type SB = o � o � o � o for encoding the
signed binary digits {−1, 0, 1}, for some propositional variable o. Constants
b ∈ {−1, 0, 1} can be represented by the terms λa.λb.λc.t with t equal to a,
b or c depending on whether b is equal to 1, 0 or −1, respectively. By abuse of
notation, we will use b to denote both the term and the constant it represents.
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Real Numbers. Let toReal be a function from !SB → [−1, 1] closed under con-
gruence ≈ and reduction → such that toReal(b :: t) = b

2 + 1
2 toReal(t).

Any real number r ∈ [−1, 1] can be represented by a box r = !f (−1, 0, 1) of
type !SB as, by definition of toReal, we have

toReal(r) =
∞∑

i=0

rf(i)2−(i+1).

Function. A function f : [−1, 1] → [−1, 1] is parsimoniously computable if there
is a uniform context tf 〈
1, . . . , 
n〉 such that for each closed term t of type !SB
we have:

;� tf 〈t, . . . , t〉 : !SB and toReal(tf 〈t, . . . , t〉) = f(toReal(t)).

This definition can be generalized to n-ary functions over [−1, 1] by consider-
ing contexts of the shape tf 〈t1, . . . , tn〉 as we will see in the example computing
the average of two real numbers described in Sect. 5.

In the above definition, the context is required to be uniform to ensure that
the only real numbers we deal with are part of the input, thus preventing a
non-computable oracle such as Chaitin’s Ω [25] to be used.

Theorem 2. The set of parsimoniously computable functions is exactly
P([−1, 1]).

Proof. The proof is in 2 directions: Soundness and Completeness.

– For Soundness, we demonstrate that any parsimoniously computable function
f computed by a context tf 〈
〉 is in P([−1, 1]). For that purpose, consider the
family of prefix functions computed by the terms getn : !SB � SB⊗n:

getn = λa.x0 ⊗ (. . . ⊗ xn−1)[!x := a],

where SB⊗1 = SB and SB⊗n+1 = SB⊗ SB⊗n, outputting the n-th element of a
stream s given as input, n > 0. Then, the term:

tnf 〈t〉 = getn tf 〈t〉

can be typed by SB⊗n.

For each n, let toRealn : SB⊗n → [−1, 1] be the function closed under reduc-
tion → and such that:

toRealn+1(b ⊗ t) =
b

2
+

1
2
toRealn(t)

toReal1(b) =
b

2
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For any n ≥ 1 and any representation t of a real number r (i.e. r = toReal(t)),
we have that:

|toReal(tf 〈t〉) − toRealn(tnf 〈t〉)| ≤ 2−n.

This is straightforward as tnf 〈t〉 outputs a truncation of the n first signed digits
of tf 〈t〉. Moreover tnf 〈t〉 is a closed term of !-free type (SB⊗n). Consequently,
it belongs to Λd,r, for some depth d and some rank r, and we can apply
Theorem 1: it normalizes in Pd,r(|tnf 〈t〉|) steps, that is in Q(n) steps for some
polynomial Q.

– For Completeness, we show that any function in P([−1, 1]), computed by a
Turing Machine M , is parsimoniously computable by exhibiting a uniform
context with the good properties simulating M .
For that purpose, we first show how to encode iteration, duplication, and
any polynomial in order to compute the polynomial time bound of the
machine M .
Then, we show how to encode signed binary strings representing real num-
bers, how to encode operations on these strings: case, push, and pop. These
operations correspond to basic tape manipulations in the Turing machine.
We also show how to encode the modulus of continuity and, finally, we encode
the semantics of the Turing machine: configurations, transition function, and
machinery, reusing previously introduced term for iteration.

Iteration. An iteration scheme It(n, step, base):=n !(step) base corresponding
to the following typing derivation, can be defined on Nat:

...

;Δ � step : A � A

...

Γ ;Σ � base : A

...

Γ,Δ′;Σ � It(n, step′, base) : A

where Δ′ and step′ are obtained from Δ and step, respectively, by replacing each
affine variable by an exponential variable.

Duplication. We also manage to encode and type duplication on Nat as follows:

λn.It(n, λa.(succ m) ⊗ (succ l)[m ⊗ l = a], 0 ⊗ 0) : Nat[] � Nat ⊗ Nat

Polynomials. Successor of Example 6 can be iterated to obtain addition of type
Nat[] � Nat � Nat. A further iteration on addition (applied to a unary integer
of type Nat[]) leads to multiplication, of type Nat[] � Nat[] � Nat. Using
addition, multiplication and duplication we may represent any polynomial with
integer coefficients as a closed term of type Nat[] � Nat.
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The usual encodings for duplication, addition, multiplication on Church
numerals are not handled as they are in need of variable duplication that is
not allowed in our formalism (see Example 4).

Signed Binary Strings. Define the strings of signed binary numbers by SB∗ =
!(o � o) � !(o � o) � !(o � o) � o � o. The signed binary string w =
bn−1 . . . b0 ∈ {−1, 0, 1}n can be represented by the term

tw = λa.λb.λc.λd.gn−1(. . . g0(d) . . .)[!z := c][!y := b][!x := a]

of type SB∗, where gi = xi, yi or zi depending on whether bi = −1, 0 or 1. In
what follows, let ε denote the empty string of SB∗.

Case, Push and Pop. We define a case construct case a of b → tb, b ∈ {−1, 0, 1},
as syntactic sugar for λa.a t1 t0 t−1. Let the substitution context [−] be equal
to 
[!x := b][!y := c][!z := d]. We encode the adjunction of one signed bit to a
binary string by the term push of type SB � SB∗ � SB∗:

push = case a of b → λb.λc.λd.λe.gb(a (!x1) (!y1) (!z1) e)[−]

where gb = x0, y0 or z0 depending on whether b = 1, 0 or −1, respectively. In
the same way we can encode the term pop : SB∗ � SB∗ that removes the first
symbol of a String as follows:

λa.λb.λc.λd.λe.(a ((λf.f) :: (!x0)) ((λf.f) :: (!y0))((λf.f) :: (!z0)) e)[−].

Modulus. We now can encode a term modulus of type Nat[] � (Nat[] � Nat) �
!SB � SB∗ taking the encodings of a natural number n, a modulus of continuity
m, and a stream of signed digits {r} (representing the real number r) as inputs
and outputting a signed binary string corresponding to the m(n) first bits of
{r}, as modulus = λn.λm.λc.It(m n, λa.(push x0 a), ε)[!x = c].

Configuration and Transitions. A configuration of a Turing Machine can be
encoded by Conf = State ⊗ (SB∗ ⊗ SB∗)k ⊗ (SB∗ ⊗ SB∗), where:

– State is a type allowing to encode the finite set of states of a machine,
– each (internal) tape is encoded by a pair of signed binary string s ⊗ t :

SB∗ ⊗ SB∗. s represents the left-hand part of the tape in reverse order and t
represents the right-hand part of the tape. The head points on the first digit
of t.

– the last tape of type SB∗ ⊗ SB∗ is used to store the m(n) first digits of the
real number on the input tape.

The initial configuration of a machine computing a function over input t : !SB
with modulus of continuity m can be encoded by:

c0〈t〉 = init ⊗ (ε ⊗ ε)k ⊗ ((modulus n m t) ⊗ ε)

where init is a term encoding the initial state.
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Machine. We can encode easily the transition function of the machine by a
term trans : Conf � Conf using a combination of case constructs, and pop and
push instructions on the tape. Writing a new symbol just consists in executing
sequentially a pop and a push on the right part of a tape. Moving the head
just consists in popping a symbol on some part of the tape and pushing on
the opposite part. In the same way, we can encode a term extract : Conf �
SB computing, from a final configuration, the n-th signed bit computed by the
machine. This term can also be encoded using a combination of case constructs
as it suffices to read the state and the symbols to whom heads are pointing in
order to compute the output.

Now consider the term sim〈t〉 : Nat[] → SB defined by:

sim〈t〉 = λn.extract It(P n, trans, c0〈t〉)

where P encodes the polynomial time bound of the machine. By construction,
sim〈t〉 n computes the term M({r})n, provided that r � {r} and convert(t) = r
both hold.

Output Stream. We have demonstrated that we can compute each single signed
bit of the output. It just remains to show that the output stream can be rebuilt.
Consider the term map : !(α � β) �!α �!β:

map := λf.λa.!(y0 x0)[!x = a][!y = f ]

map !sim〈t〉 nstrm0 computes the infinite stream M({r}). Moreover the term
map !sim〈
〉 nstrm0 is uniform and of type !SB. ��

5 Example: Average of Two Real Numbers

Let us now encode the average of two real numbers in [−1, 1] which is equivalent
to addition modulo shift but has the advantage of staying in [−1, 1]. Note that the
difficulty is that we need to work from left to right in the stream, that is starting
from the most significant bit. This uses one digit of each stream and needs a
remainder between −2 and 2 coded with 2 signed digits (the remainder will be
the sum of those 2 digits), see for example [24] for an Haskell implementation.

The computation of average needs three copies of the streams and is defined
as average〈a, b〉 := aux〈a, b, a, b, a, b〉, with aux〈
1, . . . , 
6〉 :=

(map (!λn.π5 It(n, bitr〈
5, 
6〉, 
3 ⊗ 
4 ⊗ x0 ⊗ y0 ⊗ 0)) nstrm0)[−],

[−] := 
[!x := 
1][!y := 
2], and π5 := λg.e[a ⊗ b ⊗ c ⊗ d ⊗ e := g] and using the
terms It and map defined in Sect. 4.

The main ingredient is the term bitr〈a, b〉 that consumes the first signed digit
of each stream as well as the previous remainder and computes one digit, the
next remainder and the tail of each stream. This term of type !SB⊗2 ⊗ SB⊗3 �



Polynomial Time over the Reals with Parsimony 63

!SB⊗2 ⊗ SB⊗3 will simply be iterated to go through the inputs and is defined by
bitr〈
5, 
6〉 :=

λg.tail 
5 ⊗tail 
6 ⊗(com x0 y0 c d)[!x := a][!y := b][a ⊗ b ⊗ c ⊗ d ⊗ e := g]

The two first arguments are encodings of the real numbers in the input. The
next two arguments represent the remainder and the last one is the computed
digit. The term com is defined by a case analysis on digits (the case term is
generalized to any number of arguments).

com = case x0, y0, c, d of 1, 1, 1, 1 → 1 ⊗ 1 ⊗ 1
1, 1, 0, 1 → 0 ⊗ 0 ⊗ 1
1, 1, 0, 0 → 1 ⊗ 1 ⊗ 0

1, 1, 0,−1 → 0 ⊗ 0 ⊗ 0
1, 1,−1,−1 → −1 ⊗ −1 ⊗ 0

1, 0, 1, 1 → 1 ⊗ 0 ⊗ 1
. . . → . . .

Indeed, the term com is a long sequence of all the 34 cases that happen for
the 4 signed digits x0, y0, c and d (where c+d represents the remainder). Instead
of defining each of these cases one by one, we will give an algorithm to compute
those cases:

com = case x0, y0, c, d of b1, b2, b3, b4 → b′
1 ⊗ b′

2 ⊗ b′
3

b′
3 is the result digit, computed by:

b′
3 := if b1 + b2 + 2b3 + 2b4 > 2 then 1

elseif b1 + b2 + 2b3 + 2b4 < −2 then − 1
else 0

b′
1 and b′

2 are the remainder bits. As we use the sum of those two digits, we
only give how this sum is computed, not the combination of digits that will be
chosen to satisfy this constraint.

b′
1 + b′

2 = b1 + b2 + 2b3 + 2b4 − 4b′
3

6 Remarks and Future Works

We have provided a first linear logic based characterization of polynomial time
over the reals avoiding the use of untractable tools such as type-2 polynomials
as in [17].

We now discuss some of the restrictions of our work that can be improved as
future work.
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– Parsimony forbids duplicating a stream, which is why we had to resort to con-
texts (rather than plain terms) to achieve completeness. For practical pur-
poses, it would be preferable to add to the language an explicit controlled
operator for stream duplication. Here we chose to stick to the “bare” parsi-
monious calculus and favor theoretical simplicity over practical usability.

– The non-polymorphic part of the type system of Fig. 1 is essentially syntax-
directed: rule abs is the exception but it may be repeatedly applied until
there are no non-linear variables at depth 0, and then one may proceed with
the only applicable rule. We therefore conjecture that, with the due restric-
tions concerning the presence of polymorphism, type inference is efficiently
decidable as in [26,27].

– In the parsimonious calculus, it is impossible to access/manipulate the index i
in xi. The stream nstrmi is introduced for circumventing this difficulty, which
is tied to the nature of the parsimonious calculus: the syntactic tree of a
term has finite depth but possibly infinite width (given by boxes). A cleaner
solution, currently under investigation, would be to introduce parsimony in
a calculus allowing also infinite depth, like the infinitary λ-calculus of [28], in
the spirit of [19].
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Abstract. Whereas ordinary types approximate the results, session
types approximate communication among computations. As a form of
typestate, they describe not only what is communicated now but also
what is to be communicated next. Writing session-typed programs in an
ordinary programming language such an OCaml requires inordinary clev-
erness to simulate type-level computations and linear typing – meaning
the implementation and the error messages are very hard to understand.
One is constantly reminded of template metaprogramming in C++.

We present a system exploring a very different approach to session typ-
ing: lowering type-level sophistry to ordinary programming, while main-
taining the static assurances. Error messages are detailed and customiz-
able, and one can use an ordinary debugger to investigate session-type
problems. Our system is a binary-session–typed DSL for service-oriented
programming in OCaml, supporting multiple communication channels,
internal and external choices, recursion, and also channel delegation.

The key idea is staging: ordinary run-time checks in the generator
play the role of “type-checks” from the point of view of the generated
program. What is a fancy type to the latter is ordinary data to the
generator.

1 Introduction

Whereas ordinary types approximate the results, session types approximate com-
munication among computations. Session types [14,47] are appealing because
they can be inferred and statically checked, and because well–session-typed pro-
grams “do not go wrong”: no two parties attempt to both read from or both
write to their communication channel; no computation sends the data its party
is not prepared to handle; no program tries to use closed or delegated away
channels.1 Therefore, there have been developed many session-typed communi-
cation libraries [21–23,32,35,37,39,41–43]. They are, in essence, DSLs for process
orchestration embedded in an extant mature programming language: data pro-

1 Binary session type systems like [14] and its successors, used in many libraries includ-
ing ours, do not in general prevent deadlocks (see Sect. 5).
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cessing parts are programmed as usual; data communication, written via DSL
operations, is guaranteed to obey the protocol.

On the other hand, session type systems needed for realistic service-oriented
programs are substructural and rather complicated [1,2,6,51], with type-level
computations to express duality, with resource-sensitivity, with extensible (type-
level) record types and (equi-)recursive types. They are a poor match for the
type system of the typical host language such as OCaml, Scala or Haskell, and
hence have to be emulated, often with extraordinary sophistication, exploiting
the (mis)features of the host type system to the full (see examples in Sect. 5).
Although the emulation is possible – after all, the host type systems are Turing-
complete – it often feels like programming an actual Turing Machine. Abstrac-
tion, error reporting and debugging are lacking. Linear types are a particular
challenge [21,39,43]. The emulation invariably also affects end users: as compli-
cated inferred types that quickly become unreadable [39]; as referring to chan-
nels by De Bruijn indices rather than by names [21,24,41,42]; and especially as
bewildering error messages should something go wrong [22,41].

Having developed session-type libraries ourselves and become familiar with
intricacies and frustrations of type-level programming, we cannot help but envy
the ordinary term-level programming, which is actually designed for program-
ming. We would like to:

– add a session-typed communication layer to an existing programming lan-
guage, reusing all its libraries, tools and support;

– take a non-toy, off-the-shelf session-type system such as [51] essentially as it
is;

– use the host language itself (rather than its type system) to implement the
session-type checking and inference;

– statically guarantee that a well-sessioned program “does not go wrong”;
– make error messages customizable and use the host language debugging facil-

ities to debug session types problems.

We have built an embedded DSL satisfying all these desiderata, relying on
staging, a form of metaprogramming. The key idea is type checking as a staged
computation. Our contributions are as follows:

1. The DSL, called <session>, for service-oriented programming embedded in
OCaml. It supports bidirectional communication on arbitrary many channels,
internal and external choices, channel delegation, and recursion – over named
FIFO pipes. Other back-ends such as UDP or HTTP can be easily added.

2. The showcase of using staging for embedding DSLs with sophisticated type
systems, maintaining the static guarantees.

3. The showcase of implementing extensible DSLs. In fact, <session> is built by
progressively extending the base DSL with choices and then delegation and
recursion. Type-checking operations, in particular, unification, are likewise
extensible. Extensible records with record subtyping is one of the extensions.

4. The example of using canonical structures (first proposed for Coq, see
Sect. 4.2), e.g., to support communication for arbitrary many, user-defined
types.
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The next section presents <session> on a progression of examples, at the
same time reminding of session type systems. Section 2.3 deals with errors and
error messages. More interesting details of <session> are shown in Sect. 3. We
then expound two implementation techniques characteristic of <session>: stag-
ing in Sect. 4.1 and canonical structures in Sect. 4.2. (The lack of space pre-
cludes the description of extensible mutually recursive functions and unification:
we refer to the source code and the comments therein.) Section 5 discusses the
related work.

The complete code is available at the following URL:

http://okmij.org/ftp/Computation/types.html#sessions.

2 Session Types by Example

This section recalls the binary session types (specifically, Yoshida and Vascon-
celos’ liberal system [51, §3]), by example, using <session>. The section hence
also serves as an introduction to <session>. Figure 1 presents the DSL in full
(as an OCaml signature), which we will explain step by step.

Ordinary type systems such as the Hindley-Milner system and its variations
deal with (potentially open) expressions, such as x+1>y. Assuming the free
variables x and y have the type int, the type system judges the expression well-
typed and infers its type as bool. The type is an approximation of the expression’s
result – computed statically, that is, before evaluating it. In fact, we cannot
evaluate the sample expression by itself since it is not a complete program: it is
open. In a sound type system, the type correctly approximates an expression’s
result (if it ever comes), from which follows that a well-typed program “does
not go wrong”. For example, we may use our sample expression in a conditional
if x+1>y then . . . else . . . , without worrying what to do should x+1>y happen
to return, say, a string.

2.1 Basic Communication

Session type systems deal not with expressions to evaluate but with communi-
cating processes to run, such as the process

y1?[z1] in y2?[z2] in y2![z1>z2]; inact (1)

in the conventional process calculus notation, employed in [51]. This process has
two communication channels, or, to be precise, endpoints,2 y1 and y2, which are
represented by free variables. (Our process is hence a mere process fragment;
we complete it soon.) It is to receive a value on the endpoint y1, bind it to the

2 What we call an endpoint, Yoshida and Vasconcelos [51, §3] call a “polarized chan-
nel”, following Gay and Hole [12].

http://okmij.org/ftp/Computation/types.html#sessions
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variable z1, receive another value on y2 binding it to z2, and send on y2 the
result of the comparison of z1 and z2. After that, the process is finished.

Our <session> is a (Meta)OCaml library to write processes and orchestrate
them. It represents a process – to be precise, a perhaps infinite sequence of
computations and communications – as an OCaml value of the abstract type th
(named for “thread”). An endpoint is represented as a value of the type ep. The
sample process (1) is written as3

let p1 y1 y2 = recv y1 Int @@ fun z1 →
recv y2 Int @@ fun z2 →
send y2 Bool .< .̃ z1 > .̃ z2 >. @@
finish

� val p1 : ep → ep → th = <fun>

(the last line shows the type inferred by OCaml for p1). We use OCaml’s let-
statement to assign the process a name for easy reference, and make explicit
its free endpoint variables y1 and y2. Comparing the sample process in the two
notations, (1) and ours, shows them quite similar. Our notation however clearly
distinguishes the binding occurrences of z1 and z2 (and we write finish instead
of “inact” for the ended process). Also explicit in the p1 code are Int and Bool,
which may be regarded as type annotations on the communicated values. That
these annotations are mandatory is a drawback of the embedding (although not
that big), which we discuss in Sect. 4.2.

The p1 code also betrays staging. Staging is what MetaOCaml [25,26] adds to
OCaml: the facility to generate code to compile and execute later. To be precise,
MetaOCaml adds the type α code for values representing the generated code,
and two facilities to produce such values. One, akin to quote in Lisp, is enclos-
ing an expression in so-called “brackets”, for example: .<1 > 2>.. The bracketed
expression is not evaluated; rather, it becomes (a fragment of) the generated
code. The other facility, called “escape”, is like Lisp unquote. It can be under-
stood as poking a hole in a bracketed expression, turning it into a code template.
In p1 code, .< .̃ z1 > .̃ z2 >. is such a template, with two holes to be filled by the
code values bound to the variables z1 and z2 – producing the code of the com-
parison expression. Although bracketed expressions are not evaluated, they are
type checked. For example, in order for .< .̃ z1 > .̃ z2 >. to be well-typed, with the
type bool code, the variables z1 and z2 should be of the type int code – or a type
error is raised. Thus MetaOCaml statically guarantees that the generated code
is well-typed – and also free from scoping errors (like unbound or unintention-
ally bound identifiers): unlike Lisp quotations, MetaOCaml is hygienic. Staging
is crucial in our approach to session typing, as detailed in Sect. 4.1. Staging also
lets <session> distinguish process computations (which are put in brackets)
from process communications (described by the combinators such as recv and
send). Thus <session> is a DSL for orchestration.

3 The right-associative infix operator @@ of low precedence is application: f @@ x + 1
is the same as f (x + 1) but avoids the parentheses. The operator is the analogue of
$ in Haskell.
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(a) Types

type proc top-level process
type th communication thread
type ep session endpoint
type shared shared name, e.g., host:name

(b) Basics

val proc : th → proc
val (||) : proc → proc → proc

val new shared : string → shared

val request : shared → (ep → th) → th
val accept : shared → (ep → th) → th
val send : ep → α trep → α code → th → th
val recv : ep → α trep → (α code → th) → th

val othr : unit code → th → th
val let : α code → (α code → th) → th
val finish : th

(c) Debugging, logging, etc

val describe ep : ep → string code
val describe sh : shared → string code
val debuglog : string → th → th

(d) Inference, execution, deployment

val infer : α trep → α → string
val proc run : proc → unit
val proc deploy : proc → unit code list

(e) Internal and external choices

type label = string
val branch : ep → (label ∗ th) list → th
val select : ep → label → th → th
val ifte : bool code → then :th → else :th → th

(f) Delegation

val deleg to : ep → ep → th → th
val deleg from : ep → (ep → th) → th

(g) Iteration

val toploop : (th → th) → th
val loop : ep list → (th → th) → th

Fig. 1. The syntax of <session>, as OCaml module signatures
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(a) Environments

type envd (in text, Δ) Linear environment: finite map from ep to sess
type envg (in text, Γ ) Non-linear environment: finite map from shared to sess

(b) Type formulas, as an extensible data type sess

type sess = ..
type sess += Var of var ref | End

(c) Basic communication extension

type sess += Send : α trep ∗ sess → sess | Recv : α trep ∗ sess → sess

(d) External and internal choices, based on row types [33]

type sess += Bra : rows → sess | Sel : rows → sess
and rows =

| Row : (label ∗ sess) ∗ rows → rows
| RowVar : rowvar ref → rows
| RowClosed

(e) Delegation

type sess += DSend : sess ∗ sess → sess | DRecv : sess ∗ sess → sess

(f) Recursion

type sess += Mu : id ∗ sess → sess | RecVar : id ∗ bool(∗dual∗) → sess

Fig. 2. Session types (see the explanations text; trep will be explained in Sect. 4.2)

Type-checking a <session> expression in OCaml gives its OCaml type that
says nothing about communication (see, for example, the type of p1). Evaluating
the expression gives its session type (as well as the code to run, to be discussed
in Sect. 2.2); the error case is detailed in Sect. 2.3. The expression p1 however is
open (represents an incomplete process fragment) and cannot be evaluated. We
can still get its session type, by evaluating infer Fun(EP,Fun(EP,TH)) p1, which
supplies the two “assumed” endpoints, obtaining:4

ep hyp−12/13 : Recv(int,End) (2)
ep hyp−14/15 : Recv(int,Send(bool,End)) (3)

Unlike the ordinary type (which is a single formula), a session type is like an
environment: a finite map from names to formulas, see Fig. 2. To be precise, a
session type is a pair of environments: the linear Δ (which [51] calls “typing”)
and the non-linear Γ (called sorting in [51]). They are so named because in the
system of [51], endpoints are to be used linearly, but shared points, discussed
later, do not have to be. Shown above is the linear environment inferred for p1

4 It should also be possible to supply a session type and check an expression against
it, to verify its communication obeys the protocol stated in the type. After all, if we
can infer a session type, we can check against it. However, we have not yet offered
this facility in the public library interface.
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(Γ is empty). The environment specifies the communication pattern for the two
endpoints of p1 in order for it to be well-sessioned (the concrete names for those
hypothetical endpoints, correspond to the free variables y1 and y2, are made up
by infer).

Session types (environments and type formulas) are the ordinary data types
in <session>. The type formulas are an extensible data type, because we keep
extending the syntax of formulas as we add more features to <session>. The
type formulas describe the communication protocol: the approximation, or pat-
tern, of the actual communication over a channel (endpoint). End is the end
of interactions; Send(t,s) means sending a value of the type t (represented as
“type representation” data type trep, see Sect. 4.2) with further interactions
being described by s. Recv(t,s) is the protocol of receiving a value of the type t
and then continuing as s. Thus, the process fragment p1, according to its inferred
session type, communicates on two endpoints. From one endpoint, (2), it reads
an integer and closes it; for the other, (3), it reads an integer, then sends a
boolean and closes.

2.2 Sessions

A session, whose type we have just discussed, is a series of interactions between
two parties over a channel. (This paper deals only with binary sessions.) A
session begins when two parties rendez-vous at a “common point” and establish
a fresh channel; it concludes when the communications over the channel end (as
we will see, <session> detects the end as part of the session type inference,
and automatically arranges for closing the channel and freeing its resources.)
The rendez-vous point is called shared in <session>, created on the base of a
name, such as a host name, known to all parties. The exact representation of
shared depends on the underlying low-level communication library: for a TCP/IP
back-end, shared may be a socket addr; for the FIFO pipe backend, shared is
represented by two (unidirectional) pipes, whose names are derived from the
supplied known name. There may be many rendez-vous at the same shared – all
of which, however, establish channels with the same protocol. This is the basic
assumption of structured communication behind session type systems. Therefore,
shared itself may be assigned a session type, describing the common protocol of
these channels.

A rendez-vous is performed when one process executes accept and the other
request, see Fig. 1, on the same shared. (In TCP/IP terms, when one process
“connects” and the other “accepts” the connection.) As the result, a fresh pri-
vate communication channel is created; each of the two processes receive the
respective endpoint of it and can start communication.

To complete our running example p1 we create two channels, in two consec-
utive rendez-vous on two different shared:

let a = new shared ”sha” and b = new shared ”shb”
let pc = request b @@ fun y2 → accept a @@ fun y1 → p1 y1 y2
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Why one shared or one channel would not suffice is discussed in Sect. 2.3; on the
other hand, which operation to use, request or accept, is arbitrary at this point
of developing the example. The party communicating with pc is the process q:

let q =
accept b @@ fun x2 →
request a @@ fun x1 →
send x1 Int .<1>. @@
send x2 Int .<2>. @@
recv x2 Bool @@ fun z →
othr .<Printf.printf ”got %b\n” .̃ z>. @@
finish

Since q is meant to communicate with pc, the choice of accept and request is
no longer arbitrary. The operation othr lets us perform computations other than
communication, specified as an arbitrary OCaml code enclosed in brackets. In
case of q, this computation is printing, of the received value.

Both pc and q have no free endpoints and can be regarded as “top-level
processes”: cast as proc. Top-level processes can be combined to run in parallel:

let r = proc pc || proc q

The inferred session type of proc pc is

sh>sha−49 : Recv(int,End) (4)
sh>shb−50 : Send(int,Recv(bool,End)) (5)

which is the non-linear environment Γ for proc pc; as top-level processes have no
free endpoints, the linear environment Δ is always empty . The environment Γ
associates shared with session types. Process proc pc rendez-vous on two shared,
which hence show in the printed Γ . Here, sh>sha-49 is the internal identifier
for the shared point with the name ”sha” created earlier, and similar with for
”shb”. Comparing (4) with the earlier (2) illustrates what we have explained
already: the session type of a shared is the session type of channels created at
its rendez-vous. However, (5) and (3) are not the same: they look “symmetric”,
or dual. Indeed, when two processes communicate over a channel, one sends and
the other receives. Thus the session types of two endpoints of the same channel
have to be dual. The session type of a channel is taken to be the session type of
the ep of the accept-ing process – or the dual to the session type of the ep of the
request-or.

The inferred session type, or Γ , for proc q is the same as for proc pc ((4) and
(5)), which means the parallel composition r is well-sessioned. When pc is sending
an integer, q will be waiting to receive it. Evaluating r does more than just the
session type inference and checking. We also get the code for the processes to
run in parallel. The top-level r is the parallel composition of two complete th,
and hence two pieces of code are produced. Here is the first one, corresponding
to proc pc:5

5 To improve readability, we adjusted indentation and removed module references,
while the rest is left as-is. Variables lv 77 and lv 78 are generated via let-insertion.
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1 .<let lv 78 = {sh arname = ”/tmp/SHshb−50.fifo”; sh name = ”shb−50”} in
2 let lv 77 = {sh arname = ”/tmp/SHsha−49.fifo”; sh name = ”sha−49”} in
3 let rawep 79 = sh request lv 78 in
4 let rawep 80 = sh accept lv 77 in
5 let x 81 = int of string (ep read rawep 80) in
6 ep close rawep 80;
7 (let x 82 = int of string (ep read rawep 79) in
8 ep write rawep 79 (if x 81 > x 82 then ”T” else ”F”);
9 ep close rawep 79;

10 ())>.

Clearly seen are the calls to the low-level communication library, as well as
the serialization/deserialization code such as int of string, converting sent and
received values to/from strings, that is, the sequence of bytes to exchange over
the channel. The serialization/deserialization code is generated by <session>.

Lines 5 through 10 are the code generated for the process fragment p1, with
the variable rawep 80 standing for y1 and rawep 79 to y2. Noticeable are the
ep close calls to close and deallocate the endpoints, which were not present in
p1. A call to close an endpoint is inserted as part of session type inference, as soon
as it is determined that the endpoint’s communication is complete. For example,
when the inferred session type of p’ in recv y1 Int @@ p’ does not mention y1,
this endpoint can be closed right after recv completes. Just as the automatic
memory management, the automatic endpoint management eliminates the class
of subtle bugs, as well as relieving the programmer of a chore.

The generated code for the processes can be extracted by proc deploy (see
Fig. 1), stored into a file, compiled and then deployed on communication nodes.
Alternatively, <session> provides proc run to run the generated code as separate
(fork-ed) processes, for testing. One may do make tests to test-execute r (and all
other examples that come with <session>.)

2.3 What If One Makes a Mistake: OCaml Types V. Session Types

There are many opportunities for mistakes. This section shows what happens if
we make some of them. After all, detection and reporting mistakes is the main
reason to use a type system in the first place.

Some mistakes are caught already by the OCaml type checker, for example:

let p1’ y1 y2 = recv y1 T.Int @@ fun z1 → recv y2 T.Int @@ fun z2 →
send y2 T.Bool .<.̃ z1 > .̃ z2>.
ˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆˆ

Error: This expression has type th → th but an expression was expected of type th

let p1’’ y1 y2 = recv y1 T.Int @@ fun z1 →recv y2 T.Int @@ fun z2 →
send y2 T.Bool .<.̃ z1 + .̃ z2>. @@ finish

ˆˆˆˆˆˆˆˆˆ
Error: This expression has type int but an expression was expected of type bool

with the detailed error message. The type errors mean that p1’ and p1’’ are
not well-formed processes.
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In Sect. 2.2 we have created two shared for pc, saying that one would not
suffice. Let us see what happens if we do use only one shared (e.g., by mistake):

let a = new shared ”sha”
let pc1 = request a @@ fun y2 → accept a @@ fun y1 → p1 y1 y2

This code type-checks in OCaml, meaning it is a well-formed <session> expres-
sion. It is legitimate, after a rendez-vous on a shared do another rendez-vous on
the same shared, with the same or different process6 – but not in the case of p1.
All channels created on the same shared should be used with the same commu-
nication protocol. However, a glance at (2) and (3) tells the two endpoints of
p1 are used rather differently. Therefore, pc1, albeit a well-formed <session>
expression, is not well-sessioned. Indeed, its evaluation ends in an exception
that the types Send(int,Recv(bool,End) and Recv(int,End), inferred separately
for shared a, are not unifiable. Session-typing problems are reported as excep-
tions, carrying the problem descriptor (e.g., unification failure) and the details
(the non-unifiable types themselves) – so that one may print a custom error mes-
sages upon catching it, along with the backtrace. Standard tools like Emacs or
other IDEs understand such backtraces, thus allowing to investigate the problem.

When the session-type inference succeeds, it returns the session type plus
the code generated for the process (which can be extracted, for the complete
process, with proc deploy). The evaluation of pc1 ended in an exception, and
hence no code has been generated. Contrapositively, if the code is successfully
generated, it represents a well-sessioned process. This is a static guarantee, from
the process point-of-view – we know the process shall obey the protocol before
running its generated code.

When defining the fragment p1 in Sect. 2.1 we meant it to communicate on
two endpoints, denoted by the variables y1 and y2. Nothing stops the caller of
p1, however, from supplying the same endpoint value for both variables (i.e.,
make y1 and y2 alias the same endpoint):

let pc2 = request b @@ fun y2 → p1 y2 y2

This time evaluating pc2 produces no errors: after all, it expresses a legitimate
communication behavior – only not the intended one and not corresponding to
the process q. Therefore, evaluating proc pc2 || proc q raises an exception that
the two processes make non-unifiable assumptions about the protocol associated
with ”shb”, namely, Send(int,Recv(bool,End)) vs. Recv(bool,End). One can then
look closely into the inferred session types for pc2 and its fragments, possibly
using the OCaml debugger, identifying the source of the problem.

The process q defined in Sect. 2.2 accepted on shared point b and requested
on a; therefore, its party pc should first request on b and accept on a. It is very
easy to confuse the two operations and write

let pc3 = accept b @@ fun y2 → request a @@ fun y1 → p1 y1 y2

6 The code does not say that pc1 rendez-vous with itself, which is impossible. Com-
munications on a shared are synchronous (i.e. request and response blocks until its
counterpart becomes available) while those on session endpoints are asynchronous.
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Although this code defines a legitimate process, it cannot be a party to q. There-
fore, proc pc3 || proc q raises an exception that the two processes make different
assumptions about the protocol of the shared b, viz., Recv(int,Send(bool,End))
and Send(int,Recv(bool,End)). The two inferred types look dual, which is a hint
at a request/accept confusion.

Thus, when a <session> expression passes the OCaml type check, the com-
putations within the corresponding process are well-typed and “won’t go wrong”,
and the process itself is well-formed (“syntactically correct”). Further, when the
<session> expression successfully evaluates, it produces the code for the process,
whose computations and, in addition, communications are statically assured to
do no wrong.

1 let srv ep =
2 loop with val (.< 0 >., [ep]) @@
3 fun continue acc →
4 branch ep
5 [”add”,
6 recv ep T.Int @@ fun x →
7 let .<.̃ x + .̃ acc>. @@ fun acc →
8 send ep T.Int acc @@
9 continue acc

10 ”quit”,
11 send ep T.Int acc @@
12 finish
13 ]

14 let cli ep =
15 select ep ”add” @@
16 send ep T.Int .<1234>. @@
17 recv ep T.Int @@ fun acc0 →
18 select ep ”add” @@
19 send ep T.Int .<5678>. @@
20 recv ep T.Int @@ fun acc1 →
21 select ep ”quit” @@
22 recv ep T.Int @@ fun ans →
23 othr .<printf ”sum: %d\n” .̃ ans>. @@
24 finish

25 let p = let sh = new shared ”sh” in proc (accept sh srv) || proc (request sh cli)

Fig. 3. Example: an arithmetic server

3 Elaborate Examples: Choice, Recursion and Delegation

Arithmetic Server. Figure 3 shows a more interesting example with external and
internal choices and recursions. This is the standard example of the so-called
“arithmetic server”, which is common in literature. Function srv is a server which
takes an endpoint ep and iterates over a loop via construct loop with val. The
loop construct is supplied a pair of the initial value .< 0 >. of an accumulator and
the endpoint [ep] which are used in the following body of iteration. It binds itself
to variable continue and the accumulator to acc. Note that the construct itself
does not iterate but just produce the code for iteration. The loop body offers
two labels ”add” and ”quit” via external choice construct branch. Here, labels
represented by two strings then become part of the type for external choice, which
is an ordinary runtime value in (Meta)OCaml. In the ”add” branch, an integer
is received, bound to x and added to the accumulator. The result is rebound to
acc and sent back to the client. The server then recurs (with the updated acc)
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to handle further requests. On ”quit”, the server reports the accumulator to the
client and terminates. Client’s function cli should be understood similarly.

Compatibility of srv and cli is checked at Line 25. Thanks to equi-recursive
nature of session types, this program actually typechecks. The example exhibits
a form of session subtyping in <session> implemented via row types, following
the Links language [5]. By evaluating infer Fun(EP,TH) srv, we get the following
type which describes the server’s protocol:

Mu(18,Bra(quit:Send(int,End)+add:Recv(int,Send(int,RecVar18))+RClosed)) (6)

Session Mu(id, t) denotes a (equi-)recursive type, with RecVarid bound to the
whole Mu(id, t) expression. Bra(l1:t1+. . .+ln:tn+RClosed) shows an external
choice among labels l1, . . . , ln where ti describes communication after li is
chosen. RClosed in the end says that the choice is closed, disallowing other labels.
In total, the above session type (correctly) specifies the recursive behavior of the
server with two operations quit and add. Similarly, infer Fun(EP,TH) cli yields
the client’s type which is dual to the type above:

Sel(add:Send(int,Recv(int,

Sel(add:Send(int,Recv(int,

Sel(quit:Recv(int,End)+RMeta21)))+RMeta22)))+RMeta23)

(7)

Note that the type (7) does not show any recursive structure as well. Session
Sel(l1:t1+. . .+ln:tn+RMetaid) is an internal choice, where RMetaid is a row vari-
able which can contain more alternatives, enabling session subtyping. The type
unification invoked by (||) at Line 25 confirms that the session (6) and (7) are
dual to each other; thus the programmer can conclude cli and srv have no dead-
lock, in an earlier stage. Moreover, such type features come without annotations
like enter in [41] (see Sect. 5), thanks to the flexibility of metaprogramming.

Example with Delegation. Delegation allows one to pass a session-typed channel
to another peer, enabling dynamic change of the communication topology in a
system7. Figure 4 is the Travel Agency example from [21] (originally in [18]). The
scenario is played by three participants: customer, agency and service. Process
customer knows agency while customer and service initially do not know each
other, and agency mediates a deal between customer and service by delegation.
We use accumulator-less loop combinator in this example. Upon quote request
from customer, agency replies a rate (fixed to 350 for simplicity) and re-starts
from the beginning, and if customer agrees on the price (label ”accept”), agency
delegates the rest of the session to service in Line 12 using deleg to. Process
service accepts the delegation in Line 18 using deleg from, and consumes the rest
of session by receiving the delivery address (of type string) and then sending the
delivery date (”2020−04−01”). Note that the original OCaml implementation in

7 Ours deleg from and deleg to are called throw and catch in [51] (we changed the
names to avoid association with exceptions).
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1 let agency agc ch svc ch =
2 accept agc ch @@ fun cus ep →
3 loop [cus ep] @@ fun continue →
4 branch cus ep
5 [”quote”, begin
6 recv cus ep String @@ fun dest →
7 send cus ep Int .< 350 >. @@
8 continue
9 end;

10 ”accept”, begin
11 request svc ch @@ fun svc ep →
12 deleg to svc ep cus ep @@
13 finish
14 end]
15

16 let service svc ch =
17 accept svc ch @@ fun svc ep →
18 deleg from svc ep @@ fun cus ep →
19 recv cus ep String @@ fun address →

20 send cus ep
21 String .< ”2020−04−01” >. @@
22 finish
23

24 let customer ch =
25 request ch @@ fun ep →
26 loop [ep] @@ fun continue →
27 select ep ”quote” @@
28 send ep String
29 .< ”Tokyo to Akita” >. @@
30 recv ep Int @@ fun cost →
31 ifte .< .̃ cost < 400 >. ˜then : begin
32 select ep ”accept” @@
33 send ep String
34 .< ”Tokyo, JP” >. @@
35 recv ep String @@ fun date →
36 finish
37 end
38 ˜else : continue

Fig. 4. Example: travel agency

[21] uses lenses to convey delegated (linear) variables in types, while we use an
ordinary, term-level variables, resulting in less complication in (OCaml) types.

Note also that there is a subtle difference in ownership control of session type
systems [14,51] from usual notion of linearity. That is, some primitives assume
implicit presence of End types in continuation—for example, send ep 350 finish
has Send(Int,End) in ep—while the delegation requires absence of a session in
continuation, as in the end of agency above. To avoid such ambiguity, implemen-
tations (e.g. [23,32,39]) usually require the channel to be explicitly closed in the
end of a session, while <session> does not demand such annotation.

4 Notable Implementation Techniques

4.1 Staging

We now describe and justify staged embedded DSLs as an implementation tech-
nique of supporting session- and other advanced type systems in an existing
(staged) language.

Session types with no safety or usability compromises call for a language
system designed for them, e.g., Links [5], which offers session types natively.
Achieving this golden standard, and implementing and supporting a program-
ming language requires time, effort and investment beyond the reach of many.
Not only one has to implement a type checker, but also the whole compiler –
as well as libraries, tools, build systems. One has to maintain them, write doc-
umentation, advertise and build community.
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DSLs embedded in a mature, well supported host language are an attractive
alternative. The host language provides the compilation, infrastructure, commu-
nity – letting the DSL author concentrate on expressing domain-specific con-
structs and types as terms and types of the host language. The first problem
comes when the DSL type system significantly differs from that of the host lan-
guage – which is the case of session types, the form of type-state [46]. It requires
advanced, modal or substructural type systems [7,19,49], rarely offered by a
host language. One has to resort to emulation, whose problems we detailed in
the Introduction. The main problem, for the implementor, is that type systems
are rarely designed for writing code. Using a host type system as a programming
language in which to emulate an advanced DSL type system is excruciating.

Staging helps, by letting the DSL implementor map DSL constructs and DSL
types to host language terms. Whatever the DSL type checking and inference is
needed, can be programmed in the host language itself (rather than in its type
system). That seems inadequate as DSL type errors will be reported too late:
not when compiling a DSL program but when running it. One has to remember,
however, that with staging, there are two (potentially more) run-times: the run-
time of the code generator and the run-time of the generated code. It is the
latter that corresponds to the traditional run-time, and which “should do no
wrong”. The run-time of the generator, from the point of view of the generated
program, is a sort of “compile-time”. Run-time errors in the generator are akin to
the traditional type-error and compiler diagnostics: an indication that a compiler
gave up on the source program and produced no object code. On the other hand,
when the code is generated, one has the confidence it has passed the checks of
both the host and the DSL type systems.

We now show a concrete illustration of the approach. Since <session> is
rather advanced, we use a similar but simpler example, also featuring type-
state: a DSL with operations to open, write to and close an arbitrary number
of communication channels – and the type system that prevents using a chan-
nel after it has been closed. The manual closing of channels allows for more
accurate and timely management of scarce resources than achievable with, say,
region discipline. This is the example described in [29, §6]. Although seemingly
simple, embedding this DSL in Haskell required heavy and unwieldy type-level
programming, with the predictable result of large inferred types, fragile inference
and confusing error messages [29, §6.2].

Let us see if we can do better with staging. Figure 5 presents the interface,
sample code, and most of the implementation (see the accompanying source code
for full details and more examples.)8 Most operations should be self-explanatory.
The left-associative // is the “semicolon”, to compose DSL expressions. The
main assumption is the factoring of the DSL into communication (channel oper-
ations) and computations. The latter are represented as string code whereas the
former are as values of the type comm. Such a factoring is common: monadic IO
in Haskell, Lwt and Async libraries in OCaml are just a few other examples.

8 The language is quite like the STATE language in [27, §7]: the imperative part of
Reynolds’ Idealized Algol, as pointed out by Bob Atkey. Instead of var we write ch.
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Interface

type comm type ch

val (//) : comm → comm → comm
val skip : comm

val close : ch → comm
val write : ch → string code → comm
val open :

string → (ch → comm) → comm
val if : bool code → then :comm → else :comm → comm

Sample code

let p =
open ”/tmp/a1” @@ fun ch1 →
open ”/tmp/a2” @@ fun ch2 →
write ch1 .<”s1”>. //
close ch1 //
write ch2 .<string of int 5>. //
close ch2

Implementation: types

type ch id = string
type ch status = Closed | Active
type ch =

{chch: out channel code; chid: ch id}
module M =
Map.Make(struct type t = ch id let compare = compare end)

type styp = ch status M.t
type comm = {c code: unit code; c chan: styp}

“Type” errors

exception NotClosed of ch id
exception UsedAfterClosed of ch id
exception ClosedOnlyInOneBranch of

bool ∗ ch id

let skip =
{c code = .<()>.;
c chan = M.empty}

let close = fun {chch;chid} →
{c code = .<close out .̃ chch>.;
c chan = M.singleton chid Closed}

let write = fun {chch;chid} str →
{c code = .<output string .̃ chch .̃ str>.;
c chan = M.singleton chid Active}

let (//) = fun c1 c2 →
let c code =

.< .̃ (c1.c code); .̃ (c2.c code) >. in
let merger chid c1t c2t =
match (c1t,c2t) with
| (None,ct) | (ct,None) → ct
| (Some Active, ct) → ct
| (Some Closed, Some ) →

raise (UsedAfterClosed chid) in
let c chan =

M.merge merger c1.c chan c2.c chan
in {c code;c chan}

Fig. 5. The writeDSL: interface, sample code, implementation

The sample DSL expression p, when evaluated, produces the expected code
of opening, writing to, and closing output channels. If instead of ch1 we close
ch2, the evaluation of p ends with a UsedAfterClose exception mentioning the
offending channel – and produces no code.

The key is the realization of comm as an “annotated code”: a record carrying
the code generated for the DSL expression. The field c chan of the record is
the annotation: the DSL type associated with the code. As in <session>, it is
a finite map (implemented with OCaml’s Stdlib.Map) of channel ids ch id and
their statuses Closed or Active. The close operation generates code to close the
channel – and the annotation that the channel, which should be active before,
becomes Closed. Likewise, the write operation annotates the channel writing
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code with the fact that the channel was and to remain Active. The composition
c1 // c2 merges not only the code but also the annotations, thus inferring the
DSL type (channel statuses) for the composed expression. The merging is done
by Stdlib.Map.merge operation, with merger determining which associations from
the input maps get to the output map, and how to deal with merge conflicts.
If a channel remains active after c1, its status in c1 // c2 is determined by its
status in c2. On the other hand, if the channel is Closed in c1 and yet appears
in c2’s annotation, it is the “use after close” error, and reported by throwing an
exception.

4.2 Canonical Structures

To put it simply, Canonical Structures is a facility to obtain a value of a given
type – for example, a value of the type int→string, that is, the function to
“show” an integer. Since there are many such functions, the user has to reg-
ister the “canonical” value of this type. In the simplest case, searching for a
canonical instance is a mere look up in the database of registered values. Instead
of a canonical value itself, however, the database may provide a rule how to
make it, from some other registered values (e.g., how to “show” a pair if we can
show its components). Querying this database of facts and rules is quite like the
evaluation of a Prolog/Datalog query.

From the point of view of the Curry-Howard correspondence, finding a term
of a given type is finding a proof of a proposition. This is how this facility was
developed in Coq, as a programmable unification technique for proof search, as
expounded in [34].9 Our implementation, inspired by that remarkable paper, is
an attempt to explain it in plain OCaml, experiment with and use beyond Coq.

The rudiment of canonical structures is already present in OCaml, in the
form of the registry of printers for user-defined types. It is available only at the
top-level, however, and deeply intertwined with it. We have implemented this
facility for all programs, as a plain, small, self-contained library, with no com-
piler or other magic. It can be used independently from <session>. Unlike the
OCaml top-level–printer or Haskell type-class resolution, searching for a canoni-
cal instance is fully user-programmable. One may allow “overlapping instances”,
or prohibit them, insisting on uniqueness. One may allow for backtracking, fully
or in part.

In <session> the canonical structures are used to look up the code for seri-
alizers and deserializers, to print types, and to implement infer to infer session
types of process fragments with an arbitrary number of free endpoint variables.

Our implementation of Canonical Structures is user-level. Therefore, the look
up of canonical values happens at run-time – rather than at compile time, as
in type-class resolution. The look-up failures are also reported at run-time. It
should be stressed, however, that in <session>, Canonical Structures are used
only during code generation. The run-time errors at that point are run-time

9 That tutorial paper also compares canonical structures to related approaches, in
particular, implicits and type classes.
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errors in the generator. From the point of view of the generated code, these are
“compile-time” errors. Therefore, Canonical Structures in metaprograms roughly
correspond to type classes in ordinary programs.

Since our Canonical Structures are implemented completely outside the com-
piler, the types of values to look up have to be explicitly specified as values
of the α trep data type, which represents types at the value level. For exam-
ple, a value Fun(Int,Bool) represents the type int→bool (and itself has the type
(int→bool) trep). The data type can be easily extended with representations of
user-defined data types (the <session> code shows a few examples). The trep
values may be regarded as type annotations; in particular, as with other type
annotations, if the user sets them wrong, the type error is imminent. Therefore,
they are not an additional source of mistakes, but still cumbersome. If a com-
piler could somehow “reflect” an inferred type of an expression and synthesize
a trep value, these annotations could be eliminated. We are contemplating how
such reflection facility could be supported by OCaml, taking inspiration from
the run-time-type proposal [13] and type-level implicits proposals [10,50].

5 Related Work

The session type system employed in <session> is essentially the same as the
liberal system [51, §3]. However, we distinguish threads th and endpoint-closed
top-level processes. Only the latter may be parallel-composed. The reason is
not of principle but practicality: web application and other such services do not
spawn processes at will but rely on a worker pool, for better control of resources.

Links [5,33] has session types on top of linear types and row polymorphism.
Its core calculus GV [31,48] has stronger properties like global progress, deter-
minism, and termination, while [51] can lead to a deadlock with two or more
sessions. We chose [51] as it has more liberal form of parallel composition. Adopt-
ing our approach to GV (and extending to exception handling [9]) is future work.

Several implementations have been done in Haskell [22,32,35,37,41,42] and
compared in [38] in detail. They are also established in Rust [23] (using its
substructural types) and Scala [43] (based on dynamic linearity checking).

Implementation of session types in OCaml, firstly done by Padovani [39]
and then Imai et al. [20,21], seems a touchstone to spread into wider range of
programming languages since it does not have substructural types nor any fancy
features like type classes or implicits. The key issues are (1) static checking of
linearity, (2) inference of dual session types and (3) encoding of branching labels.
For (1), static checking of linearity in [39] is based on a parameterised monad of
[41]. Imai et al. [21] provides a handy way to operate on multiple sessions using
type-level indexes encoded by polymorphic lenses [8,40], based on the idea by
Garrigue [11,20]. However, it requires much elaboration on types; for example,
the type signature of the send primitive involves six type variables because of
index-based manipulation for linearity and partially due to polarity encoding,
which we will explain in the following (2).
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For duality (2), there is a subtle tension between type inference, readability
of types, and type compatibility. Pucella and Tov [41] showed a manual con-
struction of duality witness in various languages including OCaml, while it can
be automatically generated by type classes (and type functions [28]) in Haskell.
On the other hand, Padovani adopts an encoding into i/o types by Dardha et
al. [6], achieving duality inference by OCaml’s typechecker, which is also applied
by Scalas et al. in Scala [43]. Dardha et al’s encoding, however, is quite verbose,
to the point that the resulting session types are hard to understand for humans
(for details, see [21, § 6.2]). To mitigate it, the implementation of [39] provides
the type decoder. Imai et al. resolved it by having polarities in types, however,
it introduces complication on types, as we mentioned above. Furthermore, the
polarity-based encoding has a type compatibility issue in delegations [21, in the
end of § 3.3]. Summarizing the above, duality encoding in types has problems of
(a) manual construction, as in [20,41], (b) type decoder [39] or (c) compatibility
problem [21], while our <session> does not have such problems at all.

Furthermore, duality is not just a swapping of output and input when a
recursion variable occurs in a carried type, as pointed out independently by
Bernardi et al. [2] and Bono et al. [3] which is usually overlooked (see [38,
§ 10.3.1]). Instead, we use μα.T = μα.T [α/α] in the Links language [33, § 12.4.1].

Type-level branching labels (3) are another obstacle for having session types
in languages like Rust and Scala (e.g. [23,43]) from which our approach does not
suffer, as we have labels at the ordinary, term-level.

Hu et al. [18] showed a binary session extension to Java, SessionJava, includ-
ing syntax extensions for protocols and session-based control structures. By con-
trast, <session> implements binary session types as a library on top of Meta-
OCaml, using only standard staging features like brackets and escape. Their work
also includes session delegation protocol over distributed environment, which is
orthogonal to the syntax and can possibly be added to <session>.

Scribble [44] is an implementation of multiparty session types [15] in various
programming languages via code generation, including Java [16,17], Go [4], and
F# [36]. Multiparty session types take a top-down approach to generate session
types from a global description of protocol called global type. On the other hand,
Lange et al. [30] directly verifies session types via model checking. Extending
<session> to the multiparty setting is future work.

6 Conclusions

We have presented the session-typed DSL <session> for service-oriented pro-
gramming embedded in MetaOCaml. It was an experiment to see how the “type
checking as staging” idea really works in practice, for a non-trivial, type-state–
based type system and a non-trivial DSL. Overall, we are satisfied with our
implementation experience: we have provided the same or even stronger guaran-
tees than the other, mainstream implementations; we emit helpful error diagnos-
tics; and we enjoyed programming in a mature implementation language rather
than in a bare Post system. There is room for improvement (such as the trep
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annotations discussed in Sect. 4.2), and we are considering proposals to OCaml
developers.

We have not yet implemented session-type annotations – that is, define the
protocol as a session type, and then check that a process satisfies it. However,
this is easy to add. We also want to extend our approach to group communication
and multiparty session types.

The topic of this paper has been implementing session-type DSLs rather than
developing session type systems themselves. Nevertheless, <session> turns out
a good tool to prototype variations and extensions of session types. In the future
work we plan to investigate one such extension: cancellation and failure modes.
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Abstract. It has been shown that some variants of cyclic proof sys-
tems for symbolic heap entailments in separation logic do not enjoy the
cut elimination property. To construct complete system, we have to con-
sider the cut rule, which requires some heuristics to find cut formulas in
bottom-up proof search. Hence, we hope to achieve some restricted vari-
ant of cut rule which does not change provability and does not interfere
with automatic proof search without heuristics. This paper gives a limit
on this challenge. We propose a restricted cut rule, called the presumable
cut, in which cut formula is restricted to those which can occur below
the cut. This paper shows that there is an entailment which is provable
with full cuts in cyclic proof system for symbolic heaps, but not with
only presumable cuts.

1 Introduction

Separation logic is an extension of Hoare logic for verifying programs manip-
ulating heap memories. It is successful as theoretical base to achieve (semi-
)automatic verification systems for low level languages and low-level program-
ming languages which is often developed with C language.

One of the keys for automation is to solve the entailment checking problem for
separation logic formulas with inductive predicates, which represent recursively
structured data on heaps. To obtain decidability, some restrictions are required.
One of them is to restrict formulas to (extended) symbolic heaps, which are
considered sufficient to represent assertions in real verification systems, and for
which some decidability results have been obtained [1,2,10–12,14,17]. Some of
them [1,2,17] are based on proof theoretic approaches, which have some advan-
tages: it provides evidences of correctness for valid entailments, and it can be
easily extended by adding inference rules.

Cyclic proof systems are adopted for the entailment checking for symbolic
heaps with general inductive predicates [4,5,17]. Cyclic proofs are proofs with
cycles, which correspond to use of induction hypotheses. They are considered
suitable for automated inductive reasoning since we need not to decide formulas
to be proved by induction a priori. However, there are few results on fundamental
properties of cyclic proof systems.
c© Springer Nature Switzerland AG 2020
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Cut-elimination property is one of such properties of logical systems. It is
important not only from theoretical interest, but also from application, since
it ensures that provability is not changed by existence of the cut rule, which
is not good for bottom-up proof search since we have to find cut formulas.
However, it is shown in [13] that we cannot eliminate cuts from the cyclic proof
system for symbolic heaps. The existing cyclic proof systems [4,5,17] are cut-
free systems, and neither completeness nor decidability has been proved for the
systems in [4,5], and the system in [17] requires additional mechanism called the
spatial factorization and a relatively strong restriction for inductive predicates
to achieve completeness and decidability. Hence we hope that we can restrict the
cut rule as not to interfere with automated proof search.

This paper gives a limit on this challenge for a cyclic proof system for sym-
bolic heaps. It shows that it seems hard to restrict the cut rule as not to interfere
with automated proof search. In other words, some heuristics seem unavoidable
to find cut formulas for full power of provability.

First, we propose a restricted variant of the cut rule, called presumable cuts.
A formula is called presumable from a sequent if it is obtained by bottom-up
applications of inference rules except for cut from the sequent, and a cut is called
presumable if the cut formula is presumable. Presumable cuts can be applied
without heuristics, so it is preferable that any conclusion which is provable with
cuts can be proved with only presumable cuts. We call this property quasi cut-
elimination property.

One counterexample to the cut elimination in [13] is lsne(x, y) � slne(x, y),
where the predicates are defined as

lsne(x, y) = x �→ y | ∃z.(x �→ z ∗ lsne(z, y)),
slne(x, y) = x �→ y | ∃z.(slne(x, z) ∗ z �→ y).

They showed that the entailment can be proved with cuts, but is not provable
without cut. Its cyclic proof with a cut is

x �→ y � x �→ y

x �→ y � slne(x, y)

.

.

.

.
(1)

x �→ z ∗ lsne(z, y) � x �→ z ∗ slne(z, y)

.

.

.

.
(2)

x �→ z ∗ slne(z, y) � slne(x, y)

x �→ z ∗ lsne(z, y) � slne(x, y)
(Cut)

lsne(x, y) � slne(x, y) ,

where both (1) and (2) are cut free. The underlined cut formula x �→ z∗slne(z, y)
is presumable since it is obtained by unfolding slne(x, y). From this example, we
may expect that any entailment provable with cuts can be proved with only
presumable cuts, that is, the quasi cut-elimination property holds for the cyclic
proof system for symbolic heaps.

The main result of this paper is that the cyclic proof system for symbolic
heaps does not satisfy the quasi cut-elimination property. It is proved by a
counterexample entailment which is provable with cuts but not provable with
only presumable cuts. It means that the proof of this entailment requires some
heuristics to find a cut formula.
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Related Work. There are some results on cut-elimination property for proof sys-
tems with infinite paths and cyclic proof systems. For proof systems with infinite
paths, cut elimination holds for several logics such as first-order predicate logic
[6] and multiplicative additive liner logic with fixed point operators (μ-MALL)
[9]. On the other hand, for cyclic proof systems, it does not hold for several log-
ics such as symbolic heap separation logic [13], μ-MALL [9], and sequent style
system for Kleene algebra [8]. These results suggest that there is an essential
difference between proof systems with infinite paths and cyclic proof systems,
which are obtained by restricting proofs in the former systems to regular trees.

Hence, for automated reasoning, it is important to achieve cyclic proof sys-
tems with restricted cut rule which is sufficient for provability, that is, the quasi
cut-elimination property holds, and which does not require any heuristics to find
cut formulas. However, there are few studies on such restriction to the cut rule
in cyclic proof systems. The proof system introduced by Chu [7] is implicitly
based on the cyclic proof system with restricted form of the cut rule where one
of the assumptions must be a bud in the cyclic proof of which the companion
stands below the bud. This restriction is a special case of the presumable cut.

We can also find this kind of restriction in the sequent calculi of some modal
logics [16], for which the cut elimination does not hold but the cut rule can be
restricted, without changing provability, to that with a cut formula which is a
subformula of the bottom sequent of the cut. This restricted cut is also a special
case of the presumable cut.

Structure of the Paper. We introduce a cyclic proof system for symbolic heaps in
Sect. 2. In Sect. 3, we propose the presumable cuts and the quasi cut-elimination
property. In Sect. 4, we show that the cyclic proof system defined in Sect. 2 does
not satisfy the quasi cut-elimination property. We give concluding remark in
Sect. 5.

2 Cyclic Proof System for Symbolic Heaps

We define the logic SL1 of symbolic heaps in separation logic, and the cyclic
proof system CSL1IDω for symbolic heaps.

2.1 Symbolic Heaps

We define the formulas of the separation logic with the singleton heap �→ and
the separating conjunction ∗ in a standard way [15].

We use the metavariables x, y, z,. . . for variables, and P , Q,. . . for predicate
symbols. Each predicate symbol is supposed to have a fixed arity.

Definition 1 (Symbolic heaps). Let nil be a term constant, and � and emp
be propositional constants. A term, denoted by t, u,. . . , is defined as either a
variable or nil. We use the boldface metavariables x and t for finite sequences of
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variables and terms, respectively. The pure formulas Π and the spatial formulas
Σ are defined as follows.

Π:: = � | t = u | t �= u | Π ∧ Π, Σ:: = emp | P (t) | t �→ u | Σ ∗ Σ.

The formulas of SL1 are (quantifier-free) symbolic heaps A, which is defined as
Π ∧ Σ. We define FV (A) as the set of free variables in A.

We use the following notation. For I = {1, · · · , n}, we write
∧

i∈I Πi for
Π1 ∧ · · · ∧ Πn. Similarly, we write ∗i∈IΣi for Σ1 ∗ · · · ∗ Σn. When A is Π1 ∧ Σ1

and B is Π2 ∧ Σ2, we write A ∗ B for Π1 ∧ Π2 ∧ Σ1 ∗ Σ2. Similarly, we write
A ∧ Π for Π1 ∧ Π ∧ Σ1 and A ∗ Σ for Π1 ∧ Σ1 ∗ Σ.

Each predicate P is supposed to be accompanied with its definition clauses
as

P (x) := ∃y1.A1 | ∃y2.A2 | ... | ∃yn.An,

where each Ai is a quantifier-free symbolic heap whose free variables are in x or
yi.

Substitutions of terms are finite mappings from term variables to terms. A
substitution θ is called a renaming, if θ is injective and θ(x) is a variable for any
x in its domain.

We identify formulas up to commutativity and associativity for ∗, commuta-
tivity, associativity, and idempotence for ∧, and symmetry for = and �=. � is a
unit for ∧. We use ≡ for syntactic identity modulo these identifications.

Definition 2 (Extended subformula). The extended subformulas of a sym-
bolic heap

∧
i∈I Πi ∧∗j∈JΣj are defined as formulas obtained by renaming from

the formulas of the form
∧

i∈I′ Πi ∧∗j∈J ′Σj for I ′ ⊆ I and J ′ ⊆ J . ExSub(A)
is defined as the set of extended subformulas of A.

2.2 Semantics of Symbolic Heap

In the following, for a mapping f , the domain and the image of f are denoted
as dom(f) and img(f), respectively.

A store, denoted by s, is a function from variables to natural numbers N. It is
extended to a mapping on terms by s(nil) = 0. We write s[x := a] for the store
which is the same as s except the values of x are a. A heap, denoted by h, is a
finite partial function from N\{0} to N. h = h1+h2 means dom(h1)∩dom(h2) =
∅, dom(h) = dom(h1) ∪ dom(h2), and h(n) = hi(n) for n ∈ dom(hi) (i ∈ {1, 2}).
A pair (s, h) is called a heap model.
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Definition 3 (Interpretation of formulas). The interpretation of a formula
A in (s, h), denoted by s, h |= A, is inductively defined as follows.

s |= t = u
def⇐⇒ s(t) = s(u),

s |= t �= u
def⇐⇒ s(t) �= s(u),

s |= Π1 ∧ Π2
def⇐⇒ s |= Π1 and s |= Π2,

s, h |= t �→ u
def⇐⇒ dom(h) = {s(t)} and h(s(t)) = s(u),

s, h |= P (0)(t) never holds,

s, h |= P (m+1)(t)
def⇐⇒ s[y := b], h |= A[P

(m)
1 , ..., P

(m)
k /P1, ..., PK ](t, y),

for some definition clause ∃y.A of P containing P1, ..., PK ,

s, h |= P (t)
def⇐⇒ s, h |= P (m)(t) for some m,

s, h |= Σ1 ∗ Σ2
def⇐⇒ there exist h1 and h2 such that h = h1 + h2,

s, h1 |= Σ1, and s, h2 |= Σ2,

s, h |= Π ∧ Σ
def⇐⇒ s |= Π and s, h |= Σ,

where P (m) is an auxiliary notation for defining s, h |= P (t) and
A[P (m)

1 , ..., P
(m)
K /P1, ..., PK ] is the formula obtained by replacing each Pi by

P
(m)
i .

2.3 Inference Rules of CSL1IDω

The cyclic proof system CSL1IDω consists of standard inference rules [4,14].

Definition 4 (Sequent). Let A and B be symbolic heaps. A � B is called a
sequent. A is called the antecedent of A � B, and B is called the succedent of
A � B. We use the metavariable e for sequents. A sequent A � B is defined to
be valid, denoted by A |= B, if and only if, for any heap model (s, h) such that
s, h |= A, s, h |= B holds.

Definition 5 (Inference rules of CSL1IDω). The inference rules of
CSL1IDω are the following.

A 
 A
(Id)

A ∗ t �→ u1 ∗ t �→ u2 
 B
(�→ L)

t �= t ∧ A 
 B
(NEQL)

A 
 C C 
 B
A 
 B

(cut)
A 
 B

Π ∧ A 
 B
(Wk)

A 
 C B 
 D
A ∗ B 
 C ∗ D

(∗)

t �= u ∧ A 
 B

t �= u ∧ A 
 t �= u ∧ B
(NEQR)

t = u ∧ A[u/x] 
 B[u/x]

t = u ∧ A[t/x] 
 B[t/x]
(EQL) A 
 B

A 
 t = t ∧ B
(EQR)

A 
 B
A ∗ emp 
 B

(EL1)
A ∗ emp 
 B

A 
 B
(EL2)
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A 
 B
A 
 B ∗ emp

(ER1)
A 
 B ∗ emp

A 
 B
(ER2)

C1(x, y1) ∗ A 
 B · · · Cn(x, yn) ∗ A 
 B

P (x) ∗ A 
 B
(Case)

A 
 Ci(u, t) ∗ B

A 
 P (u) ∗ B
(PR)

,

where the definition clauses of the predicate P are the following

P (x) := ∃y1.C1(x,y1) | · · · | ∃yn.Cn(x,yn).

In (PR), i satisfies 1 ≤ i ≤ n, and the terms t are arbitrary. In (Case), the
variables yi are fresh. The formula C in (cut) is called the cut formula.

2.4 Cyclic Proof in CSL1IDω

The cyclic proofs in CSL1IDω are defined in a similar way to [4–6].
A derivation tree (denoted by D) in CSL1IDω of a sequent e is defined in a

usual way by the inference rules of CSL1IDω.

Definition 6 (Bud, companion, and pre-proof). A bud is a leaf sequent of
a CSL1IDω derivation tree that is not an axiom. A companion for a bud e is
an occurrence of a sequent of which e is a substitution instance.

A pre-proof P is defined as a pair (D, R) where D is a derivation tree and
R is a function such that, for each bud occurrence e, R(e) is a companion for e.

Definition 7 (Path). A proof-graph G(P ) of a pre-proof P = (D,R) is a
directed graph structure D in the bottom-up manner with additional edges from
buds to companions assigned by R. A path in P is a path in G(P ).

Definition 8 (Trace). Let (ei)i≥0 be a path in P = (D,R). A trace along
(ei)i≥0 is a sequence of inductive predicates (Ci)i≥0 such that each Ci occurs in
the antecedent of ei, and satisfies the following conditions:

(a) If ei is the conclusion of (Case) in D, then either Ci = Ci+1 or Ci is
unfolded in the rule instance and Ci+1 appears as a subformula of the unfold-
ing result. In the latter case, i is called a progressing point.

(b) If ei is the conclusion of a rule other than (Case), then Ci+1 is the subfor-
mula occurrence in ei+1 corresponding Ci in ei.

(c) If ei is a bud, Ci+1 is the corresponding occurrence of the predicate to Ci

in ei.

If a trace contains infinitely many progressing points, it is called an infinitely
progressing trace.

Definition 9 (Cyclic proof). A pre-proof P of CSL1IDω is called a cyclic
proof if it satisfies the global trace condition: for any infinite path (ei)i≥0 in P ,
there is a number j and an infinitely progressing trace along the path (ei)i≥j.
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Note that when ei is the conclusion of (cut) and ei+1 is its right assumption,
there is no trace along the path containing ei and ei+1 since ei+1 contains no
formula corresponding Ci in ei. Hence, if a pre-proof contains an infinite path
which passes through right assumptions of cuts infinitely many times, then it is
not a cyclic proof since it cannot satisfy the global trace condition.

Example 1. A cyclic proof of ls(x, y) ∗ ls(y, z) � ls(x, z) in CSL1IDω is given as
follows, where the predicate ls is defined by

ls(x, y) := x = y ∧ emp | ∃x′.(x �= y ∧ x �→ x′ ∗ ls(x′, y)).

Intuitively, ls(x, y) represents linear list segments.

ls(y, z) � ls(y, z)

x = y ∧ ls(y, z) � ls(y, z)
(Wk)

x = y ∧ ls(y, z) � ls(x, z)
(EQL)

x = y ∧ emp ∗ ls(y, z) � ls(x, z)
(EL)

x �→ x′ � x �→ x′ ls(x′, y) ∗ ls(y, z) � ls(x′, z) (†)

x �→ x′ ∗ ls(x′, y) ∗ ls(y, z) � x �→ x′ ∗ ls(x′, z)
(∗)

x �= y ∧ x �→ x′ ∗ ls(x′, y) ∗ ls(y, z) � x �→ x′ ∗ ls(x′, z)
(Wk)

x �= y ∧ x �→ x′ ∗ ls(x′, y) ∗ ls(y, z) � x �= y ∧ x �→ x′ ∗ ls(x′, z)
(NEQ)

x �= y ∧ x �→ x′ ∗ ls(x′, y) ∗ ls(y, z) � ls(x, z)
(PR)

ls(x, y) ∗ ls(y, z) � ls(x, z) (†)
(Case)

The sequents marked (†) are corresponding bud and companion. This pre-proof
contains only one infinite path, which contains the trace, indicated by underlines,
progressing at (Case) infinitely many times. Hence, it satisfies the global trace
condition.

Example 2. A cyclic proof of ls3(x1, y1, x1) � ls3(y1, x1, y1) is given as follows,
where ls3 is a ternary variant of list-segment predicate defined by

ls3(x, y, z) := x = y ∧ y = z ∧ emp

| ∃x′.(x = y ∧ y �= z ∧ x �→ x′ ∗ ls3(x′, x′, z))

| ∃x′.(x �= y ∧ x �→ x′ ∗ ls3(x′, y, z)).

Intuitively, ls3(x, y, z) represents a list segment from x to z through y, and has
the same meaning as ls(x, y) ∗ ls(y, z).

(1)
ls3(x1, y1, x1) � ls(x1, y1) ∗ ls(y1, x1)

(2)
ls(x1, y1) ∗ ls(y1, x1) � ls3(y1, x1, y1)

ls3(x1, y1, x1) � ls3(y1, x1, y1)
(cut)

,

where the subproofs (1) and (2) are in Fig. 1.
The sequents marked (α), (β), and (γ) are each corresponding bud and com-

panion, which make three infinite paths separately. Since each infinite path con-
tains infinitely progressing trace, this satisfies the global trace condition.

This cyclic proof of ls3(x1, y1, x1) � ls3(y1, x1, y1) contains the (cut) with the
cut formula ls(x1, y1) ∗ ls(y1, x1), which contains the predicate ls which does not
occur in the conclusion. However, we can also construct another proof with the
cut formula ls3(x1, y1, y1) ∗ ls3(y1, x1, x1) since ls3(x, y, y) has the same meaning
as ls(x, y).
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Theorem 1 (Soundness of CSL1IDω). If (D,R) is a cyclic proof in
CSL1IDω, then every sequent in D is valid.

The proof of this theorem is similar to [4,6].

3 Quasi Cut-Elimination Property

3.1 Failure of Cut Elimination in CSL1IDω

As [13] shows, we cannot eliminate cut for CSL1IDω.

Theorem 2 ([13]). CSL1IDω does not satisfy cut-elimination property.

For the predicates lsne and slne defined in Sect. 1, the sequent lsne(x, y) �
slne(x, y) is provable, but it cannot be proved in CSL1IDω without cut.

The cut rule cannot be completely removed from CSL1IDω, so, as a
workaround, it is expected to achieve some restriction on the cut rule which
does not interfere with automatic proof search.

3.2 Presumable Cut and Quasi Cut-Elimination Property

In this section, we propose a restriction on the cut rule. We can consider this
restriction not only for CSL1IDω, but also for usual sequent-calculus-style proof
system S and some suitable notion of subformulas ExSub(A). We call inference
rules except for cut non-cut rules.

Definition 10 (Presumable formula). Let A � B be a sequent in S. We
inductively define the set RS(A � B) of reachable sequents from A � B in S,
and the set PS(A � B) of presumable formulas from A � B simultaneously as
the smallest set which satisfies the following property:

(a) A � B ∈ RS(A � B).
(b) If A′ � B′ ∈ RS(A � B) and we have a rule instance

A′′
1 � B′′

1 · · · A′′
n � B′′

n

A′ � B′ (r)
where (r) is either a non-cut rule in S or the

cut rule of which cut formula is in PS(A � B), then A′′
i � B′′

i ∈ RS(A � B)
for 1 ≤ i ≤ n.

(c) If A′ � B′ ∈ RS(A � B) and C ∈ ExSub(A′)∪ExSub(B′), then C ∈ PS(A �
B).

A presumable cut (pcut) in a proof of A � B is a cut of which the cut formula
is presumable from A � B.

Definition 11 (Quasi cut-elimination property). If every A � B which is
provable in S with cuts can be proved only with presumable cuts, we say that S
satisfies the quasi cut-elimination property.
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Remark 1. The counterexample lsne(x, y) � slne(x, y) to the cut elimination of
CSL1IDω can be proved only with presumable cuts as follows.

We use x �→ x′ ∗ slne(x′, y) as the cut formula in this proof. By applying (PR) to
lsne(x, y) � slne(x, y), we have lsne(x, y) � x �→ x′ ∗ slne(x′, y) as its assumption.
Hence x �→ x′ ∗ slne(x′, y) is a presumable from lsne(x, y) � slne(x, y).

3.3 Restricting Cuts in Sequent Calculi

In the bottom-up proof search, it is hard to apply the cut rule since we have to
find a cut formula. If candidates of the cut formula are not limited, we have to
find a suitable cut formula by heuristics. The notion of the presumable cuts is
intended to limit the range of the cut formulas to the formulas which can occur
in a sequent under the cut.

Such restriction is not very new, and we can find a similar restriction in the
proof system for symbolic heaps in [7]. They did not explicitly describe, but their
system can be seen as a cyclic proof system with a restricted cut rule, where
one of assumptions is a bud whose companion is located below the cut. We call
this restricted cut the normal bud cut. The cut formula must occur below the
cut, and hence the normal bud cut can be seen as a stricter restriction than the
presumable cut. They showed that lsne(x, y) � slne(x, y) is provable with normal
bud cuts.

One may wonder what happens if we remove the condition “normal” from
the normal bud cut, that is, if we consider only cuts where one of assumptions is
a bud whose companion is located anywhere in the proof. In fact such restriction
does not restrict anything on cut formulas, since any cut in a cyclic proof can be
transformed to a “bud cuts” in a cyclic proof forest with the same cut formula
as in Fig. 2, where both of two cuts in the right proof forest are cuts where one
of assumptions is a bud.

D1....
A � C

D2....
C � B

A � B
(cut) A � C

D2....
C � B

A � B
(cut)

D1....
A � C C � B

A � B
(cut)

Fig. 2. Cut to bud cuts

We can also find another similar restriction on cuts for sequent calculus of
propositional modal logics [16]. For modal logics S5, K4B, and so on, the sequent
calculi do not satisfy the cut elimination property. Takano [16] proposed the
restriction on cuts where the cut formula must be a subformula of the bottom
sequent, and the restricted cuts and full cuts have the same provability power. In
those systems (and usual sequent calculi for propositional logics), every non-cut
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rule satisfies the subformula property in a local sense, that is, every formula in
the assumptions occurs in the conclusion as its subformula, so such restriction
on cut formulas is stricter than the presumable cuts. Hence, Takano’s results
shows that these systems are examples of sequent calculi satisfying the quasi
cut-elimination whereas not satisfying the full cut-elimination.

4 Failure of Quasi Cut Elimination in CSL1IDω

In this section, we show that ls3(x1, y1, x1) � ls3(y1, x1, y1) is a counterexample
to the quasi cut-elimination property for CSL1IDω, where ls3 is defined in
Example 2.

Before the proof, we explain why ls3(x1, y1, x1) � ls3(y1, x1, y1) is a coun-
terexample. Similarly to the counterexample lsne(x, y) � slne(x, y) to the cut-
elimination property, ls3(x1, y1, x1) and ls3(y1, x1, y1) have the same meaning
but are syntactically different. We can unfold the former only at x1 and the
latter at y1, and hence, when we prove ls3(x1, y1, x1) � ls3(y1, x1, y1) its proof
has the following form with the cut formula such as ls3(x1, y1, y1)∗ ls3(y1, x1, x1),
which can be unfolded at both x1 and y1:

D1.
.
.
.

ls3(x1, y1, x1) � ls3(x1, y1, y1) ∗ ls3(y1, x1, x1)

D2.
.
.
.

ls3(x1, y1, y1) ∗ ls3(y1, x1, x1) � ls3(y1, x1, y1)

ls3(x1, y1, x1) � ls3(y1, x1, y1)
(cut)

,

where we can construct a cycle within D1 by unfolding at x1, and another
cycle within D2 by unfolding at y1. However, such a formula ls3(x1, y1, y1) ∗
ls3(y1, x1, x1) is not presumable from ls3(x1, y1, x1) � ls3(y1, x1, y1). Hence, we
cannot construct the proof of this form with only presumable cuts.

In the following, we prove that ls3(x1, y1, x1) � ls3(y1, x1, y1) is a coun-
terexample to the quasi cut-elimination property. We have already shown in
Example 2 that it is provable with cuts, so we will prove that ls3(x1, y1, x1) �
ls3(y1, x1, y1) is not provable with only presumable cuts.

The rules (Case) and (PR) for ls3 are the following:

ea eb ec

A ∗ ls3(x, y, z) � B
(Case)

,

where ea is x = y ∧ y = z ∧ A ∗ emp � B, eb is x = y ∧ y �= z ∧ A ∗ x �→
x′ ∗ ls3(x′, x′, z) � B, and ec is x �= y ∧ A ∗ x �→ x′ ∗ ls3(x′, y, z) � B for fresh x′.

A � x = y ∧ y = z ∧ emp
A � B ∗ ls3(x, y, z)

(PR1)
,

A � x = y ∧ y �= z ∧ x �→ t ∗ ls3(t, t, z)
A � B ∗ ls3(x, y, z)

(PR2)
,
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A � B ∗ x �= y ∧ x �→ t ∗ ls3(t, y, z)
A � B ∗ ls3(x, y, z)

(PR3)
,

where t is an arbitrary term.
We suppose for a contradiction that there is a cyclic proof (D, R) of

ls3(x1, y1, x1) � ls3(y1, x1, y1) in CSL1IDω with only presumable cuts. In the
following Lemma 1, we prove that the presumable formulas for ls3(x1, y1, x1) �
ls3(y1, x1, y1) is limited to the form defined in Definition 12. In Lemma 6, we will
see that (D, R) has an infinite path (ei)i≥0, which passes through right branches
of (pcut) infinitely many times, which contradicts the global trace condition.
Therefore, CSL1IDω does not satisfy the quasi cut-elimination property.

We call a spatial formula predicate-free if it contains no predicate symbol
except �→.

Definition 12. We define the set S of symbolic heaps as S = {Π ∧ Σpf ∗
ls3(t1, t2, t3) | Σpf is predicate free, and t1, t2, t3 are terms} ∪ {Π ∧ Σpf |
Σpf is predicate free}.
Lemma 1 (Presumable formulas). We have PCSL1IDω (ls3(x1, y1, x1) �
ls3(y1, x1, y1)) ⊆ S.
Proof. Let e0 be ls3(x1, y1, x1) � ls3(y1, x1, y1) and S� be {A′ � B′ | A′, B′ ∈ S}.
We can prove PCSL1IDω (e0) ⊆ S and RCSL1IDω (e0) ⊆ S� by induction on
PCSL1IDω (e0) and RCSL1IDω (e0). ��

Then, we define the path (ei)i≥0 in (D,R).

Definition 13. The path (ei)i≥0 in the cyclic proof (D,R) of ls3(x1, y1, x1) �
ls3(y1, x1, y1) is defined as follows:

(a) e0 is defined as ls3(x1, y1, x1) � ls3(y1, x1, y1).
(b) When ei is a conclusion A∗ls3(x, y, z) � B of (Case), one of the assumptions

is of the form A ∗ x �= y ∧ x �→ x′ ∗ ls3(x′, y, z) � B. Define ei+1 as this
assumption.

(c) When ei is a conclusion of (∗), the rule application is of the form

A � C B � D
A ∗ B � C ∗ D

(∗)
.

If the spatial part of B or D is emp, define ei+1 as A � C. Otherwise, define
ei+1 as B � D.

(d) When ei is a conclusion of (pcut), the rule application is of the form

A � C C � B
A � B

(pcut)
.

If the spatial formula of C is the same as B, define ei+1 as A � C. Otherwise,
define ei+1 as C � B.



100 K. Saotome et al.

(e) When ei is a bud, define ei+1 as the companion of ei.
(f) For the other rules, there is exactly one assumption, and define ei+1 as it.

Lemma 2. Let (s,h) be a heap model.

1. If Σpf is predicate-free, x occurs in Σpf , and s, h |= Σpf , we have s(x) ∈
dom(h) ∪ img(h).

2. If s, h |= ls3(t1, t2, t3), we have either s(ti) ∈ dom(h) ∪ img(h) or s(t1) =
s(t2) = s(t3).

Definition 14. A pure formula Π is called injective if t = u �∈ Π for any t �≡ u.

Let x1, x2,. . . be fixed variables. We introduce the following abbreviations: For
m ≥ 1, x1 �→∗ xm ∗ ls3(xm, t, t′) denotes either ls3(x1, t, t

′) or x1 �→ x2 ∗ x2 �→
x3∗· · ·∗xm−1 �→ xm∗ls3(xm, t, t′) (for m ≥ 2). emp denotes emp∗emp∗· · ·∗emp.

Definition 15. For natural numbers m < n ≤ k, we define the set Hm,n,k of
heap models as follows:

Hm,n,k = {(s, h) |s is injective, s(xi) = i(1 ≤ i ≤ m), s(y1) = n

dom(h) = [1, k], h(i) = i + 1(1 ≤ i ≤ k − 1), and h(k) = 1},

where [n,m] denotes the interval {i | n ≤ i ≤ m} for natural numbers n and m.

Note that for any m < n ≤ k, Hn,m,k is trivially non-empty, and the size of
dom(h) is k for any (s, h) ∈ Hn,m,k.

Lemma 3. Suppose that Π is injective, m < n ≤ k, and (s, h) ∈ Hm,n,k. We
have s, h |= Π ∧ x1 �→∗ xm ∗ ls3(xm, y1, x1).

Lemma 4. Suppose that m < n ≤ k, (s, h) ∈ Hm,n,k, h = h1 + h2, and s(ti) ∈
[1, k] for 1 ≤ i ≤ 3. s, h1 |= ls3(t1, t2, t3) holds if and only if (s, h1) satisfies one
of the following conditions:

(1) s(t1) = s(t2) = s(t3) and dom(h1) = ∅,
(2) s(t3) = 1, not s(t1) = s(t2) = s(t3), dom(h1) = [s(t1), k], and s(t2) ∈

dom(h1),
(3) 1 < s(t3) ≤ s(t1), not s(t1) = s(t2) = s(t3), dom(h1) = [1, s(t3) − 1] ∪

[s(t1), k], and s(t2) ∈ dom(h1),
(4) s(t1) < s(t3), dom(h1) = [s(t1), s(t3) − 1], and s(t2) ∈ dom(h1).

Lemma 5. Let C be a formula of the form Π ∧ Σpf ∗ ls3(t1, t2, t3), where Σpf

is predicate-free. If Π1 and Π2 are injective, and

Π1 ∧ x1 �→∗ xm ∗ ls3(xm, y1, x1) ∗ emp � C and

C � Π2 ∧ ls3(y1, x1, y1) ∗ emp

are valid, then C is satisfiable and of the form either

Π ∧ x1 �→∗ xn ∗ ls3(xn, y1, x1) ∗ emp for some n ≤ m, or

Π ∧ ls3(y1, x1, y1) ∗ emp,

and Π is injective.
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Proof. Let A be Π1∧x1 �→∗ xm ∗ ls3(xm, y1, x1)∗emp, B be Π2∧ ls3(y1, x1, y1)∗
emp, and V be {x1, . . . , xm, y1}, which is the set of variables contained in the
spatial part of A.

By Lemma 3, every (s, h) ∈ Hm,n,k (m < n ≤ k) is a model of A, and A � C
is valid, and hence (s, h) is also a model of C. It implies that C is satisfiable.

(i) We show that Π is injective. Assume that there are t and u such that
t = u ∈ Π and t �≡ u. For (s, h) ∈ Hm,m+1,m+1, we have s |= Π, and hence
s(t) = s(u), which contradicts that s is injective.

(ii) We show that either t1 �≡ t2 or t2 �≡ t3 holds. Otherwise, we have t1 ≡ t2 ≡
t3. For any (s, h) ∈ Hm,m+1,k, we have s, h |= Σpf ∗ ls3(t1, t1, t1). By the
definition of ls3, we have s, h |= Σpf . In particular, there are heap models
(s, h1) ∈ Hm,m+1,m+1 and (s, h2) ∈ Hm,m+1,m+2 such that s, h1 |= Σpf

and s, h2 |= Σpf . However, the sizes of dom(h1) and dom(h2) are m + 1
and m + 2, respectively, which contradicts that Σpf is predicate-free.

(iii) We show that any variable in Σpf ∗ ls3(t1, t2, t3), which is the spatial part
of C, are in V . Assume that z is a variable in Σpf ∗ ls3(t1, t2, t3) but not
in V . For any (s, h) ∈ Hm,m+1,m+1 we have s, h |= C. Since z �∈ V , for
any i �∈ dom(h) ∪ img(h) ∪ img(s), s′ = s[z �→ i] is injective, and s′, h ∈
Hm,m+1,m+1, and hence s′, h |= C. Since s′(z) = i �∈ dom(h) ∪ img(h), by
Lemma 2.1, z is not contained in Σpf . Therefore, z is either t1, t2, or t3. By
Lemma 2.2, t1 ≡ t2 ≡ t3 holds, which contradicts (ii).

(iv) We show that both x1 and y1 occur in Σpf ∗ ls3(t1, t2, t3). Assume that x1

does not occur in Σpf ∗ ls3(t1, t2, t3). For any (s, h) ∈ Hm,m+1,m+1, we have
s, h |= C. For any i �∈ dom(h)∪ img(h)∪ img(s), s′ = s[x1 �→ i] is injective,
and we have s′, h |= C. Since C |= B is valid, s′, h |= B holds, and
hence s′, h |= ls3(y1, x1, y1). Since s′ is injective, we have s′(y1) �= s′(x1).
By Lemma 2, s′(x1) ∈ dom(h) ∪ img(h), which contradicts s′(x1) = i �∈
dom(h) ∪ img(h). For y1, it is similarly proved.

(v) We show that y1 �→ t does not occur in C. For any (s, h) ∈ Hm,m+1,m+2,
we have s, h |= C. If y1 �→ t occurs in C, we have h(s(y1)) = s(t). By
definition of Hm,m+1,m+2, we have s(t) = m + 2. By (iii), we have t ∈ V ,
and hence s(t) ∈ [1,m] ∪ {m + 1}, which contradicts s(t) = m + 2.

(vi) We show that t �→ y1 does not occur in C. For any (s, h) ∈ Hm,m+2,m+2,
we have s, h |= C. If t �→ y1 occurs in C, we have h(s(t)) = s(y1). By
definition of Hm,m+1,m+2, we have s(t) = m + 1. By (iii), we have t ∈ V ,
and hence s(t) ∈ [1,m] ∪ {m + 2}, which contradicts s(t) = m + 1.

(vii) We show that, if xi �→ xj occurs in C, we have 1 ≤ i ≤ m− 1 and j = i+1.
For any (s, h) ∈ Hm,m+1,m+1, we have s, h |= C. If xi �→ xj occurs in C,
we have h(s(xi)) = s(xj). By definition of Hm,m+1,m+1, we have i + 1 = j
and 1 ≤ i ≤ m − 1.

By (i)–(vii), we prove the lemma. For (s, h) ∈ Hm,m+2,m+2, since we have
s, h |= C, we can divide h to h1 and h2 such that h = h1 + h2, s, h1 |=
ls3(t1, t2, t3), and s, h2 |= Σpf . Then, (s, h1) satisfies one of four conditions of
Lemma 4. Since Π is injective, s(t1) = s(t2) = s(t3) does not hold by (ii), so (1)
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of Lemma 4 is not the case. If m + 2 ∈ dom(h2), Σpf contains z �→ t for some
z ∈ V by (iii) such that s(z) = m + 2. Then, z must be y1, which contradicts
(v). Hence m + 2 ∈ dom(h1) holds, so (4) of Lemma 4 is not the case since
s(t3) − 1 < m + 2. Therefore, we have either

(a) dom(h1) = [1, s(t3) − 1] ∪ [s(t1),m + 2] and 1 �= s(t3) ≤ s(t1), or
(b) dom(h1) = [s(t1),m + 2] and s(t3) = 1.

Case (a). Since s(x1) = 1 �∈ dom(h2) ∪ img(h2) holds by the definition of
Hm,m+2,m+2, x1 does not occur in Σpf by Lemma 2.1, and hence either t1 or t2
is x1 by (iv). Since we have 1 ≤ s(t3) − 1 < s(t1) in this case, we have t2 ≡ x1.
By (iv), (v), (vi), either t1 or t3 is y1. If t3 ≡ y1 holds, we have t1 ≡ y1 since
s(t3) ≤ s(t1) holds. If t1 ≡ y1 and t3 �≡ y1 hold, we have m + 1 ∈ dom(h2).
However, there is no z ∈ V such that s(z) = m + 1. Therefore, we have t1 ≡
t3 ≡ y1. In this case, dom(h1) = [1,m + 2] and dom(h2) = ∅ hold, and hence C
is of the form Π ∧ ls3(y1, x1, y1) ∗ emp.

Case (b). We have t3 ≡ x1 since s(t3) = 1. If t1 is y1, then m + 1 ∈ dom(h2)
holds, and then Σpf must contain z �→ t for some z ∈ V by (iii) such that
s(z) = m + 1, but there is no such z. Hence we have t1 �≡ y1, and then we have
t2 ≡ y1 by (iv), (v), (vi). Since t1 ∈ V − {y1} holds, we have t1 ≡ xn for some
n ≤ m. Then, we have dom(h1) = [n,m + 2] and dom(h2) = [1, n − 1]. By (iii)
and (vii), the form of C is Π ∧ x1 �→∗ xn ∗ ls3(xn, y1, x1) ∗ emp.

From the above, the form of C is either

Π ∧ x1 �→∗ xn ∗ ls3(xn, y1, x1) ∗ emp for some n, or

Π ∧ ls3(y1, x1, y1) ∗ emp

and Π is injective by (i). ��
Lemma 6. Every sequent ei in the path (ei)i≥0 is of the following form:

Π1 ∧ x1 �→∗ xm ∗ ls3(xm, y1, x1) ∗ emp � Π2 ∧ ls3(y1, x1, y1) ∗ emp, (†)

where Π1 and Π2 are injective and the antecedent of ei is satisfiable. Hence, ei

is not an axiom and the path (ei)i≥0 is an infinite path.

Proof. First, the antecedent of (†) is satisfiable by Lemma 3.
Secondly, we show that ei is of the form (†) by induction on i. For e0 ≡

ls3(x1, y1, x1) � ls3(y1, x1, y1), it is trivial. Under the assumption that en is of
the form of (†), we prove that for en+1. We will give only nontrivial cases.

Case (PR). Any assumption of (PR) whose conclusion is en must be invalid,
so it is not the case.

Case (pcut). By Lemma 1, the cut formula is of the form either Π∧Σpf ∗emp
or Π ∧Σpf ∗ ls3(t1, t2, t3)∗emp, where Σpf is predicate-free. For the former case,
we can see that one of the assumptions is invalid, so it is not the case. For the
latter case, en+1 is of the form (†) by Lemma 5. ��
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Lemma 7. The path (ei)i≥0 passes through right branches of (pcut) infinitely
many times.

Proof. By Lemma 6, (ei)i≥0 is an infinite path, hence (Case) must be applied
to (ei)i≥0 infinitely many times by the global trace condition. When (Case) is
applied, the number of �→ increases. Any proof trees of cyclic proofs are finite,
hence the number of �→ in (ei)i≥0 must decrease infinitely many times.

By Lemma 6, any sequents on the path (ei)i≥0 is form (†) and the number of
�→ in (ei)i≥0 decreases only when it passes through the right branch of (pcut).
Hence the path (ei)i≥0 must pass through right branches of (pcut) infinitely
many times. ��
Theorem 3 (Failure of quasi cut elimination for CSL1IDω). CSL1IDω

does not satisfy the quasi cut-elimination property.

Proof. ls3(x1, y1, x1) � ls3(y1, x1, y1) is a counterexample. First, ls3(x1, y1, x1) �
ls3(y1, x1, y1) can be proved in CSL1IDω as in Example 2. Secondly, we show
ls3(x1, y1, x1) � ls3(y1, x1, y1) can not be proved in CSL1IDω with only (pcut).
Suppose that there is a cyclic proof (D, R) of ls3(x1, y1, x1) � ls3(y1, x1, y1) with
only (pcut). By Lemma 7, (D, R) has a path which passes through right branches
of (pcut) infinitely many times. However, at each right branch of (pcut), no trace
is connected, and hence (D, R) cannot satisfy the global trace condition, which
contradicts that (D, R) is a cyclic proof. ��

Even if we change the definition of the extended subformula from renaming
variables to replacing variables by arbitrary terms, the above proof shows that
CSL1IDω does not satisfy the quasi cut-elimination property, since all of the
presumable formulas from ls3(x1, y1, x1) � ls3(y1, x1, y1) still remain in S after
the change of the definition. Hence, the restriction of [7] properly changes the
provability from the system with full cuts.

Corollary 1. In CSL1IDω, if we impose the condition that one of assumption
of a cut is a bud whose companion is located below the cut, the provability properly
weakens.

5 Concluding Remark

This paper has proposed a restriction for the cut rule, called presumable
cut, in sequent-calculus-style proof systems, and a relaxed variant of the cut-
elimination, the quasi cut-elimination property. In general, the cut rule requires
some heuristics to find the cut formula in the bottom-up proof search, whereas
the presumable cut limits the cut formula to those which can occur below the
cut.

It has been shown in [13] that the cyclic proof systems for symbolic heaps
in separation logic do not enjoy the cut-elimination property, and we hope that
those enjoy the quasi cut-elimination property. However, this paper showed that
a cyclic proof system CSL1IDω does not enjoy the quasi cut-elimination by
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giving a counterexample ls3(x1, y1, x1) � ls3(y1, x1, y1). It shows a limit on auto-
matic proof search in cyclic proof systems.

As future work, we will study on the quasi cut-elimination property for other
cyclic proof systems such as the logic of bunched implications [3] and the first-
order predicate logic. Another direction is relaxing the condition of presumable
cuts. For the example ls3(x1, y1, x1) � ls3(y1, x1, y1), we can prove it in CSL1IDω

with the cut formula ls3(x1, y1, y1)∗ls3(y1, x1, x1), which is a separating conjunc-
tion of two presumable formulas. It is an interesting question whether we can
restrict the cut formulas to separating conjunctions of some bounded number of
presumable formulas.
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Abstract. In previous work we have presented lang-n-play, a func-
tional language-oriented programming language with languages as first-
class-citizens. Language definitions can be bound to variables, passed to
and returned by functions, and can be modified at run-time before being
used. lang-n-play programs are compiled and executed in the higher-
order logic programming language λProlog. In this paper, we describe
our compilation methods, which highlight how the distinctive features
of higher-order logic programming are a great fit in implementing a
language-oriented programming language.
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1 Introduction

Language-oriented programming [8,14,31] is a paradigm that has received a lot
of attention in recent years. Behind this paradigm is the idea that different parts
of a programming solution should be expressed with different problem-specific
languages. For example, programmers can write JavaScript code for their web
application and enjoy using JQuery to access DOM objects in some parts of
their code, and WebPPL to do probabilistic programming in other parts [16]. To
realize this vision, language workbenches have emerged as sophisticated tools to
assist programmers with the creation, reuse and composition of languages.

Languages as first-class citizens [7] is an approach to language-oriented pro-
gramming that advocates that language definitions should have the same sta-
tus as any other expression in the context of a general-purpose programming
language. In this approach language definitions are run-time values, just like
integers, for example, and they can be the result of computations, bound to
variables, passed to and returned by functions, and inserted into lists, to name
a few possibilities.

lang-n-play [6,7] is a functional language-oriented programming language
with languages as first-class citizens. lang-n-play is implemented in a combi-
nation of OCaml and the higher-order logic programming language λProlog [24].
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The core of the language implementation is, however, an interpreter written in
λProlog. Specifically, lang-n-play programs are compiled into λProlog terms
and executed with such interpreter.

To implement language-oriented programming operations, the features of
higher-order logic programming have proved to be exceptionally fitting. In par-
ticular, formulae as first-class citizens make it easy to have a run-time data type
for languages and implement operations that manipulate languages at run-time,
including switching evaluation strategies on demand (call-by-value vs call-by-
name). Furthermore, hypothetical reasoning [15] (i.e. deriving implicative goals)1

makes it easy to execute programs with arbitrary languages defined by program-
mers, as well as switch from a language to another during computation.

Goal of the Paper. Our goal is to demonstrate that higher-order logic program-
ming can be a great fit for implementing language-oriented systems. To this aim,
we describe our compilation methods and highlight how the distinctive features
of higher-order logic programming have been a natural fit in this context.

Ultimately, lang-n-play allows for non-trivial language-oriented program-
ming scenarios, and yet its interpreter is 73 lines of λProlog code. This is remark-
able in the context of language-oriented systems.

Roadmap of the Paper. Section 2 reviews higher-order logic programming as
adopted in λProlog. Section 3 gives a general overview of the implementation of
lang-n-play before diving into specific aspects. Section 4 discusses our imple-
mentation of (programmer-defined) language definitions. Section 5 covers our
implementation of the lang-n-play operations that manipulate languages.
Section 6 provides details on our implementation w.r.t. using languages to exe-
cute programs. Section 7 covers the scenario of switching strategies at run-time.
Section 8 discusses related work, and Sect. 9 concludes the paper.

2 Higher-Order Logic Programming

λProlog is a flagship representative of higher-order logic programming languages
[24]. This section reviews its features. We do not give a complete account of
λProlog. Instead, we discuss the features that play a role in the next sections.
λProlog extends Prolog with the following elements: types, formulae as first-class
citizens, higher-order abstract syntax, and hypothetical reasoning.

Typed Logic Programming. λProlog programs are equipped with a signature that
defines the entities that are involved in the program. Programs must follow the
typing discipline that is declared in this signature or they would be rejected. For
example, if we were to implement a simple language with numbers and additions,
we would have the following declarations.

1 To remain in line with λProlog terminology we use the terms hypothetical reasoning
throughout this paper, see [24].
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kind typ type.

kind expression type.

type int typ.

type zero -> expression.

type succ expression -> expression.

type plus expression -> expression -> expression.

The keyword kind declares the entities in the program. The keyword type
is used to specify how to create terms of such entities.

As in Prolog, the computation takes place through the means of logic pro-
gramming rules. Logic programming rules can derive formulae, which are built
with predicates. Predicates, as well, must be declared with a type in λProlog.
For example, a type checking relation and a reduction relation can be declared
as follows.

type typeOf expression -> typ -> prop.

type step expression -> expression -> prop.

typeOf zero int.

typeOf (succ E) int :- typeOf E int.

... reduction rules, here omitted ...

The keyword prop denotes that typeOf and step build a formula when
applied to the correct type of arguments.

Formulae as First-Class Citizens. λProlog extends Prolog also in that formulae
can be used in any well-typed context. For example, below we intentionally split
our type checker in an unusual way.

type getFormula expression -> prop -> prop.

type check expression -> prop.

getFormula zero true.

getFormula (succ E) (typeOf E int).

check E :- getFormula E F, F.

The predicate getFormula takes two arguments. The first is an expression
and is an input, and the second is a proposition and is an output. The predicate
getFormula returns the formula we should check to establish that the term
is well-typed (the output type is ignored for the sake of this example). This
example shows that formulae can be arguments. Furthermore, after check calls
getFormula to retrieve the formula F, this formula can be used as a premise in
the rule, as shown in the last line.

Higher-Order Abstract Syntax (HOAS). HOAS is an approach to syntax in which
the underlying logic can appeal to a native λ-calculus for modeling aspects
related to binding [25]. Suppose that we were to add the operators of the λ-
calculus, we would define the following.
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type abs (expression -> expression) -> expression.

type app expression -> expression -> expression.

step (app (abs R) V) (R V) :- value V.

The argument of abs is an abstraction from an expression to an expression. To
model the identity function we write (abs x\ x), where the highlighted part of
this term points out the syntax used by λProlog for writing HOAS abstractions.
In the beta-reduction rule above we have that R is an abstraction and therefore
we can use it with a HOAS application (R V) to produce a term. λProlog takes
care of performing the substitution for us.

Hypothetical Reasoning. λProlog also extends Prolog with hypothetical reason-
ing [24] (i.e. deriving implicative goals [15]). To appreciate this feature consider
the following logic program.

flyTo london nyc.

flyTo chicago portland.

connected X X.

connected X Z :- flyTo X Y, connected Y Z.

The city london and portland are not connected. However, in λProlog we can
write the formula:

connected nyc chicago => connected london portland

This formula asks: “Were nyc connected to chicago, would london be con-
nected to portland?”. At run-time the query connected london portland is inter-
rogated in the logic program in which the fact connected nyc chicago is added.

3 Basic Overview of Lang-n-Play

lang-n-play is a functional language-oriented programming language [7]. Pro-
grammers can define their own languages and use them to execute programs.
lang-n-play is implemented partly in OCaml and partly in λProlog. Precisely,
the following is the architecture of lang-n-play.

Programs are parsed and type checked in OCaml. These two aspects are not
discussed in the paper because they do not play a role in our message about the
effectiveness of higher-order logic programming.

Next, lang-n-play programs are compiled into λProlog. The interpreter
of lang-n-play programs is a λProlog logic program. Our OCaml compila-
tion produces the λProlog term that represents the lang-n-play program, and
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gives it to this interpreter. Programmers do not launch the interpreter manually.
Our OCaml code is interfaced to the ELPI interpreter of λProlog through the
ELPI OCaml package [9], and loads an external file that contains the interpreter
written in λProlog.

In this paper we discuss the part that is enclosed in the red rectangle, as it is
the core of the implementation of lang-n-play, and highlights how higher-order
logic programming can accommodate the features of lang-n-play.

Our interpreter defines a kind for lang-n-play expressions called expLO,
and defines two relations for reduction steps and detecting values.

type stepLO expLO -> expLO -> prop.

type valueLO expLO -> prop.

The suffix LO in the names of operators and relations are meant to recall
that we are in a language-oriented language. We introduce the elements of
expLO as we encounter them in the next sections. There are a number of
aspects of lang-n-play that we do not discuss in this paper. For example,
although lang-n-play includes common features of functional programming
such as booleans, if-then-else, lists, letrec, and import, we omit discussing
them because they are not relevant to this paper.

4 Defining Languages

lang-n-play provides syntax for defining languages. Below is the example of a
definition of a language with lists and an operator elementAt which accesses an
element of a list based on its position (position 0 is the first element).

1 {!

2 Type T ::= int | (list T),

3 Expression e ::= zero | (succ e) | nil | (cons e e)

4 | (elementAt e e),

5 Value v ::= zero | (succ v) | nil | (cons v v),

6 Context C ::= (succ E) | (cons C e) | (cons v C)

7 | (elementAt C e) | (elementAt v C),

8 Environment Gamma ::= [x : T],

9 Relation ::= Gamma |- e : T | e -- > e,

10 StartingCall ::= empty |- e : T | e --> e.

11
12 Gamma |- x : T <== x : T in Gamma ,

13 Gamma |- zero : int ,

14 Gamma |- (succ e) : int <== Gamma |- e : int ,

15 Gamma |- nil : (list T),

16 Gamma |- (cons e1 e2) : (list T) <==

17 Gamma |- e1 : T /\ Gamma |- e2 : (list T),

18 Gamma |- (elementAt e1 e2) : T <==

19 Gamma |- e1 : int /\ Gamma |- e2 : (list T),

20 (elementAt zero (cons V1 V2)) --> V1,

21 (elementAt (succ V) (cons V1 V2)) --> (elementAt V V2)

22 !}
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Languages are defined within {! ... !}, as in lines 1–22. lang-n-play
makes use of a domain-specific language that closely resembles the way
researchers define and share languages in operational semantics. (The Ott lan-
guage achieved the same effect over ten years ago [28], and we adopt a similar
syntax).

As typical, languages define a grammar (lines 2–10) and an inference system
(lines 12–21). An inference system may define a type system and a reduction
semantics.

The syntax for defining grammars is quite standard. As in many language
workbenches [8,14,31], language definitions can use lists with [ ... ]. For exam-
ple, Environment Gamma :: = [x : T] means Gamma is a list of formulae of that
shape. lang-n-play provides the operation in for testing membership on lists,
as in line 12. Furthermore, there are two special grammar categories, Relation

and Starting Call. The former simply declares relations, and the latter informs
lang-n-play on how to call the type checker and the evaluator.

The syntax for defining inference systems is also rather familiar to operational
semantics practitioners. Perhaps, the biggest departure is that the horizontal line
of an inference rule is replaced with an inverse implication <== that can be read
“provided that”, and we use an explicit syntactic and-operator when we have
multiple premises.

The language definition above serves as our running example throughout the
paper. We refer to the lines 2–21 as listLines in what follows.

4.1 λProlog Implementation of Language Definitions

It is rather natural to compile language definitions such as the one above into
λProlog because operational semantics is based on inference systems. These,
in turn, map naturally to logic programming rules. For example, the language
above compiles to the following (we show only an excerpt).

typeOf nil (list T).
typeOf (cons E1 E2) (list T) :- typeOf E1 T,

typeOf E2 (list T).
typeOf (elementAt E1 E2) T :- typeOf E1 int ,

typeOf E2 (list T).
step (elementAt zero (cons V1 V2)) V1 :- value V1,

value V2.
step (elementAt (succ V) (cons V1 V2)) (elementAt V V2)

:- value V1, value V2.

The fact that language definitions map well to higher-order logic programs
has been previously demonstrated with the work of Twelf [26], and λProlog [24].

Since lang-n-play handles programmer-defined languages that may be
manipulated at run-time, we accommodate languages with an internal represen-
tation. In particular, the language above is represented with a list of formulae
with the following operator:

type language (list prop) -> expLO.

Therefore, the language listLines is compiled as follows.
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1 language

2 [

3 typeOf nil (list T) ;

4 typeOf (cons E1 E2) (list T) :- typeOf E1 T,

5 typeOf E2 (list T) ;

6 typeOf (elementAt E1 E2) T :- typeOf E1 int ,

7 typeOf E2 (list T) ;

8 step (elementAt zero (cons V1 V2)) V1 :- value V1 ,

9 value V2 ;

10 step (elementAt (succ V) (cons V1 V2)) (elementAt V V2)

11 :- value V1, value V2 ;

12 value nil ;

13 value (cons V1 V2) :- value V1 , value V2 ;

14 step (elementAt E1 E2) (elementAt E1’ E2) :- step E1 E1 ’;

15 step (elementAt V1 E2) (elementAt V1 E2 ’) :- step E2 E2 ’;

16 ... the rest of contextual reduction rules ...

17 ]

This is our run-time representation for languages. Notice that since we need
only the reduction rules to execute programs we compile inference rules only
(not grammar), with the exception of values and evaluation contexts, which are
turned into rules.

We shall refer to the list of elements at lines 3–16 as listsInLP.

5 Operations on Languages

lang-n-play provides a handful of operations on language definitions. Below
we discuss the following operations: let-binding, union of languages, functions
on languages, and removal of rules.

Let-Binding. lang-n-play can bind a language definition to a variable in typ-
ical ML-style, as in

let lists = {!

... listLines ...

!} in lists

Therefore, our interpreter includes a let-operation and its reduction
semantics.

type letLO expLO -> (expLO -> expLO ) -> expLO.

stepLO (letLO V R) (R V) :- valueLO V.

The code above is then compiled to

letLO (language [ listsInLP ]) (lists\ lists)

which reduces to (language [ listsInLP ]) in one step. (This example
also shows that languages can be the result of computations.)
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Language Union. Another operation of lang-n-play is language union, per-
formed with the binary operator U. For example, notice that the language for
lists is unsafe: if we called elementAt asking for the 4-th element of a list that
contains only 2 elements we would get stuck, because there is no specified behav-
ior for that case. We can add reduction rules that cover those cases as follows.
(We refer to the language created by the union operation below as safeLists).

lists U {!
Expression e ::= myError ,
Error er ::= myError ,
(elementAt zero nil) --> myError ,
(elementAt (succ V) nil) --> myError ,

!}

This code adds the error to the language and adds appropriate reduction
rules. Our interpreter includes the language union operation and its reduction
semantics.

type unionLO expLO -> expLO -> expLO.

stepLO

(unionLO (language Rules1) (language Rules2))

(language Result)

:- append Rules1 Rules2 Result.

where append is a polymorphic list append defined in the interpreter
(straightforward and here omitted). The union operation above is compiled as

1 unionLO

2 (language [ listsInLP ])

3 (language [ step (elementAt zero nil) myError ;

4 step (elementAt (succ V) nil) myError ])

which reduces to (language [ listsInLP + rules in lines 3-4 ]) in
one step.

Removal of Rules. lang-n-play includes an operation for removing rules from
a language. For example, the union above adds two extra rules but the sole rule
step (elementAt V nil) myError :- value V would be sufficient.

To modify safeLists and create the more compact language that has only
one rule we can execute the following lang-n-play program.

1 (remove

2 (elementAt zero nil) --> myError)

3 from (remove (elementAt (succ V) nil) --> myError

4 from safeLists)

5 ) U {! (elementAt V nil) --> myError !}

The operation remove takes in input a rule and a language, and returns a
language. This code removes one of the rules from safeLists at lines 3 and 4.
The language so produced is then used in the removal of the other rule at lines
1–3. Line 5 adds the safe reduction rule for elementAt with a union operation.
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Our interpreter includes the rule removal operation and its reduction
semantics.

type removeLO prop -> expLO -> expLO.

stepLO (removeLO Formula (language Rules))

(language Result)

:- listRemove Formula Rules Result.

where listRemove is a polymorphic predicate that matches elements of a
list with a given element and removes the element if the match succeeds. This
predicate is also defined in the interpreter (straightforward and here omitted).

The remove operations above, excluding the union at line 5, are compiled as

1 removeLO

2 (step (elementAt zero nil) myError)

3 (removeLO

4 step (elementAt (succ V) nil) myError :- value V

5 (language [ listsInLP +

6 step (elementAt zero nil) myError ;

7 step (elementAt (succ V) nil) myError :- value V

8 ]

9 )

10 )

which reduces to (language [ listsInLP ]) in two steps.
λProlog grants us a powerful equality on formulae and the removal operation

is far from performing a textual match on the rule to remove. For example, the
following two rules are equal in λProlog.

(∗) step (elementAt (succ MyVar) nil) myError :- value MyVar
=

step (elementAt (succ V) nil) myError :- value V

Therefore, we obtain the same results if we used the formula (*) at line
4. Thanks to λProlog, formulae are up-to renaming of variables and alpha-
equivalence of HOAS abstractions.

Functions on Languages. As typical in programming languages, we often would
like to pack instructions in functions for the sake of abstraction. lang-n-play
provides functions on languages. For example, instead of performing language
union inline we can create a function that adds the desired safety checks, as in

let addSafeAccess mylan =
mylan U {! Expression e ::= myError ,

Error er ::= myError ,
(elementAt V nil) --> myError ,

!}
in (addSafeAccess lists)

Our interpreter includes abstractions and applications, as well as their reduc-
tion semantics.
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type absLO (expLO -> expLO ) -> expLO.

type appLO expLO -> expLO -> expLO.

stepLO (appLO (absLO R) V) (R V) :- valueLO V.

lang-n-play compiles the let-binding above in the following way.

letLO

(addSafeAccess\

(appLO addSafeAccess (language [... listsInLP ...])))

(absLO mylan\

(unionLO

mylan

(language [

step (elementAt (succ V) nil) myError :- value V

])

)

)

This program reduces the letLO operation in one step and we obtain

(appLO

(absLO mylan\ unionLO mylan

(language [

step (elementAt (succ V) nil) myError :- value V

])

(language [... listsInLP ...])))

In turn, this program reduces in one step to

unionLO

(language [... listsInLP ...])))

(language [

step (elementAt (succ V) nil) myError :- value V

])

which produces the expected language in one step.

6 Executing Programs and Language Switch

Of course, languages can be used to execute programs. The code below shows
the lang-n-play expression to do so. (For readability, we use standard notation
for numbers and lists rather than sequences of succ and cons).

{! ... listsLines ... !}> elementAt 1 [1,2,3]

We call this type of expression program execution and is of the form lan-
guage > program. The program above returns a value together with the language
with which it has been computed:

Value = 2 in {! listsLines !}.
Our interpreter includes the operation for executing programs and its reduc-

tion semantics.
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type execLO expLO -> program -> expLO.

stepLO (execLO (language Language) Prg)

(execLO (language Language) Prg ’)

:- (Language => (step Prg Prg ’)).

In the declaration at the top, program is the kind for programs. Intuitively,
elements of program are S-expressions, i.e. a top-level operator followed by a
series of arguments, which, too, can be programs. Notice that the language
argument of execLO (first argument) is an expression. Although above we have
explicitly written the language to be used, that component can be an expression
that evaluates to a language, for example as in

lists > elementAt 1 [1,2,3], or

(addSafeAccess lists)> elementAt 1 [1,2,3]

The reduction rule for execLO deserves some words. The key idea is that we
use hypothetical reasoning. In Sect. 2 we have seen that we can use this feature to
temporarily add facts and run an augmented logic program. Above, instead, we
do not add a fact but a list of formulae Language. Moreover, this list of formu-
lae is not a list of facts but a list of rules (rules such as step (elementAt zero
(cons V1 V2)) V1 :- value V1, value V2.). This has the effect of augment-
ing the logic program that we are currently running (which is our lang-n-play
interpreter!) with new rules. In particular, these rules define the operational
semantics of the language that we need to execute. The interpreter then inter-
rogates (step Prg Prg′) to compute the step from these new rules2.

For example, the code above compiles to

execLO (language [... listsInLP ...]) (elementAt 1 [1,2,3])

The current logic program (that is, our lang-n-play interpreter) is aug-
mented with the rules listsInLP and we execute the query

(step (elementAt 1 [1, 2, 3]) Prg′).
This produces Prg′ = (element 0 [2, 3]). (Notice that the query asks for one

step). lang-n-play keeps executing until a value is produced. Therefore at
the second step we run the query (step (elementAt 0 [2, 3]) Prg′). This query
returns the result Prg′ = 2, which our interpreter detects as a value. The execu-
tion of programmer-defined languages and the execution of lang-n-play oper-
ations are never confused because the former makes use of the predicate step
and the latter makes use of the predicate stepLO.

The way our interpreter recognizes that we have obtained a value is through
the predicate valueLO, which our interpreter defines with

valueLO (execLO (language Language) Prg)

:- (Language => (value Prg)).

2 We are guaranteed that the rules use the predicate step for reductions because the
OCaml part of lang-n-play (see the figure on Sect. 3, page 4) specifically generates
the λProlog term to use step. Similarly for value.
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Let us recall that once listsInLP is loaded in the current logic program it
also contains the rules that define the values of the loaded language, defined
with the predicate value. These rules are, for example, value zero. and
value succ V : − value V., and so on. Then we run the query (value Prg) to
detect if Prg is a term that the loaded language defines as a value.

Language Switch. lang-n-play also allows for switching languages at run-time.
Consider the following program.

let pairs = {!
Type T ::= (times T T),
Expression e ::= pair e e | fst e | snd e,
Value v ::= (pair v v),
Context C ::= (pair C e) | (pair v C)

| (fst C) | (snd C),
Gamma |- (pair e1 e2) : (times T1 T2) <==

Gamma |- e1 : T1 /\ Gamma |- e2 : T2,
Gamma |- (fst e) : T1 <==

Gamma |- e : (times T1 T2),
Gamma |- (snd e) : T2 <==

Gamma |- e : (times T1 T2),
(fst (pair V1 V2)) --> V1,
(snd (pair V1 V2)) --> V2
!} in
lists > elementAt (pairs > fst (pair 1 0)) [1,2,3]

This code defines a language with pairs. Afterwards, it makes use of the list
language to perform a list access. However, the first argument of elementAt
(the position) is computed by executing another program in another language.
In particular, the position is computed by executing fst (pair 1 0) in the
language pairs.

This program returns the following value (recall that position 1 asks for the
second element of the list).

Value = 2 in {! listsLines !}.
Implementing this language switch is easy with higher-order logic program-

ming. When we execute

execLO (language [... listsInLP ...])

(elementAt

(execLO (language [ rules of pairs ])

(fst (pair 1 0)))

[1,2,3])

The interpreter adds the rules listsInLP and evaluates the program that
starts with elementAt. When the interpreter encounters another execLO it
applies the same reduction rule of execLO that we have seen. This has the
effect of adding the language with pairs on top of the language with lists. This
augmented language is then used to evaluate fst (pair 1 0) with the query
(step (fst (pair 1 0)) Prg’). The nested execLO detects when fst (pair
1 0) evaluates to a value in the way described above, that is, the query (value
1) succeeds. At this point, execLO simply leaves the value it has just computed
in the context in which it has been executed. Therefore, elementAt simply con-
tinues with the value 1 as first argument, oblivious as to how this value has been
computed.
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Remark on the Semantics of Language Switch. The semantics of language switch
is such that the current language is extended with new rules. Therefore, the
switch does not replace a language with a completely different language. The
semantics we adopt is in 1-1 correspondence with the semantics of hypothetical
reasoning. We believe that this facilitates writing correct programs because the
child language must at least share some values with the parent language, as the
nested computation leaves a value in the context of the parent. Therefore, this
value must be understood by the parent language.

Notice that the overall result is 2 in the language {! listsLines !} that
does not contain pairs. Indeed, pairs has been added and then removed by
λProlog after the nested execLO has finished.

7 Valuehood Abstractions

Strategies play a central role in computing. Examples of notable strategies are
call-by-value and call-by-name in the λ-calculus. In lang-n-play we can define
the λ-calculus in a way that allows the strategy to be chosen at run-time. We
do so with valuehood abstractions:

let lambda vh : strategy =
{! Expression e ::= (abs @x e) | (app e e),

Value v ::= (abs @x e),
Context C ::= (app C e),
Environment Gamma ::= [x : T],

(app (abs @x e) vh ) --> e[ vh /x],

!}

Here, lambda is not a language definition. It is, instead, a valuehood abstrac-
tion. This is a function that takes in input a kind of expression called strategy.
The variable vh is bound in the body of lambda and can appear as a variable
in inference rules, as highlighted. The meaning is that it will be discovered later
whether the inference rule fires when the variable is a value or an ordinary expres-
sion. The two strategies are represented with the constants EE and VV, respec-
tively. The application (lambda EE) returns the language with the reduction rule
(app (abs @x e) e2) --> e[e2/x], which fires irrespective of whether e2 is a
value or not, in call-by-name style. The application (lambda VV), instead, return
the language with rule (app (abs @x e) v) --> e[v/x], which fires when the
argument is a value, in call-by-value style.

To realize this, we take advantage of formulae as first-class citizens. The
compilation of lambda is:

absLO vh\

language [step (app (abs R) ARG) (R ARG) :- (vh ARG)]

The variable vh is a HOAS abstraction from terms to formulae. Intuitively,
when we pass EE we want to say that the premise (vh ARG) should not add any
additional conditions. We do so by compiling EE to the function (x\ true). The
application (lambda EE) is then compiled into an ordinary application appLO.
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For (lambda EE), after the parameter passing we end up with
language [step (app (abs R) ARG) (R ARG) :- ((x\ true) ARG)]

which λProlog converts to
language [step (app (abs R) ARG) (R ARG) :- true]

When we pass VV, instead, we want to say that the premise (vh ARG) should be
satisfied only so long that ARG is a value. To do so, we compile the constant VV
to (x\ value x). When we execute (lambda VV) we end up with
language [step (app (abs R) ARG) (R ARG) :- ((x\ value x) ARG)]

which λProlog converts to
language [step (app (abs R) ARG) (R ARG) :- value ARG].

Therefore, we place a new premise to check that ARG is a value.

8 Related Work

The main related work is the vision paper [7]. We have used a variant of the
example in [7] to demonstrate our compilation methods. We have also addressed
remove with a different example, and the example on language switch is new.

There are two main differences between [7] and this paper.

– [7] proposes the approach of languages as first-class citizens and exemplifies
it with an example in lang-n-play. [7] does not discuss any implementation
details of lang-n-play. On the contrary, this paper’s focus is entirely on the
implementation mechanisms that we have adopted and, most importantly,
this paper demonstrates that the distinctive features of higher-order logic
programming are a great fit for language-oriented systems.

– This paper extends the work in [7] by adding language switches.

The K framework is a rewrite-based executable framework for the specification
of programming languages [27]. Differently from lang-n-play, the K framework
does not offer language-oriented programming features such as language switch
and the updating of languages at run-time. On the other hand, K has been
used to define real-world programming languages such as C [10] and Java [2],
to name a few, while lang-n-play has not. The style of language definitions
in lang-n-play is that of plain operational semantics. Therefore, defining real-
world programming languages can become a cumbersome task, and we have not
ventured into that task yet. An interesting feature of the K framework is that it
automatically derives analyzers and verifiers from language specifications [29].
This work inspires us towards adding similar features to lang-n-play.

A number of systems have been created to support language-oriented pro-
gramming [3,17,18,21,30]. Features such as language switch and the updating
of languages at run-time are rather sophisticated in this research area, and not
many systems offer these features [4,12,19,20]. However, some language work-
benches do provide these functionalities, such as Racket [13], Neverlang [30]
and Spoofax [18]. Racket provides special syntax for defining languages and its
implementation is based on macros. Language definitions are macro-expanded
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into Racket’s core functional language. Spoofax and Neverlang have an internal
ad hoc representation of languages. Languages can be accessed and updated at
run-time in Neverlang, for example, making use of the run-time loading features
of the JVM to add parts to languages represented as objects. To our knowl-
edge, lang-n-play is the only language-oriented system that is implemented in
higher-order logic programming.

lang-n-play is not more expressive than other systems. The goal of this
paper is not to provide a system that surpasses the state of the art. lang-n-play
is also a young tool (2018) compared to the mentioned systems, some of which
boast decades of active development. The goal of our paper is, instead, about the
effectiveness of higher-order logic programming in language-oriented program-
ming. It is hard to compare our implementation to others at a quantitative level
(lines of code) because systems such as Racket, Neverlang and Spoofax are very
large and mature systems that offer all sorts of language services. We were not
able to single out an isolated meaningful part of these systems to compare with
our interpreter. Nonetheless, we believe that it is generally remarkable that we
could implement the interpreter of a full language-oriented programming lan-
guage with sophisticated features in 73 lines of code.

9 Conclusion

This paper describes the compilation methods that we have adopted in the
implementation of lang-n-play, and provides evidence that high-order logic
programming can be a great fit for implementing language-oriented systems.

The following aspects of higher-order logic programming have been particu-
larly fitting:
(We add numbers, as some features have been helpful in more than one way).

– Formulae as first-class citizens #1: List of formulae naturally models lan-
guage definitions in operational semantics, providing a readily available run-
time data type. This makes it easy to implement operations that manipulate
languages (such as union and rule removal) during execution.

– Formulae as first-class citizens #2: It models naturally the switch of eval-
uation strategy at run-time. This is thanks to the fact that we can pass
premises to rules. These premises may or may not add new conditions under
which existing rules can fire.

– Hypothetical reasoning #1: It naturally models the execution of a program
with a given operational semantics, possibly created at run-time.

– Hypothetical reasoning #2: It naturally models the switch from executing a
program using a language to executing another program using an extension
of that language.

In the future, we would like to strengthen our message by implementing
further operations on languages using high-order logic programming. We would
like to implement operations such as language unification and restriction [11],
grammar inheritance, language embedding, and aggregation from the Manticore
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system [21], and renaming and remapping from Neverlang [30]. There is notable
work in [5,22,23] on inferring the dependencies of languages, which we also plan
to implement.

Some systems compile languages and programs into proof assistants. For
example, Ott compiles into Coq, HOL and Isabelle [28], so that users can carry
out proofs in these systems. Currently, lang-n-play compiles into λProlog
solely to execute programs. However, a subset of λProlog is also the specification
language of the proof assistant Abella [1]. In the future, we would like to explore
the verification of lang-n-play programs after compilation to λProlog/Abella
code.

We point out that language workbenches offer a variety of editor services
among syntax colouring, highlighting, outlining, and reference resolution, to
name a few. Currently, lang-n-play is not equipped with a comfortable IDE.
Inspired by the work on language workbenches, we would like to improve the
usability of our system.
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22. Kühn, T., Cazzola, W., Olivares, D.M.: Choosy and picky: configuration of lan-
guage product lines. In: Proceedings of the 19th International Conference on Soft-
ware Product Line SPLC 2015, pp. 71–80. ACM, New York (2015). https://doi.
org/10.1145/2791060.2791092. http://doi.acm.org/10.1145/2791060.2791092

23. Méndez-Acuña, D., Galindo, J.A., Degueule, T., Combemale, B., Baudry, B.:
Leveraging software product lines engineering in the development of external DSLs:
a systematic literature review. Comput. Lang. Syst. Struct. 46, 206–235 (2016).
https://doi.org/10.1016/j.cl.2016.09.004

24. Miller, D., Nadathur, G.: Programming with Higher-Order Logic, 1st edn. Cam-
bridge University Press, New York (2012)

25. Pfenning, F., Elliott, C.: Higher-order abstract syntax. SIGPLAN Not. 23(7), 199–
208 (1988). https://doi.org/10.1145/960116.54010
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Abstract. To demonstrate derivation of monadic programs, we present
a specification of sorting using the non-determinism monad, and derive
pure quicksort on lists and state-monadic quicksort on arrays. In the
derivation one may switch between point-free and pointwise styles, and
deploy techniques familiar to functional programmers such as pattern
matching and induction on structures or on sizes. Derivation of stateful
programs resembles reasoning backwards from the postcondition.
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Nondeterminism · State · Quicksort

1 Introduction

This pearl presents two derivations of quicksort. The purpose is to demonstrate
reasoning and derivation of monadic programs. In the first derivation we present
a specification of sorting using the non-determinism monad, from which we derive
a pure function that sorts a list. In the second derivation we derive an imperative
algorithm, expressed in terms of the state monad, that sorts an array.

Before we dive into the derivations, we shall explain our motivation. Program
derivation is the technique of formally constructing a program from a problem
specification. In functional derivation, the specification is a function that obvi-
ously matches the problem description, albeit inefficiently. It is then stepwise
transformed to a program that is efficient enough, where every step is justified
by mathematical properties guaranteeing that the program equals the specifica-
tion, that is, for all inputs they compute exactly the same output.

It often happens, for certain problem, that several answers are equally pre-
ferred. In sorting, for example, the array to be sorted might contain items with
identical keys. It would be inflexible, if not impossible, to decide in the specifi-
cation how to resolve the tie: it is hard to predict how quicksort arranges items
with identical keys before actually deriving quicksort.1 Such problems are better
modelled as non-deterministic mappings from the input to all valid outputs. The
derived program no longer equals but refines the specification.2

1 Unless we confine ourselves to stable sorting.
2 This is standard in imperative program derivation—Dijkstra [6] argued that we

should take non-determinism as default and determinism as a special case.
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To cope with non-determinism, there was a trend in the 90’s generalising from
functions to relations [1,4]. Although these relational calculi are, for advocates
including the authors of this paper, concise and elegant, for those who were not
following this line of development, these calculi are hard to comprehend and use.
People, in their first and often only exposure to the calculi, often complained
that the notations are too bizarre, and reasoning with inequality (refinement) too
complex. One source of difficulties is that notations of relational calculus are usu-
ally point-free—that is, about composing relations instead of applying relations
to arguments. There have been attempts (e.g. [5,13]) designing pointwise nota-
tions, which functional programmers are more familiar with. Proposals along this
line tend to exhibit confusion when functions are applied to non-deterministic
values—β-reduction and η-conversion do not hold. One example [13] is that
(λx → x − x ) (0 � 1), where (�) denotes non-deterministic choice, always yields
0, while (0 � 1) − (0 � 1) could be 0, 1, or −1.

Preceding the development of relations for program derivation, another way
to model non-determinism has gained popularity. Monads [12] were introduced
into functional programming as a way to rigorously talk about side effects includ-
ing IO, state, exception, and non-determinism. Although they are considered
one of the main obstacles in learning functional programming (in particular
Haskell), monads have gained wide acceptance. In this pearl we propose a cal-
culus of program derivation based on monads—essentially moving to a Kleisli
category. Problem specifications are given as Kleisli arrows for non-deterministic
monads, to be refined to deterministic functional programs through calculation.
One of the benefits is that functional programmers may deploy techniques they
are familiar with when reasoning about and deriving programs. These include
both point-free and pointwise reasoning, and induction on structures or sizes of
data types. An additional benefit of using monads is that we may talk about
effects other than non-determinism. We demonstrate how to, from a specifica-
tion of quicksort on lists, construct the imperative quicksort for arrays. All the
derivations and theorems in this pearl are verified in the dependently typed
programming language Agda.3

2 Monads

A monad consists of a type constructor m :: ∗ → ∗ paired with two operators,
can be modelled in Haskell as a type class:

class Monad m where
{·} :: a → m a
(>>=) :: m a → (a → m b) → m b.

The operator {·} is usually called return or unit . Since it is used pervasively
in this pearl, we use a shorter notation for brevity. One can either think of it

3 https://scm.iis.sinica.edu.tw/home/2020/deriving-monadic-quicksort/.

https://scm.iis.sinica.edu.tw/home/2020/deriving-monadic-quicksort/
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as mimicking the notation for a singleton set, or C-style syntax for a block of
effectful program. They should satisfy the following monad laws:

m >>= {·} = m,
{x} >>= f = f x ,

(m >>= f ) >>= g = m >>= (λx → f x >>= g).

A standard operator (>>) :: Monad m ⇒ m a → m b → m b, defined by
m1 >> m2 = m1 >>= λ → m2, is handy when we do not need the result of
m1. Monadic functions can be combined by Kleisli composition (>=>), defined by
f >=> g = λx → f x >>= g .

Monads usually come with additional operators corresponding to the effects
they provide. Regarding non-determinism, we assume two operators ∅ and (�),
respectively denoting failure and non-deterministic choice:

class Monad m ⇒ MonadPlus m where
∅ :: m a
(�) :: m a → m a → m a.

It might be a good time to note that this pearl uses type classes for two purposes:
firstly, to be explicit about the effects a program uses. Secondly, the notation
implies that it does not matter which actual implementation we use for m, as long
as it satisfies all the properties we demand—as Gibbons and Hinze [7] proposed,
we use the properties, not the implementations, when reasoning about programs.
The style of reasoning in this pearl is not tied to type classes or Haskell, and
we do not strictly follow the particularities of type classes in the current Haskell
standard.4

It is usually assumed that (�) is associative with ∅ as its identity:

∅ � m = m = m � ∅, (m1 � m2) � m3 = m1 � (m2 � m3).

For the purpose of this pearl, we also demand that (�) be idempotent and com-
mutative. That is, m � m = m and m � n = n � m. Efficient implementations of
such monads have been proposed (e.g. [10]). However, we use non-determinism
monad only in specification. The derived programs are always deterministic.

The laws below concern interaction between non-determinism and (>>=):

∅ >>= f = ∅, (1)
m >> ∅ = ∅, (2)

(m1 � m2) >>= f = (m1 >>= f ) � (m2 >>= f ), (3)
m >>= (λx → f1 x � f2 x ) = (m >>= f1) � (m >>= f2). (4)

Left-zero (1) and left-distributivity (3) are standard—the latter says that (�)
is algebraic. When mixed with state, right-zero (2) and right-distributivity (4)
imply that each non-deterministic branch has its own copy of the state [14].
4 For example, we overlook that a Monad must also be Applicative, MonadPlus be
Alternative, and that functional dependency is needed in a number of places.
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3 Specification

We are now ready to present a monadic specification of sorting. Bird [3] demon-
strated how to derive various sorting algorithms from relational specifications.
In Sects. 4 and 5 we show how quicksort can be derived in our monadic calculus.

We assume a type Elm (for “elements”) associated with a total preorder (�).
To sort a list xs :: List Elm is to choose, among all permutation of xs, those that
are sorted:

slowsort :: MonadPlus m ⇒ List Elm → m (List Elm)
slowsort = perm >=> filt sorted ,

where perm :: MonadPlus m ⇒ List a → m (List a) non-deterministically com-
putes a permutation of its input, sorted :: List Elm → Bool checks whether a list
is sorted, and filt p x returns x if p x holds, and fails otherwise:

filt :: MonadPlus m ⇒ (a → Bool) → a → m a
filt p x = guard (p x ) >> {x}.

The function guard b = if b then {} else ∅ is standard. The predicate sorted ::
List Elm → Bool can be defined by:

sorted [ ] = True
sorted (x : xs) = all (x �) xs ∧ sorted xs.

The following property can be proved by a routine induction on ys:

sorted (ys ++ [x ] ++ zs) ≡
sorted ys ∧ sorted zs ∧ all (� x ) ys ∧ all (x �) zs.

(5)

Now we consider the permutation phase. As shown by Bird [3], what sorting
algorithm we end up deriving is often driven by how the permutation phase is
performed. The following definition of perm, for example:

perm [ ] = {[ ]}
perm (x : xs) = perm xs >>= insert x ,

where insert x xs non-deterministically inserts x into xs, would lead us to inser-
tion sort. To derive quicksort, we use an alternative definition of perm:

perm :: MonadPlus m ⇒ List a → m (List a)
perm [ ] = {[ ]}
perm (x : xs) = split xs >>= λ(ys, zs) → liftM2 (++[x ]++) (perm ys) (perm zs).

where liftM2 (⊕) m1 m2 = m1 >>= λx1 → m2 >>= λx2 → {x1 ⊕ x2}, and split
non-deterministically splits a list. When the input has more than one element,
we split the tail into two, permute them separately, and insert the head in the
middle. The monadic function split is given by:
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split :: MonadPlus m ⇒ List a → m (List a × List a)
split [ ] = {([ ], [ ])}
split (x : xs) = split xs >>= λ(ys, zs) → {(x : ys, zs)} � {(ys, x : zs)}.

This completes the specification. One may argue that the second definition of
perm is not one that, as stated in Sect. 1, “obviously” implied by the problem
description. Bird [3] derived the second one from the first in a relational setting,
and we can also show that the two definitions are equivalent.

4 Quicksort on Lists

In this section we derive a divide-and-conquer property of slowsort . It allows us
to refine slowsort to the well-known recursive definition of quicksort on lists, and
is also used in the next section to construct quicksort on arrays.

Refinement. We will need to first define our concept of program refinement.
We abuse notations from set theory and define:

m1 ⊆ m2 ≡ m1 � m2 = m2.

The righthand side m1 � m2 = m2 says that every result of m1 is a possible
result of m2. When m1 ⊆ m2, we say that m1 refines m1, m2 can be refined to
m1, or that m2 subsumes m1. Note that this definition applies not only to the
non-determinism monad, but to monads having other effects as well. We denote
(⊆) lifted to functions by (⊆̇):

f ⊆̇ g = (∀x : f x ⊆ g x ).

That is, f refines g if f x refines g x for all x .When we use this notation, f and
g are always functions returning monads, which is sufficient for this pearl.

One can show that the definition of (⊆) is equivalent to m1 ⊆ m2 ≡ (∃ n :
m1 � n = m2), and that (⊆) and (⊆̇) are both reflexive, transitive, and anti-
symmetric (m ⊆ n ∧ n ⊆ m ≡ n = m). Furthermore, (>>=) respects refinement:

Lemma 1. Bind (>>=) is monotonic with respect to (⊆). That is, m1 ⊆ m2 ⇒
m1 >>= f ⊆ m2 >>= f , and f1 ⊆̇ f2 ⇒ m >>= f1 ⊆ m >>= f2.

Having Lemma 1 allows us to refine programs in a compositional manner. The
proof of Lemma 1 makes use of (3) and (4).

Commutativity and Guard . We say that m and n commute if

m >>= λx → n >>= λy → f x y = n >>= λy → m >>= λx → f x y .

It can be proved that guard p commutes with all m if non-determinism is the
only effect in m—a property we will need many times. Furthermore, having
right-zero (2) and right-distributivity (4), in addition to other laws, one can
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prove that non-determinism commutes with other effects. In particular, non-
determinism commutes with state.

We mention two more properties about guard : guard (p ∧ q) can be split
into two, and guards with complementary predicates can be refined to if :

guard (p ∧ q) = guard p >> guard q , (6)
(guard p >> m1) � (guard (¬ · p) >> m2) ⊇ if p then m1 else m2. (7)

Divide-and-Conquer. Back to slowsort . We proceed with usual routine
in functional programming: case-analysis on the input. For the base case,
slowsort [ ] = {[ ]}. For the inductive case, the crucial step is the commutativity
of guard :

slowsort (p : xs)
= { expanding definitions, monad laws }
split xs >>= λ(ys, zs) →
perm ys >>= λys ′ → perm zs >>= λzs ′ →
filt sorted (ys ′ ++ [p ] ++ zs ′)

= { by (5) }
split xs >>= λ(ys, zs) →
perm ys >>= λys ′ → perm zs >>= λzs ′ →
guard (sorted ys ′ ∧ sorted zs ′ ∧ all (� p) ys ′ ∧ all (p �) zs ′) >>
{ys ′ ++ [p ] ++ zs ′}

= { (6) and that guard commutes with non-determinism }
split xs >>= λ(ys, zs) → guard (all (� p) ys ∧ all (p �) zs ′) >>
(perm ys >>= filt sorted) >>= λys ′ →
(perm zs >>= filt sorted) >>= λzs ′ →
{ys ′ ++ [p ] ++ zs ′}.

Provided that we can construct a function partition such that

{partition p xs} ⊆ split xs >>= filt (λ(ys, zs) → all (� p) ys ∧ all (p �) zs),

we have established the following divide-and-conquer property:

slowsort (p : xs) ⊇ {partition p xs} >>= λ(ys, zs) →
slowsort ys >>= λys ′ → slowsort zs >>= λzs ′ →
{ys ′ ++ [p ] ++ zs ′}.

(8)

The derivation of partition proceeds by induction on the input. In the case
for xs := x : xs we need to refine two guarded choices, (guard (x � p) >> {x :
ys, zs}) � (guard (p � x ) >> {ys, x : zs}), to an if branching. When x and p equal,
the specification allows us to place x in either partition. For no particular reason,
we choose the left partition. That gives us:

partition p [ ] = ([ ], [ ])
partition p (x : xs) = let (ys, zs) = partition p xs

in if x � p then (x : ys, zs) else (ys, x : zs).
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Having partition derived, it takes only a routine induction on the length of input
lists to show that {·} · qsort ⊆̇ slowsort , where qsort is given by:

qsort [ ] = [ ]
qsort (p : xs) = let (ys, zs) = partition p xs

in qsort ys ++ [p ] ++ qsort zs.

As is typical in program derivation, the termination of derived program is
shown separately afterwards. In this case, qsort terminates because the input
list decreases in size in every recursive call—for that we need to show that, in
the call to partition, the sum of lengths of ys and zs equals that of xs.

5 Quicksort on Arrays

One of the advantages of using a monadic calculus is that we can integrate effects
other than non-determinism into the program we derive. In this section we derive
an imperative quicksort on arrays, based on previously established properties.

5.1 Operations on Arrays

We assume that our state is an Int-indexed, unbounded array containing elements
of type e, with two operations that, given an index, respectively read from and
write to the array:

class Monad m ⇒ MonadArr e m where
read :: Int → m e
write :: Int → e → m ().

They are assumed to satisfy the following laws:

read-write: read i >>= write i = {()},
write-read: write i x >> read i = write i x >> {x},
write-write: write i x >> write i x ′ = write i x ′,
read-read: read i >>= λx → read i >>= λx ′ → f x x ′ =

read i >>= λx → f x x .

Furthermore, we assume that (1) read i and read j commute; (2) write i x and
write j y commute if i = = j ; (3) write i x and read j commute if i = = j .

More operations defined in terms of read and write are shown in Fig. 1,
where #xs abbreviates length xs. The function readList i n, where n is a natural
number, returns a list containing the n elements in the array starting from index
i . Conversely, writeList i xs writes the list xs to the array with the first element
being at index i . In imperative programming we often store sequences of data
into an array and return the length of the data. Thus, functions writeL, write2L
and write3L store lists into the array before returning their lengths. These read
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readList ::MonadArr e m ⇒ Int → Nat → m (List e)
readList i 0 = {[ ]}
readList i (1 + k) = liftM2 (:) (read i) (readList (i + 1) k) ,

writeList ::MonadArr e m ⇒ Int → List e → m ()
writeList i [ ] = {()}
writeList i (x : xs) = write i x >> writeList (i + 1) xs ,

writeL i xs = writeList i xs >> {#xs} ,
write2L i (xs, ys) = writeList i (xs ++ ys) >> {(#xs,#ys)} ,
write3L i (xs, ys, zs) = writeList i (xs ++ ys ++ zs) >> {(#xs,#ys,#zs)} .

swap i j = read i >>= λx → read j >>= λy → write i y >> write j x .

Fig. 1. Operations for reading and writing chunks of data.

and write family of functions are used only in the specification; the algorithm
we construct should only mutate the array by swaping elements.

Among the many properties of readList and writeList that can be induced
from their definitions, the following will be used in a number of crucial steps:

writeList i (xs ++ ys) = writeList i xs >> writeList (i + #xs) ys. (9)

A function f :: List a → m (List a) is said to be length preserving if f xs >>=
λys → {(ys,#ys)} = f xs >>= λys → {(ys,#xs)}. It can be proved that perm,
and thus slowsort , are length preserving.

On “composing monads” In the sections to follow, some readers may have con-
cern seeing perm, having class constraint MonadPlus m, and some other code
having constraint MonadArr e m in the same expression. This is totally fine:
mixing two such subterms simply results in an expression having constraint
(MonadPlus m,MonadArr e m). No lift ing is necessary.

We use type classes to make it clear that we do not specify what exact monad
perm is implemented with. It could be one monolithic monad, a monad built from
monad transformers [8], or a free monad interpreted by effect handlers [11]. All
theorems and derivations about perm hold regardless of the actual monad, as
long as the monad satisfies all properties we demand.

5.2 Partitioning an Array

While the list-based partition is relatively intuitive, partitioning an array in-place
(that is, using at most O(1) additional space) is known to be a tricky phase of
array-based quicksort. Therefore we commence our discussion from deriving in-
place array partitioning from the list version. The partition algorithm we end
up deriving is known as the Lomuto scheme [2], as opposed to Hoare’s [9].
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Specification. There are two issues to deal with before we present a specifica-
tion for an imperative, array-based partitioning, based on list-based partition.
Firstly, partition is not tail-recursive, while many linear-time array algorithms
are implemented as a tail-recursive for-loop. Thus we apply the standard trick
constructing a tail-recursive algorithm by introducing accumulating parameters.
Define (we write the input/outputs of partition in bold font for clarity):

partl :: Elm → (List Elm × List Elm × List Elm) → (List Elm × List Elm)
partl p (ys, zs,xs) = let (us, vs) = partition p xs

in (ys ++ us, zs ++ vs).

In words, partl p (ys, zs,xs) partitions xs into (us, vs) with respect to pivot
p, but appends ys and zs respectively to us and vs. It is a generalisation of
partition because partition p xs = partl p ([ ], [ ], xs). By routine calculation
exploiting associativity of (++), we can derive a tail-recursive definition of partl :

partl p (ys, zs, [ ]) = (ys, zs)
partl p (ys, zs,x : xs) = if x � p then partl p (ys ++ [x ], zs,xs)

else partl p (ys, zs ++ [x ],xs).

It might aid our understanding if we note that, if we start partl with initial value
([ ], [ ], xs) we have the invariant that ys contains elements that are at most p,
and elements in zs are larger than p. The calculations below, however, do not
rely on this observation.5

Our wish is to construct a variant of partl that works on arrays. That is,
when the array contains ys ++ zs ++xs, the three inputs to partl in a consecutive
segment, when the derived program finishes its work we wish to have ys ++us ++
zs ++ vs, the output of partl , stored consecutively in the array.

This brings us to the second issue: partition, and therefore partl , are stable
(that is, elements in each partition retain their original order), which is a strong
requirement for array-based partitioning. It is costly to mutate ys ++ zs ++ xs
into ys ++ us ++ zs ++ vs, since it demands that we retain the order of elements
in zs while inserting elements of us. For sorting we do not need such a strong
postcondition. It is sufficient, and can be done more efficiently, to mutate ys ++
zs++xs into ys++us++ws, where ws is some permutation of zs++vs. It is handy
allowing non-determinism: we introduce a perm in our specification, indicating
that we do not care about the order of elements in ws.

Define second :: Monad m ⇒ (b → m c) → (a, b) → m (a, c), which applies
a monadic function to the second component of a tuple:

second f (x , y) = f y >>= λy ′ → {(x , y ′)}.

Our new wish is to construct an array counterpart of second perm · partl p. Let
the function be
5 It might be worth noting that partl causes a space leak in Haskell, since the accu-

mulators become thunks that increase in size as the input list is traversed. It does
not matter here since partl merely serves as a specification of ipartl .
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ipartl :: (MonadPlus m,MonadArr Elm m) ⇒
Elm → Int → (Nat × Nat × Nat) → m (Nat × Nat).

The intention is that in a call ipartl p i (ny ,nz ,nx ), p is the pivot, i the index
where ys++zs++xs is stored in the array, and ny , nz , nx respectively the lengths
of ys, zs, and xs. A specification of ipartl is:

writeList i (ys ++ zs ++ xs) >> ipartl p i (#ys,#zs,#xs) ⊆
second perm (partl p (ys, zs,xs)) >>= write2L i .

That is, under assumption that ys++zs++xs is stored in the array starting from
index i (initialised by writeList), ipartl computes partl p (ys, zs,xs), possibly
permuting the second partition. The resulting two partitions are still stored in
the array starting from i , and their lengths are returned.

Derivation. We start with fusing second perm into partl , that is, to construct
partl ′ p ⊆̇ second perm · partl p.6 If we discover an inductive definition of partl ′,
it can then be used to construct an inductive definition of ipartl . With some
routine calculation we get:

partl ′ :: MonadPlus m ⇒ Elm → (List Elm)3 → m (List Elm × List Elm)
partl ′ p (ys, zs, [ ]) = {(ys, zs)}
partl ′ p (ys, zs,x : xs) =
if x � p then perm zs >>= λzs ′ → partl ′ p (ys ++ [x ], zs ′,xs)

else perm (zs ++ [x ]) >>= λzs ′ → partl ′ p (ys, zs ′,xs).

For an intuitive explanation, rather than permuting the second list zs after
computing partl , we can also permute zs in partl ′ before every recursive call.

The specification of ipartl now becomes

writeList i (ys ++ zs ++ xs) >> ipartl p i (#ys,#zs,#xs) ⊆
partl ′ p (ys, zs,xs) >>= write2L i .

(10)

To calculate ipartl , we start with the right-hand side of (⊆), since it contains
more information to work with. We try to push write2L leftwards until the
expression has the form writeList i (ys ++ zs ++ xs) >> ..., thereby constructing
ipartl . This is similar to that, in imperative program calculation, we work back-
wards from the postcondition to construct a program that works under the given
precondition [6].

We intend to construct ipartl by induction on xs. For xs :=[ ], we get ipartl p i
(ny ,nz , 0) = {(ny ,nz )}. For the case x : xs, assume that the specification is met
for xs. Just for making the calculation shorter, we refactor partl ′, lifting the
recursive calls and turning the main body into an auxiliary function:

6 We will discover a stronger specification partl ′ p ⊆̇ snd3 perm \ (second perm ·
partl p), where snd3 f (x , y , z ) = f y >>= λy ′ → {(x , y ′, z )}. We omit the details.
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partl ′ p (ys, zs,x : xs) = dispatch x p (ys, zs,xs) >>= partl ′ p,
where dispatch x p (ys, zs,xs) =

if x � p then perm zs >>= λzs ′ → {(ys ++ [x ], zs ′,xs)}
else perm (zs ++ [x ]) >>= λzs ′ → {(ys, zs ′,xs)}.

We calculate:

partl ′ p (ys, zs,x : xs) >>= write2L i
= { definition of partl ′ }

(dispatch x p (ys, zs,xs) >>= partl ′ p) >>= write2L i
⊇ { monad laws, inductive assumption }

(dispatch x p (ys, zs,xs) >>= write3L i) >>= ipartl p i
= { by (9), monad laws }
dispatch x p (ys, zs,xs) >>= λ(ys ′, zs ′,xs) →
writeList i (ys ′ ++ zs ′) >> writeList (i + #(ys ′ ++ zs ′)) xs >>
ipartl p i (#ys ′,#zs ′,#xs)

= { perm preserves length, commutativity }
writeList (i + #ys + #zs + 1) xs >>
dispatch x p (ys, zs,xs) >>= λ(ys ′, zs ′,xs) →
writeList i (ys ′ ++ zs ′) >>
ipartl p i (#ys ′,#zs ′,#xs)

= { definition of dispatch, function calls distribute into if }
writeList (i + #ys + #zs + 1) xs >>
if x � p then perm zs >>= λzs ′ → writeList i (ys ++ [x ] ++ zs ′) >>

ipartl p i (#ys + 1,#zs ′,#xs)
else perm (zs ++ [x ]) >>= λzs ′ → writeList i (ys ++ zs ′) >>

ipartl p i (#ys,#zs ′,#xs).

We pause here to see what has happened: we have constructed a precondition
writeList (i + #ys + #zs + 1) xs, which is part of the desired precondition:
writeList i (ys++zs++(x :xs)). To recover the latter precondition, we will try to
turn both branches of if into the form writeList i (ys ++ zs ++ [x ]) >>= .... That
is, we try to construct, in both branches, some code that executes under the
precondition writeList i (ys ++ zs ++ [x ])—that the code generates the correct
result is guaranteed by the refinement relation.

It is easier for the second branch, where we can simply refine perm to {·}:

perm (zs ++ [x ]) >>= λzs ′ → writeList i (ys ++ zs ′) >>
ipartl p i (#ys,#zs ′,#xs)

⊇ { since {xs} ⊆ perm xs }
writeList i (ys ++ zs ++ [x ]) >> ipartl p i (#ys,#zs + 1,#xs).

For the first branch, we focus on its first line:

perm zs >>= λzs ′ → writeList i (ys ++ [x ] ++ zs ′)
= { by (9), commutativity }
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writeList i ys >> perm zs >>= λzs ′ → writeList (i + #ys) ([x ] ++ zs ′)
⊇ { introduce swap, see below }
writeList i ys >> writeList (i + #ys) (zs ++ [x ]) >>
swap (i + #ys) (i + #ys + #zs)

= { by (9) }
writeList i (ys ++ zs ++ [x ]) >> swap (i + #ys) (i + #ys + #zs).

Here we explain the last two steps. Operationally speaking, given an array con-
taining ys ++ zs ++ [x ] (the precondition we wanted, initialized by the writeList
in the last line), how do we mutate it to ys ++ [x ] ++ zs ′ (postcondition specified
by the writeList in the first line), where zs ′ is a permutation of zs? We may do
so by swapping x with the leftmost element of zs, which is what we did in the
second step. Formally, we used the property:

perm zs >>= λzs ′ → writeList i ([x ] ++ zs ′) ⊇
writeList i (zs ++ [x ]) >> swap i (i + #zs).

(11)

Now that both branches are refined to code with precondition writeList
i (ys ++ zs ++ [x ]), we go back to the main derivation:

writeList (i + #ys + #zs + 1) xs >>
if x � p then writeList i (ys ++ zs ++ [x ]) >>

swap (i + #ys) (i + #ys + #zs) >>
ipartl p i (#ys + 1,#zs,#xs)

else writeList i (ys ++ zs ++ [x ]) >>
ipartl p i (#ys,#zs + 1,#xs)

= { distributivity of if , (9) }
writeList i (ys ++ zs ++ (x : xs)) >>
if x � p then swap (i + #ys) (i + #ys + #zs) >>

ipartl p i (#ys + 1,#zs,#xs)
else ipartl p i (#ys,#zs + 1,#xs)

= { write-read and definition of writeList }
writeList i (ys ++ zs ++ (x : xs)) >>
read (i + #ys + #zs) >>= λx →
if x � p then swap (i + #ys) (i + #ys + #zs) >>

ipartl p i (#ys + 1,#zs,#xs)
else ipartl p i (#ys,#zs + 1,#xs).

We have thus established the precondition writeList i (ys ++ zs ++ (x : xs)). In
summary, we have derived:

ipartl :: MonadArr Elm m ⇒ Elm → Int → (Int × Int × Int) → m (Int × Int)
ipartl p i (ny ,nz , 0) = {(ny ,nz )}
ipartl p i (ny ,nz , 1 + k) =

read (i + ny + nz ) >>= λx →
if x � p then swap (i + ny) (i + ny + nz ) >> ipartl p i (ny + 1,nz , k)

else ipartl p i (ny ,nz + 1, k).
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5.3 Sorting an Array

Now that we have ipartl derived, the rest of the work is to install it into quicksort.
We intend to derive iqsort :: MonadArr Elm m ⇒ Int → Nat → m () such that
isort i n sorts the n elements in the array starting from index i . We can give it
a formal specification:

writeList i xs >> iqsort i (#xs) ⊆ slowsort xs >>= writeList i . (12)

That is, when iqsort i is run from a state initialised by writeList i xs, it should
behave the same as slowsort xs >>= writeList i .

The function iqsort can be constructed by induction on the length of the input
list. For the case xs := p : xs, we start from the left-hand side slowsort (p : xs) >>=
writeList i and attempt to transform it to writeList i (p : xs) >> ..., thereby
construct iqsort . We present only the hightlights of the derivation. Firstly,
slowsort (p : xs) >>= writeList i can be transformed to:

partl ′ p ([ ], [ ], xs) >>= λ(ys, zs) →
perm ys >>= λys ′ → writeList i (ys ′ ++ [p ] ++ zs) >>
iqsort i (#ys) >> iqsort (i + #ys + 1) (#zs).

For that to work, we introduced two perm to permute both partitions gen-
erated by partition. We can do so because perm >=> perm = perm and thus
perm >=> slowsort = slowsort . The term perm zs was combined with partition p,
yielding partl ′ p, while perm ys will be needed later. We also needed (9) to split
writeList i (ys ′ ++ [x ] ++ zs ′) into two parts. Assuming that (12) has been met
for lists shorter than xs, two subexpressions are folded back to iqsort .

Now that we have introduced partl ′, the next goal is to embed ipartl . The
status of the array before the two calls to iqsort is given by writeList i (ys ′ ++
[p ]++zs). That is, ys ′ ++[p ]++zs is stored in the array from index i , where ys ′ is
a permutation of ys. The postcondition of ipartl , according to the specification
(10), ends up with ys and zs stored consecutively. To connect the two conditions,
we use a lemma that is dual to (11):

perm ys >>= λys ′ → writeList i (ys ′ ++ [p ]) ⊇
writeList i ([p ] ++ ys) >> swap i (i + #ys).

(13)

This is what the typical quicksort algorithm does: swapping the pivot with the
last element of ys, and (13) says that it is valid because that is one of the many
permutations of ys. With (13) and (10), the specification can be refined to:

writeList i (p : xs) >>
ipartl p (i + 1) (0, 0,#xs) >>= λ(ny ,nz ) → swap i (i + ny) >>
iqsort i (#ys) >> iqsort (i + #ys + 1) (#zs).

In summary, we have derived:
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iqsort :: MonadArr Elm m ⇒ Int → Nat → m ()
iqsort i 0 = {()}
iqsort i n = read i >>= λp →

ipartl p (i + 1) (0, 0,n − 1) >>= λ(ny ,nz ) →
swap i (i + ny) >>
iqsort i ny >> iqsort (i + ny + 1) nz .

6 Conclusions

From a specification of sorting using the non-determinism monad, we have
derived a pure quicksort for lists and a state-monadic quicksort for arrays. We
hope to demonstrate that the monadic style is a good choice as a calculus for
program derivation that involves non-determinism. One may perform the deriva-
tion in pointwise style, and deploy techniques that functional programmers have
familiarised themselves with, such as pattern matching and induction on struc-
tures or on sizes. When preferred, one can also work in point-free style with (>=>).
Programs having other effects can be naturally incorporated into this framework.
The way we derive stateful programs echos how we, in Dijkstra’s style, reason
backwards from the postcondition.

A final note: (>=>) and (⊆̇) naturally induce the notion of (left) factor, (\) ::
(a → m b) → (a → m c) → b → m c, defined by the Galois connection:

f >=> g ⊆̇ h ≡ g ⊆̇ f \ h.

Let h :: a → m c be a monadic specification, and f :: a → m b performs the
computation half way, then f \h is the most non-deterministic (least constrained)
monadic program that, when ran after the postcondition set up by f , still meets
the result specified by h. With (\), ipartl and iqsort can be specified by:

ipartl p i ⊆̇ write3L i \ ((second perm · partl p) >=> write2L i),
iqsort i ⊆̇ writeL i \ (slowsort >=> writeList i).

In relational calculus, the factor is an important operator that is often associ-
ated with weakest precondition. We unfortunately cannot cover it due to space
constraints.
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able discussions during development of this work.
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Abstract. Language-integrated query adds to database query the power of high-
level programming languages such as abstraction, compositionality, and nested
data structures. Cheney et al. designed a two-level typed language for it and
showed that any closed term of suitable type can be normalized to a single SQL
query which does not have nested data structures nor nested SELECT clauses.

This paper extends their language to cover the GROUP BY clause in SQL to
express grouping and aggregate functions. Although the GROUP BY clause is
frequently used, it is not covered by existing studies on efficient implementation
of language-integrated queries. In fact, it seems impossible to express composi-
tion of two aggregate functions by a single aggregate function, therefore, there
exists a query with nested GROUP BY clauses which has no equivalent query
without nested one. However, since several database engines such as PostgreSQL
allow nested queries, we can still ask if it is possible to convert an arbitrary query
with grouping and aggregation to a single query in SQL which allows nested
queries, but disallows nested data structures such as a table of tables.

This paper solves the latter question affirmatively. Our key observation is that
the GROUP BY clause in SQL does two different kinds of things: manipulating
input/output data and grouping with aggregation, the former can be transformed,
but may have complex types, while the latter cannot be transformed, but has
simple types. Hence, we decouple the GROUP BY clause and introduce prim-
itives into our language-integrated query to obtain a calculus which can express
GROUP BY. We then show our language has the normalization property that
every query is converted to a single query which does not have nested data struc-
tures. We conduct simple benchmarks which show that queries in our language
can be transformed to efficient SQL queries.

Keywords: Database · Language-integrated query · Grouping · Aggregation ·
Normalization · Type safety

1 Introduction

Language-integrated query is gaining increasingly bigger attention by integrating a
database query language such as SQL with a high-level programming language.
Microsoft’s LINQ1 [1] is a typical example used by various applications. Existing lan-
guages for language-integrated query allow one to interact with a database management

1 https://docs.microsoft.com/en-us/dotnet/csharp/linq/.
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system, construct abstraction mechanisms and complex data structures, and compute
over them.

A classic problem in language-integrated queries is the query-avalanche problem;
composing two queries and executing the result of the composition may sometimes
need a huge number of transactions with a database [2]. Another classic problem is
that nested data structures such as a list of lists are allowed in language-integrated
queries, while they are not allowed in SQL, hence they are not directly implementable.
Cooper [3] proposed normalization on queries to solve these problems. He showed
that a closed query of non-nested type2 can be always transformed (‘normalized’) to a
form which does not use abstractions, nested data structures, or nested comprehensions,
hence can be translated to SQL. Moreover, the result of normalization is a single SQL
query, solving the query avalanche problem. Cheney et al. [4] formalized his idea in
a two-level typed language with quotation and anti-quotation to give theoretical foun-
dation for it, and Suzuki et al. [5] implemented it via tagless-final encoding [6] as an
extensible type-safe framework. However, none of the studies mentioned above targeted
the features of grouping and aggregate functions, which are indispensable in many real-
istic queries.

This paper addresses the problem of introducing grouping and aggregate functions
into language-integrated queries while keeping efficient implementation. Grouping (the
GROUP BY clause in SQL) classifies data records based on the given keys, and com-
putes aggregated values for each group of records. Aggregation is a reduction operation,
which computes a single value from a list of values in each group.

An example in SQL is given as follows:

SELECT p.orderId AS oid, SUM(p.quantity) AS sales
FROM products AS p
GROUP BY p.orderId

This query gets data records from the products table, classifies them into groups
based on the orderId key, and returns, for each group, a record which consists of an
orderId and the summation of the quantity. SUM is called an aggregate function, which
computes the sum of all records for each group, and the GROUP BY clause specifies
the key for this grouping. Following Cheney et al., we write for(x ← L) M for the
following SQL query:

SELECT M
FROM L AS x

and we temporally introduce a new construct gfor(x ← L; K) M for the SQL query
with grouping:

SELECT M
FROM L AS x
GROUP BY K

2 We say that a table type (a bag type of a record type) is not nested, if each component type of
the record is a basic type such as string, integer, or floating-point number.
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While the GROUP BY clause is simple to handle in SQL, it is problematic as a
construct in language-integrated query, which will be explained as follows.

First, there seems no normalization rules for the combination of gfor and another
control structure such as for or gfor itself. A normalization rule is a rule to transform
a query to a normal form which directly corresponds to an SQL query, and Cheney et
al. showed a number of normalization rules such as for(x ← for(y ← L) M) N �
for(y ← L) for(x ← M) N which are sufficient to flatten nested control structures3.
On the other hand, gfor does not seem to have such normalization rules which work in
general. For instance, gfor(x ← for(y ← L) M ; K) N cannot be normalized to a
natural candidate for(y ← L) (gfor(x ← M ; K) N), which is semantically different.
There are other combinations of constructors such as gfor-gfor which also suffer from
the same problem. Informally it is explained by an example: suppose we are given
a table for GPAs for all students in a university, which has several schools and each
school has departments. We want to determine, for each school, the department whose
students’ average GPA is the best among the departments in the school. Clearly, we need
to compute average per department, and then take the maximum value per school, each
of which corresponds to grouping and aggregate functions AVG and MAX. Therefore,
we need to have nested gfor constructs to obtain the correct result.

It follows that our target language for SQL need to have subqueries, which means
an input (or an output) of a query is the result of another query. Several SQL dialects
including PostgreSQL4 indeed allow subqueries, hence we also assume that our SQL
backend allows (an arbitrary nesting of) subqueries.

Although allowing subqueries in SQL solves the problem of nested control struc-
tures, we still have a problem of nested data structures. To see this, let Q1 be gfor(x ←
L; K) M where M has a nested data structure such that each component type of
the record is a bag of a basic type. Let Q2 be a query for(y ← Q1) N whose type
is not nested. We expect that Q2 is normalized to a query which is translated to a
single SQL, in particular, the resulting query has no nested data structures. Unfortu-
nately, normalization does not work for this query, since it contains gfor which is a
barrier for any normalization to occur. One may think that the for construct in Q1

(at the outermost position of Q2) can be moved inward, and we can rewrite Q2 into
gfor(x ← L; K) for(y ← M) N , which can be further transformed. However,
this rewriting has another problem; if N has an aggregate function which operates on
grouping outside of Q2, the aggregate function goes under this gfor, rather than group-
ing outside of Q2, leading to an incorrect result. Namely, this rewriting may not be
semantics-preserving.

In summary, having gfor in language-integrated query causes a big problem and
most desirable properties which Cheney et al. proved for the language without gfor will
be lost. Hence, it has been an open problem to have grouping and aggregate functions in
language-integrated query, while keeping the desirable properties such as normalization
to non-nested data structures.

3 Queries that has a for construct inside another for construct are called queries with nested
control structures.

4 http://postgresql.org.

http://postgresql.org
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This paper solves the problem above under the assumption that the normal form
may contain nested control structures. We start by observing that the gfor construct in
language-integrated queries does too many things; it performs not only grouping, but
also aggregation and construction of (possibly complicated) output. In the context of
this study, these processes have quite different nature, and should be treated separately.

– Grouping and Aggregation; examples are taking an average score among a depart-
ment, and getting the maximum average score among a school. These operations, if
combined with other control structures, cannot be transformed, while their input and
output types are restricted to basic types. (Note that aggregate functions are provided
in the target SQL, and they work on a collection of basic values and return a reduced
value of the same type as input.)

– Output Construction; an example is constructing a nested list whose element is a
student-score pair whose score is above the average in her department. This opera-
tion may have complicated types (arbitrarily nested types), however, they are stan-
dard operations made from for, hence, they can be transformed by Cheney et al.’s
normalization rules.

Since gfor is a combination of them, we cannot normalize it, nor its data type may be
nested, and we got stuck. A lesson learned from here is that we should decouple the two,
then we can normalize output construction to normal form, while grouping/aggregation
have non-nested types, hence there are no obstacles to obtain a normal form without
nested data structures. This is a rather simple idea but as far as we know, there is no
similar research in this direction, and the present paper is a straightforward realization
of this simple idea.

We design our source language based on Cooper’s work and Cheney et al.’s work,
and add the functionality of grouping and aggregate functions by a new construct
instead of the gfor construct. The new construct captures only the first process of the
above two, namely, grouping and aggregation, while the second process is represented
by the existing constructs provided by Cheney et al. We argue that most functionality
of GROUP BY in SQL can be recovered by combining the new constructs and exist-
ing ones by some sort of rewriting. We introduce a type system and then give a set of
transformation rules which transform all the typable queries of an appropriate type5 to
a single SQL query, thus avoiding the Query Avalanche problem completely.

The rest of this paper is organized as follows. Section 2 informally discusses how to
resolve nested clauses with grouping. Section 3 introduces our languages and transfor-
mation rules, and Sect. 4 introduces adding grouping to the language. The performance
measurements for our language and implementation are explained in Sect. 5. Finally,
we state concluding remarks in Sect. 6.

2 Examples of Grouping and Aggregation

In this section, we consider several examples for language-integrated query, and infor-
mally discuss our new primitives for aggregation and grouping. Formal development
will be presented in the next section.
5 An SQL-convertible query must compute a bag of records whose fields are of base types.
Hence, we normalize queries of such types only.
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A database used in our example has two tables in Fig. 1.

Fig. 1. Sample database tables

The products table (left) has the columns of product ID (pid), name (name), and
price (price), while the orders table (right) has the columns of order ID (oid), product ID
(pid), and quantity (qty). Let us first introduce a query without grouping and aggregation
as follows:

Q = for(p ← table(“products”))
for(o ← table(“orders”))
where (p.pid = o.pid)
yield {oid = o.oid, sales = p.price ∗ o.qty}

which corresponds to the following SQL query:

SELECT o.oid AS oid, p.price * o.qty AS sales
FROM products AS p, orders AS o
WHERE p.pid = o.pid

The collection is a multiset, or a bag. The above query scans tables, and returns a bag
of records consisting of two fields oid and sales, whose values are order ID and qty
multiplied by the price. In this paper, we do not consider the value NULL, and assume
all fields have some values of appropriate type.

The next query uses an aggregate function without grouping, shown below:

Q0 = yield Aα(for(p ← table(“products”))
for(o ← table(“orders”))
where (p.pid = o.pid)
yield {sales = p.price ∗ o.qty})

Where α = {(sales,SUM, sales_sum)}
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which corresponds to the following SQL query:

SELECT SUM(p.price * o.qty) AS sales_sum
FROM products AS p, orders AS o
WHERE p.pid = o.pid

where SUM is an aggregate function, which computes the sum of p.price * o.qty for
all collections in the constructed table, and Aα is the new operator in our language,
standing for aggregation.

The role of the new operator Aα is to apply aggregate functions to the components
specified in α. The component values are taken from its argument. In the above example
α = {(sales,SUM, sales_sum)} specifies that Aα should retrieve values from the sales
field of the argument, applies SUM to the values, and returns the value with the field
name sales_sum. Thus, the above query in our language does exactly the same thing as
the query in SQL.

Clearly the notation in our language is heavier than the corresponding expression
in SQL, but it is justified by the following argument. The essential difference between
the two is the position the function SUM appears at: in SQL (the lower query), SUM
appears at deep inside of the query, while in our language (the upper query), it appears
at the outermost position. Since SUM in our language appears remotely from its real
argument, we need to specify which field name it will pick up, and the heavier nota-
tion above is necessary. But our notation has a merit that the target table of aggregate
functions is clearer. In the above example, the target table of SUM is the argument
computed by the for expression, while the target of SUM in SQL is determined by
its external context which is not always clear. In this example, there are no GROUP
BY clauses in the query so the target table is the whole expression, but in general,
there may be several GROUP BY clauses around SUM, and they form a sort of binder-
bindee correspondence. But, since they are not really binders (no variables are used
to make the correspondence explicit), the correspondence is fragile under rewriting, or
normalization. When designing normalization rules, we always need to consider if the
binder-bindee correspondence is kept correctly, which is quite cumbersome, and some-
times impossible (note that our language has the standard lambda binding and function
application, hence substitution for variables may occur at any time of computation).

We then add the functionality of grouping to theAα operator. The extended operator
is denoted by G(κ,α) where α is the specification for aggregate functions as in Aα. The
extra parameter κ is a list of field names and considered as grouping keys on which
grouping takes place. To show an example, we perform grouping with the example
above.

Q1 = G(oid,α)(for(p ← table(“products”))
for(o ← table(“orders”))
where (p.pid = o.pid)
yield {oid = o.oid, sales = p.price ∗ o.qty})

Where α = {(sales,SUM, sales_sum)}
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which corresponds to the following SQL query:

SELECT o.oid AS oid, SUM(p.price * o.qty) AS sales_sum
FROM products AS p, orders AS o
WHERE p.pid = o.pid
GROUP BY o.oid

In the lower query, we have added the order ID field to the record created dynami-
cally, which will be the grouping key as specified by the GROUP BY clause on the last
line. In the upper query, we also do the same thing, and in addition to it, the grouping
operator specifies not only α, but also the order ID field as the grouping key. When we
execute the upper query, it groups the table created by the for clause based on the order
ID field, computes the sum of qty multiplied by price for each group, and then returns
a record consisting of the order ID field, and the summation.

The merit and demerit of expressing grouping and aggregate functions in terms of
the G(κ,α) operator inherit those for the Aα operator. In addition, one query in SQL
may have more than one GROUP BY clause, and then the correspondence between the
GROUP BY clause and aggregate functions are even more complicated, and will be
error prone. On the contrary, our grouping and aggregate functions are expressed by
a single operator, hence we seldom make any ‘scope’-related issues. Note that G(κ,α)

is a natural extension of Aα, but for a technical reason, G(·,α) (no grouping keys) is
equivalent to yield Aα, which returns a singleton consisting of Aα. Modulo this small
twist, the former extends the latter, and Aα exists only for the purpose of explanation.

In SQL, we can group records, aggregate values, and construct complicated data
from them all in one query. As we discussed in the previous section, it is problematic
to do all three things in a single primitive, therefore, our language does not have such
a super operator. Instead, our operator G(κ,α) can do grouping and aggregation only.
The resulting value of applying this operator to an expression is a bag of records con-
sisting of the results of aggregate functions, whose types are not nested. Any operation
after applying aggregate functions are disallowed by this primitive. For instance, the
following query has no direct counterpart in our language:

SELECT o.oid AS oid,
SUM(p.price * o.qty)/SUM(o.qty) AS average

FROM products AS p, orders AS o
WHERE p.pid = o.pid
GROUP BY o.oid

where we divide one aggregated value by another. It is still no problem to pre-compute
values before aggregation such as SUM(p.price * o.qty).
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We can recover the lost expressiveness by simple rewriting. A query which is equiv-
alent to the above one may be written in our language as follows:

Q2 = for(q ← G(oid,α)(for(p ← table(“products”))
for(o ← table(“orders”))
where (p.pid = o.pid)
yield {oid = o.oid, sales = p.price ∗ o.qty,

qty = o.qty}))
yield {oid = q.oid, average = q.sales_sum/q.qty_sum}
Where α = {(sales,SUM, sales_sum), (qty,SUM, qty_sum)}

Thus we divide one big process performed by the GROUP BY clause into a combi-
nation of triply nested control structures for-G(κ,α)-for. It is arguable that this decom-
position (or ‘decoupling’) is beneficial for performance, but we believe that, as long as
the nested data structures are concerned, our decomposition is the only way to normal-
ize all queries systematically into a single SQL query which has subqueries but does
not have nested data structures.

The above query in our language corresponds to the following query in SQL:

SELECT q.oid AS oid, q.sales_sum / q.qty_sum AS average
FROM (SELECT o.oid AS oid,

SUM(p.price * o.qty) AS sales_sum,
SUM(o.qty) AS qty_sum

FROM products AS p, orders AS o
WHERE p.pid = o.pid
GROUP BY o.oid) AS q

which uses a subquery and performs badly if we compare it with the above single SQL
query. In this paper, we do not talk about optimization of queries which will be reported
in a separate paper.

3 The Language with Aggregate Functions

This section explains the base language for language-integrated query in the existing
studies, and introduces our language with aggregate functions. Grouping will be added
to the language in the next section.

3.1 Base Language

The base language Quel is essentially the same as Cooper’s source language [3] without
effects (which is ‘nearly the same’ as Nested Relational Calculus [7]), and Cheney et
al.’s T-LINQ [4] without quotation and code generation. Figure 2 gives the syntax of
types and terms in Quel where t denotes a name of a database table, and l denotes a
field name of a record.
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Fig. 2. Types and terms of Quel

Types are either a basic type (integers, booleans, and strings), a function type A −→
B, a bag type Bag A, or a record type {l : A} where l : A is abbreviation of a sequence
l1 : A1, · · · , lk : Ak for some k ≥ 0. The bag type is the type for multisets in which
the order of elements is irrelevant and the number of elements matters. A record type
{l : O} where O is a basic type is called a flat type. The bag type of a flat record type
is also called a flat type. Flat types are important in the study of language-integrated
query, since SQL allows only values of flat types.

Terms are either lambda terms augmented with a primitive operator ⊕, a variable x,
a constant c, {l = M} (record), L.l (selection), or constructed by database primitives
such as M � N (multiset union), for(x ← M) N (bag comprehension) where L M
(conditional), yield M (singleton), exists M (emptiness test), and table(t) (database
table with name t). The term for(x ← M) N corresponds to the SELECT statement in
SQL, which computesN for each element in (the value of)M , and returns their multiset
union. The term where L M returns the value of M if L returns true, and returns the
empty bag [] otherwise. The term yield M creates a singleton multiset consisting of
the value of M . The term exists M is the emptiness test for a multiset M and returns a
boolean value. The variable x in λx. M and for(x ← L) M are bound in M . As usual,
we identify two terms which are α-equivalent.

3.2 The Language Quela

We add aggregate functions to Quel, and call the extended language Quela. Figure 3
defines new syntax in Quela where a sequence of dots means the corresponding syntax
in Quel.

Fig. 3. Terms of Quela

The term Aα(L) applies aggregate functions to L as specified by α. Here, α is a
finite collection of triples of a field name in the input, an aggregate function � such
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as MAX, MIN, AVG, COUNT, and SUM6 and a field name in the output. An example
of α is {(l1,MAX, l′1), (l2,SUM, l′2)}, which means that we apply MAX to the values
of the l1 field and SUM to the values of the l2 field, and returns a record consisting of
these data with new field names l′1 and l′2.

Quela has the standard call-by-value, left-to-right semantics. Let us explain how the
term Aα(L) is evaluated where α = {(l1,�1, l

′
1), · · · , (lk,�k, l′k)}. L is an expression

of record type whose fields contain l1, · · · , lk. For each i ≤ k, we apply the aggregate
function �i to the li-component of the value of L to get an aggregated value which we
call vi. Then we return a record {l′1 = v1, · · · , l′k = vk} as the result. For instance,
suppose L is a bag with two elements [{l1 = 10, l2 = 20}, {l1 = 30, l2 = 10}]. Then
the term A{(l1,SUM,l′1),(l2,MAX,l′2)}(L) is evaluated to {l′1 = 40, l′2 = 20}.

Quela is a statically typed language, and Fig. 4 lists a few interesting typing rules.

FOR EXISTS

Γ � M : Bag A Γ, x : A � N : Bag B

Γ � for(x M) N : Bag B

Γ � M : Bag {li : Oi}
Γ � exists M : Bool

AGGREGATION

Γ � L : Bag {kj : Oj} α = {(li, �i, l′i)} li ⊆ kj �i : Bag Oj Oj (for all li s.t. li = kj)

Γ α(L) : l′i : Oj (for all li s.t. li = kj)

Fig. 4. Type system of Quela

The first typing rule represents the one for the for-construct, or bag comprehension.
The term for(x ← M) N computes a bag N for each element x in M , and takes the
multi-set union for all the results. Hence, M and N must have bag types, and x is bound
in N . The second one is for the exists -construct. Here we need to constrain that the
argument M must have a flat bag type (notice that the type of each field is a basic type
Oi). Otherwise, we cannot normalize such a term to an SQL query where nested data
structures are not allowed. The third typing rule is for aggregate application Aα(L).
The A-Spec α specifies which aggregate function should be used for each field of the
given record. We require that, for each li, there exists kj such that kj = li. Then the
aggregate function �i must have the type Bag Oj −→ Oj . It is important to restrict all
the type of fields Oj must be basic types. This is again for the sake of guaranteeing
the non-nested property of normal forms in Quela. This restriction does not affect the
expressiveness of Quela, since we can always insert a for-expression between Aα and
L to throw away unused fields of non-basic types.

Other typing rules are standard in simply typed lambda calculus, and omitted here.

6 In this study the set of aggregate functions is left unspecified, but we assume that they must
operate on simple types. See the type system.
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3.3 Normalization of Quela

Cooper has shown that any query of an appropriate type in his language can be normal-
ized to a simple form which directly corresponds to a single SQL query, thus solving
the query avalanche problem.

We have the same property for Quela. More precisely, given a closed term in Quela
which has a flat bag type (a bag-of-record type whose fields are of basic types) can be
transformed to normal form, which is directly convertible to an SQL query. In the rest
of this section, we explain how we can show this property. Note that we assume that
the target SQL to allow subqueries (or nested queries), so nested control structures are
not problematic. However, the normal form must not create or manipulate nested data
structures (such as a record of records, or a table of tables), our goal is to eliminate the
latter.

Figure 11 in the appendix shows normalization rules essentially proposed by
Cheney et al., after slight adjustment for Quela. For the newly added primitive Aα(L)
we do not have normalization rules7 as explained in earlier sections. (Aα(L) is a ‘bar-
rier’ for normalization.) Hence, we need to add the term Aα(L) to the normal form of
appropriate type. Figure 5 defines the normal form for Quela.

Query U ::= U1 � U2 | [ ] | F
Comprehension F ::= for(x H) F | H | Z
Table H ::= table(t)
Body Z ::= where B Z | yield R

Record R ::= {l = B} | x | Aα(U)
Primitive B ::= exists U | ⊕(B) | x.l | c

A-Spec α ::= (l, �, l′)

Fig. 5. Normal form of Quela

For the term Aα(U), U must be of flat bag type, and so is the whole term, hence
no nested data structures are used in this term, which is the key of our proof of the
non-nested property.

We will formally state the desirable properties on ‘non-nestedness’ of the result of
our translation. Here, we take the minimalist approach, and we define flat types, instead
of defining nested data types and non-nested data types in general. We call a record type
whose components are basic types as flat record types. A flat bag type is the type Bag F
where F is a flat record type. Flat types are either basic types, flat record types, or flat
bag types.

Theorem 1. 1. Normalization rules for Quela preserve typing, namely, Γ 	 L : A and
L � M , then Γ 	 M : A.

7 When L is an empty bag, we can transform the whole expression, but it is a special case which
does not contribute general patterns.
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2. For any typable term, normalization weakly terminates, namely, If Γ 	 L : A, then
there is a normal form N such that L � N .

3. Suppose N is normal form, and 	 N : F is derivable where F is a flat type. Then
its type derivation contains only flat types.

The item 3 is crucial in our work, as it implies that all closed normal form of flat
type does not use any nested data structures as intermediate data, which is necessary for
it to be translated to an SQL query.

Let us briefly mention the proof of the theorem.
Item 1 can be proved by straightforward induction.
Item 2 is proved by making an analogy; Quela’s aggregation is a ‘barrier’ for nor-

malization since it has no transformation (normalization) rules. In Cheney et al.’s work,
the exists primitive is similar, as it has no transformation rules other than the rare
cases when its argument happens to be a value. Hence, as far as we are concerned with
weak normalization property, we can treat our aggregation primitive just like the exists
primitive, and the proof of Cheney et al.’s weak normalization theorem can be re-used
without essential modification.

Item 3 is proved by induction on type derivation for a slightly stronger lemma: if
Γ 	 N : Bag {li : Oi} is derivable for some Γ = x1 : F1, · · · , xn : Fn where Fi are
flat types, and N is normal form, then the typing derivation does not contain non-flat
types. For this inductive proof, it is essential that our aggregation operator works over
terms of flat types only. The rest of the proof is easy and omitted.

Note that, for this property to hold, we need to restrict the argument of Aα be flat
types; otherwise the item 3 does not hold in general.

The normal form is actually easy to translate to an SQL query. Figure 6 gives the
translation for only one important case.

Fig. 6. Translation to SQL

For a normal form N , we write [[N ]] for its translation to SQL. For Aα(U), we
first convert U to an SQL query, and then apply aggregate functions �i for each ei

designated by the field li. We finally collect all fields and return the answer.

3.4 Comparison with Classic Results

The statement of Theorem 1 in the previous subsection resembles the ‘conservativity’
property studied in classical database theory. Among all, Libkin and Wong [8] formu-
lated a simple calculus with aggregation, and proved that, for any query whose type has
height n, there exists an equivalent query which has height n or lower. Here the height
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is the depth of nested data structures, and by taking n as 0, we have a statement which
is very similar to the item 3 of Theorem 1.

However, there are several differences between Libkin and Wong’s work and ours,
and their result does not subsume ours (and vice versa).

The first difference is that the primitive data structure in their language is sets,
whereas ours is bags (multi-sets). This difference is minor, as we can adjust their theory
to the one based on multi-sets.

The second, more essential difference is that they have more normalization rules
than we have; one of their rules (in our syntax) is:

A(l,SUM,l′)(L1 ∪ L2) = A(l,SUM,l′)(L1) + A(l,SUM,l′)(L2)

They regard this equation as a left-to-right rewrite rule. This rewriting often makes a
query rather inefficient; it replaces an aggregation to normal addition, and if L1 ∪ L2 in
the above equation is replaced by a union of 100 bags, then the right-hand side will be
the sum of 100 elements, which is clearly slower to execute than an aggregate function.

The third difference is that their language does not have grouping, whereas ours
has, as we will see in the next section. Adding grouping to the language would make
the above efficiency problem even more serious; there is no simple way to express
grouping and aggregation for L1 ∪ L2 in terms of those for L1 and those for L2.

One may wonder why we successfully get the same (or very similar) theorem while
our set of normalization rules is strictly smaller than theirs. The trick is that, our primi-
tives for aggregation (and grouping) are finer than those primitives in existing studies.8

The aggregation primitive in Libkin and Wong’s study is:

Σ{{e1 | x ∈ e2}}

where e1 and e2 are expressions for queries and x is bound in e1. The above primitive
sums up the result of e1[ai/x] for all ai ∈ e2. As the syntax reveals, their primitive can
manipulate input of Σ by the expression e1, whereas our primitive Aα cannot. In our
language, constructing e1 from x ∈ e2 should be expressed by another expression (it
can be written as for(x ← e2) [e1] if we ignore labels and the difference of set and
multi-set), and we can recover their aggregation primitive by combining these two. The
bonus of this decomposition is Theorem 1.

In summary, while we obtained nothing new in theory (a very similar theorem is
already known in old days, which can be adjusted to our setting), we claim that we
have made solid progress towards a practical theory as advocated by Cheney et al.,
since much more efficient queries can be generated by our method. In the subsequent
sections we will back up our claim by adding groping and showing performance.

8 In the introduction of the present paper, we already explained it against SQL’s GROUP BY.
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4 Adding Grouping to the Language

The language Quela in the previous section does not have grouping, and this section
extends it to the language Quelg, which has grouping.

One might think that this extension is a big step, however, surprisingly, the differ-
ence is quite small, since grouping with aggregation behaves quite similar to aggrega-
tion. As before, the grouping operator cannot be normalized but works on terms of flat
types, so it does not affect the important property that the normal form does not have
nested data structures.

We briefly explain in this section the extended language and its properties.
The extended syntax is defined in Fig. 7. We introduce a new operator G(κ,α)(L) for

grouping and aggregation, where κ is a list of field names, and represents the keys of
this grouping, and α is the same as α in Aα(L).

Fig. 7. Syntax of Quelg

Intuitively, G(κ,α)(L) gets an input table from (the result of computing) L, per-
forms grouping based on the keys in κ, and then apply aggregate functions listed in α.
The result of this computation is a table whose element is a record consisting of the
keys and the fields with the results of aggregate functions. As a simple example, the
term G(oid,{(qty,MAX,qty_max)})(table(“orders”)) evaluates to [{oid = 1, qty_sum =
3}, {oid = 2, qty_sum = 15}, {oid = 3, qty_sum = 20}].

Typing rules for Quelg are those for Quela plus the rule shown in Fig. 8.

Fig. 8. Type system of Quelg

The new typing rule is for grouping. To type G(κ,α)(L), we need to have L is a
flat bag type Bag {κi : Oi, li : O′

i}. The keys for grouping κ must appear in this list,
and here we assume that κi appears in the first half of this sequence. The aggregate
functions specified in α must be of function type from a bag of a basic type to the basic
type. Finally, G(κ,α)(L) has the same type as L.
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For the language Quelg, the normal form becomes a bit more complicated than those
for Quela, because the new primitive for grouping returns a value of bag type, and it is
still normal, hence each syntactic category of bag type must have the new primitive as
normal form. Figure 9 defines the normal form for Quelg.

Query U ::= U1 � U2 | [ ] | F
Comprehension F ::= for(x H) F | Z

H ::= table(t) | G(κ,α)(U)

Body Z ::= where B Z | yield R | H

Record R ::= {l = B} | x

Primitive B ::= exists U | ⊕(B) | x.l | c

A-Spec α ::= {(l, �, l′)}
κ ::= l

Fig. 9. Normal form of Quelg

Finally, we define the translation from a normal form in Quelg to an SQL query.
Figure 10 defines the most interesting case.

Fig. 10. Translation from Quelg to SQL

In the case of Quela, we analyzed the translation for U and added aggregate func-
tions to them and we get a simple query (we do not have nested SELECT statements).
On the other hand, in Quelg, U in G(κ,α)(U) may be translated to an SQL query with
grouping, in which case we cannot translate the whole term to a non-nested SQL.
Hence, we translate it to nested queries. In the right-hand side of the definition in
Fig. 10, [[U ]] appears inside the FROM clause, which is a subquery. Note, however,
that we can translate all normal form in Quelg to a single SQL query, thanks to the
property that no nested data structures are used.

5 Implementation and Examples of Normalization

We have implemented normalization in Quelg, and translation to SQL. For this pur-
pose, we embedded Quelg in the programming language OCaml using the tagless-final
embedding [6] following Suzuki et al. [5], and use PostgreSQL as the backend database
server. The computing environment is Mac OS 10.13.2 with Intel Core i5-7360 CPU
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with memory 8GB RAM, and our programs run on OCaml 4.07.1, and generated SQL
queries on PostgreSQL 11.5. The results of performance measurements will be shown
after we explain example queries.

We prepare several concrete queries in Quelg which use aggregate functions and
grouping in different ways. The database used here has two tables, the products table
and the orders table in Sect. 2.

The first query Q′
3 accesses the orders table, and produces a bag of all orders

whose oid matches the given value. The next query Q′′
3 accesses the products

table, and gets the Orders record from Q′
3, finds all the products which have the

same oid field as oid, and returns a bag of records with the oid and sales fields.

Q′
3 = λoid.

for(o ← table(“orders”))
where (o.oid = oid)
yield o

Q′′
3 = λo.

for(p ← table(“products”))
where (p.pid = o.pid)
yield {oid = o.oid,

sales = p.price ∗ o.qty}
We want to compose these kinds of small queries to obtain a large, complicated

query. It is easy to achieve in our language, since we can define a generic combinator
for composition as follows:

compose = λq. λr. λx. for(y ← q x) r y

Then we only have to apply it to Q′
3 and Q′′

3 in this order to obtain a composed query.
Here we also perform grouping and aggregation on the results, and we define a new
query Q3 as follows:

Q3 = λx. G(oid,α)(compose Q′
3 Q′′

3 x)
= λx. G(oid,α)(for(y ← Q′

3 x) Q′′
3 y)

where α = {(sales,SUM, sales_sum)} ... (1)

We normalize Q3 N (for a concrete value N) to obtain the following normal form:

Q3 = G(oid,α)(for(o ← table(“orders”))
for(p ← table(“products”))
where (p.pid = o.pid ∧ o.oid > N)
yield {oid = o.oid, sales = p.price ∗ o.qty})

Where α = {(sales,SUM, sales_sum)}

which is immediately translated to SQL as:
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SELECT x.oid AS oid, SUM(x.sales) AS sales_sum
FROM (SELECT o.oid AS oid, p.price * o.qty AS sales

FROM products AS p, orders AS o
WHERE p.pid = o.pid AND o.oid > N) AS x

GROUP BY x.oid ... (2)

One can see that a query in Quelg is translated to a single SQL query using subquery.
After implementing our system, we have conducted performance measurement. We

measured the execution time of program transformation and SQL generation in our
implementation, and the execution time of generated SQL. We tested varying data sizes
for the orders and products tables, ranging up to 10,000 records per table.

Table 1 shows the total execution time of the program transformations and SQL
generation (from (1) to (2) for the above query), the execution time of SQL generated
in Quelg, and that in LINQ with F#. In addition to Q1 to Q3 in the previous chapters,
we tested several more queries; Q4 with lambda abstraction, Q5 with a predicate, Q6

to Q8 with nested control structures, and Q9 with a nested data structure. All queries
of our system used in the experiment is available online at http://logic.cs.tsukuba.ac.jp/
~rui/quelg/.

Table 1. Time for code generation and execution of SQL

Quelg LINQ(F#)

Example Code generation time Execution time of SQL Execution time of SQL

Q1 0.03 ms 16.19 ms 14.78 ms

Q2 0.10 ms 14.07 ms 15.13 ms

Q3 1.16 ms 4.36 ms Not available

Q4 0.07 ms 0.95 ms 1.79 ms

Q5 0.19 ms 7.41 ms Not available

Q6 0.43 ms 14.14 ms Not available

Q7 0.04 ms 11.25 ms Not available

Q8 5.59 ms 18.04 ms 9.56 ms

Q9 9.31 ms 3732.62 ms Avalanche
|products| = 10000, |orders| = 10000

Table 1 shows that Microsoft’s LINQ failed to generate 5 queries out of 9, whereas
our method succeeded to generate all 9 queries, which clearly shows the usefulness of
our proposal.

Table 1 also shows the performance of subqueries (nested queries). For instance,
Q7 is a query which uses only one table, but has almost the same execution time as
Q1, which has two tables and has fewer subqueries than Q7. It re-confirms the standard
knowledge that executing subqueries in SQL takes a long time. The query Q9, which
calculates the average value in a subquery, takes about 3 s, and the execution time for
subqueries is quite dependent on queries.

http://logic.cs.tsukuba.ac.jp/~rui/quelg/
http://logic.cs.tsukuba.ac.jp/~rui/quelg/
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Although analyzing the execution time for different kinds of queries is beyond this
work, we claim that our initial aim has been achieved, since all the queries used in
this experiment have been converted to single SQL queries, which run on a common
database engine (PostgreSQL). It is an interesting future work to investigate how one
can optimize the generated SQL queries.

6 Conclusion

In this paper, we have given a tiny core language for language-integrated queries which
has grouping and aggregate functions, while retaining the pleasant properties: any
closed term of flat type (a bag-of-record type whose component types are basic types)
can be normalized to a normal form, which corresponds to a single query in SQL where
subqueries are allowed.

The key idea of this study is to decouple a complex job of SQL’s GROUP BY clause:
One is grouping and aggregation which cannot be normalized but have flat types. The
other is output construction which can be normalized but may have complex types. By
this decoupling, we have succeeded in getting the properties achieved in the earlier work
for the language without grouping and aggregation. Our language is not as expressive
as the language with the full GROUP BY clause, but by simply rewriting queries using
such clauses, our language can host most such queries. To our knowledge, this work
is the first success case of (subset of) language-integrated query which has the above
pleasant property.

We have implemented our language by embedding our language Quelg in a host
language OCaml. We have shown a concrete example and the result of simplistic per-
formance test.

There are many directions for future work, among which the most important ones
are performance evaluation against larger examples, optimization of generated SQL,
and thorough comparison with other frameworks and languages. For instance, Pey-
ton Jones and Wadler [9] proposed a language with comprehensions which subsume
GROUP BY, and Cheney et al. [10] proposed a translation from nested data structures
to flat ones in the absence of GROUP BY. Investigating the relation between our work
and these works is an interesting future work.

Extending our language to cover other database primitives is also an interesting
next step. For example, Kiselyov and Katsushima studied the ORDER BY clause in
SQL [11], and it should be easy to add ORDER BY to our language.

Acknowledgments. We would like to thank Oleg Kiselyov and Kenichi Suzuki for development
of Quel and its tagless-final implementation. The second author is supported in part by JSPS
Grant-in-Aid for Scientific Research (B) No. 18H03218.
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A Normalization Rules of Quel

Normalization rules of Quel are given as follows:

Fig. 11. Normalization rules of Quela
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Abstract. Bidirectional transformations (BX) are a solution to the view
update problem and widely used for synchronizing data. The semantics
and correctness of bidirectional programs have been investigated inten-
sively during the past years, but their efficiency and optimization are not
yet fully understood. In this paper, as a first step, we study different eval-
uation methods to optimize their evaluation. We focus on the interpretive
evaluation of BX compositions because we found that these compositions
are an important cause of redundant computations if the compositions
are not right associative. For evaluating BX compositions efficiently, we
investigate two memoization methods. The first method, minBiGULm,
uses memoization, which improves the runtime of many BX programs by
keeping intermediate results for later reuse. A disadvantage is the famil-
iar tradeoff for keeping and searching values in a table. When inputs
become large, the overhead increases and the effectiveness decreases. To
deal with large inputs, we introduce the second method, xpg, that uses
tupling, lazy update and lazy evaluation as optimizations. Lazy updates
delay updates in closures and enables them to use them later. Both evalu-
ation methods were fully implemented for minBiGUL. The experimental
results show that our methods are faster than the original method of
BiGUL for the non-right associative compositions.

Keywords: Bidirectional transformation · Implementation technique ·
Efficiency · Optimization · Tupling

1 Introduction

The synchronization of data is a common problem. In the database community
this problem is known as “the view update problem” and has been investigated
for a long time [1]. Bidirectional transformation (BX) provides a systematic
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Fig. 1. Evaluating phead Fig. 2. Evaluating phead ◦̃ phead ◦̃ phead

approach to solving this problem. Consider a small BX program of phead1, which
consists of two functions: get (for getting the head of an input list) and put (for
reflecting the output to the head of the input). Figure 1 shows an example of the
bidirectional behavior of phead. Let [1, 2] be the original source s. The function
get is a projection: get of phead picks the first element of the given original
source [1, 2] and returns 1 as a view v. Supposing that the view is updated to
100, put of phead will construct a new source s′ of [100, 2] from the updated
view v′ of 100 and the original source s of [1, 2].

The composition of BX programs is a fundamental construct to build more
complex BX programs [2,3]. Let bx1 (defined by getbx1 and putbx1) and bx2
(defined by getbx2 and putbx2) be two bidirectional programs, then their compo-
sition bx1 ◦̃ bx2 is defined by

getbx1◦̃bx2 s = getbx2(getbx1 s) (1)
putbx1◦̃bx2 s v′ = putbx1s (putbx2 (getbx1 s) v′) (2)

Unlike function composition, the composition of bidirectional programs is read
left-to-right. We use this order because it is helpful to understand the behavior
if we consider data flows from left to right. One feature of this composition
is that putbx1◦̃bx2 needs to call getbx1 to compute the intermediate result for
putbx2 to use, which would introduce an efficiency problem if we compute put
for composition of many bidirectional programs. Generally, for a composition of
O(n) bidirectional programs, we need to call get for O(n2) times. To be concrete,
consider the evaluation of the following composition (which will be used as our
running example in this paper):

lp3 = (phead ◦̃ phead) ◦̃ phead

which is illustrated by Fig. 2 with the original source s being [[[1, 2], [3]], [[4]]]
and the updated view 100. To obtain the final updated source s′, put for lp3
needs to evaluate put of phead three times. The first is from i2 and v′ to obtain
i′
2, which needs to call get twice to compute i2; the second is from i1 and i′

2 to
1 The actual program is shown in the next section.



An Efficient Composition of Bidirectional Programs 161

Fig. 3. Evaluating phead ◦̃ phead ◦̃ phead by keeping complements

obtain i′
1, which needs to call get once, and the last is from s and i′

1 to obtain s′,
which is just a direct put computation.

One direct solution to avoid this repeated get computation is to compute com-
positions in a right associative manner. For instance, if we transform lp3 to rp3:

rp3 = phead ◦̃ (phead ◦̃ phead)
then the put for rp3 only needs to compute get of phead twice, one time less than
that for lp3. However, this transformation is not always easy to do. For instance,
let us consider breverse, a bidirectional version of the traditional ‘reverse’ pro-
gram for reversing a list. It is defined using bfoldr , a bidirectional version of the
traditional foldr , whose definition is shown in the last part of Sect. 2. Informally,
bfoldr is a recursive bidirectional program defined in a way like

bfoldr bx · · · = · · · (bfoldr · · · ) ◦̃ bx · · ·
where the composition is inherently left associative, and the number of compo-
sition is dynamically determined by the length of the source list. This makes
it hard to do the above transformation statically. The same efficiency problem
occurs in all BX languages.

In this paper, we make the first attempt for seriously considering the effi-
ciency of evaluating BX compositions, and solve the problem by introducing
two methods based on memoization to gain fast evaluation for (left associative)
BX compositions. The first method uses straightforward memoization: “keep-
ing intermediate states in a table and using them when needed”. This avoids
repeated get computations and improves the runtime in many cases. However,
this simple memoization needs to keep and search values in a table, which may
introduce big cost for large inputs. We explain this method in Sect. 3.

To treat large inputs, we propose the second method based on memoization:
“keeping complements in a closure and using them when needed”. Here, comple-
ments are information from sources that makes get injective, which is in turn



162 K. Tsushima et al.

needed to evaluate put. In the middle put and get of Fig. 2, we use i1, [[1, 2], [3]]
and i′

2, [100, 2] to obtain the updated source [[100, 2], [3]]. However, [1, 2] is sim-
ply replaced by [100, 2] and not used to construct the result of put. In this case
we can use [..., [3]] as a complement. The key idea of the second approach is
straightforward: Complements are smaller than intermediate states. For obtain-
ing complements, we tuple put and get, and produce a new function pg. Because
put produces new complements for get, we can shrink the size. Let us reconsider
our example phead ◦̃ phead ◦̃ phead in Fig. 3, where c1 and c2 are complements
and d1 and d2 are valid views for s and i1. Here, two points are worth noting.
First, after evaluating the leftmost pg, the original source s need not be kept
because its complete contents are in c1 and i1. Second, the complements are
smaller than the intermediate states in Fig. 2. Actually, this simple pg alone is
not yet effective for left associative compositions because it requires two more
puts, which can be seen on the right side of Fig. 3. To achieve an efficient evalu-
ation, we combine two techniques, lazy update and lazy evaluation. We explain
this second method and all optimizations in Sect. 4.

Both methods have been fully implemented for minBiGUL, a core bidirec-
tional language, which is a subset of the full bidirectional language BiGUL. The
experimental results show that our methods are much faster than the origi-
nal evaluation strategy. We give detailed experimental results in Sect. 5, discuss
related work in Sect. 6, and conclude in Sect. 7.

Although we will introduce the basics of bidirectional transformation in the
next session, it is not complete due to space limitations. Please refer BiGUL
papers [4,5] for the details if needed.

2 Bidirectional Programming Language: minBiGUL

The target language in this paper, minBiGUL, is a very-well behaved subset of
BiGUL, which is a simple, yet powerful putback-based bidirectional language.

BiGUL supports two transformations: a forward transformation get produc-
ing a view from a source and a backward transformation put taking a source and
a modified view to produce an updated source. Intuitively, if we have a BiGUL
program bx, these two transformations are the following functions:

get [[bx]] : s → v, put [[bx]] : s ∗ v → s

BiGUL is well-behaved [6] since two functions put [[bx]] and get [[bx]] satisfy
the round-trip laws as follows:

put [[bx]] s (get [[bx]] s) = s [GetPut]

get [[bx]] (put [[bx]] s v) = v [PutGet]

The GetPut law means that if there is no change to the view, there should
be no change to the source. The PutGet law means that we can recover the
modified view by applying the forward transformation to the updated source.
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minBiGUL inherits from BiGUL both transformations, put and get, which
satisfy the two laws above. Because we restrict the ‘adaptive case’ of BiGUL in
minBiGUL, put and get satisfy one more law, namely the PutPut law [7]:

put [[bx]] (put [[bx]] s v′) v = put [[bx]] s v [PutPut]

The PutPut law means that a source update should overwrite the effect of
previous source updates. Because minBiGUL satisfies all three laws, GetPut,
PutGet and PutPut, it is very well-behaved [7].

2.1 Syntax

The syntax of minBiGUL is briefly written as follows:

bx ::= Skip h | Replace | Prod bx1 bx2 | RearrS f1 f2 bx | RearrV g1 g2 bx

| Case condsv conds bx1 bx2 | Compose bx1 bx2

A minBiGUL program is either a skip of a function, a replacement, a prod-
uct of two programs, a source/view rearrangement, a case combinator (without
adaptive cases), or a composition of two programs. We use numbers, pairs and
lists to construct the program inputs including the source and/or the view.

For source/view rearrangement, BiGUL uses a lambda expression to express
how to deconstruct as well as reconstruct data. It is a kind of bijection. How-
ever, to be able to implement it in OCaml, the environment used for developing
minBiGUL and solutions in the paper, we need to require two functions which
one is the inverse of the other. In the above syntax, f2 = f−1

1 and g2 = g−1
1 .

To help make demonstration more direct, we provide the following alterna-
tives representation: Prod bx1 bx2 ≡ bx1 × bx2, Compose bx1 bx2 ≡ bx1 ◦ bx2.
The compose symbol ◦̃ used in the previous section will be replaced with the
more common one, ◦. In general, ◦ has a higher priority than ×. Their asso-
ciativity precedence can be either left or right or mixture, but are not set by
default. We need to explicitly write programs that use these operators.

2.2 Semantics

The semantics of put and get is shown in Definitions 1 and 2, respectively. Instead
of using the name v′ for the updated view in the put direction, like Figs. 1, 2 and
3, we simply use v below. The later definitions also follow this convention.
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Definition 1. put [[bx]] s v
put [[Skip h]] s v =

if h s = v then s else undefined
put [[Replace]] s v = v
put [[bx1 × bx2]] (s1, s2) (v1, v2) =

(put [[bx1]] s1 v1, put [[bx2]] s2 v2)
put [[RearrS f1 f2 bx]] s v =

f2 (put [[bx]] (f1 s) v)
put [[RearrV g1 g2 bx]] s v =

put [[bx]] s (g1 v)
put [[Case condsv conds bx1 bx2]] s v =

if condsv s v
then s′ ⇐ put [[bx1]] s v
else s′ ⇐ put [[bx2]] s v
fi conds s′; return s′

put [[bx1 ◦ bx2]] s v =
put [[bx1]] s (put [[bx2]] (get [[bx1]] s) v)

Definition 2. get [[bx]] s
get [[Skip h]] s =

h s
get [[Replace]] s = s
get [[bx1 × bx2]] (s1, s2) =

(get [[bx1]] s1, get [[bx2]] s2)
get [[RearrS f1 f2 bx]] s =

get [[bx]] (f1 s)
get [[RearrV g1 g2 bx]] s =

g2 (get [[bx]] s)
get [[Case condsv conds bx1 bx2]] s =

if conds s
then v′ ⇐ get [[bx1]] s
else v′ ⇐ get [[bx2]] s
fi condsv s v′; return v′

get [[bx1 ◦ bx2]] s =
get [[bx2]] (get [[bx1]] s)

The two definitions use if-then-else-fi statements to define the semantics of
put [[Case]] and get [[Case]], where ⇐ denotes an assignment. This statement is
useful to describe many functions related to Case in this paper. Statement (if E1
then X1 else X2 fi E2) means “if the test E1 is true, the statement X1 is executed
and the assertion E2 must be true, otherwise, if E1 is false, the statement X2
is executed and the assertion E2 must be false.” If the values of E1 and E2 are
distinct, the if-then-else-fi structure is undefined. We can write the equivalent
if-then-else statement as follows:

if E1 then X1 else X2 fi E2; S

≡ if E1 = true then {X1; if E2 = true then S else undefined}
else {X2; if E2 = false then S else undefined}

Also in the semantics of put [[Case]] and get [[Case]], the return statements
are used to express clearly the value of functions. Variables s′ and v′ wrapped
in these returns are necessary for checking the fi conditions.

2.3 Examples

As an example of minBiGUL program, consider the definition of phead:

phead = RearrS f1 f2 bxs where: f1 = λ(s :: ss).(s, ss), f2 = λ(s, ss).(s :: ss),
bxs = RearrV g1 g2 bxv where: g1 = λv.(v, ()), g2 = λ(v, ()).v,

bxv = Replace × (Skip (λ .())

The above program rearranges the source, a non-empty list, to a pair of its
head element s and its tail ss, and the view to a pair (v, ()), then we can use v
to replace s and () to keep ss. Intuitively, put [[phead]] s0 v0 returns a list whose
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head is v0 and tail is the tail of s0, and get [[phead]] s0 returns the head of the list
s0. For instance, put [[phead]] [1, 2, 3] 100 = [100, 2, 3] and get [[phead]] [1, 2, 3] = 1.
If we want to update the head element of the head element of a list of lists by
using the view, we can define a composition like phead ◦ phead. For example:

put [[phead ◦ phead]] [[1, 2, 3], [ ], [4, 5]] 100 = [[100, 2, 3], [ ], [4, 5]]
get [[phead ◦ phead]] [[1, 2, 3], [ ], [4, 5]] = 1

In the same way with phead, we can define ptail in minBiGUL. put [[ptail]] s v
accepts a source list s and a view list v to produce a new list by replacing the
tail of s with v. get [[ptail]] s returns the tail of the source list s

Next let us look at another more complex example, bsnoc:

bsnoc = Case condsv conds bx1 bx2 where:
condsv = λs.λv.(length v = 1), conds = λs.(length s = 1)
bx1 = Replace, bx2 = RearrS f1 f2 bxs where:
f1 = f−1

2 = λ(x : y : ys).(y, (x : ys)),
bxs = RearrV g1 g2 bxv where:
g1 = g−1

2 = λ(v : vs).(v, vs), bxv = Replace × bsnoc

put [[bsnoc]] requires the source s and the view v are non-empty lists and the
length of v is not larger than the length of s. If condsv is true, i.e. v is singleton,
a replacement will be executed to produce a new list which should be equal to v.
Because the length of the new list is 1, the exit condition conds comes true, so
we obtain the updated source. If v is a list of more than one elements, there will
be two rearrangements on the source and the view before conducting a product.
The program rearranges the source x : y : ys to a pair of its second element
y and a list x : ys created from the remaining elements in the original order,
and the view to a pair of its head and tail. Then we can use y to replace the
head of the view and pair (x : ys) with the tail of the view to form the input of
a recursive call bsnoc. The obtained source update in this case should be non-
singleton since the value of the exit condition conds needs to be false. We omit
the behavior description of get [[bsnoc]] that accepts a source list s, checks conds

to know how to evaluate the view v, then does one more checking, condsv, before
resulting. Intuitively, put [[bsnoc]] s0 v0 produces a new list by moving the last
element of v0 to its first position if the length of v0 is not larger than the length
of s0. get [[bsnoc]] s0 returns another list by moving the first element of the list
s0 to its end position. For instance, put [[bsnoc]] [1, 2, 3] [4, 5, 6] = [6, 4, 5] and
get [[bsnoc]] [1, 2, 3] = [2, 3, 1].

Now, let us see the minBiGUL definition of bfoldr which is a putback function
of an important higher-order function on lists, foldr:

bfoldr bx = Case condsv conds bx1 bx2 where:
condsv = λ(s1, s2).λv.(s1 = [ ]), conds = λ(s1, s2).(s1 = [ ])
bx1 = RearrV g1 g2 bxv where:

g1 = g−1
2 = λ[v].(v, [ ]), bxv = (Skip (λ .())) × Replace
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bx2 = RearrS f1 f2 bxs where:
f1 = f−1

2 = λ((x : xs), e).(x, (xs, e)), bxs = ((Replace × bfoldr bx) ◦ bx)

If we think that a minBiGUL program bx has a type of MinBiGUL s v, the
type of bfoldr will be look like MinBiGUL (a, b) b → MinBiGUL ([a], b) b. You
can easily find the similarity between the above definition of bfoldr with the
following definition of foldr:

foldr :: (a → b → b) → b → [a] → b

foldr f e [ ] = e

foldr f e (x : xs) = f x (foldr f e xs)

Each branch in a case of bfoldr corresponds to a pattern of foldr. In bfoldr,
the composition is inherently left associative, and the number of composition is
dynamically determined by the length of the source list. Because ◦ has a higher
priority than ×, it is in general not possible to transform bfoldr from the left
associative composition style to the right one.

Using foldr, we can define other functions like reverse = foldr snoc [ ]. With
bfoldr, we can also write the bidirectional version breverse as follows:

breverse = RearrS f1 f2 bx where:
f1 = f−1

2 = λs → (s, [ ]), bx = bfoldr bsnoc

3 Adding Memoization: minBiGULm

When evaluating the composition of several BX programs, the same gets are
evaluated repeatedly. This problem was illustrated in Fig. 2. To avoid reeval-
uating gets, and as our first approach to avoid this inefficiency, we introduce
memoization in the minBiGUL interpreter. To keep it simple, the intermediate
state of a composition is saved in a key-value table where the key is a pair of
program bx and source s, and the value is the result of evaluating get [[bx]] s.
Later the value in the table is used instead of recomputing it.

The memoizing version, minBiGULm, needs only two modifications: getm
and putm (Definitions 3 and 4).

Definition 3. Memoization version of put

putm [[bx]] s v = match bx with
| bx1 ◦ bx2 → putm [[bx1]] s (putm [[bx2]] (getm [[bx1]] s) v)
| → similar to put



An Efficient Composition of Bidirectional Programs 167

Definition 4. Memoization version of get

getm [[bx]] s = match bx with
| bx1 ◦ bx2 →
try (Hashtbl.find tableg (bx, s))
with Not found →

i ⇐ getm [[bx1]] s; Hashtbl.add tableg (bx1, s) i;
v ⇐ getm [[bx2]] i; Hashtbl.add tableg (bx2, i) v;
Hashtbl.add tableg (bx, s) v

v

| → similar to get

The evaluation of putm [[bx1 ◦ bx2]] s v includes two recursive calls of putm
and an external call of getm, which is relatively similar to the evaluation of
put [[bx1 ◦ bx2]] s v. Meanwhile, the evaluation of getm [[bx1 ◦ bx2]] s does not
merely invoke getm recursively twice. In case that bx is a composition, the key
(bx, s) needs to be looked up in the table and the corresponding value would
be used for the next steps in the evaluation. If there is no such key, the value
of the intermediate state i and the value of get [[bx]] s in v will be calculated.
These values along with the corresponding keys will also be stored in the table
where the interpreter may later leverage instead of reevaluating some states.
Note in particular that the interpreter does not save all states when evaluating
a program, only the intermediate states of a composition.

4 Tupling and Lazy Updates: xpg

4.1 Tupling: pg

Another solution for saving intermediate states is tupling. If put and get are
evaluated simultaneously, there is potential to reduce the number of recomputed
gets. The following function, pg, accepts the pair of a source and a view as the
input to produce a new pair that contains the actual result of the corresponding
minBiGUL program.

Definition 5. pg [[bx]](s, v) = (put [[bx]] s v, get [[bx]] s)

Now, let us see how we construct pg recursively.

pg [[Skip h]](s, v) 1= (if h s = v then s else undefined, h s)
2= if h s = v then (s, h s) else undefined
3= if h s = v then (s, v) else undefined

The first equality is simply based on the definitions of pg, put [[Skip h]] and
get [[Skip h]]. The second one tuples two results of put and get in the body of
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the if-expression. This is a trick since in some cases, the result of pg may be
undefined although the result is not undefined when evaluating get [[Skip h]].
The last equality is a function application.

pg [[Replace]](s, v) = (v, s)
pg [[bx1 × bx2]]((s1, s2), (v1, v2))

1= ((put [[bx1]] s1 v1, put [[bx2]] s2 v2), (get [[bx1]] s1, get [[bx2]] s2))
2= (s′

1, v′
1) ⇐ pg [[bx1]](s1, v1);

(s′
2, v′

2) ⇐ pg [[bx2]](s2, v2);
((s′

1, s′
2), (v′

1, v′
2))

pg [[RearrS f1 f2 bx]](s, v) 1= (f2 (put [[bx]] (f1 s) v), get [[bx]] (f1 s))
2= (s′, v′) ⇐ pg [[bx]](f1 s, v);

(f2 s′, v′)
pg [[RearrV g1 g2 bx]](s, v) 1= (put [[bx]] s (g1 v), g2 (get [[bx]] s))

2= (s′, v′) ⇐ pg [[bx]](s, g1 v);
(s′, g2 v′)

Constructions of pg for the replacement, the product and the source/view
rearrangements are simple. We just pair put and get, and change them to pg.
The values of these pg functions are obtained from the final expression in the
corresponding sequences. We only use the return keyword to express explicitly
the evaluated value of a function in the situation of Case.

pg [[Case condsv conds bx1 bx2]](s, v)
1= (if condsv s v if conds s

then s′ ⇐ put [[bx1]] s v then v′ ⇐ get [[bx1]] s
else s′ ⇐ put [[bx2]] s v else v′ ⇐ get [[bx2]] s
fi conds s′; return s′ , fi condsv s v′; return v′)

2= if condsv s v && conds s then
(s′, v′) ⇐ (put [[bx1]] s v, get [[bx1]] s);
if conds s′ && condsv s v′ then return (s′, v′) else undefined

else if condsv s v && not (conds s) then
(s′, v′) ⇐ (put [[bx1]] s v, get [[bx2]] s);
if conds s′ && not (condsv s v′) then return (s′, v′) else undefined

else if not (condsv s v) && conds s then
(s′, v′) ⇐ (put [[bx2]] s v, get [[bx1]] s);
if not (conds s′) && condsv s v′ then return (s′, v′) else undefined

else if not (condsv s v) && not (conds s) then
(s′, v′) ⇐ (put [[bx2]] s v, get [[bx2]] s);
if not (conds s′) && not (condsv s v′) then return (s′, v′) else undefined

3= (∗ with restriction ∗)
if condsv s v && conds s
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then (s′, v′) ⇐ pg [[bx1]](s, v)
else (s′, v′) ⇐ pg [[bx2]](s, v)
fi conds s′ && condsv s v′; return (s′, v′)

A restriction for pg [[Case]] needs to be introduced here. We know that there
is one entering condition and one exit condition when evaluating put [[Case]] as
well as get [[Case]]. If a tupling occurs, there will be 4 combinations from these
conditions. This means two entering conditions of put [[Case]] and get [[Case]] are
not always simultaneously satisfied. The evaluated branches are distinct in the
put and get directions for combinations ((condsv s v) && (not(conds s))) and
((not(condsv s v)) && (conds s)), which are restricted in this paper. Because they
evaluate different bx for put and get, we can not evaluate them efficiently. This
does not happen for the others which is used in the construction of pg [[Case]].

pg [[bx1 ◦ bx2]](s, v)
1= (put [[bx1]] s (put [[bx2]] (get [[bx1]] s) v), get [[bx2]] (get [[bx1]] s))
2= v1 ⇐ get [[bx1]] s; 3= (s1, v1) ⇐ pg [[bx1]](s, dummy);

(s2, v2) ⇐ pg [[bx2]](v1, v); (s2, v2) ⇐ pg [[bx2]](v1, v);
(s3, v3) ⇐ pg [[bx1]](s, s2); (s3, v3) ⇐ pg [[bx1]](s, s2);

(s3, v2) (s3, v2)
4= (s1, v1) ⇐ pg [[bx1]](s, dummy);

(s2, v2) ⇐ pg [[bx2]](v1, v);
(s3, v′

3) ⇐ pg [[bx1]](s1, s2);
(s3, v2)

The construction of pg [[bx1 ◦ bx2]] is the most important part in the pg
function. The first two equalities comes from mentioned definitions and some
basic transformations. The third one rewrites v1 ⇐ get [[bx1]] s into (s1, v1) ⇐
pg [[bx1]](s, dummy). This is possible when we consider get [[bx1]] s as the second
element of pg [[bx1]](s, dummy) where dummy is a special value that makes the
put [[bx1]] valid. Since there is no real view, this dummy is necessary to pair
with the original source s to form the input of put [[bx1]]. In general, dummy
depends on the source s, the view v and/or the program bx1. Programmers
can be required to give a way to construct dummy, but it may be inessential
for ill-typed systems where choosing dummy as v is one of the easiest ways to
meet our expectation. That setting is used in our experiments. The last equality
changes from (s3, v3) ⇐ pg [[bx1]](s, s2) to (s3, v′

3) ⇐ pg [[bx1]](s1, s2), where s
and v3 are replaced with s1 and v′

3 respectively. Because s1 is a source update of
put [[bx1]] s dummy, so under the PutPut law, it is possible to substitute s by
s1. The substitution of v3 by v′

3 is simply replacing the variable name since v3
and v′

3 hold different results of get [[bx1]] s and get [[bx1]] s1 respectively. Because
both variables are no longer used later, this substitution does not affect the
outcome of the function.
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4.2 Lazy Update: cpg

When evaluating pg [[bx1 ◦ bx2]], there are three pg calls, of which twice for
pg [[bx1]] and once for pg [[bx2]]. If a given program is a left associative com-
position, the number of pg calls will be exponential. Therefore, the runtime
inefficiency of pg for left associative BX programs is inevitable. To solve that,
we introduce a new function, cpg, accumulates updates on the source and the
view. cpg[[bx]](ks, kv, s, v) is an extension of pg [[bx]](s, v) where ks and kv are
continuations used to hold the modification information, and s and v are used
to keep evaluated values same as pg. The output of this function is a 4-tuple
(ks, kv, s, v). To be more convenient for presenting the definition of cpg as well
as the other functions later, we provide some following utility functions:
fst = λ(x1, x2).x1, snd = λ(x1, x2).x2, con = λks1.λks2.λx.((ks1 x), (ks2 x))

Definition 6. cpg[[bx]](ks, kv, s, v)

cpg[[Skip h]](ks, kv, s, v) = if h s = v then (ks, kv, s, v) else undefined
cpg[[Replace]](ks, kv, s, v) = (kv, ks, v, s)
cpg[[bx1 × bx2]](ks, kv, s, v) =

(ks1, kv1, s1, v1) ⇐ cpg[[bx1]](fst ◦ ks, fst ◦ kv, fst s, fst v);
(ks2, kv2, s2, v2) ⇐ cpg[[bx2]](snd ◦ ks, snd ◦ kv, snd s, snd v);

(con ks1 ks2, con kv1 kv2, (s1, s2), (v1, v2))
cpg[[RearrS f1 f2 bx]](ks, kv, s, v) =

(ks′, kv′, s′, v′) ⇐ cpg[[bx]](f1 ◦ ks, kv, f1 s, v);
(f2 ◦ ks′, kv′, s′, v′)

cpg[[RearrV g1 g2 bx]](ks, kv, s, v) =
(ks′, kv′, s′, v′) ⇐ cpg[[bx]](ks, g1 ◦ kv, s, g1 v);

(ks′, g2 ◦ kv′, ks′, g2 v′)
cpg[[Case condsv conds bx1 bx2]](ks, kv, s, v) =

if condsv s v && conds s

then (ks′, kv′, s′, v′) ⇐ cpg[[bx1]](ks, kv, s, v)
else (ks′, kv′, s′, v′) ⇐ cpg[[bx2]](ks, kv, s, v)
fi conds s′ && condsv s v′; return (ks′, kv′, s′, v′)

cpg[[bx1 ◦ bx2]](ks, kv, s, v) =
(ks1, kv1, s1, v1) ⇐ cpg[[bx1]](ks, id, s, dummy);
(ks2, kv2, s2, v2) ⇐ cpg[[bx2]](kv1, kv, v1, v);

(ks1 ◦ ks2, kv2, ks1 s2, v2)

In the places where third and/or fourth argument (s and v) are updated by
applications, the computations are also accumulated in ks and/or kv. Thanks to
these accumulations, there are only two cpg calls in cpg [[bx1 ◦ bx2]]. The first call
cpg [[bx1]] requires parameter (ks, id, s, dummy) where s and ks are corresponding
to the source and the update over source. Since there is no real view here, we
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need a dummy same as pg. Then the continuation updating on this dummy
should be initiated as the identity function. The first cpg call is assigned to a
4-tuple (ks1, kv1, s1, v1). In the next assignment, a 4-tuple (ks2, kv2, s2, v2) is
assigned by the second cpg call which uses the input as (kv1, kv, v1, v) where
kv1 and v1 are obtained from the result of the first assignment, and kv and v
come from the input. It is relatively similar to the second pg call assignment
in pg [[bx1 ◦ bx2]]. After two cpg calls, a function application, ks1 s2, is used to
produce the updated source instead of calling recursively one more time like in
pg [[bx1 ◦ bx2]].

Suppose that we have a source s0 and a view v0. The pair of the updated
source and view (s, v) where s = put [[bx]] s0 v0 and v = get [[bx]] s0 can be
obtained using cpg as follows:

(ks, kv, s, v) ⇐ cpg[[bx]](λ .s0, id, s0, v0);
(s, v)

In general, the beginning of a continuation should be the identity func-
tion. However, to be able to use the function application to get the result of
cpg [[bx1 ◦ bx2]], the accumulative function on the source needs to be initiated as
the constant function from that source. This constant function helps to retain
the discarded things in the source.

The result pair (s, v) obtained from cpg as above should be same with the
result of pg [[bx]](s0, v0). More generally, we have the following relationship:

cpg[[bx]](ks, kv, s, v) = pg [[bx]](ks s, kv v)
Note that, in cpg [[bx1◦bx2]], s1 is redundant because this evaluated variable is

not used in the later steps. In the next session, we will optimize this redundancy.

4.3 Lazy Computation: kpg
The problem for cpg lies in redundant computations during the evaluation. To
prevent such redundant computations from occurring, we introduce an exten-
sion named kpg. While cpg evaluates values eagerly, kpg does the opposite.
Every value is evaluated lazily in a computation of kpg. The input of kpg [[bx]]
is expanded to a 6-tuple (ks, kv, lks, lkv, s, v) where ks and kv keep the modifi-
cation information same as cpg, s and v hold evaluated values, and lks and lkv
are used for lazy evaluation of actual values. The output of this function is also
a 6-tuple (ks, kv, lks, lkv, s, v).

Suppose that we have a source s0 and a view v0. The pair of the updated
source and view (s, v) where s = put [[bx]] s0 v0 and v = get [[bx]] s0 can be
obtained using kpg as follows:

(ks, kv, lks, lkv, s, v) ⇐ kpg[[bx]](λ .s0, id, id, id, s0, v0);
(lks s, lkv v)

The beginning of accumulative functions lks and lkv are set as the identity
function, while ks and kv are initiated as the same with the corresponding ones
in cpg. The relationship among kpg, cpg and pg can be shown as follows:

kpg[[bx]](ks, kv, lks, lkv, s, v) = cpg[[bx]](ks ◦ lks, kv ◦ lkv, s, v)
= pg [[bx]](ks (lks s), kv (lkv v))
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Definition 7. kpg[[bx]](ks, kv, lks, lkv, s, v)

kpg[[Skip h]](ks, kv, lks, lkv, s, v) =
es ⇐ lks s; ev ⇐ lkv v;
if h es = ev then (ks, kv, id, id, es, ev) else undefined

kpg[[Replace]](ks, kv, lks, lkv, s, v) = (kv, ks, lkv, lks, v, s)
kpg[[bx1 × bx2]](ks, kv, lks, lkv, s, v) =

es ⇐ lks s; ev ⇐ lkv v;
(ks1, kv1, lks1, lkv1, s1, v1) ⇐

kpg[[bx1]](fst ◦ ks, fst ◦ kv, fst, fst, es, ev);
(ks2, kv2, lks2, lkv2, s2, v2) ⇐

kpg[[bx2]](snd ◦ ks, snd ◦ kv, snd, snd, es, ev);
(con ks1 ks2, con kv1 kv2,

con (lks1 ◦ fst) (lks2 ◦ snd), con (lkv1 ◦ fst) (lkv2 ◦ snd),
(s1, s2), (v1, v2))

kpg[[RearrS f1 f2 bx]](ks, kv, lks, lkv, s, v) =
(ks′, kv′, lks′, lkv′, s′, v′) ⇐ kpg[[bx]](f1 ◦ ks, kv, f1 ◦ lks, lkv, s, v);

(f2 ◦ ks′, kv′, f2 ◦ lks′, lkv′, s′, v′)
kpg[[RearrV g1 g2 bx]](ks, kv, lks, lkv, s, v) =

(ks′, kv′, lks′, lkv′, s′, v′) ⇐ kpg[[bx]](ks, g1 ◦ kv, lks, g1 ◦ lkv, s, v);
(ks′, g2 ◦ kv′, lks′, g2 ◦ lkv′, s′, v′)

kpg[[Case condsv conds bx1 bx2]](ks, kv, lks, lkv, s, v) =
es ⇐ lks s; ev ⇐ lkv v;
if condsv es ev && conds es

then (ks′, kv′, lks′, lkv′, s′, v′) ⇐ kpg[[bx1]](ks, kv, id, id, es, ev)
else (ks′, kv′, lks′, lkv′, s′, v′) ⇐ kpg[[bx2]](ks, kv, id, id, es, ev)
fi conds (lks′ s′) && condsv es (lkv′ v′); return (ks′, kv′, lks′, lkv′, s′, v′)

kpg[[bx1 ◦ bx2]](ks, kv, lks, lkv, s, v) =
(ks1, kv1, lks1, lkv1, s1, v1) ⇐ kpg[[bx1]](ks, id, lks, id, s, dummy);
(ks2, kv2, lks2, lkv2, s2, v2) ⇐ kpg[[bx2]](kv1, kv, lkv1, lkv, v1, v);

(ks1 ◦ ks2, kv2, ks1 ◦ lks2, lkv2, s2, v2)

In kpg, basically, functions for the updates are kept (but not evaluated) in
lks and lkv. In kpg [[RearrS]] and kpg [[RearrV ]], f1 and g1 are accumulated in
lks and lkv. The kept functions are evaluated in kpg [[Skip]] and kpg [[Case]] by
applications of lks s and lkv v. At the same time, the third and fourth argu-
ment of recursive calls are updated with the identity function. This evaluation is
needed because these definitions require the actual values, es and ev. Thanks to
this update, accumulation in kpg, lks1 and s1 in kpg [[bx1◦bx2]] are not evaluated
as much as possible.
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Additionally we did two optimizations in kpg. The first is in kpg [[bx1 × bx2]].
Because es and ev are not used in this definition, we do not need to evaluate.
However, if we accumulate lks and lkv, both might be evaluated independently
in two assignments using kpg [[bx1]] and kpg [[bx2]]. This includes the same com-
putation. To remove duplicate evaluations, we evaluate actual values es and
ev before calling kpg [[bx1]] and kpg [[bx2]]. The second is in kpg [[Case]] and not
shown in the definition. We need to evaluate lks′ s′ and lkv′ v′ to check the fi
condition before returning the 6-tuple. Such evaluations can be done lazily to
make programs run faster. We use the above small optimizations in our imple-
mentation.

4.4 Combination of pg and kpg: xpg

The purpose we introduced cpg and kpg is to avoid redundant recursive call and
keep the dropped parts from the source in a function. On the other hand, these
accumulations in cpg and kpg will be an overhead if they are not necessary. The
problem in pg [[bx1 ◦ bx2]] is that there are two recursive calls of pg [[bx1]] and
there is no problem in the recursive call of pg [[bx2]]. Therefore, we combine pg
and kpg to take advantage of both approaches.

Definition 8. xpg [[bx]](s, v)

xpg [[bx]](s, v) = match bx with
| bx1 ◦ bx2 →

(ks1, kv1, lks1, lkv1, s1, v1) ⇐ kpg[[bx1]](λ .s, id, id, id, s, dummy);
(s2, v2) ⇐ xpg [[bx2]](lkv1 v1, v);

(ks1 s2, v2)
| → similar to pg

Similar to pg, xpg [[bx]] accepts a pair of the source and the view (s, v) to
produce the new pair. The constructions of xpg [[bx]] when bx is not a composition
are the same as the ones of pg [[bx]]. Note that, xpg is called recursively instead
of pg. For xpg [[bx1 ◦bx2]], we use two function calls and a function application to
calculate the result. The first call and the function application come from kpg,
while the second call is based on pg.

5 Experiments

We have fully implemented and tested all methods 2,3 described in the previous
sections. Our target language is untyped. Some dummies used for pg, cpg, kpg
and xpg are replaced with the current updated views. This helps a program in
the put direction valid.
2 All experiments on macOS 10.14.6, processor Intel Core i7 (2.6 GHz), RAM 16 GB

2400 MHz DDR4, OCaml 4.07.1. The OCaml runtime system options and garbage
collection parameters are set as default.

3 The implementation is available: https://github.com/k-tsushima/pgs.

https://github.com/k-tsushima/pgs
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5.1 Test Cases

We have selected seven test cases (Table 1) to represent non-trivial cases of prac-
tical significance. The test cases use left associative compositions because we
focus on this kind of inefficiency in this paper. In the last two columns, s and v
are the updated source and view, respectively. They are produced by applying
put and get to the original source s0 and view v0. That is, s = put [[bx]] s0 v0 and
v = get [[bx]] s0, where bx is the program indicated in the second column of the
table. Results s and v are independent of the associativity of the composition.

Table 1. Composition test cases (number of compositions = n)

No Name Type Input Output
s0 v0 s v

1 lcomp-phead-ldata Straight line [[. . . [1] . . .]]
︸ ︷︷ ︸

n+1 times

100 [[. . . [100] . . .]]
︸ ︷︷ ︸

n+1 times

1

2 lcomp-ptail Straight line [1,. . .,n+1] [1,. . .,10] s0 @ v0 [ ]
3 lcomp-ptail-ldata Straight line [L, . . . , L]

︸ ︷︷ ︸

n+1 times

[L, . . . , L]
︸ ︷︷ ︸

10 times

[L, . . . , L]
︸ ︷︷ ︸

n+11 times

[ ]

4 lcomp-bsnoc Straight line [1,. . .,n-1] [1,. . .,n-1] [1,. . .,n-1] [1,. . .,n-1]
5 lcomp-bsnoc-ldata Straight line [L, . . . , L]

︸ ︷︷ ︸

n-1 times

[L, . . . , L]
︸ ︷︷ ︸

n-1 times

[L, . . . , L]
︸ ︷︷ ︸

n-1 times

[L, . . . , L]]
︸ ︷︷ ︸

n-1 times
6 breverse Recursion [1,. . .,n] [1,. . .,n] [n,. . .,1] [n,. . .,1]
7 breverse-ldata Recursion [L, . . . , L]

︸ ︷︷ ︸

n times

[L, . . . , L]
︸ ︷︷ ︸

n times

[L, . . . , L]
︸ ︷︷ ︸

n times

[L, . . . , L]
︸ ︷︷ ︸

n times

The first five test cases (1–5) are n straight-line (non-recursive) compositions
of the same n+1 programs. The prefix lcomp in the name of a test case indicates
that the textual compositions are left associative. The suffix ldata indicates that
the input size is considered large. The symbol L in the input column stands for a
list L = [T, . . . , T ] with T = [A, . . . , A] of length 10 and A = [1, . . . , 5]. They are
only intended to generate test data that is large enough for measuring results.

We introduced the composition phead ◦ phead earlier in Sect. 1. The com-
position of many pheads works similarly. The head of a head element inside a
deeply nested list, which is the source, is updated by the changed view. Because
of the type of the source, this program is categorized as a ldata case.

Next, we briefly explain the behavior of the remaining compositions in
Table 1.

The composition of many ptails, in the put direction, replaces a part of the
tail of the source list by the view list and, in the get direction, returns such a
tail from the source.

The composition of many bsnocs, in the put direction, creates a permutation
of the view list if its length is not larger than the length of the source list and,
in the get direction, produces a permutation of the source list.
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Fig. 4. Evaluation time (secs) against number of compositions

breverse is defined in terms of bfoldr, that appeared in Sect. 2. In the put
direction, it produces a reverse of the view list if its length is not larger than the
length of the source list and, in the get direction, produces a reverse of the source
list. Note that compositions are by the recursions of breverse and the number of
compositions are dynamically determined by the length of the source list.

5.2 Results

Figure 4 shows the evaluation times for each of the seven test cases using the
three methods: put in minBiGUL, putm in minBiGULm and xpg. We also did
similar experiments with pg, cpg and kpg, but their results are slower than the
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corresponding ones of xpg. The slowness was caused by the exponential number
of pg calls in the case of pg, redundant evaluations (cpg), and redundant overhead
for constructing closures (kpg). Therefore we simply omit these results in Fig. 4.
As we all know, put works poorly for left associative compositions because of
the number of reevaluated gets. The left part of the figure contains tests using
not-large inputs, and we see that putm is the fastest method for them. However
if the input size is large enough, in the cases of the right part of the figure, putm
will be slower quickly due to time for manipulating data in the table. At that
time, xpg is the most effective method.

Note that this result concerns BX programs that use many compositions. If
the number of compositions is small, the original put without memoization will
be fastest because of the overhead for memoization (putm) and the overhead for
keeping complements in closures (xpg).

6 Related Work

Since the pioneering work of lens [7], many BX languages have been proposed
[2–4,8–12]. Although much progress has been made on the semantics and cor-
rectness of BX programs for the past years, as far as we are aware, little work
has been done on optimization of BX programs [13]. Anjorin et al. introduces
the first benchmark4 for BX languages and compared them [14], but a system-
atic improvement for practical implementation of BX languages is still missing.
This paper shows the first attempt of improving efficiency of BX composition
evaluation.

The baseline of this work is the BX language BiGUL [4,5], and we compare
BiGUL’s method (in Sect. 2) with our methods (in Sects. 3 and 4). From experi-
mental results of left associative BX composition programs, we can see that our
memoization methods are faster than the original BiGUL’s evaluation method.
While we focus on BiGUL, our methods are general and should be applicable to
other BX languages.

Our work is related to many known optimization methods for unidirectional
programs. Memoization [15,16] is a technique to avoid repeated redundant com-
putation. In our case, we show that two specific memoization methods can be
used for bidirectional programs. To deal with inefficiency due to compositions,
many fusion methods have been studied [17] to merge a composition of two
(recursive) programs into one. However, under the context of bidirectional pro-
grams, we need to consider not only compositions of recursive programs but
also compositions inside a recursive program (as we have seen in bfoldr). This
paper focuses on the composition inside a recursion, where compositions are pro-
duced dynamically at runtime. We tackled the problem by using tupling [18],
lazy update and lazy computation [19,20].

4 The BX programs in their benchmark are basically BX programs without composi-
tion. Because we focus on the BX programs that include many compositions, their
benchmark is not applicable for our evaluation.
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7 Conclusion and Future Work

In this paper, we focus on efficiency of composition of BX programs. To achieve
fast evaluation, we introduce two different methods using memoization. From
the experimental results of left associative BX composition programs, we know
that xpg is fastest method if input size is large and putm is fastest for other left
associative programs. This shows that if programmers choose one method based
on their BX programs and inputs, they can use an efficient evaluation method.

We will continue our work on the following four points. First is overcom-
ing our limitation in xpg. In xpg, there are two limitations: only for very-well-
behaved programs and restriction for pg [[Case]] in Sect. 4.1. To be a practical
evaluation method, an extension of the target language is needed. After exten-
sion of the language, we can evaluate more various programs for experimental
results. Second is introducing an automatic analysis about BX programs and
inputs to choose the best evaluation method. Currently, programmers have to
choose the evaluation method by themselves based on their BX programs and
inputs. If this analysis is achieved, we can reduce programmers’ burden. Third
is introducing a type system to our target language, especially the datatype of
sources and view. If we introduce this, we can avoid runtime errors like statically-
typed functional languages. For this, we need to investigate more about how to
construct dummy values because the current definition used in our experiments
will cause type errors. Fourth is using a lazy language. Although we used a strict
language OCaml in this paper, if we use a lazy language, we might get laziness
for free.
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Abstract. We discuss a DSL intended for use in an education setting
when teaching the writing of interactive Haskell programs to students.
The DSL was previously presented as a small formal language of speci-
fications capturing the behavior of simple console I/O programs, along
with a trace-based semantics. A prototypical implementation also exists.
When going for productive application in an actual course setting, some
robustness and usability questions arise. For example, if programs writ-
ten by students are mechanically checked and graded by the implemen-
tation, what guarantees are there for the educator that the assessment is
correct? Does the implementation really agree with the on-paper seman-
tics? What else can inform the educator’s writing of a DSL expression
when developing a new exercise task? Which activities beyond testing
of student submissions can be mechanized based on the specification
language? Can we, for example, generate additional material to hand
to students in support of task understanding, before, and feedback or
trusted sample solutions, after their own solution attempts? Also, how
to keep the framework maintainable, preserving its guarantees when the
expressiveness of the underlying DSL is to be extended? Our aim here is
to address these and related questions, by reporting on connections we
have made and concrete steps we have taken, as well as the bigger picture.

1 Introduction

We previously presented a small formal specification language for describing
interactive behavior of console I/O programs [12]. Given such specifications,
we can check whether some candidate program has the specified behavior by
repeatedly running the program and matching its traces against the specification,
thus either finding a counterexample or gaining sufficient confidence that the
program behaves as desired. We plan to use this approach of specification and
testing to automatically grade student submissions on the subject of writing
interactive programs [8] in our Haskell programming course, and therefore we
are developing an implementation. The goal of the implementation is to not only
get a working version of the on-paper definitions but a DSL-based framework
that makes it easy to design and adapt exercise tasks for use in an e-learning
system [9,11].

c© Springer Nature Switzerland AG 2020
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Central to this goal is a guarantee that if something different is happening
than an educator is expecting, then that is not the fault of the DSL imple-
mentation itself and instead is therefore fixable by said educator. Moreover,
the educator should not be left alone with their mismatch in expectations. The
framework’s implementation should provide some means for them to investigate
what is actually going on and where they are possibly missing a connection. This
article is about how we can provide such means.

2 Specification Language Overview

Our specification and testing framework consists of four major components:
a way to express specifications that describe read/write behavior of programs,
a notion of traces for capturing program runs, a function to determine whether a
trace represents program behavior that is valid regarding a specification, and a
testing procedure to summarily check programs against specifications.

As an example, take the following program that reads in a natural number
and then that many additional numbers and finally prints their sum:

main :: IO ()
main = do n ← readLn

let loop xs = if length xs == n then print (sum xs)
else do x ← readLn

loop (x : xs)
loop [ ]

A specification for the behavior of this program looks as follows:

[ � n ]N · ([ � x ]Z ∠∠∠len(xA) = nC ∠∠∠E)→E · [ {sum(xA)} � ]

Testing against the specification is done by randomly generating suitable input
sequences (note that for this specification the first input to a program should
always be non-negative) and then comparing each trace resulting from running
the program on such input with the expectation encoded in the specification. The
trace of a program is the sequence of read and written values. For example, given
the inputs 2, 7, 13, the trace of the above program would be ?2 ?7 ?13 !20 stop.
We now give a brief overview of specifications, traces, and what/how we test.

2.1 Specifications

There are three atomic forms of specifications: 0 is the empty specification,
[ � x ]τ is for reading a value typed by τ ⊆ Z into a variable x, and [Θ � ] is for
outputting the result of evaluating any term t ∈ Θ, where Θ represents a set
of possible outputs. Variables are always associated with the lists of all values
previously read into them. Accessing variables, in terms, can then be done in
two different ways: either as xA, giving precisely the list of all read values for x,
or as xC , giving only the last, most current value.
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Two specifications s1 and s2 can be composed sequentially, denoted by s1 ·s2.
Sequential composition is defined to be associative and to have 0 as the neutral
element. It will often be performed silently by writing just s1s2 instead of s1 ·s2.
By s1 ∠∠∠c ∠∠∠s2 we denote the specification that either requires s1 or requires s2
to be adhered to, depending on which Boolean value the term c evaluates to
under the current variable assignment, where True chooses the branch on the
right. Lastly, s→E

stands for the repetition of specification s until, inside s, the
iteration exit-marker E is encountered, which behaves similarly to the break
command found in many imperative languages (under various names).

2.2 Traces

Traces are sequences m0v0 m1v1 . . . mnvn stop, where n ∈ N, mi ∈ {?, !}, and
vi ∈ Z. Here ?v denotes the reading of the value v and !v denotes the writing
of the value v. Besides these ordinary traces there is also a notion of gener-
alized traces that capture the complete behavior mandated by a specification
for a single concrete input sequence. Basically, generalized traces are traces in
which each output place is a set of all possible outputs a program can make at
that point, potentially including the empty output ε to indicate optionality.1 A
covering relation ≺ relates ordinary traces and generalized ones. If an ordinary
trace t is covered by a generalized trace tg, denoted by t ≺ tg, it means that one
can replace each set of outputs in tg by an element from that set and end up
with t. For example, it holds that ?2 !3 !8 stop ≺ ?2 !{3, 6} !{ε, 7} !{8} stop.

2.3 Acceptance Criterion

The conditions under which a program run, encoded by a trace, is considered
to represent valid behavior regarding a specification are defined by the accept-
function in Fig. 1 (coming straight from [12]): exactly if accept(s, kI)(t,ΔI)
evaluates to True does the ordinary trace t represent behavior valid for speci-
fication s. Here ΔI is the variable assignment mapping each variable occurring
in s to the empty list and a continuation argument k is used to keep track of
the current iteration context. When entering an iteration, we build a new con-
tinuation that either repeats the loop body or restores the previous iteration
context, depending on whether it is called with End or Exit. Calls with Exit or
End, respectively, happen if we encounter an exit-marker E or hit the end of
a specification, i.e., in the case accept(0, k)(t,Δ). The initial continuation kI

takes care of the handling at the top-level of the specification. Hence, kI is only
intended to be called with End at the very end of traversing the specification
overall. It then tests whether the remaining trace equals stop, which indicates
acceptance of the initially given trace; or else the result of accept is False.

1 In the full formulation from [12], consecutive outputs in generalized traces are
additionally normalized into a single output action that chooses from a set of
value sequences. We ignore this detail here in favor of a more straightforward
presentation.
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2.4 Testing

For the testing of programs against specifications, the accept-function is not used
directly but is instead modified into a function traceSet that takes a specifica-
tion and describes the set of all generalized traces valid for that specification.
Intuitively, traceSet is obtained from “solving” accept(s, kI)(t,ΔI) for t.

In almost all cases the set of valid generalized traces for a given specification
is infinite. There are two different ways the set of traces can become infinite, one
harmless but the other one not so much. The first way is that we can arbitrarily
choose a value from a potentially infinite set at every input step. This form
of infinity is not really problematic, though, since we can work around it by
sampling traces at random instead of computing all possibilities. The second
way in which a traceSet-result can grow infinitely large is when we consider
a specification that exhibits potentially non-terminating behavior. In this case
sampling does not help us, since we can get stuck in an endless loop. But as
long as we do not choose input values such that the behavior described by a
specification becomes non-terminating, we can compute results of traceSet .2 We
will treat the traceSet-function as a black box here, since its technical details
are not important here. Its correctness in the implementation, of course, is! (See
Sect. 4.)

The actual testing, for some program p and specification s, is done by
repeatedly applying the following steps, resulting in either a counterexample
or increased confidence in the appropriateness of p.

1. Use the traceSet-function to (randomly) sample a generalized trace for s.
2. From this trace, extract the sequence of inputs.
3. Determine whether the ordinary trace resulting from running p on these

inputs is covered by said generalized trace.

3 Comparing Theory and Implementation/Use

Our overall framework is hosted at https://github.com/fmidue/IOTasks. Besides
the source code of the implementation, that repository also contains various
usage examples. Here, let us consider an example task and compare its formu-
lations in the on-paper version and in the implemented DSL. We take the same
example as earlier: reading in a natural number and then as many further integers
as that first number says, and finally printing those integers’ sum. Recall that the
specification [ � n ]N([ � x ]Z ∠∠∠len(xA) = nC ∠∠∠E)→E

[ {sum(xA)} � ] encodes this
behavior. Transliterating it into our DSL (which is an EDSL using deep embed-
ding [3]), we get the following Haskell expression:

2 That is easier said than done. We do at the moment not have a general solution
to reliably generate “suitable” inputs only, beyond simple typing as expressed by
the τ in [ � x ]τ , and therefore currently rely on using only specifications that do not
involve non-terminating behavior for any well-typed inputs at all.

https://github.com/fmidue/IOTasks
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accept([ � x ]τ · s′, k)(t, Δ) =

{
accept(s′, k)(t′, store(x, v, Δ)), if t =?v t′ ∧ v ∈ τ

False , otherwise

accept([Θ � ] · s′, k)(t, Δ) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

accept([ (Θ \ {ε}) � ] · s′, k)(t, Δ), if ε ∈ Θ

∨ accept(s′, k)(t, Δ)
accept(s′, k)(t′, Δ) , if ε /∈ Θ ∧ t =!v t′

∧ v ∈ eval(Θ, Δ)
False , otherwise

accept((s1 ∠∠∠c ∠∠∠s2) · s′, k)(t, Δ) =

{
accept(s2 · s′, k)(t, Δ) , if eval(c, Δ) = True

accept(s1 · s′, k)(t, Δ) , otherwise

accept(s→E · s′, k)(t, Δ) = accept(s, k′)(t, Δ)

with k′(cont) =

{
accept(s, k′) , if cont = End

accept(s′, k) , if cont = Exit
accept(E · s′, k)(t, Δ) = k(Exit)(t, Δ)

accept(0, k)(t, Δ) = k(End)(t, Δ)

kI(cont)(t, Δ) =

⎧⎪⎨
⎪⎩
True , if cont = End ∧ t = stop

False , if cont = End ∧ t �= stop

error , if cont = Exit

Fig. 1. Trace acceptance.

readInput "n" nats <>
tillExit (branch (length (getAll "x") == getCurrent "n")

(readInput "x" ints)
exit) <>

writeOutput [sum (getAll "x")]

Here sum :: Num a ⇒ Term [a ] → Term a and length :: Term [a ] → Term Int are
redefinitions of the respective standard functions in the context of a Term type
constructor. Similarly, getAll and getCurrent have types String → Term [a ] and
String → Term a, respectively.3

Values of a Term type can be evaluated under an appropriate variable envi-
ronment via the function evalTerm :: Term a → Environment → a. Our encod-
ing of terms here differs from the original presentation [12], where we used an
applicative-style [7] representation for terms that enabled the usage of normal
Haskell functions in specifications. The new encoding is useful in case we need
access to the syntactic structure of terms (see Sect. 6), as we can preserve this
information in the redefinitions. However, if we do not need such inspection of
terms, redefining standard functions in the new context most likely does not add

3 There are no guarantees that we can actually use a term constructed with getAll or
getCurrent at any particular instantiation for type a. Checks happen at runtime.
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any benefit. For this reason, our implementation is suitably polymorphic over
the type constructor for terms used in specifications.

To facilitate checking programs (such as student submissions) against a spec-
ification such as the one seen above, we use an approach presented by Swierstra
and Altenkirch [10] to acquire an inspectable representation of I/O behavior, plus
random testing via QuickCheck [1] to generate test cases and test the candidate
program according to the procedure described in Sect. 2.4.

So far, this is essentially the approach described in our previous work [12]
(apart from the different term representation).4 But how do we guarantee that
the implementation behaves according to the formal on-paper definitions? That
is, if the system tells a student that their submitted solution is correct, is that
really the case? And conversely, does the system only reject wrong submissions
and does it provide valid explanations in each case? In the next section we will
look at exactly these questions. But there are also other important properties
an educator might expect from the framework besides technical correctness.
Generally, when posing tasks using the implemented system, there are various
artifacts in play (some explicit and technical, some more virtual), such as:

– The idea/intention the educator has about what should be done in the task.
In the case of the above example, the idea could be something like “I want
them to realize a simple I/O loop, so they should write a program that reads
a number and then as many further numbers and finally prints a sum.”

– The DSL expression (and possibly additional data) capturing, hopefully, the
desired behavior.

– The verbal task description handed to students (“Write a program which
. . . ”).

– A sample solution; for sanity checking and possibly for later also being handed
to students.

– Any supporting material the students get as part of the task description. For
example, a run of the sample solution on some specific input sequence.

All of these and potentially further artifacts must be kept in sync with each other
in order to arrive at a consistent and usable exercise task. Therefore, we want
to provide support for making sure that they indeed are in sync. One potential
way to achieve this consistency is to generate some artifacts from others, along
with correctness guarantees/arguments for those generators. Another way is to
establish processes the educator follows in creating some artifacts either in iso-
lation or together. For example, we can check different hand-written artifacts
against each other inside the system itself. A simple example would be to check
if a sample solution is accepted by the task specification in DSL form.

We will come back to such issues later. After establishing confidence in the
technical core of the implementation, we will show that there are indeed cer-
tain provisions an educator can employ to support and verify their usage of

4 A live online demonstration of the prototype implementation for that previous article
is available at https://autotool.fmi.iw.uni-due.de/tfpie19, showcasing the approach.
(Note that this demo still uses applicative-style terms.)

https://autotool.fmi.iw.uni-due.de/tfpie19
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the framework. For now, Fig. 2 shows our current “bigger picture”. The dashed
arrows represent activities (creation of artifacts etc.) by the educator, while most
of the solid arrows represent technical flow, i.e., where the implementation/sys-
tem is active. As can already be seen, there are various connections between
some source and some target that can be realized via different routes, indicating
opportunities for automatic support of educator activities. We will come back
to specific ingredients later on.

Fig. 2. Artifacts and flow.

4 Validating the Implementation

The guarantees we are going to provide to users of our implementation rely
on the correctness of the technical core of the system, i.e., of the components
involved in testing solution candidates against specifications. As described earlier
(Sect. 2.4), testing is done by repeatedly sampling from the set of generalized
traces for a specification and checking if the program under testing produces a
matching trace for the same input sequence. The actual semantics of when a
specification and a trace match is given by the Boolean-valued accept-function
defined on specification-trace-pairs (see Fig. 1). The relationship between that
semantics and the testing approach is stated as follows [12]:

Let s ∈ Spec and t ∈ Tr , then accept(s, kI)(t,ΔI) = True if and only if there
exists a tg ∈ traceSet(s, kT

I )(ΔI) such that t ≺ tg.

The implementation thus does not need to rely on the accept-function to do
the testing. However, implementing accept anyway gives us a way to check, even
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programmatically to some extent (i.e., mechanically testing the test framework),
whether the implementation behaves according to the on-paper definitions:

– The accept-function can be translated almost verbatim to a Haskell program.
– It is clear, from code inspection/review of this program, that both the Haskell

and the on-paper version of accept compute the same function.
– Therefore, any implementation of the testing approach, no matter how tech-

nically involved, can be validated using the accept-semantics and turning
the statement displayed above into an automatically checkable property or
properties.

This reasoning does not just establish the connection between the implemented
traceSet-function and the on-paper semantics but “in the other direction” also
validates that the test framework assesses student submissions correctly.

While the reasoning above is, of course, no substitute for a formal correct-
ness proof, it can still provide us with some confidence that an implementation
of traceSet behaves correctly. For example, we test properties derived via this
approach in our continuous integration setup. Due to that, we can refactor and
extend our implementation with confidence and do not need to worry about its
correctness after each change. Since at the moment we are mainly interested
in exploring different features and implementation details for our framework,
validating correctness through automatic tests is sufficient for us so far.

To automatically test that an implementation of traceSet behaves as stated
above, we need to check two properties corresponding to the two directions of
the bi-implication in the statement relating it to accept . The first one is:

1. If we have a specification s and a trace t such that accept(s)(t) holds5, then the
generalized trace tg sampled from traceSet(s) for the specific input sequence
found in t has to cover t.

To check this property, we need access to a source of pairs of specifications and
traces for which accept(s)(t) = True. Systematically building such pairs is not
exactly easy. Therefore, our testing of this property currently relies on checking
it for hand-written examples, i.e., on unit tests. Instead of writing down specific
traces that match a given specification, one can also use full, known to be correct,
programs and check that the testing procedure, usually employed for student
submissions, never finds any counterexample. This way, one can view each of
these unit tests as a very specific property test encoding a weakened version of
the above property; the testing procedure itself will still use random inputs.

Fortunately, the property corresponding to the converse direction is far easier
to check on a wide range of test cases. That property can be stated as follows:

2. For a specification s, sample a generalized trace using traceSet . From this
generalized trace tg, build an ordinary trace t by randomly replacing each
output set in tg by an element of that set (potentially dropping the output
there altogether if ε is chosen). Since, by construction, those are exactly the
t that are covered by tg, now accept(s)(t) has to evaluate to True.

5 For notational simplicity, we leave out the continuation and environment here.
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Since the only input to this property is a specification s without any further
requirements, we are not limited to carefully hand-crafted test cases here but
can instead use randomly generated specifications.

Randomly generated specifications have further uses as well. For example,
they can be used for certain regression tests, for sanity checking of structural
properties of the DSL that we do expect to hold, but which are not explicit
from, say, the definition of the accept-semantics, such as that specifications form
a monoid via sequential composition and neutral element 0, and even for checking
more involved properties of the operations of the specification language, such as
the not immediately obvious (but semantically important) equivalence between
s→E

and (s · s→E · E)→E

. They also help tie together further components of
the overall framework/system under development; see Sect. 5. We even envision
to use randomly generated specifications for creating random exercise tasks, in
particular in connection with other ideas from Sect. 6 and beyond. So let us
make explicit our current strategy for randomly generating specifications here.

4.1 Randomly Generating Specifications

While the basic structure of specifications is fairly simple and does generally not
need to fulfill any invariants, there are two non-trivial aspects to randomly gener-
ating specifications: terms in general and loops and their termination in particular.
First of all, one needs to decide on a set of available functions that can appear in
terms. Then, terms can be generated according to this grammar:6

〈term〉 ::= 〈function〉 〈terms〉
| 〈var〉
| 〈literal〉

〈terms〉 ::= 〈term〉 〈terms〉
| 〈term〉

〈var〉 ::= getAll 〈id〉
| getCurrent 〈id〉

For loops, we can use the same grammar to generate a condition, but it might
be necessary to restrict the set of available functions even further. Otherwise, the
generated loop might not be guaranteed to make progress toward termination,
therefore leaving us with a specification describing non-terminating behavior.
Given the right constraints on the available functions, we can build a termi-
nating loop from three random specifications s1, s2, s3. Our loop skeleton has
the form (s1 · (s2 ∠∠∠? ∠∠∠s3))→E

, i.e., s1 is a common prefix for every iteration
round. Note that we do not have a suffix sequentially after the branching. Since
we will insert an exit-marker into one of the branches, a suffix would only ever
be used after the branch without that marker. Therefore, it can always be suf-
fixed to that branch. Now we generate a condition c and a specification s∗ that
guarantees progress toward evaluating c to True. Then our terminating loop is
(s1 · (s∗

2 ∠∠∠c ∠∠∠(s3 · E)))→E

, where s∗
2 is the result of inserting s∗ into s2 at a

random position.7 Alternatively, we can also negate the condition and use the

6 Of course, one has to take scoping and types into account as well.
7 More precisely, we choose a random and unconditionally reached position.
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loop (s1 · ((s2 ·E)∠∠∠not(c) ∠∠∠s∗
3))

→E

. A simple way to generate the condition and
the progressing specification is to manually define a set of condition and pro-
gression pairs and then choose elements of this set at random. For example, we
could have a pair with condition len(xA) > n, for some n > 0 and variable x,
and specification [ � x ]Z. Reading into x guarantees that len(xA) is increasing,
eventually exceeding n. Choosing this condition-progression-pair and assuming
s1 = [ � y ]N, s2 = [ {ε, 2 · yC} � ][ {sum(yA)} � ], and s3 = 0, we could insert the
progressing [ � x ]Z between the two outputs of s2 and get:

([ � y ]N · (([ {ε, 2 · yC} � ][ � x ]Z[ {sum(yA)} � ])∠∠∠len(xA) > n ∠∠∠0 · E))→E

This method of generating termination conditions relies heavily on the set of
hand-written conditions and their respective progressing specifications. In gen-
eral, the ability to catch implementation errors through testing with randomly
generated specifications depends on the possible terms we generate. Consider, for
instance, these five specifications generated by our implementation as described:

([ {len(yA)} � ][ � z ]Z(E∠∠∠not(len(xA) > 1) ∠∠∠[ � x ]Z))→E

[ � n ]Z[ {nC} � ][ {nC − nC , nC} � ](0∠∠∠null(xA) ∠∠∠[ �m ]Z)

[ �m ]Z([ � n ]Z ∠∠∠len(nA) > 0 ∠∠∠E)→E

[ {ε, sum(mA),mC} � ]

[ {sum(mA)} � ](([ �m ]Z ∠∠∠null(mA) ∠∠∠0)∠∠∠len(xA) = len(nA) ∠∠∠[ �m ]Z)

[ {ε, sum(zA)} � ][ � n ]Z(0∠∠∠len(xA) < nC ∗ nC ∠∠∠([ � y ]Z ∠∠∠nC = nC ∗ nC ∠∠∠0))

Clearly, most of the generated specifications do not resemble anything a user of
the language would write. But for testing an implementation such specifications
are precisely what we want, as they potentially trigger edge cases outside the
implementer’s imagination. We could, of course, attach additional constraints
to the generation of specifications. However, too much restricting might lead to
some errors never being triggered. On the other hand, restrictions can lead to
more useful specifications that resemble actual use cases. For example, it might
be a good idea to not allow terms like xC = xC in a branching condition when
generating specifications for usage in exercise tasks (see Sect. 6), but during
validation of an implementation one might explicitly want such edge cases.

5 Empowering the Educator: An Interpreter Semantics

A central problem an educator might have when writing specifications in the
DSL so far is the fact that there is no direct way to inspect what behavior a
specification represents. When writing normal programs, we are used to a fun-
damentally different situation: during development we can execute a candidate
(the current program version) and play around with different inputs to confirm
that we are actually on the right track.
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In order to get the same possibility when developing specifications, we wanted
an interpreter that given a specification behaves exactly like a program matching
that specification would. Essentially, the desire is for a function of the following
type: [[·]] :: Specification → IO (). Since specifications conceptually use a global
variable environment, our interpreter has to be stateful as well, even beyond the
“I/O state”. Also, in order to correctly terminate loops, some way to abort a run-
ning program part and to recover from such an abort would be handy, to emulate
behavior similar to a break command. Thus motivated, and in order to keep the
interpreter’s structure itself simple, we do not target IO () directly but instead
the interpreter produces a value of type Semantics (), which is declared as follows:

newtype Semantics a = Semantics {runSemantics
:: Environment → IO (Either Exit a,Environment)}

data Exit = Exit

type Environment = [(String, [Int])]

The Semantics type constructor is a monad, in fact, an inlined version of the
following monad transformer stack [6]: ExceptT Exit (StateT Environment IO).
Thus, it provides us with at least the operations readLn, print , gets, modify ,
throwError , and catchError . These operations give us everything we need to
manage a global state and to abort loops in a convenient way. Additionally
using the function evalTerm discussed in Sect. 3, as well as

store :: String → Int → Environment → Environment

for the actual updating of environments, the interpreter is then defined thus:

[[·]] :: Specification → Semantics ()
[[0]] = return ()
[[s1 · . . . · sn]] = do [[s1]]

...
[[sn]]

[[[ � x ]τ ]] = modify ◦ store x =<< readLn
[[[ {ε, . . . } � ]]] = return ()
[[[ {t, . . . } � ]]] = print =<< gets (evalTerm t)
[[s→E

]] = let loop = do [[s]]
loop

in catchError loop (λExit → return ())
[[s1 ∠∠∠c ∠∠∠s2]] = ifM (gets (evalTerm c)) [[s2]] [[s1]]
[[E]] = throwError Exit

To get a runnable IO computation from a specification, we can start the inter-
preter with an empty environment and ignore both a potential Exit value and
the final environment as follows:
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buildComputation :: Specification → IO ()
buildComputation s = void (runSemantics [[s]] (map (, [ ]) (vars s)))

Interestingly, and usefully, the interpreter can also be seen as an alterna-
tive formulation of the semantics of specifications in the first place: to under-
stand what behavior a specification is representing, understanding either the
accept-function or the interpreter semantics suffices. For someone already with
a good grasp of Haskell and monads, the latter option could be substantially
more attractive. That is, the target audience for the interpreter semantics are
certainly not our students taking the course, but neither is that the case for the
accept-function. Consider, though, the situation of handing the job of creating
new exercise tasks to teaching assistants, which in our case could be advanced
students from previous years. They need to be able to very clearly understand
the semantics of the DSL in order to be successful at task creation. The accept-
function is probably not for them, but they can certainly work informed by [[·]] as
given above. The accept-function, on the other hand, as the more mathematical
and less programmatical foundation, is relevant in the background when extend-
ing the overall framework, devising new testing and feedback methods, etc.

These considerations rely on the accept-function and the interpreter seman-
tics being equivalent, and obviously just claiming that they are is not very con-
vincing. But fortunately we can formulate a simple, mechanically checkable,
property that relates the interpreter to the accept-function. This property states
that every interpretation of a specification has to lead to a computation that can
only produce traces acceptable by that specification. We can capture it thus:

prop :: Specification → Property
prop s = buildComputation s ‘satisfiesAccept ‘ s

Of course, it is basically just a play on normal correctness checking of candidate
solutions (the candidate now not being a student submission but an interpreter
call). In order to check this property automatically, randomly generated specifi-
cations (see Sect. 4.1) come in handy again.

Note that the above property covers only the soundness of the interpreter.
It does not test whether every valid trace for the given specification can be
generated by the interpretation result. Looking at the interpreter’s definition
as a deterministic definition, the resulting program clearly cannot, in general,
produce all traces the specification would accept, since we always choose one
particular value to output and discard all other possibilities. In order for the
interpreter to act as a semantics alternative to accept , we need to view it as
containing some form of non-determinism. For example, we can interpret the
selection of an element from the set of possible outputs as a random choice or
change the definition to ultimately produce a list of all possible combinations of
choices. (We have not done any of that yet.)

6 Further Support: Validation and Program Generation

Recall that for each exercise task there are five artifacts that an educator might
need to keep consistent (see Sect. 3): the general idea of what the task is to be
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about, the specification expression used for testing, a task description for stu-
dents, a sample solution, and additional material like example runs of programs.

In the previous section we have shown how to run a specification as if it
were a program. Thus we already have an automated way to create a correctly
behaving computation from a given specification and use it to drive example
runs. This interpreting of specifications does not yet cover our need for a sample
solution, though, since we do not directly get any actual program code that could
be shown to students. What we have instead is a way for an educator to validate
their own sample solution by comparing it to both the interpreted and the actual
specification (via the testing procedure). By doing so, the educator can validate
that their idea for the task matches the written specification, since a mismatch
between these two might manifest as a mismatch in observed behavior between
“solutions”.

Now the last artifact (as per Sect. 3, Fig. 2) that is not yet connected to
the others in any systematic way is the description of the task as handed to
students. Up front, it might seem quite impossible to automatically generate
any reasonably formulated task description. But if we shift our focus away from
classic verbal descriptions, instead to tasks that require the re-implementation
of some (imperative) program with Haskell, then generating task descriptions
gets way easier. For example, we might want to pose tasks of the form “Write
a Haskell program that has the same behavior as the following Python program
. . . ” (building on the students’ knowledge from their introductory programming
course), and then we just need to be able to automatically generate Python code
from a specification expression. Such tasks are not generally what one always
wants, but they work well when the goal is to highlight the differences between
I/O in Haskell and in languages with mainly ambient effects [2]; concerning type
distinctions between pure and impure expressions, syntactic differences like the
two relevant forms of binding in Haskell’s do-blocks, let vs. ←, etc.

To actually generate the Python code needed, we can define a translation
function similar in structure to our interpreter from the previous section:

[[0]] = pass
[[s1 · ... · sn]] = [[s1]]

...
[[sn]]

[[[ � x ]τ ]] = xA += [int(input())]

True

[[[ {ε, . . . } � ]]] = pass
[[[ {t, . . . } � ]]] = print(�t�)
[[s→E

]] = while :
[[s]]

[[s1 c s2]] = if �c� :
[[s2]]

else :
[[s1]]

[[E]] = break
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The target domain is now not a type of I/O semantics but actual syntactic
program text. Additionally to the program text emitted by the above translation
function, we also need to prepend an initialization xA = [] for each variable x used
in the specification. Moreover, 	t
 as used above means to replace all variable
occurrences of the form xC in a term t by xA[−1]. Note that in order for the
translation to be carried out automatically, we need access to the structure of
terms used for outputs and for branching. Otherwise we could not generate
textual descriptions, including the replacement of certain variable occurrences
via 	t
. Our implementation of the specification language therefore provides an
appropriate representation of terms, as mentioned in Sect. 3.

Applying the code generation procedure to our earlier example specifica-
tion [ � n ]N([ � x ]Z ∠∠∠len(xA) = nC ∠∠∠E)→E

[ {sum(xA)} � ], we obtain the follow-
ing Python program:

n A = [ ]
x A = [ ]

n A += [ int ( input ( ) ) ]
while True :

i f len (x A) == n A[ −1 ] :
break

else :
x A += [ int ( input ( ) ) ]

print (sum(x A) )
Even though this program has the intended behavior, it is not an ideal pro-

gram to hand to students. Due to the compositional nature of the translation,
the resulting program code does not generally exploit any information regarding
the overall structure of the specification. Thus, we end up with programs that do
not necessarily adhere to good programming practice. It is possible to manip-
ulate such programs further or to optimize the process generating them. For
example, if for some variable x the operation 	·
 never (throughout the whole
processing above) encountered variant xA, then for that variable we can use
a simple version xC only, without initialization and without altering it in 	·
,
and xC = int(input()) instead of xA += [int(input())] in translations of input
operations for it. Doing so for the example used above, we would end up with:

x A = [ ]

n C = int ( input ( ) )
while True :

i f len (x A) == n C:
break

else :
x A += [ int ( input ( ) ) ]

print (sum(x A) )
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This program is still not ideal and further improvements are needed before we can
use such artifacts for programming education. One of the most obvious improve-
ments would be to detect special cases like “while True: if ... break else: ... ”
and to transform them into other while-loops with an explicit loop condition.
We have not done any deeper investigations into this area, as of yet, but defi-
nitely plan to do so in the future since we see a lot of potential for automatic
task generation based on this approach.

An important difference to the previous section is that the target audience
for the generated Python code are indeed the students taking the course. And
certainly the code generation approach advocated here is not limited to Python
programs. Alternatively to interpreting a specification as a Haskell value in a
semantics type as in the previous section, we could also emit the actual program
text there, given a printable representation of the Terms used by the specification
exists. We have not implemented this Haskell version of the code generation yet,
but by looking at the definition of the interpreter one could imagine translating
the DSL expression

readInput "n" nats <>
tillExit (branch (length (getAll "x") == getCurrent "n")

(readInput "x" ints)
exit) <>

writeOutput [sum (getAll "x")]

to the following program:

prog :: Semantics ()
prog = do

modify ◦ store "n"=<< readLn
let loop = do ifM (gets (evalTerm (

length (getAll "x") == getCurrent "n")))
(throwError Exit)
(modify ◦ store "x"=<< readLn)

loop
catchError loop (λExit → return ())
print =<< gets (evalTerm (sum (getAll "x")))

In principle, this translation could let an educator automatically generate a cor-
rect sample solution. However, in the above form this approach does not lend
itself directly for generating sample solutions presentable to students, even less
so than for the case of targeting Python. Not only is the usage of the state and
exception monads nowhere near an idiomatic solution for such a simple specifi-
cation; they also make it somewhat difficult to identify the actually interesting
part of the computation here. But by inlining the monad transformer operations
and simplifying the resulting program, the educator could systematically derive
a presentable program. It might even be possible to do this derivation fully
automatically with the use of some program analysis and transformations, also
including specialized simplification strategies as mentioned for Python above.
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Again, we have not done any deeper exploration on such transformations yet,
but will do so in the future.

7 Putting It All Together

To summarize, let us once again consider our running example and go through
the steps we would take to implement the task inside the presented framework.

The first step is coming up with an idea for what the task should be. For
our summation example, the idea might be formulated as follows: “We want
students to realize a simple I/O loop, so they should write a program that reads
a number and then as many further numbers and finally prints a sum.” Next,
we write a task description, a specification, and a sample solution based on this
idea:

“Write a program which first reads a
positive integer n from the console,
then reads n integers one after the
other, and finally outputs their sum.”

[ � n ]N([ � x ]Z len(xA) = nC E)→
E

[ {sum(xA)} � ]

main = do
n ← readLn
let loop xs =

if length xs == n
then print (sum xs)
else do
x ← readLn
loop (x : xs)

loop [ ]

To verify that these components are consistent with each other and our idea,
we now use the different connections shown in Fig. 2 to relate them to each
other. First off, we can run both our sample solution and the specification, using
the interpreter, on some sample inputs to see if their behavior matches our
idea of the task as well as each other. Next, we use the testing procedure to
make sure that the sample solution fulfills the specification. If all these checks
are successful, we can be confident that the idea, the sample solution, and the
specification are indeed consistent. What is left is validating the written task
description. Without the ability to automatically generate useful descriptions,
or when hand-written descriptions are preferable, this has to be done by the
usual careful inspection of the description.

With confidence in the consistency established, we can then generate sup-
porting material; for example, we can give a run of the sample solution on some
specific input. For instance, we can add the following line to our task description:
“Example: After reading 2, 7, and 13, your program should print 20.”

We cannot yet report on any concrete experience using this workflow, as we
will only start using it in the upcoming iteration of our Haskell course.

One interesting detail to note is the fact that the presented approach is, in
principle, not limited to tasks dealing with I/O. Given a suitable specification
language and testing framework, the basic idea of (semi-)automatically generat-
ing artifacts and cross-validating them against manually created ones, and each
other, is certainly applicable in other settings as well.
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8 Related Work

As mentioned in Sect. 3, our implementation builds upon an inspectable rep-
resentation of side-effecting programs [10]. The Haskell IOSpec library8 imple-
ments such representations not only for console I/O but supports also forking
processes, mutable references, and software transactional memory. However, it
only features a very minimal API. Also, no higher-level abstractions currently
exist.

Another tool for testing stateful computations is the state machine version of
QuickCheck for Erlang [4,5].9 Instead of testing specific programs, like we do, it
can be used to test stateful APIs. Behavior is specified as a semantic model, given
in Erlang, of the API together with pre- and post-conditions for each stateful
action. Testing is then done by generating random sequences of actions based
on the pre-conditions and checking the result of the actual API calls against the
model and post-conditions. Any found sequence of API calls that differs from
the semantic model is shrunk to provide a small counterexample.

9 What Next?

We have an implementation of the specification language from earlier work [12]
along with supporting components, correctness checkers for both student sub-
missions and the framework itself, and semantics/code generators. Our hope is
to benefit from this investment when we grow the specification language, and
with it the overall framework, to accommodate further needs on the education
side. Being able to safely grow the framework is precisely what the “keeping in
check” part of this article’s title refers to: when the expressiveness of the under-
lying DSL is to be extended, different parts of the implementation have to be
revisited as well, and we expect that the thoughts and work put in now at the
beginning will pay off in the sense of maintainability and certain guarantees. By
way of an outlook, let us discuss a concrete extension we have in mind.

At the moment, the specification language does not yet talk about how a
program (e.g., a student submission) should cope with possible input errors. For
example, in [ � n ]N(. . . )→E

. . . we expressed that the first number that is read in
should not be negative, but what happens otherwise is left completely unspec-
ified. Of course, the accept-function is formulated in such a way that a trace
starting with a negative input value would be rejected here, but the actual test-
ing of student submissions deliberately only presents inputs that are well-formed
according to the specification. From a different perspective, the interpreter given
in Sect. 5 (which builds computations that also serve as possible sample solu-
tions; see the second half of that section as well as Sect. 6) completely ignores
the τ argument in this line:

8 https://hackage.haskell.org/package/IOSpec.
9 A Haskell version can be found at http://hackage.haskell.org/package/quickcheck-

state-machine.

https://hackage.haskell.org/package/IOSpec
http://hackage.haskell.org/package/quickcheck-state-machine
http://hackage.haskell.org/package/quickcheck-state-machine
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[[[ � x ]τ ]] = modify ◦ store x =<< readLn

If we were to instead write

[[[ � x ]τ ]] = do v ← readLn
when (v /∈ τ) (error "blow up")
modify (store x v)

then the potential runtime error added there would never actually be triggered
during any automatic test runs, simply because a decision was made to not
subject student submissions to ill-formed or otherwise undesirable inputs. The
rationale for that decision is that students just beginning to learn I/O program-
ming in Haskell should not have to worry about checking inputs for correctness.
But what about later? At some point we might want to explicitly require them to
do so, that is, to turn the management of expectations about input values from
a job of the testing framework into a job of the students. And we might want
to be able to be selective about at which input actions such checks are required,
and at which not, as well as to retain flexibility concerning how exactly student
submissions should deal with incorrect inputs.

Our suggestion now is to extend the specification language by two additional
atomic forms: [ � x ]τ⊥ and [ � x ]τ�. The intuitive semantics of the first variant is
that if an input outside the set τ is read, the program stops (in a controlled
fashion, not via a runtime error), while that of the second variant is that if an
input outside the set τ is read, the user is prompted again (and possibly again
and again) for an input until the value read is indeed in τ . In the accept-function,
these new forms would be defined as follows:

accept([ � x ]τ⊥ · s′, k)(t,Δ) =⎧
⎪⎨

⎪⎩

True , if t =?v stop ∧ v /∈ τ

accept(s′, k)(t′, store(x, v,Δ)) , if t =?v t′ ∧ v ∈ τ

False , otherwise

accept([ � x ]τ� · s′, k)(t,Δ) =⎧
⎪⎨

⎪⎩

accept([ � x ]τ� · s′, k)(t′,Δ) , if t =?v t′ ∧ v /∈ τ

accept(s′, k)(t′, store(x, v,Δ)) , if t =?v t′ ∧ v ∈ τ

False , otherwise

and the remaining components of the framework, the checkers, generators, etc.,
would be extended as well, while relying on existing invariants and established
connections/correspondences.
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Abstract. lang-n-change is a tool for transforming language defini-
tions into other language definitions. It provides a declarative domain-
specific language for expressing algorithms over languages. lang-n-
change is implemented in OCaml and generates language definitions
that can be compiled and executed in λProlog. The tool provides a
repository with a number of language definitions and a handful of
transformations.
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1 Overview of Lang-n-Change

1.1 Motivation

Over the years, we have seen much effort in assisting language designers with
tool support such as language workbenches [9] and semantics engineering tools
[10,16]. In this paper, we describe a tool that addresses an aspect of language
evolution that has not received enough attention: Automatically augmenting
language definitions with desired programming features. We address this issue
for languages defined in operational semantics, one of the widest approaches to
the formal semantics of programming languages.

Consider the task of adding pattern matching to a language, a task that
language designers frequently undertake. The operational semantics of pattern
matching makes use of auxiliary relations to handle matches at compile-time
and run-time. For example, one of these relations is the typing of patterns with
a judgment of the form Γ � p : T ⇒ Γ ′. This relation ensures that the pattern is
well-formed, and provides an output type environment Γ ′ with bindings (from
variables to types). In a language with lists, we must add the rules below on the
right, derived from the typing rules of the language (on the left).

Γ � nil : List T =⇒ Γ � nil : List T ⇒ Γ

Γ � e1 : T
Γ � e2 : List T

Γ � cons e1 e2 : List T
=⇒

Γ � p1 : T ⇒ Γ1

Γ � p2 : List T ⇒ Γ2

Γ ′ = Γ1 ∪ Γ2

Γ � cons p1 p2 : List T ⇒ Γ ′

c© Springer Nature Switzerland AG 2020
K. Nakano and K. Sagonas (Eds.): FLOPS 2020, LNCS 12073, pp. 198–214, 2020.
https://doi.org/10.1007/978-3-030-59025-3_12
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Can we describe this transformation as an algorithm over language definitions?
Intuitively, such an algorithm must copy typing rules and insert ps in place of es.
Furthermore, it must lift recursive calls to the shape of the typing judgement for
patterns, which entails that we assign a new variable to accommodate the output
of the call. Finally, all outputs of the recursive calls must be collected together
to form the output of the overall rule. Once this algorithm is defined it can be
applied not to just one language but to a variety of languages. lang-n-change is
a tool for expressing and executing language transformations over language def-
initions [14]. lang-n-change can be used to automatically augment languages
with features. This is beneficial to language designers as they can be relieved of
the burden of manually modifying their languages, an error prone task.

1.2 Lang-n-Change

The tool pipeline of lang-n-change is below.

Language Transformation (.tr)

Language Definition (.lan)

lang-n-change

Language Definition (.lan)

Executable Language
in λProlog (.mod, .sig)

lang-n-change takes in input two components: a language definition and a
language transformation. A language definition is a .lan file and describes the
operational semantics using a domain-specific language that is in close corre-
spondence with pen&paper formulations. A language transformation is a .tr file
and contains an algorithm over language definitions. The algorithm is specified
declaratively with a domain-specific language which is applied to the language
.lan given in input.

lang-n-change is a command line tool. Given a language definition file
language.lan and a transformation file transformation.tr, users can call
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lang-n-change with: ./lnc transformation.tr language.lan. The result
is a file language transformation.lan that contains the language definition
generated. To test the generated language definitions, lang-n-change compiles
.lan files into λProlog executables [11]. We have implemented lang-n-change
in OCaml. In the rest of the paper, we describe lang-n-change as follows.

Roadmap of the Paper. Section 2 shows an example of a language definition in
lang-n-change. This will be our running example. Section 3 shows an exam-
ple of a language transformation in lang-n-change. The example is an algo-
rithm for adding pattern matching to functional languages. Section 3.2 applies
the algorithm to our running example, which shows an example of output
of lang-n-change. Section 4 describes how languages can be tested through
a compilation to λProlog. This section also shows some queries on the lan-
guage generated in Sect. 3.2. Section 5 gives details about the implementation
of lang-n-change. Section 6 describes the current repository of languages and
transformations of the tool. Section 7 discusses related work and future work.

lang-n-change can be found at http://cimini.info/LNC/index.html.
This webpage also contains the language transformations that we have for-

mulated, and the details of the tests that we have conducted.

2 Language Definitions in Lang-n-Change

Below we show the file stlc list pairs.lan, which contains the language def-
inition of the simply typed lambda-calculus with lists and pairs (int serves just
as base type).

file stlc list pairs.lan:

1 Expression e ::= (VAR x) | zero | (abs T (x)e) | (app e e)
2 | (emptyList T) | (cons e e) | (head e) | (tail e)
3 | myError | (pair e e) | (fst e) | (snd e)
4 Type T ::= int | (arrow T T) | (list T) | (times T T)
5 Error ::= myError
6 Value v ::= zero | (abs T (x)e) | (emptyList T) | (cons v v) | (pair v v)
7 Context E ::= [] | (app E e) | (app v E) | (cons E e) | (cons v E)
8 | (head E) | (tail E) | (pair E e) | (pair v E)
9 | (fst E) | (snd E)

10 TypeEnv Gamma ::= MAP(x, T)
11
12 member((x => T), Gamma)
13 --------------------------------------
14 Gamma |- x : T
15
16 Gamma |- zero : int
17
18 Gamma , x : T1 |- e : T2
19 --------------------------------------
20 Gamma |- (abs T1 (x)e) : (arrow T1 T2)
21
22 Gamma |- e1 : (arrow T1 T2),
23 Gamma |- e2 : T1
24 --------------------------------------
25 Gamma |- (app e1 e2) : T2
26
27 Gamma |- e1 : T,
28 Gamma |- e2 : (list T)

http://cimini.info/LNC/index.html
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29 --------------------------------------
30 Gamma |- (cons e1 e2) : (list T)
31
32 Gamma |- (emptyList T) : (list T)
33
34 Gamma |- e : (list T)
35 --------------------------------------
36 Gamma |- (head e) : T
37
38 Gamma |- e : (list T)
39 --------------------------------------
40 Gamma |- (tail e) : (list T)
41
42 Gamma |- myError : T
43
44 Gamma |- e1 : T1,
45 Gamma |- e2 : T2
46 --------------------------------------
47 Gamma |- (pair e1 e2) : (times T1 T2)
48
49 Gamma |- e : (times T1 T2)
50 --------------------------------------
51 Gamma |- (fst e) : T1
52
53 Gamma |- e : (times T1 T2)
54 --------------------------------------
55 Gamma |- (snd e) : T2
56
57 (app (abs T (x)e) v) --> e[v/x]
58 (head (emptyList T)) --> myError
59 (tail (emptyList T)) --> myError
60 (head (cons v1 v2)) --> v1
61 (tail (cons v1 v2)) --> v2
62 (fst (pair v1 v2)) --> v1
63 (snd (pair v1 v2)) --> v2

This definition describes a grammar (lines 1–10) and inference rules (lines 12–
63). Inference rules define a type system (lines 12–55), and a dynamic semantics
(lines 57–63). The syntax is a textual representation for operational semantics
and is in close correspondence with pen&paper formulations. (This is not a
novelty. Indeed, our syntax is directly inspired by the Ott specification language
[17], which has demonstrated such close correspondence before.) We do not give
a complete account of the syntax, but discuss some essential elements. Binding is
limited to unary lexical scoping [3]. We express binding with the syntax (x)e, that
is, x is bound in e1. The term e[v/x] represents the capture-avoiding substitution.

The term (VAR x) can appear as grammar item of a syntactic category, as
in line 1. This declares that occurrences of x (including x1, x2, etc.) denote
elements of that syntactic category. lang-n-change can define maps with MAP.
At line 10, MAP(x,T) is a map from variables x to types T. lang-n-change,
then, offers the predicate member to lookup elements in maps, as used in line 12.

A technical detail of MAP is that it handles the bindings from variables to types
as a list of associations, and member retrieves the most recent association that has
been inserted (which occurs at the head of the list). Therefore, a variable x can be
mapped to multiples types, and member retrieves the first available binding. This

1 This is similar to the directive (+ bind x in e +) in the Ott tool [17]. We prefer
our style for binding. We also prefer our constructs MAP and MAP UNION, therefore we
have not adopted Ott.



202 B. Mourad and M. Cimini

is a typical design choice to accommodate the shadowing that occurs in lambda-
terms such as λxInt.λyInt.λx : Bool. x , where the high-lighted x refers to last
binding and is of boolean type.

None of this is an innovation, as these features are standard in language
workbenches. The innovation of lang-n-change is in providing a language for
expressing language transformations, which we will see next.

3 Language Transformations: Adding Pattern Matching

Language transformations are defined in a domain-specific language. In this
section we show an example: automatically adding pattern matching to func-
tional languages.

Pattern matching is a standard feature in modern programming languages.
When adding pattern matching to a functional language we augment the lan-
guage with the typing rule and reduction rules of a pattern matching operator,
and also with the definition of two auxiliary predicates. In the introduction we
have seen examples of the first auxiliary predicate, which is used for type check-
ing patterns and has a judgement of the form Γ � p : T ⇒ Γ ′. This judgement
says that the pattern p is well-typed, has type T under the assignments in Γ , and
returns bindings Γ ′. The second auxiliary predicate performs pattern matching
at run-time and has the form pmatch(p, v) = R, where p is a pattern and v
is a value that the pattern is matched against. The result R can be a set of
substitutions if the match succeeds or an error if it fails. To make an example,
the following rules are some of the definitions for pmatch for lists when pattern
matching succeeds.

(match-var)

pmatch(x, v) = {x �→ v}
(match-cons-ok)

pmatch(p1, v1) = S1 pmatch(p2, v2) = S2

pmatch((cons p1 p2), (cons v1 v2)) = S1 ∪ S2

The rule on the left matches variables with any value and returns a substitution
accordingly. The rule on the right matches a pattern with a value only so long
that we encounter the same top level operator cons. It also matches arguments
recursively.

The language must also include the definition of pmatch for when pattern
matching fails. We show only a few rules.

(cons-match-err-pair)

pmatch((cons p1 p2), (pair v1 v2)) = error

(cons-match-err-emptyList)

pmatch((cons p1 p2), (emptyList T )) = error

(cons-match-arg-err)

pmatch(p1, v1) = error

pmatch((cons p1 p2), (cons v1 v2)) = error
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With the two rules at the top, we compare the cons pattern to every value that
is not cons and give an error. With the rule at the bottom, we handle the case
for when a recursive match fails. (The rule that handles the second argument is
straightforward and omitted).

3.1 Algorithm

We do not give a complete account of the syntax and semantics for transfor-
mations, which can be found at [12,13]. Instead we describe the constructs of
lang-n-change as we encounter them (as frequently done in system description
papers).

Below, we show the file pattern matching.tr, which contains our algorithm
for adding pattern matching to functional languages2.

file pattern matching.tr:

1 Expression e ::= ... | (match [e, MAP(p, e)]);
2 Context E ::= ... | (match [E, MAP(p, e)]);
3 Pattern p ::= Value[(op es)]:
4 let withPs = es[e]: if e is Value then p else e
5 in ((op ^ "_p") withPs)
6 | (var_p x T);
7
8 Rule[GammaR |- (op es) : T]:
9 if not(op is Value) then nothing else

10 let myMapToPs = makeMap(es, es [*]: newvar(p)) in
11 let myMapToGs = makeMap(Premise , Premise [*]: newvar(Gamma)) in
12 myMapToGs[G |- ee : TT]: G |- myMapToPs .[ee]:TT => myMapToGs .[ self],
13 GammaRes = MAP_UNION (( GammaR @ myMapToGs.values)),
14 listDifference(premises , myPremises)
15 ---------------------------------------------------------------------
16 let esToPs = myMapToPs[e]: if e is Expr. then myMapToPs .[e] else e
17 in GammaR |- ((op ^ "_p") esToPs): T => GammaRes
18 ;
19
20 Gamma |- (var_p x T) => MAP_UNION(Gamma , MAP(x, T));
21
22 Value[(op vs)]:
23 let vsToPs = makeMap(vs, vs[e]: if e is Value then newvar(p) else e) in
24 let substitutions = makeMap(vs, vs[*]: newvar(s)) in
25 substitutions[e]: if e is Value
26 then pmatch vsToPs.[e] e substitutions .[e]
27 else nothing ,
28 S = MAP_UNION_ERR(error , substitutions[e]:
29 if e is Value then substitutions .[e] else nothing)
30 ---------------------------------------------------------------------
31 pmatch ((op ^ "_p") vsToPs.values) (op vs) S
32 ;
33
34 pmatch (var_p x T) v MAP(x,v);
35
36 Pattern [(op1 ps)]:
37 Value[(op2 vs)]:
38 if op1 = (op2 ^ "_p") then nothing else
39 pmatch (op1 ps) (op2 es) error
40
41 ;
42

2 lang-n-change makes use of brackets { and } rather than indentation, though we
use the latter style in the code here for readability.
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43 Value[(op vs)]:
44 let vsToPs = makeMap(vs, vs[e]: if e is Value then newvar(p) else e) in
45 vs[e]: if not(e is Value) then nothing else
46 pmatch vsToPs.[e] e error
47 ------------------------------
48 pmatch ((op ^ "_p") vsToPs.values) (op vs) error
49
50 ... typing and reduction rules for match ...

The algorithm applies to a language definition .lan given in input. For exam-
ple, we can apply it to stlc lists pairs.lan. The first part of the algorithm
extends the grammar of the language definition (lines 1–6). Line 1 makes use
of the notation Expression e ::= ... | (notice the dots). With this nota-
tion, lang-n-change extends the existing grammar Expression of the current
language. Here, we add the pattern matching operator match e with {p1 ⇒
e1, . . . , pn ⇒ en}. Arbitrarily long sequences of branches pattern-body are rep-
resented with MAP(p, e). Line 2 extends the category Context with the evaluation
context for match.

Lines 3–6 add a new syntactic category Pattern to the language. If this
category already exists it is replaced. As pattern matching works on values,
patterns must correspond to values. To generate the grammar for patterns, then,
we iterate over the values. We do so with the expression Value[(op es)]: body,
which we call a selector. This expression retrieves the grammar items of the
category Value and executes body for each of them. However, it selects only
those with pattern (op es). In this case, the pattern is intentionally the most
generic, i.e. a top level operator applied to arguments. Therefore, all values are
selected. This pattern, however, has the effect of binding op and es in body
accordingly for each iteration. For example, when the iteration selects the value
(pair v v), op will be bound to pair and es bound to the list [v ; v]. For
values that have no arguments such as zero, we have that es is the empty list.
Also, despite the use of the name es, which recall expressions, es is just a place
holder for any match. For example, in the case of the type annotated emptyList
we have that es is the list [T], and in the case of abs we have that es is the
list [T ; (x).e], containing a type and a bound term. The body of the iterator
(lines 4 and 5) returns a grammar item (op p withPs) for each (op es). (To
avoid confusion, we distinguish the operators that are used for expressions and
those that are used for patterns by appending p to the name of operators.) The
variable withPs is a list of arguments that is computed in line 4 as follows. The
selector es[e]: ... selects all the elements of the list es (e is, again, a pattern
that matches all of them). The body of the selector returns p if the argument is
a v and e otherwise. To make an example, (pair v v) is turned into (pair p p
p). If pairs were lazy, i.e., the value were (pair e e) we would return (pair p
e e) because expressions are to be evaluated, and not pattern matched before
evaluation. After the selector at line 3 has added these grammar items, line 6
(which is outside of the selector body) adds the pattern for matching variables.

Lines 8–17 add new inference rules to the language. These inference rules
define the typing judgement Γ � p : T ⇒ Γ ′. Line 8 makes use of the selec-
tor Rule[GammaR |- (op es) : T]: .... The keyword Rule means that the
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selector iterates over the inference rules of the language. We select only the rules
whose conclusion matches the pattern GammaR |- (op es) : T, that is, all the
typing rules. For each of them, we do the following. Since only values are to be
pattern matched, we seek only typing rules for values. Line 9 detects whether
the operator op belongs to the grammar Value or not. If not, we do not add any
new rule (nothing). Otherwise, we execute the code in lines 10–17.

Lines 10 and 11 create some variable bindings that we use later. Line 10
creates a mapping myMapToPs from the arguments of the value (es) to new
pattern variables. The operation makeMap takes two lists and performs an oper-
ation similar to the functional programming function zip, and results in a map.
To create the lists of ps we iterate over the elements of es. The pattern *
selects all of them without creating any binding. For each of them we create
a new variable for patterns with newvar(p). For example, for the typing rule of
(pair e1 e2), we have that myMapToPs contains the map {e1 �→ p1, e2 �→ p2}.
This map is useful because the conclusion of the matching judgement must be
Γ � (pair p1 p2 ) : T1 × T2 ⇒ Γ ′. Line 11 creates a mapping myMapToGs from
each premise of the typing rule to a new type environment variable Γ . This
variable is the output for the premises of the pattern matching judgment, that
is, for the recursive calls to the arguments. For example, for pairs the premise
Γ � e1 : T1 of the first argument is mapped to a new variable Γ1 so that we later
can create the premise (#) Γ � p1 : T1 ⇒ Γ1 .

Lines 12–17 make the inference rule. The premises are computed with lines
12–14, and the conclusion is computed with lines 16 and 17. Line 12 iterates
over the keys of the map myMapToGs, which are premises. We select those with
pattern G |- ee : TT. The body of the selector creates the premises such as (#)
above. It replaces an e with its corresponding new p (myMapToPs.[ee] performs
a look up in the map). It also adds the output type environment to the premise.
(Programmers can refer to the current item selected by the selector as self.)
After the premises that are generated at line 12, line 13 creates a premise that
defines GammaRes. This variable is the final type environment output of the rule,
and collects all the output environments of the premises we just created, plus
the environment GammaR that the rule begins with (bound at line 8). In this
line, the operator @ represents the concatenation of lists. lang-n-change does
not perform a union immediately with MAP UNION, but it places a premise that
specifies that the typing rule performs the union of maps when applied3. The
MAP UNION operation fails if the given associations map a variable to two different
types. In that case, the typing rule simply fails to be applied and the program
is rejected. Line 14 adds the rest of the premises, i.e. the premises in the typing
rule that were not modified. Line 16 creates the list of arguments esToPs. This
is a list in which each argument of op is replaced with its corresponding p, but
we replace only those arguments that are expression variables. For example, in

3 This is similar to printing out a premise with printf. In printf(“Γ = Γ1, Γ2”) we do
not perform the concatenation Γ1, Γ2. Instead, we are placing that equation in the
typing rule we are creating, and that notation specifies that the typing rule will do
the concatenation when applied.
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emptyList T we do not replace T with a p. Line 17 provides the conclusion of
the rule. It makes use of esToPs as the arguments of op, and of GammaRes as the
output of the overall rule. Line 20 adds the typing rule for matching variables.

Lines 22–31 add the inference rules that define the (run-time) pattern match-
ing operation pmatch p v s, where p is a pattern, v is a value and s is the output
substitution. These inference rules cover the case for when pattern matching suc-
ceeds. Line 22 iterates over all patterns and we create an inference rule for each
of them. Line 23 creates a mapping psToVs from each argument of the pattern to
a new value variable. For pairs, psToVs would be {p1 �→ v1, p2 �→ v2}, which we
use to create the match between (pair p p1 p2) and (pair v1 v2). Line 24
creates a mapping substitutions from each argument of the pattern to a new
variable for substitutions. This is because we have to recursively match argu-
ments and obtain the substitution from that call. For example, for pairs we will
create a premise (#) pmatch p1 v1 s1 for the first argument. Next, lines 25–31
create the rule. Lines 25–27 compute the premises of the rule, and line 31 cre-
ates the conclusion. Line 25 iterates over all the keys of the map substitutions
and creates a premise such as (#). In particular, the value is obtained from the
map psToVs, and the output substitution from substitutions. We create a
recursive match call only for those arguments that are patterns (line 25). Lines
28–29 create a premise that define S as the union of all the output substitutions
that have been used in the recursive calls. We do so by placing a premise in the
typing rule that performs the MAP UNION ERR operation. This operation acts like
MAP UNION and performs the union of maps. Differently from MAP UNION, which
simply fails to be applied when we attempt to map a variable to two different
values, MAP UNION ERR specifies the error that should be returned in that event
(error in this case). Line 31 creates the conclusion of the rule by matching the
pattern with a version of itself that makes use of value variables. It also sets
the output of the overall rule to S. After these rules are added, line 34 adds the
match rule for variables.

Lines 36–39 generate the definition for when the pattern matching fails. In
particular, it generates rules such as (match-cons-error) that apply when
there is a mismatch in the top level operator between the pattern and the value.
We select patterns in Pattern (line 36), and for each of them we iterate over
values (line 37). For those values that do not correspond to the top level operator
of the pattern we generate a matching rule that outputs an error (lines 38 and
39).

Lines 43–48, too, generate definitions for when pattern matching fails. These
rules, however, cover the case for when a recursive call to match an argument
fails, such as in rule (match-cons-arg-err). Lines 43 selects values. Line 44
creates the mapping vsToPs between the arguments of the value and the new
arguments, which replaces values with ps. Line 45 iterates over the arguments
of the value. For each of them we create an inference rule (lines 46–48) if the
argument is a value. The inference rule is such that the premise at line 46 checks
whether the recursive call on this argument fails. The conclusion, then, produces
the output error for pmatch (line 48).
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The rest of pattern matching.tr contains the typing rule and reduction
rules for match. Since these rules are out of the textbook we omit them.

3.2 Generated Language Definition for stlc lists pairs.lan

When we apply pattern matching.tr to stlc lists pairs.lan we obtain the
following language definition.

file stlc lists pairs pattern matching.lan:

1 Type T ::= ...
2 Value v ::= ...
3 Error ::= ...
4 Expression e ::= ... | (match e MAP(p, e))
5 Pattern p ::= (abs_p T (x)e) | zero_p | (emptyList_p T) | (cons_p p p)
6 | (pair_p p p) | (var_p x T)
7 Context E ::= ... | (match E MAP(p, e))
8
9 Gamma , x : T1 |- e : T2

10 ---------------------------------------
11 Gamma |- (abs_p T1 (x)e) : (arrow T1 T2) => Gamma
12
13
14 Gamma |- (emptyList_p T) : (list T) => Gamma
15 Gamma |- zero_p : int => Gamma
16
17
18 Gamma |- p1 : T => Gamma1 ,
19 Gamma |- p2 : (list T) => Gamma2 ,
20 GammaRes = UNION(Gamma , Gamma1 , Gamma2)
21 ---------------------------------------
22 Gamma |- (cons_p p1 p2) : (list T) => GammaRes
23
24 Gamma |- p1 : T1 => Gamma1 ,
25 Gamma |- p2 : T2 => Gamma2 ,
26 GammaRes = UNION(Gamma , Gamma1 , Gamma2)
27 ---------------------------------------
28 Gamma |- (pair_p p1 p2) : (times T1 T2) => GammaRes
29
30
31 (pmatch (abs_p T (x)e) (abs T (x)e) [])
32 (pmatch (emptyList_p T) (emptyList T) [])
33 (pmatch zero_p zero [])
34
35 (pmatch p1 v1 s1),
36 (pmatch p2 v2 s2),
37 S = UNION(s1, s2)
38 ---------------------------------------
39 (pmatch (cons_p p1 p2) (cons v1 v2) S)
40
41 (pmatch p1 v1 s1),
42 (pmatch p2 v2 s2),
43 S = UNION(s1, s2)
44 ---------------------------------------
45 (pmatch (pair_p p1 p2) (cons v1 v2) S)
46
47 (cons p1 p2) =/= e
48 ---------------------------------------
49 (pmatch (cons_p p1 p2) e (error.))
50
51 ... the rest of reduction and typing rules ...

Above, we have omitted some parts of the grammar with ..., as they come
straight from stlc lists pairs.lan.
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4 Testing the Generated Languages

lang-n-change compiles language definitions (.lan) into executable λProlog
logic programs [11]. These can be used to perform tests on the language def-
initions generated by lang-n-change. λProlog is a statically-typed language.
It requires that operators and predicates are declared before they are used. For
example, the following pieces of grammar

Expression e ::= (abs T (x)e) | (emptyList T) | (cons e e) | (head e)
Pattern p ::= (emptyList_p T) | (cons_p p p) | (pair_p p p)

and the declaration of the typing judgement and reduction relation are com-
piled as:

type abs typ -> string -> expression -> expression.

type emptyList typ -> expression.

type cons expression -> expression -> expression.

type head expression -> expression.

type emptyList_p typ -> pattern.

type cons_p pattern -> pattern -> pattern.

type pair_p pattern -> pattern -> pattern.

type typeOf typeEnv -> expression -> typ -> prop.

type step expression -> expression -> prop.

Variables are modeled with strings and we automatically generate substitu-
tions predicates. The compilation of the inference rules is straightforward. We
show some examples of typing rules (cons and pair), reduction rules (head and
fst), and pattern matching definitions (cons).

typeOf (typeenv Gamma) (cons E1 E2) (list T) :-
typeOf (typeenv Gamma) E1 T, typeOf (typeenv Gamma) E2 (list T).

typeOf (typeenv Gamma) (pair E1 E2) (times T1 T2) :-
typeOf (typeenv Gamma) E1 T1, typeOf (typeenv Gamma) E2 T2.

step (head (cons V1 V2)) V1 :- value V1, value V2.
step (fst (pair V1 V2)) V1 :- value V1, value V2.

matchPred (cons_p P1 P2) (cons V1 V2) (matchSubst S) :-
matchPred P1 V1 (matchSubst S1),
matchPred P2 V2 (matchSubst S2), internal_union [S1, S2] nil S.

(That logic programming can model language definitions well is not a novelty.)
To test the languages we can run queries on the corresponding logic programs.

We show two examples with pattern matching stlc lists pairs.lan. Let us
consider the following program, which takes a pair of two lists of integers, swaps
the two lists in the pair, and removes the head of each list:

match 〈[0, 0], [0]〉 with {〈x :: y, w :: z〉 �→ 〈z, y〉}
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This program is the following in λProlog, which we refer to as prg =
(match
(pair (cons zero (cons zero (emptyList int))) (cons zero (emptyList int)))
[internal_pair
(pair_p

(cons_p (var_p (var "x") int) (var_p (var "y") (list int)))
(cons_p (var_p (var "w") int) (var_p (var "z") (list int)))

) /* this above is the pattern */
(pair (var "z") (var "y"))] /* this is the body of the clause */

)

Here, internal pair internally represents the map from patterns to the body
of the their clause. We can type check the program with the following λProlog
query.

[stlc_lists_pairs_pattern_matching] ?- typeOf (typeenv nil) prg T.

The answer substitution:
T = times (list int) (list int)

We can execute the program with the following query.
(The result is the pair 〈[], [0]〉.)
[stlc_lists_pairs_pattern_matching] ?- nstep prg E.

after a few steps, we obtain

The answer substitution:

E = pair (emptyList int) (cons zero (emptyList int))

The fact that users test their languages in a syntax (λProlog) different from
that of the language specification is not unusual. To make a notable example,
the Ott system, too, generates OCaml code (and other types of code) for tests.

We have conducted several tests on the language generated in Sect. 3.2. Our
tests also aimed to check type checking failure and run-time pattern matching
failure (i.e., no pattern applies). This gives us some confidence on the correctness
of the language generated by our algorithm.

5 Implementation

lang-n-change is implemented in OCaml. The major components of the tool
are the following:

– Language Definitions Parser : We have an OCaml data type called language,
which models language definitions. This component parses a .lan file into
this data type. We also provide an API library to interact with this data
type. The library includes operations to

• retrieve all of the grammar items of a syntactic category,
• add a syntactic category to the grammar of a language,
• retrieve all of the variables that occur in a given term,
• retrieve all of the rules whose conclusion makes use of a certain predicate,

as well as a host of other operations that are useful when manipulating lan-
guages.
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– Language Transformations Parser : We have an OCaml data type called
expression, which models language transformations. This component parses
a .tr file into this data type.

– Transformation Executor : The language transformation parsed in the data
type expression is compiled into OCaml code, that is, into an .ml file. The
generated code includes a function transform : language → language that
takes a language definition and performs the transformations prescribed. To
perform these transformations, the generated code relies on the API library
mentioned above. Below we show an example of the code generated at this
stage. The Transformation Executor calls transform passing the language
definition previously parsed into language. The result is a value of type
language that contains the language definition after all transformations.

– Compiler to Language Definitions: The result produced by the Transforma-
tion Executor is pretty-printed into a .lan file.

– Compiler to λProlog: The result produced by the Transformation Executor
is also compiled into a λProlog program, that is, a pair of files .mod and
.sig that can be executed with a λProlog implementation such as the Teyjus
system.

We show an excerpt of the OCaml code that is generated for the transformation
pattern matching.tr. We single out the first instruction of that transformation,
which is the adding of the operator match to the Expression grammar category,
i.e. Expression e ::= ... | (match [e, MAP(p, e)]).

1 let transform lan =

2 let lan ’ =

3 language_replaceSyntacticCategory lan

4 (SyntacticCategory

5 ( "Expression",

6 "e",

7 syntax_getTermVariable "Expression" lan ,

8 (syntax_getTerms "Expression" lan)

9 @ [Constructor

10 ("match",

11 [Var "e" ; TermMap("p", Var "e")])]

12 )

13 )

14 in

15 (* rest of the transformations *)

16 (* last transformation produces lan ’’’’’ *)

17 lan ’’’’’

The language definition that we have parsed into a language data type is
passed to the function transform as argument lan. At line 2, we create lan’
with the language definition after executing the first transformation instruc-
tion (adding match to the grammar). language replaceSyntacticCategory is
called on line 3, which replaces the existing Expression category with a new
one that we construct in lines 4–13. Intuitively, we replace Expression with
what Expression already contains augmented with the match operator. To do
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so, we build the category with the same name and meta-variable previously used
(lines 5–6). (We postpone explaining line 7). Lines 8–11 construct the grammar
items of the new category. First, line 8 calls syntax getTerms to collect the list
of existing terms of Expression. Lines 9–11 append this list with the match
operator. Line 7 inherits the term variable of the category (if it exists). These
are the variables that can be used in programs as placeholders for the grammar
items of the category. A notable example is the variable x in the Expression
category of the λ-calculus.

The rest of the code, omitted at lines 15 and 16, makes use of lan’ rather than
lan to perform subsequent transformation instructions. Each of these instruc-
tions produce a new lan’ variable to be used in the next instruction. (There
is therefore a series of variables lan’. lan’’, lan’’’, and so on). At the end,
transform returns the last language variable, which is lan’’’’’ in the exam-
ple above, and which contains the language after all transformations have been
performed.

6 Repository

lang-n-change comprises a repository with several language definitions .lan
files and a handful of language transformations .tr files.

Our Experiments. Language definitions include λ-calculi with lists, pairs, tuples,
if-then-else, options, let-binding, function composition (g◦f)(x), the recursor on
natural numbers, and System F. The repository contains these calculi in both
call-by-value and call-by-name versions, as well as lazy evaluation for data types
such as pairs and lists. Languages with lists have been defined with the operators
filter, map, append, range and reverse.

The repo of lang-n-change includes language transformations for

– adding subtyping
– switching from small to big-step semantics
– adding references
– adding objects
– adding gradual typing
– adding pattern matching (presented here).

We have applied all our transformations to all our language definitions, and
we have performed several tests on the generated languages. Our tests confirm
that the functionalities that our transformations are meant to add are added
indeed. The webpage of lang-n-change contains the details of all the tests
that we have conducted [14].

We have also performed experiments in composing our algorithms, and per-
formed tests on these combinations as well. Some combinations are not possible,
as we explain in the next paragraph. The number of composition combinations
is large and we omit enumerating them here. The webpage of the tool [14] con-
tains a well-marked section with a table that summarizes our experiments w.r.t.
combining our transformations.
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Limitations and Errors. The algorithms that we have devised are not capable
of transforming every language definition. For example, our algorithms are cur-
rently tuned to handle functional languages only. This aspect can be seen in the
algorithm for pattern matching in Sect. 3 where the selectors look for the explicit
pattern Gamma |- e : T for typing rules. The algorithm then would not work for
language definitions with a different shape for typing rules. In that case, depend-
ing on the language at hand, rules may not be selected and the transformation
may produce an incomplete language definition. Our current algorithms also do
not capture every possible operator within the realm of functional languages. For
example, our subtyping algorithm adds subtyping for simple types and system
F, but if we applied it to recursive types we would obtain a wrong treatment of
subtyping because recursive subtyping has its own particular treatment [1].

As another limitation, the composition of some transformations cannot be
performed. For example, the theory of automatic gradual typing does not handle
references and objects [4,5]. Therefore, if we apply the algorithm to add reference
first and that to add gradual typing afterwards we obtain an incorrect language.
Also, some combination may not produce attractive languages such as adding
references to call-by-name languages. It is also to notice that the composition of
transformations is sensitive to the order in which they are applied. For exam-
ple, if we add subtyping first and add pattern matching afterwards we obtain
a language where the arguments of match are not subject to subtyping. This
observation suggests that it may be worth to explore a principled semantics of
language transformations.

lang-n-change programmers can also make mistakes and have transfor-
mations that output ill-defined languages. For example, some transformations
may generate a formula Gamma |- bool : true, where bool and true appear
swapped, or generate the term List bool bool, where List is actually a unary
type constructor. These type errors are reported to the user after the language
definition is generated. This is thanks to the fact that languages are compiled
into λProlog and λProlog is a statically typed language. Therefore, the type
checker of λProlog detects these errors.

Just like programmers can write bad programs, lang-n-change users can
define transformation that do not lead to the languages they intended, or lead
to ill-defined languages. Programmers are responsible for the correctness of their
output.

7 Related Work and Future Work

The syntax for language transformations (.tr) of lang-n-change is inspired by
a formal calculus defined in [13]. [13] is a short paper that presents selected parts
of the syntax, typing rules and reduction rules of a minimal calculus for language
transformations. Our language for .tr is based on such calculus. The short paper
[13] does not describe a tool. In contrast, this paper is a system description paper,
describes lang-n-change in detail together with its implementation details.
The algorithm for adding pattern matching is also new in this paper.
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lang-n-change is mostly related to the work in language workbenches [9].
Language workbenches are specialized tools that support the definition, reuse
and composition of domain-specific languages. They provide automated services
for generating parsers, AST classes, and assisting in code generation. Some lan-
guage workbenches go as far as generating evaluators, debuggers and trace man-
agement features [2]. Similarly, tools such as K and Redex perform automatic test
generation [10,16], and K automatically generates verifiers. To the best of our
knowledge, none of the previous works provide features in automatically adding
common programming languages features to the languages being defined, such
as pattern matching, subtyping, references, objects and gradual typing, which
lang-n-change does.

Language workbenches also offer operations for manipulating languages. An
excellent classification of language transformations has been provided in [8]. Lan-
guages can be extended, unified, and restricted, and grammars can be renamed
and remapped [18] among other operations. These type of transformations are
coarse-grained in nature because they do not access the components of lan-
guages with precision. lang-n-change, instead, includes operations to scan
rules, premises, and terms, and select/manipulate them with precision. In this
regard, lang-n-change offers low-level language manipulations and a domain-
specific language to express them.

Previous works have addressed the automatic transformation of languages.
Danvy et al. [7] and Ciobâcă [6] offer a translation from small-step to big-step
semantics. Poulsen and Mosses derive a variant of big-step semantics called
pretty-big-step semantics [15]. The Gradualizer tool automatically generates
gradually typed languages [4,5]. These are but a few examples. The main differ-
ence between lang-n-change and these works is that the latter works are tools
that target just one specific feature. lang-n-change, on the contrary, offers a
suite of transformations, and programmers can define new language transforma-
tions by writing new .tr files. Furthermore, we are not aware of any work that
specifically automates the adding of pattern matching, subtyping, references,
and objects, which lang-n-change does.

lang-n-change is an ongoing and long-term effort. For future work we plan
to use lang-n-change to formulate algorithms for automatically generating
type inference procedures in Hindley-Milner style, automatically generating the
definitions of logical relations for strong normalization proofs, and adding depen-
dent types. We also plan on compiling language definitions into Ott specifications
and benefit from Ott’s features of generating OCaml and Coq implementations
for free [17]. Furthermore, the work on language workbenches inspires us on
developing a comfortable IDE for lang-n-change. At the moment, users inter-
act with lang-n-change in a command-line fashion.
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Abstract. Concolic testing combines symbolic and concrete execution
to generate test cases that achieve a good program coverage. Its benefits
have been demonstrated for more than 15 years in the case of imperative
programs. In this work, we present a concolic-based test generation tool
for logic programs which exploits SMT-solving for constraint resolution.

1 Concolic Testing of Logic Programs

Concolic testing is a well-established validation technique for imperative and
object-oriented programs [3,8], but only recently investigated for functional and
logic programming languages. Concolic testing for logic programming was ini-
tially studied by Vidal [11] and Mesnard et al. [4], while Giantsos et al. [2] and
Tikovsky et al. [10] considered concolic testing of functional programs.

Concolic testing performs both concrete and symbolic execution in parallel:
given a test case (atomic goal), e.g., p(a), we evaluate both p(a) (the concrete
goal) and p(X) (the symbolic goal), where X is a fresh variable, using a concolic
execution extension of SLD resolution. The symbolic goal mimics the steps of
the concrete goal but is aimed at gathering constraints that can be later used to
produce alternative test cases. In particular, alternative test cases are computed
by solving so-called selective unification problems [4,6]. The previous algorithm
introduced by Mesnard et al. [4] does not scale well and does not support neg-
ative constraints. By defining selective unification problems as constraints on
Herbrand terms and relying on an SMT solver, we address both scalability and
completeness issues.

Let us motivate our approach by illustrating one of the problems of the
previous framework [4]. Consider the following logic program defining predicates
p/1 and q/1:

(�1) p(a). (�3) q(b).
(�2) p(X) ← q(X).

Third author is a research associate at FNRS that also supports this work (O05518F-
RG03). The last author is partially supported by the EU (FEDER) and the Spanish
MCI/AEI under grants TIN2016-76843-C4-1-R/PID2019-104735RB-C41 and by the
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where �1, �2, �3 are (unique) clause labels. Given an initial call, say p(a), the
algorithm considers all possible matching clauses for this call (i.e., all combi-
nations from clauses l1 and l2) and produces the sets {}, {p(a)}, {p(X)}, and
{p(a), p(X)} with the heads of the clauses in each combination.

The considered initial call already covers the last case (i.e., it matches both
p(a) and p(X)). As for the remaining cases:

– Matching no clause. This case is clearly unfeasible, since the head of the
second clause, p(X), matches any call.

– Matching only clause �1. This case is unfeasible as well since every atom that
unifies with p(a) will also unify with p(X).

– Matching only clause �2. This case is clearly feasible with, e.g., p(b), since
p(b) unifies with p(X) but it does not unify with p(a). Thus p(b) is our next
initial goal.

In the second iteration, p(b) calls q(b) (using clause �2) and, then, successfully
matches clause �3. Since we only have one clause defining q/1, the only alter-
native consists in producing an initial call to p/1 that i) unifies with clause �2
but not with clause �1 and, then, ii) calls q/1 but fails. Unfortunately, since
the approach of Mesnard et al. [4] cannot represent negative constraints, the
algorithm tries to find an instance p(X)σ of p(X) such that q(X)σ does not
unify with q(b). A possible solution is then p(a). Observe that this goal will not
achieve the desired result (matching clause �2 and then fail) since it will match
clause �1 and terminate successfully. Indeed, since p(a) was already considered,
the concolic testing algorithm of Mesnard et al. [4] terminates computing the
test cases {p(a), p(b)}, which is unnecessarily incomplete.

For example, if we assume that the domain comprises at least one more
constant, say c, then the right set of test cases should be {p(a), p(b), p(c)}, so
that the last test case actually matches clause �2 and then fails. In this work,
we overcome the above problem by introducing constraints, which can represent
both positive and negative information. In particular, the search for an instance
of p(X) that first unifies with clause �2 only, and then fails, is represented as
follows:

p(X) �= p(a) ∧ (∀Y p(X) �= p(Y ) ∨ q(Y ) �= q(b))

Solving this constraint (using an SMT solver) would produce the desired test
case, p(c), thus achieving a full path coverage.

For this purpose, we have designed a concolic testing tool for logic programs
that is based on the following principles:

– As in the approach of Mesnard et al. [4], we instrument a deterministic seman-
tics for logic programs (inspired by the linear semantics of Ströder et al. [9])
in order to perform both concrete and symbolic execution in parallel.

– In contrast to previous approaches, our instrumented semantics also considers
negative constraints, so that the problems mentioned above can be avoided
(i.e., our implemented semantics is complete in more cases).
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– Finally, the generated constraints are solved using a state-of-the-art constraint
solver, namely the Z3 SMT solver [1]. This allows us to make concolic testing
more efficient in practice.

Concolic Tool
(Prolog)

Z3 Binding

Parser 
(Prolog)

SWIPrologZ3 
(C)

Fig. 1. Implementation workflow.

Table 1. Summary of experimental results

Subject

program

size Initial

goal

Ground

Args

Max

Depth

time

concolic

time

contest

#TCs

concolic

#TCs

contest

Nat 2 nat(0) 1 1 0.050 0.0273 3 4

Nat 2 nat(0) 1 5 0.0897 0.1554 7 12

Nat 2 nat(0) 1 50 1.6752 19.5678 52 102

Generator 7 generate(empty, A, B) 1 1 1.4517 0.7096 9 9

Generator 7 generate(empty,T, B) 2 1 1.3255 4.4820 9 9

Generator 7 generate(empty,T,H) 3 1 1.3211 crash 9 N/A

Activities 38 what to do today(sunday,

sunny,wash your car)

3 2 6.3257 timeout 122 N/A

Cannibals 78 start(config(3,3,0,0)) 1 2 0.0535 timeout 2 N/A

Family 48 parent(dicky,X) 1 1 20.0305 64.1838 9 19

Monsters

and mazes

113 base score(will,grace) 2 2 0.2001 0.4701 6 7

2 A Concolic Testing Tool for Prolog

Our prototype is implemented in SWI-Prolog [12] and the Z3 SMT solver [1],
as depicted in Fig. 1. Regarding the termination of concolic testing, we impose
a maximum term depth for the generated test cases. Since the domain is finite
and we do not generate duplicated test cases, termination is trivially ensured.

Let us show some selected results from a preliminary experimental evaluation
of our concolic testing tool. We selected six programs from previous benchmarks
[4] and from GitHub.1 We ran concolic testing between 3 and 100 executions
on a MacBook Pro hexacore 2,6 Ghz with 16 GB RAM in order to get reliable
results. Reported times, in seconds, are the average of these executions. Our
results are reported in Table 1. Here, concolic refers to our tool, while contest
refers to the tool introduced by Mesnard et al. [4]; the size of a subject program
is the number of its source lines of code; column Ground Args displays the number
of ground arguments in the initial symbolic goal; and #TCs refers to the number

1 https://github.com/Anniepoo/prolog-examples.

https://github.com/Anniepoo/prolog-examples
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of generated test cases. A timeout for contest is set to 1000 1000 s (the crash is
an overflow).

Regarding execution times, our new tool exhibits a certain overhead on small
programs with a low depth due to the calls to the SMT solver. As program size
and/or depth increase, our tool performs up to 10 times faster than contest. We
note that the number of test cases generated by the tools are not comparable
since our new framework avoids a source of incompleteness (as mentioned in
the previous section), but also restricts the number of test cases by forbidding
the binding of so-called output arguments (which is allowed in contest). More
details can be found in the companion paper: http://arxiv.org/abs/2002.07115.
The implementation is also publicly available at https://github.com/sfortz/Pl
Concolic Testing.

3 Conclusion

In this paper, we report our experience in the development of an SMT-based
concolic testing tool that is based on the approach of Mesnard et al. [4] but
adds support for negative constraints, thus overcoming some of the limitations
of previous approaches [5,6]. Our preliminary experimental evaluation has shown
promising results regarding the scalability of the method.

Recently, concolic testing has been extended to CLP programs [7], so that
both positive and negative constraints can be represented in a natural way. As
future work, we plan to extend our concolic testing tool to the case of CLP
programs.
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