l‘)

Check for
updates

An Adversarial Learning Model
for Intrusion Detection in Real Complex
Network Environments

Ying Zhong!, Yiran Zhu?, Zhiliang Wang*(®)  Xia Yin®*, Xingang Shil**,
and Keqin Li®

! Institute for Network Sciences and Cyberspace at Tsinghua University,
Beijing, China
zhongy18@mails.tsinghua.edu.cn, wzl@cernet.edu.cn
2 Beijing Normal University, Beijing, China
3 Department of Computer Science and Technology at Tsinghua University,
Beijing, China
4 Beijing National Research Center for Information Science and Technology,
Beijing, China
5 Department of Computer Science, State University of New York, New Paltz, USA

Abstract. Network intrusion detection plays an important role in net-
work security. With the deepening of machine learning research, espe-
cially the generative adversarial networks (GAN) proposal, the stability
of the anomaly detector is put forward for higher requirements. The main
focus of this paper is on the security of machine learning based anomaly
detectors. In order to detect the robustness of the existing advanced
anomaly detection algorithm, we propose an anomaly detector attack
framework MACGAN (maintain attack features based on the genera-
tive adversarial networks). The MACGAN framework consists of two
parts. The first part is used to analyze the attack fields manually. Then,
the learning function of GAN in the second part is used to bypass the
anomaly detection. Our framework is tested on the latest Kitsune2018
and CICIDS2017 data sets. Experimental results demonstrate the ability
to bypass the state-of-the-art machine learning algorithms. This greatly
helps the network security researchers to improve the stability of the
detector.

Keywords: Generative adversarial networks + Traffic anomaly
detection + Machine learning security

1 Introduction

Intrusion detection system (IDS) is a key component in securing computing
infrastructure. The purpose of this component is to prevent violations of the
defense mechanism. In fact, IDS itself is part of the computing infrastructure,
so they may also be attacked by adversaries [1]. In [2], skilled attacker can
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use ambiguity in the traffic flow seen by the monitor to evade detection. Many
evasion techniques are proposed in [3], but they are all limited to botnet traffic
evasion. And, many of the anomaly detection algorithms used for experiments
are now outdated.
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Fig. 1. Network attacks in the presence of IDS.

Because of the development of machine learning, the accuracy of network
traffic anomaly detection algorithms continues to increase, but the stability of the
algorithm itself faces enormous challenges [4-6]. Attackers can carefully design
adversarial samples that are not too different from normal samples, and make
machine learning algorithms make completely different decisions. Aiming at the
lack of research on adversarial learning in the existing network IDS, this paper
proposes adversarial sample generation algorithms to reveal potential security
problems in the existing IDS. In order to explore the robustness of machine
learning-based IDS, as shown in Fig.1, we will attack wireless devices in the
presence of IDS.

In summary, we propose a new attack method based on GAN. The reason for
choosing GAN is that we need the characteristics of GAN to generate adversarial
samples [25]. The generator of GAN modifies some of the fields that can be
disturbed so that its data features are close to those of benign data packets.
Therefore, the adversarial sample can deceive the anomaly detector well while
maintaining the attack features of the traffic. We call it the MACGAN model.
To the best of our knowledge, this paper is the first work to bypass network
intrusion detection in real network traffic.

The main contributions of this paper are summarized below.

e For the network IDS, we design the MACGAN attack model. This model can
bypass anomaly detectors by modifying meaningless fields. The main reason
is that we add the target anomaly detector to the model so that it can be
fitted by the discriminator of GAN. We attack before the anomaly detector
extracts traffic features, which has practical application significance.

e We propose to divide the fields of network packets into perturbable and non-
perturbable parts. We perturb the fields that can be perturbed so that the
current network packets will not be detected by the anomaly detector after
the perturbation.
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e We design a series of experiments for the MACGAN model. We first explore
the effects of parameters in GAN on the experiment, and then test the impact
of the number of iterations on the attack effect. Finally, experiments on the
latest Kitsune2018 and CICIDS2017 datasets prove the effectiveness of our
attack model. In order to further explain the practicality of the attack, we
attack other classification algorithms, and the attack effect is significant.

The rest of this paper is organized as follows. Section 2 presents the related
work. In Sect. 3, we design a MACGAN attack model, and provides a detailed
description about how to bypass traffic anomaly detector. Performance evalua-
tion is in Sect. 4. Section 5 concludes the paper.

2 Related Work

We analyze the application of the adversarial samples in anomaly detection
[1]. [7] investigated the performances of the state-of-the-art attack algorithms
against deep learning-based intrusion detection on the NSL-KDD data set. The
roles of individual features in generating adversarial examples were explored. [§]
showed that by modifying on average as little as 1.38 of the input features, an
adversary could generate malicious inputs which effectively fooled a deep learning
based NIDS. Therefore, when designing such systems, it was crucial to consider
the performance from not only the conventional network security perspective
but also the adversarial machine learning domain. [9] presented an approach to
generate explanations for incorrect classifications made by the data-driven IDS.
An adversarial approach was used to find the minimum modifications (of the
input features) required to correctly classify a given set of misclassified samples.
The magnitude of such modifications was used to visualize the most relevant
features that could explain the reason for the misclassification. [10] proposed the
use of GANSs for generating network traffic in order to mimic other types of traffic.
In particular, they modified the network behavior of a real malware in order to
mimic the traffic of a legitimate application, and therefore avoided detection.
[11] investigated how adversarial examples affect the performance of deep neural
network (DNN) trained to detect abnormal behaviors in the black-box model.
They demonstrated that adversary could generate effective adversarial examples
against DNN classifier trained for NIDS even when the internal information of
the target model was isolated from the adversary. In [12], a framework of the
GAN, IDSGAN, was proposed to generate the adversarial attacks, which could
deceive and evade the IDS. The internal structure of the detection system was
unknown to attackers, thus adversarial attack examples performed the black-box
attacks against the detection system.

Among the adversarial sample generation algorithms mentioned in the above
literature, some of them were not used for traffic anomaly detection, but were
used for other aspects [10]. Some algorithms used data sets that were too ideal
and not representative, such as NSLKDD [7,9,12]. The others could completely
bypass the anomaly detector, but the corresponding samples had lost the features
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of the attack [8,9,12]. Therefore, we need to design an algorithm that can attack
the latest cyber attack data without losing the significance of the sample itself.
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Fig. 2. Internal structure of Kitsune [1].

3 MACGAN Model: An Adversarial Learning Model
for Intrusion Detection

The existing mainstream network traffic anomaly detection algorithms are based
on machine learning methods. These methods require extraction of features.
The establishment of these features is inseparable from the choice of fields. Our
general idea is to first ensure that the fields necessary for the attack cannot be
modified. For the remaining fields called non-attack field, we bypass the anomaly
detector through the sample generation function of GAN.

3.1 Analysis of Advanced Anomaly Detection Algorithm

Figure 2 depicts the advanced anomaly detection algorithm Kitsune. In order to
make the attack algorithm more versatile, we put the attack step on S7, because
many anomaly detectors are modeled based on network packet fields. Thus, if
the abnormal detection algorithm are based on field modeling, our attack mode
also applicable. The details of the specific Kitsune algorithm can be found in
[13].

3.2 MACGAN Attack Model

There are many versions of GANs, which are selected according to different
design requirements. In order to prevent the non-convergence and instability of
GAN, we design MACGAN based on the Wasserstein GAN structure [14]. It is
an improved model of GAN, for the evasion attacks against IDS. The framework
of MACGAN is described in Fig. 3, where the noun of the input and output data
represents the sample set, and the letter represents each sample. For example, in
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Fig. 3. The framework of MACGAN.

“Malicious Examples m”, “Malicious Examples” represents a malicious data set,
and “m” represents each malicious sample. Algorithm 1 illustrates the training
process of MACGAN.

Generation Module: The generation network G is a three-layer feed forward
neural network. The malicious sample m (traffic packet labeled abnormal) is
first binarized, and then the non-attack field is reserved by mask to obtain m/.
m’ is connected to the noise vector z as an input of G. The input layer size of
the generation network is |m/| + |z|, and hidden layer size is \/2|m/| + |z| + a, a
is the adjustment constant between [1,9], and the output layer size is |m/|. The
output of the generated network is 0. To ensure the enforceability and aggression
against the sample, o and mask are operated together, and only the generation
data of the non-attack field is retained, and m1 is obtained. At the same time,
mask is reversed to get maskx, and all the bits except the non-attack field can
be reserved by maskx. The original malicious data m is done with mask* and
gets m2. After m1 and m2 are superimposed, they are debinarized to obtain a
new sample o’.

Discriminating Module: The discriminating module is composed of an abnor-
mality detector K (Kitsune) that is expected to be deceived and a discriminating
network D. The benign sample x and the new sample o’ retain the binary vector
of the non-attack field as the input of D. Before the input, the two samples
need to be discriminated by the anomaly detector, and the sample attributes
are re-marked according to the discriminating result (benign or malicious). The
input layer size of the discriminant network is |m/|, the hidden layer size is

2|m/| + |z| + a, a is the adjustment constant between [1,9], and the output
layer size is 1. The sample data after updating the label passes through the
discriminant network, and the discriminating result is output. Then, the loss
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function is calculated based on the discriminating result. When the input sam-
ple is o/, if K discriminates o’ as a malicious sample, that is, K(o') = 0, then
D(0’) is made as 0 as possible; if K discriminates o’ as a benign sample, That is,
K(0') =1, so that D(0') tends to be as large as 1. When the input sample is z, if
K discriminates x as a benign sample, that is, K (z) = 1, D(z) is made as close
as possible to 1. After the loss is calculated, the gradient backward propagation
is performed, and the parameters of the discriminant model are updated, so that
the degree of fitting of D to K is continuously improved.

Algorithm 1 The training process of MACGAN

Input:
Malicious traffic examples M, the vector mask for protecting the non-attack field,
benign traffic examples X, the learning rate «, the clipping parameter ¢, the batch
size n, the number of iterations of the critic per generator iteration ncritic, the
noise Z for the adversarial generation, initial discriminator parameters wo, initial
generator parameters 6o.

Output:
The trained generator gy and the trained discriminator f.,.

1: Step 1: Merging 19 fields (after the tag) in Kitsune with other perturbed fields

(such as optional fields in the network packet) to form a malicious traffic.

2: Step 2: Vectorize malicious samples and add perturbations to marked fields.

3: //Step 3

4: while 0 has not converged do

5:  while n¢ritic—- do

6: Sample {M(i)}?zl ~ P, a batch from the malicious traffic examples.

7: Sample {X 1", ~ P, a batch from the benign traffic examples.

8: Sample {Z(i)}n 1 ~ P, a batch of prior samples.

9 fo o Tolh XX wmask) - 13 fo(a0(M xmask + 2] [+ -

"z

Hadamard Product

10: w — w+ta- RMSProp(w, g.) //RMSProp - An optimization algorithm: Root
Mean Square Prop

11: w « clip(w,-c, c)

12:  end while

130 go —-Voy Z fulgo (MW x mask + Z"))

14: 0—0-a- RMSProp(G ge)

15: end while

16: Step 4: Inverse vectorization, the meaningless fields after the disturbance are

mapped to meaningful fields by hashing.
17: return go, fo.

With the increase of the number of trainings, the discriminative ability of D
tends to be consistent with the anomaly detector. At the same time, the abil-
ity to generate forged samples is continuously strengthened. Finally, D cannot
effectively distinguish the generated adversarial examples and the original real
samples generated by G. The adversarial examples generated at this time are not
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only discriminated by the anomaly detector as benign classification, but also use
the mask to preserve the aggressiveness of the sample, and realize the deception
of the anomaly detector.

4 Experiments and Evaluation

This section covers our experimental results. Our codes are available at the
open-source code repository!. In order to systematically evaluate our method,
we want to check the following two points: (1) How about our attack model’s
performance based on Kitsune anomaly detection algorithm. (2) How about our
attack model’s performance based on multiple anomaly detection algorithms.

4.1 Metrics for Evaluating Anomaly Detection Algorithm

We use the following metrics to evaluate the effectiveness of our MACGAN
model. Attack Effect Rate (AER)1 — m: It measures the extent
to which an attack method reduces the accuracy of anomaly detection. True
Positive Rate (TPR)%: It measures the proportion of outliers that are
correctly identified. Among them, True Negative (TN): a measure of the number
of normal events rightly classified normal. True Positive (TP): a measure of
the number of abnormal events rightly classified abnormal. False Positive (FP):
a measure of normal events misclassified as attacks. False Negative (FN): a
measure of attacks misclassified as normal. Higher AER means better attack

performance and higher TPR means better detection performance.

4.2 Datasets and Experimental Settings

Datasets. We investigate DARPA, KDD99, NSL-KDD, UNSW_NB and other
data sets, and find that some of these data sets are not real traffic, and some
are real traffic but are outdated and cannot represent changing attack behavior.
Thus, two data sets, Kitsune20182 [13] and CICIDS20173, are used in this paper
to evaluate the performance of our scheme.

The Kitsune dataset comes from two parts. The first part is to attack in a
real IP camera video surveillance network. For example, an attack can affect
the availability and integrity of the video uplink. In order to establish a more
noisy network attack environment, the second part of the attack data comes
from the attack environment of 9 IoT devices and 3 PCs, including wireless
network equipment. There are 9 data sets used to evaluate Kitsune: OS Scan,
Fuzzing, Video Injection, ARP MitM, Active Wiretap, SSDP Flood, SYN DoS,
SSL Renegotiation and Mirai. See [13] for detailed description.

CICIDS2017 contains benign and the most up-to-date common attacks,
which resembles the true real-world data (PCAPs). It also includes the results

! https://github.com/zyyrrr/MACGAN.
2 https://goo.gl/iShM7E.
3 https://www.unb.ca/cic/datasets /ids-2017.html.
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of the network traffic analysis using CICFlowMeter with labeled flows based on
the time stamp, source and destination IPs, source and destination ports, proto-
cols and attack (CSV files). The implemented attacks include Brute Force FTP,
Brute Force SSH, DoS, Heartbleed, Web Attack, Infiltration, Botnet and DDoS.
We use the original label from CICIDS2017.

Experiment Environment. In the experiment, PyTorch [15] is adopted as
the deep learning framework to implement MACGAN. The purposed model is
run and evaluated on a Linux PC with Intel Core i7-5500 and 1080Ti GPU.

Table 1. Identify data sets that require further attack. TP R measures the proportion
of abnormaly that are correctly identified. 926554.8557720063 is expressed in the form
of 9e5. no represents a range of dataset sizes we choose that do not require further
attack anomaly detection algorithms. Because T PR itself is very low. yes stands for
the need to use the MACGAN algorithm for further attacks.

Attack Name Benign 4+ Malicious|train + test |Threshold/TPR |Need attack
OS Scan 65845 + 34155 14000 + 86000(12.194 0.441 |No
Fuzzing 77206 + 22794 50000 + 50000|0.348 0.004 |No
Video Injection 80395 + 19605 40000 + 60000|1.713 0.002 |No
ARP MitM 61995 + 38005 50000 4 50000/9e5 0.001 |No
Active Wiretap 62285 4 37715 50000 + 50000|4e10 5e — 05/No
SSDP Flood 62295 + 37705 50000 + 50000|27.571 0.994 |Yes
SYN Flood 92962 + 7038 10000 + 90000|1e3 0.004 |No
SSL Renegotiation 89468 + 10532 40000 + 60000(33.151 0.005 |No
Mirai 69999 + 30001 55000 + 45000|1.595 0.818 |Yes
CICIDS2017 71860 + 28140 35000 + 65000[4.958 0.659 |Yes

Table 2. Analysis of fields that can be disturbed based on three data sets. The numbers
here are the numbers of the 19 network packet fields in Fig. 2.

Data set Non-attack field number | Reserved Modified
Mirai 0, 2-5, 14, 16-18 0,3.,5,709,18 2, 4, 14, 16, 17
SSDP Flood | 1-7, 9, 14, 16-18 0,3,5 79,11, 13-16, 18 ' 1, 2, 4, 6, 17
CICIDS2017 | 1-5, 14, 16-18 0,1,3,5709,11, 18 2, 4, 14, 16, 17

4.3 Experimental Results and Implications

Attack Based on Kitsune Anomaly Detection Algorithm. This section
illustrates a group of experiments to verify the effectiveness of our MACGAN
attack model. We first sample the original data set of this algorithm. There
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are 100,000 benign samples along with malicious samples. The current TPR is
tested in the case of FPR = 0.001. We decide whether to further use our attack
algorithm based on the value of TPR. Table1 describes which data sets can be
used for further attacks. Among them, T PR of Kitsune on the SSDP data set
can reach 0.994. The training set and test set size are both 50000. In order to
ensure the robustness of our attack algorithm, we also use the CICIDS2017 data
set to conduct experiments.

According to Table 1, we further attack Kitsune on the three data sets Mirai,
SSDP Flood, and CICIDS2017 when we specify the size of the training sample. In
order to maintain the aggressiveness of these attack methods, we not only retain
the fields that these attacks must retain. The details are shown in Table 2.

From the previous section, we have been able to determine which fields can
be attacked. Figure 4 shows the experiment on the CICIDS2017 data set. It can
be seen from Fig.4(a) that when the algorithm is iterated to the tenth times,
Kitsune’s T PR is already zero, which proves the effectiveness of our attacks. At
the same time, in order to analyze the influence of the hidden layer parameter a
on the convergence of the algorithm, we supplemented the experiment. As shown
in Fig. 4(b), when a is greater than 2, the attack effect can be best. Figure 5 and
6 are similar to the attack effect in Fig.4. The difference is that the value of
convergence point a of Mirai data set in Fig.5 is 3 and 9, and the value of
convergence point a of SSDP Flood data set in Fig. 6 is greater than 6.
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Fig. 4. Changes in T PR under the Mirai data set.
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Fig. 5. Changes in T PR under the SSDP_Flood data set.
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Fig. 6. Changes in T PR under the SSDP_Flood data set.

Table 3. AER under different parameters a. The larger AER, the better the attack
effect. TPRycfore is abbreviated as Ty. Negative number indicates a side effect of the
attack. Hidden layer size is \/2|m/| + |z| + a.

a Mirai (T,=0.818) | SSDP Flood (T,=0.994) | CICIDS2017 (T,=0.659)
a=1 0.106 —0.006 —0.517
a=2 0187 —0.006 1
a=3 0.658 —0.006 1

a=4 0293 —0.006 1
a=5 0111 —0.006 1
a=6 0.047 1 1
a=7 0968 1 1
a=8 0.079 1 1
a=9 0762 1 1
a=10 0572 1 1

Next, we introduce the concept of AFR. As shown in Table 3, this is an
assessment of the attack effect under different parameters a of different data
sets. We can see that when a is 7, our attack effect can be best on different
data sets. In short, as long as we can satisfy the detection part of the anomaly
detector and change the undiscovered part by disturbance, our attack effect will
be better. For example, the increase in the number of network addresses and
the spread of timestamps will reduce the likelihood that a real attacker will be
discovered.

Attacks Based on Multiple Anomaly Detection Algorithms. In order to
further verify the effectiveness of our attack, we select another 300,000 data pack-
ets from the CICIDS2017 dataset for experiments. We use Isolation Forests (IF)
[16] and Gaussian Mixture Models (GMM) [17]. IF is an ensemble based method
of outlier detection, and GMM is a statistical method based on the expectation
maximization algorithm. Then we use support vector machine (SVM) from [18],
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sparse autoencoder finetuned neural network (SAE) from [19], restricted boltz-
mann machine fine-tuned neural network (RBM) from [1] and kitsune from [20].
All classifiers use Kitsune’s feature extraction method. We can see from Fig. 7
that the Kitsune algorithm has the highest T PR before being attacked, which
can reach 0.998. But after being attacked, the detection effect is greatly reduced,
and T PR is almost reduced to 0. Other algorithms have the same trend.
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Fig. 7. Attack effects of different algorithms based on the 300,000 CICIDS2017 dataset.

5 Conclusion

The development of machine learning has facilitated network anomaly detec-
tion. However, attacks on machine learning methods are also needed to con-
sider. This paper proposes an anomaly detector attack framework MACGAN
based on GAN. Our attack effect is better, indicating that the robustness of the
machine based anomaly detector needs to be further improved. Inspired by the
works [21-24], we will defense our MACGAN attack model in our future work.
For example, we can design a defense GAN to let it play a dynamic game with
MACGAN.
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