
A New Fully Homomorphic Signatures
from Standard Lattices

Yukun Wang and Mingqiang Wang(B)

School of Mathematics, Shandong University, Jinan, China
wangyukun@mail.sdu.edu.cn, wangmingqiang@sdu.edu.cn

Abstract. Recently, Gorbunov, Vaikuntanathan and Wichs [6] propose
a new powerful (fully) homomorphic trapdoor function (HTDF) based on
small integer solution (SIS) problem in standard lattices, and construct
the first fully homomorphic signature (FHS) schemes. Later Wang et al.
[10] extend the notion of HTDF to identity-based setting with strongly
security and construct the first identity based fully homomorphic signa-
ture (IBFHS) schemes.

In this paper, we provide a new IBHTDF which satisfies claw-free and
collision-resistant. Moreover, we find a homomorphic algorithm for our
new IBHTDF where the noise level of multiplication gate is the same
as that of addition gate. So, the noise level of IBHTDF for evaluating
a circuit of depth d is reduced from O(4dmβ) to O(2dβ). Finally, we
construct a new leveled strongly-unforgeable identity-based fully homo-
morphic signature (IBFHS) schemes based on our IBHTDF.

Keywords: Identity-based homomorphic trapdoor function · Small
integer solution · Strong unforgeability

1 Introduction

In recent years, with the rapid development of cloud computing, a large number
of researchers pay more attention to the cryptographic scheme with homomor-
phic property. The property allows a client to upload his/her encrypted/signed
data to a remote server securely. Then, the client could use the computation
ability of the server to help him process data but doesn’t worry about data leak-
age. The study of fully homomorphic encryption (FHE) [5], demonstrates how
to perform homomorphic computation over encrypted data without the knowl-
edge of secret key, has a far-reaching influence on the latter research. The recent
works [1,4,5] of (leveled) fully homomorphic signatures show that how to do
homomorphic computation on signed data.

In this work, we focus on the latter question: the public authenticity of the
result of homomorphic computation over signed data. In a homomorphic signa-
ture scheme, a client signs a message x = (x1, . . . , xN ) using his secret key. After
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that, the client upload the signed data σ = (σ1, . . . , σN ) to a remote server. At
any later point, the server obtains an admissible circuit g that y = g(x) and do
some homomorphic computation over the signed data σ. In particular, the server
produce a short signature σg on y which is a correct output of the operation g
over the data x. Anyone can verify the tuple (g, y, σg) using the client public
verification key and accept this fact without the knowledge of the underlying
data x.

Leveled FHS. Gorbunov, Vaikuntanathan and Wichs [6] proposed the first
leveled FHS schemes based on SIS problem in standard lattices. They put for-
ward a new primitive: HTDF. They required that HTDF functions have claw-
freeness property, which is necessary for the security of their FHS schemes.
Their FHS schemes are existentially unforgeable in the static chosen-message-
attack (EU-sCMA) model. Additionally, they showed that one can transform an
EU-sCMA secure FHS to an existentially unforgeable under adaptive chosen-
message-attack(EU-aCMA) secure FHS via homomorphic chameleon hash func-
tion. Recently, Boyen, Fan and Shi also brought up a EU-aCMA secure FHS
schemes using vanishing trapdoor technique [3]. In the meantime, Xie and Xue
[9] showed that leveled FHS schemes can be constructed if indistinguishability
obfuscation and injective one way function exist.

Leveled IBFHS. Wang et al. [10] proposed the first leveled strongly-
unforgeable IBFHS schemes. They construct an IBHTDF which is not only
claw-free, but also collision-resistant. They use Barrington’s theorem to reduce
the parameters as done in field of FHE [2]. The maximum noise-level com-
paring to Gorbunov, Vaikuntanathan and Wichs’ FHS roughly reduces from
O(mdβ) to O(4dmβ), which will result in polynomial modulus q = poly(λ)
when d = O(log λ), where λ is the security parameter and d is the maximum
depth of admissible circuit.

1.1 Results and Techniques

In this paper, we provide a new IBHTDF and construct a leveled IBFHS based
on our IBHTDF. Our new IBFHS scheme is existentially unforgeable in the
static chosen-message-attack (EU-sCMA).

For integers n, q and � = �log q�, let G = In ⊗ gT ∈ Z
n×n�
q , where gT =

(1, 2, 22, . . . , 2�−1) and In denotes the n-dimensional identity matrix. The HTDF
in [6] is constructed by the function fpk,x = A · U + x · G, where A is a matrix
with a trapdoor for invert, and U is a matrix with small norm. Homomorphic
operation relies on the invertibility property of the matrix G. Notice that, if the
matrix G in fpk,x is replaced by the matrix A, one still can evaluate the new
function homomorphic. Therefore, the function fpk,x = A · U + x · A is a new
HTDF. The homomorphic operation algorithm of our new HTDF is as following.

Homomorphic Operations. Let U1,U2 ∈ Z
m×m
q be “short” matrices and

V1 = fpk,x1(U1) = AU1 + x1 · A , V2 = fpk,x2(U2) = AU2 + x2 · A.
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Addition. We can simply set U∗ := U1 + U2, V∗ := V1 + V2 and get

fpk,x1+x2(U
∗) = AU∗ + (x1 + x2)A = V∗.

Multiplication. Homomorphic multiplication is slightly more complex. We set

U∗ := U1 + x1 · U2, V∗ := V1 − x1 · A + x1 · V2.

It is easy to verify

fpk,x1·x2(U
∗) = AU∗ + (x1 · x2)A = V∗.

To evaluate a circuit g of depth d for our new HTDF, the maximum noise
level of our algorithm is O(2dβ). The homomorphic operation algorithm for the
original HTDF require the invert operation of G which makes the the nose level
increasing m multiples. A permutation branching program is used in [10] for
evaluating a circuit g of depth d for a new HTDF, that reduce the maximum
noise level from O(mdβ) to O(4dmβ). While, the multiplication operation for
our new HTDF does not need invert operation of any matrix. The noise level for
our new HTDF of multiplication gate is the same as that of addition gate. So,
our noise level should be optimal.

Gorbunov’s pioneering work shows that any HTDF must satisfy claw-free
for security. Later Wang extend the notion of HTDF to IBHTDF with stronger
security. The stronger security requires that IBHTDF is not only claw-free but
also collision-resistant. We use a special trapdoor generator which can generates
a public matrix with trapdoor for any identity and the function f to construct a
new IBHTDF. Because of the new function f , we improve the proving method
in [10] to make sure that the new IBHTDF could satisfy claw-free and collision-
resistant.

Finally, we construct a new leveled strongly-unforgeable identity-based fully
homomorphic signature (IBFHS) schemes based on our IBHTDF. The maximum
noise-level comparing to Wang’s FHS [10] roughly reduces from O(4dmβ) to
O(2dβ).

1.2 Paper Organization

In Sect. 2, we give some backgrounds on lattices and related tools used in this
paper. We propose the new IBHTDF function in Sect. 3 and demonstrate the
homomorphic evaluation algorithm in Sect.4. In Sect. 5 we recall the leveled
strongly-unforgeable IBFHS. Finally, we conclude in Sect. 6.

2 Preliminaries

We use the hold upper-case letters (e.g.,A,B) to represent matrices and
bold lower-case letters (e.g.,a,b) to represent column vectors. Let ‖A‖∞ =
maxi,j{|ai,j |} denote the infinite norm and ai or a[i] represent the i-entry of
a. Let [A‖B] denote the concatenation of two matrices and (A,B)=[AT ‖BT ]T .
We use λ to denote the security parameter and negl(λ) to denote a negligible
function that grows slower than λ−c for any constant c > 0 and any large enough
value of λ. For an integer N, we let [N ]

def
= {1, . . . , N}.
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2.1 Entropy and Statistical Distance

For discrete random variables X ← X , Y ← Y, we define the statistical distance

�(X,Y )
�
=

1
2

∑

ω∈X∪Y
|Pr[X = ω] − Pr[Y = ω]|.

We say that two random variables X,Y are statistically indistinguishable,
denoted by X

stat≈ Y , if �(X,Y ) = negl(λ). The min-entropy of a random vari-

able X, denoted by H∞(X), is defined as H∞(X)
�
= − log(maxxPr[X = x]). The

average min-entropy of X conditioned on Y , denoted by H∞(X|Y ), is defined
as

H∞(X|Y )
�
= −log(Ey←Y [maxxPr[X = x|Y = y]]) = −log(Ey←Y [2−H∞(X|Y =y)]).

The optimal probability of an unbounded adversary guessing X given the
correlated value Y is 2−H∞(X|Y ).

Lemma 1. Let X ← X , Y ← Y be arbitrarily random variables where the sup-
port of Y lies in Y. Then H∞(X|Y ) ≤ H∞(X) − log(|Y|).

2.2 Background on Lattices and Hard Problems

Lattices. Lattices-based cryptography usually use so-called q-ary integer lat-
tices, which contain qZm as a sublattice for some modulus q. Let n,m, q be
positive integers. For a matrix A ∈ Z

n×m
q we define following q-ary integer lat-

tice
Λ⊥(A) = {u ∈ Z

m : Au = 0 mod q}.

For a vector v ∈ Z
n
q , we define the coset:

Λ⊥
v (A) = {u ∈ Z

m : Au = v mod q}.

SIS. Let n,m, q, β be integers. The short integer solution (SISn,m,q,β) problem

is that given a uniformly random matrix A $←− Z
n×m
q , to find a nonzero vec-

tor u ∈ Z
n
q with ‖u‖∞ ≤ β such that Au = 0 mod q(i.e. u ∈ Λ⊥(A)). For

q ≥ β · (
√

n log n), the SISn,m,q,β problem in average case is as hard as solving
GapSVP∼

O(β·√n)
in the worse case in standard lattices [7,11].

Discrete Gaussian Distribution. Let DZm,r be the truncated discrete Gaus-
sian distribution over Z

m with parameter r. That means ‖u‖∞ ≤ r · √
m with

probability 1 if u ← DZm,r. If ‖u‖∞ is larger than r · √
m, then the output is

replaced by 0.

Lattices Trapdoor. Here we recall the trapdoor generation algorithm and
Gaussian sampling algorithm in [8]. We ignore all details of implementation
which are not strictly necessary in this work.

For integers n, q and � = �log q�, let G = In ⊗ gT ∈ Z
n×n�
q , where gT =

(1, 2, 22, . . . , 2�−1) and In denotes the n-dimensional identity matrix.
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Lemma 2. Let n, q, �,m0,m1 be integers such that n=poly(λ), q = q(n),

� = �log q�, m0 = n(� + O(1)), m1 = n�. For A0
$←− Z

n×m0
q and H ∈

Z
n×n
q , there exists a randomized algorithm TrapGen(A0,H) to generate a

matrix A = [A0‖HG − A0R] ∈ Z
n×(m0+m1)
q with trapdooor R such that

R ← DZm0×m1 ,r for large enough r(≥ ω(
√

log n)) and A is negl(λ)-far from

(V0,V1)
$←− Z

n×m0
q × Z

n×m1
q . Here, R is called G-trapdoor of A with tag H.

Furthermore, for any non-zero u = (u0,u1) ∈ Z
m0+m1
q , the average min-entropy

of Ru1 given A0 and A0R is at least Ω(n).

Lemma 3. Given parameters in above lemma and an uniformly random vector
v ∈ Z

n
q , for some s (≥ O(

√
n log q))∈ R and a fixed function ω(

√
log n) growing

asymptotically faster than
√

log n, if the tag H is invertiable, then there exists
an efficient algorithm SamPre(A0,R,H,v, s) that samples a vector u from
DΛ⊥

v (A),s·ω(
√
log n) such that A ·u = v. Note that ‖u‖∞ ≤ s

√
m0 + m1 ·ω(

√
log n)

with probability 1. Furthermore, for u′ ← D
Zm,s·ω(

√
log n) and v′ = Au′, we have

(A,R,u,v)
stat≈ (A,R,u′,v′).

3 Identity-Based Homomorphic Signature

In this section, we come up with the definition of IBHTDF and construct a
new function f . Based on f , we design a new IBHTDF which satisfy claw free
and collision-resistance. Our IBHTDF is selective-identity secure under the SIS
assumption.

3.1 Definition Identity-Based Trapdoor Functions

An identity-based homomorphic trapdoor function (IBHTDF) consists of
six polynomial algorithms(IBHTDF.Setup, IBHTDF.Extract, f , Invert,
IBHTDF.Evalin, IBHTDF.Evalout) with syntax as follows:

– (mpk,msk) ← IBHTDF.Setup(1λ): Master key setup procedure. The secu-
rity parameter λ defines the identity space I, the index spacce X , the input
space U , the output space V and some efficiently samplable input distribu-
tion DU over U . We require that elements of I,U ,V, or X can be efficiently
certified and we can efficiently sample elements from V uniformly at random.

– (pkid, skid) ← IBHTDF.Extract(mpk,msk, id): An identity-key extraction
procedure. We require that pkid can be extracted deterministically from mpk
and id ∈ I without using the knowledge of msk.

– fpkid,x: U → V : A deterministic function indexed by pkid and x ∈ X .
– Invertskid,x : V → U : A probability inversion algorithm indexed by skid and

x ∈ X .
– ug = IBHTDF.Evalin(g, (x1, u1, v1), . . . , (x�, u�, v�)): A deterministic input

homomorphic evaluation algorithm. It takes as input some function g : X � →
X and values {xi ∈ X , ui ∈ U , vi ∈ V}i∈[�] and output ug ∈ U .
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– vg = IBHTDF.Evalout(g, v1, . . . , v�): A deterministic output homomorphic
evaluation algorithm. It takes as input some function g : X � → X and values
{vi ∈ V}i∈[�] and output vg ∈ V.

Correctness of Homomorphic Computation. Let algorithm (pkid, skid) ←
IBHTDF.Extract(mpk, msk, id) extracts the identity-key for id. Let g : X � →
X be a function on x1, . . . , x� ∈ X and y = g(x1, . . . , x�). Let u1, . . . , u�

∈ U and set vi = fpkid,xi
(ui) for i ∈ [�]. Set ug = IBHTDF.Evalin(g, (x1, u1,

v1), . . . , (x�, u�, v�)), vg = IBHTDF.Evalout(g, v1, . . . , v�). We require that
ug ∈ U and vg = fpkid,y(ug).

Distributional Equivalence of Inversion. For the security of our construc-
tion IBFHS in next section, we require the following statistical indistinguisha-
bility:

(pkid, skid, x, u, v)
stat≈ (pkid, skid, x, u′, v′)

Where (pkid, skid) ← IBHTDF.Extract, x ∈ X , u ← DU , v = fpkid,x(u), v′ $←−
V, u′ ← Invertskid,x(v′).

IBHTDF Security. We require not only claw-freenesss but also collision-
resistance for IBHTDF security to guarantee strong-unforgeability for IBFHS.

The experiment ExpsID
A,IBHTDF(1λ) describe the selective-identiy security,

where the adversary has to appoint a target identity id∗ to attack before seeing
the public key. Moreover, the adversary can query identity-key for all identity
except id∗. Then he is required to find u �= u′ ∈ U , x, x′ ∈ X such that
fpkid∗ ,x(u) = fpkid∗ ,x′(u′). It’s easy to see that if x = x′, then (u, u′) is a collision,
a claw otherwise.

ExpsID
A,IBHTDF(1λ)

– (id∗, state) ← A(1λ).
– (mpk,msk) ← IBHTDF.Setup(1λ).
– (u, u′, x, x′) ← AIBHTDF.Extract(mpk,msk)\id∗

(mpk, state).
– A wins if u �= u′ ∈ U , x, x′ ∈ X are such that fpkid∗ ,x(u) = fpkid∗ ,x′(u′).

We say that an identity-based homomorphic trapdoor function is selective-
identity secure if Pr[ExpsID

A,IBHTDF(1λ)] ≤ negl(λ).

3.2 Construction: Basic Algorithms and Security

To describe the IBHTDF functions, we give some public parameters as follows.

– Let flexible d be the circuit depth such that d ≤ poly(λ) and λ be a security
parameter.

– Choose an integer n = poly(λ) and a sufficiently large prime q = q(n). Let
� = �log q�, m0 = n(� + O(1)), m1 = n� and m = m0 + 2m1. Set β0 =
O((n log q)3/2), βmax = O(2dβ0), βSIS = O(m1β0)βmax < q.

– G = In ⊗ gT ∈ Z
n×n�
q is the primitive matrix, where gT = (1, 2, 22, . . . , 2�−1).
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– We assume that identities are elements in GF(qn), and say H : GF(qn) →
Z

n×n
q is an invertible difference, if H(id1) − H(id2) is invertible for any two

different identities id1, id2 and H is computable in polynomial time in n�.
– Set X = Z2, I = Z

n
q , V = Z

n×m
q and U = {U ∈ Z

m×m
q : ‖U‖∞ ≤ βmax}.

Define the distribution DU is a truncated discrete Gaussian distribution over
U , so that ‖U‖∞ ≤ β0 if U ← DU .

Now we describe the basic algorithms of IBHTDF function F .

– IBHTDF.Setup(1λ): On input a security parameter λ, set d, n, m0, m1,
m, q, β0, βmax, βSIS as specified above. Then do
1. Choose A0

$←− Z
n×m0
q and run TrapGen(A0,0) to generate a

matrix A = [A0‖A1] = [A0‖−A0R] and a trapdoor R such that R ←
D

Zm0×m1 ,ω(
√
log n) and A is negl(λ)-far from uniform. Set the master

secret key as msk = R. Note that A · (R, Im1) = 0, namely R is a
G-trapdoor of A with tag 0.

2. Choose A2
$←− Z

n×m1
q and set public key as mpk = {A,A2}.

– IBHTDF.Extract(mpk,R, id): On input a master public key mpk, a master
secret key R and an identity id ∈ I, do
1. Compute Hid for id ∈ I and let A′

id = [A0‖Hid · G + A1]. Then R is
a G-trapdoor of A′

id with tag Hid. Set user’s public key pkid = Aid =
[A′

id‖A2].
2. Run SamPre(A0,R,H(id),G − A2, O(

√
n log q)) to output Rid ∈

Z
(m0+m1)×m1 such that A′

id · Rid = G − A2. Then Rid is a G-trapdoor
of Aid with tag In. Set secret key skid = Rid.

– fpkid,x(U): On input mpk, id ∈ I, x ∈ X and U ∈ U , do
1. Compute pkid = Aid = [A0‖Hid · G + A1‖A2] as above.
2. For id ∈ I, x ∈ X and U ∈ U , define fpkid,x(U)

�
= Aid · U + x · Aid.

– Invertskid,x(V): On input identity id ∈ I, an identity-key Rid, an index
x ∈ X and V ∈ V, run SamPre(A′

id,Rid, In,V − x · Aid, O(n log q)) to
output U (such that Aid · U = V − x · Aid).

Distributional Equivalence of Inversion. Let x ∈ X and (pkid = Aid, skid =
Rid)← IBHTDF.Extract (mpk,R, id). U ∈ U , V = fpkid,x(U) = Aid · U +

x · Aid, V′ $←− V, U′ ← SamPre(A′
id, Rid, In, V′ − x · Aid, O(n log q)). By

Lemma3 and the fact that (V′ − xAid) is uniformly random, we have

(Aid,Rid,U,Aid · U)
stat≈ (Aid,Rid,U′,V′ − xAid).

Then, we have

(Aid,Rid, x,U,V = Aid · U + x · Aid)
stat≈ (Aid,Rid, x,U′,V′).

IBHTDF Security. We now show that the IBHTDF function F is selective-
identity secure assuming the SIS assumption.

Theorem 1. The function F constructed above is a selective-secure IBHTDF
assuming the SISn,m0,q,βSIS

.

Because of space limitations, we put the proof of the theorem in the full version.
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4 Homomorphic Evaluation and Noise Analysis

In this section, we give a new construction of homomorphic evaluation algorithm.
Our construction could do better in homomorphic evaluation based on the fact
that the noise growth is slower.

4.1 Basic Homomorphic Evaluation

We now define the basic homomorphic addition and multiplication algorithms
that will be used in IBHTDFs. These algorithms for IBHTDFs are simple and
faster than that in [10]. But the parameters used in this section are same as that
in [10] because of the similar structure. Recall that Vi = AUi + xiA (i = 1, 2),
where we set A = Aid for simplicity throughout Sect. 5. Let ‖Ui‖∞ ≤ βi and
xi ∈ {0, 1}.

4.2 Construction: Homomorphic Evaluation and Noise Growth

Now we define the algorithms Evalin,Evalout with the syntax

U∗ := IBHTDF.Evalinpk(g, (x1,U1), . . . , (x�,U�)),

V∗ := IBHTDF.Evalout
pk (g,V1, . . . ,V�).

We consider the function g as basic gates in an arithmetic circuit: addition, multi-
plication, addition-with-constant and multiplication-by-constant. These functions
are complete and can be composed to evaluate arbitrary arithmetic circuit. Let
the matrice Ui have noise-levels bounded by βi.

– Let g(x1, x2) = x1 + x2 be an addition gate. The algorithms
IBHTDF.Evalin, IBHTDF.Evalout respectively compute

U∗ := U1 + U2, V∗ := V1 + V2.

The matrix U∗ has noise level β∗ ≤ β1 + β2. The correctness follows by
(V1 + V2) = A(U1 + U2) + (x1 + x2)A.

– Let g(x1, x2) = x1 · x2 be a multiplication gate. The algorithms
Evalin,Evalout respectively compute

U∗ := U1 + x1 · U2, V∗ := V1 − x1 · A + x1 · V2.

The matrix U∗ has noise level β∗ ≤ β1 + |x1|β2 = β1 + β2. The correctness
follows by a simple computation assuming Vi = AUi + xiG.

– Let g(x) = x+a be addition-with constant gate, for the constant a ∈ Zq. The
algorithms IBHTDF.Evalin, IBHTDF.Evalout respectively compute

U∗ := U, V∗ := V − a · A.

The matrix U∗ have the same noise level as U.
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– Let g(x) = a · x be a multiplication-by-constant gate for the constant a ∈ Zq.
The algorithms IBHTDF.Evalin, IBHTDF.Evalout respectively compute

U∗ := a · U, V∗ := a · V.

The matrix U∗ have the same noise level as a · β.

Bounded-Depth Circuits. In Wang’s IBHTDF, a depth-d (d ≤ poly(λ)) cir-
cuit can be transformed to a length L = 4d permutation branching program. The
maximum noise comparing to Gorbunov-Vaikuntanathan-Wich’s HTDF reduces
roughly from O(mdβ) to O(4dmβ). Then in our HTDF we do not use permuta-
tion branching program and reduces roughly from O(mdβ) to O(2dβ). In particu-
lar, we can set polynomial modulus q = poly > O(2dβ) when d = O(log λ) which
will result in better security based on GapSVP with polynomial approximation
factors.

5 Strongly-Unforgeable Identity-Based Fully
Homomorphic Signatures

In this section, we give a strongly-unforgeable identity-based fully homomorphic
signature scheme. The scheme will take advantage of IBHTDF in Sect. 3 and
homomorphic evaluation in Sect. 4.

5.1 Definition of IBFHS

A single data-set identity-based homomorphic signature scheme consists of fol-
lowing algorithms (PrmsGen, Setup, Extract, Sign, SignEval, Process,
Verify) with syntax:

– prms ← PrmsGen(1λ, 1�): Take the security parameter λ and the maximum
data-size N . Output public parameters prms. The message space X is defined
by security parameter λ.

– (mpk,msk) ← Setup(1λ): Take the security parameter λ. Output a master
key pair (mpk,msk).

– (pkid, skid) ← Extract(mpk,msk, id): An identity-key extraction procedure.
– (σ1, . . . , σN ) ← Signskid

(prms, x1, . . . , xN ): Sign message data
(x1, . . . , xN ) ∈ X N for ID.

– σg = SignEvalprms(g, (x1, σ1), . . . , (x�, σ�)): A deterministic homomor-
phic signature algorithm output a signature σg for some function g
over(x1, . . . , x�) ∈ X �.

– vg = Processprms(g): Deterministically and homomorphically evaluate a cer-
tificate vg for the function g from the public parameters prms.

– Verifypkid
(vg, y, σg): Verify that y is the correct output of g by proving σg

corresponding to vg.
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Correctness. For prms ← PrmsGen(1λ, 1�), (pkid, skid) ← Extract(mmpk,
msk, id), (x1, . . . , xN ) ∈ X N , (σ1, . . . , σN ) ← Signskid

(prms, x1, . . . , xN ) and
g : X � → X , we require following equation

Verifypkid
(vg, y = g(x1, . . . , x�), σg) = accept

holds, where vg = Processprms(g) and σg = Processprms(g, (x1, σ1), . . . ,
(x�, σ�)).

Correctness of Leveled IBFHS. The correctness of leveled IBFHS follows
from that of leveled IBHTDF and hence is omitted.

Security Experiment. The experiment ExpSU−sID−sCMA
A,IBFHS (1λ) defined in

following describes the strongly-unforgeable selective-identity static chosen-
message-attack security game, where the adversary has to fix a target identity
id∗ to attack before obtaining the master public-key and public parameters.
Moreover the adversary can query identity-keys for all identity except id∗. Then
the adversary is forced to find (g, y′, σ′) such that the Verify algorithm out-
put accept. If y = y′ then σ′ is a strongly-forgeable signature, otherwise is a
existentially-forgeable signature.

ExpSU−sID−sCMA
A,IBFHS (1λ)

– (id∗, {xi}i∈[N ], state) ← A(1λ).
– prms ← PrmsGen(1λ, 1N ), (mpk,msk) ← Setup(1λ).
– (g, y′, σ′) ← AExtract(mpk,msk,·)\{id∗},Sign(id∗,{xi}i∈[N])(prms,mpk, state).
– A wins if all of the following hold:

1. g is a admissible circuit on the messages x1, . . . , xN ;
2. σ′ �= σg, where σg = SignEvalprms(g, (x1, σ1), . . . , (x�, σ�));
3. Verifypkid∗ (vg, y

′, σ′) accept, where vg = Processprms(g).

We say that an IBFHS is strongly-unforgeable selective-identity static chosen-
message-attack (SU-sID-sCMA) secure if Pr[ExpSU−sID−sCMA

A,IBFHS (1λ)] ≤ negl(λ).

5.2 Construction

We use the IBHTDF and homomorphic evaluation given in Sect. 3 and Sect. 4
to construct a leveled IBFHS.

Let F = (IBHTDF.Setup, IBHTDF.Extract, f, Invert, IBHTDF.
Evalin, IBHTDF.Evalout) be an IBHTDF with identity space I, index space
X , input space U , output space V and some efficiently samplable input dis-
tribution DU over U . We construct an IBFHS scheme S = (PrmsGen,
Setup,Extract,Sign, SignEval,Process,Verify) with message space X as
follows.

– prms ← PrmsGen(1λ, 1�): Sample vi
$←− V, i ∈ [N ] and set public parame-

ters prms = (v1, . . . , vN ).
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– (mpk,msk) ← Setup(1λ): Select(mpk′,msk′) ← IBHTDF.Setup(1λ) and
set master-key pair (mpk = mpk′, msk = msk′).

– (pkid, skid) ← Extract(mpk,msk, id): Run IBHTDF.Extract(mpk′,msk′,
id) to get (pk′

id, sk
′
id) and set pkid = pk′

id, skid = sk′
id for id ∈ I.

– (σ1, . . . , σN ) ← Signskid
(prms, x1, . . . , xN ): Sample ui ← Invertsk′

id,xi
(vi)

and set σi = ui, i ∈ [N ].
– σg = SignEvalprms(g, (x1, σ1), . . . , (x�, σ�)): perform deterministic algorithm

IBHTDF.Evalin (g, (x1, u1, v1), . . . , (x�, u�, v�)) to get ug and set σg = ug.
– vg = Processprms(g): Perform IBHTDF.Evalout(g, v1, . . . , v�) and output

the result vg.
– Verifypkid

(vg, y, σg): If fpk′
id,y(σg) = vg accept, else reject.

Security. We now show the SU-sID-sCMA security of the leveled IBFHS.

Lemma 4. The leveled IBFHS scheme S constructed above is SU-sID-sCMA
secure assuming that F is a leveled selective-identity secure IBHTDF.

Proof. Assume that there exist a PPT adversary A that wins the security exper-
iment ExpSU−sID−sCMA

A,IBFHS (1λ) of IBFHS with non-negligible probability δ. We can
construct a PPT reduction B that breaks the selective-identity security of F .

Let id∗ be the identity that A intends to attack. B will run the changed
algorithms(PrmsGen∗, Setup∗, Extract∗, Sign∗).

– Setup∗(1λ): Run (mpk′,msk′) ← IBHTDF.Setup∗(1λ) and set mpk =
mpk′,msk = msk′.

– Extract∗(mpk,msk, id): Run IBHTDF.Extract∗(mpk,R, id) to get
(pk′

id, sk
′
id). When id �= id∗ and set pkid = pk′

id, skid = sk′
id. However, if

id = id∗, then the trapdoor disappears and B can not generate the identity
key for id∗.

– PrmsGen∗(1λ, 1N ): Choose ui ← DU and compute vi = fpkid∗ ,xi
(ui). Out-

put prms = (v1, . . . , vN ).
– Sign∗(x1, . . . , xN ): Set σi = ui and output (σ1, . . . , σN ).

As the Distributional Equivalence of Inversion property underlying IBHTDF
discussed above, the views of adversary A between the original experiment and
the changed experiment are distinguishable. In particular, the winning proba-
bility of A attacking the changed experiment is at least δ−negl(λ).

For any PPT adversary A which can win the changed experiment with non-
negligible probability δ−negl(λ), we now show that there exists a PPT reduction
B can break the security of F with probability δ−negl(λ) by access to A.

The reduction B receives the challenge identity id∗ and message
data-set (x1, . . . , xN ), generates (mpk,msk, {σi = ui, vi}i∈[N ]) and send
(mpk, {σi, vi}i∈[N ]) to A. If id �= id∗ then B can respond to any identity-key
query for id by msk. But, if id = id∗, then the trapdoor disappears, B doesn’t
have ability to generate identity-key for id∗.
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Assume the adversary A wins the ExpSU−sID−sCMA
A,IBFHS (1λ) that means A out-

puts value (g, y′, σ′). g : X � → X on (x1, . . . , x�) is an admissible function and
σ′ = u′. Let y = g(x1, . . . , x�), ug = σg = SignEvalprms(g, (x1, σ1), . . . , (x�, σ�)),
vg = Processprms(g). On the one hand, since σ′ could verify, fpkid∗ ,y′(u′) = vg

holds. On the other hand, fpkid∗ ,y(ug) = vg must hold because of the correctness
of homomorphic computation. Then we have ug �= u′ ∈ U and y, y′ ∈ X satisfy-
ing fpkid∗ ,y(ug) = fpkid∗ ,y′(u′), that allow B break the ExpsID

A,IBHTDF(1λ) security
of F with probability δ−negl(λ) whenever A wins the changed experiment with
probability δ−negl(λ). This complete the proof of this lemma.

6 Conclusions

In this work, we construct a new leveled strongly-unforgeable IBFHS scheme
which is based on our new IBHTDF. The maximum noise level of addition gate
and multiplication gate are exactly the same in our IBHTDF. That means that
the maximum noise level of our IBHTDF is optimal. It remains open to decrease
the leveled aspect and ideally come up with a signature scheme where there is no
priori bound on the depth of the circuits that can be efficiently evaluated with
short public parameters. What’s more, the existence of any other schemes, e.g.
homomorphic encryption or ABE, could use our trapdoor generation technique
is still a puzzle.
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