q

Check for
updates

Quality of Service Optimization in Mobile Edge
Computing Networks via Deep
Reinforcement Learning

Li-Tse Hsieh', Hang Liul(M), Yang Guo?, and Robert Gazda®

' The Catholic University of America, Washington, DC 20064, USA
liuh@cua. edu
2 National Institute of Standards and Technology,
Gaithersburg, MD 20878, USA
3 InterDigital Communications, Inc., Conshohocken, PA 19428, USA

Abstract. Mobile edge computing (MEC) is an emerging paradigm that inte-
grates computing resources in wireless access networks to process computa-
tional tasks in close proximity to mobile users with low latency. In this paper,
we propose an online double deep Q networks (DDQN) based learning scheme
for task assignment in dynamic MEC networks, which enables multiple dis-
tributed edge nodes and a cloud data center to jointly process user tasks to
achieve optimal long-term quality of service (QoS). The proposed scheme
captures a wide range of dynamic network parameters including non-stationary
node computing capabilities, network delay statistics, and task arrivals. It learns
the optimal task assignment policy with no assumption on the knowledge of the
underlying dynamics. In addition, the proposed algorithm accounts for both
performance and complexity, and addresses the state and action space explosion
problem in conventional Q learning. The evaluation results show that the pro-
posed DDQN-based task assignment scheme significantly improves the QoS
performance, compared to the existing schemes that do not consider the effects
of network dynamics on the expected long-term rewards, while scaling rea-
sonably well as the network size increases.

Keywords: Mobile edge computing (MEC) - Task assignment + Double deep
Q networks (DDQN)

1 Introduction

The rapid development of Internet of Things (IoT) has generated a huge volume of data
at the edge of the network. This requires a large amount of computing resources for big
data analysis and processing, the capability of real-time remote control over both real
and virtual objects, as well as physical haptic experiences. Cloud computing has been

This work is partially supported by the National Science Foundation under Grants CNS-1910348
and CNS-1822087, and InterDigital Communications, Inc.

© Springer Nature Switzerland AG 2020
D. Yu et al. (Eds.): WASA 2020, LNCS 12384, pp. 145-157, 2020.
https://doi.org/10.1007/978-3-030-59016-1_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59016-1_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59016-1_13&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59016-1_13&domain=pdf
https://doi.org/10.1007/978-3-030-59016-1_13

146 L.-T. Hsieh et al.

proposed as a promising solution to meet the fast-growing demand for IoT applications
and services. However, centralized cloud data centers are often far from the IoT devices
and users. How to provide high quality of service (QoS) to the interactive IoT appli-
cations, especially at the edge of the network, is still an open problem. This motivates a
new paradigm referred to as mobile edge commuting (MEC), also called multi-access
edge computing or fog computing, which extends cloud computing to the network edge
[1, 2]. Edge nodes or edge devices provide computing services and carry out com-
putationally intensive application and data processing tasks at the edge of the network
between end users and cloud data centers. They can be computing servers or micro data
centers deployed with routers, gateways, and access points in wireless access networks,
and can also correspond to portable devices such as mobile phones, drones, robots, and
vehicles with excessive computing resources that can be utilized to offer services to
others. MEC can reduce transmission latency and alleviate network congestion. It also
allows network operators to provide value-added real-time services and enhance QoS
to end users.

A resource demand estimation and provisioning scheme for an edge micro data
center is presented in [3] to maximize resource utilization. In [4], the authors proposed
a hierarchical game framework to model the interactions where the edge nodes help the
cloud data center operators process delay-sensitive tasks from mobile users and to
determine the edge node resource allocation, service price, and pairing of edge nodes
and data center operators with Stackelberg game and matching theory. These works
focus on the interaction between edge nodes and cloud data centers to better serve the
users, but they either abstract the MEC layer as a single edge server or assume that the
edge nodes are independent of each other without consideration of their cooperation in
processing tasks. The authors in [5] proposed an offloading scheme that allows a MEC
edge node to forward its tasks to its neighboring edge nodes for execution to balance
the workload fluctuations on different nodes and reduce the service delay. However, the
paper made many idealized assumptions in assigning the tasks to the edge nodes, such
as a fixed task arrival rate at each edge node as well as pre-known queuing delay of
each node and transmission delay between the nodes. Their task assignment algorithm
utilizes the classical model-based techniques that relies on these idealized assumptions
to minimize service delay for one-shot optimization under a given deterministic MEC
network state. Such an approach fails to capture the broad range of network parameters
and ignores the impacts of dynamic network situations and heterogeneous nodes to the
network performance.

On the other hand, reinforcement learning techniques can capture a wide range of
control parameters and learn the optimal action, i.e. the policy for task assignments,
with no or minimal assumptions on the underlying network dynamics. The conven-
tional Q-learning algorithm is based on a tabular setting with high memory usage and
computation requirements and is known to overestimate action values under certain
conditions [6]. Recently, double deep Q networks (double DQN or DDQN) were
introduced to address the problems of conventional Q-learning, which combines double
Q-learning with two deep neural networks [7]. DDQN can provide large-scale function
approximation with a low error and reduces the overestimations.

In this paper, we propose an online DDQN-based algorithm for task assignment
in dynamic MEC networks, which accounts for both performance and complexity.

Quality of Service Optimization in Mobile Edge Computing Networks 147

The proposed algorithm takes into consideration the cooperation among the edge nodes
as well as the cooperation between the edge nodes and a cloud data center. It performs
sequential task assignment decisions in a series of control epochs to enable the nodes to
help each other process user tasks and optimize a long-term expected QoS reward in
terms of the service delay and task drop rate. The algorithm is designed to operate
under stochastic and time-varying task arrivals, node processing capabilities, and
network communication delays without a prior knowledge of these underlying
dynamics. A decomposition technique is also introduced to reduce computational
complexity in DDQN learning.

The remainder of the paper is organized as follows: Sect. 2 describes the problem
formulation. In Sect. 3, we derive the online DDQN-learning based cooperative MEC
task assignment algorithm in detail. In Sect. 4, we provide the numerical experimental
results. Finally, the conclusions are given in Sect. 5.

P Data Stream
= -V 58
Edge Node&\“ ,' ¥.__ <¢--» Control Signal

=" 1 MEC
controller™.

B .
12 Tasks A
g = 30 Tasks : v; 8 Tasks > EIEIE

Mobile User 3(:'i"asks ~ EdgeNode](::)13: ¢
/ Center
L= ¢
@ Edge Node

Fig. 1. An example MEC system model.

[

2 Problem Formulation

Figure 1 illustrates an example MEC system model for consideration in this paper.
A set of N edge nodes, N' = {1,...,N}, with computing, storage, and communication
resources are co-located or integrated with cellular base stations (BSs) or WiFi access
points (APs) in a wireless access network. IoT devices or mobile users connect to
nearby edge nodes through their cellular or WiFi radios and send their computation-
intensive tasks to the edge nodes to be processed. When an edge node receives tasks
from its associated users, it either processes them locally, or forwards part or all of its
unprocessed tasks to other edge nodes or to a remote cloud data center for processing if
the node does not have sufficient resources to complete all the tasks. The remote cloud
data center, n, is modeled as a special node that is equipped with powerful computing
capability but incurs a high network delay due to the distant location.

We assume that the system operates over discrete scheduling slots of equal time
duration. At the beginning of a time slot ¢, a controller in the MEC network collects the
network conditions and determines a task assignment matrix, @' = [(]5;, :n,j € NUn.}.

It informs the edge nodes to offload or receive computing tasks to/from the other nodes

148 L.-T. Hsieh et al.

depending on the task assignment, where ¢/, = [, 7 (b;_” :j € N'Un.} represents the

task assignment vector regarding edge node n. ¢! ; specifies the number of tasks that edge

t
nn

node n will send to node j for processing in the time slot ¢, and ¢! , is the number of tasks
that are processed locally by edge node n. We assume that the data center n. will process
all the received tasks by itself without offloading them to the edge nodes, i.e.
¢, =0j€EN.

We first formulate the problem of stochastic task assignment optimization and then
explore the methods to solve the optimization problem. Each edge node maintains a
queue buffering the tasks received from its users, and ¢/, represents the queue length of
node n at the beginning of time slot ¢. The queue size is bounded as qfl’”‘”). It is assumed
that the number of computational tasks arrived at edge node n in time slot 7, A, is
random and its distribution is unknown in advance. We denote A’ = {A! : n € N'}.
The task processing capability of node n in time slot 7, denoted as s’,, which is the
maximal number of tasks that node n can serve in the slot ¢, is also time-varying and
unknown in advance due to the variable task complexity and adaptation of CPU cycles
based on the power status and heat. The queue evolution of node n can then be written

as qilJrl = max{07 min |:q£z +Ai’l + ZiEen ;n - fz,i - s1r1,7 qﬁlmux) }7 where Ziean ltLi
with e, = {N Un.}\{n} represents the number of tasks that edge node n offloads to
other nodes, and Zi@,, qb;n is the number of tasks that edge node n receives from other
nodes in slot ¢. '

When an edge node n, n € N offloads a task to another node j, j € N'Un, for
execution at time slot #, it incurs an network delay cost, denoted as ¢} ;. Let ¢, =
(! 2 Cin i € N Un,) represent the network delay vector for offloading the tasks from
node n to any other node j, or vice versa, and ¢!, , = 0. The network delay between two
nodes is also time-varying and unknown in advance due to dynamic network condi-
tions, traffic load, and many other uncertain factors. For a node n, n € A" Un,, at the
beginning of time slot #, we characterize its state by its queue size ¢/,, its task processing

capability s, and the delay cost to offload a task to other nodes c!, thus

1= (q;, Si;ﬁzi)‘ The global state of the MEC network at the beginning of scheduling

slot 7 can be expressed as ¥ = (x,:neNUn)=(¢,s,c)ecX, where
¢ ={qd,:neNUn}, s ={s:ne NUnc}, ¢ ={c,:ne NuUn}, and X rep-
resents the whole MEC system state space.

We consider real-time interactive IoT applications and employ the task service
delay and task drop rate to measure the system QoS. The task service delay, d’, is
defined as the duration from the time a task arrives at an edge node to the time it is
served, and the task drop rate, 0!, is defined as the number of dropped tasks per unit of
time. Given the MEC network state, y' = (¢',s’,¢’) at the beginning of a time slot 7, a
task assignment ® = ®(y') = [¢,;(¥’) : n,j € N'Un,} is performed, which results in
an instantaneous QoS reward. We define the instantaneous QoS reward at time slot # as

Quality of Service Optimization in Mobile Edge Computing Networks 149

U O = 3 UG O +wo U (£,), (1)

where U?)(.) and U'°)(.) measure the satisfaction of the service delay and task drop
rate, respectively. w; and w, are the weight factors indicating the importance of delay
and task drop in the reward function of the MEC system, respectively.

As mentioned before, the task arrivals and network states are non-deterministic and
vary over time. We therefore want to cast the task assignment as a dynamic stochastic
optimization problem, which maximizes the expected long-term QoS reward of an
MEC network while ensuring the service delay and task drop rate are within their
respective acceptable thresholds. More specifically, we define V(y, @)=

E[(1—7) X2, ¥ U, ®(x))|x"] as the discounted expected value of the long-term
QoS reward of an MEC network, where y € [0, 1) is a discount factor that discounts the
QoS rewards received in the future, and (y)’_l denotes the discount to the (t — 1)-th
power. z! is the initial network state. V(y, @) is also termed as the state value function
of the MEC network in state y under task assignment policy ®. Therefore, the objective
is to design an optimal task assignment control policy ®* that maximizes the expected
discounted long-term QoS reward, that is,

@ = argmax(V(y, ®))
subjecttod’ < d™) of <o™¥) Y :pne NUn,

(2)
where d™) and 0(™*) are the maximal tolerance thresholds for the service delay and
the task drop rate, respectively. V*(y) = V(y, ®@*) is the optimal state value function.
We assume that the probability of a network state in the subsequent slot depends only
on the state attained in the present slot and the control policy, i.e. the MEC network
state y' follows a controlled Markov process across the time slots. The task assignment
problem can then be formulated as a Markov decision process (MDP) with the dis-
counted reward criterion, and the optimal task assignment control policy can be
obtained by solving the following Bellman’s optimality equation [8],

V() = max{(1 = NUL@@) +7Y Prixle @IV ()}, G)

where y' = {q,s',¢'} is the subsequent MEC network state, and Pr{y’|y, ®(x)} rep-
resents the state transition probability to the next state y’ if the task assignment ®(y) is
performed in state z. ¢ ={q,:ne NUn}, s’ ={s,:ne NUn.}, and ¢ =
{c; neNU nc} are the queue, task processing capability, and network delay states
in the subsequent time slot.

The traditional solutions to (3) are based on value iteration, policy iteration, and
dynamic programming [9, 10], but these methods require a full knowledge of the network
state transition probabilities and task arrival statistics that are unknown beforehand in our
dynamic network case. Thus, we seek the online reinforcement learning approach which
does not have such a requirement. In previous research, we introduced an algorithm based
on conventional Q-learning [6], which defines an evaluation function, called Q function,

150 L.-T. Hsieh et al.

O, @) = (1 —7)U(x, @) +v>_, Pr{y'[x, ®}QO(x, ®) and learns an optimal state-
action value table in a recursive way to decide the optimal task assignment control policy
for each time slot. However, for the cooperative MEC network, the task assignment
decision-making for a node depends on not only its own resource availability and queue
state, but also is affected by the resource availabilities and queue states of other nodes. The
system state space and control action space grows rapidly as the number of involved nodes
increases. The conventional tabular-based Q-learning process will search and update a
large state-action value table, which incurs high memory usage and computation
complexity.

3 Optimal Task Assignment Scheme Based on DDQN

In this section, we focus on developing an efficient algorithm to approach the optimal
task assignment policy based on recent advances in deep reinforcement learning, which
combines Q-learning and deep neural networks to address the state and action space
explosion issue of the conventional Q learning with no requirement for a prior sta-
tistical knowledge of network state transitions and user task arrivals. Specifically, we
design a DDQN-based algorithm to approximate the optimal state value function. In
addition, it can be observed that the QoS reward function is of an additive structure,
which motivates us to linearly decompose the state value function, and incorporate the
decomposition technique into the deep reinforcement learning algorithm to lower its
complexity.

Task assignment

state '

4 matrix &'
A — Store Batch
/ Qnetwork et A peon) [—P
PO O -
» I : $ 3 :
= Observe v 4 G}
g state x* <
= —
2 Replade & with 1 A Update 9 11-"""" model
o aftel k times |
it @ Ta'g(:lt)ta":lle?teward R',New task arrival A’ Training module
= 3 Loss function _
7 + . F R4y = Q(x', 11, A1; 6))
s ¢ P’ JQ g -QG',9',4% 6)
¥ ; 7| = p =
Observe 4 o psk ix dt+1 0
1 & | matrix o Minimization of loss

Fig. 2. DDQN-based cooperative MEC task assignment.

Figure 2 illustrates the DDQN-based reinforcement learning scheme for the col-
laborative MEC task assignment. DDQN replaces the tabular setting of conventional Q-
learning with two neural networks, Q evaluation network and Q target network, to learn
and approach the optimal state value function and decide the optimal action [7]. The Q
evaluation network (Q-eval) is used to select the task assignment matrix ®(y; 0) based
on the collected network states y* at the time slot 7, and the Q target network (Q-tar) is
used to select the task assignment matrix @' ™' (*1;0) at the following time slot

Quality of Service Optimization in Mobile Edge Computing Networks 151

t + 1. The parameters 0 and 6 can be learned and updated iteratively. The standard
DDQN algorithm outputs the state-action values and select the action with the maxi-
mum Q value. Unfortunately, the traditional DDQN approach in [7] cannot be directly
applied to solve our problem because we do not know the number of the new task
arrivals in a time slot at the beginning of that time slot. To solve the problem, we
modified the Q-eval and Q-tar networks in the standard DDQN to output a probability
matrix, which indicates the probability to forward a task from one edge node to another
edge node in the slot.

The modified DDQN is used to approximate the optimal state value function in (3)
and select the best action. We redefine the state value function (3) as

VI(x) = max{(1 —v)U(x', @ (¢, P(x';)

+ v |:Pl‘{xt+1‘xt’ @ (¢, Py Ot))}U(1’+l,(I)t+l<x‘+17P’ (ZHl;gt)))}) , (4)

where P(y;0') and P’ (x‘*l; @t) are the probability matrices calculated by Q evalu-

ation and Q target networks, respectively. In the standard DDQN algorithm, the state
value will be updated in each time slot and used to determine the optimal action. To
simplify the updates, in our implementation, the state value obtained from (4) is stored
in a replay memory for training and updating 6 and 0 in the learning process so that the
Q-eval and Q-tar can select the optimal task assignment matrices directly and accu-
rately. The loss function for updating the parameters 0 of Q-eval can be defined as

L(0) = E[((1 = 1)Uz, ®(1, P(1: 0)) + U (¢, ¥ (¢, P (£50))) = V()] (5)

and the parameters 0 will be updated by copying 0 after a predefined number of steps.

At the beginning of each time slot 7, the MEC controller determines the task
assignment matrix ®'(y’) based on the collected network states and informs the edge
nodes of the task assignment decision. The task assignment matrix ®' = [¢/, FRECVAS
N Un,} at the beginning of scheduling slot 7 is determined as,

@ =P'(y;0) (6)

An edge node then offloads the tasks to other nodes or receives tasks from other nodes
and processes these tasks based on the task assignment decision. The new task arrivals
A’ will be counted at the end of the time slot ¢ and the new network state is collected
and updated to '*! by the controller. The MEC network receives a QoS reward
U =U(f, ®' (g, P(x;0"))) by performing the task processing. The Q-tar network is
used to calculate @' *1. As mentioned before, the DDQN includes a replay memory
that is used to store a pool of the most recent M transition experiences,
Qf = (mtM*+1 | mt}, where each experience mt = (yt, ®f, Ut yi*1, 1) is
occurred at the transition of two consecutive slots ¢ and ¢ + 1 during the learning
process. At each slot #, the k previous experiences are randomly sampled as a batch
from the memory pool €' to train the DDQN online. The learning process will calculate

152 L.-T. Hsieh et al.

the approximated overall state value for each experience in the batch and update the
parameters 6 with an goal to minimize the loss function (5). Once the state value
function is converged, we can obtain the optimal parameters 6* for Q-eval. The optimal
policy will be

O =P (1;0) (7)

The MEC network QoS reward in (1) is the summation of the service delay and task
drop rate satisfactions of the edge nodes, and the task arrival statistics and task pro-
cessing capabilities of the edge nodes are independent each other. We can then
decompose (4) into per node QoS reward and separate the satisfactions regarding the
service delay and the task drops [11]. We first rewrite (6) as

O =0 ()= {9, (1) neN}. (8)

n agents n € A/ can be employed and each agent learns the respective optimal state
value function through a per node sub-DDQN. An optimal joint task assignment
control decision is thus made to maximize the aggregated state value function from all
the agents. The task assignment related to node n can be expressed as

ACARATALAE ©)

where P,(.) is the task assignment probability obtained through DDQN n. The state
value function in (4) can be decomposed and expressed as in (10) and (11)

Vi) =3 V(dhashecl), (10)

Vi (1) = (L= v)U (1, @' (2, Pa(13365))) + .
Y’[Pr{x,i“lewCl”(xfﬂ’n(xi,;92))}U<XL“7<D’“(XLH,P;(X;“;@)))} (11)

With the linear decomposition, the problem to solve a complex Bellman’s optimality
Eq. (4) is broken into simpler MDPs and the computation complexity is lowered. In
order to derive a task assignment policy based on the global MEC network state,
2= (% :n € N'Un.) with y, = (qu,Sn, ¢n) and ¢, = (cuj,¢jp :j € N'Un,), at least
[Toenun Lienrun, (gnllsal |engl |cj,,,|) states should be trained. Using linear decompo-
sition, only (N + 1)|gul|su| [Tienrun, (|cnj||cin]) states need to be trained, resulting in
much simplified task assignment decision makings and significantly reducing training
time. The online DDQN-based algorithm to estimate the optimal state value function
and determine the optimal task assignment policy is summarized in Algorithm 1.

Quality of Service Optimization in Mobile Edge Computing Networks 153

Algorithm 1. Online DDQN-based Cooperative MEC Task Assignment

1. Initialize the Q-eval and the Q-tar with two sets of A and 8¢ random parameters for
t = 1; the replay memory M* with a finite size of M for experience replay.
2. At the beginning of scheduling slot 7, the MEC controller observes the network state,

xt = {xh:n e NYwith x4 = (gb, st, ch), and the Q-eval with parameters 8¢ de-
termines the task assignment matrix, ®¢ = [¢L:n € V'] according to (8) and (9).

3. After offloading and processing the tasks according to the above task assignment
decision, the edge nodes will receive new tasks A® = {Af : n € N} at the end of
slot ¢.

4. The controller determines the QoS reward Utafter new task arrivals and calculates
the state value V¢ according to (10) and (11)

5. The network state transits to x‘t! = {y4*':n € N} where x4t = (¢4 +

AL, sH+1 ¢ty which is taken as input to the target DQN with parameter 8¢ to se-
lect task assignment matrix @'t = {¢,t1,n € N} at the following scheduling

slot t+1.

6. The replay memory M*¢ is updated with most recent transition m!(xt, ¢t, U,
¢t+1, Xt+1)'

7. Once the memory replay collect M transitions, the controller updates the Q-eval pa-
rameter 8¢ with a randomly sampled batch of transitions to minimize (5)

8. The target DQN parameters A are reset every k time slots, and otherwise §¢ = §¢~1

. The scheduling slot index is updated by t « t + 1.
10. Repeat from step 2 to 9.

4 Numerical Experiments

In this section, we evaluate the cooperative MEC task assignment performance
achieved by our derived online DDQN-based algorithm. Throughout the simulation
experiments, we assume that the processing capability s, Vn € N of different edge
nodes are independent of each other and evolve according to a Markov chain model,
each modeled with three states characterizing the high, medium, and low with {4, 2, 1}
tasks per slot. We simulated multiple MEC network scenarios with different system
parameters. Due to the page limit, we present the results for several typical settings.
The slot duration is set to be 30 ms. The network delay between two edge nodes, chj,
Vn,j € N, is also modeled as a Markov chain with three states, {1, 0.5, 0.2} slots. Edge
nodes communicate with a cloud data center through the Internet. The network delay
between the edge node and the cloud data center ¢! , Vn € N is assumed to be 10

slots. U and U in the QoS reward function are chosen to be the exponential
functions [12] with U@ = exp(—d’ /d™)) and U'®) = exp(—o!, /o).

The neural networks used for Q-tar and Q-eval have a single hidden layer with 15
neurons. We use ELU (Exponential Linear Unit) as the activation function for the
hidden layer and Softmax for the output layer to output the probability matrices for the
action selection. The optimizer is based on RMSProp [7]. The number of iterations for
updating parameters of Q-tar is set to be 30, and the memory replay size and the batch
size are also set to be 30. The training process will be triggered when the system

154 L.-T. Hsieh et al.

collects enough samples and it will pull out all samples to train. There are other
sampling optimization techniques, e.g. prioritized experience replay, which will be
included in our future work.

sty L DDQN (3 nodes)
301 DDQN (6 nodes)
c DDQN (9 nodes)
2 251
v
[=4
2201 &
] 3
2151
@ 1
© 101
2] i
51 1
\
0 1 T T T
0 500 1000 1500 2000

Time Slot

Fig. 3. Convergence of the proposed DDQN-based learning process.

We first investigate the convergence performance of the proposed online DDQN-
based cooperative MEC task assignment algorithm under dynamic stochastic MEC
network environments with different number of MEC edge nodes. As shown in Fig. 3,
we can observe that the proposed algorithm spends a short time period to learn and then
converges to the global optimal solution at a reasonable time period which is less than
150 slots. In addition, the network size does not have noticeable effects on the con-
vergence time of the algorithm.

Next, we evaluate the QoS performance of the proposed online DDQN-based
cooperative task assignment scheme. For the purpose of comparison, we simulate four
baselines as well, namely,

1) No Cooperation: An edge node processes all the tasks it receives from its asso-
ciated users by itself. There is no task offloading.

2) Cloud Execution: An edge node offloads all its received tasks to the cloud data
center for execution.

3) One-shot Optimization: Like the scheme in [5], at each scheduling slot, the task
assignment is performed with the aim of minimizing the immediate task service
delay. Note that the power efficiency constraint is not considered here because we
assume the edge nodes have sufficient power supply.

4) Q-Learning: Task assignment optimization based on conventional Q-learning.

Quality of Service Optimization in Mobile Edge Computing Networks 155

16

16 —— Q-Learning == Q-Learning
No Cooperation 144 No Cooperation
144 = Cloud Execution =< Cloud Execution
z 121 —f— One-shot Optimization Q 12 e One-shot Optimization
8 —e— DDQN ° 1o -@- DDQN
5 101
g10 ¥
2 © 81
& 8 5
o o 6
g o
g Z 4
< 4
24
2
0 01
8 9 10 11 12 13 14 15 8 9 10 11 12 13 14 15
Average Task Arrivals per Slot Average Task Arrivals per Slot
(@) (b)

Fig. 4. (a) the average task service delay and (b) the average number of dropped tasks per slot
versus the average task arrivals per slot for different algorithms.

Figures 4 (a) and (b) show the average task service delay and the average number
of dropped tasks per slot, respectively, for the proposed scheme and baselines, with
three edge nodes and one cloud data center as the task arrivals per slot at the edge nodes
follow independent Poisson arrival process. The delay is measured in the unit of the
time slot duration. We can observe that the DDQN-based and conventional Q-learning
based task assignment schemes perform better than the other baselines such as No
Cooperation, Cloud Execution, and One-shot Optimization schemes. This is because
they not only consider the current task processing performance but also take into
account the QoS performance in the future when determining the optimal task
assignment matrix under time-varying stochastic task arrivals and network states. Their
task drops are zero because the algorithms tend to minimize the task drops, and the
edge nodes will forward the tasks to the cloud data center when their buffers are full.
For the No Cooperation scheme, an edge node does not send the unprocessed tasks to
the cloud and other edge nodes, so that there are tasks drops when the node’s buffer
becomes overflow. For the Cloud Execution scheme, a large network delay is always
incurred to ship the tasks to the cloud data center for processing over the Internet. The
One-Shot Optimization scheme performs relatively well. However, it makes task
assignment decisions to minimize the immediate task service delay in a slot and may
cause shipping many tasks to the cloud data center for processing under fluctuating task
arrivals and non-stationary node process capabilities, with such tasks incurring a large
network delay.

Figure 5 shows the memory usage of DDQN- and Q-learning task assignment
schemes. The traditional tabular Q-learning consumes much higher system resources
than the DDQN scheme and cannot scale well due to the explosion in state and action
spaces, making the solution unviable. On the other hand, the memory usage by the
DDQN-based task assignment scheme scales well as the number of edge nodes in the
network increases.

156 L.-T. Hsieh et al.

mmm DDQN

7000 Em Q-Learning

w [+
o o
o (=3
o o

H
o
(=
o

Memory Usage (MB)
w
(=]
(=]
o

2000

1000

3 4 5 6 7 8
Number of Edge Nodes

Fig. 5. The memory usage of DDQN and Q-learning task assignment schemes.

5 Conclusions

In this paper, we have investigated the task assignment problem for cooperative MEC
networks, which enables horizontal cooperation between geographically distributed
heterogeneous edge nodes and vertical cooperation between MEC edge nodes and
remote cloud data centers to jointly process user computational tasks. We have for-
mulated the optimal task assignment problem as a dynamic Markov decision process
(MDP), and then proposed an online double deep Q-network based algorithm to obtain
the optimal task assignment matrix. A function decomposition technique is also pro-
posed to simplify the problem in DDQN learning. The proposed online DDQN algo-
rithm does not require for a statistical knowledge of task arrivals and network state
transitions. The evaluation results validate the convergence of the proposed algorithm
and demonstrate that it outperforms the traditional schemes that optimize the immediate
task service delay with no consideration of the impacts of network dynamics to the
expected long-term QoS rewards. In addition, the proposed DDQN scheme can scale
reasonably well, and requires much less memory than the conventional Q-learning
based algorithm.

Acknowledgements. Certain commercial equipment, instruments, or materials are identified in
this paper in order to specify the experimental procedure adequately. Such identification is not
intended to imply recommendation or endorsement by the National Institute of Standards and
Technology, nor is it intended to imply that the materials or equipment identified are necessarily
the best available for the purpose.

Quality of Service Optimization in Mobile Edge Computing Networks 157

References

10.
11.

12.

. Patel, M., Naughton, B., Chan, C., Sprecher, N., Abeta, S., Neal, A., et al.: Mobile-edge

computing introductory technical white paper. White Paper, Mobile-Edge Computing
(MEC) Industry Initiative (2014)

. Liu, H., Eldarrat, F., Alqahtani, H., Reznik, A., de Foy, X., Zhang, Y.: Mobile edge cloud

system: architectures, challenges, and approaches. IEEE Syst. J. 12(3), 2495-2508 (2018)

. Aazam, M., Huh, E.-N.: Dynamic resource provisioning through fog micro datacenter. In:

Proceedings of IEEE PerCom Workshops, St. Louis, MO, pp. 105-110, March 2015

. Zhang, H., Xiao, Y., Bu, S., Niyato, D., Yu, F.R., Han, Z.: Computing resource allocation in

three-tier [oT fog networks: a joint optimization approach combining stackelberg game and
matching. IEEE Internet Things J. 4(5), 1204-1215 (2017)

. Xiao, Y., Krunz, M.: QoE and power efficiency tradeoff for fog computing networks with fog

node cooperation. In: Proceedings of IEEE INFOCOM 2017, Atlanta, GA, May 2017

. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge

(1998)

van Hasselt, H., Guez, A., Silver, D.: Deep reinforcement learning with double Q-learning.
In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence (AAAI 2016),
pp. 2094-2100, February 2016

Bertsekas, D.P.: Dynamic Programming and Optimal Control. Athena Scientific, Belmont
(1995)

Puterman, M.L., Shin, M.C.: Modified policy iteration algorithms for discounted Markov
decision problems. Manag. Sci. 24(11), 1127-1137 (1978)

Howard, R.: Dynamic Programming and Markov Processes. MIT Press, Cambridge (1960)
Tsitsiklis, J.N., van Roy, B.: Feature-based methods for large scale dynamic programming.
Mach. Learn. 22(1-3), 59-94 (1996)

Chen, X., et al.: Multi-tenant cross-slice resource orchestration: a deep reinforcement
learning approach. IEEE J. Selected Areas Commun. (JSAC) 37(10), 2377-2392 (2019)

	Quality of Service Optimization in Mobile Edge Computing Networks via Deep Reinforcement Learning
	Abstract
	1 Introduction
	2 Problem Formulation
	3 Optimal Task Assignment Scheme Based on DDQN
	4 Numerical Experiments
	5 Conclusions
	Acknowledgements
	References

