
Linear Attack on Round-Reduced DES
Using Deep Learning

Botao Hou1,2, Yongqiang Li1,2, Haoyue Zhao1, and Bin Wu1,2(B)

1 State Key Laboratory of Information Security,
Institute of Information Engineering, CAS, Beijing, China

{houbotao,liyongqiang,wubin}@iie.ac.cn, zhaohaoyue1@gmail.com
2 School of Cyber Security, University of Chinese Academy of Sciences,

Beijing, China

Abstract. Linear attack is a powerful known-plaintext cryptanalysis
method on block ciphers, which has been successfully applied in DES,
KATAN, SPECK and other ciphers. In this paper, we use deep learning
networks to achieve linear attack on DES with plain-cipher pairs. Com-
paring with traditional linear attack algorithm, our work requires less
knowledge about complex cryptanalysis as neural network can work well
by data-driven. Thus, this paper has three main contributions. First, a
new linear attack architecture based on deep residual network was pro-
posed to train discriminative neural networks with auto-generated plain-
cipher pair data. The results indicate that trained neural networks can
effectively learn algorithmic representations of the XOR distributions of
given linear expression on DES. Second, several novel neural network-
based algorithms were designed to efficiently enforce key recovery on
round-reduced DES using trained networks with moderate full and par-
tial bits of linear expression as inputs. Third, as far as we know, it is
the first time that neural networks are used to achieve known-plaintext
attack on complex block ciphers.

Keywords: Linear attack · Deep learning · DES

1 Introduction

Linear cryptanalysis is one of the most powerful analysis techniques used in
modern block ciphers. It can achieve key recovery attacks utilizing non-zero
correlation with bits of plain-cipher text and key, which is expressed in a lin-
ear approximate equation. The first linear cryptanalysis [2] was presented to
break Data Encryption Standard (DES) successfully in 1994. Since DES [1] was
published in 1977, its security has been focused by all over the world. In that
paper, Matsui provided some linear equations on round-reduced DES and pro-
posed a key recovery algorithm for known-plaintext attack in 8-round and even
only-plaintext attack in 8 rounds. And Matsui [3] proposed an improved ver-
sion for linear cryptanalysis and its application to the full 16-round DES. Later,
Hermelin et al. [4] improved linear cryptanalysis into multiple approximations

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 131–145, 2020.
https://doi.org/10.1007/978-3-030-59013-0_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_7&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_7

132 B. Hou et al.

and achieved a faster attack. Obviously, all of those traditional linear crypt-
analysis works need amounts of mathematical knowledge and manual theory
deduction.

Recently, some works have been explored to combine deep learning and appli-
cable statistical cryptanalytic techniques [10,12]. At first, Abadi and Andersen
[5] trained two neural networks which allow them to communicate using given
key without advanced cipher design, and another adversarial network was trained
to prove that it cannot recover information without the key. However, their work
did not explain what net construction is in cryptography. Soon, Coutinho et al.
[11] improved simple adversarial network above with chosen-plaintext attack
and obtained a unbreakable One-Time Pad algorithm in unsupervised condition
which explored the effect of adversarial network in security. And then, some
works tried to achieve cracking directly by simulating ciphers [13]. An unsuper-
vised CycleGAN neural network [8], named CipherGAN, was used to crack Shift
and Vigenere ciphers. Their work showed that neural network can learn detail
relationship about encrypt and decrypt processes, but it was limited to fixed key.
Comparing with traditional encrypt algorithms, modern block cryptographical
algorithms are more complex so that previous methods can’t work well, and some
works began to apply some mature cryptanalysis methods to improve availabil-
ity of attacking using machine learning [14]. Recently, some works [9] explored
the possibility of applying machine learning on side channel attack of Advance
Encryption Standard (AES), but generally side channel is considered not to be
cryptanalysis in the sense we discussed. And Gohr [6] tried to apply deep learning
on Speck, a lightweight block encryption algorithm. They constructed a network
to more accurately learn the distribution of output difference with a fixed input
difference. However, they didn’t give attacks on more complex ciphers.

1.1 Our Contribution

First of all, we devise and train neural networks and expect that we can achieve
efficient key recovery on DES using trained network models. Those network mod-
els should obtain the ability of distinguishing different distributions by observ-
ing given linear expression on round-reduced DES. Considering two different key
recovery methods, one bit key recovery and multiple bits key recovery, we train
corresponding network models in different ways.

For one bit key recovery on round-reduced DES, we propose a new neural net-
work attack framework that can successfully distinguish two different binomial
distributions. Those distributions perform two different situations of n-round lin-
ear approximation expression. Using the trained network models, we established
corresponding one bit key recovery algorithm and achieved successful key recov-
ering on 3, 4 and 5 rounds DES. In order to know the availability of our models,
we calculate the expected efficiency for round-reduced DES that use Bayesian
model. Experimental results indicate that the performance of our models is very
closed to theoretical value.

In multiple bits key recovery, another neural network model is proposed to
train as a discriminator for distributions produced by real and random effective

Linear Attack on Round-Reduced DES Using Deep Learning 133

key bits. And this model is used in proposed multiple bits key recovery algorithm.
We tested the performance of this algorithm on 4 rounds DES and obtained
effective key rank.

1.2 Paper Organization

The rest of the paper is organized as follows. In Sect. 2, we present a brief
description of the cryptographic modules employed in our linear cryptanalysis.
In Sect. 3, we introduce our detail scheme of neural networks. The result of neural
discriminators and corresponding key recovery attacks are in Sect. 4. Section 5
is the conclusion about our scheme in short.

2 Preliminaries

Before introducing our architecture, we briefly review some cryptographic build-
ing modules deployed in linear cryptanalysis method on DES and two classical
key recovery attack algorithms.

2.1 DES

DES is a iterative cryptographic algorithm with Feistel structure, which has a
profound impact on the design of later ciphers. DES uses 56 bits key to protect
message with block divided into 64 bits. Omitting the initial permutation IP
and the final permutation IP−1 in full DES, we call input and output of round
iterations as plain text block P and cipher text block C. Each block will be
divided into two 32 bits blocks (L,R), which will be encrypted by total 16
rounds. More details can be seen in [1].

For rth round, the output Lr and Rr are computed as follows.

Lr = Rr−1

Rr = Lr−1 ⊕ F (Rr−1,Kr)
(1)

Where F(.) is the non-linear function called F function, it contains four opera-
tions which include extension operation E of Rr, bitwise XOR operation between
subkey and extended Rr, S-box operation S and final permutation operation. F
function is briefly expressed as:

F (Rr−1,Kr) = S(E(Rr−1) ⊕ Kr) (2)

2.2 Linear Attack

Linear Approximate Equation. Linear attack has been widely used to break
block cipher algorithms. Indeed, given plain text P , master key K and corre-
sponding cipher text C, linear approximate equation L try to describe the linear
relationship of bits in serval fixed locations like:

α · P ⊕ β · C = γ · K (3)

134 B. Hou et al.

Algorithm 1. ONE BIT KEY RECOVERY ALGORITHM
Input:
Ln, n−round linear approximate equation
PrLn , the probability of Ln

Pair, plain-cipher text pairs generated by key K
Output: output result

1: Npc ← the number of Pair
2: NL ← 0
3: for pair in Pair do
4: Ll ← compare the left side of Ln

5: if Ll == 0 then
6: NL+ = 1

7: if NL > Npc/2 then
8: if PrL > 1/2 then
9: return Lr = 0

10: else
11: return Lr = 1
12: else
13: if PrL > 1/2 then
14: return Lr = 1
15: else
16: return Lr = 0

Where α, β and γ are the bit location masks and α ·P is the bitwise addition
for bits in locations marked by α in P . There we name the value of left side in L
as Ll and the right side as Lr. Generally, equation L holds with the probability
PrL of 1/2. But if there is an obvious deviation with 1/2 and PrL, we call this
expression L as a well linear approximate equation. The bigger this deviation
is, the quicker this expression could be distinguished from other expressions.
Moreover, key recovery mentioned in follows is relative with PrL closely.

Key Recovery Attack. There are two different linear attack algorithms
divided by number of key bits can be recovered. First one is one bit key recovery
attack, relying on a well linear expression. Multiple bits key recovery is another, it
generally depend on the linear equation which expended by (n-1)-round expres-
sion. Both of those attacks can work well in DES, and many effective linear
expressions can be found [2].

One Bit Key Recovery. Given linear approximate equation L like Function 3,
we can judge whether Lr is 0 or 1 with probability PrL. If we have Npc plain-
cipher text pairs generated by fixed key, we count the number NL of those pairs
that satisfy Ll = 0. If NL has obvious difference with Npc/2, we can judge this
one bit key Lr depending on the symbol of difference with high success rate. The
detailed recovery process is showed in Algorithm 1.

Linear Attack on Round-Reduced DES Using Deep Learning 135

Algorithm 2. MULTIPLE BITS CANDIDATE KEY RANK ALGORITHM
Input:
Ln, n−round linear approximate equation
Pair, Plain-cipher text pairs generated by key K
Output: output Rankkey

1: Nt ← the number of effective text bits in left Ln

2: Tt ← {0}2Nt

3: for pair in Pair do
4: e ← bits extracted from pair following Ln

5: Tt[e]+ = 1

6: Nk ← the number of effective key bits in left Ln

7: Tk ← {0}2Nk

8: for k in len(Tk) do
9: for t in len(Tt) do

10: Ll ← compare the left side of Ln

11: if Ll == 0 then
12: Tk[k]+ = t

13: Npc ← the number of Pair
14: for k in len(Tk) do
15: Tk[k] = Tk[k] − Npc

16: Rankkey ← sort Tk by descending value order
17: return Rankkey

Multiple Bits Key Recovery. Generally, if we attack n rounds DES, we have
to obtain a (n-1)-round linear approximate equation Ln−i with PrL. Considering
the effect of F function in first round and nth round, n-round expression Ln is
described as:

α · P ⊕ β · C ⊕ μ · F1(P,K1) ⊕ ν · Fn(C,Kn) = γ · K (4)

Since Ln is expanded from Ln−i, PrLn
should be almost same with PrLn−i

,
which makes us knowing the distribution of Ll

n. Obviously, this value is totally
determined by some bits of plain-cipher text and key, and we call those bits as
effective text bits and effective key bits respectively. Based on known PrL, we
can recover those effective key bits as follows.

First, we list all possible effective key bits as key candidates. Considering
that the probability PrLn

would almost equal to PrLn−i
when K1 and Kn are

correctly guessed, this leads us to use maximum likelihood method in regard to
those key candidates.

There we get Npc plain-cipher text pairs generated with fixed key K. For
each key candidate, compute Ll

n and add counter with 1 when it equals to 0.
Sort all key candidates by the difference between counter and Npc/2 as key
rank. Generally, correct key bits will be in higher rank. The candidate key rank
processing is showed in Algorithm 2.

136 B. Hou et al.

3 Network Architectures

Our goal is to develop a learnable, end-to-end model for linear attack, and it
should obtain statistical cryptanalytic characteristics. Thus, we proposed a new
neural network architecture as a deep learning discriminator to distinguish dif-
ferent distributions. The diagram for our network is shown in Fig. 1.

Fig. 1. Model overview. An universal neural network architecture used in our experi-
ments

Those networks comprise three main components: input layer, iteration layer
and predict layer. The iteration layer is built by classical residual neural network
[7]. This network has been successfully applied in many domains. It consists of
some residual blocks which add input layer to output layer and produce new
output, the output will been sent to next block. The most important advantage
of residual networks is that it can effectively avoid gradient dispersion when the
number of layer increases.

The input layer receives training data with fixed length and applies reshape
layer into the data. We expect that our network should simulate XOR operation
better and form some intermediate representation. For this reason, we transpose
and apply convolution into input data so that we can expend the effect of each
bit. After batch normalization layer, data will be sent into iteration layer. Each
iteration layer has same structure with a convolution and normalization follow-
ing. What’ more, a skip connection is applied to add input layer and output layer
and this operation may allow next layer can mix bits in block more like bitwise
addition. Iteration layer will repeat 5 or 10 rounds in our experiments, and then
the predict layer will be following. The predict layer provides a fully connect
operation in order to combines all bits and a single linear layer to produce one
bit predicted result.

In our key recovery experiments, this neural network will be fed with bit
sequences and is expected to distinguish those input into two different distribu-
tions. For each sequence, it consists of 6 units and each unit will be padded with

Linear Attack on Round-Reduced DES Using Deep Learning 137

Algorithm 3. ONE BIT DEEP LEARNING NETWORK KEY RECOVERY
ALGORITHM
Input:
Ln, n−round linear approximate equation
NetLn , neural net discriminator trained by Ln

Pair, Plain-cipher text pairs generated by fixed key K
Output: output

1: Npc ← the number of Pair
2: G ← NetLn(Pair)
3: if sum(G) > Npc/2 then
4: return right of Ln = 1
5: else
6: return right of Ln = 0

0 to fixed length, which is determined by max length of each mark in Ln. Gener-
ally, this length is not longer than 8 and we will pad the sequence to 6× 8 = 48.
Input layer changes the size of this sequence into 8×48, and it will be trained in
this size till predict layer. Pooling operation condenses it into 48× 1 and output
it with 1 bit by dense layer.

In each epoch, we will check networks by validation data, and we save and
update the best model according to its accuracy.

4 Attack Architecture

In this section, we will introduce two new linear attack architectures: one bit key
recovery and multiple bits key recovery. We apply them in round-reduced DES,
and both of them can distinguish different distributions well using deep learning
net and realize expected key recovery.

4.1 One Bit Key Recovery

Given n-round linear approximation expression Ln as Function 3, and we know
that it will hold with certain probability PrLn

in previous. There, we don’t need
to know exact value about PrLn

and more details, and we can also obtain one
bit key information γ · K. For this, we propose one bit key recovery algorithm
showed in Algorithm 3 to recover mentioned bit using deep learning networks.

Train and Recover. Supposed that PrLn
is the probability linear expression

Ln holds, if we ask that Lr
n is fixed to 0, the distribution of Lr

n will be almost
binomial distribution which means 0 will appear with the probability equaling to
PrLn

. While the binomial distribution will be inverse if Lr
n is fixed to 1. Thus, we

mark those different distributions with corresponding labels and expect trained
networks can effectively distinguish them by inputting some bit sequences.

In order to obtain those network models, we generate training and validation
by several phases as follows:

138 B. Hou et al.

1. Generate plain texts P and master keys K ordering uniformly distribution.
2. Encrypt P with K by n−round DES cipher and obtain cipher texts C.
3. Extract P − C pairs into bits sequence EXpc and K into EXk depending on

linear equation Ln.
4. Pad EXpc with 0 into X following the order of (α · P ||β · C).
5. Set label Y relying on XOR value distribution of each EXk.

After generating enough data, neural network discriminator NetLn
will be

trained to predict right label Y . Obviously, if NetLn
is train well, its correct

output will help us directly to recover corresponding one bit key information.
Thus, we apply trained network into Algorithm 3 to recover this key bit.

Recovery phase need Npc plain-cipher pairs generated by fixed key K. Repet-
itively run Phase 3–4 above and we can obtain extracted text sequences of those
pairs. Those text sequences are feed into NetLn

and output their prediction.
Considering with the accuracy of NetLn

, the success rate of Algorithm 3 rely on
Npc and performance of algorithm will be shown in following experiments.

Goal Model. After training mentioned above, we indeed obtain a deep learning
discriminator. This discriminator would first learn the simulation of XOR oper-
ation, and then obtain the ability that distinguish the difference with different
binomial distribution performance.

Our deep learning model didn’t know any information about those distribu-
tions and even didn’t know XOR operation before training, all they obtaining is
input seems like random bit sequences. Obviously, if we can obtain those distri-
bution information about linear expression L, we can estimate the best result of
those networks using Bayesian rule.

As PrL is the possibility of linear approximation expression L holding and
discriminator BL with Bayesian model obtains distribution features of Ll fully, if
Ll of a bit sequence is 1, the accuracy of BL correctly judging that this sequence
belongs into Lr = 1 is shown following Function 5.

P (γ · K = 1|1) =
P (1|γ · K = 1)P (γ · K = 1)

P (1|γ · K = 1)P (γ · K = 1) + P (1|γ · K = 0)P (γ · K = 0)
(5)

Supposing that K is generated following uniform distribution, accuracy of
BL will be equal to PrL.

This Bayesian model will be our goal model of deep learning network. We
replace network discriminator NetL with this Bayesian discriminator BL in Algo-
rithm 3 and can get one bit key recovery. After reducing, we find that the rela-
tionship between success rate of one bit key recovery and number of plain-cipher
pairs required is same with Lemma 2 in [2]. Thus, we can measure key recovery
effect which uses deep learning networks with this lemma.

Linear Attack on Round-Reduced DES Using Deep Learning 139

Experiment. All of our experiments are run in a uniform environment, models
are trained on a workstation with NVIDIA GeForce GTX 1080Ti and Intel(R)
E5-2609 1.7 GHz CPU.

PH [7, 18, 24, 29]⊕PL[15] ⊕ CH [7, 18, 24, 29] ⊕ CL[15] = K1[22] ⊕ K3[22] (6)
PH [7, 18, 24, 29]⊕PL[15] ⊕ CH [15] ⊕ CL[7, 18, 24, 27, 28, 29, 30, 31]

= K1[22] ⊕ K3[22] ⊕ K4[42, 43, 45, 46] (7)
PH [15] ⊕ PL[7, 18, 24, 27, 28, 29, 30, 31] ⊕ CH [15] ⊕ CL[7, 18, 24, 27, 28, 29, 30, 31]

= K1[42, 43, 45, 46] ⊕ K2[22] ⊕ K4[22] ⊕ K5[42, 43, 45, 46]
(8)

First, we tested the performance of one bit key recovery algorithm on L3

which can be seen in Function 6. Model was trained for 200 epochs using
the Adam optimizer [15] with a batch size of 1000 against MSE loss with
L2−regularization. And there were 105 train data and 104 validation data used.
Figure 2a shows the learn history of NetL3 . The accuracy on validation data is
67.23% which is very closed to theoretical goal model which is 70%, same with
PrL3 .

To be clear, our neural network knows nothing about XOR operation and
detailed data distribution, but it can still perform well almost like goal model
which knows all about knowledge. All of those show that the presented approach
equips excellent learning capability of describing XOR distributions. What’s
more, we found that the increase of train data can significant improve the accu-
racy, and the network with 105 data is improved with 0.43% than 104 data.

Apply those models to recover key information and we found that the suc-
cess rate of neural network models is only lower than theoretical Bayesian model
slightly. The number of plain-cipher text pairs required in key recovery in dif-
ferent success rate based on those discriminators are shown in Fig. 2b. For each
result, we run key recovery process for 2000 times to obtain moderate obser-
vations. We can see that our neural network can complete key recovery given
small plain-cipher text set, and NetL3 trained by 105 training data even per-
forms better than theoretical success rate. Thus, those network model showed
their capacity to distinguish different distributions.

Table 1. results of different models on corresponding linear expression Ln. Meanwhile,
we show the average number of plain-cipher text pairs that can achieve key recovery
success rate, each of them are test in 2000 times

Index Network Train data Epoch Depth Accuracy Number of P − C pairs for success rate

85% 90% 95% 99%

1 B3 – – – 0.7 6 10 17 32

2 NetL3 104 103 5 0.668 14 18 32 64

3 NetL3 105 5 × 103 5 0.6723 10 18 25 32

4 B4 – – – 0.561 67 112 190 358

5 NetL4 106 5 × 104 5 0.5375 115 200 332 633

6 B5 – – – 0.519 2770 4617 7849 14774

7 NetL5 106 5 × 104 10 0.5128 5130 8631 – –

140 B. Hou et al.

(a)

(b)

Fig. 2. (a) shows accuracy and loss of Net3 in total train process data size of 105

respectively. Both valuation data and training data perform synchronously and indi-
cate that network work well without over fitting. (b) shows key recovery performance
of Bayesian model and our models. All of them will almost recover key information
with success rate more than 99% when increase the number of plain-cipher pairs into
64. With same pair number, the success rate of neural network models only lower
than theory Bayesian model slightly. And increasing the number of train data, neural
networks will work better.

Excepted 3-round one bit key recovery, we also ran 4 and 5-round key recovery
based on linear expression in Function 7 and Function 8. Comparing with L3, the
binomial distribution probability like PrL5 even decreases from 70% into 51.9%
[2]. Obviously, the difficulty of distinguishing those two different distributions
increases a lot. Table 1 shows the accuracy and key recovery of best models.
There, Bn is the discriminator of goal model using Bayes mentioned above. And
we can find that almost all of them can recover required one bit key with limited
plain-cipher text pairs number. For neural discriminators NetL5 , though it does
not achieve success rate more than 95% with less than 20000 pairs plain-cipher
text, it still performs its ability recovering key bit with success rate of even 90%.

Linear Attack on Round-Reduced DES Using Deep Learning 141

Algorithm 4 . MULTIPLE BITS DEEP LEARNING NETWORK CANDI-
DATE KEY RANK ALGORITHM
Input:
L′

n, n−round linear approximate equation
NetL′

n
, neural net discriminator trained by L′

n

Pair, Plain-cipher text pairs generated by key K
Output: output Rankkey

1: Nk ← the number of effective subkey bits in left L′
n

2: Tk ← {0}2Nk

3: for key in len(Tk) do
4: Ex ← bit sequences extracted from (Pair, key) following L′

n

5: Gk ← NetL′
n
(Ex)

6: Tk[key] = sum(Gkey)/len(Gkey)

7: Rankk ← sort Tk by descending value order
8: return Rankk

4.2 Multiple Bits Key Recovery

Like Function 4, we can apply (n-1)-round linear approximation expression Ln−1

to consecutive F-functions from the first round to the (n-1)th round or from the
second round to the nth round of n rounds DES, and obtain n-round linear
equation L′

n with some bits in F-functions. Because Kn is added in expression,
we can try all possible effective bits in Kn and test whether the value of left L′

n

satisfies the similar distribution like Ln−i, so that recover those effective bits.
Thus, we propose new multiple bits key candidate recovery algorithm showed in
Algorithm 4 to recover multiple bits using deep learning networks.

Train and Recover. Similar with one bit key recovery algorithm, we also
utilize the ability of deep learning networks that can distinguish different distri-
butions. Of course, we have to consider the interference produced by right side of
Function 4. In order to simplify our models, we suppose that the value of γ ·K is
0 which may be happened with the probability of 1/2. Then for once right guess
of key, the distribution of L′l

n will still be almost binomial distribution which 0
will appear in the probability equal to PrL′

n
, and we call it real distribution.

While the distribution for one wrong guess of key will be uniform, and we name
it random distribution. Those difference is what our networks should distinguish.
If given bit sequences generated by correct fixed key, neural network discrimi-
nator NetL′

n
should output label of real distribution as 1 with a big probability,

otherwise, it should be random distribution as 0.
Also, we give the generation phases of training and validation data.

1. Generate plain texts P and label Y ordering uniformly distribution, and
NumP is the number of those P .

2. Generate master key K ordering uniformly distribution, and filtrate out
NumPK that satisfy γ · K = 0.

142 B. Hou et al.

3. Encrypted P with K by n−round DES cipher and obtain cipher text C.
4. Extract P − C pairs into bits sequence EXpc and K into EXk with linear

equation L′
n.

5. For each label Y , do.
– if Y = 1, Pad EXpc with 0 into X following the order of (α · P ||β · C||μ ·

F1||ν · Fn).
– if Y = 0, Pad EXpc with 0 into X following the order of (α · P ||β ·

C||Rand||Rand), which Rand is generated ordering uniformly distribu-
tion.

As we know, F1(PL,K1) and Fn(CL,Kn) are determined by effective text bits
and effective key bits. Because the number of effective key bits are few enough,
we can research those bit keys exhaustively and call those keys as key candidate.
For each possible key candidate, we test this key candidate with some plain-
cipher text pairs and input corresponding bit sequences extracted following L′

n

into network model NetL′n. We count those output as the score which support
that this key candidate is the right bits of master key required. Sort those key
candidates with corresponding score in descending order and we call those as
key rank. A well discriminator should have the ability ranking real right subkey
higher.

Once we get a key rank, we can run an exhaustive key search for remaining
several bits key. In each trying, we will choose a candidate bit key from key rank
by order. Obviously, the higher the rank of right subkey is, the quicker whole
key recovery will complete.

Goal Model. Also, our neural network discriminator NetL′ need distinguish
two binomial distributions. However, different with distributions in one bit key
recovery, these binomial distributions should be with preal = PrL′ and pran = 1

2 .
Use Function 5 and we can obtain the theory accuracy of BL′ with Bayesian
model.

Experiment. We run our network models on the number of 105 training data
and 104 validation data. And we tested the performance of multiple bits key
recovery on L′

4 showed in Function 9 extended from L3. Thus PrL′
4

will almost
equal to PrL3 if effective key bits in K4 is right.

PH [15] ⊕ PL[7, 18, 24, 29] ⊕ CH [7, 18, 24, 29] ⊕ CL[15] ⊕ F1(PL,K1)[15]
= K2[22] ⊕ K4[22] (9)

We trained this neural network about 4−round with 200 epochs and each
epoch is run in size of 5000. As no unit in L′

4 is more than 4 bits, we set
padding as 5. And we contain 6 × 5 bits sequence, where the sixth unit is F4

and it don’t appear in Function 9, we will pad it into {0}5. Real and random
data determined by random label Y were sent to 5-depth residual network. And

Linear Attack on Round-Reduced DES Using Deep Learning 143

those two different distributions were separated with accuracy of 56.77%, while
the accuracy of theoretical Bayesian model should be 58.3%.

Analysis the effective text and key bits in Function 9, we can eas-
ily ensure that the effective key bits effecting left side of L′

4 are
{K1[42],K1[43],K1[44],K1[45],K1[46],K1[47]}, all of them are related to S-box
S1. Those 6 bits subkey are what we aim to recover. We list all possibility of 6
bits may take and get key candidate table with size of 26 = 64.

Table 2. Multiple bits key recovery on 4-round DES. We list the average key rank
on different number of plain-cipher pairs. They are measured through 200 rounds in
replicated test.

Network Train data depth Accuracy Average key rank in number of P-C pairs

32 64 128 256

NetL′
4

105 5 0.5677 13 9 3 2

We set a random master key K which holds γ ·K = 1 asked by trained neural
network NetL′

4
above, and we obtained plain-cipher pairs Pair with number of

Npc encrypted by K. Then we extract each pair following L′
4 and obtain bit

sequence (α · P ||β · C). Up to now, we have no information about F1 in L′
4. For

each key candidate Kcan, we compute μ · F1(PL,Kcan) and insert μ · F1 into
sequence. Record the prediction NetL′

4
and get score of Kcan.

Count all score of key candidate Kcan, the rank of those key candidates with
score is key rank. Research the rank of correct effective key bits, and we can test
the performance of NetL′

4
is showed in Table 2. As key ranks using NetL′

4
are

no lower than 25 = 32 in those small number of plain-cipher pairs, all of those
indicate that our neural network models can distinguish different distribution in
multiple bits key recovery and are pretty effective for key ranking.

5 Conclusion

In this paper, we used deep learning network achieving linear attack in round-
reduced DES. We proposed the network structure to distinguish different perfor-
mance of linear expressions. Our experiments indicated that those deep learn-
ing networks have the capacity of learning complex static characteristics like
XOR and distinguishing different distributions. In order to make networks per-
form better, we also designed two linear attack algorithms which apply network
in one bit and multiple bits key recovery. These end-to-end architectures need
almost few knowledge about distribution of linear expressions and performs well
in our experiments. And the representations of our results are also useful for
cryptanalysis on other more complex block ciphers.

For further work, we will continue to test the performance using deep learning
networks to research linear approximations with limited advanced knowledge.

144 B. Hou et al.

What’s more, we found a problem effecting performance of net when we trained
our network. Limited by number Nt of plain-cipher text bits, there are only 2Nt

text sequences in train text. However, training data is usually larger than this
value and make some same input may have different label, and this may make
network puzzled. The same situation also happened in [8], and we will explore
those further more.

Acknowledgments. The authors appreciate the anonymous reviewers valuable com-
ments, which improved the paper greatly. This work was supported by National
Nature Science Foundation of China under Grants No. 61941116, No. 61772517
and No. U1936119, and National Key R&D Program of China under Grant No.
2019QY(Y)0602.

References

1. National Burean of Standards: Data Encryption Standard. U.S. Department of
Commercc, Federal Information Processing Standards 46 (1977)

2. Matsui, M.: Linear cryptanalysis method for DES cipher. In: Helleseth, T. (ed.)
EUROCRYPT 1993. LNCS, vol. 765, pp. 386–397. Springer, Heidelberg (1994).
https://doi.org/10.1007/3-540-48285-7 33

3. Matsui, M.: The first experimental cryptanalysis of the data encryption stan-
dard. In: Desmedt, Y.G. (ed.) CRYPTO 1994. LNCS, vol. 839, pp. 1–11. Springer,
Heidelberg (1994). https://doi.org/10.1007/3-540-48658-5 1

4. Hermelin, M., Nyberg, K.: Linear cryptanalysis using multiple linear approxima-
tions. IACR Cryptology ePrint Archive (2011)

5. Abadi, M., Andersen,D.G.: Learning to protect communications with adversarial
neural cryptography. arXiv Cryptography and Security (2017)

6. Gohr, A.: Improving attacks on round-reduced Speck32/64 using deep learning.
In: Boldyreva, A., Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11693, pp.
150–179. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-26951-7 6

7. He, K., et al.: Deep residual learning for image recognition. In: Computer Vision
and Pattern Recognition, pp. 770–778 (2016)

8. Gomez, A.N., et al.: Unsupervised cipher cracking using discrete GANs.
arXiv: Learning (2018)

9. Gohr, A., Jacob, S., Schindler, W.: CHES 2018 side channel contest CTF - solution
of the AES challenges. IACR Cryptology ePrint Archive (2019)

10. Lytvyn, V., Peleshchak, I., Peleshchak, R., Vysotska, V.: Information encryption
based on the synthesis of a neural network and AES algorithm. In: 3rd International
Conference on Advanced Information and Communications Technologies, pp. 447–
450 (2019)

11. Coutinho, M., et al.: Learning perfectly secure cryptography to protect communi-
cations with adversarial neural cryptography. Sensors 18(5), 1306 (2018)

12. Preishuber, M., et al.: Depreciating motivation and empirical security analysis of
chaos-based image and video encryption. IEEE Trans. Inf. Forensics Secur. 13(9),
2137–2150 (2018)

13. Greydanus, S.: Learning the enigma with recurrent neural networks. arXiv Neural
and Evolutionary Computing (2017)

https://doi.org/10.1007/3-540-48285-7_33
https://doi.org/10.1007/3-540-48658-5_1
https://doi.org/10.1007/978-3-030-26951-7_6
http://arxiv.org/abs/Learning

Linear Attack on Round-Reduced DES Using Deep Learning 145

14. Paterson, K.G., Poettering, B., Schuldt, J.C.N.: Big bias hunting in amazonia:
large-scale computation and exploitation of rc4 biases (invited paper). In: Sarkar,
P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 398–419. Springer,
Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8 21

15. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: Interna-
tional Conference on Learning Representations (2015)

https://doi.org/10.1007/978-3-662-45611-8_21

	Linear Attack on Round-Reduced DES Using Deep Learning
	1 Introduction
	1.1 Our Contribution
	1.2 Paper Organization

	2 Preliminaries
	2.1 DES
	2.2 Linear Attack

	3 Network Architectures
	4 Attack Architecture
	4.1 One Bit Key Recovery
	4.2 Multiple Bits Key Recovery

	5 Conclusion
	References

