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Abstract. A Private Information Retrieval (PIR) protocol allows a
client to retrieve arbitrary elements from a database stored in a server
without revealing to the server any information about the requested ele-
ment. PIR is an important building block of many privacy-preserving
protocols, and its efficient implementation is therefore of prime impor-
tance. Several concrete, practical PIR protocols have been proposed
and implemented so far, particularly based on very low-depth somewhat
homomorphic encryption. The main drawback of these protocols, how-
ever, is their large communication cost, especially in terms of the server’s
reply, which grows like O(d d

√
n) for an n-element database, where d is a

parameter typically chosen as 2 or 3.
In this paper, we describe an efficient PIR protocol called SHECS-

PIR, based on deeper circuits and GSW-style homomorphic encryption.
SHECS-PIR reduces the communication cost down to O(log n) remov-
ing all other factors apart from database size while maintaining a high
level of efficiency. In fact, for large databases, we achieve faster server
processing time in addition to more compact queries.

Keywords: PIR · Privacy-preserving technique · Homomorphic
encryption · TFHE

1 Introduction

Retrieving data even from a public database can be a privacy-sensitive operation,
which may reveal unwanted information about the client to the database oper-
ator: this could be the case for example for databases of patents, stock quotes,
medical conditions, compromised passwords and more. As a result, clients may
request that the content of their queries be protected from the database server.
This can be achieved using private information retrieval (PIR) protocols, as
introduced by Chor et al. [16].

J. Park—This work was partially carried out while the first author was a research
intern at NTT Corporation, Japan.

c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 86–106, 2020.
https://doi.org/10.1007/978-3-030-59013-0_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_5&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_5


SHECS-PIR 87

In PIR, the database is modeled as an array of elements1, and clients are
allowed to retrieve those elements by querying their indices in the array. The
required security property is that those queries remain hidden from the database
operator(s). A consequence of that property is that, in order to answer a query,
the server has to process the entire database, making the protocol computation-
ally heavy on the server side.

We can ask the security to hold either in a statistical sense or in a compu-
tational sense: this corresponds to two classes of protocols, called information-
theoretic PIR (IT-PIR) on the one hand [7,16,19,20,25], and computational
PIR (cPIR) on the other [1,5,8,10,18,21,23,27,28,30,33]. IT-PIR offers uncon-
ditional security guarantees, and is usually more computationally efficient, since
it usually involves simple bit operations on the database. However, any non-
trivial IT-PIR requires multiple non-colluding servers (as Chor et al. [16] proved
that the trivial protocol in which clients are sent the entire database is commu-
nication optimal in the single-server setting), which is often not achievable in
practical scenarios. On the other hand, cPIR can achieve sublinear communica-
tion with a single server, but is typically more computationally expensive as it
usually involves cryptographic operations based on public-key primitives to be
carried out on each element of the database (and its security guarantees rely on
some hardness assumption).

Standard PIR schemes do not normally offer any guarantee regarding the
privacy of the server, in the sense that a client may learn information about
elements of the database other than just the requested one. A PIR protocol
which ensures that a client only learns the desired element and no more is called
a symmetric PIR, and can be seen as a single-server, multi-client variant of
oblivious transfer.

The focus of this paper is (single-server) cPIR based on somewhat homomor-
phic encryption.

1.1 Achieving Efficient cPIR

Recent constructions of cPIR all rely on broadly similar approaches based on
homomorphic encryption. Since homomorphic encryption makes it possible to
compute on encrypted data, it is a natural fit for PIR.

In fact, cPIR can be achieved with asymptotically essentially optimal effi-
ciency (both in terms of communication and computation) using fully homo-
morphic encryption (FHE): the client sends as its query an encryption of its
desired index using the FHE scheme, and the server homomorphically applies
to this ciphertext the function mapping an index to the corresponding database
element and sends the result back to the client. For an n-element database, this
protocol has an optimal query size of O(log n), an optimal server computation
complexity of O(n) (since the function can be represented as a circuit of size

1 This basic building block enabling private queries to a contiguous array can then
be combined with techniques like cuckoo hashing to achieve private queries to more
advanced data structures like key-value stores.



88 J. Park and M. Tibouchi

O(n)) and the reply size is again optimal, linear in the size of a database entry.
Unfortunately, those nice asymptotic formulas tend to hide impractically large
constants corresponding to the considerable overhead of FHE, in terms of cipher-
text expansion and in computation cost, due to the expensive bootstrapping step
required to homomorphically evaluate large circuits.

Protocols suggested so far for practical cPIR have therefore been substan-
tially more complicated than this simple description, so as to circumvent the
large overhead of FHE and rely instead on more efficient somewhat homomor-
phic encryption schemes (SHE), that only support the homomorphic evaluation
of circuits of limited depth. For instance, one of the first practical cPIR proto-
col, XPIR [1] is based on the BV somewhat homomorphic encryption scheme [9].
Several subsequent works [5,23] then considered other SHE primitives to achieve
better efficiency in terms of communication or computation cost.

The basic underlying technique in those works can be described as follows:
if we represent the database as an n-dimensional vector, and the query for the
i-th database element as the vector of size n with all zeroes and a 1 in the
i-th component, the desired element is simply the inner product between those
two vectors. If the query vector is encrypted componentwise using an (at least)
additively homomorphic scheme, the inner product can easily be evaluated in
encrypted form and returned to the client. An obvious difficulty, however, is that
the query itself consists of n ciphertexts, and hence communication is no longer
sublinear. This can be solved using a technique due to J.P. Stern [33] in which
the database is structured as a d-dimensional hypercube. With this structure,
d d
√

n ciphertexts are needed as query vectors rather than n. Computing the reply
then involves the homomorphic evaluation of an arithmetic circuit of depth d
instead of just a linear function: this is the basic structure of XPIR.

SealPIR improves upon XPIR in terms of query size at the cost of additional
work on the server side. Instead of sending d query vectors of length d

√
n, the

client sends d ciphertexts containing the information on the desired index, and
the server expands those ciphertexts into ciphertext vectors in a homomorphic
way. Further optimizations of this technique have recently been proposed in [3],
in order to further reduce communication at the cost of increased computation
and noise on the server side.

1.2 Our Contribution

The main observation of this work is that the basic FHE approach to cPIR
described at the beginning of the previous section can in fact be instantiated in
practice, without bootstrapping, and achieve the same level of efficiency as state-
of-the-art schemes like SealPIR or even better, and with lower communication
cost overall.

To do so, we rely on the TFHE homomorphic encryption scheme [12–14],
which is an efficient implementation of the GSW [24] approach to homomor-
phic encryption. With respect to suitably structured circuits, GSW enjoys a
slow (additive rather than multiplicative) noise growth, and can therefore eval-
uate relatively deep circuits without bootstrapping. This is in particular the
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case for the circuits representing a large lookup table, which is exactly what
we want to evaluate in PIR. This lookup table circuit consists of a binary tree
of depth O(log n) of multiplexer gates (CMUX gates in TFHE; see Fig. 1), and
can be evaluated homomorphically without bootstrapping using the basic TFHE
parameters even for very large database sizes.

We also use suitable key-switching techniques in order to efficiently imple-
ment the query expansion, whereby the packed query of the client, containing
all the bits of the index in a single ciphertext, is decomposed bitwise into several
ciphertexts to be fed into the CMUX tree. Since there are fewer resulting cipher-
texts than in SealPIR (O(log n) compared to O(d d

√
n)), this step is also more

efficient in an asymptotic sense, although the implied constant in the big-O is
actually larger in our case.

The resulting scheme, which we call SHECS-PIR (Somewhat Homomorphic2

Encryption-based Compact and Scalable PIR), is competitive with SealPIR in
terms of computation cost, and achieves better communication cost (particularly
for the server’s reply, where we are essentially optimal). In addition, SHECS-PIR
scales better to larger databases: thanks to slower noise growth, no increase in
parameters is needed until a much larger database size than SealPIR. In addition,
our query ciphertext can contain multiple indices up to the point not exceed-
ing the dimension of plaintext degree without increasing query size. Therefore,
SHECS-PIR can be combined with all the efficient (cheap computation cost)
multi-query PIR techniques using probabilistic batch codes [5] or just batch
codes [26,32] for better performance on server’s computation time with much
lower network cost increase and query generation time.

1.3 A Note on Communication Cost

We mentioned earlier that the FHE approach to cPIR achieves essentially opti-
mal complexity since the query size is O(log n) and the answer size is linear in
the size of database entries. The caveat implied by “essentially” here is that,
while that bound certainly holds if size is measured in terms of numbers of
ciphertexts, there can be some additional overhead due to the ciphertext expan-
sion factor, namely the ratio F between the size of ciphertexts and plaintexts in
the underlying homomorphic encryption scheme. In fact, that expansion factor
is an even larger contributor to communication cost in schemes like XPIR, since
answer size incurs an overhead of F d−1, which can be large when d grows (i.e.
for larger database sizes).

One can mention recent efforts to reduce this expansion factor F down to a
constant close to 1, e.g. in [23], which proposes novel techniques to achieve an
asymptotically close to optimal communication complexity even when ciphertext

2 We stress that SHECS-PIR uses somewhat homomorphic (or arguably “leveled fully
homomorphic”) encryption in the sense that it does not rely on bootstrapping. This
is despite the fact that the underlying homomorphic encryption TFHE is bootstrap-
pable, and hence an FHE scheme. Not using bootstrapping is simply better for
efficiency.
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expansion is taken into account. Those efforts, however, are largely orthogonal to
the line of work in which this paper fits: while they do obtain better communica-
tion rate in an asymptotic sense, they have a substantial fixed cost. For instance,
query size in [23] is around 200 MB for typical parameters, so the scheme only
offers an attractive communication rate when database entries themselves have
sizes in the hundreds of megabytes, and server computation time is accordingly
large. This can be relevant in specific settings, but for more common cPIR use
cases where database entries have sizes in kilobytes or less, it is not very practical.

Regarding the underlying encryption scheme of SHECS-PIR itself, it satisfies
F ≈ 4 for the security level and the large database sizes we consider, so the
corresponding overhead is small (and communication cost is effectively smaller
than the state of the art for this range of parameters). In an asymptotic sense, F
would increase very slightly with both database size (in order to accommodate
noise growth) and security level (to ensure the hardness of the underlying lattice
problem), but the scaling is an iterated logarithm, so practically speaking, F
can be considered a constant.

Along similar lines as [23], a previous paper due to Kiayias et al. [27] achieves
cPIR with optimal communication rate for databases with large entries, in the
sense that the total size of communication asymptotically approaches the size of
the unencrypted database entry alone. Moreover, it does so by relying on leveled
homomorphic encryption, and thus does not require bootstrapping, similarly to
the present work. While this is an important feasibility result, it again has limited
practicality, however, due to the heavy computational cost of the underlying
encryption scheme, as the authors themselves underscore. Moreover, as in [23],
there are substantial fixed communication costs that limit the applicability of
the scheme to only databases with very large entries (the authors consider the
retrieval of movie files of several gigabytes), which is again a different setting as
the one we focus on.

Another recent work discussing various approaches to reducing communica-
tion costs for PIR in a range of parameters more in line with the focus of this
work is Ali et al.’s paper [3]. It presents a number of ways to optimize concrete
cPIR schemes for lower communication, a number of which are largely indepen-
dent of this work, and in fact compatible (e.g., modulus switching in queries).
It does however introduce a new cPIR scheme called MulPIR, which is slower
than SealPIR but more compact. We do not include a detailed comparison with
MulPIR, due to the lack of a readily available implementation; however, since it
has larger query size than SealPIR and since replies consist of multiple cipher-
texts, it should be less efficient than SHECS-PIR in terms of both communication
(by comparison of query and answer sizes) and computation (because we perform
similarly to SealPIR or better).
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2 Basic Tools (Homomorphic Encryption Scheme)

2.1 Homomorphic Encryption

Our PIR protocol is constructed by a somewhat homomorphic encryption scheme
which allows limited number of operations on ciphertexts. Homomorphic Encryp-
tion (HE) allows a computation on encrypted data, where PIR scenario wants
to do. We give properties of our base homomorphic encryption scheme first and
concrete algorithms next. Homomorpic encryption scheme consists of four algo-
rithms (KeyGen,Enc,Dec,Eval). It is an encryption scheme having additional Eval
algorithm to evaluate arbitrary function on ciphertexts. Our protocol uses the
full power of homomorphic encryption (multiplication, addition on ciphertexts)
to evaluate a homomorphic mux gate (data selector).

– Homomorphic mux gate: Given two encrypted data d0, d1 and an encryption
of b ∈ {0, 1}, say C, it outputs d0 if C = Enc(0), otherwise d1.

It is easy to construct homomorphic mux gate using standard FHE schemes.
However, the most concern is the efficiency in terms of error growth and compu-
tational time for a practical use. The less noise overhead after any operation of
an FHE scheme, the more operations are possible with it, i.e. the deeper circuit
can be constructed from it. The ciphertext of all existing FHE schemes contains
a noise component in it. The noise grows with homomorphic operation with
regard to Euclidean norm. GSW-style homomorphic encryption [24] which keeps
noise overhead additive after homomorphic multiplication has deeper depth by
utilizing asymmetric noise propagation. Furthermore, its multiplication is natu-
ral i.e. just multiplication over ciphertexts avoiding other additional algorithms
(relinearization, key switching, modulus switching e.t.c). To obtain a ciphertext
(usually a vector) encrypting multiplication of plaintexts using homomorphic
operation in other non-GSW style FHE schemes, tensor product of ciphertexts
vectors are done at first. The product of vectors causes size of vector quadratic
so that extra algorithms such as relinearization are required to reduce the size as
original ciphertext. TFHE [14] adapts GSW encryption over Torus, but makes
multiplication faster preserving GSW property using its algebraic fact. From
this reason, we can eventually implement an efficient PIR protocol so we intro-
duce this TFHE scheme below. We implemented our protocol based on TFHE
library [15].

2.2 TLWE and TRLWE

Notation: We denote λ as the security parameter. We define vectors and matri-
ces in lowercase bold and uppercase bold, respectively. Dot product of two vec-
tors v,w is denoted by <v,w>. For a vector x, xi denotes the i-th component
scalar. We denote that B as the set {0, 1} and T as the real torus R/Z, the set
of real number modulo 1. We denote ZN [X] and TN [X] by Z[X]/(XN + 1) and
R[X]/(XN + 1) mod 1, respectively. BN [X] denotes the polynomials in ZN [X]
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with binary coefficients. The norm notation ‖ · ‖ denotes infinity norm. log(·) is
binary logarithm. We use the same notation as [14] for better understanding.

The TFHE scheme [14] is working entirely on real torus T and TN [X] based
on TLWE problem and TRLWE problem which are torus variant of LWE problem
and RLWE problem respectively, where N is a power of two. It is easy to see that
(T,+, ·)(resp. (TN [X],+, ·)) is Z(resp. ZN [X]) module.

A TLWE (resp. TRLWE) sample is defined as (a, b) ∈ T
kn+1 (resp. TN [X]k+1)

for any k > 0, where a is chosen uniformly over T
kn(resp. T

k
N ) and b = <a, s>+e.

The vector s is a secret key which is chosen uniformly from B
kn(resp. BN [X]k)

and the error e is chosen from Gaussian distribution with standard deviation
δ ∈ R > 0. Furthermore, we follow the definition of trivial sample in [14].
as having a = 0 and noiseless sample as having the standard deviation δ = 0.
Throughout this paper, we set k = 1 and n = N . Here, we denote the message
space to M ⊆ T. A TLWE ciphertext of μ ∈ M is constructed by adding a
trivial TLWE message sample (0, μ) to a non-trivial TLWE sample. Therefore,
the TLWE ciphertext of μ, say c, which we will interpret as a TLWE sample (of μ)
is (a, b) ∈ T

k+1, where b = <a, s> + e + μ. To decrypt it correctly, we use a
linear function ϕs called phase, which results in ϕs(c) = b − <a, s> = μ + e and
we round it to the nearest element in M. For a TRLWE encryption, it follows the
same way over TN but a message μ is a polynomial of degree N with coefficients
∈ M.

2.3 TRGSW and CMUX Gate

As we can see, TLWE and TRLWE samples have additive homomorphic property.
In order to support multiplication, the authors of [14] define TGSW ciphertext
which supports external product with TLWE ciphertext to get a TLWE sample
encrypting multiplication of messages. It is possible to be extended to polyno-
mials. In this paper, since we only use TGSW samples in ring mode, we use the
notation TRGSW which is working with TRLWE and also give the definition of
a TRGSW sample only.

For any positive integer Bg ≥ 2, �, k, a TRGSW sample is a matrix C =
Z + μ · H ∈ TN [X](k+1)�×(k+1), where each row of Z is a TRLWE sample of zero
and H is a gadget matrix which is defined by H = Ik+1⊗g ∈ TN [X](k+1)�×(k+1),
where g = (1/Bg, . . . , 1/B�

g).
The message μ is in ZN [X]. In this paper, we restrict the message space

of TRGSW to {0, 1} and set k = 1 as we mentioned above. We denote
TLWE(μ),TRLWE(μ), and TRGSW(μ) as a ciphertext of each proper message
μ of TLWE,TRLWE, and TRGSW, respectively. An external product between a
TRGSW sample and a TRLWE sample, denoted as �, is defined as A � b =
H−1(b) · A, where A is a TRGSW sample of μA, b is a TRLWE sample of μb

and H−1(·) is the gadget decomposition function DecH,β,ε of [14] with different
notation.

This external product outputs a TRLWE sample of μA · μb. With the homo-
morphic operations, we can construct a small circuit which is called CMUX gate.
It outputs one of two TRLWE samples depending on a message of TRGSW sample
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without decrypting it. To be concrete, CMUX(C,d0,d1) = C � (d1 − d0) + d0,
where C = TRGSW(μC),d0 = TRLWE(μd0), and d1 = TRLWE(μd1). Since we
restricted the message space of TRGSW to {0,1}, if μC = 0, CMUX gate outputs
TRLWE(μd0) otherwise, TRLWE(μd1) is the output. We refer to [14] for more
detail.

2.4 Basic Algorithms for TFHE

We introduce basic algorithms SampleExtract and PrivKS, which we use in
our PIR protocol. SampleExtract converts TRLWE samples of polynomial with
message coefficient under a key K (denoted as TRLWEK(

∑N−1
i=0 μiX

i)) into
TLWE(μi) under a key K (denoted as TLWEK(μi)), where μi ∈ T for ∀i ∈
[0, N − 1]. It is possible because we can extract a coefficient of a polynomial
(viewed as slots) as a scalar with algebraic operation and it works on the FHE
ciphertext. This algorithm does not add any noise.

There is an algorithm called the Private Functional Key Switching (PrivKS)
which allows to switch the message space from T to TN [X]. In other words,
it can convert a TLWE sample under a key K into a TRLWE sample under a
key K. We use this algorithm for unpacking query step. This function takes
a key switching key KSi,j(f) ∈ TRLWEK(fu(Ki

2j )) and a TLWEK(μ) on input
and outputs TRLWEK(fu(μ)). One can use the function fu mapping from T

p

to TN [X] with p TLWE samples, however, p = 1 is enough for our protocol.
Furthermore, we use two kinds of function fu where u indicates the position
where the input is added in a TRLWE sample. In detail, TRLWEK(f0(x)) =
(a + x, b), TRLWEK(f1(x)) = (a, b + x), where (a, b) ∈ TRLWEK(0), x ∈ TN [X].

3 Overall Description

A PIR protocol consists of three basic procedure: query generation, response
encoding(main computation), and response decoding [31]. Our PIR protocol
requires a somewhat homomorphic encryption (SHE) scheme consists of four
algorithms (KeyGen,Enc,Dec,Eval). Unlike other basic cPIR protocols based
on SHE, we use full power of homomorphic encryption i.e., multiplication over
ciphertexts. Basically, multiplication is the most tricky step as we mention in
Sect. 2, since it is usually followed by additional steps such as relinearization,
modulus switching, key switching etc., furthermore, large noise growth is another
trouble. However, GSW-style schemes support simple multiplication (with no
other additional steps) and additive noise growth. So one of GSW-style scheme,
TFHE, is adequate for instantiating our protocol. We introduce our protocol
below.

3.1 Our PIR Protocol

Query Generation. A client chooses an index i to retrieve the ith item out of
n data from server’s DB and encrypts each bit of the index as log n ciphertexts.
Then it sends to a server. Therefore, the query complexity is O(log n).
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εs−1 . . . ε0
. . . x0

. . . x1

. . . xn−1

Fig. 1. The Cmux binary decision tree (left figure) and Look Up Table (right table):
the database with n elements (n = 2s). The figure represents how a server computes the
desired i-th item from whole database. xj stands for each data elements ∀j ∈ [0, n− 1]
and each εd is an binary element of the index i =

∑s−1
d=0 εd2d, ∀d ∈ [0, s − 1].

Response Encoding. As a preprocessing, server saves a database as the look
up table (See Fig. 1). The server runs n − 1 times MUX gate (a homomorphic
mux gate) where it selects one of the input elements to output the encrypted i-th
data. In our case, a MUX gate takes two data elements and one query ciphertext
which encrypts a bit of the index. Depending on a query ciphertext, it obliviously
selects one of two data inputs. After running MUX gates n/2 times (let’s say it is
the first level), all the outputs are ciphertexts so that the server does not know
which items are chosen. It is possible thanks to homomorphic encryption. The
server does the second level with the next query ciphertext and previous outputs
running n/4 times MUX gates. Finally, after log n levels, it gives the output to
the server. The total number of MUX gates for a server to evaluate is n−1, then
the server’s computational complexity is O(n). This process is done via a look
up table and binary decision tree (see Fig. 1).

Response Decoding. The client decrypts the ciphertext given by the server
with his secret key. Unlike the previous efficient protocols (XPIR [1], SealPIR [5]),
the complexity of PIR response does not depend on the expansion factor of
cryptosystem, F = |ciphertext size|/|plaintext size|, in our approach. Note that
constructing a look up table (LUT) is inefficient with traditional schemes like
BV [9] or FV [22] in XPIR and SealPIR respectively, due to their structure with
high noise level for every multiplication and large parameter. However, TFHE
is suitable to construct our protocol with concrete parameters due to its nature.
We give the concrete protocol, SHECS-PIR, from TFHE.

3.2 Concrete PIR Protocol (SHECS-PIR) from TFHE

We assume that a server has n = 2s data with β bit size (for convention, we set n
is a power of 2) and a client wants to retrieve the i-th data from server’s database
for i ∈ [0, n−1]. Before sending a query, each client registers its own key switching
input set KSfu = {KS(fu)

a,b }a∈[N+1],b∈[t] which is a set of TRLWE ciphertexts of
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a secret key bits to a server as a setup process, for u ∈ [0, 1]. This seems quite
necessary for every somewhat homomorphic encryption schemes as SealPIR also
requires cryptographic material for substitution operation (key switching) from
each client as a setup. However, It is sent only once by each client and the server
uses it for the computation, every time a client who registered those. In fact, a
server sets the database as a Look Up Table (LUT). It contains a list of indices
from 0 to n-1 with binary representation in the left column and corresponding
data represented as TRLWE message polynomial of degree at most N in the right
column, where each coefficient is in T (see Fig. 1). Moreover, server can pack the
database as much as possible by storing bit length of plaintext modulus (log p)
of the data element into a coefficient of message polynomial. Then, the database
size can be decreased to m = n/Pd, where Pd = N log p

β .

Query Generation:

(1) Choose an index i ∈ [n] and represent i =
∑j=s−1

j=0 εj2j for εj ∈ {0, 1}.
(2) A client encrypts each bit εj as a TRGSW ciphertext. → log nTRGSW cipher-

texts as a query.
(3) Send them to a server.

Response Encoding: The server starts the main computation with its n
database. The server converts data element (as Fig. 1) into as a trivial TRLWE
sample, (0,Dj), where Dj ∈ T[X]/(XN +1) for j ∈ [0, n−1]. He makes a binary
tree with these data and runs CMUX gates n − 1 times via the binary CMUX
tree to evaluate one TRLWE sample which contains the desired data. Note that
one CMUX gate contains 2� times ring multiplication.

Response Decoding: After receiving the answer from the server, the client can
get the i-th data by decrypting the answer with the TRLWE secret key. In this
case, the client only gets one ciphertext which is a TRLWE sample.

4 Implementation Details

4.1 Reducing Communication Cost

Packing and Unpacking Query. It is possible to compress query size as a
ciphertext encrypting all the bits of the index i. In other words, a client packs all
the bits of the index in a plaintext polynomial batching each bit into a coefficient
then encrypt it. To unpack a query to log n(= s) ciphertexts encrypting each bit,
we let the server do additional work which is called query unpacking step. Then
the number of ciphertext for query is reduced to �log n/N� from log n. As soon
as a server gets a query ciphertext from a client, he unpacks the query as log n
ciphertexts of each binary element of i. For example, let i = 3, n = 16 then
the binary representation of 3 is 0011. A client gives an output of Enc(0011) to
the server and he unpacks it to outputs of Enc(0),Enc(0),Enc(1), and Enc(1),
where Enc is an encryption algorithm. If there exists an algorithm extracting
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(unbatching) one bit obliviously, a server runs it log n times, hence this step has
O(log n) computational complexity.

We show how to construct all the procedure with TFHE. Due to TRGSW
sample’s structure, client needs � number of ciphertexts to pack query. Client
gives TRLWE samples as a query then server unpacks it to TRGSW samples.
A query consists of �TRLWE ciphertexts under the key K having log n binary
elements of i. It is unpacked as � × log n TLWE samples under the key K then
converted to log n TRGSW samples under the key K.

[Query Generation]

(1) Choose an index i ∈ [n] and represent i =
∑j=s−1

j=0 εj2j for εj ∈ {0, 1}.
(2) Set � message polynomials as

∑j=s−1
j=0

εj

Bg
Xj , . . .

∑j=s−1
j=0

εj

B�
g
Xj for a positive

integer Bg > 2.
(3) A client encrypts these polynomials as � TRLWE samples.

→ TRLWEK(
∑j=s−1

j=0
εj

Bg
Xj), . . . ,TRLWEK(

∑j=s−1
j=0

εj

B�
g
Xj), where K is a

TRLWE secret key of the client and εj ∈ {0, 1} for j ∈ [0, s − 1].
(4) Send them to the server.

So a query consists of �� log n
N �TRLWE ciphertexts in SHECS-PIR. Since log n is

much smaller than N , in general, just � ciphertexts are required.

[Query Unpacking: Converting � TRLWE samples to log n TRGSW sam-
ples.]

(1) Run SampleExtract(TRLWEK(
∑j=s−1

j=0

εj

Bw
g

Xj)) → {TLWEK(
εj

Bw
g

)}j∈[0,s−1],w∈[1,�]

for w ∈ [1, �]
(2) For j ∈ [0, s− 1], u ∈ [0, 1] and w ∈ [1, �], run PrivKS(KSfu ,TLWEK( εj

Bw
g

)) →
{TRGSWK(εj)}j∈[0,s−1].

In total, server runs SampleExtract � log n times and PrivKS 2� log n times. Essen-
tially, SampleExtract is free since it just extracts coefficients from a polynomial,
but PrivKS has a large constant (at most Nt) times ciphertext addition itself,
where N is the dimension of ciphertext polynomial and t is a parameter of PrivKS.
Usually N = 1024 or N = 2048, t = 12. To optimize query size, the client can
concatenate all the � log n bits in one polynomial then only one ciphertext a
query but the server’s unpacking time is twice as a trade off.

Using Random Oracle. TFHE is basically a symmetric key encryption scheme
so that a client can give just seed of uniformly random part of a TRLWE sample
using random oracle. Then the server generates the exact value using the same
oracle. Roughly, the query size is reduced by half since the seed size is {0, 1}λ.
In general, LWE based symmetric key encryption scheme can use random oracle
to reduce the communication cost.
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Table 1. Communication and computation complexity, n = database size

Query Answer First-Step Main

XPIR O(d d
√

n) O(F d−1) N/A Ω(n + F
√

n)

SealPIR(d = 2) O(d� d
√

n/N�) O(F d−1) O(d d
√

n) Ω(n + F
√

n)

SHECS-PIR w query unpacking O(�log n/N�) O(1) O(log n) O(�n)

SHECS-PIR w/o query unpacking O(log n) O(1) N/A O(�n)

Table 2. Communication cost of SHECS-PIR and SealPIR for the same n, N , and β.

With First-step Without First-step

SHECS-PIR SealPIR(d = 2) SHECS-PIR SealPIR(d = 2)

Query[ctxt] �� log n
N

� d�
√

n
N

� log n d
√
n

Answer[ctxt] 1 � 2 log q
log p

� 1 � 2 log q
log p

�

Modulus Switching for Answer Ciphertext. In order to reduce the answer
size, a naive approach is modulus switching. Other homomorphic encryption
primitives [9,22] use this technique either to reduce the noise contained in a
ciphertext or to reduce the size of a ciphertext. We can easily employ it since
both the ciphertext modulus and plaintext modulus can be set as a power of 2.

4.2 Comparison with Other Protocols

Communication and Computation Cost: We give a complexity compar-
ison among previous works below in Table 1 (First-step is query unpacking in
SHECS-PIR and query expansion in SealPIR). The complexity of main compu-
tation is expressed in polynomial multiplication unit so that SHECS-PIR has
other factor � since one CMUX gate consists of 2� polynomial multiplication.
The server does 2�(n − 1) polynomial multiplication finally. This is because
the schemes TFHE and FV work over different algebraic structure. The ele-
ments over the torus TN [X] is rescaled by a factor 264 to be mapped to 64
bit integers for implementation. Then we can view the ciphertext modulus as
q = 264 and plaintext modulus as p(<q). However, FV (or BGV) works over
Zq[X]/(XN + 1) (q is a prime s.t. q = 1 mod 2N) so that they can use NTT
operation while TFHE uses FFT operation for ring multiplication. Furthermore,
FFT can be more scaled than NTT in general. Therefore, the actual cost com-
parison does not seem proper. In SealPIR and XPIR’s main computation, server
does 2(n + F

√
n) ring multiplication when d = 2. Roughly, SHECS-PIR’s server

seems to work twice since we set � = 2. However, the actual cost is similar
because the FFT operation in TFHE library [15] is more scaled than NTT used
in SealPIR library [29].

SealPIR can also use some our optimization technique such as random oracle
(when it uses symmetric key version) and modulus switching, hence, we can
have similar ciphertext size in both protocols. Therefore, how many ciphertexts
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are needed for query and answer is important for communication cost. Although
SHECS-PIR doesn’t run query unpacking, we can see that the query size becomes
smaller than the size of SealPIR with query expansion at some point since our
query size complexity is O(log n). Table 2 shows the exact number of ciphertexts
of a query and an answer in SHECS-PIR and SealPIR. A query which is a TRLWE
ciphertext can represent 2N indices and usually N ≥ 1024 so that we can say that
the query size actually does not increase for realistic size of database. For n =
232, N = 2048, one ciphertext (=16 kB) is required for SHECS-PIR with query
unpacking while 64 ciphertexts (=2048 kB) are needed for SealPIR with query
expansion and database dimension d = 2 (so the database is a 216 ×216 matrix).
This is because SealPIR represents an index using 216/2048(= �√n/N�) = 32
for each database dimension. This size is as same as SHECS-PIR’s just giving
all log n(= 32) TRGSW ciphertexts (=2048 kB) in SHECS-PIR without query
unpacking so that the server’s running time would be much smaller also. In fact,
the query unpacking would be faster than expansion if

√
n is much larger than

N log n. For noise issue, SealPIR may increase N and decrease p, while we do
not need to do. Moreover, the answer size does not increase since it does not
depend on the expansion factor F . Therefore, we can achieve better performance
on both total communication cost and server’s computation for large database.

Noise Growth: Somewhat homomorphic encryption supports limited number
of operation over ciphertexts, hence, the deeper depth a scheme has, the larger
database its application can support without bootstrapping. Since bootstrap-
ping takes relatively long time and require other material (quite large size) as
an input, it is important not to use it as much as possible. Multiplication over
ciphertexts, in general, incurs large noise growth. In fact, noise growth is depend-
ing on the size of plaintext in FV so that SealPIR keeps downsizing the plaintext
modulus to achieve more depth. But it causes the factor F large, hence, it has
an influence on server’s answer size and main computation time as well. How-
ever, TFHE has larger depth since it has additive noise growth for both addition
and multiplication and also the noise growth of it does not depend on plaintext
modulus.

We show heuristic noise bound after server’s computation of SealPIR and
SHECS-PIR then how much noise has left until decryption will fail using noise
budget defined in [11]. First, we can redefine TFHE ciphertext with rescaled
version for integer representation of implementation (q = 264).

Definition 1 (Rescaled TFHE for implementation). Let ct = (c0, c1),
where ci ∈ Zq[X]/(XN + 1), i ∈ {0, 1} be an TRLWE cipertext encrypting a
message m ∈ Zp[X]/(XN +1). Its scaled inherent noise v is the polynomial with
the smallest infinity norm such that,

p

q
ct(s) =

p

q
(c0 + c1s) = m + v + ap,

where a is a polynomial with integer coefficient.
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Table 3. TFHE error growth (N = 2048, p = 212, q = 264, the number of trial = 10000)

Fresh Ciphertext Addition Multiplication

mean(bit) 11 12 42

standard deviation 0.12 0 0.12

Lemma 1. A TRLWE ciphertext ct encrypting a message m can be correctly
decrypted if the scaled inherent noise v satisfies

‖v‖ <
1
2

Noise budget for rescaled TFHE is actually as same as FV’s [11], where q is
ciphertext modulus and p is plaintext modulus and v is the invariant noise
contained in a ciphertext. In TFHE, p divides q since the two are both powers
of 2 so that it causes less noise than the case p � q of SealPIR. The noise budget
of both schemes is − log 2v A ciphertext is decryptable only when the noise
budget of it is positive (>0). Now we can observe that how fast the noise budget
contained in the reply ciphertext reaches to 0 in parameter database size n.

SealPIR(based on FV) error growth. Let vin be the initial error, which is
an error of a query essentially, and vs be the error contained in a ciphertext
which is generated after server’s computation. We set ‖vout‖ = ‖(
p

q vs�)mod p‖,
where ‖vs‖ ≤ Np2n

√
n(‖vin‖ + B) [5], where N is the dimension of plaintext,

p is plaintext modulus, n is the number of database, and B is a constant error
generated from query expansion step. We assume the database dimension d = 2.
Since the noise budget of this result ciphertext is − log ‖2vout‖, it decreases with
O(log n) complexity.

SHECS-PIR(based on TFHE) error growth. Let vin and vout be the same
notation defined above. Then we observe the final error based on TFHE noise
analysis [14]. It satisfies ‖vout‖ ≤ log n((k + 1)�Nβ(‖vin‖ + (N + 1)2−(t+1) +
t(N + 1)‖vks‖), where N is the dimension of plaintext, p is plaintext modu-
lus, n is the number of database, �, t, β are constant of TRGSW sample and
vks is key switching error (encryption of secret key). Then the noise budget of
this result ciphertext decreases with O(log log n) complexity. Table 3 shows how
much TFHE noise is added after addition and multiplication to the original
fresh ciphertext having noise 11 bits (for 120 bits of security). All the opera-
tion is done over fresh ciphertext (non-evaluated) with the same noise distribu-
tion. Since query unpacking step which consists of addition does not add much
error, we focus on multiplication error growth. According to our noise estima-
tion above, we can see that log log n + 42 bits are the final error contained in
server’s reply. To decrypt it correctly (the noise budget > 0), log log n should
be smaller than 9. which means, n < 2512. As a result, we are able to run large
enough database without changing parameter using only somewhat homomor-
phic encryption functionalities. We can expect that the noise budget of the reply
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ciphertext would still remain positive with large enough data while SealPIR may
not be able to support.

4.3 Security

The security of our cPIR scheme follows directly from the IND-CPA (i.e., seman-
tic) security of the underlying homomorphic encryption scheme TFHE [14].
Indeed, the query consists of TFHE ciphertexts, and semantic security ensures
that the server cannot learn any information about the underlying plaintexts,
which encode the queried database index. Therefore, SHECS-PIR is a secure cPIR
protocol.

The assumptions for security are slightly different in the version of the proto-
col with query compression and the version without: this is because in the latter
one, the key material sent to the server consists of just the evaluation key, allow-
ing the semantic security of TFHE to be proved under plain Ring-LWE). On the
other hand, in the former case, the server is also provided with key-switching
material, encrypting key-dependent information; the security proof for TFHE
then relies on an additional circular security assumption, as is always the case
for FHE schemes. This discrepancy, however, is not believed to have any impact
on concrete security, since no attack is known on circular security.

As usual for lattice-based cryptographic schemes, we can estimate concrete
security by evaluating the cost of the best possible attack against the proposed
parameters (which in our case are selected as N = 2048, q = 264, and α =
6.957 · 10−17 for the error magnitude, corresponding to our error distribution
with standard deviation 2−55). Albrecht et al.’s LWE estimator [2] shows that
the best attack is then the primal uSVP attack [4,6], which yields 121 bits of
security. As a comparison, SealPIR achieves 115 bits of security with their choice
of parameters (N = 2048, q = 260 − 218 + 1, and α = 8/q).

5 Experimental Result

Implementation Setup. All experiments are performed on a single core of a
server with Xeon Platinum 8160 @ 2.10 10 GHz CPUs. In the concrete protocol
SHECS-PIR, we set k = 1, then TRLWE sample consists of two polynomials,
(a, b) ∈ TN [X]2, where a is chosen uniformly. For TRGSW sample, we set � = 2,
Bg = 215.

Communication and Computation Cost. Table 4 shows the actual cost
using each library (SHECS-PIR based on TFHE [15] and SealPIR [29]). We stress
that those numbers corresponds to the case when only one database element is
stored in a given plaintext. It is possible to pack multiple database elements per
plaintext in order to support larger databases.

We set N = 2048 and ciphertext modulus q ≈ 260 for both protocols. Since
the FFT multiplication in TFHE library performs better than SEAL’s NTT,
our main computation time is similar to SealPIR. However, the First step (query
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Table 4. Computation cost of SHECS-PIR and SealPIR for the same n, q ≈ 260, N =
2048.

DB size n SHECS-PIR SealPIR (d = 2)

216 218 220 216 218 220

Query[kB] 32 32 32 32 32 32

Answer[kB] 32 32 32 320 320 320

Server preprocessing[ms] 0 0 0 5733 23101 92944

First-step[ms] 4507 5073 5846 187 422 840

Main[ms] 2282 9024 35902 1935 7025 26833

NB 8 7 7 7 6 5

NB (w/o unpack) 8 7 7 N/A

expansion, consisting of mainly polynomial additions) of SHECS-PIR is more
expensive than SealPIR’s for the database sizes considered in the table. It scales
slower with database size, however (logarithmically rather than in the square
root), so becomes negligible for larger databases.

Both protocols are based on “symmetric key” homomorphic encryption, so
that they use the random oracle model to reduce the query size by half. We
observe how much signal is left after the noise increase in homomorphic opera-
tions. NB represents the “noise budget” after server’s computation in the table,
namely the number of bits of plaintext recoverable above the noise in each of
the N coefficients of the plaintext. For example, for n = 216 in SHECS-PIR, each
coefficient of the reply can store up to 8 bits of information, for a total bandwidth
of 8N = 16384 bits of information (2048 bytes) per plaintext: this means that if
database entries are β = 288 bytes long, we can store 7 of them per plaintext,
and hence support database of size ≈219 in that case). NB(w/o unpack) denotes
the noise budget after server’s computation without query unpacking step. As
we can see that, query unpacking has very small error growth so that it has
little impact on the noise budget. The noise growth in SHECS-PIR is in log log n
compared to SealPIR’s log n, so the noise budget is higher in SHECS-PIR, and
we can support very large databases before this budget is reduced significantly.
In SealPIR on the other hand, parameters have to be increased somehow to sup-
port large databases; there is a complicated set of trade-offs between the data
element size β, the plaintext modulus p, the polynomial degree N and the array
size n, with an increase in one resulting in a decrease on another, making param-
eter selection somewhat tricky. Comparatively, SHECS-PIR is relatively free of
trade-offs as n increases.

For the computation time of the database in the applicable range, the server
processing time (main computation) scales very close to linearly with n (the
database size) and it is similar to SealPIR. We have a small overhead over SealPIR
due to the choice of avoiding any database preprocessing, more precisely, stor-
ing database elements as NTT/FFT form in advance. Note that a plaintext is a
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Table 5. Comparison between SHECS-PIR and SealPIR for large n, q ≈ 260, N = 2048.

DB size n 222 224 225 226 227

SHECS-PIR Compressed-Query[#] 2 2 2 2 2

Query[#] 2 × 22 2 × 24 2 × 25 2 × 26 2 × 27

Answer[#] 1 1 1 1 1

SealPIR (d = 3) Compressed-Query[#] 3 3 3 3 3

Answer[#] 100 100 100 100 100

SHECS-PIR First-step[s] 15 16 17 18 18

Main[s] 143 574 1167 2327 4645

NB 7 6 6 6 6

SealPIR (d = 3) Server preprocessing[s] 291 1192 [out of memory ]

Server time[s] 132 489

polynomial of 12 bit coefficients, while ciphertext consists of 64 bit coefficient. As
a result, we have almost no storage overhead for the database in memory, com-
pared to an overhead of more than 5 (=64/12) in SealPIR. This lets us support
very large databases up to 227 (corresponding to 230 entries of 384 KB each,
384 GB of data in total), while the same could not be achieved with SealPIR
on commodity hardware (See Table 5). In addition, for large databases, SealPIR
makes it necessary to increase d, which results in a larger response size. Specif-
ically, SealPIR simply fails if d is set to 2 for n ≥ 222, so we have to set d to
at least 3, and get a response consists of a hundred ciphertexts or more; due to
memory constraints, we could run it only up to n = 224, with larger instances
too big to fit in memory our relatively high-end server.

The communication cost (query and answer size) is expressed in the number
of ciphertexts. Compressed-Query[#] denotes an optimization of query size
(query unpacking in SHECS-PIR, query expansion in SealPIR). We can see that
our total communication cost even without query unpacking is actually lower
than SealPIR with query expansion for large database sizes, due to the much
larger response size in SealPIR. Nevertheless, query unpacking becomes relatively
negligible for large database sizes, so it would seem natural to use it as well and
enjoy our close to optimal communication complexity.

The server computation time may seem large, but it is almost completely
embarrassingly parallel, so on our 48-core server the total server computation
time can be brought down to less than 100 s for n = 227, say, by using multi-
threading.

A Optimization Options of Reducing Communication
Cost

We explain modulus switching technique which is widely used in several homo-
morphic encryption schemes as one of optimization options. It changes the
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ciphertext space to lower space by switching modulus, hence it makes answer size
smaller in PIR protocol. Another factor which has an effect on communication
cost is ciphertext polynomial degree. In fact, it directly affects not only the size
of query and answer but also computation time.

As stated in Sect. 5, there is a complicated relation on multiple factors of
both computation and communication cost. One change of the factors results
in small or big trade-offs in many cPIR protocols. There are several reasons to
increase the polynomial degree such as controlling error growth, handling larger
database e.t.c. However, we show that we can keep ciphertext polynomial size
lower dealing with larger database and having no noise problem.

A.1 Modulus Switching

We just set a new ciphertext modulus p̄ such that p < p̄ < q. Then modulus
switching takes original TRLWE ciphertext ct = (c0, c1) gives a new TRLWE

ciphertext c̄t = (c̄0, c̄1), where
[
�c̄0 = p̄

q c0�
]

mod p̄,
[
�c̄1 = p̄

q c1�
]

mod p̄. This is
almost free in implementation since it just shifts all the coefficients. Furthermore,
it causes fairly small noise growth comparing to FV ciphertext [17] since all the
modulus p, p̄, q are power of 2. As a result, we can reduce the communication
cost without increasing the server’s computation cost.

A.2 Smaller Polynomial Degree

As a ciphertext of query in SHECS-PIR has just bit length information which is
usually much smaller than polynomial degree N , there is no need to keep the
polynomial degree large. It may hardly happen that log n > N , hence, we could
keep the same modulus q and N . Larger N may contain large data element size in
one ciphertext but decreases the efficiency of protocol having more computation
and noise. Therefore, SHECS-PIR has a benefit on maintaining smaller query size
not increasing other factors (no trade-offs), while more ciphertexts are required
for a query in SealPIR as n increases.

B Multi-query PIR

Our protocol with packed query naturally supports multi-query scenario where
the same client wants to retrieve multiple elements from the same server or mul-
tiple indices are asked to a server for one answer. For the former, we can obtain
single query size cost even for realistic large enough number of database and
the answer size is linear on the number of indices. For the latter, the commu-
nication cost is as same as single query version. The reason is that we only use
log n coefficients of polynomial to generate the single query ciphertext for fixed
the number of data n and the degree N . Then it is possible to have at most

N/ log n� indices in one polynomial as a multi query without increasing query
size. It just maintains the communication cost of single query.
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There are some multi query protocols to improve CPU costs. SHECS-PIR
gives a benefit on communication cost if it is applied to any computationally
efficient technique (batch codes [26,32], probabilistic batch codes [5]) of multi
query PIR protocol. Comparing to the previous work in [5], SealPIR requires each
query ciphertext to be expanded to each dimension’s query vector by expand
algorithm for an index. Therefore, a query ciphertext cannot contain more infor-
mation apart from the desired index using their way. It implies that a client
has to encrypts b times which outputs b ciphertexts to request b items from a
server’s DB. However, unpacking query step in our protocol is only dependent
on coefficient of polynomial. For example, to retrieve 64 items out of 220, SealPIR
requires more than 64 query ciphertexts (using probabilistic batch codes, they
require b(= 1.5×64) query). But our approach requires only one query ciphertext
having b indices for fixed N = 2048, n = 220 having the same efficient computa-
tional cost. Furthermore, for the server’s reply, only one ciphertext per query is
given by server with SHECS-PIR, while F d−1 ciphertexts are required per query
to answer for a server in SealPIR and usually F ≥ 4, d ≥ 2.
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