
Securing DNSSEC Keys via Threshold
ECDSA from Generic MPC

Anders Dalskov1, Claudio Orlandi1, Marcel Keller2, Kris Shrishak3(B),
and Haya Shulman4

1 Aarhus University, Aarhus, Denmark
2 CSIRO’s Data61, Sydney, Australia

3 Technical University Darmstadt, Darmstadt, Germany
kris.shrishak@sit.tu-darmstadt.de

4 Fraunhofer SIT, Darmstadt, Germany

Abstract. Deployment of DNSSEC, although increasing, still suffers
from many practical issues that results in a false sense of security. While
many domains outsource zone management, they also have to outsource
DNSSEC key management to the DNS operator, making the operator
an attractive target for attackers. Moreover, DNSSEC does not provide
any sort of protection in the case the operator itself decides to serve false
information, for example, if it gets compromised.

In this work, we show how to use techniques from threshold ECDSA:
(1) to protect keys such that domains do not reveal their signing keys
to a DNS operator, and (2) to protect the operational integrity of DNS
operator. As a result of being highly specialized, prior work on threshold
ECDSA has focused on a limited set of threat models, and none have
so far considered techniques to amortize signature generation. Our work
takes a different approach and presents a generic technique for obtain-
ing a threshold ECDSA protocol from any secure multiparty computa-
tion protocol that works over an appropriate finite field. We show how
this technique lends itself to very efficient threshold signing protocols by
comparing it against state-of-the-art protocols from both academia and
industry. For similar threat models, our protocols are as fast as the pre-
vious best protocol in terms of signing, and up to an order of magnitude
faster for key generation on a fast network. Finally, we show how to inte-
grate our application into a widely used DNS management software and
demonstrate through experiments the overhead compared to traditional
DNSSECs.

1 Introduction

The Domain Name System (DNS) [RFC1033, RFC1034], one of the core Inter-
net protocols, performs lookup services and provides a platform for an increas-
ing number of systems and applications. DNS was not designed with security in
mind and is alarmingly vulnerable to DNS cache poisoning [2,6,9,22,23,36]. DNS
Security extensions (DNSSEC) [RFC4033–RFC4035] was standardized to miti-
gate cache poisoning using cryptographic techniques. At a high level, DNSSEC
c© Springer Nature Switzerland AG 2020
L. Chen et al. (Eds.): ESORICS 2020, LNCS 12309, pp. 654–673, 2020.
https://doi.org/10.1007/978-3-030-59013-0_32

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-59013-0_32&domain=pdf
https://doi.org/10.1007/978-3-030-59013-0_32


Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 655

enables certification of DNS records in a response such that the machine making
the query can verify that it was not tampered with, assuming the DNS operator
is trusted. A record is certified using a digital signature scheme, with RSA and
ECDSA being the supported algorithms [RFC 5702, RFC 6605]. While RSA is
the most commonly used scheme, the need to prevent fragmentation of UDP
responses requires the signing keys to be short. ECDSA is the better choice
moving forward as it provides the same level of security as RSA but with much
smaller signatures. While DNSSEC prevents cache poisoning, this only holds
insofar as the operator is trusted. Moreover, DNSSEC additionally requires the
operator to manage cryptographic keys. Both these requirements manifest them-
selves as areas of insecurity in practice.

Centralization of Key Management. DNSSEC burdens the provider with
the additional task of generating and managing the keys of their users. Recent
work has demonstrated that a large number of domains share the same key [12].
Sharing the same key across multiple domains makes the DNSSEC provider a
lucrative target. If the key of one domain is compromised, several other domains
can be compromised as well. Another study [34] has shown issues with key
generation that result in keys with inadequate security.

Centralization of Operation. A second issue that arises from the problem of
the DNS operator being in-charge of key management is that the entire operation
is centralized. In other words, any guarantee towards integrity of a DNS response
to a query is lost if the operator cannot be trusted. This implies that DNSSEC
does not prevent attacks from powerful adversaries on the operator, such as
nation-state actors. In recent years, several examples of sophisticated attacks on
DNS registrars have been observed in Germany [32], Greece [14] and Sweden [30]
as part of attacks on DNS infrastructure [37].

1.1 Threshold Signing

Threshold signatures are a natural candidate to solve the issues outlined above.
A threshold signature scheme distributes a signing key to n signers such that any
subset of at least t signers can sign a message. Since the signing key is distributed
among many signers, it will remain private as long as at least t servers remain
uncompromised. Moreover, the threshold signing scheme can be made secure
against tampering, i.e., a malicious operator cannot compromise the integrity of
a response.

While threshold RSA has previously been studied for fault tolerance in
DNSSEC, threshold ECDSA has not been used for DNSSEC in spite of an
increased interest in threshold ECDSA in recent years [18,19,21,27,28]. All of
these recent works motivate the problem of threshold ECDSA in the context of
crypto-currencies, a problem that is substantially different from DNSSEC: First,
recent work on threshold ECDSA focus on “full threshold”, i.e., privacy of the
signing key is maintained when up to t = n − 1 signers collaborate. Second, the
focus has typically been on “malicious” security, i.e., signers are not assumed
to behave according to the signing protocol. However, it is possible to design



656 A. Dalskov et al.

faster protocols by relaxing some of these security guarantees, e.g., by requiring
an honest majority, or assuming that signers do not deviate from the signing
protocol. The diverse context in which DNS is used can benefit from solutions
that are not limited to a specific threat model.

In the real world application of DNSSEC where multiple operators (e.g., 3)
serve a domain, the possibility of only one of them being controlled by an adver-
sary is reasonable as operators are often corporations located in different parts of
the world and adhere to different local laws. In such a setting, a “full threshold”
protocol may not be necessary, and a protocol that assumes an honest-majority
(i.e., with 3 servers this implies none of the servers collude) among the operators
can be sufficient. Moreover, DNS operators are bound by legal contracts with
their customers and they provide service according to this contract. These legal
bounds allow us to consider operators that do not act maliciously since that
would be a breach of contract. However, in such a case we will still be interested
in protecting keys stored at the operator.

1.2 Contributions

A summary of our contributions:

– A generic transformation for secure multiparty computation (MPC) protocols
over a field Zp to protocols over an elliptic group of order p, such as one used
in ECDSA.

– An implementation of this transformation in MP-SPDZ [17] to support
threshold signing with ECDSA in many different threat models. We bench-
mark each instantiation against state-of-the-art protocols for threshold sign-
ing and show that they perform comparably.

– A measurement study to understand the extent to which multiple providers
for a given domain is used on the Internet.

– A prototype of a full implementation, based on our implementation in MP-
SPDZ and Knot, as well as experiments showing that threshold signing incurs
only a minimal overhead.

1.3 Outline

Section 2 presents a measurement study we performed. We show that a signifi-
cant number of domains use multiple operators, which allows them to easily use
our solution. Section 3 outlines our system and threat model. Section 4 presents
our technical contribution as well as our threshold signing protocol. Section 5
shows how we integrate our signing protocol into a well-known DNSSEC appli-
cation. Section 6 presents a number of different experiments and comparisons to
prior work. Section 7 discusses how our work relates to prior works before the
conclusion is presented in Sect. 8.



Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 657

2 Quantifying Multiple Operators

Since the large DDoS attacks on Dyn [20] and NS1 [5] in 2016, many domains
are using more than one operator to increase the redundancy of the zone so that
they do not fall victim to another DDoS attack. However, no recent work has
measured the number of domains that make use of multiple operators. As we
propose to use our multiparty ECDSA protocol for DNSSEC zone signing, we
measure the extent to which multiple operators are used on the Internet. We
consider a domain to have more than one operator if the DNS name servers of
the same domain are hosted by an entirely different DNS operator.

2.1 Data Collection Methodology

If a domain name is configured to be served by three DNS name servers, we check
whether it is managed by the same operator. For our purpose, we are interested
in nameservers run by different operators and not necessarily name servers placed
at different locations. For instance, some domains might use two operators who
are geographically located in close proximity to each other; sometimes, even in
the same data centre. We are interested in the setting with different operators as
they do not trust each other with signing keys and they do not have a business
relationship with each other that will allow them to pass on copies of signing
keys. Hence, being geographically close does not eliminate the need to run a
secure signing protocol. Some domains make use of a single operator which has
name servers at different locations. In principle, a multiparty ECDSA protocols
can be used in this setting as well because it provides better security than simply
storing a copy of the signing key on each name server.

Our measurements were conducted using the Alexa Global Top 1 million
list1 as the dataset. The list was downloaded on 12 July 2019. We ran scans on
the same date on all the domains in the dataset and requested its NS records.
For each NS record we also obtain the first associated A record. On obtaining
the NS record, we have the list of authoritative name servers. We compare the
sub-domains of country code TLDs (ccTLDs), country code second-level domains
(ccSLDs) and generic TLDs (gTLDs). E.g., if the two name servers of a domain
are dns1.p09.nsone.net. and ns1.p43.dynect.net., then we compare nsone
and dynect. However, we do not only compare the SLD names. For instance, if
there is a third name server for the same domain at pdns6.ultradns.co.uk.,
then we compare ultradns with nsone and dynect.

To measure how many domains use multiple operators, we need to know
the owners of the authoritative name servers. Though it is possible to obtain
this information from the WHOIS database using the A records we collected,
the information obtained does not have a consistent schema and is heavily rate
limited [29]. Hence, we use the WHOIS database to only check information for
Alexa Top-1k; for the rest of Alexa Top 1 million, we take an approach similar
to [12] and rely on the NS records to indicate the DNS operator. We made manual

1 https://www.alexa.com/topsites.

https://www.alexa.com/topsites


658 A. Dalskov et al.

checks to make sure that subsidiaries of large corporations are not classified as
separate operators. (For instance, Chinese online shopping website taobao.com
is a subsidiary of the Alibaba group, and we found that one of their name servers
is owned by Alibaba and hence, we classified them as the same operator.) Note
that large organizations such as Facebook and Google run dedicated networks
which provides DNS redundancy. However, as it is run by the same organization,
we do not account for them in our list of domains with multiple operators.

2.2 Data Analysis

To
p-
10
0

To
p-
1k

To
p-
10
k

To
p-
1m

0

20

40

60

80

100

40

20.3
9.15 3.5

57

77.3
88.64

90.18

3 2.4 2.21 6.32

Alexa list

P
ro
po

rt
io
n
of

do
m
ai
ns

(%
)

Misconf/NR Only 1 More than 1

Fig. 1. Domains with multiple
operators

We classified domains as having a single
operator (Only 1), multiple operators (More
than 1), no response (NR) and misconfig-
ured (Misconf). An NR classification refers
to the case where, during our scans, we did
not receive a response with the name server
list within a 15-s timeout. Misconf refers to
zones which are misconfigured due to mis-
takes and/or typos. More precisely, we first
observed whether we received an A record for
the NS record. If we instead receive an error,
we then checked the NS record for complete-
ness. If, during this check, we encouter mis-
takes or typos, the domain is marked as mis-
configured. E.g., just ds0. was configured as
one of the authoritative name servers for the
domain oxfordlearnersdictionaries.com.
See Fig. 1 for the result of classifying the Alexa
Global Top 1 million, as well as its subsets, in this manner.

We did not receive a response to our queries from 3, 24, 208, 60775 domains in
the Top-100, Top-1k, Top-10k and Top-1m respectively. Although we did not find
any misconfigured domains in the Top-1k, we found 13 misconfigured domains in
the Top-10k and 2483 domains in Top-1m. We observe that 40% of the domains
in Alexa Top-100 have more than one operator while the proportion reduces as
we move down the Top-1m list. 20.3%, 9.2% and 3.5% of the domains in the Top-
1k, Top-10k and Top-1m have more than one operator for their domain. Hence,
we conclude from our measurements that there are thousands of domains that use
multiple operators and that can easily plug-in our threshold ECDSA protocols.

3 System and Threat Model

The diversity of the DNS ecosystem should be reflected in our system and threat
model. For the system model, we assume a small number of operators that serve a
single domain. As seen in the previous section, this setting is common in practice,
in particular among popular domains. For the threat models, we take the two



Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 659

issues outlined in the introduction as our starting point. Before we continue, we
describe the security properties that we address with our threat model:

1. Key Privacy. This is our baseline. Key privacy states that signing key
remains private in the event that a server is compromised. We note that
this property is relevant in a number of different contexts. For example, this
property states that a signing key isn’t exposed to a system administrator,
or to anyone who obtains a decommissioned (but improperly cleaned) server.

2. Operational Integrity. Besides keeping keys secret, we may also want to
uphold the integrity of operation. By operational integrity, we mean that only
two situations can occur: Either operation proceeds as normal, that is, the
right zone is signed, or nothing is signed. In other words, at best, a malicious
operator can only disrupt operation, i.e., it performs a denial of service attack
but it cannot sign zones with bogus information. Notice that key privacy is
subsumed in operational integrity. If it is possible to extract the signing key,
then no guarantee about the integrity can be made since a single operator
can sign any zone it manages at will.

3.1 System and Communication Model

Intuitively, our system model can be viewed as distributing the task of a single
operator among multiple operators. To simplify things, we assume that such a
system has either n = 2 or n = 3 operators who maintain a fixed set of domains.
These operators can be distributed in a single location, communicating over a
LAN, or they can be distributed globally. Finally, we assume that the servers are
sufficiently separated, that is, a compromise of one server does not automatically
lead to a compromise of another server.

3.2 Threat Model

We consider an adversary that is capable of compromising a single server. Thus,
when n = 2, the adversary controls half the servers, and when n = 3, the adver-
sary controls a minority (since 2 servers remain honest). We distinguish between
the two standard adversarial models from the MPC literature. The first type of
adversary, called passive, is characterized by following the prescribed protocol.
The second adversary, called active, may behave arbitrarily and not follow the
protocol. Notice how these two adversarial types capture our security properties.
If we only desire key privacy, then security against a passive adversary suffices.
If we want operational integrity as well, then we must also secure ourselves
against active adversaries. Indeed, it is exactly against such an adversary that
the integrity of operation becomes an issue.

4 Threshold ECDSA

In this section we present a generic transformation of any secure computation
protocol over a field Zp into a protocol for a group of order p. In particular, this
technique enables an efficient method to compute threshold ECDSA signatures.



660 A. Dalskov et al.

Arithmetic black-box

– A command ([a], [b], [c]) ← RandMul() that generates appropriate representa-
tions of a random tuple of secret shared values a, b, c ∈ Zp with c = ab.

– A command [c] ← Mul([a], [b]) that returns c = ab (This is typically im-
plemented using one invocation of RandMul and Beaver’s re-randomization
technique [4]).

– A command [a] ← Rand() that generates appropriate representation of a ran-
dom value a ∈ Zp.

– A command a ← Open([a]) that publicly reconstructs a (or outputs a special
symbol ⊥ denoting abort).

– Linear computation for the [·] representation: given the shares [a], [b] and
public scalars x, y ∈ Zp, the parties can compute [c] = x · [a]+y · [b] “for free”,
i.e., the computation does not involve communicating with the other parties.

Fig. 2. The arithmetic black-box functionality.

4.1 ECDSA Signing

ECDSA as standardized in [25] is parametrized by a curve E(K) for a field K.
Let G ⊆ E(K) be an additive subgroup group of order p with generator G, and
let Zp denote the field of size p. Given a message M , secret key sk ∈ Zp, signing
is performed as follows:

1. Sample k ← Zp at random.
2. Compute (rx, ry) = k · G.
3. Let s = k−1(H(M) + sk · rx) where H is a hash function mapping messages

into elements of Zp.
4. Output signature σ = (rx, s).

4.2 Secure Multiparty Computation

We assume a MPC engine supporting the standard commands of the arithmetic
black-box (ABB) functionality as shown in Fig. 2, where the notation [a] indicates
that the value a is “secret-shared”, i.e., no party has access to it. The security
model of a MPC protocol is parametrized by two variables. First, whether the
adversary can control at least half, or less than half the parties. The former is
called dishonest majority, while the latter is called honest majority. Observe that
an honest majority protocol would correspond a setting with n = 3 servers, while
a dishonest majority protocol means n = 2. The second parameter is the cor-
ruption model: The two cases considered here—active and passive—correspond
to our description in Sect. 3.2.

4.3 Secure Computation on Groups

We present an extension to the ABB that extends its capabilities to secure
computation over an arbitrary Abelian group of order p. In some sense, this



Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 661

shows that the actual representation of the algebraic structure used to perform
MPC is irrelevant as long as it is possible to perform linear operations. This
generalization of arithmetic MPC has also been described independently by [35],
and might have applications in other contexts. In this paper, we use this idea to
perform MPC in subgroup G. This extension comes at no extra cost in terms of
communication and a small increase in computation complexity (corresponding
to standard operations in the subgroup of the curve).

Consider a protocol implementing the ABB in Fig. 2 and assume that the
shares [a] are also elements of Zp. The idea is to let each party map their share
of [a] to a curve point of order p by locally computing Ai = ai · G, where ai is
party i’s share of a. This mapping, being a homomorphism, preserves linearity
and so Ai is a share of a · G with the same properties as the original Zp sharing
[a]. In the following, we write 〈a〉 to denote a share of a · G, and we add the
following two commands to the ABB in Fig. 2:

– A command 〈a〉 ← Convert([a]) that converts a representation of the shared
value a in Zp to a representation of the value a · G in the group G.

– A command a · G ← Open(〈a〉) that recovers the secret shared point.

These two commands are sufficient to give us a protocol for secure computation
over the group G. If we consider the sharing [a] as a vector with elements from
Zp, we get the following useful properties:

– Linearity is preserved, i.e., given the shares 〈a〉, 〈b〉 and scalars x, y ∈ Zp, we
can locally compute 〈c〉 = x〈a〉 + y〈b〉.

– If the Open procedure for [·] shares relies only on group operations in Zp,
then we can implement Open for 〈·〉 shares by using the corresponding group
operations of G. This property follows from the fact that Convert is structure
preserving.

– Secret scalar multiplication by public point is possible by noting that Convert
defines an action of Zp on G, i.e., [a] · P for a P ∈ G is a local operation that
results in 〈a · logP (G)〉. Note that opening this share will result in a · P .

– Finally, given [x] and 〈y〉 (and a multiplication tuple [a], [b], [c]) it is possible
to compute 〈xy〉 using a slight tweak on Beaver’s technique as follows: (1)
e = Open([a]+[x]), (2) D = Open(Convert([b])+〈y〉), (3) 〈xy〉 = Convert([c])+
e〈y〉 + [x]D − eD. Note that this property is not required for our application
but could be of independent interest.

The properties of Convert and Open, as well as the functionality of the under-
lying ABB (which provide secure computation over Zp) is enough to give us a
protocol for secure computation over G. This extended ABB (which we will call
ABB+) is shown in Fig. 3.

4.4 Active Security Using SPDZ Like MACs

The previous section showed that one can easily extend a protocol of Zp with
functionality for secure computation over a subgroup of G ⊆ E(K) of order p.



662 A. Dalskov et al.

Extended Arithmetic black-box (ABB+)

– RandMul, Mul([·], [·]), Rand, Open([·]) as described in Figure 2.
– A command 〈a〉 ← Convert([a]) that converts a representation of a secret [a]

over the field Zp into a representation of the secret 〈a〉 over the group G.
– A command a · G ← Open(〈a〉) that reconstructs a curve point a · G from a

secret representation 〈a〉.

Fig. 3. ABB from Fig. 2 extended to support computation over elliptic curves.

A natural question to ask is whether the active security guarantees of the Zp

protocol extend to the G protocol. We answer this question in the affirmative by
showing that the MAC scheme of SPDZ [16] can be used to provide authentica-
tion of shares in G (i.e., 〈·〉 shares) as well.

SPDZ Recap. We recall the SPDZ protocol and its security using the descrip-
tion from [15]. In SPDZ a value a ∈ Zp is shared as

[a] = ((a1, . . . , aN ), (γ(a)i, . . . , γ(a)N )),

where party i holds the pair (ai, γ(a)i), and where a =
∑

i ai and α · a = γ(a) =∑
i γ(a)i. The value α ∈ Zp is a global MAC key which is secret shared using

a different scheme, �α�. (The details of this are not important for the following
discussion; it suffices to say that each party has a share αi, such that

∑
i αi = α,

as well as other information to make this sharing secure) The global MAC key
is unknown to all parties and provide a notion of authentication of the shares.

We recap here the opening phase of the SPDZ protocol for a single value,
i.e., the part where the parties check if the output was computed correctly2:

1. Each Pi has input αi, their share of the global MAC key, and γ(a)i, their
share of the MAC on a partially opened value a3.

2. Each Pi computes σi = γi(a) − αia and broadcasts a commitment com(σi).
3. All parties open com(σi), compute chk =

∑
i σi and abort if chk �= 0.

Suppose a′ = a + ε, i.e., the adversary adds an error ε �= 0 during the partial
opening. If, in addition, the adversary lies about its MAC in Step 2 of SPDZ
opening phase and let Δ denote this error, then the adversary is successful if
Δ =

∑
i σi. In this case, we have

Δ =
n∑

i=1

σi =
n∑

i=1

γi(a) − αia = αε.

2 Note that several openings can be batched at the same time, see the original
paper [15] for more details.

3 A partial opening reveals the value but not the MAC.



Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 663

Since ε = (a − a′) �= 0, then α = Δε−1 which happens with probability at most
1/p due to the random choice of α.

SPDZ-Like Computation Over an Elliptic Curve. In the remainder of this
section, we will use the shorthand notation cv(a) = Convert(a) interchangeably
for convenience. Consider the most natural modification possible to obtain a
notion of a SPDZ-sharing 〈·〉 over G, from a SPDZ-sharing [·] over Zp, by applying
cv to all local shares. We define 〈a〉 as the vector

〈a〉 = ((cv(ai), . . . , cv(aN )), (cv(γ(a)i), . . . , cv(γ(a)N ))),

where Pi holds (cv(a1), cv(γ(a)i)). Observe that the linearity of cv implies that∑
i(cv(ai)) = cv(

∑
i ai) = cv(a), which makes the above a valid sharing of cv(a).

In addition, the semantics of the MAC is preserved since
∑

i

cv(γ(a)i) = cv(
∑

i

γ(a)i) = cv(α · a).

Therefore, we can use the same �α� to authenticate the Converted share as well.
More precisely, we consider a modified opening procedure that works as follows:4

1. Let αi be the share of the key held by Pi, and Γi = cv(γ(a)i) be the shares
of the MAC on A = cv(a).

2. Each Pi computes Σi = Γi − αiA and broadcasts a commitment com(Σi).
3. Open com(Σi), compute chk = Σ1 + · · · + ΣN and abort if chk �= 0.

It follows that, due to the linearity of the group operations, if the adversary
opens A′ �= A, then the check only passes with probability 1/p. In a nutshell,
we are taking a secure linear MAC procedure, and raising all the MACs and
values in the exponent. Since the SPDZ MACs are information theoretic secure,
the security of the “MAC in the exponent” can be reduced to the security of
the regular MAC (as the reduction can run in unbounded time and retrieve the
original MAC).

4.5 Multiparty ECDSA Protocol Using the ABB+

We recall the protocol of Gennaro and Goldfeder [21] and show that it can be
computed by our extended arithmetic black box functionality. The main issue
with computing ECDSA signatures securely is calculating k−1 such that it does
not reveal information about k. However, the inversion trick by Bar-Ilan and
Beaver [3] can be used here: Suppose each party has a share of two random
values γ, k, and their product, i.e., [γ], [k], [δ] where δ = γ · k. The parties can
then open δ and use it locally to compute their share of [k−1] = δ−1[γ]. Thus the
price to pay for the inversion (which is the most expensive part of every threshold
ECDSA protocol) is essentially just generating a random multiplication triple

4 Once again, the procedure is described for a single value, but it can be extended to
support batched opening.



664 A. Dalskov et al.

Threshold ECDSA in the ABB+ Hybrid Model

Key Generation. To generate a key for user Uj , either Uj supplies the sharing
[skj ], or the servers run [skj ] ← Rand(). The public key is computed as pkj =
Open(Convert([skj ])).

User independent preprocessing. The goal is to generate a pair (〈k〉, [k−1]) for each
signature in the following way.

1. The servers run ([a], [b], [c]) ← RandMul().
2. Run c ← Open([c]).
3. Let [k−1] = [a].
4. Define 〈k〉 ← Convert([b]) · c−1

5. Output (〈k〉, [k−1]).

User dependent preprocessing.

1. Take as input [skj ] (the sharing of the secret key of user Uj) and (〈k〉, [k−1])
(an unused tuple from the previous phase).

2. Compute [sk′
j ] = [skj/k] ← Mul([k−1], [skj ])

3. Output a final tuple (〈k〉, [k−1], [sk′
j ]).

Given a message to be signed M and preprocessed tuple (〈k〉, [k−1], [sk′
j ]) for Uj .

1. Run R ← Open(〈k〉) = (bc−1) · G = a−1 · G = k · G
2. Let (rx, ry) ← R.
3. Compute [s] = H(M) · [k−1] + rx · [sk′

j ].
4. Open s ← Open([s]) and output σ = (rx, s).

Fig. 4. Protocol with preprocessing computing threshold ECDSA signatures using our
extended ABB.

using RandMul, and using Convert to compute the value R = Open(Convert([k])).
The other value we need is a sharing of sk/k. Given [k−1] it is possible to compute
[sk/k] very efficiently by performing a single secure multiplication.

The full protocol using the ABB+ now follows: We consider a setting with
a number of servers S = {S1, . . . , SN} and a number of users U = {U1, . . . , U�}.
Our protocol has 4 phases: Key generation in which a random secret key is
generated using [sk] = Rand(), and then converted into the public key by running
pk = Open(Convert([sk])). (Alternatively, users can pick their own keys and input
them to the servers in S). Next up are two preprocessing phases: One phase is
independent of the users and the messages to be signed, and serves to generate
the values [k−1] and 〈k〉 that are required for generating any signature; the other
phase depends on the user and computes [skj/k], where skj is the signing key
of user Uj . Finally, generating a signature using the output of the preprocessing
and the user’s signing key is just a matter of performing a linear computation
followed by an opening. We show the details of the full protocol in Fig. 4.



Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 665

Security Analysis. Security of the protocol in Fig. 4 follows directly from the
security of the underlying ABB scheme, and from an assumption that ECDSA is
a secure signature scheme (this assumption has also been used in [18] and [19]).

5 Multiparty Zone Signing System

In this section, we describe the integration of our threshold ECDSA implemen-
tation in a DNS name server before describing the important operations. We
implement several variants of our threshold ECDSA protocol on top of MP-
SPDZ [17] and have used Crypto++ as the library for computation over elliptic
curves. We integrate MP-SPDZ with DNS administrative name servers. For DNS
name server software, we use Knot DNS [26] as it has the possibility to perform
automated key management and it comes with extensive documentation. For
the setting where the registrar is the DNS operator, we propose that registrars
interact with other registrars in the zone signing protocol. We describe the multi-
operator setting in this section and, where necessary, we note the difference if
the operators are also the registrar.

5.1 Setup

In our DNSSEC signing system, each operator serves a name server, runs a
threshold ECDSA module and has two key stores: one to store the keys for
particular zones and another to store the key material associated with other
operators. We consider three name servers operated by independent DNS oper-
ators, all of which support ECDSA with SHA256 message digest. We do not
change the operation of Knot DNS apart from the parts involved in DNSSEC
key generation, key rollover and zone signing. Communication between the name
server and the threshold ECDSA module is performed using a message queue.

5.2 Key Generation/Rollover

In the key generation/rollover phase, when new keys need to be generated, each
operator generates a signing key sharing [skj ] for the zone and runs the key
generation as shown in Fig. 4. At the end of this phase, the public key is added
to DNSKEY record of the zone at all the operators and the signing key share [skj ]
is stored in the keystore for the zones. In addition, a tag that indicates the DNS
operators associated with this signing key share is stored. E.g., Operator A would
store a tag T (B,C) along with the key shares associated with Operator B and
Operator C. This makes it easy for the threshold ECDSA module to contact the
corresponding DNS operators during the signature generation phase. Note that
the key generation for ZSK and KSK is the same except that in the case of KSK,
the domain owner generates the DS record and sends it to the registrar, who then
submits it to the registry. When the registrar is one of the DNS operators of the
zone, then the registrar can directly submit the DS record.



666 A. Dalskov et al.

Authoritative Name
Server

Threshold ECDSA
Module
MP-SPDZ

Key Store

DNS Operator 1

DNS Operator 2 DNS Operator 3

1

3s

1

3p

2 2

2

Fig. 5. Zone signing

5.3 Zone Signing

As shown in Fig. 4, our signing protocol has three phases: the first is independent
of the zone to be signed, while the second is independent of the RRset, but
dependent on the zone to be signed. Each of the three phases involve three steps
that are shown in Fig. 5. In Step 1, the threshold ECDSA module receives the
input for the phase from the name server and the tag from the key store. In Step
2, the MPC protocol for the phase is run between the threshold ECDSA module
of the three operators. In Step 3, the output of the preprocessing phases are sent
to the key store (Step 3p) while the output of the signing phase, RRSIG, is sent
to the name server to store in the zone file (Step 3s). We note that the threshold
ECDSA module runs in the background and periodically polls the name server
so that it is always available to sign.

Implication for DNS Operators. In our system, the DNS operators do not
need to be online any more than they already are in existing systems. DNS oper-
ators in existing systems remain online to respond to DNS queries. Many DNS
operators sign DNS responses on-the-fly and, hence, they are already equipped
with signing systems that are online. In our system they will not only respond
to DNS queries, they will also run MPC with other registrar/operators to cre-
ate RRSIG. Our threshold ECDSA protocols have an overhead—both in terms
of communication and computation—that depends on the concrete threat and
system model. We discuss the overheads as part of our benchmarks in Sect. 6.



Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 667

It is also worth noting that the operators need not rely on secure hardware
to store their user’s keys anymore, which may bring down both the cost and
complexity for a DNS operator.

Implication for DNS Resolvers. Proper functioning of the DNSSEC ecosys-
tem requires both the signing and the validation to work. Deploying changes
at DNS resolvers is extremely hard as numerous resolver software need to be
changed. Fortunately, no change is required at the validating resolver to use our
solution. Every time the domain is queried at the authoritative name server,
the signatures for the zone need to be verified at the resolvers for the chain
of trust to be established. Though three operators are involved in the signing
process, the signature can be verified with the same DNSKEY, irrespective of the
operator which initiated the signing process. If the DNS resolver obtains the
DNSKEY records from Operator A and stores it in the cache, then it will be able
to authenticate a response from Operator B for the same domain, as the two
operators have the same DNSKEY for the zone. The resolver will be able to verify
the chain of trust irrespective of the operator responded to the query.

6 Evaluation

In this section we report on several benchmarks of our protocol and compare
with prior work of both signature generation and key generation times. We
implement six varieties of our protocol (thus supporting different system and
threat models) in MP-SDPZ [17]. For n = 3 we have Rep3, Shamir (passive
security) and Mal. Rep3 and Mal. Shamir (active security). We remark that
only the Shamir protocols support n > 3. For n = 2, we use MASCOT and
MASCOT– (MASCOT minus) where the latter is a heuristic optimization of
the former. Many of these protocols have asymmetric communication patterns
and thus we report the maximum execution time, instead of the average. All
experiments were run on AWS c5.2xlarge instances in three settings: LAN,
continental WAN and worldwide WAN. The maximum RTT between any two
servers in these settings are 0.08 ms, 17 ms and 240 ms, respectively.

6.1 MASCOT– Optimizations

Our MASCOT– protocol is obtained by making a number of function specific
optimizations to MASCOT [24]. Threshold signatures are a special case of MPC
where the correctness of the output can trivially be determined by observing the
output itself (by verifying the signature). This is a well known trick which has
previously been used to optimize many threshold ECDSA protocols in the liter-
ature. We can similarly optimize our protocol by using an “optimistic” version
of the Open command when running Step 3 of the Signing subroutine in Fig. 4.

SPDZ Opening. We save a round of communication during opening as we do
not need to check correctness of the MACs. Omitting this attack permits the



668 A. Dalskov et al.

adversary to make an additive attack, which may result in an invalid signature,
but does not leak anything about the secret key.

Beaver Multiplication. Suppose the adversary can perform an additive attack
during multiplication. That is, x + a + ε1 and y + b + ε2 for independent ε1 and
ε2. A multiplication becomes

(x+a+ε1) ·(y+b+ε2)−(x+a+ε1) ·b−(y+b+ε2) ·a+ab = xy+ε1y+ε2x+ε1ε2.

This permits a selective failure attack (e.g., ε2 = 0, ε1 �= 0 then the multiplication
is correct if and only if y = 0). However, multiplications are only used on k−1

and sk, both of which are of high entropy.

6.2 Comparison with Prior Work

We present a comparison of our protocols with two industry protocols from
Unbound [38] and KZen [31], as well as the two-party protocol of Doerner et
al. [18] (DKLS) in Table 1. The numbers reported for our protocols correspond
to running all three phases in Fig. 4. We see that MASCOT– performs as well
as the fastest prior protocol in DKLS, with the same security guarantees, in the
LAN setting. However, with more servers, some of our protocols perform better
in the LAN setting. In our two WAN settings, DKLS outperforms our protocols,
a fact we attribute to the fact that DKLS requires only 2 messages (1 round
of communication) whereas our fastest protocol (Rep3) requires 3. Interestingly,
the simplicity of our key generation protocol is very apparent, and in all cases
(except MASCOT–) key generation is faster than signing.

6.3 Key Generation

We also benchmark the key generation phase as that is typically the more expen-
sive phase in prior works (e.g., [21,28]). With our approach, generating a shared
key amounts to running any protocol for generating a secret shared field element
[sk], followed by opening the result of Convert[sk]. Timings for key generation is
shown in Table 2. For our honest majority protocol (n = 3) generating a secret
key requires only 1 or 2 rounds of communication. MASCOT and MASCOT–
is slightly different in that the opening procedure is more costly. Finally, notice
that MASCOT– and MASCOT perform the same. Indeed, the heuristics used
to obtain MASCOT– cannot be used when generating keys.

6.4 Amortizing Signing

Finally, we analyze the cost of signing when amortization is applied, something
that no prior work has considered.5 Table 3 shows how many signing tuples
5 Although it might be possible to split some of the protocols in previous work into a

preprocessing and signing phase, such a split has not been implemented and, hence,
we cannot compare with it.



Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 669

Table 1. Comparison with prior work. Numbers for our protocols are obtained by
taking the mean over the maximum execution time over many runs.

Colocation Continent World

n Sig (ms) KGen (ms) Sig (ms) KGen (ms) Sig (ms) KGen (ms)

Rep3 3 2.78 1.45 27.22 29.44 367.87 291.32

Shamir 3 3.02 1.39 78.75 35.52 1140.09 486.82

Mal. Rep3 3 3.45 1.57 82.14 39.97 1128.01 429.47

Mal. Shamir 3 4.43 1.89 174.95 37.35 2340.53 485.11

MASCOT 2 6.56 4.32 196.19 185.71 2688.92 2632.07

MASCOT– 2 3.61 4.41 54.38 181.12 729.08 2654.59

DKLS [18] 2 3.58 43.73 15.33 109.80 234.37 1002.97

Unbound [38] 2 11.33 315.96 31.08 424.02 490.73 1010.98

Kzen [31] 2 310.71 153.87 1282.81 577.67 14441.83 7237.93

Table 2. Breakdown of key generation benchmarks into the time it takes to gener-
ate the [sk] sharing, and the time it takes to run Open(Convert([sk])). Times are the
maximum time that each step takes.

Colocation Continent World

Secret (ms) Public (ms) Secret (ms) Public (ms) Secret (ms) Public (ms)

Rep3 0.16 1.27 11.12 18.31 113.86 174.03

Shamir 0.25 1.13 17.17 18.09 243.00 243.82

Mal. Rep3 0.16 1.40 11.00 28.98 115.25 301.66

Mal. Shamir 0.25 1.62 16.90 18.32 241.78 243.18

MASCOT 2.34 1.91 149.26 33.01 2142.31 442.75

MASCOT– 2.40 1.92 145.48 33.21 2132.75 449.43

each protocol can generate per second. The signing times reported in this table
correspond to computing a signature when amortization is taken into account.
A signing tuple corresponds to the output of the user dependent preprocessing
phase in Fig. 4. We note that, for almost all protocols, amortized signing corre-
sponds essentially to a single round of communication.

6.5 Overhead for Operators

The storage overhead can be derived from the sizes of a share for a given protocol.
For Mal. Rep3, MASCOT and Rep3 each share consists of two Zp elements, while
for the rest a share is a single element. Thus, for the former three the overhead for
storing the signing keys is doubled. A signing tuple consists of two Zp shares and
one G share. For example, Rep3 needs to store roughly 2·4·32 bytes per signature,
assuming a 256-bit prime. Communication per party is between 177 and 354
bytes, depending on the protocol (this number was derived at experimentally).



670 A. Dalskov et al.

Table 3. Throughput in signing tuples per second as well as signing time when amor-
tization is taken into account.

Colocation Continent World

Tuples per sec. Sig (ms) Tuples per sec. Sig (ms) Tuples per sec. Sig (ms)

Rep3 922.27 2.49 898.25 19.91 715.54 247.13

Shamir 1829.69 2.37 1544.31 20.62 402.88 271.80

Mal. Rep3 914.65 2.52 806.13 20.07 309.76 245.14

Mal. Shamir 1792.30 2.91 1154.30 27.03 172.87 416.60

MASCOT 380.19 4.82 233.73 57.02 31.98 756.34

MASCOT– 700.94 2.75 447.85 20.37 68.31 258.85

7 Related Works

DNSSEC Deployment and Measurement. DNSSEC deployment heavily
relies on DNS operators and registrars. Prior works have found issues such as
reuse of signing keys by DNS operators for multiple domains6 [12] and sharing
of RSA modulus among multiple domains [34]. After the DDoS attacks of 2016,
the impact of the attacks and the number of customers of DyN and NS1 that
added another operator was measured [1]. However, only the domains that use
DyN and NS1 were measured while we measure the use of multiple operators,
not restricting our measurements to managed DNS providers.

Privacy in DNS. Though DNSSEC provides data integrity, it does not provide
confidentiality. “Range queries” [39] and private information retrieval [40] have
been proposed as a solution to hide queries. Recently, the Internet Engineering
Task Force (IETF) has considered privacy issues in DNS and DNSSEC [7,8] and
proposed DNS-over-TLS [RFC8310] and DNS-over-HTTPS [RFC8484]. While
privacy of DNS queries has been considered, we address the issue of privacy of
DNSSEC keys.

Threshold ECDSA. Protocols for computing ECDSA signatures in a threshold
manner has seen a resurgence lately due to their relevance to crypto-currencies.
Doerner et al. have developed threshold ECDSA protocols for both 2-parties
[18] and multiple parties [19]. Another recent protocol for dishonest majority is
due to Lindell [27]. Even more recently, Castagnos et al. developed a threshold
ECDSA protocol from Hash Proof Systems [11].

Threshold Signatures for DNSSEC. Threshold RSA signatures for DNSSEC
have been considered in the past. [10] proposed a distributed DNS to avoid single
point of failure, which provides fault tolerance and security in the presence of
corrupted servers. [13] emulate a HSM at an authoritative name server and they
report timings on a LAN which range from tens to hundreds of milliseconds on
commodity hardware. Both used RSA threshold signature scheme of [33].

6 https://www.netnod.se/sites/default/files/2016-12/NETNOD2015 DNS Martin
Levy CloudFlare-2.pdf (Slide 28).

https://www.netnod.se/sites/default/files/2016-12/NETNOD2015_DNS_Martin_Levy_CloudFlare-2.pdf
https://www.netnod.se/sites/default/files/2016-12/NETNOD2015_DNS_Martin_Levy_CloudFlare-2.pdf


Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 671

8 Conclusion

Deployment of DNSSEC is still an open problem. Current practices force the
domain owners to “outsource” management of their DNSSEC keys to the oper-
ators, and trust them not to abuse that knowledge. We replace that trust with
distributed mechanism that generates DNSSEC keys and signatures.

Our mechanism is based on a simple but powerful transformation that can
be applied to a large class of protocols for secure computation over Zp to obtain
protocols for secure computation over an elliptic curve group. We demonstrated
the appeal of such a transformation by obtaining several very efficient protocols
for threshold ECDSA. Our protocols work in the preprocessing model, which
allows us to obtain schemes for computing 100s to 1000s of signatures per second.

Our measurements demonstrate that multi-operator solutions for name
servers and for domains are popular in the Internet. Finally, motivated by the
aforementioned measurements, we show that our protocols provide an efficient
solution to existing issues in DNSSEC. In particular, we demonstrate a sys-
tem that allows multiple distinct operators to digitally sign zone (as required in
DNSSEC) at essentially no cost compared to regular single-operator DNSSEC.

Acknowledgment. This work has been co-funded by: the Concordium Blockhain
Research Center, Aarhus University, Denmark; the European Research Council (ERC)
under the European Unions’s Horizon 2020 research and innovation programme under
grant agreement No 803096 (SPEC); the Danish Independent Research Council under
Grant-ID DFF-6108-00169 (FoCC); the German Federal Ministry of Education and
Research and the Hessen State Ministry for Higher Education, Research and Arts
within their joint support of the National Research Center for Applied Cybersecurity
ATHENE; the Deutsche Forschungsgemeinschaft (DFG, German Research Founda-
tion): GRK 2050/251805230 and SFB 1119/236615297.

References

1. Abhishta, A., van Rijswijk-Deij, R., Nieuwenhuis, L.J.M.: Measuring the impact
of a successful DDoS attack on the customer behaviour of managed DNS service
providers. Comput. Commun. Rev. 48(5), 70–76 (2018)

2. Atkins, D., Austein, R.: Threat analysis of the domain name system (DNS). RFC
3833, 1–16 (2004)

3. Bar-Ilan, J., Beaver, D.: Non-cryptographic fault-tolerant computing in constant
number of rounds of interaction. In: Proceedings of the Eighth Annual ACM Sym-
posium on Principles of Distributed Computing, pp. 201–209. ACM (1989)

4. Beaver, D.: Efficient multiparty protocols using circuit randomization. In: Feigen-
baum, J. (ed.) CRYPTO 1991. LNCS, vol. 576, pp. 420–432. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-46766-1 34

5. Beevers, K.: A note from NS1’s CEO: How we responded to last week’s
major, multi-faceted DDoS attacks, 23 May 2016. https://ns1.com/blog/how-we-
responded-to-last-weeks-major-multi-faceted-ddos-attacks

6. Bellovin, S.M.: Using the domain name system for system break-ins. In: USENIX
Security Symposium. USENIX Association (1995)

https://doi.org/10.1007/3-540-46766-1_34
https://ns1.com/blog/how-we-responded-to-last-weeks-major-multi-faceted-ddos-attacks
https://ns1.com/blog/how-we-responded-to-last-weeks-major-multi-faceted-ddos-attacks


672 A. Dalskov et al.

7. Bortzmeyer, S.: DNS privacy considerations. RFC 7626, 1–17 (2015)
8. Bortzmeyer, S.: DNS query name minimisation to improve privacy. RFC 7816,

1–11 (2016)
9. Brandt, M., Dai, T., Klein, A., Shulman, H., Waidner, M.: Domain validation++

for MitM-resilient PKI. In: Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security, pp. 2060–2076. ACM (2018)

10. Cachin, C., Samar, A.: Secure distributed DNS. In: International Conference on
Dependable Systems and Networks, 2004, pp. 423–432. IEEE (2004)

11. Castagnos, G., Catalano, D., Laguillaumie, F., Savasta, F., Tucker, I.: Two-party
ECDSA from hash proof systems and efficient instantiations. In: Boldyreva, A.,
Micciancio, D. (eds.) CRYPTO 2019. LNCS, vol. 11694, pp. 191–221. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-26954-8 7

12. Chung, T., et al.: A longitudinal, end-to-end view of the DNSSEC ecosystem. In:
USENIX Security Symposium, pp. 1307–1322. USENIX Association (2017)

13. Cifuentes, F., Hevia, A., Montoto, F., Barros, T., Ramiro, V., Bustos-Jiménez,
J.: Poor man’s hardware security module (pmHSM): a threshold cryptographic
backend for DNSSEC. In: LANC, pp. 59–64. ACM (2016)

14. Cimpanu, C.: Hackers breached Greece’s top-level domain registrar, 9
July 2019. https://www.zdnet.com/article/hackers-breached-greeces-top-level-
domain-registrar/

15. Damgard, I., Keller, M., Larraia, E., Pastro, V., Scholl, P., Smart, N.P.: Practi-
cal covertly secure MPC for dishonest majority - or: Breaking the SPDZ limits.
Cryptology ePrint Archive, Report 2012/642 (2012). https://eprint.iacr.org/2012/
642

16. Damg̊ard, I., Pastro, V., Smart, N., Zakarias, S.: Multiparty computation from
somewhat homomorphic encryption. In: Safavi-Naini, R., Canetti, R. (eds.)
CRYPTO 2012. LNCS, vol. 7417, pp. 643–662. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-32009-5 38

17. Data61. MP-SPDZ - versatile framework for multi-party computation. https://
github.com/data61/MP-SPDZ

18. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Secure two-party threshold ECDSA
from ECDSA assumptions. In: 2018 IEEE Symposium on Security and Privacy,
pp. 980–997. IEEE Computer Society Press, May 2018

19. Doerner, J., Kondi, Y., Lee, E., Shelat, A.: Threshold ECDSA from ECDSA
assumptions: the multiparty case. In: 2019 IEEE Symposium on Security and Pri-
vacy, pp. 1051–1066. IEEE Computer Society Press, May 2019

20. DYN. DYN analysis summary of friday october 21 attack, 26 October 2016.
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/

21. Gennaro, R., Goldfeder, S.: Fast multiparty threshold ECDSA with fast trustless
setup. In: ACM Conference on Computer and Communications Security, pp. 1179–
1194. ACM (2018)

22. Herzberg, A., Shulman, H.: Socket overloading for fun and cache-poisoning. In:
ACSAC, pp. 189–198. ACM (2013)

23. Kaminsky, D.: Black ops 2008: It’s the end of the cache as we know it. Black Hat
USA (2008)

24. Keller, M., Orsini, E., Scholl, P.: MASCOT: faster malicious arithmetic secure com-
putation with oblivious transfer. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C.,
Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 830–842. ACM Press, October
2016

25. Kerry, C.F., Gallagher, P.D.: FIPS pub 186–4 federal information processing stan-
dards publication digital signature standard (DSS) (2013)

https://doi.org/10.1007/978-3-030-26954-8_7
https://www.zdnet.com/article/hackers-breached-greeces-top-level-domain-registrar/
https://www.zdnet.com/article/hackers-breached-greeces-top-level-domain-registrar/
https://eprint.iacr.org/2012/642
https://eprint.iacr.org/2012/642
https://doi.org/10.1007/978-3-642-32009-5_38
https://github.com/data61/MP-SPDZ
https://github.com/data61/MP-SPDZ
https://dyn.com/blog/dyn-analysis-summary-of-friday-october-21-attack/


Securing DNSSEC Keys via Threshold ECDSA from Generic MPC 673

26. Knot. Knot DNS. https://www.knot-dns.cz/
27. Lindell, Y.: Fast Secure Two-Party ECDSA Signing. In: Katz, J., Shacham, H.

(eds.) CRYPTO 2017. LNCS, vol. 10402, pp. 613–644. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-63715-0 21

28. Lindell, Y., Nof, A., Ranellucci, S.: Fast secure multiparty ECDSA with practical
distributed key generation and applications to cryptocurrency custody. Cryptology
ePrint Archive, Report 2018/987 (2018). https://eprint.iacr.org/2018/987

29. Liu, S., Foster, I.D., Savage, S., Voelker, G.M., Saul, L.K.: Who is .com?: learning
to parse WHOIS records. In: Internet Measurement Conference, pp. 369–380. ACM
(2015)

30. Netnod. Statement on man-in-the-middle attack against netnod, 5 Febru-
ary 2019. https://www.netnod.se/news/statement-on-man-in-the-middle-attack-
against-netnod

31. Kzen networks. Rust implementation of t, n-threshold ecdsa (elliptic curve digital
signature algorithm). https://github.com/KZen-networks/multi-party-ecdsa

32. Krebs on Security. A Deep Dive on the Recent Widespread DNS Hijacking
Attacks, 18 February 2019. https://krebsonsecurity.com/2019/02/a-deep-dive-on-
the-recent-widespread-dns-hijacking-attacks/

33. Shoup, V.: Practical threshold signatures. In: Preneel, B. (ed.) EUROCRYPT 2000.
LNCS, vol. 1807, pp. 207–220. Springer, Heidelberg (2000). https://doi.org/10.
1007/3-540-45539-6 15

34. Shulman, H., Waidner, M.: One key to sign them all considered vulnerable: eval-
uation of DNSSEC in the internet. In: NSDI, pp. 131–144. USENIX Association
(2017)

35. Smart, N.P., Talibi Alaoui, Y.: Distributing any elliptic curve based protocol. In:
Albrecht, M. (ed.) IMACC 2019. LNCS, vol. 11929, pp. 342–366. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-35199-1 17

36. Son, S., Shmatikov, V.: The Hitchhiker’s guide to DNS cache poisoning. In: Jajodia,
S., Zhou, J. (eds.) SecureComm 2010. LNICSSITE, vol. 50, pp. 466–483. Springer,
Heidelberg (2010). https://doi.org/10.1007/978-3-642-16161-2 27

37. Talos Intelligence. DNS hijacking abuses trust in core internet service, 17 April
2019. https://blog.talosintelligence.com/2019/04/seaturtle.html

38. Unbound Tech. blockchain-crypto-mpc. https://github.com/unbound-tech/
blockchain-crypto-mpc

39. Zhao, F., Hori, Y., Sakurai, K.: Analysis of privacy disclosure in DNS query. In:
MUE, pp. 952–957. IEEE Computer Society (2007)

40. Zhao, F., Hori, Y., Sakurai, K.: Two-servers PIR based DNS query scheme with
privacy-preserving. In: IPC, pp. 299–302. IEEE Computer Society (2007)

https://www.knot-dns.cz/
https://doi.org/10.1007/978-3-319-63715-0_21
https://eprint.iacr.org/2018/987
https://www.netnod.se/news/statement-on-man-in-the-middle-attack-against-netnod
https://www.netnod.se/news/statement-on-man-in-the-middle-attack-against-netnod
https://github.com/KZen-networks/multi-party-ecdsa
https://krebsonsecurity.com/2019/02/a-deep-dive-on-the-recent-widespread-dns-hijacking-attacks/
https://krebsonsecurity.com/2019/02/a-deep-dive-on-the-recent-widespread-dns-hijacking-attacks/
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/3-540-45539-6_15
https://doi.org/10.1007/978-3-030-35199-1_17
https://doi.org/10.1007/978-3-642-16161-2_27
https://blog.talosintelligence.com/2019/04/seaturtle.html
https://github.com/unbound-tech/blockchain-crypto-mpc
https://github.com/unbound-tech/blockchain-crypto-mpc

	Securing DNSSEC Keys via Threshold ECDSA from Generic MPC
	1 Introduction
	1.1 Threshold Signing
	1.2 Contributions
	1.3 Outline

	2 Quantifying Multiple Operators
	2.1 Data Collection Methodology
	2.2 Data Analysis

	3 System and Threat Model
	3.1 System and Communication Model
	3.2 Threat Model

	4 Threshold ECDSA
	4.1 ECDSA Signing
	4.2 Secure Multiparty Computation
	4.3 Secure Computation on Groups
	4.4 Active Security Using SPDZ Like MACs
	4.5 Multiparty ECDSA Protocol Using the ABB+

	5 Multiparty Zone Signing System
	5.1 Setup
	5.2 Key Generation/Rollover
	5.3 Zone Signing

	6 Evaluation
	6.1 MASCOT– Optimizations
	6.2 Comparison with Prior Work
	6.3 Key Generation
	6.4 Amortizing Signing
	6.5 Overhead for Operators

	7 Related Works
	8 Conclusion
	References




